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Abstract. In this paper we give a generalization of the serial cost-
sharing rule de�ned by Moulin and Shenker (1992) for cost sharing problems.
According to the serial cost sharing rule, agents with low demands of a good
pay cost increments associated with low quantities in the production process
of that good. This fact might not always be desirable for those agents, since
those cost increments might be higher than others, for example with concave
cost functions. In this paper we give a family of cost sharing rules which
allocates cost increments in all the possible places in the production process.
And we characterize axiomatically each of them by means of an axiomatic
characterization related to the one given for the serial cost-sharing rule by
Moulin and Shenker (1994).
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1. Introduction

We consider cost-sharing problems in which there is a production process of a private
good shared by n agents. Each agent demands a quantity qi of the good. The cost
function is denoted C and a cost-sharing rule allocates the total production cost, that
is C (

∑
i qi), among all the agents.

In this paper we propose a family of cost-sharing rules which is related to the serial
cost-sharing rule defined by Moulin and Shenker (1992). This rule has caught much
attention and several related rules have been defined until now. Among others we can
highlight the decreasing serial mechanism defined by de Frutos (1998) and the concave
serial rule and the convex serial rule introduced by Koster (2002). Generalizations of
the serial cost-sharing rule to heterogeneous cost-sharing models (Koster (2006)) and
when agents require bundle of goods (Koster et al. (1998)) have also been carried on.

The family defined in this paper contains the serial cost-sharing rule defined
by Moulin and Shenker (1992), and the dual serial cost-sharing rule (Albizuri and
Zarzuelo, 2007), which is also connected to the former rule. All the mentioned cost-
sharing rules, including the ones defined in this paper, will give more or less suitable
cost shares, depending on the particular cost-sharing problem they are applied to. To
better understand the new rules let us describe the serial cost-sharing rule and the
dual serial cost-sharing rule.

The serial cost-sharing rule is as follows. There are two agents i and j, and qi ≤ qj .
When the production starts, each unit of the good is equally divided among the two
agents, who share equally the incurred cost. This continues until 2qi is produced,
that is, until agent i is given qi. At this point agent i leaves the system and the
process continues as before, that is, agent j receives the remaining quantity and pays
the associated cost. Consequently, agent i pays C (2qi) /2 and j pays the rest, that
is, C (qi + qj) − C (2qi) /2. In Fig. 1 we draw the associated production path. The
serial cost-sharing rule is obtained when we generalize this process to n agents.

qi

qi qj
j

i

Figure 1

Albizuri and Zarzuelo (2007) define the dual serial cost-sharing which equalizes
the quantities left to be allocated to agents. So when the good production starts
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each unit goes to agent j, that is, the agent with the highest demand, who pays
the incurred cost. When agent j is served qj − qi units, that is, when both i and
j are short of the same quantity qi, agent j pays C (qj − qi) and agent i enters the
picture. The production process continues and both agents are served simultaneously
and pay equally the cost, that is, each of the agents pays

C(qj+qi)−C(qj−qi)

2
. Therefore,

agent i pays
C(qj+qi)−C(qj−qi)

2
and agent j pays

C(qj+qi)+C(qj−qi)

2
. In Fig. 2 we see the

associated path. Generalizing this procedure to n agents the dual serial cost-sharing
rule is obtained.

qi

qj − qi qj
j

i

Figure 2

Notice that in the first case agent i pays only the cost increments of lowest quan-
tities and in the second only the cost increments of highest quantities. In this paper
we consider the cases when agent i pays the cost increments in any position in be-
tween 0 and the total production qi + qj . As with the serial cost-sharing rule (and
the dual serial cost-sharing rule) agents i and j share equally the quantity and cost
increment associated with a production process interval and in that production pro-
cess agent i meets his demand qi. Agent j is the only one who pays the rest. If we
denote by

[
aqi+qj (2qi) , aqi+qj (2qi) + 2qi

]
the production interval paid by both agents,

then agent i pays
C(aqi+qj

(2qi)+2qi)−C(aqi+qj
(2qi))

2
. And agent j pays the rest, that is,

C(aqi+qj
(2qi))−C(aqi+qj

(2qi)+2qi)
2

+C (qi + qj). We see in Fig. 3 the associated production
path. Generalizing this procedure to n agents we obtain the family of rules defined in
this paper. We call them intermediate serial cost-sharing rules. If aqi+qj (2qi) = 0 we
get the serial cost-sharing rule, while if aqi+qj (2qi) = qj−qi the dual serial cost-sharing
rule arises.
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qi

aqi+qj (2qi) aqi+qj (2qi) + qi
qj

j

i

Figure 3

Observe that if C is convex then agent i will pay less with the serial cost-sharing
rule than with the dual serial cost-sharing rule. And on the contrary, if C is concave
agent i will pay more with the serial cost-sharing rule. The rules of the new family
are determined by aqi+qj (2qi) ∈ [0, qj − qi]. The nearer this number is from 0 the
better agent i is if the cost function is convex and the worse agent i is if the cost
function is concave.

With the serial cost-sharing rule agents with low demands pay cost increments
associated with low quantities. This fact might not always be desirable for them, since
those cost increments might be higher than others, for example when the cost function
is concave, and agents with low demands might have imposed a positive externality
on the others which is not reflected in their cost shares according to the serial cost-
sharing rule. On the contrary, with convex cost functions agents with low demands
might have imposed a negative externality on the others which is not reflected in
their allocations determined by the serial cost-sharing rule. The intermediate serial
cost-sharing rules might reflect these externalities.

Take for example the concave cost function C (t) = min {t, 8}, and qi = 4 and
qj = 6. According to the serial cost-sharing rule, the allocation for agent i is 4 and
for agent j is also 4. Since C is concave, the allocations determined by the concave
serial rule by Koster (2002) coincide with those given by the serial cost-sharing rule.
If we consider the decreasing serial mechanism by de Frutos (1998), the allocation

for j is C(2·6)
2

= 4 and for i is the rest, that is, 4. The cost share of 4 for each agent
does not seem a good allocation since agent i pays his entire stand alone cost 4 and
agent j pays 2 units less than his stand alone cost 6. Agent i has imposed a positive
externality to agent j: total cost of 10 units is 8 because agent i has demanded 4
units. Therefore, it seems sensible that agent i also gains and pays less than his stand
alone cost. According to the dual serial cost-sharing rule, agent i pays 3 and agent
j pays 5. These are the same allocations given by the convex serial rule by Koster
(2002) since C is concave. Notice that in this case both agents pay 1 unit less than
their stand alone costs. We can think that agent i has gained too much. The rules
of our family give precisely to agent i all the numbers in between 3 and 4 as possible
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cost shares, depending on the elected a10 (8) ∈ [0, 2]. If a10 (8) = 0 the cost share is
4 and if a10 (8) = 2 the cost share is 3.

As another example, consider the convex cost function C (t) = max {t− 8, 0} with
the previous demands: qi = 4 and qj = 6. The serial cost-sharing rule allocates 0 and
2 for i and j respectively. Since the cost function is convex, those are the allocations
provided by the convex serial rule by Koster (2002). The decreasing serial mechanism

by de Frutos (1998) gives the same cost shares since the allocation for j is C(2·6)
2

= 2,
and i pays the rest, that is, 0. Notice that the stand alone cost for both agents is 0.
And total cost is 2 because both players are present. So it seems sensible that agent
j pays also less than the entire cost 2. The dual serial cost-sharing rule gives cost
share 1 for both agents. And the concave serial rule by Koster (2002) coincides with
the dual serial cost-sharing rule for convex cost functions. If the cost share for each
agent is 1, agent i pays as much as j, although qi is smaller than qj . With the rules
of our family, cost share for i ranges from 0 to 1, and hence i can pay not so few and
not so much.

Needless to say, we are not saying that these new rules give better cost shares
than the other ones in any case. We just say that there are cases in which the cost
shares determined by them seem suitable.

In this paper we define and give some formulas for the intermediate serial cost-
sharing rules. We also provide an axiomatic characterization for each of them related
to the one for the serial cost-sharing rule given by Moulin and Shenker (1994). In their
characterization some standard axioms and free lunch, a kind of consistency axiom,
are employed. Free lunch deals with cost functions that vanish identically at the
beginning of production process of the good. It turns out that it serves to determine
the serial cost-sharing rule. In this paper we consider cost functions which are flat
in any production process interval. And we prove that with an axiom related to free
lunch we get an intermediate serial cost-sharing rule. When we consider different
positions for the flat part in the axiom related to free lunch, the intermediate cost-
sharing rules are determined, since such a position (joint with the other axioms)
determines the place of the cost increments given to agents. In the particular case
in which the production has not cost at the end of the production process, the dual
serial cost-sharing rule arises.

The paper is structured as follows. Section 2 is a preliminary one. In Section 3
we define and give a formula for the intermediate serial cost-sharing rules. And we
present the intermediate serial cost-sharing rule of a problem as a serial cost-sharing
rule of an associated problem. In Section 4 we characterize each intermediate serial
cost-sharing rule by means of a generalization of the characterization for the serial
cost-sharing rule provided by Moulin and Shenker (1994). In Section 5 we identify
a subfamily by requiring the well known scale invariance axiom. Finally, the paper
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finishes with some examples in Section 6.

2. Preliminaries

Let U denote a set of potential agents. Given a non-empty finite subset N of U , by
R

N we write the |N |-dimensional euclidean space whose axes are labelled with the
members of N , RN

+ = {x ∈ R
N : xi ≥ 0} and R+ = {x ∈ R : x ≥ 0}. If x ∈ R then

x+ = max {x, 0}. Given q ∈ R
N
+ , we denote Q =

∑
i∈N qi, and if N = {1, 2, . . . , n}

and q1 ≤ q2 ≤ · · · ≤ qn, we write q0 = 0 and qj = (n− j + 1) qj + qj−1 + ... + q1 for
every j ∈ N . If S ⊆ N then qS ∈ R

S
+ satisfies (qS)i = qi for all i ∈ S.

A triple (N, q, C) is called a cost-sharing problem, if N is a non-empty finite subset
of U (the set of agents involved in the problem), q ∈ R

N
+ (the demand profile of the

cost-sharing problem) and C is a nondecreasing function defined on [0, Q] such that
C (0) = 0 (the cost function of the cost-sharing problem).

Let ΓU denote the set of all cost-sharing problems with the foregoing properties.

A cost-sharing rule σ on a subset Γ of ΓU associates each (N, q, C) ∈ Γ with a
vector σ(N, q, C) ∈ R

N
+ satisfying

∑

i∈N

σi(N, q, C) = C (Q) (efficiency).

Thus a cost-sharing rule must allocate total cost among the n agents.
Moulin and Shenker (1992) define the serial cost-sharing rule. Its functional form

(as well as the following ones) is presented assuming N = {1, 2, . . . , n} and q1 ≤ q2 ≤
· · · ≤ qn. The serial cost-sharing rule of (N, q, C), denoted ϕ, is defined by

ϕi(N, q, C) =

i∑

j=1

Cq
j − Cq

j−1

n− j + 1
(1)

for all i ∈ {1, . . . , n}, where
Cq

j = C
(
qj
)

(2)

for all j ∈ {0, ..., i}.

3. Intermediate serial cost-sharing rules

We describe first the serial cost-sharing rule of Moulin and Shenker (1992). Let
(N, q, C) be a cost-sharing problem with q1 ≤ q2 ≤ · · · ≤ qn. When the production
starts, each unit of the good is equally divided among the agents, who share equally
the incurred cost. When quantity q1 is produced, since agent 1 has met all his
demand, he stops receiving the good and leaves the picture. And the process goes on
in the same way. The production continues and each additional unit is divided equally
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among the remaining n− 1 agents, who share equally the incurred cost. When agent
2 has met his demand, that is, when quantity q2 is produced, agent 2 stops receiving
the good, he leaves the picture and the production continues for the remaining agents.
These agents pay equally until agent 3 has met his demand and so on.

The dual serial cost-sharing rule defined by Albizuri and Zarzuelo (2007) is as
follows. This rule equalizes quantities left to be allocated to agents, who share equally
the incurred cost. When the production starts, each unit is given to agent n, the agent
with the highest demand. When agent n is given qn − qn−1 units, that is, Q − qn−1

units, then both n and n−1 are short of the same quantity. Agent n pays the incurred
cost, that is, C (Q− qn−1) , and the production process continues by sharing the good
equally among agents n and n− 1, who pay equally the incurred cost. When each of
them is given qn−1 − qn−2 then agents n, n− 1 and n− 2 are left to be allocated the
same quantity of good. So n and n− 1 share equally the corresponding cost, that is,

each one pays
C(Q−qn−2)−C(Q−qn−1)

2
and the process continues in the same way. Units

are given simultaneously to agents n, n−1 and n−2 until they are short of the same
quantity of demand and so on.

If we look at the serial cost-sharing rule, all the agents pay the cost associated
with the cost production interval [0, q1] and each one gets q1 units of good. The
remaining cost associated with [0, q2] is paid by 2, ..., n and each of them gets q2 − q1
units of good. The remaining cost associated with [0, q3] is paid by 3, ..., n to receive
q3 − q2 units each, and so on until the cost associated with [0, Q] is paid. Regarding
the dual serial cost-sharing rule all the agents pay the cost associated with [Q− q1, Q]
and each one gets q1 units. The remaining cost associated with [Q− q2, Q] is paid
by 2, ..., n and each of them receives q2 − q1 units, and this process continues until
the cost associated with [0, Q] is paid. We can see in Fig. 4 and Fig. 5 the intervals
whose associated cost is paid in both cases.

0 Qq1 q2

Figure 4

0 QQ − q1Q − q2

Figure 5

We define an intermediate serial cost-sharing rule by taking any sequence of em-
bedded intervals of length q1, q2, ... whose associated cost is divided respectively
among all the agents, who get q1 units each of them, among agents 2, ..., n, who
receive q2 − q1 units each of them, and so on. Fig. 6 shows the sequence of intervals,
denoted [aQ (qj) , aQ (qj) + qj], where j = 0, ..., n.
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0 Q

q1

q2

aQ(q
2)

aQ(q
1)

Figure 6

Notice that when we define a cost-sharing rule we have to determine cost shares
for any cost-sharing problem, and hence we have to consider problems with different
demand profiles q, q′, q 6= q′. So it may hold Q 6= Q′. For (N, q′, C ′) there is also a

sequence of intervals
[
aQ′

(
(q′)j

)
, aQ′

(
(q′)j

)
+ (q′)j

]
, where j = 0, ..., n, whose asso-

ciated costs determine the intermediate serial cost-sharing rule. In order to be consis-
tent in our definition we suppose that aQ (x) = aQ′ (x′) when Q−x = Q′−x′. Indeed,
let Q− x = Q′ − x′ and suppose that Q′ > Q. Then (see Fig. 7) when the remaining
cost associated with [aQ′ (x′) , aQ′ (x′) + x′] has to be paid, x′−x units might have been
already paid associated with a previous interval ([aQ′ (x′ − x) , aQ′ (x′ − x) + x′ − x]).
And therefore, in fact just only x units might have to be paid. Thus at this step Q
units remain to be paid and x units have to be paid. Since we are defining a unique
cost-sharing rule, cost makes sense to be paid in the same way as if there were Q
units at the beginning and x units had to be paid, that is, aQ (x) = aQ′ (x′). Hence,
aQ (x) = aQ′ (x′) = a (Q− x) .

0

aQ′(x′)

aQ′(x′ − x)

aQ′(x′ − x)
+(x′ − x)

aQ′(x′) + x′ Q′

0

aQ(x)

aQ(x) + x Q = Q′ − (x′ − x)

Figure 7

So an intermediate serial cost-sharing problem has associated a mapping a : R+ →
R+ (we write on page 9 the properties it has to satisfy). We formalize the definition
by establishing payoffs for agents as units of good are produced.

When the production starts each unit goes to the agent with the highest demand,
agent n, who pays for it. Then Q − qn−1 units are considered, that is, the quantity
beyond which agents n and n − 1 are short of the same quantity of demand, and
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a portion of those units, namely, a (Q− qn−1), is served to agent n. Agent n pays
the incurred cost C (a (Q− qn−1)). At this point agent n− 1 enters the picture and
production is shared and paid equally among agents n and n−1. The quantity shared
by them is a portion of Q − qn−2, determined by a, that is, a (Q− qn−2). So it is
considered the quantity beyond which agents n, n−1 and n−2 are short of the same
quantity of demand, Q−qn−2, and agents n and n−1 are served a portion of it. Since

a (Q− qn−1) has already been given, each of n and n−1 receives
a(Q−qn−2)−a(Q−qn−1)

2

and pays

C (a (Q− qn−2))− C (a (Q− qn−1))

2
.

This procedure continues until Q−q0 = Q units are considered and agents 1, ..., n are
given the same quantity of good and pay equally for it. Since at this point a (Q− q1)

were already shared,
a(Q)−a(Q−q1)

n
is paid by each of them. Notice that a (Q) units

have been shared and paid in this way.
From now on all the agents are served equally until they meet their demands. So

when production process continues quantities are equally divided among all agents
who share equally the incurred cost until agent 1 receives the remaining part of his

demand, that is, each agent is given q1 −
a(Q)−a(Q−q1)

n
units, that is,

a(Q−q1)+q1−a(Q)

n

units. Since a (Q) units were already paid, each agent pays

C (a (Q− q1) + q1)− C (a (Q))

n
.

At this point agent 1 has met his demand and leaves the production process. Then
agents 2, ..., n are served simultaneously and share equally the incurred cost until

agent 2 gets the remaining part of his demand, that is,
a(Q−q2)+q2−(a(Q−q1)+q1)

n−1
units.

Since a (Q− q1) + q1 units were already served and paid, each of 2, ..., n pays

C (a (Q− q2) + q2)− C (a (Q− q1) + q1)

n− 1

and agent 2 leaves the system. The process continues in the same way until all the
agents’ demands are met.

By means of this procedure we define the intermediate serial cost-sharing rule

associated with a : R+ → R+, denoted ϕa:
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ϕa
i (N, q, C) =

i∑

j=1

C (a (Q− qj) + qj)− C (a (Q− qj−1) + qj−1)

n− j + 1
(3)

+

i∑

j=1

C (a (Q− qj−1))− C (a (Q− qj))

n− j + 1
,

for all i ∈ {1, ..., n} .1 Mapping a is continuous and satisfies the following three con-
ditions.

a (x) ∈ [0, x] , (4)

a (x) ≤ a (y) for every 0 ≤ x ≤ y, (5)

a (y)− a (x) ≤ y − x for every 0 ≤ x ≤ y. (6)

The first condition means the sequence of intervals associated with the cost-sharing
rule is inside [0, Q], and the second and the third that the intervals fit together inside
each other (by the second condition the beginnings fit and by the third one the ends
do). We prove in the following proposition that those conditions are necessary and
sufficient in order to get a cost-sharing rule. Though continuity for mapping a is not
necessary for ϕa to be a cost-sharing rule, we think that it is a reasonable requirement
in order agents to receive quantities which are near if agents’ demands are also near.

Proposition 1. ϕa is a cost-sharing rule if and only if mapping a : R+ → R+ satisfies

conditions (4), (5) and (6) .

Proof. Take a : R+ → R+ and let ϕa be the mapping defined in (3) . Sufficiency
of the three conditions easily follows. So let us prove necessity.

i) If function a does not satisfy condition (4), then there exists x ∈ R+ such
that a (x) > x. Consider a cost-sharing problem (N, q, C) where the demand profile
q = (q1, ...q1,, qn) ∈ R

N
+ is such that qn = q1+x. Notice that Q−q1 = x, and therefore

a (Q− q1) > Q− q1, that is, a (Q− q1) + q1 > Q. From (3) with i = 1 we have

ϕa
1(N, q, C) =

C (a (Q− q1) + q1)− C (a (Q− q1))

n
,

and therefore this expression has no sense.
ii) If condition (5) does not hold, then there exist x, y ∈ R+ such that x < y

and a (x) > a (y). Then we consider a cost-sharing problem (N, q, C) where q =

1Recall that q0 = 0.
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(q1, q2, ...q2, qn) is such that q2 = q1 +
y−x

n−1
and qn = q2 + x, and the cost function C

is defined by

C (t) =

{
t if t ≤ a (Q− q2) ,

a (Q− q2) otherwise.

Observe that Q− q1 = y and Q− q2 = x. Then, from (3) with i = 2, we have

ϕa
2(N, q, C) =

C (a (Q− q1) + q1)− C (a (Q− q1))

n

+
C (a (Q− q2) + q2)− C (a (Q− q1) + q1)

n− 1
+

C (a (Q− q1))− C (a (Q− q2))

n− 1
.

And by definition of C,

ϕa
2(N, q, C) =

C (a (Q− q1))− C (a (Q− q1) + q1)

n (n− 1)
.

Since a (Q− q1) < a (Q− q2) then ϕa
2(N, q, C) < 0. Hence ϕa is not a cost-sharing

rule.
iii) If a does not satisfy (6) , then there exist x, y ∈ R+ such that 0 ≤ x < y

and a (y)− a (x) > y − x. Then we consider a cost-sharing problem (N, q, C) where
q = (q1, q2, ...q2, qn) is such that q2 = q1 +

y−x

n−1
and qn = q2 + x, and the cost function

defined by

C (t) =

{
0 if t ≤ a (Q− q2) + q2,

t− (a (Q− q2) + q2) otherwise.

We have that Q− q1 = y and Q− q2 = x. From (3) with i = 2 and the definition of
C it follows that

ϕa
2(N, q, C) =

C (a (Q− q1) + q1)− C (a (Q− q1))

n
+

C (a (Q− q1))− C (a (Q− q1) + q1)

n− 1
.

And since a (Q− q1)−a (Q− q2) > Q−q1−(Q− q2) = q2−q1, then ϕa
2(N, q, C) < 0.

Hence ϕa is not a cost-sharing rule.
The family of intermediate serial cost-sharing rules contains the serial cost-sharing

rule defined by Moulin and Shenker (1992) (a (x) = 0) and the dual serial cost-sharing
rule defined by Albizuri and Zarzuelo (2007) (a (x) = x).

Finally, we formalize in a proposition (which can be easily proved) that the for-
mula (3) for the intermediate serial cost-sharing rule gives the allocations prescribed
by the serial cost-sharing rule in the associated cost-sharing problem described at
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the beginning of this section (Fig. 6). Given a cost-sharing problem (N, q, C) , the

associated problem is
(
N, q, C̃Q

a

)
where C̃Q

a is defined by2

C̃Q
a (t) = C (a (Q− t) + t)− C (a (Q− t)) . (7)

So C̃Q
a (t) measures the cost of t units produced just after a (Q− t). We can see

that in Fig. 8 below.

Qa(Q− t) a(Q− t) + t

C̃Q
a (t)

C

Figure 8

Proposition 2.

ϕa
i (N, q, C) = ϕi

(
N, q, C̃Q

a

)

where C̃Q
a is defined in (7) .

4. A characterization for the intermediate serial cost-sharing rules

In this section we present some properties fulfilled by intermediate serial cost-sharing
rules which provide together a characterization for them. More precisely, we give a
characterization for each intermediate serial cost-sharing rule.

First, we present the axioms employed by Moulin and Shenker (1994) to char-
acterize the serial cost-sharing rule. They characterize the serial cost-sharing rule
by means of five properties: continuity, additivity, ranking, separable costs and free
lunch. The first axiom requires continuity for the topology of pointwise convergence
and the others are as follows.

Let σ be a cost-sharing rule and (N, q, C) be a cost-sharing problem.

Additivity:

σi (N, q, C1 + C2) = σi (N, q, C1) + σi (N, q, C2) for all (N, q, C1), (N, q, C2) ∈ ΓU .

2We have defined cost function C on [0, Q] not to define arbitrarily this cost function beyond Q.

We could have chosen to define C and C̃Q
a on R+ and all the results in this paper would be valid.
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By means of ranking the order of cost shares coincides with the order of demands.

Ranking: If qi ≤ qj , then

σi (N, q, C) ≤ σj (N, q, C)

for all q and all i, j ∈ N.

Separable costs states that if costs are separable then they are so allocated.

Separable costs: If there exists λ ≥ 0 such that C (t) = λt for all t ≥ 0 then

σi (N, q, C) = λqi

for all i ∈ N.

For the last axiom, a kind of consistency axiom, we need some notation. Given a
cost function C and α, δ ∈ R+ we define the cost function Cα,δ by

Cα,δ (t) =

{
C (t) if t ≤ α,

C (t+ δ)− C (α + δ) + C (α) otherwise.

We see in Fig. 9 that Cα,δ is the cost function which results from C when δ units
from α to α + δ have been withdrawn, joint with their associated cost, that is,
C (α + δ)− C (α).

α α+ δ Q
t

C

Figure 9

Q− δα
t

Cα,δ

Free lunch: If C (nqi) = 0 for some i ∈ N, then σi (N, q, C) = 0 and

σj (N, q, C) = σj

(
N\ {i} , qN\{i}, C

0,qi
)

for all j ∈ N\{i}.
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According to free lunch, if nqi units of the good have no cost, then any agent
whose demand is qi pays nothing. And moreover, if that agent leaves the system the
cost shares for the remaining agents do not change. Observe that when qi goes out
the new cost function is C0,qi since agent i receives qi and pays C (qi), that is, zero.

We characterize the intermediate serial cost-sharing rule associated with a map-
ping a by means of the same axioms which characterize the serial cost-sharing rule
except free lunch, instead of which a modified axiom is given.

Observe that in free lunch Moulin and Shenker require the cost of the first nqi
units to be zero and agent i to be given qi units from them. But this might not
be the case. Agent i might be given qi units which are not at the beginning. We
propose an axiom in which we also suppose that the cost of nqi units is zero, but not
necessarily the cost of the first nqi units. These units can be located anywhere in the
production process. We suppose that for each Q there is a mapping aQ defined on
[0, Q] which gives the location of units: if x ∈ [0, Q] then these units are located in
[aQ (x) , aQ (x) + x] ⊆ [0, Q]. For example, if aQ (x) = 0, units are at the beginning
of [0, Q]. If aQ (x) = Q− x, units are at the end of [0, Q]. And if aQ (x) = Q−x

2
they

are in the middle.
The new axiom states that given aQ, if nqi units located according to aQ are

costless, then agent i does not pay anything and if i is given qi units located also
according to aQ then the other agents’ payoffs do not change in the remaining cost-
sharing problem.

Moreover, suppose that in a first step agent i is given qi units (located according
to aQ) and leaves the picture, and that in a second step agent j is given qj units
(located according to aQ−qi). We assume that the qi+ qj units which have been given
to those agents are the same units that would have been given if there were just one
agent with demand qi+ qj and that agent would have been given his demand, that is,
aQ (qi + qj) = aQ−qi (qj) (see Fig. 7 with total demands Q and Q−qi, and x′ = qi+qj ,
x = qj , x

′ = x+ qi). Therefore there exists a mapping a such that aQ (x) = a (Q− x)
and we state the axiom by employing mapping a.

We formalize the property as follows. Let a : R+ → R+ be a continuos mapping
such that a (x) ∈ [0, x].

Free a-middle: If

C (a (Q− nqi) + nqi)− C (a (Q− nqi)) = 0

for some i ∈ N , then σi (N, q, C) = 0 and

σj (N, q, C) = σj

(
N\ {i} , qN\{i}, C

a(Q−qi),qi
)

for all j ∈ N\{i}.
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We see in Fig. 10 the shape of the cost function.

Qa(Q− nqi)

a(Q− nqi) + nqi

C

t

Figure 10

We prove in the following proposition that if a cost-sharing rule satisfies free a-

middle then conditions (5) and (6) hold, and therefore in C
a(Q−qi),qi we withdraw qi

units with no cost. Observe that C
a(Q−qi),qi (t) =

{
C (t) if t ≤ a (Q− qi) ,

C (t + qi) otherwise.
In order free a-middle to make sense Q−nqi has to be non-negative. That occurs

for agent with lowest demand but not in general. If we consider C (a (Q− qi) + qi)−
C (a (Q− qi)) = 0 in the free a-middle axiom, we would get the same characteriza-
tion and the axiom could make sense for all the agents. We have chosen the first
presentation to be closer to the one given by Moulin and Shenker (1994). Finally,
when a (x) = 0 the new axiom coincides with free lunch.

Lemma 3. Let σ be a cost-sharing rule that satisfies free a-middle. Then mapping

a : R+ → R+ satisfies conditions (5) and (6) .

Proof. Let σ be a cost-sharing rule satisfying free a-middle.
i) If a does not satisfy condition (5), then there exist x, y ∈ R+ such that x < y

and a (x) > a (y).
Consider the cost-sharing problem (N, q, C) , where q = (q1, q2, ..., q2) is such that

q1 =
y−x

n−1
and q2 =

y

n−1
, and the cost function C is defined by

C (t) =





t if t ≤ a (x) ,
a (x) if a (x) < t ≤ a (x) +Q− x,

t− (Q− x) if t ≥ a (x) +Q− x.

Notice that x = Q−nq1 and y = Q−q1. Since C (a (Q− nq1) + nq1)−C (a (Q− nq1)) =
0, by free a-middle we know that σ1 (N, q, C) = 0 and

σi (N, q, C) = σi

(
N\ {1} , qN\{1}, C

a(Q−q1),q1
)
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for all i ∈ N\{1}. These equalities and efficiency imply

C (Q) =
∑

i∈N\{1}

σi (N, q, C) =
∑

i∈N\{1}

σi (N, q, C) = C
a(Q−q1),q1 (Q− q1) . (8)

On the other hand since a (Q− q1) < a (Q− nq1), by definition of C
a(Q−q1),q1 we have

that C
a(Q−q1),q1 (Q− q1) = C (Q)−C (a (Q− q1) + q1)+C (a (Q− q1)) < C (Q), which

contradicts (8) . Hence a must be non-decreasing
ii) If condition (6) does not hold there exist x, y ∈ R+ such that x > y and

a (y) − a (x) > y − x. We consider the demand profile q and the cost function C
defined in point i). We argue as before and reach (8). Since now a (Q− q1) + q1 >
a (Q− nq1) + nq1, then

C
a(Q−q1),q1 (Q− q1) < C (Q) ,

which contradicts (8) . Hence a satisfies condition (6).
Let us prove the characterization theorem in three steps.

Lemma 4. The intermediate serial cost-sharing rule associated with function a sat-

isfies free a-middle.

Proof. If
C (a (Q− nqi) + nqi)− C (a (Q− nqi)) = 0

for some i ∈ N , then C̃Q
a (nqi) = 0. Since the serial cost-sharing rule ϕ satisfies free

lunch we know that ϕi

(
N, q, C̃Q

a

)
= 0 and

ϕj

(
N, q, C̃Q

a

)
= ϕj

(
N\ {i} , qN\{i},

(
C̃Q

a

)0,qi)

for all j ∈ N\{i}.
So by Proposition 2 we get ϕa

i (N, q, C) = 0 and

ϕa
j (N, q, C) = ϕj

(
N\ {i} , qN\{i},

(
C̃Q

a

)0,qi)

for all j ∈ N\{i}. Denote C
a(Q−qi),qi
a = C∗. Taking into account that

(
C̃Q

a

)0,qi
=

(
C̃∗
)Q−qi

a
it follows that

ϕa
j (N, q, C) = ϕj

(
N\ {i} , qN\{i},

(
C̃∗
)Q−qi

a

)
.
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Applying again Proposition 2 it holds

ϕa
j (N, q, C) = ϕa

j

(
N\ {i} , qN\{i}, C

∗
)
,

as was to be proved.
In the following lemma and in the main theorem we employ the cost-sharing

problems (N, q,Λα) , (N, q,Λ′
α) , such that α ∈ [0, Q], defined by

Λα (t) = (t− α)+ and Λ′
a (t) = min {t, α} .

The first ones are employed by Moulin and Shenker (1994) to characterize the serial
cost-sharing rule. This type of problems was sufficient in order to characterize that
rule since free lunch could be applied for all (N, q,Λα). In our case we also employ
(N, q,Λ′

α) to approach all cost-sharing problems.

Lemma 5. If a cost-sharing rule σ satisfies additivity, ranking, separable costs and

free a-middle, then

σi

(
N, q,Λa(Q)

)
= qi −

i∑

j=1

a (Q− qj−1)− a (Q− qj)

n− j + 1
,

σi

(
N, q,Λ′

a(Q)

)
=

i∑

j=1

a (Q− qj−1)− a (Q− qj)

n− j + 1
.

Proof. Let N = {1, ..., n} and q ∈ R
N
+ , and assume without loss of generality that

q1 ≤ q2 ≤ · · · ≤ qn. We prove this lemma by induction on i = 1, ..., n. Consider

∆a,Q,q1 = Λa(Q) − Λa(Q−q1)+q1 . (9)

By efficiency we have

n∑

i=1

σi (N, q,∆a,Q,q1) = a
(
Q− q1

)
+ q1 − a (Q) ,

and by ranking we get

σ1 (N, q,∆a,Q,q1) ≤ q1 −
a (Q)− a (Q− q1)

n
. (10)

Since free a-middle implies

σ1 (N, q,∆a,Q,q1) = σ1

(
N, q,Λa(Q)

)
,
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then together with (10) we have

σ1

(
N, q,Λa(Q)

)
≤ q1 −

a (Q)− a (Q− q1)

n
. (11)

Now we define
∆′

a,Q,q1 = Λ′
a(Q) − Λ′

a(Q−q1). (12)

Reasoning as above it follows that

σ1

(
N, q,Λ′

a(Q)

)
≤

a (Q)− a (Q− q1)

n
. (13)

And additivity and separable costs imply

σ1

(
N, q,Λa(Q)

)
+ σ1

(
N, q,Λ′

a(Q)

)
= σ1 (N, q,Λ0) = q1.

Using (11) and (13) in that equality we can deduce

σ1

(
N, q,Λa(Q)

)
= q1 −

a (Q)− a (Q− q1)

n
,

σ1

(
N, q,Λ′

a(Q)

)
=

a (Q)− a (Q− q1)

n
.

Now we suppose that the following equalities are true for all i < k,

σi

(
N, q,Λa(Q)

)
= qi −

i∑

j=1

a (Q− qj−1)− a (Q− qj)

n− j + 1
,

σi

(
N, q,Λ′

a(Q)

)
=

i∑

j=1

a (Q− qj−1)− a (Q− qj)

n− j + 1
,

and we will prove them for agent k.
For that take

∆a,Q,qk = Λa(Q) − Λ
a(Q−qk)+qk

.

Since σ satisfies efficiency we get

n∑

i=1

σi

(
N, q,∆a,Q,qk

)
= a

(
Q− qk

)
+ qk − a (Q) . (14)

Now we prove the following equality, which will be useful in the sequel,

σi

(
N, q,Λ

a(Q−qk)+qk

)
= 0 (15)
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for all i ∈ {1, ..., k}.

By free a-middle we know that σ1

(
N, q,Λ

a(Q−qk)+qk

)
= 0 and

σi

(
N, q,Λ

a(Q−qk)+qk

)
= σi

(
N\ {1} , qN\{1},Λa(Q−qk)+qk−q1

)

if i ∈ {2, ..., k}. Applying again free a-middle,

σ2

(
N\ {1} , qN\{1},Λa(Q−qk)+qk−q1

)
= 0,

and thus σ2

(
N, q,Λ

a(Q−qk)+qk

)
= 0, and moreover

σi

(
N\ {1} , qN\{1},Λa(Q−qk)+qk−q1

)
= σi

(
N\ {1, 2} , qN\{1,2},Λa(Q−qk)+qk−q1−q2

)

if i ∈ {3, ..., k}. Taking into account free a-middle repeatedly, if i ≤ k we get

σi

(
N, q,Λ

a(Q−qk)+qk

)
=

= · · · = σi

(
N\ {1, 2, ..., i− 1} , qN\{1,2,...,i−1},Λa(Q−qk)+qk−q1−q2−...−qi−1

)
= 0,

and therefore equality (15) is proved.
Turning to the main proof, by additivity and equalities (15) for i ∈ {1, ..., k − 1}

we have

n∑

i=1

σi

(
N, q,∆a,Q,qk

)
=

k−1∑

i=1

σi

(
N, q,Λa(Q)

)
+

n∑

i=k

σi

(
N, q,∆a,Q,qk

)
.

And taking into account expression (14),

n∑

i=k

σi

(
N, q,∆a,Q,qk

)
= a

(
Q− qk

)
+ qk − a (Q)−

k−1∑

i=1

σi

(
N, q,Λa(Q)

)
.

Applying induction hypothesis we get

n∑

i=k

σi

(
N, q,∆a,Q,qk

)
≤ (n− k + 1)

(
qk −

k∑

j=1

a (Q− qj−1)− a (Q− qj)

n− j + 1

)

and by ranking it follows that

σk

(
N, q,∆a,Q,qk

)
≤ qk −

k∑

j=1

a (Q− qj−1)− a (Q− qj)

n− j + 1
.
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Applying additivity and equality (15) for i = k we get

σk

(
N, q,Λa(Q)

)
≤ qk −

k∑

j=1

a (Q− qj−1)− a (Q− qj)

n− j + 1
. (16)

If we take ∆′
a,Q,qk

= Λ′
a(Q) − Λ′

a(Q−qk)
, reasoning in a similar way we prove that

σk

(
N, q,Λ′

a(Q)

)
≤

k∑

j=1

a (Q− qj−1)− a (Q− qj)

n− j + 1
.

And additivity, separable costs and (16) imply

σk

(
N, q,Λa(Q)

)
= qk −

k∑

j=1

a (Q− qj−1)− a (Q− qj)

n− j + 1
,

σk

(
N, q,Λ′

a(Q)

)
=

k∑

j=1

a
(
Q− qk−1

)
− a

(
Q− qk

)

n− k + 1
.

as was to be proved.

Theorem 6. The intermediate serial cost-sharing rule associated with function a is

the unique cost-sharing rule that satisfies continuity, additivity, ranking, separable

cost and free a-middle .

Proof. By Lemma 4 the intermediate serial cost-sharing rule associated with
function a satisfies free a-middle. And it is straightforward to prove the other axioms.

For uniqueness we consider an allocation rule σ satisfying the five properties above.
We show that σ coincides with the intermediate serial cost-sharing rule associated
with function a on (N, q,Λt) when t ≥ a (Q) and on (N, q,Λ′

t) when t < a (Q).
Case 1. We are going to determine σ (N, q,Λt) when t ≥ a (Q).
First we determine σ

(
N, q,Λa(Q−nq1)+nq1

)
. By free a-middle we get

σi (N, q,Λt) = 0 (17)

for all t ≥ a (Q− nqi) + nqi and hence

σ1

(
N, q,Λa(Q−nq1)+nq1

)
= 0. (18)

Considering the cost function defined in (9), additivity and (18), we have

σ1 (N, q,∆a,Q,q1) = σ1

(
N, q,Λa(Q)

)
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and by the previous lemma

σ1 (N, q,∆a,Q,q1) = q1 −
a (Q)− a (Q− q1)

n
.

And therefore by ranking

σi (N, q,∆a,Q,q1) ≥ q1 −
a (Q)− a (Q− q1)

n
(19)

for all i ∈ N. Since from efficiency we get

n∑

i=1

σi (N, q,∆a,Q,q1) = a
(
Q− q1

)
+ q1 − a (Q) ,

applying (19) it holds

σi (N, q,∆a,Q,q1) = q1 −
a (Q)− a (Q− q1)

n
(20)

for all i ∈ N. Hence, by Lemma 5, additivity and (20) we find

σi

(
N, q,Λa(Q−nq1)+nq1

)
= qi − q1 −

i∑

j=2

a (Q− qj−1)− a (Q− qj)

n− j + 1
(21)

for all i ∈ N.
To determine σ (N, q,Λt) when a (Q) ≤ t < a (Q− q1) + q1, we increase the set of

agents with an additional individual denoted 0. So let N ′ = {0, 1, ..., n} = N ∪ {0}
and q0 ≤ q1. Taking into account (21) we get

σ0

(
N ′, (q0, q) ,Λa((Q+q0)−(n+1)q0)+(n+1)q0

)
= 0

and
σi

(
N ′, (q0, q) ,Λa((Q+q0)−(n+1)q0)+(n+1)q0

)

= qi − q0 −
a (Q− nq0)− a (Q− q1)

n
−

i∑

j=2

a (Q− qj−1)− a (Q− qj)

n− j + 1

for all i ≥ 1. Applying free a-middle by removing agent 0 from N ′ it holds

σi

(
N, q,Λa(Q−nq0)+nq0

)
= qi−q0−

a (Q− nq0)− a (Q− q1)

n
−

i∑

j=2

a (Q− qj−1)− a (Q− qj)

n− j + 1

for all i ≥ 1. Then
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σi (N, q,Λt) = qi −
t

n
+

a (Q− q1)

n
−

i∑

j=2

a (Q− qj−1)− a (Q− qj)

n− j + 1
(22)

for all i ≥ 1 and t ≤ q1 + a (Q− q1) (note that continuity of a implies that t takes
any value from a (Q) to q1 + a (Q− q1)). Moreover by (17) it holds σ1 (N, q,Λt) = 0
for all t ≥ q1 + a (Q− q1) .

Now let us determine σ (N, q,Λt) when q1 + a (Q− q1) ≤ t < q2 + a (Q− q2) . If
we drop agent 1, expression (22) and free a-middle yield

σi (N, q,Λt) = qi −
t− q1
n− 1

+
a (Q− q2)

n− 1
−

i∑

j=3

a (Q− qj−1)− a (Q− qj)

n− j + 1

for all i ≥ 2 and q1 + a (Q− q1) ≤ t < q2 + a (Q− q2). Moreover σ2 (N, q,Λt) = 0 for
all t ≥ q2 + a (Q− q2) by (17) .

Using the induction process we determine σi (N, q,Λt) for all t ≥ a (Q) and for all
i ∈ N.

Case 2. To determine σ (N, q,Λ′
t) when t < a (Q) we proceed in a similar way as

in Case 1.
By free a-middle we get

σi (N, q,Λ′
t) = 0 (23)

for all t ≤ a (Q− nqi) and therefore

σ1

(
N, q,Λ′

a(Q−nq1)

)
= 0. (24)

Considering the cost function defined in (12), additivity, expression (24) and the
previous lemma we have

σ1

(
N, q,∆′

a,Q,q1

)
= σ1

(
N, q,Λ′

a(Q)

)
− σ1

(
N, q,Λ′

a(Q−nq1)

)
=

a (Q)− a (Q− q1)

n
,

and hence ranking implies

σi

(
N, q,∆′

a,Q,q1

)
≥

a (Q)− a (Q− q1)

n
(25)

for all i ∈ N. From efficiency it follows that

n∑

i=1

σi

(
N, q,∆′

a,Q,q1

)
= a (Q)− a

(
Q− q1

)
,

which together with (25) implies
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σi

(
N, q,∆′

a,Q,q1

)
=

a (Q)− a (Q− q1)

n
(26)

for all i ∈ N . Taking into account Lemma 5, additivity and (26),

σi

(
N, q,Λ′

a(Q−nq1)

)
=

i∑

j=2

a (Q− qj−1)− a (Q− qj)

n− j + 1
(27)

for all i ∈ N.
To determine σ (N, q,Λ′

t) when a (Q− q1) < t < a (Q), we take as in Case 1 the
set of agents N ′ = {0, 1, ..., n} = N ∪ {0} and q0 ≤ q1 Applying (27) we get

σ0

(
N ′, (q0, q) ,Λ

′
a((Q+q0)−(n+1)q0)

)
= 0

and

σi

(
N ′, (q0, q) ,Λ

′
a((Q+q0)−(n+1)q0)

)
=

a (Q− nq0)− a (Q− q1)

n
+

i∑

j=2

a (Q− qj−1)− a (Q− qj)

n− j + 1

for all i ≥ 1. And by free a-middle

σi

(
N, q,Λ′

a(Q−nq0)

)
=

a (Q− nq0)− a (Q− q1)

n
+

i∑

j=2

a (Q− qj−1)− a (Q− qj)

n− j + 1

for all i ≥ 1. Then

σi (N, q,Λ′
t) =

t− a (Q− q1)

n
+

i∑

j=2

a (Q− qj−1)− a (Q− qj)

n− j + 1
(28)

for all i ≥ 1 and t > a (Q− q1). Moreover expression (23) implies σ1 (N, q,Λ′
t) = 0

for all t ≤ a (Q− q1) ,
Next let us determine σ (N, q,Λ′

t) when a (Q− q2) < t ≤ a (Q− q1) . If we drop
agent 1, expression (28) and free a-middle yield

σi (N, q,Λ′
t) =

t− a (Q− q2)

n− 1
+

i∑

j=3

a (Q− qj−1)− a (Q− qj)

n− j + 1

for all i ≥ 2, and for all t such that a (Q− q2) < t ≤ a (Q− q1) . And by (23)
then σ2 (N, q,Λ′

t) = 0 for all t ≤ a (Q− q2) . By induction process we determine
σi (N, q,Λ′

t) for all 0 ≤ t < a (Q) and for all i ∈ N.
Finally, using linear combinations of Λt and Λ′

t, additivity and continuity the proof
is extended to any nondecreasing function.
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Remark 1. Note that when a (x) = x, free a-middle states that if the last nqi units
in [0, Q] have no cost then agent i pays nothing and

σj (N, q, C) = σj

(
N\ {i} , qN\{i}, C

)

for all j ∈ N\{i}. Thus, the dual serial cost-sharing rule is characterized by employing

that axiom.

Remark 2. Note that in the previous proof we obtain expression (22) from (21)
since we have a mapping a : R+ → R+ in free a-middle and not mappings aQ.

5. A subfamily of intermediate serial cost-sharing rules

In this section we consider the intermediate serial cost-sharing rules which satisfy
scale invariance. This is a well known axiom according to which the payoffs do not
depend on the scale in which goods are measured. If σ is a cost-sharing rule it is
formalized as follows.

Scale invariance: For all (N, q, C) , i ∈ N and β > 0

σi (N, βq, Cβ) = σi (N, q, C) ,

where Cβ denotes the cost function defined by Cβ (t) = C (t/β).

In the next corollary we show that when scale invariance is required function
a : R+ → R+ in (3) must be linear, i.e., a (x) = αx with α ∈ [0, 1]. Given a cost-
sharing problem (N, q, C), those intermediate serial cost-sharing rules share αQ units
by equalizing quantities to be allocated. Each agent i is given αqi units in this way.
From αQ units upwards cost is shared by giving equally quantities of the good to all
the agents, who pay equally the incurred cost.

Obviously in this subfamily we have the serial and the dual cost-sharing rules
when α = 0 and α = 1. If α = 1/2 then the reverse self-dual cost-sharing rule defined
by Albizuri et al. (2012) is obtained. That rule is a self-dual cost-sharing rule, it
gives the same payoffs in a cost-sharing problem and in its dual one. In fact, it is the
unique self-dual intermediate serial cost-sharing rule.

Corollary 7. A cost-sharing rule satisfies continuity, additivity, scale invariance,

ranking, separable cost and free a-middle if and only if it is an intermediate serial

cost-sharing rule and there exists α ∈ [0, 1] such that a (x) = αx.

Proof. By Theorem 6 a cost-sharing rule σ satisfies additivity, ranking, separable
cost and free a-middle if and only if σ (N, q, C) = ϕa (N, q, C). Then

σ1(N, q, C) =
C (a (Q− q1) + q1)− C (a (Q− q1))

n
. (29)
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We have to prove that if σ satisfies scale invariance then there exits α ∈ R+ such
that

a (t) = αt (30)

for all t ∈ R+.
Assume that there exists t0, t1 ∈ R+, t0 6= t1, such that a (t0) = α1t0 and a (t1) =

α2t1 with α1 6= α2. Consider a cost function C ′ which satisfies C ′ ((1 + α1) t0) −
C ′ (α1t0) 6= C ′ ((1 + α2) t0) − C ′ (α2t0) . Suppose that t0 6= 0 and let β = t1/t0,
(N, q′, C ′) and

(
N, βq′, C ′

β

)
such that Q′ = 2t0 and nq′1 = t0. Equality (29) implies

σ1 (N, q′, C ′) =
C ′ (a (Q′ − nq′1) + nq′1)− C ′ (a (Q′ − nq′1))

n

=
C ′ (a (2t0 − t0) + t0)− C ′ (a (2t0 − t0))

n

=
C ′ (α1t0 + t0)− C ′ (α1t0)

n
.

Similarly,

σ1

(
N, βq′, C ′

β

)
=

C ′
β (α2βt0 + βt0)− C ′

β (α2βt0)

n
.

And taking into account the definition of C ′
β,

σ1

(
N, βq′, C ′

β

)
=

C ′ (α2t0 + t0)− C ′ (α2t0)

n
.

By scale invariance σ1 (N, q′, C ′) = σ1

(
N, βq′, C ′

β

)
, and therefore

C ′ (α1t0 + t0)− C ′ (α1t0) = C ′ (α2t0 + t0)− C ′ (α2t0)

which is false. Hence α1 = α2 and (30) holds. Notice also that a (x) ≤ x implies
α ∈ [0, 1] .
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