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Abstract

Smart and mobile environments require seamless connections. However, due to the fre-
quent process of ”discovery” and disconnection of mobile devices while data interchange
is happening, wireless connections are often interrupted. To minimize this drawback, a
protocol that enables an easy and fast synchronization is crucial. Bearing this in mind,
Bluetooth technology appears to be a suitable solution to carry on such connections due
to the discovery and pairing capabilities it provides. Nonetheless, the time and energy
spent when several devices are being discovered and used at the same time still needs to
be managed properly. It is essential that this process of discovery takes as little time and
energy as possible. In addition to this, it is believed that the performance of the commu-
nications is not constant when the transmission speeds and throughput increase, but this
has not been proved formally. Therefore, the purpose of this project is twofold: Firstly, to
design and build a framework-system capable of performing controlled Bluetooth device
discovery, pairing and communications. Secondly, to analyze and test the scalability and
performance of the classic Bluetooth standard under different scenarios and with various
sensors and devices using the framework developed. To achieve the first goal, a generic
Bluetooth platform will be used to control the test conditions and to form a ubiquitous
wireless system connected to an Android Smartphone. For the latter goal, various stress-
tests will be carried on to measure the consumption rate of battery life as well as the
quality of the communications between the devices involved.

Keywords: Bluetooth, performance, device discovery, sensors, Android, battery, Ar-
duino.
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1. CHAPTER

Project Charter

1.1 Introduction
This document is a memory for the Degree’s Final Project on Software Engineering in

the Faculty of Informatics of the University of the Basque Country, by Xabier Gardeaza-
bal. In this document all the whereabouts concerning this particular project are thoroughly
explained. A detailed structure of this memory is explained later in this chapter (see sec-
tion 1.4).

1.2 Motivation
The idea of this work resulted from the work done with Borja Gamecho for his PhD

Thesis under a collaboration grant from the Basque Government with the Egokituz labora-
tory. His thesis involved the use of some wireless sensors and devices in conjunction with
several protocols—mainly Bluetooth—to implement a context-aware ubiquitous system.

During the development of that collaboration we discovered that the resources needed
to perform Bluetooth communications exceeded what was expected, not only by means
of time and synchronization, but also by battery life consumption and network saturation.
We found that there was a lack of a general research in this kind of environment, and as
a consequence, we concluded that such a topic could be very interesting for a Degree’s
Final Project.

In addition to that, there was an interest to know which was the best combination of
parameters like the message size and transmission rate to achieve the largest throughput

1



2 Project Charter

while keeping the response times (ping) and error rates (data losses) at a minimum. Fur-
thermore, the fact that context-aware systems are usually composed by multiple devices
makes the performance decrease, and there is not a formal mechanism or tool to measure
this properly.

1.3 Proposed solution

In this project a testbed1 to measure the performance of Bluetooth based Personal Area
Networks with Android under different variables and configurations is presented. The
system developed focuses on the performance of an Android smartphone as the central
role in a Bluetooth network formed by a set of custom Arduino-sensors, and provides
metrics for battery drain, CPU usage and communications quality. This last one is given by
the response times and communications’ throughput of the wirelessly (through Bluetooth)
connected devices.

The developed system provides multiple configurations, such as the number of Blue-
tooth discoveries that the smartphone should do, when should the discovered devices be
connected and how, or the availability of the devices themselves. A mechanism for stress-
ing the Bluetooth communications to their limit by sending different loads of data from
the devices to the smartphone is also provided.

1.3.1 Contributions

With this new testbed the possibility of setting a formal benchmark for Bluetooth based
systems centered on Android becomes available. From the set of tests carried out with this
very same testbed, some suitable configurations for a Bluetooth based Android-system are
presented.

1.4 Structure of the memory
Project Charter This first chapter has briefly presented the original problem or motiva-

tion of the project and the proposed solution.
Project management Plan Outlines the management of the project, the way the it will

be structured and how it will be implemented. The project vision, objectives, scope
and deliverables, as well as the stakeholders, their roles and responsibilities are also
described.

1A testbed is a piece of equipment that allows for rigorous, transparent, and replicable testing of scien-
tific theories, computational tools, and new technologies.



1.4 Structure of the memory 3

State of the art In this chapter the current state of the art at the beginning of the project
is explained. The possible technologies around, as well as previous studies on the
same research field are reviewed as well.

Architecture and technological choice This chapter gives a very general picture of the
system developed in the project, and it also explains the intricacies of the technolo-
gies chosen.

Requirements capture Here the requirements for the system that has been developed
are gathered. The use cases are also briefly explained.

Analysis With the requirements at hand, an analysis about the software part of the system
is made.

Design This chapter deeply describes the whole framework developed in this project. The
interaction between software and hardware components of the system is explained
as well.

Implementation Describes the different processes of the system—particularly of the An-
droid application—in a technical level. It also gathers general information such as
the organization of the project’s files relevant for whoever wants to make changes
to the different parts of the system.

Testing A brief overview on the tests done in order to identify bugs and potential prob-
lems in the system.

Testbed and benchmarking This chapter explains the different benchmarking tests done
with the already developed framework. It also makes a discussion regarding the re-
sults obtained.

Monitoring and control This chapter briefly reviews the work done during the project,
comparing the initial plan and expectations with the final outcome.

Conclusions and future work Gathers the conclusions of the project as a whole, as well
as the future work that can be done.





2. CHAPTER

Project Management Plan

This chapter focuses entirely on the scope planing of the project and the definition of
how the monitoring and control will be done. Part of the planing are the identification of
the phases of the project, the scheduling plan, and resource, quality, communications and
risks plans. These are the topics covered in this chapter:

• Project vision and objectives
• Scope of the project
• Critical deliverables
• Organizational structure for the project
• Overall implementation schedule
• Risks, issues and assumptions
• Stakeholders and groups of interest

2.1 Project vision and objectives

In order to get started, some achievable objectives were proposed from the beginning.
These were further developed and defined with time. Below are listed some of the major
goals of the project:

• Main objectives:

– Develop a full testing framework or testbed:

* An Android App to perform device-discoveries, pairing and communi-

5
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cations with several Bluetooth sensors while it measures its own perfor-
mance.

* A sensor network to perform the tests with.

* A tool for the analysis of data logs.

– Obtain relevant results from the tests:

* Measure the feasibility of Bluetooth powered PANs1.

* Find an efficient mechanism to improve the inherent Bluetooth device
discovery algorithm of the Android OS.

* Measure the rate of communication’s interruptions in multiple Bluetooth
device environments.

* Determine the optimal configuration to achieve the best performance of
the communications in a ubiquitous environment with multiple Bluetooth
sensors.

• Additional objectives:

– Script or program to automatically send commands to the Bluetooth sensors
(Arduino boards2) from a PC through a serial connection.

– Acquire transversal skills:

* Gain a deep understanding of the Bluetooth technology.

* Boost autonomous working ability.

* Develop English writing and speech skills.

* Learn to proficiently use tools or editors like LATEX, Eclipse & ADT3,
Arduino IDE4, etc.

* Acquire general electronics knowledge.

• Optional objectives:

– Study the difference between classic Bluetooth and Bluetooth Smart.
– Write a research paper with the discoveries and conclusions of this work.

2.2 Scope
It should be made clear that the conclusions or product that come out of this project

need not be innovators or make any contribution to the state of the art on any scientific or
1A personal area network (PAN) is a short-range computer network used for data transmission among

devices such as computers, telephones and personal digital assistants.
2See section 4.2.3 for information about the Arduino Boards.
3Android Development Tools
4Integrated Development Environment
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research field. Since it is a Bachelor Thesis, it will be assessed as such.

In a nutshell, the main goal is to find and measure an efficient mechanism or config-
uration to deal with Bluetooth discovery, connection setup and data transfers in an envi-
ronment where many devices are present at the same time. Therefore, the scope should be
defined around that same goal. In the following subsections the requirements, boundaries
and working methodology are explained.

2.2.1 Requirements

It is expected that this project follows the guidelines defined by the Faculty of Infor-
matics of San Sebastian for end of degree projects. Some formal requirements are listed
below:

• The project must be defended and assessed once every other subject of the current
Study Programme is finished

• The project means 12 ECTS credits, or a minimum of 300 hours
• The director(s) of the project must be professors at the Faculty of Informatics
• The subject of the project must be developed under the specialization chosen for

the Study Programme—Software Engineering in this case.

Except for the invested hours, which will not be known until the project is finished, all
the other requirements are already fulfilled.

2.2.2 Boundaries

The management part should never pose a hindrance to develop the project. Therefore,
micromanagement and unnecessary bureaucracy are best avoided. Only relevant informa-
tion should be gathered in the report—that is, everything that takes place within the scope
of the project.

On a different mater, since limited resources are available, the research will not focus
on the effect of using different Bluetooth versions, nor on factors causing uncertainties
or interferences and the like. At least not unless the estimated time for all the other tasks
falls so short that the minimum of 300 hours required is not reached.

Bearing this in mind, the total amount of hours invested in this project should be some-
where around 400 hours, although this is just an early estimation.
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2.2.3 Methodology

What am I going to do, and how? As aforementioned, one goal of this project is to
perform some tests to find out how Bluetooth devices respond in different conditions.
These conditions are bound to many variables, some of which are listed below:

• Hardware variables

– Smart-phone or mobile responsible for discovery and pairing purposes (Nexus
S, Galaxy Nexus, Nexus 5. . . )

– Battery charge state
– Device synchronization (will the devices be powered on simultaneously, or

one by one?)

• Signal features

– Framing size
– Radio interferences
– Data reception frequency
– Serial communications Baud rates5

• Other variables

– Distance between devices (variable or controlled setting)
– Background processes running in each device
– How and when are the devices be powered on and off? Manually or program-

matically?

All these variables make for a changing environment formed by both a hardware and
software framework. However, due to the limited technical resources, not all variables
can be measured—and even if still being able to measure, it may not be in a very effective
way. Such is the case of the radio interferences, for example. A developed explanation on
these variables is done in the requirements capture (chapter 5).

Hardware infrastructure

To properly implement this project, a fully functioning Bluetooth sensor network is re-
quired. While working with Borja Gamecho, sensors for temperature, humidity, heart-rate
monitoring, luminosity and the like were used. In addition to this, some other sensors were
simulated after processing those same devices’ data. However, all these sensors cannot not

5The baud rate is the rate at which information is transferred in a communication channel, measured in
bits per second.
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be easily toggled, since they belong to proprietary sources. Therefore, a new handful of
devices should be acquired, although there is no commercial product that satisfies the spe-
cific requirements of this project. Fortunately enough, there are some Arduino boards and
Bluetooth antennas at hand, so a couple of custom made sensors can be built. There are
also three Android smart-phones at hand at the moment, each with a different API or OS
version.

Among the different versions of the Bluetooth standard, the one that is going to be used
in this work is the V2.0+EDR, since that is the version of the antennas used on a par with
the Arduino boards. These antennas come from the DF-Robot company—a robotics and
open source hardware provider—, and have flawlessly worked so far. The technologies
used are properly presented and explained in chapter 4 of the State of the Art chapter.

Software used

Of course, being this a Software Engineering project, many programming and software
development applications are going to be used. The working environment is centered on
a Microsoft Windows XP desktop personal computer provided by the Egokituz laboratory.
Thus, all the software must be compatible with this OS. These are the foreseen applica-
tions to be used for the execution process:

• Eclipse SDK with Android Development Tools, in order to implement the app for
controlling the system with a smartphone.

• Arduino IDE, to program, compile and configure the simulated sensors’ code.
• Real Term, for capturing, controlling and debugging Bluetooth data streams in Win-

dows OS (Note: this tool will only be used during the performance tests, and op-
tionally).

• Anaconda, a Python distribution for data plotting and scripting purposes.
• Fritzing, open source tool to design electronic systems’ wiring schemes.

In addition to this, tools related to the other processes of the project will also be used.
LATEXwas chosen to write the project’s report or memory, so apart from the TEX engine,
a visual environment like TeXstudio is being used. For the planning process, Microsoft

Project was considered, but knowing how big of a program it is and the lack of experi-
ence with it, simpler but equally useful alternatives such as Gantt Project and Microsoft

Office Excel are going to be used. Additionally, software for diagram development such
as Draw.io, Dia and Microsoft Visio will also be used to generate some graphic pictures
and diagrams. The slides for the defense will be done with MS Power Point.
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2.3 Project deliverables
The main project deliverable is the project’s memory itself. This document should

follow the standard guidelines of a memory in an end of degree’s project on Software
Engineering, in a proper and formal format, and which thoroughly gathers the work done.
On a side note, a public defense of the project has to be made as well, although the material
used for and during the presentation needs not be delivered.

The Bachelor Thesis is a work protected by the Intellectual Property Law, so the own-
ership belongs to the creator (unless the student says otherwise). Hence, all deliverables
fall under this protection. However, I believe that any academic research and study should
be freely available for anyone, and have therefore chosen to release the source code of the
developed system as an open-source software under the Apache v2.0 license. See section
8.1 for more details.

As of the current official regulation for the Bachelor Thesis at the Faculty of Informat-
ics of San Sebastian, the project’s memory should comply with these terms:

ARTICULO 8: PRESENTACION Y DEFENSA DEL PROYECTO
8.1. El alumno o la alumna estando matriculado deberá presentar en la

Secretaría del centro el formulario y la memoria del proyecto por medio dig-
ital, y en papel si fuera necesario.

El formato de la memoria deberá seguir el estándar de la Facultad. Desde
secretaría se deberá hacer llegar una copia electrónica a cada uno de los
miembros que constituyan el Tribunal de Evaluación además del informe del
director que habrá sido requerido. Si fuera necesario material adicional (pro-
gramas etc.) este se añadirá a la memoria o se pondrá accesible en la red. Si
fuera necesario otro tipo de material este se entregará en secretaría.

8.2. La defensa del PFG será pública y realizada por la estudiante o el
estudiante en el lugar de la facultad y en la fecha y hora en la que se le haya
convocado. Estos detalles se habrán publicado con un mínimo de tres días de
antelación.

Apart from the physical deliverables, a defense in the form of a presentation should
also be made. As of the current official regulation, the defense of the project should com-
ply with these terms:

ARTICULO 8: PRESENTACION Y DEFENSA DEL PROYECTO
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8.3. La defensa se podrá hacer en euskera, castellano o inglés, según lo
previsto al inscribir el proyecto.

8.4. Cada estudiante dispondrá de un tiempo máximo de media hora para
la defensa, en la que deberá exponer los objetivos, la metodología, el con-
tenido y las conclusiones de su proyecto, contestando con posterioridad a las
preguntas, aclaraciones, comentarios y sugerencias que pudieran plantearle
los miembros del Tribunal.

The project’s memory must be uploaded to the ADDI platform of the University of
the Basque Country by the 5th of September, or presented in the faculty’s registrar by the
same date. Beforehand, however, an final version of the memory should be sent to the
director of the project so he can revise the document and give it approval.

2.4 Implementation plan

With the objectives at hand, a work breakdown structure has been defined—WBS from
here now on—, where high level processes of the project are split up into smaller, more
precise subtasks. This scheme will later ease the planning process and organization of the
working plan. Alongside this WBS, a plan has been conceived, where a rough estimation
of time and work required to accomplish the main processes of the WBS is captured. In
the following sub-sections the WBS and its main processes are explained, and then the
plan is presented.

2.4.1 Work Breakdown Structure

Following, the main tasks that take place during the whole life of the project are identi-
fied and organized in groups. Managing the project, researching, defining and developing
the system, and closing the project are the main five key types of work that have been dis-
tinguished. These constitute the high-level tasks of the project, but they all contain their
own sub-tasks as well.

Manage

The management of the project encloses the planning, control and monitoring sub-
tasks. The planning by itself is not only formed by doing estimations on the schedule, the
resources needed or the quality expected. It is also formed by the risk management plan,
where preventive measures and a contingency procedure are defined.
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Research

In order to better understand the context in which the project is going to be developed,
a proper research on the state of the art needs to be done. Papers, articles or formal studies
in any other format on the subject matter would establish a good grounding. On the other
hand, there is also the need to research the technologies that are going to be used during
the development phase of the project. This task is classified as personal formation or
training.

Architecture

Any project worth its work undergoes an analysis and design process. In this case,
these two tasks are both under the architecture phase. During the analysis, components
needed to meet the project’s goals are identified. Later, the internal structure of each com-
ponent would properly be defined by using standard, high-abstraction methods, such as
UML diagrams.

Develop

It is during this phase that the real work begins, but prior to delving into programming
the work environment must be set up. After installing the required software and getting
the needed tools (e.g. USB wires and hubs, Bluetooth dongles, multimeters, etc.), pro-
gramming would follow. In addition to this, the smartphones, Arduinos and DF-Bluetooth
antennas need to be acquired. At least three different programs are going to be developed
by using three types of languages: the main application in Android, the Arduino programs
in C, and the plotting scripts in Python. After the whole system is finished and bug-tested,
the performance tests and benchmarking would be made, from which the final conclusions
of this study will be taken.

2.4.2 Close

Near to the end of the project, tasks related to writing the memory or preparing the
defense will take precedence. An insight into the work done, the problems faced and
the solutions found will be made, and the experience gained that could be valuable in
the future will be somehow gathered as well. Additionally, an internal report containing
anything needed for other researchers willing to continue with new lines that part from
this project will also be made.
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Finally, all the resources borrowed from the Egokituz laboratory should be returned in
their original state.

In figure 2.1 the WBS for the project is depicted, while in table 2.1 the high- and
middle-level tasks are summarized.

Code Name Description
1 Manage
1.1 Plan Define a schedule and a risk management plan.
1.2 Control Perform periodic checks for quality, risks and

changes.
1.3 Monitoring Meet periodically with the stakeholders and update

planning and requirements if necessary.
2 Research
2.1 State of the Art Study previous papers on the topic, similar studies

and overall context of the project.
2.2 Training Learn about Bluetooth, basic electronics, Android,

Arduino and Python (among others).
3 Architecture
3.1 Analyze Find out what system components are needed to

meet the requirements.
3.2 Design Define the system’s components and communica-

tions between each other.
4 Develop
4.1 Setup work environment Arrangements before actual development can start.
4.2 Build Arduino boards Setup the DF-Bluetooth antennas and wire them to

the Arduino boards.
4.3 Program Code the Android App, the Arduinos, and Python

scripts.
4.4 Test performance Collect data while performing the different tests

and study the results.
5 Close
5.1 Write memory Thoroughly document and describe all the work

done, plus conclusions.
5.2 Internal report Formal closure of the project.
5.3 Defense Prepare and train for the project’s defence before

the court.

Table 2.1: High and middle level tasks of the Work Breakdown Structure.
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2.4.3 Management and scheduling

The final deadline to present this project’s documentation is September the 5th. By that
time, the project as a whole must be finished, and then in a two week’s time the defense
would take place. The project by itself consists of 12 ECTS credits—or 300 work hours,
at least—, so there’s room for error in the planning.

Taking the previous paragraph into account, the idea is to complete the project in 400
hours, spanned along 5 months. However, it should be taken into account that the learning
and formation process of the involved technologies has been in progress for a couple of
months now, so that task would not take much more workload.

A deeper planning and schedule is presented in the next chapter.

2.4.4 Risk Management Plan

The risks this project is exposed to are similar to any other Information Technology
related project. Unexpected bugs in the software being used, version incompatibility, etc.
are just the top of the iceberg. Updates that come from the management process of the
project could inadvertently cause modifications to the requirements, objectives or scope
of the project, risking the fulfillment of deadlines and enlarging the foreseen costs.

On the other hand, since this project requires the use of several fragile electronic hard-
ware devices, should one or more of these show misbehavior or even breakage, the whole
project could be unsettled.

Finally, since most of the work done is digitally stored, the many ways in which that
information could be lost must be taken as a potential threat.

In order to keep the work done safe, software like Dropbox and Google Drive (or any
other cloud storage service) that make automatic copies of files and store them on the

cloud will be used. In addition to this, the use of Git6 and GitHub7 will bring yet another
security layer, as well as provide help in the organization and version control process of
the code. Nevertheless, weekly backups of all the project’s digital assets will be manually
done as well.

As for the hardware goes, there’s no thing to do other than carefully and thoroughly
manipulate the different devices. Training, formation and proper habits could help to min-
imize accidents or slip-ups.

6Git is a free and open-source distributed revision control and source code management system
7GitHub is a Git repository web-based hosting service
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Taking these initial risks and countermeasures into account, a proper risk management
plan was developed (see section 2.7.2).

2.5 Phases of the project

For the development of this project, a lineal form Life Cycle will be followed. There
will be a total of four main phases:

• Initiation
• Planning
• Execution
• Closure

The total level of effort dedicated to each phase will vary as the project advances in
time, and they may overlap between one another.

Initiation

At the beginning of the initiation phase, the project’s main idea was conceived, and the
process that gave birth to all this work started. The members of the interest group decided
the whereabouts of the project, discussed the feasibility of the purposes, and a general
draft was written. Later on, a more elaborated project charter was developed, where the
limits within which the project must be delivered were defined. The vision, objectives,
scope and implementation of the project were set out, thereby giving the stakeholders
clear boundaries where the project would be developed and delivered.

Planning

During the planning phase, issues such as the identification of all the phases, activities
and tasks, summing up of the effort needed to complete those tasks, or documenting all
of the work’s inter-dependencies are covered. Some assumptions will be made for the
schedule and risks.

Execution

Once the project’s concept is formally defined and an scheduled plan is made, it’s
time for the execution. This phase encompasses the work that should be done in order to
accomplish the goals defined at the beginning. It is during this phase that physical testbed
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will be produced, which may as well be called the main asset or product of the project.
Prior to producing anything, though, a self formation or training around the state of the
art needs to take place. Control and monitoring tasks will go along with the execution at
all times.

As previously stated in the Project Charter, so as to counterbalance the divergence
between the work done and the initial plan, an iteration based implementation will be
followed. Taking ideas from existing iterative and incremental development methods, I
devised one of my own. Knowing that my working days could be long, I decided that
daily iterations would keep me most motivated, since in this way I would not focus for
very long hours on the same task. Even in the case of getting stuck or frustrated with some
issue, by following the daily iteration I could leave it to wind down and tackle it with a
new perspective the next day. Figure 2.2 depicts the iteration for each day.

Beginning with the definition of what should be done within the day, the agenda for the
following hours should be organized. If necessary, a portion of the work will directly go
training and learning. Otherwise, the execution process would start. Part of the execution
are the development and testing of the system, meetings and any other thing that has
directly something to do with the product of the project. Near the end of the day, it’ll
be time to document the progress done, and any updates on past work will be made if
necessary. As the day’s output, things left undone and possible TO-DOs for tomorrow
should be written.

Closure

At this final stage of the project’s life cycle, the final report (this document) will be
delivered. Arrangements should be done for other people who would like to continue
with the project.

2.6 Project implementation plan
In the following section an overall estimation of work time and effort required to fulfill

this project is made. Then, a scheduling is proposed, where the different tasks defined in
the WBS (figure 2.1) take a place and length in time.

2.6.1 Schedule

The estimations done for the working time in each main task are based on past experi-
ence working on related topics and projects. Nevertheless, they may not be as accurate as



18 Project Management Plan

Figure 2.2: Daily iteration cycle.

desired, and it would be only natural for deviations to happen during the development of
the project, since I have not ever taken part in a project of this caliber.

In figure 2.3 the calculated load of each high-level task is captured, while in the figure
2.4 a more detailed load-balance with time estimations and spans (expected starting and
ending dates) for each task is shown. As it can bee seen, a total of 434 hours have been
estimated from March to September.

In order to gather as most information about the work done, and as accurate as possible,
an Excel sheet has been designed, where a tracking of every worked hour will be captured.
From all that information, some graphics are later generated. These offer a fast overview
of the work done, visually representing the tasks’ fulfillment level, and enabling a fast
mechanism to spot inconsistencies.

NOTE: A review over the final number of hours worked in comparison to the estima-
tions can be found in chapter 11.

2.6.2 GANTT diagram

In figure 2.5 the Gantt diagram for the project is depicted.
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Figure 2.3: Load percentage of high-level tasks.

2.7 Quality plan

So as to guarantee that a minimum level of quality is ensured, a checklist containing
different features of the system has been created (see appendix A). In the control and mon-
itoring process during the project, this list will be progressively completed. In addition to
this, both a risk management and a contingency plan are also defined.

2.7.1 Key Performance Indicators

To measure the level of fulfillment of the goals on a par with the quality of the work
done, some key performance indicators have been defined. These can also be used as a
mechanism to measure the success level of the project.

Quantifiable indicators:

• Schedule keep-up: the desired result for the project is to finish it within the foreseen
schedule, meeting all the deadlines.

• Hours worked: the target number of total hours invested on the project is estimated
on the project’s plan, but a deviation of up to a 10% will be accepted as valid.

• Lines of code: even if it has nothing to do with the final quality of the developed
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system, the increasing number of lines from week to week can be a good indicator
that work is being done.

• Efficiency of the framework: the application developed must not have any freeze-up
or halt that could taint the tests’ readings with unwanted lags.

Qualitative indicators:

• Clearness of the code: the applications developed should be written as clearly as
possible, being properly commented and using common sense variable names and
structures.

• Satisfaction with the results obtained: clear conclusions should be able to be taken
from the final outcome of the tests.

• Usefulness of the research: no initial questions raised at the beginning of the project
remain unanswered.

• Experience gained: whatever the outcome of the project is, the experience gained
in all the different areas touched should be positively valued.

Leading indicators:

• Director’s approval: the project cannot be taken as finished until the director ap-
proves it. At the same time, the director’s positive opinion should be taken as indi-
cator of success.

• Peer feedback: the personal opinion of peers and friends could be indicator of fail-
ure or success. It should be borne in mind that those opinions could be biased.

Lagging indicators:

• Final project mark: the grade obtained after presenting and defending the project
will be a definite post hoc indicator of success (or failure). The target mark is 10
out of 10.

• Impact of the study in the scientific field: should somebody carry on with new lines
of this project, or who knows, end someday contributing in its research field, it
could be interpreted as the height of success.

2.7.2 Risk management plan

Even if the size and requirements of this project are rather small, it suffers from threats
as any other project. Thus, a risk management plan is required so as to minimize the
impact of otherwise unexpected issues that could threaten the correct fulfillment of this
work in time.
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One of the primary risks is the malfunctioning of the hardware in use. On the one
side, the computer where the majority of the work is done means that it is an essential
asset. On the other hand, there also are mobile phones, Arduino boards and the rest of
hardware equipment involved in the development of the project. Albeit not of vital value,
those artifacts are tools with which the project is meant to be done, and if one failed, its
replacement could take several days if not weeks. Therefore, a failure of one such device
could threaten the fulfillment of the whole project.

However, hardware breakage is not the only kind of risk that should be taken into
account. Indeed, there is another threat of equal importance: the requirements and objec-
tives’ updates. If during the development of the project a new requirement arose, it could
be fatal for the completeness of the project. In order to minimize this from happening, the
initial definition of goals, requirements and scope must be defined as best as possible. The
analysis phase of the project will also be decisive. Of course, the later a new requirement
appears, the greater the impact it will have.

Another minor but potential risk is that the APIs from Android change while devel-
oping the project. New API levels do not necessarily bring backwards incompatibility,
but they can. This could mean that the code that worked until the update appeared may no
longer do it. If such thing happened, two alternatives could be chosen: to ignore the update
and continue programming in an ”outdated” version, or apply the update and upgrade the
system’s code to comply with the new API. Still, even after updating a device’s Android
version, it should be possible to restore the device to a previous release (in theory), but
this could be a mess to accomplish.

Below are summed the potential risks (the items are not ordered by any priority):

• Hardware breakage (Arduinos, mobile phones, computer, wires and the like)
• Software updates (the need to reinstall a program) and end of licenses
• Information loss (both in paper and digital forms)
• Requirements update
• Unexpected bugs or incompatibilities
• Changes in Android’s API

2.7.3 Contingency plan

Should an Arduino board or DF-Bluetooth antenna malfunction, it could be possible to
borrow an extra one or two from the Egokituz laboratory’s stock. However, if a component
such a smart-phone showed some damage or malfunction, there would be no replacement.
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If any of the aforementioned problems happened, the scope of the project could suffer
some restrictive changes. In addition to this, updates on the planning ought to be done,
for a failure to do so could bring up unexpected workloads to meet the deadlines.

Regardless of the risk or problem, an extraordinary meeting with the main stakeholders
should be called whenever the scope, schedule or expected fulfillment level of the project
is at risk of being changed.

2.8 Project stakeholders

There are four kinds of stakeholders according to their level of interest and involve-
ment in this project. The main stakeholder—me, Xabier Gardeazabal—, whose interest
is utterly justified for being the author of the project. The feasibility of the whole project
depends of him, and all responsibility rests in no other person. It is his task to perform
all the work by himself, although guidance from peers or the director will gratefully be
accepted.

The next group of stakeholders is formed by Borja Gamecho and any of the members
of the Egokituz laboratory who may be interested in the final outcome of this research.
Borja Gamecho’s interest is justified because the product of this project could be of some
help for his PhD Thesis. Although he has no commitment regarding the project, he may
provide help if necessary.

Another group of interested people is formed by the director of the project—German
Rigau—. His role is that of a guide for the student at the head of the project. The director’s
commitment is twofold: solving doubts regarding the software engineering processes of
the project, and the standing for having a student under his supervision successfully com-
plete his project. Once the project memory is presented, he is required to present a report,
which should later be taken into account for the final mark of the project by the evaluation
court.

As of the current official regulations for the Bachelor Thesis (Article 4, subsec. 2):

4.2. El trabajo de dirección consistirá en exponer a cada estudiante las
características del trabajo, de orientarlo en su desarrollo y de velar por el
cumplimiento de los objetivos fijados, así como de realizar el seguimiento y
elaborar un informe escrito previo a la defensa del que se dará traslado a la
estudiante o al estudiante y al tribunal evaluador.
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The last group of stakeholders are the members of the evaluation committee, which are
known professors of the Faculty of Informatics at the same time. Their role is to test and
assess the project once it is finished and presented to them. They must also be present in
the defense of the project. The members of this court are internally selected by the com-
mittee of the Faculty of Informatics of San Sebastian, and have to be organized according
to the same specialization of the student’s thesis. In this case, since the specialization
is Software Engineering, the professors must be part of the Languages and Information

Systems department. It should be taken into account that until the defense process of the
project this stakeholder group need not have any relationship with the other stakeholders.

On a side note, there is a general group of people who have no direct relationship with
the project, but may find it appealing nonetheless. In addition to this, since the defense
of the project is open to the public, anybody could be present at the time it takes place.
Furthermore, somebody could be carrying on studies or research on a topic related to this
work, and may as well be interested in getting ahold of the project’s different resources.

Communication plan

Three possible channels have been identified to communicate between the stakehold-
ers: e-mail, phone-calls, and in person. Taking into account that I will spend most of the
working time in the Faculty’s facility, in-person communication would be the most effi-
cient, but an e-mail or call way be equally useful for little-talk. The contact details of each
main stakeholder have already been exchanged, and are not collected in this document for
privacy reasons.
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Figure 2.4: Initial estimation table for the different tasks.

nº Code Estim. Length Start Finish

434:00 197 days 10-Mar 22-Sep

1 Manage 40:00 197 days 10-Mar 22-Sep

1.1 Plan 13:00 6 days 10-Mar 15-Mar

10:00

3:00

1.2 Control 7:00 197 days 10-Mar 22-Sep

2:00

2:00

3:00

1.3 Monitoring 20:00 173 days 1-Apr 20-Sep

16:00

4:00

2 Research 41:00 91 days 1-Apr 30-Jun

2.2 State of the Art 18:00 91 days 1-Apr 30-Jun

6:00

5:00

7:00

2.2 Training 23:00 121 days 1-Apr 30-Jul

13:00

10:00

3 Architecture 31:00 15 days 13-May 27-May

3.1 Analyze 16:00 8 days 13-May 20-May

3.2 Design 15:00 6 days 22-May 27-May

4 Develop 200:00 3 days 1-Apr 3-Apr

4.1 Setup work env. 7:00 3 days 1-Apr 3-Apr

4.2 Build Arduino boards 8:00 20 days 1-Jun 20-Jun

4.3 Program 135:00 60 days 1-Jun 30-Jul

90:00

15:00

30:00

4.4 Test performance 50:00 15 days 1-Aug 15-Aug

30:00

20:00

5 Close 122:00 30 days 1-Aug 30-Aug

5.1 Write memory 100:00 30 days 1-Aug 30-Aug

80:00

10:00

10:00

5.2 Internal report 6:00 2 days 1-Sep 2-Sep

5.3 Defence 16:00 15 days 5-Sep 19-Sep

10:00

6:00

434:00 197 days 10-Mar 22-Sep

Design components and tests

Define system components and their functionalities

Read literature and manuals

Practice with simple cases

Make the risk management plan

Make the project plan

Quality checks

Update risks

Control changes

Update plan

Task Description

Review

Format

Meetings

Estimation

PK-13.P4

Articles

Context of the project

Similar studies

Writing

Arduino program

Review the work done

Preparatory speeches/seminars

Android App

Python Scripts

TOTAL

Perform the tests

Extract information and conclusions
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Figure 2.5: Gantt diagram of the project.





3. CHAPTER

State of the art

In this chapter the current state of the art at the beginning of the project is explained. In
the following sections a brief overview on similar researches or studies can be found. An
analysis on the available technologies used alternatives is made as well. But first, a review
on the original context that this project comes from is done.

3.1 Background of the project

3.1.1 Pervasive computing

We call pervasive or ubiquitous to those technologies we tend to use without actively
thinking about the tool. By focusing on the task, the technology is almost invisible to the
user. Pervasive technologies are often wireless, mobile, and networked. As Lyytinen and
Yoo said back in the day, ”computers will be embedded in our natural movements and
interactions with our environments—both physical and social” [Lyytinen and Yoo, 2002].

Pervasive computing combines current network technologies with wireless computing,
voice recognition, Internet capability and artificial intelligence, and its goal is to create an
environment where the connectivity of the devices is embedded in an unobtrusive way.

One of the core concepts of pervasive systems is its grounding, assembled by small,
inexpensive and robust networked processing devices, distributed at all scales throughout
everyday life.

27
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3.1.2 Context-Aware Computing

Context-aware computing is a sub-field of pervasive computing. As Robles and Kim
(2010) says, it refers to a general class of mobile systems that can ”sense” their physical
environment, and adapt their behavior accordingly [Robles and Kim, 2010].

The reason why context-aware computing is relevant for this project comes from the
collaborative work done with Borja Gamecho and his PhD Thesis, as explained in the
motivation of this project (section 1.2).

In [Gamecho et al., 2013], the benefits of using many different sensors and combining
them to obtain higher-level context information are explained. However, it is also noted
the problems that sensor heterogeneity brings with it, such as performance drops. The
findings of this project may help to clarify the convenience of Bluetooth for context-
awareness.

3.1.3 Personal Area Networks

A Personal Area Network (PAN) is formed by interconnected devices around a person
or within their range. These networks are typically composed of regular personal devices
such as laptops or smartphones on a par with other static items like printers, while con-
nections between one another happen transparently to the user. These types of networks
are usually able to connect to the Internet—and provide access to the components of the
PAN—and other networks, even without wires.

Wireless Personal Area Networks

If a PAN is a network for interconnecting devices centered on an individual person’s
workspace, a Wireless Personal Area Network (WPAN) is the same, with the additional
feature that the connections are made wirelessly. The devices that fall under this category
of PANs are smaller than usual, and therefore only work in a short-range—somewhere
around 15 meters—. They were envisioned to provide high-quality real-time video and
audio distribution, as well as file exchange among storage mechanisms, and are quickly
becoming a replacement for home systems that used to work with cables.

WPANs are based on the IEEE 802.15 standard, which should not be mistaken with the
IEEE 802.11, which corresponds to the Wireless Local Area Networks (WLANs), better
known as WI-FI technology. Indeed, the difference between the two is that while PANs
and WPANs tend to be centered around one person, a Local Area Network—wireless or
not—is usually serving multiple users.
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This does not mean that a WI-FI based network cannot be part of a PAN, but this is
less common as it takes more resources than its counterpart technologies, and reduced
size and increased longevity is preferable over power.

3.1.4 Body Area Networks

A Body Area Network (BAN) is a type of personal area network made up from wear-
able computer devices. These communicate with other nearby computers or devices and
exchange digital information by using the natural electrical conductivity of the human
body. BANs are based on the IEEE 802.15.6 standard for transmission via the capacitive
near field of human skin, but can be made wirelessly as well.

3.1.5 Sensor Networks

Sensor networks consist of a large number of nodes spread across a geographical or ur-
ban area. The nodes can be static or mobile, and key requirements for sensor networks op-
erating in challenging environments include low cost, low power, and multi-functionality
of the devices.

There are many scenarios where sensor networks are used. Sometimes, a body area
network can be made by dressing a person with sensors to obtain biometric data. In other
cases, a sensor network can be formed by placing beacons in cars, and be used for col-
lecting information about their surrounding environment.

Sensor networks are usually prone to show problems, as they have to confront many
changing and uncontrollable variables. It is therefore quite challenging to identify and
diagnose their accuracy and reliability. Related to this, Edith and Gunningberg (2013)
defined a metric known as the Quality of Information (QoI) that measures information
attributes such as precision, timeliness, completeness, and relevance of data ultimately
delivered to users in sensor networks. According to Edith and Gunningberg, it is a chal-
lenge to provide the required QoI in mobile sensor networks given the large scale and
complexity of the networks with heterogeneous mobile and sensing devices [Edith and
Gunningberg, 2013].

3.2 Other studies on the subject matter

Since the inception and adoption of Bluetooth as a technology for Personal Area Net-
works, many studies and research papers have been published on topics related to it.
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Below are presented a few of the most relevant publications that have an special interest
to this project, as they all touch topics related to what this project is all about.

3.2.1 Power consumption and performance of Bluetooth

In the article titled ”Power characterization of a bluetooth-based wireless node for
ubiquitous computing” [Cano et al., 2006], a research of the consumption of a particular
Bluetooth module—the Mitsumi WML C11 class 1—is made. Now, the module used in
that study has nothing to do with the one used in this project, albeit the discoveries they
made may be relevant nonetheless. They concluded that the most power-saving option
was to power-off the devices when they were not in use. Of course, this brought a trade-
off in performance, since the access time increases when booting the devices. This study
only focused on the static slave devices that were waiting for connection request, and the
they did not measure the consumption of the inquirer or master device (a smartphone in
this project). Therefore, the present project might complement Cano et al.’s study.

Additionally, in the article titled ”Evaluation of the trade-off between power consump-
tion and performance in Bluetooth based systems” [Cano et al., 2007], a thorough research
in the subject matter is made. Their experiments focused on evaluating the power-delay
and power-throughput trade-off experimented by UDP and TCP traffic, respectively. They
also performed a sensitivity analysis to evaluate how distance and packet type affected
power consumption, throughput and delay.

Among the different experiments Cano et al. performed, the one in which they evaluate
the impact on packet delay of varying the ACL1 packet type and the distance between de-
vices is of uttermost interest. They observed that regardless of the packet type, Bluetooth
provides a stable packet delay up to 10 meters, and that when surpassing the 10m distance
it still manages to perform quite well. From 15 meters on, performance degradation starts
to become noticeable.

The other experiments and conclusions gathered in [Cano et al., 2007] are not relevant
to this project, since they focus on technical aspects of the Bluetooth protocol that are far
beyond the scope of this project. Nevertheless, apart from the actual content, the way they
portrayed their experiments’ data by the use of graphic figures was of high interest and
source of inspiration.

1The normal type of radio link used for general data packets in Bluetooth.
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3.2.2 Discovery time

In the paper "Bluetooth Discovery Time with multiple Inquirers" [Peterson et al.,
2006], an interesting problem on the discovery process is presented. The authors claimed
that while a device is performing a discovery, the presence of a second inquiring device
can significantly delay, and even preclude, the discovery of a discoverable node. From
their experiments they concluded that the presence of a second inquirer may in fact pre-
vent a inquiring device from discovering a scanning node until the second node leaves the
inquiry substate.

Apart from that, in [Chakraborty et al., 2010] a thorough analysis of Bluetooth’s device
discovery protocol is made. In this paper, apart from explaining the Bluetooth protocol
very well, the authors demonstrate that discovery delay increases with the number of
devices in the area in a logarithmic way. Additionally, the authors even propose a method
to reduce discovery time, but it involves delving into the Bluetooth stack implementation,
so it goes beyond this project’s scope.

3.2.3 Service Discovery Protocols

Even if this project does not involve any service discovery, it often is an essential
part of PAN-like applications. Service Discovery Protocols (SDP) allow the automatic
detection of services offered by any devices connected to a network. Renowned protocols
such as DHCP (Dynamic Host Configuration Protocol) or UPnP (Universal Plug and Play)
are examples of Service Discovery Protocols.

In the article "Service Discovery in Pervasive Computing Environments" [Zhu et al.,
2005] there’s an interesting table comparing Bluetooth’s SDP with other protocols—Jini,
Salutation and UPnP, among others—that used to be used in ubiquitous or pervasive com-
puting. According to the author’s research, Bluetooth’s SDP is quite similar to its coun-
terparts, and has nothing to envy.

Coupled with this, in [Ververidis and Polyzos, 2008] a general survey on researches
done over the topics of service advertising, discovery, and selection for mobile ad hoc

networks is made. In this article, a thorough insight into most of the service discovery
protocols that Zhu et al. review in their article is made. A similar but much more con-
densed study was made in [Helal, 2002] as well.
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3.2.4 Power and batteries

The full degree of freedom in mobile systems heavily depends on the energy provided
by the smartphone’s battery. In [Perrucci et al., 2011], a comparison between the compo-
nents that drain the battery of a smartphone is made. According to this study, these are the
components that drain more power:

1. Downloading data using WLAN (WI-FI)
2. Sending an SMS
3. Making a voice call
4. Playing something through the loudspeakers
5. Displaying high brightness

Quite surprisingly, Bluetooth is not among the top five battery consumers.

Like many other technologies, batteries have reached a physical limit where our re-
sources or scientific knowledge cannot help us create better batteries, and their perfor-
mance curve has suffered a steady flattening lately. Something similar happened to the
microprocessors, where only the transistor count keeps a fast growth, according to [Sut-
ter, 2005].

However, unlike microprocessors, battery’s price has not dropped to the same extent.
As Starner (2003) said, mobile phone companies sell more batteries than phones to con-
sumers, and they do so while trying to protect their design and utilities with patents to
keep third-party vendors from competing too heavily [Starner, 2003]. Therefore, the de-
velopment of better batteries is slow.

3.2.5 Interferences in wireless systems

There are many technologies that make use of the 2.4 GHz ISM frequency band apart
from Bluetooth. Therefore, it is natural for interferences to appear when two or more
of such protocols operate on the same vicinity. Among others, WI-FI presents itself as
the protocol most likely to cause interferences to Bluetooth. In [Fainberg and Goodman,
2001], an analysis of the interference between WI-FI and Bluetooth systems is made.
Additionally, in [Weng et al., 2014] and [Golmie and Mouveaux, 2001] more general
studies around interferences on the 2.4 GHz spectrum are made.

Interferences, however, are not only generated by colliding protocols over the same
frequency band. Other variables such as the weather or materials in the area can consider-
ably impact the efficiency or reliability of wireless protocols like Bluetooth. In the article
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"Factors Causing Uncertainties in Outdoor Wireless Wearable Communications" [Fong
et al., 2003], the impact of the rain over wireless networks is presented.

3.3 Alternatives to the Bluetooth protocol
The reason why Bluetooth has been chosen over other alternatives is because it is a

well-established and widespread technology. However, the field of Personal Area Net-
works is increasingly developing new technologies and alternatives to carry communica-
tions that are worth checking out. Below are explained some of the most relevant protocols
that are similar to or compete with Bluetooth to a certain extent.

3.3.1 Bluetooth Low Energy

Bluetooth Low Energy (BLE)—marketed as Bluetooth Smart—is the successor of the
”Classic Bluetooth”, and it intends to provide a considerably reduced power consumption
and at a lower cost, while trying to maintain similar communication ranges.

Although it was originally named as Wibree and developed by Nokia in 2006, it was
later merged into the main Bluetooth standard in 2010, along with the adoption of the
Bluetooth Core Specification Version 4.0. It is due to this divergence in its origin that
BLE is not backwards compatible with the ”Classic” Bluetooth. Still, the specification
allows for either or both versions to coexist and be implemented in the same device.
Additionally, the two versions can be run in parallel in the same physical area, since even
if BLE operates in the same spectrum range as Classic Bluetooth—that is, 2.5MHz—, it
uses a different set of channels. Instead of the Classic Bluetooth’s 79 channels of 1-MHz
each, Bluetooth Smart has 40 2-MHz channels.

Although nominally the Bluetooth 4.0 specification provides lower power consump-
tion with higher baud rates than its predecessor versions, it comes at the cost of reducing
the maximum throughput achievable.

3.3.2 ANT

Advanced Network Tools or ANT is a proprietary open access multicast wireless sensor
network protocol, developed by Dynastream Innovations Inc.—a subsidiary of Garmin,
a major GPS equipment manufacturer—. ANT is characterized by its low computational
overhead and low to medium efficiency, resulting in low power consumption by the de-
vices supporting the protocol, and enabling low-power wireless embedded devices operate
on a single coin-cell battery for a long time.
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ANT has been primarily targeted at the sports sector, particularly fitness and cycling
performance monitoring. The transceivers are embedded in equipment such as heart rate
belts, watches, cycle power, and cadence meters, and distance and speed monitors to form
Wireless Personal Area Networks (WPANs) monitoring a user’s performance.

ANT+ or (ANT Plus) on the other hand, is an interoperability function that can be
added to the base ANT protocol.

3.3.3 ZigBee

ZigBee is a simpler, slower, lower-power, lower-cost specification similar to Bluetooth,
and it was created by Philips. It is supported by a mix of companies that are targeting
the consumer and industrial markets. It may be a better fit with games, consumer elec-
tronic equipment, and home-automation applications than Bluetooth. Short-range indus-
trial telemetry and remote control are other of its target applications.

Previously called RF-Lite, ZigBee is similar to Bluetooth, since it also uses the 2.4-
GHz band with frequency-hopping spread-spectrum with 25 hops spaced every 4 MHz.
The basic data rate is 250 kbits/s, but a slower 28-kbit rate is useful for extended range
and greater reliability. With a 20-dBm power level, ZigBee can achieve a range of up to
134 meters at 28 kbits/s. It additionally allows to connect up to 254 nodes in a network.

3.3.4 Comparison

In table 3.1 a comparison between ANT, ZigBee, Bluetooth and Bluetooth Low Energy
is summarized.

Market name ANT ZigBee Bluetooth Bluetooth LE
Standard Proprietary IEEE802.15.4 IEEE802.15.1 IEEE802.15.1
Frequency band 2.4 GHz 2.4 GHz 2.4 GHz 2.4 GHz
Data Rate <60kbps, 1Mbps 20-250 kbps 1-3Mbps 200kbps
Latency not specified <5 ms 100 ms 6 ms
Range (meters) 1-30m 75m 10-100m 50m
Power 20mW 60mW 120mW 10mW
Lifetime weeks days, weeks days weeks
Max. network size (nodes) 2^32 2^64 7 2^64
Network architecture P2P, start, tree, mesh Multiple star, mesh P2P, piconet P2P, piconet

Table 3.1: Comparison table between Bluetooth, Ant and ZigBee.
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3.4 Alternative Wireless Technologies

Although this project focuses solely on Bluetooth, some other protocols that also op-
erate in the 2.4 GHz have been presented. However, there are many other wireless tech-
nologies in the field of Personal Area Networks. Below, some alternatives to Bluetooth
are explained. It should be noted that these technologies are not nearly as commercialized
as Bluetooth, but could become quite popular in the near future.

3.4.1 Induction Wireless

Instead of radio, this technique uses magnetic induction for close-range communica-
tions. In radio, the signal is formed by both electric and magnetic fields. In Induction
Wireless, the signal is only formed up by the magnetic field. The transmitter is a radiating
coil that’s more like the primary winding of a transformer than an antenna.

A typical Induction Wireless unit transmits up to 204.8-kbit/s data rates via GMSK
modulation on 11.5 MHz. Its key benefits are extremely low power consumption and low
cost. On the other hand, the fact that this system has a 3 meter range may be a drawback.
However, this can be seen as an advantage, since many more people in a given space can
operate such devices without causing interference to each other.

Induction Wireless was invented and patented by Aura Communications, although the
company was later acquired by FreeLink. This technology has been widely used in the
medical industry for years, but it has not been until recently that it is being used for
streaming wireless voice and audio in personal electronics—such as headsets or head-
phones. It seems as a promising technology that could get to play a major role in the field
of PANs. As Aura Communications state:

The company’s technology, which goes under the trademarked name Lib-
ertyLink, is a near-field magnetic wireless communication scheme. Aura’s
chips create a static B field (the magnetic component of RF), killing the E
field (the electrical component) so it does not radiate outward. The result is
a two-meter static bubble that envelops the user and enables voice and audio
transmission within it. The range is so exact that moving the headset one half
inch across the bubble boundary can cause the signal to disappear.
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3.4.2 IR Wireless

IR wireless is the use of wireless technology in devices or systems that convey data
through infrared (IR) radiation—an electromagnetic energy at a wavelength or wave-
lengths somewhat longer than those of red light—. In short, IR is used for short and
medium range communications and control, and it provides a physically secure data trans-
fer with very low bit error rate.

During the early 1990s the IrDA2 and its standard appeared thanks to Hewlett-Packard,
and it is still supported by Agilent Technologies. IrDA initially provided a 115.2-kbit/s
data rate over a range of up to 1 m. A 4-Mbit/s version was soon developed and has been
widely incorporated in laptops and PDAs for printer connections and short-range PANs.
A 16-Mbit/s version was available too.

Nowadays, infrared technology is used in local networks, and it can be found in three
different forms:

• IrDA-SIR (slow speed) infrared supporting data rates up to 115 Kbps
• IrDA-MIR (medium speed) infrared supporting data rates up to 1.15 Mbps
• IrDA-FIR (fast speed) infrared supporting data rates up to 4 Mbps

However, these speeds cannot compensate for infrared’s limited range and its need for
a line-of-sight connection3. Of course, every other technology based on radio or electro-
magnetic fields do not need any line-of-sight, as these can even go through walls.

A more recent IR development is IrGate—produced by Infra-Com Technologies—,
which uses arrays of high-powered IR LEDs to emit coded baseband IR in all directions.
Then it relies on an array of photodetectors and super-sensitive receivers to pick up the
diffused IR within the networking space. Thus, the line-of-sight problem is mitigated, and
a data rate of up to 10 Mbits/s is possible.

3.4.3 Ultra Wideband

Ultra Wideband (also known as UWB or as ”digital pulse wireless”) is a wireless tech-
nology for transmitting large amounts of digital data over a wide spectrum of frequency
bands with very low power for a short distance. It has been in use by military and govern-
ment applications for quite a long time, and its main use—until very recently—have been

2IrDA (Infrared Data Association) is an industry-sponsored organization set up in 1993 to create inter-
national standards for the hardware and software used in infrared communication links.

3A line-of-sight connection means that the devices carrying a connection must have unobstructed visual
sight of each other throughout the whole connection process.
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short-range, high-resolution radar and imaging systems that penetrate walls. Nowadays,
however, it has been proven to be useful for short-range LANs or PANs. UWB technology
emerges as a promising physical layer candidate for WPANs, because it offers high-speed
communications over short ranges, with lower cost and higher power efficiency than other
technologies with a similar purpose.

In addition to its suitability for personal area networks, as Yang and Giannakis (2004)
state, Ultra Wideband is also very appropriate for sensor networks:

High data-rate UWB communication systems are well motivated for gath-
ering and disseminating or exchanging a vast quantity of sensory data in a
timely manner. Typically, energy is more limited in sensor networks than in
WPANs because of the nature of the sensing devices and the difficulty in
recharging their batteries. Studies have shown that current commercial Blue-
tooth devices are less suitable for sensor network applications because of their
energy requirements and higher expected cost. In addition, exploiting the pre-
cise localization capability of UWB promises wireless sensor networks with
improved positioning accuracy. This is especially useful when GPSs are not
available, e.g., due to obstruction. [Yang and Giannakis, 2004]





4. CHAPTER

Architecture and technological choice

This chapter tries to explain the general architecture of the system developed in this
project, and a technical review on the technologies used is also made.

4.1 Testbed architecture

In order to solve the initial problem of not knowing how does the performance of
a smartphone behave with many simultaneous Bluetooth communications, a framework
that provides the tools necessary to form a testbed is required. This framework should be
formed by two main components: a set of smartphones and a pool of Bluetooth sensors.

While they carry on communications with each other during a testing process, the
phones should perform some measurements, from which different metrics would later be
extracted.

Finally, from a thorough analysis of those metrics some insightful results or conclu-
sions should be achieved. If the whole system works flawlessly, the results obtained could
be used as a benchmark or reference for future projects involving wireless Bluetooth com-
munications. Figure 4.1 shows an abstracted conceptualization of the architecture of the
testbed.

39
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Figure 4.1: Testbed architecture.
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4.2 Technologies used

4.2.1 Bluetooth

Bluetooth—the main technology used as the base of this project—is a standard wire-
less technology for short distance data exchanging. It has been among us for quite a long
time, and since its invention in 1994 by Ericsson—a telecommunications vendor and cell
phone manufacturer— it has undergone many revisions and modifications. Yet, its core
features remain unchanged: a low cost wireless replacement for cables on phones, head-
sets and other devices.

Additionally, its low power consumption and fast connection setup make it perfect for
small sensor devices and even sensor networks as well. Not surprisingly, it has been the
main protocol used in the ”Personal Area Networks” for many years. Again, its simple
yet useful features such as fast device discovery in the near surrounding or high rate data
transfers make this protocol very suitable for such environments.

Although during the first decade since its invention it underwent a steady growth, it has
not been until recently—with the introduction of Bluetooth Smart—that it has regained
interest. Still, the work carried on this project focuses solely on the classic version of
Bluetooth, and does not take the new and revised version into account. The reason for this
is mainly owing to the original idea and motivation of this work, explained in the first two
chapters of this document.

History

Although originally envisioned just as a cable-replacement technology by Ericsson in
1994, embedded Bluetooth capability is becoming widespread in numerous types of de-
vices. These include intelligent units (PDAs, cell phones, PCs), data peripherals (mice,
keyboards, joysticks, cameras, digital pens, printers, LAN access points), audio peripher-
als (headsets, speakers, stereo receivers), and embedded applications (automobile power
locks, grocery store updates, industrial systems, MIDI musical instruments) among others
[McDermott-Wells, 2004].

With time, Bluetooth has become a usual technology term of everyday life, and there
probably are a very few people who have not heard of it, since almost all mobile-phones
bring it inherently. Ten years ago, shortly before the second revised and improved version
was adopted, this protocol did not take such a big role if compared to the many other stan-
dards existing at the time. Still, its growth was evident, and as Shepherd (2001) said, even
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if only 10% of mobile phones and computers were to incorporate Bluetooth chips, then
the technology would achieve the critical mass necessary for chip prices to fall below $5
and for the standard to become firmly established in the market-place [Shepherd, 2001].
As time has shown, Bluetooth prevails.

In table 4.1 a comparison between the main different versions of Bluetooth throughout
history is shown.

Specification
version v 1.0 v1.2 v2.0+EDR v2.1+EDR v3.0 HS v4.0 (BLE)

Adoption date 2002 2003 2004 august 2007 2009 2010
Backwards
compatible — yes yes yes yes no

Bit rate 721 kbit/s 721 kbit/s 1-2.1 Mbit/s 1-3 Mbit/s 24 Mbit/s 200kbit/s
Range unknown unknown 10m 10-100 m 30 m 10-50 m
Setup time unknown unknown unknown <6 s unknown <3 s

Table 4.1: Table comparing versions of Bluetooth in history.

Technical specifications

Bluetooth uses short-wavelength UHF radio waves in the ISM1 band from 2.4 to 2.485
GHz. Thanks to the frequency-hopping spread spectrum technology2 , Bluetooth is able
to divide part of the ISM band into a total of 79 different channels—of 1 MHz each—.
The data is divided into packets, and each packet goes through one channel.

Bluetooth is based on packet-switching, which means that the transmitted data is
grouped into blocks of a predefined size. The protocol is defined as a layer protocol archi-
tecture, and it was conceived taking many other protocols within. There is not a single and
unique implementation of the protocol, and each different adaptation is known as ”stack”
(i.e. a stack is a software piece that refers to an specific implementation of the Bluetooth
protocol). Every Bluetooth stack must at least make use of the Link Management Protocol

(LMP), the Logical Link Control and Adaptation Protocol (L2CAP) and the Service Dis-

covery Protocol (SDP). Many Bluetooth applications use RFCOMM (Radio Frequency

Communications) as well, due to its widespread support and publicly available API on
most operating systems3 . Additionally, any given Bluetooth stack can adopt other proto-

1ISM is a globally unlicensed (but not unregulated) Industrial, Scientific and Medical 2.4 GHz short-
range radio frequency band

2The repeated switching of frequencies during radio transmission to minimize the unauthorized inter-
ception or jamming of a particular frequency band slot

3The applications that use a serial port to communicate with each other can be quickly ported to use
RFCOMM
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cols such as TCP/IP, UDP, WAP (Wireless Application Protocol), Point-to-Point Protocol

(PPP) and the like. Knowing all this protocols has not been necessary for the proper de-
velopment of the project, but are worth mentioning nonetheless.

Bluetooth profiles: the SPP protocol

In order to use Bluetooth, the device must be compatible with a subset of Bluetooth
profiles necessary to use the desired services4. The Serial Port Profile (SPP) is one of
such profiles, and defines the requirements for Bluetooth devices for setting up emulated
serial-cable connections (serial RS232 specifically) using RFCOMM.

The scenario covered by this profile is setting up virtual serial ports on two devices and
connecting them with Bluetooth, so that any application may run on either device using
the virtual port as if there was a real serial-cable connecting the two devices (with RS232
control signaling).

This profile requires support for one-slot packets only. This means that this profile
ensures that data rates up to 128 kbps can be used. Support for higher rates is optional.
Refer to [bt2, 2001] for more details.

Discovery and pairing processes

A Bluetooth Personal Area Network is also known as a piconet, a network with a
master-slave structure where one master may communicate with up to seven slaves. Blue-
tooth units that are within range of each other can set up ad hoc connections, and two or
more devices that share a channel form a piconet [Haartsen, 1998]. Nonetheless, Blue-
tooth allows the union of two or more piconets by a peculiar mechanism5. If a device in
a piconet—whether a master or a slave—decides to serve as a slave to the master of an-
other piconet, then this device becomes the bridge between the two piconets, connecting
both networks. When two or more piconets are connected, they form a scatternet, where
communications between more than eight devices is possible.

In order to establish a connection, however, one must look for other devices in the
area. Any device may perform an inquiry (i.e. a discovery process) to find other devices
to connect to, and any device can be configured to respond to such inquiries. In order for
a device to be listening for connection requests, however, it has to be set in ”discoverable

4A Bluetooth profile is a specification regarding a certain aspect of a Bluetooth-based wireless commu-
nication between two devices.

5The basic Bluetooth protocol does not support this, so the host software of each device needs to manage
it
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mode”. Otherwise, any nearby device performing a discovery would not find it, and could
not ask it for a connection to be established. Of course, the device that is performing
the discovery needs not be in discoverable mode. Any Bluetooth device in discoverable
mode will transmit the device’s name, class, its service list and some other information
on demand.

Once a device is connected to another one, it cannot simultaneously establish new
connections with other devices, nor will it appear in inquiries from other discoveries.

Every device has a unique 48-bit physical address, commonly known as MAC. These
addresses are generally not shown in inquiries, and instead a ”friendly” name or identifier
of the device is used, which can be usually set by the user.

Once a device performing a discovery has found a connectable target nearby, it will
be able to start the pairing process, often referred to as ”bonding”. During this process—
which usually requires some kind of user interaction—the two devices involved establish
a relationship by creating a shared secret known as a ”link key”.

It is a well known fact that the discovery is a heavyweight process, both for the antenna
and processor. Therefore, it is the one action where Bluetooth consumes most resources.
According to [Perrucci et al., 2011], this procedure can take a longer time according to
the number of the devices in the range, but the power levels remains constant and is not
an exponential function of the number of Bluetooth devices around. Therefore the energy
consumption only depends on the time duration of the discovery.

4.2.2 Android

Needless to say, Android is a well known open-source operating system based on the
Linux kernel, and although it is available for many platforms, it is best suited for smart-
phones. It is developed by Google, and it currently holds the lead in terms of number of
devices with a version of this OS.

Developing a basic application in Android is rather simple. The main language used
is Java, but other languages such as XML are important too. The easiest way to develop
an Android application is to use the official Android Development Tools (or ADT) plugin
for the Eclipse IDE. This plugin contains everything needed to develop and deploy an
application to any Android device connected to the computer.

It is not the purpose of this project to explain the intricacies of the Android OS and its
internal architecture since there is more than enough literature on the subject and doing
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so would be redundant. However, a little insight into the way threads and processes are
handled in Android is not in excess.

Application components and threads

Application components are the essential building blocks of an Android app. There
are four types: activities, services, content providers, and broadcast receivers [Andrdoid-
Developers, 2014a]. When a component is started, if the application has no other com-
ponents running, Android starts an independent Linux process with a single thread. Now,
what is the actual difference between a process and a thread?

A process could be defined as a program unit of execution that has some allocated
resources and memory just for itself. A thread, on the other hand, is a piece of a bigger
program that can run in parallel with the main application process, but it runs ”within”
the process nonetheless. Therefore, processes can contain more than a thread—which is
actually the way most applications function—, and these threads share the same resources
and memory.

In conclusion, creating multiple threads within a process is cheaper than starting sep-
arate processes for the same purpose. Be wise, though, since overloading a process with
too many threads may result in a performance decay.

Bluetooth in Android

Android first introduced Bluetooth in the API level 5, containing most of its core func-
tionalities, but it was not until API level 18 that it was renewed with more powerful meth-
ods and fixed bugs. The first API used to work on a par with the Blue-Z Bluetooth stack—
the stack for Linux kernel-based family of operating systems—, but it was changed to the
BlueDroid stack with the API level 18. This new and ongoing stack in Android is com-
pletely different to its predecessor, so it is not an expansion on Blue-Z. According to the
technical information provided by the Android source code project:

Android provides a default Bluetooth stack, BlueDroid, that is divided
into two layers: The Bluetooth Embedded System (BTE), which implements
the core Bluetooth functionality and the Bluetooth Application Layer (BTA),
which communicates with Android framework applications.

It seems that this new stack is quite immature still, since there are several known
issues with Android’s Bluetooth API which are yet not fixed as of the day of this writing.
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Many developers have claimed that since the new Bluetooth stack upgraded in API level
(Android 4.2), their applications have shown many new bugs, and blame the new stack’s
implementation.

Even if it is out of the scope of this project, it is worth noting that the functionalities for
Bluetooth Low Energy were added in API level 18 (Android 4.3), so the devices running
an older OS version should be updated to be able to make use of it.

The API levels mentioned in the previous paragraphs are integer values that uniquely
identify the framework API revision provided by each version of the Android platform. It
is not a thing worth worrying about, but it should be taken into account when developing
applications for Android, since using resources that are only available in the last API level
means no backwards compatibility.

4.2.3 Arduino

As its creators state, Arduino is an open-source physical computing platform based on
a simple microcontroller board, and a development environment for writing software for
the board.

The Arduino programming language is an implementation of Wiring, a similar physical
computing platform which is based on the Processing multimedia programming environ-
ment. There is an open-source Arduino IDE for Winfows XP that can be downloaded for
free, and it comes with many example programs. In addition to this, there is a growing
community on the Internet with more than enough resources for beginners.

The Arduino boards can be used to easily develop not very complex custom electronic
devices, taking inputs from a variety of switches or sensors, and controlling LEDs, motors,
and other physical outputs. An Arduino program can be run on its own board, stand-
alone, or it can communicate and interact with software running on a computer or other
devices through different means. The boards can be assembled by hand or purchased pre-
assembled.

There are many Arduino boards available to choose from, and many of them perfectly
fit the requirements of this project. As a representation, the UNO and MEGA models have
been analyzed, two of the most popular ones. These two boards provide more than enough
resources for the requirements defined in the scope. They can easily be connected to the
computer by USB, and have an additional external power supply input of 9-12 Volts.

In the figure 4.2 the different elements that form an Arduino UNO board are depicted.
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The anatomy of the MEGA board is quite similar, but has been left out for brevity. Instead
of an ATmega-328 microcontroller, the MEGA board comes with an ATmega-2560, plus
more digital and analog pins. Additionally, the MEGA board has three serial input and
output (RX and TX6) pin pairs, in contrast to the single pair of the UNO board. This is
due to the more complex processor of the MEGA.

As a last note, it should be mentioned that apart from the Arduino boards, the ”chipKIT

Max32 Prototyping Platform” developed by Digilent7 was also considered. It is basically
the same board as the Arduino MEGA, but adds the performance of the Microchip PIC32
microcontroller. It is also compatible with many Arduino shields8. However, at the begin-
ning of the project there were not many of such boards available, and instead of buying
new ones, the Arduinos were chosen over them. In addition to that, the Arduino commu-
nity and the support that its members can provide is much larger when it comes to original
Arduino boards, so any sort of problem that appears with the chipKITs may take much
more time to be fixed.

Figure 4.2: Anatomy of the Arduino UNO board (source).

6RX stands for receiver, and TX for transmitter.
7Digilent Inc. is an electrical engineering products company with technology-based educational design

tools.
8Shields are boards that can be plugged on top of the Arduino PCB extending its capabilities.

http://arduinoarts.com/tag/anatomy/
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The DF-Bluetooth module

The Arduino UNO and MEGA boards do not have any Bluetooth capabilities embed-
ded, so an external module is needed. Again, due to their low-cost and that a handful of
them were already available in the Egokituz laboratory, the DF-Bluetooth V3 modules
from the DF-Robot company (www.dfrobot.com) were chosen.

This module implements the Bluetooth Specification v2.0 +EDR. According to its
technical file, it is designed to prevent electrostatic damage to the module, since it has an
extra integrated circuit layer which acts as a coating. This extra circuit comes with two
LEDs (”STATE” and ”LINK”)which are used to display the module’s status (fast blinking
means ”search” state, otherwise ”connected”) and link state (it only blinks while paired)
respectively—if neither LED blinks, it means the module is not powered. In addition to
this, there are two switches to toggle the module. The ”LED Off” switches the LINK
LED to enter a power saving mode, and the ”AT Mode” button sets the board into the
AT command mode or automatic binding transparent data mode. In the latter, it acts as a
normal Bluetooth device. In AT command mode, the module can be configured by sending
commands over a serial connection. The most relevant parameters that can be configured
are the module’s name over Bluetooth, the baud rate, and the master or slave mode.

In figure 4.3 a DF-Bluetooth V3 module is shown.

Figure 4.3: A DF-Bluetooth V3 module (source).

Tri-state buffers

In this project, some tri-state buffers have been used to switch the Bluetooth modules’
power programmatically.

www.dfrobot.com
http://www.dfrobot.com/wiki/index.php/File:TEL0026.jpg
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In digital electronics, a buffer9 simply lets its input pass unchanged to its output—
the opposite behavior of a NOT gate—. A tri-state buffer, however, adds an additional
”enable” input pin-out that controls whether the primary input is passed to its output
or not. If the ”enable” pin-out’s value is true, the tri-state buffer behaves like a normal
buffer. If the "enable" pin-out’s value is false, the tri-state buffer passes a high impedance
signal10, which effectively disconnects its output from the circuit (i.e. it lets no current
through).

A very comprehensible explanation about tri-state buffers can be found in [Lin, 2003],
where the logical components that form these devices are also analyzed.

Table 4.2 shows the truth table for a tri-state buffer.

Enable Input Input A Output
false false hi-Z
false true hi-Z
true false false
true true true

Table 4.2: Truth table for a tri-state buffer.

Figure 4.4 shows the pin-out diagram of the L293D tri-state buffer used in this project.
Note that technically, the L293D is not just a tri-state buffer, but a ”power driver” with
several other capabilities.

Figure 4.4: Pin-out of the L293D tri-state buffer (source).

9A buffer (or buffer amplifier) provides electrical impedance transformation from its input to its output.
10In electronics, high impedance means that a point in a circuit (a node) allows a relatively small amount

of current through.

http://www.sproboticworks.com/assests/shop/ic%20pin%20configuration/L293D%20pinout.jpg
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4.2.4 Python

Even if it is just a helper tool, a proper explanation on Python should not be left over.
It is a cross-platform and general-purpose programming language created by Guido van
Rossum. One of Python’s philosophies is that its core should remain small, and any other
desired functionality should be achieved through extensions. There is therefore a huge
standard library ready to be used by the developers. Unlike Java, Python uses dynamic
type checking—the type safety of the programs is verified at runtime, and not when
compiling—, and can also be used as a command line interpreter.

So far, two major versions of Python remain in use: Python 2.7 and Python 3.3. While
the latter contains new features and possibly fixes some bugs of the former, it is not back-
wards compatible. This could be a problem, since not all the libraries from Python 2.7
and earlier releases are completely available for the last versions. And even if they are,
the syntax can vary.

For this project, the Anaconda Python distribution has been chosen. It is a completely
free to use and distributable software from the Continuum Analytics company, and runs
under the Windows XP operating system (among others). Its default install comes with
Python 2.7, so no previous nor further setup would be needed to start working with it.
Anaconda aims to simplify the package management and deployment of the Python li-
braries, and provides a visual interface and a command prompt to easily interact with. In
addition to this, Anaconda comes with common libraries installed and additional packages
can be easily added.

Python offers a wide variety of plotting packages, and NumPy, MatPlotLib are of utter-
most interest for this project, as they both enable the use of Python in scientific computing.
NumPy allows for multidimensional arrays and matrices, and it also contains a large li-
brary of high-level mathematical functions. MatPlotLib, on the other hand, provides an
object-oriented API for creating and embedding plots into any program. These two li-
braries alone make Python perfect for the logged data analysis required for the testing
process of this project. A comprehensible starting guide can be found for each of these
libraries in [Numpy-Developers, 2013] and [John Hunter, 2013], respectively.



5. CHAPTER

Requirements capture

This whole project comes from the idea that Bluetooth based communications consume
too many resources in Android. That is just a hypothesis though, and a framework that
provides a controlled environment to prove this theory—in other words, a testbed—is
needed. Therefore, two things must be clearly defined: what is going to be measured, and
how.

5.1 Performance tests
In order to obtain objective and accurate results, the performance tests should be care-

fully designed. There should be as little "noise" (e.g. phone applications running in the
background, consuming extra resources) as possible, so the whole system must be built
accordingly. In addition to this, the tests should be executed with precise parameters,
modes, states and the like, not randomly. Taking all this into account, a detailed testbed
must be defined, where the possible ”scenarios” and ”discovery plans” are adequately
identified and parameterized.

5.1.1 Scenarios

An scenario refers to the environment that a specific test is going to expect. In essence,
it defines whether the number of active Bluetooth nodes is going to be static or dynamic
during a given test. In a static scenario, it is not expected that new devices will appear
(nor the current ones disappear) during a test. Logically, the exact opposite situation will
not be unexpected in a dynamic scenario.

51
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If the scenario is dynamic, the devices could appear and disappear randomly or all at
the same time. It has just been said that the tests should not be random, but evaluating
a changing environment in a moderately controlled way could be of uttermost interest.
Therefore, the devices in a dynamic scenario should be able to appear and disappear at
will, but in a synchronized manner. Hence, instead of letting each device appear at its own
time, they should do so progressively. For the progressive timing, the appearances should
be treated as units, so while the potential devices are appearing, none of the currently
reachable ones should disappear (and the same would apply to the disappearances).

In addition to this, an special case can occur in the progressive mode, exactly when the
time between the appearances is near to null. In order not to mess up the situation more,
progressive appearances will have a minimum time of fifteen seconds between each other.

So as to keep the number of potential tests simple, a few fixed scenarios have been
defined:

Stable scenario When the test begins, no new Bluetooth devices will appear nor disap-
pear in the nearby area. This considers two possibilities: either no device is nearby
(”void” scenario), or at least one device is reachable (”n-devices” scenario) at the
beginning of the test.

Progressive scenarios When the test begins, there can be more than one device, or none
at all. If at the beginning there is no device reachable, a number of devices will
progressively begin to appear eventually. Once the situation has established, it will
keep itself like that for some time (or even indefinitely), until a progressive disap-
pearance of the devices occurs. This cycle may repeat itself.

5.1.2 Discovery plan

Since every Bluetooth connection starts with a discovery process1 by the master device
(i.e. the phone), a ”discovery plan” is crucial. From the outset, three key possibilities or
”modes” have been identified for Bluetooth’s discovery process:

• One single or ”initial” discovery
• A ”continuous” discovery
• ”Periodic” opportunistic discoveries

Additional discovery plans could have been included, such as ”chaotic” discoveries
which would be ran at random periods of time, or a ”logarithmic” plan which would

1See section 4.2.1 for more information on the discovery and pairing process.
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increase the period between the discoveries over time. However, they are not required for
the testbed, and have been left out for simplicity.

When the discovery has found a device, two paths can be followed. Either nothing
is done until the discovery finishes, or a connection request is sent to the target device.
Now, this choice entails some trickiness. If we choose to wait until the discovery finishes
to dispatch the connection, but the discovery ”mode” is continuous, what have we been
waiting for? The answer is void. But why should we wait in the first place? Well, re-
viewing Bluetooth’s discovery process (particularly in Android), it seems that it is quite a
heavyweight procedure, and trying to open a connection while discovering may be source
of unexpected problems.

This brings up several issues to consider. If when a device has been found, an immedi-
ate connection wants to be dispatched, we can either keep on with it—regardless of the po-
tential problems that may appear due to trying to open a connection while discovering—,
or abort the ongoing discovery and then try to open a connection. If the second option is
chosen, it should be considered whether a discovery should be instantly started right after
the connection setup is finished or not.

Back to square one, if we chose to wait until the discovery is finished to fetch a connec-
tion, the possible paths fork again. What if more than one device has been found during
the last discovery? Should they be connected at the same time, or progressively? After
researching the possible outcomes of setting up multiple connections simultaneously, no
preceding cases where more than one connection had to be done at the same time have
been found. However, taking into account that the discovery is a heavy procedure, it is
not absurd to believe that simultaneous connection set-ups could show unexpected prob-
lems. Therefore, and seeing it as yet another potential source for a valuable finding by
this project, the testbed should consider the two connection-timing possibilities: connect-
ing all devices together—knowing that something could go wrong—, or progressively,
fetching each connection just after the previous has finished.

In a few words, these are the discovery plan parameters:

• Discovery mode:

– Initial.
– Continuous.
– Periodic.

• Connection timing:
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– Immediate, while discovering.
– Immediate, stopping the ongoing discovery.
– Delayed, after finishing the ongoing discovery.

• Connection mode:

– Progressive, connecting one device after another.
– All-together, connecting all devices at the same time.

It is clear that the number of tests that could be made just by combining those three
parameters is too large. To cap it all, taking into account that there is also more than
one scenario, it could take a lifetime to carry through all the performance tests and later
analyze the results. Therefore, a smart selection of the most relevant test-cases must be
done. In table 5.1 some potentially interesting discovery plans have been portrayed. The
final pool of discovery plans chosen—along with their corresponding scenarios—is left
to be decided during the design execution of the project.

Initial
Discovery

Continuous
Discovery

Periodic
Discovery

Immediate conn.
while disc. —

Progressive,
All-together Parameterized

Immediate conn.
stopping disc. — Progressive Progressive

Delayed conn. Progressive,
All-together

Progressive,
All-together

Progressive,
All-together

Table 5.1: Discovery plan parameters.

5.2 Performance testing variables

In order to prove that Bluetooth consumes too many resources, certain variables should
be monitored. In section 2.2.3 of the first chapter, some test conditions were introduced.
Following, those variables are explained in more detail.

5.2.1 Hardware variables

The first changeable item or condition is the smartphone with which the test is going
to be carried on. At this moment, there are three possible candidates to try the tests with:

• Nexus S
• Galaxy Nexus
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• Nexus 5

Table 5.2 sums up the most relevant technical details of the devices at the time they were
used for the tests. Each phone has a different OS version, battery, CPU and Bluetooth
support, so it will not be possible to say how much each individual variable affects the
tests’ results. In the coming section 5.3, a more insightful analysis over the phones is
made.

Device name Nexus S Galaxy Nexus Nexus 5
Brand Samsung Samsung LG
Version Name Jelly Bean Jelly Bean KitKat
OS version 4.1.2 4.3 4.4.4
API version 16 18 19
CPU 1 GHz single-core 1.2 GHz dual-core 2.26 GHz quad-core
Battery 1,500 mAh 2 1,750 mAh 2300 mAh
Bluetooth v2.1 v3.0 v4.0

Table 5.2: Devices used for the performance tests.

5.2.2 Signal features

There are several parameters in which the signals can vary:

• Data reception frequency
• Data sending frequency
• Serial baud-rate
• Framing/packet size
• Radio interferences

Among those variables, the radio interferences are the only that cannot be toggled,
due to its nature. Nonetheless, the tests should be carried as far as possible from any
interfering wireless source (like a WI-FI antenna). The data input and output frequencies
cannot be toggled in a physical level, as they are dependent of the underlaying hardware.
The same happens with the packet size. Still, it is possible to customize the message size,
as well as the message sending and reading times in the application layer. The format for
the messages is defined in section 7.4.

The value of the serial baud rate is not usually easy to change (if possible). Unless
otherwise required, this value should be set or left to its default.

2An ampere hour (abbreviated as Ah) is the amount of energy charge in a battery that will allow one
ampere of current to flow for one hour.
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5.2.3 Other variables

In the recently mentioned section 2.2.3, some other variables such as the distance be-
tween the devices, or the number of threads per device were identified. Taking into ac-
count that the Bluetooth protocol can be guaranteed to function at a minimum distance
of a meter, the testbed should be defined within that radius. As for the number of threads
goes, it cannot yet be specified, but a balance seeking the best performance should be
found.

The sensors may be powered on and off by hand, but a programmatic way could ease
the benchmarking process considerably.

5.2.4 Desired data measures

The testbed should easily provide measurements for both CPU and battery consump-
tion rates for at least the Android device. The throughput3 and response times for each
and every sensor should also be available at any moment—that is, if they are connected.

The measurements need not be displayed in a live format, since doing so could con-
sume more resources than needed, and the benchmark’s values would not therefore be
entirely valid.

5.3 Physical testing-framework

Taking the aforementioned in mind, the system that is going to be developed requires
at least an Android powered smart-phone and a pool of sensors that transmit data through
Bluetooth. The Android application would uninterruptedly measure different variables
such as the throughput of the communications with the sensors, the battery consumption,
and the like. This measures must be stored in some way for later use—e.g. in a text file or
an FTP server. A computer or some sort of terminal is also required to view and study the
communications’ results.

5.3.1 Android device

It is required that the Android device (or devices) used has Bluetooth capabilities. In
addition to this, the device’s implementation of Bluetooth must comply with the v2.1+EDR

3In communication networks, throughput is the measure for the amount of data that can be transferred
from one unit to another in a given amount of time, usually given in bits per second
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specification of said protocol, since that’s the DF-Bluetooth module’s version. Finding
such characteristics is not a problem at all, considering that almost every smartphone in
the world has Bluetooth as a built-in feature. As for the version goes, it is also task of
the OS to give support to the different Bluetooth specifications out there. In the case of
Android, API level 5 or higher should be enough, but due to the deep changes in its im-
plementation of the Bluetooth stack, it is a far better choice to use the API level 18 or
higher—that is, Android 4.3 Jelly Bean or subsequent versions. More information about
Android’s implementation of Bluetooth can be found in section 4.2.2.

5.3.2 Bluetooth sensor pool

The devices that play the role of Bluetooth sensors need to be cheap and easily built.
Therefore, they are going to be entirely made from Arduino boards and DF-Bluetooth
modules.

These custom ”Arduino sensors” must meet some specific requirements. First, since
the tests focus on the phone’s side, and a priori it is still unknown how much time the
phone’s battery will last, it is compulsory that the devices’ batteries outlive the phone’s.
This means that the sensors must have an uninterrupted source of power. Secondly, they
must provide a mechanism to receive commands and act accordingly.

5.4 Use casess

A total of three use cases have been identified. It should be borne in mind that for the
time being, this application is not targeted at a big group of people, as just serves as a tool
for setting a benchmark in Bluetooth communications. Therefore, the use cases explained
below could as well be treated as a unitary ”perform a benchmarking test” use case. Figure
5.1 shows the three use cases identified, and the following sub-sections explain them in
detail, with their own sequence diagrams.

5.4.1 Start a performance test

The first use case would be the one in which the tester sets some parameters in the An-
droid phone and starts a new test. The test then begins and no more interaction is needed.
The application will run until the phone’s battery ends, or the user kills the application.
Figure 5.2 shows the sequence diagram for this use case.
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Figure 5.1: Use cases of the system.
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Figure 5.2: Sequence diagram for starting a test in the Android application.

When the application is run, it immediately starts to perform CPU usage and battery
readings, and it also stores them in some log files. Then, right when the test parameters
are set, if the scenario is set with one or more Bluetooth sensors, the application may find
and connect to them. From then on, it will continuously send ping signals and store the
obtained values. Note that if there is no scenario set (by the tester), the outcome of this
test cannot be foreseen.

5.4.2 Set a scenario

The next use case is the one in which the user or tester sets a scenario. In a few words,
setting a new scenario means tweaking the Python script that communicates with the
serial ports of the sensors (Arduino boards) so that they perform some specific actions,
and running it. Among other things, the serial-script can decide when to connect to the
boards, and when to send some particular commands to them, so that they behave one way
or another. The serial script may or may not run indefinitely, depending on the tester’s
chosen configuration. Figure 5.3 shows the sequence diagram for setting a scenario.
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Figure 5.3: Sequence diagram for setting a test scenario through a Python script.

5.4.3 Create a graph from raw data

The last use case corresponds to the process of taking the raw data from the smartphone
and processing and plotting it through a Python script. The plotting process requires that
the log files have been copied from the smartphone to a specific folder in the computer
in which the Python plotting script is going to be run. Figure 5.4 shows the sequence
diagram for this process.
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Figure 5.4: Sequence diagram for creating a graph through a Python plotting script.





6. CHAPTER

Analysis

The purpose of this chapter is to explain the thought process done before designing the
system developed. Many things have already been explained in the previous chapters, but
here some extra considerations are made.

6.1 Bluetooth

6.1.1 Why Bluetooth?

Bluetooth encompasses several key points that facilitate its widespread adoption. As
stated in ”What is Bluetooth?” [McDermott-Wells, 2004]: 1) Bluetooth is an open spec-
ification that is publicly available and free; 2) its short-range wireless capability allows
peripheral devices to communicate over a single air-interface, replacing cables that use
connectors with a multitude of shapes, sizes and numbers of pins; 3) Bluetooth supports
both voice and data, making it an ideal technology to enable many types of devices to
communicate; and 4) Bluetooth uses an unregulated frequency band available anywhere
in the world.

These features make Bluetooth an outstanding resource worth trying to work with.

6.1.2 Technical specifications

The Bluetooth specification version that is used in this project is v2.1+EDR1, although
it is not the purpose of this document to explain the specifications and technology affairs

1EDR stands for Enhanced Data Rate.
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of the Bluetooth protocol—there’s more than a thousand pages for the V2.1+EDR core
version, and almost three thousand for the last core version (4.1) of the protocol available
in the official Bluetooth website for whoever is interested—, a few particular features
should be recalled.

For instance, the maximum theoretical throughput that can be achieved with Bluetooth
V2.1+EDR is 3Mbit/s, but the practical data transfer rate is 2.1 Mbit/s [Kewney, 2004].

Another important thing to bear in mind is that there cannot be more that seven ”slave”
devices simultaneously connected to a ”master” device in a piconet. Moreover, not all
”master” devices may even be able to connect with seven slaves. Still, the Bluetooth pro-
tocol enables the formation of scatternets2 to connect more than seven devices with a
master. However, this strays from the scope of the project, and will not be taken into ac-
count while developing the system. This could possibly be a good future work that stems
from this research.

Finally, it should be noted that the Bluetooth protocol has always suffered from sig-
nal interferences. As Bluetooth operates in the 2.4 to 2.4835 GHz electromagnetic band,
problems may appear if a Zig-Bee3 or any other IEEE 802.15.44 based protocol is run-
ning nearby. In addition to that, in [Intel, 2012] it is claimed that USB 3.0 devices, ports
and cables have been proven to interfere with Bluetooth devices due to the electronic
noise they release falling over the same operating band as Bluetooth. This issue should be
considered when designing and performing the tests of the present project.

6.2 Hardware used

6.2.1 Android Smartphones

There are a total of three different available Android devices with which to test the
application (as previously shown in table 5.2). From older to newer, a Galaxy Nexus, a
Nexus S, and a Nexus 5. All these three devices are incidentally some the official smart-
phones for which Android is developed. What this implies is that Google’s staff devel-
opers actively use these very same models to develop their applications—or even the
Android OS itself—. As a consequence, these devices should in theory give less software
problems than any other models in the market.

2A scatternet is an ad-hoc network formed by two or more piconets.
3ZigBee is a specification for a suite of high-level communication protocols used to create personal area

networks based on IEEE 802.15.4. See section 3.3.3 for more information.
4IEEE 802.15.4 is a standard which specifies the physical layer and media access control for low-rate

wireless personal area networks
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As for the Android versions of each device, there’s a wide variety as well. The Nexus
S has the 4.1.2 version of Android (API level 16); the Galaxy Nexus has the 4.3 version
(API level 18); finally, the Nexus 5 has the last current version available (4.4.4, and API
level 19, as of the time of this writing). Except for the Nexus 5, the other two are in their
respective top updates possible, so they will remain in those versions indefinitely.

It should be noted that the devices have been previously used for other research pur-
poses, some of which may have exhausted the battery life hope considerably.

As stated in the review done over Android & Bluetooth in the state of the art (see
section 4.2.2), Android has a completely new Bluetooth stack since API level 18. This
means that the Nexus S has a different underlaying Bluetooth infrastructure and API-calls
to the other two phones, which have the newer stack. This could bring up a potential
problem, and prevent us from performing trustworthy performance tests. What’s worse is
that Android 4.1.2 appears nowhere on the map.

Additional research has brought some light on the matter. Even if there is not a single
mention of Android 4.1.2 in the official pages, and other sources do not provide any
meaningful information, the upgrades made in API 18 do not seem to alter the Bluetooth’s
normal API, according to [Andrdoid-Developers, 2014b]. The updated API only adds a
handful of classes for Bluetooth Low Energy, so there will be no problem at all by using
the Nexus S.

It should be noted that the three phones may be used for the tests, but not all of them
will be equally available. Only the Galaxy Nexus is guaranteed to be at hand anytime
during the project. The other two may be requested by other members of the Egokituz
laboratory.

6.2.2 Bluetooth sensors

As explained in an earlier chapter, the Bluetooth devices developed in this project are
made of Arduino UNO and MEGA boards plus a DF-Bluetooth module. However, even
if they have been referred to as ”sensors” throughout the whole project, they are not that
much like it. Actually, they should be called Bluetooth beacons or stations transmitting
radio signals, since they do not actually sense anything.

The reason why Arduino was chosen over existing Bluetooth sensors or other chip-sets
is twofold. On the one hand, there is no sensor in the market that can be easily configured
to send data the way we want, when we want (in other words, Arduino lets us control the
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test conditions better than anyone else). On the other hand, Arduino has demonstrated to
be one of the most popular microcontroller platforms. Finally, only an affordable Blue-
tooth module compatible with Arduino had to be appointed. Due to its availability and
reduced cost, the modules from DF-Robot were chosen.

As previously mentioned in the requirements capture, the Bluetooth sensors must be
able to be switched on and off. The Arduino boards offer two possibilities for this: DC
adapter plug—specifically 9 to 12V DC, 250mA or more, 2.1mm plug, center pin positive
adapters—and/or USB connection. Batteries could as well be connected to the Arduino’s
DC plug, but since batteries are limited by time, they are of no use for our purposes. The
DC adapters do offer what is needed, but there are not as much as 8 of them at hand, so
that’s a no-go as well. Still, even if more were available, most DC adapters are quite bulky,
and the expansion sockets needed to plug the adapters would take quite a lot of space as
well. Therefore, no other choice than USB is left. Luckily enough, there are many unused
USB-2.0 wires with standard A and Standard B plugs available. Additionally, there’s a
D-Link expansion hub that outputs four extra USB-sockets.

The Arduino boards provide more than enough pin-outs5 for what is needed in this
project. The most interesting features of the UNO boards for our requirements are:

• 13 configurable digital pinouts, two of which provide serial capabilities (one for
inputs and another for outputs).

• One 5V and one 3.3V output power-supply pinouts.
• Three ground pinouts.
• A reset button.
• One USB plug.

The MEGA boards, on the other hand, offer a few more pinouts. Instead of the 11
digital pins of the UNOs, the MEGAs provide 25. Of those, there are 3 pairs (pin-outs 14
to 19, specifically) which provide capabilities for serial communications.

As a last remark, it should be noted that the output power supplies of the Arduino
boards cannot be toggled, so they always provide power—that is, if the board itself is
powered—. In addition to this, the DF-Bluetooth modules do not have any mechanism to
toggle them ON or OFF either. If the modules are going to be switchable, a mechanism
must be designed that enables this feature6.

5A pin-out or pinout refers to the electrical connection points of an electronic device.
6The solution given consists of the tri-state buffers exlpained in section 4.2.3.
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6.2.3 Environment

Apart from the system’s components themselves, the environment in which the tests
will be carried on needs to comply with the requirements identified in the previous chapter.

Since the tests can take several hours, or even days, they should be performed in a place
were the sensors and the smpartphone can stay still, and do not disturb. Additionally, the
tests should be performed under as less interferences as possible. Since no interference
detector is available, not much can be done other than trying to find a place away from
any electrical power source and WI-FI antenna. The Egokituz laboratory in the university
where this project is being developed should provide a good place that meets all these
requirements evenly. The most appropriate hours may be at night, when there should be
nobody working, as the possible interferences will be the lowest and most homogeneous.

Finally, it will be taken for granted that all the sensors with which to make the tests
have already been paired (i.e. introduced the security PIN code) with the smartphone
being used during each test, so no ”artificial” time is lost while the user enters the required
pins manually.

6.3 Software applications
Even if the applications developed are fully explained in the design chapter, some

questions had to be considered before designing them.

6.3.1 Android application

The Android application that is going to be developed needs to be as efficient as pos-
sible, so that the tests’ measurements are not tainted in the slightest. In addition to this,
the overall application’s components should be arranged keeping a balance between mod-
ularization and performance. However, performance will be chosen over modularization
or other design concerns, for obvious reasons.

The application should present the user with a simple interface where some test pa-
rameters can be chosen. A button or any other artifact to instruct the program to start the
test with the selected parameters will also be accessible.

Accessibility concerns, or multi-language possibilities and even layout traits should be
overlooked, unless the scope of the project is modified. The reason behind this is simple:
the work overhead does not pay off, and it does not practically add more value to a system
which is not supposed to be interacted with.
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The identification of the Bluetooth devices for the tests can be done either by checking
each device’s friendly name or MAC address. Additional mechanisms might be used as
well, but are not necessary.

6.3.2 Arduino Application

The Arduino application should follow the same guidelines of the Android application
regarding its performance. The program must be able to work on its own while powered
on, but there should be a way in which to receive commands and act accordingly.

The program should have at least two main behaviors or states: in the ”PING” state,
all the received Bluetooth signals are echoed to its source. In the other behavior, the
”STRESS” state, the board would uninterruptedly send a message or packet of a fixed
size in periods of really short time, also fixed. Note that both states should be able to work
overlapped at the same time.

The messages sent between the Android and Arduino application should follow a pre-
defined message format, with some headers and then the payload (actual content). This
should boost the control possibilities over the message count, error rate, etc. See 7.4 for a
detailed description of the message format.

6.3.3 Python Scripts

Two types of scripts are going to be needed: one type will serve for plotting purposes,
and the other for sending commands to the Arduino boards through serial communica-
tions. It has to be borne in mind that these scripts serve the purpose of simplifying a
couple of tasks of the benchmarking process for the overall system. Should the fulfill-
ment of the project be at risk, these scripts would be the first dispensable components to
be cut back.

Plotting

Taking the tests’ raw results in the form of text logs, there should be a script that gen-
erates a graph for each identified variable. From the outset, it is expected to get graphical
representations for the battery percentage, CPU usage, PING time and throughput values.

The script may automatically generate and export the graph to a common image file
format, or let the user customize the layout and other features of the project and let them
decide to export the or discard the graph. This will be decided conveniently at a later time.
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Serial communications

It is still unknown how much time will each test case take, as it all depends on the
battery of the phone—that’s what this project wants to find out—. However, a script that
lets the user quickly define some commands to be sent over a given time span or at specific
time intervals could be of most help. The script should be able to automatically open
serial COM ports for each Arduino connected to the computer, and should also have the
possibility of sending commands to different devices simultaneously.

Developing a graphic interface with which to interact with goes beyond the goals of
the project, so a command-line window must provide all the script’s functionalities. De-
veloping a GUI could be an interesting future work.

6.4 Google, Android and Bluetooth

During the Google IO7 in 2013, a presentation titled "Best Practices for Bluetooth
Development" took place. During their speech, Sara Sinclair Brody, Rich Hyndman,
Matthew Xie not only explained the best practices for Bluetooth development in Android,
but they also presented the new version of Bluetooth, the so called BLE (Bluetooth Low
Energy) or Bluetooth Smart.

According to the hosts, it is a good practice to check if the Android device supports
Bluetooth, even if the vast majority of existing Android devices do so. They also note that
as of the current API version—18 at the moment of their presentation—, there is no way
of switching on Bluetooth without the user’s interaction or awareness. Supposedly, the
reason behind this decision is a security concern, so that no external actors can get access
to Android’s inherent Bluetooth adapter.

Later on in the same speech, a secure way to establish connections with Bluetooth
devices is presented. What’s curious about this is that the presenters themselves believe
that such way of establishing secure connections is not worth the effort that it supposes,
since the probability of a ”Man In The Middle” attack is almost null.

Additionally, during the 2013 IO presentation, the hosts responded to several questions
regarding Bluetooth Classic and BLE. They stated that as of API 18, Bluetooth LE does
not support broadcasting capabilities. This means that Android devices can only run the
”Central Role”, or in other words, are not discoverable by other devices. At least not

7Google I/O is an annual developer-focused conference held by Google in San Francisco, California



70 Analysis

while Bluetooth LE is being used. This should be taken into account if future work on
this project is going to be made.

For whoever that deals with Android and Bluetooth, it is worth checking the whole IO
presentation (which can be found in [Google-IO, 2013]).
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Design

In this chapter the overall design of the system is gathered. This will give an insight of the
way in which each individual component of the system interacts with the rest.

7.1 Overview

The system developed consists of several pieces or components. On the one hand,
there’s the hardware side, which lies in the Android smartphone and the Arduino boards,
plus at least one computer or terminal to send commands to the Arduinos via USB and
analyze the test results. On the software side, an Android application is needed for the
smart-phones, an Arduino program to echo incoming packets and periodically send ”junk”
messages, and some Python scripts. It is taken for granted that in order to compile the
programs and manage the peripheral devices, a computer (needs not be the same as the
terminal sending serial commands) is also being used, but this will not be taken as part of
the system. The data logged by the Android application may also be copied to a computer
(again, this could be done elsewhere, in an extra machine, or in the same one) and the
plotting scripts would generate some graphs for later analyzing them. Figure 7.1 depicts
an overview of the system, where the most meaningful information exchange between the
components is shown.

71
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Figure 7.1: Overview of the testbed designed and inter-component communication.

7.2 Android Application

The Android application takes a central role in the system. It is responsible for manag-
ing the Bluetooth antenna of the phone to find nearby Arduino devices, connect to them,
and carry on read/write communications. It is also responsible for logging different data
to the phone’s external storage or SD memory card, as well as dealing with layout con-
trol, processing external input and responding to requests. If this component misbehaves,
the system’s integrity in null. Hence, it is mandatory to precisely design this application’s
structure.

7.2.1 Application structure

The Android application consists of six main classes, but one of them contains two
additional ones ”nested” in it. They can all be divided into three groups according to the
three-tier architecture1:

• The MainActivity makes up for all the layout control, in the presentation tier.

1In software engineering, the three-tier architecture is a client–server architecture in which presenta-
tion, application processing, and data management functions are physically separated, so that they can be
developed and maintained as independent modules.
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• The BTManagerThread, ArduinoThread, BatteryMonitorThread and CPUMonitorThread

classes, which constitute the core of the application, are all part of the business logic
or middle tier.

• The LoggerThread class would make up for the data tier.

This architecture allows an easier modularization, and should a part of the application
be changed, no incompatibility issues would appear. Additionally, there are some extra
resources for the presentation layer, as Android’s layouts are easier defined in non-Java
code. The activity_main.xml file contains the view object definitions for the main (and
only) layout, and additional XML files define the icons and GUI elements’ text values,
among other things.

Additionally, there’s a group of less important classes that are just mere tools. That is
the case of ArduinoMessage, a class used to build well formed messages2 and check if the
received ones are valid (i.e. the message contains no corrupt data).

In the following pages, a thorough explanation of the classes that conform the applica-
tion is made. A complete class diagram is shown in appendix B.

Main Activity

The MainActivity presents itself with some input controls in the form of radio buttons
to select the test-plan parameters:

• Discovery mode: initial, continuous or periodic.
• Device connection mode: progressive, connecting one device at a time, or all to-

gether and at the same time.
• Connection timing: immediate, while discovering; immediate, but stopping the dis-

covery in course, or delayed (connection starts once the discovery is finished)

To tell the program that a new test should begin with the selected parameters, a ”Set
plan & start test” button is presented below parameter control radio-buttons.

Whenever a relevant event occurs, such as a discovery start or finish, or a successful
connection to a device, a so-called toast is presented in the screen, containing a times-
tamped message representing the event in question. This toast will only appear for a short
period of time in the screen, and of course, it won’t be seen if the screen is locked.

2A predefined message format for the communications between Android and the Bluetooth sensors is
explained later in this chapter, in section 7.4
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It is clear that the graphic interface is minimal, and so it should remain to consume
as few resources as possible. In case some feedback is needed to see whether communi-
cations are being carried on with a given device, this could be done simply by watching
the RX and TX built-in LEDs of the device’s board. In fact, the DF-Bluetooth antennas’
LEDs themselves inform about the connection state (paired or unpaired) by default.

In figure 7.2 the layout of the main interface can be seen.

Figure 7.2: ”Main Activity” View interface

Bluetooth Device Manager

The BTManagerThread is the cornerstone of the whole Application. It is responsible
for handling Android’s BluetoothAdapter, as this is the starting point for all Bluetooth
actions in the Android OS. This adapter gives control over the discovery process, and it
can also be used to retrieve the list of devices that are already bonded with the phone. At
the same time, this thread listens to some broadcast3 Intents4 related to Bluetooth events
that are raised when a device is found, a connection /disconnection is made, or a discovery
is started or finished.

The logic behind this class is the core of the whole system, but understanding how

3A broadcast is a message that any app can receive.
4An Intent is a messaging object used to request an action from another app, and facilitates communi-

cation between components.



7.2 Android Application 75

it works is not easy. There are a total of three varying parameters that this class must
control. Firstly, it has to manage when to start each discovery (if more than one is to be
done). Three are the possibilities for discovery timing: just an initial one, a continuous
discovery, and a periodic one. Controlling all these cases can seem tough at first, but it is
not if the commonalities between them are found. For instance, the initial discovery must
always happen, so there’s no need to control whether an initial discovery has to be done
or not. It is only necessary to know what action should be made once the first discovery
has finished.

At this point, one could argue that the continuous discovery is a particular case of the
periodic, with a null delay time between each period. However, due to Android’s way of
handling delayed tasks for the future, if the discovery had to be truly continuous, these two
modes could not be achieved in the same way. Therefore, when the broadcast Intent saying
that the discovery is finished, the plan mode set is checked, and the program acts according
to it. In the case the initial discovery, nothing more is done, as no more discovery requests
will be done. In case a continuous discovery ought to be done, it is requested immediately
through the Bluetooth-adapter. Should the discovery mode be periodic, however, a post-
delayed runnable containing the discovery request is queued into the OS, which will be
later executed after the given delay has passed.

Another parameter of the planner is the connection-timing mode, which can be either
immediate, while a discovery is in process (or stopping it), or delayed. Unlike in the
previous case, there is no need to periodically run a post-delayed method. On the contrary,
it is mandatory to control-check the parameter at two different times: first when a new
device is discovered, and later, when the discovery is finished. When the system finds a
device, a receiver in BTManagerThread gets ahold of the newly found BluetoothDevice

object, and it immediately stores it in a temporal array. Then, the connection timing mode
is checked and, if it is immediate, it will stop the ongoing discovery (or not). It will also
request the device to be connected through an auxiliary or helper thread (more on that
later). In case the connection timing is set to be delayed, nothing is done at this point. As
aforementioned, however, the timing-mode is also checked when a discovery is finished,
so in case it is set to be delayed, a connection request is fetched after the discovery has
finished.

The last piece of the logic control is the connection mode of the devices found. Since
the possible cases are only two, progressive and all-together connect, the control is much
simpler than the other cases. As this parameter is not bound to time, its control is not
done in the same place as the other two. In this case, it is done whenever a connection is
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requested. If the mode is set to be progressive, only one connection will be processed at
a time, and nothing will be done until that process has finished (be it successful or not).
Then the next connection will be fetched. If the connection with the available devices is
to be made at the same time, however, concurrent and non-blocking processes will be run
to perform the connections (more on this later).

As it can be seen, the logic implemented in this class is quite intricate. Further expla-
nations on this control-process can be found in the chapter dedicated to the development
process (section 8.3).

Planner Thread and Background Thread Dispatcher

Even if it was not foreseen to use nested classes, in order to maximize the perfor-
mance while keeping the structure of the application as intact as possible, two addi-
tional classes where appended at the end of the BTManagerThread class: ArduinoPlan-

nerThread and BackgroundThreadDispatcher. As the names themselves point out, both
extend the Thread class, and again, the reason behind this is performance, as this enables
performing particular time-consuming tasks in the background that would otherwise block
the proper flow of the Bluetooth Manager, and therefore spoil the whole system whatso-
ever.

The ArduinoPlannerThread is used to check if the new devices found are of any inter-
est to us (i.e. they are Arduino devices), and to start the threads that would manage the
communications with each of them. At first, the ArduinoPlannerThread was in charge of
dynamically creating and starting each ArduinoThread as well. Since this process took a
while to end, it was mandatory for the ArduinoPlannerThread to be running on a thread
of its own.

Later, though, during the development process of the project, a new and more elegant
way of creating those threads was found through the AsyncTask class of Android. Ac-
cording to Android’s reference, this class is in essence mostly used by the UI threads to
run heavyweight procedures or blocking calls in the background. However, there is no
limitation for using it the way we are. Thus, the BackgroundThreadDispatcher class was
created, as this significantly eased the way of launching many threads at the same time.

Arduino Threads

The ArduinoThread classes are the only ”dynamic” threads of the application, so to
speak, as their life-cycle depends entirely on external factors to the application. Each of
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these threads are created and started whenever a new Arduino device is detected nearby
(that is, with a reachable Bluetooth antenna), and destroyed when the connectivity is lost
between the smart-phone and the Arduino.

Each ArduinoThread contains its own socket object, as well the corresponding in-
put and output streams associated to each. Three key processes work around these ob-
jects. Firstly, the connection process, which takes place when the class is instantiated,
opens a socket level connection with the newly found Bluetooth device. If successful, the
thread keeps running until otherwise told or connection is lost. While running, each Ar-

duinoThread uninterruptedly listens to the input stream of its socket. When a well formed
message5 is received, a notification is sent to the main thread, so that the message can be
processed or logged. At the same time, an asynchronous function that writes any given
data to the output stream of the Bluetooth socket can be called. Logically, it is this function
that will send the ping calls to the connected device.

Had it been a smaller group of Bluetooth devices, the most efficient way to deal with
the incoming and outgoing messages would have been to keep dedicated threads for each
read & write task. However, taking into account the overhead that the inter-process com-
munications bring with them, a different decision was taken. From the experience gained,
it seemed that serial communications over Bluetooth were fast enough to avoid building a
blocking queue of either incoming or outgoing messages, so simplicity was chosen over
the possibility of creating more threads and using the resources they would have required.

As a side note, there’s a peculiarity when dealing with incoming messages that was not
foreseen at first. The problem in question was that while carrying simultaneous commu-
nications with multiple devices at the same time, although each dedicated ArduinoThread

worked flawlessly, the main thread acted as a bottleneck, since all the incoming messages
where passing through it. In order to minimize the unavoidable effect of this drawback,
two modifications were made: on the one hand, the handler of the MainActivity was pulled
out of it, and embedded in a dedicated thread so as to not block the GUI and the whole
system. On the other hand, in order to decrease the number of messages arriving at the
main thread, each ArduinoThread would send the incoming messages in sets of a hundred.
Thus, the bottleneck problem was greatly minimized.

5See section 7.4, where the message format is explained.
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Battery Monitor

The BatteryMonitorThread is a class that runs on its own thread, and its sole purpose is
to listen for battery state changes. Sporadically, when the Arduino OS sends a broadcast
Intent with the battery state, this monitor reads the data, calculates the percentage, and
sends it in a message to the main process, so that it may later be logged or displayed in
the GUI.

CPU Monitor

Much like the battery monitor, the CPUMonitorThread also runs on its own thread
and looks for changes in the CPU usage. However, the way this is achieved has nothing
to do with Intent broadcasts. Indeed, this thread checks periodically (every second) the
/proc/stat file in the Android device, and reads some specific data-fields, with which the
usage is inferred. The format and content of this file, as well as the process of obtaining
the CPU usage, is explained in section 8.3.6 of the development chapter. But in essence, it
is the same as in most UNIX operating systems: it contains various pieces of information
about kernel activity that are automatically updated by the OS.

Logger

The LoggerThread.java is the only component in the third tier of the architecture of the
program. Unlike in most other systems where both data persistence mechanisms and data
access layers are implemented, in this application only the storage option (persistence) is
given, as the logic tier needs not any past data.

This class runs in the background doing nothing else than to wait until a message from
another thread is received. Each of these messages will bring with them a string or array
of strings that need to be written to a log file.

For performance reasons, the logger will write the data to the corresponding files with-
out returning any response to the thread that made the logging request, unless an exception
while writing has happened. In that case, a message to the main thread (MainActivity) will
be sent.

7.2.2 Data flow

As aforementioned, the gist of the program resides in the BTManagerThread, but
deeming it as the core of the program wouldn’t be wise, since all information passes
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through the MainActivity, and then the LoggerThread. Therefore, it could be said that
there is no class or part of the program above another. However, as the MainActivity holds
the GUI, killing this thread will start a cascade effect, stopping every ”worker” threads6.

When the application is first run, the user is presented with the interface in figure 7.2.
After choosing the parameters (or leaving the default mode) and pressing the ”Set plan
& start test” button, a toast7 saying that discovery has started will appear in the screen.
If the selected mode is no other than ”initial discovery”, the screen will not show more
information, unless new devices are connected by the current discovery.

Unbeknownst to someone watching the screen, however, several processes have been
running in the background since the inception of the application, and even more after
the ”Set plan & start test” button has been pressed. The battery and CPU monitoring
threads have uninterruptedly been waiting for battery-change broadcasts and reading the
/proc/stat file respectively. Messages from those two threads are already arriving to the
main process, where they are being redirected to the logger thread. Therefore, even if no
item in the screen has been touched, the log files in the storage of the smart-phone are
already being populated.

Right after the plan is set, the BTManagerThread starts one or more discoveries (not si-
multaneously, of course) through the device’s Bluetooth adapter, and informs to the Main-

Activity whenever it does so. When the adapter finds a new device, a broadcast is caught by
the BTManagerThread, and this sends it to the ArduinoPlannerThread. Depending on the
”connection time” chosen, the BackgroundThreadDispatcher will be called instantly or at
a later time. Either way, if the connection is opened successfully, the BTManagerThread

will receive a message containing the newly started thread’s instance.

At this time, there could possibly be a pool of ArduinoThreads running and carrying
communications of each own, and simultaneously be sending the received messages to the
MainActivity directly. Should one of these threads lose connection with its Arduino de-
vice, a notification would arrive at the BTManagerThread, and this would act accordingly
(i.e. kill the disconnected ArduinoThread).

There are three possible messages that each ArduinoThread can send to the MainAc-

tivity: the ping response times, the ”STRESS DATA” sizes, and errors (corrupt messages).

In the figure 7.3 the data flow between classes is depicted.

6Android refers to the GUI as the main thread (the first that is run), while the other threads are taken as
workers.

7In Android, a toast provides simple feedback about an operation in a small popup for a short period of
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Figure 7.3: Data flow diagram.
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7.3 Arduino
The Arduino application is dependent of the wiring between the Arduino board itself

and the DF-Bluetooth module. Therefore, the wiring design should be made prior to the
program.

7.3.1 Wiring

The way to make use of the DF-Bluetooth module through Android is simple, since
only two things have to be made: the first is to power the module, and the second is
to connect the output of the module to the input of the Arduino board, and vice-versa
with the input of the module. As previously mentioned in section 4.2.3, the Arduino UNO
boards do not have any extra dedicated serial pins—other than the RX and TX pins, which
are shared with USB serial connections—. Therefore, the wiring scheme will be slightly
different for the UNO and MEGA boards. Note that this difference implies different pro-
grams for each type as well.

In the case of the Arduino UNO board, digital pins 2 and 3 have been selected as
complementary RX and TX pins, so these will be the input and output pins, respectively.
As for the MEGA board, the RX1 and TX1 pins (digital pins 19 and 18, respectively)
have been selected as input and output.

From the two possible power outputs in the Arduino boards (3 and 5 Volts), the 5V pin
is going to be connected to the VCC pin of the DF-Bluetooth module. In addition to this,
one of the GND (ground) pins is going to be connected to the GND pin of the module.

Figure 7.4 shows the wiring scheme for the Arduino UNO board with the DF-Bluetooth
module, while figure 7.5 shows the equivalent wiring for the Arduino MEGA. The colour
of the cables have the following meaning:

• Red: power (5V)
• Black: ground (gnd)
• Yellow: from the output (TX) of Arduino to the input (RX) of the Bluetooth module

(data goes from the Arduino to the module).
• Green: from the output (TX) of the module to the input (RX) of Arduino (data goes

from the module to the Arduino)

The wiring setup explained and designed until now should be sufficient for our pur-
poses. However, knowing what has previously been stated about the Arduino boards not

time.



82 Design

Figure 7.4: Wiring of the Arduino UNO board and DF-Bluetooth module.

Figure 7.5: Wiring of the Arduino MEGA board and DF-Bluetooth module.
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having any built-in capability to cut the power off of their 5V supply8—nor do the DF-
Bluetooth modules have a toggling option for powering them ON & OFF—, there may be
a problem with the performance tests’ ”progressive” scenarios.

Taking into account that the Bluetooth modules should be able to be automatically
turned ON & OFF (see the performance tests’ other variables section in 5.2), an external
mechanism is required.

The solution to this problem is solved by using a tri-state buffer9 (technically, it’s a
”power driver”). In essence, this component acts as a power switch. The precise way to use
it on a par with an Arduino and a DF-Bluetooth module is explained in the development
chapter (section 8.4). The inclusion of this module in the wiring is depicted in pictures
8.3a and 8.3b for the UNO and MEGA boards, respectively.

7.3.2 Application

The Arduino application consists of a single file, but since different Arduino boards
are being used, two separate but almost identical files are required.

The fact that two different Arduino boards are being used would not matter if the
Arduino UNO had some extra dedicated serial RX and TX pins. The ones it has could be
perfectly be used to communicate the board with the DF-Bluetooth antenna, but then the
board could not be connected to the computer by the USB, as previously mentioned. To
work around this problem, a library from Arduino that simulates the serial pins’ behavior
by software was used10. Indeed, this is the reason why the code for the Arduinos is divided
into two files, since everything but the Bluetooth-serial related code is identical.

As any other Arduino program, two main parts can be identified: the setup block and
the looping loop. The setup block is called only once, just when the board starts or is
rebooted11. During this block, the board is configured to open the required serial ports at
a specific baud-rate (the DF-Bluetooth module’s default, 57600 bits/s). Additional con-
figurations like setting the Bluetooth module’s power to null, or initializing some clock
parameters are also done in the setup block.

In the looping block, the program will be waiting for incoming data from two sources:
the message-bytes coming from the Bluetooth module, and the serial-commands that are

8See section 6.2.2 in the analysis chapter for more information.
9In section 4.2.3, a detailed explanation about tri-state buffers can be found.

10The library in question is SoftwareSerial.
11Any Arduino board can be physically rebooted by pressing the ”RESET” button in the board. When a

serial connection is established with a board, it automatically reboots itself.
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sent to the board directly by serial (through the USB cable). In addition to this, if a special
flag is activated, the board will write the same ”STRESS-DATA” message to both the serial
port (USB) and the DF-Bluetooth’s RX port.

The program’s state is managed by means of some control flags, which are activated
when specific commands are sent to the board by serial (USB). Below are explained
the implications of those flags, and figure 7.6 shows the state machine for the Arduino
application.

”p” (activates the POWER flag): The DF-Bluetooth module will be powered on, and the
program will echo all incoming data from it.

”f” (activates the FINALIZE flag): The DF-Bluetooth module will be powered off, and
the program will cease to send any data. This command sets the device on its initial
state, but stores the size of the ”STRESS-DATA” message.

”s” (activates the STRESS-DATA flag): The program will send a ”STRESS-DATA” mes-
sage in each loop.

”m” (activates the MUTE flag): The program will cease to send ”STRESS DATA” mes-
sages, but will keep echoing all incoming data from the DF-Bluetooth.

”i” (briefly activates the INCREMENT flag): The size of the ”STRESS-DATA” message
is incremented in one unit (to be defined, but most surely 1, 10, or 100 bytes)

7.4 Arduino to Android communication
The design for the message format explained below is inspired on [hxm, 2010] by

Zepyr Technology.

Figure 7.7 shows the format of the messages sent between the Android application and
Arduino devices. Below are explained the meanings of each field, as well as the possible
values for some of them12.

1. The STX field (Start of Text) is a standard ASCII control character (0x02) and
denotes the start of the message. Although it is not guaranteed that this will not
appear again within a message, it gives some delimiting to the frame and therefore
a start character to search for when receiving data.

2. The Message ID uniquely identifies each message type and is in binary format. For
PING messages, the ID is 0x26, and for STRESS-DATA messages, 0x27.

3. The sequence number is an integer that identifies the ordinal number of the message,
and it depends on the message ID. Valid values range from 1 to 100.

12Note that hexadecimal numbers are prefixed by ’0x’.
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Figure 7.6: State machine for the Arduino devices.

Figure 7.7: Format of the messages sent between the Android application and Arduino devices.
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4. The Data Length Code is used to specify the number of bytes within the data pay-
load field of the message. It is a long number formed by four bytes. Valid values
range between zero and 232 (inclusive). For PING messages it should be 0x00.

5. This field contains the actual data sent between the local and remote units and can
contain anywhere between zero and 232 bytes of data. The number of bytes in this
field is dictated by the DLC field.

6. CRC stands for Cyclic Redundancy Check13. A 4 byte CRC is used, and its value
is based on the remainder of a polynomial division (CRC-32) of the payload field.

7. The ETX field (End of Text) is a standard ASCII control character (0x03) and de-
notes the end of the message.

The minimum number of bytes for a message is:
1ST X +1Msg.ID +1Seq.Num.+4DLC +DLCpayload +4CRC +1ET X = 12+DLC

In the Android application a message is instantiated whenever a PING is sent to a target
device, or whenever a message (regardless of its type) is received. For both purposes, the
ArduinoMessage class is used. On the other hand, in an Arduino device a message is only
created when sending a ”STRESS-DATA” message. This is so because when an Arduino
receives a PING message, it is echoed immediately and no more attention is given to it.

7.5 Python Scripts

The reasons for using Python are twofold. On the one hand, it is a clear and easy to
learn language, yet it provides powerful plotting capabilities. Having no previous experi-
ence with other languages, it appeared as the most convenient tool to plot the tests’ results.
On the other hand, if provides the opportunity of automating the changes in the scenario
(that is, the switching of the Bluetooth antennas connected to the Arduinos, among other
things) through serial port protocol communications.

For these reasons, and the fact that I already had some experience with this language,
regardless of the context, Python was chosen.

Plotting

The motivation behind using the plots comes from a need to simplify the process of
examination for the tests’ results. The visual representation would not only help to inter-

13A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and
storage devices to detect accidental changes to raw data.
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pret the results in a way other than reading the logged data, but also to identify unexpected
anomalies in the glimpse of an eye.

In a few words, the plotting scripts take data from the log files, make calculations if
needed (e.g. to obtain the throughput), and show the results in a graphic diagram window.
This window lets the user customize some properties of the diagram, and offers the pos-
sibility of exporting it to an image file. A static image could be automatically generated
and sent to the computer by code also, but this would not give the opportunity to change
the zoom-scale or other parameters in real-time.

The raw data is logged in a way which eases readability to the python scripts. Each
data type is stored in a separate file, each containing different number of values. However,
all the log files share something in common: every entry or line of the logs is preceded
by a time-stamp of when the reading was done. These stamps are the time in when the
value of the data is first known, and is given in Linux or epoch time14. There are log files
for battery percentage changes, CPU usage, ping times, received data, and events. The
contents and structure of each data type is explained below:

• Battery percentage: the readings are logged in battery.txt. Each entry consists of a
timestamped float value, ranging from 0 to 100. A value reading is done when the
Android application receives a broadcast intent from the OS. These broadcasts are
not periodic, so the time-space between readings can vary significantly.

• CPU usage: the readings are stored in cpu.txt. Each entry consists of a timestamped
float value, ranging from 0.0 to 1.0. Readings are performed once every second.

• Events: an event is a string value indicating that a relevant phenomenon has hap-
pened, such as "discovery-started".

• Received data: the readings are stored in data.txt. Each entry is preceded by a time-
stamp, followed by a string value that indicates the target sensor from which a
”stress” data message was read, and then by an integer indicating the number of
bytes that were read.

• Ping values: the readings are stored in ping.txt. It is very similar in structure and
content to the received data, but with another integer value at the end of each entry.
This last value is the ping or elapsed time since the packet was sent and received.

During the process of storing the data, no information is lost nor filtered. What’s more,
in order not to taint the readings’ timestamps, the Android application does not perform

14Unix time (aka POSIX time or Epoch time), is a system for describing instants in time, defined as
the number of seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC), Thursday, 1
January 1970
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any calculation over the data values, since this would consume more resources than re-
quired.

Therefore, the data in the log files is precise in the sense that it has been collected in
the most efficient way possible with the resources at hand. This does not mean that the
values are a 100% reliable. The battery level, for instance, depends on the accuracy of the
phone’s internal sensors and Android’s algorithm to calculate it. It would be much more
appropriate to measure the electrical current that drains the battery with a multimeter, but
there is no easy way of logging the readings for later use. In addition to this, depending
on the smartphone the battery is not always easily accessible, as it is sometimes fixed or
soldered.

The ping times may be tainted as well, since there is no way of measuring the exact
real time in which the Android device sends or receives the packet through the Bluetooth
antenna. If the device is busy performing other tasks, the packet may be stored in a buffer
for some time, and alter the final ping value. However, this is not a problem, since what
this research is measuring is not the real value of round-trip delay time but rather the
smart-phone’s rate of attainment in the communications.

Serial Communications

The script presents the user with a multiple-choice menu (all within a command-line
terminal), with three options:

1. See available serial ports: shows the serial ports available at this moment (most will
be USB devices).

2. Open serial ports: tries to connect to all the available serial ports belonging to an
Arduino. Once a connection to a port that has been established, command ”f” is
sent to it, to reset its state.

3. Begin test-script: executes a block of code that sends the commands explained in
section 7.3.2 to the connected serial ports at specific time intervals.

The logic behind the script will be kept as simple as possible, and no error-checking
will be necessary. The block of code that sends commands to the connected serial ports
may or may not be an infinite loop. If the program ends in an unexpected way, no special
commands needs to be sent to the connected serial ports.

The block of code containing the test-script will be slightly changed for each test case.



8. CHAPTER

Implementation

This chapter explains some technical details about the system developed. Some minimum
or general knowledge on Eclipse, Git, Android, Arduino, Python and other technologies
is taken for granted.

8.1 Apache 2.0 license

The source code of this project is developed and published under the Apache License,

Version 2.0 by the Apache Software Foundation. The project’s source contains a copy of
this license, and the original Apache license template can be found in the link below.

https://www.apache.org/licenses/LICENSE-2.0.html

8.2 The Git repository

Although the development of the project has been done entirely in a PC workstation,
all the files required for the system to be developed, compiled and executed are within a
local Git repository. At the same time, this local repository is connected to another one in
GitHub. This means that all1 the source files of the local Git repository are stored on the
cloud.

Originally, this repository was used for a sample application made by Borja Gamecho
and I during our previous collaboration, and was later used as the basis for the whole

1All the files that have been committed or uploaded
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system hereby developed. The owner of the account linked to the repository is Borja,
while I have full access for contributing to it as well.

The reasons for keeping the project in this repository and not a new one are twofold:
first, because at an early state of the project, moving and reconfiguring this setup would
have taken much time, as I did not have much experience with Git and did not want to
mess things up. Doing so would have taken an overhead of work for a purpose that was
not necessary. Second, and more importantly, it was decided that in order to guarantee
that Borja could have access to it in the future, I would keep a copy for myself, while
updating his repository.

The project’s entire source code is available in a public repository at GitHub.com, and
it can be easily accessed following the link below:

https://github.com/bgamecho/arduino2android

8.3 The Android application

The development of the Android application is entirely done through the Eclipse-ADT
framework. The project’s workspace directory is located inside a Dropbox folder to guar-
antee that the files are automatically backed up to a secure location. Apart form this, the
whole project is also part of a Git repository within GitHub.com, as aforementioned.

The project is structured as any other Android program. Apart from the auto-generated
files and directories, there are three main folders in which the source code for different
components can be found:

src Contains the main source code, where all the java files are gathered.
res Contains extra resources, such as layout descriptions (in XML), or general String

values.
Assets Contains files related to the overall system. This folder is special, as no files re-

quired for the Android application are within it.

The Assets folder contains the source code of the Arduino programs, as well as some
python scripts. Some tests’ results used for debugging purposes can also be found in here.

In the following subsections, some of the most meaningful or interesting pieces of the
application are explained, as well as the process of developing them.

https://github.com/bgamecho/arduino2android
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8.3.1 Starting the application

When executing the application, MainActivity is started. During its creation, it sets the
GUI layout and initializes the other threads (BTManagerThread, BatteryMonitorThread,
CPUMonitorThread and LoggerThread), and then starts them all. When those classes
are instantiated, a reference to the Handler of the main thread (MainActivity) is passed
along to each one of them. This will give them the possibility of sending messages to the
MainActivity.

When BTManagerThread is created, it checks whether the Android device has a Blue-
tooth adapter or not—i.e. checks if the phone has a Bluetooth antenna—. If it does, it
checks if it is currently enabled. If it is not, it requests the user to enable it, and Android
will automatically present the user with a pop-up (an Android Intent produced by the
call in listing 8.1) as shown in figure 8.1 requesting for permission. Once the user has
granted (or denied) permission, the MainActivity will receive the Intent’s result. At this
point, if Bluetooth is disabled (the user has not granted the permission), the application is
immediately finished.

Figure 8.1: Bluetooth turning on request.

Due to Android’s usability security and policy, there is no possible mechanism to turn
on Bluetooth without the user’s knowledge and permission. In case this changes in the
future (in an updated Android API), this procedure could be automated.
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Listing 8.1: Bluetooth enable request.

Intent enableBtIntent = new

Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

((Activity) mainCtx).startActivityForResult(

enableBtIntent,

REQUEST_ENABLE_BT);

8.3.2 Communicating with BTManagerThread

The BTManagerThread class contains two objects with which it gets information from
other classes or components of the Android application. The first one is btHandler, and
instance of Android’s Handler class. This object listens for messages sent explicitly (and
only) to the BTManagerThread from other classes. There are a total of five different mes-
sages that can arrive, each with a unique identifier, and possibly served with additional
parameters. The messages may only serve to inform about an incident, or to request for
something to be done. The possible message identifiers and their implications are:

• MESSAGE_SET_SCENARIO: Set the scenario and start a test.
• MESSAGE_BT_THREAD_CREATED: An ArduinoThread thread has been initial-

ized and is running.
• MESSAGE_ERROR_CREATING_BT_THREAD: There’s been an error while in-

stantiating an ArduinoThread thread.
• MESSAGE_CONNECTION_LOST: Connection was lost with an Arduino device.
• MESSAGE_SEND_COMMAND: Send a command to an Arduino device.

The other object that enables communicating with other components is myReceiver, an
instance of Android’s BroadcastReceiver class. This object listens to broadcasted Intents

from Android (all the Intents that are received have automatically been created and sent
by the OS) and acts accordingly. There are two Intent types, according to their origin:
BluetoothDevice and BluetoothAdapter. For the former, all received Intents contain an
instance of a BluetoothDevice object that corresponds to the message’s inception. There’s
a total of five Intents that the receiver listens to:

BluetoothDevice

• ACTION_FOUND: It means that a Bluetooth device has been found by a
discovery, and an instance of it (BluetoothDevice object) is attached to this
Intent.
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• ACTION_ACL_CONNECTED: A connection has been established with a
Bluetooth device.

• ACTION_ACL_DISCONNECTED: The connection with a Bluetooth device
has been lost, and an instance of it (BluetoothDevice object) is attached to this
Intent.

BluetoothAdapter

• ACTION_DISCOVERY_STARTED: A discovery has started.
• ACTION_DISCOVERY_FINISHED: The ongoing Bluetooth discovery has

finished.

8.3.3 The control logic

As previously explained in section 7.2.1, the control logic implemented inside BT-

ManagerThread is quite intricate. Basically, the requests for discovery can done by four
different triggers:

• MESSAGE_BT_THREAD_CREATED: triggered when an ArduinoThread has suc-
cessfully been created and a connection with a Bluetooth sensor has been estab-
lished.

• MESSAGE_ERROR_CREATING_BT_THREAD: triggered when the creation of
an ArduinoThread has encountered a problem, probably for not being able to estab-
lish a connection with a target Bluetooth sensor.

• ACTION_DISCOVERY_FINISHED: triggered when an ongoing Bluetooth dis-
covery has finished.

Additionally, when the time since the last discovery exceeds a predefined time interval,
a discovery is also requested just in case one of the previous triggers did not work properly.

All discovery requests are sent to a function where the plan parameters are checked,
and where it is decided whether to carry the discovery out or not. Listing 8.2 shows the
contents of that function.

8.3.4 Communications with the Bluetooth devices

When the BTManagerThread finds a connectable Arduino—by checking its name,
identifier or MAC address—, an ArduinoThread is created for that device alone. The very
first thing this thread/class does when instantiated is to open a socket with the target device
it intends to connect to. Listing 8.3 shows the function for this process.
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Listing 8.2: Function to check the plan decide to start discovering.

private final BluetoothAdapter _BluetoothAdapter;

private final long discoveryInterval = 30000; //milliseconds

private long lastDiscoveryTimestamp;

public Handler btHandler = new Handler() {...}

// List of devices waiting to be connected:

private Map<String,BluetoothDevice> waitingToBeConnected;

//Test parameters: (instanciated when this class is created)

private int discoveryPlan, connectionMode, connectionTiming;

private void startDiscoveryIfPossible() {

switch (discoveryPlan) {

case INITIAL_DISCOVERY:

// Do nothing (an initial discovery has already been done)

break;

case CONTINUOUS_DISCOVERY:

if(connectionTiming != IMMEDIATE_WHILE_DISCOVERING_CONNECT){

if(!(waitingToBeConnected.size() > 0)){

_BluetoothAdapter.startDiscovery();

lastDiscoveryTimestamp = System.currentTimeMillis();

}

}else{

_BluetoothAdapter.startDiscovery();

lastDiscoveryTimestamp = System.currentTimeMillis();

}

break;

case PERIODIC_DISCOVERY:

Runnable postRunnable = new Runnable() {

@Override

public void run() {

_BluetoothAdapter.startDiscovery();

lastDiscoveryTimestamp = System.currentTimeMillis();

}};

btHandler.postDelayed(postRunnable, discoveryInterval);

break;

}

}
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Listing 8.3: Function to open a socket with a Bluetooth device.

private BluetoothDevice myBluetoothDevice; //Instanciated previously

private BluetoothSocket _socket;

private InputStream _inStream;

private OutputStream _outStream;

public void openConnection() throws Exception{

Method m = myBluetoothDevice.getClass().getMethod(

"createRfcommSocket", new Class[ ] {int.class});

_socket = (BluetoothSocket) m.invoke(myBluetoothDevice, 1);

_socket.connect();

_inStream = _socket.getInputStream();

_outStream = _socket.getOutputStream();

}

Once the socket is successfully created, the thread will enter in an infinite loop, and in
each iteration it will check for new data arriving to the input stream (_inStream).

Figure 8.2 shows the dialog for entering a device’s PIN code when requesting a con-
nection establishment with it.

8.3.5 Battery monitoring

The BatteryMonitorThread is kept as simple as possible. Its only commitment is to
listen for the general purpose ACTION_BATTERY_CHANGED Intent thrown by the
OS (Android) whenever it detects a change in the Battery level. In order to receive such
messages, a registration like the one in listing 8.4 needs to be made. Listing 8.5 shows the
code for retrieving the Battery level value from said Intent, and how the MainActivity is
notified through its Handler.

8.3.6 CPU usage monitoring

The mechanism to calculate the CPU usage is inspired on a question from the Stack-

Overflow.com forums2.

The Android operating system is based in Linux Kernel, although it is not identical
(Google has made several modifications). Still, there is plenty of features that both An-
droid and Linux share in common, such as the proc file-system, which provides an inter-

2The original forum-thread can be found here.

https://stackoverflow.com/questions/21102080/how-do-i-read-cpu-stats-in-java-from-an-android-phone
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Figure 8.2: Pairing request for a Bluetooth device.

Listing 8.4: Registration for ACTION_BATTERY_CHANGED Intent.

private Context mainCtx; //Instanciated previously

IntentFilter ifilter = new IntentFilter(Intent.ACTION_BATTERY_CHANGED);

batteryStatus = mainCtx.registerReceiver(myReceiver, ifilter);
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Listing 8.5: Calculus of the Battery level.

private Handler mainHandler; //Instantiated previously

private final BroadcastReceiver myReceiver = new BroadcastReceiver() {

public void onReceive(Context context, Intent intent) {

String action = intent.getAction();

switch (action) {

case Intent.ACTION_BATTERY_CHANGED:

int level = intent.getIntExtra(

BatteryManager.EXTRA_LEVEL,

-1);

int scale = intent.getIntExtra(

BatteryManager.EXTRA_SCALE,

100);

float batteryPct = (100*level) / (float)scale;

long timestamp = System.currentTimeMillis();

Message sendMsg = mainHandler.obtainMessage(

MainActivity.MESSAGE_BATTERY_STATE_CHANGED,

batteryPct);

Bundle myDataBundle = new Bundle();

myDataBundle.putLong("TIMESTAMP", timestamp);

sendMsg.setData(myDataBundle);

sendMsg.sendToTarget();

break;

}

}

};
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Listing 8.6: Content of the /proc/stat file.

cpu 3965 760 6647 1920 4138 0 96 0 0 0

cpu0 3965 760 6647 1920 4138 0 96 0 0 0

intr 58877 123 236 0 0 157 0 3 0 1 0 0 0 4328 0 0 284 1926 13349 [...]

ctxt 173935

btime 1408899808

processes 2754

procs_running 4

procs_blocked 0

softirq 73912 0 27372 334 989 12857 0 198 0 22 32140

face to the kernel’s data structures [lin, 2014]. Commonly mounted at /proc, the /proc/stat

file under this file-system is of most relevance when dealing with CPU measurements.

As Nitsch (2003) thoroughly explains, in the /proc/stat file there are various pieces of
information about kernel activity, and all the numbers that appear in this file are aggregates
since the system first booted [Nitsch, 2003]. Listing 8.6 shows the content of the /proc/stat

file for a specific Linux machine3.

The numbers at each line correspond to the identifier at the beginning of the line. For
example, the numbers at the first line ”cpu” identify the amount of time the CPU has
spent performing different types of work, while the number at the ”procs_running” line
means the number of processes running right now in the different CPUs. Time units are
in USER_HZ or Jiffies4.

The only relevant data to calculate the CPU usage is within the ”cpu” line (the first
line). There may be one or more ”cpu#” lines, which correspond to each individual core
of the processor. The first line is the sum of them all. The meanings of the columns for
Android’s particular proc file-architecture are as follows (from left to right):

user Normal processes executing in user space (time spent in user mode).
nice Niced processes executing in user space (time spent in user mode with low priority).
system Processes executing in kernel space (time spent in system mode).
idle Twiddling thumbs (time spent in the idle task).
iowait Time waiting for I/O to complete.
irq Time servicing interrupts.

3The content of /proc/stat varies with architecture.
4In a Linux operating system, HZ (”hertz”) is a variable that measures how often the CPU can switch

between tasks.
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softirq Time servicing softIRQs.
steal Stolen time (the time spent in other operating systems when running in a virtualized

environment).
guest Time spent running a virtual CPU for guest operating systems under the control of

the Linux kernel.
gest_nice Time spent running a niced guest (virtual CPU for guest operating systems

under the control of the Linux kernel).

Note that Steal, Guest and Guest Nice times are all spent in virtualized guest operating
systems, and that usually these values are zero in Android [Bui, 2012].

Now, as Jose Martinez (2009) states, every time /proc/stat is read it gives the number
of slices each processor has passed doing what. As aforementioned, however, all values
are counted since the OS is running. Therefore, a single reading will not tell us the current
CPU usage, but the total absolute usage of the CPU in each type of task. In order to know
the ”current” CPU usage, we have to make an initial reading, store it, and after an elapsed
time interval, make another. The difference between the two readings (calculated as the
subtraction for each number or column, or in other words, the last reading minus the
previous one) will give us the CPU’s usage during that time interval [Martinez, 2009].

Still, that difference is raw data, and in order for us to interpret it, a formula needs to
be applied. If we divide the ”real” CPU value’s difference (ignoring the idle task’s slices)
by the total (taking idle slices into account), this will give us a number between 0 and 1
(0 being no CPU usage and 1 being a 100%).

The formal calculation is done as follows (bear in mind that ”1” stands for the first
reading of the /proc/stat file, while ”2” for the second):

CPU1 = user1 +nice1 + system1 + iowait1 + irq1 + so f tirq1

CPU2 = user2 +nice2 + system2 + iowait2 + irq2 + so f tirq2

CPUTOTAL = CPU2−CPU1
(CPU2+idle2)−(CPU1+idle1)

Of course, the time interval’s length affects the reading, and hence the final calculated
value. Reading spans less than 0’5 seconds have shown to be quite chaotic, while inter-
vals near a second seem to be quite accurate. Listing 8.7 shows the function in CPUMon-

itorThread class that calculates the CPU usage. Note that if there has been an error, ”-1”
is returned, and the calling process should decide what to do.

Note: there is a possible bug in Android’s kernel that may slightly corrupt or even
break any kind of load/CPU usage monitoring based on this technique. While developing
the application in this project, the function that calculates the CPU usage yielded negative
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Listing 8.7: Calculating the CPU usage from the /proc/stat file.

private long cpu1, idle1; //Values from a previous reading

private float readUsage() {

try {

RandomAccessFile r = new RandomAccessFile("/proc/stat", "r");

String load = r.readLine();

load = .readLine();

r.close();

String[] toks = load.split(" ");

long idle2 = Long.parseLong(toks[4]);

long cpu2 = Long.parseLong(toks[2]) + Long.parseLong(toks[3])

+ Long.parseLong(toks[5]) + Long.parseLong(toks[6])

+ Long.parseLong(toks[7]) + Long.parseLong(toks[8]);

float result = (float)(cpu2 - cpu1)

/ ((cpu2 + idle2) - (cpu1 + idle1));

idle1 = idle2;

cpu1 = cpu2;

return result;

} catch (IOException ex) {

ex.printStackTrace();

}

return -1;

}
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values, which by logic can’t be possible. At the time of this writing, this issue has been
identified at least once in the ”Issue Tracker” of the Android Open Source Project (see
https://code.google.com/p/android/issues/detail?id=41630). So far, the only
measure that can be taken is to discard those illogical readings.

8.4 Building the Arduino boards

Once the design was done, the process of building or ”wiring” the Arduinos with the
DF-Bluetooth modules was pretty straightforward. There were plenty colored, short wires
in the laboratory, and enough breadboards5, so no soldering was needed at all—an advan-
tage, since learning how to do it properly, and acquiring the resources could have taken
some extra time—.

As previously stated during the design chapter (see section 7.3.1), the initial wiring
scheme was quite simple. However, there was the lack of a mechanism to programmat-
ically switch the Bluetooth modules’ power. The proposed solution was the use of a tri-

state buffer, an component that can provide a functionality—among others—similar to a
switch. The tri-state buffer used in this project is an ”L293D”, the ones built by ST Micro-

electronics (www.st.com) specifically6. This model provides capabilities far beyond than
what is needed for this project, and there probably are others better suited. However, it
was the best choice due to its current availability in the laboratory, and its reduced cost.

As explained in section 4.2.3, the way to use the L293D is not that complex. According
to the pin-out configuration shown in figure 4.4 and the truth table from the device’s
manual recreated in table 8.1 (refer to [st2, 2003] for the whole specifications), a total of
six particular pins need to be connected with the Arduino board and the DF-Bluetooth
module. Always taking in mind which pin-out is which, the simplest way to achieve a
switching mechanism is as follows:

VCC-1 5 volt supply for internal power of the L293D.
VCC-2 5 volt supply for powering the outputs 1 to 4 of the L293D.
GND Ground supply for internal power of the L293D.
Input-1 Normal input to the buffer (5V supply in our case).
Enable-1 Enabling digital signal. If high, output-1 will give 5V. If low, output 1 will be

off (0V).

5A breadboard (or protoboard) is a construction base for prototyping of electronics.
6Credit for choosing this device goes to Borja Gamecho, whose knowledge on electronics is greater than

mine

https://code.google.com/p/android/issues/detail?id=41630
http://www.st.com/
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INPUTS OUTPUT
1A EN 1Y
H H H
L H L
X L Z

H = high level, L = low
level, X = irrelevant, Z
= high impedance (off)

Table 8.1: Truth table.

Output-1 Outputs 5V if enable-1 is high). Else, outputs 0V.

The enabling signal can be achieved with any of the digital pin-outs of the Arduino
boards that are not being used for other purposes. In this project, digital pin 8 has been
chosen, but it could have been any other. Figure 8.3a shows the final wiring scheme for
the Arduino UNO boards, while 8.3b does the same for the MEGAs.

8.5 Plotting scripts

The graphical representation of the tests’ results is not easy to predefine, as different
tests may show diverse graphical outputs. The length of a test-log can vary in the time span
the test was carried, as well as in the total number of entries in the log. For example, a test
in which no Bluetooth devices have been connected will have no ”ping” and ”throughput”
data to display. Additionally, a test done with just one sensor will be much smaller (in total
entries) than another test done with seven sensors in a similar time span.

According to the number of entries in the log, these are from lower to bigger the
possible cases:

1. Events

(a) Initial discovery: less than 10 entries.
(b) Periodic (30 seconds between): 4̃ entries per minute.
(c) Continuous: 1̃0 entries per minute.

2. CPU values: 60 entries per minute
3. Battery values: 1 to 10 entries per each % point (~100 entries for the whole battery).
4. Ping: ~10 entries per second, per connected sensor.
5. ”Stress data”: ~10 entries per second, per connected sensor in ”Stress” mode.
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(a) Wiring of Arduino UNO and DF-Bluetooth with the L293D buffer

(b) Wiring of Arduino MEGA and DF-Bluetooth with the L293D buffer.

Figure 8.3: Final wiring schematics for the Arduinos, DF-Bluetooth module and the L293D buffer.
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When plotting the results, the ranges of the different variables will need to be taken
into account:

• Battery load (percentage): from 0 to 100%.
• CPU usage (float point): from 0.0 to 1.0 points.
• Ping time (seconds): from 0 seconds on (limitless in theory).
• Throughput (bytes/s): from 0 b/s to a theoretical maximum of 262.5 kB/s.

The plotting scripts are kept simple, and their execution is straightforward (no param-
eters need to be passed). There are four ”template” plotting scripts, one for each variable
(battery, CPU, ping and throughput). These templates can be used to take a part of them
and plot composed graphs. The path of the files to be processed is indicated in the code,
so the script should be changed for each different log-file that wants to be plotted.
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Testing

9.1 Debugging

Instead of designing and performing formal unitary tests for the different components
of the testbed—something that would have taken a big overhead—, a thorough debugging
of the applications has been made. The programs for the Arduino boards have been the
easiest to verify, as their code is quite small. Since the Python scripts are interpreted
at runtime, the method followed to check their proper realization has been to perform
individualized proves with a reduced set of preliminary log-files or data. The debugging
process of the Android application has taken the most effort.

9.1.1 Android debugging

With the use of adb1, the debugging has been made live (with no virtualization). Ev-
erything from the creation of threads to the reading of incoming Bluetooth messages has
been thoroughly debugged and tested.

Thanks to the tools provided by the Android development environment it was possible
to identify the threads or classes that were less memory efficient. This enabled restructur-
ing them so that the overall performance of the application was at its maximum.

1adb acts as a middleman between an Android device and the development system (Eclipse-ADT in this
particular project).

105



106 Testing

9.2 Problems found
A few major problems found during the execution phase of the project are explained

below.

9.2.1 The Bluetooth callback

Among the main issues found, the misbehavior of the DF-BluetoothV3 module is at
the top. As previously explained in section 4.2.3, these antennas provide the Arduino
boards with a Bluetooth powered serial communication capability. The problem was that
the communications stopped at a given moment under no particular circumstances.

At the beginning of the development process, the Arduino sensors had a very simple
behavior. By default, the antennas would not send any data, unless a serial ”start” signal
was sent from a PC-terminal connected by USB. Once this ”start” command was received,
the Arduino then sent some randomly generated data through Bluetooth, which could then
be read by the Android application. Among other commands, the ”finalize” command
stopped the sending of data. Up to this time everything worked like a charm. However,
after receiving the ”finalize” command, and once the Bluetooth antenna ceased to send
”stress” data the, if the ”start” command was received, nothing happened.

I discovered that when many consecutive commands were sent from the Android ap-
plication to the Arduino via Bluetooth, at first they did not arrive to the board, until the
reset button of the board itself was pressed. This meant that the antenna stored the data
somewhere in a buffer and did not release it until later. The same effect appeared if instead
of resetting the board a random signal was sent to the Arduino board directly through a
serial USB connection from a Computer.

The origin and solution to the problem could be manyfold. At first I thought it was
an error induced by wrongly closing the stream sockets in the Android application, since
every time the connection came to an end, a warning exception appeared. However, this
warning seemed to be minor and known bug in the Bluetooth stack of Android.

After many trial and errors, the origin of the problem was not any clearer. Thinking that
the origin was in the hardware, a workmate from the Egokituz laboratory lent his hand to
find the issue. We got to use a Hewlett Packard 1651A Logic Analyzer and a Fluke 175

True RMS multimeter, and we discovered that one of the two (Arduino board or Bluetooth
antenna) might malfunction due to the short voltage difference of the digital pin-out ports.

One of the possible solutions was to put the mode of the input pin on the Arduino board
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to high, since apparently it was at a lower voltage (3.5V) than the output pin (4.7V). Since
this did not solve the problem, another approach I tried was to heighten the voltage of the
Bluetooth module to put it on a par with the Arduino’s. To achieve this, a CMOS device
was tried, to no avail.

I found out that Android provided a sample ”Bluetooth-Chat” application among other
examples in their repositories. I gave it a chance, and designed a prototype program for
the Arduinos to communicate with this ”Bluetooth-Chat” application. To my surprise,
Android’s application worked flawlessly, even with the original wiring setup of the Ar-
duino UNO and MEGA as well. This made it clear it was all a coding problem withing
the Android application.

I analyzed the specific way in which Android’s ”Bluetooth-Chat” application per-
formed the connection with the target device, and how the input and output streams
were retrieved. Architecture and class design differences aside, Android’s application and
mine were quite similar, except for one thing:.I was performing unsynchronized readings
and writings from the I/O streams, and had not thought about the possibility of multiple
threads trying to read from the same socket at the same time. After synchronizing the use
of the socket, the problem was solved.

9.2.2 Opening the socket

As I myself struggled with it at the start, it seems that one of the most common is-
sues that developers find when working with the Bluetooth protocol is how to create the
connection and the socket. It seems that Android has made a clean break in order to keep
security leaks happening because of Bluetooth.

As the developers of Zephyr HxM [hxm, 2010] say:

There are some ’issues’ with the Bluetooth issues with some versions of An-
droid, and with some specific devices. Ordinarily all you would have to do to
create the Bluetooth socket is use the create call, specifying the UID of the
Bluetooth service profile that will be used for the connection.

Initially, the workaround I used was to perform the so called "java reflection", as ex-
plained here. However, after further research on the matter, I found out that there was a
better method (the one described in listing 8.3).

http://redacacia.me/2012/07/17/overcoming-android-bluetooth-blues-with-reflection-method/


108 Testing

9.3 Graph plotting in Python

The first Python script for plotting was written without many problems. Some initial
tests were done to verify that the output was the expected one, and corrections were made
where needed (e.g. showing grid-lines, or scaling the X- and Y-axis). However, when
the real benchmarking process begun, the size of the logged data was so large that the
plotting scripts took much longer time than expected. Some improvements were done,
but still, the time required for plotting larger log-files with one to two billion of entries is
not acceptable. The fact that the computer used for the plotting purposes does not have
much memory does not help either.

However, a possible solution to reduce the time required to plot a single graph has
been identified. As stated in [mssaxm, 2013], there is a common error done by many
programmers when reading large files, coined as ”slurping”. In essence, ”slurping” is the
action of loading all the contents of a file in memory to have access to all the lines at the
same time. The problem of course is that when a file is large enough, the machine’s free
memory gets fully used. ”Slurping” is a wrong way of reading files for two reasons:

• It’s quite memory inefficient
• It’s slower than processing data as it is read, because it defers any processing done

on read data until after all data has been read into memory, rather than processing
as data is read.

If the processing and plotting of the logged files were done line by line, the Python
script would surely create the graphs much faster.



10. CHAPTER

Testbed and benchmarking

The data and graphs showed in this chapter are specific to the present project, and have not
been corroborated by any other testing framework or research. The explanations that go
with the results are as objective as possible, but are personal interpretations nonetheless.

10.1 Testing environment

All the tests have been done in the laboratory, without exception, so a minimum level
of homogeneity between tests should be guaranteed. However, the equipments of some
workmates may produce interferences during the day (mostly because some of them ac-
tively use the wireless WIFI and ZigBee protocols, or even Bluetooth), so the preferred
time to carry on the tests has been during night hours, starting sometime in the evening
and terminating them early in the morning.

10.2 Selection of relevant tests

From the different test scenarios and plans that were identified during the analysis
process, a few have been selected to be analyzed and discussed. The other cases have
been either excluded due to inconsistencies in the data, or they have not been done with
the final version of the testbed (i.e. they have been done during the development phase
in a ”beta” fashion, as the test conditions were not as homogeneous or controlled as they
should).
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Below, the tests that have been done are listed and classified in different iterations.
Technically, performing each of them would have required a whole day (or even more),
but so as to reduce the testing process, some of them have been cut out to a few hours. Fur-
thermore, no tests could be carried on at the same time and place due to the interferences,
and the phones’ batteries needed to bee fully recharged before starting a new test.

• Ground tests: measure the de facto battery drain by the phone.

– No discovery or sensors connected (the device is in stand-by).

• Only discovery tests: measure the battery drain of a continuous discovery.

– Each phone isolated.
– One phone in continuous discovery and the others nearby (just in standby).
– All phones nearby, and all in continuous discovery.

• Ping tests:

– Initial discovery with one sensor-device. Measures the ping drain.
– Initial discovery with seven sensor-devices. Measures the 7x ping drain.

• Discovery & ping tests:

– Continuous discovery with one sensor-device. Measures the ping+discovery
drain.

– Continuous discovery with seven sensor-devices. Measures the 7x ping+discovery
drain.

• Stress tests:

– Initial discovery with one sensor-device in STRESS mode. Measures the ping+stress
drain.

– Continuous discovery with seven sensor-devices in STRESS mode. Measures
the 7x ping+stress drain.

10.3 Test iterations

To perform the tests in an organized way, a ”testing iteration” method or procedure has
been followed. Each iteration encompasses a set of tests that have the same purpose of
measuring a certain behavior under some specific conditions.
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Ground tests

First, a preliminary assessment has been done, which sets the ”grounding” or reference
for the tests that would follow. This tests consisted in doing some isolated proves for the
smartphones to measure the power drain each of them had in standby. These proves were
done twice for each phone: for the first one, the testing Android application was run
without further ado. Prior to the second, however, some tweaks were done to the phones,
where background services and applications that had nothing to do with the testing were
stopped. The second row of tests showed slightly improved battery performances, so these
”tweaks” have not been applied in subsequent tests.

After this preliminary assessment, it seemed that in standby mode the Galaxy Nexus

was the most efficient than its peers, very closely followed by the Nexus 5.

Figure 10.1 shows the graphs for the battery drain over a time-span of ~19 hours,
while table 10.1 shows the mean battery drain rates (assuming that the consumption stays
constant over the whole battery life).

As the graphs clearly show, the Nexus S has a different battery-reading rate than the
other two phones. The reason behind this is probably due to the hardware and software
version differences.

Device battery % per min.

Nexus S 0.00844
Galaxy Nexus 0.00515

Nexus 5 0.00523

Table 10.1: Battery drain rates in standby.

Only discovery tests

The next iteration of tests intended to measure the battery drain of the discovery pro-
cess in each smartphone. For this purpose, each phone was isolated and left in a contin-
uous discovering state. As expected, the results showed a noticeable increase in battery
drain.

Figure 10.2 shows the graphs for the battery drain over a time-span of ~16 hours, while
table 10.2 shows the mean battery drain rates for each device.

A second iteration of these same tests (discovery only) was done with a Bluetooth
”decoy” (another phone with Bluetooth activated and set in discoverable mode) was left
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(a) Nexus S

(b) Galaxy Nexus

(c) Nexus 5

Figure 10.1: Ground tests: standby without Bluetooth (~19 hours).
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(a) Nexus S

(b) Galaxy Nexus

(c) Nexus 5

Figure 10.2: ”Only-discovery” tests (isolated).
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Device battery % per min.

Nexus S 0.0451
Galaxy Nexus 0.04105

Nexus 5 0.04454

Table 10.2: Battery drain rates in continuous discovery.

nearby the smartphone that was performing the discoveries. This sensor was not bonded to
the phone, and each discovery found it over and over again. Therefore, even if no connec-
tion was being established with this ’decoy”, the discoveries found it. The results showed
an important increase in battery drain compared to the discoveries done in complete iso-
lation.

Figure 10.3 shows the graphs for the battery drain over a time-span of ~16 hours, while
table 10.3 shows the mean battery drain rates for each device.

Sub-figure 10.3b shows that the Galaxy Nexus has suffered the biggest battery drain
increase when discovering with a ”decoy” nearby. Note that during the first 12000 seconds
(~3h 30min), the battery drain rate is similar to the other two smartphones, but it suddenly
plummets faster than before. It is still not very clear why this has happened.

Ping tests

During this testing iteration, the ping or response time for the sensor devices in differ-
ent conditions wanted to be measured. First, a simple scenario composed by just a single
Arduino with an initial discovery plan was carried. Then, the same test was done, but with
six Arduinos at the same time.

The results show a slight increase in the ping times (from a mean time of 50 ms to
~75), while the throughput increases quite more (from a mean of 125 B/s to 700 B/s).

Figure 10.4 shows the graphs for the ping and throughput values with one sensor only
(sub-figure 10.4a) and then with six simultaneously (sub-figure 10.4b). As it can be seen,
the mean throughput increases six times, while the mean ping time remains almost un-
changed.

Later, a similar test was done first with one and later with six sensors, while the phone
performed periodic discoveries every 30 seconds. The results clearly showed an increase
in the ping values when a discovery was in process. Figure 10.5 shows a graph where it
can be seen the impact of a discovery in the ping and throughput for communications with
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(a) Nexus S

(b) Galaxy Nexus

(c) Nexus 5

Figure 10.3: ”Only-discovery” tests (not isolated).
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(a) One sensor

(b) Six sensors

Figure 10.4: Ping tests (with one and six sensors).
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Device battery % per min.

Nexus S 0.0920
Galaxy Nexus 0.16

Nexus 5 0.06684

Table 10.3: Battery drain rates in continuous discovery.

a single sensor (sub-figure 10.5a) and with six (10.5b). Looking closer to figure 10.5b, it
can be seen that not all ping times are altered equally. Indeed, three of the signals suffer
an increased delay of up to 200-800 milliseconds, while the other four barely get to the
200 ms during each discovery. It is no coincidence that those four signals correspond to
the Arduino UNO boards. My conclusion for this is that the simulated serial connection
of the Arduino UNOs with the DF-Bluetooth modules is faster than their MEGA peers.

Stress tests

During this phase, a set of ”stress tests” were done with seven Bluetooth sensors trans-
mitting loads of data to a single smartphone (the Nexus 5). The phone was subjected to
different stress levels in each test-iteration (i.e. in each iteration the sensors sent more data
than in the previous). The results were really interesting.

Figure 10.6 shows the results for one ”stress test” in which seven Arduino sensors
sent data increasingly over time. Starting at 10 Bytes per second, every 10 minutes the
message size for all of them grows in 100 Bytes. In the second sub-graph, the throughput
is calculated by the actual ”useful” messages received, so all the messages that contain
errors do not count for the ”valid” throughput. The third sub-graph shows the size of the
incoming messages. It seems that at a transmission rate of 1.5 kB/s, the communications
reach a limit, and from then on the ”stress messages” begin to have errors, until all of them
seem to be corrupt. This is logical, since the larger a message is, the more possibilities of
having a corrupt byte it has. Therefore, it looks as if the throughput falls, and the size of
the ”stress messages” is null, when in reality, all incoming messages are discarded due to
errors in them. That’s why the time for the ping messages keeps growing as well.

It should be noted that much like it happens with the increased ping times when a
discovery takes place (see section 10.3), it seems that some of the Bluetooth sensors do
not suffer from increased ping times during the ”stress tests”. Again, it is no coincidence
that those very sensors correspond to the Arduino UNO boards.
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(a) One sensor

(b) Seven sensors

Figure 10.5: Ping tests while performing periodic discoveries (with one and seven sensors).
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Figure 10.6: Stress test.
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10.4 Additional tests

During the testing process, some tests did not have the outcome that was expected, yet
a few of them happened to be very insightful. Following, some of the most relevant are
explained.

Maximum number of paired devices in one discovery

During the performance tests, I noticed about a peculiar behavior of the discovery and
pairing process. While trying to perform a test on a static scenario with 8 Arduino devices,
it seemed that an initial discovery did not always find the same number of devices (and
therefore the number of paired devices for the test changed as well). However, after a
subsequent execution of the application (in a matter of seconds or minutes), more devices
than the previous time were found (but still not all).

After some trial and errors, I concluded that with just one discovery, only three or four
devices (from the 8 that were around) were being found. After terminating the application
(and the connection with the current devices), a new discovery was able to find five to
seven devices. By the third subsequent discovery all nearby sensors seemed to be found
(and 7 of them connected). All three smartphones showed the same behavior. Following
discoveries kept finding all the sensors nearby, unless they were rebooted.

This finding shows that a new plan in which a few discoveries (three or four at max)
are done at the beginning would guarantee that all nearby devices are found, since doing
a single one has proved to be insufficient.

Sudden CPU usage increase

At an early time of the performance testing, I stumbled upon a previously unseen
behavior in the CPU’s usage while looking at a test’s results. The graph of the logged data
clearly showed a point in which in less than two hours the battery level plummeted when
it should not have. After analyzing the data, it was evident that an increase of the CPU
usage had caused the battery to exhaust in less than two hours.

This test consisted of an initial discovery plan and a static scenario with 7 Arduinos
nearby (all connected with the Android application). The only communications that hap-
pened during the test were the PING messages that went from the phone to the Bluetooth
modules and back (for each module).
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During the first six hours of the test, the smartphone showed a mean battery drain of
0.06% per minute, and a mean CPU usage of 66%. Then, all of a sudden, the battery drain
rate increased to a 0.61% per minute, and the mean CPU usage to 98%. Figure 10.7 shows
the results of the test. After analyzing the log files I discovered that for some reason, four

Figure 10.7: Sudden CPU usage and battery drain increase.

Arduino boards were suddenly disconnected from the Android application. The thing is
that when this disconnection happened, the Android application entered in some sort of
looping state that choked the phone’s resources.

The story behind this particular test is meaningless by itself, but it serves as a perfect
example for the case in point that a bad application design gets the battery killed faster
than performing simultaneous Bluetooth communications with several devices.

CPU usage and battery drain anomaly

A very odd result was obtained during one of the discovery tests—with the Galaxy
Nexus, specifically—. While performing a continuous discovery, the battery drain is nor-
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mal until a point when the CPU usage decreases and the battery starts to drop faster than
before (figure 10.8 shows the test’s result in question). If anything, when the CPU drops
the battery drain should slow down, or at least stay still, but not plummet! If zoomed in
the moment where the CPU usage decreases (see figure 10.9), it can clearly be seen that
in the second part the CPU usage changes with each new discovery.

Figure 10.8: CPU usage and battery drain anomaly.

In figure 10.8 it is clear that the mean CPU usage decreases, but it seems as if the
readings are more ”dense” (as if there were a higher number of CPU usages, but of less
weight). A little more insight is given by figure 10.9, where the exact point in which the
CPU usage changes is shown. The vertical lines denote the end and beginning of a new
discovery. Note how the CPU usage changes on a par with the discoveries during the last
part of the graph. From this picture, it seems as if during the first part the discovery did
not alter the CPU usage at all, while at some point in time, it does. Still, no reasonable
explanation has been found for this anomaly.
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Figure 10.9: CPU usage and battery drain anomaly zoomed in. The red lines point out the begin-
ning and end of the discoveries.

10.5 Discussion

Impact of Bluetooth discovery on the CPU

Figure 10.10 clearly shows that the CPU usage varies according to the discovery of
Bluetooth. This capture is from a test done with the Galaxy Nexus, and it seems as if the
CPU soars near the end of each discovery.

The time span of the discoveries in this particular capture is around 11 seconds. How-
ever, as observed in other tests, the discovery process can take between 10 and 15 seconds.
Table 10.4 shows the mean time span of the discoveries for the different smartphones used
in the tests that involved continuous discoveries.

Impact of discovery on Bluetooth communications

Figure 10.11 shows the normal ping and throughput values for a single device. During
this capture, only the communications to calculate the ping times were being done, so
these are the ”purest” readings that can be done to see the normal behavior of Bluetooth
in Android.

However, this correlation changes noticeably when the smartphone is performing a
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Figure 10.10: CPU usage during continuous discovery (the vertical red lines point the times when
a discovery has finished and the next has started).

Bluetooth discovery. As figure 10.12 shows, the impact of a single discovery notably
alters the performance of the ongoing communications. The vertical red lines enclose the
span when a Bluetooth discovery is being done. It can be seen that the ping is affected, as
the mean time is almost duplicated during the discovery.

Performance, nº of devices and size of the messages

According to the results of the ”ping tests” shown in figure 10.4, the response time for
a message sent from the smartphone to a sensor and back (a ping) fairly increases with
more devices (about ~15 ms for each new device). When a discovery takes place, the ping
times increase differently according to the Arduino board, as shown in figure 10.5b.

When the size of the messages gets bigger, however, the ping time grows considerably
(as shown in figure 10.6).
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Device Discovery time
(milliseconds)

Nexus S 10,280
Galaxy Nexus 12,860

Nexus 5 13,750

Table 10.4: Mean discovery span times.

Errors in the communications

During the performance testing process, a bizarre behavior was identified around the
messages’ error rate. Indeed, under ”normal” circumstances (no discoveries and just ping
messages) the errors seem to happen only with the Arduino UNO boards, while the
MEGAs yield none. Nevertheless, in an scenario where ”stressing” messages are incom-
ing, both the Arduino UNO and MEGA boards yield errors.

It has been assumed that this is due to a hardware issue regarding the incompatibility
between the boards and the DF-Bluetooth modules. However, the origin of this issue could
be the SoftwareSerial library that simulates the serial communications.

Table 10.5 shows the results obtained in a single test with an initial discovery and a
static scenario with six Bluetooth sensors nearby (two of them being Arduino UNOs, and
MEGAs the rest). It is clearly shown that the MEGA boards—strange though they may
seem—have not yielded a single corrupted message, while almost a 4% of the messages
sent by the Arduino UNOs appear to be corrupted.

Table 10.6 shows a similar content, with the difference that this time the Bluetooth
sensors sent ”stress” data at ~100 bytes/s each. Although in this scenario all boards have
produced corrupted messages, the UNOs yield ten times more errors than the MEGAs.

The reason for this may be related to the aforementioned case in which a discovery
seemed to disrupt the MEGA boards’ ping much more than the UNO’s (see section 10.3).
The reason for that is thought to be the faster speed of the virtual or simulated serial
connection of the Arduino UNO boards. If indeed the virtual connection is faster than the
non-simulated one, it could be natural for it to yield more errors.
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Figure 10.11: Relation between ping and throughput under normal conditions (without discovery
nor incoming ”stress” messages).

Board(module)
Clean
pings

Corrupted
messages

Error
rate

MEGAr1 562,900 0 0%
MEGAr4 562,900 0 0%
MEGAr5 562,900 0 0%
UNOr6 270,700 10,842 3.85%
UNOr8 400,200 15,588 3.75%

MEGAr10 562,900 0 0.0%

Total 2,922,500 26,430 0.90%

Table 10.5: Corrupted ”ping” messages rate.
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Figure 10.12: Relation between ping and throughput while discovering.

Board(module)
Clean
pings

Clean
data

Corrupted
messages

Error
rate

MEGAr1 343,900 343,200 2,120 0.31%
MEGAr4 343,600 342,900 1,050 0.15%
MEGAr5 344,400 343,900 984 0.14%
UNOr6 255,200 291,500 13,081 2.39%
UNOr8 300,400 340,800 14,545 2.27%

MEGAr10 397,000 395,700 1,114 0.14%

Total 1,984,500 2,058,000 32,894 0.81%

Table 10.6: Corrupted messages rate.
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Control and monitoring

11.1 Evolution of the project

One of the most powerful features of GitHub is the statistics reports that are automat-
ically generated. Although this information is publicly available1, it is worth mentioning
here as well. Note that these graphs only correspond to the on-line repository, and that
more work may have been done in a local machine.

Weekly contribution report

Figure 11.1 shows the weekly committed contributions for the months of July and
August. There are two major periods in which more contributions have been made. The
low number of contributions in the time between is a reflection that no commits have been
uploaded, probably because of the lack of a ”publishable” code.

”Code frequency”

The following figure 11.2 shows the weekly additions and deletions to the repository
during each week. The large deletion in the first half of August is originated because of
the deletion of some log-files that should not have been committed in the first place.

1The statistics can be found here.
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Figure 11.1: Weekly contributions.

Figure 11.2: Additions and deletions to the online repository per week.

”Punch Card”

Figure 11.3 shows the frequency of updates to the repository based on the day of week
and time of the day. The size of the black circle indicates commit frequency. A total of
30 commits or updates have been done since the start of the project. As it can be seen,
most of them have been uploaded at afternoon hours, with no particular preference as of
the day of the week.
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Figure 11.3: ”Punch card” (frequency of updates to the repository based on the day of week and
time of the day).

11.2 Deviations from initial plan

In this section a review over the hours worked on each task compared to the initial
estimations is done.

On the spot, there has not been a fatal delay nor risk that threatened the fulfillment
level of the project. However, there have been deviations from the estimated number of
hours and the final real dedication. Although they have not been severe, it is worth noting
where and why these deviations have happened.

The initially expected deadline for the defense has been changed to a an earlier time.
However, there’s enough time for preparing it, so no further readjustments need to be
done.

Initially, a daily iteration method was devised (see section 2.5 and figure 2.2). At the
beginning of the project I followed this method to avoid getting bored with just performing
the same task daily, but then I decided to give it up and concentrate fully on the task that
required more urgency.

Figure 11.4 shows the planned and dedicated hours per task, with the calculated de-
viations for each. Note that the last column is the deviation percentage for each task
individually, so the largest percentage needs not have more hours. Additionally, note that
the last two tasks have not dedicated hours, as at the time of this writing they have not
been started.
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Figure 11.4: Planned and dedicated hours with deviations. The deviation is calculated row-wise,
not over the total.

It is clear that the main deviation has happened in the writing process of this memory
itself, with a surplus of 36 hours. The reason for this is nothing else than a lack of experi-
ence with writings of such caliber, which made my estimations less accurate. The writing
process itself has not been the most difficult part, but rather the reviewing and final polish-
ing. The fact that it has all been done with LATEXhas added an additional struggle as well.
Indeed, even if the learning curve for LATEXhas not been as slow as I expected, finding out
how to correct some final details has taken a lot of effort. This is provably what has made
me spend those unexpected ”extra” hours.

The programming task has taken more than the expected time as well. Firstly because
the Android application took more than the expected effort to finish, and secondly because
the process of creating the graphs with the Python plotting scripts has been rather slow.

The next largest deviation has happened in the training process, this time with a short-
age of five hours. It is not a big deal of time, and the reason for this shortage is justified
by the fact that most of the technologies used had already been used, so less hours than
expected have been required.
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Figure 11.5 portrays the difference between the estimation and final dedication for
each high-level tasks.

Figure 11.5: Estimated and deviated hours for high-level tasks.

Figure 11.6 shows a comparative between the high-level tasks according to the hours
dedicated to each every month. During the first weeks of the project the management tasks
have taken most of the dedication.

The next couple of months (April and May) have almost entirely been dedicated to
researching. Most of the analysis and design of the system has been done in June, while
most of the development in July and early August. Finally, the writing of this memory has
been done in August. The dedication of hours has not been constant over time, as it can
be seen in figure 11.7, where the accumulated hours during the months that this project
has spanned is shown. During the first three months not much was done, as I had not the
time for dedicating to the project, so most of the work has been done from late June until
early September.

11.3 Assessment of the project
Following, an objective assessment of the project is done. Then, a personal evaluation

of the performance of the project and the work done is made.

11.3.1 Key Performance Indicators

With the Key Performance Indicators defined in the first chapter (section 2.7.1) at hand,
it’s time to asses the level of fulfillment of the goals that were proposed at the beginning.

Quantifiable indicators:
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Figure 11.6: Dedication percentage to each high-level task during the project’s life.

• Schedule keep-up: the schedule has been respected without any changes.
• Hours worked: although a few more hours than expected have been necessary, the

total deviation has been of almost a 6%, so it can be considered as successful.
• Lines of code: although no formal calculation for the number of code-lines has been

done, the GitHub repository’s statistics show that the contributions to the project
have been concentrated in July.

• Efficiency of the framework: the developed Android application does not use more
resources than needed.

Qualitative indicators:

• Clearness of the code: the Android application is fully documented, but the Arduino
and Python logs are not.

• Satisfaction with the results obtained: the results are clear, and valuable conclusions
have been deduced.

• Usefulness of the research: the project has made some valuable findings, although
more could be made if more tests were done.

• Experience gained: I have gained a lot of experience on Bluetooth, Android, Ar-
duino and Python. I have learned how to manage a big project on my own as well.

Leading indicators:

• Director’s approval: the director has given his approval for the presentation and
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Figure 11.7: Accumulation of hours for each high-level task.

defense of this project.
• Peer feedback: from the outset, it seems that the project seems interesting to the few

people that have been around.

In general, the project seems to be successful, and mainly the shortage of the different
tests done could be improved.

11.3.2 Personal evaluation

• The overall feeling with that the work done is very satisfactory. I have been able
to carry a long project without too many problems, and the outcome could be very
beneficial for the research field around wireless mobile communications. There’s
plenty of room for improvements and extensions, but the initial conclusions ob-
tained seem promising.

• The state of the art of the project gives a good picture of the adjoining technolo-
gies and researches to this one. However, many references are quite outdated. It is
not easy to find recent researches around Bluetooth Classic, mostly because of the
”boom” that Bluetooth Smart has had lately. Still, it would have been great to find
peers that work or research on more similar things to this project.

• The graphs showed in the benchmarking process are not as clear as desired, as the
time scales vary from one to another.

• It has been a pity that not all the tests that could have been made have been done,
since there surely is potential for more findings. For example, the progressive sce-
narios in which the devices appear and disappear throughout a test have not been
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carried out.
• There have not been major or unexpected problems, and the contingency plan has

not been needed.



12. CHAPTER

Conclusions

In this chapter a review on the results obtained by the project is done, mostly focusing
on the testbed testing and benchmarking. In addition to this, the future work that could
be done around this project and the main learned lessons are also gathered. Finally, a
personal valuation of the project as a whole and the developed work is done.

12.1 Obtained results

Impact of battery level on communications

The tests done show no correlation between the performance of the communications
(or as [Edith and Gunningberg, 2013] puts it, Quality of Information) and the current
battery level, since the PING and throughput levels seem to be constant throughout tests
with static scenarios. The reason behind this is that the batteries of the Android phones
output a constant power or current regardless of the battery level.

Impact of the discovery on communications

As expected, the results confirm that the discovery process is a heavyweight procedure
(as previously mentioned in section 4.2.1). While a discovery is in process, the ping times
for the sensors increase noticeably, while the mean throughput decreases a bit as well.

It also seems that a discovery consumes much more resources when there’s at least
one discoverable sensor nearby, as the comparison between figures 10.2 and 10.3 clearly
shows.
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Discovery length

As previously mentioned in section 4.2.1, in [Perrucci et al., 2011] it is stated that the
length of a discovery increases when there’s more Bluetooth devices nearby. The tests
done show that this is not true for at least the three Android phones used in this project,
since the discovery process seems to always take between 10 and 15 seconds, regardless
of the number of nearby devices.

Minimum initial discoveries

According to what has been said in section 10.4, a single initial discovery may not
be enough to find all Bluetooth devices in the area. Programs willing to connect with as
much devices as possible should perform three or four subsequent discoveries so as to
ensure that all in the nearby area have been found.

Maximum number of connected devices

Not to the surprise of anybody, the Android application has not been able to connect
more than seven devices at the same time. This is due to Bluetooth’s own limits when
dividing the bandwidth, and was a known issue before starting to develop the project.

Still, it has been quite a surprise that Android’s inherent Bluetooth manager has not
called any exception when trying to connect an eighth device. Even more worrying is the
fact that it keeps trying to open a connection, and after a while, a not very meaningful
error message is raised.

This implies that any application willing to connect with as much Bluetooth devices as
possible should keep track of the number of connections so that no needless connection-
requests are made.

Optimal message size

According to the ”stress tests” (see section 10.3), there seems to be a point in which
the bigger the message size, the greater the ping and error rate becomes, up to a point in
which the totality of messages is lost or corrupt.

Seeing the results, it could be concluded that the optimal message size is near 300
bytes. This is where the ping times stay below 400 ms and the throughput is near its
maximum, while the error rate seems to be low. However, in order to reach the maximum
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throughput, this optimal message size could be stretched up to 700 bytes, as the ping stays
below 500 ms, although the error rate starts to increase considerably.

Arduino UNO vs MEGA

Although it was not the purpose of the present project to evaluate the performance
of the Arduino UNO and Arduino MEGA boards, it has been unavoidable to find some
differences between them. Although the UNOs yield much more errors than the MEGAs
with messages of up to ~300 bytes, they seem to be faster as well (or at least their response
time or ping remains almost unchanged under any circumstance) .

12.2 Future work

Scientific contribution

The first and most interesting thing that could be done while carrying on with this
project is to write a formal research paper and get to publish it in a journal or confer-
ence. This way, researchers and developers all around could benefit from the discoveries
made by this project. However, the benchmarks set in this project are quite technology-
dependent, so some further work and a wider variety of tests is necessary.

Support for multiple protocols

As previously mentioned in other chapters, this project has not considered the Blue-
tooth Smart protocol (version 4.0 of the Bluetooth stack). Enhancing this project’s frame-
work to support this protocol seems not very complicated, although newer Bluetooth mod-
ules that support the new specifications would be needed. Doing so could bring some light
to compare the ”old” and newer versions of Bluetooth, and could help to decide which
of them would be most suitable for different purposes, focusing on the field of Personal
Area Networks.

In addition to Bluetooth Smart, the possibility of reorienting the whole framework in
order to support as many wireless protocols as possible has been considered as well. WI-
FI, ZigBee, Ultra Wide Band etc. are some of the most popular alternatives to Bluetooth,
and many smartphones have built-in capabilities to perform communications under these
protocols. Such a framework could be of valuable use for the benchmarking processes of
many projects related to wireless communications.
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Remote storage of data

Another line of work that could augment the usability of the developed framework
would be to provide new mechanisms to store the logged data. The process of connecting
the device with the computer to copy the logged files is not very comfortable, so automat-
ing this task would come in handy. Instead of a normal PC, the same could be done with
a remote FTP server or additional storage alternatives.

In addition to this, if the logged data becomes available at an external place (apart
from the smartphone performing the tests) in real time, a live representation of the testing
process could be made. However, real-time streaming from the phone to a remote location
would provably consume more resources than needed, so the tests’ results may become
tainted.

Battery and power measurement

The method used to monitor the battery drain rate is not very trustworthy, as it has little
to no accuracy in short periods of time. An external mechanism (other than Android’s built
in Intent broadcaster) to measure the batteries’ level and power could help to achieve finer
grain readings. There are several ongoing researches focused on measuring the power
consumption of modern smartphones in which inspiration can be found, so this should
not be a great deal of effort. Still, getting ahold of the tools needed may be a bit more
complicated.

Likewise, collaborations could be made with ongoing researches such as [Carroll and
Heiser, 2010], where the authors perform an almost complete profile for smartphones on
the topic of power consumption. By chance, they lack a formal procedure of measuring
Bluetooth’s consumption, so both parties could benefit from a collaboration.

Corrupt message measurement

The method used to measure the error rate can only identify a corrupted message if
there is an inconsistency between the message’s payload and the CRC (Cyclic Redun-
dancy Check, or checksum). Therefore, all the messages that contain an error in any of
the other fields cannot be identified.

Perhaps, a mechanism to calculate the error rate in a byte-to-byte scale—instead of in
messages—could be helpful if the accuracy of the measurements wanted to be improved.
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In addition to this, there may be an interest to count the corrupt messages as valid
throughput.

Strict testing environment

The tests done in this project have not measured nor taken into account the interfer-
ences caused by external factors. An environment that restricts the effects of outer radio
signals may yield purer results. It could be interesting, perhaps, to perform some tests
inside a Faraday cage or in a screen room with electromagnetic shielding1.

Anyway, the currently performed tests are good because they have been done ”in the
wild”, in an environment much similar to where the commercial applications and tech-
nologies are actually used.

Improved Python scripts

The different scripts that have been developed could be unified and improved into a
desktop graphic application. Instead of rewriting the configuration for each new scenario,
an abstracted mechanism that requires no re-programming might be interesting as well.
Finally, the efficiency of the plotting scripts needs to be revised, as explained in section
9.3.

1Electromagnetic shielding is the practice of reducing the electromagnetic field in a space by blocking
the field with barriers made of conductive or magnetic materials.
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Quality check-list
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Overall Project Quality Checklist y/n 

Is the statement of scope accurate, consistent and up to date?  

Does the execution of the project go along with the planning?  

Are estimates still accurate or acceptable?  

Is the project schedule fulfillable?   

Is the developed work consistent with the scope?  

Is the system performance and behavior acceptable within the scope?  

Do all required resources including hardware, software, tools, people, and 
others remain fully available? 

 

Do all project risks remain controlled?  

Are there new constraints that will affect the product or the project? If so, are 
they documented? 

 

Are the stakeholders properly informed on the progress of the project?  

Has a backup for the project’s data been recently done?  

 

 

 

Product Quality Checklist y/n 

The system contains no unfixed bugs or issues  

The functionalities implemented are within the scope of the project  

There is not any malfunctioning hardware device  
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UML Class Diagram
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Figure B.1: UML class diagram of the Arduino application.
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