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Abstract

The main topic of this research work belongs to the area of navigating mo-
bile robots, and more specifically to the behaviour-based indoor navigation
approach. The starting point is the control architecture integrated in Gal-

txagorri, a behaviour-based system whose control architecture follows a tax-
onomy of biological navigation strategies and which is capable of topological
navigation. The work detailed in the present dissertation contributes to the
improvement of the navigation capabilities in three main aspects:� Capability to recognise doors: this behaviour is of primary importance

in order to enhance the knowledge of the world that the robots will
use to achieve goals. Door handle recognition helps the robot to iden-
tify doors in places where the camera is not able to view the whole
door; a situation typical in office-like environments, which are full of
narrow corridors and junctions, and where the distance to doors is too
short. In the present research, new approaches to object recognition are
presented, applying machine learning paradigms for color based image
segmentation and feature extraction algorithms.� Capability of global localisation: a probabilistic localisation method is
applied in a distributed form in order to provide the robot with the
ability of self-localisation even if it ignores its starting position or to in
case it gets lost.� Capability of automatically acquiring the topology of the environment
for terrain inspection: a new technique to construct a topological map
during the exploration phase on an unknown office-like environment is
presented. The new approach is based on a typicality test to perform
the so called loop-closing action. This test indicates for each new lo-
calisation detected by the robot whether it is a new location – and,
therefore, it should be added to the map the robot is building – or an
already visited one – and therefore, the loop is closed. The developed
system proved to be useful also for localisation purposes. A behaviour-
based control architecture is used to perform all the experiments.

XVII



The main contributions of this research work belong to the areas of com-
puter vision, more precisely to object recognition in images, and to robot
localisation and mapping within the behaviour-based frame. The aim, suc-
cessfully achieved, was to partially increase the level of autonomy of the
robots.

The final goal of the European robotics research community could be to
let the robot explore, learn and localise new environments – for instance, a
house –, and have it perform specific tasks. The work presented here attempts
to make a modest contribution in this direction.
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Since the early age of robotics the development of robots has undergone
many changes. Starting from what a robot is, what a robot should do, how
should it be controlled, up to what the behaviour of robots should be. For
the time being, there are not answers to all these questions yet.

The aim of this chapter is to shortly review the evolution of robotics over
the years, referring to the different stages robotics has gone through, and to
name the main inventors and researchers that have influenced this field.

1.1 Short history of robotics

Robotics is the field – art, science or technique – that develops robots. But
what is the meaning of “Robot”? The first time the word was used was
in 1921. The word “robot” stems from a play Rossum’s Universal Robots
directed by the Czech playwright Karel Capek (1890-1938). Capek derived
the word “robot” from the Czech word “robota”, which means “forced labor”
and the Czech word “robotnik”, which means “serf”. The theme of the play
was about the dehumanisation of men in the technological civilisation. It
should be noted that Capek’s robots were not mechanical devices but the
result of chemical processes (see Figure 1.1).

Figure 1.1: Rossum’s universal robot

In 1942, the American scientist and writer Isaac Asimov wrote a novel
titled “Run-around” where the word “Robotics” was used for the first time.
He tried to describe the technology of robots, and also to protect human
beings and limit the impact that robots would cause in the future society.
To do so, Asimov defined three laws:



1.1. Short history of robotics 5

1. A robot may not injure a human, or allow a human being to be injured.

2. A robot must follow any order given by a human being that does not
conflict with the First Law.

3. A robot must protect itself unless such protection conflicts with the
First or Second Laws.

What are robots then? Today there is still no consolidated definition al-
though we are able to recognise a robot when we see one. According to the
Robot institute of America (1979), a robot is defined as a reprogrammable,
multifunctional manipulator designed to move material, parts, tools, or spe-
cialised devices through various programmed motions for the performance of
a variety of tasks.

For the Japanese Industrial Robot Association (JIRA), robots are divided
into the following six classes:

Class 1: manual handling devices. Devices with several degrees of freedom
actuated by an operator.

Class 2: fixed sequence robots. Handling devices which perform the suc-
cessive stages of a task according to a predetermined, unchanging method,
which is difficult to modify.

Class 3: variable sequence robots. The same type of handling device as in
class 2, but the stages can be modified easily.

Class 4: playback robots. The human operator performs the task manually
by leading or controlling the robot, which records the trajectories. This
information is recalled when necessary, and the robot can perform the task
in automatic mode.

Class 5: numerical control robots. The human operator supplies the robot
with a movement program rather than teaching it the task manually.

Class 6: intelligent robots. Robots with the means to understand their
environment, and the ability to successfully complete a task despite changes
in the surrounding conditions under which it is to be performed.

According to the Webster’s dictionary, a robot is an automatic device that
performs functions normally ascribed to human beings or a machine in the
form of a human.

Nowadays most robots are created to perform obligatory work, for exam-
ple in industry, doing repetitive and fixed tasks. These type of robots are
manipulators that operate within a bounded workspace, and cannot move.
But robotics is about much more than obligatory labor or manipulators. For
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most scientists working in this area, robots are autonomous systems which
exist in the physical dynamic world, can sense the environment, and can act
on it to achieve some goals. Hence, robots:� Need a physical body.� Need sensors and actuators to interact with the environment.� Need to be able to take decisions autonomously in the sense that they

should have long-term ability to operate without the aid of external
operators.

It is not possible to pinpoint where the idea of a “robot” or some type
of machine that could help people originated. The first machines of this
type we know about were the organs and water clocks with movable figures
that the Greek engineer Ctesibius made in the III century BC (Mayr, 1975).
However, this inventions are not like the “machine” that we know nowadays,
but rather clever mechanical devices.

The first animated machines can be found at the beginning of the eigh-
teenth century. Among them the best known one is Vaucanson’s digesting
duck (see figure 1.2). The idea of this French engineer and inventor was to
build an automaton that could eat, digest, metabolise and defecate grain.
The duck had over 400 moving parts, could flap its wings, lengthen the neck
and mimic the footwork of a real duck. This machine followed the principles
of Descartes, that is, the belief that animals were mere automata. The same
idea would later on dominate the development of robots for years, during the
gold age of artificial intelligence.

Figure 1.2: The digesting duck

The mathematician Norbert Wiener was the pioneer in the study of
stochastic and noise processes, and he worked on electronic engineering, elec-
tronic communication, and control systems. In 1947, he made significant
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contributions to a number of areas of mathematics including harmonic anal-
ysis and Fourier transforms, but his most important contribution to robotics
was the theory of cybernetics.

1.1.1 Cybernetics

The term cybernetics comes from the Greek word kybernetes which means
the art and science of guidance. Its object of study are the biological systems,
from the level of neurons to the level of behaviour. Cybernetics combined
theories and principles from neuroscience and biology with those from engi-
neering, with the goal of finding common properties and principles in animals
and machines. In cybernetics, the main goal was to produce sophisticated
behaviour similar to that found in nature, coupling the mechanism and its
environment.

In 1950, the neurophysiologist and robotician Grey Walter, tried to im-
plement the studies of cybernetics in simple robots. Walter was an innovative
neurophysiologist interested in the way the brain functions and he developed
the first robots of modern robotics, nowadays known as Walter’s turtles or
tortoises (see Figure 1.3). Walter gave his turtles Latin names to describe
their behaviours, such as Machina Speculatrix and Machina Docilis. Specu-
latrix means “machine that thinks” and docilis means “machine that can be
tamed/taught”, by which he meant a machine that could learn, because it
could be trained with whistles (Walter, 1953).

Figure 1.3: Walter’s tortoise, the first behaviour-based robot

Walter’s idea was to develop a machine with simple reflex behaviours,
that would be in constant movement except when recharging, that would
be motivated to move towards some environmental object, and would move
away from certain negative stimuli and with the ability to distinguish between
productive and unproductive behaviour. With this idea in mind, Walter’s
tortoise consisted of one analogue electronic circuit with two vacuum tubes,
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one photo cell to detect light levels, one bump sensor, one rechargeable bat-
tery, two motors and three wheels in a tricycle-like design. All this things
were covered with a clear plastic shell.

The tortoises were endowed with the following behaviours or capabilities:� Find the light: while the robot was moving exploring the environment,
the photocell sensor rotated looking for a weak light source because
that was where the recharging station was to be found.� Head towards the light: once a weak light source was detected, the
robot orientation changed heading to the light.� Back away from bright light: when the light was bright, the tortoise
had to repel the light because it was assumed that the robot did not
need recharging.� Turn and push: to avoid obstacles.� Recharge the battery: when the robot had low battery the light became
strong so that the robot could perceive and move towards the recharging
station.

But the most impressive behaviour these turtles showed was not pro-
grammed. The battery level changed the behaviour of the light sensor. When
the battery charge level went down, high intensity light sources were per-
ceived as weak and hence, the robot was attracted by the light source with
which the charge station was signalled. This side effect produced what is
named as emergent behaviour, the robot was able to decide when it needed
to recharge and when to avoid the bright light just by interacting with the
environment.

To control these different behaviours a decision must be made about the
rules that should be executed at each stage. Robots built by Walter, acted on
the highest priority behaviour applicable, a method that is nowadays named
reactive control. When properly combined, these simple rules resulted in
animal-like behaviour.

Another important neuroscientist and cyberneticist who was inspired by
Grey Walter’s work is Valentino Braitenberg. He revived the tradition of
Walter, proposing behaviour-based robotic systems three decades after him.
In 1984, Braitenberg wrote a book titled Vehicles: Experiments in Synthetic
Psychology (Braitenberg, 1984) describing a series of ideas to develop ma-
chines with animal-like behaviour. He used his knowledge about how the
brain and neurons work to show how to design simple robots. Based on how
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neurons operate, he tried to develop systems using inhibitory and excitatory
connections directly coupling sensors to actuators.

These robots/vehicles were simple agents built with motors and sensors.
Connecting directly both components, it is possible to achieve excitatory
or inhibitory behaviours. For example, using an excitatory connection, the
stronger the light, the faster the robot will move showing a phototaxis be-
haviour. On the contrary, an inhibitory connection would result on slow
movements upon strong input values and photofobic behaviour. Increasing
the number (and type) of sensors and actuators and combining the connec-
tions, more sophisticated robots could be developed (see Figure 1.4).

Figure 1.4: Braitenberg’s vehicles

Although Braitenberg never gave expression to his ideas on physically
embodied agents in the sense that he only proposed ideas and descriptions
to develop machines, his book has been a source of inspiration for many
roboticians. For instance, in 1991, scientists at MIT’s Media Lab (Hogg et al.,
1991) developed some of the Braitenberg Vehicles using LEGO technology.

For the cybernetics field, the environment and the organism were linked in
the sense that the field covered all about control theory, information science
and biology. But at the beginning of the 50s, these topics were split into
different areas, giving rise to a new age of robotics.

1.1.2 Artificial Intelligence

In the age of cybernetics, the scientists tried to combine what were considered
the building bricks of robots, i.e. sensing, thinking and acting processes, and
the interaction with the environment. But after the 50s, this started to
change.

In 1950 Alan Turing wrote an article titled Computing machinery and
intelligence (Turing, 1950) presenting a test to determine the intelligence of
a machine: the Turing test. The test proposed a game named The imitation
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game, that worked as follows: The game was set up in an environment with
two rooms. In one of them, a person and a computer were placed and in
the other one, just a person. The person who was alone had to determine if
he/she was talking with the person or the machine in the other room. The
conversation should happen using natural language and the computer had to
use syntactic rules to manipulate symbol strings to communicate. The capa-
bility of the person to differentiate among the person and the machine in the
other room would determine the intelligent behaviour of the machine. Turing
ideas produced different reactions among the research community. Probably,
his best known detractor was Jon Searle who argued that being able to write
Chinese sentences does not imply to understand Chinese language (Searle,
1980). The Chinese room argument claimed that someone who knows only
English sitting alone in a room and following English instructions for ma-
nipulating strings of Chinese characters may be able to make someone else
believe that he understands Chinese. The argument was intended to show
that, while suitably programmed, computers may appear to converse in natu-
ral language although they are not capable of understanding language. Searle
argued that Turing’s experiment underscored the fact that computers merely
use syntactic rules to manipulate symbol strings, but have no understanding
of meaning or semantics.

Anyhow, more and more scientists from different fields began to research
in the field trying to develop intelligent machines. The goal of intelligence
took more and more strength and become the highest priority target. In
1955 the most prominent researchers of the date, John McCarthy, Marvin
Minsky, Allan Newell and Herbert Simon, met at a conference held at Dart-
mouth University, in Hanover. The goal of the meeting was to discuss the
development of intelligence in machines. In that meeting the field of Artifi-
cial Intelligence (AI) was born and the decline of cybernetics started. The
conclusion of the meeting, which was that reasoning was needed, would mark
the future of robotics for the following thirty years.

Until then, cybernetics had effectively combined “thinking”, “acting” and
the “interaction” with the environment, but in the Dartmouth conference
this entire field split between the fields of AI and robotics. From then on AI
intended to provide robots with a learning brain and intelligence, whereas the
scope of robotics was relegated to manipulation. Natural language, machine
learning and a symbolic representation of knowledge became the AI main
topics, topics always associated to higher levels of intelligence, and which do
not have a dependency on physical bodies or on the environment.

The researcher of AI had to create systems that could efficiently solve
problems and that could learn by themselves. The main areas of AI were
neural nets, complexity theory, self-improvement, abstractions and creativ-
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ity. Dartmouth conference conclusions summarised what intelligent machines
need to use (Matarić, 2009):� Internal models.� Search the solution space.� Planning and reasoning to solve problems.� Hierarchical system organisation.� Sequential program execution.

Robotics researchers developed robots based on these ideas for the next
thirty years. One of the most popular AI-inspired robots was Shakey (see
Figure 1.5). It was built at the Stanford Research Institute, California in
1966. Shakey was made up of a TV camera, a triangulating range finder,
and bump sensors. This robot communicated with two computers where the
perceptions and the solutions were explored and analysed. Shakey lived in a
very special indoor world specifically made for it. The environment consisted
of a white floor and some large black objects, such as balls and pyramids.
Shakey ’s task was to navigate from one room to another, avoiding obstacles
autonomously and pushing boxes from one side to another. It used programs
for perception and the computers created plans to move in that special world,
communicating with Shakey via logic predicates.

Since AI focused on reasoning, the robots were not based on reactive
control. AI-inspired robots used what later on was named deliberative control,
a type of control focused on planning actions, which was derived from the
decomposition of intelligence made by AI.

Another instance of AI-inspired robot was Cart (see Figure 1.6), devel-
oped at Standford University and entrusted by the National Aeronautics and
Space Administration (NASA) in 1966 with the goal of studying the possi-
bility of sending it to the moon controlled by radio signals. The project was
carried out and became the research tool of graduate students during the
70s. John McCarthy and Rodney Schmidt started to think about unmanned
guided vehicles and some years later Cart was able to follow a white line
painted on the road for about 6 meters using a TV camera mounted on its
top. In 1977 Cart was inherited by Hans Moravec and he focused on the
development of a precise 3D representation of the environment using images.

An image can contain a lot of information, but the process of extracting
useful information from vision sensors is computationally expensive and even
more so with the computers available at the time. Given the technology of
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Figure 1.5: The robot Shakey

that time, Cart took about 15 minutes to process each image. The robot
took nine analogue pictures to obtain information and learn about the en-
vironment. First the images had to be digitalised, which took five minutes.
Then, five more minutes were needed to examine the images, and finally
another five minutes were required for the maintenance of the environment
model and to plan the appropriate path.

Figure 1.6: Cart, the car-like robot on bicycle wheels

The Cart and Shakey examples showed that the separation and treatment
of each component individually, i.e. reasoning and manipulation, hindered
the progress of robotics in both fields. The few real robots developed in the
age of AI thought too hard but acted slowly and failed to move effectively and
responsively. This fact brought some roboticians to think that intelligence
on robots was not the exclusive feature to focus on. Something was missing
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in the approach taken by AI.
The rationale and focus of AI started to have an increasing number of

detractors. It was at this point that the new era of behaviour-based (BB)
machines emerged. In 1986 R. A. Brooks, nowadays considered one of the
founders of modern robotics, proposed a new way of developing intelligent
creatures together with a new control architecture for robots. Instead of a
top-down decomposition, he proposed a bottom-up methodology for building
robots. Agents with sensing and acting capabilities should be developed and
behaviours should be integrated incrementally. Intelligent behaviour should
emerge from the interaction between the agent and the environment. Brooks
founded behaviour-based robotics and built a great number of robots. As
the name suggests, BB systems were the technical counterpart of the phi-
losophy of the Psychology school born in the early twentieth century named
behaviourism. According to this school, behaviours as such can be described
scientifically without recourse neither to internal psychological events nor
to hypothetical constructs such as the mind. The first contribution of be-
haviourist researchers was to consider animals as intelligent creatures (Jen-
nings, 1906), what led them to carry out experiments with simple animals as
a means to better understand human intelligence.

Brooks noted that to develop humanoids, physical robots capable of in-
teracting in real environments were to be developed. These machines should
first show basic abilities. As behaviourism did, Brooks also claimed that in-
telligent behaviour was generated by main coupling perceptions and actions
without the need of hard reasoning.

In 1997, the NASA agency, responsible for the space program, aeronautics
and aerospace research, sent the first robot, namedMars pathfinder Sojouner,
to Mars with the idea of conducting experiments on the Martian surface. At
the same time, the Japanese company HONDA developed the first humanoid
called P3, and a few years after, it presented Asimo, an evolution of the P3
humanoid (see Figure 1.7(b)). This robot could run, walk on uneven slopes
and surfaces, turn smoothly and climb stairs, but was mainly teleoperated
and showed a low level of autonomy.

In 1999, Sony presented the first robot for entertainment called Aibo
(Figure 1.7(a)). This dog-shaped robot imitated dog behaviour and was able
to interact with human beings. With the passing of time, Sony introduced
new features and enhancements in this robot. Finally, in 2003, the company
presented the third version of this dog like robot.

During this first decade of the XXIth century, more and more robots are
being developed. In 2002, the iRobot corporation – Co-founded by Brooks –
presented the intelligent vacuum cleaner called Roomba (see Figure 1.7(c)),
one of the most famous robots of today. Although created for everyday use,
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this intelligent robot is just now becoming a common artifact at home.

(a) Aibo (b) Asimo (c) Roomba

Figure 1.7: Modern robots

Robot contests are becoming popular and they contribute to the speed-
ing up of the evolution of robots. Among them it is worth mentioning the
DARPA challenge, the first autonomous vehicle long distance competition
celebrated for the first time in 2004. In this competition autonomous vehi-
cles must travel a long distance with the only help of the sensors they are
equipped with. The first competition was held in the Mojave Desert and the
third edition took place in George Air Force Base in 2007. This competition
is open, anyone can develop their car and take part in it. Basically, the idea
is to develop autonomous vehicles to introduce advances in real life reliably.
Thanks to the achievements in this race there are now vehicles that park or
slow down by themselves.

Gradually, more robots are being designed. From 2004 to date several
humanoid robots have been developed capable of interacting with human
beings using human-like ways of interaction. There are many companies that
are dedicated to building more realistic humanoids with behaviours such as
talking, singing, cooking, and much more. The robot Sacarino, developed by
Cartif and University of Vigo is already working as a bellboy in Valladolid.

1.2 Applications of robots

As mentioned, many robots have been developed with very different func-
tionalities. All these robots are different in shape, some of them are walking
machines and most of them wheeled vehicles. Although they show different
capabilities they are still far from being like the robots depicted in futurist
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movies and books. With the advance of technology, the world of robotics is
growing and may well develop robots that were once unthinkable.

One of the first areas to introduce robotics was industry. As stated ear-
lier, industrial robots are generally manipulators. These mechanical arms,
thanks to their high precision and speed of movements, are used in almost all
industries, mainly in those engaged in assembly lines. In this sector, robots
can be deployed in applications such as manipulation of parts, application
of pieces or material, quality control, welding, etc. They are also very useful
in industrial cleaning or in agriculture. However, the usefulness of robots is
growing and more and more applications are being developed in which robots
will help human beings in our everyday life. Some of these applications are
listed bellow:� Interplanetary exploration: human beings always have had interest in

the space like G. Galilei, N. Copérnico, J. Kepler etc, but there was not
sufficient technology to explore it. In 1969 man landed on the moon,
but since then humans have not travelled any further. The conditions
of other planets, such as extreme temperatures, radiation, gravity and
inaccessibility has made it impossible. Ideas to assemble space struc-
tures by a flying robot in orbit or to conduct servicing missions to
existing satellites have been discussed. The latest achievements of the
NASA agency was to reach Mars. Obviously, it was not reached by
human beings but by two robots named Spirit and Opportunity which
landed on Mars in 2004 to obtain information on this planet. Thanks
to them something more about this planet is known (Aeronautics and
Administration, 2004).� Undersea exploration: in the same vein but with very different chal-
lenges, yet the sea is little explored by human beings. Nearly 70% of
the planet’s surface is covered by water, but the knowledge of the deep
sea is very limited. For example, it is known that the flow of water has
a lot in common with the weather on planet earth and the causes of
climate change, increasingly is being given more and more importance
to knowledge of the deep-ocean. One of the latest robots developed for
this purpose is called Benthic Rover. Thanks to this robot new insights
into the deep-ocean have been obtained (Henthorn et al., 2010).� Demining: robots are being increasingly used to identify and remove
mines which are left behind after wars end, but which do not loose
their explosive force and remain a real threat for populations around
the world. There is an estimate of 110 million mines scattered across the
land, mostly in Africa. Their identification, deactivation and removal
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is extremely important, but very dangerous for human beings. For this
purpose several robots, such as iRobot’s PackBot (Kaneko et al., 2010)
have been developed.� Health care/Medical assistance: the use of robots has also reached the
area of medicine, for example in surgery. Thanks to the precision of
robotic arms long-distance surgery is being made possible. In 2001 took
place the first long-distance operation with the robot ZEUS, developed
by Computer Motion. The patient was operated in France while the
team of surgeons was in New York. Currently there are several types of
surgical robots, as robots servo-workers, assistants, coordinators, semi-
autonomous and remote control (Sánchez Mart́ın et al., 2007).� Elderly people assistance: as life expectancy increases, this becomes
probably one of the most interesting applications. On the one hand,
societies are getting older and young people do not look after the el-
derly. On the other hand, people prefer to live at home as long as possi-
ble instead of being institutionalised in sheltered accommodation when
problems related to ageing appear. That is why the idea of developing
assistive robotics devices like autonomous wheel chairs or companion
robots has become attractive. Paro seal and Huggable bear are two
examples of companion robots.� Education: robotics has received a great deal of attention as a way
of motivating students to learn science and engineering (Druid and
Hendler, 2000). Based on J. Piaget and S. Papert theories about
constructivism, several educational robotics products have been cre-
ated and are nowadays widely used in schools and universities, such
as LEGO Minstorms, Fischertechnik, Logo etc. In the education field,
robots make easier the learning and the strengthening of cognitive skills
(González and Jiménez, 2009).� Entertainment: many robots have been created for entertainment, but
possibly the most famous of them is the dog robot AIBO, able to im-
itate actions and movements similar to real pets. There are more en-
tertainment robots like Pleo1, a robot with the appearance of a small
Camarasaurus originally designed by Caleb Chung.

1Innvo Labs, http://www.pleoworld.com/Home.aspx



Chapter 2

Structure of this dissertation

The brief history of robotics described in the previous chapter was meant to
introduce the reader to the state of the art of robots in general and in partic-
ular to the area of mobile robotics. Before continuing, it is worth to shortly
review the structure of the dissertation to facilitate the comprehension of the
text.

The dissertation is structured in five parts that can be read independently:� Part I, Introduction.� Part II, Putting the reader in the picture aims to contextualise the
developed research work.

It is composed of three chapters:

– Chapter 3 describes Galtxagorri and Tartalo, the two robot plat-
forms used for the empirical validation of the different methods
proposed. Together with the characteristics of the sensors the
robots are equipped with and their morphological structure and
computational capabilities, the software tools used for reading and
commanding actions to the hardware elements and for developing
higher level behavioural actuation are explained.

– Chapter 4 reviews the different paradigms for developing robot
control architectures and emphasises on behaviour-based systems
that are the philosophy adopted for the navigating control archi-
tecture being developed by the author.

– Chapter 5 summarises the behaviour-based navigation system of
Galtxagorri together with its predecessor Toto. The procedural
topological description of the environment used in these two robots

17
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form the starting point of the consequent behavioural layers de-
veloped within this research work. The three main shortcomings
of Galtxagorri’s architecture that are faced in the present research
work are identified.� Part III, Approaches to door handle identification, describes the sev-

eral approaches developed for obtaining vision based door identification
behaviour. Three chapters are deployed:

– Chapter 6 introduces the problem of door identification, justifies
the need of such behavioural module and reviews the literature.

– Chapter 7 reviews the image processing methods used for devel-
oping the different approaches.

– Chapter 8 describes the proposed methods that are validated through
a strong empirical phase. These approaches are also compared
among them to select the most appropriate one to be integrated
in the future in the navigating control architecture. Experiments
performed in Tartalo validate the proposed approaches.� Part IV, Behaviour-based localisation and mapping, describes the steps

given for further develop the navigating behaviour-based architecture
integrated in Galtxagorri.

This part is composed of two chapters:

– Chapter 9 describes the effort to integrate a probabilistic locali-
sation system to the behaviour-based navigating control architec-
ture. Experiments are executed in simulation as well as using a
the robot Galtxagorri.

– Chapter 10 explains how an automatic mapping behaviour is im-
plemented as a typicality approach. Again, experiments using a
simulator serve for validating the approach and afterwards, the
mapping system is tested within the real robot environment sys-
tem using the robot Tartalo.� Part V: Conclusions and open research lines.

– Chapter 11 summarises the developed work, giving the advan-
tages, shortcomings and obtained conclusions and outlining the
open research lines that remain open to continue working on.
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As discussed in Chapter 1, robots are autonomous systems which live in
the real world, they can get information about the world, and are able to
interact with it to reach goals. Holding to this definition, autonomous robots
need a physical body, sensors and actuators to interact with the environment.

The tasks that can be developed or the goals that can be reached by
robots depend on the set of information or stimuli they can perceive and
the actuators they are provided with. The morphology of the robot and the
type of sensors and actuators determine the interaction of the robot with the
environment.

This chapter describes the mobile robot platforms that have been used
in this research work. The different sensors available and their functionality
are described together with the software used to access the different devices
and to develop the control architecture.

3.1 Robot platforms

There are many types of mobile platforms or robots, which are usually specif-
ically designed for the environments where the robot is supposed to work in.
There are many different robots with very peculiar morphologies such as
animal-shaped robots, humanoids or dollies. Apart from the morphology,
robots differ specially in the type of motion system they use. That is to say,
robots that move underwater or robots that fly use different actuators than
those that move on the ground. At the same time, robots designed to live in
indoors use simpler motion systems than those that move outdoors.

The Pioneer platform was introduced by ActiveMedia Robotics – now
MobileRobots1– in 1995, and since then it has undergone several changes.
With the advance of technology, MobileRobots has made improvements in
several components and has developed different types of robots to adapt to
all types of terrain. Within the Pioneers platforms family, the 3-DX and
3-AT types can be found. The former has two differential wheels and one
caster, being suitable for indoor environments. The latter has four wheel
steer, being suitable for outdoor environments where the surface is not flat.
Given the limited space inside these robots, the on board computers are
usually special and not as powerful as those available on the market. For this
reason, depending on how the robot has to process data, many researchers
choose to treat the information in an external computer and to send it to
the robot after doing the necessary calculations. Thereby, the Pioneers are
equipped with mechanisms to communicate with an external computer such
as a wifi antenna and an Ethernet cable connection.

1http://www.mobilerobots.com/Mobile Robots.aspx
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The Robotics and Autonomous System group of the Basque Country
University owns several robots (Figure 3.1), all of them adapted for indoor
environments with flat floors and regular structures. The two platforms that
have been used in the present research work were Pioneer robots provided by
MobileRobots : a Pioneer 3-DX named Galtxagorri and a PeopleBot named
Tartalo.

Figure 3.1: Tartalo and Galtxagorri

Galtxagorri is a Pioneer robot, model 3-DX, a very common platform
within the mobile robotics research area. This Pioneer 3-DX platform is
fully assembled with motors with 500-tick encoders, 19 cm diameter wheels
and tough aluminium body. With a height of 23.7 cm, a width of 38.1 cm, a
length of 48.5 cm and 9 Kg weight without accessories, it can reach speeds
of about 1.4 m/s and carry a payload of up to 25 Kg. Inside the platform
there are three batteries of 12V that provide energy to the various electronic
components. On one of the outer sides of the platform there is a panel that
provides status information of the robot through bright LEDs, such as the
charge level of the batteries and the hard disk status (see Figure 3.2(a)). On
the opposite side, there is a similar panel with connectors for a keyboard, a
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mouse, a monitor, and a 10/100Base-T Ethernet connection to the internal
PC (see Figure 3.2(c)).

(a) P3-DX left panel (b) Pioneer 3-DX insides (c) P3-DX right panel

Figure 3.2: Pioneer 3-DX robot’s views

This Pioneer 3-DX robot uses a Hitachi H8S micro-controller. Using
ARCOS (Advanced Robotics Control and Operations) control system soft-
ware, the H8S manages all the low level details of the mobile robot, sending
commands and reporting the state of the devices attached to it to the client
applications. To this end, the controller has a 32K RAM memory and an
additional 128K flash memory which stores the parameters of the robot. The
H8S controller contains several input/output ports to connect additional sen-
sors or devices and also a serial plug to connect the controller to the on board
computer (see Figure 3.2(b)). Galtxagorri was originally provided with a Pen-
tium III 850 MHz computer. This computer was replaced with a 1.6 GHz
Intel Pentium M on board computer with 1GB RAM memory to increase the
on board computational capability of the robot.

Galtxagorri is equipped with 16 ultrasound sensors placed in two sensor
rings at the front and at the rear, a Canon PTZ colour camera, a Leuze RS4
laser sensor and a TCM2 electronic compass.

Tartalo is a PeopleBot robot built on the P3-DX base. More specifically,
Tartalo is a Pioneer robot with a chest-level extension that makes it taller
and adequate for human-robot interaction. With a height of 112 cm, a width
38 cm, a length of 47 cm and 12 Kg weight without accessories, it can reach
speeds of about 0.8 m/s and carry a payload of 13 Kg. PeopleBot robots have
a SH2 micro-controller to communicate with the embedded sensors and the on
board computer. The base of the PeopleBot has been extended with front and
rear bumper rings and infrared sensors pointing upwards and configured to
detect tables so that the robot can grasp objects if a gripper is also available.
As mentioned earlier, the chest-level extension makes PeopleBot robots more
suitable for interacting with people. At the top of the chest, it is possible to
place a touchscreen as a device to command inputs to the robot. This screen
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is connected to the on board computer and its location is chosen to facilitate
the communication between the user and the robot. For the same reason
the robot is equipped with speakers and a microphone. Like the Pioneer
platforms, PeopleBot robots have connectors to add different devices such as
a gripper, laser scanners, cameras, an electronic compass, etc.

Tartalo has an on board computer, originally a Pentium III 850 MHz
upgraded to an 1.8 GHz Intel Pentium M with 1 GB RAM memory and
is additionally provided with front and rear sonar and bumper sensors, a
gripper with two degrees of freedom, a SICK laser scanner, a Canon PTZ
colour camera, a TCM2 compass sensor and a touchscreen on the top.

3.2 Robot sensors

Although robots can be used for different ends, they are all supplied with
sensors.

Sensors are physical devices that measure physical quantities, and that
allow the robot to perceive and measure environmental properties, such as
distance, size, touch etc. This information, though, is sometimes confusing
or noisy, in the sense that the measurements are not accurate. To obtain an
improved accuracy of the gathered information robots are normally provided
with multiple sensors.

The next subsections describe the main sensors available on the two robot
platforms previously described and commonly used within the indoor mobile
robot navigation area.

3.2.1 Bumpers

Bumpers are digital passive sensors that do not need to send any stimulus
to be activated. Bumpers can be used to detect collisions that have already
occurred, they can not anticipate contact with objects and hence, they are
very useful when other alternative obstacle avoiding mechanisms fail. They
are also used to detect limits in manipulators. Of the two robots used in this
research, only Tartalo is equipped with bumpers. It has front and rear belts
with five bumper sensors on each.

3.2.2 Infrared sensors

Infrared (IR) sensors are active sensors that emit a wave of infrared light
and collect the intensity of the reflected light. The infrared light emitted by
the IR sensor is usually modulated at a very low frequency (100Hz) in order
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to distinguish the emitted IR signal from the light emitted by a fluorescent
lamp or by the sun (Nehmzow, 1999). For these sensors to give accurate
measurements, the objects that are in the environment must have a uniform
surface and colour. However, in real environments objects are of different
colours and materials, and some are particularly difficult to be perceived.
For example, in the case of dark objects the intensity of the reflected light
is inversely proportional to the square of the distance, and they are very
difficult to detect as it can be seen in Figure 3.3.
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Figure 3.3: IR measurements in different surfaces

IR sensors are used as break-beam sensors in gripper like manipulators,
to detect the presence of obstacles not perceived by larger range sensors and
to detect irregularities such as steps.

Tartalo is equipped with IR sensors. Twin fixed-field IR point up and
slightly forward from the front corners of the base to sense the underside of
tables. The location and orientation of these IR sensors make it possible to
detect tabletops or rope barriers. Besides, the gripper has infrareds located
inside the fingers to detect that something is in between them ready to be
grasped (Figure 3.4).

Drawbacks

Infrared sensors have a limited range of detection. They can detect the
presence of obstacles at a distance of 5 cm and up to 100 cm.
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(a) Infrareds on the base (b) Infrareds in the gripper

Figure 3.4: IR sensors in Tartalo

Moreover, these sensors do not measure the distance to the object. The
received signal is usually thresholded to decide the presence or absence of
objects. Therefore, these sensors are rarely used alone for obstacle avoidance,
they are normally combined with larger range sensors.

Infrared light is absorbed by dark colours and hence, dark surfaces are
difficult to detect. Same problem arises with glass made objects or other
reflecting surfaces.

3.2.3 Sonar sensors

The sonar device (SOund NAvigation and Ranging) is used to measure dis-
tances to elements in the environment. The ultrasonic sensors are time of
flight (TOF) sensors. These sensors measure the time that a pulse of energy
needs to travel to a reflecting object and return to the receiver. The distance
is calculated by multiplying the speed of the wave energy (in the case of
ultrasound, the velocity of sound, vs) by the time required to travel. This
value is divided by two, as the flight time of the signal corresponds to the
time required to get there and return: d = vs×t

2
.

Both robots, Galtxagorri and Tartalo are equipped with front and rear
sonar rings at the base, with a total of eight ultrasonic sensors in each ring.
Additionally, Tartalo includes eight more sonar sensors on the top of the deck.
The sonar ranging acquisition rate is adjustable, and set to 25 Hz by default.
These sensors are configured to detect obstacles at distances from 15 cm to
5 meters.
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Drawbacks

Although the speed of sound is set to 341.000 km/s in an atmosphere of 20◦C,
depending on the humidity and temperature, the speed of sound changes thus
affecting the measures obtained by ultrasounds. For instance, at 16◦C of
temperature, the error in the measurement is of the order of 3% (Nehmzow,
1999).

The sensitivity of a sonar sensor is cone shaped (see Figure 3.5), and it
is not possible to know the exact position of an object detected at distance
d, which could be anywhere within the sonar’s cone, or on an arc of distance
d from the robot (Everett, 1995).

Figure 3.5: Approximation of cone shape measurements

Bouncing sound waves in the environment cause what is known as spec-
ular reflections. These imprecise measurements are caused by firings that
hit objects with a smooth surface at shallow angles. The fired sound wave
bounces off another object and returns to the sonar receiver, giving an er-
roneous distance measurement. Specular reflections produce overestimated
distances and hence, the robot may leave potentially dangerous situations
undetected. Figure 3.6 shows this effect, the measured distance to the object
will approximately be d1 + d2 + d3 instead of d1.

3.2.4 Laser range finders

Laser (Light Amplification by Stimulated Emission of Radiation) sensors are
TOF devices used to measure distances to objects in the environment. But
instead of sending a sound pulse, these devices emit light through a process of
optical amplification based on stimulated emission of photons. Laser energy
is emitted in a rapid sequence of short bursts aimed directly at the object
within range (Borenstein et al., 1996).

Laser sensors emit light beams at different angles covering a wide range.
They make use of a rotating mirror to change the angle of the emitted light.
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d1

d2d3

Figure 3.6: Specular reflections

In this way, instead of a single reading, laser devices give scans of readings
(see Figure 3.7).

The high directionality of the laser light makes it a controlled beam and
specular reflections are avoided. Moreover, the lasers’ range is much larger
than that of sonars although the maximum range is normally configured by
software and set to shorter values because indoor environments do not require
such long ranges as outdoor ones.

Figure 3.7: Functionality of the laser

Tartalo and Galtxagorri are equipped with lasers from different manufac-
turers. The Pioneer 3-DX has a Leuze RS4 laser (Figure 3.8(a)) and the
PeopleBoot a more common Sick LMS laser (Figure 3.8(b)).

The Leuze RS4 laser has an angular range of 190◦, and an angular resolu-
tion of 0.36◦. Its maximum registration of measurements values is 50 meters.
The Leuze laser is fed by an additional 12V battery placed on the base plate
via a 12V to 24V Mascot 8862 converter.
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(a) Leuze laser (b) Sick laser

Figure 3.8: Lasers from different manufacturers

On the other hand, the Sick laser has an angular range of 180◦, a max-
imum range of 80 meters and the angular resolution can be configured to
0.25◦, 0.5◦ or 1◦, firing a beam of light each 13.3 ms (75Hz). This laser is fed
from the internal batteries of the robot.

Drawbacks

Laser sensors are nowadays becoming essential in navigating indoor and out-
door robots albeit they also present some flaws. Glasses and mirrored sur-
faces do not reflect the light and hence, can not be detected by these powerful
sensors.

They are generally expensive although cheaper (and less accurate) models
are being manufactured. Moreover, their energy consumption is high and this
reduces the level of autonomy of the robot. Besides, their weight and size
makes it difficult to place them on smaller robots.

3.2.5 Odometry

The odometry system is the set of sensors and hardware necessary for measur-
ing the horizontal displacement of the drive wheels and thus, for measuring
the horizontal displacement and change in orientation of the robot. There
are two ways to measure it (Arkin, 1998):

1. Using shaft encoders : these are devices mounted on the rotating shaft of
the wheels. Odometers consist of binary coded discs and optical sensors
that calculate the shaft’s position. Once the positions is calculated it
is possible to measure the displacement of the robot.
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2. Using inertial navigation systems: instead of calculating the displace-
ment of the robot based on the rotation of the wheels, these systems
measure the acceleration of the robot. This method is more precise but
more expensive, and that is why shaft encoders are more widely used
in indoor robots.

Both, Galtxagorri and Tartalo are equipped with two quadrature encoders
with a resolution of 500ticks per revolution.

Drawbacks

Odometry is based on the assumption that wheel revolutions can be trans-
lated into linear displacement relative to the ground. However, the position
obtained by the odometer is very unreliable because it is affected by two
types of errors (Borenstein and Feng, 1996):

1. Systematic errors: these errors are due to inaccurate values of the robot
parameters, such as wheel diameter or wheelbase length. These errors
can be measured and calibrated.

2. Non systematic errors: these errors are the result of wheel slippage
produced by acceleration/deceleration of the robot, and by bounces
produced by uneven floor. These effects occur randomly and hence,
cannot be corrected.

Moreover, since the estimation of the robot position is based on the pre-
vious state, the odometry error is accumulative. Figure 3.9 shows the impor-
tance of this error. The robot path drawn appears completely out of phase
so it is impossible to distinguish the path executed by the robot.

Odometry error can be said to be the main problem faced by mobile
robotics nowadays, and it has deeply influenced the approaches taken to
develop control techniques for robot navigation.

3.2.6 Electronic compass

There is a wide range of mechanisms for obtaining the angular orientation
with respect to the earth’s magnetic field, such as magnetoresistive compasses
or magnetoelastic compasses (Borenstein et al., 1996). Tartalo is equipped
with a TCM2 sensor which besides being a compass, it is also a inclinometer,
a magnetometer and a thermometer. Each compass measurement consists of
a number of samples of x and y pulses which are the horizontal components
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Figure 3.9: Cumulative odometry error

of earth’s magnetic field. These measures are digitised and sent to the micro-
processor, which uses algorithms to translate them into precise information
about the orientation.

The TCM2 sensor is connected to one of the serial ports of the on board
computer.

Drawbacks

Although compasses are designed to avoid the variations they suffer in their
readings, caused by electrical fields or metal structures found in the environ-
ment, the errors in the measurements they provide are still significant.

The structure and components of the robot must be taken into account
and it is necessary to place the compass in a proper position so that the
readings are as accurate as possible.

Figure 3.10(a) shows an example of the error produced by the robot com-
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ponents. Plotted data readings were previously low filtered and converted to
integers to remove noise. The compass sensor was hold by the gripper and
the gripper was commanded to move upwards to its limit and downwards
again. The microphone and speakers situated on the desk at the top of the
chest produced a deviation of 50◦ in the compass reading. On the other
hand, Figure 3.10(b) shows the compass reading during a forward path of
the robot drove using a joystick. On its way, the robot passed by an elec-
tronic cupboard and although it maintained a constant heading, the readings
oscillated considerably, and the initial and final orientations differed in about
15 degrees.
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Figure 3.10: Compass readings variations

Despite these errors, the compass can be a valuable sensor for navigation.
As discussed in Section 3.2.5, odometry error is mainly caused by the rotation
of the robot. With this sensor the angular position of the robot can be
obtained more reliably and hence, the heading value can be used to correct
the robot position, thus, compensating for the accumulation of the error
(Nehmzow and McGonigle, 1993) (see Figure 3.11).

3.2.7 PTZ camera

PTZ (Pan, Tilt, Zoom) devices are monocular sensors that capture video or
images. Contrary to fixed cameras, they are provided with two degrees of
freedom that allows the gaze to be adjusted to point to the object of interest.
The “pan” angle allows the camera to rotate on its horizontal axle, and “tilt”
allows the adjustment of the vertical angle of the camera. PTZ systems also
offer the possibility to change the zoom value by software.

Both robots have a Canon VC-C50i camera, a sensor that has 26x optical
zoom and 12x digital zoom, the pan angle range is ±100◦ and the tilt angle
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Figure 3.11: Robot path

ranges from −30◦ to +90◦. It also has autofocus. Galtxagorri’s camera is
located on the base plate and given its short height, it offers a very limited
vision. Tartalo’s camera, on the other hand, is located upside down on the
neck above the chest of the robot, a location that offers the option to grab
higher objects and avoids distorting views.

3.3 Control software

The Pioneer platforms are provided with specific software fromMobileRobots
such as Aria and MobileEyes. Instead, Galtxagorri and Tartalo devices are
accessed using the Player/Stage project software, and the control architec-
ture is developed using SORGIN, a software framework specifically designed
to develop behaviour-based control architectures (Astigarraga et al., 2003).

3.3.1 The Player/Stage project

The Player/Stage project provides a multithreaded robot control and simu-
lation software for multiple robots (Gerkey et al., 2003). Player provides a
network interface to a variety of robot and sensor hardware. The Player ’s
client/server model allows robot control programs to run on any computer
with a network connection to the robot. The server must run on the same
machine on which devices are connected, while the client establishes a con-
nection through a TCP/IP socket with the server, and sends messages to
access the needed devices. Once the connection is established, the server
will feed the information or data continuously to the client or answer to its
requests. Player supports multiple concurrent client connections to devices
and a wide variety of mobile robots and accessories.
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Player differentiates between drivers and interfaces. Drivers are pieces of
code that physically access the hardware whereas interfaces specify the syntax
and semantic with which Player and the drivers interact. This differentiation
makes it possible to access several devices using the same abstraction level.

Its modular structure allows the robotics community to develop drivers
for new devices. Moreover, it does not impose restrictions to the control
architecture being developed and hence, the control architecture can be a
multithreaded parallel program, a reactive control or just a sequential pro-
gram.

Player client programs can be written in different programming languages
such as C, C++, Java or Python. Player works in POSIX (Unix, Linux,
MACOS) platforms.

On the other hand, Stage is a simulation environment for a single or
multiple agents. Stage simulates a population of mobile robots moving in
and sensing. It is possible to use two or three-dimensional bit mapped indoor
environments. Various sensor models are provided, including sonar, laser,
PTZ camera with colour blob detection, odometry, etc. Stage is a very
useful tool to test new software and ensure that it operates smoothly on the
robot.

3.3.2 SORGIN

To implement a control architecture it is essential to develop the tools needed
to easily build and debug the different behaviours. The SORGIN software
framework (Astigarraga et al., 2003) is a set of data structures and the li-
brary of functions associated to them which are specifically developed for
behaviour-based control architecture engineering. From a generic point of
view, global behaviour can be considered as a network of coupled concurrent
active entities -threads- which interact asynchronously among themselves.
SORGIN identifies these active entities with software components and de-
fines their interaction, creating thus a principled method of modularity and
behaviour libraries. SORGIN has been developed using the C programming
language and Posix threads, both standard and portable elements.

SORGIN behaviours consist of:� A set if inputs and outputs that are links to a specific class of data –see
bellow for a description.� A link to an initialisation function (start) that will perform everything
needed before the main loop start. This function is specially important
when the module deals directly with a physical device.
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executed as an independent process (calculate).� A link to a function to be performed when the behaviour or module
stops its execution (stop).

Compared with Van Breemen’s framework (Van Breemen, 2001), there is not
a central component that directs the overall controller. When behaviours are
launched, they are fully responsible for their own execution; all of them run
at their respective working frequency. After a behaviour brick is initialised
and starts running, a thread is created that will execute until it stops or
someone stops it.

Communication among the modules is performed by establishing connec-
tions between the modules’ inputs and output links and the data. These data
(io data) are more than data-messages. Each io data element contains all
the information needed to safely read/write the data through the net when
it is required, or to avoid race conditions when the information is required
locally. In this way, during the implementation of an instance of a calcu-
late function the designer of the control architecture does not need to worry
about those details, only the offered standard functions to read/write the
inputs/outputs must be called. Figure 3.12 shows graphically the backbone
of SORGIN.

Stop
Calculate

Start

Data

mutex
length

socket

���
���
���
���

���
���
���
���

Behavior

Running
inputs

outputs

Figure 3.12: Backbone of SORGIN

The SORGIN software framework is inherently modular from a software
design perspective. This enables a robotic system designer to expand the
robot’s competence by adding new skills without having to redesign or discard
the old ones. This is very useful to construct increasingly complex robotic
systems.

Behavioural abstraction is provided in this software framework with the
behaviour and io data components, allowing thus a uniform representa-
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tion of computational objects. Code reusability is another positive aspect of
SORGIN. It promotes the automatic reusability of behaviours across different
tasks, and thus, the automatic generation of behaviour libraries.

Figure 3.13 shows how Player and SORGIN are combined. The robot
devices are accessed through Player drivers that communicate with SORGIN

behaviours that run as Player client programs.
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Figure 3.13: Player and SORGIN working together

Figure 3.14 shows an example of how behaviours can be implemented
using the SORGIN framework.
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void main ( )
{

/*Data de c l a ra t i on */
i o d a t a t i r r e a d i n g s ;
i o d a t a t avoid output ;

/*Behaviour de c l a ra t i on */
behav io r t a v o i d ob s t a c l e s ;

/*Data i n i t i a l i s a t i o n */
i n i t d a t a ( i r r e ad i n g s , 20) ;

/*Behaviour i n i t i a l i s a t i o n */
av o i d ob s t a c l e s =
behav i o r d e f i n e (2 , 1 , a v o i d ob s t a c l e s s t a r t ,

avo i d ob s t a c l e s s t op ,
a v o i d o b s t a c l e s c a l c u l a t e ) ;

/* Input /Output Connections */
behav i o r s e t i npu t ( avo id ob s t a c l e s , 0 , running ) ;
b ehav i o r s e t i npu t ( avo id ob s t a c l e s , 1 , i r r e a d i n g s ) ;
b ehav i o r s e t ou tpu t ( avo id ob s t a c l e s , 0 , avo id output ) ;

/* i n i t i a l i s e the behav iour */
behav i o r s t a r t ( a v o i d ob s t a c l e s ) ;
behav ior run ( av o i d ob s t a c l e s ) ;
while (1 ) s l e ep ( 1 . 0 ) ;
/* f i n a l i s e the behav ior */
behav io r s top ( av o i d ob s t a c l e s ) ;

}

Figure 3.14: Example of a SORGIN client program
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This chapter describes the different paradigms to develop robot control
architectures and focuses on behaviour-based systems, which are the main
scope of this research work.

4.1 Introduction

As mentioned in Chapter 1, when talking about robots manipulators and
mobile robots can be distinguished.

Manipulators are machines that are fixed to a base, they minimally inter-
act with the environment and they have reduced mobility. These machines
are automaton and usually do not need to perceive information from the
environment to plan the next movement. Therefore, they can not considered
to be intelligent. On the other hand, mobile robots, as their name implies,
are machines that can interact with the environment, perceiving the state of
its properties with their sensor and changing its state. The way sensors and
actuators are linked depends on the control architecture responsible for the
behaviour of the robot under the environmental conditions.

As mentioned, in order to achieve good and safe movements or to carry
out the correct actions, it is necessary to control the internal connections
of the system between input sensors and robot actuators. The modules the
control architecture is composed of, and the way these modules communicate,
determine the type of control. Different lines or currents of control design
have been developed which can be classified into four groups (Arkin, 1998):� Deliberative or symbolic systems: associated to the intelligence concept

of classical AI, the main goal is to develop the brain of the robot, leaving
out the processing related to sensors and actuators.� Reactive systems: reacting to the environment becomes the main goal
instead of thinking.� Hybrid systems: the combination of the first two systems attempts to
overcome the drawbacks of deliberative systems adding the capability
of interacting with the environment.� Behaviour-based (BB) systems: they are based on reactive control, but
robots with more complex capabilities are developed.

It is hard to decide which paradigm is better than the other because the
adequate type of control depends on the type of robot, the task or goal to
achieve and the niche of the robot. In the following sections these four types
of control are better explained and analysed.
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4.2 Deliberative or symbolic control

The deliberative control architecture scheme emerged when Artificial Intel-
ligence (AI) dominated the world of robotics. The word deliberation refers
to thinking hard and, as discussed in Chapter 1, the efforts of AI focused on
developing aspects of human intelligence in machines.

This control architecture consists of three steps that need to be performed
in sequence: Sensing, Planning and Acting. The sensing module, responsible
for perception, has to obtain a highly reliable representation of the current
state of the system based on readings from sensors and the internal model of
the world. After extracting from the readings the current state of the envi-
ronment, the task of the planning module is to find the sequence of actions
that, given the current state and the goal, will bring the robot to the desti-
nation or the goal. Hence, the acting module is responsible for transforming
the sequence of actions to signals that the actuators can understand to move
towards the goal (see Figure 4.1). This cycle is repeated once and again.
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Figure 4.1: The deliberative control architecture scheme

AI concentrated on developing abstract representation methods to create
models and reason about the environment. The perception module is the
process of perceiving the environment through sensors and representing and
modelling the current state through a set of symbols and predicates, so that a
correspondence can be established between the current state and the internal
representation. Therefore, all the reasoning is performed within the model
and there is no direct link between the process of perception and the action
module. The world model contains all the robot needs to know to carry out
its task successfully.
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Typically, planning tends to be more than finding a sequence of actions
leading to the destination. Moreover, there can be more than a possible
path to the goal and properties such as length and safety of the possible
paths should be analysed in order to choose the most appropriate one. The
planning process must take into account all the parameters in order to select
the best sequence. The computational payload of the reasoning process is so
high that the acting response is delayed unreasonably. As we saw in Chapter
1, both robots Shakey and Cart used this architecture and needed too much
time to obtain a plan to reach the goal and execute a small movement.

The most important problems associated to this type of control architec-
ture were:� Delicate systems: one of the main problem of this control system is

that the modules have to be executed in sequence. The output of one
module is the input of the next one. The final response of the system
is the result of the three modules, none of the modules produces a
behaviour independently. If any of the modules fails, then the whole
system will fail.� Environment representation: given the sensory uncertainty and dy-
namism of the real world the representation of the environment is a
very complex task. The model needs to contain only relevant informa-
tion and all the relevant elements of the environment for the planner
to reason properly and select the adequate plan. The design of the
appropriate model has shown not to be trivial at all as described by
the well known Frame Problem (see (Dennet, 1998)).� Unable to cope with dynamic environments: the planning module is
based on the model of the environment created by the system, and while
planning the sequence of movements that the robot has to execute, the
world may change and the action sequence proposed by the planner
may not be appropriate any longer for the new state. Moreover, if the
planning process is slow, the robot has to stop while making planning
estimates in order to avoid moving blindly. The high latency of the
planning process results in a slow feedback loop between sensing and
acting. It must be mentioned that the computational power available
nowadays relieves this problem.

In spite of these problems, AI researchers were confident with the Cartesian
decomposition of intelligence and speculated that robot controllers should
work at the same way. This control architecture is widely used nowadays in
game-playing, specifically in board games like chess machines. In general,
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when the environment is static, when there are not dynamic objects and
the robot does not need to update the internal model once and again, the
planning module has enough time to calculate the desired sequence to reach
the objective.

4.3 Reactive control

This control type is based on the tight connection between robot’s sensors
and actuators, as in the initial vehicles proposed by Braitenberg (1984). It
has not a planning module, so it neither has to create nor to maintain the
environment model, although it can maintain a small state information. It
is simply based on the direct readings of the sensors to act as quickly as
possible, hence the name reactive (see Figure 4.2). As a consequence, the
main loop of this control paradigm is much faster than that of the deliberative
one. The control usually consists of a collection of rules that do not require
much thought; they act as simple reflexes such as jerking back one’s hand
after having being pricked with a needle.

The deliberative control was based on much thought. The action of the
robot was the result of the reasoning made in the environment model once the
current state was deduced from the sensory inputs received. On the contrary,
reactive control systems are based on reflexes, and so the reasoning process
of the reactive control is much faster. It places more emphasis on speeding
up the feedback loop than on thought, avoiding the computational cost of
reasoning and just executing a set of precompiled rules activated upon the
sensory input received.
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Figure 4.2: The reactive control architecture scheme

Reactive control then can be summarised as collection of conditions and
actions, where conditions may be subject to the sensory readings, or to inter-
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nal states. For example, the robot can turn to dodge an obstacle when it is
detected by sensory readings or because the internal state of the system has
indicated that it has to change direction. Of course, the complexity of the
rules is beyond this example; it is possible to create very complex rules by
combining the results of the sensor readings and internal state information.

The most important drawback of this type of control is that it is too
rigid in the sense that it does not have any memory, it does not maintain
any internal representation of the environment and as a result it can neither
adapt nor learn. This fact represents a serious drawback on the level of
complexity of the behaviours these kind of systems can show.

4.4 Hybrid control

Hybrid systems can be considered as the evolution of deliberative systems. As
it has been commented, deliberative systems are complete respect to intelli-
gence, but they are very slow. However, reactive systems are faster, but they
do not hold any intelligence. The main idea of hybrid systems is to combine
the best of these two systems, taking the intelligence of deliberative systems
and enabling them to react upon dynamic environmental changes. Hybrid
systems are also called three-layer systems (Kortenkamp and Bonasso, 1998;
Arkin, 1998; Connell, 1992; Gat, 1991; Langley et al., 1991) because they typ-
ically consist of three components; a reactive layer, a planner and a middle
layer that links the above two together (see Figure 4.3).

Reactive Layer

Middle Layer

Actuators OutputsSensory Inputs

Planning Layer

Figure 4.3: The hybrid control architecture scheme

The classical deliberative layer, with a model of the environment, is re-
sponsible for planning the actions the robot has to perform to reach its goal
and the reactive layer enables the robot to survive while it is thinking out
the path. The information flows in both directions, from the planning layer
to the reactive one and vice versa. The planner sends action commands to
the reactive layer and the reactive layer communicates the planner trapped
situations and actions that can not be executed unexpectedly. The middle
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layer is used to resolve conflicts between the other two and it is responsible
for compensating the limitations of both systems, reconciling their differ-
ent time-scales, and dealing with their different representations and reaching
consensus on any contradictory commands that they have sent to the robot.

The design of this type of control architectures has some complications
(Matarić, 2009):� These systems still show difficulties to cope with dynamic environ-

ments. Undoubtedly this architecture preforms well in static environ-
ments, but when introducing a deliberative layer, the problem of repre-
senting dynamic environments remains unsolved. The dynamic changes
can not be foreseen and the requirement of keeping the correspondence
between the world and the model requires a constant effort to keep the
model updated and to plan the failed paths again.� The design and implementation of the middle layer is very difficult and
it cannot easily be reused for several robots/environments. This layer
is severely tied to the specifications and the task of the robot, so it has
to be developed for each new robot and task.

In spite of these problems, it must be said that this is the most popular
type of control architecture used nowadays.

4.5 Behaviour-based robotics

Behaviour-based systems are distributed parallel control architectures in which
each basic processing unit produces a behaviour on the robot. This control
architecture is closer to reactive control and it is often confused with it.
Behaviour-based systems are biologically inspired systems developed bottom
up, like reactive systems. The difference lies in the level of representation
allowed and in the processing units. Instead of precompiled rules, the ba-
sic processing units of behaviour-based systems, named behaviours, have the
following characteristics (see Figure 4.4):� Each one achieves its purpose: each behaviour only has one goal.� They all run continuously: behaviours receive inputs and produce out-

puts in a continuous loop.� Behaviour modules communicate among them: a behaviour is able
to communicate with other behaviours, receiving inputs from other
modules as well as from sensors.
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Find Path

Follow Wall

Build Map

Track Person

Find Object

Avoid Objects Actuators OutputsSensory Inputs

Figure 4.4: Generic behaviour-based control architecture scheme� They are more complex than rules: the precompiled rules of reactive
systems produce simple actions like turn-left, go-straight and joining
the outputs of rules the robot achieves a simple behaviour.

What is a behaviour then? It is a very loose concept that could refer to the
motion of a mobile robot, the trajectory of a manipulator, an ant following
another, etc. A behaviour is composed of three fundamental components; the
task, the environment and the body (see Figure 4.5). These three elements are
tightly coupled and can not be considered independently (Nehmzow, 1999).

EnvironmentTask

Robot

Figure 4.5: The triangle of fundamental components to be intelligent

The behaviour emerges from the interaction between these three compo-
nents, and if one of these components change, so does the behaviour. For
example, a behaviour such as opening a door, has no meaning if the robot
does not have arms, or if it is located undersea. Thus, a behaviour is an
execution thread that has only one goal usually specific to the environment.

Like reactive control rules, the behaviours of this system are executed in
parallel, getting a fast response. One of the biggest differences between reac-
tive systems and behaviour-based systems is that it is impossible to acquire
enough knowledge of the environment using exclusively rules. However it is
possible to construct a representation of the environment using the appro-
priate network of behaviours.
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Joining behaviours may eventually lead to create an intelligent machine,
but control is needed to coordinate all the behaviours. When building a
BB system it is very important to analyse well the design. The system
is composed by behaviour modules that run in parallel and somehow, the
sensor fusion problem of deliberative architectures is transferred to action
fusion in BB architectures. Different modules output different actions but
only one action at a time can be executed by the actuators and therefore,
action proposals must be coordinated. Generally speaking, there are two
approaches for action selection: command arbitration and command fusion
(Figure 4.6).
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Figure 4.6: Approaches for action or behaviour selection

Command arbitration scheme is the process of selecting one action among
all possible candidates, also called competitive strategy. The modules com-
pete each other so that its action has an effect on the actuators, being the
winner the one which is going to control the behaviour of the system. There
are different ways of selecting the winner. The modules can compete on a
priority scheme. Maes (1989) proposed a system in which each module de-
fined the level of its activation, and the winner was the module with the
higher activation. Another alternative is to use a voting system on the set of
all the possible actions to take. The action that receives most votes will be
run. This voting system was used by the DAMN architecture (Rosenblatt,
1995).

On the other hand, the command fusion or cooperative approach is the
process of combining all the candidate outputs in a single output action.
Thus, with cooperative strategies, different modules contribute to the overall
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response, usually as a weighted sum (Arkin, 1989). The final output is not
the action specified by a single module, but the combination of the actions
output by the active modules.

4.5.1 The subsumption architecture

The subsumption architecture proposed by Brooks (1986) is the most well
known BB architecture with which many successful robots were developed.
Herbert (Connell, 1990), Polly (Horswill, 1994) and Toto (Matarić, 1992)
are three instances of robots developed at the MIT using the subsumption
architecture, and with very different capabilities.

The subsumption architecture is composed by layers which are arranged
in increasing order of complexity. Each layer implements one level of be-
haviour (Figure 4.4). A layer is composed by several behavioural modules
working in parallel and achieves a task in the sense that, behavioural modules
form a priority based control architecture, being the bottom layer the one
with lower priority. Higher level layer modules can subsume/inhibit output-
s/inputs of modules in lower levels. This communication messages include a
time stamp to indicate the latency of the signals.

sonar

collide

whenlook

wander

feelforce runaway

avoid

look

stereo

integrate

pathplan

status

forward

turn
robot

robot

robot

robot

heading

heading

heading

heading

busy
encoders

encoders

integral

travel

busy

startlock
init

candidate

force

map

halt

path

20

1575

S

SI

Level 2

Level 1

Level 0

Figure 4.7: Communication among the modules in the subsumption architecture

In this way, layers of behaviours are developed incrementally and hence,
the system shows robustness if a layer fails (see Figure 4.7).

Therefore, the subsumption architecture implements a priority based com-
mand arbitration action selection scheme and so the hard of its design. It is
not obvious how the priority of layers should be established. Depending on
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the environmental conditions, a selected priority order could bring the robot
to reach its goal or to fail to achieve it.
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This chapter introduces the concept of behaviour-based (BB) navigation
and describes two instances of robots that use biologically inspired navigation
techniques: Toto (Matarić, 1990), the best exponent of BB navigation sys-
tems; and Galtxagorri, (Lazkano, 2004), another BB system inspired by Toto.
Galtxagorri’s control architecture was the starting point of the work described
in the present dissertation and thus, needs to be explained in detail in order
to put the reader into the picture.

5.1 Introduction

Getting from one place to another is a considerable challenge for a robot.
Navigation refers to the way a robot finds its way in the environment (Matarić,
2009). To face this is essential for its survival. Without such basic ability the
robot would not be able to avoid dangerous obstacles, reach energy sources
or return home after exploring its environment. Navigation is therefore a
basic competence that all mobile robot must be equipped with.

The navigation task has been approached in different ways by the main
paradigms of control architectures previously described in Chapter 4.

From the point of view of the classic or symbolic trend, navigation is the
result of answering three questions (Levitt and Lawton, 1990):� Where am I?� Where are the other places relative to me?� How can I reach them?

These questions give rise to the three main areas of robot navigation: en-
vironment mapping, localisation and path planning. Navigation then can be
defined as the combination of those three fundamental competences (Nehm-
zow, 1999); map-building, self-localisation and path planning.

The fact that simple animals show excellent navigation capabilities prove
that a system, equipped with appropriate sensors and actuators, together
with an appropriate control architecture, can exhibit an adaptive behaviour
that allows it to survive in unpredictable environments (Trullier and Meyer,
1997).

Bioinspired behaviour-based navigation is then defined as the process
of determining and maintaining a path or trajectory to a goal destination
(Bekey, 2005; Mallot and Franz, 2000). The main question to be answered
for navigation is not Where am I? but How do I reach the goal? and the
answer does not always require knowing the initial position. Therefore, the
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main abilities the agent needs in order to navigate are to move around and
to identify goals whereas neither a centralised world model nor the position
of the robot relative to it need to be maintained.

Bioinspired robotics should not be confused with Biorobotics, an emerging
field defined as the intersection between biology and robotics (Webb, 2001;
Meyer, 1997; Bennett, 1997).

5.2 A note about landmarks

Landmarks play an important role in classical navigation and also in bio-
logical and bioinspired navigation systems. A characteristic landmark is any
physical property that the robot can perceive with its sensors (Nehmzow and
Owen, 2000). Landmarks then do not need to be physical objects but may
be environment corners, pipes or line segments that can be associated with
features such as corridors or open doors. They can also be parts of images
or scenes (Trahanias et al., 1999).

Regardless of the nature of the landmarks, they can be classified according
to different criteria:� Local landmarks: these are characteristic of a particular location, but

do not need a global reference system to be recognised, for instance
doors or fire extinguishers.� Global landmarks: these are related to a global reference system such
as the Earth’s magnetic South or the (x, y) coordinates of the robot
with respect to its initial position.

If the navigation system is based purely on landmark recognition, then
the landmarks should have certain characteristics (Nehmzow, 1999):

1. They have to be visible from various positions.

2. They have to be recognisable under different lightning conditions, view-
ing angles, etc.

3. They must be either stationary throughout the period of navigation,
or their motion must be known to the navigation mechanism.

The selection of the appropriate set of landmarks is a difficult task which
greatly depends on the sensors that the robot is equipped with and on the
environment where the robot will be placed. Since not all the environments
have the same properties one of the best options may be for the robot to
learn the appropriate marks (Greiner and Isukapalli, 1994; Thrun, 1998a).
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Typically, indoor environments are large spaces full of landmarks that
the robot can use to locate itself in it. But these landmarks usually do not
uniquely characterise a single location because many locations look alike.
This problem is known as perceptual aliasing, which can be dealt with us-
ing sensory information from different sensor modalities. For example, it is
possible to combine the information of landmarks with the odometry to dis-
ambiguate between locations with the same sensory pattern (Thrun, 1998b;
Burgard et al., 1998).

5.3 Behaviour-based navigation

As mentioned earlier, behaviour-based systems are inspired by biology. Dif-
ferent authors (Trullier et al., 1997; Mallot and Franz, 2000) classify biomimetic
navigation behaviours into two main groups:

1. Local navigation strategies are local control mechanisms that allow the
agent to choose actions based only on its current sensory input, i.e.
relying only on the characteristics that are within the agent’s perceptual
range. Four are the strategies that fall in that group:� Search or wander: move in the environment safely and avoiding

all types of obstacles, without any purpose or objective.� Path integration: integrate or store the movement direction and
distance to maintain the association between the source and the
target.� Taxis: move towards a target that produces a certain stimulus.
Taxis is certainly involved in most navigation behaviours (together
with obstacle avoidance and course stabilisation), but taxis does
not necessarily include the essential capabilities of locomotion and
goal recognition.� Goal orientation: this is a navigation mechanism by which the
agent finds the goal. To do so, it sets its self-centred relation-
ship with respect to the elements surrounding the target, making
unnecessary that the goal is marked with any characteristic.

2. Way-finding methods: they are responsible for driving the agent to
goals outside the agent’s perceptual range that require recognition of
different places and relations among them. They rely on local strate-
gies. Three are the main way-finding strategies and they are mentioned
bellow in increasing order of complexity:
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locations via a local navigation mechanism. The recognition of
the “position” launches a navigation mechanism that leads the
robot to the target. In this context, a location is defined as a
particular perception, a landmark. This strategy can be used to
build paths. The paths or the sequences are independent of each
other and direct the robot towards a unique goal (Trullier et al.,
1997). But this strategy is not enough to choose a path, i.e. it can
not be used for path planning since knowledge is limited to the
next action to perform. Linking perceptions to a unique action
is called PTR and limits the navigation system to always use the
same sequence of locations. These locations are combined defining
routes, but planning and terrain inspection capabilities require
a wider knowledge about the space configuration of the known
places.� Topological navigation: this strategy requires abilities like path
integration and planning. To plan a path between the robot’s
location and the goal, it is essential to know the spatial relation-
ship among the connected locations in the environment, so this
strategy is not valid to generate paths in unknown terrain.� Terrain inspection: during this process, the spatial representation
must be manipulated and accessible as a whole, so that the spatial
relationship between any two of the represented places can be
inferred. An agent using survey navigation is able to find novel
paths over unknown terrain, since the embedding of the current
location into the common frame of reference allows the agent to
infer its spatial relation to the known places.

The behaviour-based approach to robot navigation relies on the idea that
the control problem is better assessed by bottom-up design and incremen-
tal addition of light-weight processes, called behaviours, where each one is
responsible for reading its own inputs and sensors, and for deciding the ad-
equate motor actions. There is no centralised world model and data from
multiple sensors do not need to be merged to match the current system state
in the stored model. The motor responses of the several behavioural modules
must be somehow coordinated in order to obtain valid intelligent behaviour.
As mentioned before, way-finding methods rely on local navigation strate-
gies. How these local strategies are coordinated is a matter of study known
as motor fusion in BB robotics as mentioned earlier (Section 4.5).

The knowledge about the world differs from the world map used within
the classic or symbolic approach in the sense that it is neither a central
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model nor a purely symbolic one. As proposed by Matarić (1992) and fur-
ther explained in the following sections, it can be fully distributed and of a
procedural nature.

5.4 Galtxagorri’s predecessor: the robot Toto

Toto was a robot developed by Maja Matarić (1990) with the aim of im-
plementing a complete navigation system. Toto was circular and omnidi-
rectional. It was equipped with a ring of twelve Polaroid sonars and a low
resolution compass of two bits. The robot’s base diameter was 30.48 cm, and
hided a three-wheeled driving system. The body, which had a diameter of
20.32 cm, stood on the base (see Figure 5.1).

Matarić wanted to demonstrate that behaviour-based systems, far from
restricting the robot to purely reactive actions, provide a methodology for
developing complex tasks like goal oriented navigation. The robot had to
calculate the shortest path to a given target, and to do so it explored the
environment, learning and storing it in an appropriate representation. Toto
(Matarić, 1992) is, even today, the main exponent of how environment infor-
mation should be expressed and managed in navigating BB systems. Matarić
proposed a topological representation that instead of being a declarative
model, was fully procedural in the sense that each node in the graph that
formed the map was a completely functional unit responsible for guiding the
robot when the current location matched the node.

Figure 5.1: The robot Toto

Toto’s control architecture consisted of various competences organised in
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three layers.

5.4.1 Toto’s low level controller

Toto’s bottom layer consisted of four mutually exclusive behaviours: stroll,
avoid, align and correct. Therefore this layer did not require any coordi-
nation mechanism. The function of the low level of the controller was to
move around safely. This level of the controller was in fact a reactive sys-
tem. Getting the information from its sonar ring, Toto was endowed with
a biomimetic behaviour found in rats that kept the robot near walls and
objects while navigating. This behaviour allowed Toto to follow boundaries.

5.4.2 Toto’s landmarks identification behaviours

As it has been said, landmark identification is necessary for goal oriented
navigation. Any task beyond mere wandering requires knowledge of char-
acteristic places of the environment, so Toto also had behaviours for that
purpose. The functionality of the second layer was to identify landmarks so
that Toto was able to recognise walls and to notice if it was moving straight
in the same direction for a while, or if it was meandering. A straight move-
ment indicated that it was next to a wall and a meandering one indicated a
cluttered area. Once the wall was recognised, Toto was able to identify if the
wall was on its left or on its right. Toto was also able to identify corridors.
For that, if it recognised walls at both sides, then the landmark was labelled
as a corridor. On the other hand, if no wall was detected, it recognised
the place as a messy area. Landmarks contained also information about the
compass heading and about their approximate length. Equivalent compass
heading values were defined so that Toto recognised the locations regardless
of its heading value and was able to traverse them in both directions.

5.4.3 Toto’s mapping

The last layer was formed by the behaviours for the construction of the map
and for goal oriented navigation. Toto constructed a topological map were
the identified landmarks were stored in the nodes. Toto used a graph of
behaviours which was a procedural representation in which each node was
a process responsible for acting in a certain way when the assigned node
landmark was confirmed. The result was a distributed map representation,
where each of the landmarks that the robot discovered was stored in its own
behaviour process.



58 Chapter 5. Galtxagorri: a behaviour-based navigation system

When the time came to build the representation of the environment, i.e.
the map, Toto began the exploration process with an empty graph of nodes.
The nodes were empty in the sense that no mark was allocated or associated
to any of them. Once a landmark was observed, a node was filled with the
characteristics of the landmark. The first landmark identified was assigned
to the first node, and the process went on with the addition of nodes that
met the characteristics of the identified landmarks to the graph, and the
connections between adjacent nodes.

Every time that the landmark detectors confirmed the identification of
a new landmark, all nodes verified if the characteristics of the landmark
corresponded to the one they had stored. If any of them matched the same
characteristics, the node became active. Only one node at a time was active
and thus, the active node represented the localisation of the robot. If no node
confirmed the characteristics of the landmark, it was associated with a new
node adjacent to the currently active one, and a wake up signal was sent to
the new one. When the landmark of the new created node was confirmed, it
became the active node and an inhibition signal was sent to its predecessor.

Figure 5.2 shows an example of an environment and the topological map
obtained using the mapping process described.
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Figure 5.2: Environment and the corresponding topological representation
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5.4.4 Toto’s path planning

Toto’s possible goals were the locations represented by the nodes on the
acquired topological map. These goals were input to the system pressing
some in-built buttons. Once a target was received, the path planning process
was performed by a spread of the activation mechanism. The node identified
as “objective” sent calls continuously to its neighbouring nodes until the
active node matched the target node. When an intermediate node received
a message, the message was propagated in the direction of the goal node.
In this manner Toto knew the direction it had to take from one node to
the next. To ensure the shortest path, the length of the node was added to
the distance information in the message while the spread was propagated.
The spreading of the activation mechanism avoided the need for replanning
because the goal node continued sending calls until the robot reached its
objective.

Matarić demonstrated the correct functionality of this type of system in
small environments, showing also that behaviour-based systems allow the
development of complex tasks such as exploration and mapping, and that
they even endow the robot with the capacity for planning the shortest path.

The procedural topological representation together with the process of
localisation and path planning had significant advantages over traditional
methods of navigation:� Procedural representation by contrast with the declarative model. The

“map” is not a symbolic model, but a series of connections between
processes that are executed at run time.� Lower computational cost, since nodes are very simple processes.

5.5 Galtxagorri

Lazkano et al. (2006a) developed a BB control architecture for navigation
that attempted to extend Matarić’s proposal and overcome some of Toto’s
shortcomings:� In (Lazkano et al., 2006a) the topology of the graph was extended to

an a priory unlimited number of predecessor/successor links. More-
over, Galtxagorri’s environment’s description incorporates information
about the spatial relationships among the nodes that helps to identify
the direction to follow in order to reach the goal. The links to neigh-
bouring nodes include information about the direction θ in which the
j-th succession occurs: succ(θ)j, pred(θ)j.



60 Chapter 5. Galtxagorri: a behaviour-based navigation system

The number of successors of a location (a node) is only limited by the
cardinality of the set of identifiable compass orientations. In that way,
each successor of a node is a successor in a fixed orientation distribution.� Function specificity: each node executes its own specific function when
it becomes active. This function specialization allows the breaking up
of the planning task, making it possible to assign the corresponding
local planning strategy to each node.

The developed architecture was integrated in the robot Galtxagorri (see
Chapter 3, Section 3.1). The proposed environment representation is com-
pletely functional and can be fully distributed. Moreover, the architecture
was tested in a much larger environment where there were cyclic paths.

5.5.1 Galtxagorri’s local navigation strategies

Galtxagorri’s control architecture followed the taxonomy of biological navi-
gating systems described in Section 5.3 from local navigation strategies to
the topological navigation level.

The BB control architecture consisted on the following local navigation
strategies:

1. Balance free space around the robot.

2. Maintain a privileged compass orientation.

Each of these two modules output translational and rotational velocity
components. The compass follower behaviour affects the rotational velocity,
implementing a proportional control over the difference between the current
orientation and the desired one, and the translational velocity proposed is in-
versely proportional to the rotational one. This mechanism enables the robot
to turn on the spot by allowing this behaviour to act independently when the
robot moves forward in the opposite direction from what it is required. The
overall robot velocities result from a cooperative control strategy, obtained
by a weighted sum of the individual proposals.

It must be pointed out that no laser sensor was mounted on Galtxagorri

at the time and hence, sonar sensors where the only available range sensors
either for obstacle avoidance or for landmark identification.

5.5.2 Galtxagorri’s landmark identification behaviours

Four are the landmark identification subsystems:
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1. Corridor identification: this module outputs a confidence level of being
in a corridor as a result of calculating a weighted sum of the two left
most sonars and the two right most sonars over time.

2. Mean compass orientation over time (t): the belief of the compass
orientation being maintained, (θ(t)) is the mean value of the compass
readings stored in a buffer.

3. Emergency exit panel (eep) recognition: it is needed to somehow iden-
tify crossroads; and it is crucial to help choose the correct action when
different ways can be taken. But the lack of a laser sensor made it
difficult to robustly identify the junctions by using patterns of range
sensors.

Taking advantage of the regulation for the location of emergency exit
panels in public buildings, crossroads are anticipated by recognising
these panels using vision. To train the identification module to recog-
nise the panels from images a multi-layer perceptron (MLP) combined
with a genetic algorithm was used to train the identification module,
and the tilt and zoom parameters of the camera were actively controlled
to make the recognition module less sensitive to the robot’s viewpoint.
The module output a confidence level (cleep) that affected the robot’s
global velocity (v) to avoid noisy identifications (see (Lazkano et al.,
2004a) for more details):

v′ = (1− clepp).v

4. Dead-ends: some corridors are dead-end ways so the only way out is to
turn around and retracing one’s steps. Dead-ends were identified using
the four front sonars of the sonar ring and measuring the distance to
the walls that surrounded the robot.

To get the desired behaviour it was enough to set the opposite compass
orientation and to let the compass following module act alone. The
output of this behaviour module was then used to subsume the outputs
of the local navigation strategies.

The proper coordination of all the modules was enough to perform perception-
triggered responses (Lazkano et al., 2004b). But space information was still
needed for the robot to be able to navigate in different routes.
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5.5.3 Galtxagorri’s environment representation

Within the behaviour-based approach, topological maps should be composed
of tightly coupled behaviours specific to the representative locations. The
overall “map” is then composed of sets of behaviours, each launched on a
different thread, with an associated functionality and a specific node signa-
ture that makes them distinguishable.

Formally, a map is a directed and connected graph, where each node
consists of:

1. A set of inputs (from landmark identification subsystems) and outputs.
These outputs should serve to reduce the distance between the current
state and the goal.

2. A set of predecessors and successors. These links to neighbouring nodes
include information about the direction θ in which the i-th succession
occurs: succ(θ)i, pred(θ)i. The purpose of integrating knowledge about
significant locations is to help the robot to decide the action required to
reach the goal. The number of successors of a location (a node) is only
limited by the cardinality of the set of identifiable compass orientations.
In that way, each successor of a node is a successor in a fixed orientation
distribution.

3. A signature that uniquely identifies the node from its immediate pre-
decessors and successors: signaturei. Locations are identified by the
recognition of characteristics that makes that place singular, and there-
fore the signature reflects the state of a set of specific landmarks.

4. A function αi to be executed when the node is active and that will
output the action to be performed at the node specific current state.
The behaviour the robot shows can differ depending on its location,
and so can the associated function of several nodes.

5. Each node has also assigned a location identifier or pose information in
terms of coordinates (xi, yi) that gives the spatial relationship among
the nodes and helps to extract information about the direction to be
followed to reach the goal. This location identifier does not give infor-
mation about distance. This information is just a virtual coordinate
frame exclusively used for planing purposes.

Every node will follow the finite state automata (FSA) in Figure 5.3,
where four states are identified:



5.5. Galtxagorri 63� State 0 (sleep): none of neither its predecessors nor itself is currently
active and therefore, nodes in state 0 are simply inactive.� State 1 (waiting): one of its predecessors is the current active node and
it sends a wakeup signal to its successors to indicate them that they
may be the next to become active. A node in state 1 is continuously
checking the state of the landmark identification modules, expecting
they will match their signature to become active. But at the same
time they can receive a dewakeup signal to put them back to sleep
again.� State 2 (active): is the active state. The landmarks match the node
signature, becoming the node that should guide the robot through the
execution of the αi function associated to the node. The node that
reaches this state first is responsible for sending wakeup signals to its
successors.� State 3 (transition): although the node remains active, it has lost the
signature match. Two reasons can make this happen: the robot is
out of the nominal trajectory due to some kind of obstacles, but it
will recover it when the obstacle is out of its perceptual range, and
the node will return to state 2. Another possibility is that the robot
is somewhere in between the locations represented by two consecutive
nodes, and that the node will receive a sleep signal when the proper
successor becomes active. But before changing to state 0, the node in
this state is responsible for alerting its successors through dewakeup
signals that they should not be alert any longer.

0 1

3 2

receive dewakeup

receive wakeup

signature match

signature
match

receive
sleep

signature match

Figure 5.3: FSA associated to each node
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5.5.4 Galtxagorri’s path planning

For the proposed approach, and due to the strong regular and symmetrical
characteristics of the environment, planning is based in some metric encoding
integrated in the nodes and in the explicit information about the orientation
in which each successor occurs. Each node has a location identifier in terms
of a pair of coordinates (xi, yi) that helps to extract information about the
direction in which the goal can be reached from the current position. In the
example described in the next section, the same location is represented by
several nodes that share the same grid identifier but have different signature.

This metric encoding together with the information about the direction in
which successions occur, allows each node to recognise its spatial relationship
with the rest and to which of its successors the robot must go to in order to
get closer to the goal node. This additional information about the direction
in which a successor occurs, allows the recognition of spatial relationships
among nodes, which is similar to the way surrounding cells in a metric map
are related to each other by means of a coordinate system. Using of the
simulated grid of rough granularity, the spatial relationships of nodes and
goals are easily identifiable and therefore, it is rather simple for each node to
decide the action to trigger in order to get closer to the goal.

Although in the example given bellow planning is simple, more complex
strategies could be used depending on the environmental requirements. Even
more, each node could apply its own particular planning strategy, maintain-
ing thus the distributed nature of the map.

5.5.5 An empirical example

Figure 5.4 shows the map defined for the environment in the top of the figure.
The environment is represented by a total amount of 20 nodes (each node
in the figure has a number associated that will be used to reflect the node
sequence activation during robot trajectories in the experiments explained
later on in this section. Notice that each successor of a node has encoded the
orientation in which the succession occurs. The illustration also contains the
signature of each node. The map structure is not isomorphic to environment
morphology; though physically they are single locations, every corridor and
hall is broken down into two nodes, each one belonging to one of the nominal
orientations in which the location can be traversed. By doing so the planning
algorithm is simplified because it can be used to keep track of the robot’s
path. Note the metric coordinates reflected in the figure; these coordinates
will be used to define routes and goals during the performance evaluation
phase.
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(a) Second floor of the Faculty of Computer Science
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(b) Environment map

Figure 5.4: Procedural map of nodes (C: corridor, H: Hall, DE: dead-end, NS, SN, EW,
WE: orientations)

Node signature

The signature is simply the state of the landmark identification processes at
the place represented by the node. The environment we deal with, together
with the local navigation strategies, impose signatures (sigi) composed of
three characteristics: nominal compass orientation distribution, corridor be-
lief and dead-end properties (Equation 5.1).

sigi = {ρcorr(i), ρcompass(i), ρdead end(i)} (5.1)

Let’s analyse each signature component.

ρcorr(i) = {0, 1}: this Boolean value should be thresholded with the confi-
dence value of being in a corridor.
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ρcompass(i) = (θ̂i,±σi, csign): the magnetic orientation is the main reference
of the developed control architecture. Local navigation strategies allow the
robot to accommodate its position in the free environment while following a
compass orientation. Each location is traversed in a nominal orientation and
thereby, the nominal orientation is a local property that can be exploited.

The signature of a node will then have a compass value range allowed in
the location. For the example here described we assume a normal distribu-
tion in the orientations and describe the range by the mean compass value
(θ̂i) together with the standard deviation (σi) allowed. The belief or confi-
dence level of matching the compass signature is then the Gaussian function
described in (Equation 5.2). Eventually, a node can require a negative cor-
respondence in the compass range, for example, any orientation but not east
to west (EW). To cope with such situations, a third element is added to the
compass signature (csign) that represents the sign, positive or negative, of
the correspondence that is expressed as in (Equation 5.3).

compass bli(θ(t)) = e
−

(θ(t)−θ̂i)
2

2∗σ2
i (5.2)

compass bli(¬θ(t)) = 1− e
−

(θ(t)−θ̂i)
2

2∗σ2
i (5.3)

ρdead end(i) = {0, 1}: this signature component just describes if a dead-end
should be expected in the node.

Node behaviour

Each node has a number of predecessors and successors only limited by the
magnetic orientations in which the different locations can be nominally fol-
lowed. As mentioned before, the concrete environment treated in this experi-
mentation has very strong regular properties and a high degree of symmetry,
which allows the setting of only four nominal orientations: NS, SN, EW and
WE.

Nodes in Figure 5.4 marked with C, H and T symbols belong to corridor,
hall and transition locations respectively. These places are different not only
with regards to the signatures of the nodes, but also in the kind of behaviour
the robot should show in each type of location. As a result, nodes have
distinct functionalities; it is sufficient to assign different αi functions to the
nodes. For the example described here, the three different functions described
bellow are distinguished.

αcorr: the fact that most of the offices are placed in corridors makes these
locations very significant places. When situated in a corridor, the robot will
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simply follow it to the end, no matter what kind of end, a dead-end or a non
corridor place it finds. It will just follow the nominal orientation set by the
node.

αtrans: they are hall locations where the nominal orientation to follow is
perpendicular to the one needed to traverse halls. When the robot is in such
places, it must decide whether it has to go towards the hall or continue to
reach the next immediate corridor. The function to be executed in transitions
must select the neighbouring node to direct the robot to. Therefore, it will
choose the orientation to the appropriate neighbour, depending on the goal.
Notice that there is no need of transitions to enter the corridors once the hall
is traversed, because the successors have opposites nominal orientations that
make them distinguishable.

αhall: the decision to be made is reduced to selecting the corridor the
robot should be directed to. Because the robot lacks the ability to iden-
tify crossroads based on geometric information, we need to make use of the
emergency exit panels located approximately in the centre of both halls to
anticipate them. To do so, the robot uses the camera mounted on its top.
Before perceiving the panels, the robot will just follow the nominal orien-
tation. Once the visual landmark is perceived, the robot’s trajectory will
draw a diagonal towards the correct corridor just by adding or subtracting
the standard deviation associated to the compass signature of the node.

The proposed map, composed by twelve nodes of type C, four T and
four H nodes, amounts to 20 processes (threads) launched with different
parameters.

Figure 5.5 shows the type of locations defined and their corresponding
functions according to the way the robot has to behave.

Galtxagorri’s empirical evaluation

The goal of this experiment is to enable the robot to navigate autonomously
in the described office-like semi-structured environment. To test the overall
navigational system, three routes were defined (see Figure 5.6) and each one
tested 8 times in 4 different days, for a total amount of about 8 hours of
successful navigation and localisation. The experiments were performed in a
real 65× 25 meter environment and each path length exceeded 300 meters.

Table 5.1 reflects the standard deviation during each trial (mean velocity:
0.21m/s). As it can be seen, there are no significant differences in those mean
values and the deviation can be considered small, what confirms behaviour
repeatability.

Figure 5.6(a), 5.6(b) and 5.6(c) reflect robot’s behaviour during routes
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Figure 5.5: Type of locations with their associated functions

day
#1 #2 #3 #4

Route R1 ± 0.05 ± 0.05 ± 0.05 ± 0.06
± 0.05 ± 0.05 ± 0.07 ± 0.07

Route R2 ± 0.06 ± 0.06 ± 0.07 ± 0.07
± 0.06 ± 0.05 ± 0.07 ± 0.07

Route R3 ± 0.06 ± 0.07 ± 0.06 ± 0.06
± 0.06 ± 0.06 ± 0.06 ± 0.07

Table 5.1: Standard deviation from mean velocity in each trial

R1, R2 and R3 respectively. Each of the routes is composed by a set of
subgoals that the robot should achieve. For example, subgoals of R1 are:
(0, 0), (4, 0), (4, 2), (0, 2) and back to (0, 0).

More complex experiments where performed to measure the persistent
behaviour of the robot, shown in Figures 5.7 to 5.9. Every figure contains
the node activation sequence during the route on the left side, and the trajec-
tory followed by the robot on the right, drawn using compass angle instead
of odometry reference for rotational information. The node numbering cor-
responds to the numbers written down beside each node on the topological
representation of the environment in Figure 5.4(b). In Figure 5.7, the goal is
maintained and so it is the robot’s position. Once the robot leaves the cor-
ridor and enters the transition, it is reoriented to the goal corridor through
the “subsume” output of the T node. Notice the node sequence iteration
from second 1100 and ahead; chain 0, 16, 1 is repeated five times. Figure 5.8
illustrates a R3 route iterated over one hour.
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On the other hand, Figure 5.9 reflects the robot ability to reach the
objective even when its natural way is blocked. In this case, during route R1
the entry to location (2, 0) (the way from T-node 16 to C-node 2) has been
blocked using a screen, which does not let the robot to go into the middle
corridor. Local navigation strategies act directing the robot to the hall and,
once the corresponding node becomes active, it directs the robot to the upper
corridor to be able to reach the goal situated in the lower corridor (4, 0).

It should be pointed out that the overall control architecture, composed
of 34 threads each one responsible for its own particular task, together with
the Player server involves only a 13% of the CPU available in the Pentium
III on-board computer of the robot. An 85% remains unused while the rest
is required by the OS.

5.6 Galtxagorri’s shortcomings

As stated earlier, the control architecture of Galtxagorri was the starting point
of the development of the present research work. Thus, first the limitations
of the architecture were identified to increase its functionalities and improve
its performance. The main shortcomings of the topological representation
implemented in Galtxagorri were the following ones:

1. The low resolution of the topological map is due to the lack of landmark
identification processes that would allow the robot to access the rooms
and labs.

2. The deterministic nature of the FSA that controls the localisation of
the robot. Only one node stays active at a time and only its immediate
successors are alerted by the wake-up signals. This property makes the
robot both unable to recover its location when for an unpredictable
reason none of the successors landmarks is recognised and the robot
gets lost, and unable to cope with the global localisation problem.

3. Galtxagorri has not an automatic mapping mechanism. The topologi-
cal map is given to the robot. This is a big burden for the designer
of the map because robots’ perceptions differs highly from humans’
perceptions. An automatic mapping method should be developed for
the robot to acquire the node information and the spatial relationship
among the nodes.

The following chapters explain how these limitations have been approached
in this research work. In one side, Chapters 6 to 8 describe the work done to
implement a door identification system that should serve for increasing the
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Figure 5.6: Three experimental routes

resolution of the topological map. On the other side, Chapter 9 describes how
the Markov localisation method has been integrated in Galtxagorri’s control
architecture in order to cope with the global localisation problem, whereas
in Chapter 10 a statistical method is applied to acquire the set of nodes that
composes the topological map.
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Figure 5.7: R1: persistence towards goal
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Figure 5.8: R3: persistence over time
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Indoor semi-structured environments are full of corridors that connect
different offices and laboratories where doors give access to the locations that
are defined as goals for the robot. Since navigation tasks can be accomplished
with point to point navigation, door identification and door crossing (Li et al.,
2004), endowing the robot with door identification ability would undoubtedly
increase the navigating capabilities of the robot.

6.1 Literature review

There are several references in the literature that tackle the problem of door
recognition and crossing. Most of them assume a pre-map where the loca-
tion of the doors is represented. Stella et al. (1996) have developed SAURO,
an autonomous robotic system designed to transport tasks in indoor envi-
ronments. SAURO uses vision to locate the robot and verify that the path
planning is done properly. The authors use an obstacle avoidance system
based on ultrasonic sensor readings and the doors are equipped with several
artificial landmarks. If, according to the planner, the robot must cross a door,
the crossing doors subsystem is activated and the vision subsystem is used to
align the orientation of the robot with the axis of the door. Once aligned, a
straight motion allows the robot to safely cross the door. The vision module
maintains the proper alignment of the robot to avoid collisions.

Eberset et al. (2000) present also a vision based system to identify gates
and crossings. The door structure is extracted using a filtering method of
parallel lines and then the robot is driven through the door tracking the
segmented lines. The last step, which corresponds to the stretch where the
lines can not be detected because they are outside the focus of the camera, is
performed blindly, using dead-reckoning and the ultrasonic sensors to ensure
that the robot does not collide with people or objects that may be blocking
the door.

Stoeter and Papanikolopoulos (2000) use a “ranger” robot that is in
charge of launching smaller robots in environmental conditions that could
be harmful to human beings. This “ranger” needs to recognise its position
in the environment to decide where to throw the “scouts”. To do this, the
doors are identified using vision. Firstly the image is thresholded and then
an edge closure is applied, with a generalised dilation followed by a gen-
eralised erosion. Finally segments of vertical orientation are detected and
marked. Afterwards, the status of the doors (open or closed) is evaluated
using ultrasonic sensors.

Monasterio et al. (2002) present a system for identifying and crossing
open doors. The textureless surfaces of the door blades allow the robot to
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approach the location of the aperture of an open door applying vertical line
detectors to images. Once the aperture is approached, a neural classifier is
applied to confirm the existence of a door opposite the robot. This approach
is prone to give false positives when the environment is not textureless.

The system proposed by Kragic et al. (2002) differs from previous ones
in the sense that the doors are located on a map and do not need to be
recognised. To find the handles in order to open the doors, they are identified
using an integration of features by consensus: for each pixel, the probability
of belonging to a handle is calculated by combining the gradient and the
intensity of each pixel and a degree of membership is obtained. Then, the
authors use a sample model to obtain consensus in a region.

In (Seo et al., 2005) a Principal Component Analysis (PCA) is performed
to detect patterns of doors in the images obtained from the robot. A fuzzy
controller based on the ultrasound readings ensures that the robot avoids
obstacles and crosses the doors. This fuzzy controller selects the direction
(heading) of the robot and the linear velocity.

Muñoz-Salinas et al. (2005) mention that the detection of doors can be
useful for the mapping and localisation processes of the robot. They present
a visual detection system based on the lines of the door with a Canny edge
detector and the Hough transform to extract line segments from images.
Using characteristics of the extracted lines, a fuzzy logic system is applied
to analyse the relationship between the size, the direction or the distance
among lines to establish the existence of a door.

Lazkano et al. (2006b) propose a method to obtain the structure of a
Bayesian network that allows the robot to cross doors, but the assumption
is that the doors are within the perceptual range of the robot and opened.
The obtained behaviour allows the robot to cross the door smoothly without
colliding with the panels of the door and keeping the trajectory to the target.

More recently Rusu et al. (2009) present a laser-based approach for door
and handle identification. The laser sensor is mounted on a tilting platform
that is tilted up and down continuously to create a 3D view of the area ahead
of the robot. Geometric attributes such as door planes, their boundaries and
locations with respect to the world coordinate system are used to select
the current closest door in the map. The handle detector is invoked in the
proximity of a door which has been detected as a candidate. Geometric
information together with surface reflectivity information provided by the
laser scans is used to select the actual handle.
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6.2 The door identification task

Doors in indoor environments are not necessarily uniform; door panels can
be of different texture and colour and handles can vary in shape. Specific
methods can be designed for each type of door. But although feature-based
methods are easily applicable to different object recognition tasks, they are
computationally expensive and therefore less attractive to be applied for
real-time problems such as for mobile robot navigation.

(a) Galtxagorri’s viewpoint (b) Tartalo’s viewpoint

Figure 6.1: Position of the camera in the robots

A common intuition to detect doors is to use line extraction processes
to identify the door frame. But this approach is not applicable neither in
Galtxagorri nor in Tartalo given that the placement of the cameras on the
robots provide a limited point of view and the images obtained include partial
views of the door frame (see Figure 6.1).

The extraction process is made more difficult in narrow corridors because
of the inadequate camera focus that results from the secure distance the robot
has to keep to the walls when using its basic navigation skills (Figure 6.2).

Alternatively, door handles can be used for the same task. Handles are
naturally located to be easily reached by human beings to open the doors.
This placement also has the advantage that is more easily captured by the
vision systems our robots are equipped with. To be more precise, Tartalo’s
camera is located at approximately the same height as the handles and it can
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(a) Galtxagorri can not see the complete door frame due to its height

(b) Tartalo can not see the door frame due to occlusions

Figure 6.2: Door frame extraction examples. Left: originals. Right: after applying the
Canny edge detector

be assumed that when the camera captures an image of a door that contains
an object, that object will with all probability be a handle.

The objective of the work described in this part of the essay is to develop
the necessary behaviour modules that will allow the robot to extract the
necessary characteristics of the different types of handles and therefore, to
robustly identify doors.

6.2.1 Handles at the Faculty of Computer Science

Before its complete restructuring, the Faculty of Computer Science had
mainly two types of handles. Circular handles which were fitted on pladour
doors painted in light grey; and rectangular handles, which were placed on
wooden doors (see Figure 6.3).

The door identification methods explained in Chapter 8 were developed
for the identification of these two types of handles. Some time later, the inside
of the Faculty of Computer Science was completely rebuilt. The wooden
and grey pladour doors were removed and new ones were installed. All the
new doors are now uniform and have the same type of handle (see Figure
6.4). These new doors have been used afterwards to test the generalisation
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(a) Circular handles

(b) Rectangular handles

Figure 6.3: Handles at the Faculty of Computer Science before 2009

capability of a new two-step algorithm that combines region extraction and
feature extraction explained in section 8.3.

Figure 6.4: Handles at the Faculty of Computer Science after 2009
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The most important challenge for a mobile robot to be fully autonomous
is to be integrated into humans life, to perform naturally in it and to com-
fortably interact with humans. Vision sensors are meant to provide robots
with the fundamental capability to identify people and objects to allow them
to carry out useful tasks and to reach the desired human-robot interaction
level dreamt.

Computer Vision can be defined as the science that develops the the-
oretical and algorithmic basis which is used to automatically extract and
analise information about the real world from an observed image (Haral-
ick and Shapiro, 1992). In the early 70s, computer vision was viewed as
the visual input to mimic human intelligence and endow robots with intel-
ligent behaviour. Computer vision is being used today in a wide variety of
real-world applications, such as optical character recognition, machine in-
spection, retailing, 3D model building, medical imaging, automotive safety,
surveillance and of course, robotics.

During this research work several vision algorithms have been used. These
algorithms can be grouped into two main sets: segmentation techniques and
feature extraction techniques. This chapter shortly reviews these methods.

7.1 Image segmentation techniques

Image segmentation is a major research topic since the earliest days of com-
puter vision and it is one of the most extensively studied problems. Seg-
mentation subdivides an image into its constituent parts or objects, i.e. it
is the task of finding groups of pixels that “go together” (Szelisky, 2010).
The level to which this subdivision happens depends on the objective of the
segmentation and is certainly one of the most difficult tasks to tackle.

Segmentation algorithms for monochrome images are based on two ba-
sic properties of grey values: discontinuities and similarities (Gonzalez and
Woods, 1993).

1. Discontinuity based segmentation partitions the image according to
abrupt changes in grey level. There are three basic types of discontinu-
ities in digital images: points, lines and edges. The isolated points and
lines are not frequent in most practical applications, so edge detection
is by far the most common approach for the detection of discontinuities.
The edges represent the boundaries between two regions with different
properties of grey level. They are the most widely used segmentation
technique in practise.
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Due to the inherent noise in the images, the methods that detect discon-
tinuities rarely localise an edge completely. Hence, the edge detection
algorithms need additional methods to connect the pixels associated
with the edges by means of local or global processing techniques, such
as the Hough transform, graph theory methods, etc.

2. Similarity based segmentation attempts to group similar regions us-
ing thresholding, region growing, and region splitting and merging.
Thresholding is one of the most important segmentation methods. Un-
fortunately, a single threshold is rarely sufficient to segment the whole
image. Given the fundamental role of lighting in the segmentation re-
sult, optimal and adaptive methods have been developed that allow
the adaptation of the threshold value depending on the intensity of the
image. Another option consists on grouping pixels or subregions into
larger regions. This is known as region growing.

An alternative to region growing is the division of an image into a
set of arbitrary and disjointed regions which are then merged and/or
split more until they fulfil the desired criteria. A common way to do
this is to subdivide the image successively into smaller quadrants until
one of them fulfils a certain predicate. If none of the quadrants fulfil
the predicate, the process is repeated for each quadrant. Since this
approach can lead to a division in which there are adjacent regions
with identical properties, it is necessary to allow the union of adjacent
regions with the same properties, i.e. merging only adjacent regions
that fulfil the certain predicate (Gonzalez and Woods, 1993).

Whereas there is a large variety of segmentation algorithms for monochrome
images, the problem of segmenting colour images is more complex and re-
quires more thorough information about the objects. Colour segmentation
is defined as the process of extracting one or more connected regions that
satisfy a uniformity criterion based on characteristics derived from spectral
components (Skarbek and Koschan, 1994). The colour space chosen to rep-
resent the image plays a key role.

The colour segmentation techniques can be classified into three groups:

1. Histogram-based techniques: one or more peaks in the colour space are
identified. These peaks are then used to classify the pixels.

2. Clustering techniques: the pixel values are grouped according to the
representatives previously obtained.

3. Fuzzy clustering: membership fuzzy functions are evaluated for each
pixel and for each of the defined clusters.
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In the following subsections the main segmentation techniques used in
this research work are described.

7.1.1 The SUSAN operator

SUSAN (Smallest Univalue Segment Assimilating Nucleus) is an operator
that detects edges and corners, and for structure preserving noise reduction
(Smith and Brady, 1997).

The most primitive methods to enhance edges in images use convolu-
tion masks to approximate the first derivative of the luminosity function of
the image. But these filters give very little control over the location and
smoothness of the edges.

The principle of SUSAN is based on the fact that each image point has an
associated local area with the same brightness. This area is known as USAN
(Univalue Segment Assimilating Nucleus) and contains a lot of information
about the structure of the image. Using the size, the centroid and the second
moment of USAN, 2D features and edges can be detected.

Figure 7.1(a) shows a binary image that contains a black rectangle in the
lower part. Four circular masks located at different points are also shown.
Comparing the value of the centroid of each mask with the rest of the points
associated with it, the USAN region of each central point is obtained (the
white areas inside the circles in Figure 7.1(b)).

(a) Original image with circular masks (b) USAN regions of each mask

Figure 7.1: Regions used for a simple binary image

The USAN area falls as it approaches an edge and it reaches the mini-
mum value at the exact position of the edge. The same happens with the
corners, produces a local minimum. Processing an image to obtain the in-
verted USAN area, would produce enhanced edges and with the 2D features
more intensively enhanced than edges. This is precisely the SUSAN principle.
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The algorithm to filter an image with the SUSAN operator works as
follows:� Place a circular mask in the pixel. Generally, a circular mask of 37

points is used.� Calculate the USAN of the pixel, n(~r0), according to Eq. 7.1.

n(~r0) =
∑

~r

c(~r, ~r0), where c(~r, ~r0) = e−(
I(~r)−I( ~r0)

t
)6 (7.1)

where ~r0 is the position of the nucleus in the 2D image, ~r is the position
of any other point and I() is the image intensity value. The threshold
t indicates the minimum contrast of edges to be drawn.� Subtract the size of USAN to the geometric threshold to produce the
initial response to the edges, as follows:

R(~r0) =

{

g − n(~r0) if g > n(~r0)
0 if g ≤ n(~r0)

being g = 3nmax/4 the geometric threshold, nmax the maximum value
which n (the number of pixels in the USAN) can take.� Use the calculations of the applied moment of USAN to find the direc-
tion of the edges. Although the SUSAN principle does not require to
find the direction, it can be computed from USAN.� Apply non-maximum suppression, thinning and sub-pixel estimation,
if required.

7.1.2 Hough transform

The Hough transform is a method originally developed to identify lines in
images. It can be used to group edges into line segments even across gaps
or occlusions. To do so, firstly a method to detect the edges or points such
as Canny or Susan must be applied. The Hough transform is a well-known
technique to have edges “vote” as plausible line locations (Ballard, 1981).

Let’s assume that polar representation of lines is used: x cos θ+ y sin θ =
ρ. A horizontal line corresponds to θ = 0, ρ = x and a vertical with θ =
±90◦, ρ = ±y. The parameter space is then a set of sinusoidal curves in the
ρθ plane. The Hough transform subdivides the parameter space in an array
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Algorithm 7.1 The Hough transform

1. Clear the accumulator array.

2. For each detected edge at location (x,y) and orientation θ, compute
the value

ρ = x cos θ + y sin θ

and increment the accumulator corresponding to (ρ, θ). The range
of angle θ is ∈ −90◦, · · · , 90◦.

3. Find the peaks that correspond to lines in the accumulator.

4. Optionally re-fit the lines to the constituent edges.

of cells called accumulator and represented as A(i, j) proceeding as shown in
Algorithm 7.1.

Incrementing θ and solving for ρ (step 2) would produce M entries in
accumulator A(i, j) – associated with the cell (ρi, θj) – which would indicate
that M collinear points lie on a line x cos θj + y sin θj = ρi.

The computational cost of applying the Hough transform is O(n) linear,
being n the number of edge points detected in the image.

7.1.3 Circular Hough transform

The Hough transform is applicable to any function of the form g(v, c) = 0
where v is a vector of coordinates and c is a vector of coefficients. A circle
in the image is described as (x − a)2 + (y − b)2 = r2 where (a, b) are the
coordinates of the centre of the circle and r is the radius. Thus, an arbitrary
point (x, y) is transformed into a circular cone in the space of parameters
(a, b, r) (see Figure 7.2). Thus, the parameter space of a circle belongs to ℜ3.

As the number of parameters needed to describe the shape increases, also
does the computational complexity of the Hough transform. To simplify the
parametric representation, the radius can be considered constant or limited
to a known range.

The process to find circles through Circular Hough Transform (CHT) is
as follows:

1. Find the edges with a suitable operator (Canny, Sobel, or morphological
operations).

2. For each point that belongs to the edges, draw a circle on its centre
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Figure 7.2: Space parameters of CHT

and of the desired radius, increasing all the entries of the accumulator
that belong to the coordinates of the perimeter of the circle.

3. Find one or more maximum peaks in the accumulator. This step is
extremely important. The preferred method is to apply a second step
in which the maximum accumulator value voted by the edge point is
identified.

It must be taken into account that if the radius is not fixed, the size of
the accumulator can be very large. Depending on the size of the image and
the number of the allowed radius, the computation time of the CHT can be
excessive.

In recent years different methods to detect circles based on the Hough
transform and several techniques to speed up its computation have been
developed (Yuen et al., 1990). One of them is the 2-1 Hough Transform,
which reduces the requirements of the space splitting the circle detection
problem in two phases. As the centre of the circle must fall into the normal
of each point of the circle, the intersection of all normals will be the centre
of the circle. Hence, a 2D accumulator array is needed to accumulate the
votes of the normal of each point. To identify the radius, the distance of
each point from a possible centre (candidate) is calculated and a histogram
of radius is produced. Thus, the storage space required is small and only a
2D accumulator and a uni-dimensional histogram is needed.

7.1.4 Localisation of continuous regions: blob detec-
tion

A blob (Binary Large OBject) is an area of touching pixels with the same
logical state. Blob extraction, also known as region detection or labelling, is
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an image segmentation technique that categorises the pixels of an image as
belonging to one of many discrete regions. The terminology is somewhat in-
consistent and the process is often referred to in ways as diverse as labelling of
regions, labelling related components, detection of blobs or extracting regions.

Originally, the detection of blobs was used to get interesting regions to be
processed a posteriori. These regions could indicate the presence of objects
or parts in order to track down an interest area (tracking), to recognise
specific items or to perform texture analysis. More recently, blob descriptors
have gained interest. Local statistical measures obtained from the extracted
regions are being used for appearance based object recognition.

There are multiple techniques that include sequential and recursive algo-
rithms. Blob detection is generally performed on the resulting binary image
from the thresholding or edge detection step. Once the interesting points are
identified, pixels are labelled with an identifier which represents the region
they belong to (see (Horn, 1986) for more details). To label the pixels, a
region growing technique must be applied to group pixels that belong to the
same region.

As mentioned before, region growing is a procedure that groups pixels
or subregions into larger regions. The simplest technique known as pixels
aggregation starts with a set of “seed” points. Then the regions are increased
by appending to each seed point the neighbour pixels with similar properties,
such as grey level, colour or texture (see Algorithm 7.2).

How to choose these seed points and the criteria of similarity are the keys
to correctly determine the regions. The choice of the starting points depends
on the application and type of image. Usually, the analysis of regions is
performed on descriptors based on intensity or spatial properties such as
moments or texture. The descriptors should take into account connectivity
information or adjacency to avoid producing a meaningless set of regions.
Another problem is to decide when the process is finished. The easiest way to
decide would be to stop when there are no more pixels that fulfil the criterion.
However, adding other criteria related to shape or size of the regions a better
performance of the region growing algorithm may be achieved.

7.2 Image matching by scale invariant fea-

ture extraction

Visual similarity is a major problem in computer vision which requires the
solving of problems such as recognition of objects or scenes, reconstruction
of 3D structure from multiple images, matching of stereo images and mo-



7.2. Image matching by scale invariant feature extraction 89

Algorithm 7.2 Region growing by pixel aggregation

1. Initialisation: Select N seed pixels Si, i = 1, 2, · · · , N , and a thresh-
old T . Initialise N regions R

(0)
i as the seed pixels Si. Initialise N

region mean values M
(0)
i as the grey values of Si.

2. At each iteration k, find border pixels of each region R
(k)
i .

3. Search the 8-neighbourhood of each border pixel of each region.
Assign a pixel p = f(x, y) to R

(k)
i if:� p is a 8-neighbour of a border pixel of R

(k)
i and� p has not been assigned yet and� grey value of p is sufficiently close to region mean:

|f(x, y)−M
(k)
i | ≤ T

4. Stop if no region growing was possible. Otherwise, update M
(k)
i

and iterate by going to step 2.

tion detection. Looking for correspondences between images can be useful
for different goals. If two images contain projections of the same element
of a scene, then the correspondence will localise or identify these objects.
On the other hand, if the images are temporally consecutive, then the corre-
spondence determines the motion, and if they are spatially separated but are
simultaneous, then the correspondence determines the stereo-disparity (Lan
and Mohr, 1997).

Regardless whether the goal of the correlation it is necessary to define and
represent the points of interest to be extracted. It is important that these
points are invariant to image distortions, i.e. that changes in the point of
view of the camera do not prevent the recognition of the objects. In short, the
selected features need to be invariant to scale, rotation and occlusion. The
features can be of different nature. The first type of features used were the
edges. The Harris corner detector, popular in the 90s for feature extraction, is
stable to illumination changes and rotation but unstable to more complicated
changes. On the other hand, estimates based on the extraction of local
properties can include colour and motion information, region descriptors,
stereo-depth data, even combinations of them all.

This study’s scope is limited to finding correspondences between two im-
ages in order to identify specific objects: the door handles. The following
sections summarise the extraction techniques that were used in the experi-
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mental phase.

7.2.1 SIFT

SIFT (Scale-Invariant Feature Transform) is a vision algorithm proposed by
D. Lowe (2004) to extract distinctive features of an image. SIFT can be
used as a starting point to find correspondences between images and hence,
for object recognition. SIFT descriptors are the most widely used nowadays
because, in spite of being computationally expensive, the algorithm offers a
good time/performance ratio.

The features extracted by the algorithm are invariant to image scaling
and rotation and partially invariant to change in viewpoint and illumination.
These invariant characteristics are obtained after a cascade filter, which min-
imises the cost of extracting them. As a result of this filtering, each image
is converted into a set of descriptors.

The SIFT features are extracted following the four steps described in
Algorithm 7.3 and explained in more detail bellow.

Algorithm 7.3 SIFT feature extraction

1. Detect the extrema in the scale space: each pixel of the image is com-
pared to its eight neighbours in the current image and to its nine neigh-
bours in the scale above and below, i.e. in the adjacent scales that result
from the Gaussian filtering.

2. Locate the keypoints : the keypoints are selected from the extrema lo-
cated in the space of scales.

3. Assign a magnitude and orientation to the keypoints: a gradient ori-
entation histogram is calculated for each keypoint.

4. Obtain a descriptor for each keypoint: each keypoint is represented by
a 128 dimensional vector.

Detection of the scale space extrema

This step aims to identify the locations and scales of the keypoints of the
same object to make it identifiable from different viewpoints. The process
is performed by analysing the scale space of the image. The scale space of
an image is defined as a function L(x, y, σ) resulting from the convolution of
variable-scale Gaussian (G(x, y, σ)) and the image I(x, y) (Eq. 7.2).
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L(x, y, σ) = G(x, y, σ) ∗ I(x, y), G(x, y, σ) =
1

2πσ2
e−

(x2+y2)

2σ2 (7.2)

It is possible to use different techniques to detect the locations of the
stable points in the space of scales. One such approach, proposed by Lowe
(1999) is to extract the scale-space extrema from the result of convolving
the DoG (Difference-of-Gaussians) function with the image. This function,
D(x, y, σ) can be computed from the difference of two nearby scales separated
by a constant multiplicative factor k (Eq. 7.3).

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ)
(7.3)

The functionD is easy to calculate since it is computed from the smoothed
images L. Once we get the smoothed images, D is obtained by simply sub-
tracting those two images. Moreover, the function D is an approximation of
the normalised LoG (Laplacian of Gaussian) function.

That is to say, given the original image which is “blurred” or smudged
using Gaussian filters that result in a series of Gaussian images (the scale
space produced by cascade filtering), then, subtracting the images of their
closest neighbours, a new series of images is produced: the approximated
LoG. Figure 7.3 reflects this process. The original image is incrementally
convolved to produce a series of images separated by a constant factor k in
the scale space. Every octave of the scale space (equivalent to multiplying

σ by two) is divided into a number of intervals s so that k = 2
1
s . At each

interval, (s+ 3) images must be generated to obtain the DoG images.
To detect the local maximum and minimum of D(x, y, σ), each point is

compared with its eight neighbours on the same scale, and with its nine
neighbours on the scales above and below (Figure 7.4). Only the candidates
with a higher or smaller value than those of all its neighbours are selected.

Given that the extrema that are close to each other showed to be quite
unstable to small perturbations of the image. It is of core importance to
establish an adequate sampling frequency to detect the extrema. Although it
is possible to get a stable set of descriptors even with ordinary sampling scales
(eg., three sampling scales per octave), experimental results (Lowe, 2004)
showed that both, the number of keypoints and also the number of descriptors
correctly matched increased proportionally to the number of scales sampled.
On the other hand and related to the sampling frequency of the spatial
domain, it is important to determine the prior smoothing σ which is applied
to each image before constructing the representation of the scale space for
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Figure 7.3: DoG function

Figure 7.4: Detection of local extremes

each octave. Once more, the replicability of the keypoints increases when
increasing σ.

It is important to note that if the image is smoothed prior to detecting
the extrema, the higher spatial frequencies are eliminated. That is why
usually the size of the original image is doubled using linear interpolation
before building the pyramid. This preprocess increases the number of stable
keypoints.
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Location of the keypoints

The goal of this step is to reject the keypoints that have low contrast or are
poorly localised along edges. To determine the interpolated location of the
maximum, a Taylor expansion of the scale space function D(x, y, σ) = D(x),
shifted so that the origin is at the sample point, is used:

D(x) = D0 +
∂DT

∂x
x+

1

2
xT ∂

2D

∂x2 x = D0 +∇DTx+
1

2
xTHDx

where H is the Hessian and ∂D the derivative of D. Note that the function
D is shifted so that the origin is at the sample point x. The new location of
the extremum x̂ is determined by taking the derivative of this function with
respect to x and equalling it to zero:

x̂ = −∂2D−1

∂x2

∂D

∂x
= H−1

D ×∇D

Both the Hessian and the derivative of D can be approximated by using
differences between neighbouring sample points. The resulting 3× 3 system
of equations can be solved with a minimal computational cost.

The function value at the extrema D(x̂) is used to reject unstable extrema
with low contrast:

|D(x̂) = D +
1

2

∂DT

∂x
x̂| < 0.03

On the other hand, the DoG function has a very strong response along the
edges, where it identifies many keypoints in them. Hence, it is not sufficient to
reject keypoints with low contrast. Taking into account that the eigenvalues
of H are proportional to the principal curvatures of D, by simply verifying
that the ratio of the principal curvatures is below a threshold (r = 10) some
keypoints can be eliminated:

H =

[

Dxx Dxy

Dxy Dyy

]

,

{

Trace(H) = Dxx +Dyy

Det(H) = DxxDyy −D2
xy

Trace(H)2

Det(H)
<

(r + 1)2

r

Figure 7.5 shows an example of the effect of removing the extrema at the
edges. Left hand side figures show the image with the keypoints and right
hand side figures the scale-space extrema.
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(a) Without eliminating the extrema edges

(b) After eliminating the extrema edges

Figure 7.5: Effect of removing the extrema at the edges

Assign magnitude and orientation to the keypoints

This process follows the next steps:� Choose the smoothed image L based on the closest scale. Thus, all
calculations are done keeping the scale invariance.� For each image sample L(x, y), calculate the magnitude of the gradient
m(x, y) and the orientation θ(x, y):

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

θ(x, y) = arctan
L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

The histogram is formed from the gradient orientations in the region
around the keypoint (Figure 7.6). This histogram has 36 entries, cov-
ering 360◦. Each entry that is added during the calculation of the
histogram is weighted by its gradient magnitude and by a Gaussian-
weighted circular window so that σ is 1.5 times the value of the scale
of the keypoint.
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x̂ = (x, y, s)
r = 3× 1.5× s
σh = 1.5× s

w = e−
d2

σw

histo[bin]+ = m(i, j)× w, i, j ∈ [−r, r]

Figure 7.6: Image gradients around the point� Smooth the histogram (up to 4 times):

smooth histo[i] = 0.25×histo[i−1]+0.5×histo[i]+0.25×histo[i+1]� Detect the highest peak in the histogram of orientations: the peaks of
this histogram represent the dominant directions of local gradients.� Generate new keypoints with the orientations within the %80 from the
highest peak. In this way, multiple new keypoints are created at the
same location and scale but with different orientation. This contributes
significantly to the stability in the matching process.� Fit a parabola to the three closest values of the histogram peak to
interpolate the peak position for better accuracy.

Obtain the descriptors

Through the above steps, each keypoint is assigned a position, scale and
orientation. These parameters impose a repeatable local 2D coordinate sys-
tem in which to describe the local image region. The next step generates
a descriptor for the local region of the image, distinctive enough and still
partially invariant to changes in illumination or 3D viewpoint.

Intuitively, this could be achieved by sampling the local image intensities
around the keypoints at the appropriate scale level and then matching them
with a proper correlation function. But it is known that the correlation
between regions of images is very sensitive to changes that produce variations
in the samples.

SIFT descriptors are obtained as follows:
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keypoint location, using the scale of the keypoint to select the level of
Gaussian blur for the image.

A window of size n × n is used, which is centred at a circular neigh-
bourhood with radius r,

r =
n+ 1

2
×Ks ∗

√
2 + 0.5

where Ks = 3× scale.� Rotate the coordinates of the descriptor and the gradient orientations
to achieve orientation invariance.

xp = (c× cos θ − r × sin θ)×Ks

yp = (c× sin θ + r × cos θ)×Ks� Thus,

mag
′

=
√

(x− xp)2 + (y − y2p), θ
′

= y−yp
x−xp

θbin(θ
′ − θ)× BINS PER RADIAN × bins

2Π� To avoid sudden changes in the descriptor with respect to small changes
in the position of the window and to give less emphasis to gradients
that are far from the centre of the descriptor, apply a weight w to
the magnitude of each sample point. This weight is equivalent to a
Gaussian function with a σ equal to one half the width of the descriptor
window.

σ = 0.5× n2w = e−
x2bin+y2bin

σ� After obtaining the gradient magnitudes and the orientations of the
samples, four histograms of orientations on the samples of 4×4 regions
are created and 8 orientation bins are assigned to each histogram (see
Figure 7.7).� To prevent the gradient samples in the boundary from affecting the
descriptor, a trilinear interpolation is used to distribute the value of
each gradient sample into adjacent entries of the histogram. Each value
corresponding to an input is multiplied by a weight of (1− d) for each
dimension, where d is the distance of the sample from the central value
of the histogram.

h[xbin][ybin][θbin] = tri interp(mag
′ × w × (1− d))
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Figure 7.7: Transformation of points in descriptors

As a result, for each keypoint a descriptor vector of 128 elements that can
be used to find correspondences between images is obtained for each point.
In Lowe’s proposal, the matching was done by nearest neighbour search, in
addition to the second nearest neighbour from a different object.

7.2.2 SURF

SURF (Speeded Up Robust Features) is another type of robust image descrip-
tor that detects scale and rotation invariant interesting points. It is inspired
by the SIFT descriptor, but the standard version is faster than SIFT and
apparently more robust to various transformations of images. The SURF de-
scriptors are based on the sums of responses of 2D Haar-wavelets and makes
an efficient use of integral images (Bay et al., 2006).

This is achieved by relying on integral images for image convolutions by
building on the strengths of the leading existing detectors and descriptors,
using a Hessian matrix-based measure for the detector, and a distribution-
based descriptor. This leads to a combination of novel detection, description,
and matching steps.

Like SIFT, to find matchings with images three stages are needed. First,
the interest points at distinctive locations in the image are selected, such
as corners, blobs, etc. Then, the neighbourhood of each interesting point is
represented using a feature vector. Finally, the descriptor vectors of different
images are compared to find correspondences between images.

Interest point detector step

An interest point is a point in an image which has a well-defined position and
can be robustly detected, for example maximum local intensity points and
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corners. A simple approach to corner detection in images is to use correlation,
but this is very expensive computationally and suboptimal. A frequently used
alternative approach is based on a method proposed by Harris and Stephens
(1988), which in turn is an improvement on a method by Moravec (1980).

Moravec’s corner detector was based on the local auto-correlation function
of a signal, which measures the local changes of the signal with patches shifted
by a small amount in different directions.

As pointed out by Moravec, one of the main problems with this operator
was that it is not isotropic. If an existing edge does not appear in the direction
of the neighbours, then it will not be detected as an interest point. Harris
and Stephens (1988) improved upon Moravec’s corner detector by taking into
account the differential of the corner score with respect to direction, instead
of using shifted patches.

However, Harris corners are not scale invariant. Instead, SURF’s detector
is based on the Hessian matrix because it showed to be more stable and
repeatable (Mikolajczyk and Schmid, 2005). Moreover, instead of using the
original image to calculate the Hessian matrix, the Hessian of the integral
image is calculated, thus reducing the computation time. This process is
known as the Fast-Hessian detector. The descriptor of the interest point
describes the distribution of Haar-wavelet responses within the interest point
neighbourhood.

Fast-Hessian detector

To find the location of the interest points and the scale, the Fast-Hessian
detector relies on the determinant of the Hessian. Given a point X = (x, y)
in an image I, the Hessian matrix H(X, σ) in X at scale σ is defined as
follows:

H(X, σ) =

[

Lxx(X, σ) Lxy(X, σ)
Lxy(X, σ) Lyy(X, σ)

]

Lxx(X, σ) is the convolution of the Gaussian second order derivative
∂2

∂x2g(σ) with the image I in point X , and Lxy(X, σ) and Lyy(X, σ) are simi-
larly defined. The Gaussians need to be discretised and cropped, so, instead
of using this function, the Gaussian second order derivative is obtained by
approximating it using a box filter (see Figure 7.8). The approximation is
denoted as Dxx, Dyy and Dxy.

In Figure 7.8 a 9×9 box filter has been used with σ = 1.2, and the weights
applied to the rectangular regions are kept simple for computational effi-
ciency, but for the expression of the Hessian’s determinant a relative weight
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Figure 7.8: Left to right: the (discretised and cropped) Gaussian second order partial
derivatives in y-direction and xy-direction, and the approximations thereof using box
filters. The grey regions are equal to zero

is needed:
|Lxy(1.2)|F |Dxx(9)|F
|Lxx(1.2)|F |Dxy(9)|F

= 0.912... ≈ 0.9

where |x|F is the Frobenius norm. The Hessian’s determinant then will
be:

det(Happrox) = DxxDyy − (0.9Dxy)
2

Finally, to have a constant Frobenius norm for any filter size, the re-
sponses of the filter are normalised. The scale space is usually implemented
as image pyramids, smoothing the images with Gaussians, but in the case
presented here, where box filters and integral images were used, the scale
space was analysed by up-scaling the filter size rather than iteratively reduc-
ing the image size. The output of the 9× 9 filter is considered as the initial
scale, with σ = 1.2, and the next scales layers will be 15×15, 21×21, 27×27,
etc.

In order to localise interest points in the image and over the scales, a
non-maximum suppression in a 3 × 3 × 3 neighbourhood is applied. The
maxima of the determinant of the Hessian matrix are then interpolated in
the scale and image space.

SURF descriptor

SURF’s descriptors are based on similar properties than those of SIFT but
instead of being represented with a 128 dimensional vector, the descriptors
are defined as 64 dimensional vectors. This reduced size allows the reduction
of the matching time when looking for correspondences. The process follows
two stages. Firstly, in order to be invariant to rotation, the orientation is
fixed based on information from a circular region around the interest point.
Afterwards, a square region is aligned to the selected orientation in order to
extract the descriptor.
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To calculate the orientation, the Haar-wavelet is applied in x and y direc-
tions inside a circular neighbourhood of radius 6s around each interest point,
where s is the scale where the interest point was detected. The Haar-wavelet
is scale dependent with σ = 2.5s is used and the orientations are represented
as vectors. The dominant orientation is estimated by calculating the sum of
all responses.

Once the orientation is calculated, to extract the descriptor a square re-
gion centred around the interest point is defined. The size of this window is
20s, and the region is split up regularly into smaller 4× 4 square subregions.
Inside the square, the Haar-wavelet is applied in horizontal (dx) and vertical
(dy) directions relative to the selected interest point orientation. To compen-
sate for the geometric deformations and localisation errors, before applying
the Haar-wavelet to each subregion the responses of the filter is weighted with
a Gaussian (σ = 3.3s) centred at the interest point. Finally, dx and dy are
summed up in each subregion, and to include information about the inten-
sity changes in the image, the absolute values |dx| and |dy| are also summed,
being v = (Σdx,Σdy,Σ|dx|,Σ|dy|) the four-dimensional descriptor vector of
each 4× 4 subregion. The complete descriptor vector is 64 long.

The matching is often based on distance between the vectors, e.g. the
Mahalanobis or Euclidean distance. In the matching stage, only features that
have the same type of contrast are compared.

7.2.3 USURF

The SURF descriptors are invariant to scale and rotation, but in some cases,
the rotation characteristic is not relevant. Being invariant to rotation means
that the camera is going to rotate about its optical axle, but, in many ap-
plications, like mobile robot navigation, the camera only rotates about the
vertical axis, and thus, the invariance to rotation is of no importance. For
those applications where rotation invariance is not needed, a version of SURF
named “Upright SURF” (USURF ) has been developed by Bay et al. (2006).
USURF avoids the calculation of the orientation of the keypoints and key-
point extraction process is speeded up.

7.2.4 Examples

Figures 7.9 and 7.10 show some examples result of applying SIFT to handle
images obtained by the camera of the robot at the Faculty of Computer
Science.

It is important to note that the majority of the keypoints of the circular
handle images appear on the handle itself due to the textureless surface of
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the door blades (Figure 7.9(a)). But it must be stressed that it is difficult to
find correspondences between two images as shown in Figure 7.9(b).

(a) Keypoints are on the handles

(b) No correspondence is found

Figure 7.9: Circular handles (SIFT)

Rectangular handles are placed in wooden doors, which means that more
keypoints that do not belong to the handles are identified. But the corre-
spondences are more frequent and occur mainly in the lock and screws.
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(a) Keypoints are on and out of the handles

(b) Correspondences are found

Figure 7.10: Rectangular handles (SIFT)
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This chapter describes and compares the different approaches that have
been developed for door identification, ranging from specific methods based
on colour segmentation techniques to more general ones that focus on feature
extraction methods.

The first approach consists of a three-stage procedure that relies mainly
on colour segmentation. Next, a more appealing feature extraction based
identification is presented. Finally, a new two-step multiclassifier algorithm
that combines region detection and feature extraction is presented.

8.1 Segmentation based door identification

Often, door panels are made of materials and colours that make them dis-
tinguishable from the walls. The segmentation method takes advantage of
this environmental property and after selecting door candidates by extract-
ing shapes that can match the proper handle, colour segmentation is used
to confirm the presence of door handles in door candidates selected by the
extraction of shapes that match possible handles.

8.1.1 Door identification process

In order to identify images containing a door handle a three-stage algorithm
has been designed. This three-stage process proceeds as follows:

1. Region detection: this step is designed to approximate the handle area,
if any, in the image. The most intuitive approach to detect circular
handles seems the extraction of circular edges. The Circular Hough
Transform (CHT) is an appropriate method to achieve this objective.
But handles can also be non circular. A more general method such as
blob extraction also known as region detection or labelling is needed.

2. Colour segmentation: using the position information of the previous
step, the surroundings of the candidate object are segmented in order
to see if the candidate handle is surrounded by the appropriate door
blade.

3. Statistical validation: measures of the segmented image are then taken
to classify an image as containing or not a handle.

Region detection

As mentioned before, some handles are assumed to be circular in shape.
Therefore, circle detection can be performed to locate handles in the images
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taken by the robot. Although many circle extraction methods have been
developed, probably the best well-known algorithm is the Circular Hough
transform. Moreover, Hough transform methods have shown to be robust
enough to deal with noisy images (Ayala-Ramı́rez et al., 2006).

The use of the Hough transform to detect circles was first outlined by
Duda and Hart (1972) and then, Kimme et al. (1975) gave probably the first
known application of the Hough transform to detect circles in real images.
Later on, Yuen et al. (1990) investigated five circle detection methods which
were based on variations of the Hough transform. One of those methods, the
Two stage Hough Transform, is implemented in the OpenCV vision library
(http://www.intel.com/research/opencv) used in the experiments described
later on in this chapter.

The circle finding function can identify a huge number of circles depending
on the image background. Due to the local navigation strategies of the robot
the images will be obtained within the same distance range and therefore, it
is possible to know in advance the approximate radius of the handles. Thus,
only the identified circumferences with a radius that lies within the known
range would be considered as handle candidates.

The CHT only detects circular shapes; hence, an alternative method is
needed to first approximate the non circular handles. The method can be
generalised by scanning the image for continuous connected regions or blobs.

Again, the blob extraction process can give many different regions for
a single image. For a blob to be confirmed as a candidate, the result of
the blob detection process should be filtered and false positives should be
discarded. Different filtering techniques can be used for blob discrimination.
For instance, in (Ye and Zhong, 2007) location-related pixel information is
used for blob discrimination where the aim is to count people in images taken
by a surveillance system. A similar approach is used in our proposal where
blobs that are not consistent with the defined size restrictions are discarded.
The size restrictions depend on the distance the images are taken from.

Colour segmentation

The region extraction step is not reliable enough neither to confirm nor to
reject the presence of a handle in an image. Therefore, its performance needs
to be improved with the addition of complementary processes. The approach
used in the present research is to use the information provided by the colour
which surrounds the handle candidate. Door blades pixels are segmented
and then used as discarding criteria: candidate handles not surrounded by
the defined blades are rejected as false positives.

Within the robot environment, a circular handle is always associated to
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pladour door and rectangular ones to wooden doors which present different
colour shades according to lighting conditions – e.g. presence or absence of
electric or natural lighting.

Segmenting pladour door blades

A supervised machine learning approach has been selected to segment pladour
door blades. To build the classifier we chose Oc1 (Oblique Classifier 1)
(Murthy et al., 1994), a decision tree induction system well suited for appli-
cations where the instances have numeric feature values. Oc1 builds decision
trees containing linear combinations of one or more attributes at each inter-
nal node. The trees built in this way partition the instance space with both
oblique and axis-parallel hyperplanes. Images taken by the robot are rep-
resented in RGB colour space and thereby, each pixel is a three component
vector, where each component takes a value that ranges from 0 to 255.

In every classification problem, a training set is required to obtain a
model to be later used when a new instance is presented to the model. To
get the training set, we firstly constructed a database of positive instances
(those associated to pladour doors), as well as negative instances (those not
associated to pladour doors). The size of these databases was about two
million pixels, obtained from about sixty images taken by the robot camera
in a corridor. From these databases we extracted 80000 pixels randomly,
40000 of them labelled as pladour and the remaining 40000 as non pladour.
Then, these 80000 pixels were input to the Oc1 tree generation procedure to
obtain the decision tree that would be used for the segmentation of the images
taken by the robot camera. The obtained performance after applying a 10
fold crossvalidation to this database was 93.61%. Figure 8.1 shows several
examples of this segmentation process. The first two rows contain images
with handles, although the variable lighting conditions affect the pladour
colour recognition process and therefore, the segmentation process. Notice
for example the upper right corner of the segmented image in second row.
The bottom rows show images without handles. In spite of the fact that the
radius exceeds the preset threshold, the original images contain the circles
detected by the Hough transform. It can be observed that the segmentation
of these images does not imply the existence of any handle.

Segmenting wooden door blades

To segment wooden surfaces and classify their pixels a specific thresholding
algorithm has been designed. First of all, using the normalised RGB colour
space the following reference values are selected from an image containing
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Figure 8.1: Pladour segmentation examples

exclusively wooden coloured pixels:� Rmin: minimum value of the red channel.� Gmin: minimum value of the green channel.� Bmin: minimum value of the blue channel.� Rdiffmin: value of the minimum difference among the red and the
maximum of the green and blue.� Gdiffmin: value of the minimum difference among the green and the
maximum of the red and blue.
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maximum of the green and red.

Then, given a new image, a pixel will be labelled as belonging to a wooden
surface according to Algorithm 8.1. The process is performed using the
normalised RGB colour space, and Figure 8.2 shows some examples of this
segmentation process.

Algorithm 8.1 Wooden surface segmentation

wood segmenter(R, G, B,Rmin, Rdiffmin, Gmin, Gdiffmin, Bmin, Bdiffmin)
Rdiff = R−max(G,B);
Gdiff = G−max(R,B);
Bdiff = B −max(R,G);
if (R > Rmin and G > Gmin and B > Bmin and Rdiff > Rdiffmin and
Gdiff > Gdiffmin and Bdiff > Bdiffmin) then
return 1;

end if
return 0;

Statistics for decision making

So far we have described two procedures to recognise the handle and its
surroundings. However, both are prone to errors due to noise, lighting con-
ditions and the presence of objects in the environment (printers, dustbins,
tables and so on). As we cannot entirely rely on their accuracy, a third step
is needed to analyse the segmented pixels of the candidate handle and of its
surrounding in order to definitively confirm or reject the handle candidate.
The segmentation process produces a black-and-white image, where white
points are those classified as belonging to the door blade, and black ones are
those classified as not belonging to it. To analyse the surroundings of the
candidate handle, the centre (x0, y0) is obtained using the information of the
detected region, and then the following values are calculated (see Figure 8.3):� Perc1: percentage of white points in the whole image. When the robot

is close to a door, a huge percentage of the pixels in its visual field are
likely to be segmented as white. So the bigger Perc1, the more likely
the robot is opposite a pladour door.� Perc2: the pixels around the centre should belong to the handle, not to
the pladour class. This value represents the percentage of black points
in the 5 × 5 grid centred at (x0, y0). Therefore, the bigger Perc2, the
more likely the robot is opposite a handle.
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Figure 8.2: Segmentation of wooden surfaces� Perc3: when the procedure that returns the region has really located
a handle, the area that lies further from the centre is expected to be
segmented white, they do not fall in the handle, but in the door blade.
We define:

– S1: set of points in the squared area centred at (x0, y0) and of size
length 2× r, where r is the radius of the detected circle.

– S2: set of points in the squared area centred at (x0, y0) and of size
length 2× (r+ d), where d represents the desired shift from circle
perimeter.
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Perc1

Perc2

Perc3

Figure 8.3: Zones from which Perc2 and Perc3 are computed; Perc1 is computed over
the whole image

Hence, S = S2 − S1 defines the handle’s closest surroundings of the
handle and Perc3 represents the percentage of white points (pladour)
in S. Again, the bigger Perc3, the more likely the robot is opposite
handle.

The CHT gives the radius of each detected circle, together with some more
information, whereas using region labelling r is defined as the maximum value
between the width and the height of the obtained region.

The combination of these percentages (weighted mean) give us a measure
of confidence that the robot is opposite a door and that the region recognition
procedure has correctly identified a circular handle (clhandle).

8.1.2 Results

At this stage of the experimentation, the handle recognition was performed
for each class of handle using separate databases.

All the images (learning and testing DBs) were taken while the robot
followed the corridors using its local navigation strategies, which allow it to
navigate within a certain distance from the walls. Both databases contained
almost equal positive and negative cases.

The databases characteristics were the following:

1. For circular handles, the database contained about 3000 entries.

2. For rectangular handles, the size was bigger with about 5000 images.

The experiments were executed for a maximum radius of 20 pixels (rmax =
20), a shift of 15 pixels from the circle perimeter (d = 15), and the confidence
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level of being in front of a handle should rise above 0.6 to confirm the door
(clhandle > clTH = 0.6).

In order to evaluate the improvement achieved by the three-stage process,
the classification accuracy was computed for the sequence and compared with
the accuracy that would be obtained if only region detection was used.

However, accuracy is considered a fairly crude score that does not give
much information about the performance of a categoriser. The F1 measure,
also known as F-score or F-measure, is a measure of a test’s accuracy and
can be viewed as a weighted average of the precision and recall (see Equation
8.1), where an F1 score reaches its best value at 1 and its worst at 0. F1
measure combines both precision and recall into a single metric and favour
a balanced performance of the two metrics (Chen, 1996).

F1 =
2× Precision×Recall

P recision+Recall
(8.1)

Table 8.1 shows the obtained classification accuracies and the correspond-
ing F1 measure values.

Circular Rectangular
Method Acc. F1 Acc. F1
CHT 30.6 0.319 – –
CHT three-stage 85.1 0.685 – –
Blobs 91.1 0.867 61.0 0.36
Blobs three-stage 96.7 0.946 93.6 0.72

Table 8.1: Experimental results

These results show how both performance measures, the classification
accuracy and the F1 value are highly increased using the three stage approach
for both types of handles. Surprisingly, the blob detector proves to be more
efficient at identifying the circular handles. This is because from the robot’s
angle of vision, circles are distorted into ellipsoids so the CHT does not
identify then as handles.

The door identification process should be performed in real time by the
robot. Hence, the time needed to compute the identification must be anal-
ysed. Table 8.2 shows the time requirements of the developed three-stage
algorithm.
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Method Circular Rectangular
CHT three-stage 0.043 –
Blobs three-stage 0.050 0.057

Table 8.2: Computational payload (s) for processing an image applying the three-stage
procedure

8.2 Feature extraction based identification

The approach described above proved to be too specific to the robot’s partic-
ular environment and not easily generalisable. Although the region detector
is robust enough, the segmentation processes are specific and new ones should
be developed to detect handles located in different surfaces.

Feature extraction in images is an important issue in mobile robotics, as it
helps the robot to understand its environment and fulfil its objectives. There
are several applications where it is mandatory to recognise objects or scenes:
image retrieval (Ledwich and Williams, 2004), mobile robot localisation (Gil
et al., 2005; Tamimi et al., 2006), SLAM (Se et al., 2002), physical sign
recognition (Roduner and Rohs, 2006) and automatic guidance of vehicles
(Primdahl et al., 2005). Although different sensors can be used, given the rich
information that can be extracted from images, vision is the most appropriate
one. However, object identification becomes a complex task specially because
of changeable environmental conditions, as well as changes in object scale and
camera viewpoint.

Objects can be identified in images by extracting local image descriptors.
These descriptors should be distinctive and invariant to image transforma-
tions. The idea is to detect image regions co-variant to a class of transforma-
tions which are then used as support regions to compute invariant descriptors
(Mikolajczyk and Schmid, 2005). While complete invariance has yet to be
achieved, features which are robustly resilient to most image transforms have
been proposed by D. G. Lowe (2004).

Several invariant feature extraction techniques can be found in the liter-
ature, like SIFT and (U)SURF. These methods have applied in this research
work.

8.2.1 Extracting features from door images

As mentioned previously, in our robot’s environment there are circular and
rectangular handles. Circular ones are on pladour blades. These have the
advantage that almost every keypoint is located on the door handle and
only a few appear also on the handle surroundings (see Figure 8.4(a)). On



8.2. Feature extraction based identification 113

the other hand, rectangular handles are located on wooden door blades that
are not textureless and therefore keypoints appear outside the handle (see
Figure 8.4(b)).

(a) Circular handle (b) Rectangular handle

Figure 8.4: SIFT keypoints in 320× 240 images

When testing the adequateness of the feature extraction techniques for
the handle identification task, the same databases were used as in the previ-
ous experiments, albeit a few extra images were taken to be used as reference
objects (reference DBs). It must be noted that the test cases were collected in
a different environment to the one where reference cases were taken. There-
fore, the test databases did not contain images of the handles included in the
reference database.

The databases characteristics were the following:

1. For circular handles, the testing database contained about 3000 entries
and the reference database contained 32 images.

2. For rectangular handles, the testing database contained about 5000
images and the reference database contained 19 images.

The keypoint matching criteria used in these experiments is the 1-NN,
the same proposed in (Lowe, 2004).

8.2.2 Results

Table 8.3 shows the obtained results. Again, accuracy and F1 measure are
calculated. USURF outperforms SIFT in both, accuracy and F1 measure
in the case of circular handles, but its performance degrades for rectangular
ones.
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Circular Rectangular
Acc. F1 Acc. F1

SIFT 62.39 0.592 55.41 0.362
SURF 72.5 0.691 42.34 0.324
USURF 72.5 0.691 47.0 0.344

Table 8.3: Performance of the keypoint extraction methods

These values are poor by comparison to the ones shown in table 8.1. Both
the classification accuracy and the F1 measure are much lower that the values
obtained using the three-stage procedure previously described.

8.3 Combining region extraction and features

extraction

This section presents a new two-step algorithm that aims at reducing the
superfluous keypoints obtained by methods like SIFT and (U)SURF by firstly
extracting the region of the image where the object or objects to be identified
are likely to be located.

Instead of computing the invariant features of the whole image, the size
of the image to be processed is reduced by extracting the portion with a high
probability of containing crucial features. Here on, we will call that portion
the Region Of Interest (ROI) of the image.

Several methods can be used to extract the ROI but the experiments
performed while developing the segmentation based door identifier showed
that blob extraction yields robust results for handle identification.

Once the most relevant blob is located, its length and width values are
used to find its centre and extract a square subimage. The size of the square
is determined by the maximum value of either the length of the width of
the candidate blob. The subimage is then scaled to a fixed size to obtain
the portion of the image with a high probability of containing the object of
interest, i.e. a ROI. Then, the keypoint extraction and matching procedure
is performed on the extracted ROI. Figure 8.5 summarises the process.

Although it is not the case for the problem stated in this research work,
the algorithm is drawn in a general form where more than one object can
be searched in an image and hence, more than one ROI should be extracted
and afterwards, processed for identification purposes.
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Figure 8.5: Flow diagram of the new algorithm
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8.3.1 Application to handle identification: results

Figure 8.6 shows examples of the result of extracting the ROI for both handle
types. Obviously, rectangular handle identification problem is hindered by
the asymmetry of the handle itself and the textured blades where they are
located.

(a) Circular handle: blob and ROI

(b) Rectangular handle: blob and ROI

Figure 8.6: Blob extraction and ROI scaling

Table 8.4-a) shows the improvement obtained applying the method pro-
posed in the chapter. Again, USURF seems to be the most adequate feature
extraction method for circular handles, whereas for the identification of non
circular handles the best results are obtained by applying SIFT to the ob-
tained ROI.

The accuracy is increased by almost a 30% for SIFT and about 20− 22%
for SURF and USURF respectively for the case of circular handles. The
improvement is more significant for rectangular handles, with an increase of
35% for SIFT and about 40% for SURF. The fact that this improvement is
also reflected on the F1 measure proves the adequateness of the methodology.

As mentioned in (Pfeifer and Bongard, 2006), vision may take advantage
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of the physical interaction of the agent with its environment. Taking into
account the robot’s morphology and the environmental niche, more specifi-
cally, the height at which the camera is mounted on the robot and the height
at which the handles are located on the doors, the handles should always
appear at a specific height on the image. The improvement introduced by
this Morphological Restriction (MR) is also showed in Table 8.4-b).

Circular Rectangular
acc. size F1 acc. size F1

SIFT 91.82 150 0.863 91.52 80 0.669
SURF 92.94 100 0.890 87.77 40 40.6
USURF 94.35 150 0.911 87.77 40 0.406

a) Region labelling + feature extraction

Circular Rectangular
acc. size F1 acc. size F1

SIFT 94.48 240 0.909 92.67 80 0.699
SURF 95.70 80 0.931 89.87 100 66.84
USURF 96.09 150 0.936 89.71 100 0.666

b) Region labelling + feature extraction + MR

Table 8.4: Best results obtained by the new two-step algorithm

8.4 Discussion

Figures 8.7 and 8.8 show the evolution of the performance, for circular and
rectangular handles. Both, the classification accuracy and the F1 measure
are plotted when the ROI size is increased. These figures correspond to the
proposed two-step method together with the morphological restriction pre-
viously mentioned. It can be appreciated how USURF is the best approach
for circular handles whereas SIFT improves speeded-up variants when rect-
angular handles need to be detected, regardless of the size of the ROI.

The results are similar to those obtained with the three-stage approach.
Table 8.5 reflects how the average number of keypoints increases according

to the ROI size. These values were calculated using the reference databases
used in each experimental trial and hence are only tentative values. Although
the number of keypoints increases according to the ROI size, stable keypoints
are also found on small images. A higher number of keypoints is obtained
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Figure 8.7: Performance on circular handles according to ROI variation
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Figure 8.8: Performance on rectangular handles according to ROI variation

when increasing the scale of the ROI, but the repeatability of these new
keypoints is not satisfactory.

Ref. DB 40 80 100 150 200 320× 240

Circular 10.09 21.43 41.5 74.03 105.53 49.28

Rectangular 5.95 23.47 38.79 72.10 97.78 139.89

Table 8.5: Average number of keypoints

Table 8.6 shows the average time needed to process a single image using
SIFT (blob location, keypoint extraction and matching against the reference
database). Note that the time needed is sensibly higher for larger ROI sizes
due to the larger number of keypoints that occur in those images. Moreover,
the computational requirements to process a single image are larger than the
20 fps attainable with the three-stage process; the same frequency can be
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reached using ROI size of 40.

Database 40 80 100 150 200 No ROI

Circular 0.06 0.18 0.22 0.46 0.75 0.31

Rectangular 0.06 0.13 0.17 0.42 0.58 0.89

Table 8.6: Computational payload (s) for processing an image using SIFT

To summarise, SIFT showed a degraded accuracy for ROI size 40 in the
identification of circular handles. However, the better performance it showed
for the identification of rectangular handles, together with the short com-
putational time it needed confirms it as an appropriate method for the real
time problem stated in this chapter.

8.5 Experiments with the robot

To evaluate the robustness of the handle identification system developed,
it has been integrated in a behaviour-based control architecture that allows
the robot Tartalo to travel across corridors without bumping into obstacles.
When the robot finds a door, it stops, turns to face the door and knocks on it
with its bumpers a couple of times asking for the door to be opened. If after
a certain time the door is still closed, Tartalo turns back to face the corridor
and carries on, looking for a new handle. However, if the door is opened
the robot detects the opening with its laser and activates a door crossing
behaviour module that allows it to enter the room. All the computation is
carried out in its on-board Pentium (1.6 GHz).

The overall control architecture is composed of nine threads that commu-
nicate and activate/deactivate each other when appropriate (see Figure 8.9).
Dashed lines in Figure 8.9 represent behaviour activation/deactivation links,
while thin links are data communication connections among modules. Only
the most relevant connections are drawn for sake of clarity.

These nine threads can be grouped as follows:� Four device managers: these modules are not behaviour modules them-
selves, but they are needed to get/send up-to-date data from/to phys-
ical devices. They are needed for laser, bumper, speech and motor
control.� Three local navigation strategies: corridor following, door knocking and
door crossing.
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Figure 8.9: Behaviour modules and communication

– The corridor following behaviour represents the main local navi-
gation strategy and its aim is to balance free space on both sides
of the robot, so that corridors are followed in smooth trajectories
while avoiding obstacles when necessary.

– The door knocking behaviour performs the sequence of movements
that are needed to knock a door once a closed door is identified.

– The door crossing module is responsible for guiding the robot for
a short period of time when an open door is recognised.� Two landmark identification subsystems: handle identification and

door state evaluator subsystems. The handle identification subsystem
includes any of the door identification approaches developed and ex-
plained earlier, and the door state evaluator calculates the difference
between the laser reading taken right after the robot stops to wait for
the door to open and the current laser reading, and decides if the door
has been opened according to the difference between the two measures.

As mentioned previously, experiments within the real robot/environment
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system were performed using a ROI size of 40 and applying the SIFT feature
extraction method. Also, to make its behaviour more robust, instead of
relying on a single image classification, the robot based its decisions upon
the sum of the descriptor matchings accumulated in the last five consecutive
images. Experiments were carried out in three different environments.

Environment 1: circular handles

Figure 8.10 shows the environment together with the evolution of the sum
of the matched keypoints over time. The horizontal line represents the value
at which the threshold was fixed. The 18 doors present in the environment
were properly identified and no false positives occurred.
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Figure 8.10: First floor results

Environment 2: rectangular handles

A second experiment was performed at the lower corridor of the second floor
of the building where 39 rectangular handles were to be identified. Figure
8.11 shows the original environment and the evolution of the keypoint sum
over time.

The robot started on the left side of the corridor, with its camera pointing
to its right and travelled all the way along the corridor successfully fulfilling
the sequence of 6+7+7 handle identification, and then turned at the dead-
end. In its way back, only one of the handles of the central sector of the
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Figure 8.11: Second floor results

corridor, the one marked with a circle in the upper image of Figure 8.11, was
not recognised (6+6+6) and again, no false positives were given. Hence, a
success ratio of 0.97 was achieved.

Environment 3: mixed identification

A last experiment was made on a part of the third floor of the Faculty of
Computer Science (Figure 8.12), an environment that contained both types
of handles. Three circular handles and three rectangular handles were to be
identified. The robot was left running for three rounds in the corridor.

In each round, three circular handles and three rectangular ones were
positively identified and no false positive was given by the system. The total
amount of handles correctly recognised was 18.

Summing up, during the experiments performed within the real robot/en-
vironment system, 74 handles were identified, which meant an achieved suc-
cess of 98.66% and not a false positive occurred.

8.6 Generality of the method I: application

to new handles

As mentioned in Chapter 6, while developing this research work the Faculty
of Computer Science was completely refurbished. The inside structure was
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Figure 8.12: Mixed environment

modified, walls were either painted or substituted by prefabricated panels.
As a consequence, old doors were removed and at present doors and handles
were standardised as shown in Figure 8.13.

Figure 8.13: New doors at the Faculty of Compuer Science

This refurbishment gave us the opportunity to test the level of generali-
sation of the developed algorithm and to confirm the robust performance of
the approach. To that purpose, some pictures of the new handles were taken
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and stored to be used as the reference database. Nothing was changed in the
algorithm and the parameters used for rectangular handles were inherited for
the blob extraction process. The new experiment was run at the front wing
of the third floor. This wing contains 30 doors plus an additional one that
closes one of the corridors which is normally opened. Figure 8.14 shows this
wing of the environment and the evolution of the keypoint sum over time.
To replicate previous procedures, experiments within the real robot/environ-
ment system were performed using a ROI size of 40 and applying the SIFT
feature extraction method. Once more, to make the behaviour more robust,
instead of relying on a single image classification, the robot based its deci-
sions upon the sum of the descriptor matches accumulated in the last five
consecutive images.
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Figure 8.14: New doors identification results

The robot started on the left side of the corridor, with its camera pointing
to its right and travelled all the way along the corridor successfully identifying
all the handles, and then turned at the dead-end. The handle marked with a
circle in the plot in Figure 8.14(b) represents the door that closes the corridor.
Again, no false positives occurred.

It is worth pointing out that the door identification demo was performed
during the open day held at the Faculty of Computer Science (see Figure
8.15). A short video can be watched at rstp://streaming.i2basque.es/i2bas-
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que/Informatica2011/ Infor2011peli2.mov (timestamp 1.55–2.15) .

Figure 8.15: Door identification demo’s picture

8.7 Generality of the method II: traffic signal

identification

In order to test the potential of the proposed approach, it was applied to the
road signal identification problem using the database used in (Grigorescu
and Petkov, 2003). This database1 contains 360 × 270 sized 48 images and
three signals are to be recognised: pedestrian, bicycle and crossing. As in
our case, the problem of signal recognition is a problem of different object
recognition. The images showed very cluttered views and contained more
than one road signal. Thus, several ROIs were extracted and processed in
each image. Again, the blob properties were restricted in order to reduce
the blobs to be considered and we used a reference database containing only
three images, one per signal. Figure 8.16 shows an example of the detected
blobs and the subimages extracted from them.

To calculate the classification accuracy we assumed that an image could
contain at most one signal of each type, i.e. there could not be more than

1http://www.cs.rug.nl/˜imaging/databases/traffic sign database/
traffic sign database.html
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(a)

(b)

Figure 8.16: Detected blobs and extracted signals

three signals per image. In this way, the accuracy was computed summing
up the true positive and true negative cases.

Figure 8.17 shows the obtained results. Both, accuracy and F1 measure
are shown in order to compare the strengths/weaknesses of the approaches.
For ROI sizes larger that 150 the number of false positives increased consid-
erably when applying SIFT. The best results were obtained for small ROI
sizes because the signal size in the images approximated that geometry. In
spite of the difficulty of the task, the accuracy raised up to 95% for ROI size
of 40× 40. For larger ROI sizes, the scaling of the subimage seemed to dras-
tically affect the stability of the keypoints with the consequent degradation
on the classification performance.

However, both SURF and USURF need larger ROI sizes compared to
SIFT to achieve their best classification performances. Small ROI sizes were
not appropriate for the speeded up variants because the number of keypoints
extracted was very small, as can be seen in Table 8.7.
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Figure 8.17: Results depending on ROI size

30 40 80 100 150 200

SIFT 0.66 18.66 49.66 72 119.33 159

(U)SURF 0.33 1.66 14 24 48.33 59.66

Table 8.7: Average number of keypoints in the images of the signals reference database

8.8 Conclusions

This chapter summarises several approaches aimed at identifying doors for
robot navigation purposes. While environmental specific methods showed a
good performance, the segmentation based approach is not easily applicable
to other environments since new segmenters need to be developed. Feature
extraction methods were easy to apply since they only required building a
reference database containing the objects to be identified. However, the clas-
sification performance and the computational payload needed to process a
single image made these methods unsuitable for robot navigation. A new two
step algorithm was presented based on feature extraction. The objective of
adding a region detection step before extracting the features is to obtain the
most relevant part of the image, i.e. the subimage with a high probability
of containing the most representative region of the image, and to limit the
application of the feature extraction techniques to that region. The devel-
oped algorithm improves the relevance of the extracted features, reducing
the superfluous keypoints to be compared as well as increasing the efficiency
of the process by improving accuracy and reducing the computational time.

ROI extraction improved the handle identification procedure and depend-
ing on the ROI size, the computational time to classify an image was consider-
ably reduced. The system showed a very low tendency to give false positives
while providing a robust identification. The author’s opinion is that the
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presented approach is appropriate for situations where the background is so
changeable that its characteristics are either irrelevant for object identifica-
tion or just add noise to the recognition process.
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As it was noted earlier, an important drawback of the behaviour-based
(BB) navigation system deployed in Galtxagorri resides in the deterministic
nature of the localisation system. The initial position must be known and the
spread of activation mechanism allows the tracking of the robot’s position.
But, if for any reason the successor’s signature is not identified, the robot
gets lost and it has no means of relocalising itself.

One way to keep localisation is through the use of odometry; with this
sensor it is possible to calculate the trajectory of the robot by calculating the
movement of its wheels. However, the farther the robot goes and the more
turns it takes, the more inaccurate odometry becomes, which produces an
accumulative error over time (see Section 3.2.5).

The alternative to a navigation system that is fundamentally based on a
global Cartesian reference frame within which the robot integrates its own
motion through odometry would be to use a system in which the robot nav-
igates using landmarks (Nehmzow, 1999). Galtxagorri’s localisation system
relayed exclusively on landmark identification.

But motion information is still needed to cope with the perceptual aliasing
problem. In general, no totally position independent method can distinguish
between two landmarks of the same qualitative type and compass bearing.
It is common to use odometry measurements to calculate the robot’s motion
over time, despite the fact that it is only available once the robot has moved
and that suffers from accumulative error.

To tackle these drawbacks, the field of probabilistic robotics offers nowa-
days a full set of algorithms that provide the necessary tools to maintain
belief distributions over the state space (Thrun et al., 2005). By contrast,
robots developed within the BB paradigm only make use of a subset of en-
vironmental properties needed for localisation, and shows a higher degree of
adaptability to dynamic environmental changes.

Given the simplicity, low computational cost and the efficient function-
ing of BB systems this chapter pretends to demonstrate that it is possible
to benefit from the soundness and mathematical foundation of probabilis-
tic techniques within the field of BB robotics to improve in the navigation
process.

9.1 Probabilistic navigation

In mobile robotics several methods have been developed for indoor navigation
(Latombe, 1991). As mentioned in Chapter 5, hybrid architectures tackle the
problem of navigation in three steps: mapping, localisation and planning.
These are old problems from the perspective of manipulation robotics and
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are nowadays treated in a probabilistic manner. Hence the name of the field
probabilistic robotics (Thrun et al., 2005). The field of probabilistic robotics
makes explicit the uncertainty in sensor measurements and robot motion by
using probabilistic methods. Let us summarise the three aspects involved in
the navigation task.

Mapping: the main approaches for environment representation are grid-
based approaches and topological maps and both, grid-based and topologi-
cal representations exhibit orthogonal strengths and weaknesses. Grid-based
maps are considerably easier to learn, because they facilitate accurate local-
isation, and are easy to maintain. On the other hand, being more compact,
topological maps facilitate fast planning. In statistical terms, the problem
of mapping is the problem of finding the most likely map given the data
available. A key feature of the statistical approach is that it can equally be
applied to both topological and metric maps. But hybrid representations
are also possible. For instance, in (Thrun et al., 1998b) a robot seeks to
find the most likely map from a set of observations and motion commands.
Howard and Kitchen (2001) present a vision-guided robot navigating around
the corridors at a university building. Two coordinate systems are used;
the model is defined in a global coordinate system (GCS) and the odometry
measurements are made in a local one (LCS), with and arbitrary origin. The
localisation process consists of a search for an invertible transformation func-
tion between the GCS and the LCS. These estimation problems are solved
by a variant of the Expectation Maximisation algorithm first constructing
a coarse grained topological map, and then building a detailed metric map
based on the obtained coarse representation. Paz et al. (2008) propose an
algorithm to reduce the computational complexity of the EKF-SLAM named
Divide and Conquer SLAM in which lower level maps are computed with the
EKF-SLAM and then, these maps are further joined in a hierarchical fashion.

A classic approach for the generation of maps is based on Kalman filters
(Kalman, 1960). Kalman filter-based mapping algorithms are often referred
to as SLAM algorithms. SLAM (Simultaneous Localisation and Mapping) or
CML (Concurrent Mapping and Localisation) is not a solution in itself, but a
problem concerned with building the map while jointly computing the robot’s
localisation (Thrun, 2003). The coupling of these two tasks should relieve
the correspondence problem (Leonard and Durrant-Whyte, 1992). That is to
say, the recognition of already visited places, a problem also known as loop-
closing, which is hard to solve when mapping and localisation are tackled
separately. The loop-closing is performed in two main steps: an exploration
phase to reach different places, and location revisiting for consistency that
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can also drive the robot to new unvisited locations (Yamauchi et al., 1998;
González-Baños and Latombe, 2002).

During the mapping process different exploration strategies can be used.
Wall following is probably the simplest strategy but it does not guarantee
that the whole environment will be explored. On the other hand, coastal navi-
gation (Roy and Thrun, 1999) keeps the robot close to environment properties
in order to extract sufficient features to obtain the map. Whenever multiple
choices are available, the option to go to the least explored region seems the
most attractive (Lee, 1996). In (Yamauchi et al., 1998) frontier-based explo-
ration is used with the purpose of building the environmental map with con-
tinuous localisation. A different approach is used when multiple robots have
to cooperate to obtain the map of the environment. The inherent difficulty of
the mapping process is increased in the sense that interferences among robots
must be avoided. Most multi-robot mapping techniques proceed in two steps:
first, potential target locations or areas are selected, usually located close to
unknown areas so that the robots can observe the unknown places. Then,
robots are assigned to the selected locations and as they approach them,
they include in the map the information obtained in the surroundings. The
key for an efficient mapping process is then to properly selecting the robots’
potential target locations. Stachniss et al. (2008) proposed a Hidden Markov
Models (HMM) based technique that takes into account spacial dependen-
cies between nearby locations to obtain a lower error rate for places located
at frontiers, and the robots get a higher reward for exploring corridors since
they typically provide more branchings to unexplored areas.

Localisation: generally speaking, self-localisation consists on determining
the robot’s position within the model starting from an initial unknown state.
There are many methods for localisation, but there is no general solution to
deal with it easily (Thrun, 2002). Among the different approaches that try
to solve the localisation task, the Markov localisation, a method based on an
extension of HMMs, maintains a belief over the robot global configuration
space. Markov localisation is a passive probabilistic process that calculates
the probability of the location of the robot at each state as a function of the
acquired sensor model and the kinematic model (Cassandra et al., 1996; Fox
et al., 1998; Nourbakhsh, 1998). Markov localisation is further explained in
Section 9.3.

Since the Markov localisation is usually applied in grid maps of high
resolution, the requirements it imposes on updating and maintaining the
probability density function over the whole set of states are very demanding.

Alternatively, some authors propose localisation methods based on par-
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ticle filters, where the a posteriori belief is represented by a set of particles
together with an associated weighting factor of each particle, which consti-
tute a discrete subset of the probability distribution (Rekleitis, 2004; Fox
et al., 2000; Thrun et al., 2001).

The best known of these methods is the Monte Carlo localisation (Fox
et al., 1999a). In it, the a posteriori belief is represented by a set of samples
or particles with an associated weight called importance factor. To update
the samples, firstly the kinematic model is applied to a randomly selected
sample according to its weight, and then, the sensory model updates the
weight of each sample according to the probability of obtaining the perception
observed in the position represented by the sample. The main advantage of
the Monte Carlo localisation is that it reduces the computational cost of the
localisation process as well as the memory requirements by concentrating
the computational effort only on points of the space that are interesting at
each moment, instead of on the whole. To obtain the best results with this
method, it is essential to select an appropriate number of samples (Thrun
et al., 2001) since a limited diversity in the set of particles selected may lead
to the incapacity of the robot to relocate itself if it gets lost.

The most important limitation of probabilistic localisation methods is
that it assumes an unchangeable perception in any given state. This is
a strong assumption for dynamic environments, where there may be un-
expected obstacles such as wastepaper baskets, small furniture or people
walking. To overcome this restriction, Fox et al. (1999b) try to modify the
perception model using two filters. The first one, called entropy filter, mea-
sures the relative change of entropy upon incorporating a sensor reading into
the position belief, and the second one, the distance filter, selects the read-
ings according to how much shorter they are than the expected value. In the
same vain Yamauchi and Beer (1997) try to include techniques in the archi-
tecture that sense changes in the environment and adapt the environment
representation accordingly.

Planning: planning is a traditional field of Artificial Intelligence (AI) and
many algorithms and techniques have been developed to cope with different
problems, ranging from mobile robotics and manipulators up to graphics
animation or non-invasive surgery (Latombe, 1999; Khatib, 1996; Latombe,
1991; Thorpe, 1984). Given a map and a goal location, path planning involves
identifying a trajectory that will cause the robot to reach the goal location
when executed (Siegwart and Nourbakhsh, 2004). Typically, there are many
possible paths between the robot location and its goal, but the major task
on planning is to look for the optimal way based on some criterion like the
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shortest path or safety.
Generally, global planners should be combined with some obstacle avoid-

ance strategy or local planner such as the Vector Field Histogram (VFH)
(Ulrich and Borenstein, 2000) or the Nearness Diagram (Minguez and Mon-
tano, 2004) in order to cope with dynamic environments and reduce the need
and the computational payload of replanning when changes in the environ-
ment make the original path unfeasible. To this aim the local path between
two consecutive waypoints is completed by local planners in a reactive way
(see (Siegwart and Nourbakhsh, 2004) for a comparison among different lo-
cal planners). This solution has the advantage of introducing the sensory
information within the control cycle.

Three are the basic approaches to planning. Roadmap based techniques,
such as visibility graphs and Voronoi diagrams, try to identify sets of routes
in the configuration of free space of the environment. On the other hand,
cell decomposition based approaches decompose the environment in regions
named cells. These cells can be of variable or fixed size. After determining
the free cells and the adjacency of the cells, cell decomposition searches for
routes that link the starting and the goal cells.

Whilst planning using the topological map is more efficient than planning
with the grid-based map, plans generated with topological maps are usually
longer that plans generated with grid-based maps. Hence, to make a compu-
tationally efficient search using graph theory algorithms such as A* , Dikjs-
tra’s shortest path algorithm or Value Iteration, the map is usually turned
into a graph, a set of nodes and arcs that connect them (Matarić, 2009). For
instance, in (Owen and Nehmzow, 1998), best-first search is applied to find
the shortest path on the topological model acquired by a self-organising map.

The third approach to planning are potential field based methods. These
methods are based on the idea that the robot is a particle that moves in
a potential field. Obstacles generate repulsive forces whereas the free space
and the target position generate attractive forces. Within that configura-
tion the robot reaches the goal by moving on the negative of the gradient.
For instance, in (Kortenkamp et al., 1998) a potential field proportional to
the distance from the start position to the goal is computed and a gradi-
ent descent is performed, selecting via points whenever the slope of the path
changes. And the Fast Marching Square method (FM2) (Garrido et al., 2009)
is a motion planner based on the Fast Marching method, a particular case
of the Level Set methods proposed by Sethian (1997). Level Set methods
provide a way for representing a front propagating with speed F . The Fast
Marching method is an efficient numerical algorithm to solve the front prop-
agation when the sign of the speed function F does not change (that is, when
the front moves only forwards or backwards).
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Traditional planning algorithms do not consider the uncertainty associ-
ated to robot actions. The state transition function is considered determinis-
tic, so an action performed in a given state brings the robot to a known state
without uncertainty; the state transition function is considered deterministic.
By contrast, the field of probabilistic robotics does take into account uncer-
tainty when deciding what the robot can do. Instead of static plans, the aim
is to generate action selection policies or universal plans. This generation can
be approached from different viewpoints and with a higher or lower degree
of difficulty.

A popular formalism for decision making under uncertainty is the Markov
Decision Process (MDP) framework. In this paradigm, an agent interacts
with a given system by executing actions that change the state of the system
stochastically and that provide rewards or penalties to the agent. The envi-
ronment is considered observable and uncertainty is only associated only to
the execution of actions. Thrun et al. (1998a) combine metric and topological
representation and they use a variation of value iteration dynamic program-
ming algorithm to select the best action to be taken in the exploration of the
environment during the mapping process. However, if uncertainty is linked
to both state perception and actions, then the planning task is formalised
as Partially Observable Markov Decision Process (POMDP) (Thrun et al.,
2005).

9.2 Related work

We found some references that bear resemblance with our approach. In the
work by Barber and Salichs (2001) an event driven navigation method is
presented. The topological map (Navigation Chart) is not made up of envi-
ronmental element successions, but of a succession of tasks to be executed
during navigation, which means going through all the possible plans. Simi-
larly, Egido et al. (2004) propose to represent the environment by a succession
of elementary skills. Concerning the metric encoding, Lankenau and Röfer
(2002) present a self-localisation system where maps are represented as route
graphs that contain (geo-)metric data about the length of the corridors as
well as about the included angles.

Related to the action model, in the work by Tomatis et al. (2001) a com-
bination of topological and metric approaches for SLAM is presented where
a global topological map which contains a metric map associated to each of
the nodes is used. The topological localisation system is also Markovian but
within the action model, they condition the probability that a state transi-
tion occurs to the observation of an opening. If no opening is visible, then
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the probability of remaining in a node is high while transitions to other states
are almost improbable. On the other hand, when an opening is visible, the
most probable transition is the closest one according to the distance travelled
while the rest of the transitions are less probable.

Finally, in (Zanichelli, 1999) a landmark-based topological representa-
tion is used in a behaviour-based navigation system. The topological map
is a connected graph where each node represents a landmark completely
characterised by a set of attributes. It is mentioned that state transition
probabilities are estimated from the reachability information contained in
the topological map, but no detailed explanation is given about the process.
Moreover, navigation is solely based on wall following.

9.3 Markov localisation

Probabilistic methods offer the necessary tools with a sound theoretical basis
for handling self localisation but they are generally applied to rigid environ-
ment representations and therefore they are hardly capable of coping with
dynamic environments. As mentioned earlier, the key idea of probabilistic
robotics is to explicitly represent the uncertainty associated to robot localisa-
tion by means of probability calculus theory, thus representing the ambiguity
in a sound manner.

Generally speaking, probabilistic modelling can be performed using dif-
ferent formalisms (see Figure 9.1). Each technique is based on different
assumptions about the action and sensor models and also about the initial
state. The resulting algorithms have then different computational overheads
(Diard et al., 2003).

When addressing the robot localisation problem, a common technique
is the Markov Localisation (ML) algorithm which is an adaptation of the
Bayes filter for the robot localisation problem and, as such it is a recursive
algorithm. This is a probabilistic process that maintain a density function
at all time steps, a belief on the global configuration space of the robot. It
is based on Markov assumption or the static world assumption, which is to
assume that the current robot’s location is the only factor that systematically
affects the sensor readings. Formally, if Lt = l represents the location of the
robot at time t is l and zi is the sensory input at the instant of time i, then:

P (zt+1, zt+2....|Lt = x, z0, z1, · · · , zt) = P (zt+1, zt+2....|Lt = x) (9.1)

So, with the Markov localisation it is possible to calculate, at each instant
of time t, the probability that the robot is in every possible location l given a
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Figure 9.1: Probabilistic models ordered from general to specific

sequence of sensor readings d = z0, z1, · · · , zt−1, i.e. P (Xt = x|d). Therefore,
according to the Equation 9.2, the probability of being in state x at a given
time depends on the probability of receiving the perception zt in that state –
sensory model – and also on the probability of reaching that state executing
action u at any previous state – kinematics or movement model.

Bel(x) = P (zt|x)
∑

x′

P (x|u, x′)Bel(x′) (9.2)

The ML algorithm (see Algorithm 9.1) addresses the global localisation
problem, the position tracking problem and the kidnapped robot problem,
although it is normally applied in static environments.

Algorithm 9.1 Discrete form of the ML algorithm

1: Markov localisation(bel(xk−1), uk, zk, m)
2: for all xi do
3: bel(xi) =

∑

h p(xi|uk, xh, m)bel(xh)

4: bel(xi) = µp(zk|xi, m)bel(xi)
5: end for
6: return(bel(xt))

Note that step 3 implies a loop over the whole set of states.
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9.4 Probabilistic behaviour activation

In order to apply the Markov Localisation (ML) algorithm, two probability
distributions must be defined: the probability of observing a sensor reading zt
at each state (sensor model, ∀i, P (zt|xi)) and the state transition probability
or action model, ∀i, j, P (xi|xj , ut), being ut the action executed by the robot
at time t. Then, the belief of being at a certain location i is calculated in
two steps (see Algorithm 9.1):

1. The probability of having reached location xi is approximated by sum-
ming up the probabilities of arriving to that particular node from any
location xj as a consequence of action ut multiplied by the belief of
being in xj at the previous step.

Bel(xi) =
∑

j

p(xi|xj , ut)Bel(xj)

2. The previous value is multiplied by the probability of perceiving zt
at location xi. Once this process is repeated for every possible robot
location xi, the beliefs are normalised.

This is usually implemented in two steps:� For all i,
B̂el(xi) = p(zk|xi, m)Bel(xi)

and

µ =
1

∑

k B̂el(xk)� For all i,
Bel(xi) = µB̂el(xi)

Note that the action model implicitly defines the full connectivity among
the nodes; in principle, all transitions are possible and hence there is no need
for an explicit definition of the connectivity graph.

The next subsections explain how the ML algorithm is integrated in the
procedural map description previously described.

9.4.1 Sensor model

The control architecture includes several landmark identification subsystems
that output a confidence level for each type of landmark. These values are fil-
tered through node signatures that give at each time step the node activation
level according to the sensor readings.
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Then the probability of seeing a concrete landmark k (cltk) in a node xi is
a function of the expected values (signature of the node) and the confidence
level values returned by the landmark identification subsystems:

P (cltk|xi) = f(cltk, signaturei) ∈ (0, · · · , 1]

And assuming independence among the different landmarks:

P (zt|xi) =

ki
∏

h=1

P (clth|xi)

9.4.2 State transition probability

In general, no totally position independent method is able to distinguish
between two landmarks of the same qualitative type and compass bearing.

The state transition probability function should reflect the probability
that the transition occurs if the robot has travelled the distance (translational
and rotational) accumulated by the odometry system.

Several motion models exist in the literature (see (Thrun et al., 2005)).
The one selected as a starting point for this research was the odometry motion
model for its simplicity. In it, any robot movement is decomposed in three
steps: initial rotation (δrot1), translation (δtrans) and final rotation (δrot2)
(see Figure 9.2). It is assumed that each motion variable is perturbed by an
independent error source.

(xt, yt, θt)

△y

△x

(xt−1, yt−1, θt−1)

δtrans

δrot2

δrot1

Figure 9.2: Odometry motion model
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If according to two consecutive odometry measurements the robot’s move-
ment vector is (δrot1, δtrans, δrot2) and the movement vector associated to the
transition from state xj to state xi is (δrot1, δtrans, δrot2), the state transition
probability is then the product of the component probability functions. Each
component function is described as a zero mean normal distribution based
on the difference between the occurred value and the theoretical value:

Prot1 = N(δtrans − δtrans, σrot1)

Ptrans = N(δtrans − δtrans, σtrans)

Prot2 = N(δrot2 − δrot2, σrot2)







⇒ P (xi|xj , ut) = prot1 × ptrans × prot2

9.4.3 Topological places

Within the behaviour-based approach, topological maps should be composed
of tightly coupled behaviours specific to meaningful locations. The overall
“map” is then composed of sets of behaviours, each launched on a different
thread, with an associated functionality and differing in the node signature
that makes them distinguishable.

To apply the Markov localisation and for global localisation, the definition
of the map has been modified. Predecessor and successor links have been
removed and the location identifier has been modified to contain position
information obtained from odometry.

Formally, a map is a set of nodes, each one consisting of:

1. A set of inputs (from landmark identification subsystems) and outputs.
These outputs should serve to reduce the distance between the current
state and the goal.

2. A signature that uniquely identifies the node from its immediate prede-
cessors and successors: signaturei. Locations are recognised by iden-
tifying what makes each place singular, and therefore the signature
reflects the state of a set of specific landmarks.

3. A function αi to be executed when the node is active and that will
output the action to be performed at the node specific current state.
The behaviour the robot will show may vary depending on the location,
and so can the associated function of several nodes.

4. By contrast with grid models, the topological representation approach
does not imply a uniform distribution of locations. Behaviours are
maintained for different space scales, depending on the environment the
robot moves in. Moreover, in grid-based approaches the “do-nothing”
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action reflects the probability of remaining in a node, whereas for the
topological approach the probability of remaining in a node must be
defined as a function of the space represented by that node.

Hence, the location identifier has been replaced by a vector that con-
tains initial and final position of the node:

(xi0, yi0), (xif , yif)

and the definition of nodes have to be extended to include the length
of the node itself (di).

9.4.4 Behavioural organisation

The previous subsections described how the probabilistic models were defined
but how the nodes calculate and maintain their beliefs remains to be clarified.
Figure 9.3 shows the behavioural organisation of the localisation subsystem
of the architecture being developed.

normalizer

controller
motor

sequencer

local navigation
strategies

×m

cl0

θd

αi

signaturei

(δtrans, δrot1, δrot2)

Belt(xi)

θid

nodei

cl2

clki

(xt, yt, θt)

Belt(x1), · · · , Belt(xn)

Figure 9.3: Localisation subsystem

Each node i stores the information necessary to calculate P (xi|xj , ut), ∀j,
i.e. the parameters (δrot1, δtrans, δrot2) that need to occur to arrive to that
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node from anywhere else (a single row of the transition matrix). In this
manner, every node receives as input the values (δrot1, δtrans, δrot2) calculated
from odometry readings and it is able to calculate the non-normalised belief
Beli of being in that node. An extra thread (normaliser) is responsible for
reading individual beliefs and normalising them.

The main peculiarity of the system being developed is the qualitative na-
ture of the actions performed by the robot. The nodes decide which bearing
the robot must follow to reach the goal while avoiding obstacles. This prop-
erty is of high relevance because it allows the robot to behave robustly in
dynamic environments. The fact that no deterministic action set is defined
makes it difficult to determine the effect of an action, and consequently to
know when the transition probability must be updated. To cope with this
problem, odometric information is accumulated until there is a high degree of
certainty about the robot’s location, i.e. the belief of being in a node exceeds
certain threshold. This normalising process is also responsible for deciding
when to accumulate distance and when to restart the reference point accord-
ing to the normalised belief values.

Finally, the sequencer receives the normalised beliefs and the orientation
proposals of the nodes as inputs, and acts as a conflict solver, selecting the
orientation suggested by the most probable node.

9.5 Experimental evaluation

This section explains how the method has been applied and tested in a sim-
ulated and in a real robot/environment system. First, the environment de-
scription is given together with the description of the basic navigation mod-
ules and landmark identification subsystems needed by the robot. Then, the
results obtained in simulation and in the real system are provided.

9.5.1 Definition of the procedural modules

As described in Section 5.5, Galtxagorri’s BB control architecture was com-
posed of several independent behavioural modules, mainly:� Local navigation strategies.� Landmark identification subsystems.

In order to integrate the ML, new modules were properly added. It must
be pointed out that although to a great extent many behaviours were the
same as those described in Section 5.5, their implementation was modified
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to adapt their functionality to the Leuze RS4 laser mounted in Galtxagorri.
That is why these behaviours are so briefly described bellow and only the
algorithms for new functionalities are shown when necessary.

The whole upgraded architecture is described bellow.

Local navigation strategies: two local navigation strategies allow the
robot to navigate towards a goal while avoiding obstacles:

1. Balance free space around the robot (see Algorithm 9.2).

Algorithm 9.2 Laser based free space balancing

1: if (first time) then
2: first time = false;
3: initialise w weights with gaussians();
4: initialise v weights with gaussians();
5: end if
6: average = calculate laser readings average();
7: th = calculate appropriate threshold(average);

8: wleft =

left,laseri<th
∑

i

w weighti ∗
laseri
th

+

left,laseri≥th
∑

i

w weighti;

9: wright =

right,laseri<th
∑

i

w weighti ∗
laseri
th

+

right,laseri≥th
∑

i

w weighti;

10: vtmp =

181,laseri<th
∑

i

v weighti ∗
laseri
th

+

181,laseri≥th
∑

i

v weighti;

11: frontmin = calculate front shortest reading();
12: leftmin = calculate left shortest reading();
13: rightmin = calculate right shortest reading();
14: diff = leftmin − rightmin;
15: if (frontmin < frontthreshold) then
16: vaux = − log frontmin+CONSTANT FRONT FAR

frontmin+CONSTANT FRONT SHORT
;

17: waux = sign((int)diff) ∗ CONSTANT V EL;
18: else
19: vaux = V MAX ∗ vtmp;
20: waux = W MAX ∗ (wleft − wright);
21: end if
22: vt = (0.8 ∗ vaux) + (0.2 ∗ vt−1)
23: wt = (0.8 ∗ waux) + (0.2 ∗ wt−1)
24: return (vt, wt);
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2. Maintain a privileged compass orientation.

The overall robot velocities are a result of a cooperative control strategy,
obtained by a weighted sum of individual proposals.

Landmark identification subsystems: each landmark identifier outputs
a confidence level (cl) as a measure of the confidence of the identification
process:

1. Corridor identification. Wide halls are considered as non-corridor places
(Algorithm 9.3).

clcorr ∈ [0 · · ·1]

Algorithm 9.3 Laser based corridor identification

1: shortest left value = calculate laser left shortest value();
2: shortest right value = calculate laser right shortest value();
3: sum = shortest left value + shortest right value;
4: insert in buffer(sum);
5: average = calculate the buffer average;
6: clcorr = 1− 1/(1 + e−(average−CORRIDOR WIDTH));
7: return clcorr;

2. Mean compass orientation:

clθ ∈ [0◦ · · ·360◦]

3. Left/right wall identification (Algorithm 9.4), useful to distinguish among
non corridor places:

clwall ∈ [−1 · · ·1]

where −1 means right wall and 1 means wall on the left.

The perception of the robot at time t is then:

zt =
{

cltcorr, cl
t
wall, cl

t
θ

}
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Algorithm 9.4 Laser based wall identification

1: shortest left value = calculate laser left shortest value();
2: shortest right value = calculate laser right shortest value();
3: if (shortest left value < shortest right value) then
4: clwall = left wall;
5: else
6: clwall = right wall;
7: end if
8: return clwall;

Action triggering landmark identifiers: two more landmark identifi-
cation subsystems are needed for action triggering (orientation changing):� Crossroad or junction recognition (clcross): laser based crossroad recog-

nition has substituted the use of emergency exit panels. The new
module is insensitive to lightning conditions and produces a better
behaviour by identifying the crossroads in situ instead of anticipating
the places (Algorithm 9.5).

Algorithm 9.5 Laser based junction identification

1: shortest left value = calculate laser left shortest value();
2: shortest right value = calculate laser right shortest value();
3: count scans = sum left scans larger than(shortest left value);
4: left scans values = sum left scans larger than(shortest left value);
5: count scans += sum right scans larger than(shortest right value);
6: right scans values = sum right scans larger than(shortest right value);
7: total sum = (left scans values + right scans values)/count scans;
8: insert in buffer(total sum);
9: average = calculate the buffer average;

10: clcross = 1/(1 + e−(average−CROSS WIDTH));
11: return clcross;� Dead ends identification (cldead end) modified as shown in Algorithm

9.6.

Notice that dynamic landmarks (landmarks that persist in spite of robot
movement) are used for node definition whereas static landmarks (momen-
tary or robot position specific landmarks) are used for action triggering. In
both cases, only the desired compass bearing is changed when these land-
marks are positively identified; the combination of the local navigation strate-
gies produce the desired behaviour.
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Algorithm 9.6 Laser based dead-ends identification

1: calculate laser shortest reading();
2: calculate laser largest reading();
3: cldead end = 1− 1/(1 + e−(largest reading−shortest reading));
4: return cldead end

Action model specification: for the presented approach, the transition
probability is decomposed into two components, the translational (pδ) and
the rotational components (pθ).

For the translational component, instead of defining δtrans as the Eu-
clidean distance, the Manhattan distance (or Minkowsky’s L1 distance) is
used: δtrans = △x + △y. This distance measures the distance between two
points along axes at right angles and has shown to be more appropriate for
the given environmental setup. The translational and rotational differences
are then:

{

δ = δtrans − δtrans
θ = |δrot1 − δrot1|+ |δrot2 − δrot2|

The transition probability is calculated assuming independent error sources
for each component:

P (xi|xj, ut) = pδ × pθ (9.3)

where1:
{

pδ = N(δ, σtrans)
pθ = N(θ, σrot)

Again, P (xi|xi, ut) is computed as in equation (9.3) but the component
probability values are calculated as follows:















pδ =

{

0.99 if δ ≤ di
0.99
2×δ

otherwise

pθ = N(θ, σ′
θ) where σ′

θ = 2× σθ

9.5.2 Simulated experiments

Figure 9.4 shows the map of 24 processes (nodes) associated to the experi-
mental environment in Figure 9.5.

Note that no link information is used for the localisation task. In princi-
ple, all transitions are possible. The high degree of symmetry of the environ-
ment facilitates the development of clone functions for different locations.

1N(0, σ) represents a zero centred normal distribution with deviation σ
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Figure 9.4: The environment and its corresponding procedural map of nodes

Thus, the whole control architecture is composed by 38 threads that com-
municate amongst themselves.

The robot can be launched at any unknown position of the environment,
i.e. the belief distribution is initialised uniformly. It is important to note
that landmarks are ambiguous; that is, the robot cannot localise itself sim-
ply by observing a single landmark. Rather, the robot must undertake several
relatively complex series of actions, and may have to travel a considerable dis-
tance to unambiguously determine its location (Howard and Kitchen, 2001).
Therefore, the robot first needs to localise itself and then complete the tra-
jectory. An additional localisator thread has been added with this aim. This
thread is responsible for initially performing a simple strategy, looking for
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free space into the four nominal orientations to guide the robot to the closest
corridor and then following it until the localisation subsystem is stabilised.

In order to test the developed localisation subsystem, three different
routes (robotic tasks) have been defined, and several intermediate goals are
included in each route. As it can be seen in the left column of Figure 9.5, the
route A has two intermediate goals, the first one on the bottom right-hand
corner (node 0) and the second one on the top left-hand corner (node 19);
similarly, the route B defines 5 intermediate points as goals, while route C
has 7 locations to visit.

The same experiment was made in routes A, B and C, with the robot
starting in an unknown place, localising itself and completing the routes
three times and showing persistence. The robot completes well its task in all
the cases. The right column of Figure 9.5 shows the robot following these
routes after self-localisation.

Figure 9.6 shows how the robot performs the localisation strategy and
starts completing route A afterwards, starting from a rather complicated
initial position (zoomed in the circled area) and verifying the adequateness
of the initial localisation strategy (localisator module).

9.5.3 Experiments in a real robot/environment system

The experiments in the real robot/environment system were performed in
half of the third floor of the building (the covered area is represented by a
dashed rectangle in Figure 9.7(a)). 8 nodes were needed to complete the
map: 4 corridors, 2 transitions and 2 halls (Figure 9.7). The corresponding
procedural map is represented in Figure 9.7(b). Eleven nodes were defined:
6 corridor nodes, 3 transition nodes and 2 hall nodes. The robot goals were
to arrive to the hall at the end of the middle corridor and to go back to the
lab after visiting the small corridor covered by nodes 2 and 3.

Figure 9.8 summarises the state of the different modules over time (sec-
onds). The plots in Figure 9.8(a) reflect the state of the landmark iden-
tificators during the trajectory, and Figure 9.8(b) shows the index of the
node with the maximum belief over time. A location is confirmed when its
belief reaches 0.7. Note that although there is an initial uncertainty, once
the robot localises itself it never gets lost again even if there are open doors
and/or changes in the environment. This sequence confirms that the robot’s
trajectory matches the predefined sequence of goals.

The robot starts in node 0 although the beliefs are initialised uniformly,
i.e. the robot completely ignores where it is. Hence, it starts with the
autolocalisation strategy. Due to the different lengths of the two corridors
and the slightly different compass bearing defined for each one of them, the
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(a) Route A (b) Robot navigating after being lo-
calised on Route A
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(c) Route B (d) Robot navigating after being lo-
calised on Route B
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(e) Route C (f) Robot navigating after being lo-
calised on Route C

Figure 9.5: Left: different routes and intermediate goals. Right: robot performing routes
A, B and C
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Figure 9.6: Robot localising before route completion
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Figure 9.7: Third floor environment and description



9.5. Experimental evaluation 153

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  100  200  300  400  500  600  700

−1

−0.5

 0

 0.5

 1

 0  100  200  300  400  500  600  700

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0  100  200  300  400  500  600  700

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  100  200  300  400  500  600  700

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  100  200  300  400  500  600  700

(a) Landmark cl: clcorr, clwall, θcompass, clcross, and cldead end respectively

?? 0

 2

 4

 6

 8

 10

 0  100  200  300  400  500  600  700

Max index

(b) Index of the node with the highest belief

Figure 9.8: Floor 3 results



154 Chapter 9. Behaviour-based probabilistic localisation

robot only needs a short period to confirm its location at node 0 (∼ 70s)
and to start searching for its goals. Once the first transition node is correctly
identified (∼ 100s), the robot recognises a crossroad (∼ 180s) and the desired
bearing is changed to direct the robot to the hall; then the robot traverses the
hall, turns to its left when it identifies a second crossroad (∼ 320s) and follows
the larger corridor until it sees a new crossroad (∼ 450s). Having reached its
first goal fulfilled, the change in the desired compass bearing makes the robot
turn on the spot. Afterwards, it retraces its steps and reaches the location
corresponding to the transition node numbered 10. To attain its next goal,
the transition node changes the desired compass orientation to the east and
produces the activation of the upward hall node (node 7) up to the end.
When the robot reaches that point, it recognises the new crossroad and the
corresponding node changes the orientation to the south. It is important to
point out that there is a magnetic field that disturbs the compass reading
while the robot travels across node 7 (∼ 500s). However, the robot is
able to recover from this misreading. Moreover, after identifying the cross
(∼ 520s) at the end of node 7, the laser readings anticipate the presence
of the corridor (node 2) and although there is no chance for that transition
(node 1) will be activated, the distance values allow the robot to correctly
identify the corridor (node 2). Once it reaches the end of the corridor, the
activation of the dead-end landmark identification (∼ 570s) again makes the
robot face North once again and Galtxagorri goes directly to the last goal
(node 5).

Figure 9.9 confirms the trajectory completed by the robot during its
journey. The accumulated odometry error, clearly visible in this figure does
not affect the robot localisation.

Figure 9.9: Map drawn by Galtxagorri using laser and odometry readings
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9.6 Conclusions

In this chapter a preliminary approach to the Markovian localisation can
be used in a distributed system and successfully integrated in a behaviour-
based control architecture has been described. Galtxagorri’s procedural map
definition has been modified removing the predecessor/successor links and
replacing the location identifier with odometric information. Experimental
results are promising. There is no need for the FSA defined in Galtxagorri

and the robot is able to recognise and maintain its localisation even when
its initial position is unknown. The proposed approach requires low storage
and computational resources and it is, in author’s opinion, particularly suit-
able for dynamic environments. The coordinate information included in the
nodes allows the adaptation of a common action model used in probabilistic
approaches and can easily be acquired within an exploration strategy.

To summarise: on the one hand, the topological quality of the system
makes it less sensitive to odometry errors. On the other hand, its procedural
nature allows the preservation of the basic functions of the robot at low cost
as well as the performance of more complex tasks.
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As mentioned in Chapter 5 (Section 5.6), Galtxagorri does not have an
automatic mapping mechanism. The topological map was given to the robot
for the first architecture implementation as well as for testing the probabilistic
localisation method described in Chapter 9.

Not having an automatic mapping mechanism represents a big burden
for the designer of the map because the perception of robots and humans
differs significantly from each other. Moreover, changing the robot’s envi-
ronment implies that the whole topology of the map should be rebuilt and
that an automatic mapping method has to be developed to obtain the node
information and to establish the spatial relationship among the nodes. In
addition, the loop-closing problem must be addressed, i.e. correspondences
among already visited places must be identified during the mapping process.

In this chapter a place recognition approach based on match testing is
proposed using the INCA statistic (Irigoien and Arenas, 2008), a typicality
test which follows a distance-based approach. The typicality problem refers
to the identification of new classes in a general classification context. This
typicality concept is used in this research work to help a robot acquire a
topological representation of the environment during its exploration phase.

To build the map, an exploration behaviour is developed whose aim is
to build the topological representation of a partially unknown indoor envi-
ronment. In this context, partially means that the robot is endowed with
the capability of identifying some environmental structures such as corri-
dors, junctions and halls. The author hypothesised that the robot world is
a typical office-like regular environment with parallel walls. Nodes of the
topological map represent areas of the environment with the same percep-
tual properties. During the exploration process, previously visited locations
should be identified and new locations should be integrated in the topological
structure.

We describe the theoretical basis of the proposed approach and present ex-
tensive experimental results performed in both a simulated and a real robot-
environment system; as in the previous distributed localisation approach, the
behaviour-based philosophy and the definition of the topological procedural
map are maintained.

10.1 Literature review

While mapping an environment the robot must determine whether or not
it is the first time it visits a certain location. Loop-closing has long been
identified as a critical issue when building maps from local observations.
Topological mapping methods isolate the problem of how loops are closed
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from the problem of how to determine the metrical layout of places in the
map and how to deal with noisy sensors.

The loop-closing problem cannot be solved neither relying only on extere-
oceptive information (due to sensor aliasing) nor on propioceptive informa-
tion (cumulative error). Both environmental properties and odometric infor-
mation must be used to disambiguate locations and to correct robot position.
Fraundorfer et al. (2007) present a highly scalable vision based localisation
and mapping method that uses image collections, whereas Se et al. (2005)
use vision mainly to detect the so called loop-closing –the place has already
been visited by the robot– in robot localisation; Tardós et al. (2002) intro-
duce a perceptual grouping process that permits the robust identification
and localisation of environmental features from the sparse and noisy sonar
data. On the other hand, the probabilistic Bayesian inference, along with a
symbolic topological map is used by Chen and Wang (2006) to relocalise a
mobile robot. More recently, Olson (2009) presents a new loop-closing ap-
proach based on data association, where places are recognised by performing
a number of pose-to-pose matchings; a review of loop-closing approaches re-
lated to MONOSLAM can be found in (Williams et al., 2009). Within the
field of probabilistic robotics (Thrun et al., 2005), Kalman filters, Bayesian
Networks and particle filters are used to maintain probability distributions
over the state space while solving mapping, localisation and planning.

But the mapping problem can also be stated from a classification per-
spective. In most classification problems, there is a training data available
for all classes of instances that can occur at prediction time. In this case, the
learning algorithm can use the training data to determine decision bound-
aries that discriminate among the classes. However, there are some problems
that exhibit only a single class of instances at training time but are amenable
to machine learning. At prediction time, new instances with unknown class
labels can either belong to the target class or to a new class that was not
available during training. In this scenario, two different predictions are pos-
sible: target, an instance that belongs to the class learnt during training,
and unknown, where the instance does not seem to belong to the previously
learnt class. Within the machine learning community, this kind of prob-
lems are known as one-class problems and as typicality problems within the
statistics research.

To give some examples, in (Hempstalk et al., 2008) the probability distri-
butions of the class variable known values are used to determine if a new case
belongs to the known class values or if it should be considered as a different
class member. One-class classification categorizers have a wide range of ap-
plications; in (Manevitz and Yousef, 2007) one-class classification is used to
document categorisation in order to decide whether a reference is relevant in
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a database searching query. The same authors combine this approach with
the Support Vector Machine (SVM) paradigm for document classification
purposes (Manevitz and Yousef, 2002); and in (Sánchez-Yáñez et al., 2003)
the same idea is applied to texture recognition in images. A thorough review
of one-class classification can be found in (Tax, 2001).

Regarding the mobile robotics area, one-class classification approaches
can be applied to robot mapping, i.e. to learn the structure of its environment
in an automatic manner. In this way, Brooks and K. Iagnemma (2009)
present a use of this approach to deal with terrain recognition, and Wang
and Lopes (2005) use it to identify user actions in human-robot-interaction.
However, direct uses of this approach, with this particular name, have not
been found in the robotics literature.

There are different approaches found in the literature to deal with the
typicality problem (Rao, 1962; McDonald et al., 1976; Cuadras and Fortiana,
2000; Bar-Hen, 2001; Irigoien and Arenas, 2008). Some of them are only
suitable for normal multivariate data, others are appropriate for any kind of
data but are limited to k = 2, being k the number of classes. The latter case
offers the most general framework to be applied. However, and in spite of the
high diversity of the used methods, to the best of the author’s knowledge,
neither typicality nor one-class approaches appear in the mapping literature.

The approach proposed in this chapter combines the INCA statistic (Irigoien
and Arenas, 2008) with the topological properties of the environmental lo-
cations considered and thus represents a new approach to tackling the robot
mapping problem as a typicality case.

10.2 Typicality test by means of the INCA

statistic

In this section the INCA statistic is introduced and the INCA test is proposed
as a solution to the typicality problem.

10.2.1 Preliminaries

The data we consider are random vectors and we assume that distinct classes
exist. Let C1, C2, ..., Ck be k classes represented as k independent S-valued
random vectors Y1, Y2, ..., Yk, with probability density functions f1, f2, ...,
fk with respect to a suitable common measure λ. Let δ(y,y′) be a distance
Gower (1985) function on S. We say that δ is a Euclidean distance function if
the metric space (S, δ) can be embedded in a Euclidean space, Ψ : S −→ R

p,
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such that:
δ2(y,y′) = ‖Ψ(y)−Ψ(y′)‖2, (10.1)

and we may understand E(Ψ(Yi)) as the δ-mean of Yi, i = 1, ..., k.
In this general framework the following concepts are considered. The

geometric variability of Ci, i = 1, ..., k with respect to δ is defined (Cuadras
and Fortiana, 1995) as

Vδ(Ci) =
1

2

∫

S×S

δ2(yi1,yi2)f(yi1)f(yi2)λ(dyi1)λ(dyi2).

This quantity is a variant of Rao’s diversity coefficient (Rao, 1982). When
δ is the Euclidean distance and Σi = COV (Yi), then Vδ(Ci) = tr(Σi). For
other dissimilarities Vδ(Ci) is a general measure of dispersion of Yi. In the
context of discriminant analysis (Cuadras et al., 1997) the squared distance
between Ci and Cj is defined by

∆2(Ci, Cj) =

∫

S×S

δ2(yi,yj)f(yi)g(yj)λ(dyi)λ(dyj)−Vδ(Ci)−Vδ(Cj) (10.2)

This quantity is the Jensen difference (Rao, 1982) between the distribu-
tions of Ci and Cj. If the metric space (S, δ) can be embedded (see (10.1))
in a Euclidean space R

p and if E(‖Ψ(Yi)‖) and E(‖Ψ(Yi)‖2) are finite,
then Vδ(Ci) = E(‖Ψ(Yi)‖2) − ‖E(Ψ(Yi))‖2, i = 1, ..., k, and ∆2(Ci, Cj) =
‖E(Ψ(Yi))−E(Ψ(Yj)‖2. If there is only one element Ci = {y0}, (10.3) gives
the proximity function of y0 to Cj,

φ2(y0,Yj) =

∫

S

δ2(y0,yj)f(yj)λ(dyj)− Vδ(Cj). (10.3)

In applied problems the distance function is typically a datum, but the
probability distribution for each population is unknown. Natural estimators
given samples y1

1, ...,y
1
n1, ..., y

k
1 , ...,y

k
nk, of sizes n1, ..., nk coming from C1,

..., Ck are the following:� The geometric variability of Cj ,

V̂δ(Cqj) =
1

2n2
j

∑

l,m

δ2(yj
l ,y

j
m).� The proximity function of a new object y0 to Cj,

φ̂2(y0, Cj) = φ̂2
j(y0) =

1

nj

∑

l

δ2(y0,y
j
l )− V̂δ(Cj).
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∆̂2(Ci, Cj) = ∆̂2
ij =

1

ninj

∑

l,m

δ2(yi
l ,y

j
m)− V̂δ(Ci)− V̂δ(Cj). (10.4)

See (Arenas and Cuadras, 2002) and references therein for a review of
these concepts, their application, different properties and proofs.

10.2.2 INCA statistic

Consider that n units are simply divided into k classes C1, ..., Ck, of sizes
n1, ..., nk. Consider a fixed unit y0, which may be an element of a Cj , j =
1, ..., k or may belong to an unknown class, i.e. it may be an atypical unit.
Consider a new class with δ-mean the linear combination

∑k

i=1 αiE(Ψ(Yi)),
where Yi is the random vector representing the class Ci, i = 1, ..., k. The
INCA statistic is defined as follows:

W (y0) = min
αi

{L(y0)} ,
k

∑

i=1

αi = 1, (10.5)

L(y0) =

k
∑

i=1

αiφ
2
i (y0)−

∑

1≤i<j≤k

αiαj∆
2
ij .

φ2
i (y0) is the proximity function of y0 to Ci and ∆2

ij is the squared dis-
tance between Ci and Cj . The INCA statistic W (y0) = minαi

L(y0) trades
off between minimising the weighted sum of proximities of y0 to classes
(which takes into consideration the within-group variability) and maximising
the weighted sum of the squared distances between classes (between-groups
variability) - a common behaviour of a classing criterion. The values of
α′ = (α1, . . . , αk−1) together with αk = 1 − ∑k−1

i=1 αi, verifying (10.5) are
α′ = M−1N , where M is the (k − 1)× (k − 1) matrix

M =
(

∆2
ik +∆2

jk −∆2
ij

)

i,j=1,...,k−1

and N is the (k − 1)× 1 vector

N =
(

∆2
ik + φ2

k(y0)− φ2
i (y0)

)

i=1,...,k−1
.

The statistic W (y0) has a very nice geometric interpretation. It can be
interpreted (see Figure 10.1) as the (squared) orthogonal distance or height h
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of y0 on the hyperplane generated by the δ-mean of Ci (i = 1, ..., k), denoted
in Figure 10.1 by ai, i = 1, ..., k. Then, points which lie significantly far from
this hyperplane are held to be outliers. This intuitive idea is used to detect
outliers among existing classes.
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Figure 10.1: For k = 3, new observation {y0}, centres of classes {a1, a2, a3} and (squared)
projection ri of the edges {y0, ai} on the plane {a1, a2, a3}. The (squared) height h is
W (y0)

Suppose now that the data are classified in k classes. Let y0 be a new
observation and consider the test to decide whether y0 belongs to one of the
fixed classes Cj, j = 1, ..., k or, on the contrary, it is an outlier or an atypical
observation which belongs to a different and unknown class. Consider the
INCA test,

H0 : y0 comes from the class with

δ-mean
∑

i

αiE(Ψ(Yi)),
k

∑

i=1

αi = 1, i = 1, ..., k,

H1 : y0 comes from another unknown class,

and compute statistic (10.5). If W (y0) is significant it means that y0 comes
from a different and unknown class. Otherwise we allocate y0 to Ci using
the rule:

Allocate y0 to Ci if Ui(y0) = min
j=1,...,k

{Uj(y0)}, (10.6)

where Uj(y0) = φ2
j(y0)−W (y0), j = 1, ..., k.

It can be observed (Irigoien and Arenas, 2008) that Uj(y0) represents the
(squared) projection of {y0, E(Ψ(Yi))} on the hyper plane {E(Ψ(Y1)), . . . ,
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E(Ψ(Yk))}. See Figure 10.1, where for simplicity the (squared) projection
Uj(y0) is denoted by rj , j = 1, ..., k. Hence, criterion 10.6 follows the next
geometric and intuitive allocation rule: Allocate y0 to Ci if the projection
Ui(y0) is the smallest.

We obtained sampling distributions of W (y0) and Uj(y0) (j = 1, ..., k)
by re-sampling methods, in particular drawing bootstrap samples as follows.
Draw N units y with replacement from the union of C1, . . . , Ck and calculate
the corresponding W (y) and Uj(y) (j = 1, ..., k) values. As usual, this
process is repeated 10P times with P ≥ 1 selected by the user. In this way,
the bootstrap distributions under H0 are obtained.

10.3 Topological places

Within the behaviour-based approach, topological maps should be composed
of tightly coupled behaviours specific to the meaningful locations. The overall
“map” is then composed of sets of behaviours, each launched on a different
thread. Let us remember the definition of the topological places.

A topological map is formally defined as a set of nodes where each node
consists of:

1. A set of inputs (from landmark identification subsystems) and outputs.
These outputs should serve to reduce the distance between the current
state and the goal.

2. A signature that identifies the node: signaturei. Each locations has a
signature that reflects the state of a set of specific landmarks and that
is used by the robot for localisation purposes.

3. A function αi to be executed when the node i is active and that will
output the action to be performed at the node specific current state.
The behaviour of the robot as well as the associated function of the
nodes can be different depending on the location.

4. The location identifier that contains initial and final position of the
node:

(xi0, yi0), (xif , yif)

As mentioned earlier, the environment is only partially unknown to the
robot since it is provided with behaviour modules to properly identify certain
features such as corridors and straight walls.

The same geometric properties of the world used in the previous exper-
imental phases of the development of the architecture have been used and
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three types of places have been defined: corridors, crossings or junctions and
halls, each of them identifiable using distance sensors such as a laser scanner.
The orientations of the possible alternative ways at the junctions are regis-
tered according to the robot heading provided by the compass sensor and the
indexes of the laser scan that define the different intervals, the orientation of
the possible alternative ways at the junctions are registered.

The same action triggering landmark identification subsystems are used
for the exploration behaviour. Dead-ends are also identified for action exe-
cution purposes such as changing the orientation of the robot and starting
the mapping process. Again, laser readings are used to classify the robot
location as a dead-end.

The goal of the mapping process is to fill in the nodes with the informa-
tion that they must contain. More precisely, the contents of the signature
and the location identifier. For this aim, during the learning process and
depending on the state of the landmark identification subsystems, i.e. the
confidence level of the corridor/hall/junction (clcorr, clhall and clcross), the
following information is given to the INCA test:� Initial and mean heading values: θ0, θmean.� Initial and final pose obtained by the odometric subsystem. These

poses correspond to the position values of the robot when the node
signature activates/deactivates: (x0, y0), (xf , yf).� Length (previously named as duration) of the area calculated using the
initial and final pose information: d.� Number of alternative ways and their associated orientation: num ways
and θw1, · · · , θwnum ways.

These measurements will constitute the observations of the random vec-
tors Y considered in the INCA statistic, as represented in Equation 10.7.

Corridors, Halls:
Y = (sin(θ0), cos(θ0), sin(θmean), cos(θmean), (x0, y0), (xf , yf), d)

Junctions:
Y = (sin(θ0), cos(θ0), sin(θmean), cos(θmean), θw1 , · · · , θwnum ways, (x0, y0))

(10.7)

Note that there are two types of measurements: variables type coordinates
in meters and variables type orientation in degrees.
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The corridors/halls/crosses can differ in their orientation (mean compass
value that the robot maintains when going through them in its canonical
path). This is why each physical place will correspond to two or more differ-
ent nodes in the topological map.

10.4 Proposed approach

The locations the robot must identify are not only single points but areas
surrounding these points. Therefore, we propose firstly, a data generation
approach to characterise the areas; and secondly, the application of the INCA
test.

Let us assume that the robot has recorded the geometric information
(see section 10.3) of k different places C1, . . . , Ck, all of them of the same
type. There is only one yi measurement for each place Ci (i = 1, . . . , k).
However, the place we want to identify topologically is not just a spot but
an area or neighbourhood of the recorded measurement yi. In order to do
so we generate ni − 1 new observations for each place i which will make up
the observations corresponding to the place Ci. These new observations are
generated as yl

i = yi + U(−u, u), l = 2, . . . , n1, where U(−u, u) stands for
the uniform distribution with parameters −u and u (u > 0). Taking into
account that the robot records two kinds of variables, metres and degrees,
we consider two kinds of values for the parameter of the uniform distribution,
let us call them, uM and uDEG, respectively.

Once the data corresponding to the k classes –places– are generated, and
given y0, the information the robot has recorded when he arrives at a new
place, the INCA test can be applied and consequently it is possible to decide
whether or not y0 corresponds to a new place. In case it is decided y0 is not a
new place, the conclusion is that y0 is one of the places C1, . . . , Ck according
to rule (10.6).

10.5 Parameter selection

To evaluate the proposed approach, the Player/Stage robot environment
simulator was used (Gerkey et al., 2003) with a Pioneer 2-DX robot. First
of all, the three parameters mentioned in Section 10.4 had to be set up, that
is the number of observations ni generated for each class or place and the
values uM and uDEG of the two uniform distributions used to perform the
data generation. Taking into account the kind of environment to be explored,
we considered the following values as suitable for these parameters:
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That makes a total of 27 possible combinations; we performed 10 trials for
each one of them. In the following section the experimental conditions are
described, and the parameter evaluation performed is explained.

10.5.1 Data used

In order to set the value of each of the parameters, the data provided by
the robot in the Player/Stage simulator is used, with default odometry error
(Gaussian distribution with standard deviation per meter 0.03, 0.03 and 0.05
for X, Y and angle, respectively). The robot is able to distinguish among
corridors, halls and crossing locations, and writes the information of each
recognised place in three different databases. We let the robot wander in its
environment for a long time, and wait until each different place is encountered
at least once; after this data extraction, we have collected a set of 78 corridors,
61 halls and 73 crossovers.

We then perform the parameter selection using the corridor related data.
We know that 17 among the 78 corridors are different from the rest, so that
there are 61 cases in the database which belong to an already visited place.
It is common practise to measure the goodness of a test by the Type I error
probability and by the Power of the test. Type I error in hypothesis testing
consists on rejecting the null hypothesis when the data are consistent with
it. In the hypothesis we are testing it would mean to decide that a class is a
new class when it actually has been visited before. The probability of Type I
error is called the level of the test. But additionally, a test should be able to
reject the null hypothesis when it is false, and the corresponding probability
is what it is called the Power of the test. We decided to measure both the
Power and the Level of the INCA test for each possible combination of the
parameter values in order to select the appropriate set of values to be used
in the experimental phase. It is worth mentioning that we used the Pearson
distance to calculate the INCA statistic.

The power of the test

In this phase, we selected the first occurrence of each of the 17 different
corridors. Each one of them was tested with respect to the remaining 16
corridors. Therefore, in this leave-one-out procedure, each corridor has to
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be classified as a new –and unknown– one. This procedure was applied 10
times to each possible combination of parameter values (27× 10 = 270 total
trials).

Only in 7 trials out of the 270 trials carried out, a new and unknown
corridor was misclassified as “visited before”. Hence, 263 trials showed no
misclassified corridor and as for the remaining 7 trials, 4 of them showed
only 1 misclassified corridor (out of the 17 corridors tested in each trial), and
3 of them showed 2 misclassified corridors. Moreover and as expected, the
number of trials (nb.trials) with one or two misclassified corridors decreased
when the size ni increased (ni = 5, nb.trials = 4; ni = 10, nb.trials = 2;
ni = 20, nb.trials = 1). Also, it is worth pointing out that all the trials with
misclassified corridors corresponded to the value uM = 5.

The level of the test

In this section, and using the same 17 corridors of the previous phase, the
goal was to classify each of the remaining 61 corridors in their corresponding
class, i.e. no new class answer is expected, and the label of the existing class
returned by the classification approach should be the correct one for each
corridor already visited.

The evaluation of the level of the test for different values of the parame-
ters showed also satisfying results which varied according to parameter values.
Table 10.1 summarises the distribution of the number of misclassified corri-
dors according to the values of the parameters. Me stands for the median
and R for the range of the number of times an already visited corridor has
been misclassified as a new corridor out of the 61 corridors tested in each
trial. The number of misclassified units decreased as the size ni increased
and so did the dispersion, especially when increased from ni = 5 to ni = 10.
The worst results were obtained for uM = 1 along with uDEG = 10 and
uDEG = 20.

According to these results the selected parameter values have been ni =
10, uM = 2 and uDEG = 30. To clarify this selection, the distribution of the
number of misclassified units out of the 61 units tested is shown in Figure
10.2 for ni = 10 and different values of uM and uDEG; the selected values
obtain a Median equal to 0 with a Range equal to 2, which are the best
results among all the values. Note that uM = 5 is discarded as mentioned
in the evaluation of the power of the test. The same parameter values have
been used to deal with halls and crossovers.
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ni = 5 ni = 10 ni = 20
uDEG UM Me R Me R Me R
10 1 15 9 15 2 15.5 1

2 11 2 11 2 11 2
5 0 0 0 0 0 0

20 1 6 8 6.5 7 6.5 4
2 5 7 4 5 3 4
5 0 2 0 0 0 0

30 1 1 4 1.5 2 0.5 2
2 1.5 3 0 2 0.5 2
5 0 0 0 0 0 0

Table 10.1: Number of misclassified units out of 61 corridors tested in each trials, depend-
ing on the values of the parameters considered

10.6 Exploration behaviour

As stated earlier, the mapping process requires an exploration strategy to
guide the robot for the terrain inspection. The strategy used in this proposal,
the exploration behaviour is a coordination of the local navigation strategies
and landmark identification subsystems the robot is endowed with. The
proper combination of these behaviours, described in Section 9.5.1, and listed
bellow for sake of clarity, allow the safe exploration of the environment.� Two local navigation strategies that are combined in a cooperative

manner (weighted sum): balance the free space at both sides of the
robot and follow a desired compass orientation (θd).� Landmark identification subsystems that allow the robot to recognise
corridors, left/right walls, halls, junctions and dead-ends. These land-
marks are used to change robot’s desired orientation. To show an ex-
ample, Figure 10.3 shows the coordination of the modules for the case
where a dead-end is recognised.

Although the robot can be positioned at any starting location, initially
and until the robot reaches a dead-end the map remains empty. Hence, the
map construction starts after a dead-end has been identified. This gives the
correct measurement of the length of the locations (nodes). Afterwards, the
first corridor, the first crossing and the first hall are always identified as new
nodes since there is not any instance of the same type already stored in the
map.
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Figure 10.2: Distributions of the number of misclassified units (out of the 61 units tested)
for different values of uM and uDEG when ni = 10, along with the corresponding median
and range of the distribution

θd

θd

OBSTACLE_AVOID

COMPASS_FOLLOW

DEAD_ENDLaser

Compass_orientation

Laser

Σ ν,ω

Figure 10.3: Diagram of behaviours modules (v: translational velocity, w: angular veloc-
ity)
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Once the map building process starts, each time the robot identifies a
location – a corridor, a hall or a crossing – the geometric information of
the identified location is recorded (the Y vector, Equation 10.7), and then
the INCA test is applied to evaluate if they are locations already visited or
new ones. When the location corresponds to a crossing, i.e. a junction, the
orientations of the alternative ways the robot can choose are recorded. If the
location has been visited before, one of the non-explored paths is randomly
selected. In this way, the robot has the chance to cover all the environment.

The robot finishes the exploration process when all the alternatives of the
crossing nodes have been tried.

10.7 Simulated experiments

Experiments were carried out in the third floor of the Faculty of Computer
Science. This environment is a semi-structured office-like common environ-
ment, with regular geometry as can be seen in Figure 10.4.

Corridor

Hall

Crossing

Figure 10.4: Third floor of the Faculty of Computer Science. Approx. 60× 22 meters

The parameter selection obtained in the previous experimental phase was
applied to the more general problem of identifying the whole set of environ-
mental locations during an exploration phase performed in simulation. To
this purpose the Stage simulation tool was used together with the Player
robot server.

In order to have a wider view of the mapping process, we let the robot
move in the environment for a long time (more than 6500 seconds).

Figure 10.5 shows the robot’s path starting from the dead-end at the
bottom left corner.
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Figure 10.5: The map construction starts after a dead-end

Figure 10.6 shows the path drawn by the robot during the exploration
phase.

Figure 10.6: The path followed during the exploration

Figure 10.7 shows the complete path followed during the exploration of
the environment.

Related to the number of nodes, the map converged to 38 nodes: 17
corridors, 8 halls and 13 crosses (Figure 10.8).

Table 10.2 shows the number of nodes that have been traversed in the
path followed by the robot.

Corr Hall Cross

New
Expected 17 8 13
Found 100% 100% 100%

Known
Traversed 47 23 38
Classified 100% 100% 100%

Table 10.2: Experimental results
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Figure 10.7: The complete path resulting from the exploration process
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Figure 10.8: Evolving number of nodes

As it can be seen, all the nodes are correctly classified:� Each of the 17 existing corridors were properly labelled as new places
the first time the robot went along them; the same happened with the
new traversed halls and crossing nodes.� The nodes visited more than once by the robot in this long journey were
also properly classified with their corresponding label; a total number
of 47 corridors, 23 halls and 38 crossing nodes were visited in the robot
path.

Figure 10.9 shows the distribution of the locations (plotted according to
their central poses) and the evolution of the number of nodes over time.
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Figure 10.9: Location distribution over the map. Corridors: +; Halls: x; Crossings: *

In spite of the degree of symmetry of the environment, the spatial config-
uration of the obtained locations does not show the same degree of symmetry.
This is due to the fact that robot’s and humans’ perception differ from each
other, and since the robot navigates according to a desired compass heading,
depending on its orientation it makes the same physical place correspond to
several nodes in the topological representation.

10.8 Experiments in the real robot/environ-

ment system

The simulation experiments showed that the proposed approach can solve
the stated problem. To test the robustness of the approach experiments were
extended to the real robot-environment system. This time the robot Tartalo
described in Section 3.1 is used for the empirical evaluation of the mapping
system developed. But instead of relying on raw odometry information, two
odometry correction methods were tested to smooth the positioning error:� Laser stabilised odometry (by means of the LODO driver provided by

Player). Laser data is used to correct the raw odometry estimate that
once corrected exhibits a drift rate that is an order of magnitude less
than the rate observed using pure odometry (Howard, 2005).� Compass based odometry (CODO), where compass heading is used to
correct raw odometric poses.
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Experiments were performed in the third floor of the Faculty of Computer
Sciences. Figure 10.10(a) shows the path completed by the robot (according
to compass based odometry) and Figure 10.10(b) shows the evolution of the
number of nodes over time (s) for the different positioning methods. Clearly,
the compass odometry obtained with the proposed approach offers the most
precise position information.

On the other hand, Figure 10.11 shows the distribution of locations of the
different nodes obtained from the simulated experiments previously described
(Figure 10.11(a)) and the run performed by the robot (Figure 10.11(b)). As
mentioned in the previous section, the difference in perception explains the
fact that the number of nodes acquired by robot and humans differ from each
other.

And, as expected, the number of nodes is higher when the mapping is
performed by the robot because of its perception of the environment and its
positioning error. However, although the number of junction nodes identified
is higher in the real run, this is mainly due to the people and furniture
the robot comes across, which produce nodes that lead to any number of
alternative paths. However, after an exploration of about an hour and a
half (more than 500 meters), the robot was able to close the loop and to
recognise several times the final location as the starting one, thus confirming
the suitability of the proposed approach.

As mentioned earlier, the experiments performed in simulation cannot
be directly compared with the experiments with the real robot; the simu-
lated sensor readings produce nodes with different characteristics specially
when junction nodes are identified. Hence, the path produced by the explo-
ration strategy in simulation differs from the path executed by the real robot.
However, it is interesting to compare the evolution of the learning process
using exact odometry with the evolving number of nodes when the odometry
is corrected using the compass sensor. The map obtained simulating ideal
odometry converged to 38 nodes and the map obtained by the robot after
4500 seconds contained 48 nodes (see Figure 10.12).

10.9 INCA for localisation

During the previous experiments the learning process was not stopped once
the loop was closed. This methodological criterion was chosen to asses the
appropriateness of the approach, and as a result, there was a slow increase
in the number of nodes over time mainly due to odometry error. However,
in practical terms the map learning process can be stopped and then use the
learnt map for localisation purposes.
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Figure 10.10: Results

The experiments described in this section were carried out to measure
the usefulness of the acquired map for localisation. In this occasion, instead
of a non-stop learning process, a criterion was set so that the generation of
the map would stop once a certain number of nodes was included. Once the
procedure reaches this value, no more nodes are allowed to be created and
hence, classification rule 10.6 (Section 10.2.2) gives the closest node according
to the available data. In this manner, after the map is completed the robot
continues moving according to its exploration strategy while the mentioned
rule gives its localisation. It is worth to mention that classification rule 10.6
is equivalent to the distance based classifier introduced in (Cuadras, 1992).

Experiments were conducted both in simulation and in the real robot/en-
vironment system.
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Figure 10.11: Location distribution over the map. Corridors: +; Halls: x; Crossings: *

10.9.1 Simulated experiments

Once more the Stage simulator was used to simulated the robot and its
environment. The criterion to stop the learning process was established in 38
nodes, which was the number of nodes the map converged to when simulating
the mapping process with ideal odometry.

Two experiments were carried out in the simulator:� Ideal odometry (GPS). Figure 10.13 shows the journey together with
the spatial node configuration learnt whereas Figure 10.14 shows the
results of the mapping and localisation process, and thus the identified
set of nodes over time. The mapping process lasted about 1100 sec-
onds and the fact that no error occurred during the localisation phase
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Figure 10.12: Comparison with ideal odometry

(seconds 1100-12000) confirmed that INCA is a valid approach also for
localisation.

Once the map has been generated, the trajectory of the robot is ran-
domly decided at run-time. The resulting unpredictability means that
instead of following a static route, the robot will randomly select the
orientation at each junction. As a consequence, the robot does not
produce repeatable sequences of nodes in the path, but the probability
that it will revisit the whole set of nodes increases.

Table 10.3 shows several path patterns that can be identified from data
plotted in Figure 10.14, together with the associated node sequence, the
time interval and the label used in the plot to represent each pattern.� Laser corrected odometry (LODO). A new experiment was conducted
applying the default odometry error value defined in Player/Stage and
applying the LODO driver to correct the odometry. Figure 10.15 shows
the journey together with the spatial node configuration learnt whereas
Figure 10.16 shows the results of the mapping and localisation process,
and thus the identified set of nodes over time.

Table 10.4 shows the path patterns extracted from plot in Figure 10.16(a).
Again, their associated node sequence, the time interval and the label
used in the plot to represent each pattern is included.

The identified patterns concentrate in the first part of the plot (seconds
2000 to 12000). As times goes by the extracted paths are shorter due
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Figure 10.13: Stage (GPS): robot’s path and the obtained map
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Figure 10.15: Stage (LODO): robot’s path and the obtained map
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Robot’s path node sequence time stamp label

P1, B2, H3, P4, H5,
B6, P7, B8, P28, P29,
B30, H9, P10, H11,
B12, P31, B32, P33,
B34

2210 - 2620,
3174 - 3622

g0-g1

P1, B2, H3, P4, H5,
B6, P7, B8, H9, P10,
H11, B12, P31, B32,
P33, B34

6193 - 6661,
8791 - 9323

c0-c1

H3, P4, H5, B6, P35,
P36, B37, H22, P23,
H24, B25, P26, B27,
H16, P17, H18, B19,
P28, P29, B30, H9,
P10, H11, B12

6734 - 7447,
7675 - 8428

p0-p1

P35, P36, B37, H22,
P23, H24, B25, P26,
B27, P13, P14, B15

9529 - 9968,
11154 - 11798

o0-o1

P13, P14, B15, H16,
P17, H18, B19, P20,
B21, H22, P23, H24,
B25, P26, B27

4218 - 4690 b0-b1

Table 10.3: GPS: extracted path patterns

to localisation failures and the task becomes extremely difficult from
second 12000 and there on. Although an odometry correction method
is applied, the accumulating error severely affects the localisation of
the robot. The type of error remaining after the LODO correction
procedure produces a rotation on the robot’s trajectory (see for instance
Figure 10.15(a)) and thus, a misclassification of nodes with different
orientations assigned. This effect was detected in the sequences labelled
as c0 − c1 in Table 10.4. Chain P17, B34, P38 should have been P31,
B34, P38. Node P31 with assigned orientation SN was misclassified as
node P17 with assigned orientation WE.

Note that both procedures produced the same configuration of nodes,
17 corridors, 13 crosses and 8 halls, although their positional information
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Robot’s path node sequence time stamp label

P1, B2, H3, P4, H5,
B6, P7, B8, P28, P29,
B30, H9, P10, H11,
B12

2128-2391,
2955-3227

g0-g1

P1, B2, H3, P4, H5,
B6, P7, B8, P28, P29,
B30, H11, P10, H11,
B12, P17*, B34, P38

5767-6217,
6301-6916,
6981-7606

c0-c1

P35, P36, B37, H22,
P23, H24, B25, P26,
B27

3565-3781,
9130-9413,
11322-11627

m0-m1

P13, P14, B15, H16,
P17, H18, B19, P20,
B21, H22, P23, H24,
B25, P26, B27

3821-4169 b0-b1

Table 10.4: LODO: extracted path patterns (*: localisation error)

differed due to odometry values.

10.9.2 Experiments in the real robot/environment sys-
tem

A second set of experiments were carried out with the real robot. This time
the node threshold was established in 44.

Figure 10.17 shows the robot’s path and the obtained node distribu-
tion using laser corrected odometry values (LODO). Figure 10.18 shows the
robot’s path and the obtained node distribution using compass corrected
odometry values (CODO). And Figure 10.19 shows the mapping process,
and the localisation over time for both. LODO and CODO.

The results were disappointing but confirmed what the simulated experi-
ments showed for the LODO case. Although the robot localises properly for
about 2000 seconds, afterwards the localisation starts to degrade. It is not
possible to extract valid path patterns from the plots in Figure 10.19. Both
the LODO and CODO methods are insufficient for long term localisation.



10.9. INCA for localisation 185

−15

−10

−5

 0

 5

 10

 15

 20

 25

 30

−10  0  10  20  30  40  50  60

(a) Path corresponding to LODO

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35  40  45

Y

X

Node configuration (LODO)

P: corridors

P14

P21

P28

P35

P38

P4

P17

P24

P26

P42
P1

P7

P13

P20

P29

P36
P40

P41

P10

P32

H: halls

H3

H5

H16

H18

H27

H43
H9

H11

H23

H31

H33

B: junctions

B12

B19

B34

B2

B6
B8

B15

B22

B25

B30

B37

B39B44

(b) Obtained map

Figure 10.17: Tartalo (LODO): robot’s path and the obtained map
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Figure 10.18: Tartalo (CODO): robot’s path and the obtained map
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Figure 10.19: Tartalo(LODO and CODO): node identification over time
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Looking at the robot’s paths drawn in Figures 10.17(a) and 10.18(a), it
can be stated that:� When using the LODO correction method, the error accumulates more

slowly but the error occurs in x, y and θ coordinates. According to
LODO odometry, the path rotates over time. While the error is main-
tained within a certain range the rotation angle is small and the local-
isation process works correctly. Afterwards, and due to the high de-
pendency the approach has in nominal orientations the system starts
to fail and no correspondences are found.� When using the CODO correction method, only x and y values are
affected. θ value is obtained from an absolute reference value and
hence, the error is not accumulative. This produces a diagonal shift
on the drawn path over time. This shift led to the misclassification of
the lower corridors as if they were the upper ones. Oddly, the upper
corridors were always well identified.

An intuitive way of coping with this problem is to modify the positional
values of the nodes each time they are revisited. Instead of keeping the ac-
quired node information unaltered, during the localisation phase the contents
of the nodes can be updated when a positive match occurs.

A last experiment was performed with the robot using CODO to correct
the odometry to measure the effect of updating the contents of the node.
This choice was made because of the lack of accumulated error in orientation
values. Figure 10.20 shows the acquired map after reaching the maximum
number of nodes (established in 39). The different scales of these two maps
reflect the magnitude of the accumulated error in the x and y coordinates
over time. Figure 10.21 shows the evolution of the localisation system over
time.

Table 10.5 shows the path patterns extracted from plot in Figure 10.21.
Again, their associated node sequence, the time interval and the label used
in the plot to represent each pattern is included.

The localisation process last until the robot run out of batteries and
only one location was misclassified. As mentioned in Section 10.5, some
parameters need to be adjusted for INCA to function properly. The value
uM deeply influences the acceptable deviations from nodes’ (x, y) locations.
A small uM value produces failures on loop-closings because of the odometry
error. On the contrary, setting uM to a high value produces that close areas
with the same signatures remain indistinguishable. This effect was detected
once during the last localisation experiment carried out. Node H30 was
wrongly identified as node H32 and thus, the sequence H32, P31, H32 of
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Figure 10.20: Tartalo (CODO with adaptive node location): robot’s path and the obtained
map
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Robot’s path node sequence time stamp label

H23, P10, H11, B12,
P24, B25, P26, B25,
H3, P4, H5, B6, P27,
P28, B29

643-1048,
3092-3428

g0-g1

P34, P1, B2, H3, P4,
H5, B6, P7

2195-2430,
2804-3034

b0-b1

P7, B8, P20, P21, B22,
H23, P10, H11, B12,
P24, B25, P26, B25

2430-2737,
4150-4459

m0-m1

Table 10.5: CODO: extracted path patterns
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time stamp 1700 should have been H30, P31, H32. Notice that nodes H30
and H32 are separated by a short corridor labelled as P31.

10.10 Conclusions

In this chapter a new approach for incremental topological map construction
was presented. A statistical test called INCA was used to this end, combined
with a data sampling approach which decided if a topological node found by
the robot had already been visited by it. The method was integrated in
a behaviour-based control architecture and tested also for localisation pur-
poses.

To measure the adequateness of the approach the map acquisition was
performed non-stop until the robot run out of batteries. Afterwards, the
experiments were repeated but once the number of nodes in the map reached
a given threshold, the learning step was finished and the acquired map was
used for localisation purposes.

However, INCA also suffers from odometry error. Of the two error correc-
tion methods used in the present work, LODO and CODO, compass corrected
odometry was better suited for the developed navigation approach. A last
experiment was carried out using CODO and modifying the contents of the
acquired nodes each time a location was revisited. The type of error remain-
ing after CODO facilitated the upgrade of the nodes’ locations and improved
drastically the localisation process.

The experiments conducted confirmed INCA based mapping and localisa-
tion as a valid approach and that BB systems can be provided with automatic
map acquisition mechanisms.
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11.1 Conclusions

The contributions of the present research work can be categorised into two
main areas:

1. Development of a visual behaviour for door handle identification.

2. Development of a distributed probabilistic localisation method and a
typicality based mapping system for topological procedural maps.

11.1.1 Door identification behaviour

The area of mobile robotics needs general methods for several reasons. The
use of algorithms specifically designed to work in a concrete environment
made the comparison among methods as well as the application of the ap-
proaches in different robot/environment systems difficult.

Part III summarised several approaches aimed at identifying doors for
robot navigation purposes. Environmental specific methods, which showed
a good performance, were not easily applicable to other environments be-
cause they demanded the development of environment-specific segmenters.
By contrast, feature extraction methods, which were easily applicable since
they only required building a reference database containing the objects to
be identified, had a poor classification performance; and the computational
payload needed to process single images made them unsuitable for effective/-
efficient robot navigation.

A new two step algorithm was presented based on feature extraction that
aimed at tuning the extracted features to reduce the superfluous keypoints
to be compared at the same time that it increased its efficiency by improving
accuracy and reducing the computational time. Contrary to the segmen-
tation based method, the two-step feature extraction method can easily be
generalised to other types of handles or even more, to other type of objects
such as road signals as shown in the generalisation experiments described in
Sections 8.6 and 8.7.

The ROI extraction step improved handle identification procedure and
depending on the ROI size, the computational time to classify an image was
considerably reduced. The system showed a very low tendency to give false
positives while providing a robust identification.

The developed two-step feature extraction based algorithm outperforms
the performances obtained without extracting the ROIs, and experiments
carried out in a real robot-environment system showed the adequateness of
the approach.
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11.1.2 Distributed probabilistic localisation and typi-

cality based mapping

Part IV described the steps given towards a terrain inspection bioinspired
navigation system to overcome two of the main limitations of Galtxagorri’s
navigation architecture.

A preliminary approach has been proposed to merge the Markovian local-
isation in a distributed system. The proposed approach requires low storage
and computational resources and is, in the author’s opinion, more adequate
to be applied in dynamic environments. The odometric information included
in the nodes, i.e. the redefinition of the location identifier helps to accommo-
date a common action model used in probabilistic approaches and could be
easily acquired and managed within an exploration strategy as it has been
shown by the a posteriori mapping experiments.

On the one hand, the topological quality of the system makes it less
sensitive to odometry errors. On the other hand, its procedural nature allows
to maintain the basic functions of the robot at low cost allowing at the same
time the performance of higher level tasks.

The second contribution to terrain inspection level navigation involved
the development of an automatic mapping method for acquiring the pro-
cedural topological map. A new approach to incrementally construct the
topological map was presented setting out the problem as a typicality one.
A statistical test called INCA was used to this end, combined with a data
sampling approach which decides if a topological node found by the robot had
already been visited by it. The method was integrated in a behaviour-based
control architecture and tested in both simulated and real robot/environment
systems. Afterwards the same system was used for localisation purposes, and
the suitability of the approach was confirmed.

11.2 Further work

The developed work is amenable to improvements and further development.

11.2.1 Feature extraction based two step algorithm

Obviously, the proposed two-step algorithm is opened to any other feature
extraction method. But generally speaking, the following pending tasks are
identified:� The keypoint matching criteria has to be analysed more deeply. More
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sophisticated and efficient algorithms remain to be tested and the per-
formance of different distance measures still needs to be studied.� The extension of the proposed method to other applications such as
face recognition should be considered.� The development of new multiclassifiers for the identification of inter-
esting places and locations that would help the robot in its navigation
task.

11.2.2 Procedural based localisation and mapping

The steps given towards a complete behaviour-based navigation frame can
also be improved:� Although the action model applied in the distributed Markov locali-

sation approach showed to be adequate, different schemes should be
tested and compared.� Odometry correction methods can also be applied such as the compass-
based odometry correction or the laser stabilised odometry correction
tested during the automatic mapping experimental phase. Also, a
Kalman filter could be applied to each node’s position identifier vector
to cope with the positioning error.� During the development of the present work the author also researched
other probabilistic models such as Bayesian Networks. These models
could be used as probability maintenance systems for the set of nodes
of the localisation process. This problem is going to be considered in
the near future.� To improve the efficiency of the automatic map acquisition system,
when looking for correspondences the use of their associated probability
value should be studied.� The criteria for stopping the learning process, i.e. the maximum num-
ber of nodes should be revised. Given that it is not possible to know
a priori the number of nodes, the map should be closed when no more
alternative ways remain unvisited in the junction nodes.� Some aspects of the implementation of INCA should be improved and
more experiments should be conducted in a systematic manner in order
to better identify the advantages and drawbacks of the test.
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with the INCA based localisation system.

11.2.3 Merging the developed methods in a general
navigation framework

If the final goal is to attain a terrain inspection level BB navigation ar-
chitecture, then the developed methods should be integrated in a common
navigation framework. To that end, the following needs are identified:� New local navigation strategies and several landmark identification

modules need to be incorporated to increase the granularity of the
environment in order to reach more interesting goals than halls and
corridors, such as offices and laboratories. Adding more topological
nodes would allow the generalisation of the experiments to different en-
vironments, and the comparison with other approaches. The first step
should be to integrate the door identification and door crossing mod-
ules already developed, and to enrich the behaviour associated to sev-
eral nodes with door crossing abilities, and a wall following behaviour.
These two modules would help to cover the perimeter of small rooms
and improve the exploration strategy.� Handles could also be helpful for localisation purposes. This could be
managed in two ways:

– Add the door identification as a landmark identification subsys-
tem. The node signature could be enriched with the number of
door handles in the area limited by the node. Moreover, each han-
dle could have also its position identifier. This information could
also be provided to INCA in order to improve the mapping and
the a posteriori localisation system.

– Add the doors as topological places. This could help increase the
granularity of the map although it would be at the expense of
loosing the “qualitative” and procedural nature of the followed
approach.� Nothing has been said about planning. Up to now, the proposed mod-

ifications were tested using an exploration strategy. The overall map
should be used for commanding the robot to fulfil a concrete goal and
thus, to reach concrete locations. This process was included in Galtxa-

gorri’s original control architecture but it should be further tested and
improved to cope with higher resolution topological representations.
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11.3 Publications

The research work described produced some publications which are listed
below.� Contributions to robot navigation:

1. Environment representation by behavior decomposition
E. Jauregi, A. Astigarraga, E. Lazkano, B. Sierra, J. M. Mart́ınez-
Otzeta
WAF06: VII Workshop de agentes f́ısicos, I, ISBN: 85-689-8115-
X, 101-108 (2006).

2. Búsqueda del dispositivo adecuado para la identificación
de cruces en entornos indoor
E. Jauregi, E. Lazkano, B. Sierra, A. Astigarraga, J. M. Mart́ınez-
Otzeta and M. Ardaiz
Jornadas de Automática XXVII (2006).

3. Distributed Markov Localisation for Probabilistic Behaviour
Activation
E. Jauregi, E. Lazkano, B. Sierra, A. Astigarraga, J. M. Mart́ınez-
Otzeta and Y. Yurramendi
ICARA: 3rd International Conference on Autonomous Robots and
Agents, I, 297-301 (2006).

4. Behavior-based localization using probabilistic triggering
E. Jauregi, E. Lazkano, B. Sierra
TAROS: Towards Autonomous Robotic Systems, I, ISSN: 2041-
6407, 157-164 (2009).

5. Robot Mapping based on Typicality
E. Jauregi, I. Irigoien, B. Sierra, E. Lazkano and C. Arenas.
Intelligent Autonomous Systems (IAS11) (2010).

6. Loop-Closing: a Typicality Approach
E. Jauregi, I. Irigoien, B. Sierra, E. Lazkano, C. Arenas
Robotics and Autonomout Systems, 218-227 (2011).� Contributions to computer vision:

1. Adapting the point of view for behavior based navigation
M. Ardaiz, A. Astigarraga, E. Lazkano, B. Sierra, J. M. Mart́ınez-
Otzeta, E. Jauregi
Springer-Verlag, LNAI 4177, 69-78 (2006).
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2. Door Handle Identification: a Three-Stage approach
E. Jauregi, J. M. Mart́ınez-Otzeta, B. Sierra and E. Lazkano
IAV: 6th International Conference on Intelligent Autonomous Ve-
hicles (2006).

3. Handle identification by keypoint extraction
E. Jauregi, J. M. Mart́ınez-Otzeta, B. Sierra and E. Lazkano
CAEPIA-TTIA: Asociación Española para la Inteligencia Artifi-
cial, II 21-30 (2007).

4. Tartalo: the door knocker robot
E. Jauregi, J. M. Mart́ınez-Otzeta, B. Sierra and E. Lazkano
ROBIO: IEEE International Conference on Robotics and Biomimet-
ics, I, ISBN: 978-1-4-4244-1758-2 1114-1120 (2007).

5. Visual approaches for handle identification
E. Jauregi, E. Lazkano, J. M. Mart́ınez-Otzeta and B. Sierra
EUROS: European Robotics Symposium, I, ISSN: 1610-7438 313-
322 (2008).

6. Object recognition using region detection and feature ex-
traction
E. Jauregi, E. Lazkano and B. Sierra
TAROS: Towards Autonomous Robotic Systems, I, ISSN: 2041-
6407 104-111 (2009).

7. Approaches to door identification for robot navigation
E. Jauregi, E. Lazkano and B. Sierra
INTECH: Mobile Robots Navigation, ISBN: 978-953-7619-X-X
241-261 (2010).� Contributions to machine learning:

1. Genetically Searched Classifier Hierarchies for Surface
Identification
J. M. Mart́ınez-Otzeta, B. Sierra, E. Lazkano, E. Jauregi
European Conference in Artificial Intelligence: workshop on evo-
lutionary computation., 41-45 (2006).

2. On a unified framework for sampling with and without
replacement in decision tree ensembles
J. M. Mart́ınez-Otzeta, B. Sierra, E. Lazkano, E. Jauregi
Springer-Verlag: Lecture Notes in Artificial Intelligence., LNAI-
4183, 118-127 (2006).

3. Naive+Naive=Smart Bayes?
J. M. Mart́ınez-Otzeta, B. Sierra, E. Lazkano, E. Jauregi and Y.
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Yurramendi
ICARA: 3rd International Conference on Autonomous Robots and
Agents., I, 291-295 (2006).

4. Analyzing classifier hierarchy multiclassifier learning
J. M. Mart́ınez-Otzeta, B. Sierra, E. Lazkano, E. Jauregi and Y.
Yurramendi
CIARP: 13th Iberoamerican Congress on Pattern Recognition, LNCS
5197, 775-782 (2008).

5. Histogram Distance Based Bayesian Network Structure
Learning: a Supervised Classification Specific Approach
B. Sierra, E. Lazkano, E. Jauregi, and I. Irigoien
Journal of Decision Support Systems, 48, 180-190 (2009).

6. K Nearest Neighbor Equality: giving equal chance to all
existing classes
B. Sierra, E. Lazkano, E. Jauregi, and Y. Yurramendi
Journal of Information Science (Accepted)
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Matarić, M. J. (2009). The Robotics Primer. MIT Press.

Mayr, O. (1975). The origins of feedback control. MIT Press.

McDonald, L. L., Lowe, V. W., Smidt, R. K., and Meister, K. A. (1976). A
preliminary test for discriminant analysis based on small samples. Biomet-
rics, 32:417–422.

Meyer, J.-A. (1997). From natural to artificial life: biomimetic mechanisms
in animat design. Robotics and Autonomous Systems, 22:3–21.

Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local
descriptors. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27(10):1615–1630.

Minguez, J. and Montano, L. (2004). Nearness diagram (ND) navigation:
collision avoidance in troublesome scenarios. IEEE transactions in Robotics
and Automation, 1(20):45 – 59.
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of doors using a genetic visual fuzzy system for mobile robots. Technical
report, University of Granada.

Murthy, S. K., Kasif, S., and Salzberg, S. (1994). A system for induction of
oblique decision trees. Journal of Artificial Intelligence Research, 2:1–33.
ftp://blaze.cs.jhu.edu/pub/oc1.

Nehmzow, U. (1999). Mobile robotics: a practical introduction. Springer.

Nehmzow, U. and McGonigle, B. (1993). Robot navigation by light.

Nehmzow, U. and Owen, C. (2000). Experiments with manchester’s fourty
two in unmodified large environments. Robotics and Autonomous Systems,
33:223–242.

Nourbakhsh, I. (1998). Dervish: an office-navigating robot. In Kortenkamp,
D., Bonassi, R. P., and Murphy, R., editors, Artificial Intelligence and
Mobile Robots. Case Studies of Succesful Robot Systems, pages 73–90. The
AAAI Press. MIT Press.

Olson, E. (2009). Recognizing places using spectrally clustered local matches.
Robotics and Autonomous System, 57:1157–1172.

Owen, C. and Nehmzow, U. (1998). Landmark-based navigation for a mobile
robot. In Simulation of Adaptive Behavior.

Paz, L. M., Tardós, J. D., and Neira, J. (2008). Divide and conquer: EKF
SLAM in O(n). IEEE Transactions on Robotics, 24(5).

Pfeifer, R. and Bongard, J. (2006). How the body shapes the way we think.
A new view of intelligence. MIT Press.

Primdahl, K., Katz, I., Feinstein, O., Mok, Y., Dahlkamp, H., Stavens, D.,
Montemerlo, M., and Thrun, S. (2005). Change detection from multiple
camera images extended to non-stationary cameras. In Proceedings of Field
and Service Robotics, Port Douglas, Australia.

Rao, C. R. (1962). Use of discriminant and allied functions in multivariate
analysis. Sankhya-Serie A, 24:149–154.

Rao, C. R. (1982). Diversity: its measurement, decomposition, apportion-
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