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Computer vision algorithms that use color information require color constant images to operate correctly. Color constancy of the
images is usually achieved in two steps: first the illuminant is detected and then image is transformedwith the chromatic adaptation
transform (CAT). Existing CAT methods use a single transformation matrix for all the colors of the input image. The method
proposed in this paper requires multiple corresponding color pairs between source and target illuminants given by patches of the
Macbeth color checker. It uses Delaunay triangulation to divide the color gamut of the input image into small triangles. Each color
of the input image is associated with the triangle containing the color point and transformed with a full linear model associated
with the triangle. Full linear model is used because diagonal models are known to be inaccurate if channel color matching functions
do not have narrow peaks. Objective evaluation showed that the proposed method outperforms existing CAT methods by more
than 21%; that is, it performs statistically significantly better than other existing methods.

1. Introduction

One of the pillars of color science is the illuminant of the
image being treated. Many real-life applications in the field
of computer vision require images that are invariant to the
illuminant changes. In [1] authors discuss a problem of the
fluorescent lamp spectral distribution change over time in
their computer vision system for classifying marble plates.
Face detectors [2, 3] and face extractors [4] use predefined
skin colors to segment the image. These colors accurately
present skin tones only on imageswith standard illumination.
Color- and texture-based image search [5] also requires
images to be described with illuminant invariant descriptors.

The mechanism of human vision system that takes care
of the illuminant invariance is called color constancy [6]. In
digital world it is usually modelled as a two-step process con-
sisting of illuminant estimation and image transformation
[7]. This paper discusses the second step of the process, that
is, image transformation.

Image transformations are done with chromatic adapta-
tion transforms (CATs). The conversion from one illuminant

to a different one has mostly been handled by using single
diagonal von Kries-like transformation [8] for all the colors
in the gamut of the input image. The main reason for using
a single diagonal model is the fact that usually only one
corresponding color pair under two different illuminants is
known (i.e., source and target illuminants); thus there is not
enough information to construct more complex models. But
if there are many known corresponding color pairs, there is
no need to limit ourselves to one diagonal transformation;
instead we can use a higher number of more complex
transformations.

Diagonal von Kries like transformations scale color chan-
nels independently. Whether or not human color constancy
operates in the same way is beyond the scope of this paper.
But it has been shown [9, 10] that diagonal von Kries like
transformations do not accurately model chromatic adap-
tation if color channels are not independent of each other;
that is, channel color matching functions have wide peaks.
Sensor sharpening [11] has been used to derive new color
matching functions with narrow peaks but some correlation
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between different color channels still remains even after
the sharpening process. Full linear transformations can be
used to account for the correlation between different color
channels.

The method proposed in this paper uses Delaunay tri-
angulation and Macbeth color checker to divide the color
gamut of the input image and it constructs one full linear
transformation for each triangle of the divided color gamut;
that is, each color in the input image is transformed with the
matrix of the triangle that contains the color. It is meant to
be used primarily as a preprocessing step of other computer
vision algorithms operating with color information.

Similar approaches have been used to transform col-
ors from camera color space to device-independent color
space. It should be noted that our approach addresses the
chromatic adaptation and assumes that colors have already
been transformed from camera to device-independent color
space. Granger [12] divided color space based on the hue
values of reference color points and calculated transforma-
tion matrix for each one of the subspaces. Andersen and
Hardeberg [13] used patches of the Macbeth color checker to
divide color space and associated each subspace with linear
transformation that preserves neutral colors and hue planes.
Both of the approaches use two-dimensional chromaticity
space to find subspace that contains specific color, but actual
transformation is done using all three channels of the original
color space. Our approach differs from that in [12, 13] by
defining a new way of dividing color space using Delaunay
triangulation and using chromaticity space both to find
subspace and transform color points.

The rest of the paper is organised as follows. Section 2
describes the problem and related work. Section 3 provides
the description of the new method. Section 4 gives experi-
mental evaluation of the newmethod. Finally, conclusions are
drawn in Section 5.

2. Problem and Related Work

Chromatic adaptation is the ability of the human visual
system to adjust to illumination changes and preserve color
appearance of the objects [14]. It allows us to see stable
colors of the objects illuminated by a wide range of different
illuminations. Chromatic adaptation transforms (CATs) are
methods used in digital imaging and color science to model
the described mechanism of the human visual system. They
provide a means to transform color values under a source
illumination into color values under a target illumination.

A standard model to compute transformation from one
illumination to another one is diagonal von Kries like
adaptation model [8]. If (𝑅, 𝐺, 𝐵) denotes color value under
source illumination, then model states that we can model the
same color value under target illumination as

[
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]
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However, differentCATs differ in the color space inwhich this
scaling takes place.

Obvious choice is the color space in which image is
initially described, such as sRGB color space. This process is
simple as no additional transformations of the color spaces
are required. Other commonly used color spaces are derived
as linear transformations of the 𝑋𝑌𝑍 space [15]. The process
of deriving these linear transformations of the 𝑋𝑌𝑍 space is
called sensor sharpening [11]. Color matching functions of
the derived color spaces tend to have sharper, narrower peaks,
thus they support better the von Kries like models. The basic
model for transforming color values in derived color spaces
is as follows.

(1) (𝑅, 𝐺, 𝐵) value is transformed into (𝑋, 𝑌, 𝑍) value.
(2) (𝑋, 𝑌, 𝑍) value is transformed using

[
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. (2)

(3) (𝑋󸀠, 𝑌󸀠, 𝑍󸀠) value is transformed back to (𝑅󸀠, 𝐺󸀠, 𝐵󸀠)
value.

Some commonly used transformations of the 𝑋𝑌𝑍 color
space,M, are as follows.

(i) 𝑋𝑌𝑍: M
𝑋𝑌𝑍

is the identity matrix in (3). This
method’s performance is poor [16]:

M
𝑋𝑌𝑍

= [

[

1 0 1

0 1 0

0 0 1

]

]

. (3)

(ii) Bradford: a commonly used transformation derived
by comparing 58 samples of color wool under illu-
minants D65 and A [17]. At the beginning this
transformationwas nonlinear in the blue channel, but
this nonlinearity was eliminated later. Consider

MBradford =
[

[

0.8951 0.2664 −0.1614

−0.7502 1.7135 0.0367

0.0389 −0.0685 1.0296

]

]

. (4)

(iii) Sharp: a widely used newer transformation derived
from the Bradford transform [18]. It has more narrow
peaks of color basis functions than the Bradford color
space; thus it supports better von Kries like model.
Consider

MSharp =
[

[

1.2694 −0.0988 −0.1706

−0.8364 1.8006 0.0357

0.0297 −0.0315 1.0018

]

]

. (5)

(iv) CMCCAT2000: simplified CMCCAT2000 [19] is the
successor of the complexCMCCAT97 transformation
[20], which was also derived from the Bradford trans-
formation. CMCCAT2000 also allows modelling of
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the partial adaptation of the observer, but partial
adaptation is not considered in this paper because we
assume a fully adapted observer. Consider

MCMCCAT2000 =
[

[

0.7982 0.3389 −0.1371

−0.5918 1.5512 0.0406

0.0008 0.239 0.9753

]

]

. (6)

All of the described transformations use the diagonal
von Kries like model to model illuminant change. But it
has been shown [9, 10] that diagonal model is not accurate
if color channels are correlated. Even after color channels
are transformed using sensor sharpening there is still some
correlation left. We can model the correlation using full
linear model instead of the diagonal model. The reason why
usually the full linear model is not used is that there is not
enough information available to determine the coefficients,
in particular, if we only know the values of the illuminants.
But if we have more color correspondence pairs between two
illuminations, there is no need to limit our methods to the
diagonal model. Instead we can use full linearmodel that also
captures correlations between color channels.

3. Proposed Method

The algorithm proposed in this paper is based on the
assumption that color points whose chromaticity values are
close together in the color gamut of the source illumination
should warp smoothly to a new color gamut of the target
illumination. In order to change the illuminant of any
color point, the color gamut is divided into smaller regions
according to some reference points, and the transformation
to be applied to each region is computed.That is, the objective
is to obtain the transformation matrix to be applied to each
region in the source color gamut. Our method is suitable for
controlled applicative environment, because it assumes that
both source and target illuminations are known and that the
Macbeth color checker is present in the input image, or color
values of the patches of the Macbeth color checker captured
under the illuminant of the input image are known.

The following subsections explain our transformation
between the source and the target color gamut, outline
the Delaunay triangulation used to divide the color gamut
into smaller regions, and finally describe the proposed CAT
method to change the illuminant.

3.1. Calculation of the Transformation Matrices between Dif-
ferent Color Gamuts. The function of transformation to be
applied for changing the illuminant can be obtained if some
reference points are known in the source color gamut and
their transformations in the target color gamut are known
as well. We describe these reference points in chromatic rg
space. The reason why we are using the chromatic rg model
instead of the nativeRGBmodel is thatwewant similar colors,
ignoring intensity values, to be transformed with the same
transformation matrix.

The following equations system in (7) is themathematical
relation between one chromatic point in the source color

gamut 𝑋(𝑥, 𝑦) and the target color gamut 𝑈(𝑢, V). This rela-
tion can be linear, quadratic, cubic, and so forth, depending
on the value of 𝑘. The quantities 𝑎 and 𝑏 are unknown factors
that can be solved if several points in the source color gamut
and their transformation in the target color gamut are known.
Consider
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𝑖
.

(7)

Any point within the source color gamut 𝑋(𝑥, 𝑦) can be
transformed into the corresponding point of the target color
gamut 𝑈(𝑢, V) by using the relation in (7).

If a linear relation (𝑘 = 1) is considered, then the system
in (7) becomes

𝑢 = 𝑎
0
+ 𝑎
1
⋅ 𝑥 + 𝑎

2
⋅ 𝑦,

V = 𝑏
0
+ 𝑏
1
⋅ 𝑥 + 𝑏

2
⋅ 𝑦

(8)

or in matrix form

U = A ⋅ Y, (9)

where

U = [
𝑢

V] , (10)
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] , (11)
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𝑦

]

]

. (12)

In order to calculate the unknown factors in A: 𝑎
𝑗
and

𝑏
𝑗
for 𝑗 = 0, 1, 2 as there are six unknown factors and two

equations, it is necessary to know at least three points in the
source color gamut and their transformations in the target
color gamut. If we had chosen a higher order relation (𝑘 > 1)

more correspondence points would have to be known.
The known three points in the source color gamut

𝑋
𝑙
(𝑥
𝑙
, 𝑦
𝑙
) for 𝑙 = 1, 2, 3, describe a triangle. They can be

arranged in matrix form as
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𝑦
3

]

]
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And the known three points of the transformed triangle
in the target color gamut 𝑈

𝑙
(𝑢
𝑙
, V
𝑙
), for 𝑙 = 1, 2, 3, can be

arranged in matrix form as

T = [
𝑢
1
𝑢
2
𝑢
3

V
1

V
2

V
3

] . (14)

The equations system to be solved in order to compute the
unknown factors in A is

T = A ⋅ S. (15)
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And the solution to this system is

A = T ⋅ S−1, (16)

where S−1 can be computed by means of a singular values
decomposition (SVD) [21].

Transformation matrix A differs from diagonal models
used by other CAT methods by also capturing the relations
between separate color channels; thus it is more accurate if
color channels are correlated.

Once the transformationmatrixA is known, it is possible
to transform any point within the triangle defined by the
known reference three points in the source color gamut to
the target color gamut by using (9).The smaller the triangle in
the source color gamut, themore accurate the transformation
will be for the points inside the triangle. The transformation
is completely accurate when transforming vertices of the
triangle, because they have direct mappings from source to
target illuminant. So if we reduce the size of the triangle, color
points that lie inside it becomemore similar to the vertices of
the triangle which have direct mappings defined. This is the
reason why it is desirable to divide the color gamut into the
smaller possible triangles according to the reference points
known in both color gamuts. The method explained in the
following subsection is used to obtain the biggest number of
nonoverlapping triangles given a number of reference points.

3.2. Delaunay Triangulation. Delaunay triangulation [22] is
a well-known method in the field of mesh generation due
to its optimality properties. In the plane or the 2D case, the
Delaunay triangulation Del(𝑃) of a set of 𝑛 points 𝑃 = {𝑝

𝑖
},

for 𝑖 = 1, . . . , 𝑛 inR2, is a collection of triangles Tr(𝑝
𝑗
, 𝑝
𝑘
, 𝑝
𝑙
),

such that no point in 𝑃 is inside the circumcircle of any
triangle in Del(𝑃).

For a set of 𝑛 points, the number of triangles produced
by triangulation depends on the spatial distribution of the
points. If 𝑏 is a number of points forming convex hull of the
points, then the number of triangles𝑁 is at most

𝑁 = 2𝑛 − 2 − 𝑏. (17)

Degeneration of 𝑁 can occur, if all the points lie on the
same line. Then there are no triangles defined. But consid-
ering the domain of color transformation this is unlikely to
happen.

The Delaunay triangulation will be used to divide the
color gamut into smaller regions (triangles) according to the
reference points known in both color gamuts. We should
mention that the resulting triangulation is not unique when
four or more points lie on the same circle. Further research
will be needed to study the effects of different possible
triangulations of the same color points.

3.3. Illuminant Change Method. Once the formula for the
transformation matrix for a number of reference points is
known and the way to divide the color gamut into smaller
triangles has been established, then, in order to perform the
illuminant change, the following steps are to be carried out.

+

++

+

Color checker Color rendition chartGretagMacbeth

Figure 1: Macbeth color checker. Color patches have spectral reflec-
tance intended tomimic those of natural objects such as human skin,
foliage, and flowers.

(1) The Macbeth color checker (Figure 1), present in the
input image, is used as the reference to achieve color
constancy. Delaunay triangulation is done to divide
the original color gamut by using the mean (𝑟, 𝑔)

values of the 24 patches of theMacbeth color checker.
Figure 2 shows triangulations of the color gamut for
two different illuminants.

(2) Once the triangles are defined, the transformation
matrixA of each triangle in the source color gamut is
computed using (16).Thus, there are asmanymatrices
A as triangles.

(3) For each point of the source color gamut that needs to
be transformed, the transformation in the target color
gamut is obtained with (9), that is, by applying the
transformation matrix A of the triangle that contains
the point. First, RGB color point 𝐶 = (𝑅, 𝐺, 𝐵)

is converted to rg point 𝐶
𝑟𝑔

= (𝑟, 𝑔). Then the
triangle containing point 𝐶

𝑟𝑔
is found and the point

is transformed using the transformation matrix A of
the triangle containing it, resulting in a new rg point
𝐶
󸀠

𝑟𝑔
= (𝑟󸀠, 𝑔󸀠). The new RGB point 𝐶󸀠 = (𝑅󸀠, 𝐺󸀠, 𝐵󸀠) is

obtained using

𝑅
󸀠
= 𝑟
󸀠
⋅ (𝑅 + 𝐺 + 𝐵) ,

𝐺
󸀠
= 𝑔
󸀠
⋅ (𝑅 + 𝐺 + 𝐵) ,

𝐵
󸀠
= (1 − 𝑟

󸀠
− 𝑔
󸀠
) ⋅ (𝑅 + 𝐺 + 𝐵) ,

(18)

preserving the sum of channel intensities before and
after the transformation.

As far as the points in the source color gamut are inside
one of the triangles obtained by Delaunay triangulation
using the patches of the Macbeth color checker, the resulting
transformation using the matrices A is valid. Nevertheless,
the triangles defined by the patches of the Macbeth color
checker do not cover the whole rg chromaticity space. Hence,
problems appear when transforming a point in the source
color gamut that is outside any triangle, as the illuminant is
not corrected properly for these points.
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Figure 2: Triangulations of the color gamut for two different illuminants. The triangulations are shown in the rg chromaticity space with the
point colors being the same as patch colors of the Macbeth color checker captured under the same illuminant.

In order to handle these points outside the triangles
defined by the patches of the Macbeth color checker, we
consider the vertices of the whole rg chromaticity space as
reference points together with the patches of the Macbeth
color checker. The vertices of the rg chromaticity space in
(𝑟, 𝑔) are (0, 0), (1, 0), and (0, 1). Note that point (1, 1) is not
the vertex of the rg chromaticity space. By the definition of
rg space, sum of both components cannot be greater than
one [23]. The transformed points of these vertices for any
illuminant are the same points, as the limits of the rg space are
fixed and if an overflow occurs the obtained point is saturated
to the limit.

The proposed method has one restriction. The triangles
defined by the values of the Macbeth color checker under a
source illuminant may cross or fold over each other when
transformed to a target illuminant. Likewise the transforma-
tion of the arbitrary color point within certain triangle under
the source illuminant does not guarantee that transformed
color point will be contained in the corresponding triangle
under the target illuminant. Because of these properties the
inverse transformation cannot be defined with our proposed
method. However exact inverse transformation is rarely
needed in the applicative environment described at the
beginning of the paper.

4. Experimental Evaluation

To objectively evaluate the performance of our method,
we used color-checker image database [24]. It contains 568
images captured under different artificial and natural illumi-
nations. All the images in the database contain a Macbeth
color checker, which is an assumption our method implies.
The coordinates of the patches of a Macbeth color checker

are available on the website of the image database [25], from
which we also obtained illuminant estimates used by other
CAT methods. To speed up evaluation, all transformations
were made on the downscaled versions of images (813 × 541)
also available on the website of the image database.

All the images in the database are described in sRGB color
space with gamma correction applied. CAT methods assume
that linear images are given, so inverse gamma correctionwas
applied to produce linear images [26]:

Chlin =
{{{

{{{

{

Chs𝑅𝐺𝐵
12.92

, Chs𝑅𝐺𝐵 ≤ 0.04045,

(
Chs𝑅𝐺𝐵 + 0.055

1.055
)

2.4

, Chs𝑅𝐺𝐵 > 0.04045,

(19)

where Chlin represents the linearized sRGB value of the color
channel Ch = {𝑅, 𝐺, 𝐵}.

To evaluate the performance of our method, we trans-
formed the color patches of the Macbeth color checker on
each of the 568 images and compared the transformed values
with the values of the patches of the Macbeth color checker
captured under standard D65 illuminant [27]. To ensure that
our method is not in a privileged position compared to other
CAT methods we took two precautions as follows.

(i) The color value of the patch currently being trans-
formed cannot be used when triangulating the source
color gamut and calculating transformationmatrices.
Otherwise it is the part of the transformation matrix.

(ii) Chromaticity values of the patches in the last row of
theMacbeth color checker are very similar.That is the
reason why we ignore all the patches of the Macbeth
color checker in the last row except the third patch
from the left. One could also choose any other patch
from the last row.
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Performance of ourmethod is evaluated using the follow-
ing steps.

(1) Color values of the patches of the Macbeth color
checker in the input image are calculated.

(2) All the color patches from the last row of theMacbeth
color checker except the third one from the left are
discarded.

(3) To each of the remaining 19 color patches we apply the
following:

(a) From the set of color values we temporarily
remove the value of the patch currently being
transformed.

(b) Delaunay triangulation is applied.
(c) We find the triangle containing the color value

of the patch currently being transformed.
(d) We use the transformationmatrix of the triangle

to transform the patch value.
(e) Difference between the transformed value and

the reference value of the patch under standard
D65 illumination is computed.

(4) The error of the single image is equal to the mean
difference of all the transformed color patches.

Performance of other CAT methods (sRGB, 𝑋𝑌𝑍, Brad-
ford, Sharp, and CMCCAT2000) is evaluated similarly as
follows.

(1) Color values of the patches of the Macbeth color
checker in the input image are calculated.

(2) All the color patches from the last row of theMacbeth
color checker except the third one from the left are
discarded.

(3) Color values of the 19 remaining patches are trans-
formed using the CAT method. Differences between
the transformed value and the reference value of the
patch under standardD65 illumination are computed.

(4) The error of the single image is equal to the mean
difference of all the transformed color patches.

To compute the difference between the values of trans-
formed patches and reference patches, perceptual euclidian
distance (PED) is used:

PED (𝑒
𝑡
, 𝑒
𝑟
) = √𝑤

𝑅
(𝑅
𝑡
𝑅
𝑟
)
2

+ 𝑤
𝐺
(𝐺
𝑡
𝐺
𝑟
)
2

+ 𝑤
𝐵
(𝐵
𝑡
𝐵
𝑟
)
2

,

(20)

where 𝑒
𝑡
= (𝑅
𝑡
, 𝐺
𝑡
, 𝐵
𝑡
) represents normalised transformed

values, 𝑒
𝑟

= (𝑅
𝑟
, 𝐺
𝑟
, 𝐵
𝑟
) represents normalised reference

values, and 𝑤
𝑅
, 𝑤
𝐺
, and 𝑤

𝐵
represent weight coefficients. It

was shown that PED with weight coefficients 𝑤
𝑅

= 0.26,
𝑤
𝐺
= 0.70, and 𝑤

𝐵
= 0.04 finds its roots in human vision

and correlates significantly higher than any other distance
measures [28].

Mean PED errors of different methods are shown in
Table 1. Performance of the evaluated methods is similar.

Table 1: Comparison of mean PED error of different CATmethods.

Method PED Rank
sRGB 0.047 3.
XYZ 0.048 4.
Bradford 0.047 3.
Sharp 0.046 2.
CMCCAT2000 0.046 2.
DT-based 0.038 1.
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Figure 3: Boxplots summarizing PED errors of different CAT
methods. First boxplot from the left has labels showing five statistics.

The only method that stands out is our proposed method
(DT-based) that has significantly lower mean PED error than
the other methods. The second best methods (Sharp and
CMCCAT2000) havemore than 21% greatermean PED error.
This is an encouraging result for the use of the proposed
method.

Figure 3 shows box plots of PED errors for different
CAT methods. Box plot is a tool for visualisation of the data
distribution [7] or in our case a tool for the visualization of
the distribution of the PED errors. It visualizes five statistics:
minimal error MIN, lower quartile 𝑄1, median error 𝑄2,
upper quartile 𝑄3, and limited maximal error LMAX, which
is not greater than 𝑄3 + 1.5(𝑄3 − 𝑄1). Errors greater than
LMAX are shown as outliers.

Although the evaluated CAT methods have similar box
plots, it can be clearly seen that our proposed method has
lower𝑄1,𝑄2,𝑄3, and LMAX (MIN = 0 for all the methods).
This tells us that most PED errors of our proposed method
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Table 2: Results of the Mann-Whitney U test comparing median PED errors of different CAT methods.

−1
−1 −1

−1
−1
−1

sRGB
sRGB

XYZ

XYZ

Bradford
0

0 0 0 0
0
0
0

1
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0
0

0

0

0
0
0
1

1

1 1

Bradford

Sharp

Sharp

CMCCAT2000

CMCCAT2000

DT-based

DT-based

1
A positive value (1) at location (𝑖, 𝑗) indicates that the median PED error of the methods 𝑖 is significantly lower than the median PED error of method 𝑗 at the
95% confidence level. A negative value (−1) indicates the opposite, and a zero (0) indicates that there is no significant difference between the two methods.
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Figure 4: Correlation between the number of triangles and PED
error. Dots represent mean number of triangles produced by
triangulation and mean PED error on every image in the database.
Red line is used to quickly visualize linear least-square trend of the
data and it is not meant to be an accurate model of the relation.

are lower than corresponding PED errors produced by other
CAT methods.

To verify that our proposed method performs better than
other existing methods, we conducted statistical test as sug-
gested in [7]. Mann-Whitney U test [29] is a nonparametric
statistical test that does not imply normal distribution of
underlying values. It is used to show whether median values
of two samples are statistically significantly different or not.
Two values are significantly different if, given the confidential
level, we can conclude that the observation is not the result of
a random process [30].

We compared median PED errors of each pair of eval-
uated methods and checked if two values are significantly
different. Results are presented in Table 2.Median PED errors
ofmethods sRGB,𝑋𝑌𝑍, Bradford, Sharp, andCMCCAT2000
are not significantly different, except for the significantly
lower error of the Sharp transform compared to the 𝑋𝑌𝑍
transform. The proposed method has significantly lower
median PED error compared to all of the other methods. We
conclude that under the experimental conditions presented
in this paper our method significantly outperforms other
existing methods.

Surprisingly the sRGB method performs similarly to the
methods using sensor sharpening. Some authors [11, 15] state
that methods based on RGB color model do not perform as
well as sensor sharpened methods. We showed differently.

Figure 4, showing correlation between the number of
triangles produced by triangulation and mean PED error,
confirms that the number of triangles has significant influ-
ence on the performance of the proposed method. A higher
number of triangles imply lower triangle areas in which
the transformation matrix more accurately transforms part
of the original color gamut. A higher number of known
corresponding points between the source and the target color
gamut results in more accurate transformation matrices and
better method performance.

Figure 5 shows random image from the color-checker
image database transformed with conventional𝑋𝑌𝑍method
and our proposed method. Original image was shot under
artificial light and has strong color cast. Both transformations
greatly reduce this color cast when transforming to D65
illuminant. By closer examining image transformed with
𝑋𝑌𝑍method (zoom in on the image) you can still see yellow
color cast on the ground. On the image transformed with our
method this color cast is completely removed.

5. Conclusion

This paper tackles the problem of changing the illuminant of
an image andproposes a newmethod to increase the accuracy
of the transform.The proposed method uses Delaunay trian-
gulation and linear transformations in order to transform the
input image.The only assumption it relies on is that the color
values of the patches of the Macbeth color checker captured
under the same illuminant as the input imagemust be known;
that is, theMacbeth color checkermust be captured under the
same illuminant but not necessarily in the same image.

Objective comparison shows that our method performs
significantly better than other state-of-the-art methods.
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Figure 5: Visual comparison of original image (a), image transformed with 𝑋𝑌𝑍 transform (b), and image transformed with our method
(c). Target illuminant is D65.
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