
Hindawi Publishing Corporation
International Journal of Antennas and Propagation
Volume 2012, Article ID 351487, 7 pages
doi:10.1155/2012/351487

Research Article

Influence of Training Set Selection in Artificial Neural
Network-Based Propagation Path Loss Predictions

Ignacio Fernández Anitzine,1 Juan Antonio Romo Argota,1 and Fernado Pérez Fontán2
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This paper analyzes the use of artificial neural networks (ANNs) for predicting the received power/path loss in both outdoor and
indoor links. The approach followed has been a combined use of ANNs and ray-tracing, the latter allowing the identification and
parameterization of the so-called dominant path. A complete description of the process for creating and training an ANN-based
model is presented with special emphasis on the training process. More specifically, we will be discussing various techniques to
arrive at valid predictions focusing on an optimum selection of the training set. A quantitative analysis based on results from two
narrowband measurement campaigns, one outdoors and the other indoors, is also presented.

1. Introduction

The need for connectivity anywhere, added to the increment
in the number of users, has triggered the development of
various generations of mobile communication standards in
the last decades. The demand for greater traffic capacity
involving both voice and data transmission requires the
planning of mobile communication networks comprised of
smaller and smaller cells, thus making the number of base
stations grow exponentially, and complicating the process of
determining and optimizing the location of these stations.
Because of this, accurate and fast prediction models are
needed for making received signal level/path loss predictions
prior to actual network deployment. In this paper, we analyze
the performance achievable with an intermediate technique
between purely empirical and purely deterministic, based on
the use of artificial neural networks (ANNs).

2. Prediction Models

A great variety of methods [1] has been proposed for predict-
ing the expected received electric field level or, alternatively,
the path loss. These calculations can be made using empirical

or deterministic models. An intermediate alternative is using
artificial neural network-based (ANN) models.

Empirical models are based on measurement campaigns
carried out in specific, representative environments. Regres-
sion techniques are then used for obtaining mathematical
expressions describing the propagation loss as a function
of the path length. The computational efficiency of these
models is satisfactory, while having a limited accuracy. A
typical example is the well-known Okumura-Hata model
[2, 3].

On the other hand, deterministic models apply accurate
electromagnetic techniques or simplified versions of them.
These require accurate input information of the propa-
gation environment: buildings, and so forth. Their main
advantage is their precision, despite their lack of computa-
tional efficiency. It is quite common to see high frequency
approximations of the full wave solutions which make use
of ray-tracing techniques for identifying all possible paths
between the transmitter and the receiver including multiple
reflections, diffractions and transmissions through walls. The
contribution of each ray is then calculated by using Fresnel’s
transmission and reflection coefficients, and GTD/UTD
[4, 5] for diffracted contributions.
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On the other hand, ANN-base models try to combine
the advantages of empirical and deterministic models. ANNs
are composed of several nodes or neurons divided into
different levels with connections between them. The neurons
may receive several input signals which are combined using
appropriate weights and passed through specific transfer
functions. To specify the various weights, the network must
be trained. Training is carried out using measured data.
Depending on the quality of the training process so will be
the ability of the ANN to make predictions in unknown
situations: generalization property.

In the literature, the most common choice is using
feedforward networks, commonly referred to as multilayer
perceptrons (MLPs) [6]. An alternative is to use the so-
called radial basis function networks (RBFs) for their fast
convergence, robustness, and small size [7].

Most implementations for our application use ANNs
with two hidden layers. In the first, a number of neurons
greater than the number of inputs is usually found [8].
However, other studies show that more complex networks do
not necessarily increase the prediction accuracy. Moreover, it
has been found that the generalization properties of ANNs
may be reduced, that is, they may be more sensitive to the
training set data [9].

In the hidden layers, nonlinear activation functions are
normally used, for example, sigmoid-type functions. For
the output level, linear functions are normally used. In the
hidden layers, also wavelet functions can be found in received
field prediction applications [10]. However, even though
they show faster computation times, in contrast, they require
much larger training data sets.

Different algorithms can be used for training an ANN.
In [11], their efficiencies were analyzed showing that the
best results are obtained with Bayesian regularization and
Levenberg-Marquardt techniques, the latter being the most
used option. Another algorithm also used [12, 13], which
offers good performances is the resilient propagation algo-
rithm.

ANNs can also be combined with other techniques for
characterizing the effects of RF propagation. When simula-
tion time is critical, the so-called “dominant path,” selected
by means of a ray-tracing tool, can be used to provide the
necessary inputs to the AAN. This leads to acceptable results
both in terms of time and accuracy. The dominant path is
the propagation path between the transmitter and receiver
showing the smallest loss. Thus, instead of searching for all
possible ray combinations, the problem is simplified while an
acceptable generalization performance may be achieved. The
dominant path can be calculated using two main techniques:
the recursive neighboring model [14] and the convex corners
approach [15].

In the last few years, many researchers have applied
ANNs for predicting the path loss in indoor [8, 16],
outdoor urban [17, 18], and rural [9] environments. In the
above references, extensive descriptions and optimizations of
ANN architectures, trainings, and generalizations have been
presented. However, special attention must still be paid to
the repercussions of using different criteria for selecting the
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Figure 1: Outdoor measurement routes and transmitters.

training data set. This is the main issue discussed in this
paper.

3. Measurements and Tools

In this section, the main features of the measured data are
presented, then we go on to present the developed ANN
tool which operates in combination with a ray-tracing tool
able to identify the dominant path between transmitter and
receiver. Typically, a single transmitter is assumed while
various receive locations can be defined as part of a route or
a meshed grid. The route option is very well suited for the
training process.

A continuous wave (CW) transmitter was set up at a
number of sites, while the received power was measured
at several points along a number of routes. Measurements
were repeated several times so as to average out the signal
cancellations and enhancements due to multipath. For each
measurement point, information on its coordinates and
the received power level in dBm were recorded. All the
outdoor and indoor measurement routes and the transmit
locations are shown in Figures 1 and 2, respectively. The CW
measurements were made at the 900 and 1800 MHz bands,
using in both cases a vertically polarized 4 dBi gain antenna
and 35 dBm transmit power. The receiver was a spectrum
analyzer connected to a PC. Measurements were triggered
every 350 cm along the route. The receive antennas were also
vertically polarized, with omnidirectional patterns and 0 dBi
gains.
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Figure 2: Indoor measurement routes and transmitters.
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Figure 3: Example of dominant path calculation in the indoor case.
Blue lines represent direct ray paths, Green lines represent reflection
paths and black lines represent diffraction paths.

Our ANN model works in combination with a simplified
ray tracing tool. This performs CAD tasks as well as basic ray
tracing for finding the dominant propagation path for each
Tx-Rx pair, then it calculates this path’s parameters.

For both outdoor and indoor links, the dominant path
can belong to any of four different types: (a) direct ray
paths, when the line-of-sight, LOS, path is not blocked, (b)
wall-reflection paths, (c) corner-diffraction paths, and (d)
propagation through-obstacle paths, when it is not possible
to link the transmitter and receiver with one of other three
path types. In this last case, a straight line is drawn from
one end to the other. Each time this line crosses an obstacle,
for example, a wall, the corresponding loss is added. Figure 3
illustrates this classification for the indoor case.

4. ANN-Based Model

Starting from an earlier version of the tool [16], we
have implemented a new one using the dominant path
approach. Then, this implementation has been trained with
measurements. Finally, comparisons between predictions
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Figure 4: Architecture of the indoor neural network.
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Figure 5: Architecture of the outdoor neural network.

and measurements for data sets different from those used
for training were carried out. Two different ANNs have been
implemented for indoor and outdoor scenarios, respectively.
Two different networks were necessary due to the significant
differences in propagation conditions in the two scenarios.

The indoor ANN is a MLP network with pyramidal
structure consisting of three main parts: an input layer
with 8 neurons, each associated with one of the 8 selected
input parameters, two hidden layers with 6 and 4 neurons,
respectively, with sigmoid-type activation functions and,
finally, an output layer with a single neuron with a linear
function (Figure 4). The outdoor ANN uses fewer inputs
resulting in a simpler structure (Figure 5).

The input parameters must characterize the propagation
path between transmitter and receiver in the most faithful
way. Numerous parameters could have been selected. After
several trials, we selected the parameters listed below.

(a) Indoor Scenarios

(i) Screen effect, Po1, Po2. It occurs when there are walls
near the transmitter or receiver blocking the direct
ray.
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Table 1: Classification of receive locations.

Outdoor receivers % Of total Indoor receivers % Of total

LOS direct ray 1352 20.2 572 16.7

NLOS reflection 526 7.8 — —

NLOS diffraction 1972 29.4 635 18.6

NLOS obstacles 2861 42.6 2213 64.7

Total 6711 100 3420 100

Table 2: Distribution of measurement points in sets A and B
according to their dominant paths.

Training routes Set A Set B

LOS direct ray 194 268

NLOS reflection 5 56

NLOS diffraction 250 494

NLOS obstacles 237 662

Total 686 (8.9% of 6711) 1480 (22% of 6711)

(ii) Local reflections, Po3, Po4. They exist when either
the receiver or the transmitter are located close to a
corner giving rise to multiple reflections.

(iii) Waveguide effect, Po5. It appears in corridors.

(iv) Change of direction, Po6. It occurs when diffraction
takes place.

(v) Transmission loss, Po7. It is introduced when the
signal must pass through an obstacle.

(vi) Free space loss, Po8. It depends on the distance
between the transmitter and receiver, and the work-
ing frequency.

(b) Outdoor Scenarios

(i) Distances L1 and L2, Pi1, Pi2. They are defined as
the separations between the transmitter/receiver and
the interaction point (reflection or diffraction point).
The longer these distances are, the larger the loss will
be.

(ii) Incidence and scattering angles, Pi3. They are defined
with respect to a wall’s normal.

(iii) Reflection and diffraction coefficients, Pi4, Pi5. Fres-
nel’s reflection coefficients and UTD edge diffraction
coefficients.

(iv) Free space loss, Pi6. It depends on the distance
between the transmitter and receiver, and the work-
ing frequency.

The most critical step when designing an ANN-based
model is the training process which will condition the achiev-
able prediction accuracy. The back-propagation technique
was selected as learning method, where the predicted power
is compared with the actual measurement, and the difference
(error) is fed back to the network for correcting the various
network connection weights.
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Figure 6: Example of prediction result and comparison with
measurements.

The Levenberg-Marquardt algorithm was used for train-
ing the model. This method uses the evolution of the
gradient changing the coefficient for each neuron connection
in the direction that causes a larger error reduction. The
chosen number of training cycles was one thousand. This is a
tradeoff between error, and time. As said, the selection of the
training set is the most critical issue and will be discussed in
depth below.

After the ANNs were trained, we analyzed the prediction
errors by comparing the results of the ANN-based model
and the received power levels measured at points different
from those used in the training phase. Figure 6 illustrates a
measurement route and the obtained prediction. For each
route, the mean error, mean squared error and standard
deviation were calculated. In the figure we can observe how
the prediction curve is much smoother than that of the
measurement. This is because the ANN input parameters,
obtained from the ray-tracer, are very similar for neighboring
points along the route. The user of such a prediction tool
must be aware of this limitation. Still, as observed, the
average error and its spread are very small.

5. Selecting the Training Set

As discussed in previous sections, a wise selection of real
propagation paths from which the neural network will learn
how to calculate the received power is the most critical factor
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Table 3: Error statistics for the outdoor case with the ANN trained with set A and with set B.

Test routes Route 1 Route 2 Route 3 Route 4 Route 5

Network trained with training Set A

Mean error 10.03 8.09 11.41 5.76 3.86

RMS error 14.17 10.11 13.26 8.29 5.15

std 10.01 6.07 6.76 5.97 3.41

Network trained with training Set B

Mean error 6.66 6.70 5.40 4.26 1.77

RMS error 10.54 9.49 7.62 6.58 2.52

std 8.17 6.72 5.24 5.01 1.79

Table 4: Path types used in indoor trainings.

Training routes Set C Set D

LOS direct ray 399 406

NLOS diffraction 30 101

NLOS obstacles 219 390

Total 648 (17.5% of 3420) 897 (26% of 3420)

in the training phase. Those real situations form the so-called
“training set.”

To optimize the training set several routes with different
characteristics must be selected so as to provide the ANN
with all the propagation conditions (reflection paths, direct
ray paths, etc.) likely to be encountered. In addition, the
selected routes have to include received positions showing
different ranges of input parameters. In this way, the network
will learn to behave in many different situations and will be
able to make correct generalizations when applied to new
cases. After learning from a number of routes, the network
must be tested with other data sets from different routes.
Predictions for those test routes must show similar errors to
those for the training routes. If this is the case, network will
be correctly trained.

The first and essential step in the training process involves
a suitable characterization of the measurements points in the
training routes according to their dominant path type. The
choice of training routes must be a planned process based
on supplying a sufficient and balanced number of measured
points belonging to the various propagation conditions to be
expected. Based on the dominant path concept, we have to
be careful when training the ANN to provide an appropriate
mix of the four path types identified.

A total of 29 measurement routes were recorded, each
with a different number of receive positions depending on its
length. For outdoor links, a total of 50 routes were measured.
Hence, the available measurements correspond to a total of
79 routes with 3420 sampling or receive points for the indoor
case and 6711 for outdoor locations. As indicated earlier,
each route was measured several times and, then, point-wise
averages were calculated. The number of transmitter sites
in the indoor case was 6, while for the outdoor case 5 sites
were used. Table 1 presents a summary of all measurement
locations according to their corresponding path types.

Two strategies have been analyzed in the selection of the
training set. In the first, we selected entire routes while the
second focused on selecting specific receive points according
to the dominant path category to which they belonged.

We now analyze the first, that is, route-wise strategy.
From the available measurements, a subset of the routes
was used for training while the rest was used for testing.
To illustrate the effect of the number of routes considered
in the training process in relation to the achieved prediction
accuracy, several training sets were used as discussed below,
both for the indoor and outdoor cases.

To train the outdoor network, two different sets were
used. Set A consisted of data gathered from a single transmit
site and three different routes. In all, 686 data points: 194
corresponding to direct ray paths, 250 to diffraction paths, 5
to reflection paths, and 237 to through-obstacle paths. Set-
B consisted of data from seven routes and 2 transmit sites,
in all 1480 data points classified as follows: 268 were direct
ray paths, 494 diffraction paths, 56 reflection paths and 662
through-obstacle paths, Table 2.

After training, measurements from 5 routes correspond-
ing to a different transmit site were used to test the
ANNs trained with sets A and B. Table 3 shows the results
of this analysis. For set A, acceptable error levels were
obtained when the test routes showed similar propagation
characteristics to those used in the training process. However,
for the other routes, all three error parameters (mean, RMS
and standard deviation) were rather high, even over 10 dB.
At some locations such as those corresponding to reflection
paths, predictions were worse than those observed when
training the network with set A. This is due to the fact that
only 5 data points corresponding to this path type were used
in the training. Thus, the network could not learn how to
behave in reflection-dominated paths. It is clear that the
training needed improvement for this type of paths. On the
other hand, set B contained a more balanced mix of data
points corresponding to all four classes. In this case, the error
statistics are drastically reduced.

For training of the indoor network, two sets were also
used. Set C consisted of data from two transmitters and four
different routes. In all, 648 measurements were used: 399
points corresponded to direct-ray paths, 219 to through-
obstacle paths and 30 to diffraction paths. Set D consisted
of eight routes corresponding to four transmitters. Now, 897
training points were used (26.3% of a total of 3420). The
distribution of path types is as follows: 406 were direct ray
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Table 5: Numerical results of simulations, with two and four transmitters, for the indoor routes.

Test routes Route 6 Route 7 Route 8 Route 9

Network trained with set C

Mean error 1.23 2.58 2.19 2.37

RMS error 1.72 3.46 3.14 3.27

std 1.20 2.31 2.25 2.25

Network trained with set D

Mean error 0.96 1.99 1.36 1.47

RMS error 1.48 2.84 1.99 2.60

std 1.13 2.03 1.45 2.15

Table 6: Errors for the path-type oriented analysis for the outdoor
case.

Test routes
LOS

direct ray
NLOS

reflection
NLOS

diffraction
NLOS

obstacles

Mean error 5.77 7.49 8.78 7.32

RMS error 9.34 9.04 11.88 8.84

std 7.35 5.07 8.00 4.95

Table 7: Errors for the path-type oriented analysis for the indoor
case.

Test routes LOS direct ray NLOS diffraction NLOS obstacles

Mean error 1.77 3.26 2.15

RMS error 2.52 4.74 3.15

std 1.79 3.44 2.30

paths, 101 diffraction paths, and 390 through-obstacle paths,
Table 4. For the test set four complete routes were used,
Table 5.

Again, in the case of Set-D, the errors were much smaller
than for the Set-C. With the new training, the same routes
were simulated. Due to the path type mix in Set-C, routes
with diffraction paths were badly predicted: the network so
trained cannot properly simulate those measurement points
where the dominating conditions are not sufficiently well
represented in the training set. Training Set-D introduces
more measurements and also covers a more balanced mix
of propagation path types. Thus, the selected routes in Set-
D encompass an appropriate assortment of paths from all
types.

Now we analyze the second strategy to selecting the
training set, that is, a path-type oriented selection. In this
case, the training process was separately carried out for each
type of propagation path. Training the ANN with separate
receiver locations according to their propagation path types
could, in principle, allow achieving a much better prediction
accuracy. According to this approach, several routes were
split into subsets, as a function of their dominant path, so
that all receive points with a direct-ray predominant path
were placed into the same subset. Then, some of those
points were used to train the ANN and others for testing it.
The same was done for reflection, diffraction, and through-
obstacle paths.

As shown in Table 6, results for reflection, diffraction and
through-obstacle paths show a similar error parameter range,
in the order of 7-8 dB. Meanwhile, the variability of direct ray
paths proved to be lower than in the other cases. A similar
analysis was carried out for the indoor case, Table 7. Now, the
error parameter range in through-obstacle and diffraction
paths is in the order of 2-3 dB, whereas for direct ray paths
it again shows a lower value. In any case, even though both
in outdoor and indoor situations, the general performance is
quite good, it does not seem to be much better than the one
achieved in the previous analyses.

6. Conclusions

To create an effective ANN and properly make path loss
predictions, a correct training strategy must be devised. The
selection of the training sets is the most critical factor to ANN
prediction performance in this application. An appropriate
assortment of different propagation conditions represented
by different types of propagation paths is required so the net
can learn how to behave and make suitable generalizations in
as many different situations as possible.

In this paper, we have focused on an implementation
combining a simplified ray-tracing tool which takes care of
identifying the so-called “dominant path” and calculating
a number of propagation path-related parameters used as
inputs to the ANN which, in turn, makes the final prediction.

When we indicate that there is a need for an appropriate
assortment of paths with different propagation conditions,
the selection has to be based on a classes defined accord-
ing to the dominant path. Both for indoor and outdoor
conditions, four different dominant path classes have been
identified. When the above premises are fulfilled, ANNs
may very well represent a good alternative to predict radio
propagation with errors in a similar range to other, more
complex methods with more computational load. From our
experimental analyses the error parameters, mean, rms, and
standard deviation were always below 7 dB.

To achieve these results in a training strategy oriented
toward the dominant path, the training points need to be
adequately selected so that they are representative of the
ensemble of the possible types in the coverage area. This
selection requires an in-depth knowledge of the propagation
scenario, and hence an elevated cost for collating the data in
the set which in practice is unfeasible.
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In a complete route-oriented strategy, the accuracy of
the achieved results will depend on the total number of
routes in the training set. It was observed that as the number
of samples is increased so does the accuracy, especially for
a small number of routes. If the sample size is properly
balanced, further increments will not produce significant
performance improvements while the cost increases.

In this paper, the balanced size corresponds to a route
selection approximately encompassing 25% of the foreseen
coverage area. The selected routes should provide diversity
of cases while they are validated through a simple process.
Such a set produces similar results as with a set based on
the dominant path types found in the coverage area. In
summary, adopting this strategy will lead to the generation of
a less complex training set at much smaller cost than using a
path type-oriented strategy and achieving similar accuracies.

A word of caution must be said, however. As illustrated in
Figure 6, ANN predictions for consecutive points belonging
to the same route cannot follow some of the sharp variations
encountered in the measurements, where the measurements
are already the results of averaging over several repeated
passes, that is, they contain the slow channel variations due
to shadowing, but the multipath has been removed. This is
because the inputs to the net provided by the ray-tracing plus
dominant path tool do not change so drastically from point
to point. This shortcoming needs to be born in mind when
considering the application of this approach.
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