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PREFACE

Esta tesis doctoral es especial en muy diversos sentidos. Cuando comenzamos a
trabajar Ana y yo, se trataba de mi primera experiencia como director de tesis y,
hasta este día, esta experiencia se contabilizaba como un fracaso. En el momento
de la defensa este fracaso se convertirá en un éxito. Un hecho modelado por una
variable binaria con valor cero o uno, cuya función objetivo asociada, el costo
a todos los niveles, personal y profesional incluidos, es incalculable e imposible
de transmitir en una líneas. Durante estos años han pasado muchas cosas en
nuestras respectivas vidas, la de Ana y la mía, y hemos recorrido caminos que no
han sido sencillos. No ha habido muchas facilidades, y sí bastantes obstáculos.
Pero la dificultad de las circunstancias aporta un valor añadido e intangible a
lo conseguido.

En mi perspectiva actual es evidente que Ana podía haber defendido su
tesis doctoral hace doce o trece años, con un estándar de calidad equivalente
al prevalente en la actualidad. Es por ello que la memoria de la tesis recoge
un recorrido longitudinal de sus trabajos en lugar de concentrarse y extenderse
en una aportación concreta. Este recorrido comenzó con aportaciones sobre el
entonces novedoso campo de las redes neuronales, que poco a poco se ha ido
diluyendo en el campo de la inteligencia computacional y aprendizaje máquina.
Durante estos años, nuestra colaboración ha sido dispersa en épocas interme-
dias, con contribuciones puntuales. Es al principio y al final de este proceso de
gestación cuando esta colaboración ha sido más intensa y productiva.

Espero que este prólogo ayude al lector a poner este trabajo en su contexto
adecuado, tanto al nivel académico-profesional como al personal, puesto que sólo
las máquinas pueden realizar tareas sin involucrarse personalmente, e incluso
esta afirmación puede quedar obsoleta en poco tiempo.

Manuel Graña Romay

San Sebastián, Diciembre de 2011
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Abstract

This Thesis covers a broad period of research activities with a common
thread: learning processes and its application to image processing. The two
main categories of learning algorithms, supervised and unsupervised, have been
touched across these years. The main body of initial works was devoted to
unsupervised learning neural architectures, specially the Self Organizing Map.
Our aim was to study its convergence properties from empirical and analytical
viewpoints.

From the digital image processing point of view, we have focused on two
basic problems: Color Quantization and filter design. Both problems have been
addressed from the context of Vector Quantization performed by Competitive
Neural Networks. Processing of non-stationary data is an interesting paradigm
that has not been explored with Competitive Neural Networks. We have states
the problem of Non-stationary Clustering and related Adaptive Vector Quan-
tization in the context of image sequence processing, where we naturally have
a Frame Based Adaptive Vector Quantization. This approach deals with the
problem as a sequence of stationary almost-independent Clustering problems.
We have also developed some new computational algorithms for Vector Quan-
tization design.

The works on supervised learning have been sparsely distributed in time and
direction. First we worked on the use of Self Organizing Map for the independent
modeling of skin and no-skin color distributions for color based face localization.
Second, we have collaborated in the realization of a supervised learning system
for tissue segmentation in Magnetic Resonance Imaging data. Third, we have
worked on the development, implementation and experimentation with High
Order Boltzmann Machines, which are a very different learning architecture.
Finally, we have been working on the application of Sparse Bayesian Learning
to a new kind of classification systems based on Dendritic Computing. This last
research line is an open research track at the time of writing this Thesis.
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Chapter 1

Introduction

This introductory chapter serves as a summary and a roadmap for this Thesis.
Its main aim is to provide enough information to allow a quick appraisal of the
contents of the Thesis. For a detailed reading, this chapter gives the thread
that links all the remaining chapters in a consistent whole. Section 1.1 provides
a broad introduction. Section 1.2 gives summary description of the contents
of this Thesis. Section 1.3 enumerates the salient contributions of the doctoral
candidate. Section 1.4 gives the account of the publications produced during
the works leading to this Thesis. Finally, Section 1.5 specifies the structure of
this document.

1.1 Introduction and motivation
This Thesis covers a broad period of research activities with a common thread:
learning processes and its application to image processing. The two main cate-
gories of learning algorithms, supervised and unsupervised, have been touched
across these years. Some of the works have been done as a contribution to other
people research endeavors, some works have a more personal drive. We have
taken care to specify in the appropriate places which category the work belongs
to.

The main body of initial works was devoted to unsupervised learning neu-
ral architectures, specially the Self Organizing Map. Our aim was to study its
convergence properties from empirical and analytical points of view. To pursue
the empirical assessment of the learning architectures we designed some compu-
tational experiments, dealing with basic image processing tasks: segmentation,
color quantization, filtering. Works done with the limited computational re-
sources available at the time were published and are collected in this Thesis.
The analytical works have been much more difficult to pursue. In fact, some
hot research topics at the time we started our works have shown little advance
in the meantime. We had limited success trying to put the Competitive Neu-
ral Networks into a more general computational framework, that of Graduated
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Non-Convexity which has been useful in some graphics and computer vision
problems. On the other hand, we had some success discovering undesired be-
haviors of an already published architecture.

From the image processing point of view, we have focused on two basic prob-
lems: Color Quantization and filter design. Both problems have been addressed
from the point of view of Vector Quantization performed by Competitive Neu-
ral Networks. Color Quantization fits easily in this framework. However, filter
design is not so obviously produced by Vector Quantization design. There-
fore we have developed a Bayesian justification for the expected properties of
codevectors when used as filters. Application of this approach to biomedical
images obtained with Magnetic Resonance Imaging techniques is reported in
this Thesis.

Processing of non-stationary data is an interesting paradigm that had not
been explored applying Competitive Neural Networks at the time we started
working on it. We have stated the problem of Non-Stationary Clustering and
related Adaptive Vector Quantization in the context of image sequence process-
ing, where we naturally formulate a Frame Based Adaptive Vector Quantization.
This approach deals with the non-stationary problem treating it as a sequence
of stationary almost-independent Clustering problems. Implicit time dependen-
cies allow for a Vector Quantization design process in one frame starts from the
codebook computed for the previous frame.

We have also developed some new computational algorithms for Vector
Quantization design. One of them is a randomized version of the Simple Com-
petitive Learning, where the winner and updated units are the result of a sim-
ulated stochastic process. The second original proposition is an Evolutionary
Strategy whose entire population composes one codebook, and appropriate evo-
lutionary operators are defined accordingly. We show that this algorithm is
competitive with conventional Evolutionary Strategies for the Color Quantiza-
tion and filter design.

The works on supervised learning have been sparsely distributed in time
and direction. First, we worked on the use of Self Organizing Map for the inde-
pendent modeling of skin and no-skin color distributions in a color based face
localization application. The unsupervised learning results are combined into a
supervised decision. Second, we have collaborated in the realization of a super-
vised learning system for tissue segmentation in Magnetic Resonance Imaging
data, where the main contribution was the unsupervised design of the Vector
Quantization Bayesian Filter underlying the supervisedly trained Multi-Layer
Perceptron. Third, we have worked on the development, implementation and
experimentation of learning experiments with High Order Boltzmann Machines.
Finally, we have been working on the application of Sparse Bayesian Learning
to a new kind of classification systems based on Dendritic Computing. This last
research line is an open research track at the time of writing this Thesis.
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1.2 General description of the contents of the
Thesis

The broad description provided in the previous section highlights the fact that
we have been dealing with supervised and unsupervised learning algorithms,
specifically neuron-inspired algorithms, and their application to digital image
processing. In this section we will provide a walk through the Thesis contents
along the following axes: applications, unsupervised learning, and supervised
learning.

1.2.1 Applications

The applications tackled in this Thesis are related to image processing. We have
worked on image Color Quantization for potential compression and segmenta-
tion applications. The computational methods are identical, only the number
of color representatives are different. A small number of color representatives
is better suited for segmentation applications. A number on the order of the
conventional grayscale colors (i.e. 256) is more appropriate for compression or
visualization processes. The advance of the hardware resources has reduced
the visualization application to some specific cases of image storage format ex-
change. However, color based segmentation remains useful despite advances in
other computing fields.

Color based face localization is a two-class classification problem. The skin
color corresponds to the positive class, while the negative class is the com-
plementary universal set of colors. Skin color can change between individuals,
depending on illumination and camera conditions. Therefore, instead of propos-
ing a universal classifier we propose building an adaptive classifier over a pixel
sample obtained from the same image sequence that we want to analyze. This
sample is used to build separate models of the skin color and of its comple-
mentary. Both models are built by Self Organizing Maps. The system has a
second layer supervised classifier which decides each pixel’s class as a function
of the relative codifications obtained from the complementary Self Organizing
Maps. This color based face localization was developed as a part of system em-
ploying motion cues for the gross localization of the face before the color based
confirmation.

Sequences of color images can be interpreted as a non-stationary process. If
we focus on the color distribution, it is indeed a time varying probability dis-
tribution. We have collected an experimental image sequence which has been
used for illustration and test all over our works. The Color Quantization com-
puted over this image sequence becomes a Non-Stationary Clustering problem,
that can be solved by Adaptive Vector Quantization approaches. An impor-
tant particularity is that we can consider each image separately, thus the Color
Quantization of the image sequence can be considered as a sequence of station-
ary independent Color Quantization problems. Other time varying process can
not benefit from this property, which is a special case of the local stationar-
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ity property of some processes. Therefore, we can formulate a Frame Based
Adaptive Vector Quantization profiting of this independence between images.
However, there is some time correlation between images in the sequence that
could be of use to improve the quality of the results, or at least to reduce the
computational cost. In fact, the Color Quantization of the image sequence is
defined as a chain of local optimizations where the final result (the color repre-
sentatives) of the processing of one image is used as the initial condition for the
processing of the next image in the sequence. Color Quantization is computed
by Competitive Neural Networks.

Benchmarking of our Color Quantization processes is achieved by the appli-
cation of a state of the art algorithm: the Heckbert’s algorithm. We assume
that this algorithm is the best non-adaptative reference that we can obtain. We
apply it in two ways. The stationary application computes the color representa-
tives for the whole sequence on the data of the first image of the sequence. The
non-stationary application repeats the computation of color representatives for
each image in the sequence. The later is assumed as the best non-adaptative
result, the first as the worst allowable response of the algorithms tested. There-
fore, all adaptive algorithm results are expected to be bounded by these two
responses.

Image filters are implemented as convolution-like operators, providing the
filtered value of a pixel as a function of the values of its neighboring pixels. If
we have a set of neighborhood templates, we could make a decision on the value
of a pixel on the basis of the match of its neighborhood to these templates. We
envision two kind of filtering decisions, (a) taking the template’s central pixel
value as the filtered pixel value, and (b) assigning to the pixel the class code cor-
responding to the neighborhood template. This process is some kind of filtering
by texture. Specifically, we have considered that the neighborhood templates
can be built by Vector Quantization design processes as a kind of average tex-
ture representatives. Application to biomedical images show some interesting
responses of the filters designed by this procedure. A Bayesian inverse analysis
shows that it is not unlikely for these filters to have good restoration and edge
preservation properties.

An important feature of all these applications is the need for quick responses.
This requirement has pushed us to consider one-pass applications of the algo-
rithms, meaning that the data samples are processed only once to obtain the
desired results. This learning schedule is sub-optimal, asking for additional ro-
bustness against bad initializations and enhanced convergence properties of the
learning algorithms.

1.2.2 Unsupervised Learning
Unsupervised learning deals with discovering of regularities in the data when
no teacher is available. The simplest form of unsupervised learning perform
data averaging, searching for representatives constructed as averages of clus-
ters of data points. As such, unsupervised learning is applied to the solution
of Clustering-by-representatives problems, equivalent to the Vector Quantiza-
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tion design problem. Vector Quantization is defined in the context of signal
processing as a compression and/or codification process. The error of the com-
pression/decompression process is the error committed by the substitution of
the signal vector values by their closest representatives in the codebook. The
consideration of non-stationary signals, that is, signals with time varying sta-
tistical properties, lead to the definition of Adaptive Vector Quantization. As
discussed above, when the application domain is image sequence processing, the
time varying statistical properties assume some simplifying properties: images
can be considered as independent, locally stationary processes, so that adapta-
tion processes can be applied in a time axis defined by the sequence of frames. At
the same time, the time dependences between frames allows to consider as good
initial conditions for the learning processes the results of the previous frame in
the sequence. We have devoted a lot of effort to the sensitivity analysis of the
diverse learning algorithms applied as Adaptive Vector Quantization algorithms
in such an adaptation time frame.

The experimentation performed in this Thesis has covered the most salient
Competitive Neural Networks found in the literature: Simple Competitive Learn-
ing, Frequency Sensitive Competitive Learning, Self Organizing Map, Fuzzy
Learning Vector Quantization, Soft Competition Scheme, and Neural Gas. We
have fitted them into the common pattern of the general Competitive Neural
Network, interpreted as a minimization of a general error function that converges
to the Euclidean distortion (aka within-cluster dispersion, aka mean square er-
ror). In other words, the essential competitive rule is the Simple Competitive
Learning, which minimizes the Euclidean distortion. All other competitive rules
are variations that converge to it along the evolution of the competitive rule con-
trol parameter, which specifically is the neighboring function radius. Therefore,
all other competitive rules perform the minimization of a sequence of energy
functions, whose explicit formulation may be unknown, converging to the Eu-
clidean distortion. Under this view all Competitive Neural Networks are robust
realizations of the same minimization process. In fact, this functional conver-
gence is very similar to the Graduated Non-Convexity approach to regularize
some difficult numerical problems. We have explored the feasibility of translat-
ing some results on Graduated Non-Convexity to improve the convergence prop-
erties of the Competitive Neural Networks, specifically the Self Organizing Map
and the Neural Gas. Besides, we have tested empirically over a paradigmatic
image sequence, the sensitivity of all those competitive rules to their respective
learning control parameters. We started with the simple ones, the Simple Com-
petitive Learning and Frequency Sensitive Competitive Learning, followed by
the comparative between the remaining competitive rules. The Self Organizing
Map deserves additional attention and more detailed sensitive analysis.

The problem of determining the number of classes involves balancing two
functions of opposite signs: (a) some solution complexity measure and (b) the
quantization distortion. In this Thesis we have applied an Occam Filter ap-
proach to determine the number of classes in an instance application of the Vec-
tor Quantization Bayesian Filter. The Occam filter seeks the balance between
the noise cancelation and the signal loss due to compression. It is assumed that
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Vector Quantization loss corresponds to the noise component when the com-
pression obtained is below a rate corresponding to the noise magnitude. Above
that value, compression loss corresponds both to noise cancellation and signal
loss. The approach needs the computation of the distortion-rate curve, imply-
ing the computation of the clustering process many times. The time efficiency
of the Self Organizing Map allowed the realization of the experiment for a 3D
biomedical image.

We have performed a detailed empirical and analytical study of the con-
vergence properties of an unsupervised learning rule, the Generalized Learning
Vector Quantization, finding undesired behaviors, such as the fact that the so-
lutions could diverge depending of the scale of the input space.

Besides, we have proposed some new computational tools. One is the Lo-
cal Stochastic Learning Rule, which is a variation of the Simple Competitive
Learning based on the random assignment of the winning unit on the basis of
the ad-hoc probability distribution built from the distance of the input data to
the representatives. This scheme was able to generate Vector Quantizations of
image block for image compression applications, with comparable results to the
Simple Competitive Learning.

Finally, we have explored also the definition of evolutionary strategies for
the search of codevectors. The evolutionary strategy is formulated following a
Michigan approach, in which each individual does not provide a complete solu-
tion to the clustering problem, but only one codevector. The whole population
is the codebook giving solution to the clustering problem. This definition of
the population has some implications on the definition of the fitness function
and the evolutionary operators. The fitness function at the individual chro-
mosome level does not give any idea about how well the clustering problem is
being solved, therefore we need to define a fitness function of the entire pop-
ulation. Additionally, the definition of the mutation and selection operator is
representation-specific. Mutation generates new codevectors, so that the selec-
tion is a combinatorial problem that is solved by a greedy approach. We select
the codevectors in linear time on the basis of their impact in the clustering
quality. This strategy has been applied to the Color Quantization of image se-
quences and to the design of image filters based on the Vector Quantization. For
this last application, we have also tested a strategy to determine the number of
clusters.

1.2.3 Supervised Learning
Supervised learning needs a teacher giving the correct answers to the questions
posed by the data. The explorations in this realm have been of two kinds.
First we have made some direct applications of supervised approaches based on
unsupervised architectures. Second we have made some fundamental works on
(at the time) innovative architectures.

On the application side, the first work was the fusion of two Self Organizing
maps trained on skin and non-skin pixel samples into a single supervised clas-
sifier. The role of the supervised classifier was very simple, and a simple linear
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classifier gives good results once the underlying maps have been well (unsuper-
visedly) trained.

The second application was the tissue segmentation in a 3D biomedical im-
age. In this application we first trained a Vector Quantization to obtain the
texture patterns for the filtering process. This unsupervised process was aimed
to obtain a preclassification of the pixel into some gross classes that need not
to be identified (therefore the identifiability problem does not affect us). This
preclassification eases the training of the next supervisedly trained component
of the system. The Multi-Layer Perceptron is trained on vectors of neighboring
pixel tissue classifications. The resulting Multi-Layer Perceptron classified vol-
ume is further processed by another unsupervised Vector Quantization Bayesian
Filter to remove some spurious detection, performing a kind of morphological
cleaning of the results.

The first fundamental work on supervised learning was performed on the gen-
eralization of the High Order Boltzmann Machines from the binary input/output
mapping domain into more general domains, with categorical (integer) and real
valued input variables. We have generalized the learning rule to these domains
showing its applicability. We have also found that the good convergence prop-
erties are preserved despite the change of the input space. The objective func-
tion minimized by the High Order Boltzmann Machine learning process, the
Kullback-Leibler divergence, is convex if there are no hidden units in the net-
work. High order connections effectively substitute the hidden units with equiv-
alent representational power, meaning that the same problems can be mapped
into a architectures with high order connections or with a hidden layer. We
tested the approach on benchmark databases that provide the standard valida-
tion at the time.

Finally, we have been working in the last epoch of this Thesis on the training
of an specific class of classifiers based on Dendritic Computing. Dendritic com-
puting is formulated as a min-max polynomial able to discriminate between two
classes: a positive class and a complementary class. The original formulation of
the Dendritic Computing classifier had many parameters, with low generaliza-
tion abilities. The starting work reported in the last chapter of the Thesis aims
to obtain parsimonious solutions to the classification problem by the application
of the Sparse Bayesian Learning paradigm. We have reformulated the dendritic
computing in this Bayesian framework obtaining preliminar encouraging results.
The approach involves the introduction of a lattice-kernel representation of the
classifier that allow for the relevance modeling of data samples and consequent
removal of irrelevant samples following a Bayesian approach.

1.3 Contributions
The following are the most salient contributions of this Thesis:

1. Formulation of the most important Competitive Neural Networks in a
common framework as instances of a general competitive rule, identifying
key parameters for the control of the functional convergence of these rules
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to the Simple Competitive Learning. Specifically, the neighboring function
radius is the main control parameter in this process.

2. Formulation and efficient implementation of one-pass realizations of learn-
ing schedules for a variety of Competitive Neural Networks, demonstrating
their robustness and performance.

3. Systematic and rigorous analysis of a competitive learning rule, General-
ized Learning Vector Quantization, discovering undesired responses of the
algorithm and finding their analytical causes.

4. Proposition of a new paradigm of Clustering problems the Non-Stationary
Clustering, with a paradigm demonstration, the Color Quantization of
image sequences. Proposition of a general approach to their solution, the
Frame Based Adaptive Vector Quantization.

5. Exhaustive test of the Competitive Neural Networks on the Color Quanti-
zation of image sequences, proving the concept of Non-Stationary Cluster-
ing, and the robustness of the Frame Based Adaptive Vector Quantization
performed by the Competitive Neural Networks.

6. Exhaustive sensitivity analysis of the Self Organizing Map on the Color
Quantization of image sequences problem.

7. Formulation and demonstration of a Local Stochastic Learning Rule.

8. Formulation of a Michigan-like Evolution Strategy for Clustering, demon-
strating its performance on two problems, the Color Quantization of image
sequences and the design of a Vector Quantization Bayesian Filter.

9. Formal definition of the Vector Quantization Bayesian Filter, with an
inverse Bayesian justification of its properties. Application to tissue seg-
mentation in two frameworks: supervised and unsupervised.

10. Development of a color based face localization system, based on comple-
mentary Self Organizing Maps.

11. Development of an Occam Filter approach for the determination of the
optimal number of clusters (optimal codebook size). Application of this
approach to the segmentation of a biomedical MRI data case.

12. Generalization of the learning rule of the High Order Boltzmann Machine.
Generalization of its convergence results based on the convexity of the
Kullback-Leibler divergence. Test on benchmark data.

13. Application of the Sparse Bayesian Learning to the Dendritic Computing
to obtain Relevant Dendritic Computing parsimonious classifiers.
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1.5 Structure of the Thesis
The Thesis is structured in three main parts with an introduction composed of
three chapters and some appendices containing complementary materials to the
main core of the Thesis. Part I is composed of Chapters 4 to 8. Its general con-
tent is the work done on the assessment of convergence for some unsupervised
learning architectures, specially some Competitive Neural Networks. The per-
formance in some specific tasks is also assessed in computational experiments.
Part II includes Chapters 9 to 12. Its general content is the description of some
new computational techniques for Vector Quantization, including a stochastic
learning rule and an evolutionary strategy. Performance in applications is also
discussed. Part III is devoted to supervised learning algorithms, includes Chap-
ters 13 to 16. Finally, Appendices A to E contain the description of additional
materials.

The contents of the chapters is as follows:

• Chapter 1, this chapter, contains the general description of the works done,
its motivation, the specification of the Thesis objectives, contributions and
publications obtained as a result of the works achieved.
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• Chapter 2 is an introductory chapter compiling the main ideas and def-
initions regarding unsupervised learning that will be used in parts I and
II. It includes the definitions of the Clustering and Vector Quantization
problems, with its extension to the non-stationary situations, which is
the basic setting for image sequence processing. The definition of the
main Competitive Neural Network architectures in a common framework
is given, including the specification of the scheduling of the learning control
parameters.

• Chapter 3 contains the description of some of the applications tackled
in the Thesis, specifically the face localization based on color processing,
the color quantization of image sequences and the processing of biomed-
ical Magnetic Resonance Image data via image filtering based on Vector
Quantization.

• Chapter 4 contains the convergence analysis of the Generalized Learning
Vector Quantization from a analytical point of view. Inconsistent and
undesired behavior of this algorithm is reported.

• Chapter 5 contains the results of the application of basic Competitive
Neural Networks, the Simple Competitive Learning and the Frequency
Sensitive Competitive Learning, on an image sequence Color Quantization.
The experimental results report an exhaustive sensitivity analysis to some
parameters, such as the codebook size, the learning rate scheduling, time
subsampling and initial conditions.

• Chapter 6 contains the comparative results of the application of Compet-
itive Neural Networks with neighboring functions to the image sequence
Color Quantization. Some experimental sensitivity is reported for the di-
verse architectures, but the main result is that Self Organizing Map is the
winning algorithm.

• Chapter 7 contains a detailed sensitivity analysis of the Self Organizing
Map results applied to the image sequence Color Quantization task.

• Chapter 8 contains the discussion of the convergence of the Self Organizing
Map and Neural Gas from the point of view of Graduated Non-Convexity
methods. The neural network architectures are formulated as Graduated
Non-Convexity methods. Experimental computational results confirm the
feasibility of the approach to understand the behavior of both architectures
and to improve its learning convergence speed through control parameter
schedulings.

• Chapter 9 contains the proposal of a Competitive Neural Network ar-
chitecture based on a Local Stochastic Competition supporting a Local
Stochastic Learning Rule. Convergence of the Local Stochastic Competi-
tion to the nearest neighbor assignment is discussed. Experimental results
on image vector quantization show the performance of the proposed ar-
chitecture.
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• Chapter 10 contains a new Evolutionary Strategy for the design of vector
quantizers. The Evolutionary Strategy has a specific representation of the
problem, where all the population represents a codebook, each individual
chromosome represents a codevector. Appropriate fitness functions, mu-
tation and selection operators are defined. The approach is applied to the
Color Quantization of image sequences.

• Chapter 11 contains the application of the Evolutionary Strategy for the
design of Vector Quantization based filters applied to Magnetic Resonance
Imaging data.

• Chapter 12 contains an approach to the design of the optimal codebook
size for Vector Quantization based filters following an Occam razor ap-
proach. Experimental results on the segmentation of Magnetic Resonance
Imaging data are provided.

• Chapter 13 contains the supervised vector quantization approach applied
for the skin color segmentation for the face localization problem.

• Chapter 14 contains the description of a hybrid system that combines the
unsupervised design of Vector Quantization based filters with a supervised
Multi-Layer Perceptron approach for the segmentation of target tissues in
Magnetic Resonance Imaging data in a pharmacological test experiment.

• Chapter 15 contains the definition of the High Order Boltzmann Machine,
its supervised learning rules, and its application to benchmarking datasets.

• Chapter 16 contains the definition of Dendritic Computing and the ap-
plication of Sparse Bayesian Learning methods for the achievement of
parsimonious dendritic classifiers.

• Appendix A contains a review of Continuation and Graduated Non-Convexity
methods that give a background for Chapter 8.

• Appendix B contains the formalization of Vector Quantization Bayesian
Filtering. Bayesian reasoning is used to justify some of the properties
found empirically of these filters. This appendix is the background for
Chapters 10, 11 and 12.

• Appendix C describes the face localization system in which the works of
Chapter 13 are embedded.

• Appendix D contains the description of the experimental data used in the
experiments about the Color Quantization of image sequences reported in
Chapters 5, 6, 7, 10.

• Appendix E contains the description of the Monk’s problems used to test
the High Order Boltzmann Machine in Chapter 15.
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1.5.1 About the conclusions
The conventional structure of a Thesis requires a chapter summarizing the con-
clusions of the work. In this Thesis we have given our conclusions at the end
of the chapters containing some specific contribution. We find that a sepa-
rate conclusions chapter would be a very artificial smashup of these particular
conclusions and would not add any value to the Thesis. We ask the reader’s
kindness to forgive us this small liberty.

Regarding the proposal of further avenues of work, the last chapter of the
Thesis is in fact an statement of such future working lines. We have started
afresh a completely new line of research, we report some encouraging results
and open the door for the works of coming young researchers.
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Chapter 2

Unsupervised learning:
Definitions and notations

Learning is related to prediction: it is our ability to learn how to formulate
predictions from regularities in the data. If there is knowledge about some kind
of desired response, either a categorical or quantitative measure, learning can
be done as a supervised process. Unsupervised learning concerns the problem of
discovering categories from unlabeled data, when there is not available training
teacher that may provide the desired mapping of the data items into classes.
In the first part of this Thesis we deal with unsupervised learning algorithms
applied to suitable tasks. In fact, this part constitutes a big percentage of the
actual research work done in this Thesis. In this Chapter we gather the most
significant definitions of problems, techniques and methods that will be used
across the first part of the Thesis. We emphasize the idea of Non-stationary
Clustering and the corresponding Frame Based Adaptive Vector Quantization
which set the stage for many of the computational works reported in the ensuing
chapters of this Thesis.

Section 2.1 contains some introductory comments. Section 2.2 introduces
Clustering conventional notions. Section 2.3 provides definitions for Vector
Quantization (VQ). Section 2.4 gathers the definition of Competitive Neural
Networks that have been applied to Clustering and VQ tasks across the PhD
Thesis. Section 2.5 introduces the problem on Non-stationary clustering. Sec-
tion 2.6 presents the Frame Adaptive Vector Quantization for image sequences.
Section 2.7 completes the chapter with a simple threshold algorithm that can
be very effective in some practical situations.

2.1 Introduction
Clustering [76, 89, 146, 268] is the task of grouping a set of data vectors into
clusters, so that data vectors in the same cluster are more similar to each other
than data vectors belonging to different clusters. The quality of the solution is

17
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measured by a given clustering criterium function, based on a similarity mea-
sure. Vector Quantization (VQ) design [97, 128, 129] tries to find a set of
representatives called codevectors that minimize the expected quantization er-
ror, defined on the basis on some appropriate distance, when used to encode the
set of data vectors. VQ procedure divides the data space set into a number of
decision regions which are a Voronoi tessellation for the Euclidean distance. All
data vectors falling in one decision region are represented by the corresponding
codevector. VQ design finds the optimal codebook, so that it can be assumed
as a specific Clustering process: a Clustering based on representatives. Both
Clustering and VQ design problems are non-convex, non-linear optimization
problems. Conventional formulations of the Clustering/VQ design problems
assume that the underlying stochastic process is stationary and that a given
set of sample vectors characterizes this process appropriately. We will consider
here non-stationary problems defined when the underlying stochastic process
has time-varying features.

Clustering and VQ are important techniques in many engineering and scien-
tific disciplines. They have applications in signal processing, pattern recognition,
machine learning and data analysis [97, 136, 73, 76, 146, 89]. A vast number
of approaches have been proposed to solve these problems, among them Com-
petitive Neural Networks (CNN) have been proposed as adaptive methods for
representative computation [192, 3, 140, 171]. CNN are a class of unsupervised
procedures performing stochastic gradient minimization to solve these problems.
In CNN, neurons compete for activation (win) upon presentation of a subset of
the input data modifying their weights in response to this input. Other Neural
Network architectures, like the Perceptron or the Adaline, the neuron weight
adaptation is guided by the specified desired outputs, therefore, performing su-
pervised learning process. On the contrary, the unsupervised learning of CNN
is performed without knowledge of the class to which the input may belong. To
avoid falling into local minima during the learning process, a common approach
is to modify the basic adaptation rule introducing some regularization term.
These regularization terms usually involve the adaptation of other neurons be-
sides the winner, selected according to some neuron neighboring criterium.

2.2 Clustering
Among the many Clustering methods introduced in the literature, we distinguish
two main groups: Partitional Clustering and Hierarchical Clustering methods.
Partitional Clustering methods generate a single partition of the data in an
attempt to recover natural groups present in the data; Hierarchical Clustering
techniques organize the data into a nested sequence of groupings [146]. A rele-
vant distinction is between Stationary and Non-stationary Clustering. Station-
ary Clustering assumes that the provided data is a sample X = {x1, . . . ,xN} of
a stationary stochastic process, whose statistical characteristics will not change
in time. Non-stationary clustering will be introduced below.

The Clustering problem can be described as follows from the Partitional
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point of view: Given N data vectors in a d−dimensional metric space, establish
a partition of the data vectors into M groups, or clusters, such that the data
vectors in a cluster are more similar to each other than to data vectors in any
different clusters. The value of M may or may not be specified a priori. A
local or global clustering criterion must be defined to guide the search for an
optimal partition. Global criteria represent each cluster by a representative
vector assigning the data vectors to clusters according to its similarity to the
representatives. A local criterion forms clusters by utilizing local structure in
the data. The brute force approach to search for the optimal partition has the
following steps:

1. Define a Clustering criterion function,

2. Compute all possible partitions with M clusters , and,

3. Select the partition that optimizes the criterion.

Thus formulated, Clustering is a combinatorial problem. The practical alterna-
tive to perform the criterion function optimization applies an iterative technique
starting with an initial partition, and updating this partition following a local
search strategy until some convergence criteria is met. These methods are com-
putationally efficient but often converge to local minima of the criterion function.
Different initial partitions can lead to different final Clustering solutions, as a
result of the convergence to local minima.

The conventional criterion function is the mean square error corresponding
to the within-cluster distortion for a fixed number of clusters. In crisp clustering
the sample data set of N vectors is partitioned into M clusters {C1, C2, · · · , CM}
such that cluster Ci has ni data vectors and each data vector belongs exactly
to one cluster, so that

�M
i=1 ni = N . The representative of cluster Ci is defined

as the cluster mean: yi = 1
ni

�ni

j=1 x
(i)
j , where x

(i)
j is the j-th data vector

belonging to cluster Ci. The within-cluster distortion for cluster Ci is the sum
of the squared Euclidean distances between each pattern in Ci and its cluster
center yi computed as:

ξ2 =
M�

i=1

ni�

j=1

�
x
(i)
j − yi

�T �
x
(i)
j − yi

�
(2.1)

The objective of the crisp Clustering process is to find a partition containing
M clusters minimizing ξ2 for fixed M . In the classical k-means algorithm,
partitions are updated by reassigning data vectors to clusters in an attempt to
reduce the within-cluster distortion allocating every data vector to its closest
cluster center according to the Euclidean distance. Alternative metrics, such
as the Mahalanobis distance, could be used to allocate data vectors to cluster
centers, implying a different way to compute the cluster center, and that the
minimized function is different from equation (2.1). In fuzzy/soft Clustering
algorithms the assignment of data vectors to clusters is not unique, but it is
specified by a membership value in the [0, 1] interval, which can be interpreted
as an a posteriori probability in some settings.



20 CHAPTER 2. UNSUPERVISED LEARNING: DEFINITIONS ...

2.3 Vector Quantization
Let us assume a set of sample vectors, X = {x1, ..,xN}, each xj ∈ Rd. A vector
quantizer Q maps each xj into a codebook, which is a finite set Y = {y1, ...,yM}
of representative vectors (aka codevectors):

Q : Rd → Y,

where each yi ∈ Rd with and M is the size of the codebook.
A vector quantizer defines a two-way transformation: the direct transforma-

tion given by a vector encoder C

C : Rd → I,

and the inverse transformation given by a vector decoder D:

D : I→ Rd,

where I = {1, . . . ,M} is the set of different integer codes. The vector encoder
is usually defined by the Nearest Neighbor rule:

CNN (x,Y) = i s.t. ε (x,yi) = min
k=1..M

{ε (x,yk)} ,

where ε (.) is a similarity measure. The vector decoder, that allows to recover
the codified data, is defined as:

D (i,Y) = yi.

We can define the operation of the vector quantizer as a composition of the
coding and decoding transformations:

Q (x) = D (C (x,Y) ,Y) ,

which attempts to recover the original data after codification.
There is a partition of the input space associated with each codebook:

Ri =
�
x ∈ Rd |C (x,Y) = i

�
,

M�

i=1

Ri = Rd;
M�

i=1

Ri = Ø.

Given a measure of the reproduction error ε (x,�x) = ε (x,Q (x)), the Vector
Quantizer performance is measured by the expectation of this reproduction error

ξ = Ex [ε (x,�x)] =
ˆ

ε (x,�x) p (x) dx, (2.2)

where Ex is the expectation computed over x, and p (x) is the probability density
function (p.d.f.) of the input vectors. When the source that generates the input
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vectors is stationary this p.d.f. remains unchanged over time. Given a sample
X = {x1, ...,xN} the performance (2.2) can be estimated computing the mean
error over the sample

�ξ =
1

N

N�

j=1

ε (xj ,�xj) (2.3)

Based on the similarity measure adopted, the input space partition is different.
The most widely used error measure, and the one that we will effectively used
in our experimental work, is the squared Euclidean distance

ε2E (x,y) = �x− y�2 = (x− y)T (x− y) ,

therefore the error measure is the Euclidean distortion

ξ2E =
M�

i=1

PiEx

�
�x− yi�

2 |x ∈Ri

�
,

where Pi is the a priori probability of the i-th partition of the input space
defined as

Ri =
�
x

���i = argmin
�
�x− yi�

2 ; i = 1, ...,M
��

,

which is a Voronoi tessellation of the input space.
The problem of designing a Vector Quantizer is the search for the optimal

codebook which minimizes the distortion introduced by replacing the original x
vectors by their class representative yi:

Y
∗ = min

Y

ξ.

When the quantization error measure is the squared Euclidean distance and
the input space partition is given by the Nearest Neighbor rule, the VQ design
can be formally stated as the following optimization problem

min
Y

�ξ2E = min
Y

1

N

M�

i=1

N�

j=1

�xj − yi�2 δi (xj ,Y) , (2.4)

where δi is the membership coefficient

δi (x,Y) =

�
1 i = arg min

k=1,..,M

�
�x− yk�2

�

0 otherwise
. (2.5)

2.4 Competitive Neural Networks
Competitive Neural Network (CNN) algorithms are adaptive algorithms per-
forming stochastic gradient descent on a distortion-like criterium function [268,
138, 140, 167, 171, 155], which has different formulations in different CNN ar-
chitectures, to solve Clustering/VQ problems. When the criterium function is
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known, the CNN learning rule can be formally derived from it. For instance,
the basic competitive learning rule, the Simple Competitive Learning (SCL), can
be derived as a stochastic gradient descent minimization of the within-cluster
distortion. However, most CNN learning rules have been proposed on the ba-
sis of some intuitive reasoning so that, in some cases, it is extremely difficult
or impossible to obtain analytically the formulation of the objective function
effectively minimized by these rules.

In this section, we start recalling the definition of the general competi-
tive learning rule. After that, we give the formulations of the SCL, the Self-
Organizing Map (SOM), Fuzzy Learning VQ (FLVQ), Neural Gas (NG) and
Soft Competition Scheme (SCS) as instances of the general competitive learn-
ing rule. We discuss the objective function minimized by each of these learning
rules, and their relation to the Euclidean distortion. The argument is that, as
discussed in [43], the SOM and other competitive neural networks can be taken
as robust initialization procedures for the SCL, when the goal is the minimiza-
tion of the Euclidean distortion. Similar arguments appear in the literature
[30, 236, 270, 288, 292] supporting diverse approaches to define robust neuron-
inspired Clustering/VQ algorithms.

2.4.1 The general Competitive Learning rule
The expression of the general competitive learning rule for CNN has the follow-
ing form:

yi (t+ 1) = yi (t) + αi (t)Φi (x (t) ,Y (t) , t) (x (t)− yi (t)) , (2.6)

where x (t) ∈ X; 1 ≤ i ≤ M , M is the number of competitive units, yi (t) and
Y (t) are the i-th codevector and the codebook at adaptation time t. The neigh-
boring function Φ (.) defines the set of units that are adapted upon presentation
of the input vector x (t). The factor αi (t) denotes the (local) learning rate. In
order to guarantee theoretical convergence the learning rate αi (t) must comply
with the Robins-Monro conditions [89, 167, 173, 231, 268]:

• lim
t→∞

α (t)=0,

•
�∞

t=0 α (t) = ∞ , and

•
�∞

t=0 α
2 (t) < ∞.

These conditions imply very lengthy adaptation processes, so that in practice
they are often overlooked.

Let us consider that the neighboring function remains fixed during the ap-
plication of the learning rule

Φi (x (t) ,Y (t) , t) = Φi (x,Y) ; ∀t (2.7)

We hypothesize that the learning rule is the stochastic gradient minimization
of an objective function. That means that the instantaneous gradient of the
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hypothetical objective function is functionally dependent on the neighboring
function:

Φi (x,Y) (x− yi) = − ∂

∂yi
ξΦ

����
x

.

Under the appropriate conditions, the underlying objective function can be de-
duced from the learning rule of equation (2.6) as the expectation of the gradient
integration:

ξΦ = Ex

�
M�

i=1

ˆ
−Φi (x,Y) (x− yi) dyi

�
. (2.8)

However, in practical applications, the neighboring function varies during
the learning process. The analytical form of the minimized function then be-
comes much more complex, most of the times remaining unknown. A convenient
approach is to view the learning rule of equation (2.6) as performing a cascade
of minimizations over a sequence of objective functions

ξΦ (t) =
M�

i=1

ˆ ˆ
−Φi (x,Y, t) (x− yi) p (x) dyidx.

The limit of this sequence of objective functions will be determined by the limit
of their respective neighboring functions:

lim
t→∞

Φi (x,Y,t) = Φ∗
i (x,Y) =⇒ lim

t→∞
ξΦ (t) = ξΦ∗ .

The application of equation (2.6) is, therefore, a minimization procedure
for the limit objective function ξΦ∗ . The general process is an annealing [1]
defined over the width and shape of the neighborhood function. In the most
conventional application of (2.6) the neighboring function will shrink its radius
approaching the Nearest Neighbor membership function:

lim
t→∞

Φi (x,Y,t) = δi (x,Y) ,

where the Nearest Neighbor membership function δi (x,Y) is defined in equation
(2.5). Therefore, the sequence of objective functions usually converges to the
Euclidean distortion

lim
t→∞

ξΦ (t) ≈ ξ2E , (2.9)

or to some equivalent function that has its minima in the same places. This con-
vergence is controlled by the specific annealing control parameter of the neigh-
boring function. Under this view, SOM, NG, FLVQ and SCS provide robust
initialization procedures for the SCL. Therefore, they are expected to improve
the performance of SCL in the global minimization of the Euclidean distortion.
This interpretation is in contrast with the interpretation of the neighboring func-
tions as modifications of the learning rate αi (t), such as discussed in [30, 288].
We consider that the learning rate must have the same scheduling in all CNN
architectures, so that the scheduling of the remaining coefficients characterize
the annealing sequence of objective functions being minimized.
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2.4.2 The Simple Competitive Learning
The Simple Competitive Learning (SCL) is the straightforward minimization of
the Euclidean distortion of equation (2.4) [89, 138, 140, 167, 171, 268]. SCL al-
gorithm is the simplest adaptive algorithm for Clustering or VQ. It corresponds
to the rule in equation (2.6) when the neighboring function is defined as the
Nearest Neighbor function:

Φi (x,Y, t) = δi (x,Y) =

�
1 i = arg min

k=1,...,M

�
�x− yk�2

�

0 otherwise
(2.10)

Therefore, only the winning codevector is adjusted. The convergence of the
SCL to the optimal codebook will depend upon the initial conditions, because
of the local search nature of stochastic gradient descent. The accuracy of the re-
sults will also depend upon the learning rate parameter αi (t), whose scheduling
will be discussed at the end of this section. The SCL is the stochastic equivalent
to the K-means algorithm [189, 76, 268, 89].

2.4.3 The Self Organizing Map
The fundamental idea of self-organizing feature maps was originally introduced
by von Malsburg [191] and Grossberg [131] to explain the formation of neural
topological maps. Based on these works, Kohonen [166, 167] proposed the Self-
Organizing Maps (SOM) which has been successfully applied to a large number
of engineering applications up to date. A number of algorithms have been
proposed in the literature as variations on the original idea, such as the growing
structures of [87].

The SOM rule updates the winner unit (in the Euclidean distance sense) and
its neighboring units according to the topological structure of the codevector
index space. This topological structure is specified by a distance between unit
indices. Let us denote the winning unit as follows

w (x,Y) = arg min
k=1,..,M

�
�x− yk�2

�
. (2.11)

The most general formulations of the SOM are given by neighboring functions
(Gaussian, Mexican hat, crisp membership,...) defined over the distance between
the index of an arbitrary unit and the index of the winning unit:

Φψ
i (x,Y) = ψ (|w (x,Y)− i|) ; 1 ≤ i ≤ c,

where ψ (.) is a decreasing function, and |.| is a distance defined over the index
space. In the works reported in the chapters of Part I, we have used the simplest
definition of the SOM learning rule:

• The index distance is the absolute distance.
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• All the codevectors with indices inside a neighborhood radius v are subject
to the same adaptation rule, with the same weightings.

The time invariant neighborhood is, thus, defined as:

Φ(SOM)
i (x,Y, v) =

�
1 |w (x,Y)− i| ≤ v
0 otherwise

; 1 ≤ i ≤ M. (2.12)

It is trivial to verify that

lim
v→∞

Φ(SOM)
i (x,Y, v) = 1; lim

v→0
Φ(SOM)

i (x,Y, v) = δi (x,Y) ,

so that the neighboring function of equation (2.12) becomes the crisp member-
ship for null v, and gives equal importance to all units for large v.

The function minimized by the learning rule constructed combining equa-
tions (2.6) and (2.12) is an extension of the Euclidean distortion [43, 140, 159,
167] in which each codevector contributes the distortion due to the quantiza-
tion of its corresponding region in Voronoi tessellation of the input space, plus
that of its neighboring codevectors. The time dependent neighboring function
appears when we introduce a time dependent neighboring radius v (t):

Φ(SOM)
i (x,Y,t) =

�
1 |w (x,Y)− i| ≤ v (t)
0 otherwise

; 1 ≤ i ≤ M.

The neighboring radius is decreased gradually so that

lim
t→∞

v (t) = 0 =⇒ lim
t→∞

Φ(SOM)
i (x,Y, t) = δi (x,Y) ,

and therefore
lim
t→∞

ξΦ(SOM) (t) ≈ ξ2E .

The functional convergence will depend on the parameters controlling the
annealing of the neighborhood radius. The formal analysis of the convergence
of the SOM has been a hot research topic by itself [66, 83, 84, 85]. Much of
the published studies is devoted to its convergence to organized states. From
our perspective, the convergence to organized states is only significative if the
organized states ensure better initial conditions for the minimization of the
Euclidean distortion performed by the SCL rule.

2.4.4 The Fuzzy Learning Vector Quantization
The Fuzzy Learning Vector Quantization (FLVQ) [30, 61, 156, 157, 211, 270]
performs the minimization of the Fuzzy Clustering criterium [26]. In its original
definition FLVQ was proposed as a batch algorithm, however, we consider it as
an on-line algorithm fitting in the pattern defined by equation (2.6). The anneal-
ing control parameter of the neighborhood is the exponent m; the neighboring
function has the form (1 ≤ i ≤ M):

Φ(FLV Q)
i (x,Y,m) = (ui (x,Y))m =




M�

k=1

�
�x− yi�2

�x− yk�2

� 1
m−1




−m

, (2.13)
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where ui (x,Y) is the fuzzy membership function. This neighboring function is
well defined when x �= yi. It can be shown [30] that this neighboring function
becomes the Nearest Neighbor function when m approaches 1 from above.

lim
m→1+

ui (x,Y) = δi (x,Y) =⇒ lim
m→1+

Φ(FLV Q)
i (x,Y,m) = δi (x,Y) .

When m grows, the neighboring function has some counterintuitive behavior,
the fuzzy membership becomes evenly distributed, but the neighboring function
annihilates itself:

lim
m→∞

ui (x,Y) =
1

M
=⇒ lim

m→∞
Φ(FLV Q)

i (x,Y,m) = 0.

Therefore, the general CNN learning rule of equation (2.6) with the neighboring
function given by equation (2.13) becomes the SCL when m approaches 1 from
above. When m grows to infinity, all the codevectors are equally affected by the
input, but this influence is exponentially damped. Very big values of m induce
no adaptation at all. The function minimized at constant m is related to the
fuzzy clustering criterium, although FLVQ can not be derived as an stochastic
gradient descent of it. The time dependent neighboring function is defined by
changing the neighborhood control parameter in time:

Φ(FLV Q)
i (x,Y,m (t)) =




M�

k=1

�
�x− yi�2

�x− yk�2

� 1
m(t)−1




−m(t)

; 1 ≤ i ≤ M. (2.14)

The annealing schedule starts from large values of m (t) decreasing down to
1.

lim
t→∞

m (t) = 1+ =⇒ lim
t→∞

Φ(FLV Q)
i (x,Y, t) = δi (x,Y) (2.15)

=⇒ lim
t→∞

ξΦ(FLV Q) (t) ≈ ξ2E . (2.16)

The initial fuzziness due to the large values of m (t) would move all the code-
vectors to the region of the space occupied by the sample data. The proper
scheduling of m (t) is critical. Too long fuzzy periods will produce a collapse of
the codevectors to the sample mean. Too fast convergence to SCL will not give
any improvement upon it.

2.4.5 The Soft Competition Scheme
The first reference found in the literature to the Soft Competition Scheme is
[288], where the SCS is proposed as a combination of simulated annealing and
SCL. The algorithm is revisited in [30] under an statistical interpretation of the
neighboring coefficients, showing them to be the a posteriori probabilities of the
clusters given an input assuming a mixture of Gaussians as the model of the
data distribution. Let us consider X = {x1, . . . ,xN} as a sample of a random
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vector X , and let us consider that its probability density function is a mixture
of Gaussian densities:

PX (x) =
M�

i=1

p (ωi)Ψ (x |µi,Σi )

where p (ωi) are the a priori probabilities of the clusters and Ψ (x |µi,Σi ) de-
notes a Gaussian density with mean µi and covariance matrix Σi modeling the
conditional density p (x |ωi ). In this setting, the clustering problem becomes a
search for the parameters (µi,Σi) providing the best fit to the empirical distri-
bution {P ∗

X (xi)} computed from the sample. This search can be performed as
an stochastic gradient minimization of the Kullback-Leibler cross-entropy:

CKL =
N�

i=1

P ∗
X (xi) log

P ∗
X (xi)

PX (x)
.

In the case of diagonal covariance matrices,
�

i = σ2
i I, the adaptation rule

derived as the stochastic gradient descent of this measure has the form of a
CNN learning rule as in equation (2.6) with a Gaussian function as the neigh-
boring function. Thus, for the SCS algorithm, the annealing control parameter
of the neighborhood is the isotropic variance σ2 assumed around the cluster
representatives, and the neighboring function has the form 1 ≤ i ≤ M :

Φ(SCS)
i (x,Y,σ) = Ψ

�
x
��yi,σ

2
i I

�
�

M�

k=1

Ψ
�
x
��yk,σ

2
kI

�
�−1

(2.17)

= e−
1
2�x−yi�2σ−2

��M

k=1
e−

1
2�x−yk�2σ−2

�−1

.

As with SOM and FLVQ, it is possible to show that:

lim
σ→∞

Φ(SCS)
i (x,Y,σ) = 1

M ; lim
σ→0

Φ(SCS)
i (x,Y,σ) = δi (x,Y) ,

and, therefore, that the SCS learning rule converges to the SCL learning rule
for specific values of the neighboring parameter. We have assumed the simplest
model. This model can be made more complex by allowing for each component
of the mixture different standard deviations σi, different standard deviations σij

for each axis or even non-diagonal covariance matrices Σi. The standard devia-
tion of the Gaussian distribution is decreased to achieve the desired functional
convergence. The time dependent neighborhood is defined, for 1 ≤ i ≤ M , as:

Φ(SCS)
i (x,Y,t) = e−

1
2�x−yi�2σ(t)−2

��M

k=1
e−

1
2�x−yk�2σ(t)−2

�−1

, (2.18)

and the learning process starts with large values of the assumed standard devi-
ation decreasing it to zero, so that

lim
t→∞

σ (t) = 0 =⇒ lim
t→∞

Φ(SCS)
i (x,Y, t) = δi (x,Y)

=⇒ lim
t→∞

ξΦ(SCS) (t) ≈ ξ2E .
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This process is very sensitive to the scheduling of the Gaussian variance
parameters. Too long adaptation processes with sustained big values of the
variance parameter will collapse the codevectors to the sample mean. Too fast
convergence to low values of the variance parameter will not improve over the
SCL.

2.4.6 The Neural Gas
The Neural Gas (NG) introduced in [193] follows the pattern in equation (2.6)
characterized by the following time invariant neighboring function:

ΦNG
i (x, Y,λ) = e(

−ki(x,Y)/λ), (2.19)

where ki (x,Y) ∈ {0, . . . ,M − 1} is the rank function that returns the position
of the codevector yi in the set of codevectors ordered by their distances to the
input x:

kj (x,Y) < ki (x,Y) ⇒ �yj − x� ≤ �yi − x� .

The annealing control parameter of the neighborhood width is the temperature
λ. All codevectors are updated. There are not properly defined neighbors in
the sense of a topology over the index space, but the temperature parameter λ
controls the span of the effect that the presentation of an input vector has on the
unit weights. It must be noted that the neighborhood function in equation (2.19)
is equal to 1 for the winning unit w regardless of the temperature parameter.
As the temperature goes to zero, the neighboring function goes also to zero for
the non-winning units, converging to SCL:

lim
λ→∞

Φ(NG)
i (x,Y,λ) = 1; lim

λ→0
Φ(NG)

i (x,Y,λ) = δi (x,Y) .

The time dependent neighboring function is based on a time dependent tem-
perature λ (t):

ΦNG
i (x, Y, t) = e(

−ki(x,Y)/λ(t)). (2.20)

The temperature is decreased gradually so that

lim
t→∞

λ (t) = 0 =⇒ lim
t→∞

Φ(NG)
i (x,Y, t) = δi (x,Y) ,

therefore, as with previous CNN architectures we have convergence to the SCL
energy

lim
t→∞

ξΦ(NG) (t) ≈ ξ2E

2.4.7 One-pass learning realizations.
The CNN algorithms have some control parameters, i.e. the learning rate and
the neighborhood size, that allow to control the speed of the learning process
and its convergence. Online CNN realizations modify the control parameters’
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values after each input data presentation and codebook adaptation. The batch
realizations modify their values after each presentation of the whole input data
sample. Both online and batch realizations imply that the input data set is
presented several times. On the contrary, one-pass realizations imply that each
input data is presented at most once for adaptation, and that the control pa-
rameters are modified after each presentation.

In the case of conventional online realizations of the training process, the
time axis t has two possible interpretations. First, it corresponds to the number
of iterations performed over the whole sample, so that the learning rate and
neighbor size is fixed during each iteration over the whole sample. Second, it
corresponds to the input vector presentation number, so that the learning rate
and neighbor size is updated at each presentation. The first time interpretation
is compatible with the batch realization, where the whole sample is used in
a step of codebook reestimation, and the computational time is naturally the
number of sample iterations. The second time interpretation allows one-pass
realizations, where the time limit is the sample size.

In order to guarantee theoretical convergence to a (local) minimum of the
objective function, the learning rate varies as the adaptation proceeds and it
must comply with the Robins-Monro conditions [89, 167, 173, 231, 268]. It is
clear that one-pass adaptation over the sample does not fit well in these con-
ditions. Therefore, learning processes under one-pass schedules will inherently
be suboptimal. However, there is a clear trade-off between short response times
required by some signal processing tasks, and the degree of optimality of the
solution found.

Regarding the neighboring function, the parameter controlling the neigh-
borhood radius will be specific for each CNN. However, all of them have in
common their final convergence to a null neighborhood when the CNN becomes
equivalent to the SCL. This functional convergence is expected to provide the
additional robustness to the one-pass learning schedule accounting for the op-
timality loss due to fast reduction of the learning rate. The effect of the big
neighborhood radius is to provide a good initial condition allowing to reach
a good local minima through the fast learning schedule. A critical parameter
then is the speed of the decrease of the neighborhood radius, balancing global
search at high values with the local search performed at low values. This is the
reasoning in [109] to approach real-time constraints, while other authors have
worked with this idea [42] in the context of conventional online realizations.

2.4.8 The scheduling of learning control parameters
In this subsection we will discuss the setting of the critical parameters of the
CNN discussed above. We first discuss the learning rate scheduling, because it
is common to all of them. Later we discuss the scheduling of each neighborhood
parameter controlling the desired functional convergence. We recall that the
CNN are stochastic gradient descents of an specific objective function.

Contrary to [30, 288] we consider the learning rate as a control parameter of
the stochastic gradient approach and the neighboring function as a characteristic



30 CHAPTER 2. UNSUPERVISED LEARNING: DEFINITIONS ...

of the objective function being minimized, therefore we do not mix them in a
single parameter. The learning rate schedule must be equally applicable to all
the algorithms. We have defined a local and a global learning rate schedule for
the experimental works, which assume a one-pass adaptation process.

• The local learning rate schedule for each unit αi (t) i = 1, ..,M has a linear
scheduling

αi (t) = 0.1 (1− ti/N) , (2.21)
where N is the sample size, and ti is the local adaptation time whose
exact computation depends on the CNN learning rule. It is computed as
the sum of the neighboring coefficients for all the input data presentations,
which can be a {0, 1} variable or a value in the [0, 1] interval.

• The global learning rate α (t) has the same value for all units. Time
parameter t is the input presentation number and its maximum value is
the sample size N . We use the following expression for the learning rate
updating [60]

α (t) = α0

�
αN

α0

� t

N

,

where α0 and αN are the initial and final values of the learning rate,
respectively.

Regarding the neighboring functions Φi (x,Y,t), we have chosen an exponential
decreasing of the neighborhoods. The rate of convergence to the null neighbor-
hood is denoted r. Therefore we have assumed for the SOM, FLVQ, SCS and
NG that

Φ(.)
i (x,Y, t) = δi (x,Y) t ≥ N

r
where N is the size of the sample, and t is the adaptation time. When r = 1 the
neighborhood function does not become the Nearest Neighbor in any instant
during all the training, the CNN does not converge to SCL. As r grows the
convergence to SCL is faster and the final SCL period of the training process
becomes longer. We do not consider r < 1 because it does not have any mean-
ing in a one-pass adaptation framework. The scheduling of the neighborhood
sizes for the SOM, FLVQ, SCS and NG are given by the following expressions,
respectively:

v (t) =
�
(v0 + 1)(1−

r

N
t)
�
− 1 t <

N

r
, (2.22)

m (t) = m0

�
1.1

m0

� r

N
t

t <
N

r
, (2.23)

σ (t) = (σ0 + 1)(1−
r

N
t) − 1 t <

N

r
, (2.24)

λ (t) = λ0

�
0.01

λ0

� r

N
t

t <
N

r
. (2.25)
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2.4.9 Initial codebooks
The initialization of the CNN learning processes can be critical. In fact, some of
our works have addressed the assessment of the sensitivity of CNN learning to
initial conditions. In our works we have tested at least three options to provide
initial codebooks:

• Random selection without repetition over the set of sample data. We call
this approach “in Sample” in some of the following chapters. This initial-
ization ensures that all partition regions will have at least one element,
avoiding singularities. Also, improved convergence can be expected at the
cost of risking a local minima.

• Random generation of codevectors in the input space. This the most
general approach, risking the generation of empty partitions. It can be of
use for reduced dimension input space, such as the RGB color space in
Color Quantization applications. We have denoted it “in RGBbox ” when
applied.

• Application of a simple threshold algorithm for the selection of sample
data vectors that are candidate to be codevectors. The process ensures
the separation of the representatives, so that good quality initial solutions
are provided. We have denoted this approach “Threshold ” in the following
chapters (see section (2.7) for more detailed).

2.5 Non-stationary Clustering
Non-stationary Clustering assume that the data come from a non-stationary
stochastic process sampled at diverse time instants. That is, the population can
be modeled by a discrete time stochastic process {Xτ ; τ = 1, 2, . . .} whose joint
probability distribution is unknown. We do not assume any knowledge of the
time dependencies that could allow to build a predictive model [3]. The time
axis of the real process is denoted τ to differentiate it from the computational
time t of the learning processes.

A working definition of the Non-stationary Clustering problem could read as
follows: Given a sequence of sample datasets X (τ) = {x1 (τ) , . . . ,xN (τ)} ; τ =
0, 1, . . . of the time varying population obtain a corresponding sequence of dis-
joint partitions of the input space with corresponding induced sequence of sets of
disjoint clusters on the sample datasets P (X (τ)) = {X1 (τ) , . . . ,XM (τ)} mini-
mizing a criterium function along time ξ =

�
τ≥0 ξ (τ). The criterium function

is an error measure based on the definition of an appropriate distance, which
is the Euclidean distance in the following. A solution to this problem can be
given by a sequence of cluster representatives Y (τ) = {y1 (τ) , . . . ,yM (τ)} such
that the desired input state partitions are defined by the nearest representative
according to the Euclidean distance:

xj (τ) ∈ Xi (τ) ⇔ i = arg min
k=1,...,M

�
�xj (τ)− yk (τ)�2

�
.
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The criterium function that we will consider at each time step is, therefore, the
integration of the within-cluster distortion

ξ (τ) =
N�

j=1

M�

i=1

�xj (τ)− yi (τ)�2 δi (xj (τ) ,Y (τ)) ,

δi (xj (τ) ,Y (τ)) =

�
1 i = arg min

k=1,...,M

�
�xj (τ)− yk (τ)�2

�

0 otherwise
.

Stated that way, Non-stationary Clustering and Non-stationary VQ design
are equivalent problems, which can be stated as the search for a sequence of
codebooks Y (τ) = {y1 (τ) , . . . ,yM (τ)} minimizing ξ =

�
τ≥0 ξ (τ). Formally:

min
{Y(τ)}

�

τ≥0

N�

j=1

M�

i=1

�xj (τ)− yi (τ)�2 δi (xj (τ) ,Y (τ)) , (2.26)

δi (xj (τ) ,Y (τ)) =

�
1 i = arg min

k=1,...,M

�
�xj (τ)− yk (τ)�2

�

0 otherwise
.

2.6 Frame Based Adaptive Vector Quantization
We propose adaptive algorithms to solve the stochastic minimization problem
of equation (2.26) based in two simplifying assumptions:

1. Time independence: The minimization of the sequence of time dependent
error function can be done independently at each time step.

2. Bounded variation of the optimal codebook between successive time steps.
Then the set of representatives obtained after adaptation in a time step
can be used as the initial conditions for the next time step.

The time independence assumption allows the problem to be decomposed into
a sequence of isolated problems, expecting that bad solutions in a given time
instant do not degrade the overall response of the adaptive algorithm along
time. Adaptive algorithms can be formulated as independent local minimization
procedures. Besides, if we can compute an optimal solution for the stationary
case, we can obtain an optimal solution of the non-stationary case, through the
computation of the optimal solutions at each time instant.

The bounded variation implies that the solution computed for the previous
time step can be assumed as a good initial condition for the next time step.
Therefore, the local minimization performed by the adaptive algorithm can lead
to (near) optimal results.

The adaptive computation of the sequence of cluster representatives can be
stated as follows:
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• At time τ take as initial cluster representatives the ones already computed
from the sample of the process at time τ − 1.

• Use the sample vectors X (τ) = {x1 (τ) , . . . ,xN (τ)} to perform an adap-
tive computation leading to the new estimates of the cluster representa-
tives Y (τ) = {y1 (τ) , . . . ,yM (τ)}.

In this section we review the definition of local stationarity and Adaptive VQ
(AVQ), introducing the Frame-Based AVQ (FBAVQ) which formalizes the above
process. Finally, we discuss the application of competitive neural networks
FBAVQ problems.

2.6.1 Local stationarity and Adaptive VQ
In Sections 2.2 and 2.3 we have reviewed the stationary definitions for Clustering
and VQ. The stochastic process {X (τj) j = 0, 1, 2, ...} modeling the data source
was a sequence of i.i.d. random vectors whose joint probability density function
(j.p.d.f.) remains time invariant

p (x (τj) , ...,x (τj−k)) = p (x (τi) , ...,x (τi−k)) ; τi �= τj (2.27)

where k is the memory span of the process. If the stationary process is Gaussian,
the mean and the second order moments are enough to characterize it.

In the non-stationary case, the j.p.d.f. is no longer time invariant. That is,
equation (2.27) does not hold for all time. The simplest non-stationary process
is the random walk or Wiener process, an unstable autorregresive process of
unbounded variance, that is sometimes used as a benchmark [86]. We say that
an stochastic process is locally stationary when it satisfies

p (x (τj) , ...,x (τj−k)) = p (x (τi) , ...,x (τi−k)) ; τi < τj+Nk; N � 0 (2.28)

that means that equation (2.27) holds for enough long finite periods of time.
The AVQ approach computes on-line the modification of the vector quan-

tizer. The AVQ design produces a time varying vector quantizer

�x (τ) = Qτ (x) (2.29)

whose quality measure is the time varying error expectation

ξ (τ) = Ex,τ [ε (x,�x (τ))] =

ˆ
ε (x,�x (τ)) p (x,τ) dx (2.30)

The assumption of local stationarity is important for the adaptive approach,
because it implies that

• enough data is available for adaptation, and

• separate time series can be treated as independent.
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AVQ is discussed in [97]. Basic approaches to AVQ design are the mean re-
duction, gain adaptation and several strategies for codebook replenishment
[58, 86, 295]. CNN have been proposed for AVQ design, though in [97] they were
declared to be of little use because of their long convergence times and lack of
robustness. In [175] they were retried for image sequences with some success due
to the care taken choosing of the initial conditions. In fact, most of the applica-
tions of CNN to VQ have been reported on still images and image sequences of
small variability (i.e.: talking faces). AVQ for lossy signal compression has been
analyzed in the framework of rate-distortion theory [25]. However, AVQ can be
of use for other tasks, such as image segmentation [154, 156, 192, 210, 272, 276]
or non linear projection methods[159].

2.6.2 Sampling and local stationarity
Sampling and local stationarity are interrelated. The span of local stationarity
allows us to get i.i.d. samples of an stationary process. Sampling in time
intervals above this span provide sampled data with time-varying statistics.
The vector stochastic process {x (τ)} being quantized comes from a sampling
procedure that may influence its statistical properties. When dealing with scalar
processes, such as acoustic signals or financial time series, stochastic vector
processes are built up by aggregation of scalar samples [97]. In the general non-
stationary case, the evolution of the underlying physical process is arbitrary
both in the functional form of its j.p.d.f. and in the speed of the changes. If the
sampling procedure is slow relative to the changes in the underlying physical
process, the sample will be composed of a sequence of (independent) vectors
obeying different p.d.f.’s Then, a sample obtained in a time window (τi, τf )
must be denoted as

ℵ (τi, τf ) = {x (τ1) , ...,x (τN )} with τ1 = τi; τf = τN (2.31)

where x (τj) is a sample of the signal random vector at time τj whose probability
density is denoted p (x, τj) .

Most instances of AVQ applied to image sequence processing assume that an
still image obeys this characterization, and try to perform intraframe adapta-
tion. From our point of view, it is difficult to asses in equation (2.31) some kind
of local stationarity. We assume that the sampling process is fast relative to the
changes of the underlying stochastic process. Therefore, the samples obtained
in a time window inside the local stationarity span can be considered a set of
i.i.d. random vectors. The sampling procedure produces a sequence of such
sets, which we have denoted above as

X (τ) = {x1 (τ) , ...,xN (τ)} τ = 0, 1, 2, ... (2.32)

where the p.d.f. p (x, τ) remains invariant for the time window in which the
sample has been computed. We will assume τ to be the image or frame number,
and the same sample size N for all τ .
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2.6.3 Frame-Based Adaptive VQ
Under the sampling procedure of the previous section, we can assume that
we have a sequence of independent collections of i.i.d data samples with time
varying statistics. The original general continuous optimization problem can
thus be decomposed into a series of discrete optimization problems of stationary
nature. We define the Frame-Based Adaptive VQ (FBAVQ) as a minimization
of the accumulated quality measure

min
Qτ

T�

τ=0

ξ (τ)

Where τ is the frame number, T is the number of frames treated, and {Qτ} is
the sequence of vector quantifier produced by adaptation on each image. The
FBAVQ design is defined as the search for the sequence of codebooks

Y (τ) = {y1 (τ) , ..,yM (τ)} ; τ = 0, .., T (2.33)

minimizing the distortion of the sequence of quantizations performed using them
at each time instant. When the sampling procedure produces a sequence of
i.i.d. samples as in equation (2.32), and the distortion measure is the squared
Euclidean distance, the FBAVQ can be stated as the following minimization
problem:

min
Qτ

T�

τ=0

�ξ2E (τ) = min
Qτ

T�

τ=0

N�

j=1

M�

i=1

�xj (τ)− yi (τ)�2 δi (xj (τ) ,Y (τ)) . (2.34)

2.6.4 Application of CNN to Frame-Based Adaptive VQ
Even after all discussed simplifications, FBAVQ as stated in equation (2.34) is a
rather difficult infinite time dynamic programming problem. This problem can
be made more tractable assuming

min
Qτ

T�

τ=0

ξ (τ) =
T�

τ=0

min
Qτ

ξ (τ) ,

which becomes for a given sample, and the Nearest Neighbor Euclidean quanti-
zation

min
{Y(τ)}

T�

τ=0

�ξ2E (τ) =
T�

τ=0

min
{Y(τ)}

N�

j=1

M�

i=1

�xj (τ)− yi (τ)�2 δi (xj (τ) ,Y (τ)) .

The minimization of the sequence of time dependent error function can be
done independently at each time step. The adaptive application of the neural
network algorithms is done as follows: At time τ the initial cluster represen-
tatives are the ones computed from the sample of the process at time τ − 1.
The vectors X (τ) = {x1 (τ) , ..,xN (τ)} in the sample at time τ are presented
sequentially and randomly as inputs to compute the CNN learning equations
and to obtain a new codebook for the current image in the sequence.
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Algorithm 2.1 Threshold algorithm.
1. Assign the first sample vector as the first codevector: y1 = x1. The

number of codevectors is c = 1. Initialize the threshold parameter θ.

2. Repeat until M codevectors are found

(a) For each sample vector xk

i. test if its Euclidean distance to each of the already found code-
vectors {y1, ..,yc; c < M} is greater than the current threshold
value θ:

∀i; �yi − xk� > θ

ii. if the test is positive for xk then it becomes a new codevector
yc + 1 = xk. Increase the number of codevectors c

+← 1.

(b) If the size of the codebook is below M , i.e. c < M , the threshold is
halved θ ← θ/2.

3. The desired codebook is given by {y1, ..,yM}.

2.7 A simple threshold algorithm
In order to obtain initial estimates of the codevectors, a simple algorithm based
on a threshold applied on the Euclidean distance between sample vectors can
provide good results. In some experiments the threshold value θ is computed as
an increasing function of the input data dimension, i.e. θ = 2sd, where d is the
input data dimension, and s is the scale parameter. The threshold algorithm
steps are reflected in Algorithm 2.1.



Chapter 3

Applications

This chapter describes the main applications that have been considered in this
Thesis. Some of them have been developed in collaboration with other re-
searchers in the group. The central issue of the Thesis has been the quantiza-
tion of data using neural-inspired techniques, therefore the applications used as
demonstrations in most chapters are related to the quantization process: color
quantization and image processing based on vector quantization.

Section 3.1 introduces the face localization problem dealt with in Chap-
ter 13. Section 3.2 introduces Color Quantization definition, applications and
benchmarking algorithm. Section 3.3 introduces Color Quantization on image
sequences as a paradigm of Non Stationary Clustering and Adaptive Vector
Quantization.

3.1 Color based face localization
Face localization is the first stage for any practical system dealing with some
form of face information processing. Some systems assume as inputs very re-
stricted face images, mugshot-like, with little background clutter in the image,
constant face scale, stringent illumination and position conditions [55, 254, 275,
279] in order to abstract from the tasks of face localization and registration. In
essence, face localization is a two class classification problem posed over image
windows that are extracted all over the image in a convolution-like process. The
complexity of the face localization task is determined by several imaging condi-
tions: the dynamic aspects of the scene, the relative size of the face on the scene,
the background and foreground (clothes) clutter, the variations in scale, pose,
and orientation, etc. Face localization remains an active area of research despite
success reported in some papers. Some of the most successful attempts involve
the application of Artificial Neural Networks [183, 237, 238, 256, 275, 279]. The
main problem of the application of Neural Networks to this problem is the
determination of the train and test datasets, and ensuring its generality. Arti-
ficial train patterns are generated to cover the range of transformations against

37
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which invariance is desired (translation, rotation, tilt). Non trivial bootstrap-
ping methods [237, 238] are used to cover the non-face instances. Another
general concern is scale invariance. To obtain some scale invariance the image
must be resampled and processed at the expected scales. The conventional solu-
tion is the construction of a pyramid of diverse resolution images over which the
Neural Network is applied [237, 238]. Other methods proposed for face local-
ization are the eigenfaces [271], Belief Networks [290], Hidden Markov Models
[243], Genetic Algorithms [289], natural language parsing of image captions [253]
combined with wavelet analysis. Recent works [177, 52, 255, 262] also use color
analysis for face localization.

The approach presented in this Thesis, originally published in [125], was
developed with Bogdan Raducanu. The contribution of this PhD candidate to
this work was the development and application of the ideas about using SOM in
a supervised learning framework. The system does not rely on data or on face
models. It is designed to work on image sequences, having a long term goal of
working on live video. The system has two stages:

1. Analysis of the signatures of motion images to localize the head region
(described in Appendix C).

2. Providing confirmation of the head hypothesis through the color analysis of
the head subimage, performed as a supervised Color Quantization process.
The skin and non-skin color representatives are computed through an
adaptive neural network technique, which is a supervised version of the
Kohonen’s SOM, using training data extracted from the image sequence
(described in Chapter 13).

3.2 Color Quantization
Color Quantization (CQ) [139, 207, 184, 272], is an instance of the more general
technique of Vector Quantization (VQ) [97] in a color space, usually the RGB
color space. CQ has application in visualization, color image segmentation,
data compression and image retrieval [154]. The number of color representa-
tives searched for is tightly related to the application. In visualization and
compression applications the typical size of the color palette (codebook, color
representatives) is M = 256, whereas for segmentation tasks the size of the color
palette is smaller. We have set M = 16 as the size of the segmentation color
palette in all works included in this Thesis. We have not dealt with the problem
of finding the natural number of colors, which is a much more involved prob-
lem. The definition of a numerical criterion for the natural clustering problem
is highly dependent of the application, and an open problem in the Clustering
community. Our works have been directed to test the ability of the proposed
algorithms to perform adaptive clustering into a fixed number of clusters.

CQ can defined as a mapping of a multispectral image

f (x, y) = [fR (x, y) , fG (x, y) , fB (x, y)] ∈ [0, 1]3
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into an indexed image fM (x, y) ∈ {1, . . . ,M} where M is the number of color
representatives, which are denoted Y = {y1, . . . ,yM} with yi ∈ [0, 1]3. Each
pixel in the indexed image contains the index of the color representative closest
to the color in the original image. The visualization of the color quantized image
is done performing the inversion of the quantization process, substituting the
pixel by its color representative:

f̂ (x, y) = yi ⇔ fM (x, y) = i.

Visual comparison with the original image gives the perceptual evaluation of
the CQ. The numerical evaluation of the quality of the CQ is done computing
the distortion

E =
�

x,y

���f̂ (x, y)− f (x, y)
���
2

(3.1)

From a computational point of view, the search for the optimal color repre-
sentatives can be put into the general framework of Clustering based on repre-
sentatives or VQ design [97, 136, 73, 76, 146, 89]. Therefore, CQ is a VQ defined
in the RGB color space, usually based on the Euclidean distance in this space,
and the criterion function is the distortion of equation (3.1).

One relevant question is that of the color space and the color distance em-
ployed. It is well known that the Euclidean distance in the RGB space does
not preserve the perceptual distance between colors. There are several abstract
color spaces , such as the YUV and the Lab color spaces, defined by the CIE
in order to obtain better preservation of the perceptual distance, and new color
spaces are being defined in order to cope with the color equivalencies needed to
support color processing in complex distributed environments. It can be argued
that performing Clustering based on minimizing the Euclidean Distortion in the
RGB color space is doomed to give perceptually suboptimal results. However,
there is a growing body of evidence [221, 139, 150, 285, 186] showing that this
perceptual suboptimality is of no consequence for most practical applications.
We assume this framework to justify that all our experiments are performed in
the RGB space.

3.2.1 Heckbert’s algorithm
The Heckbert algorithm [139] performs a greedy search for the partition of the
RGB color space. In its original formulation it performs a recursive splitting of
the RGB space based on the histograms of the projections on the color axes of
the image color distribution in RGB space. The selection of the axis and the
splitting point is performed according to the histogram median. An improved
version has been implemented in MATLAB looking for minimization of the
distortion (although the result is not globally optimal because of the algorithm
is a greedy search) works on the histogram variances [283] of the projections on
the cube axis. This algorithm recursively partitions the RGB unit cube along
the axis of maximum variance. The partition is performed by a plane orthogonal
to one color axis chosen so as to minimize the sum of the residual variances.
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A time efficient method to compute the residual variances [283] involves the
pre-computation of all the possible variances. Its time and space complexity
grows exponentially with the dimension of the space, and the number of values
of the discretization of each space axis. Color representatives are computed as
the center of mass of the resulting partition cubes. This version of the algorithm
will be referred in this Thesis as the minimum variance Heckbert algorithm. It
gives near optimal results, but its complexity is proportional to the dimension
of the space and the discretization of the RGB space axes. Often, practical
implementations reduce the number of color intervals in each color axis from 28

to 25 by direct truncation, before applying the Heckbert algorithm.

3.2.2 Some applications of Color Quantization
CQ has applications in visualization [139, 207, 184, 150], color image segmenta-
tion [272], data compression [101, 59] and image retrieval [154]. Early applica-
tions of CQ were visualization tasks [139, 207]. The problem was to render color
images for display in low color resolution monitors. This can be of interest for
games that require fast visualization or that involve network communication.
Nowadays monitors and visualization devices do not require this reduction of
the color space.

A recent application for CQ is the content-based retrieval of information in
multimedia databases that include color images [154, 258, 16, 148]. To obtain
a universal vocabulary, the color space is partitioned in regular bins obtained
from regular intervals in the color axes. The color histogram of the image is used
as the feature for the search. Color representatives, computed using clustering
based techniques, are sometimes used to index the images in the database [154].
There are also instances [297] that use the codebooks obtained from Adaptive
Vector Quantization for the search in image databases, where the input vectors
are subimage blocks. Given a suitable initial sample of the images to be stored
in the database, the techniques discussed in this Thesis can be applied.

CQ has been applied to the segmentation of video sequences [297, 57]. The
variations in the color histograms are used to identify the units (shots) in the
decomposition of the sequence. These units are then used for fast access into
the sequence or to construct an index for the organization of video databases.
The non-stationary clustering approach could be of use for this task providing
color representatives instead of color histograms.

The computation of optical flow is a very central issue in many computer vi-
sion applications including robot navigation. The image segmentation obtained
applying non-stationary CQ to the preprocessing of image sequences can be
used for the robust computation of the optical flow [122], and to other vision
tasks, such as stereo matching [286].

The last class of applications of CQ is the segmentation of images. This
segmentation is of interest for advanced human-computer interfaces: the color
detection of faces, hands and other human features can be very effective [186,
177]. The CQ approach allows the a priori modeling and identification the color
space region corresponding to skin colors. This approach is very restricted to
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the images taken to estimate the face color region. The adaptive techniques
discussed in this Thesis can be of interest to allow robust detection in case of
illumination changes and other sources of noise.

3.3 Color Quantization of image sequences
Non-stationary Clustering assume a time varying population sampled at dis-
crete times, so that optimal clustering results at one time instant are not use-
ful in future times. Therefore, data Clustering must be recomputed at each
time instant. A related problem is that of Adaptive Vector Quantization [97],
specifically shifting-mean Adaptive Vector Quantization. Although sequences
of images (video) lead naturally to the consideration of time varying Clus-
tering/VQ problems, the usual approaches to the computation of codebooks
for either CQ or VQ of image sequences consider time invariant distributions
of colors [59] or image blocks [56], applying conventional Clustering methods.
Some heuristic works [101, 58] try to cope with the time varying characteris-
tics inherent to image sequences. Our approach is to assume the problem as
a Non-stationary Clustering problem that may be solved by the application of
Adaptive VQ algorithms: CQ of images within a sequence is a paradigm of real
time Non-stationary Clustering.

3.3.1 Color quantization of image sequences
The Non-Stationary Clustering problem is a stochastic dynamic programming
problem

min
{Y(τ)}

�

τ≥0

E (τ) ,

where E (τ) is some instantaneous clustering criterium function. We assume
that the problem can be simplified as follows: the problem can be decomposed in
time, so the global minimization can be achieved through separate instantaneous
minimization problems:

min
{Y(τ)}

�

τ≥0

E (τ) =
�

τ≥0

min
{Y(τ)}

E (τ) .

Given an image sequence {fτ (x, y) ; τ = 1, 2, , . . .}, the CQ of this sequence is
a Non-Stationary Clustering problem, in which the searched partitions are the
CQs of the images in the sequence

�
fM
τ (x, y) ; τ = 1, 2, , . . .

�
and the infinite

time horizon criterion function is the accumulative CQ distortion

E =
�

τ≥0

E (τ) =
�

τ≥0

�

x,y

���f̂τ (x, y)− fτ (x, y)
���
2
.

The CQ of the image sequence looks for the optimal sequence of color palettes
Y (τ) = {y1 (τ) , . . . ,yM (τ)} minimizing this accumulated CQ distortion using
Adaptive Vector Quantization algorithms.
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The straightforward approach is to perform independent optimizations at
each time instant. Independent optimization should give an optimal result if
the optimization method is globally optimal. We have followed this approach to
obtain the benchmark optimal results in our experiments, applying the minimum
variance Heckbert algorithm to each image independently. However, time inde-
pendent optimization discards any use of time dependencies that could improve
the accuracy and lower the computational burden. Truly adaptive algorithms
must profit from these unknown time dependencies, without trying to uncover
them. The adaptive approach assumes that the cluster or color representatives
found at time τ − 1 can be used as good initial conditions for the optimiza-
tion process at time τ . That implies the assumption of smooth variation of the
optimal cluster representatives.

Summarizing, the application of Competitive Neural Networks and Evolu-
tion Strategies as Adaptive Vector Quantization algorithms performed in ensu-
ing Chapters is done as follows:

• At time τ the initial cluster (color) representatives are the ones computed
from the sample of the process at time τ − 1.

• The sample vectors at the present time are presented sequentially as inputs
to compute the adaptation and to obtain a new set of cluster representa-
tives.

Obviously, for the Non-Stationary CQ case the time axis is the image number in
the sequence, and the sample data are the image pixel colors. To approach real
time performance we impose a one-pass adaptation at each time step, and small
samples. That means that the sample vectors will be presented only once and
that the scheduling of the learning rate and other learning control parameters
are adjusted to that time constraint.

3.3.2 Benchmark results
The sequence of images used for the computational experiments is presented
in Appendix D. As a benchmark non adaptive algorithm we have used the
minimum variance Heckbert’s algorithm [139]. This algorithm has been applied
to the entire images in the sequence in two ways: under stationary and non-
stationary assumptions. Figure 3.1 shows the distortion results of the CQ of the
experimental sequence to 16 and 256 colors based on both applications of the
Heckbert algorithm. The curve

�
CTV (t) ; t = 1, . . . , 24

�
, named Time Varying

Min Var in the figure is produced assuming the non-stationary nature of the
data and applying the Heckbert algorithm to each image independently. The
curve

�
CTI (t) ; t = 1, . . . , 24

�
, named Time Invariant Min Var in the figure,

is computed under the assumption of stationarity of the data: the color rep-
resentatives obtained for the first image are used for the CQ of the remaining
images in the sequence. The gap between those curves gives an indication of
the non stationarity of the data. Also, this gap defines the response space left
for truly adaptive algorithms. All the figures giving distortion results over the
experimental sequence will include these two curves as a reference frame.
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(a)

(b)

Figure 3.1: Benchmark distortion values obtained with the application of the
Matlab implementation of the Heckbert algorithm to compute the color quan-
tizers of 16 (a) and 256 (b) colors of the images in the experimental sequence.
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3.4 Image filtering using Vector Quantization
Besides its application for compression, VQ has been proposed for digital im-
age processing [65]. It has been suggested that the encoding/decoding process
introduces some non-linear smoothing of the image that removes some kinds
of noise, especially speckle noise. We combine the Bayesian approach to image
processing [94, 147] with VQ-based filtering, in which the codebook is like a
filter bank, each codevector is a specific filter, and the filtering process is done
through the quantization operation: the best matching codevector gives the
required information for the filtered pixel.

In Bayesian image processing, given an observed image G we try to find
the restored/segmented image F . The a posteriori probability density is com-
puted from the a priori probability model and the likelihood model applying
Bayes’ rule. The desired result F is usually computed as a either the maxi-
mum a posteriori (MAP) or maximum likelihood (ML), which are the modes of
p (F = f |G = g ) and p (G = g |F = f ), respectively. In general, it is difficult to
obtain the marginal density p (G = g), however, the MAP and ML estimates do
not require it. Both estimation methods need to postulate models for the prior
p(F = f) and likelihood p (G = g |F = f ) probability distributions. The prior
model specifies a broad class of images through the specification of probabilistic
relationships. The conditional probabilities can be postulated as a model of the
image degradations or of the transformation between the observed and desired
image.

In the VQ Bayesian filter (VQBF), codevectors are considered as convolu-
tion masks, with the coordinate system origin centered in their middle window
points. For VQBF processing, the image is not decomposed into blocks, rather
we consider at each pixel a neighborhood window of the same size as the code-
vectors. The filtering process at each pixel is computed in two steps

• find the best matching codevector for the pixel’s neighboring window,

• the processed pixel takes the value of the codevector’s central pixel.

Thus, codevectors are a kind of probabilistic models of the pixel neighborhood.
To understand VQBF in the framework of Bayesian image processing, the fil-
tering application of the codebook must be interpreted as realizing some kind
of approximation of the posterior probability distribution of the desired image
result, so that VQBF corresponds to some kind of MAP estimation.

In our works we assume that the codebook design intends to minimize the
Euclidean distortion. The VQ design method employed is not relevant class
now as long as it minimizes it. A well-known interpretation [76], in terms of
statistical decision theory, of the minimization of the Euclidean distortion is
as follows: assume a number of classes and feature vectors whose probability
density follows a mixture of class conditional densities. Further, assume that the
class conditional densities are Gaussian with identical unit covariance matrices,
and that the classes are equiprobable, then the minimization of the Euclidean
distortion is equivalent to maximum log-likelihood estimation of the parameters
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of the model, the class means. Based on the estimated parameter values, the
MAP decision is the Bayesian minimum risk decision. Thus, the filtering realized
by VQBF corresponds to a MAP image process, in which the classes are the
gray levels of the central pixel in the representative neighborhoods extracted
from the image. The detailed inverse Bayesian analysis of VQBF properties
obtains the prior and conditional models from the statement of the posterior
probabilities. This analysis is presented in Appendix B

The VQBF has been applied to Magnetic Resonance Imaging (MRI) data
provided by the Institute of Biofunctional Studies of the UCM. We have per-
formed comparisons of our approach with other conventional filtering approaches
on this data. We have also used VQBF as a preprocessing step for the supervised
classification of image pixels in order to segment automatically some regions of
interest for the intended application. The role of the PhD candidate has been
as a developer of the basic algorithm and implementations, as well as some fine
tuning of parameters.



46 CHAPTER 3. APPLICATIONS



Part I

Convergence and properties
for unsupervised learning and

clustering
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Chapter 4

Generalized Learning Vector
Quantization

Generalized Learning Vector Quantization (GLVQ) has been proposed in [209]
as a generalization of the Simple Competitive Learning (SCL) algorithm. GLVQ
claims its superior insensitivity to the initial values of the weights (codevectors).
However, we have found that specific properties of the definition of GLVQ disap-
pear when the application domain does not fit into the required settings. GLVQ
becomes identical to SCL when either the number of codevectors grows or the
size of the input space is large. Besides, the behaviour of GLVQ is inconsistent
for problems defined on very small scale input spaces. The adaptation rules
fluctuate between descent and ascent on the gradient of the distortion function.
Section 4.1 contains is an introduction. Section 4.2 gives the definitions of SCL,
LVQ and GLVQ. Section 4.3 gives the conditions for GLVQ to behave identi-
cally to SCL. Section 4.4 discusses the conditions for inconsistent behaviour of
GLVQ. Section 4.5 summarizes our conclusions.

4.1 Introduction
The GLVQ algorithm has been proposed in [209] as a generalization of the LVQ
algorithm. However, the definition of LVQ given in [209] really corresponds
to what is usually known as SCL in the Neural Network literature. GLVQ
proposition is related to the Self-Organizing Map (SOM), [167] in the sense
that GLVQ updates a neighborhood of the winning codevector upon input data
presentation. This mechanism is intended to escape from the local minima of
the distortion. The derivation of GLVQ follows from the proposition of a loss
function, closely related to the Euclidean distortion. The codevector updating
rules are derived as a local stochastic gradient descent along this loss function.
We find some parallelism in this method of building the definition of the learning
rules with Soft Competition [288, 267]. Much of the undesired properties of
GLVQ is due to the definition of the loss function, as we refer to it looking for
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explanations of undesired limit forms of the GLVQ rules.
The authors claim that all the codevectors will be updated using the GLVQ

rules, unless there is a perfect matching of the input and winning codevector
(�x (t)− yi (t)�2 = 0). In such case, GLVQ reduces to SCL according to [209].
We show in Section 4.3.1, that GLVQ becomes identical to SCL, even in the
case of very imperfect matching, when the clustering problem is defined in a
non-small space or when GLVQ searches for a non-small number of clusters. On
the other hand, in Section 4.3.2 it is shown empirically that perfect matching
is not a sufficient condition for GLVQ to become identical to SCL. Moreover,
in problems defined over some very small input spaces, GLVQ may become
inconsistent. Section 4.4 shows how inside very small input spaces GLVQ rules
may fluctuate between going down and up the distortion function.

4.2 Definition of SCL, LVQ and GLVQ
We denote x (t) the input vector at time t, yi (t) are the codevectors at time
t, Y is the codebook, α (t) is the learning rate, and �yi (t) is the adaptation
of yi (t) after presentation of input x (t). The definition of LVQ given in [209]
is identical to the Simple Competitive Learning (SCL) rule [167, 140, 172, 168]
already introduced in Chapter 2 , we reproduce its definition:

�yi (t) =

�
α (t) (x (t)− yi (t)) i = argmin

k

�
�x (t)− yk (t)�2

�
= w

0 otherwise
(4.1)

SCL is the basic form of unsupervised competitive learning, and can be derived
as a stochastic gradient descent of the distortion, following notation in [209]:

Je =
N�

j=1

M�

i=1

�xj − yi�2 δij ,

δij = δ (xj ,yi) =

�
1 i = argmin

k

�
�xj − yk�2

�

0 otherwise
,

where N is the sample size and M is the number of codevectors. In fact, the
LVQ algorithm was introduced by Kohonen [167, 168] as a supervised learning
algorithm, which assumes a priori knowledge about the classes to which the
input vector and the winning codevector belong. Let us denote c(x) the class
to which x belongs, then the formal definition of LVQ reads as follows:

�yi (t) =






α (t) (x (t)− yi (t))

�
i = argmin

k

�
�x (t)− yk (t)�2

��

∧ c (x (t)) = c (yi (t))

−α (t) (x (t)− yi (t))

�
i = argmin

k

�
�x (t)− yk (t)�2

��

∧ c (x (t)) �= c (yi (t))
0 otherwise

.
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In the following, we will refer to SCL instead of LVQ assuming that all the
references to LVQ made in [209] were intended for SCL. The main purpose of
the definition of GLVQ was to improve Simple Competitive Learning trying to
make it insensitive to initial conditions.

The GLVQ codevector adaptation rules are formally written as follows (with
a slight change in notation from the formulas in [209]):

�yi (t) =

�
α (t) (x (t)− yi (t))C1 i = argmin

k

�
�x (t)− yk (t)�2

�
= w

α (t) (x (t)− yk (t))C2 otherwise
,

C1 = 1− 1

D (t)
+ C2,

C2 =
�x (t)− yw (t)�2

D2 (t)
,

D (t) =
M�

k=1

�x (t)− yk (t)�2 .

The values of the coefficients C1 and C2 perform the mapping of the GLVQ
rule into the SCL rule: C1 = 1 and C2 = 0 imply that GLVQ is identical to SCL.
According to [209], the formal derivation of GLVQ follows from the stochastic
gradient descent of a loss function defined as follows.

L =
N�

j=1

M�

i=1

�xj − yi�2 gi (xj ,Y) ,

gi (xj , Y ) =

�
1 δij = 1��M

k=1 �xj − yk�2
�−1

otherwise
.

4.3 Convergence of GLVQ to SCL
We use the term convergence meaning the identity of behaviour of both algo-
rithms under certain conditions. The main statement of [209] is that GLVQ
is insensitive to initial conditions (initial codevectors) and that, so, it behaves
better than SCL for clustering applications. The authors did not realize that
GLVQ becomes identical to SCL algorithm when some parameters of the clus-
tering problem grow, and that this happens rather unexpectedly. On top of
that, the conditions assumed in [209] for GLVQ convergence to SCL appear to
be insufficient. Two extreme situations condition the convergence of learning
rules: imperfect and perfect matching. In the first case, the desired behaviour
of GLVQ is the significant updating of all the codevectors, whereas SCL only
updates the winner. In the second case, the desired behaviour is the same as
SCL. In both cases, GLVQ can behave against the desires of their designers.
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4.3.1 Imperfect matching: undesired convergence
Let us assume the occurrence of imperfect matching in the sense that all the
codevectors are almost at the same distance of the input. This situation roughly
corresponds to the initialization of the codebook with values right outside of the
convex hull of the sample, or when the input is an outlier far away from any
other input. In this case, the distance of the input to the winner codevector
(yw (t)) is close to the distance to any other codevector:

�x (t)− yw (t)�2 ∼= �x (t)− yk (t)�2 .

Then, the normalization factor D (t) can be assumed to be approximated as
follows:

D (t) ∼= M �x (t)− yw (t)�2 . (4.2)

Under these approximations, the expression of the C1 and C2 coefficients can
be rewritten as follows:

C1
∼= 1− 1

M �x (t)− yw (t)�2
+ C2,

C2
∼=

1

M2 �x (t)− yw (t)�2
. (4.3)

In the case of imperfect matching, GLVQ is meant to behave quite differently
from SCL, that is: C1 must be significantly smaller than 1 and C2 must be
significantly larger than 0. However, as the number of clusters or the expected
magnitude of the distance grows, it is obvious from the above expressions that
C1 converges to 1. Simultaneously, C2 converges even faster to 0.

C1 −→
M → ∞
�.�2 → ∞

1,

C2 −→
M2 → ∞
�.�2 → ∞

0.

These expressions summarize the sensitivity of GLVQ to the number of
classes (codevectors) and the average magnitude of the distance on the input
space. Increasing the number of classes forces the undesired convergence GLVQ
to SCL. Large input spaces imply large values of �x (t)− yw (t)�2 which also
force this convergence. The effect of large input spaces can be also deduced
from a close look at the loss function that GLVQ tries to minimize. It can be
seen that Lx is bounded as follows:

Je (x) < Lx ≤ Je (x) + 1

Where

Je (x) =
M�

i=1

�x− yi�2 δ (x,yi)
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(a) (b)

(c) (d)

Figure 4.1: Convergence in a toy example

is the distortion introduced by quantizing input x with the codevector yi. When
Je (x) � 1 the loss function becomes the distortion, and then, the stochas-
tic gradient descent on Lx becomes the SCL. In some clustering applications
such as Vector Quantization of grey level images, [0, 255]4×4 or [0, 255]8×8 are
standard input spaces. Obviously, even for extraordinarily good codebooks, in
those applications Je (x) � 1 holds. The above discussion implies that GLVQ
can become identical to SCL in the case of imperfect matching. Outside some
restricting conditions (small number of classes and small scale input spaces)
GLVQ loses its more appealing property (the insensitivity to initial conditions)
because it unexpectedly becomes identical to SCL.

4.3.2 An illustrative experiment
A simple experiment was carried out to illustrate the foregoing analysis, and to
explore the sensitivity of the GLVQ coefficients to the number of codevectors and
the scale of the input space. Simulated samples from a mixture of four Gaussian
distributions were generated as the sample input. Although the authors in [209]
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(a) (b)

(c) (d)

Figure 4.2: Undesired convergence in the toy example
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give some discussions about learning rate scheduling, we have found that this is a
matter of secondary importance, that does not influence the inherent qualitative
features of the algorithms.

The first experiment was addressed to assess the convergence of GLVQ to
SCL as the number of codevectors grows. The sample points generated fall
inside [−0.6, 1.2]2 and the initial codebooks (+ in the figures) were generated
in a corner of this region. The expected behaviour of GLVQ was to update
all the codevectors driving them inside the sample. Figure 4.1(a) shows the
trajectories of the codevectors as updated by GLVQ in the case of M = 2.
Figure 4.1(b) shows the trajectories under SCL. The difference in behaviour of
both algorithms, putting aside the quality of the final solution, can be easily
verified. This difference disappears as the number of codevectors increases. In
the case of M = 10, the behaviour of GLVQ (shown in Figure 4.1(c)), and that
of SCL (shown in Figure 4.1(d)) are almost identical. The stuck codevectors are
minimally displaced by GLVQ. When the sample is scaled by a factor of 5, the
identity of behaviour of GLVQ and SCL can be appreciated even with only two
codevectors M = 2. Figure 4.2(a) and 4.2(c) show the behaviour of GLVQ with
M = 2 and M = 3, respectively. Figure 4.2(b) and 4.2(d) show the behaviour
of SCL.

4.3.3 (Almost) Perfect matching: failed desired conver-
gence

Let us assume the occurrence of (almost) perfect matching of input and winning
codevector. Perfect matching can be naively characterized by the following
expression (yw (t) is the winner codevector):

�x (t)− yw (t)�2 ∼= 0

The authors in [209] state that this is the only condition that can lead to
C1 = 1 and C2 = 0 corresponding to desired convergence of GLVQ to SCL.
Let us examine the approximate expressions taken by the coefficients under this
assumption:

C1
∼= 1− 1

D (t)

C2
∼= 0

Another way to characterize the almost perfect matching comes from the con-
sideration of the relative magnitudes of the distances of the codevectors to the
input (yw (t) is the winning codevector):

∀k �= w; �x (t)− yk (t)�2 � �x (t)− yw (t)�2

It can be easily verified that this more general characterization of almost
perfect matching leads to the same expressions for C1 and C2. It becomes
obvious, that the magnitude of D (t) determines if C1

∼= 1, so, (almost) perfect
matching is not a sufficient condition for GLVQ to become SCL. Other problem
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dependent conditions, such as the number of codevectors and the scale of the
input space, and the instantaneous positions of the whole codebook determine
the value of D (t) and, therefore, the desired convergence of GLVQ to SCL, in
the case of almost perfect matching.

4.4 GLVQ inconsistent behaviour

Studying the desired convergence of GLVQ to SCL, we have found conditions
for inconsistent behaviour of GLVQ. It is expected that any codebook design
algorithm will perform a gradient descent on the distortion function. Inside
very small input spaces GLVQ becomes (temporarily) a gradient ascent search
on the distortion function, depending on the instantaneous value of D (t). In
general, D (t) must be greater than 1 for C1 to be positive. Positive values of
C1 make the GLVQ learning rule a gradient descent of the distortion, whereas
negative values make it a gradient ascent of the distortion. Let us examine the
two extreme situations of perfect and imperfect matching.

In the approximate expressions obtained in the case of perfect matching,
D (t) < 1 clearly imply negative values of C1. The expression of the GLVQ
rules under these circumstances (compare with (4.1) above) becomes:

�yi (t) =

�
−α (t) (x (t)− yi (t))

���1− 1
D(t)

��� i = argmin
k

�
�x (t)− yk (t)�2

�
= w

0 otherwise
(4.4)

In the case of imperfect matching, the approximate expressions of C1 and
C2 in terms of D (t), deduced from (4.2) and (4.3), are:

C1
∼= 1− M − 1

M ·D (t)

C2
∼=

1

M ·D (t)

The expression of the GLVQ rules when become

�yi (t) =

�
−α (t) (x (t)− yi (t))

���1− M−1
M ·D(t)

��� i = argmin
k

�
�x (t)− yk (t)�2

�
= w

α (t) (x (t)− yk (t))
1

M ·D(t) otherwise

Both expressions of the GLVQ learning rule maximize the distortion instead
of minimizing it. The behaviour of GLVQ becomes inconsistent for problems
defined in very small hypercubes, where the probability of finding D (t) < 1 is
significant (e.g. x ∈ [0, 1/M ]N ).

Let us return to the loss function that originates GLVQ in search for some
explanation of this inconsistent behaviour. Note that it can be rewritten as
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(a) (b)

Figure 4.3: Inconsistent behaviour of GLVQ in the toy example obtained by
scaling the data

follows:

Lx(t) = �x (t)− yw (t)�2 + 1

D (t)

M�

k = 1
k �= w

�x (t)− yk (t)�2

= Je (x (t)) +
1

D (t)
J̄e (x (t))

The GLVQ loss function is composed of the conventional distortion Je (x (t)),
plus some kind of global distortion J̄e (x (t)) defined over the non-winning code-
vectors, weighted by D−1 (t). As long as D (t) > 1, the main term in Lx(t) is
the distortion Je (x (t)). However, when D (t) < 1, the main term in Lx(t) is
J̄e (x (t)). Then the minimization of the loss function goes after the minimiza-
tion of the "global codebook distortion" instead of (and even against to) the
minimization of the true distortion. In fact, the expression in equation (4.4)
tries to decrease Lx(t) through the increase of D (t), something unexpected for
an algorithm which is meant to search optimal codebooks.

Sometimes the algorithm will enter an oscillatory behaviour alternating gra-
dient descent steps, which the distortion (and D (t)) decrease, with gradient
ascent steps, which increase the distortion and D (t). To illustrate the inconsis-
tent behaviour of GLVQ we scaled by a 0.1 factor the sample used in Section
4.3.2. We have applied both GLVQ and SCL to this shrunk sample. This time
the initial codebook was a set of sample vectors. This choice of initial codebook
highlights the unfitness of GLVQ. Figure 4.3(a) shows the trajectories of the
codevectors under GLVQ. It can be appreciated the repulsive and attractive
phases of GLVQ rules. At first, the codevectors are expelled from the sample.
The expulsion is followed by a slow return, until they take positions on the sur-
face of a kind of "repulsion ball" that the GLVQ dynamics seems to generate
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around the sample. Figure 4.3(b) shows the trajectories of the codevectors un-
der SCL following natural (distortion gradient descent) patterns. Finally, going
back to Figure 4.1(a), we have verified that its strange effects is due to the
fluctuation of D (t) around one.

4.5 Conclusions
In spite of the elegance of its definition and its ease of computation, GLVQ must
be taken with caution from the practical point of view. A previous analysis of
the problem that is intended to solve can show if GLVQ preserves in fact its
good qualities (insensitivity to initial codebooks), or if it will behave identically
to Simple Competitive Learning, or even if the application is impossible.

We have discussed the GLVQ sensitivity to the number of clusters and the
input space size. For a small space, we have shown empirically that a not
very large number of clusters is enough to lose the GLVQ characteristics. Also,
when the input space is enlarged, the number of clusters that make GLVQ
identical to SCL decreases drastically. We have shown how very small input
spaces can force the inconsistent behaviour (maximize the distortion) of the
GLVQ rules. Empirically, the alternance of behaviours of GLVQ appears under
mild conditions. Also, we have seen estrange phenomena such the existence of
"repulsion balls" at whose core is the sample. All these undesired results are
related to the definition of the loss function, from which the GLVQ rules are
derived as a stochastic gradient descent.



Chapter 5

Basic Competitive Neural
Networks as Adaptive
Mechanisms for
Non-Stationary Color
Quantization

In this chapter consider the application of two basic Competitive Neural Net-
works (CNN) to the adaptive computation of color representatives on image se-
quences that show non-stationary distributions of pixel colors. The tested algo-
rithms are the Simple Competitive Learning (SCL) and the Frequency-Sensitive
Competitive Learning (FSCL). Both, SCL and FCSL are the simplest adaptive
methods based, respectively, on minimizing the distortion and on the search for
a uniform quantization. The aim of this chapter is to study the computational
sensitivities of these methods when applied to Non-Stationary Clustering (NSC)
as Adaptive Vector Quantization (AVQ) algorithms. We study their sensitivity
to the size of the image sample employed in the one-pass adaptation, their ro-
bustness to initial conditions and the effect of local versus global scheduling of
the learning rate. Results were published in [107].

Section 5.1 is an introduction to the chapter. Section 5.2 reviews FSCL
training algorithm. Section 5.3 presents their specific numerical settings for this
application. Section 5.4 presents experimental results. Finally, in Section 5.5
we present our conclusions.
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5.1 Introduction
When an image sequence is considered, the distribution of the pixel colors in the
color space will be time variant in the general case. The underlying stochastic
process is, therefore, non stationary and we can not assume any model of the
time dependencies. The problem of Color Quantization on image sequences is
a Non-Stationary Clustering problem, falling out of the scope of conventional
formulations of the Clustering/VQ design problems which assume that the un-
derlying stochastic process is stationary, so that a given set of sample vectors
properly characterizes this process. . We have introduced in Chapter 2 a gen-
eral formulation of the Non-Stationary Clustering problem, and the application
of Competitive Neural Networks as Adaptive Vector Quantization methods to
solve it.

Competitive Neural Networks [192, 3, 140, 171, 272] are mathematically de-
rived as stochastic gradient minimization procedures. Sometimes it is difficult to
specify the objective function and to provide a formal derivation of the learning
rule. This is the case of the Frequency-Sensitive Competitive Learning, which
combines the distortion minimization of the SCL with the search for a uni-
form quantization. Uniform quantization implies that the a priori probability
distribution of the codevectors is uniform (not to be confused with a uniform
decomposition of the color space). To obtain an uniform quantization, FSCL
tries to ensure that the sizes of the sample clusters found are equal. However it
does that penalizing the Euclidean distance while computing the nearest code-
vector to a sample vector. This can not be put into the formal framework
of stochastic gradient algorithms, though it constitutes a minimal variation of
SCL intended to improve its robustness (to avoid empty clusters associated with
stuck codevectors). In this chapter we consider both SCL and FSCL as the min-
imal adaptive algorithms that can be applied to the Non-Stationary Clustering
problem.

CNN have been little applied to Adaptive Vector Quantization, because of
their lengthy convergence times, and their numerical sensitivities [97]. Most
works in the literature report their application to stationary VQ problems, such
as the codification of still images. One of the most successful AVQ strategies
is codebook replenishment [97, 101, 58, 90, 86] whose optimality, however, has
only been proved for stationary sources [295]. Codebook replenishment algo-
rithms also pose serious parameter tuning problems that have not been properly
addressed in the literature. In this chapter we try to show the usefulness of the
CNN as AVQ algorithms for general non-stationary sources. The case of Non-
Stationary Color Quantization is a representative of the general AVQ problem.
Our approach is to propose a fast adaptation schedule, based on a one-pass
adaptation over a small sample of each image in the sequence. Under this
scheme, the computational cost of the adaptation is proportional to the size of
the sample, the size of the codebook and the dimension of the search space,
and can be calibrated for real time processing. In Section 5.3, we explore the
sensitivity of the SCL and FSCL in this setting to the local/global scheduling
of the learning rate, the sample size, the codebook size and the global initial
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conditions (the starting codebook for the whole sequence). .

5.2 FSCL algorithm
The SCL is a local minimization algorithm, whose results will be highly depen-
dent of the initial conditions Y (0) = {y1 (0) , . . . ,yM (0)} . One of the more
salient features of suboptimal solutions is the occurrence of stuck codevectors,
that is, codevectors whose corresponding cluster is empty. These codevectors
never win the competition and the SCL learning rule never applies to them1.
The reasoning behind the proposition of FSCL is that one sure strategy to avoid
bad local suboptimal solutions is to ensure that no representative has an asso-
ciated empty cluster. This is done in an inverse way, by penalizing the bigger
clusters. To achieve that, the FSCL [3] keeps a count of how frequently each
codevector is the winner and use this information to adjust distances from an
input to all codevectors. The distance used to determine the codevector to be
updated is

d
�
�x− yi�2

�
= ωi �x− yi�2 , (5.1)

where

ωi =
t�

k=1

δFSCL
i (x (k))

is the number of times that a codevector has been the winner and

δFSCL
i (x (k)) =

�
1 i = arg min

j=1,...,M

�
ωi �x (k)− yj�2

�

0 otherwise
. (5.2)

This new distance of equation (5.1) penalizes the codevector that repeatedly
wins increasing his distance value and giving other codevectors a chance to win
the competition. FSCL employs the learning rule of SCL, but applying equation
(5.2) instead of the conventional Nearest Neighbor rule to determine the neuron
(codevector) to be updated.

The preceding discussion implies that FSCL can not be derived as a stochas-
tic gradient minimizer of the quantization distortion. In fact, we haven’t found
a formal definition of the true function minimized by FSCL. This function may
be intuitively seen as a minimization of the Euclidean distortion conditioned
to the uniform quantization of the space. That is, FSCL tries to ensure after
training that

P (δi (x) = 1) ∼=
1

M
.

Once near uniform quantization is achieved, FSCL will try to minimize the
Euclidean distortion. The expected side effect is that the minimization of the
Euclidean distortion will become globally optimal. We consider FSCL as a basic
CNN because it is the minimal variation of SCL proposed up to date.

1This situation must not be confused with the search for the natural number of clusters,
suboptimal solutions found by SCL must not be taken as indicative of the “true” number of
clusters.
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5.3 On the application of SCL and FSCL
In the experiments we have applied two kind of scheduling of the learning rate:
local and global scheduling. The local scheduling of the learning rate follows
the expression:

αi (t) = α0

�
1− ωi

N

�

where

ωi =
t�

k=1

δi (x (k))

and N is the sample size. This expression implies that the learning rate de-
creases linearly in the number of times that a codevector wins the competition.
It also implies that a local learning rate only reaches the zero value if the code-
vector wins for all the sample vectors. This local counter is identical to the
one maintained by the FSCL. Note however, that here the counter controls the
adaptation gain, whereas in FSCL determines the winning neuron. There is no
interference between the two applications of the local counter.

The global scheduling of the learning rate, meaning that ∀i;αi (t) = α (t) ,
follows the expression:

α (t) = α0

�
1− t

N

�
.

This expression implies that the learning rate decreases with every sample data
which is presented to the CNN. Zero value is reached when the last sample is
presented. While global scheduling conforms to the theoretical formulation, lo-
cal scheduling of the learning rate is similar to perform as many independent
and simultaneous local adaptation processes as units. Part of our works try
to determine the benefits of local scheduling experimentally. Obviously the se-
quences of the learning rate parameters given by both local and global strategies
do not comply with the conditions imposed by the convergence of the stochas-
tic gradient approach. But it is the best approximation that works under a
"one-pass" adaptation constraint.

Up to this point, the CNN are applied to stationary data, represented by
a sample X . In the case of non-stationary data, we have a sequence of data
samples {X (τ) = {x1 (τ) , . . . ,xN (τ)} ; τ = 0, 1, . . .} over which the adaptation
rules of SCL or FSCL will be applied. In the non-stationary case we have
two time parameters: that of the reality (τ) and that of the internal adaptive
computations (t). At each real time instant a complete adaptation process will
take place, the whole process is as Algorithm 5.1.

5.4 Experimental results
In this section we report some experiments performed on image sequences ex-
tracted from video sequences, aimed to evaluate the robustness of SCL and
FSCL as adaptive VQ algorithms for Non-Stationary Color Quantization, and



5.4. EXPERIMENTAL RESULTS 63

Algorithm 5.1 Application of SCL and FSCL to the color image sequence
1. Assume an initial codebook Y (0) , τ = 0.

2. Update the clock τ = τ + 1 and take the next sample X (τ) of size N .

3. Assume as the initial codebook the result of the adaptation at the previous
time instant Y (τ, 0) = Y (τ − 1, N)

4. Compute the sequence of adaptations of the codebook
{Y (τ, t) ; t = 1, . . . , N} applying either SCL or FSCL, to x (t) extracted
from X (τ).

5. Resume the process from step 2.

their sensitivity to diverse numerical parameters. The sequences of images used
for the experiment are described in Appendix D.2. The experiments refer to the
computation of sets of color representatives (color palettes) of size M = 16 and
M = 256. These sizes of color palettes are representative of the ones that can
arise in segmentation and compression tasks, respectively.

The reference Heckbert algorithm is described in Chapter 3 and the results
that set the benchmark for the experiments in this chapter are described in
Appendix D.2.

In the following, the results of the application of the CNN will be given in the
relative framework of the Time Invariant and Time Varying Heckbert results.
The relative distortion (ER (τ)) shown in the figures is computed as

ER (τ) =
ECNN (τ)− ETV (τ)

ETI (τ)− ETV (τ)
,

where ECNN (τ) is the per image distortion of the color quantization with the
color palette computed by the CNN (either SCL or FSCL). The relative distor-
tion is negative when the CNN improves over the optimal Heckbert Time Vary-
ing distortion ETV (τ), and it is greater than 1 when the CNN does not behave
adaptively (gives results worse than the Time Invariant distortion ETI (τ)).
We have appended the accumulated value of the relative distortion along the
sequence to the legend of the curves in the figures.

From the description of the CNN applied to find the optimal Color Quanti-
zation of each image (see Chapter 3) it is evident that the computational cost
is of the order O(d.N.M), with N the size of the sample, d = 3 the dimension
of the space, and M the number of colors. To evaluate the performance of the
algorithm as real time restrictions are imposed, we have employed image sam-
ples of size N = 1200 (sample1 < 2% of image size) and N = 19200 (sample2
= 25% of image size), respectively. Whereas the distortion results in bench-
mark images (see Appendix D.2) are produced by the Color Quantization to a
set of color representatives computed using all the image pixels, both SCL and
FSCL will be applied to a subset of the image pixels, extracted randomly. The
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sequence of image samples sample1 represents a stronger real time constraint
than sample2, and the application of both SCL and FSCL will be one order of
magnitude faster for sample1. The distortion results shown in the figures and
tables are the distortion of the entire images when color quantized with the
color representatives computed by the CNN upon the specified image samples.
Besides the real time considerations, the use of image samples gives also some
hints about the robustness and extrapolation abilities of both SCL and FSCL.

5.4.1 Sensitivity to codebook and sample size
The first set of experiments are performed assuming as the initial codebook the
color palette obtained by the Heckbert algorithm for the first image. This is
the best initial condition that we can think of to start the adaptation of the
remaining sequence, (note that all the curves start at zero). The results of this
set of experiments are shown in Figures 5.1 and 5.3. The experiment includes
the computation by SCL and FSCL of the color representatives under all combi-
nations of image sequence, sample size, color palette size and local versus global
scheduling of the learning rate. In all the cases, the codification into 256 colors
gives worse relative results. This result is quite important because it indicates
the sensitivity of the CNN performance to the size of the color palette. This
result, that we have found very general, implies that the proposition of adaptive
algorithms, CNN-like or other, that would search for the “natural” number of
clusters must be taken with great care, moreover if the distortion is a salient
component of the clustering criterion function. The inspection of the figures
shows that the algorithms perform adaptively in almost all the cases: the rela-
tive distortion is less than 1 most of the times. The exception occurs usually at
image #2 of the sequence. This can be explained by the narrow gap between
the reference curves at this point of the image sequence, however the algorithms
quickly recover.

Each of the plots show the result using both sample sizes. In general it can
be appreciated that the use of the bigger sample improves the results, although
the magnitude of this improvement is related to the codebook size. The above
mentioned sensitivity to the number of clusters searched can be appreciated if
we compare one-to-one the set of subfigures (a) in Figures 5.1(a), 5.1(c), 5.2(a),
5.2(c), 5.3(a), 5.3(c,) 5.4(a), 5.4(b) with the set 5.1(b), 5.1(d), 5.2(b), 5.2(d),
5.3(b), 5.3(d), 5.4(b), 5.4(d). This sensitivity is attributable to the ratio between
the size of the sample and the number of representatives searched: the sample-
to-codebook ratio. We have found that is a good ratio in many cases, sample1
fits this ratio for 16 colors and sample2 for 256 colors. The significance of this
ratio is confirmed by the following observations over the Figures 5.1, 5.2, 5.3,
and 5.4:

• When searching for 16 colors the use of sample2 does not give an improve-
ment over the results obtained from sample1, according to the increase in
computational complexity.

• When searching for 256 colors, the use of sample2 improves significantly
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sequence1 sequence2
M = 16 M = 256 M = 16 M = 256

S1 S2 S1 S2 S1 S2 S1 S2

Heckbert 2.5 2.9 6.6 2.9 4.7 2.8 9.5 4.7
SCL Threshold 9.1 3.4 15.0 8.1 11.0 3.2 23.0 13.0

Sample 3.6 3.2 15.0 7.2 3.6 3.2 23.0 10.0
RGBbox 12.0 6.4 32.0 16.0 15.0 8.5 52.0 25.0
Heckbert 3.4 4.7 6.2 2.5 3.7 5.1 9.0 4.8

FSCL Threshold 6.7 4.6 15.0 7.2 8.0 5.7 23.0 12.0
Sample 3.3 4.6 15.0 5.7 4.7 5.1 23.0 9.6
RGBbox 3.2 4.8 21.0 5.4 3.1 5.2 33.0 8.6

Table 5.1: Accumulated relative distortion results of the Color Quantization
of experimental sequences with the color representatives computed adaptively
by the SCL and FSCL with local scheduling of the learning rates, for various
initial conditions, sample sizes (S1: sample1, S2: sample2 ) and number of color
representatives.

the results over those given obtained from sample1.

This ratio is of interest to bound the real time applicability of our algorithms,
or the suboptimal results that can be expected from the use of small samples
imposed by real time constraints. In Tables 5.1 and 5.2 we have gathered the
global distortion results that summarize all the experiments, including the sensi-
tivity to initial conditions which will be discussed later. From those tables it can
be seen that the impact of the sample-to-codebook ratio depends also of other
elements of the algorithms, such as the initial conditions and the scheduling of
the learning rate.

5.4.2 The effect of learning rate scheduling

The effect of the scheduling of the learning rate can be appreciated by the com-
parison of the plots in Figures 5.1 and 5.2 with those in Figures 5.3, and 5.4.
Also, in each Table 5.1 and 5.2, we have a separate subtable for each scheduling
strategy. Our conclusion is that the global scheduling of the learning rate gives
better results than the local scheduling when the amount of available informa-
tion increases. However as the information becomes scarce, the local scheduling
is more robust and gives better results. To support this conclusion observe in
Tables 5.1 and 5.2 that the results of the global scheduling subtable improve over
the corresponding ones of the local scheduling subtable when sample2 is used
to search for 16 colors, and when applying the algorithm to sequence2 (which
is smoother than sequence1 ) starting from relatively good conditions.
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sequence1 sequence2
M = 16 M = 256 M = 16 M = 256

S1 S2 S1 S2 S1 S2 S1 S2

Heckbert 2.6 -0.43 7.5 3.1 3.8 -1 11.0 4.6
SCL Threshold 9.8 0.44 18.0 8.5 12.0 0.25 28.0 13.0

Sample 4.1 0.05 18.0 7.4 4.7 -0.39 28.0 11.0
RGBbox 13.0 3.7 36.0 17.0 16.0 7.0 57.0 29.0
Heckbert 3.4 1.1 7.3 2.6 3.0 2.1 10.0 4.0

FSCL Threshold 9.0 1.1 19.0 7.3 9.0 2.6 29.0 13.0
Sample 3.5 0.95 19.0 6.0 4.4 2.4 29.0 9.6
RGBbox 4.7 1.4 28.0 6.8 4.5 2.3 45.0 11.0

Table 5.2: Accumulated relative distortion results of the Color Quantization
of experimental sequences with the color representatives computed adaptively
by the SCL and FSCL with global scheduling of the learning rates, for various
initial conditions, sample sizes (S1: sample1, S2: sample2 ) and number of color
representatives.

sequence1 sequence2
(18 images) (27 images)

M = 16 M = 256 M = 16 M = 256

S1 S2 S1 S2 S1 S2 S1 S2

SCL 0.14 0.07 0.39 0.17 0.16 0.03 0.37 0.17
FSCL 0.19 0.16 0.37 0.14 0.12 0.13 0.35 0.16

Table 5.3: Mean per image relative distortion, computed averaging the entries
in Tables 5.1 and 5.2 and taking into account the different number of images in
each sequence.



5.4. EXPERIMENTAL RESULTS 67

5.4.3 The effect of time subsampling
As we have said, sequence1 was a more coarse time sampling of the original video
sequence. This coarseness would lead to more abrupt changes in distribution,
that would make sequence1 less apt for adaptive computation. In Table 5.3, the
mean relative distortion per image has been computed, by averaging the entries
in Tables 5.1 and 5.2, and taking into account the number of images in each
sequence. This table allows to evaluate the impact of the supposed augmented
smoothness of sequence2. It can be seen from it that other factors have more
impact than the increased smoothness produced by a fine time sampling.

5.4.4 Robustness to initial conditions
If we, at this point, try to compare SCL results with FSCL results, the main
conclusions are:

• SCL performs better than FSCL starting from good initial conditions, and
high sample-to-codebook ratio is available.

• FSCL is more robust than SCL, as intended, in the sense that it improves
SCL when the algorithm starts from bad initial conditions and the sample
data is scarce.

These conclusions are consistent with the proposition of SCL as a local opti-
mization procedures, and of FSCL as a global optimization procedure. The
global properties of FSCL ensure a good average result, but starting from good
initial conditions the pure local algorithm performs better. These conclusions
are made stronger when considering the robustness to initial conditions, eval-
uated in the second experiment. In Tables 5.1 and 5.2, we present the sum
of relative distortion results of the Color Quantization of entire sequences ob-
tained applying the SCL and FSCL (with both global and local learning rates)
starting from various initial color representatives: the Heckbert color represen-
tatives for image #1 (Heckbert), a threshold based selection of the sample of
image #1 (Threshold), random points in the RGB cube (RGBbox ) and a ran-
dom selection of samples of image #1 (Sample). The results given are the sum
of relative distortion through the sequence excluding image #1. The results are
not averaged of normalized anyhow regarding the sequence duration, therefore
entries for sequence2 are bigger than those for sequence1. Tables 5.1 and 5.2
show that there is a remarkable increment of distortion results due to initial
conditions. The worst case is the application of the SCL algorithms to search
256 representatives starting from the RGB box initialization. Also the tables
confirm that FSCL is more robust than SCL to very bad initial conditions but
their performance is comparable for good an reasonably good initial conditions.
SCL may even improve FSCL in very good initial conditions and numerical
circumstances: big sample and global scheduling of the learning rate.

In Figure 5.5 we show some of the responses to diverse initial conditions in
detail. The sequence considered is sequence1, the number of color representa-
tives is M = 16. The worst response is in Figure 5.5(a) for SCL using sample1
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and a local scheduling of the learning rate. The algorithm tries to approach
the response obtained from the Heckbert initial condition, starting from the
other initial conditions. Starting from a good initial condition (Sample) the
SCL gives the same response after five images. Starting from a medium quality
initial condition (Threshold) the SCL recovers from the bad initialization after
some fourteen images. Finally the worst initial condition (RGBbox ) can not be
recovered in the duration of the sequence. On the other hand, the best case
is that of Figure Figure 5.5(d), with sample2 and the global learning rate that
recovers from the bad initial conditions very fast, its response collapses after two
or three images in the one corresponding to the best initial condition. FSCL will
be more robust than SCL in the sense that the effect of bad initial codebooks is
recovered faster by FSCL than by SCL, under the same numerical settings. This
can be appreciated comparing Figures 5.5(a) and 5.5(b) with Figures 5.5(c) and
5.5(d).

5.4.5 Visual results
To give a visual qualitative appreciation of the Color Quantization results, Fig-
ures 5.6 to 5.11 show the results of color quantization to 16 color representatives
on images #2, #8, #12, and #20 of sequence2, under the application of some
instances of the algorithms discussed in this chapter. These images were selected
because they show the sharper transition of color distribution. For each image,
we show the color quantized image (left), the color representatives found by the
algorithm (color bars in the middle), and color quantization error (right) as a
color image obtained from the error in each color axis. Figure 5.6 and 5.7 give
the visual results of the Time Varying and the Time Invariant application, re-
spectively, of the Heckbert algorithm over the entire image. The suboptimality
of the latter is appreciable from the inspection of the quantized images (left).
The inspection of the error images (right) shows the increase in magnitude of
the error of the Time Invariant relative to the Time Varying strategy, as time
goes on.

Figures 5.8 and 5.9 show, respectively, the results of the application of SCL
and FSCL using the optimal initial conditions (Heckbert) and the small sample
of each image. It can be appreciated that the visual differences between the
quantized images (left) obtained from SCL and FSCL are almost negligible.
However, looking at the color representatives shown in the middle color bars, it
can be appreciated that the yellow color representative is not changed by SCL
(Figure 5.8, middle) although it is not used in the codification. This yellow color
does correspond to a stuck codevector, that it is not changed by SCL along the
whole sequence. The color representatives of FSCL (Figure 5.9, middle) follow
more closely the ones found by the Heckbert Time Varying application.

To illustrate the relative increase of robustness to initial conditions of FSCL
over SCL, the Figures 5.10 and 5.11 show, respectively, the results of their
application using the worst initial condition (RGBbox ) and the small sample
of each image. The existence of stuck codevectors is conspicuous in Figure
5.10, while the color representatives computed by FSCL in Figure 5.11 behave
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very similarly to the ones shown in Figure 5.9, and again follow better the
optimal color representatives computed by the Time Varying Heckbert shown
in Figure 5.6. The error images in Figure 5.11 produced by FSCL are more
smooth and of lesser magnitude than those produced by SCL in Figure 5.10.
The visual difference of the quantized images obtained from SCL and FSCL is
not so noticeable.

Regarding the visual evaluation of the results, we can conclude that the
adaptive neural algorithms improve significantly over the stationary solution
given by the Time Invariant Heckbert algorithm. Despite the existence of stuck
codevectors, SCL give visual results with a quality similar to the visual results
of FSCL.

5.5 Conclusions
This chapter reports an extensive computational experimentation aimed to as-
sess the sensitivity of basic CNN architectures, the SCL and the FSCL, when
applied as one-pass Adaptive Vector Quantization methods to the solution of a
Non-Stationary Color Quantization problem, which has been put in Chapter 2
in the framework of Non-Stationary Clustering problems.

The solution provided by the CNN is better suited for a real time implemen-
tation than the Heckbert algorithm, because of the orders of magnitude of their
computational costs. Besides real time considerations, CNN methods can be
applied to higher dimensional instances of Non-Stationary Clustering problems
(i.e. hyperspectral images).

We have found that both SCL and FSCL show some sensitivity to the num-
ber of color representatives searched (the size of the codebook). This is expected
to be a general sensitivity to be found in other CNN architectures. We have
studied the response to changes in sample size per frame, and the generalization
ability of SCL and FSCL, finding that a convenient ratio between sample size
and codebook size is 100 : 1. We have studied the effect of local versus global
scheduling of the learning rate, finding that the later is more efficient when
there is abundance of training data, whereas the former provides an additional
robustness when the data is scarce. Finally, we have tested the response of both
SCL and FSCL to suboptimal initial conditions, finding that the FSCL strat-
egy of looking for uniform quantizers provides greater robustness to bad initial
conditions. Our conclusion is that one-pass application of CNN is a successful
family of Adaptive Vector Quantization, qualified for real-time and high dimen-
sional applications. We have found that the sensitivity to the codebook size is
shared by the Self Organizing Map of Kohonen, Neural Gas, Soft Competition,
and other CNN [111, 109, 102]
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(a) (b)

(c) (d)

Figure 5.1: Relative distortion results for sequence1 with local learning rate
applying SCL to (a) M = 16 and (b) M = 256, and applying FSCL to (c)
M = 16 and (d) M = 256.
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(a) (b)

(c) (d)

Figure 5.2: Relative distortion results for sequence2 with local learning rate
applying SCL to (a) M = 16 and (b) M = 256, and applying FSCL to (c)
M = 16 and (d) M = 256.
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(a) (b)

(c) (d)

Figure 5.3: Relative distortion results for sequence1 with global learning rate
applying SCL to (a) M = 16 and (b) M = 256, and applying FSCL to (c)
M = 16 and (d) M = 256.
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(a) (b)

(c) (d)

Figure 5.4: Relative distortion results for sequence2 with global learning rate
applying SCL to (a) M = 16 and (b) M = 256, and applying FSCL to (c)
M = 16 and (d) M = 256.
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(a) (b)

(c) (d)

Figure 5.5: Robustness: relative distortion results of the Color Quantization of
experimental sequence1 with the 16 color representatives computed adaptively
by the SCL and FSCL with optimal learning rates for sample1 and sample2,
and various initial conditions.
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Figure 5.6: Results of the Color Quantization of image #2, #8, #12, and #20
of the experimental sequence2 with the 16 color representatives (middle images)
computed by Heckbert using full size images (Time Varying). On the left the
quantized images, and on the right the error images.
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Figure 5.7: Results of the Color Quantization of image #2, #8, #12, and
#20 of the experimental sequence2 with the 16 color representatives (middle
images) computed by Heckbert using #1 image (Time Invariant). On the left
the quantized images, and on the right the error images.
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Figure 5.8: Results of the Color Quantization of image #2, #8, #12, and #20
of the experimental sequence2 with the 16 color representatives (middle images)
computed adaptively by the SCL with local learning rates, using sample1, and
Heckbert initial condition. On the left the quantized images, and on the right
the error images.
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Figure 5.9: Results of the Color Quantization of image #2, #8, #12, and #20
of the experimental sequence2 with the 16 color representatives (middle images)
computed adaptively by the FSCL with local learning rates, using sample1, and
Heckbert initial condition. On the left the quantized images, and on the right
the error images.
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Figure 5.10: Results of the Color Quantization of image #2, #8, #12, and #20
of the experimental sequence2 with the 16 color representatives (middle images)
computed adaptively by the SCL with local learning rates, using sample1, and
RGBbox initial condition. On the left the quantized images, and on the right
the error images.
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Figure 5.11: Results of the Color Quantization of image #2, #8, #12, and #20
of the experimental sequence2 with the 16 color representatives (middle images)
computed adaptively by the FSCL with local learning rates, using sample1, and
RGBbox initial condition. On the left the quantized images, and on the right
the error images.



Chapter 6

Experiments on Color
Quantization of Image
Sequences using
Neighborhood based
Competitive Neural Networks

In this chapter we discuss the application of several Competitive Neural Net-
works (CNN) to Frame-Based Adaptive Vector Quantization (FBAVQ) methods
applied to the task of Non-Stationary Color Quantization which has been in-
troduced in Chapter 3. The CNN were introduced in Chapter 2, specifically
they are the Self Organizing Map (SOM), Fuzzy Learning Vector Quantization
(FLVQ) and Soft Competition Scheme (SCS) are presented as adaptation rules
that converge to the SCL. In Chapter 5 we have tested the basic SCL and FSCL
algorithms, the most salient aspect of this chapter is the comparison between
several CNNs that have diverse neighboring functions. The main research ques-
tion is whether these CNNs improve over the SCL. Besides we will be interested
in assessing their relative performances.

Section 6.1 gives a short introduction. Section 6.2 recalls the experimental
setting. Section 6.3 reports the sensitivity results on the control parameters.
Section 6.4 reports the sensitivity to initial codebooks. Section 6.5 reports the
sensitivity to the sample size. Finally, section 6.6 gives some conclusions from
the work reported in the chapter.

81
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6.1 Introduction
We have introduced in Chapter 2 the CNN as modifications of the SCL aimed
to improve its robustness against bad initial conditions [43] and its overall per-
formance. In this chapter, we will consider the Self Organizing Map (SOM)
[167], an on-line version of the Fuzzy Learning Vector Quantization (FLVQ)
[30] and the Soft-Competition Scheme (SCS)[30, 288]. As discussed in Chapter
2 the SOM, FLVQ and SCS can be seen to become the SCL rule in the limit an-
nealing values of the neighboring function control parameters. Therefore, their
objective functions can be assumed to converge to the Euclidean distortion.
An efficient scheduling of these control parameters can lead to a fast, robust
and efficient minimization of the Euclidean distortion. The main computational
constraint imposed in the experiments described here is the one-pass adapta-
tion. We have imposed the same scheduling of the learning rate parameter in
all the algorithms, in order to isolate the influence of the neighboring functions.
The neighborhood annealing follows the same exponentially decreasing function
for the SOM, FLVQ and SCS. We try to isolate the effect of the shape of the
neighboring function from the annealing schedule. Best results in all cases were
found when the convergence to the SCL algorithm was fast.

We have already introduced the FBAVQ in Chapter 2 to deal with image
sequences. We formulated the FBAVQ problem as the dynamic search for the
optimal representatives based on the sample data at each time instant. One-pass
neural networks described in Chapter 2 can be easily tuned, posses strong ro-
bustness and are relatively fast. Their computational complexity grows linearly
with the dimension of the space and the sizes of the codebook and the sam-
ple. Adaptive Color Quantization of image sequences is an instance of FBAVQ.
The task is to find the optimal set of color representatives in the RGB color
space for each image in the sequence. The non-stationary character of the data
comes from the unpredictable color distribution of the pixels in the images. The
experiments in this chapter continue those reported in [108, 109].

6.2 Experimental settings
Color Quantization can be stated as a Clustering problem in a 3D space: the
unit cube of RGB color representations. Color Quantization has applications
in visualization and compression of color images [71, 139, 150, 277, 285], image
segmentation based in color features [186, 207, 272] and image retrieval from
image databases [154]. When image sequences are considered [90], the Adaptive
Color Quantization is an instance of FBAVQ in the RGB color space. Over
the experimental non-stationary data we have applied the minimum variance
Heckbert algorithm that gives the optimal benchmark to validate the results
of our competitive neural network algorithms. The SCL provides the basic
neural adaptive response. The SOM, FLVQ and SCS are applied as robust
modifications of SCL. We explore their robustness against the degradation of
the global initial conditions, and sample size.
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6.2.1 The Non-stationary experimental data
The sequence of images used for the experiment is described in Appendix D.
The reference Heckbert algorithm and the results that set the benchmark for
the experiments in this chapter are described in Chapter 3

The experiments consists in the quantization to 16 and 256 colors, we as-
sume that 16 colors is representative of segmentation tasks, and 256 of com-
pression/visualization tasks. The color quantizers obtained by the Heckbert
algorithm were computed using the entire images. The remaining algorithms
(SCL, SOM, FLVQ, SCS) were applied to pixel samples of the images to com-
pute de color representatives. These color representatives are then used to color
quantize the entire images, and their distortion results are compared with the
results of the Heckbert algorithm. From previous chapter results (Chapter 5),
we have detected a certain sensitivity of the algorithms to the sample size, so
we have selected a priori adequate sample sizes for the tasks intended: 1600
pixels for M = 16 and 25600 for M = 256.

As results we give the distortion results along the image sequence shown in
the figures. All these distortions refer to the quantization of the full size images.
In the headings of the graphs the global distortion (the sum of the individual
image distortions) is given for a more global comparison. We have gathered the
most significant global distortion results for the full size images in Table 3. The
magnitudes of the distortions are, obviously, greater for the quantization to 16
colors than for the quantization to 256 colors.

6.2.2 The Simple Competitive Learning
In Figure 6.1 we show the results of the application of the one-pass adaptation
of SCL, applying the discussed scheduling of the learning rate, plotted along
with the results of the Heckbert algorithm. In Figures 6.1(a) and 6.1(b), the
initial codebook for the sequence was the Heckbert codebook of the first image,
and the adaptation starts in the second image. It can be appreciated that the
SCL performs adaptively in the sense discussed in previous section: it improves
upon the Time Invariant application of the Heckbert algorithm, but is less
optimal than the Time Varying. To highlight the relative distance to the optimal
benchmark we present in Figures 6.1(c) and 6.1(d) the distortion of the SCL
application relative to the Time Varying and Time Invariant Heckbert results.
These curves are computed as:

SCLrelative (#i) =
SCL (#i)− Time Varying (#i)

Time Invariant (#i)− Time Varying (#i)
; i = 2, 3, ... (6.1)

Therefore SCLrelative (#i) is negative when the SCL response improves the
optimal Time Varying. It is greater than 1 when it gives a non adaptive response,
worse than Time Invariant. It is clear from the comparison of Figures 6.1(c)
and 6.1(d) the degradation induced by the increase in the codebook size.

The initial condition for the sequence, the Heckbert codebook for the first
image, is rather optimal. In Figures 6.1(e) and 6.1(f) we test the response to
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other initial conditions. These are assumed to be the codebooks for the first
image in the sequence, and are used to start the adaptation process. These
initial codebooks are:

• in Sample: is a good initial codebook extracted from the sample of the
first image. They do not coincide in the 16 and 256 color case.

• in RGBbox: is an arbitrary codebook randomly generated in the RGB
cube, it is the worst initial-codebook case.

• Threshold (umbral): corresponds to a threshold guided selection of ele-
ments in the sample of the first image (described in Chapter 2).

It can be appreciated that for relatively good initial conditions, SCL partially
recovers after the second image. However, it remains performing worse than
when starting from the optimal initial codebooks of Figures 6.1(a) and 6.1(b).
The worst response corresponds to the worst initial condition, the effect of the
bad initialization is propagated through all the image sequence. We will show,
reproducing this experiment with SOM, FLVQ and SCS, that they effectively
improve the robustness of SCL.

6.3 Sensitivity of SOM, FLVQ and SCS to control
parameters

We start the experimental study of SOM, FLVQ and SCS in the Non Station-
ary Color Quantization problem performing a sensitivity experiment. The initial
codebook for the whole sequence is the Heckbert codebook of the first image,
and the adaptation is performed following the FBAVQ approach proposed in
Chapter 2. The sensitivity experiment is restricted to the distortion results over
the sample data. From these results we decide the optimal setting of the neigh-
boring function control parameters, and we use the corresponding codebook to
perform the quantization of the full size images in the sequence, assuming that
the optimality will extrapolate from the sample to the full size image.

Table 6.1 shows the global distortion results on the sequence of samples
of 1600 pixels when quantized to 16 colors with SOM, FLVQ and SCS under
different combinations of the setting of the initial neighboring parameters and
convergence rate to SCL. The inspection of the table reveals that the worst
results are obtained when there is no proper SCL phase (r = 1 ). In general the
fast convergence to SCL improves the results. In the SOM the initial radius is
a secondary factor of performance. In the FLVQ, the initial exponent is most
significative when m0 = 2, for m0 > 2 the FLVQ is rather insensitive to this
parameter. In the SCS the effect of the initial standard deviation is strong.
The local estimations �σi,0 (computed to give the maximum non overlapping
confidence balls of 95% confidence) give good performances, although not the
optimal. The optimal rates of convergence to SCL is r = 6 in all cases The
optimal initial neighboring parameters are υ0 = 8, m0 = 2 and σ0 = 0.1.
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SOM FLVQ SCS
v0 = m0 = σ0 =

1 8 10 7 4 2 0.1 2 �σi,0

r = 1 102.20 106.20 99.07 96.87 93.00 84.04 95.31 442.2 236.20
r = 2 72.08 71.49 91.47 90.94 86.96 84.74 85.85 149.2 85.24
r = 4 70.80 70.15 85.34 85.91 84.87 84.56 81.77 125.8 85.62
r = 6 72.70 69.37 85.39 85.31 85.48 84.66 81.67 113.7 84.43
r = 8 74.11 70.48 87.18 86.15 87.22 86.01 82.43 108.8 82.57

Table 6.1: Sensitivity exploration in the case of 16 colors.

SOM FLVQ SCS
v0 = m0 = σ0 =

1 128 10 2 0.1 �σi,0

r = 1 385.5 394.8 387.5 350.5 439.5 527.5
r = 2 302.4 304.5 351.8 341.2 361.7 359.6
r = 4 294.2 294.6 352.2 346.3 342.9 352.0
r = 6 295.5 291.2 343.4 349.0 329.4 349.8
r = 8 299.2 288.7 357.0 349.9 323.1 355.6

Table 6.2: Sensitivity exploration in the case of 16 colors.
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In Table 6.2 shows the global distortion results on the sequence of samples
of 25600 pixels when quantized to 256 colors. The performance in the table, im-
proves with the rate of convergence to SCL. The initial values of the neighboring
function parameters are secondary factors. The optimal convergence rates to
SCL are r = 8 for SOM, r = 2 FLVQ and r = 8 for SCS. The optimal initial
values are υ0 = 128, m0 = 2 and σ0 = 0.1, respectively. Figure 6.2 shows the
results of the application of the SOM, FLVQ and SCS under the optimal set-
tings of the control parameters for each algorithm deduced from the results in
Tables 6.1 and 6.2.

Figures 6.2(a) and 6.2(b) show the distortion of the quantization to 16 and
256 colors of each full size image in the image sequence. The SOM gives the
best results. In general, the three algorithms improve over the SCL. Figures
6.2(c) and 6.2(d) show the relative distortion (computed similarly to equation
(6.1)). It can be appreciated that the one-pass SOM sometimes finds better color
representatives than the optimal application of Heckbert. Finally, to stand out
the improvement over SCL, 6.2(e) and 6.2(f) show the per image substraction
of the distortion results of the algorithms from the ones of SCL. The three
algorithms show significative improvements.

6.4 Sensitivity to initial codebooks

The experiments discussed in this section extend the works reported in [108]
and [109] were we have already explored the sensitivity of the SOM to problem
and control parameters. In the experiments of previous sections, the adaptive
process starts in the second image, assuming as initial codebook the Heckbert
codebook of the first image, which is a rather good initial condition. Now we
consider the response of the FBAVQ with SOM, FLVQ and SCS to worse initial
conditions and compare them to the results obtained with SCL. The initial
codebooks are the same used in Figures 6.1(e) and 6.1(f) . The setting of the
neighboring function parameters is the same applied to obtain Figure 6.2. As in
these figures the results given are the per image distortion of the quantization
of the full images with the codebooks computed from the samples. Global
distortion results are reproduced in Table 6.3.

Figures 6.3(a) and 6.3(b) give the results of the FLVQ with 16 and 256 color
representatives, respectively. It can be appreciated that the improvements re-
spect to SCL are minor. Figures 6.3(c) and 6.3(d) give the results of the SCS
with 16 and 256 color representatives, respectively. They show a systematic im-
provement over SCL, although not a very big one. Finally, the best results are
obtained with the SOM, which shows an astonishing robustness. Whereas the
effect of the bad initial conditions is propagated by the FLVQ and SCS through
the whole sequence, the SOM collapses almost completely to the optimal be-
havior from the second image. This robustness has great practical implications
for real time video processing. It allows almost arbitrary initializations.
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(a) (b)

(c) ( d)

( e) ( f)

Figure 6.1: Per image distortion results of the quantization of the full size im-
ages with the codebooks computed by the SCL on the image samples. (a, c, e)
16 color representatives and samples of 1600 pixels. (b, d, f) 256 color repre-
sentatives and samples of 25600 pixels. (a, b) Distortion results. (c, d) Relative
distortion results. (e, f) Sensitivity results starting from initial codebooks dif-
ferent from the Heckbert codebook of the first image.
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(a) (b)

(c) ( d)

( e) ( f)

Figure 6.2: Distortion results of the quantization of the full size images in the
sequence with the codebooks obtained by the SOM, FLVQ and SCS with optimal
settings of neighborhood parameters deduced from Tables 6.1 and 6.2. (a, c, e)
16 color representatives computed from the samples of 1600 pixels. (b, d, f) 256
color representatives computed from the samples of 256 pixels. (a, b) Absolute
distortion results per image. (c, d) Relative distortion results per image. (e, f)
Per image substraction from the SCL distortion results.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Per image distortion results that show the sensitivity to initial
conditions of the SOM, FLVQ and SCS. The codebooks for the first image
selected as discussed in the text. The neighboring function parameters set as
in Figure 6.2. (a, c, d) 16 color representatives computed from the samples of
1600 pixels. (b, d, f) 256 color representatives computed from the samples of
256 pixels. (a, b) Distortion results of the FLVQ. (c, d) Distortion results of the
SCS. (e, f) Distortion results of the SOM.
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codevectors Initialization SCL SOM FLVQ SCS
number

16 Heckbert 5686 4733 5689 5441
in Sample 6512 4733 6398 5970
in RGBbox 10320 4740 10470 10080
Threshold 6044 4740 5884 5560

256 Heckbert 1412 1209 1414 1338
in Sample 1653 1227 1665 1607
in RGBbox 2191 1223 2227 1833
Threshold 1653 1204 1693 1642

Table 6.3: Sensitivity to initial conditions.

6.5 Sensitivity to sample size
The experiments discussed in this section extend the works reported in [102].
A random sample of 1600 image pixels is presented once to the CNN for both
codebook sizes M = 16 and M = 256. The comparison of subfigures (a) with
subfigures (b) of Figures 6.4, 6.5, 6.6, and 6.7 shows that the algorithms behave
much better in the case of 16 representatives. This difference is attributable
to the ratio between the size of the sample and the number of representatives
searched. For 256 representatives a sample of 1600 pixels constitutes a very
small sample. Extended experiments support this analysis are developed in
Chapter 7. However, note that the algorithms still perform adaptively most of
the time.

The SOM algorithm implies entropic criteria that try to maximize the dis-
tribution of the cluster representatives. To introduce this kind of criteria in the
application of the SCL and SCS, we have considered the heuristic of penalizing
the most numerous clusters [151] that has been adopted in the previous Chapter
5 on the SCL. In this case the heuristic of penalizing the most numerous clus-
ters by weighting the distance to the cluster representative, as is : d (x,yi) =
ωi �x− yi�2, has been applied to the SCS with ωi =

�t
k=1 Φ

SCS
i (x (k) ,Y (k)).

The results of this approach are show in Figures 6.6(c, d) and Figures 6.7(c,
d). It can be appreciated that the use of this weighted distance has some effect,
which is greater in the case of SCS.

6.6 Conclusions
The problem of Non-Stationary Color Quantization of image sequences is good
application for Frame Based AVQ (FBAVQ) performed with CNN. This chapter
contains exhaustive experimental works over an instance of this problems, aimed
to study the robustness of the CNNs and their sensitivity to the annealing
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(a) (b)

Figure 6.4: Distortion results of the quantization of the full size images in the
sequence with the codebooks obtained by the SOM (a) 16 color representatives
and (b) 256 color representatives.

(a) (b)

Figure 6.5: Distortion results of the quantization of the full size images in the
sequence with the codebooks obtained by the Neural Gas (a) 16 color represen-
tatives and (b) 256 color representatives.
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(a) (b)

(c) (d)

Figure 6.6: Distortion results of the quantization of the full size images in the
sequence with the codebooks obtained by the SCL for (a) 16 and (b) 256 color
representatives. SCL with penalized distance (equivalent to FSCL) for (c) 16
and (d) 256 color representatives.
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(a) (b)

(c) (d)

Figure 6.7: Distortion results of the quantization of the full size images in
the sequence with the codebooks obtained by the SCS for (a) 16 and (b) 256
color representatives. SCS with penalized distance for (c) 16 and (d) 256 color
representatives
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control parameters of the neighboring function for the functional convergence
of the CNN to the SCL. We consider the SOM, FLVQ and SCS algorithms in
this FBAVQ application.

Fast and robust adaptation allow the application of SOM, FLVQ and SCS
to approach performances that could lead to real time FBAVQ. Best results in
all cases were found when the convergence to the SCL algorithm was fast. The
robustness to initial conditions has been shown for all algorithms. All algorithms
have similar sensitivity to the number of clusters and the sample size. From the
computational experiments, the SOM appears as the more robust and efficient
algorithm.

Our approach is computationally competitive. The reference Heckbert algo-
rithm is almost optimal, but its computational cost is very high and can not be
applied to higher dimensional problems, because its complexity grows exponen-
tially with the dimension of the data space. On the other hand, our neural net-
work algorithms have a complexity that grows linearly with the number of color
representatives, the size of the sample and the space dimension. That means
that our approach can be extended to higher dimensional problems, while the
Heckbert algorithm could not.



Chapter 7

A sensitivity analysis of the
SOM for Non-Stationary
Clustering

In this chapter we recall [109] the study on the sensitivity of the Self Orga-
nizing Map (SOM) parameters in the context of the one-pass adaptive com-
putation of cluster representatives over non-stationary data. The paradigm of
Non-Stationary Clustering (NSC) is represented by the problem of Color Quan-
tization of image sequences already introduced in Chapter 2. Results in Chapter
6 pointed to SOM as the best performing algorithm in this task, therefore the
detailed sensitivity study in this chapter.

Section 7.1 gives some introductory remarks. Section 7.2 specifies the appli-
cation of the SOM to the one-pass adaptive computation of cluster representa-
tives in the general NSC problem. Section 7.3 discusses the experimental results
obtained. Finally, section 7.4 gives some conclusions.

7.1 Introduction
This chapter continues on the exploration of the efficiency of CNNs as one-pass
adaptive algorithms for the computation of clustering representatives in the
non-stationary case without knowledge of a time dependence model [111, 108]
reported in previous chapters. The works in this chapter [109], [108] focus on the
Self Organizing Map (SOM) [167]. The one-pass adaptation framework is not
very common in the Neural Networks literature [53, 179] imposing very strong
computational limitations. The effective scheduled sequences of the learning
parameters applied to meet the fast adaptation requirement fall far from the
theoretical conditions for convergence. The results in previous chapters show
that the SOM and other CNN with a neighboring mechanism have improved
robust convergence. The SOM was found the best performing in the computa-
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tional experiments. We report in this chapter a more detailed sensitivity analysis
in order to asses the behaviour of the SOM under a wide range of conditions
and parameter values.

Color Quantization of image sequences is an instance of the Non-Stationary
Clustering problem. Color Quantization has practical applications in visualiza-
tion [139, 207, 184], color image segmentation [272], data compression [101] and
image retrieval [154].

7.2 Adaptive application of SOM to Non-Stationary
Clustering

Stationary cluster analysis assume that the data is a sample X = {x1, . . . ,xN} of
an stationary stochastic process, whose statistical characteristics will not change
in time. Non-Stationary Clustering assume that the data come from a non-
stationary stochastic process sampled at diverse time instants. That is, the pop-
ulation can be modeled by a discrete time stochastic process {Xτ ; τ = 1, 2, . . .}
of unknown joint probability distribution. We do not assume any knowledge of
the time dependencies that could allow a predictive approach [97]. Chapter 2
introduced the working definition of Non-Stationary Clustering and the Frame
Based AVQ (FBAVQ) application of CNNs to solve this problem, which we
briefly recall:

• At time τ take as initial cluster representatives the ones already computed
from the sample of the process at time τ − 1.

• Use the sample vectors X (τ) = {x1 (τ) , . . . ,xN (τ)} to perform an adap-
tive computation leading to the new estimates of the cluster representa-
tives. Specifically, we use the Self Organizing Map (SOM) in this chapter.

For notational simplicity, let us denote X = {x1, . . . ,xN} the sample of the
process at a given time instant τ . We recall that the SOM is a particular case
of the general CNN learning rule : x (t) ∈ X; 1 ≤ i ≤ M

yi (t+ 1) = yi (t) + αi (t)Φi (x (t) ,Y (t) , t) (x (t)− yi (t)) ,

where t is the order of presentation of the sample vectors, and Φi (x (t) ,Y (t) , t)
is the neighboring function. One-pass adaptation means that each sample vec-
tor will only be presented once for the learning of representatives. In their
general statement, CNN are designed to perform stochastic gradient minimiza-
tion of some distortion-like function. In order to guarantee theoretical conver-
gence, the (local) learning rate must comply with the conditions: lim

t→∞
αi (t) = 0,

�∞
t=0 αi (t) = ∞, and

�∞
t=0 α

2
i (t) < ∞. However, the "one pass" adaptation

schedule does not comply with these conditions implying very lengthy adap-
tation processes. In the experiments, the learning rate follows the expression
:

αi (t) = 0.1

�
1−

�t
k=1 δi (x (k) ,Y (k))

N

�
.
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This expression implies that the learning rate decreases proportionally to the
number of times that a codevector "wins" the competition. The adaptation
induced by the neighboring function does not alter the local learning rate. It
also implies that a local learning rate only reaches the zero value if the codevector
"wins" for all the sample vectors. This expression of the learning rate is the
best we have found that fits in the one-pass adaptation framework. Obviously
the sequences of the learning rate parameters given by it do not comply with
the conditions that ensure the theoretical convergence of the stochastic gradient
minimization algorithm.

In the SOM the neighboring function is defined over the space of the neuron
indices. In the works of this chapter we have assumed a 1D topology of the
cluster indices. The neighborhoods considered decay exponentially following
the expression:

Φi (x,Y) =

�
1 |w (x,Y)− i| ≤

�
(v0 + 1)(1−

rt

N )
�

0 otherwise
; 1 ≤ i ≤ M,

where
w (x,Y) = arg min

k=1,..,M

�
�x− yk�2

�

The size of the sample considered at each time instant is N . The initial
neighborhood radius is v0. The expression ensures that the neighboring func-
tion reduces to the simple competitive case (null neighborhood) after the pre-
sentation of the first N/r vectors of the sample. Along the experiments r is the
neighborhood reduction rate (t < N

r ).

7.3 Experimental sensitivity results on the Color
Quantization of an image sequence

The sequence of images used for the computational experiments is presented
in Appendix D.1. The reference Heckbert algorithm is described in Chapter 3,
and the results that set the benchmark for the experiments in this chapter are
described in Appendix D.1.

The adaptive application of the SOM assumes that the adaptation process
starts with the second image, taking as initial cluster representatives the as-
sumed color representatives for the first image. In the two first experiments the
initial codebook was the Heckbert palette for the first image. The adaptation is
performed over a random sample of the pixels of each image. In the experiments
that follow, we have tried to explore the sensitivity of the SOM to the following
parameters: number of clusters (codebook size), size of the sample taken from
each image, neighboring function parameters: neighborhood initial size and re-
duction rate, and, finally, the initial color representatives of the whole process
(the assumed color representatives of the first image). The scheduling of the
learning rate remains the same through all the experiments.
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The first experiment tries to evaluate the sensitivity of the SOM to the sam-
ple size and the number of cluster representatives (codebook size) searched. Two
codebook sizes have been considered M = 16 and M = 256 colors. The neigh-
boring function parameters were set to v0 = 1 and r = 4 for 16 colors, and v0 = 8
and r = 4 for 256 colors. Figure 7.1 shows the results of the SOM for several
sample sizes. These results consist of the sequence of distortions over the image
sequence of the Color Quantization using the color representatives computed
adaptively by the SOM over the image samples. The first general conclusion
that can be drawn from this figure is that the SOM performs adaptively under
a wide variety of conditions, but that it is clearly sensitive to the sample size.
A closer inspection of the figure leads to the conclusion that the SOM is highly
sensitive to the number of color representatives (clusters) searched. The sample
sizes 100 for 16 colors and 1600 for 256 have the same ratio of sample size to
codebook size (roughly 6:1). However, the response of the SOM in either case is
qualitatively very different, it is clearly worse in the 256 colors codebook case.
In the case of the the 16 color codebook, as the sample size grows, the distortion
curves overlap very fast in near optimal results. In the case of 256 colors this
convergence to near optimal results (as the sample size grows) is very smooth.
The influence of the sample size seems to be stronger in the 256 colors codebook
case. Finally, if we consider the highest sample:codebook ratio that appears in
both figures (100:1), we note that the response in the 16 colors codebook case is
qualitatively better than in the 256 colors codebook case. Our main conclusion
from this first experiment is that the codebook size is the prime factor in the
performance of the SOM. Once the codebook size is fixed, the size of the sample
used for the one-pass adaptation can be a very sensitive performance factor.

The second experiment was intended to explore the sensitivity of the SOM
to the neighboring function parameters: the initial neighborhood v0 and the
neighborhood reduction rate r. Not all the combinations of codebook and sam-
ple size tested in Figure 7.1 are retried in this experiment. The measure of
the behaviour of the color quantizers computed by the SOM is the accumu-
lated distortion along the entire image sequence. This measure was computed
from the samples instead of the entire images (the magnitudes of the errors can
not be compared between surfaces). This simplification is justified because we
are interested in the qualitative shape of the response surface, and because we
have observed that the distortion of the color quantization of the entire image
is proportional to that of the of the sample. The values of the neighboring re-
duction factor tested were {1, 2, 3, 4, 5, 8} and {1.25, 1.3, 1.5, 2, 3, 4} in the case
of 16 and 256 colors, respectively. The initial neighborhoods considered were
{1, 2, 3, 4, 5, 8} and {2, 8, 16, 32, 64, 128} in the case of 16 and 256 colors, re-
spectively. Figures 7.2 and 7.3 show the results, and Table 7.1 summarizes the
experimental design. Shown in the figures are both the response surfaces (Fig-
ures 7.2(a), 7.2(c), 7.2(e), 7.3(a), 7.3(c)) and the projections on the experiment
axes (Figures 7.2(b), 7.2(d), 7.2(f), 7.3(b), 7.3(d)).

The study of Figures 7.2 and 7.3 confirm the previous assertion of the impor-
tance of codebook and sample size. The sensitivity of the SOM to the setting
of the neighboring function parameters varies strongly with them. In the case
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Sample Size
codebook 100 400 1600 25600

16 surface fig. 7.2(a) fig 7.2(c) fig. 7.2(e)
project. fig. 7.2(b) fig 7.2(d) fig. 7.2(f) –

256 surface fig. 7.3(a) fig. 7.3(c)
project. – – fig. 7.3(b) fig. 7.3(d)

Table 7.1: Summary of the neighboring function sensitivity experiment results

of the smaller sample:codebook ratio (6:1) (Figures 7.2(a), 7.3(a)) the response
surface has a counter intuitive shape. It appears that for this ratio the best
results are obtained with the smaller initial neighborhoods. This result may be
due to fluctuations produced during the reordering phase of the SOM by the
combined effect of the sparse distribution of the small sample and the relatively
big initial neighborhood. For a more sensible ratio (100:1), whose results are
shown in Figures 7.2(e) and 7.3(c), the response surface has a more natural
shape giving the best results for the largest initial neighborhood. The compar-
ison of Figures 7.2(c) and 7.2(e) confirms the quick convergence of the SOM
to the optimal behaviour as the sample:codebook ratio grows, in the case of
16 colors. The examination in both Figures 7.2 and 7.3 of the projections of
the surfaces reveals a very clear trend for the neighborhood reduction rate. In
general, a reduction factor such that the neighborhood disappears after presen-
tation of one quarter of the sample gives the best results in all the cases. After
codebook and sample size, the neighboring reduction rate seems to be the next
significant performance factor. With all the other performance factors set to ap-
propriate values, the optimal values of the initial neighborhood are the largest
ones.

The last experiment conducted was the exploration of the sensitivity to the
initial codebooks. As said before, the previous experiments were conducted
starting the adaptive process in the second image of the sequence, assuming
the initial codebook to be the Heckbert palette (Matlab) for the first image.
In Figures 7.4 and 7.5 it is shown the response of the SOM to other settings
of the initial codebook: a threshold based selection of the sample of image #1
(Thresh), random points in the RGB cube (RGBbox ) and a random selection
of the sample of image #1 (Sample). For 16 colors the SOM parameters were:
sample size 1600, v0 = 1, and r = 4. For 256 colors sample size was 25600, v0 =
128, and r = 4. Figures 7.4(a), 7.5(a), 7.5(c) show the distortion along the image
sequence of experimental images together with the benchmark results. Let us
denote

�
CSOM (τ) ; τ = 1, . . . , 24

�
the sequence of distortion values obtained

from the color quantizers computed by the SOM starting from a given initial
codebook. Figures 7.4(b), and 7.6 show these sequences relative to the error
committed when assuming stationarity, that is for each initial condition we
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plot: �
CSOM (τ)− CTV (τ)

CTI (τ)− CTV (τ)
; τ = 1, . . . , 24

�

Figure 7.4 shows that the SOM is quite insensitive to initial conditions for
small codebooks. However Figures 7.5(a) and 7.6(a) show a rather high sensi-
tivity to the initial codebook. The obvious hypothesis for this degradation is
that our one-pass implementation of the SOM can not perform properly the
self-organization phase when the codebook size is relatively large. To test this
idea, we have applied a simple ordering by components to the codebooks be-
fore starting the adaptation with the SOM. The results are shown in Figures
7.5(b) and 7.6(b). Given a good ordering of the initial cluster representatives,
the SOM becomes insensitive to initial conditions regardless of codebook size.
We can conclude that the our one-pass SOM is capable of performing fast self-
organization in the case of small codebooks, but as the size of the codebook
grows it becomes very sensitive to the bad ordering of the initial cluster rep-
resentatives. The strong influence of the network size (the number of clusters)
extends to the ability of our one-pass SOM to recover from bad initial topological
orderings of the neurons that incorporate the cluster representatives.

7.4 Conclusions
This chapter has explored the sensitivity of the SOM as a one-pass adaptive al-
gorithm for the computation of cluster representatives in the framework of NSC
problems from an experimental point of view. The NSC paradigm is exempli-
fied in the problem of Color Quantization of image sequences. The experiment
results reported in this chapter show that the SOM is a very robust algorithm
when we try to perform one-pass adaptive computation of cluster representa-
tives in the non-stationary case. In the sensitivity experiments, we have found
that the SOM is highly sensitive to the number of clusters searched, that is,
to the size of the network to be adapted. The number of clusters searched im-
pose restrictions on the size of the sample used. These two problem parameters
condition the response of the SOM to changes in the neighboring function pa-
rameters. Finally, when the SOM is quite insensitive to initial conditions, for
small codebook sizes. For larger codebooks, the one-pass SOM is sensitive to
the topological ordering of the initial cluster representatives.
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(a)

(b)

Figure 7.1: Distortion results obtained with the adaptive application of SOM
over samples of diverse sizes to compute the color quantizers of (a) 16 (with
v0 = 1 and r = 4) and (b) 256 colors (with v0 = 8 and r = 4).



102 CHAPTER 7. A SENSITIVITY ANALYSIS OF THE SOM ...

(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Sensitivity to the neighboring function parameters v0 and r of the
SOM applied to compute the color quantizers of 16 colors (see Table 7.1), mea-
sured by the accumulated distortion along the experimental sequence.
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(a) (b)

(c) (d)

Figure 7.3: Sensitivity to the neighboring function parameters v0 and r of the
SOM applied to compute the color quantizers of 256 colors (see Table 7.1),
measured by the accumulated distortion along the experimental sequence.



104 CHAPTER 7. A SENSITIVITY ANALYSIS OF THE SOM ...

(a)

(b)

Figure 7.4: Distortion of the color quantizers of 16 colors computed by the adap-
tive application of the SOM starting from several initial cluster representatives
(sensitivity to initial conditions) (a) absolute values, (b) normalized relative to
the stationarity assumption.
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(a)

(b)

Figure 7.5: Distortion of the color quantizers of 256 colors computed by the
adaptive application of the SOM starting from several initial cluster represen-
tatives (sensitivity to initial conditions) (a) unprocessed initial cluster represen-
tatives, and (b) the same initial cluster representatives ordered before starting
the adaptation process.
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(a)

(b)

Figure 7.6: Normalized Distortion of the color quantizers of 256 colors computed
by the adaptive application of the SOM starting from several initial cluster
representatives (sensitivity to initial conditions) (a) unprocessed initial cluster
representatives, and (b) the same initial cluster representatives ordered before
starting the adaptation process.



Chapter 8

Convergence of the SOM
from the point of view of
Graduated Non-Convexity

This chapter presents controversial empirical results about the relative conver-
gence of batch and online neural network vector quantization (VQ) learning al-
gorithms. Convergence of the Self-Organizing Map (SOM) and Neural Gas (NG)
is usually contemplated from the point of view of stochastic gradient descent
(SGD) algorithms of an energy function. SGD algorithms are characterized by
very restrictive conditions that produce a slow convergence rate. Also they are
local minimization algorithms, very dependent on the initial conditions. It is
the commonplace belief that online algorithms have a very slow convergence,
while the batch are faster and give better results. However, our empirical results
show that one-pass on-line training realizations of SOM and NG may perform
comparable to more careful (slow annealing or batch) realizations. Moreover,
additional empirical works suggest that SOM is quite robust against initial con-
ditions. In both cases the performance measure is the quantization distortion.
That empirical evidence leads us to propose that the appropriate setting for the
convergence analysis of SOM, NG and similar competitive artificial neural net-
work clustering algorithms is the theory of Graduated Non-Convexity (GNC)
algorithms.

Section 8.1 gives an introduction to the chapter. In Section 8.2, we present
the definitions of online and batch versions of SOM and NG. Section 8.3 discusses
the formulation of the SOM and NG as GNC algorithms. Section 8.4 gives the
results the experimental results over several datasets. Finally, Section 8.5 is
devoted to conclusions.

107
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8.1 Introduction
Both SOM and NG algorithms have the appearance of stochastic gradient de-
scent (online) algorithms [89] in their original definitions, that is, whenever
an input vector is presented, a learning (adaptation) step occurs. It has been
shown that an online version of the NG algorithm can find better local solutions
than the online SOM [193]. Online realizations are very time consuming due
to the slow annealing of the learning control parameters inducing a very slow
convergence rate of the stochastic gradient descent. To speed up computations,
batch versions of both algorithms have been proposed. Batch realizations corre-
spond to deterministic gradient descent algorithms. The parameter estimation
is performed using statistics computed over the whole data sample. The batch
version of SOM was already proposed in [169] as a reasonable speed-up of the
online SOM, with minor solution quality degradation. In the empirical analysis
reported in [82], the main drawback of the batch SOM is its sensitivity to initial
conditions, and the bad organization of the final class representatives, that may
be due to poor topological preservation. Good execution instances of the batch
SOM may improve the solutions given by the online SOM. On the other hand,
the slow annealing online SOM is robust against bad initializations and provides
good topological ordering, if the adaptation schedule is smooth enough. The
batch version of the NG algorithm has been studied in [298] as a clustering data
algorithm. It has been proposed as a convenient speed-up of the online NG too.

Both the slow annealing online and batch versions of the algorithms im-
ply the iteration over the whole sample several times. On the contrary, one-
pass realizations visit only once the sample data, imposing a fast annealing
of the control parameters. This adaptation framework is not very common in
the neural networks literature; in fact, the few related references that we have
found [179, 92, 54] come from the signal processing and speech coding litera-
ture. The effective scheduled learning parameter sequences applied to meet the
fast adaptation requirements of one-pass training fall far from the theoretical
convergence conditions of SGD algorithms. However, in the computational ex-
periments shown in this chapter, the distortion results are competitive with the
conventional SOM and NG online and batch versions. If we take into account
the computation time, the superior performance of the one-pass realization be-
comes spectacular.

SGD algorithms are local minimization algorithms, therefore sensitive to the
initial conditions. However, the works reported in [42] show that the SOM can
be very insensitive to initial condition variability when the goal is VQ design.
These results lead us to think that may be other frameworks for the study of
SOM and NG convergence better suited than the theory of SGD algorithms.
We postulate that both SOM and NG are instances of the Graduated Non-
Convexity (GNC) algorithms [40, 152, 202, 203, 204], which are related to the
parameter Continuation Methods [9] (more detailed information in Appendix
A). GNC algorithms try to solve the minimization of a non-convex objective
function by the sequential search of the minima of a one-parameter family of
functions, which are morphed from a convex function up to the non-convex
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original function. In the SOM and NG the neighborhood control parameters
may be understood as performing the role of graduating the non-convexity of
the energy function minimized by the algorithm. Therefore the training of
both the SOM and the NG can be seen as a continuation of the minimum of
a sequence of energy functions starting from a convex one and ending with the
highly non-convex distortion function.

8.2 Algorithm definitions
Each algorithm applied below has some control parameters, like the learning
ratio, the neighbourhood size and shape, or the temperature. The online re-
alizations usually modify their values following each input data presentation
and adaptation of the codebook. The batch realizations modify their values
after each presentation of the whole input data sample. Both online and batch
realizations imply that the input data set is presented several times. On the
contrary, the one-pass realizations imply that each input data is presented at
most once for adaptation, and that the control parameters are modified after
each presentation. In the experiments, the learning rate follows the expression
[60]:

α (t) = α0

�
αN

α0

� t

N

where α0 and αN are the initial and final value of the learning rate, re-
spectively. Therefore after N presentations the learning rate reaches its final
value.

Both the SOM and NG are particular cases of the general Competitive Neural
Network algorithm. The definitions of the online versions of SOM and NG
algorithms has been gathered in Chapter 2 in Section 2.4. Next the batch
versions.

8.2.1 Batch versions of SOM and NG
So called batch algorithms correspond to deterministic gradient descent algo-
rithms. The adaptation is performed based on the whole data sample. The goal
seeks speed up online versions with minor solution quality degradations.

Kononen’s Batch Map [169, 167] defined the batch version of SOM algorithm.
Among its advantages, there is no learning rate parameter and the computation
is faster than the conventional online realization. This algorithm can be viewed
as the LBG algorithm [185] plus a neighbouring function. The input space is
partitioned into Voronoi regions associated to unit weights, and the input data
sample is partitioned accordingly:

Vi (t) = {x ∈ X |w (x,Y) = i}

where t corresponds to the iteration number over the sample and unit weights
yi are fixed during iteration, so that w (x,Y) is the winning unit index as in
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equation (2.11). The estimation of the unit weights yi is performed computing
an arithmetic mean over the unit Voronoi region and those of its neighbor units:

yi (t+ 1) =
�

x∈Ui(t)

x

|Ui (t)|

where

Ui (t) =
�

|j−i|≤v(t)

Vj (t)

and |Ui| means the cardinality of Ui. As in the other versions, to determine
the radius of the neighborhood we applied the following expression:

v (t) =

�
v0

�
vN
v0

�rt/N
�
− 1

where r denoted the rate of convergence to the null neighborhood; thus, the
expression ensures that the neighboring function reduces from v0 to vN after N/r
iterations. This final neighborhood radius is equivalent to the LBG algorithm:
the unit weight is computed as the arithmetic mean of its corresponding Voronoi
region. It must be noted that the neighboring function of the Batch SOM is
equivalent to the crisp neighborhood for the online training.

A definition of Batch NG [298] comes from changing the contribution of
each input vector to the unit weight estimation as a function of the ordering of
the unit relative to the input vector, freezing the online realization of NG. The
estimation of the unit weights in the Batch NG reads as follows:

yi (t+ 1) =

�
x
Φi (x,Y (t) ,λ (t))x�
x
Φi (x,Y (t) ,λ (t))

As with the Batch SOM, the Batch NG converges to the LBG algorithm:
only the Voronoi region corresponding to each codevector contributes to its
estimation when the temperature reaches its final value. The ranking function
and λ parameter are equal than in the one-pass case. The neighbour-region
contribution decays exponentially due to the evolution of λ according to the
following expression:

λ (t) = λ0

�
λN

λ0

� t

N

Where λ0 and λN its initial and final value. The expression ensures that the
neighbouring function reduces to the simple competitive case (null neighbour-
hood) as it happens with SOM.
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8.3 SOM and NG as GNC algorithms

8.3.1 GNC definitions

Graduated Non-Convexity algorithms appear in the field of image and signal
processing for segmentation, restoration and filtering applications. As such,
there is some need to adapt the vocabulary and general formulation to the SOM
and NG. The basic formulation of the GNC approach [40, 202, 204] is that the
function to be minimized is the MAP estimate of a sampled surface corrupted
by additive noise M (x) = D (x) +N (x). This MAP estimate p (R = D |M ) is
obtained minimizing the energy:

E [R] = − log p (M |D = R )− log p (D = R) = Ed [R] + Es [R] ,

where Ed [R] is the data term and Es [R] is the smoothness term. The data term
is quadratic under the usual signal independent Gaussian noise assumption, and
the smoothness term express any a priori information about the surface. In [202]
the smoothness term is formulated over the surface gradient. The GNC function
general formulation is:

E [R] =
�

x

(M (x)−R (x))2 + Es [R] , (8.1)

where the smoothness term depends on some parameter Es [R] = fσ (R). The
key of GNC methods is that the function to be minimized E [R] is embedded
in a one-parameter family of functionals Eσ [R] so that the initial functional is
convex, and the final functional is equivalent to the original function E0 [R] =
E [R]. The minimization is performed tracking the local minimum of Eσ [R]
from the initial to the final functional. One key problem in GNC is to ensure
that the initial functional is convex [202]. Other problem is to ensure that there
are no bifurcations or other effects that may affect the continuation process.
If the initial functional is convex, the algorithm becomes independent of the
initial conditions because it will be feasible to obtain the global minimum of the
initial functional regardless of the initial condition, thereafter the continuation
of the local minima will be strongly determined. If there are no bifurcations
or other effects in the continuation process, then the global minimum of the
initial functional can be tracked to a global minimum of the target functional.
It must be recalled that one of the properties that the SOM and NG show over
the bare SCL algorithms is the robustness against bad initial conditions [42],
given a powerful clue to interpret them as GNC algorithms. It seems that for
NG and SOM it is very easy to ensure the convexity of the initial functional
and that the continuation is also an easy process
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8.3.2 SOM and NG functionals.

The NG was proposed [193] as the minimization of the following functional,

Eng (w,λ) =
1

2C (λ)

M�

i=1

ˆ
dDvP (v)φλ (ki (v, w)) (v − wi)

2 ,

that we discretize and rewrite according to previous definitions of data sample
X and codebook Y, as follows

Eng (X,Y,λ) =
1

2C (λ)

M�

i=1

N�

j=1

Φi (x,Y,λ) �xj − yi�2 ,

where Φi (x,Y,λ) is the neighboring function of equation (2.19). Note that we
can reorganize it as follows:

Eng (X,Y,λ) =
N�

j=1

��xj − yw(xj)

��2 (8.2)

+
N�

j=1

M�

i = 1
i �= w (xj)

,

Φi (xj ,Y,λ) �xj − yi�2 . (8.3)

Where we have noted that Φw(xj) (xj ,Y,λ) = 1 and therefore the first term
in equation (8.3) is equivalent to the first term in equation (8.1). The second
term in equation (8.3) corresponds to the smoothing term in equation (8.1). For
the SOM, when the neighborhood function is the crisp one given in equation
(2.12) it is assumed that the functional minimized by the SOM is the extended
distortion (although [241] proves that minima of the extended distortion are not
the fixed points of the SOM rule in the general):

ESOM (X,Y, v) =
M�

i=1

N�

j=1

Φi (xj ,Y, v) �xj − yi�2 , (8.4)

Φi (x,Y, v) =

�
1 |w (x,Y)− i| ≤ v
0 otherwise

.

Again it is easy to decompose the functional in a structure similar to that
of equation (8.1).
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ESOM (X,Y, v) =
N�

j=1

��xj − yw(xj)

��2

+
N�

j=1

M�

i = 1
i �= w (xj)

Φi (xj ,Y, v) �xj − yi�2 .

Therefore, it seems that the SOM can also be made to fit into the pattern
of a GNC algorithm.

8.3.3 Convexity of SOM and NG initial functionals
The next problem is to find the conditions for convexity regarding the neighbor-
hood parameters, so that they can be set to ensure an initial convex functional.
This is a trivial task for both SOM and NG. The second derivative of the SOM
functional relative to the unit yi reads:

∇2
iESOM (X,Y, v) =

1

2

N�

j=1

Φi (xj ,Y, v) . (8.5)

The condition for convexity is that all these second derivatives must be
greater than zero for any given sample data:

∀X; ∀i;∇2
iESOM (x,Y, v) > 0.

Setting the neighborhood radius to encompass the whole network ensures
that condition. For 1D unit index topologies v = M/2 is a sufficient condition
for convexity of the initial functional minimized by SOM. Note that if the neigh-
borhood function is not always nonnegative (i.e.: the Mexican hat neighborhood
function) this condition will work. The second derivative of NG functional rela-
tive to a unit is like equation (8.5). As the NG neighborhood function is always
positive, although it can take very small values, the condition for convexity is
even more general, any non zero temperature will ensure theoretical convexity
of the target functional. Moreover, it guarantees that the successive function-
als minimized as the temperature decreases are convex up to the limit of zero
temperature, which may be a reason for the good performance of NG. This
is not true for SOM. A subject for further work is the study of the minimum
continuation process performed while decreasing the neighborhood.

8.4 Experimental results
The experimental results presented is this section are meant to stress the idea
that SOM and NG must be considered as a kind of GNC algorithms. They show
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(a) (b) (c)

Figure 8.1: The three benchmark data sets (a) S-shaped, (b) Cantor set and (c)
a mixture of Gaussian distributions.

that, contrary to what is to be expected from a SGD algorithm, SOM and NG
fast training sequences of the one-pass realizations performance is comparable
to slow careful training sequences and Batch realizations.

8.4.1 Experimental data sets

We have done the computational experiments on three 2D benchmark data sets
which have already been used in [60, 88, 54] for evaluation of clustering and VQ
algorithms. They are visualized in Figure 8.1: (a) S-shaped distribution, (b)
Three-level Cantor distribution, (c) a mixture of Gaussian distributions.

The first data distribution is constructed with 2000 data points falling on
an S-shaped curve defined by the equation y = 8x3 − x, where x is uniformly
distributed in the interval [−0.5, 0.5]. The three-level Cantor set (2048 data
points) is uniformly distributed on a fractal constructed by starting with a
unit interval, removing the middle third, and then recursively repeating the
procedure on the two portions of the interval that are left. The third data
set is a collection of 500 data points generated by a mixture of ten Gaussian
distributions whose means fall in the following range x ∈ [−0.5, 0.5] and σ2 =
0.001.

We have applied the algorithms to higher dimension data, thus the three
level Cantor Set (16384 data points) and the mixture of Gaussians (2000 data
points) have been extended to 3D. The Figure 8.2 shows two 3D data sets with
a VQ solution obtained by SOM overlaid.

The well known Iris dataset has been also tested. The data contains four
measurements for 50 individuals from each of the three northern american
species of iris flowers.

We have also worked on well known AVIRIS hyperspectral image: the Indian
Pines used and described, for instance in [132]. The image is a 145x145 pixel
image, where each pixel has 220 bands. In Figure 8.3 display the 170th band.
For the hyperspectral image the task is to find the clustering of the pixel spectra.
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(a)

(b)

Figure 8.2: The 3D benchmark data sets (a) Cantor set and (b) a mixture of
Gaussian distributions, with sample VQ solutions obtained by the SOM
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Figure 8.3: The 170th band of the hyperspectral image Indian pines.

8.4.2 Algorithm details

The codebook initialization used in this chapter is a random selection of input
sample data. The codebook size is set to M = 16 codevectors for 2D and 3D
datasets, M = 3 for the Iris data and M = 17 for the Indian Pines image.
The number of presentations has been established in a maximum of 50 for
conventional online and batch realizations of the algorithms. Nevertheless, we
introduce a stopping criterion on the relative decrement of the distortion, the
process will stop if it is not greater than ξ = 0.001. For SOM algorithms the
neighbourhood parameter values have been: v0 = M/2 + 1; vN = 0.1, and for
NG algorithms λ0 = M/2; λN = 0.01. In both online version algorithms the
learning rate values are α0 = 0.5 and αN = 0.005 . We have executed 100 times
each algorithm for 2D and 3D datasets, and 50 times for others. The algorithms
tested are: the online conventional realizations of SOM and Neural Gas (NG),
the batch versions (BSOM and BNG) and the online One Pass realizations
(SOMOP and NGOP).

8.4.3 Quantitative results of the experiments

Begin by analyzing the results obtained on 2D benchmarks datasets. In Figures
8.4(a), 8.4(b), and 8.4(c) we present the mean and 0.99 confidence interval of the
distortion results of the tested algorithms for each data set. We have also taken
into account the computation time. In Figures 8.4(d), 8.4(e), and 8.4(f) the
y-axis corresponds to the product of the final distortion and the computation
time as measured by Matlab. The inspection of the figure reveals that the
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relative efficiencies of the algorithms measured by the final distortion, depend
on the nature of the data. For example, the One Pass SOM improves the online
and batch algorithms on the Cantor data set, it is similar on the Gaussian
data set and falls behind in the S-shaped data set. Although this is not the
main concern of this chapter, the distortion results show that the Neural Gas
improves the SOM most of the times, confirming the results in the literature
[193]. The batch realization sometimes improves the online realization (Cantor
and S-shape), sometimes not (Gaussian).

The main motivation of our work was to compare batch and One Pass re-
alizations, from Figures 8.4(a), 8.4(b), and 8.4(c) the One Pass SOM improves
the batch SOM in some cases (Gaussian and Cantor) and is almost equal in the
S-shape data, when all the algorithms behave almost identically. However, the
One Pass Neural Gas improves the batch realization only on the Cantor data
set. When we take into account the computation time in Figures 8.4(d), 8.4(e),
and 8.4(f), the improvement of the One Pass realization over the batch and con-
ventional realizations is spectacular. It can also be appreciated the improvement
of the batch realization over the conventional online realization. The reasoning
behind Figures 8.4(d), 8.4(e), and 8.4(f) is that, even when the One Pass real-
ization give a much worse solution than the batch and online realizations, the
time constraints may be so strong that a suboptimal solution is preferable than
the optimal one. In this setting, the One Pass realization could be very useful.

For the 3D Cantor Set, the mixture of 3D Gaussians, the Indian Pines image
and the 4D Iris dataset, Figures 8.5(a), 8.6(a), 8.7(a), and 8.8(a), respectively,
display the product of the final distortion and the computation time as measured
by Matlab. Figures 8.5(b), 8.6(b), 8.7(b), and 8.8(b), a sample trajectory of the
error during the training process. Some common pattern of all these plots are:
(a) NG and BNG have a much more smooth decrease than SOM and BSOM,
however they reach comparable results. (b) The one-pass instances perform a
very fast decrease to values comparable to the other realizations. A pure SGD
algorithm without any GNC property could not obtain the results in the Figures
8.5, 8.6, 8.7, and 8.8. These results are repeating in all the experiments we are
performing up to date.

In Tables 8.1 and 8.2 we present the results for the 50 repetitions of the
algorithms on the 4D Iris Dataset using random initializations. We note the
shocking result of BSOM that may be due to its inability to produce a proper
topological organization of the units or to its high sensitivity to the initial con-
ditions. Table 8.1 presents the average, standard deviation and width of the
99% confidence interval of the quantization distortion at the end of the train-
ing. The one-pass realizations give results comparable to the conventional online
algorithms, which improve over the batch realizations. The results show very
small variance, therefore the realizations are very insensitive to initial conditions
like GNC algorithms.

In Table 8.2 we present the results in terms of distortion multiplied by com-
putational time (measured in minutes). In this measure the computational time
acts as an amplifier of the distortion results. We prefer it to others (e.g. the
ratio distortion/time) because it preserves the optimality sense of the distortion
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(a) (d)

(b) (e)

(c) (f)

Figure 8.4: Results on the three 2D benchmark algorithms. The distortion
on the (a) Gaussian data, (b) Cantor data set and (c) S-shaped data. The
distortion times the computational time for (d) Gaussian data, (e) Cantor data,
and (f) S-shaped data.



8.4. EXPERIMENTAL RESULTS 119

(a)

(b)

Figure 8.5: 3D Cantor Set. (a) The distortion times the computational time.
(b) Evolution of the quantization distortion as function of the number of input
vectors used in the estimation, measured in multiples of sample size.
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(a)

(b)

Figure 8.6: 3D Mixture of Gaussians. (a) The distortion times the compu-
tational time. (b) Evolution of the quantization distortion as function of the
number of input vectors used in the estimation, measured in multiples of sample
size.
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(a)

(b)

Figure 8.7: Indian Pines hyperspectral image. (a) The distortion times the
computational time. (b) Evolution of the quantization distortion as function of
the number of input vectors used in the estimation, measured in multiples of
sample size.
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(a)

(b)

Figure 8.8: Iris dataset. (a) The distortion times the computational time. (b)
Evolution of the quantization distortion as function of the number of input
vectors used in the estimation, measured in multiples of sample size.
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Distortion
mean Std. Dev. 99 CI

SOM 80.10 4.306e-014 1.569e-014
BSOM 681.91 4.594e-013 1.673e-013

SOMOP 79.91 4.002e-005 1.458e-005
NG 80.10 0 0

BNG 82.35 1.005e-013 3.660e-013
NGOP 81.38 4.8667e-010 1.773e-010

Table 8.1: Distortion results obtained for the 4D Iris dataset.

Distortion*Comp.time
mean Std. Dev. 99 CI

SOM 11.39 3.992e-014 1.454e-014
BSOM 19.18 11.592e-013 4.223e-013

SOMOP 1.89 0.882e-005 0.321e-005
NG 10.94 0 0

BNG 9.01 3.695e-013 1.346e-014
NGOP 2.72 1.259e-010 0.459e-010

Table 8.2: Distortion times computational time for the 4D Iris dataset.
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Distortion
mean Std. Dev. 99 CI

SOM 8.256e+10 1.565e-05 9.017e-06
BSOM 8.274e+10 3.346e+08 1.927e+08

SOMOP 8.270e+10 2.475e-05 1.425e-05
NG 8.256e+10 1.750e-05 1.008e-05

BNG 8.273e+10 4.501e+08 2.592e+08
NGOP 8.250e+10 1.819e-05 1.048e-05

Table 8.3: Distortion results obtained for the Indian Pine hyperspectral image.

Distortion*Comp.time
mean Std. Dev. 99 CI

SOM 1.491e+13 1.333e-05 7.680e-06
BSOM 3.940e+12 3.086e+08 1.777e+08

SOMOP 2.453e+11 1.036e-05 5.966e-05
NG 5.402e+13 9.792e-05 5.640e-05

BNG 1.998e+13 5.921e+08 3.410e+08
NGOP 1.229e+12 5.379e-05 3.098e-05

Table 8.4: Distortion times computational times for the Indian Pine hyperspec-
tral image.

(the lower the better). In this table we find that the one-pass realizations per-
form almost an order of magnitude better than conventional online and batch
realizations.

In Tables 8.3 and 8.4 we present the results for 20 repetitions of the al-
gorithms applied to the the Indian Pines hyperspectral image. Again, over
this data set the one-pass realizations perform equally well than the conven-
tional online realizations and the batch realizations. Batch realizations show an
extremely high variance, due to their sensitivity to initial conditions. The on-
line realizations, on the other hand, are almost insensitive to initial conditions.
When taking the computational time into account the one-pass realizations per-
formance is an order of magnitude better than the other realizations.

8.5 Conclusions
The paradoxical empirical results reported here showing that the one-pass re-
alization of the SOM and NG can obtain competitive performance in terms of
distortion, and much better than the “conventional” batch and slow annealing



8.5. CONCLUSIONS 125

online realizations in terms of computational efficiency (time x distortion) leads
us to the idea that these algorithms’ performance is more sensitive to the anneal-
ing control parameters of the neighborhood than to the learning rate parameter.
Neighborhood parameters can be seen as the parameter of a family of functional
whose limit is the quantization distortion. Therefore, training of the SOM and
the NG can be seen not as a straight minimization of an energy function but as
a continuation of the minimization process over a sequence of functionals tuned
by the neighborhood control parameter. If the starting functional is convex the
algorithms can be considered as Graduated Non-Convexity (GNC) algorithms.
Indeed we have shown that the NG and SOM energy functionals can be easily
seen as the canonical GNC functionals [202, 204, 203, 39]. Also, it ease to find
sufficient conditions on the neighborhood radius for the initial functional to be
convex. Moreover, it is ease to verify that in fact the NG functionals are convex
up to limit zero temperature, which explains its smooth behavior.
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Chapter 9

Local Stochastic Learning
Rule

We have worked [121, 120] on a stochastic competitive architecture, where the
deterministic Nearest Neighbor rule is substituted by an stochastic approxima-
tion. We call this approximation Local Stochastic Competition (LSC). Some
convergence properties of LSC are discussed, and experimental results are pre-
sented. The approach shows a great potential for speeding up the codification
process, with an affordable loss of codification quality. Embedding LSC in a
CNN, such as SCS, we obtain a Local Stochastic Learning Rule (LSLR) which
is applied to compute the codebook for image vector quantization (VQ).

Section 9.1 introduces the LSC, including some remarks on convergence.
Section 9.2 gives some results on the codification of images. Section 9.3 intro-
duces the LSLR discussing its convergence. Section 9.4 provides results of LSLR
on the computation of compression codebooks. Finally, section 9.5 gives some
conclusions.

9.1 Local Stochastic Competition
Following work started in [121, 120], we propose here a Local Stochastic Com-
petition (LSC) decision rule for the encoding phase of VQ. The LSC rule is
intended as a distributed stochastic approximation to the Nearest Neighbour
(NN) rule applied in VQ to perform the mapping of the input vector into the
codebook. We have found in the literature [273, 249, 64] some attempts to
speedup the computation of the NN decision rule employed in the VQ codifica-
tion phase. These approaches used the fact that quite frequently the decision
that a codevector is not the nearest neighbour of an input vector can be taken
without fulfilling the computation of the Euclidean distance based on the fact
that in a competitive scheme, deciding that the unit is not the winner can be
done as soon as the partially computed Euclidean distance is bigger than the
minimum already found. They didn’t involve any loss of accuracy and didn’t
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propose any kind of computational distributed scheme. The LSC is a significa-
tive departure from that, because it is a stochastic approximation that involves
loss of classification accuracy, thought it has a potential for greater speedups
because it allow extremely distributed implementation. Each unit in the LSC
corresponding to a codevector can be implemented in a separate processor, with
all the computations running in parallel.

The LSC is related to Radial Basis Function (RBF) neural network archi-
tectures [137, 35, 212, 287, 274] applied to function approximation or interpo-
lation. The function domain is decomposed into a set of overlapping regions,
each characterized by a kernel function whose parameters usually are the cen-
troid and width of the region. The most usual kernel functions are Gaussian.
From a Bayesian classification point of view [76], the use of Gaussian kernels
can be interpreted as the approximation of the input distribution by a mixture
of Gaussian distributions, each characterized by its mean and variance param-
eters. Each Gaussian distribution models the probability that a given input
belongs to a class. Our approach assumes this kind of probabilistic framework.
We assume that each codevector represents a separate class, being the mean of
the Gaussian distribution. The variance parameters can be estimated, either
by the codebook design algorithm, or from the codebook itself. In the experi-
ments reported below, the later has been assumed. Under these assumptions,
LSC consists in the parallel sampling of the a posteriori probabilities of the
codevector classes, taken as a collection of independent one-class problems.

Given an input vector to be encoded xj and a codebook Y = {y1, . . . ,yM},
the LSC proceeds by sampling independently for each codevector yi a Bernoulli
distributed random variable of parameters (pj (i) , 1− pj (i)):

pj (i) = P (xj ∈ Ri) = e−
�xj−yi�

σi ,

where Ri is the input space region corresponding to yi, and σi is the standard
deviation associated with codevector yi. Therefore, each pj (i) is interpreted as
the probability that xj belongs to the class represented by yi. Each codevector
poses an independent one-class classification problem. If the sampling is positive
for more than one codebook, the tie-breaking is a random selection. Sampling is
repeated until at least one codevector is selected. An algorithmic description of
the sequential execution of the LSC classification of an input vector xj , as done
for our experiments is given in Algorithm 9.1. Function f (k) is and increasing
function to ensure that the input vector is classified eventually. We use f (k) =
2k−1 for fast convergence. This process could be easily implemented in parallel,
running a separate processor for each codevector in the codebook. An algorithm
of the process associated with each codevector could read as Algorithm 9.2.
The wait operation means that the process is idle waiting for either an input
vector or the signal to try again the classification. The signal operation outputs
the positive or negative response. A dedicated process solves ties and decides
retrying classification. The expected speedup of the parallel implementation
of the codification process comes from the substitution of the sequential search
through the codebook by the parallel test of the separate one-class probabilities.
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Algorithm 9.1 LSC sequential execution
1. Step_0: k = 1

2. Step_1: Built up the probability vector p = (pj (i, k) ; i = 1, ...,M) com-
puted as follows:

pj (i, k) = e−
�xj−yi�

ti(k) ,

with ti (k) = f (k)σi.

3. Step_2: Sample the probabilities in p: Built up the set

Sk = {yi ∈ Y |pj (i, k) ≥ ui } ,

where (u1, . . . , uM ) are random numbers uniformly distributed in [0, 1) .

4. Step_3: If |Sk| = 0 then increase k by 1 and goto step-1.

5. Step_4: If |Sk| > 1 perform a random selection with equal probabili-
ties in the set Sk. If codevector yi is chosen then the codification is:
CLSC(xj ,Y) = i

Algorithm 9.2 LSC independent process of each codevector.
wait for input xn or retry

case new input k = 1

case reintent k = k + 1

Compute

pn (i, k) = e−
�xn−yi�

ti(k) .

Generate a random number u. If pn (i, k) > u signal 1, if not signal 0.
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9.1.1 Convergence
To ensure that LSC will converge, eventually giving some response, function
f (k) must be monotonically increasing with k. The faster the increase, the
shorter the response time. Mathematically, LSC generates for a given xj a
random sequence of sets {S1, . . . , SK} with |Sk| = 0 for k < K, and |SK | > 0.
The stopping condition for this process is, therefore, to find a non-empty set
of positive responses. It is easy to verify that the probability of finding a non-
empty set increases as the process goes on. The probability of finding an empty
set at trial k is

P (|Sk| = 0 |xj ,Y ) =
M�

i=1

(1− pj (i, k)) =
M�

i=1

�
1− e−

�xj−yi�
ti(k)

�
.

Given that f(k) is increasing:

lim
k→∞

e−
�xj−yi�

ti(k) = 1,

therefore,
P (|Sk| = 0 |xj ,Y ) = 0,

and finally:
P (|Sk| > 0 |xj ,Y ) = 1.

The increasing nature of f(k) is of great relevance, both theoretical and practi-
cal. In our experiments we have chosen the exponential expression f (k) = 2k−1,
because of the emphasis we put in speeding up the classification process. The
fast increase of the variance term has the side effect of increasing the probability
of bad classifications [121].

The last topic that remains to be discussed is the estimation of the variance
parameters. In the image VQ experiments we have estimated these variance
parameters from the codebook itself as follows. Let Di denote the minimum
distance from codevector yi to any other codevector:

Di = min {�yi − yj� ; j = 1, ...,M ; j �= i} .

We compute the mean minimum distance between codevectors

D =
1

M

M�

i=1

Di.

The estimate of the standard deviation associated with codevector yi is, then,
computed as follows:

σ̂i =






Di

2d Di ≤ D

D
2d Di > D

.
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Figure 9.1: Original grayscale image for the experiments

9.2 Results of LSC on image VQ

We apply LSC to image VQ based on a given codebook. A gray level image is
a matrix of pixels, each pixel taking values in the discrete set {0, 1, . . . , 255}. A
row-wise vector decomposition of dimension d of the image is a succession of vec-
tors X = {x1, ..,xN}, each xj composed of d row-adjacent pixels. Consecutive
vectors correspond to non overlapping sequences of pixel indices. Column-wise
and matrix-wise decompositions can be defined as well. A VQ of the image is a
map from each xj into a natural number, that transforms the vector decompo-
sition into a sequence of codes {c1, .., cN}, each code corresponding to the index
of a codevector in the given codebook Y = {y1, . . . ,yM}. The compression rate
obtained by VQ depends on the number of different codes and the dimension
d of the image vector decomposition. In this experiment we use 256 codes, so
that the compression rate will always be d : 1.

We have performed a set of experiments of codification/decodification on the
to the vector decomposition of the image shown in Figure 9.1. The codebook
was obtained applying the threshold algorithm (see ??) to obtain the initial
codebook, and SCL (see 2.4) to improve over it. The experiment parameters
were the dimension of the vector decomposition d, and the threshold parameter
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NN LSC
θ d SNR δ SNR δ s

8 27.0 466 23.4 1012 70
8 16 24.3 1328 20.5 3532 69

32 22.6 1878 19.1 5851 68
64 22.3 1655 19.3 8063 72
8 26.4 373 23.3 1217 79

32 16 23.4 822 19.0 4281 74
32 22.2 1196 18.0 8251 77
64 24.9 1057 20.6 4530 78

Table 9.1: Encoding results for NN and LSC coding for varying d and θ (M =
256).

NN LSC
M SNR δ SNR δ s

128 25.4 791 22.0 1547 34
256 27.0 466 23.4 1028 71
512 28.3 208 24.6 602 144
1024 30.8 50 26.6 234 304

Table 9.2: Encoding results for NN and LSC for increasing number of codevec-
tors M (d = 8 and θ = 8).
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Figure 9.2: NN codification with a M = 1024 codebook.
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Figure 9.3: LSC codification with a M = 1024 codebook.
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θ. The quality measures computed are the distortion (δ) and signal-to-noise
ratio (SNR). The expected speedup (s) of LSC over NN is computed as the
number of codevectors divided by the mean number of trials that LSC performs
until giving a classification response. Tables 9.1 and 9.2 show the numerical
results. Table 9.1 shows the results of NN and LSC codification with M = 256
codevectors of varying dimension (8, 16, 32, 64) obtained by application of SCL
to the result of the threshold algorithm with threshold parameters θ = 8 and
θ = 32. Increasing d gives greater compression ratio. The variation of θ was
intended to give different initial conditions for SCL.

Table 9.2 shows the results of increasing number of codevectors M . The
codebooks are also obtained by application of the threshold and SCL algorithms.
Figure 9.2 shows the decodification of the test image after NN codification using
a codebook with M = 1024 codevectors of dimension d = 8. Figure 9.3 shows
the decodification of the LSC codification with the same codebook. This precise
codebook was chosen because it is the one that has the greater expected speedup.

From the data in both tables, it can be perceived an almost constant degra-
dation of the LSC codification relative to NN. The observation of the images in
Figure 9.2 and 9.3 shows that this degradation can be acceptable, for applica-
tions without severe quality requirements. On the hand, Table 9.2 shows how
the expected speedup increases with the number of codevectors, which makes
LSC a suitable alternative for applications with large codebooks.

9.3 Local Stochastic Learning Rule
We propose the Local Stochastic Learning Rule (LSLR) as a variation of the
Soft-Competition Scheme (SCS) [96] which is a variation of the SCL where
updating the representatives is weighted by the estimations of the a posteriori
probabilities Pj(i) of vector x (t) = xj belonging to the class of codevector yi.

We recall its definition from Chapter 2:

�yi (t) = αi (t)Pj (i) (xj − yi (t)) ,

Pj (i) =
e−�xj−yi(t)�2σ−2

i
(t)

�M
k=1 e

−�xj−yk(t)�2σ−2
k

(t)
.

The unit neighborhoods depend on the input vector. All the codevectors are
adapted in each presentation of an input vector. This rule can be derived as a
stochastic gradient descent of the cross-entropy or Kullback distance between
the input distribution and the distribution modeled by the codevectors, which is
assumed as a mixture of gaussians whose means are the codevectors. Derivation
over the variances of these gaussians (assumed σiI covariance matrices), gives
the stochastic gradient descent rule on the variances:

�σi (t) = αi (t)Pj (i)
�xj − yi (t)�2 − dσ2

i (t)

σ3
i (t)

.
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Our Local Stochastic Learning Rule (LSLR) is derived from the above rules
simply by taking as a posteriori probabilities the unnormalized exponential of
the distance. The LSLR rules read:

�yi (t) = αi (t) pj (i) (xj − yi (t)) ,

�σi (t) = αi (t) pj (i)
�xj − yi (t)�2 − dσ2

i (t)

σ3
i (t)

.

where
i ∈ CLSC (xj ,Y (t)) ,

pj (i) = e−�xj−yi(t)�2σ−2
i

(t).

The adaptation is applied to the codevectors selected by LSC, denoted CLSC

in the above formulas. Taking the unnormalized pj(i) as the estimates of the
a posteriori probabilities, introduces numerical instabilities, and the loss of the
formal justification of the rules. However, it allows fully distributed computa-
tion, because the rules can be applied in parallel to all the codevectors. In the
experiments reported here, we have performed a scheduling of the gain param-
eter identical to the one performed for SCL. Figure 9.5 shows the image after
codification /decodification with the codebook obtained by LSLR, starting from
the initial codebook that produces the image in Figure 9.4. From the compari-
son of Figures 9.5 and 9.6, it can be concluded that the loss of quality of LSLR
is acceptable, and that it definitely improves over the initial codebook. More
extensive numerical results are given in the next section.

9.4 Results of LSLR on VQ of images
We have performed a set of experiments of codebook computation on the image
in Figure 9.1, applying the threshold algorithm to obtain the initial codebooks,
comparing the results of SCL and LSLR starting from them. Both SCL and
LSLR were applied only once to the vector decomposition of the image. The
experiment parameters were the dimension of the vector decomposition d, and
the threshold parameter θ. The quality measures computed are the distortion
(δ) and signal-to-noise ratio (SNR). The expected speedup (s) of LSLR over
SCL is computed as the number of codevectors divided by the mean number
of trials that LSC performs to select a non-empty set of codevectors to be
updated by LSLR rules [126]. Table 9.3 shows the numerical results. From
the data in Table 9.3 we may conclude that LSLR generally improves over the
initial codebook, but less than SCL. The SNR seems to be a more faithful
measure of the quantification quality. LSLR produces a steady increase of the
SNR, without reducing significantly the distortion. The examination of both
Table 9.3 and Figure 9.5 leads to the conclusion that LSLR is a good stochastic
approximation to SCL. From the point of view of the performance, LSLR shows
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INITIAL SCL LSLR
θ d SNR δ SNR δ SNR δ s

8 24.2 789 27.0 466 25.5 693 90
8 16 21.8 2296 24.3 1328 22.8 2219 80

32 19.8 3801 22.6 1878 21.0 3796 74
64 19.1 3712 22.3 1655 21.1 3735 74
8 22.1 613 26.4 373 25.0 527 118

32 16 20.8 1395 23.4 822 22.7 1295 106
32 20.4 1965 22.2 1196 22.2 1813 97
64 23.2 1513 24.9 1057 24.7 1290 95

Table 9.3: Comparative results of SCL and LSLR for varying threshold param-
eter θ and image vector decomposition dimension d.

a great potential for speeding up the codebook computation, provided a fully
parallel implementation. It can be expected that this speedup would increase
with the number of codebooks, making it useful for practical applications, where
large codebooks may happen.

9.5 Conclusions
The LSC rule for vector encoding is an stochastic parallel approximation to the
Nearest Neighbor rule which we formulate as a the sampling of a collection of
Bernoulli distributed independent variables, whose probability parameter corre-
spond to the a posteriori probability of the class represented by the codevectors.
We have proved that this scheme converges giving a coding response in finite
time even if the system is implemented in parallel and without communication
between the units. The experiments on the VQ of an image show that there is
little degradation of the encoded image.

The LSLR is obtained embedding the LSC in a SCS architecture. The
expected speedup is given by the independent parallel realization of both the
winning unit selection and the unit weight updates. The independent weight
updating implies that the updating rules can not compute the normalization
of the neighboring function factors. Experimental validation shows that the
quality of the codebooks computed by LSLR is comparable to that of SCL.
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Figure 9.4: Image after codification/decodification with the initial codebook.
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Figure 9.5: Image after codification/decodification with the codebook obtained
with SCL.
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Figure 9.6: Image after codification/decodification with the codebook obtained
with LSLR.



Chapter 10

An Evolution Strategy for
near real-time Color
Quantization of image
sequences

Color Quantization of image sequences is a case of Non-Stationary Clustering
problem. The approach we adopt to deal with this kind of problems is to
propose adaptive algorithms to compute the cluster representatives. In previous
chapters we have studied the application of Competitive Neural Networks to
the one-pass adaptive solution of this problem. One-pass adaptation is imposed
by the near real-time constraint that we try to achieve. In this chapter we
define an Evolution Strategy for this task. Experimental results show that
the proposed Evolution Strategy can produce results comparable to that of
Competitive Neural Networks.

The chapter is organized as follows. Section 10.1 gives an introduction.
Section 10.2 recalls the adaptive approach to Non-Stationary Clustering/VQ.
Section 10.3 presents the Evolution Strategy for Non-Stationary Vector Quanti-
zation. Section 10.4 presents the experimental results. Section 10.5 gives some
conclusions on the application of Evolution Strategy to NSC.

10.1 Introduction
Evolution Strategies [19, 20, 197] have been developed since the sixties. They
belong to the broad class of algorithms inspired by natural selection. The fea-
tures most widely accepted as characteristic of Evolution Strategies are: (1)
vector real valued individuals, (2) the main genetic operator is mutation, (3)
individuals contain local information for mutation so that adaptive strategies
can be formulated to self-regulate the mutation operator. However, many hy-
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brid algorithms can be defined, [197] so that it is generally difficult to assign a
definitive "label" for a particular algorithm. Nevertheless, we classify the algo-
rithm proposed here as an Evolution Strategy because it fits better in the above
characterization than in the accepted characterizations of Genetic Algorithm or
Genetic Programming.

Non-Stationary Clustering problems assume a time varying population sam-
pled at discrete times. Therefore the Clustering of the data must be recomputed
at each time instant. A related problem is that of Adaptive Vector Quantization
[97]. The works reported here belong to the class of shifting-mean Adaptive Vec-
tor Quantization [99]. Both the Evolution Strategy and the Competitive Neural
Networks are applied as adaptive algorithms for the computation of the clus-
ter representatives given by the cluster means at each time instant. Our work
fits in the original proposition of Holland [144] of evolution as a mechanism for
adaptation to uncertain and varying environment conditions

Evolution Strategies fall in the broad family of stochastic algorithms. These
algorithms are characterized by slow convergence and large computation times.
As we are trying to apply them in a near real-time framework, we impose two
computational restrictions in their application:

1. One-pass over the sample adaptation and

2. we use subsamples of the data to estimate the cluster representatives for
the whole data set at each time instant.

3. The adaptation must be performed in one generation. Therefore there is
no possibility of performing a process that may resemble a global random
search at each adaptation time instant.

4. The computations must be based on subsamples of the data available
at each time instant. The available data is a frame in the sequence, a
sample of size much lesser than that of image will be used to reduce the
computation.

For the Evolution Strategy, restriction (1) implies that only one generation is
computed at each time instant. For the Competitive Neural Networks, this
restriction implies that the sample data is presented only once, therefore the
learning parameters must have a very fast decrease.

Color Quantization [139, 207, 184, 272] is an instance of Vector Quantization
(VQ) [97] in the space of colors. Color Quantization has application in visual-
ization, color image segmentation, data compression and image retrieval [154].
In this work we do not deal with the problem of finding the natural number of
colors. This is a more involved problem than looking for a fixed number of color
representatives, and some of the results discussed in Section 10.4 recommend
that it must approached cautiously, and after being satisfied with the results of
quantization to a fixed number of colors. In summary, Color Quantization to
a fixed number of colors of image sequences [101] is a case of Non-Stationary
Clustering, dealt with performing Adaptive Vector Quantization.
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The specific features of the Evolution-based Adaptive Strategy analyzed in
this chapter are:

1. It is intended to deal with a time varying environment. Therefore the
fitness function will be time dependent.

2. Individuals are defined as components of the solution instead of repre-
senting complete solutions. This implies the existence of a global fitness
function for the entire population, on top of the individual fitness func-
tions. The algorithm is expected to produce as a cooperative solution the
best population to solve the problem. In this respect, our approach re-
sembles largely the so-called Michigan approach to the design of Classifier
Systems.

3. Due to the problem representation chosen, the selection looks for entire
populations, so that there is a strong interaction between parents and
children in the evaluation of the selection operator.

4. Mutation is the only operator that introduces evolution-like variability.
The parameters guiding the mutation, which can be referred as self-adaptation
parameters, are deduced from the interaction with the environment.

5. In our final proposition mutation is performed deterministically to ap-
proach real time response. However, even in this extreme setting the
Evolution-based Adaptive Strategy that we will propose below remains a
stochastic algorithm whose source of stochasticity is the input data

6. The population of the proposed algorithm is the set of cluster representa-
tives, each individual is a color representative in the [0, 1]3 real subspace
that defines a cluster in the color space of the image pixels via the Voronoi
tessellation induced by the whole population.

7. The main evolutive operator is mutation.

8. The mutation operator is based on the local cluster covariance matrices,
which guide and regulate its realization. We have not used recombination
operators.

The assumption of a time varying environment must not be confused with the
case of a noisy environment [81, 4]. From our point of view the latter is a
particular case of the former. The uncertainty associated to the environment is
perceived by the algorithm through the variability of the fitness function. In the
case of noisy environment as formulated in [81], each evaluation of the fitness
function involves a sampling procedure. This sampling procedure assumes a
stationary random process as the source of the fitness function values. On the
other hand, our approach assumes that the fitness function value will vary due to
the inherent non-stationarity of the environment. The fitness is measured upon
a sample of the process. This sample is considered as representative of the envi-
ronment for a limited amount of time. While the data sample remains the same,
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the fitness is a deterministic function. As far as the environment remains sta-
tionary, successive data samples will posses the same statistical characteristics
and the fitness function will continue to be (almost) the same. Unpredictable
changes in the environment produce significant changes on the statistics of the
data sample and, therefore, changes in the landscape of the fitness function.
The Evolution-based Adaptive Strategy tries to adapt as fast and smoothly as
possible to the environment changes in an unsupervised way.

10.2 Non-Stationary Clustering/VQ
Cluster analysis and Vector Quantization are useful techniques in many engi-
neering and scientific disciplines [97, 136, 73, 76, 146, 89]. In their most usual
formulation it is assumed that the data is a sample of an stationary stochastic
process, whose statistical characteristics will not change in time. Non-Stationary
Clustering and Vector Quantization assume a time varying population sampled
at diverse time instants that can be modeled by a discrete time Non-Stationary
stochastic process . If a model is known (or assumed), a predictive approach [97]
would reduce the problem to a stationary one. The general formulation of the
Non-Stationary Clustering problem does not assume any model of the process.

A working definition of the Non-Stationary Clustering problem could read
as follows: Given a sequence of samples X (τ) = {x1 (τ) , . . . ,xN (τ)} ; τ =
0, 1, . . . obtain a corresponding sequence of partitions of each sample P (X (τ)) =
{X1 (τ) , . . . ,XM (τ)} given by a sequence of sets of disjoint clusters minimizing
a criterium function C =

�
t≥0 C (τ). The Non-Stationary Vector Quantization

design problem can be stated as the search for a sequence of representatives
Y (τ) = {y1 (τ) , . . . ,yM (τ)} that minimizes the error function, aka reconstruc-
tion distortion, E =

�
τ≥0 E (τ) . The squared Euclidean distance is the dis-

similarity measure most widely used to formulate the criterium/error functions.
The Non-Stationary Clustering/VQ (NSC/VQ) problem can be stated as an
stochastic minimization problem:

min
{Y(τ)}

�

τ≥0

N�

j=1

M�

i=1

�xj (τ)− yi (τ)�2 δij (τ) ,

δij (τ) =

�
1 i = arg min

k=1,...,M

�
�xj (τ)− yk (τ)�2

�

0 otherwise
.

The proposition of adaptive algorithms to solve this stochastic minimization
problem is based in two simplifying assumptions:

• The minimization of the sequence of time dependent error function can
be done independently at each time step.

• Smooth (bounded) variation of optimal set of representatives at successive
time steps. Then the set of representatives obtained after adaptation in a
time step can be used as the initial conditions for the next time step.
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The adaptive application of Evolution Strategies to Non-Stationary Cluster-
ing/VQ is done as follows:

1. At time τ the initial population is given by the set of representatives/
codevectors computed from the sample of the process at time τ − 1.

2. A series of generations are computed starting from this initial population
to compute the representatives for the clusters of the sample at time τ .

3. The fitness function is related to the distortion of the representatives,
coded somehow in the population, relative to the sample at time τ .

4. This process is repeated for the sample at time τ + 1, and thereafter.

A distinctive feature of our proposed Evolution Strategy is that only one gen-
eration is computed to perform the adaptive step (t ≡ τ). In practice, we have
extracted a subsample of each image in the sequence as the data samples for
both the Evolution Strategy and the Competitive Neural Networks.

10.2.1 Clustering with ES
A representative sample of the works found in the literature dealing with cluster-
ing problems via Evolutionary Computation is [8, 15, 18, 29, 27, 32, 41, 47, 149,
161, 187, 188, 198]. The common approach of all these works is the mapping
of complete clustering solutions to population individuals. The fitness function
is the ad-hoc clustering criterion function. The authors propose a wide variety
of representation of clustering solutions as population individuals, ranging from
the set of cluster representatives to the membership (hard or fuzzy) matrices
of the clusters. Evolution operators, recombination and mutation, are defined
suitably to be closed operators on the representation chosen.

Our conclusion from the literature review, is that most of the Evolutionary
approaches suggested for Clustering could not be applied to the non-stationary
case in a stringent time frame. They can not guarantee a reasonable response
in a reasonable time. Most of the approaches found in the literature have a big
uncertainty about the proper setting of the algorithm parameters (population
size, mutation and crossover rate, the appropriate operators,...). Assuming that
the previous criticisms could be properly answered, the computational com-
plexity of each generation is usually very big , so that even in the case that the
evolutionary approach is used with a computational limit imposed, this limit
will be necessarily very high for practical applications of the kind we are inter-
ested in. We have honestly tried to address the problem in a way that is both
computationally effective and gives good solutions, assuming its suboptimality.

10.3 The Evolution Strategy for NSC/VQ
A pseudocode representation of the general structure of the algorithm of Evo-
lution Strategies is presented in Algorithm 10.1 [20]:
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Algorithm 10.1 Evolution Strategy pseudocode
1. t := 0

2. initialize P (t)

3. evaluate P (t)

4. while not terminate do

(a) P �(t):= recombine P (t)

(b) P ��(t):= mutate P �(t)

(c) evaluate P ��(t)

(d) P (t+ 1):= select (P ��(t) ∪Q)

(e) t:= t+ 1

5. end while

We have defined each individual as a single cluster center, so that the entire
population gives a single solution to the VQ of a given sample. In the case
of NSC/VQ the sample is time varying, in fact the generation number is the
discrete time of sample capture. That is, t is the Evolution Strategy generation
counter as well as the data sampling time (t ≡ τ). The population at generation
t is denoted P (t) = {yi (t) ; i = 1, . . . ,M} .

10.3.1 Fitness function

The local fitness of each individual is, its local distortion relative to the sample
considered in this generation:

Fi (t) =
N�

j=1

�xj (t)− yi (t)�2 δij (t) .

The fitness of the population as a whole can be evaluated as

F (t) =
M�

i=1

Fi (t) ,

corresponding to the objective function to be minimized. Our population fitness
corresponds to the within cluster scatter SW of the clustering specified by the
population. The well known equation relating the within cluster and between
cluster scattering,

S = SW + SB ,
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can be related to the above Evolution Strategy fitness functions as:

S (t) =
N�

j=1

�xj (t)− ȳ (t)�2 =
M�

i=1

Fi (t) +
M�

i=1

�yi (t)− ȳ (t)�2 ,

where S (t) remains constant as far as the same data sample is considered,
and ȳ (t) denotes the centroid of the entire data sample considered at time t:
X (t) = {x1 (t) , . . . ,xN (t)}. We expect that the Evolution Strategy will im-
plicitly react through the above equation balancing the minimization of the
population fitness, from the local optimization of individual cluster representa-
tives, and the maximization of the between cluster scattering. This justifies our
working hypothesis that the local optimization of individual cluster distortions
will eventually lead to the global optimization of the entire set of cluster centers.

10.3.2 Mutation operator
The mutation operator is a random perturbation that follows a normal distri-
bution of zero mean and whose covariance matrix is estimated from the data
in the cluster associated with the individual to be mutated. There are three
algorithm design questions to answer at this point:

1. Which individuals will be mutated?

2. How many mutations will be allowed? and,

3. What information will be used to compute mutations?

Our proposed Evolution Strategy performs a guided selection of the individuals
subjected to mutation. The set of mutated parents is composed of the individ-
uals whose local distortion is greater than the mean of the local distortions in
its generation. More formally:

M (t) =
�
i
��Fi (t) ≥ F̄ (t)

�
.

Regarding the number of mutations, the algorithm approaches as much as
possible to a fixed number of mutations m, so that the number of mutations per
individual mi(t) will depend on the size of M (t), that is: mi (t) = �m/ |M (t)|� .
Regarding the information used to generate mutated individuals, we use the lo-
cal covariance matrices of the sample partition associated with each individual.
We apply a deterministic approximation to the theoretical random mutation
operator in order to avoid the variability introduced by random sampling. Mu-
tations are computed along the axes defined by the eigenvectors of the estimated
local covariance matrix:

Σ̂i (t) =
1

N − 1

N�

j=1

(xj (t)− yi (t)) (xj (t)− yi (t))
T δij (t) .
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Let Λi = diag
�
λi
j ; j = 1, 2, 3

�
and Vi = diag

�
e
i
j ; j = 1, 2, 3

�
denote, re-

spectively, the eigenvalue and eigenvector matrices of Σ̂i (t). Then the set of
mutations generated along the axis of eij is:

P ��
ij (t) =

�
yi ± αkλ

i
je

i
j ; k = 1, . . . ,mi

j (t) , i ∈ M (t)
�
,

mi
j (t) = round

�
mi (t)λi

j

2
�3

k=1 λ
i
k

�
,

αk = 1.96
k

mi
j (t)

.

The set of individuals generated by mutation is

P �� (t) =
�

i,j

P ��
ij (t) .

10.3.3 Selection operator
Finally, following the (µ+ λ)-strategy, to define the selection of the next genera-
tion individuals we pool together parents and children Q = P (t). Selection can
not be based on the original individual fitness functions Fi (t) because they do
not have information about the interaction effects introduced by the mutation
generated individuals. The optimal approach to the implementation of the se-
lector operator consists in computing the fitness of all the possible populations
of size M extracted from P �� (t)∪P (t). That means to compute the population
fitness functions a number of times given by the combinatorial expression:

�
|P �� (t) ∪ P (t)|

M

�
.

This computational burden largely questions the feasibility of applying this
approach in any real time application. Therefore, we have tested two alternative
selection operators of lesser complexity. We will describe them in the order of
decreasing complexity and optimality.

Selection operator 1

One way to reduce the complexity combinatorial growth of the selection opera-
tor is to try to explore the solutions in order, performing a greedy search. The
greedy selection procedure results in a complexity that roughly grows quadrat-
ically with M and λ. More precisely it requires the computation of the popu-
lation fitness function M (M + λ+ 1) times. The procedure tries to select the
cluster representatives in order of decreasing distortion. Given a set of currently
selected cluster centers {yi1 , . . . ,yik} ⊂ P �� (t) ∪ P (t), with k < M , we select
the next cluster center as the one that added to the previous selected ones pro-
duces the smaller distortion: the minimum of the (M + λ− k) distortions that
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can be computed based on the sub-populations that can be formed adding one
cluster representative (individual) to the k already selected. More formally, this
selection operator S1 can be described as follows:

P (t+ 1) = S1 (P �� (t) ∪Q) = P ∗ (t) ⊂ (P �� (t) ∪Q) ,

where the set P ∗ (t) = {yi1 , . . . ,yiM } is constructed iteratively by selecting the
indices applying the following recursive expression (note that we drop the time
index for simplicity):

ik = arg min
i=1,...,M+λ

i/∈Ik−1





�

l∈Ik−1∪{i}

N�

j=1

�xj − yl�2 δIk−1∪{i}
jl




 ,

where Ik = Ik−1 ∪ {ik}, and I0 = Ø are the sets of indices considered at each
step of the iteration, and the membership function is dependent on this set:

δIjl =

�
1 l = argmin

i∈I

�
�xj − yi�2

�

0 otherwise

Selection operator 2

Let be m� = P �� (t) the number of individuals effectively generated by mutation.
The fitness function used for selection of an individual is the distortion when the
sample is codified with the codebook given by P �� (t)∪Q− {yi}, more formally:

FS
i (t) =

M+m��

k = 1
k �= i

N�

j=1

�xj (t)− yk (t)�2 δSkj (t) ,

δSkj (t) =






1 k = arg min
l = 1, . . . ,M +m�

l �= i

�
�xj (t)− yl (t)�2

�

0 otherwise

.

The selection operator S2 selects the M best individuals according to the
above fitness:

P (t+ 1) = S2 (P �� (t) ∪Q) = {yi ∈ P ∗ (t) ; i = 1, . . . ,M} ,

P ∗ (t) =
�
yi1 , . . . ,yi

M+m�

���ij < ik ⇒ FS
ij (t) > FS

ik (t)
�
.

The computation requirements of this selection operator are quadratic in
the number of cluster representatives, and they can be made linear using the
simple programming trick of precomputing the two nearest cluster representa-
tives. However, this selection operator is clearly suboptimal. The experimental
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works try to asses the trade-off of its suboptimality versus its computational
efficiency. This second definition of the selection operator involves the fitness
of the whole population with the addition of the mutations generated. This
makes the algorithm sensitive to the number of mutations generated. A large
number of mutations decrease the discriminatory power of FS

i (t). The number
of allowed mutations must be carefully chosen. In the experimental results it
has been allowed as many mutations as individuals in the population.

10.3.4 The adaptive application of the ES
The adaptive application of the Evolution Schema involves the mapping of the
two discrete time axes: the data time parameter τ and the generation t of
the Evolution-based Adaptive Strategy. The most conventional approach would
allow for several generations between data samples, so that :

τ =

�
t

T

�
+ 1,

where T is the number of evolution generations allowed between input data
samples. In the context of Color Quantization of image sequences, T is the
number of generations computed between presentations of image samples. The
initial condition corresponds to the initial color representatives provided for the
first image, and the adaptation starts upon the sample from the second image. A
distinctive feature of our experiments below is that we impose a one generation
per frame framework, that is T = 1.

10.4 Experimental Results
The experimental data has been described in Appendix D. As a benchmark non-
adaptive Clustering algorithm we have used a variation of the one proposed by
Heckbert which is described in Chapter 3, and the results that set the benchmark
for the experiments in this chapter are described in Appendix D.1.

In the application of the Evolution-based Adaptive Strategy described in the
previous section to Color Quantization of image sequences, the data samples at
each time instant were sets of pixels picked randomly from the image. This
image sub-sampling was aimed to approach as much as possible the real time
constraints. The algorithm was applied in the one-generation time schedule,
starting on the sample of the second image, and using as initial population P (1)
the Heckbert palette of the first image. The populations P (t) are the color
palettes used to perform the Color Quantization. The results of the Evolution-
based Adaptive Strategy are always shown together with the benchmark curves
of Figure 3.1, in order to show its adaptive behavior. The historical sequence
of our experiments started in fact with the selection operator S2, so in the
following it is the default selection operator unless stated otherwise.

In the experiments reported in this chapter we have used samples of 1600
pixels to perform the adaptive computations, and, unless stated otherwise, the
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distortion results correspond to the Color Quantization of the whole images.
We have selected the task of Color Quantization to 16 colors as representative
of the general class of image segmentation tasks based on the color information.
Color Quantization to 256 colors is representative of compression tasks. The
experimentation with these two number of color representatives shows that the
algorithms are sensitive to the number of clusters searched.

As a general inspection of Figures 10.1 to 10.3 will confirm, the qualitative
performance of the algorithms (their error relative to the optimal application of
the Heckbert algorithm) decreases as the number of clusters searched increases.
This result must be hold in mind when trying to design adaptive algorithms
that look for the natural number of clusters (color representatives).

The first set of results refer to the application of the Evolution Strategy with
the theoretical random mutation operator. These results are shown in Figure
10.1, and consist of the distortion of the Color Quantization of the 1600 pixels
image samples. We have performed 30 repetitions of the adaptive application of
the Evolution Strategy. We give in the figure the average and 95% confidence
interval of the results of these repetitions. It can be seen that the random
mutation operator introduces a high uncertainty on the quantization results.
This uncertainty is greater in the images that show the greater distribution
variation relative to their predecessor in the sequence. It can be also appreciated
that the confidence intervals are more large in the case of 16 colors than in the
case of 256 colors.

The random mutation operator produces some very bad results, sometimes
much worse than the Time Invariant application of the Heckbert algorithm.
That is, the random mutation operator gives a significative probability of having
responses well far from the desired adaptive one. We propose the deterministic
formulation of the mutation operator to avoid this uncertainty. The results
of the application of the Evolution Strategy with the deterministic mutation
operator on the experimental sequence are shown in Figure 10.2 given by the
curves of asterisks (*). Also shown in the figure are the results of the best
replica found with the application of the random mutation operator, denoted
by the curve of zeroes (o). In this and subsequent figures, the distortion results
refer to the Color Quantization of the whole images. The figure shows that
the deterministic operator gives a good approximation while reducing greatly
the computational requirements. The Evolution Strategy with the deterministic
mutation operator performs adaptively almost all the time. As can be expected
from the one generation schedule, it is not able to adapt to very big variations
in the pixel distributions, such as it is the case in the transition from images
#10 to #11 (refer to the data visualizations in Appendix D). However it shows
a quick recover after this sudden transition of distributions.

Figure 10.3 compares the results obtained with the Simple Competitive
Learning (SCL) and the Evolution Strategy (ES) with a deterministic muta-
tion operator. For the case of 16 colors it can be seen that their behavior is
quite similar. However the Evolutionary Strategy shows a quicker recover after
sudden changes, improving over the Simple Competitive Learning after them
(frames #12 and #13). The response of the SCL is smoother and has a kind
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of momentum that gives a slower but better recovery (frames #14 and #15).
In the case of the 256 colors the responses are similar. Both approaches seem
to be sensitive to the quality of the response (relative to that of the Heckbert
algorithm) when the number of color representatives (clusters) increases. Both
of them seem to behave adaptively most of the time, if the population changes
are smooth enough.

We have performed an exploration of the sensitivity of the deterministic
Evolution-based Adaptive Strategy to the ratio of sample size to the number
of colors. Obviously, sample size influences the computational requirements, so
that small samples are preferred. The tradeoff is the degradation in the response
obtained due to the loss of information. Figure 10.4 shows the distortion of the
Color Quantization of the entire images with palettes of 16 colors computed by
the Evolution-based Adaptive Strategy varying the size of the sample from 400
to 25600 pixels, which means a variation of the ratio sample:codebook from 6:1
up to 1600:1.

It can be appreciated in Figure 10.4 that increasing the sample size improves
the response of the Evolution-based Adaptive Strategy, approaching that of the
Time Varying Min Var algorithm. An optimal tradeoff between efficiency and
computation requirements could be identified with a sample size of 1600 pixels
(a sample:codebook ratio of 100:1). There is, however, an strange effect for the
biggest sample size. The Evolution-based Adaptive Strategy gives an anoma-
lous response for image #15 and recovers its adaptive behavior afterwards. It
must be noted the surprisingly quick recovering. This unexpected degradation
of the response may be related to the definition of the significance measure
employed by the selection operator S2 applied in the experiments up to now.
The significance measure decreases its discriminative power as the number of
color representatives searched increases. It can be easily seen that approaches
in the average as M grows. The number of samples per cluster will decrease in
the average, so that cluster will be near-empty for large M . That means that
the ability of Selection Operator S2 to discriminate good individuals decreases
accordingly. This sensitivity could explain the anomaly in Figure 10.4(d).

To test this hypothesis we have formulated the Selection Operator S1. We
propose it as a complexity intermediate solution between the linear but sub-
optimal Selection Operator S2 and the infeasible optimal selection operator.
The idea behind the next experiment is that if the Evolution-based Adaptive
Strategy with Selection Operator 1 recovers the anomalies, the responsibility
for them would not lie in the deterministic mutation operator, but in the incor-
rect choice performed by the Selection Operator S2. This would allow the safe
proposition of the Evolution-based Adaptive Strategy with the deterministic
mutation operator as a reduced complexity Color Quantization algorithm.

Figure 10.5 shows the results of the final experiment that compare the re-
sponse that both selection operators give in the application of the Evolution-
based Adaptive Strategy (with the deterministic mutation operator) in the case
of 16 colors. There is a general improvement of the response in all sample sizes
tested. The Selection Operator S1 improves in the case of bad sample size
selection, the strange effect detected for sample size 25600 disappears, and it
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performs better in the case of very small (400) samples.
These results have two meanings. The first one is the expected conclusion

that Selection Operator S1 improves the convergence of the Evolution-based
Adaptive Strategy, a natural result. However, the quadratic growth of its com-
plexity is a serious impediment for its practical application. Selection Operator
S2 is more sensitive to the size of the sample and the number of mutations, due
to the definition of the significance. However, it is very efficient computation-
ally, and can be of practical use for real time applications, if properly tuned.
On top of that, we remind the reader that Color Quantization is an instance
of the general Clustering problem, where much bigger problems can be posed.
The second, is the confirmation that the deterministic mutation operator can
be applied without introducing serious degradations of the algorithm response.
The anomalies seem to be due to the selection operator used.

10.5 Conclusions
We have proposed an Evolution Strategy for the adaptive computation of color
representatives for Color Quantization that can be very efficiently implemented
and reach almost real time performance for highly variable color populations.
We have tested it on an experimental sequence of images. Some general conclu-
sions can be drawn from our experiments. The first is that the algorithms tested
perform as desired. They profit on the previous time solutions to compute fast
adaptations to the present time data. The second is the sensitivity of the adap-
tive algorithms to the number of clusters or color representatives searched. This
sensitivity is demonstrated by the relative degradation (in front of the optimal
application of the Heckbert algorithm) of the responses. This sensitivity must
be taken into account when trying to design adaptive algorithms that look for
the natural number of color representatives. Our Evolution Strategy perfor-
mance is comparable to that of some well known Competitive Neural Networks,
validating it as an appropriate adaptive algorithm.

The design of this algorithm has a main computational constraint: it must
approach real time performance as much as possible, with the lowest variance in-
duced by the algorithm itself. This lead us to formulate a deterministic version
of the mutation operator, something very unusual in the Evolutionary Com-
putation literature. However, the algorithm remains an stochastic algorithm
whose source of randomness lies in the data points themselves. We also enforce
a one-pass adaptation schedule of the application of the Evolution-based Adap-
tive Strategy, that means that only one generation is computed from each real
world time instant. Each time instant a sample of the data was considered. For
Color Quantization of image sequences, we take a small sample of the image
pixels, compute one generation of the Evolution-based Adaptive Strategy and
use the resulting population to color quantize the entire image. The optimal
selection strategy is infeasible, due to its large computational cost. This has
forced us to propose two greedy suboptimal selection operators of linear and
quadratic complexities, respectively. The Evolution-based Adaptive Strategy
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with the linear complexity suboptimal selection operator and the deterministic
mutation operator performed adaptively for almost all the cases. An anomaly
appeared for a large sample case. We tested the quadratic complexity selection
operator combined with the deterministic mutation operator on the problematic
case. The improved response backs the use of the deterministic mutation as a
feasible approach, loading the responsibility for the anomalous behavior to the
selection operator. Therefore, the definition of the selection operator does influ-
ence more than we expected the response of the algorithm. The deterministic
mutation operator does not introduce biases that could produce degradations
of the algorithm.

Our work shows also the general feasibility of the so called Michigan ap-
proach, which can be applied to a wide variety of problems, besides the original
classifier systems. There is, however an unavoidable tradeoff of complexity.
The Michigan approach simplifies the individuals, the global population fitness
functions introduces complexity in the definition of the selection operator. The
Pittsburg approach maps the whole problem into each individual, but the in-
dependence of fitness functions makes the definition of the selection operator
trivial. Further work must be addressed to explore this tradeoff in a diversity
of problems.
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(a)

(b)

Figure 10.1: Mean distortion results and 95% confidence intervals of the appli-
cation of the Evolution Strategy with the random mutation operator and the
second selection operator S2 upon image samples of size N = 1600 (a) with
M = 16, m = 16, and (b) with M = 256, m = 256.
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(a)

(b)

Figure 10.2: Distortion results on the image sequence from the Color Repre-
sentatives computed by the Evolution Strategy with the best codebooks found
after 30 replica of its application using the second selection operator S2, the
random mutation operator, and the ones found with the deterministic operator.
(a) M = 16 and (b) M = 256
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(a)

(b)

Figure 10.3: Distortion results on the image sequence from the Color Represen-
tatives computed by the Simple Competitive Learning (SCL) and the Evolution
Strategy with a deterministic mutation operator and the second selection oper-
ator S2, over image samples of size N = 1600. (a) M = 16 and (b) M = 256.
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(a) (b)

(c) (d)

Figure 10.4: Sensitivity of the Evolution-based Adaptive Strategy with selection
operator S2 and deterministic mutation operator to the size of the sample,
M = 16, m = 16. Sample size of (a) 400, (b) 1600, (c) 6400, (d) 25600 pixels.
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(a)

(b)

(c)

Figure 10.5: Comparative results of the application of the deterministic
Evolution-based Adaptive Strategy with Selection Operator 1 and 2. M = 16,
m = 16. Samples of size 400 (a) , 1600 (b) and 25600 (c).
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Chapter 11

Vector Quantization Bayesian
Filtering based on an
Evolutionary Strategy

In this chapter we use codebooks obtained from the Evolution-based Adaptation
Strategy for Vector Quantization (VQ) of Chapter 10 for VQ Bayesian Filter
(VQBF) (Appendix B) applied to noise removal and segmentation of a high-
resolution T1-weighted Magnetic Resonance Image. We compare our approach
with other more conventional smoothing filters. The results show that VQBF
performs a smoothing that preserves region boundaries and small details. It does
not show the strong boundary diffusion and displacement that are common to
smoothing filters. Border detection on the filtered images is also presented.

Section 11.1 gives an introduction to the chapter. In Section 11.2, we present
the VQ Evolution-based Adaptation Strategy. Section 11.3 presents the results
on the application to an image and comparison with other conventional ap-
proaches. Finally, Section 11.4 gives some concluding remarks.

11.1 Introduction
Vector Quantization (VQ) [97, 146, 154] is the process of replacing the signal
vectors by representatives chosen from a set named codebook. Its main ap-
plication is in signal compression, although sometimes it is used as a feature
extraction method for classification or as a signal filtering method [65]. This
chapter reports experimental results on the use of VQ for filtering purposes.
We follow an uncommon approach in the way we decompose and process an
image, the VQ Bayesian filter (VQBF) which has been formalized in Appendix
B. Given a codebook, VQBF is a convolution-type of operation which process
each pixel in two steps:

• determine the codevector that encodes the vector given by a pixel and its

163
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neighborhood, and

• substitute the pixel by the central element in the codevector.

The encoding process is a Maximum A Posteriori (MAP) classification and,
thus, VQBF performs a kind of Bayesian image processing [94, 282]. In this
Bayesian context the VQBF distinguishing features are:

• the probabilistic model is given by the codebook,

• the model estimation consists in the search for the optimal codebook; and

• the process does not involve complex and lengthy relaxation procedures
(i.e.: simulated annealing [94]), only the search for the nearest codevector.

VQBF approach, therefore, needs to solve the general problem of codebook
design, which is a kind of clustering problem. Between the possible techniques
that can be used to compute the codebook there are some methods based on
evolutionary algorithms [8, 15, 18, 27, 32, 41, 47, 149, 161, 187, 188, 198, 31, 134].
In this chapter, we apply an Evolutionary Strategy [105] which is a variation of
the one already presented in Chapter 10. We recall here its main features:

• vector real valued individuals,

• the genetic operator is mutation, and

• mutation is based in individuals local information.

• the population is the codebook, each individual a codevector, which induce
a Voronoi partition over the input space, and a clustering of the sample.

• The mutation operator is guided by the estimated covariance matrices of
the clusters.

• We have not defined any cross or recombination operators.

• The selection operator extracts the next generation population from the
pool of parents and offspring generated by mutation. Experiments in this
chapter use two types of selection operators, one that selects a fixed preset
number of individuals for the next population, and other one that tries to
determine the optimal number of individuals.

11.2 The Evolutionary Strategy specific features
The algorithmic structure of the ES is the same as in Algorithm 10.1, which
we do not need to reproduce here. The population at generation t is denoted
P (t) = {yi (t) ; i = 1, . . . ,M} . The local fitness of each individual is, its lo-
cal distortion relative to the sample considered in this generation: Fi (t) =�N

j=1 �xj (t)− yi (t)�2 δij (t) . The fitness of the population as a whole can be
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evaluated as F (t) =
�M

i=1 Fi (t). The data sample used is X = {x1, . . . ,xN}.
The mutation operator is the same described in Section 10.3 of Chapter 10 with
the only difference that we consider here an annealing process on the width of
the spread mutation generation parameter:

αk = C (t)
k

mi
j (t)

,

where C (t) decreases to zero smoothly, thus reducing the scale of the mutation
perturbations. We assume that there is a monotonic improvement in the so-
lution in each generation. Finally, we define two selection operators following
the (µ+ λ)-strategy with an elitist constraint to ensure convergence: the se-
lected population is accepted only if it improves on the previous one. We pool
together parents and children generated by mutation Q = P (t). The first selec-
tion operator considered is identical to S2 defined in Section 10.3. The second
selection operator will be denoted S3 for notational consistency. This operator
is designed to look for the optimal number of codevectors.

Let us denote F s (t) the fitness of population P �� (t)∪ P (t). Now, we define
F s
i (t) as a linear combination of local distortion and entropy increment for

each individual yi. We previously normalize both terms to the interval [0, 1].
Depending on the relative weight η, the selection operator gives more priority
to the local distortion or to the entropy increment:

F s
i (t) = D2

i (t) + η�Hi (t) ,

where the local distortion D2
i (t) is identical to the individual fitness defined in

Section 10.3 to formulate selection operator , that is:

D2
i (t) =

M+m��

k = 1
k �= i

N�

j=1

�xj − yk (t)�2 δSkj (t) ,

δSkj (t) =






1 k = arg min
l = 1, . . . ,M +m�

l �= i

�
�xj − yl (t)�2

�

0 otherwise

.

The entropy of each individual Hi (t) is computed along the same strategy fol-
lowed to compute the local distortion: we compute the entropy of population
P �� (t) ∪ P (t)− {yi (t)} for each yi (t) ∈ P �� (t) ∪ P (t). The individual entropy
increment is measured by �Hi (t) = H (t) −Hi (t), where H (t) is the entropy
of the whole population. Let ni the number of data items classified into the i-th
individual decision region, then we calculate Hi(t) as:

Hi (t) =
M+m��

k = 1
k �= i

1

ni
log

1

ni
.



166 CHAPTER 11. VQ BAYESIAN FITERING BASED ON ...

The selection operator S3 iteratively adds the best individual until a stopping
condition is met. This stopping condition is defined over the relative increment
of the accumulated fitness functions of the selected individuals that can be above
a predetermined threshold T :

P (t+ 1) = S3 (P �� (t) ∪Q) = P ∗ (t) ,

P ∗ (t) =
�
yi1 , . . . ,yiz

���ij < ij+1 ⇒ FS
ij (t) > FS

ij+1
(t) &

&

�����

�j+1
m=1 F

s
m (t)−

�j
m=1 F

s
m (t)

�j
m=1 F

s
m (t)

����� < T

�

11.3 Experimental results
In this section we present the visual results of the application of the VQBF based
on the codebooks computed by the ES over a high resolution MRI image. The
sample size used by the ES for the codebook design was the 10% of the original
image. In experiments with selection operator S2 the number of generations is
set to 30 and the number of codevectors is set to m = M = 16. In experiments
testing the selection operator S3, the number of generations is set to 20 and
the initial number of classes is the same as before. Other parameters for the
evolution strategy are T = 0.03 (selection threshold) and η = 0.5 (more priority
to local distortion than to entropy increment).

At the time, the end interest of these images is for medical-biological inspec-
tion, so the visual evaluation was the prime concern. Therefore, we present the
visual results of the application of VQBF and several conventional approaches:
the Median filter, the Gaussian smoothing, Gray level Morphological filters and
the Wiener filter with noise self-estimation. To highlight the differences of the
different filtering approaches, we show in the figure the equalization of the im-
ages after filtering. In all the cases we have considered neighborhoods of size
3x3, 5x5 and 7x7.

The approach has been tested over a 2D micro-Magnetic Resonance image
that corresponds to a model of Miositis produced by Aspergillus in rats. It
has been provided by the Unit of Magnetic Resonance of the Universidad Com-
plutense. The image have been obtained with an experimental magnet of 4.7
Teslas. The original image is of 718x717 pixels and is shown in Figure 11.1(a).
The objective of the work is to enhance the image with some denoising algo-
rithm and to detect the infected region enclosed by a white square in Figure
11.1(a). The processing of the image must therefore, eliminate the Gaussian
noise while preserving most of the structure of the image, specially in the in-
terest region. To appreciate the denoising effects of the algorithms we perform
the equalization of the original image (Figure 11.1(b)) and of the images after
filtering shown in Figures 11.2 to 11.8.



11.4. CONCLUSIONS 167

The usual method to process noisy images before segmentation, when there
is no known model of the distortion and the noise, is the application of smooth-
ing filters. The results obtained by the application of the median filter, Gaussian
smoothing, gray level morphological filters and the Wiener filter appear, respec-
tively, in Figures 11.2 to 11.6. The results of our VQBF with fixed number of
classes are shown in Figure 11.7 and with variable number of classes in Figure
11.8. Figures 11.9 to 11.16 shows the borders detected in the filtered images by
applying a Laplacian operator on the filtered image and thresholding it.

If we consider the results in terms of denoising and region segmentation,
the general effect of conventional smoothing filters (Gaussian, Morphological,
Median and Wiener) is a diffusion that distorts the region definition, blurring
its boundaries. This negative effect increases as the size of the kernel increases.
However, the VQBF shows a good denoising response while preserving the region
definitions. Focussing into the infected region highlighted in Figure 11.1(a), it
can be appreciated that the interest region is heavily blurred in Figures 11.2
to 11.6 while it is well preserved in Figures 11.7 and 11.8. Besides, VQBF
shows no degradation by over blurring as the kernel size grows. The effect of
our strategy to determine the optimal number of clusters can be appreciated
comparing Figures 11.7 and 11.8, with Figures 11.15 and 11.16. Although the
number of classes found is greater than in the constant size case, the visual
results show some improvement, especially in the images of the detected borders.
The search for the optimal number of classes produces the disappearance of the
darker tissues in the image. However the infected region is well preserved in all
the cases.

Focusing on the borders detected before and after filtering the image, the ex-
cellent properties of the VQBF are more clearly exhibited. Figure 11.9 shows the
borders detected in the original image. The smoothing decreases the magnitude
of the detected borders, displaces and diffuses them. The extreme bad result is
for the Gaussian smoothing with kernel 7x7 whose detected borders have a very
small magnitude that needs a very low threshold. Conventional filters either
loose the interest region or preserve many noisy borders. As the codevector
dimension increases, the VQBF border detection improves. The detection of
the optimal number of classes gives the best results in terms of isolating inter-
esting regions. Both instances of the 7x7 VQBF preserve the main boundaries,
especially in the interest region.

11.4 Conclusions
We have worked the application of an Evolution-based Adaptation Strategy to
estimate a vector quantizer with fixed and variable number of classes that is
applied as filtering mechanisms in the framework of VQBF. We have shown
the results of those approaches against the results obtained by other conven-
tional filtering and smoothing techniques widely used for noise removal. Ours
approaches do not blur the image as the neighborhood size increases, and at
the same time the noise is removed more efficiently as the neighborhood size
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(a) (b)

Figure 11.1: Original image with the interesting region indicated by a white
square (a). After equalization (b).

3x3 5x5 7x7

Figure 11.2: The results of with Median Filter with several neighborhood radius
sizes after equalization.

increases. This is more evident in the parts of the image that correspond to
empty space, where our approach removes almost all the noise. The border
detection also shown that VQBF defined regions of interest with accuracy.
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3x3 5x5 7x7

Figure 11.3: The results of with Gaussian Filter with several variance parame-
ters after equalization.

3x3 5x5 7x7

Figure 11.4: The results of with Opening+Closing Morphological Filter with
several neighborhood radius, after equalization.

3x3 5x5 7x7

Figure 11.5: The results of with Closing+Opening Morphological Filter with
several neighborhood radius, after equalization.
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3x3 5x5 7x7

Figure 11.6: The results of with Wiener Filter with several neighborhood radius,
after equalization.

3x3 5x5 7x7

Figure 11.7: The results of ES + VQBF filtering with several neighborhood
radius using selection operator S2, with 16 codevectors, after equalization.

3x3 5x5 7x7

Figure 11.8: The results of ES + VQBF filtering with several neighborhood
radius, after equalization. The number of classes is determined automatically
by selection operator S3 (number of classes obtained from left to right: 24, 21,
and 22).
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Figure 11.9: Borders detected in the original image (threshold 32).

3x3 5x5 7x7

Figure 11.10: Borders of images filtered with Median Filter method and several
neighborhood/radius sizes (threshold 16).

3x3 5x5 7x7

Figure 11.11: Borders of images filtered with Gaussian Filter method and several
variance values (threshold 12).



172 CHAPTER 11. VQ BAYESIAN FITERING BASED ON ...

3x3 5x5 7x7

Figure 11.12: Borders of images filtered with Opening+Closing Morphological
Filter method and several neighborhood radius sizes (threshold 32).

3x3 5x5 7x7

Figure 11.13: Borders of images filtered with Closing+Opening Morphological
Filter method and several neighborhood radius sizes (threshold 32).

3x3 5x5 7x7

Figure 11.14: Borders of images filtered with Wiener Filter method and several
neighborhood radius sizes (threshold 12).
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3x3 5x5 7x7

Figure 11.15: Borders of images filtered with ES-VQBF method and several
neighborhood radius sizes, using selection operator S2. The number of classes
is constant M = 16. (threshold 32).

3x3 5x5 7x7

Figure 11.16: Borders of images filtered with ES-VQBF method and several
neighborhood radius sizes, using selection operator S3. The number of classes
is constant M = 16. (threshold 32).
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Chapter 12

Occam Filters for Vector
Quantization Bayesian
Filtering number of classes

This chapter reports the application of an approach to the determination of the
number of codevectors in a VQBF approach based on the idea of Occam filters.
Occam filters use the fact that signal noise can be cancelled out by the signal loss
produced by a lossy compression algorithm. In VQBF, the compression control
parameter is the number of codevectors in the codebook. Tuning this parameter
to obtain noise cancellation in the image is equivalent to try to determine the
number of image block classes in the image.

Section 12.1 gives an introduction. Section 12.2 reviews the definition of
Occam filters. Section 12.3 discusses the application of Occam filters to VQ
design. Section 12.4 presents some experimental results. Finally, Section 12.5
gives the chapter conclusions.

12.1 Introduction
Occam filters were proposed by Natarajan in [199, 200, 201]. It consists in the
application of lossy compression algorithm as a signal filter to remove addi-
tive noise. The approach in founded in the noise cancellation induced by the
compression/decompression process. It has been shown [201] that the approach
works for general additive noise if the compression algorithm is admissible.

We work on the application of the Occam filter approach to the estimation
of the natural codebook size in the VQ design process [97]. Other approaches
to codebook size determination found in the literature consist in the addition of
regularization terms to the clustering objective function minimized to perform
the codebook design [49], or the formulation of heuristics for the growing and
pruning of the codebook, such as the Growing Neural Gas [87]. The Occam filter
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approach gives a clear intuition on the meaning of the codebook size selection
process, corresponding to a measure of the noise-free signal complexity. This
interpretation is adequate for the unsupervised segmentation processes that we
perform, specifically on the MRI data.

The Occam filter approach involves estimation of the rate-distortion curve,
mapping the distortion obtained after compression/decompression to the com-
pression ratio. Therefore, codebook estimation must be repeated a large number
of times. In this chapter we apply the SOM [167] in one-pass training sched-
ule [109]. The experimental results refer to the segmentation of MRI data of a
human embryo.

12.2 Occam filters
The idea of using compression algorithms as low-pass filters is not new, but
Natarajan [199, 200, 201] gave it a more precise formulation. We consider the
vector quantization referred to a given codebook of the image data as a lossy
compression algorithm. If we try to tune the number of classes needed to obtain
noise cancelation by compression signal loss, without signal degradation, the we
are determining the optimal number of classes for data clustering. We reproduce
in this section some of the original arguments for Occam filters in their more
general view.

Conjecture 1. When a lossy compression algorithm is applied to a noisy signal,
fitting the signal loss to the noise magnitude, signal loss and noise tend to cancel
each other instead of accumulate.

We recall some notation:

• We consider Baire functions in the [0, 1] interval, without loss of generality.

• For a Baire function f and a natural number n, fn is the sequence of
samples of f uniformly separated by 1/n. Specifically

fn = {f (0) , f (1/n) , f (2/n) , ..., f ((n− 1) /n)} .

• A sequence fn is a vector in [0, 1]n, therefore, the difference between two
sequences fn and gn is their vector difference. A norm in this space is
denoted �fn� . The norm l2 is defined �fn�2 = 1

n

�n−1
i=0 (f (i/n))2.

• Relative to a norm �.�, a lossy compression algorithm C is a program
taking as input a sequence fn and a tolerance � > 0, producing as output a
binary string s codifying the sequence gn under the constraint �fn − gn� <
�.

• A decompression algorithm D takes as input the binary string s = C (fn, �),
producing the recovered sequence gn = D (s).
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• The signal loss introduced by C (i.e. mean square error) is d = �f − g� =

E
�
(fi − gi)

2
�
.

• v is a random variable modeling noise, vn is a sequence of n independent
observations of v.

• �fn = fn + vn is the noise corrupted sequence.

• Noise magnitude is defined as �v� = lim
n→∞

�vn� .

Definition 2. The lossy compression algorithm C is admissible if the recon-
struction error g−f and the recovered signal g are uncorrelated, i.e. (f − g)·g =
0 where f · g = E {figi} .

Definition 3. The rate-distortion curve for a lossy compression algorithm C,
denoted RC (f, d) , is the compression ratio (average number of bits per input
data) for signal source f as a function of distortion d.

Definition 4. The rate-distortion for source f is minimum over all possible
lossy compression algorithms

R (f, d) = min
C

{RC (f, d)} .

The fundamental convergence theorem of Occam filters [201] is as follows:

Theorem 5. Let it be g the signal obtained by the compression and decompres-
sion of signal f+v using an admissible compression algorithm C, with maximum
loss tuned to �v� . The residual noise of the reconstructed signal is bounded by

�f − g�
�f� ≤

�
2 +

√
2
�
�

RC (f + v, �v�)
−R� (v, �v�) �f� ,

where R� (v, �v�) is the left derivative of the rate-distortion function R (f, d)
relative to the distortion d evaluated in d = �v� .

Theorem’s proof can be found in [201]. This theorem is the formalization
of the intuition driving to the definition of Occam filters: if a noisy signal
is compressed by an admissible compression algorithm with the loss tuned to
the noise magnitude, then noise and loss tend to cancel out, with the signal
loss extent depending on the noise incompressibility related to the signal. The
general algorithm is presented in Algorithm 12.1.

The intuitive justification for the process is as follows:

1. Suppose that we can have access to the noise source, computing the rate-
distortion curve for C (vn, �) .

(a) For � > �v� the ratio will be high, because we can approximate noise
by a constant inside this tolerance.
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Algorithm 12.1 Coding/decoding filtering algorithm

input �fn
begin Let �v� be the noise magnitude

Run compression C
�
�fn, �v�

�

Run decompression D to obtain the filtered sequence gn
end

(b) For � < �v� compression ratio will be small and decreasing with �.

2. Suppose that we can have access to the clean original signal, computing
the rate-distortion curve for C (fn, �)

(a) For high values of � the compression ratio will be high.
(b) For small values of � the compression ratio will be low.

3. When we compute the ratio-distortion curve for the noisy signal C
�
�fn, �

�

(a) For � > �v� signal dominates noise and the curve follows the original
signal rate-distortion curve.

(b) For � < �v� noise dominates signal and the curve follows the noise
rate-distortion.

(c) FOr � = �v� la curve has an elbow that can be detected as the
maximum of the second derivative.

12.2.1 On the noise magnitude estimation
Practical application of Occam filters depend on the noise magnitude �v� esti-
mation. Natarajan [200] proposed method first builds an estimation of the rate-
distortion curve, second finds the inflexion point corresponding to the maxima
of the second derivative of this curve. Finally, the distortion coordinate of this
inflexion point is the estimation of the noise magnitude �v�. This identification
follows from the idea that the distortion ratio curve can be approximated by
two linear functions, defined in two disjoint regions of the distortion domain

RC (f + v, d) ≈ α1d; d ≥ �v� ,

and
RC (f + v, d) ≈ α2d; d < �v� .

For d ≥ �v�, contribution of the compression of the noise to the compression
ratio is constant and small, and the slope α1 is small. For d < �v� contribution
of the noise compression to the compression ratio is big, dominating the signal
compression, thus slope α2 is big.

In practical applications we found that the second derivative is very sensitive
to variations in the estimation of the rate-distortion curve. We have estimated
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the slopes of the linear approximations, α1 and α2 from points in the curve that
can be assumed with certainty to be in the appropriate regions. We select the
inflexion point as the nearest point in the rate-distortion curve to the intersection
between both linear approximations.

12.3 Vector Quantization and Occam filters
Vector Quantization [97] is defined for 3D image data as follows: we have data
samples X = {x1, . . . ,xN} with xj ∈ Rd×d×d, that is, samples from a stochastic
process defined in a real Euclidean space of dimension d × d × d, the vector
quantizer is given by the codebook Y = {y1, ..,yM} formed by codevectors yi ∈
Rd×d×d, where M is the size of the codebook. The coding operation is defined
as

ε (x) = argmin {�x− yi� ; i = 1, ..,M}
and the decoding operation is defined as

ε∗ (i) = yi,

recovering the original space signal from the codification using the codebook.
For the design of the codebook we use the Self Organizing Map (SOM) For
compression applications, the image is decomposed into non-overlapping image
blocks, each image block assumed as an independent vector. In VQBF codevec-
tors are referenced around their central pixel:

yi =

�
yil,m,n;−

d

2
≤ l,m, n ≤ d

2

�

For convolution like operators, the image is not decomposed into image blocks.
Instead, we process a sliding window of size d× d× d centered in each pixel

fi,j,k =

�
fi+l,j+m,k+n;−

d

2
≤ l,m, n ≤ d

2

�

VQ-BF filtering is defined as:

�fi,j,k = y
ε(fijk)
0,0,0

VQ-BF segmentation is computed as:

ωi,j,k = ε (fijk)

Codevectors embody the probabilistic model of the pixel’s neighboring window.
As seen in the Appendix B we can assume that the filtering and classification
operators correspond, respectively, to the following MAP decisions:

p
�
fi,j,k = yω0,0,0 |fijk

�
= δω,ε(fijk),

and
p (ωi,j,k = ω |fijk ) = δω,ε(fijk).

Application of Occam filters at VQBF design is as follows:
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1. Fix the definition of the codevector space,

2. Compute the rate-distortion curve of the VQ compression using non-
overlapping image blocks,

3. Compute the inflexion point of the rate distortion curve, and

4. Apply the codebook of optimal size to the VQBF image processing.

Some specific difficulties of the application of the Occam filter to the VQ de-
sign: the control parameter of this process is the compression rate specified by
the number of codevectors, therefore, application of VQ is not guided by dis-
tortion, it only gives a sample of the distortion that we can obtain with such
number of codevectors. The uncertainty on the compression loss implies that
the distortion-rate curve will be very noisy. Estimation of the noise magnitude
based on the inflexion point is, therefore, subject to uncertainty. The estima-
tion of the distortion-rate curve can be made more precise repeating the design
of the VQ at each number of codevectors, increasing the computational cost.
Besides, there are two parameters determining the compression ratio: number
of codevectors and codevector dimensionality. As a consequence there is no sin-
gle rate-distortion curve. In the search process for the optimal codebook size
and dimensionality, we have computed several rate-distortion curves exploring
these parameters. Finally, all the process is conditioned to the VQ compression
algorithm being admissible, which is the subject of the next proposition.

Proposition 6. Consider an input signal whose probability distribution can be
modeled as a mixture of Gaussians. The VQ whose codebook is composed of the
Gaussian distributions’ means is an admissible compression algorithm.

Proof: If the input signal follows a mixture of Gaussians, then, the compres-
sion loss is a Gaussian distributed random variable of zero mean. The
expectation of (f − g) · g is trivially zero due to the independence of the
error and the signal recovered after compression and decompression with
the VQ

E {(f − g) · g} = E {(f − g)} · E {g} = 0

12.4 Experimental results
The intended task is the unsupervised segmentation of a 3D MRI data of a
human embryo provided by the Unit of Magnetic Resonance of the Universidad
Complutense de Madrid. The images have been obtained with an experimental
magnet of 4.7 Teslas. The volume is made of 128 slices of 128× 256 pixels each
of 32 bits/pixel. We denote the data [fi,j,k; i, j = 1, .., 128; k = 1, .., 256] . Data
contains some illumination artifacts due to the experimental nature of the coil
employed. A reduction to 8 bits/pixel has been done by ad-hoc manipulations
of the intensities based on the statistics over the whole sequence. In Figure
12.1 we show the slice #80 of the sequence as it appears before and after the
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(a) (b)

Figure 12.1: Original frame #80 (a) before and (b) after manual intensity range
reduction to 8 bits/pixel.

manipulation. Figure 12.2 shows some slices after the range transformation for
visualization to 256 grayscale.

The unsupervised segmentation consists in the VQBF labeling of the pixels
on the basis of the pixels’ windows in order to obtain

[ωi,j,k; i, j = 1, .., 128; k = 1, .., 256] . (12.1)

In order to visualize the image regions identified by each class, we compute the
binary images: �

fω∗

i,j,k; i, j = 1, .., 128; k = 1, .., 256
�
, (12.2)

where fω∗

i,j,k = 1 if ωi,j,k = ω∗, and fω∗

i,j,k = 0 otherwise for ω∗ = 1, ..,M. We
determined M by the Occam filter methodology. Each 3D data of a given class
has been rendered as follows: we considered half volume rotating around the
Z axis to show the identified structure from several viewpoints. Figure 12.3
shows some of the views obtained from segmentation using image blocks of size
5 × 5 × 5 as codevector dimension. The orientations in the figure have been
selected to highlight the differences between classes. Class number is in the
segmented region visualization.

Figure 12.4 shows rate-distortion curves and inflexion points (highlighted by
small squares) computed for diverse codevector dimensions. The specific inflec-
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Figure 12.2: Some slices of the 3D data of an embryo used in the experiment of
Occam filter determination of the optimal number of classes.
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Figure 12.3: Visualization of the classes identified by the Occam filter plus
VQBF. Image block size is 5× 5× 5.
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Figure 12.4: Rate-distortion curves computed by SOM in one-pass over the
sample, with several codevector dimensions.
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tion point for codevectors of dimension 5 × 5 × 5 is M = 35. In Figure 12.3,
it can be appreciated that the first classes correspond to the saline solution
containing the embryo. Classes 3 to 11 seem to be several layers between the
embryo inners and the outside. From class 12 onwards, there are several regions
of the embryo identified. Some volumes segmented are sparse, noise like. Others
show strongly connected components. Classes 28, 29 and 30 identify two sep-
arate connected components that may correspond to the brain and abdominal
regions. The class ordering may be explained by the topological preservation of
SOM. The first codevectors correspond to the lower magnitude windows. Vec-
tor magnitude seems to increase with class number, so the last classes have the
strongest signal.

The Occam filter has mitigated the unbalanced class problem introduced
because the saline background solution has a big percentage of the volume.
Codebooks with large dimension tend to assign many codevectors to this back-
ground. The Occam filter approach reduces the number of codevectors employed
to model the background to three.

12.5 Conclusions
This chapter shows the results of applying the Occam filter approach to the
optimal codebook size problem for a VQBF application. We find this number
as the inflexion point of the rate-distortion curve of the image compression using
VQ. To speed up computations we employ a sample of the entire image (volume).
Once the codebook size is determined, the codebook is computed using all the
image information. The SOM is used as a robust and fast codebook design
algorithm. Finally, the codebook is used by a VQBF algorithm to perform the
segmentation of the image. Visual results show a big spatial coherence of the
detected classes with a small number of spurious classes.
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Part III

Supervised learning

187





Chapter 13

Supervised SOM for color
face localization

In [125] we reported the design of face localization system decomposed in two
stages. The first stage tries to localize the head region based on the analysis
of the signatures of temporal difference images. It has been described in Ap-
pendix C. The second stage aims to provide confirmation of the head hypothesis
through the color analysis of the head subimage. The color analysis is performed
as a color quantization process. The color representatives are computed through
an adaptive neural network technique, which is a supervised version of the well
known Kohonen’s Self Organizing Map (SOM). The contribution of the PhD
candidate to the system [125] was the design of this specific SOM application
and it is described in this chapter.

There have been some works that use color for the task of face localization
[52, 109, 255, 262]. These works are based on a characterization of the a priori
distribution of the skin color in the color space. They assume their color models
to be invariant under capture conditions, illumination, camera distortions and
so on. On the contrary, our proposition in this chapter is to apply an adaptive
approach, so that face skin color representatives will be estimated from small
samples of images.

Section 13.1 introduces the supervised VQ based on the SOM. Section 13.2
reports experimental results on a real life image sequence. Finally, section 13.3
gives our conclusions of this chapter.

13.1 Supervised VQ using SOM
The color process for face detection is a two class classification problem. Each
pixel either corresponds to a face-skin color or not. This classification can be
defined in terms of a Color Quantization of the images. We perform a supervised
quantization, where the SOM is applied independently either to face-skin pixels
or to non-skin-face pixels. Two SOM networks are trained independent and
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simultaneously, in one pass over the sample data. The definitions of SOM are
given in Section 2.4. The process can be summarized as follows:

1. Select a set of images for training, define the regions of interest that de-
lineate the face region in the image. Select sample sets of pixels inside S1

and outside S0 the face regions in the images.

2. Train, in one pass over the sample set S1, the SOM for the face-skin pixels
Y

1 =
�
y
1
1, ..,y

1
M

�
, where M is the number of color clusters associated

with face-skin.

3. Train, in one pass over the sample set S0, the SOM for the non-face-skin
pixels, Y

0 =
�
y
0
1, ..,y

0
M �

�
, where M � is the number of color clusters

associated with non-face-skin.

4. For a pixel in a test image, find the nearest color representative in
�
Y

0,Y1
�
.

If the color representative belongs to Y
1 the pixel is assigned to the face

class.

Once a head subimage has been extracted applying the signature processing,
the pixels are color quantized and classified as face or not-face pixels. The
confirmation of the existence of a face is given based on the comparison of
the percentage of face pixels with a decision threshold. As will be seen in
next section, this threshold is not very high usually, because the skin region is
usually relatively small in the images selected. A ratio of face pixels of 0.3 is
too conservative and leads to many false rejections, because the head subimages
found by the procedure described in Appendix C usually contain many other
head features like neck and hair.

13.2 Experimental results
Regarding the numerical setting of the SOM for this task, we may say that
the size of the samples for the experiments reported below were

��S1
�� = 10500;��S0

�� = 12500; the number of units for both SOM instances was M = M � = 16,
the initial neighborhood wasv0 = 8, the initial learning rate was α0 = 0.1 and
the rate of convergence to the null neighborhood was vN = 1.1.

Figure 13.1 shows some of the head subimages used to train the supervised
SOM. Figure 13.2 shows the hand defined regions of interest that are used to
extract face color pixel train and test samples. Note that the eyes, eyebrows,
lips and other features that do not share the skin color are also included in the
region of interest. That means that some noise level in the class assignment must
be accepted by the training algorithm. In Figure 13.3 we plot the per image
accuracy of correct classification results of the pixel color classification on test
images not included in the training set. In Figure 13.4 we plot the corresponding
per image specificity (ratio of the number of pixels correctly assigned as face to
the total number of pixels assigned as face) and sensitivity (ratio of the number
of pixels correctly assigned as face to the total number of pixels hand-defined
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Figure 13.1: Some of the head subimages used to train the supervised SOM.

Figure 13.2: Manually selected face ROIs for the train images in Figure 13.1.
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Figure 13.3: Results of the pixel color classification on test images not included
in the training set: accuracy of correct classification.

Figure 13.4: Results of the pixel color classification on test images not included
in the training set: specificity and sensitivity.
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Figure 13.5: Results of pixel classification on images selected by the signature
algorithm.

Figure 13.6: Ratios of the face area to the window area (in pixels) in the exper-
imental sequence of images.
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Figure 13.7: Some images rejected by the color segmentation with a threshold
of 0.2 on the ratio of face pixels to head window size.

as face). These images come from different sequences that show variations of
pose, scale and illumination. It can be appreciated that the supervised SOM
algorithm is very robust, and produces the correct pixel classification with great
confidence, despite the simplicity of the numerical setting described at the end
of the foregoing section. In Figure 13.5 we show some of the results of pixel
classification in test head images selected by the signature algorithm. We have
not introduced any spatial continuity constraint so that the validation of the
face hypothesis is based on the number of pixels assigned to the face class. In
Figure 13.6 we plot the ratio of the face area to the head window area, for the
true face area as defined by the hand made regions of interest, and the face areas
found by the neural classifier in the experimental sequence. A value of 0.2 for
the threshold on this ratio of is a very conservative decision criteria for rejecting
a head subimage. In the experimental data used for the present chapter, this
threshold corresponds to the rejection of images shown in Figure 13.7. These
images show very small faces or face parts, that can be safely discarded as head
subimages.

13.3 Conclusions
We have presented an algorithm for face localization in image sequences, based
on the combination of a signature based process and a color based process. The
first process tries to find rough estimations of the head, while the second provides
confirmation of the head hypothesis and a more precise localization of the face
region. The head localization proceeds by the computation of difference images
for motion isolation. The motion image vertical projections serve to isolate
individuals, whilst the horizontal projections serve to find the rough position of
the head. Color processing is adaptively fitted by the application of a supervised
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version of Kohonen’s SOM. A small sample of images can be used to fit the pixel
classifier to the scenario, illumination conditions and skin face color. The color
processing decides to confirm the head hypothesis when the ratio of face pixels
are above a threshold. In the experiments a ratio of 20% face pixels gives good
results.

The combined algorithm shows a strong robustness against scaling effects,
background cluttering, cloth textures and uncontrolled illumination. The com-
putational cost of the algorithm is not affected by the changes in scale, because
it does not involve the computation of a pyramid of images at different resolu-
tion levels. Still further confirmation of the face hypothesis can be obtained by
other means [135, 222, 237, 238, 243, 255] so that the process described here can
help to reduce the complexity of these other methods. The approach described
is suited for still cameras, which is not the ideal setting for mobile robots. A
possible way to perform the processes while the robot is moving is the computa-
tion of the motion images and motion fields from color quantized images, whose
color representatives could be adaptively updated to increase the precision of
the segmented motion images.
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Chapter 14

Vector Quantization Bayesian
Filtering for MRI tissue
segmentation

This chapter gathers some results of the application of VQBF to the supervised
segmentation of 3D Magnetic Resonance Images (MRI). Our contribution to the
work reported in [70] by researchers of the IRM of the UCM was the technical
support on the tuning of the algorithm for its application of VQBF to the med-
ical/biological images. VQBF performs an unsupervised preprocessing of the
image aiming to improve the performance of the supervised classifier perform-
ing the final image segmentation, built as a conventional feedforward artificial
neural network trained with the error backpropagation algorithm, a Multilayer
Perceptron (MLP). The hybrid system is composed of the VQBF filtering layer,
trained with an unsupervised algorithm, and a classification layer consisting of
the MLP. To test the generalization of the approach, the MLP is trained over
the data from a slice containing the central region to be extracted, testing it on
the remaining slices of the MRI volume. The goal is to obtain the 3D region
corresponding to the tissue of interest. Results reported in this chapter refer to
an experimental model of an acute inflammatory process. The results show high
correlation between the manual segmentation, the histopatological data and the
results of the automatic segmentation of the combined VQBF + MLP system.

Section 14.1 contains a brief state of the art review. Section 14.3 comments
on the experimental images. Section 14.2 presents the hybrid system. Section
14.4 recalls the definition of the performance indices used to report validation
results. Section 14.5 give the experimental results. Finally, Section 14.6 gives
the conclusions of this chapter.
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14.1 State of the art
Medical imaging techniques have shown high capability for differential diagnosis
and the evaluation of the response to alternative therapies to some pathologies.
MRI has an astounding flexibility and diagnostic capacity. Its combination
with digital image processing techniques, and automated pattern recognition
increases precision in the quantification of lesions and extraction of their char-
acteristics [153, 165], resulting in a reduction of the analysis time, operator
bias, with increasing consistency in the identification of tissue types in different
images. A long term goal is to establish an automated methodology for the seg-
mentation and volumetric measurement of regions in images. Besides, objective
methods are specially useful when the decision needs consensus among several
physicians [153]. In this sense, artificial neural networks (ANN) [44, 140, 214]
and statistical pattern recognition methods [76, 28], are appropriate tools to
build automatic medical image analysis tools. ANN have been recognized as
tools for decision assistance [153], allowing to build classifiers based on quanti-
tative features extracted from the medical images: i.e., mammography diagnosis
[284], anatomical brain segmentation [190, 98]. Medical image segmentation is
achieved by the classification of image pixels, assigning each pixel to concrete
structure or tissue.

A big problems in medical image are: low resolution and contrast, blurred
boundaries and partial volume effects, variability in sizes and elastic (non-rigid)
deformations of the objects (tissues, structures....). Live tissue show non linear
deformations and the response to the visualization instrument may vary greatly
among machines and subjects. Therefore, most systems have some interactive
element, either to tune some parameter or to perform some initial selection,
that can be used to train the system. For instance, active contours [194] need
the specification of an initial contour that must be close to the region of inter-
est. Such initialization must be sustained by some a priori knowledge, and the
process is highly sensitive to initial conditions [251]. These automated image
analysis methods are desired in many contexts, for instance in the monitoriza-
tion and follow up of some diseases, or the impact of pharmacological treatments
on tissue morphology, physiology and biochemical properties [174]. Such proce-
dures can help to speed up the evaluation of a mechanism and pharmakinetic,
pharmadynamic and security profiles of a drug in preclinic experiments with an-
imal models [239]. They can allow to perform longitudinal studies on the same
individual, reducing economical cost and improving experimental precision, be-
cause reduces the need to combine observations on different individuals of the
diverse phases of the process, avoiding premature sacrifice of the individuals for
histopathological observation.

The hybrid system used in this chapter uses VQBF for image preprocessing
and MLP for image classification. VQBF requires training of a codebook. For
such task we use the SOM [167, 170]. SOM has been used for MRI processing,
both multispectral and functional data. Hybrid systems using SOM and MLP
have been applied to pathologies such as the osteosarcoma [216]. Fuzzy cluster-
ing has been applied to MRI segmentation [63, 242, 22]. Most works in MRI
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Figure 14.1: Manual and automatic segmentation procedure.

segmentation have been on multispectral data [252, 145]. However, the increas-
ing acquisition time and the need for image registration justifies the research
into the segmentation of monospectral images.

14.2 Semi-automated segmentation

The semi-automated process applies two kinds of artificial neural network to
isolate and classify 3D structures, allowing the measurement of their volumes.
The original data are preprocessed by a VQBF as described in Appendix B.
Subsequent semi-automated region of interest (ROI) identification is achieved
by the training and application of a MLP. The result of the MLP application is a
volume of binary valued voxels, the values 1 giving a prediction of the ROI iden-
tification. In some applications, a new VQBF application is done on the results
of the MLP-based ROI identification, i.e.: to discriminate edematose and necro-
tized tissues in the inflamed region [240]. Figure 14.1 shows an schema of the
whole process. The complete dataset is subject to a VQBF classification process
obtaining a 3D classified dataset. The most representative slice is selected and
the ROI corresponding to the tissue of interest is manually drawn. This ROI
and the corresponding slice in the VQBF-classified data is used to train a MLP
which classifies each voxel taking as input a window around it in the VQBF-
classified data. The MLP is then applied to all slices in the VQBF-classified data
giving a prediction of the ROI. For validation, independent manual drawing of
the entire tissue done by expert operators is available.



200 CHAPTER 14. VQBF FOR MRI TISSUE SEGMENTATION

14.2.1 VQBF unsupervised segmentation
VQBF consists in the VQ of sliding windows centered on the processed voxels.
Voxel neighborhoods are defined in three dimension: the triplet (nX, nY, nZ)
specifies the neighborhood size in each dimension, where the Z axis corresponds
to the slice number. The codebook used by VQBF has been extracted from
the data volume applying a SOM with the following unit specific neighboring
function

h (t) =
η (t) (ρ (t) + 1)

d
where η (t) is the learning velocity, decreasing exponentially from 0.5 to 0.01,
ρ (t) is distance factor decreasing in the learning process from 1 down to 0.001,
finally d is the distance in the index space between the winner neuron and the
one being updated.

Data preprocessing consists in the classification of each voxel according to
its neighborhood, given by a cube centered in the voxel [114, 106, 123]. The
result is a new 3D dataset with the same spatial dimensions as the original
volume. The voxel value depends on the number of classes used to categorize
the tissues in the MRI data. VQBF parameters are as follows: neighborhood
size 3×3×1, number of SOM iterations: 3000, sample size: 3000 input windows
randomly selected in the original 3D data. These parameters allow a reasonable
computing time with the available resources. The neighborhood size has good
edge preservation as discussed in Appendix B. Therefore, the input to the VQBF
can be visualized as a layer with N = 9 units, and the output as a layer with
M = 5 units. The number of output VQBF classes was decided by the expert
opinion of a pathologist. Codevectors were consistently associated with the
following classes [240]: background, healthy muscle, abscess, inflamed muscle
and miscelanea tissues with high T2 signal in the lesion periphery, including
subcutaneous grease. We did not attempt the automated determination of the
number of classes.

14.2.2 Supervised identification of the ROI
MLP is a well known supervised ANN [140, 214], consisting of a feedforward
network trained with the error gradient backpropagation algorithm. In our case,
the MLP was a three layer network: input, hidden, and output layers. These
layers are completely connected, no pruning algorithm has been applied. The
input data to the MLP come from the VQBF-classified volume. The output layer
consists of a single binary unit, given the probability of the voxel belonging to
the ROI. The input layer consists of P units whose values are the VQBF classes
of the voxels inside the window, plus two spatial values (Xp y Yp) computed as:

Xp = Cx (Xi −Xc)
2 , (14.1)

Yp = Cy (Yi − Yc)
2 ,

where (Xi, Yi) are the voxel coordinates in the slice, and (Xc, Yc) and (Cx, Cy)
are, respectively, the center of mass and the spatial standard deviation of the



14.3. EXPERIMENTAL IMAGES 201

ROI obtained by manual segmentation of the training slice. We have tested
several hidden layer configurations, finding that the best results were obtained
with 12 units. This value was obtained in the empirical evaluation as the best
tradeoff between computational cost, classification precision and generalization
of the segmentation results. For MLP training, a human operator selects the
most characteristic slice from the 3D data, providing a manual segmentation of
the ROI. The binary image provided by this segmentation will be used as the
ground truth for the MLP training, which is performed on the corresponding
VQBF-classified slice. The trained MLP is then applied to the remaining slices
in the VQBF classified data. Training is performed using a gradient rule with a
momentum term [140]. To avoid saturation in the unit transfer functions, first
we sort in ascending order the labels of the class representatives obtained by
the VQBF in the ROI of the selected slice. Learning velocity is set to 0.45 and
the weight of the momentum term is set to 0.01. The unit transfer function is a
sigmoid function with parameter 0.5.

Besides the normalized coordinates given by equation (14.1), MLP inputs
consist in the class values in 5×5 neighborhood. In any case, the neighborhood
size is not a critical parameter. We have found that 3×3 and 7×7 neighborhoods
produce similar results. Training is performed for a fixed number of iterations.
After training, the MLP is applied to the remaining slices obtaining a binary
valued volume.

14.3 Experimental images
The serial studies on mice (N = 16) after intramuscular inoculation of As-
pergillus fumigatus have been realized with each animal in diverse days of the
acute infection period, from days 0 to 14 after inoculation. Image acquisition
was performed with an spectrometer Bruker Biospec 47/40 (Ettlingen, Ger-
many) with tailored birdcage resonator. Animals were put in prone position,
with similar positioning in each acquisition: the two rear legs inserted in the coil
side by side. After an exploratory sequence, the acquisition consisted as fast 3D
T2 weighted (256× 256× 32) of axial images with TR/TE of 2000/67.5 ms and
field of view 40× 40× 22 mm. The proposed method was applied to the quan-
tification of the inflamed muscle, and the necrosis in lesions with some abscess
in the case of chronical acute inflammation. Only images from days 3, 7, and
14 after inoculation have been used for validation and train. Histopathological
details can be found in [70].

14.4 Statistical analysis
To obtain the ground truth for image segmentation, two independent human
operators performed the complete manual segmentation of the ROI in some
images in the original dataset, three animal models. The temporal segmenta-
tion between the segmentations is never less than one hour, to minimize the
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subjective error of manual delineation relative to the anatomical references. To
minimize memory effects, delineation is performed on non consecutive slices.

Segmentation performance results statistical significance was assessed using
ANOVA and correlation methods. Significative difference between the ROI slice
areas and total ROI volume for automated and manual segmentation. For all
comparisons, Student-test on the means (p < 0.01) and F-test on the variances
(p < 0.01) were performed to test for equality. However, comparison between
manual results and computer assisted segmentation can be misleading, because
the absolute volumes and areas can be similar despite the actual voxels are not
included. For this reason, a simplified ROC analysis is performed [294, 196],
evaluating the following accuracy indices:

1. Similitude (aka repeatability) measuring the overlapping of manual and
automatically segmented areas [48, 160, 232, 75]:

S =
|A ∩B|
|A ∪B|

2. Kappa similarity index (Ki) [48, 69, 17, 299]:

Ki =
2 |(A ∩B)|
|A+B|

3. The true positive ratio (TPF), which gives a sensitivity measure corre-
sponding to the detection probability

TPF =
|A ∩B|
|B|

4. False positive ratio (FPF) which is related to the false alarm probability,
giving an specificity measure

FPF =
|A−B|
|Bc|

14.5 Experimental results
The general methodology is illustrated in Figure 14.2. Figure 14.2(A) shows a
central slice of the MRI data volume across the middle of the lesion. Figure
14.2(B) shows the result of VQBF classification. The affected region is well
segmented including some additional tissues containing lesions. The manual
delineation of the ROI giving the classification ground truth is given in Fig-
ure 14.2(C). The data in Figure 14.2(B) (input patterns) and Figure 14.2(C)
(output pattern) were used to train the MLP which was afterwards applied to
the remaining slices of the volume, included the training slice. Figure 14.2(D)
shows the result of performing a second VQBF-classification on the original
data masked by the results of the MLP. The automatic counting of the voxels
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Figure 14.2: Axial slices of the mouse seven days after inoculation. (A) Original
T2-weighted slice. (B) VQBF-classified image, grayscale correspond to class
label. (C) Ground truth for the slice in (A). (D) VQBF classification on the
results of the MLP trained in this data volume for the slice in (A).
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Figure 14.3: Average number of voxels corresponding to the inflamed region
per slice. Square means the manual ground truth, circle means the automated
segmentation.

of each class, multiplied by the voxel volume gives the estimation of the in-
fected tissue volume. For statistical analysis, ten central slices were selected in
three animal models. Using each one as the training slice for the MLP we com-
pute the number of voxels corresponding to the detected infected region. We
applied ANOVA to compare the results with the manual segmentation, trying
to determine some bias due to the selection of the training slice. There were
no significative differences for any of the animal models (p < 0.05) neither on
the measured areas nor on the manual segmentations by the human operators.
There was some statistical significative differences among the results for the
different animal models.

Figure 14.3 shows the comparison of the average number of voxels in the
ground truth inflamed area (solid squares) with the ones found by the automated
method (solid circles). Each column of plots in the figure corresponds to the
use of three different slice sets in the MLP training. Each row corresponds to
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Figure 14.4: Average number of voxels classified as infection in the ground truth
(square), and the automated system when the slice for train and test is the same.
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slice 1 slice 2
Day Mouse H ANN H ANN

A 63.1 68.9 64.2 72.8
3 B 63.5 82.1 78.9 86.6

C 88.7 76.6 65.9 65.4
D 67.9 71.1 56.9 65.7

7 E 91.5 89.0 92.9 88.9
F 64.4 71.6 50.4 53.0
G 44.1 35.8 46.3 45.4

14 H 76.3 71.6 80.7 79.3
I 80.0 77.6 51.6 38.4

mean 71.1 71.6 65.3 66.2
std 13.9 14.0 15.0 16.8

Table 14.1: Percentage of the inflamed muscle measured by the histopatological
analysis (H), and by the computer assisted method (ANN). Summary of the
percentages of inter-lesion tissues in nine animal models, two histological slices
per each, after inoculation with A. Fumigatus. Day corresponds to the number
of days after inoculation.

the results on a different animal model. The three central slices are used for the
MLP training in plots A, D, G, the four central slices in plots B, E and H, and
the three extreme slices in plots C, F and I. Plots A, B and C correspond to
an animal model studied six days after inoculation with A Fumigatus. Plots D,
E and F correspond to an animal model after seven days, and plots G, H and
I correspond to an animal model after seven days of inoculation. As expected,
difference between the ground truth and the automated segmentation decrease
when training is performed on the central set of slices. On the other hand, when
training is performed on the extreme slices the automated method does not agree
with the ground truth. Also the number of slices used can have a dramatical
effect. When the best slice set is used, the greatest discrepancies between the
manual ground truth and the automated method are found in the extreme slices
of the lesion, where the lesion is less prevalent, less defined and poorly delimited,
as can be seen in Figure 14.4 obtained from the whole set of sixteen animal
models. The number of lesion voxels per slice is shown for the manual and
automated segmentations. Correlation between ground truth and automated
segmentation are above 0.9 most of the times (there is a single animal model
below this figure) with p < 0.01. Correlation between the number of voxels
inside the inflamed lesion is 0.78 with high statistical significance (α <0.001).

Table 14.1 gives a comparison of the percentage of inflamed and necrotic
tissue found by the automated method and the histopathological analysis of
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the dissected tissues. In this study only nine animals and two slices of each
animal were processed, due to the difficulty in establishing the correspondence
of the histopathological sample and the MRI slice. The mean and standard
deviations in Table 14.1 show that both measurements are in agreement, with
a high correlation coefficient 0.87 (p < 0.01), giving a high reliability to the
inflamed tissue detected by the automated method.

14.6 Conclusions
The first step in the proposed method is a VQBF classification, based on the tex-
ture representatives found by a VQ design method in monospectral MRI data.
The VQBF produces a smooth segmentation of the images into tissues classes
with good preservation of perceived tissue boundaries. VQBF edge preservation
is comparable to other approaches such as anysotropic filtering [95]. The SOM
used for the VQ design has two interesting properties: (i) is very robust against
initial conditions, and (ii) codevectors found tend to be ordered, due to topolog-
ical preservation of SOM. This ordering is important for subsequent processes.
The role of VQBF is to reduce signal variability across individual data vol-
umes [190], giving a voxel classification that enhances the ensuing classification
processes.

Second step is the supervised training of MLP using a given ground truth.
This supervised classifier overcomes translation and small deformations due to
animal positioning and anatomical evolution in time. For instance, the localiza-
tion and shape of the inflammatory lesion changes along the longitudinal study
of the animal model.

The inflammatory processes in the animal models show complex mixtures of
tissues with poor delimitation, difficult to segment with conventional methods
[240]. The proposed algorithm gives good results in the identification of the total
lesion. In summary, the process is rather robust agains the strong variations
of the target region between slices and data volumes, with minimal human
intervention.
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Chapter 15

High Order Boltzmann
Machines

This chapter reports the results obtained with the application of High Or-
der Boltzmann Machines without hidden units to construct classifiers for some
problems that represent different learning paradigms. The Boltzmann Machine
learning algorithm remains the same regardless of the discrete or continuous na-
ture of the domain of the variables. High Order Boltzmann Machines (HOBM)
are characterized by the absence of hidden units. When HOBM are restricted
to classification problems the estimation of the connection statistics needed by
the learning algorithm can be done efficiently, without the computational cost
of simulated annealing. In this setting, the learning process can be sped up
several orders of magnitude with no appreciable loss of quality of the results
obtained.

Section 15.1 contains an introduction to the chapter. Section 15.2 gives a
quick revision of Boltzmann Machines. Section 15.3 introduces our notation
for HOBM, and the diverse versions of the learning algorithms. Section 15.4
introduces the test problems, the definitions of the machines applied to each
problem, and the results obtained trying several high order topologies. Section
15.5 gives the conclusions of this chapter.

15.1 Introduction
The Boltzmann Machine is among the first artificial neural network architec-
tures proposed in the literature [2, 1]. However, training them was difficult due
to the computational cost and the difficulty to tune the several parameters in-
volved in the estimation of the connection statistics used for weight updating in
the learning process. Weight updating in the Boltzmann Machine is based on
the difference of the activation probabilities of the connections in the so-called
clamped and free phases. Simulated annealing is required to compute these
statistics in the general case.
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Boltzmann Machines training can be much easier than was previously thought
whenever two restrictions are considered.

• The first is the avoidance of hidden units, using high order connections
to model the high order correlations of the input. High order connections
have been referred sometimes as product or sigma-pi units [77, 220, 178].
In our work, the weights of the high order connections are computed using
the same learning algorithm of conventional (order 2) connections.

• The second is the restriction to classification problems. This domain of
problems is very broad including most of the application areas in which
intelligent systems are applied.

Under these restrictions there is no needed to perform simulated annealing for
the estimation of the connection statistics because in the clamped phase there
are no degrees of freedom, while in the free phase, the asymptotic state of the
output units can be easily computed as the search for the output unit with
highest gain. Moreover, the learning measure, the Kullback-Leibler pseudo-
distance, is convex for Boltzmann Machines without hidden units [1, 7, 6, 5],
therefore

• learning is trivially robust against initial conditions, so that the initial
weights can be arbitrarily set (in our works we always set the initial weights
to zero),

• there is no need to realize several instances of the learning to estimate
the average learning performance or to make a broad search for the best
initial conditions

Despite these simplifications, we found that the quality of the results is compa-
rable to other neural architectures, and the number of learning cycles needed is
much less than in the classical approach.

Previous attempts to reduce the computational burden of learning in Boltz-
mann Machines include the application of mean field approximations [217, 218,
143, 33, 34] to the estimation of the stationary distribution of the network. Other
authors [244] have studied a particular class of topologies, tree-like topologies,
suitable to the exact computation of the activation statistics using a decimation
technique. However, the class of topologies appropriate for classification can
not be easily cast into the class of tree-like topologies.

15.1.1 High Order connections
High order connections are the mean to obtain full modeling power while pre-
serving the computational simplifications implied by the absence of hidden units.
Previous to our own work, we only know of sparse references [248, 142, p.211]
to High Order Boltzmann Machines. These references only point to their defi-
nition, without further exploration of their capabilities.
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Besides, there are references to neural network topologies with high order
connections. In [215, 257] connections of order 3 are defined to obtain classi-
fiers of two dimensional patterns that are invariant to translation, scaling and
rotation. The weights of these connections are computed a priori based on the
geometrical characteristics of the problem. In [220], Pinkas addresses the mod-
eling of the resolution of propositional expressions by the relaxation of recurrent
networks, giving algorithmic transformations of the conventional topology with
hidden units into a high order topology, and vice versa. Taylor and Coobes
[261] present an extension of Oja’s rule that is capable of adapting the weights
of higher order neurons to pick up higher order correlations from a given data
set. Mendel and Wang [195] show the use of high-order statistics (cumulants)
in the identification of Moving Average Systems. Although they don’t use high-
order connections, the cumulants are used as complementary characterizations
of the system identified via neural networks. Other works (i.e. [141]) propose
mixed topologies that include hidden units and high order connections trained
with Backpropagation. Karlholm [158] presents a study of recurrent associative
memories with exclusively short-range connections, using high order couplings
(up to order 3) to increase the associative memory capacity. The main aim of
his study is to asses the effect of short coupling ranges in the capacity and pat-
tern completion ability of the networks, and little attention is paid to the effect
of using high-order connections. High-order connections are still the subject of
recent research works such as [260, 78, 79, 296, 269].

15.1.2 Boltzmann Machines with non-binary units
Learning with Boltzmann Machines was mostly restricted in the literature to
problems defined over {0, 1} variables represented by binary units. We have con-
sidered machines that include non binary units. Generalized discrete units can
take values in arbitrary integer intervals. Continuous units can take values in ar-
bitrary real intervals. In both cases, the learning algorithm is a straightforward
generalization of the binary case. It suffices to consider the mean activation level
of the connections, instead of the activation probabilities. The use of general-
ized discrete units and continuous units allows for big reductions of the number
of units used to codify the problem, and, therefore, of the network complexity.

Our approach to the generalization of the Boltzmann Machine learning
paradigm is not related to previous attempts to introduce recurrent networks
with discrete or continuous units. In [133], Gutzmann describes a continu-
ous state Boltzmann Machine to solve combinatorial optimization problems.
The states of the units are restricted to the [0, 1] interval. Also, some authors
[12, 13, 217, 218, 143, 11, 33, 164] use the interpretation of the probability of
the unit being in state 1 as a kind of continuous state. Networks with multi-
valued units generalizing the dynamics of the Hopfield network, based on the
Potts theory, have been also proposed in the setting of combinatorial optimiza-
tion [219, 100]. In a similar vein, Lin and Lee [182] propose a generalization
of Boltzmann dynamics for the case of multivalued spin like units whose states
are orientations in the plane, with application to solve the navigation problem
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based on the definition of an artificial magnetic field. Parra and Deco [213]
deal with the training of the so-called rotor neurons. The states of rotor neu-
rons are continuous multidimensional vectors of norm 1. The authors propose
an expression of the Boltzmann Machine learning algorithm for this continuous
multidimensional case. A Directional-Unit Boltzmann Machine (DUBM) with
complex valued units is proposed in [293]. The weights of the DUBM are also
complex values. The authors define a quadratic energy function on the network
configurations and a generalization of the Boltzmann learning algorithm for the
DUBM.

15.2 Boltzmann Machines
Boltzmann Machines are recurrent networks [1, 2] with binary units and sym-
metric weights. Each configuration of units in the network represents a state
with a global energy or consensus. We follow the notation and definitions of
Aarts [1], where the Boltzmann Machine is defined as a maximizer of a con-
sensus function (versus energy minimization in other references). The binary
units considered take {0, 1} values (versus {−1,+1} in other references). The
network operation is a stochastic process in which states of higher consensus
are preferred. Once the network reaches equilibrium, the probability of finding
it in a particular global state (configuration) obeys the Boltzmann distribution.

More formally the structure of a Boltzmann Machine can be describe by
a triplet (U,L,W ) where U = {ui} is a set of binary {0, 1}-valued units. In
the conventional Boltzmann Machine the set of connections that defines the
topology of the network is a set of pairs of units L ⊆ U × U including the bias
connections of units with themselves. The set of weights associated with the
connections is denoted by W = {wij ; (ui, uj) ∈ L}. A global configuration of
the machine is denoted by k ∈ {0, 1}|U |, and k(ui) denotes the state of the unit
ui in the global configuration k. The consensus function

C (k) =
�

(ui,uj)∈L

wijk (ui) k (uj) ,

gives a measure of the desirability of the global configuration k.
Boltzmann Machines perform a global maximization of the consensus func-

tion [1]. The dynamics of the Boltzmann Machine are given by Simulated An-
nealing [163], governing the transition between different states of the units.
Simulated Annealing basically simulates a sequence of Markov chains with one
control parameter (the temperature). Markov chain state transition probabili-
ties drive the state changes such that stationary probability distributions of the
configurations are Boltzmann distributions on the values of its corresponding
consensus function. The sequence of Markov chains is defined such that as the
temperature parameter descends towards zero, the associated stationary dis-
tributions assign an increasingly higher probability to configurations with the
highest values of the consensus function. In the theoretical limit the probabil-
ity for the process to be on a state of global maximum consensus is one. This
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is the appeal of Boltzmann machines for the statement and solution of com-
binatorial optimization problems. In practice, if the process is in state k the
simulation proceeds through the generation of a neighbour configuration k

� and
its acceptance with probability

Akk� (c) =

�
1 + exp

�
C (k)− C (k�)

c

��
,

leading to the stationary Boltzmann distribution of the global configurations:

qk (c) ∝
1

Z
exp

�
−C (k)

c

�

with

Z =
�

k

exp

�
C (k)− C (k�)

c

�
,

with where c is the temperature parameter and qk (c) denotes the stationary
probability for the configuration k at temperature c. The partition function Z
is needed to normalize the Boltzmann distribution. After reaching equilibrium,
the parameter c is decreased by a small step.

15.2.1 Learning in Boltzmann Machines

For the purpose of learning the set of units is divided into three disjoint subsets:
input, output and hidden units. The learning process consists of a series of
cycles each of them with two different phases. In the first phase the examples
to be learnt are clamped into the input and output units and the machine is
simulated until reaching a state stationary probability distribution denoted by
q
+(c). In the second phase, all units are free to adjust their state. The free state

stationary probability distribution is denoted by q
−(c). It is a common practice

to clamp the input units in the free phase, leaving the hidden and output units
free to adjust their state. This practice is specially meaningful in classification
problems, so we will adhere to it. The objective of the learning algorithm is
to adjust the connection weights so that q−(c) approaches q+(c). The differ-
ence between both probability distributions is measured by the Kullback-Leibler
divergence

D
�
q
+ (c) ,q− (c)

�
=

�

k

q+
k
(c) ln

q+
k
(c)

q−
k
(c)

where q+
k
(c) and q−

k
(c) are the desired (clamped) and actual (free) probabilities

of the visible units being in state k. The learning algorithm can be expressed
as finding the weights that minimize D. The probabilistic interpretation of
learning in Boltzmann Machines is the search for the log-linear model that best
fits the distribution of the data [36, 93, 176, 14]. In the conventional Boltzmann
Machine hidden units are introduced to capture high order interactions between
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variables. The minimization of the Kullback-Leibler divergence is performed
applying gradient descent on the weights. This gradient is of the form

∂D (q+ (c) ,q− (c))

∂wij
= −1

c

�
p+ij − p−ij

�
,

where p+ij and p−ij are the probabilities of the connection (ui, uj) being activated
under the clamped and free stationary distributions respectively:

p+ij =
�

k

q+
k
(c) k (ui) k (uj) ,

p−ij =
�

k

q−
k
(c) k (ui) k (uj) .

Formal derivation of the learning rule and convergence results can be found
in [1]. The gradient descent approach to minimize D (q+ (c) , q− (c)) is to change
the weights according to:

�wij = α
�
p̂+ij − p̂−ij

�
,

where p̂+ij and p̂−ij are estimations of p+ij and p−ij respectively, and α is the learning
rate parameter.

15.2.2 Hidden units versus high order connections
High order interactions involve more than two variables. In classification prob-
lems, high order interactions appear when there are joint correlations of several
input variables with one output variable.

Hidden units are introduced to model high order interactions between vari-
ables. However, the Kullback-Leibler divergence for Boltzmann Machines with
hidden units is not convex, therefore the learning process can fall in local minima
corresponding to suboptimal models. Moreover, the estimation of the connec-
tions’ activation probabilities is a very delicate step involving the tuning of a
number of parameters, such as the appropriate temperature, the appropriate
annealing schedule to reach the stationary distribution, and the length of the
simulation of the stochastic behaviour for the gathering of statistics over this
stationary distribution.

High order connections provide a straightforward model for high order in-
teractions avoiding the need of introducing hidden variables. The advantage of
high order connections over hidden units is twofold. First, high order connec-
tions can be clearly interpreted as identifying high order interactions, whereas
in the case of hidden units this interpretation is more obscure. Second, hidden
units introduce spurious interactions, whereas in the case of high order con-
nections all the interactions introduced in the model correspond to high order
correlations found the data.

It has been shown [1, 13] that, for Boltzmann Machines without hidden units,
the Kullback-Leibler divergence D (q+ (c) , q− (c)) is a convex function with a
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single global minimum. Therefore, learning is robust against bad initial con-
ditions and gradient descent ensures reaching the global optimum. Moreover,
the dynamics of the Boltzmann Machine can be simplified, avoiding the need to
perform Simulated Annealing to estimate the clamped and free distribution. In
the clamped phase there are no degrees of freedom. The computation of p̂+ij can
be done clamping the patterns in order and taking the corresponding statistics.
Moreover, this computation can be made once for all at the beginning of the
learning process. The absence of hidden units implies that in the free phase
the output units are the only degrees of freedom of the system. Restricting the
domain of application to classification problems allows further computational
simplifications. Assume the convention of codifying the classes with orthogonal
binary vectors. Classification of an input pattern is achieved when the output
vector is composed of zeroes, with only one unit set to one: the unit that rep-
resents the most likely class for the pattern. That implies that the Boltzmann
Machine output layer is a "winner-take-all" structure1. Once an input pattern
is fixed, the asymptotic behaviour of the Boltzmann Machine driven by the
simulated annealing algorithm will be to set to one the output unit with the
maximum gain. Therefore, the computation of p̂−ij can be done clamping each
input pattern, searching for the output unit with the maximum gain (corre-
sponding to the maximum a posteriori probability class) and accumulating the
statistics of the activation of the connections. There is no need to explicitly
build up the "winner-take-all" structure of the connections of the output layer,
because the maximum gain unit can be found by direct search.

15.3 High Order Boltzmann Machines
A High Order Boltzmann Machine with binary units is also described by a triplet
(U,L,W ), where U = {ui} is the set of binary units, L the set of connections
between the units (the network topology) and W are weights associated with
the connections. In a High Order Boltzmann Machine (HOBM) a connection
λ ∈ L can connect more than two units. Connections are no longer pairs of
units but arbitrary subsets of U :

λ =
�
ui1 , ui2 , . . . , ui|λ|

�
⊆ U.

That is, L ⊆ P (U) : The set of connections is a subset of the power set of U . The
order of a connection is the number of units connected by it: O (λ) = |λ| . We
say that the order of the HOBM is that of the connection with maximum order:
O (U,L,W ) = max {O (λ) ;λ ∈ L}. The topology of a conventional Boltzmann
Machine can be visualized as a graph, whereas the topology of the High Order
Boltzmann Machine is visualized as an hypergraph [24]. The weights W can be
formulated as a mapping that associates each connection with a real number W :

1Mutually inhibitory connections in the output layer are needed to ensure that the sys-
tem configuration with the maximum gain output unit set to one corresponds to the global
maximum of the consensus function.
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L → R. The consensus function of the HOBM is a straightforward generalization
of the consensus function of the conventional Boltzmann Machine:

C (k) =
�

λ∈L

wλ

�

u∈λ

k (u) ,

where k(u) is the state of unit u in the global configuration k ∈ {0, 1}|U |. The
HOBM dynamics is the search for the global maximum of the consensus function.
The asymptotic distribution of the configurations qk(c) follows the Boltzmann
distribution based on the consensus function. Learning is the minimization of
the Kullback-Leibler divergence between the distributions of the data and the
HOBM configurations. The gradient takes the form:

∂D (q+ (c) ,q− (c))

∂wλ
= −1

c

�
p+λ − p−λ

�
,

where p+λ and p−λ are the probabilities of the connection λ being activated under
the clamped and free stationary distributions respectively:

p+ij =
�

k

q+
k
(c)

�

λ∈L

k (u) ,

p−ij =
�

k

q−
k
(c)

�

λ∈L

k (u) .

Formal derivation of the gradient descent learning and convergence properties
for the HOBM with binary units (and without hidden units) can be found in
[7, 6, 5]. An alternative and more general geometrical proof of the convexity of
the learning error for high order neural networks without hidden units can be
found in [12].

We have used two weight updating rules. The first is the straightforward
application of the gradient descent:

�wλ = α
�
p̂+λ − p̂−λ

�
,

where p̂+λ and p̂−λ are estimations of p+λ and p−λ , respectively. The learning
rate parameter is set to α = 1. The second involves a momentum term:

�twλ = α
�
p̂+λ − p̂−λ

�
+ µ�t−1wλ,

with the learning rate set to α = 1 as above, and the momentum coefficient set
to µ = 0.9.

The estimation of activation probabilities is performed as follows. In the
clamped phase, each of the training patterns is set at the input/output units.
The activation state of each connection is recorded. (In the binary {0, 1} case
a connection is active if and only if all the extreme units are set to 1). The
activation probability of the connections in the clamped phase is computed as
the mean activation state of the connections. These clamped probabilities are
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computed only once at the beginning of the learning process. The free phase is
a series of learning cycles. In each cycle, the input components of each pattern
are set on the input units. The response of the network is computed searching
for the maximum gain output unit, which is set to 1, while the other output
units are set to 0. (Remember we deal only with orthogonal binary output
vectors). The activation state of each connection is recorded, and the mean
activation state after the presentation of all the training patterns is taken as the
activation probability in the free phase. This weight updating schedule is often
called batch or off-line adaptation. The weights are updated according to the
rule employed and then a new learning cycle is started. The initial weights are
always set to zero.

15.3.1 High Order Boltzmann Machines with generalized
discrete units

If we consider problems with discrete valued variables, be them categorical or
integer valued, we need to introduce discrete units in the formulation of the
Boltzmann Machine adding the specification of the state space of each unit. The
Boltzmann Machine with generalized discrete units is described by a quadru-
ple (U,R,L,W ) where U,L,W have the same meaning of binary Boltzmann
Machines, and R = {Ri; i = 1, . . . , |U |} where Ri is the state space of unit ui.
The configuration space is now the product of the unit state spaces, so that
k ∈ R1 ×R2 × . . .×R|U |. The product interpretation of the connection activa-
tions is maintained, so that the consensus function preserves its form:

C (k) =
�

λ∈L

wλ

�

u∈λ

k (u) ,

taking into account that k(ui) ∈ Ri. The basic dynamics of the HOBM with
discrete units is the search for the global consensus maxima. The Kullback-
Leibler divergence between the clamped and free distributions

D
�
q
+ (c) ,q− (c)

�
=

�

k

q+
k
(c) ln

q+
k
(c)

q−
k
(c)

is well defined taking into account that the configuration space is discrete and
finite and that the configuration stationary distributions are well defined as
Boltzmann distributions of the consensus function. The learning is defined as
the minimization of the Kullback-Leibler divergence, whose gradient can be
deduced [119] to be of the following form:

∂D (q+ (c) ,q− (c))

∂wλ
= −1

c

�
a+λ − a−λ

�
,

where a+λ and a−λ are the mean activations of the connection λ under the clamped
and free stationary distributions respectively:

a+ij =
�

k

q+
k
(c)

�

λ∈L

k (u) ,
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a−ij =
�

k

q−
k
(c)

�

λ∈L

k (u) .

A formal derivation of the expression of the gradient and convergence condi-
tions can be found in [119]. The convexity of the Kullback-Leibler for the High
Order Boltzmann Machine with discrete state units without hidden units has
been proved [119] following the same reasoning employed in [5] for the binary
state units. The learning rules used in the experiments reported in this chapter
are similar to the ones used in the binary case:

�wλ = α
�
â+λ − â−λ

�
,

where â+λ and â−λ are estimations of a+λ and a−λ , respectively. The momentum
learning rule is of the form:

�twλ = α
�
p̂+λ − p̂−λ

�
+ µ�t−1wλ.

The learning rate and momentum parameters are set to α = 1 and µ = 0.9,
respectively. The estimation of the mean activation levels is performed in a
way similar to the described above for the binary case. The adaptation of the
weights is also performed in batch mode. The initial weights were always set to
zero.

15.3.2 High Order Boltzmann Machines with continuous
units

The introduction of continuous units does not change much the notation and
definitions. The unit state space units is Ri ⊆ R and the global configuration
space is a real high dimensional space k ∈ R|U |. The consensus function, that
defines the underlying log-linear probabilistic model, has the same expression
than in the case of generalized discrete units:

C (k) =
�

λ∈L

wλ

�

u∈λ

k (u) .

We do not impose any normalization restriction on the states, neither we assume
any probabilistic or geometric interpretation of the states. The Kullback-Leibler
divergence that drives the learning process is of the form:

D
�
q
+ (c) ,q− (c)

�
=

ˆ
k

q+
k
(c) ln

q+
k
(c)

q−
k
(c)

.

The gradient of the Kullback-Leibler divergence can be shown to be

∂D (q+ (c) ,q− (c))

∂wλ
= −1

c

�
a+λ − a−λ

�
,

where a+λ and a−λ are the mean activations of the connection λ under the clamped
and free stationary distributions respectively:

a+ij =

ˆ
k

q+
k
(c)

�

λ∈L

k (u) ,
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a−ij =

ˆ
k

q−
k
(c)

�

λ∈L

k (u) .

The study of the convexity of the Kullback-Leibler measure, and of the con-
vergence conditions of the learning algorithm, have not been rigorously done in
this case. The experimental work reported in this chapter serves as an empirical
confirmation of the validity of this generalization to continuous units. We do
not need to tackle with the very difficult problem of realizing a Simulated An-
nealing in a continuous space, because the input units are always clamped. The
estimation of mean activity levels and weight adaptation can be done follow-
ing the same procedure used in the binary and generalized discrete case. The
learning rules are also the same.

15.4 Experimental results
In this section we give a detailed account of the application of HOBM to some
selected classification problems described in Appendix E. We have applied both
binary and generalized discrete unit machines to the Monk’s problems. Ma-
chines with continuous input units have been applied to the Sonar and Vowel
recognition problems. In each case we have tested several high order topolo-
gies (without hidden units) to explore the behaviour of the learning algorithm.
From a methodological point of view, we use the training and test data sets as
provided in the original databases. Training has been performed until either
oscillation or saturation on the training set were detected. Oscillation in the
training error implies that the topology lacks parameters to fit the problem. Sat-
uration implies that the tested topology has enough (or too many) parameters
to fit the data. The tables of results show the percentage of correct classification
on both the train and test sets. The results on the train set indicate the kind of
stopping of the learning process. The table entries with a percentage of correct
classification on the training set well below 100% indicate that the tested topol-
ogy has not enough parameters to exactly fit the data. In such cases, learning
was stopped when oscillations were detected. It must be noted, however, that
this does not imply bad generalization. On the contrary in some cases, the best
results on the test set (generalization) were obtained with topologies that did
not saturate on the training set.

15.4.1 HOBM with binary units for the Monk’s problems
The set of binary units, used to codify the Monk’s problems, is defined as follows:

U16 = U1 ∪ U2 ∪ U3 ∪ {uo} ,

U1 = {uij ; i ∈ {1, 2, 4} , j ∈ {1, 2, 3}} ,

U2 = {uij ; i ∈ {3, 6} , j = 1} ,

U3 = {uij ; i = 5, j ∈ {1, . . . , 4}} .
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Figure 15.1: A priori topology of the binary Boltzmann Machine for the M1

problem.

Categorical variables are modeled by a set of binary units. Binary variables
are modeled by a single unit. The unit uo models the classification output. The
mapping of the data patterns x into the states of the machine is as follows:

k (uij) =

�
1 xi takes its j − th value
0 otherwise

A priori topologies can be deduced from the logical definition of the problems
and the logical interpretation of the connections as extended AND operators.
Figure 15.1 shows a graphical representation of the a priori topology for the M1

problem. It consists of three connections of order 3 (with positive weights), one
connection of order 2 (with positive weight) and a bias (with negative weight)
for the output unit. The formal definition of the a priori topologies for the three
problems, together with the a priori weights that guarantee their solution, can
be found in [119]. The existence of a priori topologies tells us two things. First,
the HOBM is able to model the problem. Second, they give some hints about
the complexity of the network topologies that can be used for each problem. The
order of the a priori topology tells us that topologies of lesser order probably
will be unable to fit the data. The orders of the a priori topologies are 3, 4 and
3 for M1 , M2 and M3 , respectively.

The experimental work done on the Monk’s problems with binary unit
HOBM is an exploration of the sensitivity of the learning algorithm to vari-
ous topologies. The first experiment was the training of the a priori topologies.
Subsequent experiments were the training of rather general topologies of increas-
ing order. We call densely connected topology of order r to an HOBM topology
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M1 M2 M3

%train %test cycles %train %test cycles %train %test cycles

Best result 100 100 100
A priori top. 100 100 2 100 97 186 95 100 200

L
3 100 90 12 100 80 128 100 91 30

L
4 100 94 6 100 73 31 100 93 24

L
5 100 88 5 100 71 22 100 91 23

L
6 100 88 5 100 72 22 100 94 17

L
7 100 88 5 100 73 23 100 94 17

Table 15.1: Results with binary Boltzmann Machines for the a priori topologies
and densely connected topologies. Weight updating by the simple gradient rule.

M1 M2 M3

%train %test cycles %train %test cycles %train %test cycles

Best result 100 100 100
A priori top. 100 100 3 100 87 66 54 53 200

L
3 100 99 20 100 83 52 100 92 32

L
4 100 92 15 100 73 33 100 90 24

L
5 100 88 15 100 73 24 100 90 23

L
6 100 88 15 100 73 25 100 94 17

L
7 100 87 15 100 73 34 100 94 17

Table 15.2: Results with binary Boltzmann Machines for the a priori topologies
and densely connected topologies. Weight updating by the momentum rule.

in which the set of connections contains all the significative connections up to
order r. Significative connections are those that include the output unit, and
that do not connect units representing alternative values of the same pattern
component. More formally, the set of connections of the densely connected
topology of order r is given by:

Lr =
�
λ ⊂ U16 |(|λ| ≤ r) ∧ (uo ∈ λ) ∧ (uij ∈ λ ⇒ iik ∈ λ; k �= j)

�
.

Tables 15.1 and 15.2 summarize the results of the application of the binary
unit HOBM to the Monk’s problems using the simple gradient rule (Table 15.1)
and the momentum rule (Table 15.2). In each case, we give the success on the
train and test data, and the number of learning cycles performed. In successive
rows we give

• the best result in the reference report [263],
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• the results obtained with the a priori topology and

• the results with densely connected topologies of increasing order.

Peering through the tables reveals that the number of learning cycles needed is
small, therefore learning is fast. In general, the training set was always fitted.
All the tried topologies had enough parameters to model the problem. The
topologies of order greater than that of the a priori topology show clear symp-
toms of overfitting. The problem M2 appears as the most difficult, with really
poor results on the test data. The cause of this poor behaviour seems to be that
all pairs of patterns with Hamilton distance 1 belong to different classes, which
makes very difficult the generalization of the learned distribution when general
topologies are used. However, there is an a priori topology for this problem
that gives very good results. Finally, it is difficult to ascertain the superiority
of one of the weight updating rules. For problem M1 the momentum rule gives
excellent results, whereas for problem M3 it is fairly outperformed by the simple
gradient rule. (For the a priori topology the momentum rule gets stuck because
of the noise in the training set).

15.4.2 HOBM with generalized discrete units for the Monk’s
problems

The set of units employed to model the patterns is U = {ui; i = 1, . . . , 6, uo}.
The unit state spaces are: R1 = R2 = R4 = {0, ..., 2}, R3 = R6 = Ro = {0, 1}
and R5 = {0, . . . , 3}. The mapping of the patterns into the unit states is
k(ui) = j − 1 if variable xi =(j-th value in its range).

A priori topologies could be designed searching for the weights that give the
consensus maxima for the desired configurations, which could be derived from
the logical statement of the problem. We have not found any a priori topologies
for problems M1 and M3 . However, we have found one for problem M2 . In
this topology, the positive weight connections are all the connections of order
5 that include the output unit. The negative weight connections are all the
connections of order 6 that include the output unit, and the bias connection of
the output unit. The formal definition appears in [119]. Figure 15.2 shows a
sketched graphical representation of the a priori topology for the M2 problem
using discrete units. In this figure hexagons represent high order connections
and circles represent units. For clarity, only two of the whole set of connections
of order 5 and 6 of each order are shown. Appropriate weights of the connections
are 2 for the order 5 connections (wi,j,k,l,o = 2 in the figure), -30 for the order 6
connections (wi,j,k,l,m,o = −30 in the figure) and wo = −1 for the output bias.

The experimental work is an exploration of the sensitivity of the learning
algorithm to various topologies. For M2 the first experiment was the training
of the a priori topology. In the experiments we have tested densely connected
topologies of order r. The set of connections in these topologies contains all the
connections of order r or less that include the output unit. A formal definition
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Figure 15.2: Sketch of the a priori topology and weights of a machine with
generalized discrete units for the M2 problem.

of the set of connections of the densely connected topology of order r is:

Lr = {λ ⊂ U |(|λ| ≤ r) ∧ (uo ∈ λ)}

Tables 15.3 and 15.4 shows the results for the Monk’s problems with High
Order Boltzmann Machines that include generalized discrete units using the sim-
ple gradient and momentum rules for weight updating. The number of learning
cycles is relatively small. Focusing on the problem M2 , the a priori topology
gives very good results. Relatively good results are obtained with a topology of
order 5. Given that the a priori topology is of order 6, we did not be expect
to obtain good results with topologies of lesser order. In fact, the results on
the training set of topologies of order less than 6 (for the M2 data) show that
the topologies are unable to fit the data. For this problem the results of the
generalized discrete units improve greatly upon the HOBM with binary units.
The results obtained for the M1 and M3 problems are bad, but better than ex-
pected, given the lack of a known a priori topology giving us the certainty that
the desired data distribution can be modeled by the machine. For the M1 and
M3 problems it is quite doubtful that HOBM with generalized discrete units
can fit the desired distribution. The appropriateness of applying HOBM with
binary or discrete units seems to be a matter of opportunity. The suggestion
for applications would be to try first the simplest model (generalized discrete
units) and, in case of failure, modeling critical input features with binary units.
The learning algorithm remains the same in any case.
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M1 M2 M3

%train %test cycles %train %test cycles %train %test cycles

Best result 100 100 100
A priori top. 100 97 20

L
3 70 67 200 62 66 500 68 71 145

L
4 87 76 163 74 69 500 93 82 133

L
5 91 83 200 98 90 500 98 88 491

L
6 91 84 200 100 91 80 98 85 206

L
7 90 76 200 100 91 80 98 83 238

Table 15.3: Results with Boltzmann Machines that include generalized discrete
units for the a priori topologies and densely connected topologies. Weight
updating by the simple gradient rule.

M1 M2 M3

%train %test cycles %train %test cycles %train %test cycles

Best result 100 100 100
A priori top. 100 98 40

L
3 74 73 112 68 67 500 84 81 161

L
4 90 75 134 84 77 500 97 92 233

L
5 95 77 129 100 90 186 98 91 78

L
6 95 77 200 100 91 49 96 84 200

L
7 96 80 106 100 91 49 96 85 200

Table 15.4: Results with Boltzmann Machines that include generalized discrete
units for the a priori topologies and densely connected topologies. Weight
updating by the momentum rule.
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15.4.3 HOBM with continuous [0,1] units for the Sonar
problem

The set of units employed to model the variables is U = {ui; i = 1, . . . , 60, uo}.
The unit state spaces are: R1 = .. = R60 = [0..1] and Ro = {0, 1}. The mapping
of the patterns into the unit states is

k(ui) = xi; i = 1, . . . , 60,

k (uo) = 1 if xo = metal

The experimental work is an exploration of the sensitivity of the learning
to various topologies. No a priori topology for this problem can be formulated
because there is no logical definition. Two kinds of general topologies were
tested:

• The densely connected topologies of order r, in which the set of connections
contains all the connections of order r or less that include the output unit.
Formally:

Lr = {λ ⊂ U |(|λ ≤ r|) ∧ (uo ∈ λ)} .

• the "in line" topologies, which are densely connected topologies with the
additional restriction that the input units in the connection are consecu-
tive. Formally:

Lr
I = {λ ∈ Lr |(r > 2 ⇒ (ui ∈ λ ⇒ (ui−1 ∈ λ ∨ ui+1 ∈ λ)))} .

Tables 15.5 and 15.6 show the results obtained for this problem with the
simple gradient and momentum rules for weight updating. The results are com-
parable to those obtained by Gorman and Sejnowski [116]. Sometimes a peak
result is followed by a decay of the learning results. When this occurs we have
given the peak and the result. The momentum rule shows better convergence (is
faster) and better results than the simple gradient rule. The "in line" topologies
appear to be well fitted to this problem, probably due to the sequential nature
of the data. The correlation between inputs near in time and the situation of the
peaks of the signal seem to be the relevant characteristics for the classification
of the signals, and they are well captured by the "in line" topologies. It can be
concluded that the learning algorithm works well with input continuous units.

15.4.4 HOBM with continuous units for the vowel recog-
nition problem

The set of units for this problem is U = {ui; i = 1, . . . , 10, uoj ; j = 1, . . . , 11},
the input units ui have state spaces Ri included in the interval [−5, 5], the
output units uoj have range Roj = {0, 1}. The input units take the value of the
input component k(ui) = xi. The mapping of values to the output units makes
k(uoj) = 1 if xo takes its j-th value. Again, the experimental work consists of
the exploration of the sensitivity of the learning to the topology. The topologies
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Topology cycles %train %test

L
2 500 73 69

L
3 447 100 87

L
4 202 100 87

L
3
I 500 86 86

L
4
I 500 89 84

L
5
I 500 88 83

L
6
I 500 91 82

L
7
I 430 93 88

500 76 71
L
8
I 500 93 86

L
9
I 470 94 89

500 67 64
L
10
I 500 93 87

L
11
I 470 93 88

500 77 73

Table 15.5: Results on the sonar signal recognition using the simple gradient
rule.

Topology cycles %train %test

L
2 500 94 76

L
3 77 95 89

L
4 48 99 89

L
3
I 205 97 83

L
4
I 97 100 88

L
5
I 97 100 88

L
6
I 180 98 85

L
7
I 103 100 87

L
8
I 110 97 86

L
9
I 101 99 85

L
10
I 136 99 88

L
11
I 95 91 82

Table 15.6: Results on the sonar signal recognition using the rule with momen-
tum.
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Topology cycles %train %test

L
2 400 48 37

L
3 230 78 52

L
4 100 88 46

L
5 30 89 46

L
6 30 90 41

Table 15.7: Results on the vowel recognition problem. Simple gradient rule

used for the experiments are the densely connected topologies of order r whose
set of connections contain all the connections of order r or less with only one
output unit in each connection. Formally:

Lr = {λ ⊂ U |(|λ| ≤ r) ∧ (uoj ∈ λ) ∧ (∀k �= j (uok /∈ λ))} .

And the in line topologies that are densely connected topologies with the
additional restriction of the input units being consecutive. Formally:

Lr
I = {λ ∈ Lr |(r > 2 ⇒ (ui ∈ λ ⇒ (ui−1 ∈ λ ∨ ui+1 ∈ λ)))} .

Tables 15.7 and 15.8 show the results of the experiments using the simple
gradient and momentum rules. In Table 15.7 we have tested only densely con-
nected topologies, whereas in Table 15.8 we have tested also "in line" topologies.
The results are comparable to those given by Robinson [234]. In particular we
have even found a better result with the "in line" topology of order 3 and the
momentum rule. This result is also comparable to the best reported in [61].

The results in Tables 15.7 and 15.8 show that the proposed learning algo-
rithm for HOBM with continuous input units is quite robust. It performs well
even in if the convexity of the Kullback-Leibler distance is doubtful. We always
start from zero weights, assuming the convexity of this distance. Bad general-
ization (poor results on the test set) seems to be inherent to the data, as the
reference works give also poor results. The overfitting effect can be clearly ap-
preciated as the order of the topologies grows. Excellent results are obtained
with low order topologies. From the sonar experiment and this one, the mo-
mentum rule seems to be more appropriate for continuous inputs.

15.5 Conclusions
High Order Boltzmann Machines without hidden units applied to classification
problems allow for simplifications of the learning process that speed up it by
several orders of magnitude, making of practical interest this kind of Neural
Networks. The results obtained are comparable to those found in the reference
works, obtained with other techniques or other Neural Network architectures.
We have also found that a small number of learning cycles are needed if the



228 CHAPTER 15. HIGH ORDER BOLTZMANN MACHINES

Topology cycles %train %test

L
2 100 62 43

L
3 80 98 54

L
4 40 96 46

L
5 60 100 45

L
6 50 100 45

L
3
I 120 87 58

L
4
I 120 87 57

L
5
I 120 84 51

L
6
I 250 97 55

L
7
I 250 90 53

L
8
I 250 95 53

L
9
I 150 96 52

Table 15.8: Results on the vowel recognition problem. Momentum rule.

order of topology is high enough (there are enough parameters to model the
problem). We have also found that in many cases excellent results are obtained
with relatively low order topologies. That means that in most cases of practical
interest HOBM of moderate size may be of use.

High Order Boltzmann Machines without hidden units allow the easy gen-
eralization of the learning algorithm to networks with generalized discrete and
continuous units. The learning algorithm remains essentially the same, regard-
less of the kind of units used. The main benefit of the use of generalized dis-
crete units is the reduction of the network complexity, and further speedup of
the learning and application processes. The experimental results reported in
this chapter show that the effect of the change of codification, from binary to
the generalized discrete units, can have quite different effects depending on the
problem at hand. In fact, the results can be contrary to the intuition that the
use of generalized discrete units implies a loss of modeling power. The results
obtained for the M2 problem show that problems difficult to modelize with
binary units can be appropriately modelized with discrete units.



Chapter 16

Relevance Dendritic
Computing

This chapter presents the last works performed by the PhD candidate. They
represent an open line of research with promising preliminary results. They
aim to the enhancement of the so-called Dendritic Computing (DC) in order
to obtain improved generalization results. We have embedded it in the Sparse
Bayesian framework which leads to the proposition of Relevance Vector Ma-
chines (RVM), therefore we call Relevance Dendritic Computing (RDC) the
resulting approach.

The structure of the chapter is the following. Section 16.1 gives an introduc-
tory motivation. Section 16.2 reviews the baseline dendritic approach. Section
16.3 reviews the Sparse Bayesian Learning for linear models. 16.4 defines the
Relevance Dendritic Computing. Section 16.5 provides experimental results
comparing RDC and RVM over a couple of data sets. Section 16.6 gives our
conclusions and avenues for further research.

16.1 Introduction
Dendritic Computing (DC) [21, 226, 228, 229, 230] was introduced as a simple,
fast, efficient biologically inspired method to build up classifiers for binary class
problems, which could be extended to multiple classes. Notice that DC falls
in the general class of Lattice Computing [117] algorithms. Specifically the
Single Neuron Lattice model with Dendrite Computation (SNLDC), has been
proved to compute a perfect approximation to any data distribution [227, 230].
However it suffers from over-fitting problems: performance of cross-validation
experiments is very poor. In a recent work [62] we focused on the results over an
specific database that we have studied in previous works [91, 245, 246, 247]. We
found that SNLDC showed high sensitivity but very low specificity in a 10-fold
cross-validation experiment, with an average low accuracy.

To improve the SNLDC generalization, [21] proposed to compute the optimal

229
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rotation of each of the hyperboxes by some optimization method at each step
of the training algorithm. This procedure is computationally very expensive
and does not guarantee optimal generalization of classification performance. It
depends on the local distribution of the data, as a local kernel transformation
whose parameters must be fitted locally. More recently, [62] has proposed the
application of a kernel transformation [250] followed by dimension reduction
process realized by the Lattice Independent Component Analysis (LICA) [118]
as an appropriate feature extraction for SNLDC classifiers, improving over other
feature extraction processes. The composite transformation is the Kernel-LICA
approach for SNLDC.

Sparse Bayesian Learning [264, 265, 266] is a general Bayesian framework
for obtaining sparse solutions to regression and classification tasks. This ap-
proach obtains dramatically simpler models than other approaches. A popular
instance of this approach is the Relevance Vector Machine (RVM), which is
trains a prediction model that is functionally identical to the one used by the
Support Vector Machines (SVM) but obtaining much parsimonious represen-
tations, i.e. using much less relevant vectors than the equivalent performance
SVM. The RVM and SVM underlying model is linear, though it can benefit
from the kernel trick to obtain solutions to non-linear problems. Following the
notation introduced in [265], in supervised learning we are given a sample of
input vectors {xn}Nn=1 along with corresponding targets {tn}Nn=1 which might
be real values or class labels. The conventional prediction model is given by a
linear function of the form:

y (x;w) =
M�

i=1

wiψi (x) = w
Tφ (x) , (16.1)

where the output is a weighted sum of M basis functions. Basis functions are
fixed and might be non-linear, without affecting the intrinsic linear nature of
the model.

16.2 Dendritic Computing
A single layer morphological neuron endowed with dendrite computation based
on lattice algebra was introduced in [230]. Figure 16.1 illustrates the structure of
a single output class single layer Dendritic Computing system, where Dj denotes
the dendrite with associated inhibitory and excitatory weights

�
w0

ij , w
1
ij

�
from

the synapses coming from the i-th input neuron. Assume that we are given a
collection of m pairs of patterns and class labels

�
x
ξ, cξ

�
, xξ ∈ Rd, cξ ∈ {0, 1}.

The response of the j-th dendrite to the ξ-th input vector is as follows:

τj
�
x
ξ
�
= pj

�

i∈Ij

�

l∈Lij

(−1)1−l
�
xξ
i + wl

ij

�
, (16.2)

where l ∈ Lij ⊆ {0, 1} identifies the existence and inhibitory/excitatory charac-
ter of the weight, Lij = Ø means that there is no synapse from the i-th input
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neuron to the j-th dendrite; pj ∈ {−1, 1} encodes the inhibitory/excitatory
response of the dendrite. The complete neuron activation is computed as:

τ
�
x
ξ
�
=

j�

k=1

τk
�
x
ξ
�
; ξ = 1, . . . ,m. (16.3)

To obtain the output classification prediction, a hard-limiter or Heaviside func-
tion is applied:

ĉξ = f
�
τ
�
x
ξ
��

,

where
f (x) =

�
1 x > 0
0 x ≤ 0

.

We could also apply a logistic sigmoid function to the activation function:

f (x) = σ (x) =
1

1 + e−x
, (16.4)

which could be interpreted as the posterior probability of class 1.
It has been shown [230] that classification models based on dendritic com-

putation have powerful approximation properties. In fact, they showed that
this model is able to approximate any compact region in higher dimensional
Euclidean space to within any desired degree of accuracy. However, it must be
noted that the neuron activation function of equation (16.3) has not derivatives
defined. Therefore, it is not possible to apply gradient based approaches to
develop learning algorithms.

A constructive algorithm was provided in [230], which is specified in Al-
gorithm 16.1. The algorithm starts building a hyperbox enclosing all pattern
samples of class 1, that is, C1 = {ξ : cξ = 1}. Then, the dendrites are added to
the structure trying to remove misclassified patterns of class 0 that fall inside
this hyperbox. In step 6 the algorithm selects at random one such misclassified
patterns, computes the minimum Chebyshev distance to a class 1 pattern and
uses the patterns that are at this distance from the misclassified pattern to build
a hyperbox that is removed from the C1 initial hyperbox. In this process, if one
of the bounds is not defined, Lij �= {0, 1}, then the box spans to infinity in this
dimension.

16.3 Sparse Bayesian Learning for linear models
The general linear model of equation (16.1) is specialized to the function:

y (x;w) =
N�

i=1

wiK (x,xi) + w0, (16.5)

where K (x,xi) is a kernel function which defines a basis function from each
training set sample. This model is used in the Relevance Vector Machines
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Algorithm 16.1 Dendritic Computing learning based on elimination
Training set T =

��
x
ξ, cξ

�
x
ξ ∈ Rd, cξ ∈ {0, 1} ; ξ = 1, . . . ,m

�
,

1. Initialize j = 1, Ij = {1, . . . d}, Pj = {1, . . . ,m}, Lij = {0, 1},

w1
ij = −

�

cξ=1

xξ
i ; w

0
ij = −

�

cξ=1

xξ
i , ∀i ∈ I

2. Compute response of the current dendrite Dj , with pj = (−1)sgn(j−1):

τj
�
x
ξ
�
= pj

�

i∈Ij

�

l∈Lij

(−1)1−l
�
xξ
i + wl

ij

�
, ∀ξ ∈ Pj .

3. Compute the total response of the neuron:

τ
�
x
ξ
�
=

j�

k=1

τk
�
x
ξ
�
; ξ = 1, . . . ,m.

4. If ∀ξ
�
f
�
τ
�
x
ξ
��

= cξ
�

the algorithm stops here with perfect classification
of the training set.

5. Create a new dendrite j = j + 1, Ij = I � = X = E = H = Ø, D = C1

6. Select x
γ such that cγ = 0 and f

�
τ
�
x
ξ
��

= 1.

7. µ =
�

ξ �=γ

��d
i=1

���xγ
i − xξ

i

��� : ξ ∈ D
�
.

8. I � =
�
i :

���xγ
i − xξ

i

��� = µ, ξ ∈ D
�

; X =
��

i, xξ
i

�
:
���xγ

i − xξ
i

��� = µ, ξ ∈ D
�

.

9. ∀
�
i, xξ

i

�
∈ X

(a) if xγ
i > xξ

i then w1
ij = −xξ

i , Eij = {1}

(b) if xγ
i < xξ

i then w0
ij = −xξ

i , Hij = {0}

10. Ij = Ij
�
I �; Lij = Eij

�
Hij

11. D� =
�
ξ ∈ D : ∀i ∈ Ij ,−w1

ij < xξ
i < −w0

ij

�
. If D� = Ø then goto step 2,

else D = D� goto step 7.
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Figure 16.1: A single output single layer Dendritic Computing system.

(RVM). We have a classification problem, where {xn, tn}Nn=1 are the training
input-target class pairs, tn ∈ {0, 1}. The logistic function of equation (16.4)
is applied to the linear model to obtain a prediction of the probability of class
1, then, adopting a Bernoulli distribution for P (t |x ) we write the training set
likelihood as:

P (t |w ) =
N�

n=1

σ (y (xn;w))tn [1− σ (y (xn;w))]1−tn .

A prior distribution on the weights is introduced to model our assumptions
or preferences, the most popular is the zero-mean Gaussian prior distribution
over w:

p (w |α ) =
N�

i=0

N
�
wi

��0,α−1
i

�
, (16.6)

where α is the vector of hyperparameters moderating the strength of the prior.
An infinite value of the hyperprior implies that the weight is certainly zero
valued. Hyperprior parameters are a measure of weight relevance. The distri-
bution of the hyperparameters are conventionally [265] assumed to be Gamma
distributions:

p (α) =
N�

i=0

Gamma (αi |a, b ) ,

where setting a = b = 0 we obtain non-informative hyperpriors with uniform
(flat) distributions.

The estimation of the model parameters, learning, corresponds to the compu-
tation of the posterior distribution over all unknowns given the data p (w,α |t ),
which can be done decomposing it as follows:

p (w,α |t ) = p (w |t,α ) p (α |t ) ,
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where
p (w |t,α ) =

p (t |w ) p (w |α )

p (t |α )
∝ p (t |w ) p (w |α ) ,

can not computed in closed form1, but can be approximated by a Gaussian by
the Laplace’s method. First, find the ’most probable’ weights wMP for fixed
hyperparameters α. This is done finding the maximum over w of the log of the
un-normalized posterior:

log p (w |α,t ) ∝ log {p (t |w ) p (w |α )} =

=
N�

n=1

[tn log yn + (1− tn) log (1− yn)]−
1

2
w

T
Aw, (16.7)

where yn = σ (y (xn;w)), A = diag (α0,α1, . . . ,αN ) is a diagonal matrix of
hyperparameters. Laplace’s method is a quadratic approximation of the log-
posterior around its mode that approximates it by a Gaussian centered at the
mode, allowing to compute the Hessian matrix required for the Newton mini-
mization method:

∇2
w
log p (w |α,t )

��
wMP

= −
�
Φ

T
BΦ+A

�
,

where B = diag (β1,β2, . . . ,βN ) is a diagonal matrix with βn = yn (1− yn) ,
and Φ is the N × (N + 1) design matrix Φ = [Φ (x1) ,Φ (x2) , . . . ,Φ (xN )],
with Φ (xn) = [1,K (x,x1) ,K (x,x2) , . . . ,K (x,xN )]T . The posterior covari-
ance matrix and mean provided by the Laplace’s method approximation is:

Σ =
�
Φ

T
BΦ+A

�−1
, (16.8)

µ = wMP = ΣΦ
T
Bt. (16.9)

The hyperparameter posterior distribution p (α |t ) is conveniently approxi-
mated by a delta function at the most probable value αMP = argmax

α
{p (α |t )},

assuming that this point estimate is representative of the posterior distribution.
Relevance learning is the search for this hyperparameter posterior mode, maxi-
mizing

p (α |t ) ∝ p (t |α ) p (α) ,

with respect to α. The iterative re-estimation [265] of the hyperparameters is
given by the following equation:

αnew
i =

γi
µ2
i

, (16.10)

where µi is the i-th posterior mean weight from equation (16.9), and

γi = 1− αiΣii,

1Because we can not compute p (t |α ).
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with Σii the i-th diagonal element of the covariance matrix of equation (16.8),
computed with the current α values. The values γi ∈ [0, 1] are interpreted as
the measure of well determination of the weight wi from the data. When γi ≈ 0
then Σii ≈ α−1

i , αi will be large and the weight will be highly constrained by
the prior. When αi is small and wi fits the data, then γi ≈ 1.

Starting from arbitrary uniform hyperparameter values, the learning algo-
rithm proceeds by computing the most probable weights wMP by minimization
of the log-posterior using the Hessian matrix provided by Laplace’s method
for Newton’s method. Then, posterior mean µ and covariance matrix Σ are
computed according to equations (16.9) and (16.8). The hyperparameters are
updated by equation (16.10), and the process is repeated until some convergence
condition is reached.

16.4 Relevance Dendritic Computing
We start discussing the application of the Sparse Bayesian Learning to the
dendritic model of equation (16.3) by making one observation: although the
weights in equation (16.3) appear to be defined as something unrelated to the
data, in fact in Algorithm 16.1 the weights correspond to selected components of
data input vectors. This observation allows us to rewrite the dendritic neuron
activation in a pattern more similar to the linear model function of equation
(16.5):

τ (x) =
N�

n=1

λn (x,xn) , (16.11)

where λk (x,xn) assumes the role of a lattice-based kernel function which we
need to define appropriately to fit into the pattern of equations (16.5) and
(16.2). First notice that each vector component can be in different dendrites,
meaning that (1) a lattice kernel function is not equivalent to a dendrite, and
(2) that we must account for the pj parameter in our model. Second, notice
that the component of the input vector can be either in an excitatory/inhibitory
synapse or absent from the equations. The absence is modeled by an infinite
value which is the null element of the minimum operator. The lattice kernel of
the n-th training sample is, therefore, defined as follows:

λn (x,xn) =
d�

i=1

(xi − xn,i)πn.i, (16.12)

where xi and xn,i are the i-th components of vectors x and xn, respectively.
The factor πn.i ∈ {−1, 1,∞} models the contribution of the i-th component of
the n-th sample training vector to the neural activation function, constituting
the model weights to be learnt {πn,i} = π. Notice that the number of model
parameters is N × d. A value πn.i = ∞ means that the i-th component of the
n-th sample training vector is irrelevant. When a component is irrelevant for all
sample training data, then the whole dimension is irrelevant for the classification
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of the input. This change in the value null element of the underlying algebra im-
plies that the Gaussian prior distributions of the weights as specified in equation
(16.6) must be formulated over the inverses of the weights w ≡

�
π−1
n,i

�
= 1/π:

p (w |α ) =
N�

n=1

d�

i=1

N
�
π−1
n,i

��0,α−1
n,i

�
.

Some questions may be posed on the model of equation (16.11), namely:

• It is always meaningful? It may be possible that some configurations of the
parameters’ values π correspond to expressions which are not computable?
i.e. active weights may define intervals where the upper limit lies below
the lower limit. If so, how can they be detected or avoided by search
algorithms?

• The expression in equation (16.11), it is always equivalent to a dendritic
model defined according to equation (16.3)? If not, how can we decide if
the expression is a proper dendritic model? It seems that equation (16.11)
is more general than equation (16.3). Can we prove that?

We assume the log-posterior of equation (16.7) to estimate both the model
weights and their relevance. It does not require any specific probabilistic dis-
tribution of the model output, therefore is general enough to cover the den-
dritic neuron activation of equation (16.11). However, the log-posterior is not
derivable respect to the weights. Therefore, the search for the “most probable”
weights must be carried out by some Monte-Carlo method that will allow also
to estimate the mean µ and covariance matrix Σ of the posterior distribution
in order to apply the hyperparameter estimation of equation (16.10). We do
not need to compute the estimation of the full covariance matrix Σ, because
only the elements in the diagonal are useful for the estimation of the relevance
hyperparameters, according to equation (16.10). Algorithm 16.2 summarizes
the estimation process. We assume non-informative hyperpriors, therefore the
hyperparameters are initialized as uniformly distributed random variables.

The search for the most probable weights πMP must be done by a Monte-
Carlo method, which, in essence, consists of the random generation of alternative
parameter configurations and the (probabilistic) selection of the alternative con-
figurations that improve the value of the log-posterior. This search is performed
for fixed hyperparameters α. The Monte-Carlo method specified in Algorithm
16.3 is a variation of Simulated Annealing [162]. The random generation of
the alternative configuration of parameter values π� (k) is performed selecting
a subset of parameters and randomly changing their values. The temperature
T allows to control the nature of the algorithm, which becomes a greedy local
search for low temperatures. The process generates a sequence of parameter
values assignments that can be assumed as a sample of the posterior distribu-
tion, therefore we can use them to produce empirical estimations of the mean
and covariance matrix of the parameters, specifically the diagonal elements.
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Algorithm 16.2 The Relevance Dendritic Computing
1. Initialize uniform weight prior hyperparameters αn,i =

1
Nd .

2. Search for the most probable weights πMP minimizing the log-posterior
of equation (16.7)

log p (π |α, t ) ∝ log {p (t |π ) p (π |α )}

=
N�

n=1

[tn log yn + (1− tn) log (1− yn)]−
1

2
w

T
Aw,

with yn = σ (τ (xn)), by Monte-Carlo Methods. Obtain relevant estima-
tions of Σ and µ from Monte-Carlo generated data.

3. Apply relevance updating

αnew
n,i =

γn,i
µ2
n,i

,

with
γn,i = 1− αniΣni,ni,

4. Remove irrelevant weights (αn,i > θ) setting them to infinity

5. Test convergence. If not converged, repeat from step 2.

Algorithm 16.3 A Monte Carlo method for the maximization of the log-
posterior.
Initialize randomly π (0)
Set the initial temperature T (0)
k = 0
Repeat

• generate a random candidate configuration π� (k)

• compute E� (k) = log p (π (k) ,α |t )

• �E = E� (k)− E (k)

• compute Pa (�E, T ) = e�E/T , generate random r ∼ U (0, 1)

• if �E > 0 or Pa (�E, T ) > r then π (k + 1) = π� (k); E (k + 1) = E (k).

• reduce T

Until convergence
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accuracy sensitivity specificity #rel. par.

RDC 0.89 0.86 0.92 2
RVM 0.90 0.87 0.92 6

Table 16.1: Results of RDC and RVM on the Ripley dataset

16.5 Experimental results
For comparison we use the first version of SPARSEBAYES code provided by
Tipping2 to train the RVM. It is more powerful than the later version, though it
has difficulties with large databases. Our implementation of RDC has follow the
same template. In the implementation used to obtain the results below we have
used the estimated distribution mode instead of the mean in step 3 of Algorithm
16.2. The number of state transitions attempted in the chain is 100 times the
number of actual relevant parameters, meaning that the chains become shorter
as the algorithm discards irrelevant parameters, and the process speeds up.

The first experiment has been done on the demo two class data set provided
by Tipping, originally was proposed by Ripley [225]. The data were designed
as mixtures of normal distributions to have a best-possible error rate about 8%.
We have used the same train-test partition proposed by Tipping, 250 training
vectors of two dimensions and 1000 test vectors. Both classes have the same
representation in both train and test partitions. Gaussian kernel and hyper-
parameters for RVM are set as suggested by him. Table 16.1 summarizes the
results on the test partition of the data set for both RVM and RDC. Notice that
the relevant parameters of RDC are unidimensional components of train data
vectors, while for RVM relevant parameters are train data vectors. Therefore,
the model achieved by RDC is more parsimonious than the RVM model. The
difference between both approaches can be better appreciated examining the
visualization of the data space partition induced by RDC, shown in Figure 16.2,
versus the visualization of the decision boundary obtained by the RVM, shown
in Figure 16.3. In those figures, green points correspond to class 1 samples,
black points to class 0 samples. Correctly classified test samples are enclosed
in red circles. The RDC parsimonious solution obtains a square assigned to
class 1, defined by two thresholds, each on one dimension. The RVM solution
involves the linear combination of the kernel transformations of several relevant
vectors. It is surprising that such different solutions computed over the train
data set may give almost the same performance on the test data set.

The second experiment has been done on a specific data set produced in our
research about machine learning application to Alzheimer’s Disease computer
aided diagnosis [127]. The aim was to obtain discriminant features from scalar
measures of Diffusion Tensor Imaging (DTI) data, Fractional Anisotropy (FA)
and Mean Diffusivity (MD), and to train and test classifiers able to discrimi-
nate Alzheimer’s Disease (AD) patients from controls on the basis of features

2http://www.miketipping.com/index.php
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Figure 16.2: Visualization of the data space partition obtained by RDC
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Figure 16.3: Visualization of the decision boundary obtained by RVM

extracted from the FA or MD volumes. Feature selection was done computing
the Pearson’s correlation between FA or MD values at voxel site across subjects
and the indicative variable specifying the subject class. Voxel sites with high ab-
solute correlation are selected for feature extraction. The original dataset comes
from an on-going study in Hospital de Santiago Apostol collecting anatomical
T1-weighted MRI volumes and DTI data from healthy control subjects and AD
patients. Specifically we have tested the RDC and RVM over the set of FA
features obtained applying a 99.5 percentile on the Pearson’s correlation dis-
tribution, giving 121 image features (d = 121) for each subject either patient
of control. We have performed a 10-fold cross-validation experiment. Table
16.2 shows the summary of average results over the 10-folds. Again RDC per-
forms close to RVM with much more sparse models. FA features and a linear
SVM classifier achieve perfect accuracy, sensitivity and specificity in a several
cross-validation studies, supporting the usefulness of DTI-derived features as an
image-marker for AD and to the feasibility of building Computer Aided Diag-
nosis systems for AD based on them.

16.6 Conclusions
We are concerned with the enhancement of generalization capabilities of single
layer neuron model endowed with Dendritic Computing. We have examined the
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accuracy sensitivity specificity #rel. par.

RDC 0.87 0.93 0.82 1
RVM 0.88 0.95 0.84 2.24

Table 16.2: Results of RDC and RVM on the FA features for AD patients and
healthy controls dataset

Sparse Bayesian Learning paradigm for linear models. In this chapter we apply
the Sparse Bayesian Learning framework in order to detect the most relevant
data samples that provide greater generalization with the most parsimonious
model, which we call Relevance Dendritic Computing. We propose a reformu-
lation of the dendritic model in order to fit into the Sparse Bayesian Learning
paradigm, tailoring the general Bayesian computation scheme to it. Strictly
compared with RVM, RDC advantage is that it does not compute any matrix
inversion, therefore it has no numerical conditioning problems. On the other
hand, RDC needs to perform a Monte Carlo search and estimation on a very flat
energy landscape, with atypical discrete valued parameters. We have performed
comparative experiments against the RVM on two data sets. RDC finds com-
parable results with much more parsimonious models than RVM. We find these
results encouraging to pursue further works in this topic, including exploration
of alternative Monte Carlo sampling and optimization methods.
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Appendix A

Continuation and Graduated
Non-Convexity Methods

Most times the error function minimized by the learning algorithms is a strongly
non-linear and non-convex, meaning that solutions found are highly dependent
on the initial conditions and the numerical method employed to find the minima
of the error function. One of the perspectives considered along the work on this
thesis has been to put the learning algorithms in the framework of numerical
methods developed elsewhere to tackle with non-linear difficult problems. We
review in this appendix two such approaches: Continuation and Graduated
Non-Convexity methods. Both categories of methods are intimately related,
but their development and language come from diverse disciplined and we have
not found any attempt to harmonize them, therefore we will present them as
separate approaches.

A.1 Continuation methods: motivation
Many computational problems can be stated as the search for solutions of non-
linear systems. Linear systems either have one solution or an infinite number
of equivalent solutions. Ill-posed linear systems of equations can be solved by
least squares approaches, obtaining the best solution in terms of minimal error.
However, non-linear systems may have many non-equivalent solutions, and the
solutions found can be strongly dependent on the initial state of the resolution
process. The problem of finding the best solution regardless of the initial condi-
tion is equivalent to the general problem of global minimization of non-convex
functions. We review the basics of homotopy and numerical continuation meth-
ods, which we believe are patterns underlying many computational approaches
in the Computational Intelligence domain. The main reference followed in this
appendix is [291]. More on Homotopy can be found in [181, 281]. Continuation
methods are presented in [10, 130, 224, 278, 280]. Some historical accounts can
be found in [208, 278, 280].

245
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A.2 Continuation Methods as homotopies
We seek the solution of nonlinear systems of n variables and n equations iden-
tifying the points x = (x1,x2, ..., xn) that solve the system. One general ap-
proach is to start with another systems of equations of which we already know
the solution. This simplified system is “bent” into the original system. The
mathematical equivalent to physical bending is the homotopy concept. The
homotopy-based no-linear system solving approach starts with a simple system
that is specially chosen for having an easy solution, i.e. is a linear system. Then,
sets up a system of equations with an additional variable t, called the homotopy
parameter, that yields the simple system at t = 0, while at t = 1 it yields the
original non-linear system. To obtain the solution of the original system it fol-
lows a path x

∗(t) of the system’s solution from t = 0 to t = 1, thereby solving
the original problem.

Formally: Let Rn denote the Euclidean n-dimensional space. A vector func-
tion F : Rn −→ Rn means that both F (x) and x have n components, i.e.
F (x) = (F1 (x) , ..., Fn (x)) and x = (x1, ..., xn), respectively, i.e. F (x) , x ∈
Rn. We desire to solve the n × n system of nonlinear equations F(x) = 0, ob-
taining a solution x

� = (x�
1, ..., x

�
n). The homotopy approach to obtain x

� is as
follows.

1. First define a vector function E : Rn −→ Rn such that x
0 solves the

system of equations E (x) = 0.

2. Define a special function, called a homotopy function, H (x, t) : Rn+1 →
Rn which has the original n variables plus an extra one, denoted t. Here
(x, t) = (x1, ..., xn, t) ∈ Rn+1. The homotopy function H must be con-
structed so that H (x, 0) = E (x) and H (x, 1) = F (x) . It follows that at
t = 0, H (x, 0) = 0 has a known solution x

0, while at t = 1, H (x, t) = 0

has solution x
�.

3. The continuation process starts at x (0) = x
0 , the solution of H (x, 0), and

then solves H (x, t) for increasing t until reaching x (1) = x
�. In general,

the solution obtained at each value of t will be helpful to compute the
solution at the next step of the path following iteration. That is, the
sequence of solutions x (t) specifies a path that we can follow from t = 0
to t = 1, thereby obtaining the solution x

� of the original system F(x) = 0.

A.2.1 Varieties of homotopies
The shape of the path that will depend directly upon the homotopy function
H(x, t) selected. There are three varieties of homotopies most frequent in the
literature:

• Newton homotopy : H(x, t) = F(x) − (1 − t)F(x0). A simple method to
start with. Pick an arbitrary point x

0. Next, calculate F
�
x
0
�
, and then

let E (x) = F (x)− F
�
x
0
�
.
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• Fixed-point homotopy : H(x, t) = (1− t)(x−x
0)+ tF(x). As in the former

type we can pick an arbitrary point x
0 and E (x) = x− x

0 = 0.

• Linear homotopy : H(x, t) = tF(x)− (1− t)E(x) = E(x)+ t [F(x)−E(x)]
that subsumes the previous two choosing the appropriate function E (x).

A.2.2 Existence of solution paths
Given a homotopy function H : Rn+1 −→ Rn we would like to obtains conditions
for the existence of solution paths. Define H−1 = {(x, t) |H(x, t) = 0} as the set
of all solutions (x, t) ∈ Rn+1 to the system H(x, t) = 0. This set can consist of
one or more paths but also may contain points not belonging to any particular
path configuration. Figure A.1 illustrates the various possible distributions of
points of H−1.

Denote the solutions for t fixed as the set H−1(t) = {x |H(x, t) = 0}. There-
fore, H−1(0) consists of all the start points x(0), and, similarly, H−1(1) consists
of all the solutions x

� = x(1).
The implicit function theorem gives some conditions ensuring that H−1 con-

sists solely of solution paths. The Jacobian of the homotopy function, H� can be
split conveniently into two parts H

�(x, t) =
�
H

�
x(x, t),

∂H
∂t

�
, where H

�
x (x, t) is

the n× n matrix composed of the derivatives ∂Hi

∂xj
and ∂H

∂t is the column vector
composed of the derivatives ∂Hi

∂t . Denote H
�
x(x̄, t̄) the Jacobian computed at

point (x̄, t̄) ∈ H
−1.

Theorem 7. Implicit function theorem: Let H(x, t) : Rn+1 −→ Rn be con-
tinuously differentiable, (x̄, t̄) ∈ H

−1 and H
�
x(x̄, t̄) be invertible. Then in a

neighborhood of (x̄, t̄) all points (x, t) that satisfy H(x, t) = 0 are on a single
continuously differentiable path through (x̄, t̄).

That is, if the local linearization of H is invertible everywhere, the points
(x, t) ∈ H

−1 are over curves that may be locally linearly approximated, that
is, they lie on a unique, continuously differentiable path. This means that
no splittings, bifurcations, forks, crossings, infinite endless spirals as shown in
Figure A.1(b) can occur. Next, define the partial Jacobian H

�
−i to be the n×n

matrix formed from H
� by deleting the i-th column. The implicit function

theorem requires that H
�
−n+1 is invertible. But actually the theorem holds

as long as any H
�
−i is invertible. If one or several of the different H

�
−i are

invertible the implicit function theorem guarantees that just one solution path
exists passing through (x̄, t̄). Suppose that the Jacobian matrix H

� (x̄, t̄) is
full rank. Then, we can always find some partial invertible Jacobian matrix
H

�
−i(x̄, t̄). Then we can state a theorem setting the conditions to ensure that a

path from starting points up to the final solutions exists.

Theorem 8. Path theorem: Let H : Rn+1 −→ Rn be continuously differentiable
and suppose that for every (x̄, t̄) ∈ H

−1 the Jacobian H
�(x̄, t̄) is of full rank.

Then H
−1 consists only of continuously differentiable paths.
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(a)

(b)

Figure A.1: Some possible distributions of the solutions to the homotopy system
of equations (a) H

−1 consisting only of finite length paths, some of them not
connecting the starting points and the final solutions. (b) H−1 includes isolated
points, bifurcations, infinite spirals.
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A.2.3 Motion along a path
A homotopy function H it is regular if H�(y) is of full rank for all y ∈ H

−1.
Therefore, regularity ensures that H

−1 consists of continuously differentiable
paths. We denote y(p) = (x(p), t(p)) for y(p) ∈ H

−1, where p is the distance
moved along the path, the arc-length of the solution curve from the initial
solution x (0) up to x(p). To determine a path

�
y(p) ∈ H

−1
�

it is possible
to specify a set of basic differential equations (BDE) such that starting from
an initial state y (0), the points in the path are obtained by integration of the
BDE. Specify ẏi ≡ ẏi(p) as ẏi = dyi

dp , i = 1, ..., n+1. We have that H (y (p)) = 0,
differentiating both sides yields,

�n+1
i=1

∂H
∂yi

ẏi = 0, where ∂H/∂yi is a column of
the Jacobian H

�, so that
H

�(y)ẏ = 0

is a system of n linear equations in n+1 unknowns ẏi. The ẏ that satisfies this
system yields the basic differential equations (BDE):

ẏi = (−1)i detH�
−i(y), i = 1, ..., n+ 1 (A.1)

Theorem 9. BDE theorem: Let H : Rn+1 −→ Rn,H ∈ C2, be a regular
homotopy. Given a starting point y0 in H

−1, the solution of the basic differential
equations (A.1), starting from y(p0) = y

0, is unique and determines a path in
H

−1.

The theorem states that solving the BDE for y (p) as p varies will permit us
to follow a path in H

−1 and thereby obtain a solution point x1 ∈ H
−1 (1). There

are a full variety of algorithms to follow a path and obtain a solution, however
the BDE yield far more than merely a means to solve an equation system. They
can provide immediate and important information on the direction of the path.

A.3 Path-Following Algorithms
There are two fundamental types of numerical algorithms to follow a path in
H

−1:

• Simplicial algorithms (Piecewise-linear methods)

• Differential equation approaches, including the Predictor-corrector meth-
ods.

A.3.1 Simplicial algorithms
The algorithm used will generate its own path that approximates an underlying
path in H

−1. Before utilizing any algorithm, there is an initial phase which
consist on select a homotopy that is appropriate to solve the specific problem
and ensure that following a path in H

−1 does indeed lead to a solution to the
problem.
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Simplicial algorithms operate as follows. First they take a simplex s0 and
generate the line segment across s0. Then they take an adjacent simplex s1

and generate a line segment across s1. By adjacent, we mean that s0 and s1

share a common facet and lie on opposite sides of the facet. The line segment
across s1 will connect with the line segment across s0. Then they take a third
simplex, s2, where s2 is adjacent to s1, and generate the line segment across
s2. Also, the line segment across s2 will connect with the line segment across
s1. In this manner, simplex and line segment by line segment, a path of line
segments is generate. On each simplex a new approximation G is made of H,
and the line segment is generated by solving G (w) = 0 on that simplex. If the
simplices are small, we get a good approximation to a path in H

−1. The path
is piecewise linear because it is linear on each simplex. The main difference
among simplicial algorithms is in how the new vertex is selected on each step,
although they share the basic step of linearly crossing the simplices generated.

A.3.2 Differential equation approaches
Path following can be made solving the BDE. The simplest differential equation
solution procedure is the Euler method. Unfortunately, it tends to drift off
the path, so to overcome that, other methods are introduced. The Newton
method does not follow the path but instead tries to leap ahead to a solution.
Predictor-corrector methods apply corrections to get back into the path.

Euler’s Method Euler’s method immediately applies to the BDE

ẏi = (−1)i detH�
−i(y), i = 1, ..., n+ 1,

where y (0) = y
0 is given. We can determined a differential equation method

to following the path,

˙yk+1
i = yki +

�
pk+1 − pk

�
(−1)i detH�

−i(y
k), i = 1, ..., n+ 1,

where 0 < p1 < p2 < ... < pk < pk+1 < ...

Homotopy differential equations (HDE) The BDE were obtained by dif-
ferentiating H (x (p) , t (p)) = 0 with respect to p. A new system, called the ho-
motopy differential equations (HDE), is obtained by differentiating H (x (t) , t) =
0 with respect to t. This system

dx

dt
= − [H�

x]
−1

H
�
t,

holds whenever H�
x is of full rank. Solving de HDE will give a path in H

−1 since
de HDE were obtained directly form the homotopy equation itself.

If H is regular we may write y = (x, t) as a function of p and obtain the BDE.
Under the slightly stronger assumption that H

�
x is of full rank we may write x

as a function of t and obtain the HDE. The two alternative differential equation
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Algorithm A.1 Predictor-Corrector method
Initialization

Let �1 > �2 > 0 be given, and set y
0 = y (0), k = 0.

Predictor

Given y
k, take a predictor step from y

k to obtain y
k+1.

Replace k by k + 1.
If
��H

�
y
k
��� < �1, repeat the predictor step, otherwise, go to the corrector step.

Corrector

Let b ∈ Rn+1 describe a hyperplane b
�
y − y

k
�
= 0, which intersects the path

y (p) at a nearby point y
�
pk
�

further along the path. Setting y
k = y

k,0 compute

y
k,l+1 = y

k,l −
�

H
� �
y
k,l
�

b

�−1 �
H

�
y
k,l
�

0

�
, l = 0, 1, ...

Stop when
��H

�
y
k,l+1

��� < �2.

If y
k,l+1 is near t = 1, terminate. Otherwise, let y

k+1 = y
k,l+1 and go to the

predictor step with k + 1 replacing k.

systems were derived from the same homotopy and they must generate the same
path. The BDE, HDE and any other differential equation can be solved by the
Euler approach.

A.3.3 Predictor-Corrector Methods
In Predictor-Corrector methods, the Euler, or any related method, serves as the
predictor. It predicts where the path is going, and we move in that direction.
After several steps the Euler can drift off the path. The Newton method is
then called upon as a corrector to get us back close to the path. The sequence
is followed iteratively. The method is described in Algorithm A.1. Figure A.2
illustrates the behavior of the Predictor-Corrector method.

A.4 Graduated Non-Convexity
Graduated Non-Convexity (GNC) algorithm was introduced by A. Blake & A.
Zisserman [38, 40] as a deterministic annealing method for approximating the
global solution for non-convex minimization of unconstrained, continuous prob-
lems. GNC algorithm has been presented as a discrete continuation method.
[223, 80, 37, 45, 50, 46, 233, 74, 206, 51, 259]. The book by Blake & Zisserman
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(a)

(b)

Figure A.2: Predictor-corrector integration method for solution continuation:
(a) Predictor step. (b) Corrector step
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[40] address the problem of image reconstruction, presenting it as a piecewise
continuous reconstruction of the data with weak continuity constraints, that
is, a constraint that can be broken occasionally. The problem is formulated
as an energy minimization problem. The energy function is decomposed into
a reconstruction error and constraint terms penalizing the lack of continuity
of the solution. The energy function is non-convex with many local minima.
Any method used to minimize the energy function needs to avoid falling into
these local minima. Stochastic methods avoid local minima performing random
jumps. Under certain conditions their convergence to the global minimum is
guaranteed, although the amount of computation required may be very large
[94]. The GNC algorithm constructs a convex approximation to the energy func-
tion, which is deformed gradually from its convex form to its target form during
the process of approximating the global solution using a gradient-based algo-
rithm. GNC finds good solutions with much less cost than stochastic Simulated
Annealing [39, 23, 180].

Formally, GNC is based on a convex approximation F (1) (x) to the original
non-convex energy F (x). A family of functions F (p) (x), p ∈ [0, 1] is defined
such that

• F (1) (x) is convex,

• F (0) (x) = F (x), and

• F (p) (x) varies continuously in a particular prescribed manner as p de-
creases from 1 to 0.

• There is a finite discrete sequence of parameter values 1 = p0 > p1 > ... >
pn−1 > pn = 0.

The GNC algorithm performs the minimization of the whole sequence of func-
tions F (p), one after the other, using the optimal vector x

∗ result of the min-
imization of optimization as the initial condition for the next. There are nu-
merous ways to minimize each F (p) (x), including direct descent and gradient
methods. Figure A.3 illustrates the process showing how the minimum found for
the initial convex approximation is continued to the minimum of the non-convex
function F (x).

In general, there is no guarantee that this method obtains the global min-
imum, but, if the energy function does not have too many local minima, the
result can be quite satisfactory, but sub-optimal [40, 80, 23, 205]. Extensive
experiments have shown that for a finite number of iterations GNC leads to
minimizers having a lower (hence better) energy than Simulated Annealing [39].

A.5 GNC for line and surface reconstruction
Surface reconstruction is a very ill-posed inverse problem so a regularization
must be introduced in its formulation. It will serve in this appendix as an illus-
tration of the GNC approach. The regularization is done adding a smoothness
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Figure A.3: The evolution of the energy functions minimized during GNC.

term which incorporates some a priori knowledge on the expected properties
of the solution. The solution is found by minimizing a weighted combination of
the original problem with the smoothness term. The principal drawback of this
approach is that discontinuities between homogeneous regions of the image are
not adequately recovered if the adopted smoothness term not satisfies properties
of concavity and finite asymptotic behavior.

Incorporation of discontinuities into the reconstructed surface by means of
weak continuity constraints was originally suggested in [38]. In 1D, the weak
string nicely models this class of signals as a locally Gaussian, non-stationary
first-order Markov chain with a Boolean non-interacting line process. The weak
string preserves discontinuities without any prior information about their exis-
tence or location.

The illustrative problem is the detection of step discontinuities in 1D data.
The aim is to construct a piecewise smooth 1D function u(x) which is a good
fit to some data d(x). The problem of finding u(x) is a minimization problem
of the energy associated to the weak string. The behavior of the string over an
interval x ∈ [0, N ] is defined by its energy, which is a sum of three components:

• D: a measure of faithfulness to data: D =
´ N
0 (u− d)2 dx, that is of the

form D =
�N

i=0 (ui − di)
2 for discrete functions.

• S: a measure of how severely the function u(x) is deformed: S = λ2
´ N
0 u�2dx,

which has the form S = λ2
�N

i=1 (ui − ui−1)
2 (1− li) for discrete func-

tions.

• P: the sum of penalties α levied for each break (discontinuity) in the string,
which is of the form P = α

�N
i=1 li, where li is a so-called “line-process”.

It is defined such that each li is a boolean-valued variable, if li = 1 there
is a discontinuity or if li = 0 indicates continuity in x ∈ [i− 1, i] .
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Figure A.4: Energy of interaction between neighbors after minimization over
l ∈ {0, 1} .

The problem is to minimize the total energy:

E = D + S + P

finding, for a given d(x), the function u(x) for which the total energy E is
smallest. There isn’t any interaction between line variables. The problem is
stated as:

(u∗
i , l

∗
i ) = arg min

{ui,li}
E.

Discontinuities are incorporated into the functions. However, the minimization
over the {li} can be done in advance and thus the problem reduces simply to a
minimization over the {ui}:

u∗
i = argmin

{ui}
F.

where

F = D +
N�

i=1

gα,λ (ui − ui−1) .

The neighbor interaction function g is defined as

gα,λ (t) =

�
λ2 (t)2 if |t| >

√
α/λ

0 otherwise
.

Figure A.4 presents a plot of the neighbor interaction function. The absence of
boolean variables allows the application of the GNC algorithm.

Function F is not convex, with many local minima. The goal of the weak
string computation is to find the global minimum of F . In the GNC method, the
cost function F is first approximated by a new function F � which is convex and
hence can only have one local minimum, which must also be its global minimum.
Then, define the whole sequence of cost functions F (p), for 1 ≥ p ≥ 0, where
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Figure A.5: Plot of function g�.

p is the non-convexity parameter. Chose F (0) = F , the true cost function,
and F (1) = F �, the convex approximation to F . In between, F (p) changes, in
a continuous fashion, between F (1) and F (0). The GNC algorithm finds the
minima of the whole sequence of F (p), one after the other, using the result of
one optimization as the starting point for the next. See Figure A.3. The initial
convex function used is

F � = D +
N�

i=1

g� (ui − ui−1)

by constructing an appropriate neighbor interaction function g�. Blake & Zis-
serman [40] proposes a way to construct this function g�:

g�α,λ (t) =






λ2 (t)2 if |t| < q
α− c� (|t|− r)2 /2 if q ≤ |t| < r

α if |t| ≥ r

where r2 = α
�

2
c� + 1

λ2

�
, and q = α

λ2r . The parameter c� is a scalar constant
and is chosen to satisfy the conditions imposed during the construction of g� to
make it as close as possible to g (see [40] for more information). For example,
for the weak string has calculated a value of c� = 1/2.

The one-parameter family of cost functions F (p) is defined as:

F (p) = D +
N�

i=1

g(p) (ui − ui−1)

with

g(p)α,λ (t) =






λ2 (t)2 if |t| < q
α− c (|t|− r)2 /2 if q ≤ |t| < r

α if |t| ≥ r

where c = c�

p , r2 = α
�
2
c + 1

λ2

�
, and q = α

λ2r .



Appendix B

Vector Quantization Bayesian
Filtering

The Vector Quantization Bayesian Filtering (VQBF) is applied in the main
part of the thesis as a filtering method with good properties. Though the main
contributions of the thesis are related to the algorithms for the computation of
the optimal Vector Quantizer, we feel that a proper treatment of the VQBF
approach is worthwhile. This appendix is the background for Chapters 10, 11
and 12.

Section B.1 introduces the notation for this appendix. Section B.2 introduces
the block model around the pixels. Section B.3 introduces the complete model
for VQBF. Section B.4 provides some theoretical reasoning about the reasons for
border preservation in VQBF. Finally, in Section B.5 presents the conclusions
of the appendix.

B.1 Notation

We start recalling standard notation of Bayesian image processing [94, 282]. An
image is described a tuple x =

�
xP , xL, xE , ..

�
whose components correspond to

interesting features for the application at hand: image intensity xP , pixel class
labels xL, edge positions xE , etc. Let be SP a finite square grid where each
site represents a pixel position in the image domain. Vector xP =

�
xP
s

�
s∈SP

represents a pattern of configurations of the pixel grayscale values. If we try
to classify pixels into some thematic map then xL =

�
xL
s

�
s∈SL

is a pattern of
labels associated to the blocks of pixels in set SL, so that xL

s = l ∈ L is the
class label of image block s. Image blocks may overlap.

The observable data y are a function Y of the true image x. We denote
Y and X the space of observable data and true images, respectively. Given
x ∈ X, the probabilistic model of Y is the likelihood P (y |x ), the probability of
observing y when the true image is x. Therefore, for each x ∈ X, P (y |x ) is a
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probability distribution over Y. i.e. P (y |x ) ≥ 0 and
�

y P (y |x ) = 1.
The a priori expectations on the image can be formulated as constraints

defined on the true image. The normalized and positive function Π (x) defined
on the image space X is the a priori distribution. The choice of a priori model
depends on the problem, being a key step of the whole image Bayesian analysis.
The a priori distribution Π and the likelihood distributions determine the joint
image and data distribution in the product space X×Y:

P (x, y) = Π (x)P (y |x ) , x ∈ X, y ∈ Y. (B.1)

This is the probabilistic model of the pair of random variable (X,Y ) defined in
X×Y where X follows Π, and Y follows Γ, given by d Γ (Y = y) =

�
x P (x, y) .

The a posteriori probability of x ∈ X is given by

P (x |y ) = Π (x)P (y |x )�
z Π (z)P (y |z ) .

For continuous valued data the a priori distribution Π has the general form of
a Gibbs distribution:

Π (x) = Z−1 exp (−H (x)) , Z =
�

z∈X

exp (−H (z)) ,

where H is an energy function. In many instances, the a posteriori probability
model is another Gibbs distribution, i.e. there is an energy function H (· |y )
defined in a subspace �X of X such that

P (x |y ) = Z−1 (y)−1 exp (−H (x |y )) , x ∈ �X.

This energy function is also related to the likelihood distribution. The a poste-
riori energy can be written down as follows:

H (x |y ) = �c (y)− lnP (y |x ) +H (x) (B.2)

The mode of the a posteriori distribution x̂ = max
x

{P (x |y )} is the Maxi-
mum a Posteriori (MAP) estimation of the true image x given the observation y.
If the processing is performed independently over all image sites, the mode of the
marginal posterior �xs maximizes the posterior marginal distribution P (xs |�y ) .

Maximization of a Gibbs distribution is equivalent to the minimization of
its energy function. Therefore, the MAP estimation can be computed without
needing to evaluate the partition function Z. Let it be an observation functional
dependence on the true data Y = ϕ (X, η), where the noise η probabilistic
model is denoted Γ. If noise η and the true image X are independent, then the
likelihood probabilities are as follows:

P (Y = y |X = x ) = Γ (ϕ (X, η) = y) .

Specifically, if noise is Gaussian, the likelihood and a posteriori distributions
can be written as Gibbs distributions [94, 282].
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We are dealing with images that can be decomposed into blocks as follows:
for each pixel in the image we extract a window of neighboring pixels and we
treat it independently from the remaining of the image. We classify it according
to a given codebook. The result of this process can be either the central value
of the matching codevector or the its class. This approach is termed Vector
Quantization Bayesian Filtering (VQBF).

B.2 Block model
Given a collection of image block representatives, a codebook Ω∗ = {ω∗

i ; i = 1, ..,M}
where each representative is an image block of size d×d pixels, ωi =

�
xP
s

�
s∈Sd×d

where the grid Sd×d is defined as a neighborhood:

SN(d×d) = {s : −d/2 ≤ |s| ≤ d/2} .

Given a sample of image blocks

y
b =

�
ybi ; i = 1, .., n;

�
,

where
ybi =

�
yPs

�
s∈Sd×d

,

the codebook results from the execution of a codebook design algorithm trying
to minimize some objective function related to the data distortion. We do
assume that the codebook is designed to minimize the mean square error over
the sample::

Ω∗ = min
Ω

�
n�

i=1

��ybi − ωj(i)

��2
�
,

where
j (i) = y

�
ybi
�
= argmin

���ybi − ωj

��2 ; j = 1, ..,M
�
.

This minimization corresponds to the maximum likelihood estimation of the
parameters of a mixture of Gaussians with identity covariance matrices, which
is the model assumed for image block:

P
�
Y b = yb

�
=

1

M

M�

j=1

1

(2π)d/2
e−

1
2�yb−ωj�2

=
M�

j=1

Π
�
xb = ωj

�
P
�
Y b = yb

��xb = ωj

�
.

Therefore, the search for the closest codevector

j
�
yb
�
= argmin

���yb − ωj

��2 ; j = 1, ..,M
�
,

corresponds to the MAP classification of the image block. We assume that the
a priori probabilities of the image block classes are the same:

Π
��
xb = ω∗

j

��
=

1

M
, j = 1, ..,M.
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The vector quantization given by

�x = ω∗
j(yb)

corresponds to the MAP decision, assuming that the a posteriori probabilities
of the image blocks xb are as follows:

P
�
xb = ω∗

i

��yb
�
=

exp
�
− 1

2

��yb − ω∗
i

��2
�

�M
j=1 exp

�
− 1

2

��yb − ω∗
j

��2
� , i = 1, ..,M.

Both the likelihood and the a posteriori probabilities of the image blocks
may have the shape of Gibbs distributions with energy functions:

H
�
Y b = yb

��xb = ω∗
j

�
= H

�
xb = ω∗

i

��Y b = yb
�
=

1

2

��yb − ω∗
i

��2 .

If the objective function for the vector quantizer design algorithm is different
from the mean square error of the data relative to the representatives, then the
probabilistic models above will be completely different.

B.3 VQBF model
In the VQBF the image is not decomposed into image blocks. For each pixel
site s ∈ SP we select a window around it SN(d×d)

s ⊂ SP . Each window ybs =�
yPs�

�
s�∈SN(d×d)

s

is processed independently. The pixel neighborhood plays the
role of contour condition for the pixel process. The pattern matching process
between image windows and codevectors is a kind of non-lineal dependence
related to the Markovian models of the classical Bayesian image analysis [94,
282]. The image is processed in two possible ways, in filtering mode or in
classification mode:

1. In filtering mode, the restored pixel value is estimated as the central pixel
of the codevector matching the neighboring window:

�xP
s =

�
ω∗
j(yb

s
)

�

(0,0)
, s ∈ SP

2. In classification mode, the class of the matching codevector becomes the
class of the pixel

�xL
s = j

�
ybs
�
, s ∈ SP

Let us consider the filtering mode. Assuming that the pixel neighborhoods are
independent, then the posterior probabilities are as follows:

P (x |y ) =
M�

i=1

n�

j=1

P

�
xb
(i,j) = ω∗

j
�
yb

(i,j)

�
���yb(i,j)

�
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and the a posteriori has the form:

H (x |y ) = C +
1

2

�

s

���ybs − ω∗
j(yb

s
)

���
2
.

The a priori distribution corresponds to the joint probability of the pixel
windows:

Π (X = x) = P
�
xb
s = ω∗

s ; s ∈ SP
�

and can not be put into product form. One way to obtain an a priori distribution
with a Gibbs form is assuming that neighboring pixels have the same value or
class if the differences between the windows centered around them are small.
This is an a priori constraint derived from the codebook. Some expressions for
the energy function which follow from this assumption are:

H (x) =
�

s,t

|s− t| (xs − xt)
2 ��xb

s − xb
t

��2 , (B.3)

or
H (x) =

�

s

�

t∈N(s)

(xs − xt)
2 ��xb

s − xb
t

��2 . (B.4)

Taking into account the expression of the a posteriori energy function in
equation (B.2) we obtain as the logarithm of the likelihood probability [282]:

lnP (y |x ) = C −H (�x |�y )−H (x)

Assuming the energy function in equation (B.4) as the a priori energy function,
we reach the following expression for the log-likelihood

lnP (y |x ) ≈ −
�

s

���ybs − ω∗
j(yb

s
)

���
2
−
�

s

�

t∈N(s)

(xs − xt)
2 ��xb

s − xb
t

��2

If we assume Gaussian additive noise, then the expressions for the potential
deformations derived from the likelihood are:

Y = ϕ (X, η) = �η−
�
�

s

���ybs − ω∗
j(yb

s
)

���
2
− �η

�
−
�

s

�

t∈N(s)

(xs − xt)
2 ��xb

s − xb
t

��2

This expression can be interpreted as the definition of the ability of VQBF to
correct smooth deformations involving the pixel’s neighborhood.

B.4 VQBF edge preservation
The a posteriori distribution maximized by VQBF implies that image edges will
be preserved by VQBF if the neighborhoods at the two sides of the edge show
a significative variation. This condition is rather general and easy to comply
with. It is the justification for the good edge preservations of VQBF. Formally:

�xs �= �xt si j
�
ybs
�
�= j

�
ybt
�
,
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(assuming that different codevectors will have different central pixel values).
This expression corresponds to the probability assigned by the likelihood of
codevector ω∗

j(yb
s
) to the space outside its decision region Rj(yb

s
)

P (�xs �= �xt |y ) = 1− P
�
j
�
ybs
�
= j

�
ybt
�
|y
�

= 1−
ˆ
R

j(yb
s)

P
�
ybs

��xb
�
dxb.

Notice that two pixels with identical values can be recovered as different
if their neighboring windows change abruptly. However, all these possibilities
depend on the codebook and the image statistics.

B.5 Conclusions
This appendix presents a formalization of the VQBF used in other parts of
this Thesis, starting from the Bayesian formalization of the image processing.
The maximum a posteriori (MAP) estimation corresponds to the decision of
associating an image block to the pixel under process. Assuming that the a pos-
teriori distribution is Gibbs, its logarithm corresponds to the energy function
being decomposed into the a priori and likelihood energies. From the Bayesian
formulation, assuming a conventional a priori energy function embodying the
smoothness constraints, we can derive the expression of the likelihood distri-
bution. The conventional role of the likelihood distribution is to account for
additive noise and assumed image deformations. Following this reasoning, we
derive a likelihood energy function that explains the VQBF robustness against
some image deformations, and the edge preservation of the VQBF.



Appendix C

Face localization system

The purpose of the system is to provide fast and reliable face localization tech-
niques in real time an in real-life scenes. Person localization is included in this
problem. The end application sought is the ability of mobile robots to navigate
in human populated environments, and to start visual interaction with them.
The system uses motion segmentation, signature analysis and color processing.
Signature analysis provides fast hints of the person and face localization. Color
processing is used to confirm the face hypothesis. The technique can be im-
plemented in real time and combined with other approaches to enhance the
recognition results.

Specifically, the operation of the system presented in [125] is decomposed into
two stages. The first tries to localize the head region based on the analysis of
the signatures of temporal derivative images. The second provides confirmation
of the face hypothesis through the color analysis of the extracted face subimage.
The color analysis is a decision performed on the results of color quantization
process. The color representatives are computed through an adaptive neural
network technique, in fact a supervised version of the well known Kohonen’s
SOM. In this appendix we describe the first stage of the system in some detail.
The second stage has been described in Chapter 13.

C.1 Head localization based on time difference
signatures

Aiming to real-time implementations, we have taken a simple and fast com-
putational approach. Segmentation is done on the basis of the analysis of the
signatures of the binarized image differences. We compute the pixelwise differ-
ence image of two consecutive Gaussian smoothed images. This is the temporal
gradient image. When the camera position is fixed, most of the background is
removed by such a process. Most of the information that the difference image
contains relates to the position of the persons and their faces in the scene. Fur-
ther, we compute the spatial gradient image of this time difference image. On
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this image we compute an optimal thresholding based on the minimum variance
clustering to obtain the binary image upon which the signature analysis is per-
formed. Signatures are computed as projections of the image on the image axes.
Signature analysis is a classic and useful technique for binary image segmenta-
tion [55]. The signature is a very noisy function. Therefore, we have included
several heuristics that improve the robustness of the signature analysis, such
as the aspect ratio preservation of the localized face window. The goal of this
process method is the localization of the rectangle that includes the face and
other features that correspond to the head. The signature analysis proceeds in
three steps:

1. Individual isolation of each human shape,

2. Rough localization of the head of each individual, and

3. A refinement step for a more precise localization of the head and face,
which repeats the previous step restricted to the head subimage.

C.1.1 Individual isolation
For the isolation of human shapes we compute the vertical projections of the
binarized difference image. Our hypothesis is that each human shape would
correspond to a hill in this signature, so that individuals could be localized
looking for local minima between the signature peaks. However, the 1D signa-
ture obtained is very noisy. For its heuristic analysis we perform a 1D closing
morphological filter. The closing is implemented, as the erosion followed by the
dilation of the curve with the same structural element, in our case a flat 1D
structural element. In practice this morphological operator is implemented by a
1D min-max filter. The size of the structural element is related to the expected
size of the basis of noisy peaks in the function. The morphological closing is
expected to remove the noisy peaks leaving the remaining of the function un-
changed. Faces and individuals whose projection is smaller than the size of the
structural element will disappear. Therefore, the morphological filter bounds
the sensitivity of the method to scale variations in faces. On the smoothed sig-
nature we search for local minima, that we associate with the boundaries of the
human shapes. Peaks corresponding to different individuals must be separated
more than the size of the expected local minima basis to be discriminated as
separated individuals. We have found experimentally that the approach per-
forms very well for a broad spectrum of scales with a fixed size of the filter.
In Figure C.1 we show an instance of a couple images the detection of an in-
dividual. This person isolation is limited to the case when individuals are not
vertically adjacent.

C.1.2 Localization of the head
Selecting the subimages defined by above procedure, we proceed to the rough
localization of the heads. For this purpose we compute the horizontal projec-
tions of each binary subimage corresponding to an identified individual. These
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Figure C.1: An instance of the individual isolation (a) motion detected, (b)
vertical signature, (c) vertical signature after morphological filtering and (d)
individual detected.
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Figure C.2: (a) Horizontal signature of the individual selected region, (b) hor-
izontal signature after morphological filtering, (c) head detected in the binary
image.

horizontal signatures are again smoothed with the same morphological closing
filter described above. We assume a small threshold so that signature values
below it are discarded as noise. To detect the band in which the head is located
we look for the first peak that appears examining the smoothed horizontal sig-
nature from top to bottom. This peak has the shape of a plateau, and we
detect the top and bottom edges of this plateau as the top and bottom limits
of the head box. We assume that further peaks correspond to the texture of
clothes. In the case of uniform textured clothes the task is simplified, because
the only significative peak corresponds straightforwardly to the head. Figure
C.2 illustrates the head extraction process.

We select this band of the binary subimage and perform on it a further
analysis to detect the left and right sides of the head box. This corresponds
to the third stage of the process enumerated above. Again we compute the
vertical signature and smooth it with the morphological closing filter. On the
smoothed vertical signature, the head appears again as a plateau whose left and
right edges correspond to the left and right sides of the head box.

C.1.3 Some experimental results
We have performed experiments on image sequences that show one or two in-
dividuals moving before backgrounds of varying complexity. Image sequences
were taken using the videocamera of a Silicon O2 workstation. Frame size were
640x480. For the experiments image sequences were captured a different frame
rates. Good results were usually obtained at 10 frames per second. The proto-
type algorithm has been implemented in IDL, and the processing time required
for each couple of frames is 5 seconds. Substantial speedup can be expected of
more optimized implementations. In Figure C.3 we show some frames of the
face localization results obtained over one of these experimental sequences. We
have selected this sequence because it shows a very strong change in scale of
the face as the subject approaches and goes away from the camera. The size of
the face increases steadily from frame #1 up to frame #12, and then decreases
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to the end of the sequence. It can be appreciated that the window enclosing
the hypothetical face follows the scale increase, although it starts enclosing the
whole head and ends, at maximum face size, enclosing the face features (eyes,
nose and mouth). Besides this scaling effect the sequence shows also several
arbitrary head movements and poses. The face has an almost frontal view in
frames #3 to #12. Profile views appear in the succeeding frames. The algo-
rithm performs robustly against these variations in pose quite naturally. We
have tested this robustness in several image sequences. The main effect of the
changes in illumination and the variation of the amount of motion between
frames is the irregular sizing and centering of the box.

C.2 Face validation based on color quantization
There have been some recent works that use color for the task of face localization
[109, 52, 255, 262] based on an a priori characterization of the skin color in the
color space. They assume their color models to be invariant under capture
conditions, illumination, camera distortions and so on. On the contrary, our
proposition in this appendix is to apply an adaptive approach, so that face skin
color representatives will be estimated from small samples of images. Besides
that, the color process is used to confirm the selection of the hypothetical head
described in the previous section. This color based face localization is described
in Chapter 13.
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Figure C.3: Localization of the face in several frames extracted from an experi-
mental sequence. The frames show a big change in scale of the face and various
poses.



Appendix D

Dataset for non-stationary
clustering

This appendix contains the description of the experimental data used in the ex-
periments about the Color Quantization of image sequences reported in Chap-
ters 5, 6, 7 and 10.. The sequences of images used for experiments are horizontal
rotation panning of the laboratory taken with an electronic Apple QuickTake
camera, an CCD color video-camera designed for video-conferencing.

D.1 First Sequence

D.1.1 Original sequence

We have created a sequence of 24 images where each consecutive images overlap
50% of the scene with the next image. Every image has dimension 480x640
pixels. The sequence is shown in Figure D.1. This sequence has been used in
the experiments gathered in our papers [124, 109, 108, 102, 115, 113, 110, 103,
105, 104] and in Chapters 6, 7 and 10.

It has also been working on a strip center of size 160x640 pixels extracted
from each image of this sequence [111, 112]. We preserve the original horizontal
resolution because this is the spatial axis in which camera is moving. This
shrunken sequence is shown in Figure D.3.

D.1.2 Distribution in the RGB cube

The main feature of this image sequence is that the distribution of the pixel
colors in the RGB space is non-stationary and unpredictable. This is illustrated
in Figures D.4 and D.5, where we present the visualization of the color pixels
in the RGB unit cube for the images in the original sequence.
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Figure D.1: Original sequence (#1-12)
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Figure D.2: Original sequence (#13-24)
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Figure D.3: Shrunken sequence
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Figure D.4: Distribution of pixels in the RGB cube (#1-12)
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Figure D.5: Distribution of pixels in the RGB cube (#13-24)
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D.1.3 Benchmarks results
As a benchmark non adaptive algorithm we have used the minimum variance
Heckbert’s algorithm as implemented in MATLAB. This algorithm has been
applied to the entire images in both sequences in two ways: under stationary
and non-stationary assumptions. Figure D.6 shows the distortion results of the
Color Quantization of the experimental sequence to 16 and 256 colors based on
both applications of the Heckbert algorithm. The curve named Time Varying
Min Var in the figure is produced assuming the non-stationary nature of the
data and applying the Heckbert algorithm to each image independently. The
curve named Time Invariant Min Var in the figure, is computed under the
assumption of stationarity of the data: the color representatives obtained for
the first image are used for the Color Quantization of the remaining images in
the sequence.

D.2 Second Sequences

D.2.1 Original sequences
Original images have an spatial resolution of 240x320 pixels. We have created
two sequences. In one of them each of two consecutive images overlap roughly
50% of the scene (sequence1 ), a total of 18 images in Figure D.7. In the other
the overlap is of 33% (sequence2 ), a total of 27 images in Figures D.8 y D.9.
This sequences are utilized in [107] (see Chapter 5).

D.2.2 Distributions in the RGB cube
The distributions of pixels in the RGB cube, only for the sequence with an
overlap of 50% (sequence1 ), are shown in the following Figures D.10 and D.11.

D.2.3 Benchmarks results
The minimum variance Heckbert algorithm has been applied to the entire images
in the sequences in two ways. Figures D.12 and D.13 shows the distortion results
of the Color Quantization of the experimental sequences to M = 16 and M =
256 colors based on both applications of the Heckbert algorithm. The results
consist of the distortion per image curves, and the total distortion over the
entire sequence shown in the figure legend. The curves named Time Varying are
produced applying the algorithm to each image independently. This corresponds
to the optimal strategy for Non-Stationary Clustering, assuming the optimality
of the Heckbert algorithm. The curves called Time Invariant come from the
assumption of stationarity of the data: the color representatives obtained for
the first images are used for the Color Quantization of the remaining images
in the sequences. Obviously, the distortion is greater in the Time Invariant
application. The difference between both curves increases as the time evolution
of the color distribution departs from the initial one found in image #1 of
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(a)

(b)

Figure D.6: Benchmark distortion values obtained with the application of the
Matlab implementation of the Heckbert algorithm to compute the color quan-
tizers of 16 (a) and 256 (b) colors of the images in the experimental sequence.



D.2. SECOND SEQUENCES 277

Figure D.7: Sequence1 with an overlap of 50%.
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Figure D.8: Sequence2 with an overlap of 33% (first part).
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Figure D.9: Sequence2 with an overlap of 33% (last part).
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Figure D.10: Distribution of pixels in the RGB cube (#1-9).
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Figure D.11: Distribution of pixels in the RGB cube (#10-18).
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the sequence. The gap between those curves gives an indication of the non-
stationarity of the data. From our point of view, this gap defines the response
space left for truly adaptive algorithms. To accept an algorithm as an adaptive
solution its response could not be worse than the Time Invariant curve. The
Time Varying curve defines the best response that we expect, although it is
not the sequence of global optima. In Figures D.12 and D.13, also it can be
appreciated that sequence2 curves change more smoothly than sequence1 curves.
The changes in color distribution are smoother in sequence2, therefore, it can
be expected that the results of adaptive algorithms will be better for sequence2
than for sequence1. Also it can be appreciated that the Time Invariant curve
seems to approach the Time Varying curve at the end of the sequence in all
cases. This behavior is due to the nature of the image sequences, they are
extracted from a closed panning of the scene, so that the final images almost
coincide with the initial ones, and their color distributions come close. This
feature is by no means general, it is obviously an artifact of our experimental
data. From a qualitative point of view the closeness serves also to test the ability
of the adaptive algorithms to come back to the original optimum.
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(a)

(b)

Figure D.12: Reference distortion values obtained with the application of the
Time Varying and Time Invariant Heckbert algorithm for (a) 16 colors, (b)
256 colors for sequence1. The amounts in the legend display the total distortion
along the entire sequences.
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(a)

(b)

Figure D.13: Reference distortion values obtained with the application of the
Time Varying and Time Invariant Heckbert algorithm for (a) 16 colors, (b)
256 colors for sequence2. The amounts in the legend display the total distortion
along the entire sequences.



Appendix E

The test problems for the
HOBM

The learning problems, that we have used in Chapter 15 to test learning power
of High Order Boltzmann Machines, have the following common characteristics:

1. The data are in the public domain, and can be accessed by anonymous
FTP.

2. Other techniques have been applied to the data, and the results are public.
These results play the role of objective references to assert the quality of
our own results.

3. The experimental method is clearly defined by the existence of separate
train and test data sets.

4. They are classification problems. The output of the network is a binary
vector. The class assignment is a vector of zeros with only one 1 com-
ponent. This characteristic reduces the complexity of the search for the
output to a given input.

E.1 The Monk’s problems
The Monk’s problems were defined in [263] over an artificial robot domain,
where each robot is described by six discrete variables:

x1: head_shape {round, square, octagon}
x2: body_shape {round, square, octagon}
x3: is_smiling {yes, no}
x4: holding {sword, balloon, flag}
x5: jacket_color {red, yellow, green, blue}
x6: has_tie {yes, no}
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The problem statements, previous results and data were taken from "archive.cis.ohio-
state.edu", under "pub/neuroprose" via anonymous ftp (now available in http:

//archive.ics.uci.edu/ml/datasets/MONK%27s+Problems). Each learning
problem is defined by a logical expression involving those variables, that defines
the class of robots that must be discovered by the learning algorithms. (Monk’s
problems are two class problems). Training and test data are produced following
the logical definitions. The test data for each problem are the class assignment
to the whole space (432 feature vectors). The train data are random subsets
of the test data. The methodology used in [263] consists of the elaboration of
the model using the train data and testing it against the test data. The result
reported for each learning algorithm is the percentage of correct answers to the
test set. The logical definition of each problem follows:

M1 is defined by the relation:
(head_shape = body_shape) or (jacket_color = red)

M2 is defined by the relation:
Exactly two of the six attributes have their first value

M3 is defined by the relation:
(jacket_color is green and holding a sword)
or (jacket_color is not blue and body_shape is not octagon).

M1 is a simple Disjunctive Normal Form expression, and it is supposed to
be easily learned by any symbolic algorithm. M2 is close to a parity problem,
difficult to state either as a Disjunctive Normal Form or Conjunctive Normal
Form. Finally, the training set for M3 contains a 5% of erroneous (noisy)
patterns, and is intended to evaluate the robustness in the presence of noise.

In [126] we reported some early results on the Monk’s problems, still using
simulated annealing to estimate the connection statistics. These results vary
from the ones reported here due to the absence of the simulated annealing (the
results in this chapter improve in many cases those in [126]). In the case of the
Monk’s problems we have used the knowledge of the logical statement of the
problems and the logical interpretation of high order connections as generalized
AND operators [67, 68] to obtain a priori topologies that serve to verify the
applicability of Boltzmann Machines to these problems. The a priori topologies
also show the ideal performance that the learning algorithms may achieve if
they are able to discover these a priori topologies.

E.2 Classification of Sonar Targets
We have used the data used by Gorman and Sejnowski [116] in their study of
sonar signal recognition using networks trained with backpropagation. The data
has been obtained from the public database at the CMU (node ftp.cs.cmu.edu,
directory /afs/cs/project/connect/bench) (now available in http://archive.

ics.uci.edu/ml/datasets/Connectionist+Bench+%28Sonar,+Mines+vs.+Rocks%

29). The goal of the experiment is the discrimination between the sonar signals
reflected by rock and metal cylinders. Both the train and test data consist of
104 patterns. The partition between train and test data has been done tak-
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ing care that the same distribution of incidence angles appears in both sets.
Each pattern has 60 input features and a binary output. Input features are real
numbers falling in the [0, 1] interval.

In [116] a set of experiments was performed with a varying number of hidden
units, to explore the power of the learning algorithm depending on the topology.
Results were averaged over 10 replications of the learning process with varying
random initial weights. The best result reported was an average 90.4 per cent
of success on the test data, with a standard deviation of 1.8, for a topology
with 12 hidden units. Besides the topological exploration, in this chapter the
problem serves to introduce continuous units with [0, 1] state space. Obviously,
there is no known a priori topology for this problem.

E.3 Vowel recognition
The data for this problem has also been obtained from the CMU public database
(now available in http://archive.ics.uci.edu/ml/datasets/Connectionist+

Bench+%28Vowel+Recognition+-+Deterding+Data%29. They have been used,
at least, to realize two PhD Thesis [235, 72, 234]. The Thesis of Robinson in-
cluded the application of several neural architectures to the problem. The best
results reported by Robinson were obtained with a Euclidean nearest neighbor
classifier. It attains a 56% success on the test data. Other source of results for
this database is [61] where a best result of 58% success on the test was reported.
Each pattern is composed of 10 input features. Input features are real numbers.
The class (vowel) assignment is given by a discrete variable.

The details of the data gathering and pre-processing can be found in [235,
234]. The training data contains 528 patterns, and the test data contains 462
patterns. From our point of view, there are three specific characteristics that
make this problem worthy of study. First, it is a multi-categorical classification
problem, whereas the Monk’s and Sonar problems involve only two categories.
Second, the input features are not normalized in the [0, 1] interval. Roughly,
they take values in the [−5, 5] interval. Finally, the convexity of the Kullback-
Leibler distance in this case is doubtful. We wish to test the robustness of
the approach taken (especially the initialization of the weights to zero) in this
clearly unfavorable case.
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