
Open Personalization:
Involving Third Parties in Improving

the User Experience of Websites

Dissertation
presented to

the Department of Computer Languages and Systems of

the University of the Basque Country in

Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy
(“international” mention)

Cristóbal Arellano Bartolomé

Supervisors:

Prof. Dr. Oscar Díaz García

Dr. Jon Iturrioz Sánchez

San Sebastián, Spain, 2013

This work was hosted by the University of the Basque Country (Faculty

of Computer Sciences). The author enjoyed a doctoral grant under de
FPI (Formacion de Personal Investigador) from the Spanish Ministry of

Science & Education during the years 2007 to 2011. The work was was co-
supported by the Spanish Ministry of Education, and the European Social

Fund under contracts (TIN2005-05610), MODELINE (TIN2008-06507-
C02-01) and Scriptongue (TIN2011-23839).

Summary

Traditional software development captures the user needs during the
requirement analysis. The Web makes this endeavour even harder due to
the difficulty to determine who these users are. In an attempt to tackle
the heterogeneity of the user base, Web Personalization techniques are
proposed to guide the users’ experience. In addition, Open Innovation

allows organisations to look beyond their internal resources to develop new
products or improve existing processes.

This thesis sits in between by introducing Open Personalization as a
means to incorporate actors other than webmasters in the personalization
of web applications. The aim is to provide the technological basis that
builds up a trusty environment for webmasters and companion actors to
collaborate, i.e. "an architecture of participation". Such architecture
very much depends on these actors’ profile. This work tackles three
profiles (i.e. software partners, hobby programmers and end users), and
proposes three "architectures of participation" tuned for each profile. Each
architecture rests on different technologies: a .NET annotation library
based on Inversion of Control for software partners, a Modding Interface in
JavaScript for hobby programmers, and finally, a domain specific language

for end-users. Proof-of-concept implementations are available for the three
cases while a quantitative evaluation is conducted for the domain specific

language.

Contents

1 Introduction 1
1.1 Context . 1

1.2 General Problem . 2

1.3 This Dissertation . 4

1.4 Contributions . 6

1.5 Research Approach . 7

1.6 Outline . 9

1.7 Conclusions . 10

2 Background 13
2.1 Introduction . 13

2.2 Web Personalization . 13

2.2.1 Definition & Motivation 14

2.2.2 Engineering Adaptive and Adaptable
Hypermedia Systems 16

2.2.3 Successful Case Studies 18

2.2.4 Current Research Issues 19

2.3 Web Augmentation . 20

2.3.1 Definition & Motivation 20

2.3.2 Web Augmentation through an Example:
The BookBurro Script 22

2.3.3 Successful Case Studies 23

2.3.4 Current Research Issues 25

vii

OP: Involving Third Parties in Improving the UX of Websites

2.4 Conclusions . 26

3 Server-Side Open Personalization 27
3.1 Introduction . 27

3.2 Motivating Scenario and Research Question 28

3.3 Requirements . 30

3.3.1 Existing Solutions 31

3.3.2 Our Contribution 33

3.4 The Modding Interface 34

3.5 Specification of the Modding Interface 36

3.6 Impact on the Host: Making a Website Mod-Aware 37

3.7 Impact on Partners: Defining Mods 39

3.8 Architecture . 42

3.9 Discussion . 44

3.9.1 Resilience . 44

3.9.2 Extensibility . 45

3.9.3 Scalability . 45

3.9.4 Affordability . 47

3.10 Conclusions . 48

4 Hybrid Open Personalization 51
4.1 Introduction . 51

4.2 Motivating Scenario and Research Question 53

4.3 Requirements . 55

4.3.1 Existing Solutions 56

4.3.2 Our contribution 58

4.4 Crowdsourcing Web Augmentation 58

4.5 The Modding Interface: a Client-Side Perspective 61

4.6 Specification of the Modding Interface 62

4.7 Script Development . 65

4.8 Script Testing . 67

4.9 Script Advertising . 72

viii

CONTENTS

4.10 Script Sandboxing . 76

4.11 Discussion . 80

4.11.1 Affordability . 80

4.11.2 Resilience . 81

4.11.3 Scalability . 82

4.11.4 Security . 83

4.12 Conclusions . 83

5 Client-Side Open Personalization 85
5.1 Introduction . 85

5.2 Motivating Scenario and Research Question 87

5.3 Requirements . 91

5.3.1 Existing Solutions 94

5.3.2 Our Contribution 100

5.4 Web Augmentation: Caring for Producers 101

5.4.1 Sticklets . 106

5.4.2 StickletBox . 109

5.4.3 The Issue of Entity Linkage 111

5.4.4 The Issue of XPath Complexity 118

5.4.5 The Issue of Non-HTML Sources 122

5.4.6 The Issue of Note Rendering 124

5.4.7 The Operational Semantics of Sticklets 126

5.5 Web Augmentation: Caring for Consumers 129

5.5.1 Trustworthiness 129

5.5.2 Maintainability 134

5.6 Web Augmentation: When Attention is Scarce 135

5.6.1 Greasemonkey Operation 135

5.6.2 No Time to Code 136

5.6.3 No Time to Install 139

5.6.4 No Time to Share 142

5.7 Evaluation . 143

5.7.1 Sticklet consumption for computer literates 145

ix

OP: Involving Third Parties in Improving the UX of Websites

5.7.2 Sticklet production for hobby programmers 152
5.8 Discussion . 157

5.8.1 Expressiveness 157
5.8.2 Learnability . 158
5.8.3 Trustworthiness 158
5.8.4 Maintainability 159
5.8.5 Understandability 159
5.8.6 Tailorability . 159
5.8.7 Operability . 160
5.8.8 Provisionability 160
5.8.9 Installability & Shareability 160

5.9 Conclusions . 161

6 Conclusions 163
6.1 Overview . 163
6.2 Results . 163
6.3 Publications . 165
6.4 Research Stage . 167
6.5 Assessment and Future Research 168
6.6 Conclusions . 170

Bibliography 173

x

List of Figures

1.1 Collaborative Software Development diagram. 3

1.2 Longtail effect in software development. 4

1.3 The relation between user affordance and
contribution value in Open Personalization. 5

1.4 Chapter map of the dissertation. 9

2.1 Domain Model and User Model of a bookshop in Hera. . . 15

2.2 Navigation Model of a bookshop in Hera. 16

2.3 The bookshop after and before of the adaptation. 18

2.4 Augmented Reality through an example. 20

2.5 Amazon before and after the BookBurro augmentation. . . 21

2.6 BookBurro in JavaScript. 24

3.1 Domain classes annotated to become Modding Concepts. . 38

3.2 Mod-aware View:
the ASPX includes a placeholder for mod’s output. 39

3.3 Mods as plugins that import Modding Interfaces. 40

3.4 A mod that introduces a new View & Controller. 41

3.5 Decoupling the Core from the Periphery:
a model of the involved concepts. 42

3.6 Latency introduced by distinct SOP. 46

4.1 Raw page vs. Augmented page. 53

4.2 DblpFigures script: DOM Events vs. Conceptual Events. . 54

xi

OP: Involving Third Parties in Improving the UX of Websites

4.3 The Metropolis Model. 59

4.4 ICWE Website Modding Interface. 63

4.5 Testing dblpFigures mod through the JsUnit framework. . 70

4.6 Advertising user scripts through the web site. 73

4.7 Code that executes the preview mode in the client. 75

4.8 Augmentation at run-time: DOM tree evolution. 76

4.9 The Modding-Interface Architecture. 77

4.10 Weaver’s code: loading augmentation scripts. 79

4.11 Augmentation-enabled page:
meta-data about the Modding Interface. 80

5.1 Amazon before and after the BookBurro augmentation. . . 87

5.2 BookBurro in JavaScript. 90

5.3 Sticklet Design Drivers. 92

5.4 BookBurro using Chickenfoot API. 99

5.5 Feature diagram for the Web Augmentation domain. . . . 102

5.6 BookBurro as a sticklet. 104

5.7 Sticklet: abstract syntax. 105

5.8 Sticklet for augmenting Amazon with the book reservation
at the Manchester University Library. 110

5.9 Entity linkage through searching (code). 113

5.10 Entity linkage through searching (views). 115

5.11 Entity linkage through mapping (views). 116

5.12 Entity linkage through mapping (code). 117

5.13 The assisted mode. 119

5.14 Note rendering.
Default rendering supplemented with HTML directives. . . 123

5.15 The operational semantics of Sticklet. 125

5.16 Sticklet tracing exemplified for BookBurro. 131

5.17 Sticklet error reporting. 133

5.18 Sticklet inline editor. 138

5.19 Installation of a sticklet from a tweet. 140

xii

LIST OF FIGURES

5.20 Sticklet inline sharing. 142

xiii

Chapter 1

Introduction

1.1 Context

Enhancing requirement elicitation is a long-lasting endeavour of software
development. The existence of conferences, journals and seminars around
this issue almost since the inception of software, evidences both the
importance and the difficulties of this challenge. The Web2.0 movement
is shading a new light on this topic. The notion of “the perpetual beta”
to denote a continuum in the improvement of applications, or “open
innovation” as a way to enlarge the number of both stakeholders and
developers, offer new means to an old problem. These notions are usually
supported by an architecture of participation, namely, by systems that
are designed for user contribution [O’R04]. This thesis focuses on web
applications, and looks into inclusive approaches to web development that
facilitate the participation of different actors in application coding.

Traditional software development captures the user needs during the
requirement analysis phase. In this phase, software analyst tries to capture

1

OP: Involving Third Parties in Improving the UX of Websites

all the user (a.k.a. stakeholder) needs. Because it is very difficult to capture
all user requirements, and implement all of them is expensive, only a
subset of them is finally supported. As a result, software that satisfies
part of these needs is created and made available to the user. This fact has
two implications. First, only a subset of the stakeholders’ requirements
is satisfied. Second, the adaptation of such system to new requirements
normally is under the control of IT department. Additionally, companies
do not work in isolation but interacts with other companies known as
partners. These relationships can be as important as the main activity of
the company because sometimes it is difficult or impossible to perform the
company main activity without them. The nature of relationships between
business partners is win-win and must be taken into account when creating
an application.

In a web scenario, it is more difficult to determine who the users are.
The number of potential web users and then the required functionality
to fulfil their needs increases. Web Personalization aims to cluster types
of users in roles and adapt the given information to such roles [CDA00].
A way to let users satisfy their needs is desirable. User innovation and
customer centric development are two topics that are changing the way the
software is conceived. The user is no longer a passive actor during the
analysis phase but voluntarily contributes during the rest of the software
development phases like implementation or testing.

1.2 General Problem

So far, most of the software development is realized inside a company
(intra-company). This means that software development is realized in
isolation. In the best case, partners are engineered into the application as a
user role. They do not have any chance to reflect its own activity. This fact
hinders partners business activity and hence the activity of the company. It
is needed a way to search synergies and allow third parties to contribute to
the company application (inter-company) to foster a win-win relationship

2

Chapter 1. Introduction

Figure 1.1: Collaborative Software Development. A diagram that helps to
choose the openness of a solution based on its novelty.

between them. Figure 1.1 illustrates this scenario [Rie11]. The x-axis
indicates the openness in cooperation whereas the y-axis represents
the degree of novelty. The two coloured corners must to be avoided,
the yellowish because it incurs in a waste of time and money when
developing low-valued software and the reddish because the company
loses the intellectual property of distinctive software. Traditionally, the
software development occurs inside a company (left column). At the
beginning of the development, its novelty is high but as time goes its
novelty decays (transition a). When a company spends its resources
developing commodity software, it should examine the possibility of open
it to their partners (transition b). Web Personalization belongs to this
type of software hence it can be developed in a cost-effective way when
developed with the collaboration of partners.

3

OP: Involving Third Parties in Improving the UX of Websites

Figure 1.2: The Longtail effect applied to software development.

Additionally, it is not possible to foresee all the requirements of the
user. In the best case, one-size-fits-all solutions are replaced by role-
personalized solutions. The functionality that is going to be reflected
into the application is the functionality that covers most of the users. It
means that the functionality required by very few people is not going to
be taken into account. The “voice of the client (VOC)” is not heard. It is
needed a way to allow clients to satisfy the requirements not satisfied by
the company, possibly without company help (public).

1.3 This Dissertation

This dissertation faces the previous problems depending on the importance
of the functionality required. Figure 1.2 depicts the three main areas. The
first area represents highly-requested functionality. It is the main/core
functionality offered to the customers and it is provided by the company
itself (intra-company). The second area represents moderately-requested
functionality. Such functionality, being relevant, is not provided by
the company itself but by third parties (inter-company). So here, two

4

Chapter 1. Introduction

Figure 1.3: The relation between user affordance and contribution
value. Greater contributions requires more user engagement and complex
mechanisms.

architectures of participation are proposed to foster a win-win relationship
between the company and the third parties. Last but not least, the longtail
area denotes modestly-requested functionality. The poor payoff of this
functionality makes it fall outside the company’s radar. However, it can be
paramount for some few users (public). Here, the approach is to empower
end users for them to develop such functionality by themselves.

This thesis addresses the following research question:

How can actors be empowered to satisfy their own
requirements for web applications?

Specifically, we look at three different actors: partners, hobby
programmers (inter-company), and computer literates (public). Each
actor profile brings his own skills and limitations, and hence, conditions
the solution. Figure 1.3 illustrate this tension between user affordance,
contribution value and the engagement required by the owner of the

5

No esta definido. Caracterizar engagemnt como
None
Frontend based
Backend based

OP: Involving Third Parties in Improving the UX of Websites

website. When company engagement is none, computer literate as low-
skilled actor, can make modest contributions. When company offers a
greater engagement based on event-based interfaces, hobby programmer
is the required profile that can make medium contributions on top of such
interfaces. Finally, when company engagement is even greater and offers
annotated classes, professional programmer (partner) profile can make
greater contributions based on such annotations. Next section enumerates
the main contributions of this dissertation.

1.4 Contributions

In this dissertation the following three scenarios are tackled:

Empowering Partners

• Problem statement: A partner is a software company that develops
on top of a third-party application. How can partners extend third-
party applications in a safe, reliable and affordable way?

• Solution: We propose “an architecture of participation”. This
architecture lets partners extend company web application with their
own code in a reliable way. The company defines an interface for
partners and let them to build on top of it. Class annotations and
Inversion of Control are the main technical approaches.

Empowering Hobby Programmers

• Problem statement: Hobby programmers are individuals that have a
strong programming background but use this skill outside the work
realm. In the web community, the userscript community showcases
this situation. Those scripts enhance web applications in different
ways. Userscripts is a techy community where final users of the
enhanced applications might never hear about these enhancements.

6

Js programmers

Chapter 1. Introduction

How can the web application owners tap into this community for the
good of both the hobby programmers and its own final users?

• Solution: An architecture of participation is proposed. This
architecture lets scripters extend company application with their own
contributions. The company defines an event-based interface for
scripters and let them build on top of it using JavaScript. So provided
scripts might be readily shared through the website directly rather
than through a script repository.

Empowering Computer Literates

• Problem statement: Computer literacy is defined as the knowledge
and ability to use computers and related technology efficiently. As
digital natives grow up, most people will become computer literates.
How can end users be empowered to tune the existing websites to
their own needs without resorting to the IS department?

• Solution: We investigate on the use of domain specific languages for
end users. The aim is to abstract technical details into programming
metaphors that facilitate end user implication. Excel formulae
language is a successful example for spreadsheats. Here, we look
at the web realms using client-based augmentation techniques.

1.5 Research Approach

Two research approaches dominate the research in Information Systems:
behavioural science and design science [HMPR04]. The former is applied
to search the reasons underlying the human behaviour, and its output is a
theory that gathers them. The latter is used to extend the capabilities of
human behaviour and its output is an artefact (constructs, models, methods
and instantiations as proposed by [MS95]) that helps to achieve this aim.
This thesis follows the design-science approach; this work enables third

7

OP: Involving Third Parties in Improving the UX of Websites

parties and end users to extend the web and the output is a set of software
architectures. The research guidelines of design-science proposed by
[HMPR04] are applied to this thesis as follows:

• Design as an artefact & Research contributions. As an output of this
thesis, a set of models and their instantiations are proposed. These
outputs are described in depth in the Section “Our contribution” of
Chapters 3, 4 and 5.

• Problem relevance. The problem in general and its decomposition
in particular are stated in this chapter, in Sections 1.2 and 1.4. In
Chapters 3, 4 and 5, the Section “Motivation” describes the context
and its relevance, and the problem associated to such context.

• Design evaluation. The architectures are illustrated using working
examples. Additionally, in Chapter 5, a quantitative and qualitative
evaluation was performed to assess the usability of the proposed
solution.

• Research rigor. The proposed solutions make use of standard
notations when available. In the cases where there is an absence
of standards, the most widespread alternative has been selected. In
addition, all of the contributions of this thesis are based on the state
of the art and compared with other works.

• Design as a search process. All the contributions mentioned in
this thesis are the result of the searching a solution to the problems
introduced in this chapter. This process begins with the search of
related work that solves similar problems and is described in the
Chapters 3, 4 and 5, concretely in the “Existing Solutions” Sections.
Taking into account other works and detecting their weaknesses in
our context, a new solution is provided.

8

Chapter 1. Introduction

Figure 1.4: Chapter map of the dissertation.

• Communication of the research. The research performed in
this thesis was communicated to the audience through academic
conferences and journals of the Web Engineering area listed in
Chapter 6, in Section 6.3. This thesis complements the previous
communications, putting all the findings in the same context.

1.6 Outline

The content of each chapter is summarized in this section. Figure 1.4
contains a map that illustrates the relationships between the chapters of
this dissertation.

Chapter 2

This chapter presents two topics that explain the adaptation of web content
in order to satisfy the user needs, namely Web Personalization and Web

Augmentation. These topics set the bases for the rest of this thesis.

Chapter 3

This chapter presents a scenario where some of the personalization effort
of the company’s web application is delegated to the company partners. To
support such scenario, an architecture of participation is proposed. This
architecture is based on an interface (i.e. Modding Interface). Using

9

OP: Involving Third Parties in Improving the UX of Websites

the Modding Interface, the company specifies what can be externally
personalized, while company partners can build personalizations that are
going to be published through the company’s web application.

Chapter 4

In this chapter, we envision an architecture of participation between
the company and its customers. The proposed architecture permits the
company specify what can be personalized by scripters using an event-
based interface. In return, the scripters might be allowed to provide their
contribution as part of the content of the website.

Chapter 5

This chapter presents an approach for end-user client-based customization
of websites. To this end, a domain specific language is introduced: Sticklet.
Sticklet allows end users to create, understand, maintain and share its own
extensions.

Chapter 6

This chapter concludes the dissertation by remarking the main results,
listing publications of the author’s thesis, enumerating the limitations of
the current solutions and proposing future work.

1.7 Conclusions

In this chapter, Open Personalization as a means to incorporate actors other
than webmaster in the personalization of web applications is introduced
as the main topic of this dissertation. For such topic, three scenarios are
identified based on the profile of the actors; partners, hobby programmer
and end users. For each scenario, the related contributions are listed: the

10

Chapter 1. Introduction

first based on code annotations for partners, the second based on event-
based interfaces for hobby programmers and the third based on a domain
specific language for end users. Finally, the design science as research
approach is presented and it is explained how its guidelines are followed
in this thesis. The next chapter provides the necessary background to
understand the rest of the chapters.

11

Chapter 2

Background

2.1 Introduction

Web Personalization and Web Augmentation faces the adaptation of the
content to the user needs. Whereas in Web Personalization, the adaptation
is designed by the webmaster; in Web Augmentation the adaptation is
performed at the back of the webmaster, possibly by the users of the
website.

This chapter introduces Web Personalization and Web Augmentation,

establishing in this way the basis of the rest of the thesis. For each area,
the definition, the motivation of its existence, successful case studies and
the current research issues are presented.

2.2 Web Personalization

Web Personalization refers to making a web site more responsive to the
unique and individual needs of each user [CDA00]. To achieve this goal,

13

OP: Involving Third Parties in Improving the UX of Websites

the web application is adapted to the user needs; the webmaster designs
a website where its content/layout/navigation changes depending on the
user.

In this section we do not want to emphasize the role played by the
user of the system (e.g. differences between adaptive and adaptable) but
in the extra burden of the webmaster to create a personalizable system
(e.g. the creation/population/management of the Adaptation Model and
User Model).

2.2.1 Definition & Motivation

The widely used definition of Adaptive/Adaptable Hypermedia Systems is:
“By adaptive hypermedia systems we mean all hypertext and

hypermedia systems which reflect some features of the user in the user

model and apply this model to adapt various visible aspects of the system

to the user" [Bru96].
The previous definition can be decomposed in the following concepts:

• Applicable to all hypertext and hypermedia systems.

Hypertext/Hypermedia systems are the subject to be adapted.
According to Ted Nelson, hypertext is a collection of documents
containing cross-references or “links” which, with the aid of an
interactive browser program, allow the reader to move easily from
one document to another.

• Features of the user reflected in a user model. Features of a user are
put together in a user model. According to Kobsa, these features can
come from user data provided directly by the user, usage data as a
result of the user interacting with the hypertext and environment data
that is information about the user location and platform [KKP01].

• Adaptation based on user model. Adaptation or changes in the
hypertext model (documents and/or links) are based on the previous
user model.

14

Chapter 2. Background

Figure 2.1: Domain Model and User Model of a bookshop in Hera design
method.

The problem that Adaptive/Adaptable Hypermedia faces is the “lost in
hyperspace” syndrome, which is described as "the user not having a clear
conception of the relationships within the system or knowing his present
location in the system relative to the display structure and finding it difficult
to decide where to look next within the system" [EH98, EW85]. Such
situation occurs when there is an information overload in hypermedia
systems, there are normally too many content/links and the user has little
knowledge how to proceed and select the best for him. Adaptive/Adaptable

Hypermedia Systems tries to face this problem, reacting to the used needs
by modifying the system itself. The following subsection illustrates web
personalization using the adaptation of a bookshop as an example.

15

OP: Involving Third Parties in Improving the UX of Websites

Figure 2.2: Navigation Model of a bookshop in Hera design method.

2.2.2 Web Personalization through an Example:
The Bookshop

As an example, consider a bookshop. All the information about the
example was extracted from [GGH10]. Web design methods define
three main models: the Domain Model, which contains the structure
of the domain data; the Navigation Model, that contains the structure
and behaviour of the navigation view over the domain data, and the
Presentation Model, in which the layout of the hypermedia presentation
is defined. Figure 2.1 (top) shows the Domain Model of the bookshop with
its main concepts: Store, Book, Author, Review, Order and Basket. Figure
2.2 depicts the Navigation Model of the bookshop that contains the links
between the concepts of the Domain Model: Details link between Store

and Book, ReviewDetails between Book and Review, etc.

According to the definition of Web Personalization previously
introduced, engineering adaptive/adaptable hypermedia systems requires
the addition of the User Model and the Adaptation Model. Both are briefly

16

Ponerlo en todas las figuras

Chapter 2. Background

described:

• User Model. This model captures the knowledge about the user.
Concretely, it captures the relevant knowledge for the current

system. The acquisition of such information is based on user

data, usage data or environmental data [KKP01]. User data
includes user explicitly provided data like preferences or skills.
Usage data includes information about detected visited pages, link
navigations or interactions inside a page. Environmental data gathers
information about the user environment like geographical data or
device screen size. Figure 2.1 (bottom) contains and example of
User Model of the bookshop. This User Model stores user provided
data (i.e. Interest) as well as usage data (i.e. NodeVisiting).

• Adaptation Model. This model captures the adaptation rules. These
rules define how the Domain Model and User Model are used to
adapt the current application. These rules follow the ECA (Event-
Condition-Action) pattern, where events are triggered by changes in
the models, and if the condition of the rule is met, the action reflects
the updates in the corresponding model. Consider the following
ECA rule in PRML format:

When S e s s i o n S t a r t do
I f F o r A l l (UM. User . u s e r t o I n t e r e s t)

(UM. User . u s e r t o I n t e r e s t . d e g r e e < 100) t h e n
h i d e L i n k (NM. Recommendations)

e n d I f
endWhen

Such rule is an adaptation rule that follows the ECA pattern.
When a session starts (Event), if degree of user interest is below
100 (Condition), hide the link of recommendations (Action). In
this example the rule queries the User Model (i.e. UM) and the
adaptation performs changes over the Navigation Model (i.e. NM).

17

OP: Involving Third Parties in Improving the UX of Websites

Figure 2.3: The bookshop after and before of the adaptation.

When these models are available, the system can use them to adapt to
the user. This adaptation can affect the pages, as well as navigation
[Bru01]. The adaptation of page text presentation affects to the
addition/remove/sort/dimm of text information (e.g. text fragments)
and the page hypermedia presentation affects to the selection for the
quality/size of media (e. g. images or video). The adaptation of
navigation affects to the links addition/remove/sort/hide/disable. Figure
2.3 shows the bookshop before (left) and after (right) the adaptation, in
which the adaptation rule for the bookshop is applied over navigation
by removing links (i.e. hideLinks) of the Recommendations page (i.e.
Recommendations).

2.2.3 Successful Case Studies

The types of systems identified as be amenable to be personalized are six
[Bru96]: educational hypermedia systems, on-line information systems,
online help systems, information retrieval hypermedia, institutional

hypermedia and personalized views.
In the academic research area, educational hypermedia is the area

which predominates in the literature. The following works illustrates the

18

Chapter 2. Background

state of the art in such area: ELM-ART [BSW96], ELM-ART II [WS97],
KBS-Hyperbook [HN99], 2L670 [BC98], InterBook [BE98] and INSPIRE

[PGKM03]. In addition, generic platforms have been designed to face the
adaptive web applications, no matter the domain as OOHDM [RSG01],
UWE [Koc01], Hera [FH02], OO-H [GGC03], WSDM [CTB03] and
WebML [DMP06].

From the commercial area, distinct tools (e.g. ILog JRules, LikeMinds,
WebSphere, Rainbow, Infusionsoft) help to define and manage the
personalization strategy. These tools might play the role of frameworks
(providing an enhanced container where to run your code) or IDEs (helping
in generating the code).

2.2.4 Current Research Issues

Although Web Personalization area is mature, there are some topics
such as user engagement; trust; user motivation, attention, and effort;
recommender systems; user-centered design and evaluation; educational
data mining; modeling learners; user models in microblogging; and
visualization, in which researchers are still contributing [UMA12].

One of the topics that raises more interest is user model
interoperability [CCG11, Mul12]. Nowadays there are a large number of
user-adaptive systems and systems that collect personal information. The
problem is that users interact with multiple systems that cannot exchange
users’ personal information (i.e. User Models). As a result, users’
personal information tends to be sparsed and/or replicated in different
systems and cannot be reused between them. This problem becomes worse
when the website displays personalized content from its partners, because
webmaster cannot personalize partner’s content and partners cannot access
the User Model of the website to perform the personalization.

19

The

OP: Involving Third Parties in Improving the UX of Websites

Figure 2.4: Augmented Reality through an example. A image of London
enriched with information about objects that appears in such image.

2.3 Web Augmentation

Web Augmentation is to the web what Augmented Reality is to the physical
world: layering relevant content/layout/navigation over the existing web
to customize the user experience. Figure 2.4 shows Augmented Reality in
action, an image of London (reality) is enriched with information about
the objects appearing in such image (augmentation). In Web Augmentation

setting, augmentations are not made by the creator but by the user of the
web application. Web Augmentation “take back the web” to the web users
by allowing the customization of web applications by web users.

Being Web Augmentation an emerging area and trying to simplify the
explanation, the concepts of this section are illustrated using an example.

2.3.1 Definition & Motivation

A widely used definition of Web Augmentation is:

20

TakeS

Chapter 2. Background

Figure 2.5: Amazon before and after the BookBurro augmentation.

Web augmentation “adds content or controls not contained within the

Web pages themselves to the effect of allowing structure to be added to the

Web page directly or indirectly, or to navigate such structure” [Bou99].
Examples of what this technology generically enables include

reorganizing page content, supplementing page data, changing fonts and
formats, etc. [McF05, Fil06]. Web Augmentation is not new. Layering web
code at the client-side on top of existing websites is being used to improve
the affordance of third-party services. If this service is Skype calls, the
augmentation plugin at [Sky05] turns any phone number found in a web
page into a button that launches Skype to call that number. If this service is
AVG security warnings, LinkScanner [AVG10] is an augmentation utility
that permits to scan search results from Google, Yahoo! or Bing, and
places a safety rating next to each recovered link. Besides in-place service
invocation, Web Augmentation can support a broad range of situational
scenarios:

• On browsing an online journal (e.g. USA Today), you can be
interested in the coverage that a given headline receives in another
online newspaper, e.g. The NY Times. Skipping to the TNYT and

21

Mejor utilizar el bookburro original

OP: Involving Third Parties in Improving the UX of Websites

searching for a related headline could be too cumbersome to do on
a routine basis. Rather, you would like the USA Today website to
be augmented with a button placed by the USA Today headline that
directly pops up the summary at TNYT for this headline.

• When rendering a book at Amazon, it could be useful to know the
prices/comments for this book at other online bookshops.

• On weighting a job post at www.monster.com, it could be of interest
to supplement monster data with information about the range of
wages and conditions of similar jobs as found in other web sites (e.g.
jobs.trovit.co.uk).

Using special weavers, third-party JavaScript code can make on-the-
fly changes to the currently loaded Web page. Weavers are available
for Firefox (e.g. Greasemonkey), Internet Explorer (e.g. IE7Pro or
Turnabout), Safari (e.g. SIMBL + GreaseKit), and natively supported
in Opera and Google Chrome. The following subsection illustrates
Web Augmentation using a popular example, BookBurro script for
Greasemonkey (GM) [LBS05].

2.3.2 Web Augmentation through an Example:
The BookBurro Script

As an example, consider a popular script: BookBurro1. This script embeds
price comparison in Amazon pages. Concretely, when on an Amazon

book page, a link is shown after the book ISBN. Clicking on such link,
the BookBurroPanel is shown with a list of prices at other bookshops.
Figure 2.5 shows the outcome before and after applying the script that
injects the BookBurroPanel. This is achieved at the browser through the
weaver. Weavers permit scripts to act upon web pages at runtime. Pages

1BookBurro is available at http://userscripts.org/scripts/source/1859.user.js

22

Chapter 2. Background

are realized as DOM trees2. The script is triggered by User Interface events
(UI events) on this DOM tree (e.g. load, click). Event payloads provide
the data to feed script handlers which, in turn, update the DOM tree. The
script is outlined in Figure 2.6. The process goes as follows:

• interacting with a page triggers UI events (e.g. load),

• the script reacts to this event by triggering a handler (lines 6-39). The
association between an event and a handler (a.k.a. event listener) is
achieved through the addEventListener function (line 6),

• a handler can access any node of the page (using DOM functions
such as document.evaluate in lines 9-10), and create HTML

fragments (e.g. line 21),

• a handler can also change the DOM structure at wish by injecting
HTML fragments (e.g. the BookBurroPanel). In the example, the
output is injected at a point identified by an XPath expression on the
underlying DOM structure (i.e. the injection point). DOM functions
are used for this purpose (e.g. appendChild in line 23 and 36),

• this script is associated with a URL pattern that denotes the pages
to which the script applies. This is specified through the @include

annotation (line 3).

2.3.3 Successful Case Studies

Concrete examples can be found at userscripts.org, a popular repository
for augmentation scripts. This site reports millions of downloads and

2The Document Object Model (DOM) is a platform- and language-independent
standard object model for representing HTML or XML documents as well as an
Application Programming Interface (API) for querying, traversing and manipulating such
documents.

23

No pones ningun ejemplo
Ver
http://howto.cnet.com/8301-11310_39-57565901-285/a-six-pack-of-useful-greasemonkey-scripts/

OP: Involving Third Parties in Improving the UX of Websites

Figure 2.6: BookBurro in JavaScript (partial view).

thousands of uploads (which evidences the effectiveness of the approach).
Concretely, 1 script has over 14,000,000 downloads, 10 scripts over
10,000,000 downloads, and 6,000 scripts over 1,000 downloads. Besides
downloading, a stronger implication is providing feedback about the own
experiences on using scripts. This requires people to take the time
to sign up and join the community as members. At the time of this
writing, the number of registered users at userscripts.org is up to 30,414
users of which 20,000 have commented at least once. Additionally, the
number of discussions, replies, or comments are typical ways to measure
engagements around specific subjects raised by the own community (e.g.
dictionaries, YouTube, games). For userscripts, some figures follow:

24

Chapter 2. Background

22,157 topics are available which generated 134,690 comments, and over
100 communities of interest. We consider script uploading the ultimate
state of engagement. At this regard, userscripts enjoys over 34,779 scripts
where over 13,500 users have contributed at least once. These figures
make us conclude that user scripting is having a profound impact on a
large number of users.

2.3.4 Current Research Issues

This approach incurs in important drawbacks. Scripts are vulnerable to
page changes. According to [Fil06], “scripts must often rely on pattern
expressions in XML query (XPath) expressions, but pattern matching can
be an easily disrupted technique” and “web page formats evolve”, therefore
if a web page changes, the script may stop working. Back to our sample
case, if the Amazon website is upgraded, all “the screen scrapping” can
fall apart. For instance, BookBurro first retrieves the book’s ISBN from the
current page, and next, injects the BookBurroPanel at a certain location.
This is normally achieved through XPath expressions (see Figure 2.6, line
9). If Amazon pages are changed then, BookBurro’s XPath expressions
could no longer recover/identify the right DOM node. Therefore, GM

scripts are specially prone to maintenance. Besides their own maintenance,
scripts are affected by the maintenance of the hosting website. The
problem is that websites are reckoned to evolve frequently.

Another concern is script collision, i.e. the simultaneous access to the
same DOM node by two different scripts. The very same web page can
be subject to different augmentations. Amazon is a case in point. At the
time of this writing, 268 scripts are reported to be available for Amazon at
userscripts. If you are a regular Amazon visitor, it is likely you have several
scripts installed. These scripts will be enacted simultaneously when you
visit Amazon. It is important to notice that script execution is not in parallel
but in sequence, i.e. scripts are launched in the order in which they were
installed. This implies that the first script acts on the original DOM tree,

25

Qué approach?

OP: Involving Third Parties in Improving the UX of Websites

the second script consults the DOM tree but once updated by the first script,
and so on. The problem is that programmers develop scripts from the
original DOM, being unaware of changes conducted by other companion
scripts. This can end up in a real nightmare where code developed by
different authors with different aims, is mixed up together with unforeseen
results. Even worse, the final DOM tree can even be dependent on the order
in which scripts are enacted! The larger the set of (companion) scripts, the
higher the likelihood of clashes. The problem is similar to “scripts are
vulnerable to page changes” but now the web page does not change by
itself but by the execution of other script. This problem, coupled with the
fact that the number of scripts is steadily growing, will likely lead to an
increase in the number of scripts in each user installation, and hence, in
the likelihood of collisions.

The bottom line is that the expressiveness brought by a general-
programming language such as JavaScript comes at the price of intensive
development, and, what is most important, maintenance. Consumption
also suffers from this freedom. Even fully-tested scripts (e.g. the Skype

button) can collide when enacted simultaneously with scripts that access
the same DOM regions. The problem is that these errors are detected
(and suffered) by users with little help from programmers who can hardly
foresee the context in which their scripts are to be run. This potentially
high cost of development, maintenance and consumption, compromises
the “end-userness” of JavaScript for Web Augmentation.

2.4 Conclusions

This chapter gives a brief introduction about the required background
to understand the rest of this thesis. Web Personalization and Web

Augmentation are introduced as two different ways to modify web
applications and adapt to the user needs. For more detailed information
about these areas, see the references of this section.

26

Chapter 3

Server-Side Open
Personalization

3.1 Introduction

Open innovation and collaborative development are attracting considerable
attention as new software construction models. Traditionally, website
code is a “wall garden” hidden from partners. In the other extreme, you
can move to open source where the entirety of the code is disclosed.
A middle way is to expose just those parts where collaboration might
report the highest benefits. By its very nature, Web Personalization can
be one of those parts. Traditional personalization assumes a centralized
approach. The website master (the “who”) decides the personalization
rules (the “what”), normally at the inception of the website (the “when”).
In this context, partners tend to be mere stakeholders who do not actively
participate in the development of the website. Partners might be better
positioned to foresee new ways to adapt/extend your website based on

27

OP: Involving Third Parties in Improving the UX of Websites

their own resources and knowledge of their customer base. Company’s
website will we enhanced by providing up-to-date user customizations
made by its partners with minimal burden. The term “Server-Side Open

Personalization” is coined to refer to those practises and architectures
that permit partners to collaborate in the personalization of the website,
namely, permit partners to inject their own personalization rules (known as
“mods”) in an external company’s website.

This chapter is organized as follows. In Section 3.2, this work is
motivated using the ICWE conference site as an example followed by the
research question faced in this chapter. Next, in Section 3.3, the main
requirements desired for Server-Side Open Personalization architecture
are introduced. Then, the existing solutions and our contribution are
presented and contrasted with the requirements. In Section 3.4, the
Modding Interface is introduced as a mechanism to shield mods from
“design decisions that are likely to change” in the website. Based on
previously defined requirements, the Modding Interface for Server-Side

Open Personalization is described in Section 3.5, the changes that have to
perform the website owner and partners are described in Sections 3.6 and
3.7, and the composition of all pieces are synthetized in the architecture in
Section 3.8. Finally, in Section 3.9, the requirements are revised from the
proposed solution viewpoint. Conclusions end the chapter.

3.2 Motivating Scenario and
Research Question

As an example, consider the ICWE’09 conference website. The website
basically contains standard information for conferences, i.e. papers,
keynotes, accommodations, etc. It is a one-size-fits-all solution where
all attendees get the very same content. We have extended the original
site with login so that role-based personalization is now possible based
on whether the current user is a PC member, a session chair or an

28

Chapter 3. Server-Side Open Personalization

author. For instance, additional banquet information can be displayed
when login as an attendee with a full passport. This example illustrates
“closed personalization”: the web administrator (the “who”) decides the
personalization rules (the “what”), normally at the inception of the website
(the “when”). More sophisticated approaches such as those based on
configurations or detection of access patterns (i.e. adaptive and adaptable
techniques [Bru96]) are a step ahead but they are still centrally foreseen
and developed by the host designer. Of course, partners can participate as
stakeholders, and contribute with some personalization scenarios. Some
examples follow for the ICWE website:

• Barceló Resorts FACILITATES a 50% discount on room booking
over the weekend, PROVIDED the attendee holds a full passport,

• Springer-Verlag FACILITATES a 10% discount on books authored
by the seminars’ speakers, PROVIDED the attendee is registered for
this seminar,

• The Tourism Information Office FACILITATES information about
cultural activities on the city during the free slots left by the
conference program.

Supporting (and maintaining) these scenarios still rests on the host’s
shoulders. This setting is not without bumps. First, owner’s lack
of motivation. The website owner might regard previous scenarios
are not aligned with its business model (e.g. room offers might not
attract more conference attendees) and hence, not paying-off the effort.
Second, partnership might be dynamic, being set once the website is in
operation (e.g. pending agreements with the publisher). For instance, the
aforementioned rule by Springer-Verlag might require updating not just the
user interface (View) but also the internals of the application (Controller,
and even the User Model) if seminar attendance is not recorded. As a
result, partner rules might end up not being supported by the website.
This is not good for any of the actors. End users lose: they will not get

29

OP: Involving Third Parties in Improving the UX of Websites

the discounts or overlook interesting data. Partners lose: they miss an
opportunity to drive more customers to their services. Website owners
lose: the website reduces its “stickiness”, missing the chance to become a
true data hub for the subject at hand (e.g. the ICWE conference).

Previous scenario serves to illustrate the research question:

How can website owner open its site to their partners
allowing the modification of the user interface with low
development burden, in a dynamic environment and
without compromising the stability and idiosyncrasies of
the website?

The research question is described in depth in the next section, setting the
requirements of Server-Side Open Personalization architecture.

3.3 Requirements

Open APIs are one of the hallmarks of the Web2.0 whereby web
applications disclosure their data silos. However, “opening data” is not
the same that “opening personalization”. Personalization requires not only
access to the data but also adaptation in the content/navigation/layout
of the website. Server-Side Open Personalization (SOP) would then
mean to offer (controlled) access to the User/Domain Model (better said,
their implementation counterparts) and the (regulated) introduction of the
partners’ personalization rules (hereafter referred to as “mods”). This
basically calls for “an architecture of participation”. This term was coined
by Tim O’Reilly “to describe the nature of systems that are designed
for user contribution” [O’R04]. O’Reilly writes that “those that have
built large development communities have done so because they have
a modular architecture that allows easy participation by independent or
loosely coordinated developers”. SOP is then about creating a community
with your partners.

30

Chapter 3. Server-Side Open Personalization

Based on these observations, we introduce the following quality criteria
(and driven requirements) for “an architecture of participation” for SOP:

• Resilience. Mods should be shelter from changes in the underlying
website, and vice versa, partners’ code should not make the website
break apart.

• Extensibility. SOP departs from some model-driven approaches
where personalization is decided at design time and captured through
models. Mods can be added/deleted as partnership agreements
change throughout the lifetime of the website.

• Scalability. Growing amount of mods should be handled in a
capable manner.

• Affordability. Website owner and partner effort should be
minimized. Designs based on widely adopted programming
paradigms stand the best chance of success. Intricate and elaborated
programming practices might payoff when used internally, but the
advantage can be diluted when partners face a steep learning curve.
The more partners you expect to attract, the simpler it must be and
the more universal the required tools should be.

Next, the previous requirements are put in the context of the existing
solutions.

3.3.1 Existing Solutions

The related work in the area is mainly focused on component models and
web frameworks. Component model solutions describe the organization
and lifecycle of the components of a system. Component models solutions
are suitable for systems that require extensibility and resilience. Extensible
web frameworks allow the creation of web systems based on modules.
Extensible web frameworks are used when extensibility and affordability
are the main requirements of a web system.

31

OP: Involving Third Parties in Improving the UX of Websites

Component model. The Open Services Gateway Initiative (OSGI)

[The11] framework propose a dynamic component model for Java, i.e. a
way for components (known as bundles) to be started, stopped, updated
and uninstalled without the need to reboot the system. OSGI also includes
a way to define dependencies between bundles but it does not preclude any
communication mechanism between components. In the same direction,
in [Bir05] a pure plugin architecture used by Eclipse framework is
proposed. Whereas traditional plugin architecture is composed by a
hosting application and a set of plugins that extend its functionality,
the pure plugin architecture is only composed by a plugin engine and
plugins that interacts with ones another. Departing from an already built
application, transform to a traditional plugin architecture implies to create
a layer that interacts between hosting application and plugins, whereas
transforming to a pure plugin architecture implies refactor the already
built application. Taking into account the affordability requirement, SOP

has to follow the traditional plugin architecture because it requires less
effort create the layer that interacts with plugins than refactor the hosting
application. In addition the traditional plugin architecture reflects the
asymmetric relationship between the website owner and the third parties
and does not allow the interaction/dependency between plugins, which is
desirable to a SOP because it improves the resilience.

Extensible web framework. The ability to respond quickly to rapid
changes in requirements, upgradeability, and support for integrating other
vendors’ components at any time, all create an additional push for flexible
and extensible applications, and grounds the work of web architectures
such as PLUX .NET [JWM10], that resembles MEF, the .NET library for
third-party plugin extensibility. Definitely, SOP has to take into account
some of the aspects of PLUX .NET/MEF to support the extensibility
requirement. Notice that PLUX .NET does not provide any guide to
describe any interface between website core and personalization rules
codified in the plugins.

32

Chapter 3. Server-Side Open Personalization

More akin with the SOP vision is SAFE [RBG12] an architecture
of web application extensibility aimed at permitting users to personalize
websites. SAFE is based on a hierarchical programming model based
on f-units (the component model). An f-unit clusters all code fragments
for a specific functionality within a web page, including the business
logic, the visual appearance, and the interaction with users or other f-
units. A web page is modelled as a so-called “activation tree” in which f-
units are organized hierarchically, and activation flows top-down (naturally
corresponding to the hierarchical DOM structure of an HTML page).
Thus, a user who would like to personalize an application simply has
to replace an existing f-unit with a new f-unit of her choice. Such
customizations are dynamic in that f-units are registered and activated
without stopping the running system. F-units contain SQL statements and
this serves to support an implicit interaction between f-units sharing the
same data. The bottom line is that SAFE proposes a more innovative
mean for open participation by introducing a hierarchical model to
web programming. This is simultaneously the main benefit, but also
jeopardy, of SAFE. By contrast, SOP advocate for a more evolutionary

approach. Capitalizing on existing techniques and programming models
will certainly facilitate partner participation. The challenge is not only
on pluggable components/f-units/mods but also affordable, risk-controlled

technology that facilitates partner engagement.

Based on the drawbacks of the existing solutions, in the following
subsection we describe our contribution in terms of the requirements.

3.3.2 Our Contribution

Server-Side Open Personalization (SOP) provides a model of interaction
between website owner and its partners, an “architecture of participation”.
This architecture departs from an existing application, SOP only makes
the assumption of the use of the MVC[KP88] pattern by the website. Our
solution instantiates the previous architecture, using a traditional plugin

33

OP: Involving Third Parties in Improving the UX of Websites

architecture, code annotation, the Inversion of Control pattern and the well-
known event-based programming model as the mechanism to support the
extensibility requirement. We use existing programming approaches as
much as possible, in order to make its use affordable. We explain the
instantiation of this architecture taking the ICWE website as a running
example.

In order to improve the resilience of the architecture, the Modding

Interface is introduced as a mechanism to shield modifications from
“design decisions that are likely to change” in a web application. Next
section introduces it.

3.4 The Modding Interface

A main principle of Software Engineering is information hiding i.e. “the
hiding of design decisions in a computer program that are most likely
to change, thus protecting other parts of the program from change if the
design decision is changed” [Par72]. Information hiding then implies
the existence of a stable interface which shields consumers from the
implementation.

The Modding Interface aims at shielding modifications (hereafter
mods) from “design decisions that are likely to change” in a web
application. Isolation solutions should be sought to ensure that the
evolution of the website has minimal impact on the existing mods. From
web application viewpoint, design decisions are reflected in the Model,
View or Controller. Among these decisions, those related with Model, that
is formed by domain concepts, tend to be more stable than the other two.
Hence, it comes as no surprise that modding should be mainly based on
the Model of the web application.

Concepts describe meaningful units of what (rather than how) is being
rendered by the web application. They attempt to capture the essence of
the notions being handled by the website. For instance, “book” could be
a concept for Amazon, “flight” for Expedia, “paper” for conference site,

34

Chapter 3. Server-Side Open Personalization

etc. From all of these Concepts, Modding Concepts are those Concepts
whose rendering realization is amenable to be leveraged by a mod.

To ensure decoupling, all interactions between web application and
mods are conducted through events. This raises the notion of Publishing
Event and Processing Event. A Publishing Event (e.g. LoadBook)
denotes a notification of a Modding Concept (e.g. Book) being rendered.
This event can be consumed by a mod through a handler (a.k.a. listener),
who can access to the Modding Concept through the event payload.
A Processing Event (e.g. AddViewModBook) denotes a request for a
modification over a Modding Concept. This event can be created and raised
by a mod.

This event-based mechanism improves the resilience of the mod to web
application upgrades, but does not preclude the mod itself from changing
the rendering of the page in “unsafe ways”. So far, the mod creator can
inject any HTML fragment on the premise that the disclosure of the page
rendering makes him acknowledgeable about what would be the right
fragment code. This approach may work in small but is hardly scalable
for complex pages. We cannot rely on mod creator peering on HTML code
to ascertain what would be a wrong fragment. This is the role of Modding

Constraint.

As their database counterparts, a Modding Constraint describes
a constraint that should be obeyed no matter what and where the
modification of the website is achieved. These constraints reflect invariants
on the layout or aesthetics concerning a given Modding Concept. For
instance, modifications of the concept “Book” should be compliant with
the following constraints: if the layout is extended then, the supplemented
code is restricted to be of type HTMLParagraphElement as defined by
the W3C. Now, a mod that raises a “AddViewModBook” must generate
an HTMLParagraphElement-compliant fragment.

As a proof of concept, next section introduces Modding Interface for
Server-Side Open Personalization.

35

OP: Involving Third Parties in Improving the UX of Websites

3.5 Specification of the Modding Interface

SOP is about disclosing code for partners to inlay their mods. Therefore,
we risk existing mods to fall apart when the underlying website is upgraded
(i.e. the code changes), hence putting an additional maintenance cost on
partners. Isolation solutions should be sought to ensure that the evolution
of the website has minimal impact on the existing mods. The isolation
solution proposed is based on the usage of the previously introduced
Modding Interface. As previously stated and applying the terms to .NET

framework, Modding Interface can be based on Model Classes (Model),
Web Forms (View) or Controller classes (Controller), but Model classes are
chosen because they are certainly the most stable part of a web application.
Therefore, mods pivot around Model classes. Those classes that are
amenable to participate in a mod are said to support a Modding Concept.

A Modding Concept is a Model Class whose rendering

realization (i.e. Web Forms) is amenable to be leveraged by a

partner through a mod, i.e. an HTML fragment to be injected

into the appropriate Web Forms.

The latter still suggests that mods might be affected by changes in Web

Forms. As previously stated, to ensure decoupling, all interactions between
Web Forms and mods are conducted through events. Model classes are
manipulated through traditional set/get methods. In addition, those classes
playing the role of Modding Concepts have an additional interface, the
Modding Interface, which holds1:

• Publishing Events, which notify about instances of Modding

Concepts (e.g. Accommodation) being rendered by the website.
For instance, the event LoadAccommodation is produced by the
host everytime an accommodation is rendered. This event can be
consumed by a mod through a handler (a.k.a. listener).

1The terminology of “processing events” and “publishing events” is widely used for
event-based components such as portlets [JCP03].

36

Chapter 3. Server-Side Open Personalization

• Processing Events (a.k.a. actions), which are those
that output an HTML fragment. For instance, the event
AddViewModAccommodation provides a HTML fragment to be
injected in those places where Accommodation instances are
rendered. Therefore, mods can decide what to add but not
where to add it. The latter is up to the host. For instance, the
AddViewModAccommodation event is produced by a mod but it is
let to the host decide where to handle it.

This notion of Modding Concept aims at minimizing the impact of SOP

for owners and partners alike. This is the topic of the next sections.

3.6 Impact on the Host: Making a Website
Mod-Aware

The additional effort required for a traditional website to become mod-
aware is: (1) annotating the Model classes and (2), introducing place
holders to locate mod output in Views (i.e. Web Forms).

Annotating Model Classes. Model classes can be decorated with
the annotation [ModdingConcept]. Figure 3.1 shows the case for the
ICWE website: the class Accommodation becomes a Modding Concept.
[ModdingConcept] annotations produce Modding Interfaces. These
interfaces are termed after the annotated class (e.g. the Accommodation

class will generate the IModdingConceptAccommodation interface). This
interface collects all the events to mod Accommodation. Event names
are obtained from the event type (Load) plus the class name as a
suffix (e.g. LoadAccommodation, AddViewModAccommodation). Each
annotation introduces an event type. So far, Publishing Events are
limited to “Load” whereas processing events include “AddViewMod”.
The latter outputs an HTML fragment hence, its payload is HTML-typed
[W3C00b]. For instance, modding an “Accommodation” is set to be of
type HTMLTableCellElement, meaning that mods to Accommodation need

37

OP: Involving Third Parties in Improving the UX of Websites

Figure 3.1: Domain classes annotated to become Modding Concepts.

to be compliant with this type. This introduces a type-like mechanism for
modding regulation. It can then be checked whether this payloadType is
fulfilled, and if not so, ignores the mod but still renders the rest of the page.
If Accommodation is rendered in different Views with different HTML

requirements then, different AddViewModAccommodation events can be
defined associated with distinct HTML types. It is also worth noticing that
not all properties of a modding class might be visible. Properties available
for mods are annotated as [ModdingProperty].

Introducing Place Holders in Views. A View is mod-aware if
it foresees the existence of mods that can produce additional HTML

fragments to be inlayed in the View. This is so achieved using place
holders. Commonly, Views that render Modding Concepts should cater

38

Chapter 3. Server-Side Open Personalization

Figure 3.2: Mod-aware Views: the ASPX includes a place holder that
accesses the AccommodationMod (line 8).

for this situation, though this is up to the host. Figure 3.2 provides
a View that renders Accommodation data. Since Accommodation is a
Modding Concept, this View introduces a place holder (line 8). In .NET,
data passing between the Controller and the View is achieved through the
system variable ViewData. This variable holds an array for each possible
type of data that can be passed. By convention, this array is indexed
based on the type of the variable (e.g. ViewData[“Accommodations”]

conveys accommodations). Likewise, we use the convention of adding the
prefix “AddViewMod” to the concept (e.g. AddViewModAccommodation)
to refer to the information passed from the mod to the View (through the
Controller). In this case, the content is an HTML fragment. The View

retrieves this fragment, and places it as appropriate. The only aspect known
in advance is the type of the HTML fragment as indicated in the event
payload when annotating the Modding Concepts.

3.7 Impact on Partners: Defining Mods

Unlike the open-source approach, SOP restricts code access through the
Modding Interfaces. Mod expressiveness is that of monotonic additions to
the content of the host. Deletions are not permitted. Implementation wise,
this means mods can extend the content of existing Views, and add new
Views & Controllers.

39

OP: Involving Third Parties in Improving the UX of Websites

Figure 3.3: Mods as plugins that import Modding Interfaces (line 8).

Extending Existing Views. The programming model for mods is
event-based. First, a mod subscribes to Publishing Events to collect data
about the User Model and the Domain Model that is going to be rendered.
Second, a mod signals Processing Events to indicate the availability of an
HTML fragment ready to be injected in the current View. Therefore, the
mod is totally unaware of all, the Model classes, the Controllers and the
Web Forms that are in operation. From the mod perspective, the website
is wrapped as a set of Modding Concepts and their corresponding events.
Figure 3.3 shows the mod to be provided by the hotel partner for the rule:
“a 50% discount on room booking over the weekend is offered, provided

the attendee holds a full passport”:

• a mod works upon Modding Concepts (e.g. Accommodation

and Profile). This implies obtaining the classes for the
corresponding interfaces (e.g. IModdingConceptAccommodation

and IModdingConceptProfile, line 6). These classes’ instances

40

Chapter 3. Server-Side Open Personalization

Figure 3.4: A mod that introduces a new View & Controller. In the up
side, the host’s View links to the partner’s View and the rendering of the
partner’s View. In the down side the partner’s View code refers to the host
template (i.e. MasterPageFile).

are obtained dynamically using dependency injection (see next
subsection). This explains the [ImportingConstructor] annotation.

• a mod can subscribe to Publishing Events (e.g. LoadProfile,
LoadAccommodation). This entails associating a handler to each
Publishing Event of interest (lines 11, 12).

• a mod can signal Processing Events (e.g.
AddViewModAccommodation). This signal is enacted in the
context of a personalization rule. This rule is just a method (e.g.
barceloPersonalization) which proceeds along three stages: (1)
checks the pertinent aspects of the User Model and Domain Model

as obtained from the Publishing Events (e.g. variables “profile” and
“accommodation”); (2) constructs the event payload (i.e. an HTML
fragment) and creates the event at hand; and finally (3), signals the
Processing Event.

41

OP: Involving Third Parties in Improving the UX of Websites

Figure 3.5: Decoupling the Core from the Periphery: a model of the
involved concepts.

Adding New Views & Controllers. In the previous example, the output of
the mod could have contained links to Views with additional information
(e.g. room pictures). Figure 3.4 provides an example. These Views are
kept as part of the ICWE website but they are provided by the partners.
This requires the partner not only to extend host Views with “hooks” (i.e. a
link to the partner View), but also to facilitate his own View and Controller.
Partners’ Controllers are like host Controllers. Partners’ Views are like
any other View except that they refer to the (rendering) template of the
host so that the look&feel and non-contextual links of the hosting site are
preserved (see Figure 3.4). This permits the partner’s Views to link back to
the rest of the website.

3.8 Architecture

This section introduces the main architectural elements that ground the
semantics of the [ModdingConcept] annotation. That is, the artefacts and
associations to be generated as a result of a Domain Concept being turned
into a Modding Concept. Specifically, each annotation automatically

outputs the following types of artefacts: Wrappers, Crosscuts and Modding

42

Chapter 3. Server-Side Open Personalization

Interfaces.

Figure 3.5 outlines the main artefacts and conceptual relationships
of our architecture. An Open Application contains a Core, a Frontier
and a Periphery. The Core stands for the traditional architecture along
the Model-View-Controller pattern. The Periphery includes the Mods
provided by the Partners. Finally, the Frontier mediates between the
Core and the Periphery through Modding Interfaces. Modding Interfaces

encapsulates Model classes through events. Publishing Events are
<consumed> by the Mods but <produced> by the Core. Alternatively,
Processing Events are <produced> by Mods but <consumed> by the
Core.

Mods impact on the Core. This impact is supported by different means
depending on the nature of the artefact at hand. For Model class, the impact
is in terms of a Wrapper: a class that becomes a Modding Concept is
encapsulated so that only modding properties can become event payloads.
For Controller classes, the impact is supported as a Crosscut for each of
the class methods. Each method handles a Web Form (i.e. denoted in the
code as “return View(webFormName)”). The Crosscut is “an aspect” that
extends the base method with an “after advice” with two duties: (1) raising
a Publishing Event for each concept instance to be loaded by the Web Form

(e.g. hotel Barceló), and (2), handling the Processing Events raised by the
Mods. Finally, the View (i.e. the Web Forms) requires the introduction of
PlaceHolders where the Mod output is to be injected.

So far, the description seems to suggest that the Core knows in advance
the mods to be instantiated. However, this is not the case: Mods can be
added at anytime. This implies hot deployment, i.e. the ability of adding
new Mods to a running web server without causing any downtime or
without restarting the server. The Core cannot have an explicit dependency
on Mods. Inversion of Control and Dependency Injection are two related
ways to break apart dependencies in your applications [Fow04]. Inversion

of Control (IoC) means that objects do not create other objects on which
they rely to do their work. Instead, they get the objects that they need

43

OP: Involving Third Parties in Improving the UX of Websites

from an outside source. Dependency Injection (DI) means that this is done
without the object intervention, usually by the “assembler” that passes
constructor parameters and set properties. The assembler is a lightweight
object that assembles different components in the system, in order to
produce a cohesive and useful service.

In our architecture, Controllers are the component in charge of
instantiating the Mods. However, these instantiation are not achieved
directly by the Controllers but through an assembler. That is, Controllers

become IoC compliant components (a.k.a. parts), i.e. they do not go off
and get other components that they need in order to do their job. Instead, a
Controller declares these dependencies, and the assembler supplies them.
Hence, the name Hollywood Principle: “do not call us, we will call you”.
The control of the dependencies for a given Controller is inverted. It is
no longer the Controller itself that establishes its own dependencies on the
mods, but the assembler.

3.9 Discussion

In this section, the four requirements, namely, resilience, extensibility,
scalability and affordability are revisited and evaluated in terms of the
proposed solution.

3.9.1 Resilience

Mods should be resilient to View upgrades. This is the rationale of the
Modding Interface: changes in the content or layout of a View should not
impact the mod. Even if a concept (e.g. Accommodation) is no longer
rendered, the mod will still raise the event, but no View will care for it. No
dangling references come up. The mod becomes redundant but not faulty.
And vice versa, new Views can be introduced where Accommodation data
is rendered. This has no impact in the mod. Just the payload of the
signalled event (i.e. the HTML fragment) will now start being injected

44

Chapter 3. Server-Side Open Personalization

in the place holder of the new View. This place holder should accept
HTML fragments of the type being outputted by the mod. Otherwise, some
disruption might occur that might eventually impact the rendering.

3.9.2 Extensibility

Mods can dynamically be added/deleted as partnership agreements change.
Existing Model classes left outside partner agreements in the first round,
might become Modding Concepts by just adding the corresponding
annotations. However, this will require stopping the website to update
the annotations and re-compile the code. This also raises the need for
authorization mechanism so that not all partners will have access to all
modding events. Grant and revoke privileges would be issued by the owner
based on agreements with his partners. This is not yet available.

3.9.3 Scalability

Mods should not deteriorate the site performance. SOP rests on a flexible
architecture where (1) mods are installed dynamically and (2), mods

interact with the Core through events. Both mechanisms trade flexibility
for efficiency. Specifically, satisfying a URL request for a particular page
now requires four additional steps: (1) instantiating the mod plugins at
hand, (2) generating a Publishing Event for each Modding Concept in this
page, (3) issuing a Processing Event for each mod that wants to contribute,
and (4), capturing such processing events by the Controller at hand. As
a general rule, end users should not pay a performance penalty for mods

that are installed but not used during the current request. This subsection
describes the results of a stress testing (a.k.a. load testing) of the SOP

architecture. The study evaluates the additional latency introduced when
the ICWE site becomes mod-aware.

Stress testing entails a process of creating a demand on service, and
measuring its response. Specifically, we measure the service that outputs
the “Accommodation” page. The ICWE application has been deployed

45

OP: Involving Third Parties in Improving the UX of Websites

Figure 3.6: Latency introduced by distinct SOP factors (clockwise from
bottom left): #Processing Events, #Publishing Events, #Plugins, and
finally, the combined effect of all three.

in an IIS 7.0 on Intel Core2 Duo T7500 2.2 GHz CPU with 4GB of

memory. The test is conducted through Microsoft Web Capacity Analysis

Tool (WCAT), a free lightweight HTTP load generation tool which is
used to test performance and scalability of IIS and ASP.NET applications
[FR03]. WCAT is configured as follows: 30 seconds to warmup (no data
collection)2, 120 seconds of duration of simultaneous requests, 10 seconds
to cooldown (no data collection), range of {1, 50, 100} virtual clients

(concurrent clients over the same page), and finally, request stands for the
petition of the “Accommodation” page.

2WCAT uses a “warm-up” period in order to allow the web server to achieve steady
state before taking measurements of throughput, response time and performance counters.
For instance there is a slight delay on first request on ASP.NET sites when Just-In-Time
(JIT) compilation is performed.

46

Chapter 3. Server-Side Open Personalization

The experiment is parameterized along the number of mods, the
number of Publishing Event occurrences and the number of Processing

Event occurrences for the request at hand. Figure 3.6 depicts the "time to
last byte" metric for these three factors. For the ICWE-with-no-modding,
the “Accommodation” request accounts for 2 msec. On top of it, SOP

introduces some affordable overheads. As suggested by the bottom right
chart about the combined effect of the three factors, the event-based
mechanism has minimal impact (i.e. the plateau in the charts stands for
increases in the #events but keeping the #plugins constant). By contrast,
the #plugins reveals itself as the factor with larger impact. Along the lines
of IoC, each request implies to instantiate the involved plugins for the
Controller at hand. For a hundred simultaneous requests, the impact of 1,
10, 20 plugins account for an increase of 5%, 33% and 64%, respectively.
To be perfectly honest, we seldom envisage a scenario where a page is
subject to over 20 plugins. We do not foresee more than 3/4 plugins per
page on average, and this would represent a 15% penalty. Notice, that this
number is just for satisfying the request, not to be confused to the elapsed
time that the end user experiments. If normalized with the elapsed time
(typically around 1300 msec.), the SOP architecture represents around a
2% of increment for the most common envisaged scenarios.

3.9.4 Affordability

Mods should be easy to develop and maintain. Mods follow an event-
driven style of programming. That is, the logic is split between event
handlers and event producers. This is particularly helpful in our context
where these event roles can be naturally split between partners and owners:
partners focus on what should be the custom reaction (i.e. Processing

Events) for the rendering of Modding Concepts, while owners focus on
signalling when Modding Concepts are displayed (i.e. Publishing Events).
This certainly leads to cleaner code. On the downside, the flow of the
program is usually less obvious.

47

OP: Involving Third Parties in Improving the UX of Websites

3.10 Conclusions

Fostering a win-win relationship between website owners and partners,
substantiates the efforts of Server-Side Open Personalization (SOP).
Server-Side Open Personalization (SOP) pursuits to engage external
partners in the personalization endeavour: partners introduce their rules
on their own with minimal impact on the owner side. This arrangement
makes more economical sense. Partners might regard SOP as a chance
to increase their own revenues by personalizing their offerings in those
websites that serve as a conduit for their products/services (e.g. room
offers when booked through the conference website). On the other side, the
owner can be willing to facilitate (rather than develop) such initiatives for
the good of its customers as long as its involvement is limited. However,
SOP should not be viewed only as a way to share the maintenance cost
but as an enabler of and means for truly collaborative solutions and lasting
partner relationships.

In this chapter however, we focus on the technical feasibility of SOP.
The proposed solution is resilient to changes on the website, website
evolution does not cause any crash but the no rendering of the mod in
the worst case. Extensibility is achieved using the Modding Interface and
an event-based mechanism, and realized using the Inversion of Control

pattern. Scalability is tested, in order to ensure that this architecture does
not suffer of a noticeable deterioration in performance; therefore there are
no needed additional resources to host the website. The architecture is
based on .NET MEF, code annotations, the .NET event mechanism and
software interfaces as non disruptive programming practices to make the
development of the solution affordable for website owner and partners.
Website owner mainly need to annotate the Model classes/attributes to
automatically generate the Modding Interface. The partners only need
the Modding Interface to know which are the parts disclosed of the
Model namely the Modding Concepts, how to access them subscribing to
Publishing Events and how to communicate the modifications notifying

48

Chapter 3. Server-Side Open Personalization

Processing Events. Though proving feasibility requires focusing on a
specific platform, the approach is easily generalizable to any framework
that supports Inversion of Control.

49

Chapter 4

Hybrid Open Personalization

4.1 Introduction

Web Augmentation alters the rendering of existing web applications at
the back of these applications. Changing the layout, adding/removing
content or providing additional hyperlinks/widgets are examples of Web

Augmentation that account for a more personalized user experience.
This is achieved through JavaScript (JS) using browser weavers (e.g.
Greasemonkey). To date, over 43 million of downloads of Greasemonkey

scripts ground the vitality of this movement. Such augmentations
are created and used only by the Greasemonkey community. The
term “Hybrid Open Personalization” is coined to refer to end users
not only the beneficiaries but also the contributors of augmentation
scripts. Unfortunately, current development models offer little help in
understanding and managing this new form of value co-creation. The
Metropolis Model [KC09] has recently identified three realms of roles
for commons-based peer production (crowdsourcing [How06]): the kernel

51

OP: Involving Third Parties in Improving the UX of Websites

(providing the core functionality), the periphery (the scripters) and the
masses (the end users). The periphery requires mechanisms for the
commons to suggest, develop and maintain additional services on top of
the kernel. This work concretizes the Metropolis Model for crowdsourced
website development based on user scripts. We outline some challenges
to foster the relationship between end users (the masses), scripters (the
periphery) and the web site (the kernel) on the way to promote script-based
crowdsourcing.

This chapter is organized as follows. In section 4.2, Hybrid Open

Personalization is motivated using the ICWE conference site augmented
with information from DBLP. Next, in Section 4.3, the main requirements
desired for Hybrid Open Personalization architecture are introduced.
Then, the existing solutions and our contribution are presented and
contrasted with the previous requirements. In Section 4.4, Crowdsourcing

Web Augmentation is illustrated using the Metropolis Model to introduce
the existing roles. Once these roles are put in the web setting, the
scripting main issues are presented: development, testing, advertising
and sandboxing. Section 4.5 and 4.6, introduces the Modding Interface

mechanism, that shelters scripts from changes in websites but now
adapted to client-side scripting. In section 4.7, the mod development
using Modding Interface is introduced and compared with traditional
development. Once the script is developed, it can be tested using Modding

Contracts as described in section 4.8. Section 4.9, describes script
advertisement and section 4.10 propose and architecture to safely execute
the scripts. Finally, in Section 4.11, the requirements are revised from the
proposed solution viewpoint. Conclusions end the chapter.

52

Chapter 4. Hybrid Open Personalization

Figure 4.1: Raw page (left side) vs. Augmented page (right side).

4.2 Motivating Scenario and
Research Question

Conferences addressing web issues can tap on their attendees to
enhance the conference site itself. The vision is to regard the
conference site as a platform for attendees to enhance. As an example,
consider the conference website for ICWE’09. Figure 4.1 (left side)
depicts a screenshot for the page on accepted submissions, located at
http://icwe2009.webengineering.org/Accepted.aspx. On deciding which
presentations to attend, an attendee can augment this content with data
obtained from Michael Ley’s DBLP site1 so that each accepted paper is
augmented with data about previous publications from the paper’s authors.
To this end, the attendee writes the dblpFigures script2 (see Figure 4.2, left
side). The outcome (see Figure 4.1, right side) shows how “host markup”

1http://dblp.uni-trier.de/db/index.html
2Available at http://userscripts.org/scripts/source/76472.user.js.

53

OP: Involving Third Parties in Improving the UX of Websites

Figure 4.2: Two versions of the dblpFigures script: using DOM Events
(left side) vs. using Conceptual Events (rigth side).

is intermingled with “augmented markup” produced by the script.

This process takes place at the client. The hosting application is
completely unaware of this process: no responsibility is taken on certifying
or disseminating augmentation scripts among its users. Script safety is not
validated, hence, script users are exposed to malware.

This is certainly bad news for users but so is it for web application
owners. Although augmentation can threat the business models of some
sites (e.g. by removing banners), in other cases, augmentation accounts
for honest enhancements that serve a small set of users the application
cannot afford to support their requirements, but leaves external users to fill
the gap. After all, popular sites such as Facebook, encourage their users to
build and share Facebook applications on the certitude that this increases

54

Chapter 4. Hybrid Open Personalization

the stickiness and usefulness of the site [Fac10a, MP09]. Customer loyalty,
engagement and satisfaction are among the rewards. The vision is to create
an open ecosystem between the hosting application and the augmentation
contributors. This leads us to the research question:

How can website support, promote and coexist with user-
provided scripts?

The research question is described in depth in the next section, setting the
requirements of Hybrid Open Personalization architecture.

4.3 Requirements

This chapter outlines some technical challenges supporting, promoting
and enabling the coexistence of augmentation contributions, namely: (1)
insufficient decoupling between user scripts and the underlying website
(i.e. the platform); (2) no means for website customers to know about user
scripts; (3) lack of mechanisms for websites to certify scripts; and (4), lack
of an architecture to ensure the integrity of the website.

Based on these observations, we introduce the following quality criteria
(and driven requirements) for “an architecture of participation” for Hybrid

Open Personalization (HOP):

• Affordability. Contributors effort should be minimized. All the
steps of the mod’s lifecycle, from development to advertising, have
to be considered. Designs based on widely adopted programming
paradigms stand the best chance of success. The more contributors
you expect to attract, the simpler it must be and the more universal
the required tools should be. The hosting web also needs to ensure
the soundness of the contributors’ mods.

• Resilience. Mods should be shelter from changes in the underlying
website, and vice versa, contributors’ code should not make the
website break apart.

55

OP: Involving Third Parties in Improving the UX of Websites

• Scalability. Growing amount of mods should be handled in a
capable manner.

• Security. Mods should not be able to do malicious tasks like
redirection to phishing pages or stealing user sensitive data.

4.3.1 Existing Solutions

This work is in the middle of two existing approaches, application centric
and user programming. Application centric approaches allow the extension
of a concrete application. This kind of solution takes into account the
peculiarities of its application and normally cannot be reused in other
contexts. Application-centric approaches mainly take care of the resilience
and security concerns. User programming approaches enable end users
to customize the web without the involvement of the webmaster. This
approach prioritizes affordability as the key requirement.

Application centric. Distinct websites use a back-end approach
(i.e. API-based) to open up their platforms. Amazon is among the best
known ([IL10]). However, fewer experiences exist on using a front-end
approach. A hybrid example is provided by the Facebook Developer

Platform, launched in 2007 ([Fac10b]). This platform provides three
enablers: (1) a REST API to access data profile, friends, photos, etc; (2)
the Facebook Query Language (FQL), which mimics SQL-like syntax to
achieve a similar functionality to that of the API, and (3), the Facebook

Markup Language (FBML), a markup language that can be interlinked
with your own HTML. These mechanisms permit end users to create their
own applications outside Facebook. Once developed, the application is
deployed at the user side but needs first to be registered in Facebook.
Notice that neither Amazon nor Facebook allow web augmentation; only
Facebook offers a front-end approach but in a side-by-side way.

A related initiative is that of Facebook’s Social Plugins ([Fac10c]).
Plugins are served by Facebook itself as a means to personalize your
Facebook account. Contributors are websites that inlay these plugins.

56

Chapter 4. Hybrid Open Personalization

Normally, this is rendered as an icon on the website’s page. On clicking
the icon some data flows to your Facebook account. In this way, websites
become data contributors for Facebook. The “Like Button” is among the
most popular plugins. When end users click the Like button, a link to the
contributor page is added to the user Facebook profile, and a story is shared
with the user’s friends.

User programming. Mashup tools (e.g. Yahoo! Pipes ([Yah07])
are classified as end-user programming, web-based ecosystems ([Bos09]).
Mashups and mods have a lot in common. They both focus mainly “on
opportunistic integration occurring on the web for an end user’s personal
use and for non business-critical applications” ([YBCD08]). However,
modding and mashups differ in the aim. Mashups are akin to integration

efforts to build new applications out of existing resources. This is, most of
the examples so far aggregate data coming from different sources which
end up conforming an application in its own right, detached from the
source websites (Yahoo Pipes is a case in point). By contrast, modding
does not produce a new application but enhances an existing website. A
mod can only be understood with reference to the application it tunes.
Mashups look at websites as feeding sources while modding regards
websites as platforms.

Operator is a plug-in for Firefox that detects microformats in the
current page which are then displayed through a toolbar ([Kap06]). Some
“actions” can then be associated with the detected annotations, e.g. if
an hCalendar annotation is spotted then, an action can be introduced
to add this event to your calendar; if an hAddress annotation then,
you can attach an action to place this address in Google Maps, and so
on. Therefore, Operator can be regarded as a general mechanism for
seamless data passing based on microformats which also leads to an
augmented experience. Operator provides an example of the advantages
brought by having well-structured websites. After all, the rationale behind
microformats is improving page structure in a well-focused but limited area
(e.g. calendar information). However, the number of things that can be

57

OP: Involving Third Parties in Improving the UX of Websites

described by microformats is limited (i.e. they are not infinitely extensible
and open-ended).

4.3.2 Our contribution

Hybrid Open Personalization (HOP) provides a model of interaction
between website owner and augmentation contributors. Our solution
is composed by a set of models: Modding Interface that improves the
resilience between website and mods, Modding Contracts as a mechanism
to certify the soudness of the mods, and the sandboxing of the mods to
ensure the security of the system. In order to promote the dissemination of
the mods, the preview mode is introduced. We explain the instantiation of
those models taking the ICWE website as a running example.

The rest of this chapter introduce a HOP using Web Augmentation

techniques (a brief introduction to Web Augmentation is in Section 2.3).

4.4 Crowdsourcing Web Augmentation

The term “crowdsourcing” has been coined to denote the shift to
commons-based peer production, viewing customers not as passive users
but as co-creators of value. Unfortunately, current development models
offer little help in understanding and managing this new form of value
co-creation. The Metropolis Model has recently identified some issues
for crowdsourcing. This work concretizes the Metropolis Model for
crowdsourced website development. In Figure 4.3, this Metropolis

Model is represented. This model distinguishes three realms of roles:
kernel, periphery and masses. The kernel provides the core functionality
and content of the website, and traditional methodologies can be used.
However, the periphery requires mechanisms for the commons to suggest,
develop and maintain additional services on top on the kernel, the mods.

An open ecosystem implies for the platform to take a more active role
in supporting:

58

Chapter 4. Hybrid Open Personalization

Figure 4.3: The Metropolis Model. The periphery extends the application’s
ecosystem.

• script development, interaction between kernel and periphery. This
implies proper architectural decoupling between the website and the
user scripts. So far, scripts are fragile to website upgrades. Changes
in the rendering of the website can make scripts fall apart. And
websites are reckoned to change frequently. This work introduces
the notion of Modding Interface as a means to shelter scripts from
changes in the underlying website,

• script testing, interaction between kernel and periphery. Ecosystem
development should not imply a decrease in the quality of the final
product. Mechanisms need to be introduced that allows community-

59

OP: Involving Third Parties in Improving the UX of Websites

offered scripts to exist within the platform but with no impact on the
core functionality to any significant extent. That is, websites should
certify the soundness of user scripts. To this end, we introduce a test
battery for scripts. This battery is provided by the website for user
scripts to satisfy before being publicized among website customers,

• script advertising, interaction between periphery and masses. So
far, script finding is achieved through script repositories. These
repositories act as yellow pages which offer general information
about scripts. In most cases, the user is forced to install the script
to see what the script looks like. This difficulty in both finding
and understanding the script are detrimental for the end user but
also for both the script programmer and the website. To this end,
we introduce a second mode for websites to operate: the preview

mode. In the traditional mode, users get the core functionality, i.e.
the website recovers the base pages. By contrast, the preview mode
permits to visualize base pages but now augmented with selected
scripts included in the platform offerings. The preview mode does
not require any additional installation to facilitate user engagement,

• script sandboxing, interaction between periphery and masses.
Crowdsourced augmentation implies mod code (i.e. the scripts) to
co-exist with hosting code (e.g. the HTML page). This is risky.
Placing different resources for numerous and possibly untrusted
or malicious sources into the same security domain raises security
and integrity concerns. Threats include: creation of/redirection
to phishing pages, stealing history information (or sensitive data
stored on either pages or cookies), or port scanning upon the user’s
local network [Goo]. It is needed a mechanism to protect the user
from malicious mods. To this end, we offer an architecture for
safe co-existence of hosting code and augmentation scripts. This
architecture is based on Modding Interface. Set and managed by
the hosting application, this interface regulates both the outflow

60

Chapter 4. Hybrid Open Personalization

(i.e. what “hosting data” can flow to augmentation scripts) and
the inflow (i.e. what “hosting rendering aspects” can be subject to
augmentation). Traditionally, scripts have open access to hosting
rendering through DOM events. Now, scripts are “sandboxed” so
that interaction can only be through MI events.

In the next section, the notion of Modding Interface is revisited and adapted
to the scripting world.

4.5 The Modding Interface:
a Client-Side Perspective

Crowdsourcing implies encouraging contributor participation. In our
setting, this implies sheltering scripts from upgrades in the underlying
website. To this end, we propose the notion of Modding Interface that
was previously introduced in the previous chapter, in the section 3.4 in the
context of SOP. Next paragraphs explain this mechanism that was adapted
to the HOP context.

Interfaces are commonly specified in terms of operations defined upon
data types. However, JavaScript favours event-based programming, i.e.
handlers are associated to UI events. Unlike operations, handlers are not
explicitly called but triggered when the associated event occurs. Akin
to the JavaScript approach, Modding Interfaces are to be described in
terms of events rather than operations, but they will act upon concepts

(e.g. Paper) rather than DOM nodes. In this way, scripts can subscribe to
the event loadPaper (rather than the DOM event, load) and obtain Paper

data as event payload rather than scraping the DOM tree. Scripts can also
publish the event appendChildPaper to add an HTML fragment as a child
of a Paper (rather than using an XPath expression).

The right side of Figure 4.2 shows the dblpFigures augmentation script
but now using Conceptual Events. The augmentation logic is the same
(lines 10-17). Differences rest on (1) HTML scraping being substituted

61

OP: Involving Third Parties in Improving the UX of Websites

by event parameter recovering (lines 21-23) and, (2) amendment spaces
described by the point where Conceptual Events occur (lines 28-32) rather
than XPath expressions.

Therefore, a Modding Interface encapsulates a web application in
terms of its concepts, and provides a set of services to “read” and to
“write” these concepts. The “read” part realizes the required interface as
the set of events the interface just signals but leaves to the scripts the event
processing (a.k.a. Publishing Events). As for the “write” part, it identifies
the amendment space in terms of concept occurrences rather than through
DOM nodes. Rather than using XPath on DOM trees, the amendment
space is identified by the target of Processing Events. For instance,
the event appendChildPaper indicates that Paper denotes an amendment
point. Scripts can now raise appendChildPaper to inject its HTML markup

into this amendment point. Processing Events then realize the provided
interface3.

Next section describes how the concepts of the Modding Interface

model are specified.

4.6 Specification of the Modding Interface

The Modding Interface is described as an OWL document [SWM04]. OWL

permits to describe concepts, properties related to these concepts and
associations between concepts. The aim of OWL is to provide a way to
exchange information between applications with a specific semantic. Such
aim aligns with our purposes.

Modding Interfaces are described through “Concepts”,

“PublishingEvents” and “ProcessingEvents” instances4. Next paragraphs
describe each notion, using a conference website as an example (see

3The terminology of “processing events” and “publishing events” is widely used for
event-based components such as portlets [JCP03].

4A schema for defining Modding Interfaces is available at
http://userscripts.org/scripts/source/61129.user.js.

62

Chapter 4. Hybrid Open Personalization

Figure 4.4: ICWE Website Modding Interface.

Figure 4.4).

Concepts.

The ICWE Website is seen as renderer of a set of concepts:
ConferenceEvent, Paper, Person, etc. (lines 14-16). The <Ontology>

63

OP: Involving Third Parties in Improving the UX of Websites

element contains the description for these concepts. Concept description
includes <DataTypeProperty> and <ObjectProperty> (i.e. title and author
(lines 17-24)). It is possible to import the ontology. For conference
description, an external ontology is available at [MBH07].

Publishing Events.

These events notify “concepts” being delivered by the web application.
In other words, the payload of a Publishing Event is a concept of the
web application at hand. But events are happenings of interest, i.e.
they are instants of time. An event cannot be described just by its
associated concept but needs to include what happens to this concept, e.g.
loading, selecting, de-selecting the concept, etc. Therefore, Publishing

Events are described by both the event payload (“payloadType” property),
and the time when the event arises (“uiEventType” property). The
values for “uiEventType” are taken from the W3C’s DOM Level 2

Events specification [W3C00a]. Additionally, a “cancelable” property is
added that mimics the namesake property available for JavaScript events
whereby an event is liable to be called off by a handler so that the
occurrence is no longer propagated to other handlers. As specified in
Figure 4.4 (lines 27-31), loadPaper is introduced as a Publishing Event

to occur every time a Paper is loaded.

Processing Events.

A website determines what can be augmented but leaves to the scripter to
decide when and how is to be augmented. The what refers to the concept
that denotes the amendment space (“targetConcept” property). But being
a layout issue, the concept alone is not enough. We need to indicate the
position w.r.t. the concept (“operationType” property) through a reference
to the W3C’s DOM Level 2 Core operations [W3C00a]. Figure 4.4 shows
an example where the concept Paper is used to pinpoint the amendment
space. The “operationType” indicates that augmented content is to be

64

Chapter 4. Hybrid Open Personalization

rendered as children of the Paper at hand (i.e. appendChildPaper (lines
33-37)).

As for the how, traditional scripts can inject any HTML fragment on
the premise that the disclosure of the page implementation makes them
acknowledgeable about what would be the right fragment code. This
approach may work for simple pages but is hardly scalable as pages
become more complex. We cannot rely on end users peering on HTML

code to ascertain what would be a wrong fragment to be injected. We
resort to HTML types [W3C00a]. The augmentation markup should be
compliant to an HTML type (“payloadType” property). This type restricts
how rendering can be augmented. For instance, augmenting a “Paper” is
set to be of type HTMLSpanElement, meaning that augmentation markup
on Papers need to be compliant with this type. This introduces a type-like
mechanism for regulating augmentation to existing Web application. The
weaver can then check whether this payloadType is fulfilled, and if not so,
ignores the script markup but still renders the rest of the page. This is akin
to browser practices where wrong HTML tags do not prevent the browser
from rendering the page.

Once the Modding Interface is specified, the scripters can develop
mods on top of it. The next section goes about this issue.

4.7 Script Development

This section addresses the definition of mod scripts based on Modding

Interfaces. Our contention is that Modding Interfaces causes minimum
disturbance on script programming. To this end, native JavaScript

mechanism is used to notify/publish conceptual events with no variations
w.r.t. traditional script development.

Notification of Processing Events. JavaScript follows an event-based
approach where listeners can be associated with DOM-based events. An
event is a happening of interest. Event types include: MouseEventTypes

(e.g. click, mouseover, mousemove...), UIEventTypes (e.g. DOMFocusIn,

65

OP: Involving Third Parties in Improving the UX of Websites

DOMFocusOut and DOMActivate), MutationEventTypes (e.g.
DOMSubtreeModified, DOMNodeInserted) and HTMLEventTypes (e.g.
load, change). Operations are available for creation of event occurrences
(e.g. createEvent("MouseEvents")), assigning the payload to an
occurrence (e.g. initMouseEvent("eventInstance", “eventParameters”)),
or raising the event manually (e.g. dispatchEvent(eventOccurrence)). The
following code simulates a click on a checkbox:

var ev=document . c r e a t e E v e n t ("MouseEvents") ;

var cb=document . ge tE lemen tById ("checkbox") ;

ev . i n i t M o u s e E v e n t ("click" , true , true , window , 0 ,

0 , 0 , 0 , 0 , f a l s e , f a l s e , f a l s e , f a l s e , 0 , n u l l)

;

cb . d i s p a t c h E v e n t (ev) ;

The snippet illustrates the pattern for dispatching an event occurrence:
[createEvent, obtain DOM node, initMouseEvent, dispatchEvent on this
node]. This is standard JavaScript code.

Conceptual events mimic this pattern. Back to our running example, a
dblpFiguresPanel (i.e. an HTML fragment) is to be injected as a child of
a Paper. For this case, the pattern goes as follows: [createEvent, obtain
concept, initProcessingEvents, dispatchEvent on this concept]. The code
follows (the complete mod script can be found at Figure 4.2 (right side)):

var ev=document . c r e a t e E v e n t ("ProcessingEvents") ;

var p a p e r = loadPape rOcc . c u r r e n t T a r g e t ;

ev . i n i t P r o c e s s i n g E v e n t ("appendChildPaper" ,

paper , d b l p F i g u r e s P a n e l) ;

doc . d i s p a t c h E v e n t (ev) ;

The only difference with traditional scripting is that now injection
points are not DOM nodes but the current concept. This current concept is
to be obtained through Publishing Events.

Subscription to Publishing Events. JavaScript achieves event
subscription by registering a listener through the addEventListener

method. An example follows:

66

Chapter 4. Hybrid Open Personalization

f u n c t i o n i n i t (. . .) { . . . }

var cb=document . ge tE lemen tById ("checkbox") ;

cb . a d d E v e n t L i s t e n e r ("click" , i n i t , t rue) ;

This code associates the script function init() with the occurrence of
clicks on a checkbox node (a.k.a. the event target). From then on, a click
on a checkbox will cause init() to be enacted. Since most JavaScript events
are UI events, event occurrences are generated while the user interacts with
the interface, raised by the JavaScript engine, and captured and processed
through script functions.

Subscription to conceptual events is accomplished in the very same
way: associating a listener. For instance, instruction (line 38 in Figure 4.2
(right side)) “doc.addEventListener("loadPaper",init,true)” adds a listener
to the loadPaper event, i.e. occurrences of loadPaper will trigger the init()

function. The difference rests on listeners being associated to the whole
document (i.e. variable doc) rather than to DOM nodes (e.g. a checkbox).
This highlights the fact of events happening on Papers rather than on DOM

nodes that are the circumstantial representation of these Papers.

4.8 Script Testing

Website customers are the final beneficiaries. The base experience can
now be augmented through mod scripts designed by users for users.
Customer loyalty, engagement and satisfaction are among the benefits for
the website. However, these benefits are not without risk.

Good mod scripts boost satisfaction. But bad mod scripts can have the
opposite effect. So, mechanisms are needed to ensure sound mod scripts
before being released to the general public.

Traditionally, 3rd parties are to be certified before granting access
to the platform. However, it has been reported that this approach does
not work on open ecosystems. As stated in ([BBS10]) “the traditional
certification approach is infeasible in this context, especially as the typical

67

OP: Involving Third Parties in Improving the UX of Websites

case will contain no financial incentive for the community contributor
and the hurdles for offering contributions should be as low as possible.
Consequently, in these cases, a mechanism needs to be put in place
that allows software to exist within the platform but to be sandboxed to
an extent that minimizes or removes the risk of the community-offered
software affecting the core problem to any significant extent.” This
problem goes beyond mod scripts to embrace other Web2.0 platforms. For
instance, Facebook encourages end users to develop web plug-ins, and
shares these plug-ins across the whole site. The problem is that users
are free to release their mod scripts at any time without required to pass
formal testing ([YLZ09]). As a result, failures and missfunctions occur
at post-release time, damaging users and Facebook alike. To ensure the
quality of plug-in, both industry and research communities have presented
various methods. For instance, Facebook outlines a list of prohibited plug-
in categories and seek for law protection ([Fac10a]).

Again open ecosystems change how testing is conducted. Traditionally,
the developer is responsible for the design, implementation and execution
of the test cases. In the ecosystem approach, the platform (i.e. the website)
is at least as interested as the component developer to ensure the safety
of the component. This first implies the existence of a clear interface
between the platform and the community components. And second, an
active involvement of the platform in defining the test cases to be passed
for the component to be certified (i.e. for the mod to be available through
the website). Additionally, this process should minimize the hurdles for
offering contributions.

To this end, we introduce the Modding Contract. This contract
states script functionality in terms of the causal relationship between
event subscriptions and publications. These contracts are located at
the script’s metadata block. For instance, the contract: [loadPaper -

> appendChildPaper] states that each loadPaper event will cause an
appendChildPaper to be signalled. It can be understood as follows: if
the pre-condition “loadPaper is raised” is satisfied then, the postcondition

68

Chapter 4. Hybrid Open Personalization

“the script will raise an appendChildPaper event” will be ensured.

Unit testing can be used to check that a script meets its contract
assuming its subcontractors meet theirs (i.e. the website generated
appropriate Publishing Events). However, unit-testing design is time
consuming and requires knowledge about how to obtain full coverage of
test cases. This puts an extra burden on the script developer. On the other
side, it is in the own interest of the website to thoroughly validate the user
scripts. On these grounds, our approach leaves to the platform (i.e. the
website) the duty of defining the test units. Scripts need first to be verified
against these test units. Only if test passes, the user script is publicized,
and liable to be installed.

Design by Contract is an approach to designing computer software.
It prescribes that software designers should define formal, precise and
verifiable interface specifications for software components ([Mey97]).
Mod scripts are now the software components. Applying Design-by-
Contract to mod scripts then implies: (1) a contract language for mod
scripts, (2) an environment for interpreting and validating the contracts,
and (3) a mechanism for generating test cases. Next subsections delve into
the details.

Contract specification. Having dynamic language features (dynamic
typing), JavaScript makes it harder to specify the intended behaviour of
a system and to demonstrate that the system adheres to a specification.
This explains the very few works that address contract specification for
JavaScript programs ([HT10]). Whereas this is true in general, our
proposal for mod scripts rests on the existence of a Modding Interface.
That is, mod scripts subscribe and publish a restricted set of events: those
specified at the Modding Interface. We propose to make this explicit
through a contract.

A Modding Contract states the mod script functionality in terms of
the causal relationship between subscriptions and publications. These
contracts are located at the mod script’s metadata block. As an example,
consider the dblpFigures mod script (see right side of Figure 4.2 line 5). It

69

OP: Involving Third Parties in Improving the UX of Websites

Figure 4.5: Testing dblpFigures mod script through the JsUnit framework.
Three failures are detected.

exposes the following contract: [loadPaper -> appendChildPaper]. This
contract states that each loadPaper event will cause an appendChildPaper

to be signalled. It can be understood as follows: if the pre-condition
“loadPaper is raised” is satisfied then, the postcondition “the mod script

will raise an appendChildPaper event” will be ensured. Additionally, it
should be noted that Processing Events are HTML-typed. This provides
additional assurance to the website that the generated markup (i.e. the
event payload) does not disrupt the aesthetics of the website.

Contract validation. When using contracts, a supplier should not
try to verify that the contract conditions are satisfied; the general idea is
that code should "fail hard", with contract verification being the safety net
([Wik10a]). Unit testing can be envisaged for mods, to check that a mod

70

Chapter 4. Hybrid Open Personalization

meets its contract assuming its subcontractors meet theirs (i.e. the website
generated appropriate Publishing Events). However, unit-testing design is
time consuming and requires knowledge about how to obtain full coverage
of test cases. This puts an extra burden on the mod script developer. On
the other side, it is in the own interest of the website to thoroughly validate
the mod scripts.

On these grounds, our approach leaves to the platform (i.e. the website)
the duty of defining the test units. Mods need first to be verified against
these test units. Only if test passes, the mod script is publicized, and liable
to be installed.

Test cases generation. It is up to the website to provide test cases
out of modding contracts. These contracts are based on conceptual
events. For each concept, the type and domain values of each property are
considered along the description in the Modding Interface. Specifically,
two techniques are used: Equivalence Class Partitioning5 and Boundary

Value Analysis6 ([NT08]). Finally, a pairwise testing technique is applied
to warranty that each possible combination of values for every set of
input variables is covered by at least one test case. As an example, the
7 properties of the concept Paper accounts for 93 tests.

JsUnit is a testing framework to test traditional JavaScript code
([Sch01]). Figure 4.5 shows this framework input page. The page prompts
for an HTML page that contains a TestSuite (i.e. the test units to be tested).
JsUnit enacts this page which results in a set of assertions. Each test

5In Equivalence Class Partitioning, the input domain is split into a finite number of
subdomains where each subdomain is known as an equivalence class. This technique
supposes that when one candidate of the partition class is verified then all the elements of
the partition are tested. Different partition classes are created for each property depending
on the type (i.e. Integer, String, Boolean) or domain (i.e. Enumerated, Ranged value)
restriction.

6In Boundary Value Analysis, fails are located in the boundaries. This technique
selects test data near the boundary of a data types and the boundaries of the equivalence
classes created previously. This technique is an extension and refinement of the
equivalence class partitioning technique. The test data are obtained from the boundaries
of the equivalence classes depending on characteristic of the partition. As an example, if
a equivalence class is a range of values (i.e. month [1..12]) then the limits are selected as
a data test cases [i.e. 0,1,2,11,12,13]

71

OP: Involving Third Parties in Improving the UX of Websites

accounts for an assertion. Assertions indicate either the failure or success
caused by validating the tests. The outcome is shown at the bottom of
Figure 4.5 for the dblpFigures mod. In this case, three test cases have
made to fail the mod. Specifically, the message indicates that the type of
the payload of the generated Processing Event is incorrect.

JsUnit just provides the framework while the real meat is the TestSuite

page. It is up to the website to generate a TestSuite page for each mod. A
TestSuite generates the events from the battery of test data, runs the mod
for each test, and reports the result to JsUnit. Both the test battery and the
TestSuite can be automatically generated from the Modding Interface and
the Modding Contract so no much burden is caused to the web master.

Once the mod script is developed and tested, it is time to share among
the customers of the website. In the next section, script sharing through
the website is addressed.

4.9 Script Advertising

So far, script finding is achieved through script repositories.
Userscripts.org is a case in point. These repositories act as yellow
pages which offer general information about scripts: a brief description
from the author, comments from the users, marks, the script code and the
like. In most cases, this information is insufficient to fully understand
the script behaviour, and the user resorts to install the script to see what
the script looks like. This difficulty in both finding and understanding
the script purpose is detrimental for the user but also for both the script
programmer and the website which has lost an opportunity to engage a
customer even further.

The website should take a more active role in publicizing community-
provided components (i.e. mod scripts). So far, websites provide no
indication about the scripts available to augment the base experience.
However, it is for the benefit of the website to expose those augmented
experiences to its customers. More to the point, if this additional

72

Chapter 4. Hybrid Open Personalization

Figure 4.6: Advertising user scripts through the web site.

73

OP: Involving Third Parties in Improving the UX of Websites

functionality implies no extra cost.

We introduce a second mode for websites to operate: the preview
mode. In the traditional mode, users get the base experience, i.e. the
website recovers the base pages. By contrast, the preview mode permits
to visualize the core functionality but now augmented with selected mods.
No additional installation is required.

The first step is to make the user aware that the website offers some
augmented experiences (i.e. mod scripts). This situation is similar to
advertise the existence of RSS channels. Current browsers are able to
detect a special meta in the HTML heading that causes the RSS icon to
be displayed in the menu bar. In this way, RSS channels are surfaced
while browsing. This could have been a reasonable solution to publicize
mod channels except that browsers do not recognize the script meta in
the HTML headings. Therefore, the website itself should provide some
rendering means to make users aware of this service. After all, RSS icons
are still visible in most pages offering this service. Figure 4.6 shows the
sample page but now a mod icon is displayed on the right side. By clicking
on this icon, a menu bar is worked out that lists the distinct mod scripts
available for this page. Besides the name, each mod script includes a brief
description, one link to preview, and another link to install. Clicking on
the preview causes the page to be refreshed. Now the base experience is
augmented with the mod script functionality. Notice that this functionality
is enacted by an event. If the event is load then, the augmented experience
will be readily visible as soon as the page is refreshed. If the event is
mouseover then, the augmented experience will be visible as the user pass
over the appropriate page region. Figure 4.6 shows the sample page but
now in preview mode for the dblpFigures mod.

In this way, end users can easy and safely try the augmented
experience. No need to look through script repositories. Neither plug-
ins nor additional installations are required. Preview pages are constructed
upon base pages with additional scripting à la AJAX .

Preview pages are constructed upon base page on the fly. Specifically,

74

Chapter 4. Hybrid Open Personalization

Figure 4.7: Code that executes the preview mode in the client.

on requesting a preview-page, an iframe is added to the raw page. This
frame holds three scripts to be run at the client: the weaver script, the
Engine Script (see appendix A) and the mod script whose preview has been
requested. That is, it captures UI events, maps UI events into conceptual
events, raises Publishing Events and captures Processing Events.

Figure 4.7 outlines the code for the dblpFigures preview page7. First,
the presence of the url’s ’preview’ parameter is checked at line 2. If
the parameter is present, then the code of the weaver is requested to be
loaded (lines 3-5). Once the weaver is loaded(line 10), Engine Script is
downloaded and enacted (line 11). Finally, the mod is executed in the
same way (line 12), but its url is extracted from the url’s ’script’ parameter.

All of the architecture is based on the premise that offering useful mods

to the customers of a website will increase their satisfaction. However
offering malicious mods will cause the opposite effect, it will drive off to
the customers. In the next section, the previous issue is faced.

75

OP: Involving Third Parties in Improving the UX of Websites

Figure 4.8: Augmentation at run-time: DOM tree evolution.

4.10 Script Sandboxing

Previous section advocates for websites to take a more active role in
publicizing mods. Website customers are the final beneficiaries. The base
experience can now be augmented through mod scripts designed by users
for users. Customer loyalty, engagement and satisfaction are among the
benefits for the website. However, these benefits are not without risk.

Good mod scripts boost satisfaction. But malicious mod scripts can
have the opposite effect. By publicizing community-provided mods,
the website’s reputation might be at risk. From a user perspective, the
responsibility of mod script malfunction tends to be handed over from the
scripter to the website. This is particularly so for extranets where scripters
might not have any contractual relationship with the website. This situation
changes for intranets where scripters are employees of the organization,
and hence, known by the other employees. Anyway, mechanisms are
needed to shield users from malicious mod scripts.

Figure 4.8 outlines the runtime evolution of a document with embedded
scripts. On loading, the document becomes a DOM tree. Initially, DOM

nodes stand for the raw content of the page. Additionally, some nodes
contain “cells” (denoted as doted-lined rectangles in Figure 4.8). A cell
is realized as either an HMTLDivElement (i.e. <div> HTML tag) or an

7Being client-based scripting, the full code can be obtained through the browser by
looking at the “source code” when the preview page is being rendered.

76

Chapter 4. Hybrid Open Personalization

Figure 4.9: The Modding-Interface Architecture.

HTMLIFrameElement (i.e. <iframe> HTML tag) element that holds the
script. Enacting the script can result on augmenting the DOM tree (denoted
as a dot-filled circle in Figure 4.8). This figure illustrates the existence
of two spaces: “the eval space” where the script is enacted (doted-lined
rectangles), and “the amendment space” where the script markup is placed.
In widget-oriented architectures both spaces coincides.

The Modding-Interface Architecture (MI Architecture) (see Figure 4.9)
clearly distinguishes between the amendment space and the eval space.
The amendment space is contained within the hosting document. The eval
space is placed within an “iframe jail”. The eval space is sandboxed from
the hosting document so that access is not permitted. The novelty comes
from the communication model. A publish/subscribe communication
model regulates the interaction between the eval space and the amendment
space. A Modding Interface describes the messages permitted between
these two spaces. Being event-driven, a weaver regulates publish/subscribe
messages. However, and unlike Greasemonkey-like approaches, now the
weaver is part of the hosting application itself. No browser plugin is
required.

77

OP: Involving Third Parties in Improving the UX of Websites

Therefore, engineering a web application for augmentation requires (1)
a Modding Interface as a means to preserve application integrity and, (2) a
generic weaver that mediates between the amendment space and the eval
space. The Modding Interface was previously introduced in the Section
4.5. Next subsection addresses the weaver topic.

A Weaver for Augmentation Scripts

The weaver mediates between the main document and the script document
(see Figure 4.9). Specifically, the weaver’s duties include (1) loading the
augmentation scripts for the current user, and (2), managing Conceptual

Events. This section outlines the implementation of these functions. The
code has been tested for Google’s Chrome, using extensively HTLM5 new
features [W3C08].

Loading Augmentation Scripts.

Customers of the web application have previously registered their interests
in some augmentation scripts. These preferences are kept locally through a
localStorage variable at the browser: augmentationConfiguration. Scripts
are kept at the server. Figure 4.10 lists the weaver’s code that loads the
scripts.

On loading the web application, the weaver’s first duty is to load
the script identifiers kept at augmentationConfiguration (lines 2-3). For
each script, the weaver creates an iframe (line 7-11). An iframe holds a
generic document (src attribute) that is parameterized with the identifier
of the script at hand. This document has no rendering counterpart (i.e.
“display:none”). Iframes are sandboxed. When the iframe is added to the
page (line 12), the script is downloaded and evaluated. Being sandboxed,
the script cannot access the hosting page (i.e. the script cannot subscribe
to UI events from the main document). Interactions are restricted to
occur through a channel (line 14-17). A message channel is an HTML5

object that enables the direct communication of independent pieces of code

78

Chapter 4. Hybrid Open Personalization

Figure 4.10: Weaver’s code: loading augmentation scripts.

(e.g. running in different browsing contexts). This interaction follows a
publish/subscribe pattern based on Conceptual Events.

Managing Conceptual Events.

When the iframe space is initialized, the main document and the script
document are ready for exchanging Conceptual Events. However, these
Conceptual Events are to be produced/handled by the weaver. The weaver

has two main duties: raising Publishing Events in the main document, and
handling Processing Events as signalled by script documents.

The process goes as follows. The UI event (e.g. loading a page) is first
notified to the weaver. The weaver constructs and raises the Conceptual

Event (e.g. loadPaper) along the indications of the Modding Interface.
Conceptual Events are captured by the script that recovers the event
payload, constructs an HTML fragment, and dispatches the appropriate
Processing Event (e.g. appendChildPaper). This Processing Event is then
de-constructed in terms of UI operations by the weaver according to the
indications of the Modding Interface. These UI operations causes the main
document (the page you see) to be augmented.

79

OP: Involving Third Parties in Improving the UX of Websites

Figure 4.11: Augmentation-enabled page: meta-data about the Modding
Interface.

4.11 Discussion

In this section, the four requirements, namely, affordability, resilience,
scalability and security are revisited and evaluated in terms of the proposed
solution.

4.11.1 Affordability

In a crowdsourcing setting, the viability of an approach heavily rests
on causing minimal disturbance to the involved parties: web application
programmers and script programmers. As for the former, the MI

Architecture imposes almost no disruption. Augmentation-enabled HTML

pages differ from traditional pages in that they keep three links: two to the
MI files, another to the weaver script (see Figure 4.11). Apart from that,
these pages do not differ from “traditional pages”.

From a script-programmer perspective, MI implies
notification/publication to be based on Conceptual Events rather
than DOM events. Otherwise, native JavaScript mechanisms are used
to handle Conceptual Events with no variations w.r.t. traditional script
development. From the start of this work, we have been very conscious
about reducing the hurdles for offering contributions. Next paragraphs
provide evidence that programming on top of a Modding Interface, causes
minimal deviation from traditional practices.

Notification of Processing Events. JavaScript follows an event-
based approach where handlers can be associated with DOM-based

events. Operations are available for creation of event occurrences (e.g.

80

Chapter 4. Hybrid Open Personalization

createEvent("MouseEvents")), assigning the payload to an occurrence
(e.g. initMouseEvent("eventInstance", “eventParameters”)), or raising
the event manually (e.g. dispatchEvent(eventOccurrence)). Raising of
Conceptual Events uses these standard JavaScript operations. Back to
our running example, a dblpFiguresPanel (i.e. an HTML fragment) is to
be injected as a child of a Paper. Figure 4.2 (right side) show the code
along the following pattern: createEvent (lines 28-29), obtain concept (line
21), initProcessingEvents (line 30-31), dispatchEvent on this concept (line
32). This is standard JavaScript code. The only difference with traditional
scripting is that now the injection point is not a DOM node but the current
concept. This current concept is to be obtained through a Publishing Event.

Subscription to Publishing Events. JavaScript achieves event
subscription by registering a handler through the addEventListener

method. Subscription to Conceptual Events is accomplished in the very
same way: associating a handler. For instance, instruction (line 38 in
Figure 4.2 (right side)) “doc.addEventListener("loadPaper", init, true)”

adds a handler to the loadPaper event, i.e. occurrences of loadPaper will
trigger the init() function. The difference rests on handlers being associated
to the whole document (i.e. variable doc) rather than to DOM nodes (e.g.
a checkbox). This highlights the fact of events being raised by acting on
Papers rather than on DOM nodes (i.e. the circumstantial representation of
these Papers).

4.11.2 Resilience

Mods should be resilient to website upgrades. This is the rationale of the
Modding Interface: changes in the content or layout of a website should
not impact the mod. Even if a concept (e.g. Paper) is no longer rendered,
the mod will still raise the event, but the website will not take care for
it. No dangling references come up. The mod becomes redundant but
not faulty. And vice versa, new webpages can be introduced where Paper

data is rendered. This has no impact in the mod. Just the payload of the

81

OP: Involving Third Parties in Improving the UX of Websites

signalled event (i.e. the HTML fragment) will now start being injected
in the place holder of the new webpage. This place holder should accept
HTML fragments of the type being outputted by the mod. Otherwise, some
disruption might occur that might eventually impact the rendering.

4.11.3 Scalability

All our measurements are realized in Windows 7 x64 running on Intel

Core2 Duo 2.20 GHz CPU with 4GB of memory. The experiments have
been realized with a domestic 6Mbps WIFI LAN bandwidth.

Loading time. The Greasemonkey architecture keeps scripts at the
client. So, no loading penalty at the time the script is enacted. By
contrast, our approach makes scripts a valuable asset of the web application
which becomes a partner on disseminating these resources among its user
base. Therefore, the MI Architecture maintains scripts at the server as
site resources. When application pages are loaded, so are the appropriate
scripts (as any other page resource such as associated images). Compared
with Greasemonkey, this certainly imposes an overhead. However, script
files tend not to be very large, and its cost is similar to loading a “jpg”

thumbnail file. Additionally, the weaver and Modding Interface file are
loaded on accessing the first page. The size of the weaver file is 3.8kb
(no obfuscated) which approximately accounts for a 100 millisecond delay
(less if the weaver is cached by the browser). The size of the Modding

Interface for a given page is similar to a script. On the upside, this approach
frees users from installing any plugin (as it is the case for Greasemonkey).

Enactment time. Script enactment takes place at the client (no server
impact). Greasemonkey scripts act upon DOM events. By contrast,
interface-aware scripts rest on Conceptual Events. This imposes an
indirection: Conceptual Events need first to be (de)constructed from DOM

events and send over the channels that connect the script space with
the hosting application space. A first experiment has been conducted
for the dblpFigures sample realized as both a Greasemonkey script and

82

Chapter 4. Hybrid Open Personalization

an interface-aware script. The results show that the indirection and
communication accounts for a delay of 30 and 2 milliseconds, respectively,
when compared with the Greasemonkey alternative (i.e. acting directly
upon DOM events).

4.11.4 Security

Both redirection to phishing pages or stealing sensitive data are avoided
by running the script inside an “iframe jail”. On the other side, we can
prevent port scanning and history sniffing by using the same approach
as Google Caja: a monkey patch [Wik10b]. Monkey patch is a way to
extent/modify runtime code in dynamic languages. This technique can
be applied to dynamically replace/extend script functions liable to content
malware with others that block such malware. Finally, browser blocking
can be alleviated as in MS’ Web Sandbox, i.e. using a QoS Layer [Micb]:
a wrapper-like mechanism that imposes some limits on the consumption
of shared resources. Exceeding these thresholds (e.g. CPU consumption)
makes the script be blocked.

4.12 Conclusions

Web-based open ecosystems are predominantly API-based and service-
oriented. As an alternative, this chapter introduces a front-end, script-
based approach. Fostering a win-win relationship between website
owners and website users, substantiates the efforts for websites to become
scripting platforms. From the website owner’s viewpoint, the Modding

Interface realizes a controlled setting for modding that can bring cost
reduction, increased innovation, and quicker development time. From
the scripter’s perspective, the Modding Interface reduces the freedom but
increases change resilience, and eases coding. The approach benefits
web applications that now can be safely augmented. So does for script
contributors that now achieve greater visibility by having their scripts

83

OP: Involving Third Parties in Improving the UX of Websites

uploaded at the hosting application.
In this chapter, we focus on the technical feasibility of HOP,

identifying and addressing four main issues. First, the insufficient
decoupling between user scripts and the underlying website, which is
handled by introducing Modding Interfaces, increases the resilience of
the solution and serves as a security barrier between website and mod

scripts. The event-based nature of Modding Interface mimics the event-
based nature of the DOM scripting in order to improve the affordability of
the solution. Second, Modding Contracts are proposed for the website to
automatically test the mod scripts. We believe that testing the scripts, will
improve the soundness of community-provided scripts. Third, the preview
mode is introduced to expose external contributions to the website’s users.
The user does not longer need to search for additional functionality but
this is offered by the website with no extra cost for the user. Fourth, the
regulation of inflow/outflow communication between the website and the
scripts using the Modding Interface and a weaver that enables the safe
execution of scripts. Combining “iframe jails” and “modding-interface”
HTML5 channels, the security issues, where malware can cause important
damages on end users hence in the reputation of hosting applications, are
blocked.

84

Chapter 5

Client-Side Open Personalization

5.1 Introduction

Web Augmentation is to the web what Augmented Reality is to the physical
world: layering relevant content/layout/navigation over the existing web
to customize the user experience. This is achieved through JavaScript (JS)

using browser weavers (e.g. Greasemonkey). To date, over 43 million of
downloads of Greasemonkey scripts ground the vitality of this movement.
However, Web Augmentation is hindered by being programming intensive
and prone to malware. This prevents end users from participating as
both producers and consumers of scripts: producers need to know JS,
consumers need to trust JS. This paper aims at promoting end user
participation in both roles. The vision is for end users to prosume scripts
as easily as they currently prosume their pictures or videos. Encouraging
production requires more “natural” and abstract constructs. Promoting
consumption calls for augmentation scripts to be easier to understand,
share and trust upon. To this end, we explore the use of Domain-Specific

85

OP: Involving Third Parties in Improving the UX of Websites

Languages (DSLs) by introducing Sticklet. Sticklet is an internal DSL

on JS, where JS generality is reduced for the sake of learnability and
trustworthiness. Specifically, Web Augmentation is conceived as fixing in
existing websites (i.e. the wall) HTML fragments extracted from other sites
or web services (i.e. the stickers). Sticklet targets hobby programmers
as producers, and computer literates as consumers. From a producer
perspective, benefits are three-fold. As a restricted grammar on top of
JS, Sticklet expressions are domain-oriented and more declarative than
their JS counterparts, hence promoting production and understanding. As
syntactically correct JS expressions, Sticklet scripts can be installed as
traditional scripts and hence, programmers can keep using existing JS

tools. As declarative expressions, they are easier to understand (and
so to trust upon) and amenable for optimization where the DSL engine
can decide the most efficient way to carry out an action. From a
consumer perspective, domain specificity also permits to customize the
installation/enactment/sharing of Sticklet expressions (as compared with
JS tools) to address the shortage of time and skills of the target audience.
Preliminary evaluations indicate that 77% of the subjects were able to
develop new Sticklet scripts in less than thirty minutes while 84% were
able to consume those scripts in less than ten minutes. Sticklet is available
to download as a Mozilla add-on.

This chapter is organized as follows. Section 5.2 motivates Client-Side

Open Personalization using some Web Augmentation examples. From the
previous examples, in Section 5.3, the requirements of the solution are
enunciated from the attention available/required viewpoint. Sections 5.4,
5.5 and 5.6 introduce Sticklet, an internal DSL on JavaScript, where the
generality of JS is reduced to meet the requirements. Finally, in section
5.8, the requirements are revised from the proposed solution viewpoint.
Conclusions end the chapter.

86

Chapter 5. Client-Side Open Personalization

Figure 5.1: Amazon before and after the BookBurro augmentation.

5.2 Motivating Scenario and
Research Question

Web Augmentation can support a broad range of situational scenarios:

• On browsing an online journal (e.g. USA Today), you can be
interested in the coverage that a given headline receives in another
online newspaper, e.g. The NY Times. Skipping to the TNYT and
searching for a related headline could be too cumbersome to do on
a routine basis. Rather, you would like the USA Today website to
be augmented with a button placed by the USA Today headline that
directly pops up the summary at TNYT for this headline.

• When rendering a book at Amazon, it could be useful to know the
prices/comments for this book at other online bookshops.

• On weighting a job post at www.monster.com, it could be of interest
to supplement monster data with information about the range of
wages and conditions of similar jobs as found in other web sites (e.g.
jobs.trovit.co.uk).

These examples illustrate short-term situational scenarios of end-user
Web Augmentation (hereafter just "Web Augmentation"). The purpose

87

OP: Involving Third Parties in Improving the UX of Websites

is to make the web more responsive to the unique and individual needs
of each user. From this perspective, augmentation shares aims with
Web Personalization [RSG01]. The difference stems from who sets the
personalization. In the case of personalization, the application designer
is in charge while users are passive consumers. The issue is that some
personalizations might be of interest only for a small number of users
(hence, lacking the scale that makes the personalization payoff), fall
outside the business model of the web application (e.g. Amazon lacks
the interest in putting up comparative prices from other online bookshops)
or be difficult to foresee by the application designer. This discrepancy
between what application developers can build, and what individual end-
users really need can be addressed with End-User Development [RI06].

Using special weavers, third-party JavaScript code can make on-the-
fly changes to the currently loaded web page. Weavers are available
for Firefox (e.g. Greasemonkey), Internet Explorer (e.g. IE7Pro or
Turnabout), Safari (e.g. SIMBL + GreaseKit), and natively supported
in Opera and Google Chrome. The running examples for this paper
were tested for Greasemonkey (GM) [LBS05] although the solution is
browser agnostic. As an example, consider a popular script: BookBurro1.
This script embeds price comparison in Amazon pages. Figure 5.1
shows the outcome before and after applying the script that injects the
BookBurroPanel. This is achieved at the browser through the weaver.
Weavers permit scripts to act upon web pages at runtime. Pages are
realized as DOM trees2. The script is triggered by User Interface events
(UI events) on this DOM tree (e.g. load, click). Event payloads provide
the data to feed script handlers which, in turn, update the DOM tree. The
script is outlined in Figure 5.2. The process goes as follows:

• interacting with a page triggers UI events (e.g. load),
1BookBurro is available at http://userscripts.org/scripts/source/1859.user.js.
2The Document Object Model (DOM) is a platform- and language-independent

standard object model for representing HTML or XML documents as well as an
Application Programming Interface (API) for querying, traversing and manipulating such
documents.

88

Chapter 5. Client-Side Open Personalization

• the script reacts to this event by triggering a handler (lines 6-39). The
association between an event and a handler (a.k.a. event listener) is
achieved through the addEventListener function (line 6),

• a handler can access any node of the page (using DOM functions
such as document.evaluate in lines 9-10), and create HTML

fragments (e.g. line 21),

• a handler can also change the DOM structure at will by injecting
HTML fragments (e.g. the BookBurroPanel). In the example, the
output is injected at a point identified by an XPath expression on the
underlying DOM structure (i.e. the injection point). DOM functions
are used for this purpose (e.g. appendChild in line 23 and 36),

• this script is associated with a URL pattern that denotes the pages
to which the script applies. This is specified through the @include

annotation (line 3).

From a producer perspective, this approach incurs in an important
drawback: scripts are vulnerable to page changes. Back to our sample
case, if the Amazon website is upgraded, all “the screen scrapping” can
fall apart. For instance, BookBurro first retrieves the book’s ISBN from the
current page, and next, injects the BookBurroPanel at a certain location.
This is normally achieved through XPath expressions (line 9). If Amazon

pages are changed then, BookBurro’s XPath expressions could no longer
recover/identify the right DOM node. Therefore, GM scripts are specially
prone to maintenance. Besides their own maintenance, scripts are affected
by the maintenance of the hosting website. The problem is that websites
are reckoned to evolve frequently.

From a consumer perspective, a main concern is script collision,
i.e. the simultaneous access to the same DOM node by two different
scripts. The very same web page can be subject to different augmentations.
Amazon is a case in point. At the time of this writing, 268 scripts are
reported to be available for Amazon at userscripts. If you are a regular

89

OP: Involving Third Parties in Improving the UX of Websites

Figure 5.2: BookBurro in JavaScript (partial view).

Amazon visitor, it is likely you have several scripts installed. These scripts
will be enacted simultaneously when you visit Amazon. It is important to
notice that script execution is not in parallel but in sequence, i.e. scripts
are launched in the order in which they were installed. This implies that
the first script acts on the original DOM tree, the second script consults the
DOM tree but once updated by the first script, and so on. The problem is
that programmers develop scripts from the original DOM, being unaware
of changes conducted by other companion scripts. This can end up in a real
nightmare where code developed by different authors with different aims,
is mixed up together with unforeseen results. Even worse, the final DOM

tree can even be dependent on the order in which scripts are enacted! The

90

Chapter 5. Client-Side Open Personalization

larger the set of (companion) scripts, the higher the likelihood of clashes.
This problem, coupled with the fact that the number of scripts is steadily
growing, will likely lead to an increase in the number of scripts in each
user installation, and hence, in the likelihood of collisions.

The bottom line is that the expressiveness brought by a general-
programming language such as JavaScript comes at the price of intensive
development, and, what is most important, maintenance. Consumption
also suffers from this freedom. Even fully-tested scripts (e.g. the Skype

button) can collide when enacted simultaneously with scripts that access
the same DOM regions. The problem is that these errors are detected (and
suffered) by consumers with little help from producers who can hardly
foresee the context in which their scripts are to be run. This potentially
high cost of development, maintenance and consumption, compromises the
“end-userness” of JavaScript for Web Augmentation. Next section trades
JavaScript expressiveness for maintainability and reliability.

Previous scenario serves to illustrate the research question:

How can we help end-users to create, share and consume
functionality that augments the content of websites?

Next section describes the requirements of the solution in terms of the
theory of “Attention Investment”.

5.3 Requirements

The theory of "Attention Investment" has been proposed as a basis for
the design of End-User Development systems [BG99, Bla02]. This
theory describes users’ decisions about how to allocate their attention in
problem-solving as investments. Drawing on these insights, we arrange
requirements based on two aspects of the target scenario: users and
tasks. The user is characterised in terms of the attention shortage
to perform the task. The task is described in terms of the attention
required to accomplish the task (see Figure 5.3). Different tools can

91

OP: Involving Third Parties in Improving the UX of Websites

Figure 5.3: Sticklet Design Drivers. Criteria are qualified by “P” or “C”
based on their biased towards producers or consumers, respectively.

be designed that weight these two criteria differently. Although these
dimensions go along a continuum, we provide just two discrete values
for each dimension. The "attention-shortage gauge" distinguishes between
conditioned prosumers versus discretional prosumers. The former
conducts augmentation within an organization, and is commonly job-
oriented. This results in the attention-shortage gauge pointing to "low". By
contrast, discretional prosumers conduct augmentation in a less pressing
environment, and usually for self reward. This leads the attention-shortage
gauge to point to "high".

As for the task, it is characterised in terms of the perceived difficulty. In
this sense, we distinguish between scripts intended for self-consumption
(attention-required gauge pointing to "low") or scripts for external
consumption (attention-required gauge pointing to "high"). This is
aligned with the work of [KAB+11] where producers’ intents (i.e. the
envisaged audience of the scripts) determine to what extent producers
“consider concerns such as reliability, reuse, and maintainability and the
extent to which they engage in activities that reinforce these qualities, such
as testing, verification, and debugging” [KAB+11]. The difference stems

92

Chapter 5. Client-Side Open Personalization

from the additional attention required when your code is to be consumed
by others.

These two dimensions help to arrange requirements for augmentation
tools along the so-identified quadrants. The more stringent the demands
in terms of the complexity of the task ("attention required") or the effort
available to accomplish the task ("attention shortage"), the larger the set
of attributes the tool should cater for. The bottom left quadrant (i.e.
low attention required, low attention shortage) represents production by
programmers that use augmentation to speed up some personal routine
tasks. One of the main challenges in this scenario is to find a balance
between expressiveness and learnability. More complex languages can
address a wider range of problems but impose an increasing learning
burden on users.

As we move rightwise, production targets a wider audience. Besides
producers, this quadrant introduces consumers as first-class stakeholders.
Producers will look for support in testing, verification, and debugging of
their scripts since trustworthiness (e.g. reliability) and maintainability
become main concerns. From the consumer perspective, they surely value
trustworthiness but also understandability or tailorability (i.e. permitting
the consumers to adapt the script by themselves [DLL06]). Some DSLs

fall in this quadrant. Here, it is not expected for end-users to produce the
DSL expressions on their own but just to read the code, understand what
it means, and talk to programmers directly about necessary modifications
[Fow09]. In this setting, DSLs are not a substitute for programmers but
a way to increase their productivity while improving the reliability and
understandability of software.

If we move upwards, we confront the shortage of attention. If attention
is scarce, new requirements come into play. First, the operation of the
whole tool should be intuitive (i.e. operability). If possible, tool design
should capitalize on whatever aspect the target audience is familiarized
with so that users can reapply what they already know (i.e. familiarity).
Moreover, production tends to be less systematic where users commonly

93

OP: Involving Third Parties in Improving the UX of Websites

resort to evolutionary and exploratory prototyping (i.e. provisionability)
[GBC+06]. In addition, producers might be motivated by the possibility
of exhibiting the final product to others as a demonstration of skill and
technical mastery. Web2.0 scenarios make consumption a main incentive
for production. This moves us to the upper right quadrant, i.e. the
promotion of consumption in discretional scenarios. Two additional
aspects emerge: installability (i.e. the quality of requiring minimum
installation burden) and shareability (i.e. facilitating script sharing to fuel
consumption).

By no means, we claim this is a complete list of requirements. Rather,
this design space serves to frame the main design criteria considered
during the Sticklet implementation. Design choices are subject to tradeoffs
between factors that will value some attributes while penalizing others.
For instance, JavaScript tools mainly value expressiveness at the cost of
penalizing understandability and reliability. On the other hand, Visual

Programming Tools and API-based approaches favour easy production
by trading expressiveness for learnability. Unfortunately, no matter the
approach, all leave consumers to face raw JavaScript code.

This work sets augmentation in a Web2.0 scenario: scripts are not only
for self-consumption but sharing, where sharing in turn, fuels production.
This virtuous cycle is not however a free lunch. Easing consumption might
imply reducing the expressiveness as well as reducing the visual aids to
favour the operability and installability of the solution. There is thus no
ideal tool for any augmentation situation, only designs that are more or less
well suited to the activities of the people doing the augmentation. For the
purpose of this paper, these people are hobby programmers as producers,
and computer literates as consumers.

5.3.1 Existing Solutions

This work takes inspiration from two main areas: End-User Development

and Web Mashups. Like mashups, Web Augmentation also reuses

94

Chapter 5. Client-Side Open Personalization

PLATYPUS MASHMAKER ACTIVETAGS

Operability (P) ++ (graphical
editor for

specification but
no debug
/tracing)

+ (text/graphical
with no debug

/tracing)

+ (text/graphical
with no

debug/tracing)

Provisionability (P,C) not applicable
(n.a)

n.a. n.a.

Expressiveness (P) + (single-page
customization)

+++ (mashup
customization)

- (focuses on
tagging sites)

Learnability (P) +++ (graphical) - (JS+XML+...) +++ (graphical)
Maintainability (P) n.a.

(scripts can not
be opened in the

editor)

- (Widget /gadget
code + GUI)

n.a.

Shareability (C) +++ (JS general
repository)

++ (proprietary
repository)

++ (proprietary
repository)

Installability (C) +++ (1 click) + (1 to 6 click
depending on the

script)

?

Trustworthiness (C) - (that of JS) ++ (built-in) ++ (no security
measures)

Understandability (C) - (that of JS) - (procedural and
multiple artifacts

/languages)

++ (n.a)

Tailorability (P,C) - (directly on the
JS raw)

++
(configuration-

based via widget
properties)

-

Table 5.1: Web Augmentation frameworks (visual approaches).

existing web resources. Unlike mashups, augmentation does not aim
at creating a new application but complementing an existing one. This
implies that common mashup techniques for the discovery, selection or
composition of web resources [CDM+11, DCBS09, DRC+12] should now
be contextualized by its relationship to the targeted website. In addition,
Sticklet regards HTML pages as the main resource to tap into rather than

95

OP: Involving Third Parties in Improving the UX of Websites

CHICKENFOOT IE ACCELERATOR

Operability (P) ++ (text editor with
introspection)

++ (text with no
debug /tracing)

Provisionability (P,C) ++ (code increments) n.a.
Expressiveness (P) +++ (customization

& automation)
+ (button addition)

Learnability (P) ++ (JS + library) +++ (reduced XML)
Maintainability (P) + (JS code with some

abstractions)
n.a.

Shareability (C) +++ (JS general
repository)

+++ (proprietary
repository)

Installability (C) + (7 clicks) +++ (1 click)
Trustworthiness (C) - (that of JS) ++ (no security

measures)
Understandability (C) + (library provides

abstractions)
++ (XML document)

Tailorability (P,C) + (via prompts) -

Table 5.2: Web Augmentation frameworks (textual approaches).

RSS or API services, as it is the most common case in mashups. At
this respect, an interesting work is that of [GPS11] where the "mashup
components" are wrappers upon websites, and the "composition model"
is side-by-side integration. The resulting mashup application looks like
a "quilt" of website windows. Notice, however, that the "quilt" is a
standalone application, different from the "website patches". In brief,
current mashup abstractions and composition paradigms depart from the
mental model proposed for augmentation development. The notion of "the

sticker wall" might better capture the asymmetry that exists between the
website being augmented and the rest of the websphere. Consequently,
existing mashup work is of interest for Web Augmentation but needs first
to be tuned to these peculiarities.

The aim of simplifying Web Augmentation has also been addressed
using a range of techniques (e.g. Visual Programming Tools, APIs,
or hybrid architectures) and tackling different augmentation scenarios:

96

Chapter 5. Client-Side Open Personalization

generic augmentation (i.e. augmentation that can be conducted for
any website), niche augmentation (i.e. augmentation that focuses on a
specific kind of sites), and opportunistic augmentation (i.e. unplanned
augmentation). The rest of this section uses a representative tool
to ground each approach: Platypus [Tur05] (Visual Programming

approach), Intel MashMaker [EBG+07] (hybrid approach), ActiveTags

[HV09] (niche augmentation), Chickenfoot [BWR+05] (API approach)
and IE Accelerator [Mica] (opportunistic augmentation). Tables 5.1 and
5.2summarizes the insights.

Platypus is a Visual Programming Tool for generic augmentation. It
obtains full-fledged JavaScript code for Greasemonkey using a graphical
toolbar. Users directly act upon the current page through the Platypus

toolbar, e.g. supressing banners, moving parts of the page to different
locations, changing the style and format of page elements, or inserting
their own HTML code. From a producer perspective, Platypus is a neat
tool for its purpose: changing a web page based on the page itself. On the
downside, visual tools might restrict the expressiveness to facilitate code
generation (e.g. in Platypus, no page other than the current page can be
accessed). Hence, it is not clear how a visual approach will scale up as
the augmentations become more complex. The more detailed claim that
visual notations avoid the need to learn a syntax appears dubious (e.g.,
[Gli89, GPB91]). In addition to the practical problems of real state of the
screen and visual clutter, graphical programming languages suffer from
being difficult to port (because of the graphics) and expensive to develop
because of the high cost of building the necessary editors, compilers, and
debuggers [Mye90]. From a consumer perspective, visual tools frequently
behave as generators of JavaScript code. This hides the complexities
for producers but leaves consumers with convoluted, machine-generated
code, hence, obfuscating the origin of errors, or interfering with effective
communication and explanation. Notice however that these tools tend to be
used for self-consumption, and hence, consumption of third-party scripts
is not an issue.

97

OP: Involving Third Parties in Improving the UX of Websites

MashMaker illustrates a hybrid approach for generic augmentation.
A distinctive aspect is that programmers and end-users asynchronously
collaborate to come up with the augmentation. A MashMaker project
encompasses three artefacts: the data extractor (graphically defined),
the augmentation widget (which is separately coded in JavaScript), and
the so-called “mashup” (graphically defined). The “mashup” links the
two previous artefacts so that the widget is fed from the extractor. A
library of widgets is made available by programmers to end users. This
introduces two actors during augmentation: widget programmers and end-
user “linkers”.

ActiveTags is a visual tool that illustrates “niche augmentation”.
Here, the scope of the augmentation is restricted so that the system
can automatically infer how to extract some data, relieving the user
from this burden. ActiveTags limits augmentation to tagging systems
(e.g. del.icio.us, Flickr, etc.) where tags are always the data to be
extracted and the augmentation levers. That is, ActiveTags permits to
associate “an augmentation service” to the appearance of a tag. By
clicking on a tag, the service is invoked and the returned markup is
popped up. This focus permits extractors (supported in Sticklet through
SelectBrick, ExtractContent, As) and augmentation levers (InlayLever, At,
OnTriggeringLeverBy) to be hidden from users. This improves learnability
for this niche domain. On the other side, consumer concerns are not
explicitly addressed since ActiveTags expressions are thought for self-
consumption.

Chickenfoot illustrates the API approach for generic augmentation.
An API introduces some abstractions that shelters users from how these
abstractions are implemented but without leaving the hosting language.
In this way, users of API-leveraged languages can use API methods,
and resort to general instructions when they require to do so (e.g.
Chickenfoot methods can hide complex heuristics about how to extract
some data based on nearby text). This results into a leaner code, easier
to write and understand. Figure 5.4 provides the BookBurro example

98

Chapter 5. Client-Side Open Personalization

Figure 5.4: BookBurro using Chickenfoot API. Bold stands for calls to the
Chickenfoot library.

now as a Chickenfoot script (bold is used for the Chickenfoot API calls).
Chickenfoot pioneers content extraction from HTML pages based on so-
called text constraint patterns using the LAPIS library [MM00]. The use
of LAPIS (a Java API) in Chickenfoot (a JavaScript programming system)
implies a penalty in terms of the loading of the virtual machine. This
might be the reason why the latest releases of Chickenfoot resign from
using LAPIS, and support an abbreviated form of content extraction which
is realized as JavaScript functions. For instance, retrieving the ISBN

from Amazon pages is expressed as "after(text isbn-10)" (line 8)3. In the

3Unfortunately, Chickenfoot heuristics do not work properly for the Amazon page, and
the “after” call does not retrieve the ISBN. This can be settled by substituting the “after”

99

OP: Involving Third Parties in Improving the UX of Websites

example "text" is an HTML type whereas "ISBN-10" is a literal. Functions
"after" and "before" are available to retrieve the content of the node
that follows/precedes the node identified by this expression. Therefore,
Chickenfoot scripts are easier to develop and understand than using directly
JS. However, users still need to resort to general JS instructions (see Figure
5.4).

Finally, IE Accelerator illustrates “opportunistic augmentation”. This
functionality of Internet Explorer (IE) permits to augment web pages with
the HTML output obtained through a service request. In the authors’ own
words: “simply highlight text from any webpage, and then click on the
blue Accelerator icon that appears above your selection to obtain driving
directions, translate and define words, email content to others, search with
ease, and more” [Mica]. The resulting accelerator can next be shared
through the IE Add-on Gallery webpage. Accelerator is an attractive tool
for “opportunistic augmentation”, i.e. you are browsing, look at a city and
want to see what the weather like in this city is. You have not planned to do
so. Accelerator permits to highlight the name of the city and feed this data
to a weather forecast service (should this be available). Ascertaining the
weather at other places would require the same process. From a consumer
perspective, accelerators are XML files.

5.3.2 Our Contribution

Client-Side Open Personalization (COP) provides a model and its
instantiation that allows end-users to extend websites’ content (a.k.a. Web

Augmentation). Web Augmentation domain is analysed and modelled as a
Domain Specific Language (DSL). This model is instantiated as an internal
DSL built on JavaScript in Sticklet, a plugin for Firefox. During the
design of the solution, we have taken into account the insights proposed
in the theory of “Attention Investment” which have in mind the attention
available and required to perform a task.

call by “find(/ISBN-10: (\d{10})/)”.

100

Chapter 5. Client-Side Open Personalization

Next sections introduce Sticklet by gradually addressing concerns
for different audiences: first, conditioned producers, next conditioned
consumers, and finally, discretional prosumers. But first, we provide a
brief on JavaScript to highlight the main programming difficulties to be
hidden from end users.

5.4 Web Augmentation: Caring for Producers

This section focuses on conditioned producers, i.e. motivated end-users
whose scripts can be potentially consumed by others. The target profile
is that of hobby programmers with no knowledge of JavaScript. The
producer should know about URLs, URL parameters, and a bit of HTML

is recommended though not strictly necessary. They do not need to know
either JavaScript or any other programming language.

The trade-offs exist between expressiveness, freedom, and being
general-purpose on the one hand, and usability, learnability, control,
and being domain-specific on the other [KPW06]. The challenge is to
abstract away from JavaScript by identifying recurrent abstractions in
augmentation scripts. We next restrict the full expressiveness of JavaScript

to a set of patterns for augmentation which is finally captured through
a DSL. This section is then about maximizing expressiveness without
compromising reliability and learnability.

Expressiveness requirements are first captured through domain
analysis, and next, framed by the target audience (e.g. conditioned
prosumers) [MHS05]. A main output of domain analysis is the
feature diagram [KCH+90]. A feature diagram represents a hierarchical
decomposition of the main concepts (i.e. features) found in the domain.
The diagram also captures whether features are mandatory, alternative,
or optional. Figure 5.5 depicts the feature diagram for the domain
“Web Augmentation”. The diagram states that “a Web Augmentation

script” includes a scope (that sets the ambit of the augmentation), data

extractors (for variable assignment), an augmentation lever (that triggers

101

OP: Involving Third Parties in Improving the UX of Websites

Figure 5.5: Feature diagram for the Web Augmentation domain.

the augmentation as such), the enactment of URL requests, and the
insertion of its output in the augmented page. These are the “recurrent
abstractions” to be potentially captured as primitives in Sticklet.

These features do not come out of the blue but as repeating concerns
that are coded time and again. For comprehension purposes, it is
convenient to go back to Figure 5.2, and to identify these abstractions
on the raw code of BookBurro. This permits to better appreciate the
abstraction effort (bold stands for features in Figure 5.5):

• Scope (line 3). This sets the context where the augmentation occurs:
hosting sites that hold certain data. Hosting sites are captured by the
@include metadata that keeps a URL pattern (line 3). The content
of the site is verified through the extractors.

• Extractor (lines 9-19). The extractor locates the content to be
obtained from the page. This predicate can be a brick selector (e.g.
the existence of the string “ISBN-10” in a certain position in the
DOM tree, lines 9-10) and/or a content extractor (e.g. a string
following a certain pattern, line 18).

• Lever (lines 21-26). Matching the scope might not directly trigger
the augmentation. Augmentation enactment might first require the

102

Chapter 5. Client-Side Open Personalization

user to undertake some actions (e.g. clicking a button, passing the
mouse over a certain page region, etc.). These actions are realized
as DOM events on an HTML object: the augmentation lever. An
augmentation lever is characterised through three elements: a lever
event, which is raised by the user on interacting upon a lever
element which is in turn, placed at a given lever position. For
BookBurro, the lever is (onClick, link, after the ISBN).

• Augmentation Provider (lines 28-39). Greasemonkey’s API

function GM_xmlhttpRequest allows user scripts to get and post
data to any site. These data can be retrieved from other web
applications (hence, returning HTML documents) as well as from
web services (which output XML or JSON). This is one of the main
enablers of Web Augmentation. But also a main headache. Service
fulfilment involves parameter construction, service enactment and
error handling. Recovery handling for communication pitfalls
might need to be considered.

• Rendering Directives (lines 34-36). The outcome of service
enactment is mashed up into the hosting site. Three output formats
are considered: HTML, XML and JSON. This implies both to select
the desired data from the service outcome as well as to provide
presentation directives for these data.

Figure 5.5 outlines the main abstractions. Next, these abstractions are
realized in a language by looking into variabilities and commonalities in
the feature diagram. Variable parts must be specified directly in or be
derivable from DSL expressions. In the first case, the variants become
DSL constructs. On the other hand, some alternatives can be hardwired
into the DSL engine as heuristics. Being heuristics, they might fail and
hence, they are not as reliable as if provided by the user. The upside is that
they simplify the user’s life, hence, improving learnability. For Sticklet, we
decided outcomeRendering and recoveryHandling to be hardwired into the
interpreter (rationales later). The rest of features are set by the user through

103

OP: Involving Third Parties in Improving the UX of Websites

Figure 5.6: BookBurro as a sticklet.

the DSL. We then need to come up with a set of constructs to specify the
rest of the augmentation features.

At this stage, it is most important to devise a metaphor that facilitates
the understanding of the DSL constructs. Hence, we regard the web as
a wall to be decorated with stickers. Stickers are notes (i.e. HTML

fragments) dynamically obtained from other websites. Web Augmentation

is then rephrased as fixing sticky notes into walls. The pair (wall, sticky

note) conforms an augmentation unit: a sticklet. Hereafter, the term
“Sticklet” will denote the engine whereas “sticklet” will refer to a Sticklet

expression or augmentation script.

As an example, Figure 5.6 provides the sticklet counterpart of
the BookBurro script (italics denote DSL constructs): WhenOnWall of
Amazon, SelectBrick and ExtractContent As the isbn variable, then,
InlayLever At a given brick and, OnTriggeringLeverBy a certain event,
LoadNote from BookByte, SelectBrick price and, finally, StickNote. Figure
5.7 provides the abstract syntax.

104

Chapter 5. Client-Side Open Personalization

Figure 5.7: Sticklet: abstract syntax.

A StickletBox comprises a set of sticklets. A sticklet includes
the scope (WhenOnWall), the extractors (SelectBrick, ExtractContent,
As), the augmentation lever (InlayLever, At, OnTriggeringLeverBy), the
augmentation requests (LoadNote), and the rendering of the augmentation
(StickNote). Finally, this abstract syntax is realized through a concrete
syntax, either graphically or textually. We opted for a textual DSL (see
Subsection 5.6.1 for the rationales). The Sticklet BNF grammar can
be found in the Appendix. Next, we introduce Sticklet syntax through
examples.

To see the BookBurro sticklet at work just type
http://tinyurl.com/cxw9ocy, and you will be guided through the installation
process. Otherwise, follow these steps (order matters):

1. install the Sticklet validator:

105

OP: Involving Third Parties in Improving the UX of Websites

https://addons.mozilla.org/addon/sticklet/.

2. install the Greasemonkey weaver:
https://addons.mozilla.org/addon/greasemonkey/.

3. install Sticklet engine:
http://dl.dropbox.com/u/6584559/stickletScrambled.user.js.

4. install the Sticklet scripts by drag&drop the scriptName.user.js file
into the browser.

5. edit Sticklet scripts using any textual editor (e.g. Notepad), the
Greasemonkey editing facilities, or the inline editor (see later).

5.4.1 Sticklets

We begin with BookBurro but now specified as a sticklet. This serves to
compare the savings in lines of code (and hence, to appreciate the gains
in both readability and productivity) between JS and Sticklet. This sticklet

is shown in Figure 5.6. The constructs of the DSL include: walls, bricks,
notes and levers.

Walls (line 11). A wall comprises those websites whose URLs match
a given regular expression (WhenOnWall clause). They can be regarded as
“views” upon the existing websphere. The scope of the sticklet is defined
by its wall as well as by the existence of some bricks. For our sample
problem, the wall expands along those Amazon pages that hold an ISBN

brick.

Bricks (lines 12-14). They are named nodes upon HTML documents
which are worth singularizing for either data extraction, scoping or
layering purposes. A brick holds (1) an XPath to pinpoint the node
(SelectBrick clause), (2) a regular expression to extract the node’s content
(ExtractContent clause), and (3), the brick’s name (As clause).

Notes (lines 17-20). They are expressions that combine text and bricks

(StickNote clause). Bricks can be obtained from the wall as well as from

106

Chapter 5. Client-Side Open Personalization

URL-addressable web applications (LoadNote clause, line 17). For the
sample problem, a request is made to BookByte where URL parameters are
obtained from previously extracted bricks (e.g. $isbn). The outcome is
used to pinpoint a new brick: $price. Finally, bricks from different sources
are used to conform the note (StickNote clause). Notes are framed by a
decorator. Notes can be dragged around, expanded to fit, minimized, or
just closed. Notes might be readily stuck as soon as the user enters the
wall. However, this is not always the desired behaviour. You might be
looking at Amazon with no intention of buying a book. Readily sticking
notes could lead to cluttered pages, being contra-productive and inefficient
by forcing the enactment of the sticklet’s note with no purpose. Therefore,
fixing a note might involve an additional user intervention: acting on a
lever.

Levers (line 15-16). They permit to obtain notes on demand. Levers

are named after the sticklet name (e.g. “Price at BookByte for $isbn”)
where variables (e.g. $isbn) are resolved at runtime. Levers are positioned
according to bricks. For BookBurro, a lever (realized as a link) is inlayed
after the brick $isbn. Other options include “before” and “upon”, where
the latter replaces the brick by the lever. On acting upon the lever, a URL-
addressable web application is enacted. For BookBurro, the lever’s event
is a click, though any DOM event is permitted. On clicking, the BookByte

request is conducted; next, the book price is obtained and finally, the note

is rendered.

Two important remarks about bricks. First, bricks identify entities of
interest. In the sample case, the $isbn brick is atomic. But entities might
not be either atomic (the associated XPath expression returns an HTML

fragment rather than an atomic value) or unique (the expression outputs a
list of nodes). The HTML fragment CustomerReview at Amazon provides
an example. First, an Amazon page might hold distinct CustomerReview.
Second, a review is a compound, i.e. it holds a score, a headline, a
description, a reviewer and a review date. That is, each instantiation of the
$customerReview would hold a different, structure-rich HTML fragment.

107

OP: Involving Third Parties in Improving the UX of Websites

Bricks hold HTML fragments. This permits to use XPath
to obtain bricks out of these compound bricks.

An example follows:

SelectBrick("//tr...").

ExtractContent("(.*)").As("$customerReview").

SelectBrick("$customerReview//span...").

ExtractContent("\\d").As("$score").

SelectBrick("$customerReview//div...").

ExtractContent("by (.*)$").As("$reviewer")

The second remark is about the three-fold role played by bricks:

Bricks can serve to (1) extract data from pages, (2) pinpoint
locations for lever positioning, and (3), determine the
number of sticklet instances.

The latter requires further explanations. Operationally, sticklets can be
regarded as triggers (e.g. on loading an Amazon page with an isbn, inlay
a lever). The implicit event is not “on loading an Amazon page” but
“on obtaining an ISBN from an Amazon page”. This is a paramount
difference from the perspective of the operational semantics of Sticklet (see
Subsection 5.4.7). It implies that if the Amazon page does not contain
an ISBN, the sticklet does not apply. Likewise, if the Amazon page
contains several ISBNs then, distinct sticklet instances will be fired (hence,
placing different notes by each ISBN). Notice that if $customerReview is
introduced in addition to $isbn, a sticklet instance will be triggered for
each combination of [$customerReview x $isbn]. For our sample case,
this means ten instantiations since the page for the sample book holds an
isbn (i.e. a single node satisfies the XPath associated with $isbn) and ten
reviews. This in turn, implies that ten notes would have been generated
and placed by the lever. More to the point, $customerReview need to be
introduced even if you are interested only in part of its information (e.g. the

108

Chapter 5. Client-Side Open Personalization

score and the reviewer). Explicitly naming this entity indicates that score

and reviewer are not two independent notions but they belong to a higher
concept (i.e. customerReview) in which terms the sticklet is described: the
number of customerReview (and not scores or reviewers) determines the
number of times this sticklet is to be triggered (more in Subsection 5.4.7).

5.4.2 StickletBox

A sticklet accounts for a pair (a wall, a sticky note). However, a single
sticklet might not be enough. For instance, the BookBurro script might
be conceived as enhancing not just Amazon but a set of online bookshops
(e.g. Amazon, BookByte, Powell). The price-comparison note is available
for any of these bookshops. Since a sticklet supports a pair (a wall, a

sticky note), the BookBurro functionality requires six sticklets: (Amazon,

BookByte’s price), (Amazon, Powell’s price), (BookByte, Amazon’s price),

(BookByte, Powell’s price) and the like. This grounds the notion of
stickletBox:

A stickletBox is a set of sticklets that stand for a meaningful
unit of augmentation.

Therefore, a stickletBox permits the very same wall (e.g. Amazon) to
receive notes from different websites (e.g. prices at both BookByte and
Powell). This begs the question of whether those notes should be obtained
simultaneously (and hence, displayed in the same note) or not. This is
regulated by levers. Levers are characterized through bricks (e.g. $isbn).

Bricks with both the same name and associated XPath
denote the very same position in the wall. Therefore, notes
from different sticklets but attached to namesake bricks are
simultaneously obtained and rendered.

BookBurro provides an example (see Figure 5.6, lines 15 and 27). Two
sticklets, “Price At BookByte for $isbn” and “Price At Powell1 for $isbn”,

109

OP: Involving Third Parties in Improving the UX of Websites

Figure 5.8: Sticklet for augmenting Amazon with the book reservation at
the Manchester University Library.

110

Chapter 5. Client-Side Open Personalization

introduce a lever which is associated with the $isbn. Therefore, their
outputs are simultaneously rendered in the very same note. By contrast:

If two notes account for different information needs then,
two differentiated levers permit to resolve these needs
separately.

“LibraryReservation for $isbn4reservation” illustrates this case (Figure
5.8). We want to know whether the book at Amazon is available at the
Library of Manchester University, and reserve it4. The augmentation
captures the “reserve” button at this guest website, and sticks it on the
Amazon page. Since this need is not geared towards purchasing the book,
a separate lever (line 15) is inlayed by the $isbn4reservation brick.

Finally, note that sticklets can be added/removed at any moment.
Sticklets are self-contained, no coupling exists among sticklets kept on the
same stickletBox. This accounts for maintainability and provisionability
(see later).

5.4.3 The Issue of Entity Linkage

Sticklets contextualize data from different websites into a single
workspace: the wall. Contextualization implies the existence of a "sharing
notion" between the wall (e.g. Amazon) and the note providers (e.g.
BookByte). In the previous example, this notion was the ISBN: extracted
from Amazon as a brick, and communicated to BookByte as a URL

parameter. However, this is not always so easy. An entity might exhibit
distinct representations. A book can be denoted by the ISBN, the pair (title,
author), an ad-hoc code, or even the book’s cover can be the only reference
to a book. As an example, consider the www.walmart.com website.
Walmart also sells books. However, Walmart’s URLs are not based on
ISBNs but on an internal code. For instance, the URL for the book used

4You can find this service for our book example at
http://catalogue.library.manchester.ac.uk/items/2049288.

111

OP: Involving Third Parties in Improving the UX of Websites

as an example in Amazon is http://www.walmart.com/ip/13443765, where
the ending number has nothing to do with this book’s ISBN. This raises a
mismatch between how the entity is represented in the wall (e.g. Amazon)
and how the entity is captured in the URL parameter (e.g. Walmart).

This problem also arises in databases (known as Record Linkage) when
two data sets need to be joined and they do not have a unique database key
in common (e.g. passport number vs. national insurance number) [Win06].
In the Semantic Web, where resources are described through URLs, they
also encounter the so-called Coreference problem, i.e. ascertaining where
two distinct URL’s stand for the same entity [JGM07]. The use of mediate
ontologies and shared resources such as the DBpedia [BLK+09] can help
to provide a common ground to facilitate integration. In ontology mapping,
the challenge is to discover automatically alignments between entities
described in different ontologies, exploiting lexical similarities, lattice
structure or instance classification learning techniques [SBVG10]. These
approaches tend to be time consuming and, in some cases, imply user
intervention. However, we strive to minimize both user intervention and
elapsing times (remember, shortage of attention). As a result, Sticklet does
not provide any module for “entity linkage” but resorts to mapping and
search.

Linkage through searching. Since ISBN-linkage does not work, we
will mimic what users would do: go to Walmart and conduct a local search
for e.g. the book’s title. This implies to access programmatically the search
facilities of the Walmart website. Fortunately, the OpenSearch Discovery
initiative has already standardized this process [AA05]. An OpenSearch

description document can be used to describe the web interface of a search
engine. This description holds parameterized URL templates that indicate
how the search client should make search requests (the <Url> element).
This document is referenced in the search page of the website through a
link (look at the source code of http://www.walmart.com/)5:

5Making explicit how to query a website permits to introduce “custom search engines”
in browsers [eTe10]. When viewing an HTML page that includes the <link> tag above,

112

Chapter 5. Client-Side Open Personalization

Figure 5.9: Entity linkage through searching: Walmart is queried about
rather than requested for a specific URL.

<link rel="search"

type="application/opensearchdescription+xml"

title="Walmart.com"

href="http://www.walmart.com/walmartdotcom.xml"

/>

This technology is used in Sticklet to resolve entity linkage by
extending the semantics of the clause LoadNote . So far, LoadNote keeps

browsers can either automatically collect the OpenSearch file (e.g. Chrome) or highlight
some icon of the browser search box (e.g. Firefox) that permits users to explicitly add
the current site as a source for their queries. You can check this out by navigating to
www.walmart.com. On detecting <link rel="search"> in the page source, Firefox
faintly highlights the little arrow of its search bar. Click on this arrow, and observe how a
new menu item prompts to include Walmart as a new custom search engine.

113

OP: Involving Third Parties in Improving the UX of Websites

a URL expression which is parameterized by bricks extracted from the
wall. Now, LoadNote can also be instructed to transparently conduct an
open search by turning the "http" protocol into the "osearch protocol" (see
Figure 5.9, line 21):

LoadNote can be commanded to search into the note-
provider website to find the wall-notion counterpart.

This process is conceived as a kind of protocol in the sense that a
conversation is initiated between the Sticklet agent and the guest website
(e.g. Walmart). The “osearch protocol” commands Sticklet to go to
www.walmart.com, locate the OpenSearch document as a <link> in the
source page, recover the <Url> element, construct the search request using
the associated template (as an attribute of the <Url> attribute), process the
output (an HTML page), and finally, come up with the URI of the sought
resource. Shouldn’t the website contain an OpenSearch document then,
Sticklet goes back to the http protocol: loads the URL (without parameters),
attempts to locate a search box in the returned page, and finally, feeds
the search box with the search parameter (e.g. $title). A final hardwired
strategy is to conduct the search in Google (i.e. “site:www.walmart.com

AND $isbn”) and retrieve the first link.

No matter the way, Sticklet retrieves a page. This page can stand for the
sought resource (and then, the process ends) or deliver a list of resources
that match the query parameters. This is the case when the osearch

protocol is used for Walmart for the title “JavaScript: The Definitive

Guide”. Figure 5.10 shows the output. In this case, Sticklet applies a set
of heuristics to ascertain the URI of the sought resource. Since LoadNote

has to return a single URI, the algorithm focuses on those DOM nodes
that hold a URI. Next, the algorithm identifies those text nodes containing
text values used in the query on the assumption that the values used in the
query will typically appear with higher probability in the list of results than
in other lists of the page. Once the list of books is singularised from other
lists in the Walmart page, it rests to identify the sough resource within

114

Chapter 5. Client-Side Open Personalization

Figure 5.10: Entity linkage through searching. Clicking the lever makes
Sticklet initiate a conversation with Walmart: (1) Walmart is queried about
the title “JavaScript: The Definitive Guide” using OpenSearch; (2) Sticklet
looks for the URL of interest among the URLs held in the returned page;
(3) Walmart is requested for this URL; (4) Sticklet digs the price out of this
second page. Notice that returned pages are just for Sticklet consumption,
kept transparent from the user.

115

OP: Involving Third Parties in Improving the UX of Websites

Figure 5.11: Entity linkage through mapping: (1) clicking the lever, (2)
causes a GoogleMaps to be loaded which contains the $zip; (3) this zip is
used to build a request to worldweatheronline which holds the $weather
note; finally (4), this HTML fragment is sticked. Only the final step is
visible to the user.

this list. If the URI nodes at Walmart are accompanied by additional
information (sibling nodes), then Sticklet will compare those sibling nodes
as a unit with the compound brick that holds the query parameter (e.g.
$title and $book, respectively), should such brick be available. If this
process does not filter a single URI then, Sticklet will return the URI in
the first position. This process is built into Sticklet as the semantics of the
"osearch" construct.

It could be argued why not to conduct the query in terms of $book

in the first place rather than in terms of a book property such as $title.
The reason is that $book might contain a broad range of data other than

116

Chapter 5. Client-Side Open Personalization

Figure 5.12: Entity linkage through mapping. GoogleMaps acts as a
mapper from geo coordinates to zip codes.

that used by the user in the query. In the example, the user characterizes
books in terms of title and isbn, thought book nodes (as pinpointed by the
associated XPath expression) encompasses a wider range of other data (e.g.
authors). Querying by $book (better said, the content of $book) might be
too stringent, causing the query to output no result at all. Therefore, users
decide the properties to search for, and next, Sticklet applies the heuristics
above to filter out the sought URI.

Linkage through mapping. This approach resorts to intermediate
websites to act as mediators.

Notes from distinct websites can be loaded that help to map
the wall notion into its counterpart into the note-provider
website.

Figure 5.11 provides an example of a website about hiking at North

California. Camping spots are identified by their geo coordinates. We
would like to augment this site with the weather forecast as available at
www.worldweatheronline.com. This site can be queried using different
criteria (e.g. the zip code, the city name) but not through geo coordinates.

117

OP: Involving Third Parties in Improving the UX of Websites

Geo coordinates is not a property you can search for. Fortunately,
GoogleMaps can act as a mediator. Figure 5.12 provides the sticklet code.
Mediators are introduced as note providers (lines 20-21). Worth noticing:
(1) the multiple instantiation of the $campground brick at the hosting site,
and (2), the use of two bricks, $lat and $lon, to query GoogleMaps.

5.4.4 The Issue of XPath Complexity

XPath is outside the competences of our target audience. Assistance is
required that hides this complexity from producers in writing their sticklets

as well as from consumers in understanding third-party sticklets. The
question is how to specify an extraction pattern without knowledge of
XPath or regular expressions, or understanding HTML. Answers include
the use of:

• heuristics, that permit to refer to buttons, links, and other web page
elements in terms of nearby text (termed “text constraint patterns”).
In this way, users do not use XPath to pinpoint the desired data
but just indicate the nearby text (e.g. the data that is after the
“ISBN” text), and let the system guess the right location. This
approach is illustrated by Chickenfoot [BWR+05] and CoScripter

[LHML08] (Section 5.3.1 illustrates the BookBurro example using
Chickenfoot). For our purposes, this approach brings two main
benefits: learnability (for producers) and understandability (for
consumers). The downside is efficiency. Text constraint patterns
imply processing the whole document on the search for the patterns
everytime a new page is loaded. For complex pages/patterns, such
process can incur in noticeable delays every time the script is run.

• programming-by-example, where users first highlight elements of
the web page which serve to infer the matching pattern (e.g. the
XPath expression). Systems reform [TDD+09], Karma [TKS11]
or MashMaker [EBG+07] use programming-by-example. For

118

Chapter 5. Client-Side Open Personalization

Figure 5.13: The assisted mode. The user is guided through the resolution
of the unbounded clauses by highlighting the selected HTML region in the
hosting page.

119

OP: Involving Third Parties in Improving the UX of Websites

our purposes, this approach brings efficiency since the inferring
algorithm is only run at definition time. This option eases production
but still leaves consumers to face XPath expressions.

Sticklet explores a hybrid approach:

Sticklet permits to substitute XPath expressions by the
value “assisted”. This makes Sticklet differ till run time
the binding of these clauses, and resolve them visually.

As an example, consider the BookBurro script but now using assisted as
the value for SelectBrick and ExtractContent clauses. The semantics of
assisted works as follows (see Figure 5.13):

1. on loading the Amazon page, the sticklet is enacted. The engine
detects that the sticklet is not fully resolved, i.e. it contains some
assisted-valued clauses. Hence, the engine layers a panel for
the assisted editing. The panel includes: a progress tracker, the
regenerated sticklet (“Sticklet after edit”) and the current sticklet

(“Sticklet before edit”). The progress tracker provides an ordered
way to resolve each of the unbounded clauses. For the sample
problem, this tracker provides four stages, one for each unbounded
clause, and finally, the regenerate option.

2. the user clicks on the first unbounded clause (e.g. SelectBrick $isbn).
This makes Sticklet intersperse a grid-like structure on top of the
current DOM tree. As the user moves the cursor around the screen,
the DOM node under the current cursor location is highlighted. By
clicking, the user feeds the inferring algorithm with the selected
node, and Sticklet highlights all the nodes that fulfil the extraction
pattern generated so far. For the ISBN, there is only a single node in
the hosting page that fulfils this notion, and hence a single interaction
might suffice. However, the augmentation might impact different
nodes of the hosting page. The brick $customerReview provides an
example. This brick might be instantiated several times throughout

120

Chapter 5. Client-Side Open Personalization

the page. This requires the user to pinpoint distinct reviews till the
correct extraction pattern is abstracted by the inferring algorithm.
6Heuristics from XPath generation are inspired in work described in
[PD10, ÁPR+10, LE07].

3. Next, the following node of the progress tracker becomes active (i.e.
ExtractContent). Now, the outcome is a regular expression. The user
selects the content of interest, and Sticklet obtains an expression that
matches this content. When bricks act as filters, the content might
be the filtering criteria (e.g. books whose price is 103). That is, the
expression is a constant (e.g. “103”). This makes the engine look for
nodes whose content is “103”. If this is the desired behaviour, just
skip the ExtractContent step. This makes the content of the current
node become the constant value of ExtractContent.

4. Finally, regenerate the script, i.e. the script is automatically updated
and re-installed.

The “assisted” option could suggest that the explicit introduction of
XPath is no longer needed. However, two scenarios advice to keep
this option open. First, the inferring algorithm might fail to extract the
correct data7. Both Chickenfoot and reform warn about the heuristic
nature of this process. Keeping this option open permits at least to ask
for assistance to an XPath expert. Second, some data might not have a
rendering counterpart, hence, no way for the user to pinpoint this data
out. A common example is extracting URLs. URLs tend to be provided
as attributes of HTML anchors. The anchor’s content is what you see while

6Sticklet abstracts away from absolute paths into a relative path that strives to capture
the essence of the rendering of $customerReview (e.g. “//tr[2]/td[3]/div/a”). Sticklet
highlights in the canvas all the nodes that account for the so-obtained XPath. Should
some node be missing, the user can click on the missing node and let Sticklet regenerate
the XPath expression. Once all nodes of interest are highlighted, the user clicks in the
next step of the progress tracker, and the so-generated XPath becomes the value of the
SelectBrick clause as visualized in the “Sticklet after edit” panel (see Figure 5.13).

7So far, the algorithm can learn from positive but not negative examples as suggested
in [TDD+09].

121

OP: Involving Third Parties in Improving the UX of Websites

the anchor’s URL is what you might want. In this case, "assisted" is of little
help since all you can highlight is the anchor’s content. Therefore, Sticklet

keeps open the possibility of explicitly providing the XPath expression.
So far, we address the complexity of XPath from the producer

perspective. The "assisted" approach hides this complexity for producers
but consumers are still exposed to XPath expressions. Understandability
is a major benefit of text constraint patterns (e.g. the data that is after the
"ISBN" text) that we lost when moved to XPath. In an attempt to overcome
this limitation,

Sticklet automatically generates a comment by each XPath
expression that re-phrases in natural language-like terms
the types of XPath, and the regular expression pattern.

Figure 5.6 provides an example (lines 14 and 26). In this way, Sticklet

strives to bring the best of both worlds. Using programming-by-example,
Sticklet obtains efficient and accurate XPath expressions without imposing
a major burden on producers. Generating pattern-like comments, Sticklet

attempts to be as understandable as the alternative of directly providing
text constraint patterns.

A final comment on maintainability. Unlike text constraint patterns,
XPath expressions are fragile: changes on the structure of the underlying
Web page can make the XPath expression stop working. If Amazon

changes the ISBN location, the Sticklet expression will fail to recover the
proper data. This is true. But the overhead of re-generating the script
is affordable: edit the broken sticklet, substitute the XPath expression
by “assisted”, and finally, regenerate the xpath. In our opinion, this
maintainability burden compensates for avoiding working out the location
of data everytime the script is run as in text constraint patterns.

5.4.5 The Issue of Non-HTML Sources

Notes can be obtained from sources other than HTML pages. RSS feeds
or URL-addressable programmatic interfaces deliver data-centric XML

122

Chapter 5. Client-Side Open Personalization

Figure 5.14: Note rendering. Default rendering can be supplemented
with HTML directives. The figure depicts (a) the default rendering
(i.e. no HTML tags) and (b), the HTML-enriched outcome as specified
in the sticklet (lines 24-27). The user-provided HTML directives
prevents the note $AmazonAverageReview from overlapping with the
$GoodreadsReview note.

123

OP: Involving Third Parties in Improving the UX of Websites

or even, JSON [Cro06]. Being an agent, Sticklet can consume these
documents. For instance, the previous NorthCalifornia camping example
could have resorted to an XML-based service to obtain the ZIP out of the
geo coordinates. Lines 20-21 in Figure 5.12 might be replaced by:
LoadNote(

"http://maps.google.com/maps/geo?output=xml&q=$lat,$lon").

SelectBrick("//PostalCodeNumber").

ExtractContent("(\\d+)").As("$zip")

The problem is that XML/JSON documents are thought for agent
consumption rather than human consumption. Human consumption
implies reading and interacting via HTML documents. Specifically, Sticklet

expects user interaction to select bricks and render notes. If the source of
the note happens to be an XML/JSON document, Sticklet needs first to
convert this document into HTML.

For XML/JSON sources, Sticklet applies basic rendering
templates to the returned XML/JSON document.

In this way, users select/read bricks in the very same way regardless of
whether the original representation was HTML, XML or JSON.

5.4.6 The Issue of Note Rendering

StickNote commands the rendering of a note. A note is an expression
that combines text and bricks (i.e. HTML fragments) from potentially
different websites. Each website has its own rendering (i.e. set of CSS).
The question is how this bulk of disparate HTML fragments can deliver “a
harmonious note”. This endeavour requires HTML skills. We decided to
remove such burden from the user, and hardwire some rendering heuristics
into Sticklet.

Sticklet holds a set of heuristics that provide “good-
enough rendering” for sticky notes. In addition, users can
supplement the note with HTML-sanitized markup.

124

Chapter 5. Client-Side Open Personalization

Figure 5.15: The operational semantics of Sticklet. AND states are
separated by a dotted line.

Let’s augment Amazon with reviews from www.goodreads.com8 (see
Figure 5.14). Specifically, the note gathers the following bricks (lines
13-18 and 22-23): the book title ($title), the average customer reviews
from Amazon ($AmazonAverageReview) and reviews from GoodReads

($GoodreadsReview). These bricks can be provided in quick succession
without HTML ornaments. In this case, Sticklet will decide the best
rendering (see Figure 5.14 (a)). Heuristics are inspired in those applicable
for the automatic rendering of pages through small-screen devices such
as mobile phones [BKGM+02, XLH+09]. As a general norm, bricks are
rendered along the CSS directives of their source websites (in this example,
those of Amazon and GoodReads).

8Comments for our sample book can be found at
http://www.goodreads.com/book/show/1617424.JavaScript.

125

OP: Involving Third Parties in Improving the UX of Websites

We are aware these heuristics fall short to account for sophisticated
results. At worst, the rendering looks like a simple list with no additional
ornament. But the main argument here is that Sticklet is designed for
HTML ignorants. Amateurs love to do things by themselves while
accepting good-enough results. Forcing users to provide the rendering by
themselves would sacrifice better appearance for self-sufficientness.

All in all, Sticklet also permits to introduce HTML directives. Similar
to the editing of wiki articles (and on similar grounds), notes can contain
basic HTML tags. Due to security reasons, HTML is sanitized. This
basically means that JavaScript is not permitted (restrictions are similar
to those of Wikipedia9). Two remarks about bricks. First, bricks are HTML

fragments whose CSS classes are inherited from their source websites.
Those classes can be overridden by HTML directives explicitly given in
the note. Second, bricks which can potentially be instantiated several times
(e.g. $GoodreadsReview) are regarded as lists, and hence, they should be
enclosed using a directive for lists (e.g. , see line 27). Otherwise, all
instances are rendered as a single row.

5.4.7 The Operational Semantics of Sticklets

This subsection outlines the operational semantics of sticklets interpreted
as sequences of computational steps. These sequences then are the
meaning of the “sticklet” construct. Augmentation proceeds along two
states (see Figure 5.15): the “lever available” state and the “panel

available” state. Transitions proceed as follows:

• on page loading, the URL of the loaded page is checked against the
regular expression of the WhenOnWall clause. If met, the engine
raises a matching event occurrence for each combination of brick

instances that fulfil the matching conditions set by the bricks. Hence,
the event payload is a combination of the brick instances. If you have
bricks $a, $b and $c which are matched in the current wall 2, 3 and 5

9http://meta.wikimedia.org/wiki/Help:HTML_in_wikitext

126

Chapter 5. Client-Side Open Personalization

times, respectively, then, the number of matching event occurrences
will be 30: occurrence($a1,$b1,$c1), occurrence ($a2,$b1,$c1), and
so on. Each matching event occurrence gives rise to a sticklet

instance (represented as an AND state in Figure 5.15).

• on rising a matching event, the engine moves to the “lever

available” state. This causes the rendering of the lever

along the behaviour defined in clauses InlayLever, At and
OnTriggeringLeverBy,

• on rising the lever event (e.g. mouse over, click, etc.), the LoadNote

service is enacted. The system moves to the “panel available” state
where the note is rendered,

• at any moment, page unload causes the current page stop displaying.
This ends the augmentation.

Worth noticing is the parallelism behind this semantics. First, matching
event occurrences are handled in parallel as denoted by the AND states
in Figure 5.15. If you have 30 matching occurrences then, 30 transitions
to the “lever available” state will happen. Second, some of the previous
transitions might entail the same lever (e.g. sticklets “Price at BookByte

for $isbn” and “Price at Poweel1 for $isbn” involve the same lever). In
this case, the very same lever event is shared among these two AND states.
Raising this event causes both states to transit to the “panel available”

substate, and jointly render their outputs as a single note. In short,

The rule-like semantics of sticklets go beyond improving
modularity to account for parallelism and atomicity.
Efficiency wise, the speed of a stickletBox augmentation is
that of its slowest lever/matching transition.

The latter entails that if collecting the price from ten online bookshops that
share the same lever, clicking on this lever will cause nine parallel HTTP

requests (the tenth bookshop is the wall). The note is constructed gradually

127

OP: Involving Third Parties in Improving the UX of Websites

as answers arrive. This means that the order in which prices are displayed
in the note might vary depending on the traffic load of the sites.

Sticklets as rules might suffer from similar problems as those of triggers
in active databases [PD99]:

• termination (is rule processing guaranteed to terminate?). Sticklets

do always terminate since they cannot raise triggering events (i.e.
matching events or lever events) that enact other sticklets.

• confluence (i.e. is the result of rule processing independent of
the order in which simultaneously triggered rules are selected
for processing?). Acting on the same DOM tree, sticklets could
potentially suffer for confluence. We refer to this problem in
Subsection 2.3.4. Traditional scripts are enacted sequentially based
on the order they were installed. This implies changes made by the
first script are visible to ulterior scripts. Two types of dependencies
arise: read dependency (a script can accidentally read data written
by a previous script), and write dependency (the injection point can
be displaced by the writing of a node made by a previous script). As
a result, the very same set of scripts can deliver different outcomes
depending on the order they were installed. Sticklet addresses this
issue (technical details at [DAI10]). Read dependencies are obviated
by making sticklet changes transparent to other sticklets. Sticklets

can only access the raw DOM (i.e. the DOM corresponding to the
hosting page) previous to being updated by any sticklet. No way for
a sticklet to see changes conducted by other companion sticklets. As
for write dependencies, they are avoided by preventing sticklets from
altering the basic structure of the hosting page. Augmentation can
only add new anchors (i.e. levers) and notes. In this way, sticklets

do not change the position of the data in the hosting page, hence,
avoiding breaking companion sticklets.

• observable determinism (i.e. is the effect of rule processing as
observed by a user of the system independent of the order in

128

Chapter 5. Client-Side Open Personalization

which triggered rules are selected for processing?). In databases,
this notion seeks to extend the notion of confluence beyond the
boundaries of the database itself. In Web Augmentation however,
the notion of confluence and observable determinism coincides since
the shared resource and the observed resource is the same: the HTML

page.

Similar semantics if handwritten in JavaScript scripts would require
clumsy algorithms. Sticklet handles this control complexity automatically,
consistently, and formally.

5.5 Web Augmentation: Caring for Consumers

Previous section focuses on producers. The challenge was to find a balance
between expressiveness and learnability/reliability. Now, we introduce
consumers as main stakeholders. The consumer profile is that of a
computer literate with e.g. basic knowledge about MS Word or installing
add-ons for Firefox. Now, scripts are no longer for self-consumption but
for use by a large number of users with varying needs. Being “for use by a
large number of users” moves to the forefront trustworthiness. Catering for
“varying needs” boosts maintainability. This section presents how Sticklet

tackles these concerns.

5.5.1 Trustworthiness

Trustworthiness refers to the assurance that a system deserves to be trusted,
i.e. that it will perform as expected despite environmental disruptions,
hostile attacks, and the design and implementation errors [BHP+06]. This
is a must for consumption to become viral. Mechanisms to improve
trustworthiness include fault prevention, fault tolerance and fault removal.

129

OP: Involving Third Parties in Improving the UX of Websites

Error Type (HTTP code) HTTP Error Handling
Strategy

Client-side Recoverable (408, 413) Retry in a short period
Client-side Unrecoverable (400, 404-6,

409-11, 414)
Error Sticky Note

Client-side Authorization (401-3) Notify and disable the sticklet
Server-side Recoverable (500, 502-4) Retry in a short period
Server-side Unrecoverable (501, 505) Error Sticky Note

Credential Required (no code returned) Error Sticky Note
“OSearch protocol” retrieves the empty

result
Error Sticky Note

Brick description is not met Error Sticky Note

Table 5.3: Sticklet built-in error handling stategies.

Fault Prevention

Fault prevention aims at preventing that faults are integrated into the
system. Besides non-deliberate faults, we should also consider intentional
threats such as creation of/redirection to phishing pages, stealing history
information (or sensitive data stored on either pages or cookies), or
port scanning upon the user’s local network (refer to [Goo] for further
details). The full expressiveness of JavaScript, its intricate coding and its
interpreter-like nature make peering at the code of the script not an option.
Sticklet abstracts away from some dangerous JS operations into more
abstract and declarative description of the solution. In addition, Sticklet

also ensures confluence for simultaneous sticklet enactments, avoiding the
collision problem (see Subsection 2.3.4).

Fault Tolerance

Fault tolerance copes with the presence of faults. A system is fault tolerant
if it can mask the presence of faults in the system by using redundancy.
Sticklet hardwires basic handlers for a foreseeable, fixed set of cases. Table
5.3 indicates Sticklet recoverability strategies for the most common faulty

130

Chapter 5. Client-Side Open Personalization

Figure 5.16: Sticklet tracing exemplified for BookBurro: JavaScript
messages are abstracted into Sticklet terms (i.e. WhenOnWall, SelectBrick,
etc.). Trace format: “Sticklet [<projectName> - <stickletName>]
[PHASE #][<phaseName>]”.

131

OP: Involving Third Parties in Improving the UX of Websites

scenarios. Besides HTTP errors, Sticklet also provides support for some
ad-hoc defective situations, namely:

• the need for credentials when enacting LoadNote. In BookBurro,
access to the library of the University of Manchester might require
some credentials. The HTTP protocol already provides some codes
to indicate this scenario. But, not all websites are so careful, and
forget to inform the agent about this situation. That is, Sticklet can
overlook this situation if only checks for the HTTP codes. This is
the case for the University of Manchester. This scenario is frequent
enough for Sticklet to be attentive and perform some term search
in the returned page (e.g. “identification” or “account”) when the
sought resource is not found in the returned page. If so happens, an
error note is produced,

• the “osearch protocol” retrieves the empty result. It could happen
that the current entity does not have a counterpart in the guest site
(e.g. Manchester Library does not hold the book at hand). Sticklet

just indicates this fact as an error note.

It could have been possible to enhance the DSL, and let users explicitly
indicate a customized contingency action. Some examples follow: if
the book is not available at the university library, try the city library;
if GoogleMaps fails to retrieve a place then, query again by changing
the order of parameters (might be latitude and longitude where wrongly
placed in the host site). However, we did not experience a number of such
scenarios large enough to ground the introduction of a new DSL construct.

Fault Removal

Fault removal aims at reducing the number of faults. This is related with
testability which in turn, involves tracing and error reporting. Sticklet

supports these two features. An important point is that tracing and error
reporting should be conducted in Sticklet terms.

132

Chapter 5. Client-Side Open Personalization

Figure 5.17: Sticklet error reporting. Firefox error console now displays
sticklet errors: (a) matching variable not bounded, (b) call-response error,
(c) server not found, and (d) content-type not supported.

Tracing. When developing scripts for others, debugging is a must.
Tracing is a basic mechanism to follow and understand the flow of the
scripts process. Since scripts are described in Sticklet terms, this flow is
more abstract, and hence, easier to follow than its JS counterpart. Sticklet

provides a trace message for each clause. Traces are displayed on the
log console of the browser (for Firefox, press CTRL+Shift+J). Figure 5.16
provides an example while tracing the BookBurro script. Worth noticing:
phase 2 reports the number of nodes fulfilling the match condition (i.e. this
indicates how many times the sticklets are to be fired); phase 3 displays the
content of bricks (hence the user is aware of which data is being extracted);
phase 5 announces the URL to be called. In this way, consumers are
aware of the data/services being used to achieve the augmentation, hence
improving the trustworthiness on sticklets.

Error Reporting. JavaScript engines tend to be poor on error

133

OP: Involving Third Parties in Improving the UX of Websites

reporting. Basically, developers are responsible for the handling of error
states using "try/catch" blocks. This is so because the faulty cause
could greatly differ among JS scripts. By contrast, Sticklet restricts the
expressiveness of JS. This permits to limit faults to four scenarios: guest
variable not bounded, call-response error, server not found, and content-
type not supported (see Figure 5.17). In addition, Sticklet accounts for
syntax checking and type checking10.

5.5.2 Maintainability

We distinguish two rationales for sticklet maintenance. First, the evolution
of the augmentation functionality. The augmentation functionality might
need to be extended/reduced in either its scope or its content. This
functionality is realized as a stickletBox, and its evolution will more
likely imply addition/deletion of sticklets. Since sticklets are decoupled,
additions/removals will have no impact on the remaining sticklets of the
stickletBox.

The second rationale for maintenance is changes on the underlying
website. This is more cumbersome since it might impact the layout,
content or even URL structure that grounds the sticklet. Unfortunately,
websites are reckoned to evolve frequently, with evidences in the figure
of twice a year [DDSC07]. This may represent that the associated sticklet

stops working twice a year. For only 5 or 6 sticklets, this rate might account
for maintenance becoming a monthly burden. This is hardly bearable
if directly conducted in JavaScript. This scenario calls for approaches
where development is so straightforward that makes easier to develop
from scratch than maintain. Besides declarativeness, Sticklet incorporates
assistance mechanisms (see Subsection 5.6.2 “No time to code”) that
greatly facilitate and speed development. According to first evidences (see
Section 5.7), a sticklet takes around thirty minutes to develop. This limits

10Type checking is provided for the following types: XPath, Regular Expression, URL
Regular Expression, URL Call and String.

134

Chapter 5. Client-Side Open Personalization

to thirty minutes the maintenance penalty.

5.6 Web Augmentation:
When Attention is Scarce

So far, we consider the bulk part of script prosumption: handling the
code. However, this is not enough. We should also turn to other ancillary
aspects of prosumption that could be negligible in an organizational setting,
but become crucial in a Web2.0 scenario, namely, provisionability (i.e.
facilitating prototyping), tailorability (i.e. easiness to customize the code),
shareability (i.e. the facility to share an augmentation script), familiarity
(i.e. to what extent the tool resembles what the users might be acquainted
to), or operability (i.e. ability of the tool to be easily operated by a given
user in a given environment).

Being full-fledged GM scripts, sticklets can tap into the tools available
for GM script operation: editors, script repositories or installation utilities
are also available to sticklets. However GM and Sticklet target different
audiences: dedicated programmers versus occasional programmers. This
difference impacts the operability requirements. Three clicks for editing
a script could not be a big problem if you have the whole afternoon
but it could be a nuisance if all you have is thirty minutes. We then
reconsider GM operation at the light of three main tasks: coding (producer
perspective) and, installation and sharing (consumer perspective).

5.6.1 Greasemonkey Operation

Traditionally, Web Augmentation is conducted by JavaScript programmers
through weavers such as Greasemonkey (GM). Although GM programmers
are not our target audience, they know what augmentation is, and they can
act as heralds of Sticklet. After all, Sticklet can serve for quick prototyping
before moving to JavaScript for more sophisticated outcomes. Therefore,

135

OP: Involving Third Parties in Improving the UX of Websites

we want Sticklet to sound familiar to GM users. This leads to a main
decision: supporting Sticklet as an internal DSL of JavaScript11 [McC07].
Indeed, sticklet are installed and operated in the very same way as JS

scripts in GM, i.e.:

• edited as any other text file with extension “scriptName.user.js”,

• installed by just dropping the sticklet file into the browser,

• enabled/disabled (i.e. temporarily stopping the augmentation) using
GM facilities,

• consulted through the GM library that keeps the list of scripts
currently installed,

• shared through the userscripts.org repository.

Our hope is to facilitate the transition of the 38 million GM users, the most
active community of Web Augmentation to date. That said, GM targets
programmers who can spend several hours developing their scripts, and
consumers who do not hesitate peering at script repositories. However,
this is not our scenario.

5.6.2 No Time to Code

New Scenario. Provisionability refers to the difference in production
between professional coding and end-user coding [GBC+06]. When
attention is scarce, users tend to be less systematic, commonly resorting to
evolutionary and exploratory prototyping. We consider two likely coding
scenarios:

• impulsive prototyping. We address short term and situational
needs where programming is not a planned activity but a more
circumstantial activity. For instance, a user can first augment

11This syntactic dependency from JS is surfaced in the use of the dot notation to
concatenate the distinct Sticklet constructs.

136

Chapter 5. Client-Side Open Personalization

Amazon with BookByte prices, get immediate feedback to see if it
works, and differ to the next spare slot the completion of the script.
This can be hours, days or, might be, the next time a purchase at
Amazon reminds him about this sticklet.

• opportunistic reuse. The complexity and difficulty of programming
can be reduced by giving end users a head-start with existing code,
which they can adapt to their own purposes. Opportunistic reuse
is regarded as a main enabler for end-user programming: “reuse is
often what makes a project possible, since it may be easier for an end
user to perform a task manually or not at all than to have to write it
from scratch without other code to reuse” [Bla02]. This facilitates
tailorability, i.e. consumers can customize third-party sticklets to
their own preferences. In addition, users might be impelled to code
when they try to mimic the augmentation achieved by someone else.

Tackling the new scenario. This way of working requires of agile means
for enhancing and editing existing sticklets. Our aim is to make sticklet

edition a more “impulsive” action so that editing can occur at the time
and at the place where the augmentation takes place. Back to our first
sample, the user reminds his one-sticklet BookBurro script at the time he
is purchasing at Amazon. He wonders which could be the price at the
Powell’s bookshop, and, at this very moment, he is impelled to enhance
the script. The aim is to drive this impulse at the time it rises.

So far, the edition of GM scripts requires two clicks: one click on the
GM icon at the status bar which opens a menu with the list of installed
scripts; next, another click to select the script which makes the code to pop
up in the default text editor. It is not a big burden (just two clicks) but
you have to be determined to edit the script and move around the browser
window to do those clicks.

Intended for general-purpose scripts, GM uses a general-purpose
editing process. By contrast, domain-specific languages can benefit from
domain-specific editors. And this refers not only to code the completion

137

OP: Involving Third Parties in Improving the UX of Websites

Figure 5.18: Sticklet inline editor.

138

Chapter 5. Client-Side Open Personalization

feature but to contextualizing the editing process within the most likely
scenarios of use. Both impulsive prototyping and opportunistic reuse call
for edition to be integrated as part of the augmentation itself, i.e. you see
the augmentation, you are impelled to edit the code.

In light of these considerations, Sticklet introduces an inline editor as
part of the sticklet decorator (see Figure 5.18). Click on this icon and you
can update, clone or delete the sticklets. Back to our example, the user can
readily (1) edit BookBurro when at Amazon; (2) clone the sticklet “Price

At BookByte”; (3) substitute the LoadNote clause with Powell’s URL, (4)
assign “assisted” to the XPath-valued clauses, and (5), click the “Save”

button. Sticklet will assist in setting the values for the unbounded clauses,
and will regenerate the script. If you want to create a bright new script, just
provide a different “name”. Otherwise, the BookBurro script is updated.
The inline editor not only makes the code one-click away, but frames the
edition within the most likely context of use: at the time the sticklet is
enacted.

The bottom line is that

domain specificity not only impacts the constructs used to
describe the solution but also the way to reach this solution.
JavaScript and Sticklet not only differ in their primitives
but also in their development processes.

5.6.3 No Time to Install

New Scenario. Greasemonkey (GM) scripts are very easy to install: drop
the script file into the browser and you are done. Since sticklets are
functional GM scripts, so can be done for sticklets. However, this scenario
assumes (1) GM is already installed, and (2), the script file is already in
either the desktop or a remote repository. Sticklet departs from this setting
by considering (1) consumers might not have GM installed, and (2), they
may never hear about Sticklet, not even about Firefox add-ons.

Tackling the new scenario. This new scenario advices the installation

139

OP: Involving Third Parties in Improving the UX of Websites

Figure 5.19: Installation of a sticklet from a tweet. The process is guided
by a progress tracker.

140

Chapter 5. Client-Side Open Personalization

to be somehow linked to the sharing process, better said, the sharing
artefact. Fortunately, and unlike "desktop artefacts", "browser artefacts"
(i.e. those enacted within the browser’s boundaries) can download and
deploy their interpreters at runtime as web services. The Sticklet engine
is also available as a web service at webaugmentation.org. In this
way, we introduce "the sticklet URL", a URL that not only identifies
univocally the sticklet but also denotes an implicit petition to the site
"webaugmentation.org" to install this sticklet. This request is codified
as a tinyURL. Note that the feasibility of this solution also rests on the
compactness of the code: DSLs account for lean code which can be packed
as a URL.

These tinyURLs can be obtained from the inline editor when clicking
the Twitter/Facebook icon (see later). Next, you can share it through
Twitter or just sent it through email. No matter the means, when clicking a
sticklet URL, the Sticklet service cares for the burdens of your installation.
The Sticklet service first verifies the receiver’s browser configuration
(i.e. Sticklet validator plug-in available, Greasemonkey plug-in available,
Sticklet engine on), and next, installs the sticklet (provided user consent is
granted).

Figure 5.19 shows the installation page that pops up when clicking a
sticklet URL. The page contains a progress tracker that guides the user
throughout the installation process. Depending on the current browser
configuration, the starting point changes. Though this verification is
conducted every time a sticklet is installed, the overhead is negligible
while saving users from downloading themselves the Sticklet add-on. For
instance, the BookBurro tinyURL is http://tinyurl.com/cxw9ocy. Just copy
this URL in the browser bar to see this service at work.

In brief,

’browser artefacts’ allow for installation to be a side-effect
of sharing. When in a trusty setting, URLs can be used not
only to univocally identify the artefact but transparently
request the installation of this artefact.

141

OP: Involving Third Parties in Improving the UX of Websites

Figure 5.20: Sticklet inline sharing. Clicking on Twitter automatically
generates a tweet which embeds the sticklet tinyURL.

5.6.4 No Time to Share

New Scenario. This paper starts with the vision of end users
prosuming scripts as easily as they do for pictures or blog posts. One
distinctive feature of this scenario, and key ingredient of the Web2.0,
is sharing. Traditionally, script sharing is achieved through repositories
(e.g. Greasemonkey and Chickenfoot follow this approach). Being
valid JavaScript code, sticklets can be uploaded and managed through
Greasemonkey repositories. Indeed, you can find several sticklets at
http://userscripts.org/users/sticklet. On the upside, repositories provide
public access to not only the code but also the reviews or discussions
about the script. On the downside, repositories force producers to disclose

142

Chapter 5. Client-Side Open Personalization

their scripts to the wider public which could be intimidating for end users.
Indeed, studies from social networks indicate an increase in sharing if
conducted within smaller groups [BBCS08].

Tackling the new scenario. Sticklet explores a new scenario where
consumption is reactive (i.e. someone tells you about the sticklet) rather
than proactive (i.e. you looking into a script repository). The aim is to let
users share sticklets without the burden of uploading them in a repository.
Like pictures. After all, sharing pictures does not demand uploading
them first at Flickr. We explore "inline sharing" whereby sticklets

themselves offer the means to be shared through the social networks.
Specifically, Sticklet syntax includes two annotations: @sticklet:facebook

and @sticklet:twitter (see Figure 5.20). These boolean annotations permit
the producer to indicate whether the script can be shared through Facebook

or Twitter, respectively. These annotations make the sticklet decorator
exhibit the icons of these popular sites. By clicking the Twitter icon, users
create a tweet that includes the sticklet’s tinyURL.

The bottom line is that

sharing "should be made as simple as possible but not
simpler" as a way to foster production.

5.7 Evaluation

The main goal of Sticklet is to make Web Augmentation accessible to
consumers and producers alike. In this sense, the matter is mostly about
affordance, i.e., making augmentation accessible to a wider audience. In
this setting, the quality of use becomes paramount, i.e. “the user’s view of
the quality of a system containing software, and is measured in terms of the
result of using the software, rather than properties of the software itself”
[ISO01]. ISO-9126 provides a framework to evaluate quality in use. This
section provides a preliminary evaluation of Sticklet along the ISO-9126’s
quality-in-use dimensions: (i) effectiveness (i.e., the capability of the

143

OP: Involving Third Parties in Improving the UX of Websites

software product to enable users to achieve specified goals with accuracy
and completeness), (ii) productivity (i.e., the capability of the software
product to enable users to expend appropriate amounts of resources in
relation to the effectiveness), (iii) safety (i.e., the capability of the software
product to achieve acceptable levels of risk), and (iv) satisfaction (i.e.,
the capability of the software product to satisfy users). Effectiveness
and productivity were measured objectively: number of completed tasks
and minutes to complete them, respectively. On the other hand, while
safety is an objective measure, our target population (i.e., people with no
previous knowledge of JavaScript) may not have the means to perform
such evaluation. Hence, we opted for evaluating trustworthiness, how
trustworthy participants perceived Sticklet is. Both trustworthiness and
satisfaction were assessed through specifically designed questionnaires.

At the time of this writing, Sticklet has been available as a Mozilla

add-on for over a year. According to the Mozilla figures12, Sticklet has
37 average daily users: 20% are in Spanish (which can be anticipated by
the nationality of the authors); 30%, 8% and 7% are in English, German
and Italian, respectively (which can be explained by the presentation of
Sticklet at a demo session of an European conference); finally, 35% come
from other languages (Chinese, Russian, etc.) which can be attributable to
serendipity searching. These numbers are still very low to permit a proper
evaluation of Sticklet “in the wild”. Hence, this evaluation is based on
subjects mainly taken from academia.

Sticklet design is driven by satisfying producers and consumers alike.
Nevertheless, these two types of users have different requirements (e.g.,
expressiveness vs. trustworthiness) and backgrounds (hobby programmers
vs. computer literates). Thus, each evaluation targets different audiences.

12https://addons.mozilla.org/addon/Sticklet/statistics/?last=90

144

Chapter 5. Client-Side Open Personalization

5.7.1 Sticklet consumption for computer literates

A comparative design was adopted to examine the influence of distinct
background variables in the perception and use of Sticklet. The sample was
composed of a group of users with similar characteristics of the potential
consumers of Sticklet.

Research Method

Setting. In order to eliminate differences in the perception of Sticklet

due to hardware or bandwidth differences, the study was conducted in
a laboratory of the Computer Science Faculty of San Sebastian. All
participants used computers with the same features (i.e., Intel Core 2

1.86 GHz, 3 GB RAM and Windows XP Professional SP3) and a clean
installation of Firefox 12.0.

Procedure. The study intended to mimic as closely as possible the
circumstances potential consumers might encounter when deciding to
try a sticklet script. Hence, explanations and instructions were reduced
to the minimum. Before the participants started, they were informed
about the purpose of the study and were given a brief description (5
minutes). The sample sticklet augments the movie listings page at a
popular Spanish portal, cine.terra.es/cartelera, with scores and comments
from the website www.imdb.es13. Next, participants were handed out a
sheet that instructed them to access to the Onekin Group twitter page14

where a tweet, supposedly sent by a mate, commented about the wonders
of a sticklet he had made, and provided this sticklet’s tinyURL. From then
on, Sticklet assisted participants through a progress tracker (see Figure
5.19). In order to measure productivity, participants were then asked to
note down the time when they clicked the link in the tweet, and again after
installation, when they were able to see the augmented Terra page. Last,

13This sticklet can be downloaded from http://tinyurl.com/ced82ba.
14http://twitter.com/onekin

145

OP: Involving Third Parties in Improving the UX of Websites

participants were directed to a GoogleDocs online questionnaire to gather
their opinion about Sticklet.

Subjects. Thirty three first year undergraduate computer science
students participated in the study. The majority of participants were
male (78.8%). Regarding age, 81.8% were in the 18-20 age range
and all participants were below thirty years old. 63.6% check movie
listings before watching a film but only 6.1% were already familiar with
the Terra website. 90% access social networks on a daily basis and
45.5% tweet with a weekly frequency. Last, concerning the participants’
browsing behaviour, in the last year participants installed between 0 and
20 applications/plugins/add-ons, with a mean of 5.4.

Instrument. An online questionnaire served to gather users’
experience using Sticklet. It consisted of five parts, one to gather
the participants’ background and one for each of the quality-in-use
dimensions. In order to evaluate effectiveness, the questionnaire contained
the proposed tasks so that participants could indicate if they had performed
them, while productivity was measured using the minutes taken in such
tasks. Trustworthiness and satisfaction were measured using 7 and
10 questions, respectively, using a 5-point Likert scale (1=completely
disagree, 5=completely agree).

Data Analysis. Descriptive statistics were used to characterize
the sample and to evaluate the participants’ experience using Sticklet.
Moreover, t-test analyses were performed to assess differences among
groups of users (e.g., familiarized vs. non-familiarized with film listing
websites). PASW Statistics 18 for Windows15 was employed to perform the
different analyses.

Results

We begin by describing the qualitative evaluation. Two observers were
present during the evaluation, which were instructed not to interfere unless

15http://www.spss.com.hk/statistics/

146

Chapter 5. Client-Side Open Personalization

strictly necessary. Only 2 out of 33 participants had doubts during
installation and only in one case was the intervention of one of the
observers necessary. This was due to the user leaving the page before
accepting a pop-up window that prompts the user to accept the installation
of the sticklet16. Five of the participants failed the exercise since they
forgot to reload the page to see the augmentation at work. That is, since
the exercise began in the Terra page, and next, they were instructed to
download the sticklet, these participants expected the Terra page to change
all of a sudden as part of the script installation. Despite being so instructed,
these participants missed to reload the page, and hence, failed to see the
augmentation.

Besides the questionnaires for the quantitative evaluation (see below),
an optional open question was left to gather the participant’s comments.
Eighteen participants chose to give their impression of the tool. One
participant found Sticklet too convoluted for her needs. She argued that the
browser’s tabs were sufficient to keep different sites open simultaneously,
despite the cognitive fragmentation that goes in moving between tabs.
Otherwise, the perception was positive. Only one participant found
the installation process cumbersome. Three participants suggested the
Sticklet decorator to resize automatically to fit the sticklet output. One
participant had the impression that the sharing of a sticklet, even from
an acquaintance, does not guarantee that the sticklet is virus free since
“tweeting is not a serious way to share code”. The point to note here is that
the trustworthiness of the object (that being some data or code) is that of
the informer. All in all, this observation introduces the conduit as a source
of trust. Another noteworthy happening is that two subjects were playing
around with the Sticklet inline editor, though no hint about Sticklet editing
facilities was given to the participants. This suggests that incorporating the
inline editor as part of the Sticklet decorator might encourage consumers
to play around, and eventually, become producers. By permitting editing

16To prevent this from happening in the future, the installation process was later
modified to wait for the pop-up (modal window) before continuing the process.

147

OP: Involving Third Parties in Improving the UX of Websites

Task Frequency %

Complete installation 33 100
Access Terra website and see augmentation 28 84.8

Table 5.4: Effectiveness Results.

from the very same place where the output is rendered (no need to deploy
additional browser menus), the sticklet code is just one-click away from
its visible effects. Next, the quantitative evaluation of the dimensions
described above is detailed.

Effectiveness

Effectiveness is the capability of the software product to enable users
to achieve specified goals with accuracy and completeness [ISO01].
For consumers, effectiveness has to do with installation and enactment
of sticklets. The questionnaire asked for these two tasks (see Table
5.4). All participants were able to complete the installation, i.e., install
Greasemonkey, Sticklet and the sample sticklet. Interestingly enough,
five participants did not catch the need to reload the original page for
the augmentation to show up, but expected this process to take place
automatically.

Productivity

Productivity is the capability of the software product to enable users to
expend appropriate amounts of resources in relation to the effectiveness
[ISO01]. We asked participants to note down the time first when
they clicked on the tweet’s tinyURL and again when they accessed
the augmented page, after installation. Productivity was collected by
requesting the number of minutes between the two moments. Participants
reported between 2 and 10 minutes, with a mean of 3.22 minutes, from
the moment they clicked on the tweet to the point where they accessed the
augmented page.

148

Chapter 5. Client-Side Open Personalization

Computer Literates Hobby Programmers
Item Mean St. Dev. Mean St. Dev.

1. In general the demo has inspired me
confidence

3.73 1.126 3.89 0.9362

2. The fact that Sticklet is downloaded
from the official Firefox plugin page
inspires me confidence

4.24 1.091 4.34 0.7454

3. To know that a friend has developed
the sticklet would inspire me confidence

4.12 1.111 4 0.9428

4. To know that a friend has developed
the sticklet and has shared it on
Facebook would inspire me confidence

4.09 1.128 3.78 1.0304

5. The fact that I understood the code
inspires me confidence

3.79 0.857 4.28 0.8031

6. To know that Sticklet does not allow
malicious JavaScript code would
inspire me confidence

4.27 0.977 4.27 0.977

7. To know that Sticklet was
recommended by a friend via Twitter,
even if she/he was not the developer,
would inspire me confidence

3.03 1.212 2.73 1.3664

Table 5.5: Trustworthiness Perception Results from 1 (total disagreement)
to 5 (total agreement).

Trustworthiness

This section intends to measure trustworthiness perception of participants
(i.e. whether sticklets’ behaviour is perceived to be consistent, predictable
and trustworthy). Table 5.5 summarizes the results.

Items 2 and 3 reveal how trust on both Firefox (as the container of
plugs-ins) and friends (as the authors of sticklets) are perceived as the
strongest source of confidence. It is interesting to observe that item 4,
i.e. the fact that friends publicize their sticklets via Facebook (as a sign
of pride in the sticklet), seems to add no extra confidence to consumers
when compared with being developed by a friend (i.e., item 3). Both the
understanding of the Sticklet code (item 5) and its built-in security rules

149

OP: Involving Third Parties in Improving the UX of Websites

(item 6) are also highly regarded. Notice how code understanding (item
5) is the one with lower standard deviation (i.e. 0.857) which suggests
the highest unanimity as a confidence builder. Finally, sharing via Twitter

(item 7) is ranked lowest as a confidence builder. This might suggest that
the notion of “friend” in Twitter is diluted to merely mean list of contacts
rather than true friends you can rely upon. This seems to indicate that
Sticklet online tweeting did not scale to our expectations as a trust-builder.

Relations among variable differences among groups, according to
background variables, were analysed using t-test. We were specially
concerned about the impact that being familiarized with film listing
websites could have in the perception of the sticklet, so that regular users
of those sites could have measured up Sticklet. However, we found no
statistically significant differences in either trustworthiness related to being
an official Firefox plugin, trustworthiness related to being produced by a
friend, or trustworthiness related to understanding the code and its built-in
security rules between participants familiarized with film listing websites
and those who were not. Where we did find statistically significant
differences was among the participants that had installed few (two or
less) and multiple (three or more) applications/add-ons/plugins in the
last year. Specifically, those who installed multiple apps showed higher
confidence related to being an official Firefox plugin (Mean=4.63) than
those who installed less (Mean=3.92, p=0.033). The same happened
when considering trustworthiness related to being produced by a friend
(Mean=4.58 vs. 3.69, p=0.009) and trustworthiness related to the built-in
security rules (i.e., not allowing malicious JavaScript code) (Mean=4.63
vs. 4.00, p=0.024).

Though consumption was mainly targeted to computer literates, we
were also interested in analysing the impact that a more technical
background has on trustworthiness perception. To this end, we handled
the same questionnaire to the “hobby programmers” group (see next
subsection). Results can be seen in Table 5.5. It is interesting to observe
how confidence by code understanding (item 5) raised to a mean of

150

Chapter 5. Client-Side Open Personalization

Item Mean St. Dev.

1. It is comfortable to be able to click on a tweet to install the tool 4.21 0.857
2. During the installation process, I always knew what I was
meant to do

4.48 0.795

3. The companion Twitter message helped me understand what the
sticklet did

3.52 1.064

4. The sticklet code helped me understand what the sticklet did 3.42 1.001
5. Looking at the final augmentation outcome helped me
understand what the sticklet did

4.06 1.088

6. There were no errors during the installation and execution of
the sticklet

4.45 1.201

7. The Sticklet engine is fast enough 4.33 0.890
8. I think augmenting a website with data from another website is
a good idea

4.27 1.008

9. Sticklet saves me time, since I don’t have to browse through
different webs

4.24 0.902

10. I found the demo interesting enough to share it with my friends 3.42 1.001

Table 5.6: Satisfaction Results from 1 (total disagreement) to 5 (total
agreement).

4.28. No statistically significant differences were found in trustworthiness
perception between computer literates and hobby programmers.

Satisfaction

Satisfaction is the capability of the software product to satisfy its users
[ISO01]. Satisfaction can be measured along three dimensions: perceived
usefulness, perceived ease of use and willingness to use in the future
[Dav89]. In this case, the product is the sticklet script, but our interest does
not lie in measuring the usefulness of a specific sticklet but on what aspects
of the sticklet script are derivable from the Sticklet engine. Therefore,
we do not measure the "perceived usefulness" of this particular sticklet.
Rather, we investigate which aspects of the sticklet script can be traced
back to features of the Sticklet engine i.e. those that can be applied to
any sticklet script no matter its function (e.g. efficiency, understandability,

151

OP: Involving Third Parties in Improving the UX of Websites

soundness, etc.). The list of items and the results are summarized in Table
5.6.

As in the case of trustworthiness, being familiarized with the
website did not establish statistically significant differences in any of
the satisfaction items. Regarding app installation behaviour, statistically
significant differences were found in items 2 to 5, suggesting that
participants that install apps more often had a better understanding of both
the installation process and what the sticklet did (item 2, Mean=4.7 vs.
4.15, p=0.029; item 3, Mean=3.8 vs. 3.07, p=0.0220; item 4, Mean=3.8
vs. 2.85, p=0.0030; item 5, Mean=4.4 vs. 2.54, p=0.0186). As for the
use of Twitter, a significant difference was found between participants that
tweet at least once a week and those who tweet monthly or never in item
1 (i.e., comfort of installation clicking on a tweet, Mean=4.53 vs. 3.54,
p=0.0303).

5.7.2 Sticklet production for hobby programmers

A comparative design was adopted again to examine the influence of
distinct background variables in the perception and use of the tool. A
sample of users with more technical qualification was sought to evaluate
the perception of potential Sticklet producers. In this case, a call to
participate in the study was issued among the faculty and Ph.D. students
of the Computer Science Faculty of San Sebastian. The evaluation
also included questions about background in related technologies (e.g.
JavaScript, XPath, etc.).

Research Method

Setting. The study was conducted in the same laboratory the consumer
study had taken place.

Procedure. All participants were handed out a sheet with instructions
for each task (e.g., what Web to access, when to take note of the time,

152

Chapter 5. Client-Side Open Personalization

etc.). The study was divided in three tasks. Before they started, a general
description of Web Augmentation was given (15 minutes).

First task: consuming a sticklet. It was exactly the same the consumers
had performed, i.e., installation of Sticklet and the execution of a particular
sticklet starting with a tweet. In this case, the BookByte online bookshop17

was augmented with the price for the same book in Powell’s Books18.

Second task: modifying a sticklet. A brief description about each
clause of the language was provided, with an emphasis on the assisted

option (15 minutes). This option was shown at work for the Powell’s

Books sticklet. For the second task participants repeated what they had
seen and regenerated the script using the assisted option to obtain the same
functionality.

Third task: cloning a sticklet. At the beginning of the task a description
of the osearch option was provided, using the book prices at Walmart19

as example (15 minutes). Then, participants augmented the BookByte

website with the reviews and ratings found in GoodReads20. To perform
this task participants had to use both the assisted and osearch options, as
well as searching the book by title (so introducing a new brick since the
original sticklet searched by ISBN). Finally, participants were directed to
a GoogleDocs online questionnaire to gather their opinion about Sticklet.

Subjects. Eighteen faculty and Ph.D. students participated. The
majority were male (61%) and the mean age was 33.3. Concerning
browsing behaviour, in the last year participants installed between 0
and 15 applications/plugins/add-ons, with a mean of 5.5. 61% access
social networks on a daily basis while 66% never tweet. We also
gathered information about their background on related technologies (e.g.,
JavaScript) using a 5-point Likert scale (1=none, 5=expert). Participants
reported a mean of 2.1 for JavaScript knowledge and 33% had no previous
knowledge. As for XPath, a mean of 2.1 was reported. Regarding the

17http://www.bookbyte.com/
18http://www.powells.com/
19http://www.walmart.com/
20http://www.goodreads.com/

153

OP: Involving Third Parties in Improving the UX of Websites

example, 50% buy books online and 66% check online reviews before
buying a book. Last, only 11% had accessed BookByte before the study.

Instrument. The questionnaire consisted of four parts: background,
effectiveness, productivity and satisfaction. Production does not involve
any major risk. However, as we wanted to measure the difference
between both groups of participants on trustworthiness perception, the
same questionnaire on this issue was provided also in this case (see above).

Data Analysis. Same that those for the consumers case.

Results

First the qualitative evaluation is provided. Following the same design we
used in the previous evaluation, the same two observers were present in
this case. The first task was successfully completed by all participants
with the only help of the previously provided explanation (15 minutes
for each task). In the second task (i.e., modification of the provided
sticklet), three participants encountered difficulties when filling the regular
expression of the ExtractContent clause using the assisted option. An
observer intervened to help these participants with the regular expression,
to allow them proceed with the task. Four of the participants were not able
to finish the third task, failing to understand the semantics of osearch.

Besides the questionnaires (see below), an open question was included.
From the 18 participants, 13 commented. The opinions about Sticklet

were positive. Some participants provided suggestions to improve Sticklet

in the future. One participant suggested to shorten the installation
process by eliminating some of the steps. Another cared about browser
interoperability i.e. whether sticklets can run in browsers other than
Firefox, which so far it is not the case. Four participants commented on the
assisted option being useful when building sticklets. Two indicated that
it would be nice to have the assisted option for all Sticklet clauses (e.g.,
LoadNote), thus eliminating the need to write the expression manually.
One more subject aligned to this thesis by suggesting that the assisted

154

Chapter 5. Client-Side Open Personalization

Task Frequency %

Task 1: Installation and see augmentation on the BookByte website 18 100
Task 2: Modify the sticklet using the assisted option 18 100
Task 3: Create new sticklet to see GoodReads comments 14 77.78

Table 5.7: Effectiveness Results.

option should be the default mode of dealing with Sticklet, thus shielding
the user from the syntax. This is certainly an interesting follow-on:
providing a wizard that guides the user throughout the development of the
whole sticklet. Next, we look at the quantitative evaluation.

Effectiveness

Table 5.7 provides the fulfilment for the three tasks (i.e. installation,
modification and cloning to create a new sticklet). Only the last presented
some difficulties, where four people were not able to create the new sticklet

in the allocated time (30 minutes). The elapsed time is based on a previous
study were participants required 21 minutes on average to develop a new
sticklet.

Productivity

Productivity is measured as the number of minutes required for each task:
installation took between 2 and 7 minutes, with a mean of 3.39 minutes;
modification took between 2 and 8 minutes, with a mean of 3.16 minutes,
and finally, cloning (only for those that successfully completed the task)
required between 8 and 24 minutes, with a mean of 14.5.

Satisfaction

Satisfaction is the capability of the software product to satisfy its users
[ISO01]. In this case, the product is the Sticklet engine, and its ability
to develop a working sticklet. While consumers focus on the usefulness
of a specific sticklet, producers take a step back and evaluate whether

155

OP: Involving Third Parties in Improving the UX of Websites

Items Mean St. Dev.

1. I think augmenting a website with data from another website is
a good idea

4.62 0.6781

2. I think Sticklet is useful for avoiding going back and forth
between websites

4.11 0.8089

3. I think Sticklet helps to keep focus without being distracted by
browsing

3.95 1.1772

4. I think Sticklet is useful for decreasing the comfort threshold to
recover data for decision taking (e.g., which book to buy)

4 0.8164

5. There were no errors during the installation and execution of
the sticklet

3.72 1.2385

6. I think Sticklet in-line editor is easy to use 3.78 0.7857
7. I think Sticklet in-line editor eases clone&own 4.33 0.6667
8. I think Sticklet in-line sharing facilities (e.g., Twitter button)
impulse sharing

3.33 1.1055

9. I think the Sticklet assisted option and its intersperse grid are
easy to use

4.44 0.8315

10. I think it is easy for me to develop sticklets using the assisted
option

4.5 0.6872

11. I would like to install other user’s sticklets in the future 3.72 0.9313
12. I would like to exchange sticklets in the future 3.67 0.8819
13. I would like to keep developing sticklets in the future 3.94 1.0259

Table 5.8: Satisfaction Results from 1 (total disagreement) to 5 (total
agreement).

augmentation itself paysoff for the effort to learn the Sticklet language.
Along the lines of the approach proposed in [Dav89], we first evaluated the
perceived usefulness of augmentation itself (items 1-4). Next, we focus
on Sticklet as a mean to obtain the augmentation end. Specifically, the
usefulness of Sticklet’s inline editor, the assisted option, and the inline
sharing facilities (items 5-10) were measured. Finally, we want also to
measure the willingness to use Sticklet in the future (items 11-13). Results
are summarized in Table 5.8.

We found no statistically significant differences in any of the items
between participants that reported previous expertise (3 or higher) or no

156

Chapter 5. Client-Side Open Personalization

expertise (2 or lower) in JavaScript. In the case of XPath, item 10
(i.e., ease of developing using the assisted option, Mean=4.87 vs. 4.2,
p=0.0154) was higher valued by XPath knowledgeable users. This seems
to suggest that participants with previous knowledge of XPath were able
to appreciate the advantages of the assisted option as opposed to having
to write the XPath expression by hand. Statistically significant differences
were also found among the participants that had installed few and multiple
applications/add-ons/plugins in the last year. Participants that install more
believed that Sticklet is more useful (item 2, Mean=4.42 vs. 3.5, p=0.062).
Moreover, participants that install more ranked higher the questions related
to the Sticklet inline editor (item 6, Mean=4.08 vs. 3.17, p=0.0026; item
7, Mean=4.58 vs. 3.83, p=0.0309), which may be due to being more
accustomed to trying new things on the web.

5.8 Discussion

There is not a universal, one-size-fits-all Web Augmentation tool. It much
depends on the task and target audience. Sticklet most distinctive feature is
to move consumer requirements to the forefront. This implies to care for
trustworthiness but also shareability, familiarity or installability, which are
commonly overlooked in other works. In the following subsections, the
requirements are put in the Sticklet context.

5.8.1 Expressiveness

DSLs imply to find a compromise between expressivity and generality.
Sticklet as JavaScript internal DSL, cannot pretend the generality of
JavaScript where any kind of modification is possible (i.e. content,
colours, fonts, layout, can all be modified). Rather, we focus on a
common kind of augmentation: content-based augmentation based on

third-party services. Therefore, our DSL cannot delete content (only
additions are permitted) neither can it change the layout of the target

157

OP: Involving Third Parties in Improving the UX of Websites

page. However, we have evaluated Sticklet with non-trivial examples
to validate its expressiveness. Compared with the rest of the works,
we can say that the expressiveness of Sticklet is medium because it is
not restricted to a concrete type of sites like ActiveTags. However, the
changes allowed are restricted in comparison with Chickenfoot that allows
to modify the webpage in anyway. This characteristic is directly related
with the following one, learnability.

5.8.2 Learnability

Learnability and expressiveness are both intimately related, improve the
learnability is at the expenses of expressiveness reduction. In Sticklet,
we found a balance between them, JavaScript expressiveness is reduced
in order to make it easier to learn. We used Web Augmentation domain
constructs in the language, trying to make it as close as possible to the
terms used by the target audience. Sticklet is more difficult to learn than
Platypus because the visual support in our tool is limited. Nevertheless,
a Sticklet expression is fixed by a small set of fixed constructs compared
with MashMaker. We qualify the learnability of Sticklet as high.

5.8.3 Trustworthiness

Trustworthiness is a key characteristic in an informal scenario, if the users
are not forced to use a tool but it fails and there is no mechanism to
solve it, they will stop to use it. We improved trustworthiness is three
ways: fault prevention, fault tolerance and fault removal. This work is
trustworthy because we validate the expressions generated, in contrast with
Chickenfoot that allows all the JavaScript statements. We can say that
IE Accelerator and Sticklet are similar because the constructs are domain
specific so there is no option to create a malicious artefact, so the Sticklet’s
trustworthiness is high .

158

Chapter 5. Client-Side Open Personalization

5.8.4 Maintainability

Maintainability is impacted by code readability as well as modularization.
The use of domain-specific terms certainly made augmentation scripts
more readable making it highly maintainable. In addition, stickletBoxes

are modularized in terms of sticklets. Being self-contained, sticklets can be
easily added/deleted with no impact on the other sticklets of the stickletBox.
The rest of the works are not as maintainable as ours because they are not
modularized or the modules are greater than ours.

5.8.5 Understandability

Sticklet’s understandability is inherited from Domain Specific Languages

(DSL), therefore its understandability is high. DSLs are not a
substitute for programmers but a way to increase their productivity while
improving the reliability and understandability of software. We improved
the understanding of SelectBrick and ExtractContent clauses with an
explanation of their content via automatic code comments. The closest
works in terms of understandibility to Sticklet are Chickenfoot and IE

Accelerator because they make use of domain abstractions.

5.8.6 Tailorability

Tailorability describes the capacity of the system to be customized or
adapted. Usually, tailorability is supported by the application itself; the
developer of the application have this requirement in mind and add extra
code to handle this situation. MashMaker makes the difference is this way,
the customization is supported via widget properties. We say that Sticklet is
highly tailorable because expressions are self-contained and its generation
are simplified using the assisted feature.

159

OP: Involving Third Parties in Improving the UX of Websites

5.8.7 Operability

Operability refers to intuitiveness in the operation of the tool. We
considered the operability of the tool taking Greasemonkey operations
as reference: the creation, edition, installation and sharing of the
functionality. We improved the previous operations minimizing the
number of clicks and hence, simplifying the process of each operation.
Sticklet is mainly textual, compared to visual solution of Platypus that
facilitates the creation of scripts. This is the main reason to say that
Sticklet’s operability is medium. Moreover we provide debug and tracing
facilities that eases the use of the tool.

5.8.8 Provisionability

Provisionability refers to the difference in production between professional
coding and end-user coding. We simplified the effort needed to create
and modify sticklets by introducing and editor that is a click-away from
the sticklet execution and a clone/own function. We envision these
mechanisms as helpers to migrate the users from consumers to producers.
The functionality of rest of the solutions are coarse-grained so they are
more difficult to create or reuse than ours, leaving our provisionability
ranked as medium.

5.8.9 Installability & Shareability

Installability refers to the effort needed to add existing functionality to
the system. This characteristic is strongly related with the shareability
of the existing functionality. In order to install new functionality, first it
is needed to be obtained possibly by being shared by others. The effort
needed to install sticklets is that of Greasemonkey, only 1 click, because
our solution is built on top of it, so its installability is high. For the sharing
point of view, we improved the Greasemonkey sharing mechanism based
on repositories. We permit to store the content of a sticklet in a URL. Being

160

Chapter 5. Client-Side Open Personalization

possible to store a sticklet in a URL, now it can be shared with your mates
through social networks. It is no longer necessary to convince your friends
to create and account in a new website but only to install the sticklet engine
and enjoy Web Augmentation. We conclude this section asserting that the
shareability of sticklets is high.

5.9 Conclusions

We introduced Sticklet, a textual DSL for Web Augmentation targeted to
end users. Sticklet is based on JavaScript but limits JavaScript generality
for the sake of learnability and trustworthiness. Learnability wise, “end-
userness” is pursued by limiting the set of constructs, and hardwiring
a collection of heuristics in the engine. Based on a range of previous
works, heuristics shelter users from the intricacies of (1) generalizing
XPath expressions, (2) rendering of XML/JSON documents, (3) rendering
of Sticklet notes to HTML, and (4) entity linkage using OpenSearch.
As a result, Sticklet aims not only at reducing the learning curve but
also bringing readability and declarativeness, and in so doing, improving
trustworthiness. In addition, Sticklet tackles consumer concerns in a
scenario of stingy attention: provisionability, familiarity, shareability or
operability have played an important role in designing Sticklet. Some
of these concerns are rather new but we believe will play an increasing
important role as Web2.0 practices spread along.

161

Chapter 6

Conclusions

6.1 Overview

Web Personalization has proven to be an adequate paradigm to improve
the satisfaction of web customers. However, the chances of customers and
indirect content providers to actively participate in this process are limited.
This dissertation addresses Open Personalization, a set of architectures that
allows third parties and customers to customize websites.

In this chapter the main results are reviewed, their limitations are stated
and new areas for future research are suggested.

6.2 Results

This dissertation extends the notion of Web Personalization by opening
it to different actors. Based on the involvement of such actors,
different scenarios are considered. Whereas Chapters 3 and 4 faces the
personalization made by third parties, Chapter 5 allows end users to
personalize the web. Specifically:

163

OP: Involving Third Parties in Improving the UX of Websites

• Chapter 3 allows partners to personalize the company’s website
(Server-Side Open Personalization). An architecture of participation
is proposed, based on the usage of an interface for web modification.
The company defines the interface whereas the partners build on top
of that. Using such interface, the company controls the disclosure
of information and informs partners about the parts amenable to
be personalized. Partners can adapt the content offered through
company’s application based on their customers preferences. This
solution makes use of well-known programming paradigms, which
facilitates the adoption by the company and their partners. The
technical feasibility of this architecture is demonstrated using the
conference website as an example.

• Chapter 4 allows scripters to personalize websites (Hybrid Open

Personalization). There already exist scripting communities that
personalize websites without the help of the website creators. In
this chapter an architecture of participation is proposed, based on
the usage of an interface for web modification. The website creator
defines an interface that scripters use to create their scripts. Scripters
benefits from this architecture by facilitating the creation of such
modifications. Website creator benefits from this architecture by
offering modifications made by scripters through its site. Web
customers benefits from this architecture by permitting them to
select the modifications made by their mates. This solution
makes use of well-known programming paradigms, which facilitates
the adoption by the company and scripters. To illustrate this
architecture, an example based on a conference website is presented.

• Chapter 5 allows end users to personalize websites (Client-Side

Open Personalization). We resort to Domain Specific Languages

to empower end users to augment a website by adding content
from other sites. Unlike the previous scenarios, now contribution
is mainly thought for self-consumption and social sharing. No

164

Chapter 6. Conclusions

collaboration of the websites is required. These ideas are borne out
through the Sticklet language. Being an end-user tool, evaluation is
conducted through a set of usability experiments.

6.3 Publications

Part of the work presented in this thesis has already been discussed and
presented in different peer-reviewed forums. The author has contributed to
the following publications:

Selected Publications

• Oscar Díaz, Cristóbal Arellano and Maider Azanza. A DSL for
End-user Web Augmentation: Caring for Producers and Consumers
Alike. Accepted in ACM Transactions on the Web [DAA]. JCR.

• Cristóbal Arellano, Oscar Díaz and Jon Iturrioz. Opening
Personalization to Partners: An Architecture of Participation for
Websites. In 12th International Conference on Web Engineering

(ICWE 2012), Berlin, Germany, 2012 [ADI12]. Rank B in the ERA

Conference Ranking. Acceptance rate: 20.4%.

• Cristóbal Arellano, Oscar Díaz and Jon Iturrioz. Crowdsourced Web
Augmentation: A Security Model. In 11th International Conference

on Web Information Systems Engineering (WISE 2010), Hong Kong,
China, 2010 [ADI10a]. Rank A in the ERA Conference Ranking.
Acceptance rate: 18.8%.

• Oscar Díaz, Cristóbal Arellano and Jon Iturrioz. Interfaces for
Scripting: Making Greasemonkey Scripts Resilient to Website
Upgrades. In 10th International Conference on Web Engineering

(ICWE 2010), Vienna, Austria, 2010 [DAI10]. Rank B in the ERA

Conference Ranking. Acceptance rate: 20.0%.

165

At

Organizar
Journal
Icwe
Wise
Www and collocated events

OP: Involving Third Parties in Improving the UX of Websites

• Oscar Díaz, Cristóbal Arellano and Jon Iturrioz. Layman Tuning of
Websites: Facing Change Resilience. In 17th International World

Wide Web Conference (WWW 2008), Beijing, China, 2008 [DAI08].
Rank A in the ERA Conference Ranking.

International Conferences/Workshops

• Oscar Díaz, Cristobal Arellano, Gorka Puente. Wikipedia
Customization through Web Augmentation Techniques. In
8th International Symposium on Wikis and Open Collaboration

(WikiSym 2012), Linz, Austria, 2012. Rank B in the ERA Conference

Ranking. Acceptance rate 55.0% [DAP12].

• Oscar Díaz and Cristóbal Arellano. Sticklet: An End-User Client-
Side Augmentation-Based Mashup Tool. In 12th International

Conference on Web Engineering (ICWE 2012), Berlin, Germany,
2012 [DA12].

• Oscar Díaz, Josune de Sosa, Cristóbal Arellano and Salvador
Trujillo. Web-Based Tool Integration: A Web Augmentation
Approach. In 12th International Conference on Web Engineering

(ICWE 2012), Berlin, Germany, 2012 [DdSAT12].

• Oscar Díaz, Gorka Puente, Cristóbal Arellano. Wiki refactoring: an
assisted approach based on ballots. In 7th International Symposium

on Wikis and Open Collaboration (WikiSym 2011), Mountain View,
USA, 2011. Rank B in the ERA Conference Ranking. Acceptance
rate 42.0% [DPA11].

• Cristóbal Arellano, Oscar Díaz and Jon Iturrioz. Script Programmers
as Value Co-creators. In Enterprise Crowdsourcing Workshop held

at 10th International Conference on Web Engineering (ICWE 2010),
Vienna, Austria, 2010 [ADI10b].

166

Chapter 6. Conclusions

• Oscar Díaz, Jon Iturrioz and Cristóbal Arellano. Facing Tagging
Data Scattering. In 10th International Conference on Web

Information Systems Engineering (WISE 2009), Poznan, Poland,
2009 [DIA09]. Rank A in the ERA Conference Ranking. Acceptance
rate: 23.0%.

• Oscar Díaz, Sandy Pérez and Cristóbal Arellano. Tagging-Aware
Portlets. In 9th International Conference on Web Engineering

(ICWE 2009), San Sebastian, Spain, 2009 [DPA09]. Rank C in the
ERA Conference Ranking. Acceptance rate: 24.0%.

• Cristóbal Arellano, Oscar Díaz and Jon Iturrioz. The Modding
Web: Layman Tuning of Websites. In 9th International Conference

on Web Engineering (ICWE 2009), San Sebastian, Spain, 2009
[ADI09].

• Jon Iturrioz, Oscar Díaz and Cristóbal Arellano. Towards Federated
Web 2.0 Sites: The TAGMAS Approach. In Tagging and

Metadata for Social Information Organization Workshop held at

16th International World Wide Web Conference (WWW 2007), Banff,
Canada, 2007 [IDA07].

6.4 Research Stage

A Ph.D. is a learning process in which the supervisor plays an important
role. As a consequence, how the research problems are faced during this
process is influenced by the supervisor. Trying to complement different
perspectives of the research problems discussed in this dissertation, the
author conducted a research stage. The author visited the University of

Utrecht, Netherlands, under the supervision of Dr. Slinger Jansen from
February to April of 2011. During this research, the author acquired a
deepen knowledge in online communities which influenced the content of
the Chapter 4.

167

OP: Involving Third Parties in Improving the UX of Websites

6.5 Assessment and Future Research

In this dissertation, the author proposes three scenarios where the design
of Web Personalization is opened to other actors. During the development
of the solutions some limitations where detected. Such limitations mark
the directions of future work.

Server-Side Open Personalization Implications

• Extension of User Model by partners: The partners’ modifications
are built on top of the User Model defined by the company’s
web application. This model might be insufficient to perform
some mods. Mechanisms are needed to allow partners to request
extra information to users. Additionally, partners could already
have information in their web applications about the company’s
users. User profile interoperability is an open issue and the
interest in the research community is reflected in the existence of
workshops that are specialized in this topic such as “International

Workshop on Interoperability of User Profiles in Multi-Application

Web Environments (MultiA-Pro 2012)”.

• Business models: Traditional business models, like the advertising
model, need to be adapted to this new environment. Main
company is benefited because the content of its website is improved.
Additionally, their partners now have the chance to adapt their offers
to a concrete user. This win-win relationship could be sufficient if
the negotiation power of the company and its partners is similar. If
the company has more negotiation power than the partners, it could
introduce some rewards from their partners. Some business models
need to be introduced to reflect these situations.

• Permissions: The partners have access to the parts of the Domain

Model that appears in the Modding Interface. At this time, the
Modding Interface is the same for all the partners and all the partners

168

The main

Its

Chapter 6. Conclusions

have access to the all instances of the all Modding Concepts. Some
mechanisms are needed to let the company specify the permissions
over the Modding Interface depending on the partner. Additionally,
the permissions need to be enforced, preventing the disclosure of
information to unauthorized partners. Some work in this direction
already exist [BSP12, ACD12].

Hybrid Open Personalization Implications

• Promote contribution: The construction of communities around
web applications implies promoting/rewarding contributions,
disseminating contributions through the web application, facilitating
end users to suggest augmentations, and so on. In the same way that
Web2.0 APIs open data silos to achieve application composition at
the back-end, we envision Modding Interfaces “to open” application
markup to crowdsourced, front-end composition.

• Include augmentations in the core: Some augmentations provided by
users could be useful not only for a subset but for the whole website
users. It is needed to explore the possibility of promoting these
augmentations to be a part of the core of the hosting application.

Client-Side Open Personalization Implications

• Access to desktop resources: Although the tendency is to move
resources to the cloud, the desktop still keeps an important set of
confidential material. Since augmentation is a client technology,
desktop resources can safely participate in the augmentation.

• Web Augmentation in mobile devices: Mobile users will benefit
from the reduction in the number of interactions that augmentation
brings. Users can augment their favourite websites to act as a hub
to easily access companion sites without the need to type complex
URLs or conduct lengthy searches. In a mobile environment, other

169

OP: Involving Third Parties in Improving the UX of Websites

resources take more relevance and have to be taken into account for
a successful mobile Web Augmentation, like the usage of data plans,
battery or GPS.

• Apply Programming by Demonstration techniques: Programming

by demonstration (PbD) is a technique that facilitates the creation
of programs by end users. As stated in [Lie01], “in this approach
(PbD), a software agent records the interactions between the user and
a conventional direct-manipulation interface, and writes a program
that corresponds to the user’s actions”. At this time, the creation
of sticklets is facilitated with clone&own and assisted techniques.
It is needed to explore how programming by demonstration can
complement these techniques in order to improve the effectiveness
and the satisfaction of the user.

• Evaluation in the wild: Further evaluation is required, mainly for the
consumer aspects. This requires the existence of a real community
of users.

6.6 Conclusions

Web Personalization has proven to be an adequate paradigm to improve
the satisfaction of web customers. This paradigm takes webmasters
as the designers of such personalizations. But it is impossible for
webmasters to foresee, developed and maintain such a moving target.
Open Personalization alleviates this situation by allowing third parties to
make such adaptations.

This dissertation presents three scenarios of Open Personalization.

The first scenario is Server-Side Open Personalization where partners are
allowed to adapt company’s website using software interfaces to regulate
the adaptation. The second scenario is Hybrid Open Personalization where
the adaptation of the website is made by scripters with the help of the
webmaster. In the third scenario, Client-Side Open Personalization, end

170

Chapter 6. Conclusions

users can personalize websites with no help from the webmaster but with
the help of a domain specific language. Part of the content of this thesis
has already been presented in different venues. To conclude, the author
enumerated some limitations of the work which can serve as future lines
of research.

171

Bibliography

[AA05] A9 and Amazon. OpenSearch 1.1 Spec. Online, 2005.
http://www.opensearch.org/Specifications/OpenSearch/1.1
[accessed November 2012].

[ACD12] Manar H. Alalfi, James R. Cordy, and Thomas R. Dean.
Recovering Role-Based Access Control Security Models
from Dynamic Web Applications. In Proceedings of the

12th International Conference on Web Engineering, ICWE

’12, pages 121–136, 2012.

[ADI09] Cristóbal Arellano, Oscar Díaz, and Jon Iturrioz. The
Modding Web: Layman Tuning of Websites. In Proceedings

of the 9th International Conference on Web Engineering,

ICWE ’09, 2009.

[ADI10a] Cristóbal Arellano, Oscar Díaz, and Jon Iturrioz.
Crowdsourced Web Augmentation: A Security Model.
In Proceedings of the 11th International Conference on

Web Information Systems Engineering, WISE ’10, pages
294–307, 2010.

[ADI10b] Cristóbal Arellano, Oscar Díaz, and Jon Iturrioz. Script
Programmers as Value Co-creators. In Enterprise

Crowdsourcing Workshop, pages 417–420, 2010.

173

OP: Involving Third Parties in Improving the UX of Websites

[ADI12] Cristóbal Arellano, Oscar Díaz, and Jon Iturrioz. Opening
Personalization to Partners: An Architecture of Participation
for Websites. In Proceedings of the 12th International

Conference on Web Engineering, ICWE ’12, pages 91–105,
2012.

[ÁPR+10] Manuel Álvarez, Alberto Pan, Juan Raposo, Fernando
Bellas, and Fidel Cacheda. Finding and Extracting Data
Records from Web Pages. Signal Processing Systems,
59:123–137, 2010.

[AVG10] AVG. AVG LinkScanner - How it Works. Online, 2010.
http://linkscanner.avg.com/ww.sals-how-it-works.html
[accessed November 2012].

[BBCS08] Christopher Bogart, Margaret M. Burnett, Allen Cypher,
and Christopher Scaffidi. End-User Programming in the
Wild: A Field Study of CoScripter Scripts. In Proceedings

of the 24th IEEE Symposium on Visual Languages and

Human-Centric Computing, VL/HCC ’08, pages 39–46,
2008.

[BBS10] Jan Bosch and Petra Bosch-Sijtsema. From Integration to
Composition: On the Impact of Software Product Lines,
Global Development and Ecosystems. Journal of Systems

and Software, 83:67–76, 2010.

[BC98] Paul De Bra and Licia Calvi. 2l670: A Flexible
Adaptive Hypertext Courseware System. In Proceedings

of the 9th ACM Conference on Hypertext and Hypermedia,

HYPERTEXT ’98, pages 283–284, 1998.

[BE98] Peter Brusilovsky and John Eklund. A Study of User
Model Based Link Annotation in Educational Hypermedia.
Universal Computer Science, 4(4):429–448, 1998.

174

BIBLIOGRAPHY

[BG99] Alan F. Blackwell and Thomas R. G. Green. Investment
of Attention as an Analytic Approach to Cognitive
Dimensions. In Collected Papers of the 11th Annual

Workshop of the Psychology of Programming Interest

Group, pages 246–253, 1999.

[BHP+06] Steffen Becker, Wilhelm Hasselbring, Alexandra Paul,
Marko Boskovic, Heiko Koziolek, Jan Ploski, Abhishek
Dhama, Henrik Lipskoch, Matthias Rohr, Daniel Winteler,
Simon Giesecke, Roland Meyer, Mani Swaminathan, Jens
Happe, Margarete Muhle, and Timo Warns. Trustworthy
Software Systems: A Discussion of Basic Concepts and
Terminology. ACM SIGSOFT Software Engineering Notes,
31:1–18, 2006.

[Bir05] Dorian Birsan. On Plug-ins and Extensible Architectures.
ACM Queue, 3:40–46, 2005.

[BKGM+02] Orkut Buyukkokten, Oliver Kaljuvee, Hector Garcia-
Molina, Andreas Paepcke, and Terry Winograd. Efficient
Web Browsing on Handheld Devices Using Page and Form
Summarization. ACM Transactions on Information Systems,
20:82–115, 2002.

[Bla02] Alan F. Blackwell. First Steps in Programming: A
Rationale for Attention Investment Models. In Proceedings

of the 2002 IEEE Symposum on Human-Centric Computing

Languages and Environments, HCC ’02, pages 2–10, 2002.

[BLK+09] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören
Auer, Christian Becker, Richard Cyganiak, and Sebastian
Hellmann. DBpedia - A Crystallization Point for the Web of
Data. Journal Web Semantics: Science, Services and Agents

on the World Wide Web, 7:154–165, 2009.

175

OP: Involving Third Parties in Improving the UX of Websites

[Bos09] Jan Bosch. From Software Product Lines to Software
Ecosystems. In Proceedings of the 13th International

Software Product Lines Conference, SPLC ’09, pages 111–
119, 2009.

[Bou99] Niels O. Bouvin. Unifying Strategies for Web
augmentation. In Proceedings of the 10th ACM Conference

on Hypertext and Hypermedia, HYPERTEXT ’99, pages
91–100, 1999.

[Bru96] Peter Brusilovsky. Methods and Techniques of Adaptive
Hypermedia. User Modeling User-Adapted Interaction,
6(2-3):87–129, 1996.

[Bru01] Peter Brusilovsky. Adaptive Hypermedia. User Modeling

and User-Adapted Interaction, 11(1-2):87–110, 2001.

[BSP12] Mairon Belchior, Daniel Schwabe, and Fernando Silva
Parreiras. Role-Based Access Control for Model-Driven
Web Applications. In Proceedings of the 12th International

Conference on Web Engineering, ICWE ’12, pages 106–120,
2012.

[BSW96] Peter Brusilovsky, Elmar W. Schwarz, and Gerhard Weber.
ELM-ART: An Intelligent Tutoring System on World Wide
Web. In Proceedings of the 3rd International Conference on

Intelligent Tutoring Systems, ITS ’96, pages 261–269, 1996.

[BWR+05] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson,
and Robert C. Miller. Automation and Customization
of Rendered Web Pages. In Proceedings of the 18th

Annual ACM Symposium on User Interface Software and

Technology, UIST ’05, pages 163–172, 2005.

176

BIBLIOGRAPHY

[CCG11] Francesca Carmagnola, Federica Cena, and Cristina Gena.
User Model Interoperability: A Survey. User Modeling and

User-Adapted Interaction, 21:285–331, 2011.

[CDA00] Ibrahim Cingil, Asuman Dogac, and Ayca Azgin. A Broader
Approach to Personalization. Communications of the ACM,
43(8):136–141, 2000.

[CDM+11] Cinzia Cappiello, Florian Daniel, Maristella Matera,
Matteo Picozzi, and Michael Weiss. Enabling End
User Development through Mashups: Requirements,
Abstractions and Innovation Toolkits. In Proceedings of the

3rd International Symposium - End-User Development, IS-

EUD ’11, pages 9–24, 2011.

[Cro06] Douglas Crockford. The application/json Media Type
for JavaScript Object Notation (JSON). Technical
report, Internet Engineering Task Force, 2006.
http://tools.ietf.org/html/rfc4627 [accessed November
2012].

[CTB03] Sven Casteleyn, Olga De Troyer, and Saar Brockmans.
Design Time Support for Adaptive Behavior in Web Sites.
In Proceedings of the 2003 ACM Symposium on Applied

Computing, SAC ’03, pages 1222–1228, 2003.

[DA12] Oscar Díaz and Cristóbal Arellano. Sticklet: An End-
User Client-Side Augmentation-Based Mashup Tool. In
Proceedings of the 12th International Conference on Web

Engineering, ICWE ’12, pages 465–468, 2012.

[DAA] Oscar Díaz, Cristóbal Arellano, and Maider Azanza. A DSL
for End-user Web Augmentation: Caring for Producers and
Consumers Alike. ACM Transactions on the Web. Accepted.

177

OP: Involving Third Parties in Improving the UX of Websites

[DAI08] Oscar Díaz, Cristóbal Arellano, and Jon Iturrioz. Layman
Tuning of Websites: Facing Change Resilience. In
Proceedings of the 17th International Conference on World

Wide Web, WWW ’08, pages 1127–1128, 2008.

[DAI10] Oscar Díaz, Cristóbal Arellano, and Jon Iturrioz. Interfaces
for Scripting: Making Greasemonkey Scripts Resilient to
Website Upgrades. In Proceedings of the 10th International

Conference on Web Engineering, ICWE ’10, pages 233–247,
2010.

[DAP12] Oscar Díaz, Cristóbal Arellano, and Gorka Puente.
Wikipedia Customization through Web Augmentation
Techniques. In Proceedings of the 8th International

Symposium on Wikis and Open Collaboration, WIKISYM

’12, 2012.

[Dav89] Fred D. Davis. Perceived Usefulness, Perceived Ease of
Use, and User Acceptance of Information Technology. MIS

Quarterly, 13:319–340, 1989.

[DCBS09] Florian Daniel, Fabio Casati, Boualem Benatallah, and
Min-Chien Shan. Hosted Universal Composition: Models,
Languages and Infrastructure in mashArt. In Proceedings of

the 28th International Conference on Conceptual Modeling,

ER ’09, pages 428–443, 2009.

[DdSAT12] Oscar Díaz, Josune de Sosa, Cristóbal Arellano, and
Salvador Trujillo. Web-Based Tool Integration: A Web
Augmentation Approach. In Proceedings of the 12th

International Conference on Web Engineering, ICWE ’12,
pages 431–434, 2012.

178

BIBLIOGRAPHY

[DDSC07] Mira Dontcheva, Steven M. Drucker, David Salesin, and
Michael F. Cohen. Changes in Webpage Structure over
Time. Technical report, University of Washington, 2007.

[DIA09] Oscar Díaz, Jon Iturrioz, and Cristóbal Arellano. Facing
tagging data scattering. In Proceedings of the 10th

International Conference on Web Information Systems

Engineering, WISE ’09, pages 63–74, 2009.

[DLL06] Yvonne Dittrich, Olle Lindeberg, and Lars Lundberg. End-
User Development as Adaptive Maintenance. In End-User

Development, pages 295–313. Springer, 2006.

[DMP06] Florian Daniel, Maristella Matera, and Giuseppe Pozzi.
Combining Conceptual Modeling and Active Rules for the
Design of Adaptive Web Applications. In Proceedings of the

1th International Workshop on Adaptation and Evolution in

Web Systems Engineering, AEWSE ’06, 2006.

[DPA09] Oscar Díaz, Sandy Pérez, and Cristóbal Arellano. Tagging-
aware portlets. In Proceedings of the 9th International

Conference on Web Engineering, ICWE ’09, pages 61–75,
2009.

[DPA11] Oscar Díaz, Gorka Puente, and Cristóbal Arellano. Wiki
Refactoring: An Assisted Approach Based on Ballots. In
Proceedings of the 7th International Symposium on Wikis

and Open Collaboration, WIKISYM ’11, pages 195–196,
2011.

[DRC+12] Florian Daniel, Carlos Rodríguez, Soudip Roy Chowdhury,
Hamid R. Motahari, and Fabio Casati. Discovery and
Reuse of Composition Knowledge for Assisted Mashup
Development. In Proceedings of the 21st International

179

OP: Involving Third Parties in Improving the UX of Websites

World Wide Web Conference, WWW ’12, pages 493–494,
2012.

[EBG+07] Rob Ennals, Eric A. Brewer, Minos N. Garofalakis, Michael
Shadle, and Prashant Gandhi. Intel Mash Maker: Join the
Web. SIGMOD Record, 36:27–33, 2007.

[EH98] Deborah M Edwards and Lynda Hardman. Hypertext:

Theory into Practice, chapter ’Lost in hyperspace’:
cognitive mapping and navigation in a hypertext
environment, pages 90–105. Intellect Ltd, 1998.

[eTe10] Eoin eTeanga. Create a custom search engine for Firefox,
IE, Chrome. Online, 2010. http://www.eteanga.ie/create-
a-custom-search-engine-for-firefox-ie-chrome/ [accessed
November 2012].

[EW85] William C. Elm and David D. Woods. Getting Lost: A
Case Study in Interface Design. In Proceedings of the 29th

Human Factors and Ergonomics Society Annual Meeting,
pages 927–929, 1985.

[Fac10a] Facebook. Facebook. Online, 2010.
http://www.facebook.com/ [accessed November 2012].

[Fac10b] Facebook. Facebook Developers Platform. Online,
2010. http://developers.facebook.com/ [accessed November
2012].

[Fac10c] Facebook. Facebook Platform: How to use the new
Facebook social plugins for your business. Online, 2010.
http://www.facebook.com/notes/facebook-platform/how-to-
use-
the-new-facebook-social-plugins-for-your-
business/394310302301 [accessed November 2012].

180

BIBLIOGRAPHY

[FH02] Flavius Frasincar and Geert-Jan Houben. Hypermedia
Presentation Adaptation on the Semantic Web. In
Proceedings of the 2nd International Conference on

Adaptive Hypermedia and Adaptive Web-Based Systems,

AH ’02, pages 133–142, 2002.

[Fil06] Robert E. Filman. Taking Back the Web. IEEE Internet

Computing, 10:3–5, 2006.

[Fow04] Martin Fowler. Inversion of Control Containers and the
Dependency Injection pattern. Online, January 2004.
http://martinfowler.com/articles/injection.html [accessed
November 2012].

[Fow09] Martin Fowler. A Pedagogical Framework for Domain-
Specific Languages. IEEE Software, 26:13–14, 2009.

[FR03] Ellen M. Friedman and Jerry L. Rosenberg. Web Load
Testing Made Easy: Testing with WCAT and WAST
for Windows Applications. In Proceedings of the 29th

International Conference Management Group Conference,

CMG ’03, pages 57–82, 2003.

[GBC+06] Thomas R. G. Green, Ann E. Blandford, Luke Church,
Chris R. Roast, and Steven Clarke. Cognitive Dimensions:
Achievements, New Directions, and Open Questions.
Journal of Visual Languages & Computing, 17:328–365,
2006.

[GGC03] Irene Garrigós, Jaime Gómez, and Cristina Cachero.
Modelling Adaptive Web Applications. In Proceedings of

the IADIS International Conference WWW/Internet, ICWI

’03, pages 813–816, 2003.

181

OP: Involving Third Parties in Improving the UX of Websites

[GGH10] Irene Garrigós, Jaime Gómez, and Geert-Jan Houben.
Specification of Personalization in Web Application Design.
Information & Software Technology, 52:991–1010, 2010.

[Gli89] E. Glinert. A In-Depth Look at Selected Visual
Systems. In Proceedings of Workshop on Visual Computing

Environments, CHI ’89, 1989.

[Goo] Google. Google Caja: A Source-to-Source Translator
for Securing Javascript-based Web Content. Online.
http://code.google.com/p/google-caja/ [accessed November
2012].

[GPB91] Thomas R. G. Green, Marian Petre, and Rachel K. E.
Bellamy. Comprehensibility of Visual and Textual
Programs: A Test of ’Superlativism’ Against the ’match-
mismatch’ Conjecture. In Proceedings of the 4th Workshop

on Empirical Studies of Programmers, 1991.

[GPS11] Giuseppe Ghiani, Fabio Paternò, and Lucio D. Spano.
Creating Mashups by Direct Manipulation of Existing Web
Applications. In Proceedings of the 3rd International

Symposium - End-User Development, IS-EUD ’11, pages
42–52, 2011.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha
Ram. Design Science in Information Systems Research.
MIS Quarterly, 28(1):75–105, 2004.

[HN99] Nicola Henze and Wolfgang Nejdl. Adaptivity in the KBS
Hyperbook System. In Proceedings of the 2th Workshop on

Adaptive Systems and User Modeling of the WWW, 1999.

[How06] Jeff Howe. The Rise of
Crowdsourcing. Wired Magazine, 2006.

182

BIBLIOGRAPHY

http://www.wired.com/wired/archive/14.06/crowds.html
[accessed November 2012].

[HT10] Phillip Heidegger and Peter Thiemann. Contract-Driven
Testing of JavaScript Code. In Proceedings of the 4th

International Conference on Tests & Proofs, TAP ’10, 2010.

[HV09] Stephan Hagemann and Gottfried Vossen. ActiveTags:
Making Tags More Useful Anywhere on the Web. In
Proceedings of the 20th Australasian Database Conference,

ADC ’09, pages 41–48, 2009.

[IDA07] Jon Iturrioz, Oscar Díaz, and Cristóbal Arellano. Towards
Federated Web 2.0 Sites: The TAGMAS Approach. In
Tagging and Metadata for Social Information Organization

Workshop, 2007.

[IL10] Thierry Isckia and Denis Lescop. Open Innovation
within Business Ecosystems: A Tale from Amazon.com.
Communications & Strategies, 74:37–54, 2010.

[ISO01] ISO/IEC. Software Engineering - Software Product Quality
- Part 1: Quality Model, 2001.

[JCP03] JCP. JSR 168: Portlet Specification Version 1.0. Online,
2003. http://www.jcp.org/en/jsr/detail?id=168 [accessed
November 2012].

[JGM07] Afraz Jaffri, Hugh Glaser, and Ian Millard. URI Identity
Management for Semantic Web Data Integration and
Linkage. In Proceedings of the 3rd International Workshop

On Scalable Semantic Web Knowledge Base Systems, pages
1125–1134, 2007.

[JWM10] Markus Jahn, Reinhard Wolfinger, and Hanspeter
Mössenböck. Extending Web Applications with Client and

183

OP: Involving Third Parties in Improving the UX of Websites

Server Plug-ins. In Software Engineering, pages 33–44,
2010.

[KAB+11] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan
Blackwell, Margaret Burnett, Martin Erwig, Chris
Scaffidi, Joseph Lawrance, Henry Lieberman, Brad Myers,
Mary Beth Rosson, Gregg Rothermel, Mary Shaw, and
Susan Wiedenbeck. The State of the Art in End-User
Software Engineering. ACM Computing Surveys, 43:21:1–
21:44, 2011.

[Kap06] Mike Kaply. Operator Add-on for Firefox. Online,
2006. https://addons.mozilla.org/firefox/addon/operator/
[accessed November 2012].

[KC09] Rick Kazman and Hong-Mei Chen. The Metropolis Model:
A New Logic for Development of Crowsourced Systems.
Communications of the ACM, 52:76–84, 2009.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E.
Novak, and A. Spencer Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical report,
Carnegie-Mellon University Software Engineering Institute,
1990.

[KKP01] Alfred Kobsa, Jürgen Koenemann, and Wolfgang Pohl.
Personalised Hypermedia Presentation Techniques for
Improving Online Customer Relationships. The Knowledge

Engineering Review, 16(2):111–155, 2001.

[Koc01] Nora Koch. Software Engineering for Adaptive Hypermedia

Systems. PhD thesis, Ludwig-Maximilians-Universität
München, 2001.

[KP88] Glenn E. Krasner and Stephen T. Pope. A Cookbook for
Using the Model-View-Controller User Interface Paradigm

184

BIBLIOGRAPHY

in Smalltalk-80. Journal of Object Oriented Programming,
1:26–49, 1988.

[KPW06] Markus Klann, Fabio Paternò, and Volker Wulf. Future
Perspectives in End-User Development. In End User

Development, pages 475–486. Springer, 2006.

[LBS05] Anthony Lieuallen, Aaron Boodman, and Johan Sundström.
Greasemonkey. Online, 2005. http://www.greasespot.net/
[accessed November 2012].

[LE07] Sandeep Lingam and Sebastian G. Elbaum. Supporting
End-Users in the Creation of Dependable Web Clips. In
Proceedings of the 16th International Conference on World

Wide Web, WWW ’07, pages 953–962, 2007.

[LHML08] Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa Lau. CoScripter: Automating & Sharing How-To
Knowledge in the Enterprise. In Proceedings of the 26th

International Conference on Human Factors in Computing

Systems,CHI ’08, pages 1719–1728, 2008.

[Lie01] Henry Lieberman, editor. Your Wish Is My Command:

Programming by Example. Morgan Kaufmann, 2001.

[MBH07] Knud Möller, Sean Bechhofer, and Tom Heath.
Semantic Web Conference Ontology. Online, 2007.
http://data.semanticweb.org/ns/swc/ontology [accessed
November 2012].

[McC07] Adam McCrea. Metaprogramming
JavaScript. Online, 2007.
http://www.scribd.com/doc/522145/metaprogramming-
javascript [accessed November 2012].

185

OP: Involving Third Parties in Improving the UX of Websites

[McF05] Nigel McFarlane. Fixing Web Sites with Greasemonkey.
Linux Journal, 138:1, 2005.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction.
Prentice Hall, 1997.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane.
When and How to Develop Domain-Specific Languages.
ACM Computing Surveys, 37:316–344, 2005.

[Mica] Microsoft. Internet Explorer 9 Accelerators. Online.
http://windows.microsoft.com/en-US/windows7/How-
to-use-Accelerators-in-Internet-Explorer-9 [accessed
November 2012].

[Micb] Microsoft. Microsoft Web Sandbox: QoS Layer. Online.
http://websandbox.livelabs.com/documentation/vm_qos.aspx
[accessed November 2012].

[MM00] Robert C. Miller and Brad A. Myers. Integrating a
Command Shell Into a Web Browser. In Proceedings of

the 2000 USENIX Annual Technical Conference, pages 171–
182, 2000.

[MP09] John J. Maver and Cappy Popp. Essential Facebook

Development: Build Successful Applications for the

Facebook Platform. Addison-Wesley, 2009.

[MS95] Salvatore T. March and Gerald F. Smith. Design and Natural
Science Research on Information Technology. Decision

Support Systems, 15(4):251–266, 1995.

[Mul12] International Workshop on Interoperability of User Profiles
in Multi-Application Web Environments (MultiA-Pro
2012). Online, 2012. http://liris.cnrs.fr/multiapro2012/
[accessed November 2012].

186

BIBLIOGRAPHY

[Mye90] Brad A. Myers. Taxonomies of Visual Programming and
Program Visualization. Journal of Visual Languages and

Computing, 1:97–123, 1990.

[NT08] Sagar Naik and Piyu Tripathy. Software Testing and Quality

Assurance: Theory and Practice. Wiley, 2008.

[O’R04] Tim O’Reilly. The Architecture of Participation. Online,
June 2004. http://oreilly.com/pub/a/oreilly/tim/articles
/architecture_of_participation.html [accessed November
2012].

[Par72] David L. Parnas. On the Criteria To Be Used in
Decomposing Systems into Modules. Communications of

the ACM, 15:1053–1058, 1972.

[PD99] Norman W. Paton and Oscar Díaz. Active Database
Systems. ACM Computing Surveys, 31:63–103, 1999.

[PD10] Iñaki Paz and Oscar Díaz. Providing Resilient XPaths
for External Adaptation Engines. In Proceedings of

the 21st ACM Conference on Hypertext and Hypermedia,

HYPERTEXT ’10, pages 67–76, 2010.

[PGKM03] Kyparisia A. Papanikolaou, Maria Grigoriadou, Harry
Kornilakis, and George D. Magoulas. Personalizing
the Interaction in a Web-based Educational Hypermedia
System: the case of INSPIRE. User Modeling and User-

Adapted Interaction, 13(3):21–267, 2003.

[RBG12] Raphael M. Reischuk, Michael Backes, and Johannes
Gehrke. SAFE Extensibility for Data-Driven Web
Applications. In Proceedings of the 21st International World

Wide Web Conference, WWW ’12, pages 799–808, 2012.

187

OP: Involving Third Parties in Improving the UX of Websites

[RI06] Alexander Repenning and Andri Ioannidou. What Makes
End-User Development Tick? 13 Design Guidelines. In
End User Development, pages 51–85. Springer, 2006.

[Rie11] Mikko Riepula. Sharing Source Code with Clients: A
Hybrid Business and Development Model. IEEE Software,
28(4):36–41, 2011.

[RSG01] Gustavo Rossi, Daniel Schwabe, and Robson Guimarães.
Designing Personalized Web Applications. In Proceedings

of the 10th International World Wide Web Conference,

WWW ’01, pages 275–284, 2001.

[SBVG10] David Sánchez, Montserrat Batet, Aida Valls, and Karina
Gibert. Ontology-driven Web-based Semantic Similarity.
Journal of Intelligent Information Systems, 3:383–413,
2010.

[Sch01] Jörg Schaible. JsUnit. Online, 2001. http://jsunit.berlios.de/
[accessed November 2012].

[Sky05] Skype. Skype button in Internet Explorer or Firefox toolbar.
Online, 2005. http://www.skype.com/intl/en/support/user-
guides/toolbar?lang=en [accessed November 2012].

[SWM04] Michael K. Smith, Chris Welty, and Deborah L.
McGuinness. OWL Web Ontology Language Guide.
Online, 2004. http://www.w3.org/TR/owl-guide/ [accessed
November 2012].

[TDD+09] Michael Toomim, Steven M. Drucker, Mira Dontcheva, Ali
Rahimi, Blake Thomson, and James A. Landay. Attaching
UI Enhancements to Websites with End Users. In
Proceedings of the 27th International Conference on Human

Factors in Computing Systems, CHI ’09, pages 1859–1868,
2009.

188

BIBLIOGRAPHY

[The11] The OSGi Alliance. OSGi Service Platform Core
Specification, Release 4.3, 2011.

[TKS11] Rattapoom Tuchinda, Craig A. Knoblock, and Pedro A.
Szekely. Building Mashups by Demonstration. ACM

Transactions on the Web, 5:16:1–16:45, 2011.

[Tur05] Scott R. Turner. Platypus. Online, 2005.
http://platypus.mozdev.org/ [accessed November 2012].

[UMA12] The 20th Conference on User modeling, Adaptation,
and Personalization (UMAP 2012). Online, 2012.
http://umap2012.polymtl.ca/en/ [accessed November 2012].

[W3C00a] W3CDOMWG. Document Object Model (DOM) Level
2. Online, 2000. http://www.w3.org/DOM/DOMTR#dom2
[accessed November 2012].

[W3C00b] W3CDOMWG. Document Object Model (DOM)
Level 2 Core Specification. Online, 2000.
http://www.w3.org/TR/DOM-Level-2-Core [accessed
November 2012].

[W3C08] W3CHTML5WG. HTML5. Online, 2008.
http://www.w3.org/TR/html5/ [accessed November 2012].

[Wik10a] Wikipedia. Design by Contract at Wikipedia. Online, 2010.
http://en.wikipedia.org/wiki/Design_by_contract [accessed
November 2012].

[Wik10b] Wikipedia. Monkey Patch at Wikipedia. Online, 2010.
http://en.wikipedia.org/wiki/Monkey_patch [accessed
November 2012].

[Win06] William E. Winkler. Overview of Record Linkage and
Current Research Directions. Technical report, U.S. Bureau
of the Census, 2006.

189

OP: Involving Third Parties in Improving the UX of Websites

[WS97] Gerhard Weber and Marcus Specht. User Modeling and
Adaptive Navigation Support in WWW-Based Tutoring
Systems. In Proceedings of the 6th International Conference

on User Modeling, UM ’97, pages 289–300, 1997.

[XLH+09] Xiangye Xiao, Qiong Luo, Dan Hong, Hongbo Fu, Xing
Xie, and Wei-Ying Ma. Browsing on Small Displays
by Transforming Web Pages into Hierarchically Structured
Subpages. ACM Transactions on the Web, 3:4:1–4:36, 2009.

[Yah07] Yahoo. Yahoo Pipes. Online, 2007.
http://pipes.yahoo.com/pipes/ [accessed November 2012].

[YBCD08] Jin Yu, Boualem Benatallah, Fabio Casati, and Florian
Daniel. Understanding Mashup Development. IEEE

Internet Computing, 12:44–52, 2008.

[YLZ09] Xingliang Yu, Jing Li, and Hua Zhong. On Reducing the
Pre-release Failures of Web Plug-in on Social Networking
Site. In Proceedings of the 2009 International Conference

on Software Process, ICSP ’09, pages 236–245, 2009.

190

Acknowledgments

First of all, I wish to express my most sincere gratitude to my supervisors,
Prof. Dr. Oscar Díaz and Dr. Jon Iturrioz. They have not only advised
me during the whole Ph.D. but we have been working together as a team,
combining the strengths of each. From the personal viewpoint, they treated
me superb.

Whereas my supervisors give me assistance in terms of guidance,
ONEKIN, the hosting research group assisted me in other directions.
Thanks to Sandy Pérez for the web discussions and LATEX tricks, to Gorka
Puente that put me in touch with the hottest technological news and the
innumerable assistance during the writing of the dissertation and to Maider
Azanza that helped me to do things in the right way and her dessert recipes.
To Josune De Sosa, Jokin Pérez, Iñigo Aldalur and Itziar Otaduy that have
had infinite patience and have participated in the laboratory talks. To
Arantza Irastorza, Iker Azpeitia, Felipe Ibañez, Felipe Martín and Iñaki
Paz that have helped me directly or indirectly; the research group follows
the communicating vessels theory and they helped me sometimes without I
have noticed it. To Salvador Trujillo that gave me some invaluable advises.

This thesis was economically supported by the Spanish Ministry of
Education and Science through the under the FPI Program. It has allowed
me to be independent from the economical point of view and has supported
the research stage at Utrecht (Netherlands).

To my colleagues at Utrecht University, Amir Saedi, Ravi Kadhka and
Michiel Meulendijk that made the research stage easier. To Slinger Jansen,
that welcomed and integrated me in his research group.

191

Thanks to my family and concretely to my parents that let me to
choose my way and put their resources that were essentials to reach to
this point. To my friends, that unconditionally they have been there and
have understood my occasional absences.

Last but not least, I want to give my best thanks to Aiora; we have
gone hand in hand and she helps me to grow not only at the professional
dimension but the personal one.

192

	1 Introduction
	1.1 Context
	1.2 General Problem
	1.3 This Dissertation
	1.4 Contributions
	1.5 Research Approach
	1.6 Outline
	1.7 Conclusions

	2 Background
	2.1 Introduction
	2.2 Web Personalization
	2.2.1 Definition & Motivation
	2.2.2 Engineering Adaptive and Adaptable Hypermedia Systems
	2.2.3 Successful Case Studies
	2.2.4 Current Research Issues

	2.3 Web Augmentation
	2.3.1 Definition & Motivation
	2.3.2 Web Augmentation through an Example: The BookBurro Script
	2.3.3 Successful Case Studies
	2.3.4 Current Research Issues

	2.4 Conclusions

	3 Server-Side Open Personalization
	3.1 Introduction
	3.2 Motivating Scenario and Research Question
	3.3 Requirements
	3.3.1 Existing Solutions
	3.3.2 Our Contribution

	3.4 The Modding Interface
	3.5 Specification of the Modding Interface
	3.6 Impact on the Host: Making a Website Mod-Aware
	3.7 Impact on Partners: Defining Mods
	3.8 Architecture
	3.9 Discussion
	3.9.1 Resilience
	3.9.2 Extensibility
	3.9.3 Scalability
	3.9.4 Affordability

	3.10 Conclusions

	4 Hybrid Open Personalization
	4.1 Introduction
	4.2 Motivating Scenario and Research Question
	4.3 Requirements
	4.3.1 Existing Solutions
	4.3.2 Our contribution

	4.4 Crowdsourcing Web Augmentation
	4.5 The Modding Interface: a Client-Side Perspective
	4.6 Specification of the Modding Interface
	4.7 Script Development
	4.8 Script Testing
	4.9 Script Advertising
	4.10 Script Sandboxing
	4.11 Discussion
	4.11.1 Affordability
	4.11.2 Resilience
	4.11.3 Scalability
	4.11.4 Security

	4.12 Conclusions

	5 Client-Side Open Personalization
	5.1 Introduction
	5.2 Motivating Scenario and Research Question
	5.3 Requirements
	5.3.1 Existing Solutions
	5.3.2 Our Contribution

	5.4 Web Augmentation: Caring for Producers
	5.4.1 Sticklets
	5.4.2 StickletBox
	5.4.3 The Issue of Entity Linkage
	5.4.4 The Issue of XPath Complexity
	5.4.5 The Issue of Non-HTML Sources
	5.4.6 The Issue of Note Rendering
	5.4.7 The Operational Semantics of Sticklets

	5.5 Web Augmentation: Caring for Consumers
	5.5.1 Trustworthiness
	5.5.2 Maintainability

	5.6 Web Augmentation: When Attention is Scarce
	5.6.1 Greasemonkey Operation
	5.6.2 No Time to Code
	5.6.3 No Time to Install
	5.6.4 No Time to Share

	5.7 Evaluation
	5.7.1 Sticklet consumption for computer literates
	5.7.2 Sticklet production for hobby programmers

	5.8 Discussion
	5.8.1 Expressiveness
	5.8.2 Learnability
	5.8.3 Trustworthiness
	5.8.4 Maintainability
	5.8.5 Understandability
	5.8.6 Tailorability
	5.8.7 Operability
	5.8.8 Provisionability
	5.8.9 Installability & Shareability

	5.9 Conclusions

	6 Conclusions
	6.1 Overview
	6.2 Results
	6.3 Publications
	6.4 Research Stage
	6.5 Assessment and Future Research
	6.6 Conclusions

	Bibliography

