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The aims of this work were (i) to evaluate the potential of nanostructured lipid carriers (NLCs) as a tool to
enhance the oral bioavailability of poorly soluble compounds using saquinavir (SQV), a BCS class IV drug
and P-gp substrate as a model drug, and (ii) to study NLC transport mechanisms across the intestinal barrier.
Three different NLC formulations were evaluated. SQV transport across Caco-2 monolayers was enhanced up
to 3.5-fold by NLCs compared to SQV suspension. M cells did not enhance the transport of NLCs loaded with
SQV. The size and amount of surfactant in the NLCs influenced SQV's permeability, the transcytosis pathway
and the efflux of SQV by P-gp. An NLC of size 247 nm and 1.5% (w/v) surfactant content circumvented P-gp
efflux and used both caveolae- and clathrin-mediated transcytosis, in contrast to the other NLC formulations,
which used only caveolae-mediated transcytosis. By modifying critical physicochemical parameters of the
NLC formulation, we were thus able to overcome the P-gp drug efflux and alter the transcytosis mechanism
of the nanoparticles. These findings support the use of NLCs approaches for oral delivery of poorly
water-soluble P-gp substrates.

© 2012 Published by Elsevier B.V.
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1. Introduction

Most of newly discovered chemical entities are poorly soluble
in water [1–4]. Enhancing the oral bioavailability of these poorly
water-soluble compounds is of great interest to the scientific commu-
nity and a key area of pharmaceutical research. One of themostwidely
studied strategies in this regard is nanotechnology [2,5–8], because of
the ability of nanoparticles to pass multiple biological barriers and to
release a therapeutic compound within the optimal dosage range.
Polymeric nanoparticles [9], lipid nanocarriers [10–12], micelles
[13,14], and nanosuspensions [5,15] appear to be promising tools for
delivery of poorly soluble drugs, yet few have been commercialized.

Among the wide variety of current nanocarriers, solid lipid
nanoparticles (SLNs) present certain advantages compared to other col-
loidal systems, including that they can be prepared without an organic
solvent and using suitable large scale production method (e.g., high
pressure homogenization) [16]. However, SLNs have a relatively low
loading capacity for several drugs compared to other nanocarrier sys-
tems, and are associated with possible expulsion of the drug during
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storage, and have a high water content. Nanostructured lipid carriers
(NLCs) are a second generation of SLNs, which have a solid matrix
mixed with a liquid lipid (oil) to form an unstructured matrix that
helps increase the drug loading capacity of nanoparticles and avoids
or reduces drug expulsion from the matrix during storage [17,18].

Nanoparticle size and surface properties, among other physico-
chemical properties of nanoparticles, strongly influence the mecha-
nisms involved in nanoparticle cell internalization [19–21]. The
non-phagocytic pathways, involving clathrin-mediated endocytosis,
caveolae-mediated endocytosis and macropinocytosis, are the most
common mechanisms of nanoparticle absorption/transcytosis by
the oral route [22]. Nevertheless, designing tunable nanocarriers in
order to control the endocytic pathway remains a challenge. Increas-
ing our understanding of the mechanisms and processes involved in
nanoparticle transport across the intestinal barrier and the factors
limiting their transport across this barrier could help improve the
formulations to enhance drug absorption [23–26]. Improved knowl-
edge of these processes can help them fulfill their potential as tools
for delivery of poorly water-soluble drugs by the oral route and pro-
vide new insights in their potential application for the treatment of
different pathologies using this route.

The aim of this work was, first, to evaluate NLCs as tools to en-
hance the oral bioavailability of poorly water-soluble compounds
using saquinavir (SQV), a class IV drug in the Biopharmaceutical
Classification System (BCS), and a P-glycoprotein (P-gp) substrate,
aquinavir-loaded nanostructured lipid carriers across the intestinal
12.12.021
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as amodel drug and, second, to studyNLC transportmechanisms across
the intestinal barrier.Weevaluated SQV transport and then conducted a
mechanistic study of NLC transport across an in vitro Caco-2 model,
simulating the enterocyte barrier, and a Caco-2/Raji cell M inverted
coculturemodel simulating, the intestinal follicle-associated epithelium
(FAE model) [27]. The influence of controversial parameters that could
affect nanoparticle transport, such as the size and the surfactant content
of the aforementioned nanoparticles, was investigated and their contri-
bution to nanoparticle endocytosis and transcytosis was evaluated
using endocytosis inhibitors. Finally, the ability of these nanocarriers
to overcome P-gp efflux was also assessed.

2. Materials and methods

2.1. Materials

Saquinavir mesylate (SQV) was kindly provided by Roche (Mann-
heim, DE). Verapamil, chlorpromazine, nystatin, methyl-ß-cyclodextrin
(MßCD), lovastatin, coumarin-6, Rose Bengal and propidium iodide
(PI) were purchased from Sigma-Aldrich (St. Louis, MO). Precirol
ATO®5 was kindly provided by Gattefossé (Madrid, SP). Tween 80 was
purchased from Vencaser (Bilbao, SP). Poloxamer 188 was a gift from
BASF (Madrid, Spain). Miglyol 812N/F was purchased from Sasol
(Hamburg, DE). Potassium dihydrogen phosphate (KH2PO4) and
disodium hydrogen phosphate (Na2HPO4) were obtained from Merck
(Darmstadt, DE). Acetonitrile (gradient HPLC grade) was purchased
from VRW (Leuven, BE).

2.2. Preparation of the formulations

2.2.1. NLC preparation
SQV-NLCs were prepared using the high pressure homogenization

technique [28]. Briefly, Precirol ATO®5 (5 g), Miglyol 812 (0.5 mL)
and SQV (50 mg) were blended and melted at 75 °C until a uniform
and clear oil phase was obtained. The aqueous phase was prepared
by dispersing Tween 80 (2%) (w/v) and poloxamer 188 (1%) (w/v)
or Tween 80 (1%) (w/v) and poloxamer 188 (0.5%) (w/v) in water
(50 mL) and heating to the same temperature as the lipid phase.
The hot aqueous phase was then added to the oil phase and the mix-
ture was sonicated for 15 s to form a hot pre-emulsion, which was
subsequently homogenized at 80 °C and 500 bar using a Stansted
nG12500 homogenizer (SFP, Essex, UK) for ten homogenization cy-
cles. To obtain NLCs with an increased particle size, one of the batches
was not homogenized and the pre-emulsion was used.

To track the entry of nanoparticles into the cells, SQV-NLCs were la-
beledwith the fluorescent dye coumarin-6. Briefly, 5 mg of coumarin-6
was incorporated in the lipid phase of the formulation and the prepara-
tion continued as aforementioned.

2.2.2. SQV suspension
To evaluate free SQV transport compared to nanoparticle trans-

port, an SQV suspension was prepared. SQV (50 mg) was dis-
persed in a transport buffer (Hank's Balance Solution Buffer, HBSS)
(50 mL). The concentration of SQV was calculated by dissolving the
SQV suspension in acetonitrile and analyzing the resultant solution by
HPLC.

2.3. NLC characterization

2.3.1. Size and zeta potential measurements
The size of the NLCs was determined using photon correlation spec-

troscopy (PCS) and the zeta potential wasmeasured using Laser Doppler
Velocimetry (LDV) with a Malvern Zetasizer Nano ZS (Malvern Instru-
ments Ltd., Worcestershire, U.K). Samples were diluted in MilliQ™
water before measurement.
Please cite this article as: A. Beloqui, et al., Mechanism of transport of s
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2.3.2. Surface hydrophobicity of nanoparticles
The surface hydrophobicity of the NLCs was evaluated using the

Rose Bengal method [29]. Briefly, increasing nanoparticle concentra-
tions were diluted to a constant 20 μg/mL of Rose Bengal solution.
The surface of the nanoparticles and the aqueous phase were consid-
ered as two phases. The absorption of the hydrophobic dye to the
nanoparticle surface was measured by calculating the partitioning
coefficient (PQ). The PQ values were plotted versus the increasing
nanoparticle concentrations. The surface hydrophobicity of the
nanoparticles was quantified by the slope of the line. The slope in-
creases with increasing surface hydrophobicity.

2.3.3. Drug encapsulation efficiency
The encapsulation efficiency (EE) of SQV-NLCs was calculated by

determining the amount of free drug using a filtration technique.
The SQV-NLC suspension was placed in the upper chamber of
Amicon® centrifugal filters (molecular weight cutoff, MWCO,
100,000 Da, Millipore, Spain) and centrifuged for 20 min at 1500 g.
The unencapsulated SQV in the filtrate was determined using HPLC.
The total drug content in the SQV-NLCs was determined by dissolving
the SQV-NLCs in acetonitrile to release trapped SQV. The resulting so-
lution was analyzed using HPLC. The drug loading content was the
ratio of incorporated drug to lipid (w/w).

Encapsulation efficiency and drug loading, each determined in
triplicate, were calculated as follows:

EE %ð Þ ¼ Amount of SQV in NLCs
Initial amount of SQV

x100

Drug loading %ð Þ ¼ Amount of SQV in NLCs
Amount of lipid in NLCs

x100:

Coumarin-6 encapsulation was assessed by ultracentrifuging
coumarin-6-SQV-loaded NLC suspension (1500 g, 20 min) using
Millipore (Madrid, Spain) Amicon® ultra centrifugal filters (molecu-
lar weight cutoff, MWCO, 100,000 Da). Free coumarin-6 present in
the filtrate was then measured using fluorimetry (SFM 25 fluorome-
ter, Konton Instruments).

2.3.4. Determination of saquinavir by HPLC
HPLC for SQVwas performedwith aWaters 1525HPLC Binary Pump

(Waters Corp., Milford, USA). The detector was aWaters 2487. The sys-
tem was controlled by Breeze software (Waters, UK). A Nucleodur
100-5 C18 5 μm (4 mm×125 mm) was used at room temperature.
The mobile phase contained 46% acetonitrile and 54% (v/v) of 70 mM
KH2PO4 was adjusted to pH 5 with 80 mM Na2HPO4, as previously
reported by Albert et al. [30]. The flow rate was set at 1 mL/min in
isocratic elution and the injected sample volume was 50 μL, except for
the analysis of SQV under certain inhibitors for which a sample volume
of 100 μL was necessary to reach the limit of quantification. The assay
was linear over the SQV concentration range of 0.025–15 μg/mL. The
intra- and inter-day coefficients of variation were both within ±5%.
The limits of detection (LOD) and of quantification (LOQ) of SQV were
0.0125 μg/mL and 0.025 μg/mL, respectively. No interfering peaks
were detected within the assay.

2.4. In vitro dissolution assay

The in vitro dissolution assay was performed in HBSS (transport
buffer during the in vitro assays) using Quix-Sep® cells (Membrane
Filtration Products. Inc., TX, USA) at 37 °C under magnetic stirring. A
dialysis regenerated cellulose membrane with an MWCO between
6000 and 8000 Da was used. The membrane was first soaked in
medium for 24 h before placing it in a Quix-Sep® cell. Five hundred
microliters of the SQV-NLC suspension was placed in the cell and
introduced into a 200 mL of HBSS. After 2 h, samples were
aquinavir-loaded nanostructured lipid carriers across the intestinal
12.12.021
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withdrawn from the medium and analyzed by HPLC using the above
mentioned method. The dissolution test was carried out in triplicate
for each formulation under sink conditions.

In addition, in order to assess the stability of the nanoparticles
in the gastrointestinal tract, the in vitro dissolution assay was
performed in simulated gastric fluid (SGF) and in simulated intestinal
fluid (SIF) as described in the European Pharmacopeia (European
Pharmacopeia, 2010) and performed as abovementioned. Samples
were withdrawn after 2 h and 8 h in SGF and SIF, respectively.

2.5. In vitro culture studies

2.5.1. Cell cultures: Caco-2 and FAE monolayers
All cell culture media and reagents were purchased from Invitrogen

(Merelbeke, BE). Caco-2 cells (clone 1) were kindly provided by
Dr Maria Rescigno, University of Milano-Bicocca (Milano, Italy) [31]
and used from passage x+12 to x+30. Human Burkitt's lymphoma
Raji B cell line was purchased from American Type Culture Collection
(Manassas, VA, USA) and used between passages 102–110. Caco-2
cells were grown in DMEM supplemented with 10% (v/v) inactivated
fetal bovine serum, 1% (v/v) non-essential amino-acids, and 1% (v/v)
L-glutamine, at 37 °C under a 10% CO2/90% air atmosphere. Caco-2
cells were grown on inserts in the same medium, but further
supplemented with 1% (v/v) of penicillin–streptomycin (PEST). Raji
cells were grown in a suspension culture, cultivated in RPMI medium
supplemented with 10% (v/v) inactivated fetal bovine serum, 1% (v/v)
non-essential amino-acids, 1% (v/v) L-glutamine, and 1% (v/v) PEST, at
37 °C in a 5% CO2/95% air atmosphere.

Caco-2 cells were seeded at a density of 5×105 cells/well on
Transwell® polycarbonate inserts (12 mm insert diameter, 3 μm pore
size) (Corning Costar, Cambridge, U.K.) and cultivated over 21 days.
The medium was replaced every second day. The inverted FAE model
was obtained by co-culturing Raji and Caco-2 as previously reported
by des Rieux et al. [27,32]. Briefly, after 3 to 5 days of Caco-2 seeding, in-
serts were inverted, a piece of silicone tube was placed into the inserts
and maintained until day 21 in large Petri dishes. The medium was re-
placed every other day, until day 9–11 when Raji cells were then
added to the basolateral compartment for the conversion of Caco-2
cells into M cells at a density of 2.5×105 cells/well.

2.5.2. Cytotoxicity studies
Cell viability was assessed after the co-incubation of 20,000

Caco-2 cells/well on a 96-well tissue culture plate (Costar®
Corning® CellBIND Surface) with the aforementioned formulations
in dispersion in culture medium. After 2 h of incubation, the super-
natants of each well were removed and preserved at 4 °C for the
LDH assay and the cells were incubated again for 3 h with 100 μL
0.5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-(2,5-diphenyltetrazolium
bromide) (Sigma-Aldrich, BE) (MTT assay). The measurement of lac-
tate dehydrogenase (LDH) activity released from the cytosol of dam-
aged cells (LDH assay) (Roche Diagnostics Belgium, Vilvoorde, BE)
was performed following manufacturer's instructions [33].

The IC50s for the different formulations were calculated using the
GraphPad Prism 5 program (CA, USA). All MTT assays were repeated
in triplicate.

The LDH release induced by the different nanoparticles did not ex-
ceed 25%, even for the highest concentration.

The integrity of the monolayer was also corroborated by measuring
the trans-epithelial electrical resistance (TEER) before and after the
transport studies on day 21. The measurements were carried out at
37 °C using an epithelial voltohm meter (EVOM, World Precision In-
struments, Berlin, DE). Monolayers with TEER values over 200 Ωcm2

for Caco-2 monolayers and over 100 Ωcm2 for the FAE model were
used. TEER values after transport studieswere not significantly different
to initial values unless otherwise stated.
Please cite this article as: A. Beloqui, et al., Mechanism of transport of s
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2.5.3. Evaluation of SQV permeability across intestinal in vitro models
The permeability of SQV across gastrointestinal in vitro models

was evaluated by comparing free SQV with SQV-NLC formulations,
in Caco-2 cells and in the FAE monolayers.

The experiments were conducted at 37 °C or 4 °C by adding a
volume of 400 μL at 44 μg/mL SQV concentration in HBSS on the api-
cal side and 1 mL of HBSS on the basolateral side. After 2 h of incuba-
tion, samples were collected from the basolateral side and SQV
concentration was measured by HPLC: The apparent permeability co-
efficient (Papp, cm s−1) was calculated according to the following
equation [23,24]:

Papp ¼ dQ=dtx 1=AC0

where dQ/dt is the transport rate (μg/s), C0 is the initial drug concen-
tration on the apical side (μg/mL), and A is the surface area of the
membrane filter (cm2).

After transport experiments, cell monolayers were washed twice
in cold HBSS and fixed in paraformaldehyde (PFA) 4% for subsequent
staining.

For the assessment of FAE model functionality in each experiment
transport studies was conducted under the aforementioned conditions
with commercial fluorescent carboxylated nanoparticles (0.2 μm)
(Gentaur, BE) [26,34]. A nanoparticle suspension (400 μL) with final
concentration of 4.5×109 nanoparticles/mL was added on the apical
side and inserts were incubated at 37 °C for 2 h. After this incubation
time, basolateral solutions were then sampled and the number of
transported nanoparticles was measured using a flow cytometer (BD
FACSCalibur). Nanoparticle transport was expressed as mean±SD.

2.5.4. Mechanisms of transport of SQV-NLCs across Caco-2 cells
In order to evaluate the endocytosis mechanisms involved in

SQV-NLC transport across Caco-2 cells, the monolayers were pre-
incubated for 1 h at 37 °C with 400 μL of a solution consisting of differ-
ent concentrations of endocytosis inhibitors in transport buffer. After
1 h, SQV-NLC was added into the inhibitor solution on the apical side
and co-incubated for 2 h. Chlorpromazine of 10 μg/mL was used as an
inhibitor of receptor-mediated and clathrin-mediated endocytosis
[23,24]. The endocytic pathway of caveolae/lipid raft mediated endocy-
tosis was inhibited with nystatin of 50 μg/mL [35,36]. MßCD 10 mM
(13.2 mg/mL) in the presence of lovastatin 1 μg/mL, an inhibitor of de
novo synthesis of cholesterol [37], was used for the inhibition of
caveolae and clathrin-mediated pathways by cholesterol depletion [37].

As mentioned previously, SQV is a well-known P-gp substrate
[38,39]. To evaluate the role of SQV-NLCs in the inhibition of P-gp,
cells were pretreated with a solution of 100 μM verapamil, a
well-known P-gp inhibitor [39,40], for 1 h and nanoparticles were
subsequently added on the apical side and incubated for 2 h in the
presence of verapamil. The evaluation of SQV suspension Papp was
also carried out under P-gp inhibition to confirm that SQV was a
P-gp substrate in our Caco-2 cell model.

In all the assays carried out in the presence of inhibitors, several
inserts were kept as controls and the transport studies were carried
out in transport buffer instead of in inhibitor solutions.

2.5.5. Intracellular uptake of nanoparticles by Caco-2 cells
Entry of nanoparticles into Caco-2 cells was studied quantitatively

by flow cytometry and qualitatively by confocal laser scanning
microscopy (CLSM), for which coumarin-6 (λem=505 nm) loaded
nanoparticles were employed.

For the flow cytometry study, Caco-2 cells were seeded in 24-well
cell culture plates at a density of 5×105 cells per well and allowed to
adhere for 48 h until confluency. As for the transport studies, cells
were co-incubated with 400 μL of a coumarin-6 loaded nanoparticles
suspension in transport buffer (17.5 μL per 100 μL of buffer). After 2 h
of incubation with fluorescent nanoparticles, cells were washed three
aquinavir-loaded nanostructured lipid carriers across the intestinal
12.12.021
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Table 1 t1:1

t1:2Summary of formulation composition and particle size, zeta potential and polydisper-
t1:3sity index (P. I.) per formulation (n=3; data are expressed as mean±SD).

t1:4NLC formulations

t1:5A B C

t1:6Composition Tween 80 (g) 1 0.5 0.5
t1:7Poloxamer 188 (g) 0.5 0.25 0.25
t1:8Precirol ATO® 5 (g) 5 5 5
t1:9Mygliol 812N/F (mL) 0.5 0.5 0.5
t1:10SQV (mg) 50 50 50
t1:11H2O (mL) 50 50 50
t1:12Homogenization Yes Yes No
t1:13Characterization Size (nm) 165±6 247±4 1090±6
t1:14Zeta (mV) −21±8 −33±7 −31±5
t1:15P. I. 0.16 0.35 0.6
t1:16Surface

hydrophobicity (slope)
0.054 0.040 0.008

t1:17EE (%) 99±0.2 99±0.02 99±0.14
t1:18Drug loading (%) 0.90±0.00 0.90.00 0.90.00

Fig. 1. Saquinavir (SQV) Papp values obtained after 2 h of incubation of the three NLC
formulations (A, B and C) and a SQV suspension in the Caco-2 monolayers and the
FAE monolayers. (n=9, mean±SD, *pb0.05, **pb0.01, ***pb0.001).§pb0.05 versus
Caco-2 monolayers.
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times with PBS and detached from the plates by trypsinization. Cells
were then centrifuged at 1500×g, the supernatant was discarded,
the cells were resuspended in PBS and fluorescence was measured
using a BD FACSCalibur flow cytometer and BD CellQuest software
(Becton Dickinson Biosciences, San Jose, CA, US). Cell fluorescence
was quantified by measuring the fluorescence of coumarin-6 at
525 nm (FL1). To avoid fluorescence overestimation inside the cells
from free dye entry, coumarin-6 was added as a solution (100 μg/mL)
and prepared as described by Rivolta et al. [41]. For cell viability mea-
surements, the propidium iodide reagent was employed. The reagent
was added to each sample at a final concentration of 10 μg/mL, and,
after 10 min of incubation, the fluorescence corresponding to dead
cells was measured at 620 nm (FL2). For each sample, 10,000 events
were collected. The data were subsequently analyzed using the FlowJo
data analysis software package (TreeStar, USA). In the case of inhibition
studies, cellswere pre-treated 1 hwith the inhibitors used for the trans-
port mechanisms studies (Section 2.5.4).

For the CLSM study, the Transwell® inserts fixed in PFA 4% were
gently washed in HBSS. Actin was stained with 200 μL of rhodamine–
phalloidine (1:50) in buffered HBSS+0.2% (v/v) Triton X-100 for
10 min in the dark to reveal cell borders, as described by des Rieux et
al. [26]. Cell nuclei were stainedwith DAPI (1:20). Subsequently, inserts
were washed in HBSS, cut and mounted on glass slides. Images were
captured using a Zeiss™ confocal microscope (LSM 150). Data were
analyzed by the Axio Vision software (versus 4.8) to obtain y–z, x–z
and x–y views of the cell monolayers.

2.6. Statistical analysis

Statistical analysis was performed using the GraphPad Prism 5
program (CA, USA). Normal distribution was assessed with the
Shapiro–Wilk normality test. One-way ANOVA in multiple compari-
sons followed by Tukey's post-hoc test was applied according to the
result of the Bartlett's test of homogeneity of variances for the 37 °C
and 4 °C transport comparisons. All other analyses were performed
using a Student's t-test. Differences were considered statistically sig-
nificant at *pb0.05. Results are expressed as mean±SD.

3. Results and discussion

3.1. NLC characterization

Three lipid formulations differing in particle size and surfactant
content were obtained, all negatively charged. Particle characteriza-
tion and compositions of the different formulations are summarized
in Table 1. The composition of these nanoparticles was based on re-
sults from previous studies on lipid nanoparticles carried out in our
laboratory [42].

All the formulations had an EE of ~100% and drug loading of
~0.90%. Reduction in the amount of surfactant present in the formula-
tion leads to an increased particle size (165±6 nm versus 247±
4 nm for formulations A and B, respectively). Moreover, when formula-
tion B was prepared without further homogenization (formulation C),
the particle size varied from the nanometer to the micrometer range
(247±4 nm versus 1090±6 nm for formulations B and C, respective-
ly), highlighting the importance of the preparationmethod in obtaining
different nanoparticle sizes. Although SQV is considered a model drug,
the low drug loading of SQV (~0.90%; therapeutic dose 1 g twice a
day) compromises the foreseen application of these nanocarriers to
reach an efficient therapeutic effect of the drug and it would be desir-
able to encapsulate more potent drugs with a lower therapeutic dose
(e.g. budesonide, 9 mg once a day in Crohn's disease).

There were no differences in nanoparticle parameters and EE of
SQV when incorporating coumarin-6 (5 mg) into the formulations
(data not shown). There was a difference in nanoparticle surface hy-
drophobicity between the three formulations: formulation A had a
Please cite this article as: A. Beloqui, et al., Mechanism of transport of s
barrier, J. Control. Release (2012), http://dx.doi.org/10.1016/j.jconrel.20
R
Ohigher slope and, thus, higher hydrophobicity compared to formula-

tions B and C. Formulations B and C had the same amount of surfac-
tant but formulation B had higher hydrophobicity than formulation
C, which can be explained by the different surface areas of the two
formulations [29].
E
D
 

3.2. In vitro dissolution assays

An in vitro dissolution study was performed to ensure that SQV
was not released from the NLC formulations during the in vitro trans-
port studies. The amount of drug released from the NLCs into the
transport buffer medium (HBSS) during 2 h of incubation at 37 °C
was analyzed by HPLC (n=3). For the three formulations, SQV re-
lease was less than 0.4% indicating that the differences in the subse-
quent data were not the result of greater dissolution (maximum
solubility of SQV mesylate in HBSS ~50 μg/mL [43]).

Moreover, for the three formulations, the drug released from NLCs
in SGF media after 2 h of incubation at 37 °C was below the LOD
(LODb0.0125 μg/mL) (n=3). SQV release was below the LOD after
2 h and less than 5% in SIF media after 8 h of incubation at 37 °C
(n=3).
aquinavir-loaded nanostructured lipid carriers across the intestinal
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3.3. In vitro evaluation of SQV transport across the intestinal barrier

3.3.1. SQV permeability evaluation across Caco-2 monolayers and
FAE monolayers

The main aim of the present study was to evaluate the potential of
NLCs as suitable carriers for poorly water-soluble drugs using SQV as
Please cite this article as: A. Beloqui, et al., Mechanism of transport of s
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a BCS class IV model drug. For this purpose, the permeability of SQV
across the enterocyte-like model (Caco-2 monolayers) and the FAE
monolayers (Caco-2/Raji cell coculture) was evaluated. The conversion
of Caco-2 cells intoM-cells in the FAEmodel was confirmed bymeasur-
ing the number of commercial carboxylated particles transported using
a flow cytometer. After 2 h of incubation, the number of transported
aquinavir-loaded nanostructured lipid carriers across the intestinal
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nanoparticles was significantly higher in the FAE model than in
the Caco-2 model (82,633±6443 nanoparticles, versus 108±91,
respectively; n=4, pb0.05).

The permeability values obtained for each nanoparticle formula-
tion were compared with the permeability values of free SQV as a sus-
pension. Fig. 1 represents the Papp of SQV data obtained for the
assayed formulations after 2 h of incubation in Caco-2 monolayers
and in FAE monolayers.

In the Caco-2 model, the increase in SQV Papp values for the nanopar-
ticle formulations compared to free SQV, is highlighted. It is remarkable to
note the 3.5-fold increase in the SQVPappwith formulation B compared to
free SQV (pb0.001), and the 2-fold increase comparedwith the two other
NLC formulations (A and C) (pb0.01). These SQV Papp values are greater
than previously reported values obtained across Caco-2 monolayers and
ex vivo transport studies using different strategies for enhancing SQVper-
meability [44,45]. These data confirm that NLCs are suitable carriers for
enhancing the permeability of poorly water-soluble drugs. There was a
significant difference between the Papp values of formulations B (247±
4 nm) and C (1090±6 nm) (3.52×10−5±3.34×10−6 cm/s versus
1.73×10−5±2.09×10−6 cm/s, respectively; n=9, ***pb0.001).

In the M cell model, there was a significant increase in the Papp of
formulation C compared to free SQV in suspension (pb0.05), which
was not observed for formulations A or B (p>0.05). Enhanced micro-
particle uptake by M cells has been previously reported [46,47]. In
contrast to polymeric nanoparticles [32], the permeability of the
drug from the submicron NLCs was not increased in M cells. Hence,
the subsequent evaluation of the transport mechanisms and the in-
tracellular uptake was evaluated only in the Caco-2 cell model.

The diffusion of the particles through the mucus could also affect
their transport [48]. Peyer's patches, in particular M cells, are less
protected by the mucus barrier but account for only 1% of total surface
area. Themucus penetrating properties of lipid-based nanoparticles, in-
cluding NLCs, have not been extensively studied. NLCs are small enough
(formulations A and B) to avoid being blocked sterically in the mucin
mesh. However, as the mucus is rich in lipids, mucoadhesion of the
NLCs could be promoted by their hydrophobic surface even if the surfac-
tant coating could make their surface partly hydrophilic and more
mucus penetrating.Mucus interactionwithNLCs should be investigated.

3.3.2. Intracellular uptake in Caco-2 cells
Fig. 2 shows the flow cytometry results (Fig. 2A) and the CLSM im-

ages (Fig. 2B and C) corresponding to the cellular uptake of the nano-
particle formulations and free coumarin-6. Cell viability was assessed
by staining dead cells with PI and was greater than 90% in all cases
unless otherwise stated. Untreated cells were used as controls.

The cellular uptake of NLCs was size-dependent (formulation
A>B>C; n=3, ***pb0.001; Fig. 2A). This finding is consistent with
Rejman et al. [19] who also reported a tendency to decreased
internalization with increased particle size. These authors studied
the pathway of entry and subsequent fate of commercial latex
nanoparticles inside the cell and concluded that particles with a
diameter of b200 nm enter the cell via clathrin-mediated endocytosis
whereas larger particles (200 nm–1 μm) enter preferentially via
caveolae-mediated endocytosis. Moreover, the surface hydrophobici-
ty of the nanoparticles may also determine nanoparticle entrance into
Caco-2 cell because the larger uptake into the cells is correlated
with the higher nanoparticle surface hydrophobicity (formulation
A>B>C) [27]. Gaumet et al. [21] found that the surface hydrophilic-
ity of polymeric nanoparticles was a critical factor for nanoparticle
uptake and Liang et al. [49] reported that gold nanoparticles were
more efficiently taken up with increasing hydrophobic interactions
with the membrane of Caco-2 cells. In our study, nanoparticle size
and surface hydrophobicity were major factors influencing NLC
entrance into the cell.

The Papp values for SQV formulated in NLCs did not correlate with
their intracellular uptake. Formulation B exhibited higher SQV Papp
Please cite this article as: A. Beloqui, et al., Mechanism of transport of s
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values than did formulations A and C but did not have a higher intra-
cellular uptake. Fig. 2B shows that NLCs penetrated inside the Caco-2
cells whatever is the formulation.

3.3.3. Mechanistic study of SQV-NLC transport across Caco-2 cells

3.3.3.1. Influence of the temperature on NLC transport. The second ob-
jective of the present study was to evaluate the mechanisms of trans-
port used by the different NLC formulations to estimate whether the
differences on permeability were due to different entry pathways.
For this purpose, we first focused on the type of transport: passive
or active. Although lipid nanoparticles are known to enter into cells
in an active endocytic manner [24], we assessed this phenomenon
in Caco-2 cells and the FAE model. It is well-established that at 4 °C
pinocytic/endocytic uptake is inactivated [50]. Fig. 3 illustrates the in-
fluence of temperature on the transport of SQV-loaded nanoparticles
and SQV suspension across Caco-2 and FAE monolayers. In most
cases, SQV was not detected in the basolateral side after nanoparticle
incubation at 4 °C (LODb0.0125 μg/mL). These data suggest that SQV
loaded in NLCs might mainly permeate Caco-2 cells and FAE mono-
layers in an active manner.

3.3.3.2. Characterization of NLC endocytosis mechanisms. Taking the
aforementioned results together, we can conclude that NLCs predomi-
nantly enter cells by endocytosis. Different mechanisms of nanocarrier
internalization in cells have been described: macropinocytosis,
clathrin-mediated endocytosis, caveolae-mediated endocytosis and
clathrin- and caveolae-independent endocytoses [22]. To evaluate the
endocyticmechanism used by NLCs, transport studieswere undertaken
in the presence of different inhibitors. We quantified the intracellular
uptake, measured by flow cytometry, and the permeability of SQV
across Caco-2 cells by HPLC after the transport study.

Fig. 4 represents the intracellular uptake of coumarin-6-SQV-loaded
NLCs in Caco-2 cells after 2 h of incubation along with chlorpromazine,
an inhibitor of clathrin-mediated endocytosis [23,24], nystatin, an
inhibitor of caveolae/lipid raft-mediated endocytosis [35,36] and
MßCD+lovastatin, an inhibitor of both clathrin- and caveolae-
mediated endocytoses [37].

There was no significant difference in the presence of clathrin- or
caveolae-mediated endocytosis inhibitors (chlorpromazine and nys-
tatin, respectively) regardless of the nanoparticle formulation. In con-
trast, there was a significant difference when the cells were incubated
in the presence of MßCD and lovastatin. It has to be remembered that,
by sequestering cholesterol, is not only caveolae integrity disrupted
but also other endocytic mechanisms involving cholesterol [51,52],
so that clathrin- and caveolae-independent cholesterol-dependent
aquinavir-loaded nanostructured lipid carriers across the intestinal
12.12.021
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mechanisms may be involved in NLC endocytosis [53]. Furthermore,
clathrin-independent endocytosis has been related to so called lipid
rafts, lipid-based cholesterol-enriched microdomains present on
certain cell surfaces. Whether caveolae and rafts share a common
pathway remains controversial [54–56], but both are undoubtedly
sensitive to cholesterol depletion and share common machinery.
Paillard et al. [57] also reported a significant decreased in internaliza-
tion of lipid nanocapsules under MßCD and lovastation inhibition
regardless of nanoparticle size, suggesting that endogenous choles-
terol was involved in lipid nanoparticle internalization. Although no
significant differences were found regarding nystatin inhibition or
chlorpromazine, during the intracellular uptake study, one should
take into account the fact that the internalization process occurs
under distinct mechanisms acting in parallel and, thus, the different
endocytic pathways might tend to compensate each other [58]. This
factor could explain, in part, why there were no significant differences
in the endocytosis when incubating the nanocarriers with one of
these specific inhibitors, but their involvement in nanoparticle inter-
nalization should not be totally discarded.

Cell viability was greater than 99% when compared to untreated cells
in all cases except for formulationA co-incubatedwithMßCD+lovastatin
for which viability was 65% (data not shown).

3.3.3.3. Transcytosis. It is important to distinguish between the mech-
anisms of endocytosis and transcytosis. Endocytosis involves the
uptake or internalization of the nanoparticles inside the cells, where-
as transcytosis is the transport across the cell from one membrane to
the opposite. To evaluate the transcytosis of NLC formulations in the
Caco-2 cell model, the nanocarriers were incubated in the Caco-2
cells monolayers along with the clathrin- and caveolae-mediated
inhibitors, chlorpromazine and nystatin, respectively. After 2 h of in-
cubation, SQV Papp was estimated and results were expressed as per-
centage of control values. The Papp value of SQV-loaded NLCs under no
U
N

Fig. 5. Comparison of SQV Papp values under clathrin (A) and caveolae (B) inhibitions (chlo
(n=3–5; *pb0.05, **pb0.01, ns: no significant difference). “−” absence of an inhibitor,“+”
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inhibition was considered as 100% (control). Fig. 5 features a diagram
of SQV Papp after 2 h of incubation of SQV-loaded nanoparticles with
chlorpromazine (Fig. 5A) or nystatin (Fig. 5B). SQV Papp was also
evaluated under MßCD and lovastatin inhibition. The presence of
these inhibitors induced TEER values of the monolayers less than
200 Ωcm2 after the transport study. Therefore, because we could
not guarantee the integrity of the monolayer, these results were ex-
cluded and transcytosis was characterized exclusively under nystatin
and chlorpromazine inhibitions. Permeability decreased significantly
with caveolae/lipid rafts depletion in the presence of nystatin regardless
of the formulation (Fig. 5B). Simionescu et al. [59] suggest that endocyto-
sis and transcytosis share the same mechanisms (receptor-independent
and receptor-mediated) and caveolae. Hence, regarding the results
obtained under caveolae/lipid raft inhibiton and the existence of a
caveolae transcytotic pool, caveolae vesicle-mediated transcytosis ap-
pears to be involved in SQV transcytosis across Caco-2 cells regardless of
the nanocarrier. The same decreased permeability was observed under
clathrin depletion exclusively in the case of formulation B (Fig. 5A),
which means that clathrin is also involved in SQV transcytosis with this
formulation. Roger et al. [24] also reported a clathrin- and caveolae-
mediated internalization of paclitaxel-loaded lipid nanocapsules involved
in the transcellular transport of the drug across Caco-2 cells, but in our
study, in the case of NLCs, this was not a steady phenomenon and
depended on nanoparticle size and the amount of surfactant employed
in the formulation.

We relate the entry pathway of the nanocarriers with the
transcytosis of the drugs itself, but we do not provide information
about the fate of the nanoparticle inside of the cell as we did not as-
sess the presence of the nanoparticles in the receiver compartment.

3.3.3.4. Evaluation of the contribution of P-gp inhibition to enhancement
of SQV permeability. SQV is known to be a P-gp substrate [38]. To eval-
uate whether the NLCs inhibited the P-gp drug efflux, we conducted
rpromazine 10 μg/mL and nystatin 50 μg/mL, respectively) with untreated cell values
under inhibition.

aquinavir-loaded nanostructured lipid carriers across the intestinal
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SQV permeability studies in Caco-2 cells under verapamil inhibition, a
well-known P-gp inhibitor [40].

Fig. 6 shows SQV Papp values after 2 h of incubation in the pres-
ence of 100 μM verapamil, inhibiting P-gp, or in a transport buffer,
without P-gp inhibition.

Our results confirm that SQV is a P-gp substrate. Indeed, incubat-
ing a SQV suspension with verapamil for 2 h significantly increased
permeability (***pb0.001). Formulations A and C also exhibited
greater permeability when the P-gp efflux was inhibited. In contrast,
there was no difference in the permeability rates with formulation B
regardless of the presence or absence of verapamil, suggesting that
this formulation circumvented the P-gp efflux and, thus, enhanced
SQV permeability. A shift in the internalization mechanism could
explain how formulation B overcomes the P-gp efflux. In this study,
it was already reported that a clathrin-mediated transcytosis in addi-
tion to a caveolae-mediated transcytosis for formulation B, were not
present with formulations A and C. This finding could explain the
ability of formulation B to circumvent the P-gp drug efflux. P-gp is
localized in caveolae [60], where it is co-localized with Cav-1 [61],
the principal component of caveolae. Several immunoprecipitation
studies have suggested an interaction between P-gp and Cav-1
which could modulate P-gp transport activity. Barakat et al. [62]
reported that decreased P-gp/Cav-1 interactions led to increased
P-gp transport activity. Thus, one might hypothesize that, as
clathrin-mediated endocytosis could contribute to the entrance of
formulation B into the cell, there may be decreased competition for
the caveolae pathway and, hence, increased P-gp/Cav-1 interaction
and decreased P-gp activity. This ability of formulation B to overcome
P-gp efflux could explain the 2-fold permeability increase found with
formulation B in comparison to formulations A and C. Interestingly,
the same formulation prepared by a different method and with a dif-
ferent size (247±4 nm versus 1090±6 nm; formulations B and C
U
N

Fig. 7. Scheme of the transport mechanisms

Please cite this article as: A. Beloqui, et al., Mechanism of transport of s
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respectively) did not have the same ability to overcome the P-gp,
highlighting the importance not only of the composition but also of
the method employed for the preparation as it provided a different
particle size.

Fig. 7 features a schematic representation of the NLCs A, B and C
transports across Caco-2 cells.

Previous studies reported competition between lipid nanocapsules
and P-gp for paclitaxel transport across Caco-2 cells describing P-gp in-
hibition by the nanoparticles themselves and suggesting that P-gp may
not only be involved in drug efflux but also in the regulation of endocy-
tosis [40]. However, the mechanisms used by these nanoparticles to
inhibit the P-gp remained unclear. The mechanistic study allowed us
to demonstrate the contribution of clathrin-mediated transcytosis of
NLCs to circumvent P-gp, which resulted in a 2-fold increase in perme-
ability of SQV, and highlights the importance of lipid nanoparticle size
and composition on their ability to overcome the P-gp efflux.

These findings add to the large number of approaches for delivery
of P-gp substrates using nanotechnology [63].
E
D
 P
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O4. Conclusion

In this study, we evaluated three different NLC formulations and
assessed their potential to increase drug permeability using SQV
(aBCS class IVdrug and P-gp substrate) as amodel drug. NLCs enhanced
SQVpermeability up to 3.5-fold. SQV transport across the intestinal bar-
rier was influenced by the size of the NLCs and the amount of surfactant
used for their formulation. Transport of NLCs was not increased by M
cells, in contrast to drug suspension. Formulation B (247 nm and 1.5%
(w/v) of surfactant content) circumvented the P-gp efflux and used
both a caveolae- and clathrin-mediated transcytosis, in contrast to for-
mulations A and C, which followed caveolae-mediated transcytosis. By
modifying critical physicochemical parameters of the formulation we
were able to overcome the P-gp drug efflux and alter the transcytosis
mechanism of the nanoparticles. To our knowledge, this is the first
time that a mechanistic study of NLC transport across intestinal in
vitro models has been described. Our findings are encouraging for the
delivery of class IV drugs and P-gp substrates by the oral route and sup-
port further nanotechnology approaches on this regard.
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