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Abstract

Background: Thrombotic antiphospholipid syndrome is defined as a complex form of thrombophilia that is developed by a
fraction of antiphospholipid antibody (aPLA) carriers. Little is known about the genetic risk factors involved in thrombosis
development among aPLA carriers.

Methods: To identify new loci conferring susceptibility to thrombotic antiphospholipid syndrome, a two-stage genotyping
strategy was performed. In stage one, 19,000 CNV loci were genotyped in 14 thrombotic aPLA+ patients and 14 healthy
controls by array-CGH. In stage two, significant CNV loci were fine-mapped in a larger cohort (85 thrombotic aPLA+, 100
non-thrombotic aPLA+ and 569 healthy controls).

Results: Array-CGH and fine-mapping analysis led to the identification of 12q24.12 locus as a new susceptibility locus for
thrombotic APS. Within this region, a TAC risk haplotype comprising one SNP in SH2B3 gene (rs3184504) and two SNPs in
ATXN2 gene (rs10774625 and rs653178) exhibited the strongest association with thrombotic antiphospholipid syndrome (p-
value = 5,9 6 1024 OR 95% CI 1.84 (1.32–2.55)).

Conclusion: The presence of a TAC risk haplotype in ATXN2-SH2B3 locus may contribute to increased thrombotic risk in aPLA
carriers.
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Introduction

Antiphospholipid syndrome (APS) is a complex autoimmune

disease characterized by the presence of antiphospholipid

antibodies (aPLA) along with the development of thrombosis

and/or pregnancy morbidity [1,2,3]. It is thought that aPLAs are

able to interact with hemostatic and inflammatory mediators,

giving rise to the pro-coagulant/pro-thrombotic manifestations

that characterize APS [4,5]. However, only a fraction of

individuals with elevated aPLA titers develop thrombosis (throm-

botic APS), suggesting that additional risk factors may be involved

in thrombosis development in these individuals.

Gene expression profiling at the transcriptome and the

proteome level has confirmed the link in APS between immune

responses and coagulation pathways [6,7,8,9], but hasn’t clarified

which genes could be responsible for the development of

thrombotic APS. At the genomic level, genetic variants that

confer susceptibility to aPLA production and APS development

have been widely investigated in recent years. Genetic association

studies based on candidate genes have shown significant associ-

ation of polymorphisms involved in blood coagulation (F5, F13A1)

and proinflammatory state (TLR4) with thrombotic APS

[10,11,12,13]. Despite the progress achieved by these studies,

the collected body of data is still insufficient to distinguish

individuals who will develop thrombotic events from those who

will not.

In recent years, copy-number variants (CNV) have emerged as

genomic variants that may contribute to the genetic basis of

human disease susceptibility [14]. It has been estimated that 12%

of the human genome is composed of such sequences, and their

presence can change gene dosage, cause protein diversity and/or

allow the evolution of new functions [15]. Some copy number

variants have been associated with immune-related traits. For

example, the presence of a CNV in the FCGR3B gene has been

linked to the development of glomerulonephritis in patients with

systemic lupus erythematosus [16,17]. Recently, a study directed

by the Wellcome Trust Case Control Consortium (WTCCC) has

discovered several CNV loci that are associated with common

diseases, such as coronary artery disease, type 2 diabetes,

hypertension or rheumatoid arthritis [18]. Importantly, numerous

CNVs identified in this study co-localized with SNPs that had been

previously reported in genome-wide association (GWA) studies,
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suggesting that disease susceptibility regions might harbor genomic

variants at an elevated frequency.

In this report, we have searched for new susceptibility loci for

thrombotic APS. By performing a combination of array-CGH and

SNP-based association analyses we have identified the 12q24.12

locus as a new susceptibility region for thrombotic APS. The

identification of this susceptibility locus could contribute to our

understanding of the molecular basis of thrombotic APS and could

help in the clinical management of patients affected by this

disorder.

Materials and Methods

Study Cohort
All subjects included in the study were Spanish Caucasian

individuals. Samples from cases were collected at the Autoimmune

Disease Research Unit of Hospital de Cruces (Barakaldo, Spain)

during years 2008–2010. Samples from healthy controls were

collected at the Basque Biobank for Research-OEHUN (Spain).

The protocols for human subjects’ recruitment and study were

approved by the ethical board (institutional review board) of

Hospital Universitario Cruces (Barakaldo, Spain). Samples and

data from patients were provided by the Basque Biobank for

Research-OEHUN (www.biobancovasco.org) and were processed

following standard procedures with appropriate ethical approval.

All subjects were informed about the study design and goals, and

signed the informed consent. Genomic DNA was extracted from

whole blood with Flexigen kit (Qiagen Inc, California, USA) at the

Basque Biobank for Research-OEHUN. DNA concentration was

measured using a NanoDrop Spectrophotometer (NanoDrop

Technologies, Inc, Wilmington, DE).

For CNV association analyses (stage 1), we selected Spanish

Caucasian patients with high aPLA titers and severe thrombotic

manifestations (aPLA+/th+, n = 14) and sex and ethnicity-

matched Spanish Caucasian healthy controls (controls; n = 14)

without family history of autoimmune diseases (Table 1). We

considered a severe thrombotic phenotype when an individual had

suffered more than one thrombotic manifestation.

For SNP association analyses (stage 2), samples were collected

from Spanish Caucasian individuals with high anti-phospholipid

antibody titers (aPLA+; n = 185) and healthy Spanish Caucasian

individuals without family history of autoimmune diseases

(controls; n = 569) (Table 1). To be considered in the aPLA+ case

group, individuals had to exhibit elevated anti-phospholipid

antibody levels on at least two occasions twelve weeks apart

[19]. In the aPLA+ group we distinguished two subsets: non-

thrombotic (aPLA+/th-, n = 100) and thrombotic (aPLA+/th+,

n = 85). The non-thrombotic group included APS patients

exhibiting obstetric complications, patients with systemic lupus

erythematosus and high aPLA titers, and asymptomatic individ-

uals with high aPLA levels [2]. The thrombotic group included

patients with primary or secondary APS along with one or more

thrombotic manifestations [2]. Therefore, we carried out 3 types of

comparisons in stage two: aPLA+/th+ individuals vs. healthy

controls; aPLA+/th- individuals vs. healthy controls; and aPLA+/

th+ vs. aPLA+/th- individuals.

Study design
A two-stage genotyping strategy was performed to identify new

susceptibility regions associated with thrombotic aPLA carriers

(Figure 1). In stage one, 19,000 CNV loci were genotyped in 14

aPLA+/th+ individuals and 14 healthy controls. In stage two,

CNV loci associated with thrombotic APS were fine-mapped.

Several criteria were considered for CNV selection: (i) to be

located in regions with suggestive association with autoimmunity

and cardiovascular diseases, as demonstrated by array-CGH

(FDR,0.20) and published genome-wide association studies

(GWAS) (p-value#5 6 1028) (ii) to lie outside CpG islands; (iii)

to exhibit a sequence length ,5kb; and (iv) to know their minor

allele frequencies (MAF).

Table 1. Characteristics of individuals included in the study.

Analysis Group N
Gender (%
Females)

Age at inclusion
(Years)

Array-CGH aPLA+/th+ 14 50.00% 44.64611.6

Controls 14 50.00% 44.5069.80

Fine-mapping aPLA+/th– 100 85.00% 50.3615.1

aPLA+/th+ 85 63.30% 51.3614.2

Controls 569 53.20% 43.2610.4

doi:10.1371/journal.pone.0067897.t001

Figure 1. Overview of study design.
doi:10.1371/journal.pone.0067897.g001
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Genotyping
In the discovery stage, screening of genome-wide copy number

variants were carried out by array-based comparative genomic

hybridization (CGH). Human Copy Number Variation Micro-

array Kit 26105K produced by Agilent (Agilent Technologies,

Santa Clara, CA) and Welcome Trust Case Control Consortium

Table 2. Candidate susceptibility regions with positive results in array-CGH and published GWA studies.

Array-CGH DGV a

Region Gene Names CNV (pb) CNV type p-value FDR CpG CNV ID MAF

12q24.12 ATXN2 1,930 Gain 5.46102144 0.1957 no V_66331 0.0387

13q34 F7 3,345 Loss 2.6610222 0.0702 yes V_66565 0.0139

19p13.2 FCER2, CLEC4G, CD209,
CLEC4M, EVI5L

175,300 Gain 3.3610217 0.0702 yes V_8863 n.a

aDGV, Database genomic variants.
doi:10.1371/journal.pone.0067897.t002

Figure 2. Candidate susceptibility region 12q24.12 identified by the combination of results obtained with array-CGH and
published genome-wide association studies (GWAS) in related diseases. a) description of the region, b) location of the MCR identified in our
array-CGH analysis, c) previously described CNVs in the region, d) SNPs selected for our genotyping analysis, e) linkage disequilibrium (LD) structure
across the 12q24.12 locus. The LD structure has been obtained with Haploview software v.4.3, based on r2 coefficient calculated with the CEU
HapMap database.
doi:10.1371/journal.pone.0067897.g002
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(WTCCC) was the selected platform. This high-resolution 60-mer

oligonucleotide-based microarray contains more than 99,000 60-

mer probes spanning coding and non-coding genomic sequences

with median spacing of 244 bp respectively. This platform

contains 19,000 CNVs that were identified by the WTCCC, the

Toronto Database (DGV, Database of Genomic Variants) and the

Sanger Consortium for the study of structural variants associated

with human disease [20,21,22,23]. Array-CGH hybridization and

data extraction were performed in NIMgenetics (www.

nimgenetics.com, Parque Cientı́fico, Tres Cantos, Madrid). Array

labeling and hybridizations were performed according to the

manufacturer’s protocol for array-CGH experiments (Agilent

Technologies). Arrays were examined using the DNA Microarray

Scanner C (Agilent Instruments) and images for the array-CGH

were extracted with Agilent Feature Extraction software (v10.5),

which identified the highest quality pixels in each feature for

intensity quantitation.

CNV loci were fine-mapped in stage two. For this purpose, we

focused on a genetic region around each CNV, and examined the

genes mapping this larger region. SNP selection was carried out by

Tagger option implemented in Haploview software, v.4.3 [24].

Tagger selects a minimal set of markers, such that all alleles to be

captured are correlated at an r2. TaqManH OpenArrayTM

Genotyping System (Applied Biosystems) was used for genotyping.

This system uses two allele-specific MGB probes and two PCR

primers to provide highly robust and accurate genotyping calls.

Data were collected by OpenArray NT Imager Software and

analyzed by Taqman Genotyper Software.

Statistical Analysis
To identify the genomic regions of interest discovered by array-

CGH we used ADM-2 statistical algorithm [25] based on the

combined log2 ratios. Briefly, this statistical procedure identified

the regions in the genome for which the weighted average of the

measured probe signals is different from the expected value of 0 by

more than a given threshold. Statistical threshold of the ADM-2

algorithm is the minimum 6log2 ratio, and for the minimum

number of probes in a CNV interval, we used a threshold of 6. For

each region included in the array, a hit was considered positive

when it was detected in at least five consecutive positive probes.

Significant differences in CNV distribution between thrombotic

aPLA+ carriers and healthy controls were determined by two

different statistics: Fisher’s F test for the study of the qualitative

values (duplication and deletion) and Student’s t test for the study

of quantitative values (value of the mean of the log ratio of the

region). Both statistics were corrected using False Discovery Rate

(FDR) analysis.

SNP genotype data were filtered using quality parameters

checked by Haploview software, v.4.3 [24]. SNPs with a call rate

lower than 95%, or those with significant deviations from Hardy-

Weinberg equilibrium in controls (HWE; p,0.001) were excluded.

Individuals with a call rate lower than 90% were also excluded

from the study. Allele frequencies were compared among cases

and controls using chi-square analysis with 1 degree of freedom to

find significant associations using PLINK software, v.1.07 [26]. p-

values below 0.05 after correction by Benjamini and Hochberg

FDR method were considered as statistically significant (referred

to as PFDR). Linkage disequilibrium (LD) patterns among SNPs

were calculated using Haploview v.4.3 defining the blocks by

confidence intervals [27]. Association analyses at haplotype level

were performed by PLINK v.1.07. Haplotypes with p-values

,0.05 were considered statistically significant.
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Results

Genomic comparisons by array-CGH analysis detected ninety-

six CNVs (FDR,0.20, supplementary table 1) with suggestive

differences in distribution between thrombotic APS (aPLA+/th+;

n = 14) and healthy controls (controls; n = 14). Among the

identified regions, 12q24.12, 13q34 and 19p13.2, had previously

shown significant association with autoimmunity and/or cardio-

vascular disease in genome-wide association studies (Table 2)

[28,29,30,31,32,33,34,35,36,37,38,39,40]. We focused on the

12q24.12 locus and excluded 13q34 and 19p13.2 loci for further

analyses after applying our selection criteria (see Materials &

Methods section. Study design) (Table 2). The CNV detected at

the 12q24.12 locus has a sequence length of 1,930 bp, it is located

in intron 15 of the ATXN2 gene, and shows suggestive gains in

thrombotic aPLA+ individuals in comparison with healthy

controls. This CNV is included in the larger CNV V_66331,

previously described by Conrad and collaborators [41].

Fine-mapping of this CNV locus was subsequently performed in

a larger cohort (185 aPLA+/569 controls) by SNP-based genetic

association analysis. To this end, we selected six tag SNPs in

12q24.12 locus to capture as much variation in the region as

possible (Table 3). Of these, one SNP lied inside the CNV

(Figure 2). Five of the six SNPs fulfilled the quality control criteria

(i.e. minimal call rate and HWE), and were included in the

association analysis. SNP rs648997, located within the CNV

(Figure 2), was initially excluded because it showed perturbation of

allele frequencies and lack of HWE in healthy controls (p-

value = 0.0018) and in aPLA+/th- individuals (p-value = 0.0005).

However, these alterations could arise from the existence of a

CNV. In fact, it is known that CNVs can perturb SNP allele

frequencies at the CNV locus, which appears to violate HWE

[20,22,23]. Therefore, we included SNP rs648997 in the

association analysis.

Two types of comparisons (aPLA+/th+ vs. healthy controls, and

aPLA+/th+ vs. aPLA+/th-) showed significant association of SNPs

located in SH2B3 and ATXN2 genes with thrombotic APS

(Table 4). We found significant differences in allelic frequencies

for SNP rs3184504 in SH2B3 and SNPs rs10774625 and rs653178

in ATXN2. Individuals with a T allele at the rs3184504 SNP in

SH2B3 or a G allele at the rs653178 SNP in ATXN2 had higher

risk of developing thrombotic APS. In contrast, individuals with a

G allele at the rs10774625 SNP in ATXN2 exhibited higher

protection from thrombotic APS. No significant associations were

observed when we compared aPLA+/th- individuals with healthy

controls.

We next performed a haplotypic analysis to search for linkage

disequilibrium (LD) patterns in the region. We found strong

linkage disequilibrium with 3 out of the 6 SNPs analyzed (r2.0.9).

The most frequent haplotype in aPLA+/th+ individuals was TAC,

which was built from SNP rs3184504 in SH2B3 and SNPs

rs10774625 and rs653178 in ATXN2. The LD structure of

SH2B3-ATXN2 locus in Caucasian population (HapMap, CEU)

is shown in Figure 2. Haplotype frequencies between aPLA+/th+
individuals and healthy controls were significantly different (p-

value = 5.89 6 1024) for this locus. We also observed significant

association with the TAC block after comparing thrombotic and

non-thrombotic aPLA+ individuals (p-value = 5.94 6 1023)

(Table 5). In contrast, the comparison performed between

aPLA+/th- individuals and healthy controls detected no significant

association (p-value = 0.8329). LD pattern analysis between the

associated haplotype and the CNV revealed consistent pairwise

linkage disequilibrium (D9 = 1), indicating an absence of recom-

bination for all markers in this region.

Table 4. Significant allelic associations detected and odds ratios of SNPs.

Compared groups SNP# ID SNP MAF Cases MAF Controls* p-value PFDR OR (95% CI)

aPLA+/th+ vs. controls rs3184504 C/T 0.5655 0.4401 0.0024 0.0048 1.66 (1.19–2.30)

aPLA+/th+ vs. controls rs10774625 A/G 0.5549 0.422 0.0014 0.0048 0.58 (0.42–0.81)

aPLA+/th+ vs. controls rs653178 T/C 0.5602 0.4217 0.0008 0.0048 1.75 (1.26–2.43)

aPLA+/th+ vs. aPLA+/th- rs3184504 C/T 0.5655 0.4271 0.0092 0.0215 1.73 (1.14–2.63)

aPLA+/th+ vs. aPLA+/th- rs10774625 A/G 0.5549 0.4141 0.0081 0.0215 0.57 (0.38–0.87)

aPLA+/th+ vs. aPLA+/th- rs653178 T/C 0.5602 0.415 0.006 0.0215 1.78 (1.18–2.70)

*In the aPLA+/th+ vs. aPLA+/th- analysis the aPLA+/th- are considered as controls for the purpose of MAF.
doi:10.1371/journal.pone.0067897.t004

Table 5. Haplotype associations detected between rs3184504-rs10774625-rs653178.

Compared groups Haplotype Freq Cases Freq Controls p-value OR (95% CI)

aPLA+/th- vs. controls TAC 0.4102 0.4183 0.8329 0.96 (0.71–1.31)

CGT 0.5787 0.5645 0.7127 1.01 (0.75–1.38)

aPLA+/th+ vs. controls TAC 0.5602 0.4183 5,9 6 1024 1.84 (1.32–2.55)

CGT 0.4398 0.5645 0.002616 0.56 (0.40–0.77)

aPLA+/th+ vs. aPLA+/th- TAC 0.5602 0.4102 0.00594 1.91 (1.26–2.90)

CGT 0.4398 0.5787 0.005937 0.55 (0.36–0.83)

doi:10.1371/journal.pone.0067897.t005
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Discussion

Thrombotic antiphospholipid syndrome is a complex form of

antibody-induced thrombophilia. Antiphospholipid antibodies are

considered a risk factor for thrombophilia, although the only

presence of aPLAs is not sufficient to induce a thrombotic event.

The present study was designed to find new susceptibility regions

contributing to the development of thrombosis in aPLA carriers.

The combination of data gathered from our array-CGH analysis,

together with GWAS data that have been published previously on

autoimmunity and cardiovascular diseases led to the identification

of 12q24.12 locus as a new susceptibility region in thrombotic APS

patients.

Our results show an elevated frequency of genomic variants

(both CNV and SNPs) within the 12q24.12 locus in thrombotic

APS. This region, which encompasses ATXN2 and SH2B3 genes,

has been previously associated with several complex diseases, such

as retinal vascular caliber and chronic kidney disease, myocardial

infarction or type 1 diabetes [30,31,35,42]. SH2B3 (also known as

LNK) is the member of a family of adaptor proteins known to

negatively regulate intracellular signals delivered through the T-

cell and cytokine receptors [43,44,45]. We found significant allelic

and haplotypic association in this region with thrombotic aPLA

carriers in comparison with healthy controls and non-thrombotic

aPLA carriers. Interestingly, haplotypic association with throm-

botic aPLA carriers was more significant than allelic association of

each individual SNP or the presence of the CNV V_66331. The

TAC risk haplotype, firstly described in this work, is composed of

SNP rs3184504 in SH2B3 gene and SNPs rs10774625, rs653178

in ATXN2 gene. Even though this haplotype is common in the

general population, it is significantly more frequent in thrombotic

aPLA+ individuals. Taken together, our results suggest that the

main genetic risk factor for thrombotic aPLA carriers at the

12q24.12 locus is the TAC risk haplotype, whereas the CNV itself

could be considered as a tag of the associated haplotype.

SNPs rs10774625 and rs653178 of the TAC risk haplotype,

mapping the ATXN2 gene, have no known functional effect. By

contrast, the SNP rs3184504, mapping exon 3 of the SH2B3 gene,

is a missense variant (p.R262W; c.784T.C). The R262W amino

acid change is located in the pleckstrin homology (PH) domain of

LNK, involved in plasma membrane targeting [46]. The high

conservation in mammals of the R262 residue in LNK suggests

that it may have functional relevance [47]. The T risk allele at

SNP rs3184504 has been associated in a previous study on type 1

diabetes with the activation and expansion of self-reactive

lymphocytes in susceptible individuals [48]. This evidence was

further supported by results obtained in celiac disease [40],

systemic lupus erythematosus [29], rheumatoid arthritis [37,40]

and multiple sclerosis [49], underscoring the pivotal role of SH2B3

in loss of immune tolerance and development of autoimmunity.

Intriguingly, T allele carriers of rs3184504 marker also show

stronger activation of the innate immune response pathway [50].

Thus, the presence of T risk allele of rs3184504 in thrombotic APS

patients could be a contributing factor for the activation of self-

reactive lymphocytes and of the innate immune responses, both of

which have been described in this autoimmune disorder [7,8].

Interestingly, both SH2B3 and ATXN2 genes have also been

associated with cardiovascular alterations, such as myocardial

infarction, hypertension, blood pressure and retinal vascular

caliber [30,31,32]. The functional connection between this

haplotype and thrombophilia risk is still unknown, but it might

also rely on the T allele of rs3184504 marker in SH2B3. The

protein adaptor coded by SH2B3 functions as a negative regulator

of TNF signaling in endothelial cells [51] and may contribute to

the progression of plaque formation in coronary arteries [52].

These observations suggest that APS individuals carrying the T

allele in SH2B3 could exhibit increased thrombotic risk owing to

functional defects in the protein encoded by this gene. Given that

SH2B3 functions as inductor of a pro-inflammatory state in blood

vessels, it would be interesting to determine whether R262W

substitution in SH2B3 contributes to the pathogenesis of autoim-

munity and thrombotic phenotype in APS. Despite the limitation

of our discovery cohort size and the inherent difficulties and

uncertainties that the CNV genotyping and analysis pose, our

work has uncovered a novel genetic susceptibility region (ATXN2-

SH2B3) associated with aPLA+/th+ patients. Further studies will

be required in other populations in order to confirm our findings.

Supporting Information

Table S1 List of CNVs exhibiting suggestive differences
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