

Technical Report

UNIVERSITY OF THE BASQUE COUNTRY
Department of Computer Science and Artificial Intelligence

Sampling and learning the Mallows and
Generalized Mallows models under the

Cayley distance

Ekhine Irurozki, Borja Calvo, José A. Lozano

January, 2014

San Sebastian, Spain
www.ehu.es/ccia-kzaa
hdl.handle.net/10810/4562

Sampling and learning Mallows and Generalized

Mallows models under the Cayley distance

⇤

Ekhine Irurozki, Borja Calvo, Jose A. Lozano

Received: date / Accepted: date

Abstract

The Mallows and Generalized Mallows models are compact yet pow-

erful and natural ways of representing a probability distribution over the

space of permutations. In this paper we deal with the problems of sam-

pling and learning (estimating) such distributions when the metric on

permutations is the Cayley distance. We propose new methods for both

operations, whose performance is shown through several experiments. We

also introduce novel procedures to count and randomly generate permuta-

tions at a given Cayley distance both with and without certain structural

restrictions. An application in the field of biology is given to motivate the

interest of this model.

Index terms— Permutations Mallows Model Sampling Learning Cay-

ley distance Cycle

1 Introduction

The presence of data in the form of permutations or rankings of items is ubiq-
uitous in many real world scenarios, from the traditional applications of social
and behavioral sciences [45] or card shu✏ing [3] to novel disciplines such as in-
formation retrieval [28], preference learning [29], bioinformatics [10] or identity
management [27]. To deal with these new application fields, researchers have
gone beyond classical probabilistic models over permutations [34], [11] and have
proposed novel approaches. Most of these new approaches are based on exten-
sions of Plackett-Luce [30], [40] and Mallows models [31]. In this paper we focus
on the Mallows distribution and its most popular extension called Generalized
Mallows Model.

The literature on Mallows and Generalized Mallows models ranges from
theoretical discussion [15], [17], [19], [24], [42], [43] to more practical applications
to multilabel classification [9], label ranking [8] or estimation of distribution
algorithms [7].

The Mallows model can be considered as an exponential-location proba-
bility model for permutations based on distances. In this way it requires the
definition of a “closeness“ relation between permutations [13]. Although Mal-
lows has been traditionally based on the Kendall distance [11], in this paper we

⇤
Grants or other notes about the article that should go on the front page should be placed

here. General acknowledgements should be placed at the end of the article.

1

consider an alternative metric, the Cayley distance. It counts the number of
swaps (not necessarily adjacent) to transform a given permutation into another
one. It is closely related with the cyclic structure of permutations. Therefore,
while Kendall is a natural measure of dissimilarity in domains such as elections,
Cayley is suited in problems dealing with swaps and the cyclic structure of per-
mutations, which are relevant in areas such as cryptography, random number
generators or computer vision [47].

In order for the Cayley based Mallows and Generalized Mallows models to
become paradigms of interdisciplinary interest, the sampling and estimation
(learning) operations must be carried out e�ciently. Estimation of distribution
algorithms [7] and label ranking [8] are good examples of applications for which
a trade-o↵ between time e�ciency and accuracy in these two key operations is
decisive. In this paper we focus on these two processes, sampling and learning,
over both Mallows and Generalized Mallows models under Cayley distance.

In particular, the contributions of this paper include three new sampling al-
gorithms. These sampling methods make use of novel procedures to both count
the number of permutations and generate a permutation with or without certain
structural restrictions, such as its Cayley distance to a given permutation. For
the learning process we give an exact and a heuristic algorithm for both Mal-
lows and Generalized Mallows model. We analyze both algorithms and show
how, when the permutations in the sample are ’close enough’, the exhaustive
algorithm is very e�cient due to its branching strategy. Moreover, the proposed
heuristic algorithm is a quick alternative which reaches the optimal solution in
almost every instance.

The rest of the paper is organized as follows. The next section introduces
the Cayley metric as well as the Mallows and Generalized Mallows models for
rankings. Section 3 describes the three proposed sampling algorithms. Section
4 deals with the problem of learning the maximum likelihood parameters in
both an exact and heuristic manner. The results of the experiments designed
to test the proposed methods are given in Section 5 and we conclude the paper
in Section 6.

2 Cayley distance and Mallows model

Permutations are bijections of the set of integers {1, . . . , n} onto itself. They
are usually denoted with the letters � or ⇡. From now on we will use the
following notation, �(j) = i means that item i is in position j and represents
the permutation � as � = [�(1)�(2) . . .�(n)]. A special permutation which is
worth mentioning is the identity permutation, e = [123 . . . n] which maps each
item j to position j.

By composing two permutations � and ⇡ of n items, we obtain a new permu-
tation ��⇡ such that ��⇡(j) = �(⇡(j)), which will be denoted as �⇡. The result
of composing a permutation � and its inverse ��1 is the identity, ���1 = e and
the composition �e = e� = �.

The Cayley distance d(�,⇡) between two permutations � and ⇡ counts the
minimum number of swaps (not necessarily adjacent) required to convert one
permutation into the other. This value ranges between 0 and n� 1 for permu-
tations of n items. Its invariance property asserts that d(�,⇡) = d(��,⇡�) for
every permutation �. Particularly, taking � = ⇡�1 and since ⇡⇡�1 = e, one can

2

write d(�,⇡) = d(�⇡�1, e) = d(�⇡�1) which will simplify the notation.
An important concept closely related with the Cayley distance is that of

a cycle of a permutation. A cycle (i1, i2, . . . , ik) is a subset of the items of
the permutation {i1, i2, . . . , ik} ✓ {1, . . . , n} such that �(i1) = i2,�(i2) =
i3, . . . ,�(ik�1) = i

k

,�(i
k

) = i1. As an example, consider the permutation
⇡ = [3126547]. In order to obtain the items in the first cycle, we look for the
item in position 1, ⇡(1) = 3. Then, we look for the item in position 3, ⇡(3) = 2
and in the same way look for the next item by looking for the item in position 2,
⇡(2) = 1. Since we have already visited position 1 then the first cycle is closed.
By following this procedure, we obtain the set of four cycles that is (132), (46),
(5), and (7).

The relation between the cycles of a permutation and the Cayley distance
can be seen when converting a given permutation into the identity, e, with the
minimum number of swaps. Note that in this case every swap involves two items
that belong to the same cycle. Actually, the minimum number of swaps required
to order the items of a cycle of k items is k�1. Let us show a minimal sequence
of swaps to convert the previous example, ⇡ = [3126547] to the identity:

Swap items 1 and 3 1326547

Swap items 2 and 3 1236547

Swap items 4 and 6 1234567

Therefore, the number of swaps to convert ⇡ into the identity permutation,
and thus the Cayley distance d(⇡), equals n minus the number of cycles of ⇡.
For ⇡ in the previous example the distance is d(⇡) = 7� 4 = 3.

The Cayley distance d(⇡) can be decomposed into a sum of n � 1 terms,
d(⇡) =

P
n�1
j=1 X

j

(⇡), by setting X
j

(⇡) = 0 if j is the largest item in its cycle
in ⇡ and X

j

(⇡) = 1 otherwise. These binary variables X1(⇡), . . . , Xn�1(⇡) are
grouped in the vector X(⇡). Let us show this with an example. The Cayley
distance between permutations [3421] and [1243] is computed as follows.

d([3421], [1243]) =d([3421][1243]�1) = d([3421][1243]) = d([3412])

=
4�1X

j=1

X
j

([3412]) = 1 + 1 + 0 = 2

The cycle decomposition of the permutation in this example is ⇡ = [3412] =
(13)(24). Since the largest item in the first cycle is 3, then X3 = 0 and X1 = 1.
The variables are only defined for 1 j < n because item n will always be the
largest item in its cycle, so for the second cycle X2 = 1.

It is worth noticing that although the distance d(⇡) has a unique decompo-
sition as a vector X(⇡), the opposite is not necessarily true. See Figure 1 for an
example of two di↵erent permutations ([3412] and [2431]) that have the same
decomposition.

X([3412]) = (X1, X2, X3) = (1, 1, 0)
X([2431]) = (X1, X2, X3) = (1, 1, 0)

Figure 1: Two di↵erent permutations with the same distance decomposition

3

2.1 Feller coupling

The Feller coupling is used to generate permutations from the uniform distribu-
tion, [2], [21] (pag. 257). We detail the Feller coupling process before it is the
basis for the later generation under MC and GMC.

This process, which is described as a sequence of n decisions, is clearly
seen when the permutation is represented in cycle notation. Recall that every
permutation can be written as the product of independent cycles and that if
item i is placed in position j, �(j) = i, then items i and j are in the same cycle
in �.

The Feller coupling procedure generates a permutation by constructing a
collection of cycles. This generation process considers the initial cycle (1) and
selects uniformly at random the item j to place at position 1 in �, that is, select
j such that �(1) = j. If j = 1, then the cycle (1) is closed. Otherwise, �(1) = j
and thus the previous cycle is updated to (1j). Then, the item j0 to place at �(j)
is selected uniformly at random. If j0 = 1, the cycle (1j) is closed. Otherwise,
this first cycle is now (1jj0). The process continues in this way until the cycle
is closed, i.e. until we select item 1 to place at any position. Then, the smallest
item among those that have not been inserted in the previous cycles is selected
to construct another cycle in the same way, and the process is repeated until a
permutation is generated, i.e., until every item 1 i n belongs to a cycle.

Note that the generative process is carried out in n separate stages. At stage
s the decision can be seen as either closing the current cycle and opening a new
one or either choosing one of the n� s items to add to the current cycle. Note
that exactly one of those items closes a cycle while the remaining n � s items
do not close a cycle.

In this process we can consider the previously defined X
j

(�) binary variables
as independent Bernoulli random variables of parameter 1/(n� j + 1).

2.2 Mallows and Generalized Mallows models

The Mallows model (MM) is an exponential-location probability model for per-
mutations based on distances. It can be expressed as follows:

p(�) =
exp(�✓d(�,�0))

 (✓)
(1)

where ✓ 2 R is a spread parameter, �0 is the location parameter called the
central permutation, d(�,�0) represents a distance between � and �0 and (✓)
is the normalization constant (✓) =

P
�

exp(�✓d(�,�0)). Note that when
the dispersion parameter ✓ is greater than 0, then �0 is the permutation with
the largest probability mass (the mode), and the closer a permutation � is to
�0, the larger the p(�). On the other hand, with ✓ = 0 we obtain the uniform
distribution and when ✓ < 0 then �0 is the anti mode, a situation not considered
in this paper. We will denote the MM under the Cayley distance as MC.

Despite being realistic for many real world problems, some model charac-
teristics of the MM are sometimes too severe to properly fit the data, such as
the fact that every permutation at the same distance from �0 has the same
probability. In this case, one can consider any of the multiple extensions of the
model. Some of the most popular extensions are non-parametric models [33],
infinite permutations [25], [36] and mixture models [12], [37], [39]. However,

4

the best known is the Generalized Mallows model (GMM) [23]. Instead of a
single spread parameter, it considers a vector ✓ = (✓1, . . . , ✓n�1) of n� 1 spread
parameters, each a↵ecting a particular position of the permutation. In order to
base the GMM on a particular distance, this distance must be decomposable as
the sum on n � 1 terms, each related to a particular position of the permuta-
tion. If these terms (considered as random variables) happen to be independent
under the uniform distribution, then the GMM based on such a distance can be
factored into n� 1 terms [23].

As we have already seen, the Cayley distance induces a decomposition in an
n�1 length vector such that d(�,�0) = d(���1

0) =
P

n�1
j=1 X

j

(���1
0). Therefore,

the GMM can be coupled with the Cayley distance and it can be written as a
product of n� 1 terms as follows:

p(�) =

P
n�1
j=1 exp(�✓

j

X
j

(���1
0))

 (✓)
=

n�1Y

j=1

exp(�✓
j

X
j

(���1
0))

j

(✓
j

)

where the normalization constants are given by the following expression:

j

(✓
j

) = (n� j)exp(�✓
j

) + 1 (2)

We would like to point out that these expressions are the correction of those
given in [23] which includes typos. We will denote the GMM under the Cayley
distance as GMC. The decomposition of the normalization constant, (✓), is
obtained by computing the moment generating function, as in [23], and taking
into consideration that each X

j

(⇡) is an independent Bernoulli random variable
for an u.a.r. drawn permutation ⇡ (see Section 2.1). Thus, the probability of
each position j being the largest item in its cycle under the GMC is as follows:

p(X
j

(���1
0) = r) =

8
>><

>>:

1

(n� j)exp(�✓
j

) + 1
if r = 0 (the cycle is closed)

(n� j)exp(�✓
j

)

(n� j)exp(�✓
j

) + 1
if r = 1 (otherwise)

(3)

One of the main advantages of this factorization is that the normalization
constant, which was defined as a sum of n! terms, can be posed as a product of
n� 1 terms. Note that since the MM is the special case of the GMM in which
every ✓

j

has the same value, the normalization constant in Equation (2) and
the decomposition in Equation (3) hold for both MC and GMC.

Although, both MM and GMM are unimodal distributions, the GMM breaks
the MM constraint that two permutations at the same distance have the same
probabilities. In the case of the GMM, two permutations � and ⇡ have the
same probability if they share the same decomposition vector, i.e. X(���1

0) =
X(⇡��1

0).

3 Sampling

In this section we introduce two new sampling methods and an extension to the
GMC of the Gibbs sampler proposed in [15] for the MC. The first one receives
the name of Distances sampling method and can draw permutations only from
the MC. It starts by drawing a distance from �0 using the MC and then builds a

5

permutation at the given distance uniformly at random. The second one, called
Multistage sampling algorithm, can be used to simulate both MC and GMC
(recall that the MC is the particular case of the GMC in which every dispersion
parameter has the same value). Based on Equation (3) it generates permutations
from the GMC in an stepwise procedure. Finally we extend the Gibbs sampler
proposed for the MC [15] to the GMC. We compare the algorithms in terms of
computation time and accuracy.

3.1 Distances sampling method

The process of drawing a permutation � from a given Mallows distribution
is carried out by first, randomly selecting a distance between �0 and � and
secondly, generating � at the given distance in an unbiased way (i.e. uniformly
at random among the permutations at the given distance). The process to
generate permutations at a given distance is also novel and can be useful on its
own.

The key idea behind this sampling algorithm is that, under the MM, every
permutation at the same distance from �0 is equally probable. Let us assume
that the number of permutations at each possible distance d is known and
denoted by c

d

. Then, the probability of generating, under a MC, a permutation
� at distance d from the central permutation �0 is as follows:

p(�|d(�,�0) = d) / c
d

exp(�✓d) (4)

Moreover, the normalization constant (✓) =
P

�

exp(�✓d(���1
0)) can be ex-

pressed as the sum of n terms in the following way:

 (✓) =
n�1X

d=0

c
d

exp(�✓d) (5)

Therefore the sampling process of � is as follows: first, sample the distance
d, where d = d(�,�0) using Equation (4). Secondly, pick uniformly at random
a permutation ⇡ at distance d from the identity permutation e, i.e. d(⇡) = d.
Finally, in case �0 6= e Cayley’s invariance property lets us obtain � = ⇡�0,
since d = d(⇡) = d(⇡�0,�0) = d(�,�0).

In order to be able to follow the previous process, we still need to fill two
gaps: calculating the number of permutations of n items at a given distance d,
c
d

, and the uniform generation of a permutation at distance d from the identity
permutation. The answers to both questions are related with Stirling numbers.

The Stirling number of the first kind, S(n, k), counts the number of permu-
tations of n items with k cycles. Note that, as seen before, the number of cycles
is an alternative way of measuring the Cayley distance. Therefore, the number
of permutations of n items at distance d, c

d

, is the number of permutations of
n items with k = n � d cycles, i.e. c

d

= S(n, n � d). An intuitive explanation
of the recursive method for obtaining the Stirling numbers of the first kind can
be found in Section 4 of [46].

The second question, that of generating a permutation at a given distance
from the identity, is closely related to that of counting the permutations at a
given distance. Algorithm 1 shows a recursive procedure that generates uni-
formly at random one of the S(n, k) permutations of n items with k cycles.
This algorithm is an adaptation of that of counting permutations.

6

This algorithm is a recursive procedure which, in its base case, when k = 1,
generates a permutation of n items and 1 cycle, so it uniformly at random
generates one of the (n� 1)! possible distinct cycles of n items. In the general
case, there are two options:

1. Recursively generate a permutation of n � 1 items and k � 1 cycles and
then place item n alone in its own cycle (⇡(n) = n), obtaining the k-th
cycle.

2. Generate a permutation of n � 1 items and k cycles and then randomly
insert item n in any of the cycles (such that ⇡(n) 6= n).

The probability of selecting option 1 or 2 depends on the number of permutations
that can be built in each of the two ways. Let us focus on the number of
permutations generated in option 1, those of n items and k cycles in which
item n is alone in its own cycle. Note that for each permutation of n� 1 items
and k � 1 cycles there is exactly one way of generating a permutation of n
items and k cycles, that which results from setting ⇡(n) = n. Therefore, from
S(n, k) permutations of n items and k cycles, exactly S(n � 1, k � 1) of them
have ⇡(n) = n. As a consequence, the probability of choosing the first option 1
equals S(n� 1, k� 1)/S(n, k), while the probability of selecting option 2 equals
1� [S(n� 1, k � 1)/S(n, k)] = (n� 1)S(n� 1, k)/S(n, k).

Algorithm 1: generate permu(n, k)
This algorithm generates a permutation of n items with k cycles. Note
that every permutation of n items with k cycles is equally probable.

Input: n, num. of items; k, num. of cycles
Output: ⇡, permutation of n items with k cycles
if k = 1 then ⇡=generate a cycle with the n items; /* base case */

else
prob = S(n� 1, k � 1)/S(n, k);
with probability prob /* n stands in a cycle alone */

⇡(1 . . . n� 1) = generate permu(n� 1, k � 1);
⇡(n) = n;

end
otherwise /* n is in a cycle with other items */

⇡(1 . . . n� 1) = generate permu(n� 1, k);
ran = random number in the range [1, n� 1];
⇡(ran) = n;
⇡(n) = ran;

end
end
return ⇡;

Regarding the computational complexity of this algorithm, the process of
sampling a distance is O(n) given the Stirling numbers. Stirling numbers only
need to be computed once and require time O(n2). The process of generating
a random permutation given the distance is O(n). Finally when �0 6= e, the
process of calculating � = ⇡�0 is also O(n).

7

3.2 Multistage sampling algorithm

This novel sampling algorithm can generate permutations from both MC and
GMC. Recall that Equation (3) gives the probability of position j being the
largest position in a cycle in ⇡, that is p(X

j

(⇡) = 0). Based on Equation (3)
the Multistage sampling algorithm generates a permutation ⇡ from the GMC
as a sequence of n decisions. Moreover, this process can be carried out in two
di↵erent ways, by selecting the positions in increasing order or by selecting
items in decreasing order. Both approaches, forwards or backwards are detailed
in this section. The former generates a permutation starting from position
1 to position n. The latter, on the other hand, generates the cycles of the
permutation. Each of its n iterations assigns an item to a cycle, and the items
are chosen in decreasing order.

In this random generation of ⇡ from the GMC, the central permutation is
the identity. If �0 6= e we obtain the final permutation � centered around �0 by
composing ⇡ with �0 as � = ⇡�0 = ���1

0 �0.
The idea behind these processes can be adapted to count the number of

distinct permutations with a given X(⇡) vector, see Appendix A.

Generating the permutation forwards The forwards generation of a per-
mutation ⇡ can be done in n stages, in a similar way to the Feller coupling.
At the first stage, the item to place in position 1 is selected, then the item at
position 2, and so on. In general, by following this process, at stage j there is
exactly one item that closes a cycle in ⇡. The probability at stage j of that
item that closes a cycle is P (X

j

(⇡) = 0) as given by Equation (3) while the
probability of any other item is uniform, P (X

j

(⇡) = 1)/(n� j).

Generating the permutation backwards The backwards generation of a
permutation ⇡ is performed in n stages by generating a partition of the set of n
items into the disjoint cycles that form the permutation. The process iterates
by selecting the items in decreasing order and placing each of them in a cycle.

The backwards generation of a permutation from a GMC can be seen as a
Chinese restaurant process, [5]. The Chinese restaurant process is motivated
by the sequential clustering of items. Imagine a Chinese restaurant in which
there are infinitely many tables, each of infinite capacity. The tables are labeled
with the set of natural numbers and ordered according to that number. The
customers come sequentially. The first customer sits at table 1. The second
customer either sits at the same table or goes to the first unoccupied table, i.e.
table 2. In general, each customer can either sit at any of the occupied tables
or sit at the first unoccupied table.

In the simile of the Chinese restaurant process and the backwards generation
of a permutation randomly from a GMC, the tables are the cycles of the per-
mutation. The customers are the items in the permutation. The process starts
with item n in the first cycle. Then, with probability p(X

n�1(⇡) = 0) item
n� 1 is placed in a new cycle. Otherwise, with probability p(X

n�1(⇡) = 1), it
is placed in the same cycle as item n. The same operation is repeated with the
next item, n� 2. With probability p(X

n�2(⇡) = 0) it is placed in a new cycle,
and with probability p(X

n�2(⇡) = 1) it is placed in any of the previous cycles.
In general, with probability p(X

j

(⇡) = 0) item j is placed alone in a new cycle.
Otherwise, that is, with probability p(X

j

(⇡) = 1) it is placed in a cycle with the

8

previous items. In the latter case, the cycle to place the item in must be chosen
at random with probability proportional to the number of permutations that
can be generated in any case. Following with the Chinese restaurant process
simile, item j sits to the left of an uniformly at random chosen customer among
those that are already sitting. In other words, the cycle in which item j will lay
is chosen with probability proportional to the number of items in each cycle.

Intuition of the dispersion parameters Based on the backwards and for-
wards processes for generating permutations, these lines try to clarify the mean-
ing of the dispersion parameters. Based on the backwards generative process it
is easy to see that the larger ✓

j

the more likely to insert item j in a new cycle.
In this way, the dispersion parameters ✓

j

can be considered as the measure of
the similarity of item j with the items i > j, i.e., the larger ✓

j

, the more unlikely
to group it in a cycle with items i > j.

Consider the generation of a permutation � from a given GMC with central
permutation �0 and dispersion parameters ✓. Let ✓

j

have a large value with
regard to the rest of the dispersion parameters. In this situation, it is likely that
j is the largest item in its cycle in the generated ���1

0 . This has a remarkable
consequence: If we consider the minimum set of swaps to change �0 into �, item
j will very likely be swapped with item j0 < j. In other words, ✓

j

can be seen
as the weight of item j to change places with item j0 < j. Depending on the
problem, one may prefer to interpret the dispersion parameters as the strength
of the item at position j to change places with the item at position j0 < j. This
can be easily carried out by inverting the permutations and working with the
inverse of the permutations, ��1 instead of dealing with �.

3.3 Gibbs sampler

The Gibbs sampler is a classical algorithm based on sampling a Markov chain
whose stationary distribution is the distribution of interest. It was proposed to
sample the MC in [15], where the authors also prove a quick convergence to the
stationary distribution. In this section we extend that algorithm to the case of
GMC.

The designed process, which is detailed in Algorithm 2, proceeds as follows:

1. Generate uniformly at random a permutation �.

2. From the current permutation �, the Gibbs sampler generates a candidate
permutation �0. This permutation is equal to the previous one in all but
two positions which have been swapped.

3. Let � = min{1, p(�0)/p(�)}. With probability �, the algorithm accepts
the candidate permutation moving the chain to the candidate permuta-
tion, � = �0, and goes back to 2. Otherwise, it discards �0 and goes back
to step 2.

The initial samples are discarded (burn-in period) until the Markov chain
approaches its stationary distribution and so samples from the chain are samples
from the distribution of interest.

As explained, a new permutation �0 is built by swapping 2 items i and j of
�. If both items were part of the same cycle in �, then after the swap the cycle

9

has been split into two new cycles and each swapped item is in a di↵erent cycle
in �0. In this case the distance decreases by one unit and the chain moves to
the new permutation �0. Alternatively, if it happens that both items i and j
were in di↵erent cycles in �, then after the swap, both cycles are merged into a
single one in �0. In this case, the distance has been increased in one unit and
the chain moves to �0 with probability p(�0)/p(�). Under the MC this ratio
equals exp(�✓). Under the GMC, where the probability of a permutation is
p(�) / �

P
n�1
j=1 ✓jXj

(���1
0) the ratio equals exp(�✓

k

), where k is the item such

that X
k

(���1
0) = 0 and X

k

(�0��1
0) = 1. Therefore, under the GMC it is not

necessary to compute the entire X(�0��1
0) vector, but just the X

k

(�0��1
0) of the

items k in the cycles of the swapped items. The computational complexity of
generating each permutation is thus, O(n).

Algorithm 2: Gibbs sampler algorithm

Input: m, number of samples; n, number of items
Output: S, collection of permutations
� uniformly at random generate a permutation /* Knuth shuffle

*/

S � ;
for |S| < m do

for k=1 to n do �0(k) = �(k) ;
i, j random numbers in the range {1, . . . , n}, where i 6= j;
swap(�0(i),�0(j));
� = min{1, p(�0)/p(�)};
with probability �

� = �0 ;
end
S � ;

end

4 Learning

This section addresses the maximum likelihood estimation of the parameters of
the distribution. For a sample of m i.i.d. permutations {�1, �2, . . . , �m} the
log likelihood of the GMM is given by

Ln L({�1,�2, . . . ,�m}|�0,✓) = Ln

mY

s=1

p(�
s

|�0,✓)

Although the MM is a particular case of the GMM in which every ✓
j

has the
same value, the calculation of the MLE parameters are di↵erent for each model.
For this reason we will describe the MLE estimation for each model separately.
Finally, we introduce two new algorithms for each model, a heuristic and an
exhaustive one.

10

4.1 The Maximum likelihood parameter estimation

4.1.1 Mallows model

In the case of the MM, the likelihood expression is given by the following equa-
tion:

Ln L({�1,�2, . . . ,�m}|�0, ✓) = Ln

mY

s=1

exp(�✓d(�
s

��1
0))

 (✓)

= �✓
mX

s=1

d(�
s

��1
0)�mLn (✓) (6)

By looking at Equation (6), we can see that calculating the value of �0 that
maximizes the equation is independent of ✓. Therefore, the MLE estimation
problem can be posed as a two-step process in which, first, the central permu-
tation and then the dispersion parameter for the given �̂0 are obtained. The
MLE for the consensus permutation under the GMC is given by the following
equation.

�̂0 = argmax
�0

mX

s=1

�d(�
s

��1
0) = argmin

�0

mX

s=1

d(�
s

��1
0) = argmin

�0

n�1X

j=1

X̄
j

where X̄
j

=
P

m

s=1 Xj

(�
s

��1
0)/m. Since the MLE of the central permutation

is the one which minimizes the sum of the distances to the permutations in
the sample, finding the MLE of �0 can be considered as a combinatorial opti-
mization problem. In fact, this problem is known in the literature as the swap
median problem [41]. Although it is believed to be an NP-complete problem,
its computational classification is still an open question [41]. In [4] the parame-
terized complexity of the swap median problem is studied. The authors start by
introducing the definition of non-dirty items, which are those items that appear
in the same position (which is referred to as the dominating position) in more
than half of the permutations in the sample. They also prove that a central per-
mutation places the non-dirty items in their dominating positions. Moreover,
they also give a bound on the number of dirty items for which the problem is
solvable in polynomial time.

Suppose that the consensus permutation �̂0 is known, the second and last
stage of the learning process of an MM concerns the estimation of the spread
parameter. The MLE for the dispersion parameter for MC is the ✓ that satisfies
the following expression:

n�1X

j=1

j

j + exp(✓)
=

P
m

s=1 d(�s�̂
�1
0)

m

This expression is obtained by deriving the likelihood in Equation (6) and
making it equal to zero. Although there is no closed expression for ✓, the
solution to this equation can be easily calculated with numerical methods such
as Newton-Raphson.

11

4.1.2 Generalized Mallows model

When a sample of permutations is to be modeled by a GMC, the likelihood
expression can be given as follows:

Ln L({�1,�2, . . . ,�m}|�0,✓) = Ln

mY

i=1

p(�
i

)

=
n�1X

j=1

mX

i=1

�✓
j

X
j

(�
i

�̂�1
0) +

mX

i=1

n�1X

j=1

Ln
j

(✓
j

)

=
n�1X

j=1

(
mX

i=1

�✓
j

X
j

(�
i

�̂�1
0) +

mX

i=1

Ln
j

(✓
j

))

=
n�1X

j=1

�m(✓
j

X̄
j

+ Ln
j

(✓
j

)) =
n�1X

j=1

L
j

(7)

where X̄
j

=
P

m

i=1 Xj

(�
i

�̂�1
0)/m. It is worth noticing that the MLE for the

central permutation may not be the same as that which minimizes the distance
to the sample. Suppose that the MLE for �0 is known. Then, the MLE for the
spread parameters are given by the following expression:

✓̂
j

= Ln(n� j)� Ln(X̄
j

/(1� X̄
j

)) (8)

This expression is obtained by deriving the likelihood in Equation (7) and
making it equal to zero.The GMM learning process cannot be divided into two
di↵erent stages as in the MM case, and thus the MLE calculation must be carried
out simultaneously for every parameter. However, Equation (7) decomposes the
likelihood into n � 1 sums, being each a function on a particular X̄

j

and ✓
j

.

Moreover, ✓̂
j

is also a function of X̄
j

, see Equation (8), so the likelihood for
each position can be expressed as follows:

n�1X

j=1

L
j

=
n�1X

j=1

�X̄
j

Ln(n� j) + (n� j)2 +
(n� j)2

X̄
j

+ X̄
j

Ln
X̄

j

1� X̄
j

�m (9)

Thus, the GMC estimation problem is still a combinatorial optimization
problem that can be written in the following way.

�̂0 =argmax
�0

Ln L({�1,�2, . . . ,�m}|�0,✓) = argmax
�0

n�1X

j=1

L
j

=

argmax
�0

n�1X

j=1

[�X̄
j

Ln(n� j) + (n� j)2 +
(n� j)2

X̄
j

+ X̄
j

Ln
X̄

j

1� X̄
j

�m]

(10)

In order to give an e�cient exhaustive algorithm that searches the space of
permutations, it is of great importance to take into account the fact that each
of these functions L

j

is strictly increasing on X
j

.

12

4.2 Algorithms for the MLE of the parameters

In this section, we introduce a heuristic and an exhaustive algorithm to find the
MLE of the central permutation and the spread parameters for both MC and
GMC. Note that the evaluation of any candidate solution �0 is carried out in
terms of distance in the MC and in terms of likelihood in the GM,C and also that
the optimal MLE for �0 may not be the same for both models. Both distance
and likelihood can be obtained given the X̄ vector: The sum of the distances
to the sample in the MC is

P
m

s=1 d(�s�
�1
0) = m

P
n�1
j=1 X̄

j

(�
s

��1
0) and the log

likelihood expression of the GMC is given in Equation (9). In this way, these
two algorithms optimize a function defined over the collection of X̄

j

variables.

4.2.1 Heuristic search

The heuristic algorithm that we propose proceeds in two stages. First, it gen-
erates a solution in a greedy manner and then the initial solution is improved
using a Variable Neighborhood Search (VNS) [38].

The greedy process, starting from an empty permutation, iterates in n steps
adding at each step an item to a position in the following way.

1. Given the partial permutation of 0 j < n items, �0, evaluate every
candidate solution. The candidate solutions �0

0 are those partial permu-
tations of j + 1 items built by adding one more item to �0 in any of the
(n� j)2 possible ways.

2. Set as �0 the candidate solution that evaluates the best (ties are solved
selecting one permutation at random).

This process is repeated until �0 is a complete permutation. The VNS performed
afterwards is a heuristic algorithm that makes use of two separate neighborhood
systems, namely the insert and the swap. The insert operator considers as
neighbors all those permutations that result from inserting an item into another
position. The swap operator considers as neighbors all those permutations that
result from swapping two positions. The local search for both neighborhood
systems selects at each iteration the best neighbor of the current one (or selects
a solution uniformly at random among those with the best evaluation in case
of ties). The VNS, detailed in Algorithm 3, applies alternatively each of the
neighborhood systems until both are stuck at the same local optimal solution.

Algorithm 3: Variable Neighborhood Search (VNS)

Input: �0 solution obtained by the greedy process
Output: �0 local optima for the local search with both insert and swap

neighborhood systems
�00
0 = �0;

repeat
�0 = �00

0 ;
�0
0 local optimum found with the local search with the insert

neighborhood starting from �0;
�00
0 local optimum found with the local search with the swap

neighborhood starting from �0
0;

until �0 == �00
0 ;

13

4.2.2 Exhaustive algorithm

The exhaustive algorithm implements a branch and bound search. It explores
the space of partial permutations of the first j out of n items (��1

0 (r) = i
r

for r j and ��1
0 (r) is unknown for r > j). These partial permutations are

generated following a deep-first search on the tree shown in Figure 2.

[1] [2] ... [n]

[21345] ... [2134n]

[2134] ... [213n]
[213] [214] [215] ... [21n]

[12] [13] [1n] [21] [23] [2n] [n1] [n2] [n3]... [n n-1]

Figure 2: Permutation generating tree

The fact that the visited permutations are partial permutations of the first
j-th indexes makes it possible to evaluate X̄

r

for all r j and thus to partially
evaluate a solution. In order to illustrate this point, let us start with X̄1. Given
a sample permutation �

s

, X1(�s�
�1
0) can be calculated as follows:

X1(�s�
�1
0) =

⇢
0 if �

s

��1
0 (1) = 1

1 if �
s

��1
0 (1) > 1

In the case of X̄2, we can proceed similarly:

X2(�s�
�1
0) =

8
<

:

0 if �
s

��1
0 (2) = 2

1 if �
s

��1
0 (2) > 2

?? if �
s

��1
0 (2) < 2

However, in this case if �
s

��1
0 (2) < 2, we need to resort to ��1

0 (1) in order to
calculate that value, but because we construct the partial permutation ordered,
that value has been assigned in the partial permutation. Particularly if ��1

0 (1) =
2, then X2(�s�

�1
0) = 0, and if ��1

0 (1) is larger than 2, then X2(�s�
�1
0) = 1.

In general, in order to calculate X̄
j

when all the previous indexes have been
assigned, we have to proceed similarly:

X
j

(�
s

��1
0) =

8
<

:

0 �
s

��1
0 (j) = j

1 �
s

��1
0 (j) > j

?? �
s

��1
0 (j) < j

In the case of �
s

��1
0 (j) = r < j, we can recursively calculate �

s

��1
0 (r) until we

reach the first k such that (�
s

��1
0)k(r) = r0 > j.

Unfortunately, this simple method is extremely ine�cient. However, we
propose a method that, by exploring the same tree as in Figure 2, runs in
O(m) (where m is the number of permutations in the sample) to evaluate X̄

j

at each node of depth j. This algorithm is based on modifying the sample of
permutations at each evaluation. Briefly speaking, the evaluation at each node
of depth j is carried out using the samples modified by its parent in the tree to
obtain X̄

j

and modify the samples before continuing the search. In particular,
the evaluation is carried out as follows:

14

Evaluation The evaluation at each node requires the collection of samples
modified by its parent in the tree as in Figure 2, together with the previous
evaluation results X̄

r

for r < j. Then, our proposed algorithm proceeds in two
stages,

1. Calculate X̄
j

as follows

X̄
j

=
X

s

X
j

(�
s

��1
0)/m =

X

s

I(��1
s

(j) 6= ��1
0 (j))/m (11)

where by I(·) we denote the indicator function.

2. For every permutation in the sample such that ��1
s

(j) 6= ��1
0 (j), make

the necessary swap in order to have ��1
0 (j) = ��1

s

(j).

The fact that X
j

(�
s

��1
0) = 0, j is the largest item in its cycle in �

s

��1
0 is

proven in appendix ??.
At this point, the X̄

r

for r j are known and are not going to change for
any node in its subtree. Although X̄

r

for r > j are not known, they can be
lower bounded, as we explain in the following paragraphs. All these values of
X̄

r

for 1 r < n are used to evaluate the current partial solution. Since X̄
r

for r > j are just lower bounds, we know that if the evaluation of the current
partial solution is worse than the best solution found so far, then any complete
permutation that is situated in its subtree will be even worse. In this case, the
current branch can be bounded. On the other hand, if the current evaluation is
better than the best evaluation found so far, continue the deep-first, branch and
bound search in its subtree by passing X̄

r

for r j and the modified samples
to all its descendants.

Lower bound Let us now show how to obtain a lower bound for X̄
r

for r > j
at a node of level j. At each node the evaluation of X̄

j

is given as shown in
Equation (11). Since for all r < j, ��1

0 (r) = ��1
s

(r) then item ��1
0 (j) will be in

position r > j of ��1
s

. Therefore, Equation (11) can be also written as follows:

X̄
j

=
X

s

X

r>j

I(��1
s

(r) = ��1
0 (j))/m

Intuitively, X̄
j

can be seen as the proportion x/m where m is the number of
permutations in the sample and x counts how many permutations ��1

s

place the
item in ��1

0 (j) to the right of j. Basically, this lower bound X̄⇤
k

for k > j goes
through the collection of samples ��1

s

, counts the number of permutations that
place item q (for any value of q) to the right of the k and select the minimum
among them. Therefore, a simple lower bound for X̄

k

, denoted as X̄⇤
k

, can be
expressed as

X̄⇤
k

= min
X

s

X

r>k

I(��1
s

(r) = q)/m for any possible q (12)

The computational complexity of evaluating this lower bound for every re-
maining j < k is done in O((n� k)m). Such an overload in the computational
time is counterbalanced by the number of branches bounded by the algorithm,
which results in an e�cient algorithm, as will be shown in the experimental
section.

15

In [4] it is shown that every consensus permutation places the non-dirty
items in their dominating positions. This fact can be used when fitting an MC
to reduce the search space since we will focus on just non-dirty items.

Example Let us illustrate our proposed exhaustive algorithm with an exam-
ple. We will perform a sequence of evaluations of the branch of the tree as in
Figure 2 corresponding to the set of partial permutations [2], [24], [241].
In this process we will show how the X

j

are computed, the samples modified and
the lower bound obtained. Assume that the collection of samples is as follows:

�1 : 2134
�2 : 3241
�3 : 1342

��1
1 : 2134
��1
2 : 4213
��1
3 : 1423

We first show the evaluation of the node at level 1 that corresponds to
��1
0 = [2]. The first step is to compute X̄1 (the proportion of permutations

in the sample such that ��1
s

(1) 6= ��1
0 (1)) as shown in Equation (11).

X̄1 =
X

s

I(��1
s

(1) 6= ��1
0 (1))/3 = 2/3

Now, for the sake of e�ciency of the following evaluations, we make the necessary
swaps to have ��1

s

(1) = ��1
0 (1) (remember that the current partial solution is

��1
0 = [2]). The resulting collection, which will be used by every descendant

of the current node, is as follows:

�1 : 2134
�2 : 3142
�3 : 3142

��1
1 : 2134
��1
2 : 2413
��1
3 : 2413

Let us now show how the lower bound for every r > 1 is computed.

• The number of permutations in which item 1 is to the right of position 2
is 2.

• The number of permutations in which item 3 is to the right of position 2
is 3.

• The number of permutations in which item 4 is to the right of position 2
is 1.

Since the minimum is 1, then by using Equation (12) we get X̄⇤
2 = 1/3. The

same process is carried out for the lower bound X̄⇤
3 .

• The number of permutations in which item 1 is to the right of position 3
is 0.

• The number of permutations in which item 3 is to the right of position 3
is 2.

• The number of permutations in which item 4 is to the right of position 3
is 1.

16

Since the minimum is 0, then X̄⇤
2 = 0. Suppose that the evaluation of the

current partial permutation (2/3 + 1/3 + 0 = 1) is still better than that of the
best solution found so far and so the algorithm continues the deep first search
on the tree. Let the next node in level 2 be ��1

0 = [24]. The evaluation of X2

is
X̄2 =

X

s

I(��1
s

(2) 6= ��1
0 (2))/3 = 1/3

and the set of samples

�1 : 3142
�2 : 3142
�3 : 3142

��1
1 : 2413
��1
2 : 2413
��1
3 : 2413

The computation of the lower bound is now as follows:

• The number of permutations in which item 1 is to the right of position 3
is 0.

• The number of permutations in which item 3 is to the right of position 3
is 3.

The lower bound is now X̄⇤
3 = 0.

If the algorithm continues by evaluating ��1
0 = [241], it will result in the

same collection of permutations as the one above.

Partial permutations In the context of rankings, partial permutations are
generally used to consider preference information about a subset of the items.
When dealing with problems relevant to the cyclic structure of arrangements
the partialness can be also useful. In this sense, there can be information about
certain assignments and no information about some others. Moreover, they can
come as complete cycles of a subset of the items or as a partial cycles. Our
proposed learning processes can be adapted to handle partial permutations by
including an EM (expectation maximization) algorithm.

5 Experiments

In this section the empirical evaluation of the designed sampling and learning
algorithms is presented. Moreover, the MC and GMC are statistically motivated
with an experiment on real data.

5.1 Sampling MC and GMC

The next framework is designed to compare the three sampling algorithms in
terms of accuracy and computational time. In this way, the three algorithms
described in the previous sections are used to generate permutations of n 2
{10, 50, 100, 150} items and �0 = [123...n], the identity permutation. The values
of ✓ for MC are ✓ 2 {10�9, 10�6, 10�3, 1} while under the GMC each ✓

j

=
✓
j�1/2, j = 2, . . . , n � 1 being ✓1 2 {10�9, 10�6, 10�3, 1}. For each parameter
setting, each sampling process was repeated 10 times so the average results

17

are given. Due to lack of space we only show in this paper the results of the
representative selection ✓ 2 {10�9, 1} for MC and ✓1 2 {10�9, 1} for GMC1.

We show the results of generating samples of sizem 2 {100, 200, 300, . . . , 1600}
permutations. Following the recommendation in [15], the burn-in process for
the Gibbs algorithm discards the first n log(n) permutations.

In order to measure the accuracy of each sampling algorithm, our first choice
was to compare the likelihood of the samples. However, the di↵erences between
them were not fully appreciated due to their di↵erent sample sizes. There-
fore, instead of the likelihood, the accuracy results measure the sum of the
Kullback-Leibler divergences between the empirical distributions and the real
distributions of the random binary variables X

j

(���1
0).

We have previously shown how to decompose the Cayley distance between
two permutations � and �0 into n� 1 terms, organized in the vector X(���1

0).
These binary terms X

j

(���1
0) are independent random variables whose prob-

ability distribution P
Xj is given by Equation (3). For every permutation � in

the generated sample, we obtain its X(���1
0) vector. The empirical distribution

is P̂
Xj (Xj

= 1) =
P

�2S X
j

(���1
0)/m for each 1 j < n. The error of the

generated samples of permutations is given as the sum of the Kullback-Leibler
divergence between each empirical distribution of X

j

(���1
0) and the real one,

1 j < n,
P

n�1
j=1 KLDiv(P̂

Xj , PXj).
Figures 3 and 4 summarize the time and error results of the samples gener-

ated under the MC and GMC with the previously introduced algorithms. Each
figure shows the average time (x-axis) and error (y-axis) results of the simulation
of a distribution having a particular n and ✓ (✓1 in GMC). Each line corresponds
to a particular algorithm while each marker in each line corresponds to the re-
sults of a sample of a particular size m, the results of m and m + 100 being
joined by a line.

In Figure 3 we can see the results of the samples generated under the MC. It
plots the results of sampling two distributions, one with ✓ = 10�9 and another
with ✓ = 1. It is worth noticing that the first distribution is almost uniform
while there is very little consensus in the second distribution. As expected, as the
sample size grows, so do the required time and the accuracy. The time consumed
by the Gibbs sampler is always the smallest one and the error the largest one.
The error of Gibbs with m = 1600 is worse than the error of the Multistage
or the Distances processes with m = 100, despite its quick convergence to the
stationary probability distribution [15]. Moreover, the di↵erence in the accuracy
increases as ✓ grows.

The Multistage model and the Distances method o↵er almost the same accu-
racy. Their di↵erences are in terms of computational time, where the Distances
method is faster. So, is it worth considering the Multistage sampling method?
There are two reasons why the answer to this question is yes. First, the Distances
algorithm uses the Stirling number of the first kind, which quickly increase as n
rises, making it impossible to manage the count of permutations with standard
programming libraries for values of n larger than 200. The second reason is that
the Distances method can not be used to generate samples under the GMC, it
can only simulate the MC, which brings us to Figure 4.

Figure 4 shows the time and accuracy results of the Gibbs sampler and the

1
The complete results can be found on the web http://www.sc.ehu.es/ccwbayes/members/

ekhine/permus/sampling_full_results.pdf

18

Multistage sampling method. Again, each figure contains data of a particular
value of n and dispersion parameters ✓. Each method is plotted with a particular
marker symbol. A line joins the instances of size m and m + 100. Once more,
the Gibbs sampler o↵ers the best time results while the Multistage algorithm is
the most accurate for every instance. Also, for larger values of ✓ the di↵erence
between the accuracy of both methods increases.

5.2 Learning

In this section we test the performance of the algorithms for the estimation of
the maximum likelihood parameters.

The parameter setting is as follows. The number of items of the permutations
is n 2 {5, . . . , 13, 15, 20, 25}. The sample size is m 2 {1000, 1500, 2000}. The
dispersion parameter in MC is set as ✓ 2 {0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 4, 5, 6, 7, 8
, 9}. In the GMC case each ✓

j

can have di↵erent values. We give ✓1 2
{0.2, 0.4, 0.6, 0.8,
1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9} as reference and set ✓

j

= ✓1 � (✓1/2(n � 2))(j � 1) for
j > 1, i.e. ✓1 is the largest parameter while the value of the rest decrease linearly
to ✓

n�1 = ✓1/2. The central permutation is randomly chosen. For every con-
figuration of the parameters, the experiments are repeated 10 times and their
average results are shown. Due to lack of space, we only show in this paper
the results of the representative selection m = 1000 for both MC and GMC2.
We have not used the same parameter setting as in the previous section. In-
stead, this parameter setting is the same as that used in [32], where an e�cient
algorithm for the GMM under the Kendall’s-⌧ distance is introduced.

In order to analyze the quality of the exhaustive algorithm, the number of
partial solutions evaluated is given. Clearly, the larger the number of bounded
branches, the smaller the number of solutions evaluated by the algorithm and
the less time the exhaustive search will require. Moreover, in this way the
results are independent of the machine. However, in order to give an intuition
of the required time, we can say that the average number of nodes visited per
second for every experiment is 4000. Some of the instances are not given (see for
example that of n = 20 and ✓ = 1 in the MC case, Figure 5a). Those instances
were aborted for excessing the time limit, which was set at 15 hours for the MC
and 48 hours for the GMC.

Figure 5 shows the number of evaluations when learning from each of the
samples generated under di↵erent ✓ (X-axis) and for di↵erent values of n. Fig-
ure 5a concerns the MC learning case. Due to the e�ciency of the bounding
strategy, instances drawn from almost uniform distributions and large values of
n can be solved. Moreover, the number of partial solutions evaluated quickly
decreases as the dispersion parameter that generated the sample increases. For
✓ > 4 all these samples were correctly solved evaluating just n + 1 partial per-
mutations, although there are almost no dirty items in the samples.

Similar conclusions can be drawn when fitting a GMC (see Figure 5b). Once
again, when there is consensus in the sample the exhaustive process is very
e�cient. For this particular setting of the ✓

j

parameters, one can learn the MLE
for samples of permutations generated under ✓1 = 4 of n = 25 items in less than

2
The complete results can be found on the web http://www.sc.ehu.es/ccwbayes/members/

ekhine/permus/learning_full_results.pdf.

19

5 hours. We conclude that the described algorithm happens to be an e�cient
learning procedure that can deal with samples of permutations up to n = 25
items if there is some consensus in the sample. For instances drawn from almost
uniform distributions where this exhaustive algorithm is ine�cient in terms of
time, we propose the use of the heuristic algorithm introduced previously.

In Figure 6 the accuracy of the heuristic solutions are compared to that of
the MLE for the central permutation. In the MC (Figure 6a) the quality of the
heuristic solution is given as

P
m

s=1 |d(�s,�
+
0)� d(�

s

,�⇤
0)| where �+

0 and �⇤
0 are

the exact and heuristic solutions respectively. Conversely, in GMC (Figure 6b),
the accuracy is the di↵erence between the likelihood of �+

0 and �⇤
0 . In both

cases the heuristic algorithm is very accurate, being enough to have very little
consensus (say ✓ = 1 or ✓1 = 1) to find the optimal solution. Moreover, the
computational time was less than 300 ms for each of the 10 repetitions of the
heuristic search.

These results show that the lower bounding technique for the branching
algorithm is very e�cient despite its naivety. Moreover, the computational
overload is worth it due to the large number of branches bounded. For samples
with no consensus, where the probability of each permutation is almost the
same, and large n, the exhaustive algorithm requires a large amount of time.
In such a situation we may want to sacrifice the accuracy for a quick and good
solution with no guarantee of being optimal. In this situation we encourage the
use of the heuristic algorithm.

5.3 Real dataset

In order to better understand the behavior of the Mallows model under the
Cayley distance, we have used the model to fit a collection of permutations on
the Metazoan mtDNA dataset, [6], [1]. This dataset has been used on genome
rearrangements context for the construction of phylogenetic trees. By using the
GMC we can obtain an interpretation on the partition and swapping structure
of genes.

This dataset consists of 11 signed permutations of 36 items. Our aim is to
study how genes swap and group. We are not interested in the genes turning,
so we can ignore the signs. The experiment consists of fitting the GMC. As a
result, we obtain the consensus permutation, �0 and the vector of dispersion
parameters, ✓. The consensus �0 is the permutation from which those permu-
tations in the sample are supposed to have evolved. Figure 7 plots, for each
1 j < n the value ✓

j

.
As can be noticed, there are five ✓

j

values that are larger than the average,
those that are circled. We group those j with the largest ✓

j

values in the set
J = {1, 3, 6, 12, 18}. Several conclusions can be drawn from this fact.

Remember that the permutations in the sample, �
s

, are assumed to have
evolved from �0 by swapping items. Subsets of the items in the permutation
are cyclically swapped and items in J are likely to be the largest items in their
cycles. This implies that if j 2 J , then the cycle of items in the generation of
�
s

from �0 that include j is not likely to include item j0 > j.
For every pair of items i, j 2 J they are not likely to be part of the same

cycle that transformed �0 in �
s

. This implies that items j and i are not likely
to be swapped.

20

This last statement can be easily checked in this example. We consider every
pair of items 1 i < j 36 and count the number of times they are in the
same cycle in �

s

��1
0 . Each pair happens to be part of the same cycle in 7.29%

of the permutations. However, if we focus on the pairs of items in J only 1.09%
of the permutations have both items in the same cycle.

The GMK (Generalized Mallows under the Kendall’s-⌧ metric) is the most
popular distribution among those related to GMC. As we have stated, GMC and
GMK are not likely to fit correctly the same domains. The log likelihood is the
most popular way of measuring the goodness of fit of two di↵erent probability
models. We have computed the log likelihood for GMC and GMK and the result
is �885.09 for the former and �961.947 for the latter. As a consequence, we
can clearly state that the GMC fits this data better than the GMK.

6 Related models

In this section we explore the relations with other probabilistic models for per-
mutations.

Mallows The original distance based model for permutations introduced by
Mallows, [31], considered both Spearman’s and Kendall’s-⌧ distance. Diaco-
nis [14] uses these Mallows models to motivate a general class of metric-based
ranking models. The best known variant of these MM is the one that consid-
ers Kendall’s-⌧ as the metric for permutations, also known as the Mallows-�
model. This is mainly for two reasons. First, the MM under Kendall’s-⌧ metric
has nice theoretical properties that allow the e�cient computation of operations
such as sampling and tractable approximations for the learning. Moreover, it
can be posed as a model based on paired comparisons, [11]. The second reason
for its popularity is that among the proposed metrics, it is the most natural
for modeling distances in ranking domains. Note that the ranking domain is
the application of permutations that has become the most popular due to the
great number of commercial applications of the rankings, such as preference
elicitation.

Nevertheless, in this paper we focus on the Cayley distance. The MM and
GMM under Kendall’s-⌧ and Cayley distances define very di↵erent landscapes.
Their only common fact is that both are unimodal distributions centered around
�0.

The most prominent source of di↵erence for both models is the application
domain. In Figure 8 we show the correlation for both Kendall’s-⌧ and Cayley
metrics. We consider every possible permutation � 2 S6 (i.e., of six items).
Each � is plotted as the point (x, y) where x is the Cayley distance from � to
the identity and y is the Kendall distance from � to the identity. Remember
that the right invariant property implies that every permutation has an equal
number of permutations at each possible distance. Noise has been introduced
for each point for a clearer visualization of the results.

As the figure shows, Kendall’s-⌧ and Cayley distance are not correlated. In
fact, the information retained by the Kendall’s-⌧ distance captures preference
information while the Cayley distance deals with cyclic structure of the space of
permutations. Therefore, a GMM under the Kendall’s-⌧ distance will be suited
for preference domains, since it is the natural metric for measuring discrepancies

21

in voting problems. On the other hand, a GMC will be the model for dealing
with problems related to the cyclic structure of permutations, which can be
found in areas such as in Biology, scheduling, assignment problems, cryptogra-
phy . . .

Non-null Feller coupling Recall that Fellers coupling (Section 2.1) gener-
ates a permutation as a sequence of independent cycles. This process is divided
in n stages, each of which implies choosing an item that has not already been
selected. At each stage s, one out of the n � s + 1 possible items is uniformly
at random selected. Exactly one of them closes a cycle. This process generates
every possible permutation with equal probability.

Consider the parametric variation of the Feller coupling with parameter �
in which, at each step of the generation of �, the item that closes the cycle
and the rest do not have the same probability. In this way, we can write this
generalization as follows:

p(X
j

(�) = r) =

8
>><

>>:

�

�+ n� j
if r = 0 (the cycle is closed)

n� j

�+ n� j
if r = 1 (otherwise)

(13)

It is clear that the non-null Feller coupling and the MC describe the same
generative process.

Following this generative process, let C(n) = (C(n)
1 , C

(n)
2 , . . . , C

(n)
n

) be a vec-

tor where C(n)
i

equals the number of cycles of length i in a given permutation of
n items. Then, the distribution on C(n) under the Generalized Feller coupling
is given by the Ewens Sampling Formula, ESF (�), for any a 2 Zn

+, [44].

P (C(n) = a) = I(
nX

i=1

ia
i

= n)
n!

�(n)

nY

j=1

�aj

jaj

1

a
j

!

where I(·) is the indicator function and �(n) = �(� + 1) · · · (� + n + 1). The
ESF (�) was introduced in [20] in the context of population genetics and arises
also in areas such as Bayesian statistics. Among its many references we can
highlight [2] and [18]. The asymptotic distribution of this formula and its gen-
eralizations have been largely studied [22].

Random Utility models The Latent scale model is a special case of the
random utility models. This model considers the situation in which one is given
a set of options N = {1, . . . , n} and the goal is to select a subset of those items.
Therefore, the subset choice models define a probability distribution over every
possible subset of the input items.

In the latent scale model, each item j has an associated probability, l
j

. This
probability is independent of the probabilities of the rest of the alternatives. In
this way, the probability of selecting a particular subset is as follows:

P (X ✓ N) =
Y

x2X

l
x

Y

x 62X

(1� l
x

)

22

Note that every possible probability distribution over the subsets that can
be generated under the latent scale model can be generated by the GMC model
and vice versa. Both are therefore equivalent models.

Partition models These models define a probability distribution on the space
of partitions of n items. In particular, the limit of the uniform Dirichlet-
multinomial partition model tends to the Ewens sampling formula, [35]. Recall
that the generative process that gives rise to the Ewens sampling formula is
equivalent to the MC, as stated in the previous lines.

On the other hand, the GMC can be used to define a partition model as an
extension of the previous one. In this case each ✓

j

is related to the weight of
each item to be on a group with previous seen items.

Bayesian statistics In [16] Bayesian versions of classical problems are stud-
ied, one of which is the matching problem. The goal is to study the expected
number of fixed points under uniform and non-uniform priors. One of such
non-null models is the MC.

In [26] a variation of the MM is introduced. This variation makes use of the
cycle structure of the permutations. In particular, they define a prior distribu-
tion for the central permutation that uses an MM that assigns every permutation
with the same cycle decomposition the same probability.

7 Conclusions

The present paper deals with probability distributions over the set of permuta-
tions of n di↵erent items. In particular, we consider both Mallows model (MM)
and Generalized Mallows model (GMM). These models rely on a distance metric
for permutations, which in our case is the Cayley distance.

Our contributions include three sampling algorithms. The first one is the
Distances sampling method, which can simulate the MM. It makes use of the
Stirling numbers to generate permutations directly from the distribution. It
is therefore quick and accurate. We also introduce the Multistage sampling
method for simulating MM and GMM. Since it samples directly from the distri-
bution, it is as accurate as the Distances sampling algorithm. Moreover, as it is
not based on the Stirling numbers it can simulate distributions over permuta-
tions of very large n. The last algorithm is an adaptation of a Gibbs sampler to
the GMM. Since it does not sample directly from the distribution, it is not as
accurate as the previous algorithms. However it is very fast and with a careful
implementation it can simulate distributions of large n. Our results show that
the MM and GMM under the Cayley distance can be e�ciently sampled even
for large values of n.

These algorithms make use of two novel procedures to generate permutations
which can be useful by themselves. The first one generates uniformly at random
permutations of n items at a given distance d. The second one generates uni-
formly at random permutations with a given X(�) vector, i.e. the only available
information is whether or not an item is the largest item in its respective cycle
or not, but not the cycle structure. This can done by both generative processes
detailed in the Multistage sampling process, the forwards and the backwards.

23

Moreover, we also introduce two learning algorithms, a heuristic and an ex-
haustive one, for both MM and GMM. Due to a branch and bound strategy,
the exhaustive algorithm is very e�cient, even for samples that have little con-
sensus. The experimental section reports the results of the experiments for n
up to 25. when there is no consensus in the sample or the number of items is
very large, we propose a heuristic algorithm. This algorithm is able to learn
the optimal parameters of the distribution when there is some consensus in the
sample. When there is no consensus the obtained solution is very close to the
optimal. Moreover, it is a very quick algorithm.

As future work, the authors plan working on the improvement on the bounds
of the exhaustive learning algorithm as well as extending present techniques to
di↵erent metrics and ranking models.

A Counting permutations consistent with X (see

Section 3.2)

The process of generating a permutation uniformly at random and that of count-
ing permutations are directly related. As we have already stated, in the forwards
generation of permutations from the MC and GMC, there is exactly one way
of closing a cycle at each stage j. See in Section 2.1 for the intuition and Sec-
tion 3.2 for its application on the generation from a GMC. This means that the
number of di↵erent permutations consistent with a given X(⇡) vector is given
by the following equation:

Number of permutations ⇡ consistent with X
j

(⇡) =
Y

8j|Xj(⇡)=1

(n� j)

This work has been partially supported by the Saiotek and IT-609-13 pro-
grams (Basque Government), TIN2010-14931 (Spanish Ministry of Science and
Innovation), COMBIOMED network in computational biomedicine (Carlos III
Health Institute), 2011-CIEN-000060-01 (Diputación Foral de Gipuzkoa) and
CRC-Biomarkers project (6-12-TK-2011-014, Diputación Foral de Bizkaia). Cur-
rently, Ekhine Irurozki holds a grant BES-2009-029143 from the Spanish Min-
istry of Science and Innovation.

References

[1] Raman Arora and Marina Meila. Consensus Ranking with Signed Per-
mutations. In AISTATS, volume 31 of JMLR Proceedings, pages 117–125.
JMLR.org, 2013.

[2] Richard Arratia, A D Barbour, and Simon Tavaré. Logarithmic combinato-
rial structures: a probabilistic approach. EMS Monographs in Mathematics.
European Mathematical Society (EMS), Zürich, 2003.

[3] D Bayer and P Diaconis. Trailing the dovetail shu✏e to its lair. The Annals
of Applied Probability, 2(2):294–313, 1992.

24

[4] Nadja Betzler, Jiong Guo, Christian Komusiewicz, and Rolf Niedermeier.
Average parameterization and partial kernelization for computing medians.
Journal of computer and system science, 77(4):774–789, 2011.

[5] David M Blei, Thomas L Gri�ths, and Michael I Jordan. The nested
chinese restaurant process and bayesian nonparametric inference of topic
hierarchies. J. ACM, 57(2), 2010.

[6] Guillaume Bourque and Pavel A Pevzner. Genome-scale evolution: Recon-
structing gene orders in the ancestral species. Genome Research, 1(12):26–
36, 2002.

[7] Josu Ceberio, Alexander Mendiburu, and Jose A Lozano. Introducing The
Mallows Model on Estimation of Distribution Algorithms. In International
Conference on Neural Information Processing (ICONIP), number 23-25,
Shangay, 2011.

[8] Weiwei Cheng and Eyke Hüllermeier. A New Instance-Based Label Rank-
ing Approach Using the Mallows Model. In Wen Yu, Haibo He, and Nian
Zhang, editors, Advances in Neural Networks - ISNN, volume 5551 of Lec-
ture Notes in Computer Science, pages 707–716. Springer, 2009.

[9] Weiwei Cheng and Eyke Hullermeier. A Simple Instance-Based Approach
to Multilabel Classification Using the Mallows Model. In Workshop Pro-
ceedings of Learning from Multi-Label Data, pages 28–38, Bled, Slovenia,
2009.

[10] Douglas Edward Critchlow. Ulam’s metric. In Encyclopedia of Statistical
Sciences, 9:379–380, 1988.

[11] Douglas Edward Critchlow, Michael A Fligner, and Joseph S Verducci.
Probability Models on Rankings. Journal of Mathematical Psychology,
35:294–318, 1991.

[12] Angela D’Elia and Domenico Piccolo. A mixture model for preferences
data analysis. Computational Statistics & Data Analysis, 49(3):917–
934, 2005.

[13] M Deza and T Huang. Metrics on permutations, a survey. Journal of
Combinatorics, Information and System Sciences, 23:173–185, 1998.

[14] Persi Diaconis. Group representations in probability and statistics. Institute
of Matematical Statistics, 1988.

[15] Persi Diaconis. The Markov chain Monte Carlo revolution. Bulletin of the
American Mathematical Society, 46(2):179–205, November 2008.

[16] Persi Diaconis and Susan Holmes. A Bayesian Peek into Feller Volume
I. Sankhy: The Indian Journal of Statistics, Series A (1961-2002), 64(3),
2002.

[17] Persi Diaconis and Arun Ram. Analysis of systematic scan Metropolis
algorithms using Iwahori-Hecke algebra techniques. The Michigan Mathe-
matical Journal, 48(1):157–190, 2000.

25

[18] Peter Donnelly. Partition structures, {Polya} urns, the {Ewens} sampling
formula, and the ages of alleles. Theoretical Population Biology, 30(2):271–
288, 1986.

[19] Steven Neil Evans, Rudolf Grubel, and Anton Wakolbinger. Trickle-down
processes and their boundaries. Electronic Journal of Probability, 17, Jan-
uary 2012.

[20] Warren J Ewens. The sampling theory of selectively neutral alleles. Theo-
retical Population Biology, 3(1):87–112, 1972.

[21] William Feller. An Introduction to Probability Theory and Its Applications,
volume 1. Wiley, 1968.

[22] V Féray. Asymptotic behavior of some statistics in Ewens random permu-
tations. ArXiv e-prints, 2012.

[23] Michael A Fligner and Joseph S Verducci. Distance based ranking models.
Journal of the Royal Statistical Society, 48(3):359–369, 1986.

[24] Michael A Fligner and Joseph S Verducci. Probability Models and Statistical
Analyses for Ranking Data. Springer, 1993.

[25] Alexander Gnedin and Grigori Olshanski. The two-sided infinite exten-
sion of the Mallows model for random permutations. Advances in Applied
Mathematics, 48(5):615–639, 2012.

[26] Jayanti Gupta and Paul Damien. Conjugacy class prior distributions on
metric-based ranking models. pages 433–445, 2002.

[27] Jonathan Huang, Carlos Guestrin, and Leonidas Guibas. E�cient Inference
for Distributions on Permutations. Representations, pages 1–8.

[28] Guy Lebanon and John La↵erty. Cranking: Combining rankings using con-
ditional probability models on permutations. In International Conference
on Machine Learning (ICML), pages 363–370, 2002.

[29] Tyler Lu and Craig Boutilier. Learning Mallows Models with Pairwise
Preferences. Learning, 2011.

[30] Duncan Luce R. Individual Choice Behavior. Wiley, New York, 1959.

[31] C L Mallows. Non-null ranking models. Biometrika, 44(1-2):114–130, 1957.

[32] Bhushan Mandhani and Marina Meila. Tractable Search for Learning Ex-
ponential Models of Rankings. Journal of Machine Learning Research,
5:392–399, 2009.

[33] Yi Mao and Guy Lebanon. Non-Parametric Modeling of Partially Ranked
Data. Journal of Machine Learning Research, 9:2401–2429, 2008.

[34] John I Marden. Analyzing and Modeling Rank Data. Chapman & Hall,
1995.

26

[35] Peter McCullagh. Random Permutations and Partition Models. In Mio-
drag Lovric, editor, International Encyclopedia of Statistical Science, pages
1170–1177. Springer Berlin Heidelberg, 2011.

[36] Marina Meila and Le Bao. Estimation and Clustering with Infinite Rank-
ings. In Uncertainty in Artificial Intelligence (UAI), pages 393–402, Cor-
vallis, Oregon, 2008. AUAI Press.

[37] Marina Meila and Harr Chen. Dirichlet Process Mixtures of Generalized
Mallows Models. In Uncertainty in Artificial Intelligence (UAI), pages
285–294, 2010.

[38] N Mladenović and P Hansen. Variable neighborhood search. Comput. Oper.
Res., 24(11):1097–1100, 1997.

[39] Thomas Brendan Murphy and Donal Martin. Mixtures of distance-based
models for ranking data. Computational Statistics & Data Analysis,
41(34):645–655, 2003.

[40] R L Plackett. The Analysis of Permutations. Journal of the Royal Statistical
Society, 24(10):193–202, 1975.

[41] Vladimir Popov. Multiple genome rearrangement by swaps and by element
duplications. Theoretical computer science, 385(1-3):115–126, 2007.

[42] Paige E. Rinker and Daniel N Rockmore. A Mallows model for Coxeter
groups and buildings. PhD thesis, Datmouth college, Hanover, New Hamp-
shire, 2011.

[43] Shannon Starr. Thermodynamic limit for the Mallows model on S {n}.
Journal of Mathematical Physics, 50(9):95208, 2009.

[44] Simon Tavaré and Warren J Ewens. Multivariate Ewens distribution, chap-
ter 41, pages 232–246. Wiley, 1997.

[45] L L Thurstone. A law of comparative judgment. Psychological Review,
34(4):273–286, 1927.

[46] Herbert S. Wilf. East Side, West Side . . . - an introduction to combinatorial
families-with Maple programming. Technical report, 1999.

[47] Andrew Ziegler, Eric Christiansen, David Kriegman, and Serge Belongie.
Locally Uniform Comparison Image Descriptor. In P Bartlett, F C N
Pereira, C J C Burges, L Bottou, and K Q Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1–9. 2012.

27

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Time

E
rr

o
r

Multistage
Distances
Gibbs

(a) n = 10, ✓ = 10

�9

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Time

E
rr

o
r

Multistage
Distances
Gibbs

(b) n = 10, ✓ = 1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Distances
Gibbs

(c) n = 50, ✓ = 10

�9

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Distances
Gibbs

(d) n = 50, ✓ = 1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Distances
Gibbs

(e) n = 100, ✓ = 10

�9

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

Time

E
rr

o
r

Multistage
Distances
Gibbs

(f) n = 100, ✓ = 1

10
0

10
5

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Distances
Gibbs

(g) n = 150, ✓ = 10

�9

10
0

10
5

10
−2

10
−1

10
0

10
1

10
2

Time

E
rr

o
r

Multistage
Distances
Gibbs

(h) n = 150, ✓ = 1

Figure 3: Time and Kullback-Leibler divergence between the generated sample
and the MM for di↵erent n and ✓.

28

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Time

E
rr

o
r

Multistage
Gibbs

(a) n = 10, ✓ = 10

�9

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Time

E
rr

o
r

Multistage
Gibbs

(b) n = 10, ✓ = 1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Gibbs

(c) n = 50, ✓ = 10

�9

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Gibbs

(d) n = 50, ✓ = 1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Gibbs

(e) n = 100, ✓ = 10

�9

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Gibbs

(f) n = 100, ✓ = 1

10
0

10
5

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Gibbs

(g) n = 150, ✓ = 10

�9

10
0

10
5

10
−2

10
−1

10
0

10
1

Time

E
rr

o
r

Multistage
Gibbs

(h) n = 150, ✓ = 1

Figure 4: Time and Kullback-Leibler divergence between the generated sample
and the GMM for di↵erent n and ✓1 while ✓

j

= ✓
j�1/2, 2 j n� 1.

29

0 1 2 3 4 5 6 7 8 9
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

N
u

m
b

e
r

o
f

n
o

d
e

s

Generating θ

n=5
n=6
n=7
n=8
n=9
n=10
n=11
n=12
n=13
n=15
n=20
n=25

(a) MC

0 1 2 3 4 5 6 7 8 9
10

0

10
2

10
4

10
6

10
8

10
10

N
u

m
b

e
r

o
f

n
o

d
e

s

Generating θ

n=5
n=6
n=7
n=8
n=9
n=10
n=11
n=12
n=13
n=15
n=20
n=25

(b) GMC

Figure 5: Number of partial solutions evaluated by the exhaustive algorithm for
a sample of 1000 permutations.

30

10
0

0

0.002

0.004

0.006

0.008

0.01

0.012

D
ife

re
n

ce
 in

 t
h

e
 d

is
ta

n
ce

Generating θ

n=5
n=6
n=7
n=8
n=9
n=10
n=11
n=12
n=13
n=15
n=20
n=25

(a) MC, di↵erence in the distances

10
0

0

5

10

15

20

25

30

35

D
ife

re
n

ce
 in

 t
h

e
 li

ke
lih

o
o

d

Generating θ

n=5
n=6
n=7
n=8
n=9
n=10
n=11
n=12
n=13
n=15
n=20
n=25

(b) GMC, di↵erence in the likelihood

Figure 6: Di↵erence between the exhaustive and the heuristic solution.

31

0 5 15 25 35

0
2

4
6

j

θ j

Figure 7: Dispersion parameter vector estimated for the mgr problem

0 1 2 3 4 5

0
5

1
0

1
5

Cayley

K
e
n
d
a
ll

Figure 8: Correlation between Cayley and Kendall’s-⌧ metrics fon S6

32

