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In spite of over a century of research on cortical circuits, it is still unknown how
many classes of cortical neurons exist. In fact, neuronal classification is a difficult
problem because it is unclear how to designate a neuronal cell class and what are the
best characteristics to define them. Recently, unsupervised classifications using cluster
analysis based on morphological, physiological, or molecular characteristics, have provided
quantitative and unbiased identification of distinct neuronal subtypes, when applied to
selected datasets. However, better and more robust classification methods are needed
for increasingly complex and larger datasets. Here, we explored the use of affinity
propagation, a recently developed unsupervised classification algorithm imported from
machine learning, which gives a representative example or exemplar for each cluster.
As a case study, we applied affinity propagation to a test dataset of 337 interneurons
belonging to four subtypes, previously identified based on morphological and physiological
characteristics. We found that affinity propagation correctly classified most of the neurons
in a blind, non-supervised manner. Affinity propagation outperformed Ward’s method, a
current standard clustering approach, in classifying the neurons into 4 subtypes. Affinity
propagation could therefore be used in future studies to validly classify neurons, as a first
step to help reverse engineer neural circuits.
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INTRODUCTION
To properly understand the structure and function of any circuit
it seems essential to objectively define its elements. Unfortunately,
as opposed to elements in electronic circuits, neurons in brain
circuits do not come pre-labeled and it is not clear exactly what
comprises a neuronal cell type. GABAergic neocortical interneu-
rons are a particularly difficult case, due to their large molecular,
morphological and physiological diversity (Fairen et al., 1984;
Mott and Dingledine, 2003; Ascoli et al., 2008). In the past, cell
type classification was a qualitative and subjective task that led
to inconsistent classes of neurons. Recently, quantitative meth-
ods using unsupervised cluster analysis have become standard
for classification of neurons (Cauli et al., 1997; Karube et al.,
2004; Ma et al., 2006; Dumitriu et al., 2007; Helmstaedter et al.,
2009; Karagiannis et al., 2009; McGarry et al., 2010; DeFelipe
et al., 2013). In particular, traditional cluster analysis using Ward’s
method has been effective, but it is a simple technique with some
drawbacks. Hierarchical agglomerative clustering is a bottom–up
technique, that is, it starts by grouping the two “closest” cells as
defined by the algorithm, then joins the next “closest” sets and
so on. As a hierarchical clustering technique the grouping deci-
sions it makes are inflexible so, once two cells are joined together
they remain joined in the final hierarchy. Moreover, hierarchical
methods are susceptible to a chaining effect, where cells are some-
times assigned to existing clusters rather than being grouped in
new clusters. These qualities of the method could pose limitations

as it prevents it from testing multiple possible groupings of the
dataset.

A new, and more sophisticated, classification method called
affinity propagation does not have those limitations, is an unsu-
pervised algorithm, and has demonstrated success with greatly
improved results over standard methods in other classification
problems (Frey and Dueck, 2007). In particular, affinity prop-
agation goes beyond the solution of the neuronal classification
problem and solves a related but also difficult problem: the iden-
tification of exemplars, i.e., elements that best characterize each
class (Mézard, 2007). In neuroscience, affinity propagation was
recently used for the analysis of spike synchronization in rat
brains (Takahashia et al., 2010), in learning the role of sleep slow
wave activity in visuomotor learning (Landsness et al., 2009), and
in the discovery of synaptic connectivity organizational princi-
ples (Perin et al., 2011). When applied to neuronal classifications,
affinity propagation could therefore identify exemplar neurons
to be used as a compressed, characteristic representation of each
neuron subtypes. This seems advantageous, since focusing the
analysis on exemplars could ease the burden of analyzing hun-
dreds, or thousands of neurons, for the identification of salient
characteristics of neuron classes.

In this work we explored the application of affinity prop-
agation to neuronal classification, by using the algorithm to
blindly classify a test dataset of four known interneuron sub-
types. The test dataset was comprised of 67 morphological
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FIGURE 1 | Morphological Clusters. Neurons are represented as colored
glyphs. Colors red, blue, green, and magenta, respectively, represent neuron
types BC, MC, non-MC, and ChC. The label of the exemplar in each cluster is
shaded in yellow. Ten clusters are found; most clusters are dominated by a

neuron type. BC and ChC (red and magenta) are closely related PV+
interneurons and MC and non-MC (blue and green) are both subtypes of
SOM+ cells. Note how cluster 3 (from top) groups BC and ChC jointly and
cluster 10 (last one) groups MC and non-MC together.

Table 1 | Accuracies computed for the Morphology, Physiology, and

Morphology + Physiology databases.

Morphology Physiology Morphology+Physiology

database database database

ncluster ACC ncluster ACC ncluster ACC

10 0.7374 36 0.8505 8 0.7857

ncluster is the number of clusters found by the algorithm. ACC, Accuracy

obtained using the four known classes of neurons (BC, ChC, MC, non-MC).

and 20 electrophysiological variables (Supplementary Table 1)
describing (1) parvalbumin-positive (PV+) basket cells (BC), (2)
PV+ chandelier cells (ChC), (3) somatostatin-positive (SOM+)
Martinotti cells (MC), and (4) SOM+ non-Martinotti cells
(non-MC), as described in (McGarry et al., 2010). We found
that affinity propagation generates an accurate classification in
separating these four known interneuron subtypes. Our data
suggest that affinity propagation could be a powerful new
classification tool for discovering or defining neuronal cell
types.

MATERIALS, METHODS, AND PROTOCOL
PREPARATION OF BRAIN SLICES
Acute brain slices were prepared from Nkx2.1, G42, or GIN
mice, with an average age of 15 postnatal days (range P13–
25). Mice were quickly decapitated, the brain was removed
and then immediately placed in cold sucrose cutting solu-
tion (222 mM sucrose, 2.6 mM KCl, 27 mM NaHCO3, 1.5 mM
NaH2PO4, 0.5 mM CaCl2, 3 mM MgSO4, bubbled with 95% 02,

5%CO2). Coronal slices of 300 μm thickness were cut using a
Vibratome and transferred to a holding chamber at room tem-
perature with oxygenated ACSF (126 mM NaCl, 3 mM KCl, 3 mM
MgSO4, 1 mM CaCl2, 1.1 mM NaH2PO4, 26 mM NaHCO3, and
10 mM dextrose, bubbled with 95% 02, 5%CO2). After at least
an additional 30 min equilibration at room temperature, slices
were transferred to a recording chamber with perfusion of ACSF
bubbled with 95% 02, 5%CO2.

TRANSGENIC MOUSE LINES
To identify different types of interneurons we used three trans-
genic mouse lines. First, we used the G42 line that labels PV+
cells (Chattopadhyaya et al., 2007). PV+ cells are fast spiking
interneurons with basket or ChC morphology. We could iden-
tify BC from ChC by their distinctive morphologies and threshold
spiking responses. Additionally, to find ChCs we used Nkx2.1 Cre
MADM mice (referred to as Nkx2.1 mice) where we could often
identify ChC by their distinct axonal arbors, visible with illumi-
nation of the GFP (Woodruff et al., 2009). The Nkx2.1 line labels
a population of interneurons that express the transcription factor
Nkx2.1, labeling interneurons that migrate from the medial gan-
glionic eminence (MGE), thus including ChCs (Xu et al., 2008).
In both G42 and Nkx 2.1 lines, we had a high success rate of find-
ing ChC at the top of layer 2, close to the layer 1 border, where
the normally rare ChC were found among GFP+ cells with a
probability of 50–70% (Woodruff et al., 2009). Finally, we used
the GIN line to label SOM+ cells (Oliva et al., 2000). SOM+
cells are regular spiking interneurons with varied morphology.
We previously identified three subtypes of SOM+ interneurons
in GIN mice based on morphology and physiology-MC and
two novel subtypes (McGarry et al., 2010). Following that work,
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FIGURE 2 | Physiological Clusters. Code as in Figure 1. See text for details on the clusters.

FIGURE 3 | Clusters of the combined Morphology+Physiology database. Code as in Figure 1. See text for details on the clusters.

here we distinguish between the MC and two novel subtypes
(non-MC).

ELECTROPHYSIOLOGY RECORDINGS
Slices were placed in a recording chamber at room temperature
with flowing oxygenated ACSF. Pipettes of 3–7 M� resistance
were pulled from borosilicate glass. Whole cell recordings were
taken in current clamp mode. Only cells with healthy resting
membrane potential (between −55 and −80 mV) were selected
for recording. Supplementary Figure 2 shows a representative set
of the traces of the complete dataset.

ELECTROPHYSIOLOGY ANALYSIS
Twenty variables were measured for each neuron by analysis of
the recordings in MATLAB (Supplementary Table 1). Variables
describing firing and passive properties were based on the Petilla
terminology (Ascoli et al., 2008).

HISTOLOGICAL PROCEDURE
Neurons were filled with biocytin by a patch pipette. Slices
were kept overnight in 4% paraformaldehyde in 0.1 M phos-
phate buffer (PB) at 4◦C. Slices were then rinsed three times for
5 min per rinse on a shaker in 0.1 M PB. They were placed in
30% sucrose mixture (30 g sucrose dissolved in 50 ml ddH20 and

50 ml 0.24 M PB per 100 ml) for 2 h and then frozen on dry ice
in tissue freezing medium. The slices were kept overnight in a
−80◦C freezer. The slices were defrosted and the tissue freezing
medium was removed by three 20 min rinses in 0.1 M PB. Slices
were kept in 1% hydrogen peroxide in 0.1 M PB for 30 min to
pretreat the tissue, then were rinsed twice in 0.02 M potassium
phosphate saline (KPBS) for 20 min. The slices were then kept
overnight in Avidin-Biotin-Peroxidase Complex. Next the slices
were rinsed three times in 0.02 M KPBS for 20 min each. Each
slice was then placed in DAB (0.7 mg/ml 3,3′′-diaminobenzidine,
0.2 mg/ml urea hydrogen peroxide, 0.06 M Tris buffer in 0.02 M
KPBS) until the slice turned light brown, then immediately trans-
ferred to 0.02 M KPBS and transferred again to fresh 0.02 M KPBS
after a few minutes. The stained slices were rinsed a final time in
0.02 M KPBS for 20 min. Each slice was observed under a light
microscope and then mounted onto a slide using crystal mount.

RECONSTRUCTION AND ANALYSIS OF MORPHOLOGY
Successfully filled and properly stained neurons were then
reconstructed using Neurolucida software (MicroBrightField)
(Supplementary Figure 1). The neurons were viewed with a
100× oil objective on an Olympus IX71 inverted light micro-
scope or an Olympus BX51 upright light microscope. The
neuron’s processes were traced manually while the program
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Table 2 | Significant variables for each morphological cluster.

Variables Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10

Number of dendrites

Dendritic node total

Dendrite node density

Total dendritic length

Average length of dendrites

Total surface area of dendrites +
Ratio of dendritic length to surface area

Dendritic torsion ratio

Dendritic planar angle ave

Dendritic planar angle stdv

Dendritic local angle ave −
Dendritic local angle stdv −
Dendritic spline angle ave −
Dendritic spline angle stdv

Ave tortuosity of dendritic segments + −
Stdv of tortuosity of dendritic segments

Dendritic segment length ave

Dendritic segment length stdv

Ave tortuosity of dendritic nodes

Stdv tortuosity of dendritic nodes

Number of dendritic sholl sections

Dendritic sholl length at 50 μm − − + −
Dendritic sholl length at 100 μm − − + −
Dendritic sholl length at 150 μm −
Convex hull dendrite area −
Convex hull dendrite perimeter −
Convex hull dendrite volume +
Convex hull dendrite surface area +
Highest order dendritic segment

k-dim dendrites (fractal analysis)

Axonal node total − +
Total axonal length − − +
Ratio of axonal length to surface area + +
Highest order axon segment + −
Axonal torsion ratio −
Axonal planar angle ave

Axonal planar angle stdv

Axonal local angle ave −
Axonal local angle stdv −
Axonal spline angle ave −
Axonal spline angle stdv

Ave tortuosity of axonal segments

Stdv of tortuosity of axonal segments −
Axonal segment length ave − +
Axonal segment length stdv − +
Ave tortuosity of axonal nodes + −
Stdv tortuosity of axonal nodes + −
Number axonal sholl sections − +
Axonal sholl length at 100 μm − + −
Axonal sholl length at 200 μm +

(Continued)

Frontiers in Neural Circuits www.frontiersin.org December 2013 | Volume 7 | Article 185 | 4

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Santana et al. Affinity propagation of interneurons

Table 2 | Continued

Variables Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10

Axonal sholl length at 300 μm + − −
Axonal length density2 − +
Axonal node density + −
Axonal node density2 − +
Convex hull axon area − + − +
Convex hull axon perimeter − +
Convex hull axon volume − + − +
Convex hull axon surface area − + − +
k-dim axon (fractal analysis) − +
Total surface area of axon − − +
Somatic perimeter

Somatic area +
Somatic aspect ratio

Somatic compactness

Somatic form factor

Somatic roundness

Relative distance to pia − −
The “+” or “−” signs mean that the average value of a variable in a cluster is significantly higher (or lower), than the average value of that variable in the database.

recorded the coordinates of the tracing to create a digital three-
dimensional reconstruction. In addition to the neuron, the pia
and white matter were drawn. The Neurolucida Explorer program
was used to measure 67 morphological variables of the recon-
struction describing somatic, dendritic, and axonal properties.
(Supplementary Table 1).

AFFINITY PROPAGATION
Affinity propagation is a clustering algorithm that, given a set
of points and a set of similarity values between the points,
finds clusters of similar points, and for each cluster gives a
representative example called an exemplar (Frey and Dueck,
2007). Affinity propagation has several advantages over related
techniques. Methods such as k-centers clustering and k-means
clustering store a relatively small set of estimated cluster cen-
ters at each step. These techniques can be improved by using
methods that begin with a large number of clusters and then
prune them, but they still rely on random sampling and
make hard pruning decisions that cannot be recovered from.
In contrast, by simultaneously considering all data points as
candidate centers and gradually identifying clusters, affinity prop-
agation is able to avoid many of the poor solutions caused
by unlucky initializations and hard decisions (Frey and Dueck,
2007).

A characteristic that makes affinity propagation different from
other clustering algorithms is that the points directly exchange
information between them regarding the suitability of each point
to serve as an exemplar for a subset of other points. The algo-
rithm takes as input a matrix of similarity measures between each
pair of points s(i, k). Instead of requiring that the number of clus-
ters be predetermined, affinity propagation takes as input a real
number s(k, k) for each data point k. These values, which are
called preferences, are a measure of how likely each point is to

be chosen as exemplar. In our case the preference can be under-
stood as a particular weight given to each neuron according to a
priori knowledge of the suitability of the neurons to be exemplars.
This parameter can be used to bias the clustering procedure when
there are some neurons that are known to be good descriptors.
However, in our experiments we did not assume any a priori
information and all neurons where given the same preference.
The algorithm works by exchanging messages between the points
until a stop condition, which reflects an agreement between all
the points with respect to the current assignment of the exem-
plars, is satisfied. These messages can be seen as the way the
points share local information in the gradual determination of the
exemplars.

There are two types of messages to be exchanged between data
points. The responsibility r(i, k), sent from data point i to can-
didate exemplar point k, reflects the accumulated evidence for
how well-suited point k is to serve as the exemplar for point i,
taking into account other potential exemplars for point i. The
availability a(i, k), sent from candidate exemplar point k to point
i, reflects the accumulated evidence for how appropriate it would
be for point i to choose point k as its exemplar, taking into
account the support from other points that point k should be an
exemplar.

The availabilities are initialized to zero: a(i,k) = 0. Then, the
responsibilities are computed using the rule:

r(i, k)← s(i, k)−maxk′ |k′ �= k
{

a(i, k′)+ s(i, k′)
}

(1)

The responsibility update shown in Equation (1) allows all the
candidate exemplars compete for ownership of a data point.
Evidence about whether each candidate exemplar would make a
good exemplar is obtained from the application of the following
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Table 3 | Significant variables for each physiological cluster.

Variables Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10

Rheobase (pA) − − − −
Resting membrane potential (mV) + +
AP1 Amplitude (mV) +
AP1 duration (ms) + + + + + +
AP1 half-width (ms) + + + + +
AP1 rise time (ms) + + + + + + +
AP1 fall time (ms) + + + + + +
AP1 rise rate (mV/ms) − − − −
AP1 fall rate (mV/ms) − − − − −
AP2 Amplitude (mV) +
AP2 duration (ms) + + + + +
AP2 half-width (ms) + + + + +
AP2 rise time (ms) + + + + + + +
AP2 fall time (ms) + + + + + +
AP2 rise rate (mV/ms) − − − −
AP2 fall rate (mV/ms) − − − − −
AP Drop (mV)

Index of accommodation +
Input resistance + + + +
Spike frequency − − − − − −

Cl11 Cl12 Cl13 Cl14 Cl15 Cl16 Cl17 Cl18 C1l9 Cl20

Rheobase (pA) + +
Resting membrane potential (mV) − −
AP1 Amplitude (mV) − − − −
AP1 duration (ms)

AP1 half-width (ms)

AP1 rise time (ms)

AP1 fall time (ms) −
AP1 rise rate (mV/ms)

AP1 fall rate (mV/ms) + −
AP2 Amplitude (mV) − − − −
AP2 duration (ms) −
AP2 half-width (ms)

AP2 rise time (ms) −
AP2 fall time (ms) −
AP2 rise rate (mV/ms) +
AP2 fall rate (mV/ms) +
AP Drop (mV) + +
Index of accomodation +
Input resistance −
Spike frequency

Cl21 Cl22 Cl23 Cl24 Cl25 Cl26 Cl27 Cl28 Cl29 Cl30

Rheobase (pA) + +
Resting membrane potential (mV) − − +
AP1 Amplitude (mV)

AP1 duration (ms) − − − −
AP1 half-width (ms) − − −
AP1 rise time (ms) − − −

(Continued)
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Table 3 | Continued

Variables Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8 Cl9 Cl10

AP1 fall time (ms) − − −
AP1 rise rate (mV/ms) + + +
AP1 fall rate (mV/ms) + + +
AP2 Amplitude (mV) + +
AP2 duration (ms) − − −
AP2 half-width (ms) − − −
AP2 rise time (ms) − −
AP2 fall time (ms) − −
AP2 rise rate (mV/ms) + + +
AP2 fall rate (mV/ms) + + +
AP Drop (mV) +
Index of accomodation −
Input resistance −
Spike frequency + +

Cl31 Cl32 Cl33 Cl34 Cl35 Cl36

Rheobase (pA) +
Resting membrane potential (mV)

AP1 Amplitude (mV)

AP1 duration (ms) −
AP1 half-width (ms)

AP1 rise time (ms) −
AP1 fall time (ms)

AP1 rise rate (mV/ms) +
AP1 fall rate (mV/ms) +
AP2 Amplitude (mV)

AP2 duration (ms)

AP2 half-width (ms)

AP2 rise time (ms)

AP2 fall time (ms)

AP2 rise rate (mV/ms)

AP2 fall rate (mV/ms)

AP Drop (mV)

Index of accomodation

Input resistance

Spike frequency

availability update:

a(i, k)← min
{

0, r(k, k)+
∑

i′ �= i, k
max

{
0, r(i′, k)

}}
(2)

In the availability update shown in Equation (2) only the positive
portions of incoming responsibilities are added, because it is only
necessary for a good exemplar to explain some data points (posi-
tive responsibilities), regardless of how poorly it explains points
with negative responsibilities. To limit the influence of incom-
ing positive responsibilities, the total sum is thresholded so that
it cannot go above zero.

The self-availability a(k, k) is updated differently:

a(k, k)←
∑

i′ �= k
max

{
0, r(i′, k)

}
(3)

For a point i, the value of k that maximizes a(i, k) + r(i, k) either
identifies point i as an exemplar if k = i, or identifies the data
point that is the exemplar for point i.

Update rules described by Equations (1), (2), and (3) require
only local computations. The message-passing procedure may be
terminated after a fixed number of iterations, when changes in
the messages fall below a threshold, or after the local decisions
stay constant for some number of iterations.
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Table 4 | Significant variables for each cluster of the combined Morphology+Physiology database.

Variables Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8

Number of dendrites

Dendritic node total

Dendrite node density

Total dendritic length

Average length of dendrites

Total surface area of dendrites

Ratio of dendritic length to surface area

Dendritic torsion ratio

Dendritic planar angle ave

Dendritic planar angle stdv

Dendritic local angle ave

Dendritic local angle stdv

Dendritic spline angle ave

Dendritic spline angle stdv

Ave tortuosity of dendritic segments

Stdv of tortuosity of dendritic segments

Dendritic segment length ave

Dendritic segment length stdv −
Ave tortuosity of dendritic nodes

Stdv tortuosity of dendritic nodes

Number of dendritic sholl sections

Dendritic sholl length at 50 μm + −
Dendritic sholl length at 100 μm + −
Dendritic sholl length at 150 μm −
Convex hull dendrite area

Convex hull dendrite perimeter +
Convex hull dendrite volume

Convex hull dendrite surface area

Highest order dendritic segment

k-dim dendrites (fractal analysis)

Axonal node total +
Total axonal length +
Ratio of axonal length to surface area

Highest order axon segment +
Axonal torsion ratio

Axonal planar angle ave

Axonal planar angle stdv

Axonal local angle ave

Axonal local angle stdv

Axonal spline angle ave

Axonal spline angle stdv

Ave tortuosity of axonal segments

Stdv of tortuosity of axonal segments

Axonal segment length ave + −
Axonal segment length stdv + −
Ave tortuosity of axonal nodes

Stdv tortuosity of axonal nodes

Number axonal sholl sections

Axonal sholl length at 100 μm

Axonal sholl length at 200 μm

Axonal sholl length at 300 μm

Axonal length density2 +
(Continued)
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Table 4 | Continued

Variables Cl1 Cl2 Cl3 Cl4 Cl5 Cl6 Cl7 Cl8

Axonal node density − +
Axonal node density2 +
Convex hull axon area

Convex hull axon perimeter

Convex hull axon volume

Convex hull axon surface area

k-dim axon (fractal analysis) +
Total surface area of axon

Somatic perimeter

Somatic area

Somatic aspect ratio

Somatic compactness

Somatic form factor

Somatic roundness

Relative distance to pia −
Rheobase (pA) −
Resting Membrane Potential (mV)

AP1 Amplitude (mV)

AP1 duration (ms) + −
AP1 half-width (ms) + −
AP1 rise time (ms) + −
AP1 fall time (ms) + −
AP1 rise rate (mV/ms) − +
AP1 fall rate (mV/ms) − +
AP2 Amplitude (mV)

AP2 duration (ms) + −
AP2 half-width (ms) + −
AP2 rise time (ms) + −
AP2 fall time (ms) + −
AP2 rise rate (mV/ms) − +
AP2 fall rate (mV/ms) − +
AP Drop (mV)

Index of accomodation

Input resistance

Spike frequency

Similarly to other propagation methods, damping should be
used to confront numerical oscillations that arise in some cir-
cumstances. This technique consists of setting each message to
λ times its value from the previous iteration plus 1 − λ times
its prescribed updated value (0 < λ < 1). A pseudocode of our
approach for neuron classification using the affinity propagation
algorithm is shown in Algorithm 1.

Algorithm 1:  Neuron classification using affinity propagation
1. Normalize each of the neuron features to values between 0 and 1.
2. Find the similarity values between pairs of neurons using a
  predefined distance.

3. Compute the preference values for each neuron.
4. Cluster neurons using affinity propagation.
5. Assign to all neurons the class determined by its exemplar.
6. Compute the classification accuracy.

To compute the similarity measure (step 2 in Algorithm 1), the
Spearman distance, i.e., one minus the sample Spearman’s rank
correlation between observations (treated as sequences of values),
was used.

The similarity measure is computed as the opposite of the
distance, s(i, k) = –d(i, k). Original settings of the affinity propa-
gation algorithm are used (Frey and Dueck, 2007). The preference
values (step 3 of Algorithm 1) for all points s(k, k) is computed as
the median value of the similarity values s(i, j).

To measure the agreement between a clustering produced by
affinity propagation and a priori known set of labels for the
points, a convention has to be set. We decide that the exem-
plar of each cluster will determine the putative label of all points
in the cluster. Consequently, the classification accuracy (step 6
of Algorithm 1) is computed as the proportion of points whose
putative label agrees with its true class.

Frontiers in Neural Circuits www.frontiersin.org December 2013 | Volume 7 | Article 185 | 9

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Santana et al. Affinity propagation of interneurons

We include a number of remarks concerning the application of
Algorithm 1:

- The output of affinity propagation (step 4 of Algorithm 1)
depends on its input parameters. In particular it is sensitive
to the similarity values between the points and the preference
of each point to become a cluster. This means that changing
these input parameters may determine changes in the number
of clusters and their composition.

- To evaluate the quality of a clustering produced by affinity
propagation, two aspects should be simultaneously considered:
(1) the number of points that are correctly classified. Since
we assume that the labels of the exemplars are known, the
correctly classified points may artificially increase. Therefore,
we compute the classification accuracy as the ratio between
correctly classified points (excluding the exemplars) and the
total number of points (excluding the exemplars); and (2) the
number of clusters, which should be preferably few.

RESULTS
DATABASE OF FOUR KNOWN INTERNEURON SUBTYPES
We explored the use of affinity propagation to classify neo-
cortical GABAergic neurons based on their morphological and

Table 5 | Affinity propagation vs. Ward’s method performance.

Morphology Physiology Morphology and

Physiology

N clusters Accuracy N clusters Accuracy N clusters Accuracy

AFFINITY PROPAGATION

10 0.7374 36 0.8505 8 0.7857

WARD’S METHOD

4 0.5714 4 0.7575 4 0.6304

10 0.5859 36 0.8510 8 0.6667

N clusters is the number of clusters. Accuracy is calculated with respect to 4

classes of neurons (BC, ChC, MC, non-MC).

physiological properties. In order to test the affinity propaga-
tion algorithm we used a well-characterized database where the
group identity of the neurons was known from previous studies
(McGarry et al., 2010; Packer and Yuste, 2011; Woodruff et al.,
2011). Specifically, we used a physiology database which con-
tained 337 interneurons neurons distributed as: 63 BC, 218 ChC,
40 MC, and 16 somatostatin positive interneurons non-MC. The
morphology database contained 109 neurons distributed as: 31
BC, 23 ChC, 33 MC, and 22 non-MC. Finally, there were 50
neurons in a joint Morphology+Physiology database, formed by
intersecting both databases. Its distribution was: 11 BC, 23 ChC,
9 MC, and 7 non-MC.

AFFINITY PROPAGATION CLASSIFICATION OF INTERNEURON
MORPHOLOGIES
Using these databases as ground truth, we performed affinity
propagation, blind to the cell types. We analyzed the clusters
structure, starting with the morphological database (Figure 1). In
these figures, each neuron is shown as a colored glyph, i.e., a star
plot that represents each neuron as a “star” whose ith spoke is pro-
portional in length to its ith feature value. Similar shaped glyphs
correspond to neurons with similar values of their features. The

Table 6 | Affinity propagation vs. Ward’s method performance.

Morphology Physiology Morphology and

Physiology

N clusters Accuracy N clusters Accuracy N clusters Accuracy

AFFINITY PROPAGATION

10 0.8585 36 0.8471 8 0.9762

WARD’S METHOD

2 0.8037 2 0.9881 2 0.9792

4 0.8000 4 0.9880 4 0.9783

10 0.7879 36 0.9967 8 0.9762

N clusters is the number of clusters. Accuracy is calculated with respect to 2

classes of neurons (PV, SOM)

FIGURE 4 | Hierarchical clustering found by Ward’s method for the

morphology and physiology database. Neurons are represented by
their index in the database. Colors red, blue, green, and magenta,

respectively represent neuron types BC, MC, non-MC and ChC. Neurons
are grouped into eight clusters and in each cluster the exemplar is
emphasized in bold.
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colors provide additional information about the a priori known
neuron class, i.e., red is BC, magenta is ChC, blue is MC and green
is non-MC. Good clusters are those where neurons in the same
cluster share the same color. BC and ChC (red and magenta) are
closely related PV+ interneurons and MC and non-MC (blue and
green) are both subtypes of SOM+ cells.

The analysis of the morphology database resulted in 10 clus-
ters (Figure 1). For example, the first cluster included 17 neurons,
with 14 ChCs, had three misclassified neurons, those with num-
bers 12 (of non-MC type, in green), 84 (MC, in blue), and 1
(BC, in red). Its representative or exemplar was neuron 38 (a
ChC). Clusters 3, 4, 5, 6, 7, 9, and 10 were also mixed, although
in most of them, a single cell type also dominated. Clusters 2
and 8 did not contain any error. To measure the accuracy of the
classification, we counted the correctly classified neurons in each
cluster. Overall, 73 neurons out of 99 are correctly classified (once
the exemplars are not considered), yielding an accuracy of 0.73
(Table 1).

AFFINITY PROPAGATION CLASSIFICATION OF INTERNEURON
PHYSIOLOGIES
We performed a similar analysis of the physiological database,
finding 36 clusters (Figure 2). Seven clusters (numbers 11, 17, 18,
19, 20, 28, 33, and 35) are only composed by one cell. In con-
trast, other clusters include many neurons. Moreover, some of
these crowded clusters contained ChC neurons (magenta; clusters
2, 9, 24, and 26), suggesting a potential method of identifying new
subgroups of ChC cells, by analyzing some representative electro-
physiological features (see below). Overall, the accuracy in this
database was 0.85 (255 correctly classified out of 301; again with
exemplars not considered in this calculation).

AFFINITY PROPAGATION CLASSIFICATION OF INTERNEURON JOINT
DATABASES
We also performed an analysis of the combined anatomical and
physiological databases, which had fewer neurons (50; Figure 3).
We found 8 clusters, dominated by a single cell type. In fact,
clusters 3, 4, 5, and 8 had no errors. From a total of 42
non-exemplar neurons, 33 are correctly classified (accuracy of
0.78). Remarkably, the simplest binary distinction parvalbu-
min/somatostatin distinction was correctly identified in these
clusters, with only 1 error out of 50 (neuron number 50, of BC
type, in red).

DEFINING CHARACTERISTICS OF THE 4 KNOWN INTERNEURON
SUBTYPES
As a final step, to extract further information from the clus-
ters produced by the affinity propagation algorithm we identified
those features that can serve to characterize each morphologi-
cal and physiological cluster. The Wilcoxon rank sum test for
equal medians was applied to compute features that have a sig-
nificantly different distribution within each cluster with respect
to the distribution in the whole database.

Using this approach, a host of different variables were iden-
tified, covering a wide spectrum of morphological and physio-
logical features (Tables 2–4). These features could be useful in
providing a compact characterization of those neurons included
in the cluster.

COMPARISON OF AFFINITY PROPAGATION AND WARD’S METHOD
Ward’s method of hierarchical cluster analysis is the current stan-
dard used for classifying neuronal cell types. We tested whether
affinity propagation improves accuracy over Ward’s method. We
performed the comparison at three different cluster numbers to
illustrate the differences in performance. (1) 4 clusters: To evalu-
ate to what extent 4 clusters found by Ward’s method correspond
to the four known classes of neurons (PV-basket, PV-chandelier
cell, SOM-Martinotti, SOM-non Martinotti). (2) The number of
clusters found by affinity propagation (differs for each dataset):
To evaluate the accuracy of Ward’s method at the same number of
clusters as affinity propagation. (3) 2 clusters: To evaluate to what
extent Ward’s method can separate neurons according to the 2
largest neuron classes (PV vs. SOM).

Accuracy was computed with the respect to the 4 class distinc-
tions for scenarios 1 and 2 and with respect to the 2 class distinc-
tion for all three scenarios. The exemplar for Ward’s method is
computed as the member of the cluster with the smallest mean
distance to other members in its cluster. In every case the com-
putation of accuracy was done without counting the exemplar as
was done for affinity propagation.

Table 5 shows the comparison of the two classification meth-
ods, evaluated for 4 classes (scenarios 1 and 2). Figure 4 shows
the hierarchical clustering found by Ward’s method for the
Morphology+Physiology database. Table 6 shows comparison of
the two classification methods evaluated for 2 classes (scenarios 1,
2, and 3).

From these two tables we can see that affinity propagation per-
forms better than Ward’s method when accuracy is evaluated on
4 classes, while the performance when accuracy is evaluated on
2 classes is mostly similar between the two methods. Thus, affin-
ity propagation can improve classification for finer distinctions
in a dataset. This may be related to the capacity of affinity prop-
agation to identify good descriptors of a subgroup of neurons
represented by the exemplars and its ability to pass information
between points in the dataset.

DISCUSSION
AFFINITY PROPAGATION: A NEW CLASSIFICATION METHOD FOR
NEURONAL DATA
In this methodological study we have explored the use of a new
algorithm, affinity propagation, for the problem of quantita-
tively classifying neuronal cell groups. We used a database of
337 neocortical GABAergic interneurons, previously known to
belong to four subtypes as “ground truth,” and applied affinity
propagation to a collection of morphological and physiological
variables measured for each neuron. The classification accuracy
we found is overall high: 0.73 for the Morphology database,
0.85 for the Physiology database and 0.78 for the combined
Morphology+Physiology database. The accuracy was higher
when using physiological information from the neurons, but it
contains a larger number of neurons than the other databases,
so one would expect that the clustering algorithm will require
a higher number of clusters to capture the diversity in the
database. Moreover, grouping cells according to a binary parval-
bumin/somatostatin class resulted in a much higher accuracy: 85
out of 99 neurons were correctly classified in the morphological
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database (accuracy of 0.86), and 255 out of 301 in the physio-
logical database (accuracy of 0.85). In this respect, the perfor-
mance of the affinity propagation algorithm in the combined
Morphology+Physiology database was essentially perfect: 49 out
of 50 neurons were correctly classified as being parvalbumin or
SOM+.

We conclude that affinity propagation can achieve a relatively
high accuracy in the classification of interneurons, and is particu-
larly accurate in distinguishing parvalbumin from somatostatin
cells. It performs with higher accuracy than Ward’s method in
further distinguishing the four subtypes of parvalbumin and
somatostatin interneurons. This unsupervised method, which
already results in high classification accuracies, could improve
if combined with dimensionality reduction, as we have found
with other unsupervised or supervised neuronal classifications
(Guerra et al., 2011).

The extent to which it is useful to subdivide neuronal classes
remains a debated subject. Some researchers view neuronal diver-
sity as a continuum of features and refute the existence of discrete
subtypes. However, affinity propagation can still be a useful
method whether one is a “lumper” or “splitter” of neurons.
Affinity propagation does not require an assumption that there
are discrete subtypes for clustering. The clusters are produced
using exclusively information about the features, not the num-
ber of classes. We use the assumption of discrete numbers of
neuron types to evaluate the output of the algorithms, but the
results—relations between neurons—can be interpreted without
this assumption. Additionally even if one takes the view of a
continuum of neurons, the exemplars produced by affinity propa-
gation are still valuable since they identify particular neurons that
condense information about variations along the continuum.

The identification of exemplars as a part of the clustering
algorithm represents a major advantage of affinity propagation.
Affinity propagation chooses an exemplar neuron for each cluster
that can be studied as a representative of other neurons. The con-
ventional construction of an exemplar for other clustering meth-
ods is to compute the centroid of each cluster, computed as having
the cluster average for each feature. Clearly these constructed
neurons might not be realistic, while the affinity propagation
exemplar is a real neuron from the dataset.

While it is possible to pick a real neuron in each cluster as the
exemplar as we did for our Ward’s method analysis by choosing
the neuron with the lowest mean distance to all other neurons
in its cluster, affinity propagation has a more robust and infor-
mative computation of the exemplar. By including the search for
the exemplar as part of the clustering process affinity propagation
does not restrict the set of potential candidate exemplars. When
calculating exemplars after the clustering is complete, for Ward’s
method or any other method, the search for candidate exemplars
and thus the candidate exemplars of members in that cluster, is
restricted to the cluster. Affinity propagation takes into account
the whole data set.
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