
Making object-oriented databases more

knowledgeable

(From ADAM to ABEL)

A thesis presented for the degree of

Doctor of Philosophy

at the University of Aberdeen

Oscar Diaz Garcia

Licenciado en Informatica (Basque Country University)

1992

D eclaration

This thesis has been composed by myself, it has not been accepted in any previous ap­

plication for a degree, the work of which it is a record has been done by myself and all

quotations have been distinguished by quotations marks and the sources of information

specially acknowledged.

Oscar Dfaz Garcia

28 October 1991

Department of Computing Science

University of Aberdeen

Kings College

Aberdeen, Scotland

Acknowledgem ents

I would like to thank my supervisors Prof. Peter Gray at the University of Aberdeen

and Dr. Arantza Illarramendi a t the Basque Country University for their advice and

guidance during the past three years.

The work described in this thesis has benefited from many discussions with colleagues

in Aberdeen and San Sebastian. This is the part of the thesis where I would have

most liked to use my mother tongue to thank in a more friendly and warm way all of

the people which help me during these years. But, do not worry, reader, you will not

have to put up with a sentimental and trying piece of Spanish prose! First of all, I

am greatly indebted with Norman Paton, the author of ADAM, whose encouragement,

patience and generosity has been invaluable throughout. I would like also to thank Jose

Miguel Blanco, for his friendship and lively discussions, hardly about Computer Science

but about much more interesting subjects. Particular thanks have also to be given to

Suzanne Embury for her patience in correcting my clumsy English and for her help

in implementing some parts of ABEL. I have also had useful discussions with Graham

Kemp and Zhuoan Jiao with whom I kept up a friendly and enlightening rivalry between

P/FD M and ADAM. My gratitude to Javier Torrealdea whose encouragement and help

in coping with administrative tasks made it possible for me to stay in Aberdeen. I

would like also to thank Ian Kirby for his help with LaTeX, and Jorg Forster and Ines

Arana for arranging things for me when I was away. I would like to thank the computer

officers Chris Cotton, Steve Trythall, Andrew Mellanby and Nick Murray in Aberdeen

and Blanca Martinez and Liborio Revilla in San Sebastian.

Finally, I would like to thank Ana for not letting me work most of the week-ends, and

my parents for their support throughout.

This work was supported by a F.P.I grant from the Spanish Government.

Sum m ary

The salient points of this thesis are as follows:

• Object-Oriented Databases can help in solving the impedance mismatch problem

by introducing methods. However, methods have sometimes been overused in the

sense tha t the code encapsulated refers not only to how the operation is imple­

mented but also to other kinds of knowledge that are implicit in the code. The

disadvantages of this approach for modelling integrity constraints, user-defined re­

lationships and active behaviour are pointed out.

• The ADAM Object-Oriented Database has been extended to allow the designer

to specify integrity constraints declaratively. A constraint equation approach is

implemented that supports the inheritance of constraints.

• A need for semantic-rich user-defined relationships has been identified. In this the­

sis, relationships are represented as objects. An approach to enhance the semantics

of relationships in both its structural and behavioural aspects is presented. The

most novel idea of the approach presented is the support of the inferred properties

and the operational semantics of relationships.

• Active Databases have recently become an important area of research. This thesis

shows how to extend an Object-Oriented Database with active capabilities. The

principal contribution lies in representing as ‘first-class’ objects not only the active

rules but also the rule manager itself. Hence, besides handling active rules as

any other object in the system, future requirements can be supported just by

specialising the current rule manager.

• Active rules have been proposed for several purposes. Several examples, are given

of the direct use of rules. However, higher level tools can be provided of which rules

ACKNOWLEDGEMENTS iv

are simple a vehicle for implementation. This is shown by generating rules from

the declarative specification of integrity constraints and it has also been applied to

generate rules for enforcing the operational semantics of relationships.

• Metaclasses are a valuable mechanism for enhancing the uniformity, accessibility

and extensibility of the system. This is demonstrated by showing how ADAM has

been extended with integrity constraints, semantic-rich user-defined relationships

and active behaviour.

C ontents

1 In tro d u ctio n 1

1.1 Purpose of the thesis: Motivations and Contributions 1

1.2 Context: From D ata Bases to Knowledge B ases .. 2

1.3 Meta-knowledge .. 5

1.4 Integrity C onstra in ts... 6

1.5 User-defined re la tionsh ip s.. 8

1.6 Active b eh a v io u r.. 9

1.7 Overview of the th e s i s ... 10

2 T h e O b ject O rien ted P arad igm 12

2.1 In troduction ... 12

2.2 Class-based s y s te m s .. 14

2.3 Semantic Data M odels... 18

2.4 Frame-based sy stem s.. 22

2.5 Terminological system s... 26

2.6 Actor-based s y s te m s .. 32

2.7 C onclusions.. 34

3 O b ject O rien ted D a ta b a ses 37

3.1 In troduction.. 37

3.2 Object orientation in d a tab a se s ... 39

v

CONTENTS vi

3.3 ADAM: an object-oriented database in Prolog.................................. 46

3.4 C onclusions... 52

4 M aking m e ta d a ta e x p lic it 54

4.1 Introduction.. 54

4.2 Metaclasses in Object Oriented Programming Languages......................... . 56

4.2.1 SMALLTALK.. 56

4.2.2 L O O P S .. 58

4.2.3 ObjVlisp ... 59

4.3 Metaclasses in A D A M .. 61

4.4 Achieving extensibility using metaclasses.. 64

4.5 Achieving accessibility using m etaclasses.. 67

4.6 Some drawbacks with metaclasses... 70

4.7 C onclusions... 72

5 M aking in te g r ity co n stra in ts e x p lic it 73

5.1 In troduction... 73

5.2 Related w o r k .. 75

5.3 Constraint eq u a tio n s .. 80

5.4 Horn rule representation for constraint e q u a tio n s... 82

5.5 Inheritance of c o n s tra in ts .. 86

5.6 Extending ADAM to support constraint d e f in it io n 87

5.7 C onclusions.. 90

6 M aking userrdefined rela tion sh ip s ex p lic it 92

6.1 Introduction.. 92

6.2 Relationships in SDM’s, 0 0 systems and AI ... 94

6.3 Semantic-rich User-defined Relationships... 97

6.3.1 Operational Semantics for re la tio n sh ip s ..100

CONTENTS vii

6.4 A description language for relationships in A D A M ...102

6.5 Specialisation of re lationships...106

6.6 Extending ADAM to support user-defined relationship d e fin itio n110

6.7 Conclusion ...113

7 M aking a c tiv e behav iou r ex p lic it 115

7.1 In troduction ...115

7.2 Related w o r k ..117

7.3 An overview of rule m anagem en t... 119

7.4 Events in an object oriented c o n te x t ...120

7.5 Extending ADAM to support rule m anagem ent...123

7.5.1 The event o b je c t ...123

7.5.2 The rule o b je c t ...125

7.5.3 Some exam ples...128

7.6 Deriving rules for constraint m a in ten an ce ...132

7.6.1 Active_method and active_class value generation....................................133

7.6.2 Rule condition value generation..136

7.6.3 Rule action value generation..138

7.7 Conclusion ...139

8 C on clu sion s 142

8.1 Making object-oriented databases more know ledgeable.................................. 142

8.2 System im p lem en ta tio n ...145

8.3 Future d irec tio n s ... 146

8.3.1 Integrity c o n s tra in ts ..146

8.3.2 User-defined re lationsh ips.. 147

8.3.3 Rule m a n a g e m e n t... 147

8.4 Can we claim to have made ADAM more know ledgeable?............................ 148

CONTENTS viii

A A B N P grammar for constraint equations in ABEL. 160

B U sing ABEL: An Exam ple 162

B .l P u rp o s e ... 162

B.2 E xam ple... 162

B.3 Im plem entation .. 163

B.4 A session with ABEL ...166

List of Figures

2.1 A classification of object-oriented systems.. 13

2.2 A student type definition in the SDM data model.. 19

2.3 A messy hierarchy.. 27

2.4 A KL-ONE notation for the busy French university student concept. . . . 28

2.5 A comparison among different object-oriented systems.................................. 35

3.1 The covariant rule.. 43

3.2 The contravariance rule... 43

3.3 A multiple inheritance hierarchy............................... 45

3.4 Property operators in ADAM.. 50

3.5 Method specialisation: an example... 51

3.6 Type hierarchy in ADAM... 52

4.1 Inheritance and instantiation in SMALLTALK-76... 56

4.2 An example of the three levels in SMALLTALK-80..................................... ■. 58

4.3 Inheritance and instantiation in LOOPS.. 59

4.4 Inheritance and instantiation in ObjVlisp... 60

4.5 . Instantiation hierarchy in ADAM.. 61

4.6 The ‘who’s who’ hierarchy in ADAM.. 63

4.7 The ADAM system... 64

4.8 Extending the system with optimisation classes... 66

4.9 Metaclass compatibility problems: an example... 70

ix

LIST OF FIGURES x

5.1 Constraint definition in CONMAN.. 76

5.2 An example of constraint maintenance... 82

5.3 An ADAM extension to support constraints.. 87

6.1 An attribute-based approach for working J.njajproject...................................... 95

6.2 Function hierarchy in CRL... 97

6.3 The marriage relationship definition in ABEL..103

6.4 Relationship specialisation in ABEL...108

6.5 An ADAM extension to support user-defined relationships............................... 110

7.1 E /R diagram for rule m anagem en t...120

7.2 Person h ie ra rc h y ...121

7.3 A rule to prevent students from being older than ninety..................................... 126

7.4 Rule hierarchy ..127

7.5 A rule triggered by a time event.. 128

7.6 A rule on rules... 129

7.7 A rule on metaclasses... 130

7.8 A rule template at the beginning of the derivation rule process........................ 133

7.9 Truth table for the implication o p e ra to r .. 133

7.10 Set of before events generated for the projects-of-lecturer constraint. . . . 135

7.11 A constraint maintenance ru le ... 140

i n © © wjp®m a I f i m ©

C h a p te r 1

Introduction

This thesis is about extending an Object Oriented Data Base with a set of constructs

tha t allow one to capture explicitly those features of the Universe of Discourse (UoD)

that are implicit in method definitions. The focus is on integrity constraints, user-defined

relationships and active behaviour. To identify, represent and extend the data base with

these primitives constitutes the main contributions of this work.

1.1 Purpose of the thesis: M otivations and Contributions

Object Oriented Data Bases (OODBs) have been proposed both for coping with the

impedance mismatch problem and for increasing the semantic details kept in the Data

Base (DB) by collecting not only the structural features of the application but the be­

havioural ones as well. This is achieved by including procedures (called methods) within

schema definition.

However, methods have sometimes been overused in the sense that the code encapsulated

refers not only to how the operation is implemented but also to other kinds of knowledge

that is implicit in the code. In this way, methods can be seen as a kind of Trojan horse

which introduce surreptitiously embedded knowledge tha t is not open to direct manipu­

lation. As a result, not only is it more difficult to update the system, but its ease of use,

legibility and inferential power are also diminished.

The aim of this work is to provide a set of primitives to represent knowledge explicitly

in an OODB. Until now, much of this knowledge was implicit in method code, and so

CHAPTER 1. INTRODUCTION 2

could not be used for other purposes. The focus is on four different kinds of knowledge,

namely

• metaknowledge (metaclasses)

• integrity constraints (attribute facets)

• active behaviour (event-condition-action rules)

• user-defined relationships (relationship objects)

In parentheses we give the approach tha t has been followed, which is more carefully

described in the following sections.

By providing primitives tha t allow these concepts to be captured explicitly, the OODBs

become more knowledgeable. In addition, since most of the primitives are applicable to

objects and they have been implemented as objects themselves, the concept represented

by the primitive can be applied to other primitives or even to itself. This is shown by

involving primitives in defining other primitives. Hence, providing this set of constructs,

not only allows knowledge to be made explicit but also a new range of possibilities stem­

ming from the combination of primitives.

This has been born out by an implementation in ADAM, an OODB in Prolog. It has

to be emphasised tha t this extension has been made in an object oriented fashion (i.e.

specialising and reusing previous concepts already existing in ADAM), and that only

once was the core of the system modified. The use of metaclasses to achieve extensibility

is also illustrated throughout the thesis and constitutes a contribution of this work on

the line established by [Paton 89a]. The result is called ABEL (ABerdeen Euskadi data

modeL) which we hope will become the good successor of ADAM.

1.2 Context: From D ata Bases to Knowledge Bases

One of the rationales behind data bases (DBs) is to achieve data independence by sep­

arating data from applications. This has been seen as a major breakthrough, since it

allows the data to be used by many applications and to be managed centrally. However,

traditional data models usually capture the plain structure but very little of the meaning

of the data. Hence, information on the meaning of the data and how this data can be used

CHAPTER 1. INTRODUCTION 3

is spread throughout the applications. As with file-based systems, redundancy, inconsis­

tency and maintainability problems arise, but now at the knowledge level. More recently

knowledge base management systems (KBMS) have emerged which pursue what can be

called knowledge independence, i.e. representing knowledge declaratively regardless of

how this knowledge is used. This can be seen as an evolution of the data independence

concept. Whereas in a DBMS most data is just ground data, a KBMS attem pts to in­

crease the amount of generic data, (or knowledge) kept in the DB. Knowledge is extracted

from applications and moved to the DB. But this places new requirements on the DB.

One must enhance DB expressiveness by providing a richer set of primitives th a t allow

this knowledge to be captured explicitly. In the following, a brief outline of the gaining

of expressiveness in DBs is presented from record-oriented models to KBMSs.

Traditional data models are basically record-oriented. For instance, in the relational

model, tuples in a table correspond to records of a file, and functional dependencies are

enforced through the concept of key. This leads to severe limitations when the UoD

does not fit directly into tables. To overcome these limitations, Semantic Data Models

(SDMs) have been developed which attempt to increase the semantic content of the DB.

SDMs have objects, relationships, dynamic properties and integrity constraints. Tra­

ditional data models attem pt to overcome the shortage of powerful constructs by using

integrity constraints. Some integrity constraints are part of the model itself, the so-called

structural constraints. However, these constraints are not sufficient to model all the com­

plexity of the UoD. In this case, the semantics has to be embedded into user programs

or reflected by means of a constraint language expressing the so-called behavioural con­

straints.

SDMs enlarge the number of structural constraints supported by the model, by provid­

ing constructs to represent explicitly abstract relationships tha t were already used both

in Artificial Intelligence (AI) and philosophy, such as generalisation, aggregation, clas­

sification and association. A clear semantics must be defined, specifying how insertion,

deletion and modification operations made at a higher abstraction level (e.g. person)

can affect the object abstracted (student, lecturer or other subclasses) and vice versa.

It is worth noticing tha t in relational DBs, tables can also materialise hierarchies. How­

ever, the difference is tha t here the semantics of the generalisation and classification

relationships is in the user programs which have to draw the corresponding inferences,

CHAPTER 1. INTRODUCTION 4

whereas in a SDM these relationships are provided as primitives and the user has only

to specify the hierarchy, leaving the semantic maintenance to the system itself.

However, it is not only a question of legibility or ease of use. A more fundamental dis­

tinction underlies both approaches: whereas with relational systems, programs know how

to cope with the hierarchy, in a SDM approach programs not only know how to treat

a hierarchy but also know that there is a hierarchy. This distinction corresponds to the

philosophical difference between knowing how to and knowing that. Integrity constraints

are a case in point. In relational systems, code can be added to a table to validate a

given constraint (the VALIDPROC procedure in DB2). In this way, the system knows

how to enforce this constraint but it is unaware of the constraint itself. Being wired

into the code, the constraint cannot be used for other purposes such as semantic query

optimisation [Chakravarthy 90, Demolombe 90].

KBMSs aim to make knowledge explicit. As pointed out in [Freundlich 90] “explicit

means open to direct manipulation. Within the programming context, this means re­

moving the knowledge from the procedural setting in which it is usually embedded in

conventional programming and representing it in a declarative form.” Understandabil-

ity, modularity, maintainability and extensibility are greatly enhanced with this new

approach.

However, what makes a knowledge representation formalism different from a simple data

structure is the possibility of it being interpreted, i.e. the ability to draw inferences, al­

lowing information to be obtained which is implicit in the knowledge base. Thus, unlike

relational DBs, in KBMSs the data available is not only the data explicitly stored but

also data tha t can be inferred from this knowledge. As an example, if Peter has been

defined as a student, the system can automatically infer tha t Peter is a person from the

semantics of the generalisation abstraction, without it being explictly declared. From

this point of view, SDMs can be seen as a rudimentary KBMS where primitives are

provided to represent explicitly a set of abstract relationships.

SDMs focus on the structural features of the UoD. Thus a student can be seen as a classi­

fication (where for instance, the common characteristics of graham, zhuoan and suzanne

are abstracted) and as a specialisation of a higher abstraction called person. More re­

cently, OODBs have emerged, where all information concerned with an object is gathered

CHAPTER 1. INTRODUCTION 5

together. This refers not only to the structural but to the behavioural features as well.

Now a student is not only a person that has a registration number at the University (i.e.

a specialisation of person) but also one that behaves in a certain way (e.g. tha t is able

to study). So, an object is characterised by the set of actions tha t it can undertake (the

so-called object interface). How an action is implemented (i.e. the method) is transparent

to the user who only accesses the object that through messages.

Besides being a, step ahead in modelling the UoD, OODBs can also help in solving the

impedance mismatch problem. This problem refers to the type clash tha t arises when a

relational languages such as SQL is embedded within a conventional programming lan­

guage (e.g. COBOL). Then the set-at-a-time relational processing has to be converted

to the record-at-a-time processing of conventional languages.

Apart from such remarkable advantages, methods have sometimes been overused since

the code encapsulated not only refers to the implementation of the operation but to

other kinds of knowledge as well. Integrity constraint maintenance is a case in point.

As a result, the DB-KB philosophy whereby data (ground or generic) is separated from

application, is jeopardised.

In the following sections, different kinds of knowledge are presented. The issue of how to

represent such knowledge explictly a.nd how to extend the system with the appropriate

constructs is the main concern of this work.

1.3 M eta-knowledge

Unlike more traditional databases, which are mainly concerned with the extension of the

UoD, knowledge-based systems are characterised by an increase of the knowledge kept

in the database, often referred to as the intensional side of the UoD. A new range of

applications has arisen which need to treat the objects in the data dictionary as regular

data, as objects of discourse [Freundlich 90]. This can be achieved by making explicit

the metaknowledge, i.e. knowledge about knowledge.

In an object oriented (0 0) paradigm knowledge is represented through classes that

gather together common features of a set of objects called the class instances. Thus,

classes collect generic data or knowledge. In this context, to make knowledge explicit

CHAPTER 1. INTRODUCTION 6

means to treat classes as any other object in the system, i.e. the ability to query a class

about its information in the same way that for example, the registration number of gra­

ham can be retrieved. Furthermore, the 0 0 paradigm encourages reuse and modularity

through the subclass mechanism. When a new class has to be introduced in the system,

the designer thinks about the differences between, and similarities within existing classes,

pointing out what is really new and what can be reused. Although this philosophy has

been broadly used in user-applications, few systems apply it to the definition of the sys­

tem itself.

The ability of query a class as well as the possibility of classifying, generalising and re­

lating classes can be accomplished by introducing metaclasses. A metaclass is used to

define the structure and behaviour of class objects in the same way tha t a class is used

to define the structure and behaviour of instance objects. Metaclasses not only permit

classes to be stored and accessed using the facilities of the data model, but make it possi­

ble to refine the default behaviour for class creation using specialisation and inheritance.

ADAM provides metaclasses tha t account for an 0 0 approach to system extensibility.

From this point of view, the system can be seen as a core of useful facilities which the

user can tailor to suit specific applications, a philosophy similar to tha t advocated by the

proponents of extensible DB systems [Carey 88]. In this way, uniformity, extensibility

and accessibility are greatly enhanced. As a case in point, this thesis is about extending

ADAM with integrity constraints, active behaviour and user-defined relationships.

1.4 Integrity Constraints

Integrity constraints can be seen as restrictions which must hold between different pieces

of information to keep the database consistent. Besides structural constraints, i.e. those

provided by the data model, there are other kinds of constraints tha t cannot be reflected

in a structural way. These constraints range from simple domain restrictions (e.g. the

age of a teenager must be between 10 and 19) to more complex relationships between

different pieces of information (e.g. the projects a lecturer has responsibility for are to

be the same as the set of projects which his/her researcli-assistants work on).

Usually the specification and checking of these constraints is left to the user, thereby be­

ing hard coded in application programs. Hence, constraints cannot be uniformly enforced

CHAPTER 1. INTRODUCTION 7

for all users. Through integration of da ta and programs, the 0 0 paradigm allows a uni­

form enforcement by coding integrity constraints as part of methods within the database.

However this is not a satisfactory solution. Several disadvantages can be enumerated:

• Overriding is a common practice in 0 0 systems, a subclass redefining a method

may no longer maintain constraints defined at a higher level in the hierarchy. Hence,

constraints and methods should be two separate mechanisms since the underlying

philosophies are quite different, namely tha t constraints represent invariant states

of the database but method definitions can sometimes be overridden.

• A designer may not correctly consider the effects of the constraint from the point

of view of all objects involved.

• Being implicit, constraints cannot be used to enhance other system capabilities

such as semantic query optimisation.

The proposed solution is to represent integrity constraints explicitly as an additional facet

attached to the attributes. A constraint equation approach [Morgenstern 84] has been

chosen to represent integrity constraints. For instance, constraining the set of projects

which a lecturer has a responsibility for, to be the same as the set of projects his/her

researcli-assistants works on, can be expressed as:

projects OF lecturer :: projects OF research-assistants OF lecturer

Constraint equations (CEs) provide a formalism that closely mimics the structure of the

0 0 model. As the user has to navigate through the OODB following different links, CEs

are expressed by means of chains of relationships called paths. This formalism is already

familiar to users who do not have to express constraints in a. different paradigm such

as first order logic. Another topic tha t has to be addressed is constraint inheritance.

Constraints applicable to a class should also be enforced for its subclasses where further

constraints can be specified. An approach based on a rule mechanism has been chosen

to provide the right behaviour.

Once constraints have been explicitly specified by the user as constraint equations, they

can be used for several purposes. The constraint maintenance mechanism can gener­

ate code to enforce a given constraint, whereas the query optimiser can use the same

CHAPTER 1. INTRODUCTION 8

declaratively-stated constraint to improve system response. In this way reusability has

been improved: “Knowledge removed from a particular procedural context is free to be

used in many contexts, within the existing application and in others, often in ways hot

foreseen when developing the original application” [Freundlich 90].

1.5 User-defined relationships

Whereas the abstract relationships, provided by SDMs, have a form of semantic definition

attached to them, no mechanism is provided to describe the semantics of user-defined

relationships. As a result, this semantics is still wired into the user programs instead of

being in the schema definition of the DB. Hence, in the same way tha t SDMs provide a

system maintained semantics for abstract relationships, allowing all users to have a clear

notion of the consequences of DB manipulation, here a system maintained mechanism to

specify the semantics of user-defined relationship is proposed. The DB designer should be

able to specify the semantics of a relationship, e.g. what facts can be inferred as a result

of relationship establishment. For instance, let working-in be a relationship between

a company and a person. When a relation is established, can the person obtain his

working-address attribute from the address attribute of the company? If the system does

not specify anything, different users can have different understandings of what working-

in a company means and different conclusions can be drawn. Hence, the semantics of

insertion, deletion and modification operations have to be specified not only for abstract

relationships but also for user-defined relationships. Enhancing the semantics of user-

defined relationships helps to increase the UoD semantics kept in the DB as well as

preserving the “behavioural” integrity of the system.

User-defined relationships have been represented either as pointers (i.e. attribute-values)

or as aggregations (i.e. list of pairs). The former has several disadvantages such as:

• The inverse relationship is not expressed declaratively.

• The semantics of the relationship are split over methods attached to different ob­

jects.

• It is not clear where to put the attributes of the relationship.

CHAPTER 1. INTRODUCTION 9

For our research, an aggregation approach has been chosen tha t allows relationships to

be seen as objects. Then, the entire semantics of the relationship can be kept in just one

place, getting round of some of the problems of the pointer-based approach and is more

in keeping with the object-oriented philosophy.

Traditionally, relationships have been characterised by the degree, the cardinality con­

straint, the participant objects and the attributes of the relationship itself. A new set

of primitives, inspired by AI concepts, is proposed to enhance relationship semantics

both in its static and in its dynamic aspects so tha t the DB designer can specify the

intended meaning of the relationship instead of leaving the user to guess it. As a result,

an increase in the semantics of the UoD preserved by the DB is achieved. Moreover,

treating relationships as first-class objects allows the establishment of hierarchies, rules

or even relationships among relationships.

1.6 A ctive behaviour

Active behaviour has been defined as behaviour exhibited automatically by the sys­

tem in response to events generated internally or externally without user intervention

[Bauzer 90]. Quite often this behaviour is associated with the event itself, i.e. encap­

sulated with the corresponding method (e.g. integrity constraint maintenance). Event-

Condition-Action rules (ECA rules) have been proposed in [Dayal 89] for enhancing DBs

with active behaviour in an explicit manner. An ECA rule is mainly described by the

event th a t triggers the rule, the condition to be checked and the action to be performed if

the condition is satisfied. The condition is a set of queries to check tha t the state of the

DB is appropriate for action execution. The action is a set of operations tha t can have

different aims, e.g. enforcing of integrity constraints, user intervention, propagation of

methods, etc.

The research presented here is an attem pt to represent rules in an OODB. The focus is

on providing a uniform approach. W hat is meant by a uniform approach is tha t rules

have to be defined and treated in the same way as other objects in the system, without

defining any additional mechanisms or auxiliary structures. Rules are seen as ‘first-class’

objects, and are described using attributes and methods. In this way, rule management

operations are conceived and implemented as methods. This brings all the advantages

CHAPTER 1. INTRODUCTION 10

of the 0 0 paradigm into rule management: encapsulation, modularity, reusability. In

a uniform approach the system should not distinguish rules from other kinds of object.

As a result, rules can be related to other objects, and also arranged in hierarchies. Since

methods attached to objects can trigger rules, and rules are themselves objects, rules can

be defined which are triggered by methods attached to rules. As with any other entity,

the meaning of a rule lies in the attributes attached to the rule, and their interpretation

by the associated methods. From the point of view of the system however, no distinction

should be made.

Nevertheless, rules can be difficult to define for non-experienced users. Hence, higher

more-declarative primitives can be provided from where rules preserving the required

semantics can be generated by the system. This approach is illustrated in the support

of constraint equations and the operational semantics of relationships.

1.7 Overview of the thesis

• Chapter 2: The Object Oriented Paradigm.

This provides a comparison of different approaches within the 0 0 paradigm. Since

this work has been influenced by ideas coming from Artificial Intelligence, Program­

ming Languages and Data Bases, the aim of this second chapter is to provide a

common base for readers with different backgrounds.

• Chapter 3: Object Oriented Databases.

This introduces the principles of Object Oriented D ata Bases. Several systems are

described, ADAM among them. ADAM is used as an implementation vehicle to

test the ideas presented in the rest of the chapters.

• Chapter 4: Making m etadata explicit.

This introduces the concept of m etadata and how it has been accomplished in 0 0

systems by introducing metaclasses. The approach followed by ADAM is carefully

described and examples are shown of the resulting advantages, namely uniformity,

accessibility and extensibility.

• Chapter 5: Making integrity constraints explicit.

CHAPTER 1. INTRODUCTION 11

In this chapter, a proposal is made to represent integrity constraint explicitly as

attribute facets. Some of the problems attached to implicit constraint definition

are outlined. An implementation in ADAM is presented.

• Chapter 6: Making user-defined relationships explicit.

This introduces an approach for enhancing user-defined relationships in 0 0 sys­

tems. Several examples of how relationships have been supported are presented and

some of the new features worth considering are illustrated. How ADAM has been

extended with a construct to represent semantic-rich user-defined relationships is

described.

• Chapter 7: Making active behaviour explicit.

This presents a rule manager where the idiosyncrasies of the 0 0 approach have

been considered. Several uses of active rules are given. An implementation of such

mechanism in ADAM is discussed.

• Chapter 8: Conclusions.

This presents the conclusions of the research and some ideas for the future.

Chapters 2 and 3 provide an overview of the area. Chapter 4 presents a description of

metaclasses and an example of how metaclasses have been defined in ADAM by Norman

Paton. Finally, in chapters 5, 6 and 7 the main contribution of this thesis is presented

by illustrating the case for integrity constraints, user-defined relationships and active

behaviour. In each chapter, a review of related work, the disadvantages of embedding

knowledge within method code, a proposed solution and an implementation extending

ADAM with convenient primitives is given.

C h a p te r 2

The O bject Oriented Paradigm

2.1 Introduction

The object-oriented (0 0) paradigm is characterised in a general sense by a grouping of

information with the concept or entity to which it relates. One of the reasons for the

recent interest in this paradigm is that it permits many concepts from the real world to

be modelled in a direct and natural way. Indeed, in [Mylopoulos 90] a notation is said

to be object oriented:

“when it encourages a direct and natural correspondance between compo­
nents of notation instances and objects of application.”

In this sense, the relational data model can not be considered 0 0 since an entity

in the process of normalisation can be split between different tables. In addition, from

an engineering point of view, the 0 0 paradigm brings such benefits as reusability and

extensibility through the inheritance mechanism.

Despite being a widely used paradigm, there is not yet a common understanding of what

an object is. This stems principally from the different motivations underlying the distinct

fields where 00-like systems have emerged. Research has been going on in the areas

of DBs, AI and programming languages (PLs). As a result, a myriad of systems have

appeared where a diverse terminology is used such as classes, instances, frames, terms,

actors, entities... But, are these synonymous, similar or completely distinct? How is an

object different from these terms? To provide some guidelines, instead of describing a

set of specific systems, an analytical introduction is taken in this chapter.

12

CHAPTER 2. THE OBJ EC T ORIENTED PARADIGM 13

c o n c ep t ua l i za t io n

d e s c r i p t i o n ' ' ----- individual-based s e t - b a s e d

s t r u c t u r a l f r a m e -b a s e d t e r m i n o l o g i c a l s y s t e m s
based systems semant ic data models

behav ioura l a c t o r - b a s e d cla ss -b ased
based systems systems

Figure 2.1: A classification of object-oriented systems.

Classification is always a risky undertaking since not everyone will agree on the criteria

followed, and some hybrid systems are always difficult to pigeon-hole. However, a clas­

sification allows us to identify a common ground up which to compare different systems

that, although sharing a similar terminology, are based on fundamentally distinct no­

tions of objects, inheritance, etc. This is, after all, the aim of this chapter: to provide a

common framework for readers coming from different backgrounds.

The classification is based on the following criteria:

• what is the conceptualisation underlying an object

• how is such conceptualisation described

These criteria distinguish four broad families, shown in figure 2.1.

The first group consists of those systems where the common description shared by a set

of objects is placed on an abstract object. If the characteristics abstracted refer only to

structural, relational and attributive features the term en tity ty p e is normally used for

this abstract object. This approach is mainly taken in the area of Sem antic Data Models

(SDM s), and hence these are sometimes referred to as structurally object oriented models

[Dittrich 86]. SDM [Hammer 81], TAXIS [Mylopoulos 90] and IFO [Abiteboul 87] are

well-know examples of this family. In AI, terminological languages also follow a struc­

tural definition of concepts. Following the nomenclature of KRYPTON [Brachman 83],

a distinction is made between the terminological (TBox) and the assertional (ABox) part

of the knowledge base. Term s, discribing the terminology of the UoD, are specified by

stating superconcepts and restrictions on other concepts called roles. Thanks to their

enhanced structural definition capabilities, terminological languages profit from a richer

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 14

ability to reason about structure than is commonly found in SDMs. Systems such as

KL-ONE [Brachman 85] and BACK [Peltason 89] belong to this area.

If the abstraction encompasses not only the structural features but also the behavioural

ones, the term class is used. A new range of topics appears concerning the use and reuse

of behaviour in class hierarchies. This approach has mainly been followed by PLs and,

more recently, DB practitioners. SMALLTALK [Goldberg 83], C + + [Stroustrup 86],

Eiffel [Meyer 88] in PLs, and O2 [Deux 90] and ADAM [Paton 89b] in DBs are examples

of class-based systems.

The second main group is formed from those systems in which objects have a more in­

dividual existence and they do not have to conform to some abstract definition. In AI,

the term fram e is used to name the structural, attributive and relational properties of a

prototype. A frame no longer represents the necessary and sufficient conditions of other

objects in the system, just default properties. Besides its own properties, a frame can

inherit, specialize or override properties from another frame. Well-known frame systems

are FRL [Goldstein 77] and CRL [Carnegie 85].

Within this group, other systems are more interested in reflecting behaviour. In this

case, the term a c to r is used. An actor is characterised by a set of messages to which it

can reply, where a script describes how a given message should be answered. The main

aim of these systems is the development of open systems and concurrent programming.

ACTORS [Agha 86] is an example of an actor-based languages.

In the rest of the chapter these categories are described. For each category, a. definition

of the concept is first presented, followed by a description of its characteristics (struc­

tural or/and behavioural) together with some examples of the intended use. Lastly, a

conclusion is presented where the different approaches are compared.

2.2 Class-based systems

A set can be defined explicitly by enumeration of all its members or implicitly by speci­

fying the properties held by any object of the set. I11 class-based systems, the common

description of a set of similar objects is held in a class. Its members, called instances,

must conform to the description given in the class. Thus, a class can be defined as an

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 15

implicit definition of a set tha t incorporates not only the structural features of its mem­

bers but the behavioural ones as well. So two components are distinguished in a class

definition, namely:

• the static component, described by instance variables

• the dynamic component, described by methods

Both method and instance variable descriptions are kept a t the class level, but each

instance retains its own values for the instance variables, representing the state of the

instance. As an example, a class and instance definition in ADAM could be as follows:

:- new([student,[
is_a([person]),
slot(slot_tuple(cname,global,single,optional,string)),
slot(slot.tuple(age.global,single.optional,integer)),
method((studying(global,[],[integer].string,[Hours.Result])

:- ’/, here is the implementation
))

]]) => class.

:- new([OID,[
cname([j ohn]),
age([2 5])

]]) => student.

The student class holds the definition of both the studying method and the cname and

age instance variables, whereas a specific student keeps the specific values of its instance

variables (e.g. john and 25 for the cname and age variables respectively).

Instances can be created by sending the message new to a given class. At this time,

the system assigns a unique object identifier to the instance just created. This is a core

concept in class-based systems whereby instances can be uniquely referred to within

the object space [Khoshifian 86]. An object keeps its object identifier throughout its

life regardless of the changes it undergos. In the previous example, the variable OID is

assigned with the identifier of the object just created at run time.

A method definition encompasses:

• the name of the method, also called selector (e.g. studying)

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 16

• the arguments of the method (e.g. Hours and Result are integer input and string

output parameters respectively)

• the implementation of the method, encapsulated within the class

Methods are always referred to by their selectors. It is im portant to distinguish between

the selector and the method itself since there may be different method definitions with

the same selector, a phenomenon known as overloading.

When a method is to be executed for a given instance, most of the systems send a message

to this instance. A message is formed by the selector, the set of actual arguments and

the instance itself. As an example, consider a class person with a method increases alary

th a t has as an argument the amount of the increase. Let T be a variable holding an

instance of person. An increase of 10 in the salary of T can be achieved in the following

way:

• T increase .salary: 10 (SMALLTALK)

• T.increase_salary(10) (C++)

• increase_salary([10]) = > T (ADAM)

The selector is bound to the corresponding method at run time, unlike conventional lan­

guages where such binding occurs at compile time. This process is known as dynamic

binding or late binding. Although dynamic binding slows down the system because check­

ing has to be done at run time, it supports overloading and make it possible to ignore the

instance class till execution time. This occurs in untyped systems such as SMALLTALK.

Encapsulation is a major feature of these systems, whereby the structure of an object is

transparent to the user who accesses the object only through methods. So an object is

characterised by the set of operations which can be performed on it, the so-called object

interface or protocol. In this way, classes inherit the ideas of abstract data types where

a clear distinction is drawn between the interface and the implementation of the data

type. Thus, the structure of an object is always hidden from outside. In ADAM, a set

of methods to delete, update, put and get the value of an attribute is automatically

generated by the system when the attribute definition is entered. As a result, the user

ignores the internal implementation.

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 17

An interesting issue arises when comparing classes and types. Both have a similar speci­

fication: they describe the attributes and operations shared by a set of objects. However,

as pointed out by [Bancilhon 88], they embody different notions. A type is more a com­

pile time concept used to check the correctness of programs. Strongly typed languages

can detect wrong assignments or invalid actual argments when the program is compiled.

In contrast, a class is a more run time notion where two aspects can be distinguished:

a template whereby replicated objects can be created (the object factory) and a repos­

itory of objects belonging to the class, i.e. the class extension (the object warehouse)

[Bancilhon 88]. The latter is specially important in DBs where set-based operations are

performed on collections of objects.

Untill now most of the concepts introduced for classes are also applicable to abstract

data types. The real step ahead comes with the introduction of class hierarchies and

inheritance. The idea is tha t instead of having an isolated class collecting all the infor­

mation, a class hierarchy can be defined where subclasses can be obtained by specialising

a more abstract class called the superclass. Subclasses hold only information tha t is spe­

cific to themselves, inheriting more general descriptions from their superclasses. Besides

organising information in a familiar way (after all, animals have been classified in tax­

onomies for decades) inheritance also accounts for software reusability and extensibility.

A subclass can simply inherit or specialize the definition kept in its superclass without

starting from the beginning.

Classes can be specialised either by adding new properties to the class (either instance

variables or methods) or by constraining previous specifications. In [Ivhoshifian 90] a

categorisation of the different specialisation alternatives allowed by PLs can be found.

The two extreme policies are to forbid any sort of redefinition and to allow arbitrary

redefinition. Whereas the former guarantees strong typing, the latter provides more flex­

ibility at the expense of an overhead at execution time.

Inheritance is an area of active research where a broad set of issues arises such as subtyp­

ing, encapsulation, multiple inheritance, etc. For a friendly introduction to these topics

see [Khosliifian 90]. A broader discussion including knowledge representation formalism

can be found in [Lenzerini 91]

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 18

2.3 Semantic D ata Models

The trend followed in PLs, whereby implementation details are hidden from the user

providing higher abstraction tools, has a counterpart in DBs. PLs have evolved from

assembler languages to ALGOL-like languages and currently to 0 0 languages imple­

menting abstract data types. Paralleling this development, file systems evolved to DBs

where data models are provided to capture the structure of the UoD, ignoring the physical

details. However, traditional data models, i.e. the hierarchical, network and relational

data models, are still very much record-oriented. As a result, the objects of the UoD can

not be directly mapped into data model primitives, and users have to reconstruct objects

by navigating throughout the DB, assembling (foreign key joining) the different pieces

of the object spread in several records. In contrast, SDMs attem pt to achieve a more

one-to-one mapping between concepts of the real world and how they are represented

in the computer, by providing a set of structural abstractions. In this way SDMs fulfill

the requirement given by Mylopoulos [Mylopoulos 90] to be object-oriented notations.

In the following, a set of abstractions generally considered in SDMs are described along

with some behavioural features.

The structural abstractions tha t can be found in SDMs are the following where definitions

are taken from [Peckham 88]

• “Generalisation is the means by which differences among similar objects are ignored

to form a higher order type in which similarities can be emphasised. ”

• “Aggregation is the means by which relationships between low-level types can be

considered a higher level type.”

• “Classification is a form of abstraction in which a collection of objects is considered

a higher level object class.”

• “Association is a form of abstraction in which a relationship between member ob­

jects'is considered a higher level set object.”

These abstractions isolate the user from physical details and also allow the semantics

explicitly represented in the DB to be increased. For instance, now the system knows

what a generalisation means and can preserve its semantics. Hence, the burden of main­

taining these structural abstractions is moved from the user to the DB. Of course, a clear

CHAPTER 2. THE O BJ EC T ORIENTED PARADIGM 19

STUDENT
m e m b e r a t t r ib u t e s

NAME
v a ! u e _ c l a s s : s t r i n g s

REGlSTRATION_NUMBER
v a lu e _ c t a s s : i n t e g e r s
m a y _ n o t _ b e _ n u l l

COURSES
d e s c r ip t io n : list of c o u r s e s a t t e n d e d b y th e s tu d e n t
v a lu e _ c l a s s : S U B JE C T S
m u ltiv a lu e d w ith s iz e b e tw e e r . 0 a n d 6
in v e r s e : a t t e n d e d _ b y

FRIENDS
v a lu e _ c l a s s : ST U D E N T S
m u l t i v a l u e d

MATES
v a lu e _ c l a s s : s t u d e n t s
d e r iv a t io n : a ll_ le v e ls _ o f_ v a lu e 6 _ o f F R lE N D s

ASSIGNED_GRANT
v a lu e _ c l a s s : i n t e g e r s
e x h a u s t s _ v a l u e _ c l a s s

SUPERVISOR
v a lu e _ c la 6 s : P E R S O N S
m atc h : T U T O R of G R A N T S o n STU D EN T

MARK
v a lu e _ c l a s s : i n t e g e r s

YEAR
v a lu e .c la s s : in tegers

RANKING
v a l u e _ c l a s s : i n t e g e r s
d e riv e d : o rd e r by in c r e a s e MARK w ithin YEAR

IS .S P O R T M A N ?
v a lu e _ c l a s s : Y E S /N O
d e riv a tio n : if in F E N C IN G .P E R S O N

Figure 2.2: A student type definition in the SDM data model.

semantics must be defined for each abstraction by specifying how insertion, deletion and

modification operations made at a higher level can afTect the object abstracted and vice

versa [Hull 87]. For the SDM data model, these semantics in a rule-based format can be

found in [Amy 89].

SDMs are mainly concerned with the structural description of the UoD. However, besides

the operational semantics mentioned above, some sort of behaviour is considered in the

so-called derived attributes and derived classes. A derived attribute can be defined as

a property not stored but obtained from other attributes in the DB. In the SDM data

model [Hammer 81], a broad range of possibilities is available to specify the derivation

criteria for such attributes. As an example, consider the definition of STUDENT in the

SDM data model given in figure 2.2. The following criteria are illustrated:

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 20

• Ordering criteria. For example the attribute ranking is defined as the sequential

position of the student among the students within the same year considering the

mark obtained.

• Boolean criteria. The attribute takes the value ‘yes’ if the object is a member of a

given class, and ‘no’ otherwise. For instance, issportman has a derivation criteria

to check whether the student is a member of the fencingjperson class.

• Tracing criteria. The value of the attribute is the transitive closure of a given

attribute. As an example, the attribute mates reflects the fact tha t “all mates of

my mates are also my mates” .

• Arithmetic criteria. The attribute is obtained as a result of some arithmetic oper­

ation on other attributes. Aggregation functions can also be applied.

• Set criteria. The attribute is derived as a result of some set operations on multi­

valued attributes.

Figure 2.2 also shows the expressiveness of the SDM data, model in attribute definition.

Besides the type of the value, other properties that can be specified are,

• cardinality, e.g. the courses attribute,

• inverse constraints, e.g. the courses attribute,

• matching constraints i.e. restricting the value of the attribute to match the value

of another attribute in the system, e.g. the supervisor attribute, where grants is

another class having tutor and student as attribute,

• the not-null constraint, e.g. the registration-number attribute,

• the exhaustive constraint where “every member of the value class of the attribute

(call it A) must be the A value of some entity” [Hammer 81], e.g. the assigned-grant

attribute where it is required that every grant is assigned to some student.

The SDM data model also offers some further constructs to define derived classes, namely:

• Attribute-derived e.g. the fresher subclass can be defined as students having “1” as

the valued of the year attribute.

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 21

• Set-operator-derived where subclasses can be defined as the intersection, difference

or union of other subclasses.

• Existence-derived where the members of the class are the set of values of a given

attribute of another subclass. For instance, the grant class can be defined as the

values of the assigned.grant attribute.

Some SDMs have also addressed the description of the dynamic aspects of the UoD (e.g.

TAXIS [Mylopoulos 86], SHM+ [Brodie 84b] and the event model [King 84]). In TAXIS

transactions, exceptions and exception handlers are manipulated as detached entities. As

a result, they can have attributes and be arranged in hierarchies like any other entity.

In TAXIS a transaction can be described in terms of the entities involved (i.e. the pa­

rameters), the type constraints on the participant entities, the initial, final and invariant

states defining the context, and the set of subactions that comprise the definition of the

transaction. Furthermore, since transactions axe parameterised by the entities involved,

transactions can be specialised along with the entities, to considerer special requirements

for the specialised subclasses. In this way, TAXIS provides a “stepwise refinement by

specialisation” , i.e. a methodology to describe the dynamic aspects of an application, in

contrast with the “stepwise refinement by decomposition” used in traditional program­

ming [Borgida 84]. Here, the refinement is driven by the entity hierarchy instead of any

functional refinement.

Exceptions and exception handlers are also considered as TAXIS entities. This allows

one to disregard exceptional circumstances right at the beginning, postponing anomalous

situations till the design is further developed.

As in TAXIS, in SHM+ [Brodie 84b] the structure of the data drives the description

of the activities. Nevertheless, the structuring mechanisms in SHM+ include not only

generalisation, but also aggregation and association. As pointed out by [Borgida 84]

both data and behaviour can be structured in terms of the same mechanisms, providing

a well-integrated methodology for designing DB applications. Hence, these models can

be considerered as a step ahead in data modelling, allowing a wholistic view of the ap­

plication by not only designing but also integrating the static and dynamic aspects of

the UoD.

Initially used as design tools, SDMs have become available as Semantic DBMS (e.g. SIM

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 22

from Unisys Corp. based on the SDM data model). They provide a richer set of primi­

tives to capture the UoD. Increasing data independence, enhancing user productivity and

understanding, and providing modelling flexibility can be seen as the main advantages

brought to DBs from this research area.

Diverse overviews of SDMs can be found in the literature. In [Hull 87] several models are

compared based on a common example, making it a good pedagogical introduction. In

[Urban 86] an analysis of the structural, dynamic and temporal aspects of SDMs can be

found. In [Peckliam 88], SDMs are compared based on “the support of relationships, the

abstraction they represent, the manner in which the semantics are specified and the ap­

proach (if any) to dynamic modelling” [Peckham 88]. Finally a comparison of advanced

SDM, namely TAXIS, ADAPLEX and GALILEO can be found in [Albano 89].

2.4 Frame-based systems

The concept of frame was first proposed by Marvin Minsky, influenced by psychologi­

cal theories, as a knowledge representation paradigm to understand the efficiency and

effectiveness of human reasoning [Minsky 75]. He defines a frame as:

“... a data structure for representing a stereotyped situation... Attached
to each frame are several kinds of information. Some of this information is
about how to use the frame. Some is about what one can expect to happen
next. Some is about what to do if these expectations are not confirmed.”

The idea is tha t when human beings have to cope with new situations, they do not

begin from scratch, but attem pt to used their past experience to face the new context.

So when an unknown object is confronted, human beings recognize tha t it is a person

thanks to a set of features characterising the stereotype of a person. Such concept is

know as a prototype.

A frame is described by slots which reflect attributive, structural and relational infor­

mation about the frame. For instance in CRL (Carnegie Representation Language), a

frame-based language within the Expert System development environment Knowledge

Craft (a good introduction can be found in [Kingston 87]), the frame person can be

defined simply as:

(defschema PERSON

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 23

(CNAME)
(AGE))

The slots themselves are described by a set of facets which are grouped in turn into

frames (called slot_controLschematas in CRL). An example of such a frame for the slot

age can be the following,

(defschema age
(IS-A slot)
(DOMAIN person)
(RANGE integer)
(CARDINALITY (0 1))
(DEMON age_constraint))

In general, the following items can normally be specified to describe a facet:

• domain, specifying in which frame this slot can appear,

• range, restricting the values tha t can fill the slot,

• cardinality, restricting the minimum and maximum number of values that the slot

can have,

• value, holding the current value,

• default indicates the value used when no other information is available. Notice that

it is not an initialisation value as found in class-based systems, where an attribute

can be initialised at the moment an instance is created and thus this value is owned

by the instance. Default values on the other hand, stay with the generic prototype

and are dynamically inherited when required,

• attached procedures (sometimes referred to as demons). Unlike methods that are

explicitly invoked, attached procedures have a kind of event-driven behaviour, i.e.

they are fired as a result of event detection rather than by explicit calls. Different

kind of procedures can be found depending on the associated event, namely:

— if-added: the procedure is executed when a new value is inserted. It imple­

ments a kind of forward-chaining process,

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 24

— if-needed: the procedure is executed when a request to retrieve the value of

the slot has been issued but its value is not available. I t implements a kind

of backward-chaining process.,

— if-removed: the procedure is executed when an attem pt to delete the slot value

is detected,

In CRL an attached procedure can be defined as follows:

(defschema AGE.CONSTRAINT
(INSTANCE demon)
(ACCESS add-value)
(WHEN before)
(EFFECT block)
(ACTION checking.age_constraint))

This demon is fired before any value is added to the slot age. The demon executes

the function appearing as the filler of the slot action, in this case the LISP function

checking_age-constraint and avoids the insertion of the age if required 1 .

It is worth noticing tha t attached procedures are the only way of representing behaviour

in frame-based languages. Thus, unlike class-based languages, a, frame does not have its

own behaviour described in the form of methods but all behaviour is associated with the

slots.

In addition, prototypes can be specialised. For example, we can have the student and

lecturer prototypes as specialisations of the person prototype, where additional properties

are defined. In this context CRL is more powerful than similar systems since it allows

one to. customize inheritance for special requirements. So the user can tailor his own

particular sort of inheritance by explicitly stating:

• which slots and values from the generic frame, are inherited unchanged by the

specialised frame,

• which slots and values are not inherited,

• which slots and values are introduced when the relationship is created,

1In fact, the LISP function is quite complicated since the block effect is done regardless of the result.
So if the constraint is satisfied, it is the function’s task to guarantee that the value is inserted.

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 25

• a one-to-one mapping of slots and values from the generic to the specialised frame

The motivation for this explicit declaration of inheritance, is tha t a small set of inher­

itance types is not enough. As pointed out in [Fox 79] “in some cases the inheritance

relation will have to be specialised to the particular concepts they relate. Hence, the

inheritance link is context sensitive” . This can sound odd to DB people but it has proved

useful in Expert Systems [Fox 86] and it has influenced our work on user-defined rela­

tionships [Diaz 90].

However, it has to be underlined tha t in frames sharing is based on the prototype the­

ory. An object can inherit properties from its prototype if no information of its own is

available. Otherwise the properties of the prototype are overridden. Hence, unlike the

well-structured applications of class-based systems, frames are used to capture all the

complexity of the real world where exceptions to the inheritance between the generic

prototype and the specific exemplifications can arise. Penguins as birds which cannot

fly, and whales as mammals which live in water are well-known examples of the complex

problem of exceptions. For instance, consider the prototype of person as having a per­

manent address. However this property can be overridden by John who is nomadic and

likes to know how many kilometres he has travelled. In CRL this can be reflected as:

(defschema personl
(INSTANCE person)
(CNAME john)
(KM_COUNTER 1268)

Although personl is an instance of person, he adds a new attribute km.counter just

for himself. Therefore, prototypes do not play the role of templates to which all the

‘instances’ have to conform. Moreover, it has to be pointed out tha t the frame identifier

(e.g. personl) is provided by the user, unlike class-based systems where such an identifier

is provided by the system.

Furthermore, unlike class-based systems, in frame-based systems any object can become

a prototype. Whereas in the former there is a. clear separation between objects tha t can

generate other objects -class descriptors- and objects tha t cannot -instances-, in frame

systems such a difference does not exist. Any object can become a prototype and other

objects can inherit from it. Therefore, the is-a. and instance relationships found in CRL

can be seen as a specialisation and exemplification of prototypes, respectively, rather

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 26

than the subset and membership relations found in class-based languages. For a more

detailed comparison between ADAM and CRL refer to [Paton 91].

The different understanding of what an object represents also leads to distinct ways of

working in each system. For instance, the process of categorising an object in a class-

based system is completely expressed by sending the message new to a given class, where

this class is known in advance. By contrast, an equivalent process in a frame system

can be much more complicated. Expert systems based on classification spend more of

their time ascertaining which of the prototypes already known by the system is the one

tha t best matches the properties of an unknown object. This process, known as frame

matching, has been extensively used in diagnostic systems. An abnormal setting (e.g. a

disease or any damage in a system) is represented as a frame whose slots are expected

malfunctions of the system (e.g. the steam temperature or the count of red blood cells

of a patient). The expert system then has to find the frame tha t best matches the

current situation. In this process, arranging frames representing prototypical abnormal

situations in a taxonomy, not only improves reuse but helps in the order of searching for

information. Due to the quantity and different qualities (e.g. cost, danger or importance)

of the data to be considerered in the process of solving the problem, One of the main

difficulties in diagnostic systems is to decide which are the symptoms to consider next.

Building a taxonomy from specifically diagnosable diseases (e.g. cirrhosis) up to more

abstract diseases (e.g. liver illness) allows factoring out common symptoms, and then, to

proceed in a top-down fashion, imposing an order on the consideration of the symptoms.

In addition, similarity networks can be used to support differential diagnosis “which is

the art of selecting those questions to ask (or to test to perform) tha t best differentiate

among competing hypothesis” [Szolovits 86]. A well-known medical diagnostic system

that works in this way is MDX [Chandrasekaran 83].

2.5 Terminological systems

Frame-based systems were critised for their lack of formal semantics. There was no clear

understanding of the meaning of a frame, and a formal interpretation of frame manipu­

lation was missing [Brachman 83, Brachman 85]. In [Woods 75] the distinction between

structural links used to describe and assertional links used to make statements, is pre-

CHAPTER 2 . THE OB JE CT ORIENTED PARADIGM 27

UNDERGRADUATE'
POSTGRADUATE

FRENCH STUDENT,

FREN CH _PO STG STUD,

:Y FRENCH PO STG STUI

Figure 2.3: A messy hierarchy.

sented. In Wood’s example a representation for a telephone with a slot containing the

colour ‘black’ is given. The author points out that it is not clear whether ‘black colour’

is a description of the concept black telephone or an assertion that telephones are black.

In [Lambert 88] an example is given of an ‘eclectic’ hierarchy similar to the one shown in

figure 2.3, where to ask the kinds of students represented become meaningless. As Lam­

bert points out “the fact is that frames, especially with the structural interpretation, are

crying out to be manipulated as data structures”. The problem is that the user has a

direct access to the data structure and so changes can be made, disregarding or ignoring

the consequences for the knowledge that the data structure is supposed to represent.

This leads to the functional approach in knowledge representation, where schemas are al­

ways manipulated through functions provided by the system, and hence no direct access

is allowed to the underlying data structure implementing the schema. This resembles

the aims of abstract data types, where an object is characterised by the set of operations

it can undertake, preventing the user from directly accessing to its hidden implementa­

tion. Now, “in knowledge representation, it is a w'hole knowledge base with associated

operations that may be regarded as an abstract data type” [Lambert 88].

These ideas are crystallised in terminological languages. These systems are characterised

by the set of constructs and querying functions provided. Two components are distin­

guished:

CHAPTER 2. THE OBJ EC T ORIENTED PARADIGM

w o r k sperson

w o rk in g

busy french
.university student, univers ity s tud ies

s tu d y in g

Figure 2.4: A KL-ONE notation for the busy French university student concept.

• the TBox collecting the concepts or term s. This defines the terminology of the

UoD.

• the A B ox making assertions about the terms in the TBox.

As is suggested by the word ’box’, neither the terminological component nor the asser-

tional one are directly accessible. A set of functions are provided for introducing new

elements (the TELL side of the interface) or for asking questions about these elements

(the ASK side of the interface). In this way, a knowledge base is characterised by the

kind of questions it can answer, referring not only to facts or terms explicitly stated, but

also to any kind of inference drawn by the system. In the following, the TBox and ABox

components are presented for the system BACK [Peltason 89].

Term definition (i.e. the TBox TELL interface) is achieved by stating superconcepts and

restrictions, of value or cardinality, on relationships to other concepts called roles. So

term s are fundamentally structurally defined. A s an example, consider the definition of

a busy French university student. In figure 2.4 a diagram representing this term is given.

Assuming that person, works and university^studies axe concepts already introduced, and

that studying is a subrole of working, the definition can be as follows in a terminological

language such as BACK:

: - t b o x t e l l (
busy_french_university_student :=

person
and a tleast(3 ,w ork in g)
and a t le a s t (l ,s tu d y in g)

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 29

and atmost(1,studying)
and all(nationality,french)).

In the above definition, and, all, atmost and atleast are all BACK constructs with

a clear system-defined semantics. Term definition then, is always done through these

constructs. No direct manipulation is allowed.

As a result, the system can reason about terms based on these well-established semantics,

where the meaning comes from the structure. The system can then establish relationships

based on such structure. As an example, these are some predicates provided by the TBox

ASK interface of BACK [Peltason 89]:

• equivalent(Tl,T2) is a predicate that is true if T1 subsumes T2 and T2 subsumes

T l.

• defined-as(Term-name, Term) obtains in Term the definition of Term-name,

• describeJully(Tl, T2), the second argument retrieves the description of the first

one, using all primitive superconcepts plus all role restrictions which apply to the

concept to be described,

• difference(Tl,T2,T3,T4)2 takes two terms, the first two arguments, and computes

their conceptual difference, expressed by another two terms, the third and fourth

arguments.

But the most im portant relationship among terms is called subsumption which is estab­

lished between the so-called defined concepts. A distinction is made between primitives

and defined concepts made -firstly made by KRYPTON [Brachman 83]. Primitive con­

cepts are described using only necessary conditions, whereas defined concepts are specified

by necessary and sufficient conditions. For instance if the busy French university student

term were a primitive concept, then for anything to become a member of this concept it

would have to be explicitly stated. Since instead it is defined, the system itself can infer

the membership. As an example, if a French person is introduced working in four places

where only one is an university-studies then, the system can infer th a t this assertion is

an instance of the busy french university student without being explicitly declared.

zNot yet implemented.

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 30

Among defined concepts the supsumption relationship can be established. A concept Cl

subsumes a concept C2, if the extension of C l (i.e. the set of assertions of C l) is a super

set of the extension of C2. However, such relationship is inferred without looking at the

extension but based on the definition of the concepts. For example, the concept person

subsumes the concept busy French university student since all busy French university

students must, of necessity, also be persons. This allows the system to keep a term hi­

erarchy from more general concepts to more specific ones. The process of inserting a

new concept in the hierarchy is known as classification. The crucial point here is that

such a hierarchy is maintained by the system. It is up to the system to decide where

to place a given concept in the hierarchy, unlike in frame systems where the user takes

such decision with dangerous consequences (remember figure 2.3). Classification is not

restricted to the TBox. As previously shown, given an assertion it is up to the system to

decide which is the most specific concept of which this assertion is an instance. The user

cannot decide where an assertion is placed. However, classication also constitutes the

weakness of terminological systems due to the time consumed in its realization. Notice

tha t classification takes place everytime a new assertion is inserted!

It is worth noticing tha t the idea of defined concepts is missing in most of the seman­

tic data models (the SDM data model is an exception). A class represents a primitive

concept where the user has to specify explicitly the class members. This means tha t is

not possible to use the class as a recognizer such as by creating the class busy^student,

and later retrieving all the students with at least three works just by querying for the

extension of this class. So, although in some semantic data models attribute cardinality

can be specified, it is used only as an integrity constraint of the data stored, rather than

a filter of the class instances [Borgida 90].

The assertional component is represented by the ABox where statements using TBox

terms are made. Several approaches have been followed: from full first order logic as in

KRYPTON to object-centered schemas as in KANDOR [Patel-Schneider 84]. In BACK

a middle approach is preferred, where assertions have an identifier bu t where role fillers

can be incomplete. Supposing a role attending is defined between the busy French uni­

versity student term and the courses concepts, then here are some examples of the ABox

TELL functions provided by BACK:

• Asserting the values of a role,

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 31

aboxtell(X = busy_french_university_student
with name = ‘claudine’
andwith studying = ‘computing.science’

andwith attending = ‘programming’ and ‘databases’
) .

The role name is applicable since any of these students is also a person, and the

term person can have name as a role. The variable X will be instantiated with the

identifier of this assertion.

• Incomplete information: stating the cardinality of a role filler,

aboxtell(X = busy.french.university.student
with name = ‘yves’
andwith studying = 'computing_science’

andwith attending = card(2,0)
) .

Here the name of the courses is ignored but the fact tha t yves is attending atleast

two courses is introduced.

• Introducing the exhaustiveness of the provided information

aboxtell(X = busy_french_university.student
with name = ‘nicolas’
andwith studying = ‘computing.science’

andwith attending = close('databases’)
) .

Here the assertion refers to a student named nicolas th a t attends a course in

databases and this is the- only course tha t follows.

A set of functions is also provided for the ABox ASK interface. Here are some examples

from BACK:

• Retrieving all the assertions of a given concept,

- aboxask(Students = getall busy_french_university_student).

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 32

The variable Students is instantiated with the identifier of the different assertions

verifying the query.

• Obtaining all the students attending databases or expert-systems,

:- aboxask(Students = getall busy_french_university_student
with attending: 'databases’ or 'expert-systems').

A big issue with terminological languages is the trade-off between expressive power and

computational tractability. Although enhancing expressiveness is im portant to capture

the UoD more accurately, knowledge-based systems have also to respond to queries and

draw inferences in an efficient way. Unfortunately, the complexity of the algorithms sup­

porting these inferences, increase with the expressiveness of the language [Levesque 85].

Hence, research is going on to find a balance between expressiveness and computational

tractability [Willians 88].

2.6 Actor-based system s

These are based on ideas first proposed by Carl Hewitt [Hewitt 77]. An a c to r can be

defined as an isolated agent which knows how to perform a given task. The know-how

is distributed among the actors which cooperate to solve a given problem and where

different actors can work in parallel. Actors are independent and active objects tha t

communicate freely with their neighbours to accomplish tasks. Open, distributed systems

and concurrent programming can be seen as the main experimental interests of these

systems.

An actor collects some knowledge and details of how and when to use it, namely,

• the other actors known directly, called acquaintances. They play the role of instance

variables.

• how and when a given behaviour is to be undertaken. Unlike classes, behaviour is

not described by methods but by a script which filters the messages and activates

the corresponding behaviour.

An actor is characterised by the messages filtered by its script, known as the intention

of the actor. Implementation details are hidden from other actors, and thereby the

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 33

encapsulation principle is adhered to.

All these features have been summarised by Henry Lieberman in the following famous

words,

• Liberte: actors are autonomous entities.

• Egalite: all actors work a.t the same level. No privileges.

• Fraternite: actors cooperate to solve a given problem.

Although they can be seen as a set of experts working in parallel, actor systems differ

from blackboard architectures found in AI [Nii 86] in tha t they do not have a common pool

of information reflecting the state of the problem (i.e. the blackboard). All processes are

driven by message passing. Also, unlike class-based systems, actors are not abstracted

in higher concepts such as classes. Rather they represent the idea of prototypes.

Sharing is achieved by delegation, i.e. when an actor receives a message it does not know

how to answer, it forwards the message to another actor. Delegation as inheritance,

can be seen as a means to share behaviour: a specific actor can have a specialised

behaviour and delegate more general messages to another actor representing a more

abstract concept.

There has been a lot of discussion about inheritance versus delegation [Stein 89]. Initially,

delegation was seen as a more powerful mechanism since it can model inheritance and it

allows one to have not only behaviour but also states (i.e. the acquaintances). However,

in [Stein 87], it was shown that, in a system providing metaclasses, classes can be used

to model delegation, where class variables are used to represent properties of the ‘actors’.

Since, unlike instances, classes can be arranged in hierarchies, class variables and class

methods can be inherited among classes, thereby providing similar features to actor

systems.

In [Stein 89] the Treaty of Orlando is presented where the different sharing mechanism

are analysed and characterised along the following dimensions:

• Static versus Dynamic: is sharing determined when an object is created (static) or

when the object receives the message (dynamic)?

CHAPTER 2. THE OBJECT ORIENTED PARADIGM 34

• Explicit versus Implicit: are there primitives that allow the sharing to be explicitly

fixed (explicit) or do the system primitives enforce a uniform mechanism (implicit)?

• Per group or Per object: is sharing specified for a set of objects (classes) or for

individual objects (actors).

Inheritance can be seen as a kind of static, implicit and per group sharing mechanism,

whereas delegation is dynamic, explicit and per object. Which is better? As stated in

the treaty [Stein 89]:

“... no definitive answers as to what set of these choices is best can be
reached. Rather, tha t different programming situations call for different com­
binations of these features: for more exploratory, experimental programming '
environments, it may be desirable to allow the flexibility of dynamic, explicit,
per object sharing; while for large, relatively routine software production, re­
stricting to the complementary set of choices -strictly static, implicit, and
group-oriented -may be more appropriate.”

These ideas of flexible sharing are considered in chapter 6 when the operational

semantics of user-defined relationships are introduced. Such semantics can specify when

a participant object in a relationship can delegate a given message to the other participant

object through the relationship. This is quite a novel feature in OODBs: to allow sharing

other than through is-a links.

2.7 Conclusions

Different structuring concepts have been presented that share the notion of object as the

main building block in attempting to represent the concepts of the UoD directly. Never­

theless, im portant differences have been identified stemming from the distinct research

interests driving each of these areas. As a result, it is not always easy to identify common

ground since quite often the same terminology hides subtle differences. In figure 2.5 a

somewhat forced comparison is shown regarding the concepts abstracted, the structural

and behavioural features, the support for encapsulation and the sharing mechanism used.

Object-oriented programming languages are an area where the class-based approach has

mainly been followed: they pay special attention to reusability and extensibility of code.

The use of mixins in these systems is a case in point.

CHAPT ER 2. THE OBJ EC T ORIENTED PARADIGM 35

CLASSES FRAMES TERMS SDMs ACTORS

CONCEPT
ABSTRACTED SET PROTOTYPE CONCEPT SET PROTOTYPE

STRUCTURAL
ABSTRACTIONS

c la ss ifica tio n
generalization

'sp ec ia liza tio n '
exem plification
(overriding allow ed)

specia lization
c la ss ific a tio n
generalization
aggregation
assoc ia tion

all objects at
the same level

(egalite)

BEHAVIOURAL
FEATURES

METHODS
(at the c lass level)

PROCEDURAL
ATTACHMENT

(al the slot level)

derived attr.
derived class
transaction mod.

SCRIPT

ENCAPSULATION
SUPPORT

YES ND YES YES

SHARING
MECHANISM

STATIC
INHERITANCE

DYNAMIC
INHERITANCE

(p ro to type theory)

SUBSUMPTION
STATIC

INHERITANCE DELEGATION

Figure 2.5: A comparison among different object-oriented systems.

DBs have been more interested in the structural features of the UoD. However, new de­

velopments also consider the behavioural side of the application [Gray 92]. SDMs such

as TAXIS and OODBs are examples that confirm such a tendency.

In contrast, AI systems, where the prototype approach can be found, are more concerned

with providing flexibility rather than rigidly-defined structure, in order to cope with the

richness and heterogeneity of the real world. Recent systems in this area have evolved

towards the so-called terminological languages. Although a richer and safer structural

mechanism is provided in these systems, they lose some flexibility, especially in repre­

senting defaults. Terminological languages have also influenced research in DBs where

systems based on these ideas have been built such as CLASSIC [Borgida 90]. Neverthe­

less, the trade-off between expressiveness and computational tractability is the Damocles’

sword of such developments.

Finally, actor-based systems are mainly concerned with distributed and concurrent is­

sues.

To sum up, no approach can claim to be better than other in all respects. As the real

CHAPTER 2. THE OBJECT ORIENTED PARADIGM

world has many faces, so different requirements suit distinct modelling tools.

C h a p te r 3

O bject Oriented D atabases

3.1 Introduction

DBs have been mainly used for general data management such as insurance and bank­

ing management. The simple structure and large quantities of da ta to be processed

characterise these applications. Such features have lead to DBs which are concerned

principally with physical issues to improve system performance rather than with the

enhancement of the data model. Recently however, a new range of applications have

arisen where complexity rather than large quantities of data is the outstanding feature.

Common examples include CAD/CAM, hypermedia systems, office information systems

and Artificial Intelligence. Among the new features required are:

• higher-level abstract constructs that allow an easier modelling of the UoD,

• versioning support. For CAD/CAM applications different versions of the design of

an object can be required,

• support for temporal modelling to trace the evolution of objects along time,

• modelling not only of the structural features of the UoD but also the behavioural

ones,

Further, due to an increase in the complexity of objects, traditional DB mechanism for

transactions, recovery, security and concurrency previously applied to simpler units such

as tuples, have to be reviewed.

37

CHAPTER 3. OBJECT ORIENTED DATABASES 38

Object-oriented database management systems (OODBMSs) are a promising direction

in DB research to face some of the challenges of the new applications. Being object-

oriented, they encourage a direct mapping between concepts in the real world and how

they are represented in the computer, embodying both the structural and behavioural

features of the UoD.

Compared with relational database management systems (RDBMSs), OODBMSs

• provide richer constructs so that objects do not need to be flattened to fit the data

model,

• associate da ta items with the development of complete applications by enclosing

structure and operations together. In this way, OODBMSs alleviate the impedance

mismatch problem. This problem refers to the type clash tha t arises when a rela­

tional language is embedded within a conventional programming language. Then

the set-at-artime relational processing has to be converted to the record-at-a,-time

processing of conventional languages,

• have an independent system-maintained identifier, unlike RDBMSs where a value-

based mechanism (i.e. through primitive attributes or keys) is used to identify any

object (i.e. tuple) within the system,

• have a more navigational tendency in data manipulation unlike RDBMSs where

manipulation is more declarative. This is clearly an advantage of the relational

data model,

• do not have a formal definition yet. In contrast, the relational data model is based

on a clear and formal theory provided by [Codd 79]

The lack of a formal definition for OODBMSs makes difficult to find a set of required

characteristics to be held for any DBMS to claim to be object-oriented. This difficulty

stems largely from the different areas tha t lead to OODBMS development. Indeed, DBs

systems tha t claim to have object-oriented features have been built by enhancing OOPLs

(e.g. GemStone [Copeland 84]), relational DBs (e.g. POSTG RES [Stonebraker 90]),

from semantic data models (e.g. SIM [Jagannathan 88]), built from scratch (e.g. ADAM

[Paton 89b]). As a result of such diverse origins, not all OODBMSs found in the literature

share exactly the same features. Broadly speaking, an OODBMS can be defined as a

CHAPTER 3. OBJECT ORIENTED DATABASES 39

database management system (and thus, having persistency, transactions, concurrency

control, recovery and so on) based on an object-oriented model, i.e. providing object

identity, data abstraction and hierarchies.

In the following section these object-oriented concepts are addressed for DBs. In section

3, the OODBMS ADAM is introduced, illustrating previously introduced ideas. For an

overview of database management see [Brodie 86c].

3.2 Object orientation in databases

In this section, some of the features outlined for class-based systems in chapter 2 are

revisited, and put in a DB context. The concepts of object identity, da ta abstraction

and hierarchies are further explained within a DB framework.

O b jec t id e n tity (OID) has been defined as “the property of an object which distin­

guishes each object from all others” [Khosliiilan 86]. OID has been independently ad­

dressed by PLs and DBs.

In PLs, object identity is based on user-defined labels or memory references. This mixes

addressibility (i.e. how to access an object in a. given environment) and identity that is

internal to the object and independent of how it is accessed [Khoshifian 86].

On the other hand, in relational DBs a value-based approach to object identification

is chosen where a. set of attributes (called primary attributes) uniquely identify a given

object within a set. Some problems arise with this approach, namely,

• primary attributes are not allowed to change despite being descriptive properties

of the object,

• attributes represent a partial view of the real object, the view of interest for the

applications. Hence, it could not always be possible to find a set of attributes

whose values are unique for each object in the UoD. For instance, if the name and

the age are the only attributes of interest for a. person, we should not be forced to

introduced the social security number only for the sake of having a unique identifier,

• the set of primary attributes can change

CHAPTER 3. OBJECT ORIENTED DATABASES 40

Thus, neither of these proposals are satisfactory since the concept of identity is mixed

either with the concept of ‘addressibility’ or data value. In contrast, object-oriented

systems provide an OID internal to the object and maintained by the system. Such an

identifier is kept by the object throughout its lifetime regardless of the changes to the

properties of the object.

Different approaches have been followed for building OIDs in DBs [Bertino 91]:

• The OID is formed from the class identifier and the instance identifier. For example

in ADAM, 23@person is a correct OID, where the symbol separates the name of

the. class (e.g. person) from the instance number within the class (e.g. 23). When

a message is sent to an instance, the system obtains the class identifier from the

object identifier to access the method directory of this class. As pointed out by

[Bertino 91], this approach jeopardizes object migration from one class to another.

Since migration involves a change in the object identifier, previous references to

this object also need to be changed.

• The OID does not refer to the class which is kept as control information inside the

object. When a message is sent, the object is retrieved and the class obtained from

it. However, this approach implies an overhead even for nonvalid messages, and

type checking becomes quite expensive.

Nevertheless, both approaches assure physical and value independence. As a result,

several advantages are achieved, namely

• • the referential integrity constraint whereby a referenced object must always exist,

is directly supported

• operations are simpler since joins are not needed to access properties of a referenced

object. Instead path expressions can be used,

• object sharing, cyclic objects and object versioning can be modelled more easily

D a ta a b s tra c tio n , whereby an object is known by its external operations (i.e. the

interface) rather than by its structure, allows object implementation to be changed as

long as the interface is kept the same. Implementation details are encapsulated, trans­

parent from the user or other objects. Such details are kept in a class. A class holds

CHAPTER 3. OBJECT ORIENTED DATABASES 41

the structural (i.e. instance variables) and behavioural (i.e. methods) features of a set

of similar objects, called the extension of the class.

A distinction has to be made here between classes such as integer (i.e. scalar types) or

date (i.e. composite-valued, types) and other classes such as person. Whereas the exten­

sion of the former are considered irrelevant, the set of instances belonging at a given time

to certain classes such as person is specially important in DBs where iteration, quan­

tification and value-based retrieval on such sets is the hallmark of DB manipulation.

Moreover, scalar and composite-valued types do not have OID, and equality is value

based. In contrast, objects such as persons, have uniqueness based on the OID and it is

possible for two persons to have the same attributes but being different objects.

In DBs the ability to model behavioural characteristics of the UoD, represents a remark­

able gain with respect to previous approaches. In traditional DBs a clear separation

is drawn between data and programs. Only the data is managed centrally. Ordinary

manipulation has to be repeated in each program. Including behaviour allows these ma­

nipulations to be enclosed within the DB.

In OODBMSs, h ie ra rch ies can be formed by speciaising classes into subclasses. Sub­

classes only hold specific behaviour, inheriting the rest from their superclasses.

Besides the external user of the object, subclasses introduce a new client for the class: a

subclass can have direct access to the instance variables not only it defines but also those

instance variables defined by any of its superclasses. As pointed out by [Snyder 86], this

severely compromise encapsulation since instance variables cannot longer be changed

without affecting possible subclasses. To avoid jeopardising encapsulation, subclasses as

any other object, should refer to classes only throught the interface. In this way, instance

variables can be changed without compromising subclass implementation.

Snyder proposes three categories of class clients, leading to three different kinds of in­

terfaces or method visibilities 1. The question is: who can use a given method?

• any object within the system. Then, the visibility will be global,

• only subclasses of the class defining the method. Then, the visibility will be family,

• only the class where the method is defined. Then, the visibility will be local

1ADAM terminology has been used to name the visibilities.

CHAPTER 3. OBJECT ORIENTED DATABASES 42

Besides inheriting methods directly, subclasses can overrid e m e th o d s defined in their

superclasses. However, to ensure that instances of the subclass can be used wherever an

instance of its superclass can appear, such overriding has to conform to certain rules.

This leads to the view of classes as types. A type T1 is said to be a subtype of T2 if

every instance of T1 is also an instance of T2 [Cardelli 85]. This implies the so-called

principle of substitutability whereby an instance of T1 can be used whenever an operation

expects an instance of T2. Hence, overriding can be done as long as this principle of

substitutability is not violated.

The signature of a method (or function) is the types of the input and output arguments,

normally represented as:

method : I x x I2 x ... x I n — ► Oi x 0 2 x ... x On

where Ix normally represents the type of the object receiver, and I,- represent the ith

input argument and O; stands for the i-ary output argument. The question is when a

method with signature

T1 — ► T2

can be overridden by a method f ’ with signature

T3 — ► T4

without violating the principle of substitutability.

Some systems use the covariant rule that requires the input and output arguments of

the subclass method to be subtypes of the input and output arguments of the method

to be overridden in the superclass [Ivhoshifian 90], i.e.

T3 should be a subtype of T1

T4 should be a subtype of T2

In figure 3.1 the covariant rule is shown using Venn diagrams. But this rule has some

pitfalls. For example, suppose a. person can have borrow as a method. Borrow has a

book as an input argument. The subclass historian specialises person by constraining the

argument of borrow to be a ra.re.book, a subclass of book. Such overriding conforms to the

covariant rule. The borrowing of a book by a person is achieved by sending the message:

CHAPTER 3. O BJ E CT ORIENTED DATABASES 43

T 1 *■ T 2

m ' T 4T 3

Figure 3.1: The covariant rule.

>T2T 1

m*T 3

Figure 3.2: The contravariance rule.

borrow(b) = > p.

where b and p are members of the book and person class respectively. No type error

occurs at compile time. However, at execution time p can be bound to a historian and

then, the specialised method would be executed. If it happens that b is not bound to a

rare-book an incompatibility error will be caused at run time.

To ensure strong type checking and avoid run time errors, the contravariance rule is used

instead. This rule states that the input arguments of the more specialised method should

be superiypes of the input arguments of the least specialised method [Klioshifian 90], i.e:

T3 should be a supertype of T1

The contravariance rule is illustrated by Venn diagrams in figure 3.2. This rule guar­

antees strong type checking and works correctly for complete overriding (i.e. when the

method in the subclass does not call the overridden method of the superclass). However,

if a specialisation rather than a complete overriding is done some problems can occur.

CHAPTER 3. OBJECT ORIENTED DATABASES 44

That is, if the method of the subclass m ’ calls the overridden method of the superclass m,

type errors can emerge at run time as a. result of the input arguments of m ’ being more

general tha t those of m. For instance, in the latter example, suppose that the historian

subclass specialises the method borrow as having an available-material (a superclass of

book) as input argument. Such overriding conforms with the contravariance rule. How­

ever, a type error arise when the borrow method of person is called if happens that the

available-material is not a book.

The problem is tha t complete overriding and specialised overriding have different re­

quirements. Complete overriding has proved very useful in OOPLs where reusing and

flexible sharing are major concerns. In our opinion however, specilised overriding should

be preferred in DBs where more strict overriding should be enforced.

This also leads to the distinction between inheritance and subtyping. Inheritance can be

seen as a technique for sharing behaviour. In OOPLs a class can be defined by reusing

methods of an existing class instead of beginning the definition from scratch. This pro­

cess can be repeated leading to an in h e ritan ce h ierarchy . In addition, since in a strict

inheritance hierarchy all the methods of a class are available to its subclasses, it seems

tha t whenever an instance of the class can be used, so can an instance of the subclass,

and then, the inheritance hierarchy coincides with the ty p e h ie ra rch y . However, this is

not always true, since subtyping is based not on sharing but 011 the externally observable

behaviour, i.e. the interface [America 91]. Hence, if class B holds the interface of class A,

B can behave as a subtype of A, without reusing A methods (e.g. it could reimplement

then in a completely different way). As a result some systems, such as CommonObjects,

distinguish between the type hierarchy and the inheritance hierarchy, making it possible

for example “to specify tha t the class is not a subtype of a parent or tha t the class is a

subtype of an unrelated class (not its parent). The first case arises when the behaviour

of the objects is incompatible with the interface of parent objects. The second case

arises when the class is supporting the external interface of another class without its

implementation” [Snyder 86].

If a class can have more than one superclass the system is said to support m u ltip le

in h e ritan ce . In this context, ambiguity can arise if the same name is used in different

superclasses to refer to the same method or instance variable. A11 example of such a

problem is shown in figure 3.3. The class person defines the method title th a t writes

CHAPTER 3. OBJECT ORIENTED DATABASES 45

PERSON

wri t e c n a m e a n d l u r n a m t

PHD_PERSONMSC P E R S O N

cal l t o e u p e r
w r i t e ' M S c . '

cal l to c u p e r
w r i t e ' P h D '

Figure 3.3: A multiple inheritance hierarchy.

the name and surname of a given person. MSc-person and PhD-person are subclasses of

person where the method title is specialised by adding MSc and PhD at the end of the

surname. The obvious way of doing this is by referring to the title method at the level

of person and subsequently adding either M Sc or PhD. However, an ambiguity occurs at

the level of the class MSc-PhD-person subclass since it inherits two methods with the

same name. Two approaches have been followed to cope with such situation [Snyder 87]:

• the graph-oriented approach. Methods are inherited directly and an error is sig­

nalled if any conflict occurs. In the above example, such error would arise if the

message title is sent to an MSc-PhD.person. To resolve the ambiguity, a method

title can be defined in the MSc-PhDjperson class by calling both the title method

of M Sc-person and the title method of PhD-person. Nevertheless, this still causes

some problems since the method title defined at the level of person is executed

twice.

• the linear approach which flattens the acyclic graph. For example, the sequence:

M Sc-PhD-person, MSc-person, PhDjperson, person , is the linear representation of

the above example. When a method is sent, the first method found following the

sequence is executed. Although now the method title of person is executed only

once, it prevents the title method of PhD-person from being used.

Thus none of these approaches is completely satisfactory.

CHAPTER 3. OBJECT ORIENTED DATABASES 46

3.3 ADAM : an object-oriented database in Prolog

ADAM has been mainly influenced by research in OOPLs rather than by semantic data

modelling, and it has been supported both by a form of grid file known as the BANG

file and by a triple store based upon NDB [Paton 89a]. ADAM has been used as the

implementation vehicle to support the ideas proposed in this work. In the following, the

features outlined in the previous section for OODBMS are illustrated for ADAM.

• O b jec t iden tity . In ADAM instance identifiers are provided by the systems which

adds the class identifier to the instance number within the class to form the identifier.

For example, 23@person is a valid object identifier, where the @ operator separates the

nam e'of the class (i.e. person) from the instance number (i.e. 23). Although object

migration is compromised, this approach allows an efficient message sending mechanism.

As far as class identifiers are concerned, they are provided by the user.

• C lass an d in s tan ce defin ition . A new object is created in ADAM by sending the

message new to the required class. For example, the creation of an instance of person

can be achieved in the following way:

new([OID,
<list of attribute values>

]) => person.

‘= > ’ denotes message sending. In this case, the message is new and it is sent to the

object person. The first argument of new is a Prolog variable which is instantiated with

the system-provided object identifier of the instance just created.

An outstanding feature of ADAM is that classes are themselves instances of more abstract

objects callled metaclasses. A class then, is created by sending the message new to a

given metaclass. For instance, to create the class person, the following message is sent:

new([person,
<list of attribute values>,
<list of property definitions of person>,
<list of method definitions of person>

]) => class.

The message new is sent to the object class, a metaclass supplied by the system 2.

Notice tha t class identifiers are provided by the user and tha t besides a list of attributes

2For further details about metaclasses, see chapter 4.

CHAPTER 3. OBJECT ORIENTED DATABASES 47

(e.g. the person who created the class), class description also includes the definition

of the behavioural (i.e. methods) and attributive (i.e. properties) features of the class

instances.

• M eth o d d efin ition . The following can be an example of a method definition in

ADAM:

method((kind_of_salary(global,single,[integer].string, [Salary.Kind])
message_recipient(ThePerson),
get_status(Status) => ThePerson,
member(Status-Low-Medium,[clerical-50-70,managerial-68-100]),
(Salary < Low

-> Kind = low
; Salary < Medium

-> Kind = medium
; Kind = high)

))

Method definition is done by specifying:

• the name. It is the method selector (e.g. kin(Lofsalary)

• the visibility. It describes from where this method can be called. The range of

values are:

- global, no restrictions on who can invoke this method

- family, the method can be invoked only within the own class or subclasses of

this class

- local, the method can be invoked only within the class where it is defined

• the cardinality. It can be single or set depending on whether a method is likely to

resucceed by Prolog backtracking, and then returning several values

• list of input arguments (e.g. [integer])

• the output argument (e.g. string). Only one output argument is allowed

• list of variables representing the input and output arguments -in this order- (e.g.

[Salary,Kind])

• the body of the method implemented in Prolog

CHAPTER 3. OBJECT ORIENTED DATABASES 48

The method kind.of^salary shown above can be invoked from outwith the class (since it

is global), returns only one value (since it is single), and has two arguments: Salary an

integer input argument and Kind a string output argument.

Methods can be invoked by specifying the corresponding parameters and the object

receiver. As an example, consider the person with object identifier 3@person, having a

salary of 86. The previous method can be called to obtain the kind of salary this person

has:

I ?- kind_of.salary([86].Type) => 3@person.
Type = high

• P ro p e r ty defin ition . An example of an attribute definition in ADAM can be as

follows:

s lo t (s lo t . t u p l e (a g e , s in g le .o p t io n a l , in te g e r))

where the following facets or property features have to be specified:

• the name of the property (e.g. age)

• the cardinality of the property. It can be either single or set

• the status. It can be either total, mandatory or optional. Total properties cannot be

empty. They must be given a. value when the object is created and any attem pt

to delete its value results in the deletion of the whole object. The motivation for

total properties is tha t “any object with a total slot which contains a reference,

is dependent upon the object referred to by the total slot” [Paton 89a]. The de­

pendency is established at the class level since all objects in the class must specify

their total properties. Mandatory properties “need not be given a value when the

object is created, but once a value has been assigned to the slot, any attem pt to

delete the value results in deletion of the object to which the slot is attached”

[Paton 89a]. Here the dependency is at the instance level since it is when a given

instance has the slot filled tha t it becomes dependent. Finally, with optional prop­

erties no dependency with any other object is established. The user is free to fill

or delete the value of these slots at any time. Total and mandatory slots can be

seen as a way of achieving aggregation hierarchies by extending the semantics of

CHAPTER 3. OBJECT ORIENTED DATABASES 49

the slot values instead of using an explicit part_of hierarchy. Only single slots can

be total or mandatory

• the type of the slot. It can be any scalar type, class name or composite value type

In addition, properties have also an internal facet known as updaieability to guarantee

the integrity of system-maintained properties such as is-a and instance-of. Such system

properties have an updateability of system whereas user-provided properties have up-

dateability of local.

• E n ca p su la tio n . When a property is created, methods to retrieve (get-), to add (put_),

to delete (delete_) and to update (update_) the property value are generated automati­

cally so tha t attributes are always handled by these methods. For example, the methods

get-age, put-age, delete-age and update-age are created from the above definition of age.

Properties that play the role of instance variables are not inherited by subclasses. Only

methods are passed downwards so that the structure of properties can be altered without

compromising subclasses. In this way, encapsulation is greatly increased [Snyder 86].

In addition, ADAM provides value-based retrieval through the methods with prefix

get-by- which are also generated at property creation time. For example, the follow­

ing call

get_by_age([29].Person) => person.

retrieves all persons whose age is 29. Such methods “support inverses on all relationships

between classes, and secondary indexes on every scalar slot” (i.e. property) [Paton S9a].

Nevertheless, a set of property operators are provided to allow the user to access directly

the property so that the system-provided methods can be overriden by the user. This

set is shown in figure 3.4. This can be useful to enforce integrity constraints. As an

example, consider the age property to be restricted to take a. value between 0 and 120.

The system-provided method can be overridden to include this constraint in the following

way:

replace_method([
(put_age(global,single,[integer] ,[] ,[Age])

Age > 0,
Age < 120,
age <— Age)

CH APTER 3. O B JEC T ORIENTED DATABASES 50

SYNTAX ACTION

slo tnam e <-- [] R em ove all values from the nam ed slot

s l o t n a m e <— old/new R eplace value old with new in nam ed slot

s lo t n a m e <— va lue Add the given value to the nam ed slot

value <= s lo tn a m e Unify va lue with the va lues in the nam ed slot

Figure 3.4: Property operators in ADAM.

]) => person .

When the age is inserted for a given person , this method is executed: the input

argument Age is checked to conform with the constraint and if so, it is inserted as the

valued of the property age. Otherwise, the method fails 3.

• H ierarchies. In ADAM classes can be specialised in several subclasses where the

inheritance hierarchy and the subtype hierarchy coincide. Objects can be an instance of

only one class (held in the instance.of property). However, classes can have more than

one superclass (held in the is_a property). Thus, ADAM supports multiple inheritance.

Ambiguity is prevented by avoiding is_a lattices in which it is unclear which is the

method to be invoked in response to a message. That is, when a subclass or new method

is defined, the system checks whether any ambiguity arises and if so. it causes an error.

As pointed out by [Paton 89a], this approach is felt to be safer than imposing an order

on the superclasses of a class or using heuristics such as ‘choose the nearest’.

In many cases, method specialisation rather than a complete overriding is desired, i.e. we

are interested in invoking the more general method from the more specialised one. Two

mechanism are available in ADAM to achieve this result:

• Sending to super: “A message can be sent to the atom super. If a method in a

class C sends a message to super, then the search for a method to respond to the

message starts with the superclass(es) of C. If C has more than one superclass,

they are searched in the order specified in the definition, depth-first up to joins”

3However, em bedding constraints in m ethod definitions severely com prom ise m ethod overriding as
discussed in chapter 5.

CHAPTER 3. OBJECT ORIENTED DATABASES 51

in s tan c e in s ta n c e in s ta n c e

new([_.[
cname([john]),
su rnam e([sm ith])

]]) «> person.

new([_,[
cname([graham]),
su rnam e([kem pt])

]]) -> person.

new([_,[
cname([ines]),
surnam e([arana])

]]) «> person.

n » w ((p h d _ p e r s o n , [

i s _ a (| p e r s o n]) ,
m « t h o d (t H ie (g l o b a l , [] ,[] , [) , [)) : -

lil le » s u p e r .
w r i ie (' P h D . ')

))
])) « > c l a s s .

n e w (| m s c _ p e r s o n , [

l s _ a (| p e r s o n)) ,
m # t h o d (t i l l e (g l o b a l , ['),[]. [] ,(])

t it le • > s u p e r .
wr i te C M S c . ')

))
]]) - » c l a s s .

r > e w (| p e r s o n , [
s i o l (s l o t _ t u p l e (c n a m e . g l o b a l , s i n g l e , t o t a l , s t r i n g) .
s l o t (s l o t _ l u p i e (s u r n a m e . g l o b a l , s i n g i e . t o t a l , s t r i n g) .
m e l h o d (t l t l e (g l o b a l , n , [) ,[] ,())

m e s s a g e r e c i p i e n t (A P e r s o n) ,
g e i _ c n a m e (C N a m e) » > A P e r s o n ,
g e t . s u r n a r n e (S N a m e) « > A P e r s o n .
w r i t e (C N a m e) , w n t e f ') . w r i t e (S N a m e)

]]) » c l a s s .

Figure 3.5: Method specialisation: an example.

[Paton 89a]. To illustrate this approach, let us suppose the message title is sent to

instances of each of the classes shown in figure 3.5. The results are the following:

1 ?- t i t l e => Offiperson.
john smith

I ?- t i t l e => l@phd_person.
graham kempt PhD.

I ?- t i t l e => 2®msc_person.
in e s arana MSc.

• Selecting a super: "A message can be sent to a construct of the form self@< class>

where < c la ss> is a superclass of the class of object which received the message.

The method at the given class is selected for execution. If there is no such method,

an error is signalled and the message-send fails” [Paton 89a].

Method overriding is allowed in ADAM as long as the arity, cardinality and visibility of

the new method are the same as in the method to be overridden and, input and output

argument types conform to the contravariance rule. In figure 3.6, the type hierarchy is

shown. The type plog is the most general type and any Prolog data structure is considered

as a plog. The motivation for such type is that it provides a means of avoiding the type

system when defining methods such as new which must take arbitrary Prolog clauses as

CHAPTER 3. OBJECT OR1ESTED DATABASES 52

plog

composite value types
(e.g. date, address)

class types
(e.g. person, msc_person)

scalar types
(e .g. s t r in g , in te g e r)

Figure 3.6: Type hierarchy in ADAM.

arguments for use as methods [Paton 89a].

The idea of composite value types is represented in ADAM by tuples. A tuple has

a name and several named attributes of any type. The only restriction is that tuple

attributes cannot be empty. As an example, consider the following definition of the

sloLdescription-tvple and method.desc.tuple in ADAM:

n e w _tu p le (m eta_c la ss ,
s lo t _ d e s c _ tu p le (

nam e:str ing ,
c l a s s : s t r in g ,
v i s i b i l i t y : s t r i n g ,
c a r d i n a l i t y :s t r i n g ,
s t a t u s :s t r i n g ,
t y p e :s t r in g

))

n e w _tu p le (m eta_c la ss ,
m ethod_desc_tuple(

o b j e c t : s t r i n g ,
name:s t r i n g ,
v i s i b i l i t y : s t r i n g ,
c a r d i n a l i t y :s t r i n g ,
a r g ty p e s :p lo g ,
r e s t y p e s :s t r i n g

))

The first argument of new.tuple indicates where the definition of the tuple is to be

stored.

Mechanisms for temporal modelling and versioning support are missing in ADAM, al­

though a naive implementation of a versioning mechanism has been built based on rules

[Diaz 91a].

3.4 Conclusions

In this chapter, the concepts of object identity, data abstraction and hierarchy mech­

anisms have been reviewed within a database framework. Such enhancements lead to

the so-called object-oriented databases. Despite the fact that several prototypes and

even commercial systems have been developed, a formal definition of object-oriented

CHAPTER 3. OBJECT ORIENTED DATABASES 53

databases is still missing. Hence, the ADAM system has been presented to illustrate

some of these concepts. Moreover, this database has been used as the implementation

vehicle to materialise some of the ideas proposed in this work.

C h a p te r 4

M aking m etadata explicit

4.1 Introduction

Unlike more traditional databases which are mainly concerned with the extension of the

UoD, knowledge base systems are characterised by an increase of the knowledge kept in

the database, i.e. the intensional side of the UoD. To access this knowledge, in the same

way as any other data in the system, the objects in the data, dictionary, should be treated

as regular objects. As pointed out in [Freundlich 90] “in user-oriented environments -

and they are proliferating- users need modelling capabilities traditionally mediated by

systems analysts and database managers. They need more than this -more than just

tools for doing what was traditionally database management, and more than the ability

to specify a data dictionary. They need to treat the objects in the data dictionary as

regular data, as objects of discourse". In fact, one of the main differences between DBMSs

and KBMSs is tha t whereas the former have a. clear distinction between ground knowledge

and generic knowledge, for KBMS such a distinction disappears [Mylopoulos 86].

In an object oriented paradigm, knowledge is represented through classes tha t gather

together the common features of a. set of objects called the class instances. In this

context, making knowledge accessible means the ability to query, classify, generalise and

relate classes just like any other object in the system. A means to accomplish this aim

is through metaclasses. A metaclass is used to define the structure and behaviour of

class objects in the same way tha t a class is used to define the structure and behaviour

of instance objects. Metaclasses not only permit classes to be stored and accessed using

54

CHAPTER 4. M AKING METADATA EXPLICIT 55

the facilities of the data model, but also make it possible to refine the default behaviour

for class creation using specialisation and inheritance. Three main advantages can be

drawn from this approach:

• Accessibility. M etadata is available like any other data in the system

• Extensibility. The object oriented paradigm encourages reuse and modularity

through the subclass mechanism. When a new class (e.g. student) has to be

introduced in the system, the designer thinks about the differences between, and

similarities with existing classes (e.g. person) , pointing out what is really new and

what can be reused. The same mechanism used for building the DB can now be

used to extend the system. New constructs can be introduced, specialising the ones

already provided by the system. From this point of view, the system can be seen

as a core of useful facilities which the user can tailor to suit specific applications

[Paton 90].

• Uniformity. The same tools are used for querying, relating and specialising data

and metadata. No new mechanism is required. In this way, the distinction between

data and m etadata is removed and it is just a question of the level of abstraction

at which one is working.

Object oriented systems differ in the extent to which they support metaclasses as first-

class objects. In many systems such as C + + [Stroustrup 86], O2 [Deux 90] and EIFFEL

[Meyer 88], classes are not objects and thus, there are no metaclasses. SMALLTALK-76

the experimental version previous to SMALLTALK-80 [Goldberg 83], was the first to

introduce metaclasses. Later systems such as LOOPS [Bobrow 81], ObjVlisp [Cointe 87]

and ADAM [Paton 89b] have supported this concept, but with major differences. This

chapter provides the background material needed to understand how the constructs pre­

sented in the following chapters have been introduced in ADAM.

The remainder of this chapter is structured as follows. In section 2, how metaclasses

have been implemented in object oriented programming languages is addressed. Section

3 introduces how metaclasses are handled in ADAM. Achieving extensibility and accessi­

bility through metaclasses is illustrated in sections 4 and 5 respectively. Some drawbacks

are briefly outlined in section 6. Finally, conclusions are presented.

CHAPTER 4 . M AKING M ETADATA EXPLICIT 56

CLASS

OBJECT

STUDENT WORKPERSON

is_a
-► instance_of

Figure 4.1: Inheritance and instantiation in SMALLTALK-76.

4.2 M etaclasses in O bjec t O riented P ro g ram m in g Languages

Achieving uniformity can be seen as the main motivation for introducing metaclasses

into OOPLs. Systems which do not support metaclasses have to cope with two different

kinds of objects, namely:

• Classes. They are instance generators but are not objects as such, since they cannot

receive any messages (except new, to create instances) and they are not instances

of any class.

• Instances. They can receive messages except new. Instances cannot create other

instances.

To enhance uniformity, metaclasses have been introduced. A metaclass is a class whose

instances are themselves classes. Now a class is a proper object in the sense that it is an

instance of another object (the metaclass) and thus, it can receive message just like any

other object in the system.

The following subsections present an overview of metaclasses in different OOPLs.

4.2.1 SMALLTALK

SMALLTALK was the first language to support metaclasses. In the following, the ap­

proach taken by SMALLTALK-76 is first presented, and once some drawbacks have been

pointed out, the definitive mechanism provided by SMALLTALK-80 is shown.

CHAPTER 4. M AKING METADATA EXPLICIT 57

In SMALLTALK-76, two orthogonal hierarchies are distinguished concerning the two

aspects of an object: its behaviour as an instance and its behaviour as a class. In figure

4.1 these hierarchies are shown for SMALLTALK-76.

• The instantiation hierarchy based on how an object is created and which links

each object with its object generator. The root is the metaclass CLASS. CLASS

collects all the common information about classes such as how to add a method to

the method directory or how to instantiate (i.e. the method new). For uniformity’s

sake, and to avoid an infinite regression, CLASS is an instance of itself. Now, the

STU D EN T class is created by sending the message new to CLASS whereas the

object JOHN is created by sending the message new to STUDENT. Hence, CLASS,

STU D ENT and JOHN are all proper objects, i.e. are all instances of some object.

• The inheritance hierarchy where objects are seen as instances. The root of this hi­

erarchy is the OBJECT class which collects the behaviour common to all instances

within the system. This includes not only terminal instances but classes as well,

since they are instances of CLASS. Among this common behaviour is the ability

to cope with a message. So, now STUDENT can receive messages other than new

just like any other object in the system. Uniformity is achieved.

Although several advantages can be drawn from this approach, its main drawback is that

all classes behave in the same way, since they are all instances of the same class CLASS.

Therefore, it is not possible to specialise new to suit special generation requirements, as

this would jeopardise the extensibility of the system.

To overcome some of these disadvantages, SMALLTALK-80 introduces several meta­

classes. However, metaclasses are hidden from the user. When a class is created, the

system automatically defines its counterpart metaclass, where the metaclass name is

obtained by adding ‘class’ to the class name (e.g. the class person has as a metaclass

person-class). As shown in figure 4.2, metaclasses are arranged so tha t they mirror the

class structure and each class is the only instance of its metaclass. At class creation time,

the user can specify class instances and class methods, which play the role of instance

variables and instance methods of the metaclass, respectively. As a result, it is possible

to specialise the behaviour of classes by adding class methods. Despite this achievement,

SMALLTALK-80 still has some problems. Its weakness comes principally from the sys-

CH APTER 4. MAKING METADATA EXPLICIT 58

1s_a
-► in s ta n ce_ o f

meta class level undergrad_stud_class
.student_clas:

< 4: "

p o s tg r a d _ s t u d _ c la s s

lecturer_class

s tu d e n t
person'

lecturer

instance level
a ltora n a

John alfredo
ln e s peter

Figure 4.2: An example of the three levels in SMALLTALK-80.

tem maintained metaclass structure. Being too rigid, the structure does not offer the

flexibility found at the class level where classes can have several instances and distinct

subclasses.

4.2.2 LOOPS

Unlike SMALLTALK-76 where objects are categorised as instances and classes, LOOPS

introduces a third category: metaclasses. Notice that SMALLTALK-70 does not have

metaclasses as such. The concept of metaclass is in the users mind, but from the system

point of view S T U D E N T and CLASS are handled in the same way.

In LOOPS, three objects stand for each category [Masini 89]:

• M E T A -C L A S S holds the default behaviour of metaclasses, particularly the method

new to create classes. It is the metaclass of other metaclasses and as a result, its

own metaclass.

• C L A SS holds the default behaviour of classes, particularly the method new to

create terminal instances. It is the default metaclass.

• O B J E C T holds the instance behaviour. Since classes are themselves instances,

C L A SS is a subclass of OBJECT.

CHAPTER 4. M AKING METADATA EXPLICIT 59

!

META CLASS

CLASS SPEC 1AL_META_C LASS
new i

OBJECT new

PERSON STUDENT

■$**■ ls_a
instance_of
specialization

JOHN

Figure 4.3: Inheritance and instantiation in LOOPS.

Figure 4.3 shows this hierarchy. Being a class, P E R S O N is created by sending the message

new to CLASS. Likewise, since JO H N is a P E R S O N , it is created by sending the message

new to P E R SO N . Moreover, now it is possible to specialise new (i.e. how an instance is

created) by introducing a different metaclass. As an example, if some special behaviour

must to occur when a S T U D E N T is created, a metaclass S P E C IA L -M E T A -C L A S S can

be created as a specialisation of C L A SS and S T U D E N T can be made an instance of

SP E C IA L -M E T A -C L A S S . Hence, when an instance of S T U D E N T is created, besides the

default behaviour held in C LASS , the additional behaviour of S P E C IA L -M E T A -C L A S S

can take places. In this way, special requirements can be supported. Therefore, the

LOOPS mechanism allows specialisation of instance creation (unlike SMALLTALK-76)

and explicit definition of metaclasses (unlike SMALLTALK-80).

However, the uniformity achieved in SMALLTALK-76 is lost since classes and instances

no longer share the same structure as they have been created by different methods new-

one stored at the level of M E T A -C L A SS and the other held by CLASS. Moreover the

depth of the instantiation tree is limited to three levels.

4.2.3 ObjVlisp

ObjVlisp goes back to the ideas of SMALLTALK-76 but where CLASS can be specialised

like any other class in the system. Unlike LOOPS, all objects are created by the same

method new, and thus all have the same structure. Hence, the only difference among

CHAPTER 4. M AKING M ETADATA EXPLICIT 60

CLASS
new

OBJECT

is_a
lnstance_of
specialization

Figure 4.4: Inheritance and instantiation in ObjVlisp.

objects is their ability to create other objects, i.e. to answer the message new.

As in SMALLTALK-76, two hierarchies are defined:

• The instantiation hierarchy having CLASS as its root. It holds the message new.

As any other class in the system, CLASS can be refined to account for special

requirements. In figure 4.4 the user-defined metaclass SPECIAL_META_CLASS

specialises the method jjeirkept in CLASS to provide some special behaviour when

PERSON instances are created.

• The inheritance hierarchy having OBJECT as its root. OBJECT holds the common

behaviour of all objects in the system. Thus, any class in the system is a subclass

of OBJECT.

In this way, classes and metaclasses have been integrated, both are handled in the same

way. Since the distinction is removed, it is up to the user to be aware of the level at which

he is working. As far as the system is concerned, ground objects and generic objects

have an equal treatment. As a result, the flexibility and extensibility is preserved while

keeping the system’s simplicity.

CHAPTER 4. MAKING M ETADATA EXPLICIT 61

SM_BEH
put_method

CLASS_MIXIN
new+

Figure 4.5: Instantiation hierarchy in ADAM.

4.3 M etaclasses in A D A M

In this section, a detailed description of the metaclass mechanism in ADAM is given.

The rationales and the different objects building the core ADAM system are presented.

A careful reading is recommended for those interested in how the extension of ADAM

is accomplished in the following chapters. As far as metaclasses are concerned, ADAM

follows a middle way, nearer to ObjVlisp than to LOOPS. As in previous systems two

hierarchies are distinguished:

• The inheritance hierarchy where objects are seen as instances. The root of this hier­

archy is the object OBJECT and it collects the common behaviour of all instances

within the system. In the current implementation (version 2.1) this is restricted to

the method display that shows the structural and behavioural features of a given

object.

• The instantiation hierarchy based on object creation (i.e. the method new). In

figure 4.5 such a hierarchy can be seen. Three kinds of objects are distinguished:

terminal instances, classes and mixins.

Terminal instances. They cannot create other instances. The message new cannot

be sent to this kind of object.

Classes. Classes can be characterised as being object generators, i.e. that can

understand the message new. A distinction has to be made between classes of

terminal instances -instance classes- and classes of other classes -metaclasses. Al-

CHAPTER 4. M AKING METADATA EXPLICIT 62

though both share a common behaviour to generate an object, they specialise this

behaviour to consider special features such as:

— terminal instances have an object identifier generated by the system whereas

classes have an object identifier provided by the user,

— terminal instances do not have slot or method descriptions, unlike classes

where such descriptions can be part of the class definition,

— unlike terminal instances, classes can be arranged in hierarchies. Hence, the

superclass can be part of the definition of a. class.

These distinctions can be illustrated by creating the class STUDENT and an in­

stance of this class (e.g. JOHN), according to the ADAM syntax:

:- new([student,[
is_a([person]),
created_by([josemi]),
slot(slot_tuple(cname.global,single.optional,string)),
slot(slot.tuple(surname,global.single,optional,string)),
slot(slot.tuple(age.global,single,optional,integer))

]]) => class.

:- new([OID,[
cname([j ohn]),
age([25])

]]) => student.

The definition of both STUDENT and JOHN involves giving a value to the at­

tributes defined in their respective classes (e.g. cname and age for JOHN and

is-a and created-by for STUDENT). However, unlike JOHN, the definition of the

class STUDENT includes the description of the slots cname, surname and age, and

could have also involved some method definitions. Moreover, the object identifier

of JOHN is automatically generated by the system and unified with the Prolog

variable OID, whereas the object identifier of the class STUDENT is given by the

user through the literal student.

The behaviour shared by the creation of terminal instances and classes is then

factored out in the object CLASSJ3EH, whereas the objects CLASS-MIXIN and

META.CLASS specialise such behaviour for instance classes and metaclasses re­

spectively.

CHAPTER 4. M AK IN G M ETADATA EXPLICIT 63

J mixin

^ object ^ ^ class ^ ^class_bef^|class_m lxin^ ̂ sm _beh^

instance of

Figure 4.6: The ‘who’s who’ hierarchy in ADAM.

Mixins. A mixin has been defined as “a class designed to augment the description

of its subclasses in a multiple inheritance lattice” [Stefik 86]. They can be seen as

a kind of library from which classes can inherit behaviour. Their main motivation

is thus, the enhancement of sharing and they come mainly from the programming

arena where reusability is a major concern. However they cannot have instances

of their own.

Mixins have been found useful in programming languages and they are intro­

duced in ADAM through the object MIXIN. Although they cannot have instances,

mixins share with classes the possibility of defining behaviour (i.e. the method

pu t.m eth od). To factor out those features common to MIXIN and CLASSJBEH,

the object SM JBEH has been created.

In the previous paragraphs, the inheritance and instantiation hierarchy have been intro­

duced. Since the system itself has been constructed in an 0 0 fashion, the next question

to be addressed is which kind of objects are the objects which describe the system? For

example, is CLASS-BEH a terminal instance, a mixin or a metaclass?

Certain of the objects in the instantiation hierarchy have as a raison d ’etre to factor out

common behaviour of their subclasses and it is meaningless to have instances of most

of these objects. So, they can be considered as a kind of library with methods to be

used or specialised. The objects CLASS-BEH, CLASS-MIXIN and SM-BEH are then

instances of MIXIN. Although the object CLASS-MIXIN could have been considered

as a metaclass, it was preferred to hold the special behaviour of classes in a mixin so

that it can be reused more easely. The metaclass CLASS was instead introduced which

inherits from CLASS-MIXIN. In [Paton 90] an implementation is shown where ADAM

CHAPTER 4 . M AK IN G METADATA EXPLICIT 64

object

sm_beh
p u t _ m e t h o d ,

c)ass_beh
NEW

m eta_dass
NEW+

ls _ a
ln s ta n c e _ o f
sp ec ia lised

Figure 4.7: The ADAM system.

is extended with keyed classes illustrating the advantage of this approach.

The objects MIXIN, OBJECT and CLASS can have instances which in turn are classes.

So, they are metaclasses and therefore, instances of META.CLASS. Finally, the object

META_CLASS is supported as an instance of itself to avoid infinite regression. Figure

4.6 shows the ‘w ho’s who ’ hierarchy in ADAM.

To conclude this section, in figure 4.7 all the objects defining the ADAM system are

shown as well as their links. On top of this system, a set of new constructs have been

added. How this lias been accomplished using an 0 0 approach is one of the main

contributions of this work and it is presented in the following chapters.

4.4 Achieving ex tensib ility using m etaclasses

Extensibility can be defined as the ability of a system to be enlarged with new func­

tionalities without changing the core system. This property becomes fundamental in the

next generation of DB systems due to the difficulty of foreseeing all the requirements of

a given application [Oxborrow 91]. The hypothesis is that it is better for a data model

to provide a modest number of basic constructs which are easily adapted and extended

than to support a large number of constructs which attempt to anticipate the needs of

CHAPTER 4. M AKING M ETADATA EXPLICIT 65

individual users.

In OO systems, extensibility can be achieved if the system itself is described using an

0 0 approach. The 0 0 paradigm encourages reuse and modularity through the subclass

mechanism. When a new class is introduced into the system, the designer thinks about

the differences between, and similarities with existing classes, pointing out what is re­

ally new and what can be reused. If the system is described in an OO way, the same

mechanisms used for building the DB can now be used to extend the system itself. So

if a new kind of object such as a relationship object, is introduced, instead of beginning

from scratch, we can reuse what relationship objects have in common with the already

provided normal objects. In this way, the advantages of the 0 0 paradigm are brought

to the realm of the system itself.

In ADAM extensibility can be obtained by:

• specialising how terminal instances are created by creating subclasses of the object

CLASS.

• specialising how classes are created. This can be accomplished by specialising the

■ object META.CLASS,

As an example, consider the extension of ADAM with a new category of classes: optimi­

sation classes. Besides the normal behaviour already provided by ADAM, optimisation

classes add as a further requirement a knowledge of how many instances of each optimi­

sation class there are in the system. Such counters can be used by some optimisation

strategies within the DBMS 1. In figure 4.8 how this can be achieved in ADAM is shown.

This extension requires:

• to specialise the instantiation hierarchy (i.e. the method new) used to create classes

so tha t when an optimisation class is created, the optimisation counter is initialised

with zero. This is achieved by defining the OPTIMIZATION_META_CLASS meta-

class as a. subclass of META.CLASS. This metaclass can be defined in ADAM as

follows:

:- new([optimisation.meta.class,[

1 Other counters such as number of retrievals, updates or deletions can be added in a similar way.

CHAPTER 4. MAKING M ETADATA EXPLICIT 66

W ' ls_ a
-► instance of

C
c

class

I

person

C meta class

C
I

optimization
meta class

> ~

D C

J

- ^ o p t im iz a t io n _ c la s s ^

~ r
student

T
j

Figure 4.8: Extending the system with optimisation classes.

i s _ a ([m e ta _ c la s s]) ,
m ethod((new (g lobal, □ , [s t r i n g , p l o g] , [] , [C la s s ,A t t s])

new([C la s s , A t t s]) => super,
p u t_ o p t im isa t io n _ c o u n ter ([0]) => Class

))
]]) => m eta _ c la ss .

When a new optimisation class is created, the method new defined in OPTIMIZA­

TION META CLASS will be used. This method initialises the optimisation.counter

to zero once the class has been created using the standard behaviour. Although this

initialisation could have been done explicitly by the user when the class is created,

making such initialisation from the method new makes the optimisation.counter

completely transparent to the user who is unaware of such a counter. Besides, new

counters can be added or deleted as required for the DBMS, without changing user

programs.

• to specialise how classes are created. Besides the standard creation procedure,

oplimisation.classes have an attribute, optimisation counter , where the number of

instances is recorded so that when a new instance is created the appropriate counter

is increased. This is achieved by defining the OPTIMIZATION-CLASS metaclass

as a subclass of CLASS. OPTIMIZATION-CLASS can be defined in ADAM as

follows:

CHAPTER 4. M AKING METADATA EXPLICIT 67

new([optimisation.class,[
is_a([class]),
slot(slot_tuple(optimisation_counter,global.single,optional,integer)),
method((new(global,[],[plog.plog],[],[Oid.Atts])

new([Oid.Atts]) => super,
message_recipient(Class),
get_optimisation_counter(Counter) => Class,
NewCounter is Counter + 1,
update_optimisation_counter([Counter,NewCounter]) => Class

))
]]) => optimisation_meta_class.

As with standard classes, a new optimisation instance can be created by sending

the message new to the appropriate optimisation class tha t takes the method new

from OPTIMIZATION.CLASS. It is worth noticing tha t optimisation instances

are objects, i.e. they do not override the behaviour of normal objects but rather

specialise this behaviour, adding the new features characteristic of optimisation

instances. As shown above, the message new is first sent to super, i.e. to the class

CLASS th a t holds the standard behaviour, and after, the special requirements are

taken into account, in this case, to increase the corresponding counter.

In this way, the system has been extended with optimisation classes in an OO fashion.

In [Paton 90], an extension to support objects with keys and persistent objects can be

found.

4.5 Achieving accessibility using m etaclasses

By introducing the concept of metaclasses, classes become normal objects in the sense

that they can receive messages other than new and they can have their own attributes

and methods 2. Such attributes can be used to represent aggregate information (e.g.

the average height of persons) or some system attributes (e.g. the optimisation counter

shown before). These attributes and methods describe the structure and behaviour of

the system itself and thus they play a similar role to a data dictionary. To retrieve such

information, a set of methods are already provided by ADAM. Here are some examples:

• To retrieve all instances of a given class,

2In Smalltalk they are known as class variables and class methods.

CHAPTER 4. M AKING M ETADATA EXPLICIT 68

I ?- get(Inst) => student.
Inst = OOstudent;
Inst = 23@student;

• To obtain method and slot description of a given class,

I ?- get_slot_desc(Slot) => student.

Slot = slot_desc_tuple(course,student,local.single,total,integer);
Slot = slot_desc_tuple(home,student,local.single,optional,string);

I ?- get_method_desc(Method) => student.

Method = method_desc_tuple(student,get_course,global,single,[].integer);
Method = method_desc_tuple(student,put_course.global,single,[integer] , □);

• To browse the application hierarchy,

I ?- get_is_a(SuperClass) => student.

Superclass = person

I ?- get_instance_of(MetaClass) => student.

MetaClass = optimisation_class

However, accessibility is not only limited to the m etadata of the user applications but

any structural and behavioural feature of the DBMS itself can be handled in a similar

way. This stems from the fact that much of the system consists of metaclass objects

itself. Hence, in the same way that previous examples have shown how to retrieve

metainformation about the application domain, a similar set of queries can be used to

retrieve information about the system domain. Some examples follows:

• To retrieve the instances of a metaclass,

I ?- get(Inst) => class.

Inst = person;
Inst = student;

CHAPTER 4. M AKING METADATA EXPLICIT 69

I ?- get(Inst) => optimisation.class.

Inst = student;

I ?- get(Inst) => object.

Inst = mixin;
Inst = meta.class;
Inst = object;
Inst = class;
Inst = sm.beh;
Inst = class.beh;
Inst = class.mixin;
Inst = optimisation.meta.class;
Inst = optimisation.class;
Inst = person;
Inst = student;
Inst = OQstudent;

• To browse the structure and behaviour of the system,

I ?- get_slot_desc(Slot) => optimisation.class.

Slot = slot_desc_tuple(optimisation_counter,optimisation_class,
global.single,optional,integer);

I ?- get_method_desc(Method) => optimisation.class.

Method = method.desc.tuple(optimisation.class,get.optimisation.counter,
global.single,[].integer);

Method = method_desc_tuple(sh_beh,put_method,global,single,
[plog] , []);

• To query the value of a meta.-attribute, e.g. optimisation counter,

I ?- get.optimisation.counter(Counter) => student.

Counter = 59;

• To browse the hierarchy of the system,

I ?- get.instance.of(Class) => optimisation.class.

CHAPTER 4. M AKING METADATA EXPLICIT 70

^ c la s s ^

f %■ .

f parson
m e ta c la s s /*" student

k. a v e rag e_ h e ig h tJ \ jn e t a c l a s y

PF I ?

p e rs o n

height
i s _ t h i s _ p e r s o n _ t a l l

^ s tu d e n t ^

i s _ a
—► in s ta n c e of

^ 1 @ p e r s o n) ^ 3 @ s t u d e n t)

Figure 4.9: Metaclass compatibility problems: an example.

C lass = o p t im is a t io n .m e ta .c la s s ;

I ?- g e t . i s . a (C l a s s) => o p t im i s a t i o n .c la s s .

C lass = c la s s ;

4.6 Some draw backs w ith m etaclasses

Although a favourable view of metaclasses has been presented, some problems arise when

explicit specification of metaclasses is introduced. Some of these drawbacks have been

pointed out in [Khoshifian 90]:

• Metaclasses make the system more difficult to understand.

• Metaclasses place a further burden on the user who has to cope with three levels of

objects: instances, classes and metaclasses. The optimisation example has shown

how two considerations have to be made: specialisation of the behaviour to create

instances (specialisation of the class CLASS) and specialisation of the behaviour

to create classes (specialisation of the class META.CLASS). The user has to keep

in mind both hierarchies when the system is extended and this could be found

difficult to grasp at the beginning.

CHAPTER 4. M AKING M ETADATA EXPLICIT 71

• Metaclass compatibilities. Since instance methods can invoke class methods, some

problems can arise when the class hierarchy does not parallel the corresponding

metaclass hierarchy. As an example, consider the schema shown in figure 4.9. The

class hierarchy does not mirror the metaclass hierarchy: STUDENT is a PERSON

whereas STUDENT_META_CLASS is not a PERSON_META_CLASS. Now, let

us suppose tha t persons have an attribute height and a. method to check whether

a given person is taller than the average person. This method can be defined in

ADAM as follows:

method((is_this_person_tall(global, □,[],[],[]) :-
message_recipient(APerson),
get.height(Length) => APerson,
get_instance_of(TheClass) => APerson,
get_average_height(AverageHeigth) => TheClass,
(Length > AverageHeigth

-> write('This person is tali')
; write(’This person is not so tali’)

)

This method is inherited by STUDENT. Since the definition of the isJ.his-personJ.all

method implies a metaclass request (the averageJieight attribute) and the meta­

class of PERSON and STUDENT do not coincide then this method will fail for

students 3. So some set of metaclass compatibility rules is needed.

These disadvantages make the authors of [Khoshifian 90] conclude tha t

... although there seems to be some advantages in treating classes as objects,
the theory, properties, and performance issues associated with the ‘classes
as instances of metaclasses’ paradigm is still in its infancy. Metaclass sys­
tems are difficult to understand (and, alas, explain!). Neither the Smalltalk
(hidden metaclass approach) nor the explicit metaclass approach seems to
be satisfactory. The C + + ‘classes as types’ approach is a clear and mature
technology tha t has been successfully implemented in numerous conventional
as well as object-oriented languages.

Although this could be true for programming languages, our experience is tha t sup­

porting metaclasses explicitly is a powerful mechanism for improving d a tab a se exten­

sibility, uniformity and accessibility. Although it takes some time to get used to metar-

classes, the results are worthwhile.

3This problem does not arise in SMALLTALK where metaclasses are implicitly defined by the system
and arranged in a structure that mimics the class hierarchy.

CHAPTER 4. MAKING METADATA EXPLICIT 72

4.7 Conclusions

This chapter has shown how introducing metaclasses in OODB provides a uniform treat­

ment of data and metadata. Since data and metadata are both represented as objects,

only one mechanism is required for browsing, querying, relating and specialising objects.

As a result, the distinction between data, and m etadata is removed and it becomes a

question of the level of abstraction at which one is working. Indeed, extensibility and

accessibility can both be seen as by-products of uniformity tha t were already provided

for the user domain, and uniformity moves upwards to the system domain. There­

fore, the only differences stem from the UoD that is being modelled. Application-based

classes model for example, the entities of interest in a university or business environ­

ment, whereas metaclasses represent entities describing the behaviour and structure of

the DBMS. It only depends on the level of abstraction, and no new mechanism is re­

quired.

Besides uniformity, two main advantages can be drawn from this approach: accessibility

and extensibility. The former allows users to query, update and delete m etadata dy­

namically as any other data in the system. Extensibility stems from using objects to

define the DBMS which can be enlarged and specialised using the well-known subclass

mechanism. In this way, whereas the class mechanism allows the knowledge domain to

evolve, metaclasses allow the knowledge about the system itself (i.e. metaknowledge) to

evolve to cope with future requirements (e.g. new constructs).

Moreover, any new facility introduced for objects is automatically applicable to both

data and m etadata (e.g. display facilities, active rules, etc). Although metaclasses are

not free from some drawbacks and further research is needed, we see uniformity as a

major achievement whose advantages have been ‘put to work’ as shown in the following

chapters. The use of metaclasses to extend the systems represents one of the principal

contributions of this thesis.

C h a p te r 5

M aking integrity constraints

explicit

5.1 Introduction

In [Morgenstern 89], Morgenstern gives a tlireefold definition of constraints:

“The purpose of constraints is to describe a desired relationship among
one or several variables or da.ta.-objects.

The specification of a constraint is intrinsic rather than extrinsic. That is,
a constraint is typically defined implicitly -such as by a symbolic expression-
ratlier than by enumeration of instances. -

The operation of a constraint limits the combination of values which can si­
multaneously satisfy the variables or objects participating in the constraint.”

In DBs integrity constraints can be seen as restrictions which must hold between

different pieces of information to keep the database consistent. Besides structural con­

straints i.e. those provided by the data model, there are other kinds of constraints that

cannot be reflected in a structural way. These constraints can range from simple domain

restrictions (e.g. the age of a teenager must be between 13 and 19) to more complex

relationships between different pieces of information (e.g. the projects a lecturer has re­

sponsibility for are to be the same as the set of projects which his/her researcli_assistants

work on). Such constraints, restricting the valid DB states, are known as static con­

straints. In addition, dynamic constraints limit the possible DB state transitions (e.g.

salaries can only increase).

73

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT 74

Usually the specification and checking of these constraints is left to the user. Con­

straints then, are hard coded into application programs or even worse being only in the

users’ heads. Hence, constraints cannot be uniformly enforced for all users. Including

constraints within the DB results in major advantages, namely

• it reduces cost of software development since constraints are coded only once and

shared by all users,

• it provides uniform constraint enforcement, improving the reliability and consis­

tency of the DB by managing constraint centrally,

• it reduces maintainability. The DB administrator is the only person to be in charge

of defining and updating constraints

Through integration of data and programs, the object oriented paradigm allows uniform

enforcement by coding integrity constraints as part of methods within the database.

However this is not a satisfactory solution. Several disadvantages can be outlined:

• Domain constraints are often used to specify definitional properties (e.g. the age

constraint in the subclass teenager). Being implicit in method description, these

constraints cannot be properly specialised to define subclasses. Moreover, since

overriding is a common practice in object oriented systems, a subclass redefining

the put-age method may no longer maintain constraints defined at a higher level in

the hierarchy. Constraints and methods therefore, should be two separate mecha­

nisms since the underlying philosophies are quite different, namely tha t constraints

represent invariant states of the database but method definitions can sometimes

be overridden.

• “A designer may not correctly consider the effects of the constraint from the point

of view of all objects involved” [Urban 89]. Similarly, as is illustrated by Urban,

le t’s take the lecturer/research_assistant example. A trigger can be associated with

the insertion of an research-assistant to automatically enforce tha t his/her projects

are some of the projects of his/her lecturer. However, the constraint must also be

considered when the research_assistant’s lecturer is changed, or when the lecturer’s

projects are changed. If the constraint is declaratively stated, it is the system’s

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT 75

duty to enforce the constraint correctly, releasing the user from this cumbersome

task and allowing him to focus on the constraint specification.

• Being implicit, constraints cannot be used to enhance other system capabilities.

Semantic query optimisation is a case in point [Chakravarthy 90]. For instance, if

all teenagers in their fifties are requested, the age constraint can be used to answer

without looking up the database. If this constraint is buried, e.g. in the put_age

method, the optimiser cannot use it.

As a result, not only is ‘the updateability’ of the system diminished, but so are its ease

of use, legibility and inferential power. To overcome these drawbacks, a constraint spec­

ification mechanism is proposed for ADAM using a constraint equation (CE) approach

where constraints are attached to the attributes as an additional facet. This work is

restricted to static constraints.

The remainder of this chapter is organised as follows. A review of related work is pre­

sented in section 2. In section 3, the CE language is described where a Horn clause

representation for CEs is outlined in section 4. The problem of constraint inheritance

and how it has been addressed is discussed in section 5. In section 6 how CEs have been

introduced in ADAM is explained. Finally, conclusions are presented.

5.2 Related work

Constraints have been widely used in PLs, AI and DBs [Morgenstern 89, Shepherd 84].

In PLs and AI constraint propagation is seen as a. paradigm where the solution is found

by restriction. TRILOGY [TRILOGY 89] and CLP(7?.) (Constraint Logic Programming

over the domain 71 of real arithmetic) [Lassez 87] are good examples of this paradigm

in PLs. CLP (71) merges the power of constraint solving and logic programming. Con­

straints look like Prolog predicates where no distinction is made between input and

output parameters, and more interesting where there is no need to specify values for

all the variables. In this case, the result is not a specific answer but rather an implicit

relation held between the variables in order to meet the constraint. In AI, the expert

system MOLGEN [Stefik 81] used this paradigm to minimize search by exploiting do­

main knowledge in the form of constraints.

CHAPTER 5. MAKING I N T E G R I T Y CONSTR AINT S EXPLICIT 76

Object: EMPLOYEE

Type: CLASS

Generalisation: OBJECT

DEPARTMENT[depa,rtment]:

CM/MAINTENANCE: employees

MIN-WAG E[kilo$]: 30

CM/NOTIFY: (wage)

WAGE [kilo$]:

CM/CONDITION: (AND (NUMBERP *V*)

(> = *V* MIN-WAGE)

(< = *V* MAX-WAGE))

CM/BINDINGS: ((MIN-WAGE MIN-WAGE)

(MAX-WAGE (PATH DEPARTMENT MAX-WAGE))

Figure 5.1: Constraint definition in CONMAN.

However, in other systems constraints are mainly used for preserving a given situation

rather than for obtaining a solution. In AI, several environments have been built to sup­

port the description of constraints attached to some object-oriented representation. In

general, in these systems, constraint definition involves the specification of the situation

to be preserved, where variables of the constraint are object slots, and a set of actions

to be executed as a result of the occurrence of such a. situation.

In [Wald 89] an extension of the STROBE system is presented. The extension called

CONMAN (CONstraint MANanger), enlarges slot descriptions with additional facets to

support constraint maintenance. An example taken from [Wald 89] is shown in figure

5.1. The situation to be preserved is described through the following facets:

• CM/CONDITION. This is a LISP function where some predefined functions can

be used. The variables of this function represent the frame slots among which

the constraint is established. When an operation is performed, the constraints are

checked. If the condition is satisfied, the operation returns the value of the slot.

Otherwise, CONMAN adds a violation entry to the slot and the operation returns

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT 77

FAIL [Wald 89].

• CM/BINDING. This is a list of pairs of the variables appearing in the LISP function

of the condition and a path indicating from where in the knowledge base the value

of these variables can be obtained.

The action part is represented through the facets:

• CM/ACTION. This contains a set of actions taken as a result of condition sat­

isfaction. By default, the functions executed are CM/MAINTENANCE* and

CM/NOTIFICATION*. The former executes the actions described in the MAIN­

TENANCE facet. The latter sends a check message to all the slots participating

in the constraint (i.e. the locations appearing in the CM /NOTIFY facet). Other

functions can be specified by the user.

• CM/MAINTENANCE. This contains a LISP form to be evaluated once for each

changed element in order to test the consistency of the knowledge base.

• CM/NOTIFY. This refers to the set of locations to be checked when the value of

the slot is modified.

• CM/VIOLATION. This keeps track of the violations th a t have occurred on in the

slot.

These facets axe used to maintain constraints on a single location. Although conditions

can be specified using values from slots in other objects, these values are not updated

to satisfy the constraint. When a set of locations can be modified, a constraint object

is instead used. Now, the constraint is no longer represented as facets but as a proper

object..

The shortcomings of this system are the lack of a truly declarative language for specify­

ing constraints and the provision of two mechanisms for constraint definition depending

on whether there is more than one location liable for modification or not. Moreover, the

problem of constraint inheritance is not addressed. Since constraints are represented as

facets, and facet values can be inherited and overridden, the adequate enforcement of

constraint can be compromised.

CHAPTER 5. MAKING I NTEGR ITY CONSTRAINTS EXPLICIT 78

SOCLE (Structured Object Constraint Language) [Harris 86] is a hybrid system contain­

ing a structured object component (essentially FRL) and a constraint component (based

on the Constraint Based Programming Language presented in [Steele 80]). In SOCLE

constraints are attached to the CONSTRAINT slot of the most general concept. “When

an individual structure object is created, procedural attachments are placed along the

path to the variable referred to in the constraint. These procedural attachments are

charged with installing and maintaining the constraint network when changes are made

in the participating structure” [Harris 86]. In the paper only numerical constraints are

shown and the problem of constraint inheritance is not addressed.

In OOPLs constraints are used to test the correctness and completeness of the abstract

data type represented by the class. Two approaches have been followed to introduce

constraints in OOPLs. As in frame-based systems, constraints can be attached to the

class itself, either as a proper attribute or as a facet. However, the most popular ap­

proach to constraint enforcement is through methods, either coded into the method’s

body or as pre- and post-conditions of methods. Preconditions allow the testing of

certain constraints on the arguments and the object state, before a. given method is ex­

ecuted. Postconditions describe a given situation to be satisfied once the method has

been executed. As an example, consider the get and put operations on the stack type.

The pre- and post-conditions of these operations can be specified as follows:

{true} put(n) {S = So * [n]}
{S <> []} get(r) {So = S * [r]}

where S is the sequence representing the current state of the stack and So in the post­

condition, represents the value of 5 before method execution. Furthermore, stands for

the concatenation operator and [] represents the empty sequence. As a further example,

the increase„salary method could be specified as:

{I > 0} increase_salary(I) {S = So + 1}

where S and So stand for the salary value after and before method execution. Eiffel

[Meyer 88] is a language where this approach has been followed.

In DBs, constraints have always been a major concern to guarantee consistency with the

application domain. In the relational data model several approaches have been proposed

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT 79

to improve efficiency in constraint maintenance [Eswaran 75, Lafue 82, Bernstein 80]. In

[Morgenstern 84], constraint equations (CEs) are presented as a declarative represen­

tation for inter-relational constraints. Constraints are represented as connection paths

where different set operations can take place. Automatic constraint enforcement can be

accomplished by compilation of CEs into executable routines. One of the main contri­

butions of CEs is a declarative way of expressing compensating changes to be performed

to enforce the constraint. So, the system can automatically re-establish the validity of

the DB from some ‘clues’ given by the designer in the constraint definition.

OODBs frequently embed constraints into method code. A nice example of constraints

in CAD applications can be found in [Buchmann 86]. In this system, constraints can

be established either for classes or instances. Both are defined at the level of the class,

but whereas the former affect the class itself and are not inherited, the latter express

restrictions on the instances of the class. In addition, constraints can accept exceptions,

i.e. constraints can be relaxed for special cases. To improve retrieval of constraints for

a given object, a constraint header is kept and indexed on the object identifier. These

headers are sequences of bits, each with a special meaning. When a new object is in­

serted into the DB, the constraint checker has to verify whether there exists a particular

constraint tha t has to be inherited. If so, the system automatically creates a header for

the instance which point to the constraint header of the class where the constraint is de­

fined. In this way constraint inheritance is done only once, when the instance is created,

and constraints do not have to be traced later during modification operations. The main

shortcoming of this approach is that constraints introduced after instance creation are

not considered.

In [Urban 89] the language ALICE is presented. ALICE is a user-oriented version of first

order logic for static logic-based constraints in an object-oriented environment. In this

approach, constraints are converted to an internal, logic-based representation rather than

being directly translated into a procedure. Such a representation is afterwards used for

constraint analysis, i.e. to understand constraint interaction and to identify alternative

propagation actions [Urban 89]. ALICE constraints can be strongly or weakly translated

as decided by the constraint designer.

In the following sections, CEs are used as a declarative constraint language for OODBs,

where active rules are automatically generated by the system to preserve constraints.

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT 80

These rules are obtained from the logic-based representation counterpart of CEs.

5.3 Constraint equations

Constraint specification can be seen as answering the following questions:

• W h a t is th e su b jec t m a tte r o f th e co n stra in t? i.e. what is the relationship

to be maintained? The answer can range from simple domain restrictions to more

complex relationships. To specify these relationships a constraint equation (CE)

approach has been chosen. For instance, consider a constraint similar to the one

proposed in [Morgenstern 84] which enforces tha t the projects which a lecturer has a

responsibility for, are to be the same as the set of projects his/her researcluassistants

work on. This can be expressed as the CE:

projects OF lecturer :: projects OF research_assistants OF lecturer

CEs provide a formalism that closely mimics the structure of the object oriented

model. As the user has to navigate through the OODB following different links,

CEs are expressed by means of chains of relationships called paths. This formalism

is already familiar to the user who does not have to express constraints in a different

paradigm such as first order logic. Hereafter, the term body of the constraint will be

used to refer to this part. In this work, we have restricted the comparison operators

to set equality and scalar comparisons since our aim is to test the feasibility of this

approach in OODBs rather than to provide a full integrity constraint language. For

a proposal of an extension of these operators see [Morgenstern 84]. A constraint

grammar can be found in appendix A.

• W h a t is th e scope o f th e co n stra in t? i.e. what are the objects affected by

the constraint? In Morgenstern’s original paper, the constraint scope is the class

tha t is used as the anchor, i.e. the beginning of the path. However this is not

always the case. For instance, let us suppose that the above constraint applies

only to lecturers in the ‘computing science’ department. To define a new subclass,

e.g. computingscienceJecturers just to attach this constraint seems artificial, and

can lead to an explosion of subclasses that hide the real hierarchy. To solve this

CHAPTER 5. M AKING INTE GR ITY CONSTRAINTS EXPLICIT 81

problem, CEs have been extended with a scope clause th a t specifies the scope of

the constraint. Now, the above constraint could be expressed as:

projects OF lecturer :: projects OF research_assistants OF lecturer
(WHERE department OF lecturer = 'computing-science')

• W h a t must be done to maintain the constraint? When a violation is de­

tected, several reactions can follow:

— reject the operation that causes the violation

— display a warning message and accept the operation

— make further changes that re-establish a valid state of the database

Usually this behaviour is embedded into the system and it is not available for in­

spection. One of the main contributions of CEs is a declarative way of expressing

compensating changes to be carried out to enforce the constraint. Thus, when a

change made in one path causes a constraint violation, the system knows how to

restore a valid state. In [Morgenstern 84] the operator ’!’ (WOF in our notation)

is introduced to represent the weak bond. The weak bond is the attribute “more

readily modified in response to an initial change to the other side of the CE” . For

instance, in the lec tu re r/res e a rch. ass is t a n t example, two changes could be made as

a result of adding a. new it project to a lecturer. Either the new project can be

added to existing research.assista.nts working with this lecturer, or the lecturer’s

research-assistants can be extended with the new research-assistants already work­

ing in the new project. The option chosen can be expressed as follows:

projects WOF lecturer :: projects OF research.assistants WOF lecturer

meaning tha t projects stay with the resea.rch.assistant if there are any other changes.

Thus if a lecturer adds a project then, he adds those research.assistant(s) who work

on tha t project. Here, the user just specifies the CE and the system makes the ap­

propriate changes to assure tha t the constraint is properly enforced. Similarly, a

weak bond can also be specified in the left path so tha t violations resulting from

changes in the right path are restored by adding the projects to the lecturer. If no

weak bond is provided, changes will not be allowed.

CHAPTER 5. MAKING I N T E G R I T Y CO NST RAI NTS EXPLICIT 62

v jS ’* s u p e rv is e d _ b y

^ re * e a rc h _ » * * i* t« n ts

1 (©lecturer

Figure 5.2: Ail example of constraint maintenance.

Finally, compensating actions can include modifications in other attributes. This

can result in a chain of constraint maintenance actions taking place: update oper­

ations made to preserve a given constraint can lead to modify attributes which in

turn can violate other constraints that would require compensating actions and so

on.

The procedure to preserve these constraints can be quite complex. Consider the

example in figure 5.2 where the attribute supervisetLby is declared to be the inverse

of research.assistants. Notice that a lecturer can have several research.assistants

and at the same time be supervised.J>y any other lecturer. Consequently, if a new

project (e.g. 8@work) is added to a lecturer (e.g. 1 ©lecturer), the constraint has to

be preserved in both of the roles played by a lecturer, as a supervisor, the project

has to be added to his/her researcluassislonls (e.g. 2©lecturer, 3©lecturer) ; as

one who is supervised, the project has to be added to his/her supervisors (e.g.

0@lecturer). From this point of view, the operational semantics of CEls can be seen

as rules that can be fired forw’ard or/and backward, depending on the role played

by the object in the relationship.

5.4 H orn rule rep resen ta tion for co n s tra in t equa tions

CEs have an equivalent first order logic representation. Class names can be seen as pred­

icates of a single argument, whereas attributes can be translated into binary predicates.

From this point of view, paths can have either a weak translation or a strong translation

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT 83

[Urban 89]. In a weak translation, the attributes representing the links of the path, are

not required properties. This is achieved by using universal quantifiers and implication

connectives to translate the path. For example the following constraint:

age of student > 0

ca be weakly translated as,

V.t{student(x) —> \/y(age(x,y) —» y > 0))

or, in its Horn rule form,

student(x)&zage(x, f (x)) —+ f (x) > 0

The Horn rule reveals tha t the clause is trivially satisfied 1 if either x is not a student

or x does not hold an age. Thus, age is not a required property for the constraint to be

satisfied.

In contrast, attributes are seen as required properties if the path is strongly translated,

i.e. it is essential tha t the values of these attributes be known if the constraint is to be

satisfied. Thus, a strong translation is not tolerant of null values. To achieve this result,

existential quantifiers and conjunction connectives are used. For instance, the previous

constraints can be strongly translated as,

Va;(student(x) 3y(age(x, y)&zy > 0))

or its Horn rule form,

(s t u d e n t (x) a g e (x , f (x))) & (s t u d e n t (x) f (x) > 0)

For a student to satisfy this constraint, it is not only required tha t his/her age be greater

tha t zero but also tha t the age of the student is known. Otherwise, the first Horn rule is

not satisfied and the whole constraint is not met.

When the constraint is established between two paths rather than between a path and a

scalar value, a strong translation has to ensure that the relationships represented by each

of the paths exist, i.e. attributes participating in any of the paths have to be specified.

For instance, a strong translation of the following constraint,

JAn implication is said to be trivially satisfied if it is evaluated to true as a result of the condition
being evaluated to fa lse .

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT

working_address of employee :: address of company of employee

does not allow null values for the working.address, company and address attributes. This

can be seen as a double implication: giving the working.add.ress of an employee, the

existence of the company of this employee and its address is mandatory, and vice versa,

giving the company of an employee where the company address is specifed, it becomes

compulsory to provide the employee’s working.address. The above constraint is therefore,

represented in first order logic as:

Ve (employee (e) —>•
(Vw (working_address(e,w) —►

9c (company(e,c) & 3a (address(c,a.) & a.=w))))
&
(Vc* (company (e,c’) —►

Va’ (address(c’,a’) —*
3w’ (working_address(e,w’) & a ’=w ’ 2))))

)
or, in its Horn rule form,

employee(e) &; working_address(e,w) —* company (e,f(e))
&

employee(e) & working_address(e,w) —» address(f(e),g(e))
&

employee(e) & worlcing_address(e,w) — w = g(e)
&

employee(e) & company(e,c) & address(c,a) —> working_address(e,h(e))
&

employee(e) Sz company(e,c) &; address(c,a.) —r a = lr(e) 2

As far as CEs are concerned, paths specifying the scope of the constraint are weakly

translated whereas paths appearing in the constraint body are strongly translated. For

example, the following CE:

patron OF student :: sponsor OF projects OF supervisor OF student
(WHERE department OF student = 'computing')

can be transformed into the following set of Horn rules, where variables with the

same name refer to the same object:

2When the comparison is not an equality, the operator predicate appearing here is preceded by a
negation.

CHAPTER 5. MAKING INTEGR ITY CONSTRAINTS EXPLICIT 85

student(S) & department^,computing) & patron(S,P) —> supervisor(S,f(S)) &

student(S) & department(S,computing) & patron(S,P) —+ projects(f(S),g(S)) &

student(S) &; department(S,computing) & patron(S,P) —*• sponsor(g(S),P) &

student(S) &. department(S,computing) &

supervisor(S,V) & projects(V,J) & sponsor(J,P) —► patron(S,P)

Notice tha t attributes participating in the scope of the constraint appear only in the

condition part of the Horn rules. Hence, students not having ‘computing’ as their depart­

ment,, trivially satisfy the constraint. In other words, the constraint is not applicable for

objects out of the constraint’s scope. For students within the scope, the constraint must

not be trivially satisfied. So if projects and supervisor attributes are single valued, this

constraint requires that, in order to have a patron, the student must have a supervisor

and this supervisor must be involved in a project. And vice versa, if a student has a

supervisor working in a sponsored project then he/she must have a patron.

Although, in other approaches the user can choose between a strong or weak transla­

tion [Urban 89], our system provides a fixed interpretation to minimize user interaction.

Nevertheless, some degree of flexibility is achieved by seeing relationships as objects.

As presented in the next chapter, constraints can be specified as part of the seman­

tics of relationships. Such constraints are enforced for the objects participating in the

constraints as a result of the establishment of the relationship. For example, as it is

stated, the above constraint requires that a student can have a patron only if he/she has

a supervisor working in a project. However different interpretations can be intended:

1.- If a student has a supervisor then he has a patron. In this case, the system requires

that the supervisor has a project to support his/her students. The constraint

would be part of the definition of supervising relationship. The constraint will be

enforced for a student as long as he/she is supervised. Otherwise the constraint is

not applicable.

2.- If a student is working in a project then he has a patron. Thus, the project has

to be supervised. In this case, the constraint would be attached to the working

relationship. Only working students have to satisfy this constraint.

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT

3.- In the above cases, students can have their own patron without being supervised

or working in a project (e.g. having a grant from the government). However if

the intended meaning is that all students having patrons have to be supervised

then the attribute patron should be an attribute of student but as a result of being

supervised. In other words, the patron attribute should be part of the semantics of

the supervising relationship.

Therefore, a finer granularity in constraint definition can be achieved by seeing relation­

ships as proper objects. This is further discussed in the following chapter.

5.5 Inheritance of constraints

Unlike relational DBs, OODBs do not have a flat structure but they provide a subclass

mechanism to enhance reusability and organisation of the application domain. Such a

mechanism allows the structure and behaviour of the superclasses to be inherited by

their subclasses. Integrity constraints should not be an exception. Nevertheless, in the

literature this topic is hardly addressed and, in general, systems do not support constraint

inheritance tha t has to be realised by the user himself. For instance, if constraints

are embedded into methods, it is up to the programmer to decide whether a call to

super is made when a method is overridden so tha t the constraints of the superclasses

can still be checked. The problem is tha t complete method overriding could be the

desired behaviour but this would also lead to constraints being put aside. Some systems

overcome this problem by providing different parts within method definition that have

a different overriding behaviour. For example, in Flavours [Weinreb 81], three parts are

distinguished: the before, the after and the main part, each of which is optional. The

main part overrides any inherited main part, whereas the before and after parts are all

done in a nested order determined by the class precedence list [Stefik 81].

In other systems such as CONMAN, constraints are specified as facets. But here again,

facet value inheritance and combination is left to the programmer. Besides putting an

extra burden on the user, such practice jeopardizes constraint maintenance since new

values specified lower down in the hierarchy can override constraints specified higher up.

It is thus, very convenient to move constraint inheritance to the system realm.

CHAPTER 5. MAKING IN T E G R I T Y CONSTRAINTS EXPLICIT 87

instance of

m ixin

• m_b*h
put_attribute(*)
delete_attribute(*)
put_consts(*)

• n t l t y _ c l a « «
cons tra in ts (‘)
addition_desc(*)c l a s s m i x i n

Figure 5.3: An ADAM extension to support constraints.

In this work, an approach based on event-condition-action rule have been followed. The

system generates a set of rules from the declarative specification of the constraint. Such a

rule set preserves the constraint when changes to the DB occur. It is the rule mechanism

itself that guarantees that all applicable rules, even those defined higher in the hierarchy,

are fired.

Rules are triggered in sequence from the more general to the more specific. This follows

the heuristic that rules have to be fired in an adequate context, i.e. more specific rules

wait till more general rules are fired to provide the right framework. For example in

a hierarchy persori-academ ic-leclurer, constraints attached to person are checked first,

followed by those associated with the academ ic class and finally, those of lecturers. But

the point to make here is that it is the system’s responsibility to ensure constraint

maintenance and constraint inheritance.. In this way, constraint management is moved

out from the application domain to the concern of the system.

In the following section the way in which these ideas have been implemented in ADAM

is presented; Constraint inheritance and maintenance is postponed until chapter 7 when

rules are introduced.

5.6 E x tend ing A D A M to su p p o rt co n s tra in t definition

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT 88

This section describes an extension to ADAM to support constraints. In figure 5.3 a

diagram of the extended system is shown where the symbols and *+’ stand for new

method or attribute definition, and specialisation of previous existing methods, respec­

tively.

The extension mainly refers to the enlargement of property definitions with an additional

facet to represent the list of constraints attached to the property. Hereafter, the term

attribute is used to refer to properties with constraints.

In ADAM, attributive definition is kept in the meta-property slot.desc and it is accom­

plished through the putslo t method. Such method is defined in the SM-BEH mixin and

it has a slot-tuple tuple as its input argument. Now, the attributive definition refers not

only to the facets described in the slot-tuple but also to the constraints. To store this

information the meta-property addition-desc lias been defined which has the following

addition-desc-tuple as its type:

new_tuple(meta_class,
addition_desc_tuple(name:string,consts:plog,rule:plog)

) .

Attributes (i.e. properties with constraints) can be defined in metaclasses, classes or

mixins. So the behaviour to support attributes is included within the SM-BEH mixin.

An attribute can be defined by invoking the put-attribuie method whose definition is as

follows,

method((put_attribute(global, [],[attribute_tuple] ,[],[AttTuple])
message_recipient(ClassName),
AttTuple = attribute_tuple(AttName,Vis,Car,Status.Type,Consts),
SlotTuple = slot_tuple(AttName,Vis,Car,Status,Type),
put_slot([SlotTuple]) => ClassName,
(Consts = [] -> true ; put_consts([Consts]) => ClassName)

))

The standard facets are collected in a slot-tuple tuple and then, the pu islo i method

is called to create the appropriate property. Constraints are then introduced using the

put-consts method. This method generates the appropriate rules for enforcing the con­

straints, and updates the corresponding addition-desc property.

Once put-attribute is available any object within the system can have attributes by call­

ing this method. However, the normal procedure is to define attributes at the time the

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT 89

class is created rather than posteriorly. This implies the specialisation of the method

new for class creation in order to cope with attribute definition. Hence, a speciali­

sation of the instantiation hierarchy of ADAM is required (refer to chapter 4). The

ENTITY_META_CLASS metaclass is introduced as a subclass of META_CLASS where

the method new is specialised as follows 3,

n ew ([en tity _ m eta_ c lass , [
is _ a ([m e ta _ c la s s]) ,
m ethod((new (g lobal,[] , [s t r in g ,p lo g] , [] , [ClassN am e.TheAtts])

d e le te (T h e A tts , c o n s t r a in ts ([C onsts]) , A t t s) ,
f in d a ll(N o A tt,

(member.(NoAtt, A t t s) , \+ NoAtt = a t t r i b u t e (_)) ,
N oA tts),

new([ClassName, NoAtts]) => super,
(m em b er(a ttrib u te (A ttT u p le), A t t s) ,
p u t_ a ttr ib u te ([A ttT u p le]) => ClassName,
f a l s e ; t r u e))) ,

(Consts = [] -> tru e ; p u t_ c o n s ts ([C onsts]) => ClassName)
]]) => m eta_class.

First the class is created with the attribute definitions and the constraints attribute re­

moved. Afterwards, attribute definitions are added by invoking the put-attribute method,

and constraints corresponding to attributes defined higher in the hierarchy are inserted

through the put.consts method (see below for an example).

As shown in figure 5.3, the metaelass ENTITY_CLASS is introduced as an instance of

ENTITY_META_CLASS so tha t when instances of ENTITY_CLASS are created, the

method new defined in ENTITY_META_CLASS is used. This allows ENTITY-CLASS

instances to specify attributes at creation time. The definition of ENTITY-CLASS is as

simple 4 as:

n e w ([e n ti ty _ c la s s , [
is _ a ([c la s s_ m ix in]) ,
s lo t(s lo t_ tu p le (is _ a ,s y s te m , s e t , o p t io n a l , obj e c t)) ,
s l o t (s lo t_ tu p le (s lo t_ d e s c , s y s te m ,s e t, o p tio n a l, s lo t_ d e sc _ tu p le)) ,
s lo t(s lo t_ tu p le (a d d it io n _ d e s c .g lo b a l , s e t , o p t io n a l , a d d itio n _ d e sc _ tu p le)) ,

3This specialisation allows ENTITY_META_CLASS instances to specify attributes at creation time.
For any other objects in the system, attributes can be defined only through the ptU-attribute method.
Nevertheless, similar specialisations can be introduced for other objects if required.

4 Although conceptuallj', the slots is-a, slot-desc, addition-desc and constraints can be part of the
definition of any class regardless of whether they are instance classes, metaclasses or mixins, storage
requirements force these static properties (i.e slots) to be attached to each metaclass rather than being
defined in S M -B E H .

CHAPTER 5. MAKING INTEGRITY CONSTRAINTS EXPLICIT 90

slot(slot_tuple(constraints,global,set,optional,plog))
]]) => entity_meta_class.

As an example, the definition of an application-based class after the extension looks

like:

new([lecturer, [
attribute(attribute_tuple(age,global,single,optional,string,

[age of lecturer > 20])),
attribute(attribute_tuple(proj ects,global,set,optional,string,

[projects wof lecturer :: projects of research_assistants wof lecturer]))

]]) => entity_class.

Further constraints on defined attributes can be added when a subclass is created

through the constraints construct. As an examples, if professor is a subclass of lecturer

a constraint restricting his/her age to be below 85, can be introduced as follows

new([professor,[
constraints([[age of professor < 85]]),

]]) => entity.class

It is worth mentioning tha t these changes have been accomplished without modifying

the core system thanks to the availability of metaclasses. Metaclasses allow the system

to be extended based on the same subclass mechanism used in the user domain.

5.7 Conclusions

In this chapter an approach to support integrity constraints in ADAM has been presented.

Constraints are explicitly specified using a constraint equation approach. The path-based

notation of this approach has the advantage of being already familiar to the user that

does not have to cope with a new formalism such as first order logic. Constraints are

attached to the attributes as an additional facet and thus, they are no longer embedded

into methods.

The main contributions of this work can be summarised as follows:

• Although CEs have already been proposed for relational DBs [Morgenstern 84],

moving then to an object-oriented framework pose new challenges. Constraints

CHAPTER 5. MAKING I NTEGRITY CONSTRAINTS EXPLICIT 91

no longer refer to attributes in flat relations but to classes arranged in hierarchies.

This arises the problem of constraint inheritance which has been tackled by moving

constraints out of method definition.

• A rule-based mechanism is proposed for constraint maintenance. A set of rules

is automatically generated by the system from the declarative specification of the

constraint. Such a set is obtained based on the first order logic counterpart of CEs.

C h a p te r 6

M aking user-defined relationships

explicit

6.1 Introduction

SDMs have objects, relationships, dynamic properties and integrity constraints. Tra­

ditional data models attem pt to overcome the shortage of powerful constructs by using

integrity constraints. Some integrity constraints are part of the model itself. For instance

in the relational model the unique key constraint, the referential integrity constraint, the

domain constraint and the non null constraint are defined. These are called structural

constraints and they are supported by the model. In fact, normalisation can be seen as

a process designed to preserve the semantics of UoD, reflected by functional dependen­

cies, through mechanisms supported by the DB such as keys. However these structural

constraints are not sufficient to model all the complexity of the UoD. In this case, the

semantics has to be embedded into user programs or reflected by means of a constraint

language expressing the so-called behavioural constraints. From this point of view “a

primary objective of many semantic models has been to provide a coherent family of

constructs for representing in a structural manner the kinds of information that the rela­

tional model can represent only through constraints. Indeed, semantic modelling can be

viewed as having shifted a substantial amount of schema information from the constraint

side to the structural side” [Hull 87],

This ‘shifting’ has mainly concerned abstract relationships. These relationships stand

92

CHAPTER 6. M AKING USER-DEFINED RELATIONSHIPS EXPLICIT 93

for abstractions already used both in AI and philosophy, such as generalisation, aggre­

gation, classification and association. A clear semantics must be defined specifying how

insertion, deletion and modification operations made at a higher abstraction level (e.g.

person) can affect the object abstracted (e.g. student, lecturer, other subclasses) and

vice versa. Nevertheless, most of these insertion, deletion and modification constraints

have to be expressed in a rule-based or procedural way. As an example, in [Amy 89]

an approach to derived data update is presented for the SDM data model. Different

update rules are defined based on schema information. Some of these rules just reflect

the semantics of abstract relationships. For instance the following rule is provided: “Let

Tc be a subclass of Tp with derivation ‘specified by the user’. Inserting an instance

A to Tc will cause the same instance to be inserted to Tp if it is not there already.

Deleting an instance B from Tp will cause deletion from Tc if B is also an instance of

Tc. Insertion to Tp or deletion from Tc will not be propagated (by default)” . This rule

specifies the insertion and deletion semantics of the generalisation abstraction. Similar

rules are provided for other subclass constructs in the SDM data model. Unfortunately

all these rules are pu t together in a program so tha t the semantics is split and embedded

throughout the program instead of being attached to the abstract relationship whose

semantics is represented.

However, one of the main points of the object oriented approach is the gathering together

of all the information concerning an object. This refers not only to the structural but to

the behavioural features as well. Inclusion of the operational semantics is a step ahead

in modelling the UoD. Since SDM’s lack this facility, the behavioural semantics of an

abstract relationship is distributed throughout the program.

Whereas abstract relationships, provided by SDMs, have somehow a semantic definition

attached to them, no mechanism is provided to describe the semantics of user-defined

relationships. As a result these semantics are still wired into the user programs instead

of being in the schema definition of the DB. Hence, in the same way that SDM’s pro­

vide a system-maintained semantics for abstract relationships allowing all users to have

a clear notion of the consequences of DB manipulation, in this chapter we propose a

system-maintained mechanism to specify the semantics of user-defined relationships. To

cope with the variety and complexity of relationships of the UoD is seen as a requirement

of the new environments to which OODBs are being applied [Oxborrow 91],

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 94

The DB designer should be able to specify the semantics of a relationship, e.g. what

conclusions can be drawn as a result of relationship establishment. For instance, let

workingJn be a relationship between a company and a person. When a relation is

established, can the person obtain his working.address attribute from the address at­

tribute of the company? If the system does not specify anything, different users can have

different understandings of what workingJn a, company means and therefore, different

conclusions can be drawn. Hence, the semantics of insertion, deletion and modification

operations have to be specified not only for abstract relationships but for user-defined

relationships as well. OODBs make this possible by encapsulating behaviour as well as

structure. Therefore, enhancing the semantics of user-defined relationships in OODBs,

not only helps to increase the UoD semantics kept-in the DB, but also to preserve the

‘behavioural’ integrity of the system.

The organisation of the remainder of this chapter is as follows. In section 2 a brief re­

view of how relationships are represented in SDM’s, 0 0 systems and AI is presented.

An enhanced description of user-defined relationships is discussed in section 3. In sec­

tion 4 a description language for relationships in ADAM is introduced. In section 5 the

subject of relationship specialisation is addressed as an interesting consequence of seeing

relationships as objects. An extension of the ADAM system to support user-defined

relationships is presented in section 6. Finally, conclusions are outlined.

6.2 Relationships in SDM ’s, OO system s and AI

User-defined relationships have been represented either as pointers (i.e attribute-values)

or as aggregations (i.e list of pairs). An aggregation-based approach has been chosen for

some SDM’s (e.g. entity-relationship model). An attribute-based approach can be found

both in SDMs (i.e. functional data, model) and in 0 0 models. This approach has several

disadvantages, illustrated for 0 0 programming in [Rumbaugh 87]. For instance consider

the relationship workingdn-ajproject between a lecturer and a work. Here an attribute

(an instance variable in 0 0 programming) would be introduced in each participating

class (e.g. projects and partners), together with some methods. Figure 6.1 shows this

situation.

Some disadvantages can now be outlined:

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 95

CLASS
le c tu re r

INSTANCE_VARIABLES
p ro jec ts : set of w ork

METHODS
p u t_ p ro je c ts (w o rk)
d e le te _ p ro je c ts (w o rk)
g e t_ p ro je c ts (w o rk)

CLASS
w o rk

INSTANCE_VARI ABLES
p artn ers : set o f lec tu re r

METHODS
p u t_ p a rtn e rs (le c tu re r)
d e le te _ p a rtn e rs (le c tu re r)
g e t_ p a rtn e rs (le c tu re r)

Figure 6.1: An attribute-based approach for w orkingJn .a .pro ject.

• the inverse link constraint is not expressed declaratively. In this example the in­

stance variables projects and partners are constrained . So the method pu t.pro jects

of the lecturer has to access the instance variable partners of the work in order to

preserve the constraint. The same can be said for the pu t.partn ers method. Similar

access should be provided for the delete methods.

• encapsulation can be lost. In order to maintain the inverse link constraint, methods

of one object have to access the instance variable representing the inverse link in

the other participant object.

• the relationship semantics are split between different objects.

• the conceptual and implementation levels cannot be kept distinct when relation­

ships are represented.

• an instance variable must be reserved in each object instance for each relationship

that an object of a given class can participate in. This tends to discourage the use of

sparsely populated relationships. This is quite important in DBs. In the example,

just a few lecturers can be involved in projects. Nevertheless, the instance variables

projects must be reserved in each instance of the lecturer class. The alternative of

defining a new subclass for each relationship in which lecturers could be involved

is impractical, since a lot of subclasses would make the schema unmanageable.

• it is difficult to add a new relationship once the classes are already populated since

a new local variable needs to be created.

• operations on the relation as a whole are not possible in a straightforward way.

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 96

• where are attributes of the relationship itself to be placed?

For 0 0 programming a proposal is made in [Rumbaugh 87] to overcome the above disad­

vantages. A class relation is defined in which several methods are attached for scanning a

relation, testing membership of a relation, adding an element to a relation, etc. Relation

objects contain a description part and a variable-length value part. The description part

contains the degree, the cardinality and a list of fields. The value part is a set of tuples of

values from the respective object classes. Although this approach provides relationships

as main constructs, it still considers relationship semantics in a traditional way.

In [Escamilla 90] the distinction between vertical (i.e. abstract relationships) and hor­

izontal relationships (i.e. user-defined relationships) is also supported by an object-

oriented knowledge base. Every attribute within the system is seen as an object. Rela­

tionships then, are a special kind of attribute tha t can have a richer associated semantics,

such as the the mathematical properties of the relationship (reflexive, symmetrical and

anti-symmetrical) and the nature of the link. The latter includes the dependence (sim­

ilar to the status facet of ADAM) and the diffusion property whereby some attributes

can be delegated to other objects through the relationship. In our approach a different

semantics is proposed and only relationships as such are seen as objects.

Knowledge representation languages within the AI field, capture the UoD in a richer

and more flexible manner. Relationships are often represented as pointers. For instance

CRL (Carnegie Representation Language) [Carnegie 85] represents the fact tha t a lec­

turer frame is working Jn^a^project by introducing a slot projects with the name of the

work as its value. However the term relation in CRL is misleading. CRL has a functional

view of the world. Attributes and therefore relations, are seen as functions, described

in special frames called sloi.-cont.rol schema having as their name, the name of the slot.

When a value is given to the function, i.e. a value is added to the slot, the description of

the function is checked. This description can be the domain, the range, the cardinality or

special restrictions enforced by demons in a procedural way. The most generic function

description is kept in the frame SLOT. The rest of the slot-control schemata have to be

is-a related with SLOT. As a specialisation of SLOT, the frame RELATION introduces

several primitives to describe the inheritance semantics of functions playing the role of

relationships. The slot-control schema of a slot representing a relation, has to be is_a

related with RELATION. Figure 6.2 shows this hierarchy. The im portant point here is

CHAP TER 6. MAKI NG USER-DEFINED RELATIONSHIPS EX PL IC IT 97

• LOT
rang* t
domain t
card ina l i ty (o inf)
dam on
i n v a r a a

PROJECTS
rala tion

ranoa (a c h tm a (typa l«_a work))
dom ain (typa la_a lac tu rar)
in c lu s ion p ro j* c t» _ in c
Inverse p a r tn e rs

PARTNERS
rala t ion

ran g e (s c h e m a (type ie_a lecturer))
domain (type ia^a work)
Inc lua ion p a r tn a ra _ ln c
inverse p ro jec ts______________________

STATUS

ra n g e (or p ro faa a ao r e en io r_ iec tu rer aaa ia tant)
dom ain (type ia_a lactu ra r)

RELATION

tra n s i t iv i ty nil

m ap
i n t r o d u c t i o n

Figure 6.2: Function hierarchy in CRL.

the introduction of special prim itives to describe the semantics of inheritance. We shall

now attempt something similar for relationships in OODB.

6.3 Semantic-rich User-defined Relationships

For our research an aggregation approach has been chosen that allows relationships to

be seen as objects. In this way, the entire semantics of the relationship can be kept in

just one place, which gets round of some of the problems mentioned above and is more

in keeping with the object-oriented philosophy.

Having decided that relationships are going to be represented as objects, the question

arises of what can be said about a relationship. What are the primitives that describe

its semantics? Traditionally, relationships have been characterised through the degree,

the cardinality constraint, the participant objects and the attributes of the relationship

itself. A new set of primitives is proposed to enhance this semantics, not only in its static

(structural) aspects but also in its dynamic (behavioural) aspects. Static aspects repre­

sent permanent, invariant descriptions of the UoD. For instance, definition of attributes

and constraints can be included in this category. On the other hand, dynamic aspects

refer to how the state changes under certain conditions. The preservation of constraints,

update rules for derived data and the definition of methods in general, can be considered

dynamic aspects.

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 98

As an illustration consider the marriage relationship. For relationships the following is

known:

1. the domain of the participants in the relationship and their role (e.g. a marriage is

established between instances of class person, playing the roles of theJiusband and

the.wife)

2. attributes of the relationship itself (e.g. the marriage takes place on a wedd.ing.daie)

3. the cardinality of the relationship (e.g. one husband can have just one wife and

vice versa)

4. restrictions to be satisfied by the participants in order to be related (e.g. both

persons must be older than sixteen, one male and the other female)

5. how the relationship is affected by updating its participants and vice versa (e.g. if

either of the participants die, the marriage ends. If the marriage is broken up, the

participants are still alive!)

6. how the participants are affected by the establishment of the relationship. New

asserted facts can be drawn such as new attributes, either constrained or uncon­

strained (e.g. if a person is married, the person has a moth.er.in.law, being the

mother of the other participant), and new constraints (e.g. two persons participat­

ing in the same marriage should have the same address)

Traditionally, only the first four points have been considered.

Point 5 is related with the composite object problem. A relationship can be seen as a

simple kind of composite object where dependences are defined at the class level. In

ADAM this is represented by total slots, slots tha t cannot be empty and any attem pt

to delete the value from the slot results in deletion of the object itself [Paton 89a], So

if theJiusband and the.wife are defined as total slots in the marriage relationship, any

attem pt to delete a person playing the role of husband or wife, will lead to the deletion

of the marriage instance. Another alternative could be to disallow the deletion of a

participant object unless the relationship in which it is involved is first dissolved.

Until now, structural and behavioural features of the UoD have been discussed. However,

point 6 above describes a sort of knowledge that does not fit exactly under the labels

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 99

structural or behavioural. To refer to the knowledge about how to obtain these asserted

facts, we prefer to use the term inferential. Introducing inferential knowledge, creates

a new dimension in DB systems. We focus on how to use this inferential knowledge to

characterise a user-defined relationship.

As a result of the establishment of a relation, new information can be drawn about the

participant objects. This information can either refer to new attributes to be stored or

new constraints to be enforced. For instance, when the relationship marriage is estab­

lished between two persons, the new attribute motherJnJaw needs to be gathered for

the persons participating in the relationship. These are attributes tha t exist for as long

as the relationship exists. A doubt can arise about when an attribute should be con­

sidered an attribute of the relationship itself or an attribute of some of the participant

objects. If the meaning of an attribute is given by both participants, then the attribute

is owned by the relationship. Otherwise it can be considered a new attribute of one of

the participants. To avoid some of the problems outlined in the last section, it is bet­

ter to collect these new attributes at the relationship level. Hence if the relationship is

deleted, so are these attributes. However, these implementation details should be hidden

from the user. So if we wanted to know who is K ate’s motherJnJaw, the corresponding

message would be sent to the instance Kate instead of to the marriage instance. The

user does not need to know anything about the semantics of 7narria.ge. We just know

that mother JnJaw can be an attribute of Kate and so, we ask Kate. From the user’s

point of view, mother JnJaw should be an attribute of the person class in the same way

that the attribute name is. lienee, a. method to access this attribute of the person has to

be provided transparently to the user. The only difference from a ‘normal’ attribute is

tha t the user can only add or delete a new mother JnJaw if a new marriage relationship

is created or deleted. But this is just the behaviour required since these new attributes

exist for only as long as the relationship exists.

Besides new attributes, new constraints may need to be enforced. For example, when

two persons get married, the constraint tha t they have to live in the same address has to

be enforced. This constraint has not have to be enforced for unmarried persons. There

is an apparent similarity here with how CRL relations are represented, but in fact there

is a difference. In CRL, relations are seen as a way to describe a kind of user-defined

inheritance from the range to the domain, represented as pointers in the participant

CHAPTER 6. M AKING USER-DEFINED RELATIONSHIPS EXPLICIT 100

frames. Owing to this directional nature, it is difficult to represent bi-directional con­

cepts in CRL, such as the address constraint seen above. For instance a CRL relation

can be defined such tha t wife’s address would be inherited from husband’s address. But

here, changes to the wife’s address do not affect the husband’s address, since changes are

just transmitted from the range to the domain of the CRL relation. In our approach,

relations do not have a directional nature.

6 .3 .1 O p e r a t io n a l S e m a n t ic s fo r r e la t io n sh ip s

As mentioned in the introduction, SDMs have to specify how abstract relationships be­

have regarding insertion, deletion and modification operations on the related abstract

objects (i.e. classes). Since, in OODBs, objects are described not only by their attribu­

tive features but also by their behaviour (i.e. methods), a similar question to the one

arising in SDMs can be posed but now in the context of user-defined relationships and

ground objects (i.e. instances). How does a user-defined relationship behave in response

to operations performed on its participant objects? As an example, consider the mar­

riage relationship and assume that the class person has a method moves attached to it.

The designer may be interested in modelling the situation where the ‘movement’ of a

married person involves the movement of his/her partner, i.e. when the message moves

is sent to a person, this message is propagated to his/her partner through the marriage

relationship.

This leads to a new mechanism for sharing behaviour. However, unlike previous ap­

proaches where sharing is defined at the class level, now relationship-based sharing can

be specified. Hence, the behaviour of an object comes not only from the class to which

it belongs but also from the classes to which it is related. This is after all quite realistic!

In [Diaz 91a] we have explored two kinds of sharing, namely

• propagation whereby a message should be sent to other objects besides the one

which receives the message in the first place, and

• delegation whereby a message should be sent to another object instead of being

answered by the object which receives the message in the first place

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 101

Using the terminology of the Treaty of Orlando introduced in chapter 2, both propagation

and delegation can be seen as a kind of static, implicit and per group sharing mechanisms,

where here the group is based on participation in a given relationship.

Furthermore, in [Rumbaugh 88] it is shown how the propagation of an operation through

a network of objects is often determined by the nature of the relationships between the

objects, rather than the actual operation. For example, if the message display is sent to

a vehicle object, it could be desirable to have the display message propagated to certain

objects related to the vehicle in question, thereby providing more useful information to

the user who requested tha t the vehicle be displayed. In [Diaz 91a] it is mentioned how

in terms of the standard copy operation defined in [Khoshifian 86], two extremes are

supported in the propagation of copy:

• Shallow -copy: The attributes of the original object are moved directly to the

copy, with no recursive copying of related objects.

• D eep-copy: The scalar attributes of the original object are moved directly to

the copy, and all object-valued attributes are assigned deep copies of their original

values.

As pointed out by [Rumbaugh 88], these extremes of behaviour may not always represent

the required behaviour. For example, in taking a, copy of a part it may be desirable to

also copy the subparts, but it is not likely tha t the company which makes the part should

be copied as a side-effect of the copying of the part. In this case, the copy operation

should be propagated over the subpart. relationship, but not over madcJ>y. In terms of

display on vehicle, it may be desirable to display subparts of the vehicle, but uncontrolled

propagation over database relationships is likely to result in the display of the company

which made the vehicle, the employees of the company, the children of the employees of

the company and so on.

For the subpart relationship this can be specified as,

propagating display from the_part to the.subpart

The relationship class subpart is a relationship between a part and its (possibly many)

subpart. The single entry defining the operationaLsemantics of the relationship indicates

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 102

th a t the message called display is propagated from a part to its subparts. Thus when the

message display is sent to a part, not only is tha t part displayed, but all subparts of the

object are also displayed.

For the marriage relationships similar constructs can be used to specify its ‘sharing’

behaviour,

propagating moves from the_husband to the_wife
propagating moves from the_wife to the_husband

where theJiusband. and the,uhfe are the roles played by each of the persons participat­

ing in the relationship. If a. message moves is sent to theJiusband, besides moving himself,

the message moves has to be propagated to the person playing the role of tliejwife. A

similar situation occurs if the message moves is sent to the,wife in the first place. It

is worth noticing tha t the system has to prevent infinite loops. Such loops arises when

cyclic graphs are formed by the relationships. A simpler example is illustrated by the

marriage relationship whereby the message moves can be propagated to any of the par­

ticipants. Hence the participant objects can keep propagating the message moves in turn

for ever. The system has then to prevent the message from being executed more than

once with the same object.

An extension to relationship definition is made to support the operational semantics of

the relationship. The mechanism is available to any relationship class so that the user

can declaratively specify whether messages sent to either of the related objects are to be

propagated, delegated or ignored by the relationship. In the next section, a. construct to

define user-defined relationships in ADAM is presented.

6.4 A description language for relationships in ADAM

The aim is to provide relationships as ‘first-class’ objects where all their semantics

are gathered together. Until now, the only class of objects available were instances of the

metaclass entity,class. Now the question is what are the differences between those objects

already provided and the relationship objects. As with any other object in the system,

relationships can also have attributes and methods attached to them. However, unlike

entity objects, relationships can also have special semantics, as presented in the previous

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 103

new([marriage,[
related_classl([

related_class_tuple(person,theJiusband,husband_of,s ingle,
[sex of theJiusband of marriage = male,
age of theJiusband of marriage > 15])

]) ,
related_class2([

related_class_tuple(person,the_wife,wife_of.single,
[sex of the_wife of marriage = female,
age of the_wife of marriage > 15])

]) ,
operational_semantics([

propagating moving from the_husband to the_wife,
propagating moving from the_wife to the_husband

]) ,
inferred_constraints([

address wof the_husband of marriage :: address wof the_wife of marriage
]) ,
attribute(

attribute_tuple(wedding_date,global,single,optional,string, [])),
attribute(

attribute_tuple(husband_mother_in_law,theJiusband.single,optional,string,[]
attribute(

attribute_tuple(wife_mother_in_law,the_wife,single,optional,string,[]))
]]) => relationship_class.

Figure 6.3: The marriage relationship definition in ABEL.

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 104

section. A set of meta-attributes are provided to allow the designer to explicitly capture

such semantics. In the following these meta.-attributes are described. As an example, the

marriage relationship definition is shown in figure 6.3 according to the ABEL syntax.

The m eta-attributes re la ted_c lassl and related_class2 describe the objects between

which the relationship is established. Both have a relatedLclassJuple tuple as their value.

This tuple is defined as:

:- new_tuple(meta_class,related_class_tuple(
class: string,
role: string,
view: string,
cardinality: integer,
consts: plog

)) .

where the following information is declared,

• the name of the class participating in the relationship (e.g. person),

• the role played by the class in the relationship (e.g. theJiusband or the-wife),

• the attribute-based view of the relationship. As in [Rumbaugh 87] relationships

can be treated either as objects or as attributes or any of the participant classes.

For instance, a given instance of the marriage relationship can be seen either as

the attribute husband.of of a given person playing the role of theJiusband, or as

the attribute uuife_of of a given person playing the role of the^wife in the relation­

ship. These views, provided when the relationship class is created, act as normal

attributes of the participant classes. For example, since husband^of is an attribute

of a person, the methods putJmsband-of, deleteJiusband-of, updateJiusband-of and

getJiusband-of are provided. Sending the message getJiusband-of to a given male

person will retrieve the object identifier of the person playing the role of the-wife in

the marriage relationship instances having the object identifier of the male person

as its husband. These views have proved to be very useful for the user and represent

the links of the CE paths,

• the cardinality of the relationship, either single or multi,

• a set of constraints on the object participating in the relationship (e.g. person to

be male)

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 105

Attributes of the relationship itself such as wedd.ing.date can be specified as in any other

class.

The meta-attribute operationaLsemantics specifies whether messages sent to any of the

related objects are to be propagated, delegated or just ignored by the relationship. This

attribute is multivalued and thus, a set of propagating and delegating constructs can be

specified according to the following syntax,

propagating <method_selector> from <role_name> to <role_name>
delegating <method_selector> from <role_name> to <role_name>

where role names must be different and coincide with any of those specified in the

related-class attributes.

So far only features of the relationship itself have been presented. Nevertheless, one of

the novelties of this approach is tha t relationship semantics also involve what we have

called inferential knowledge, i.e. participant objects can have new attributes and new

constraints as a result of the establishment of the relationship. This is a quite new idea

tha t need further research but it has already proved useful for modelling [Segler 91].

New ‘inferred’ attributes can be defined as for any other attribute except that the visibil­

ity facet has to be either one of the role names. In figure 6.3 the husband.motherj.njaw

attribute is defined. As a result, the object playing the role of theJiusband has a mother

in law once the relationship is established.

New ‘inferred’ constraints are declared as values of the meta_a.ttribute in ferred_constra in ts .

These constraints are specified as for any other constraint in the system where the an­

chor (i.e. the beginning of the path) is the relationship class. In figure 6.3 an example is

shown where theJiusband and the.wife are constrained to live at the same address once

the marriage has taken place.

Once a relationship is defined, instances can be created in the usual way, i.e. by sending

the message new to the class. In the following, a marriage relationship is established

between the 6@person and the 32@person, playing the role of theJiusband and ihe.wife

respectively, where the wedd.ing.date is also specified.

new([OID, [
the_husband([6@person]),
the_wife([32@person]),

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 106

wedding_date([1991])
]]) => marriage.

The attribute-based view of the relationship can be used to query the relationship.

For example, to retrieve the husband and wife of a given person the following message

can be invoked,

I ?- get_husband_of(X) => 6@person.

X = 32@person;

I ?- get_wife_of(X) => 32@person.

X = 6@person;

In the same way, relationships can be created using the attribute-based view. For

instance, any of the following two messages have the same effect 1 as the previous new

message, i.e. the creation of a new instance of marriage,

put_husband_of([32@person]) => 6@person.

put_wife_of([6@person]) => 32@person.

However the underlying process is transparent from the user, tha t just sees wife_of

as another attribute of person. This transparent behaviour can be provided since all

attributes are only accessed by methods. Hence, it is transparent to the user whether

or not an attribute is defined together with the class or derived from a relationship. It

is just another advantage of data encapsulation: uniform access to data regardless of its

nature.

6.5 Specialisation of relationships

Specialisation allows a designer to begin by modelling general concepts and then to pro­

ceed with consideration of the more specific cases. Since now relationships are seen as

objects, this abstraction mechanism is available to relationship definition.

Specialisation of relationships is achieved by ‘specialising’ any of the related class at­

tributes. Let RCl be a related class attribute of a given relationship which has as value

1Tliis is not completely true since relationship attributes cannot be specified if the attribute-based
view mechanism is used to create the relationship.

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 107

related_class_tuple(Class 1,Rolel,Viewl,Cardl,Consts1)

A related class attribute RC2 having as value

related_class_tuple(Class2,Role2,View2,Card2,Consts2)

is a valid ‘specialisation’ of R.C1 if:

• Class2 is a subclass of Class 1

• Rolel is equal to Role2. Roles cannot be changed

• C ardl is equal to Card2. Cardinality has to rest unmodified

• Further constraints Consts2 can be added

The specialised relationship can specify other attribute-based views, and further inferred

attributes and constraints can be added. As an example, consider the workingJn rela­

tionship between the class person and the class place. This relationship is shown in figure

6.4. WorkingJn can be specialised into workingJn-projects and working Jn-research to

consider additional features of working Jn in different contexts.

Working Jn-projects specialises the participant class of the rela.ted-cla.ss2 to be an en­

terprise -a subclass of place- and adds a. new inferred attribute called projectJncomes.

Since related-dassl is not specified, it has the same related-cla.ssl th a t its superclass,

i.e. the other participant class is a person. WorkingJn-research specialises both partici­

pants. The person involved in research has to be a lecturer-a. subclass of person- whereas

the place where this research is carried on is specialised to be a researchJnstitution -a

subclass of place. Two inferred attributes, publications and grants, are defined so that

only lecturers workingJnjresearch can have a value for these attributes. Of course, any

characteristic of the superclass relationship are inherited by its subclasses. Other rela­

tionships can be defined as subclasses of working J n and only the specialised or additional

features have to be defined.

Besides the normal advantages attached to the use of generalisation (e.g. reusability,

legibility, economy, etc), general queries can now be easily expressed. For example, sup­

pose tha t the specialisation of workingJn-projects and workingJn-research is intended

to cope with a different tax regulation concerning the incomes obtained from each hind

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 108

new([working.in, [
related.classl([

related_class_tuple(person,the_person,working_places,set,[]]),
related_class2([

related_class_tuple(place,the_place.employees,set,[]),
attribute(

attribute_tuple(duration,global,single,optional,string,[]))
]]) => relationship.class.

new([working_in_projects,[
is_a([working.in]),
related_class2([

related.class.tuple(enterprise,the.place,workers,set,[]),
attribute(

attribute.tuple(project.incomes.the.person,single.optional,integer,[]))
]]) => relationship.class.

new([working.in.research,[
is_a([working.in]),
related.classl([

related.class.tuple(lecturer,the.person,works,set,[]]),
related_class2([

related.class.tuple(research.institution,the.place,researchers,set, □),
attribute(

attribute_tuple(publications.the.person,set.optional,string,[])),
attribute(

attribute.tuple(grants.the.person,set.optional,integer,[]))
]]) => relationship.class.

Figure 6.4: Relationship specialisation in ABEL.

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 109

of activity. If now we are just interested in the working-places of a given lecturer (e.g.

2@lecturer) regardless of whether they are projects or research, we can work at a higher

level in the hierarchy, above the specialisation, just by using the attribute-based view of

working J n (i.e. working-places). For instance the following message,

get_working_places(X) => 2@lecturer.

retrieves all the working places of 2@lecturer regardless of its nature (projects or re­

search). W ithout the generalisation, it would have been necessary to ask for each of the

relationships in turn. Besides allowing the user to work at the level of his interest, ad­

ditional specialised relationships can be added and the above single-instruction program

does not need to be changed!

The notion of specialisation of relationships is not new in AI. It appears in KL-ONE

[Brachman 85] where roles (KL-ONE relations) can be specialised. However, unlike our

approach KL-ONE sees relations as attributes of concepts (KL-ONE entities). Hence

some distinctions can be drawn:

• In KL-ONE specialisation of concepts and roles have a different representation.

Two links, aJcind_of and restriction, are used to specify the specialisation of con­

cepts and roles respectively. On the other hand, an object approach to relationship

representation allows one to use the same sort of link regardless of whether the ob­

ject is an entity or a relationship, conveying the same meaning in both cases.

• Whereas in KL-ONE, the specialisation of relationships is based on specialisa­

tion of the participating concepts, our proposal also includes the specialisation

of the semantics attached to the relationship. For instance in the above example,

working Jn-projects specialises working J n not only in the participating entities, but

in adding a new semantics as well, e.g. the introduction of the projectJncomes for

the person class.

In the following section the way in which these ideas have been implemented in ADAM

is presented.

CHAPTER 6. MAKI NG USER-DEFINED RELATIONSHIPS EXPLICIT 110

>s_a
- ► I n s t a n c e of

m i x i n

r e l a t i o n s h i p
m e t a _ c l a s s

new(+)

e n t i t y
m e t a c l a s s

r e l a t i o n s h i p . c l a s s
r e l a t ed .c l a s s l (*)
related_class2(*)
interred_constraints(*)
operational_semantics(*)
put_at t r lbute(+)
delete_attribute(+) .

s m b e h

w o r k l n g . l n

Figure 6.5: An ADAM extension to support user-defined relationships.

6.6 E x ten d ing A D A M to sup po rt user-defined rela tionship

definition

In this section the extension to ADAM that supports constraints is described. In figure

6.5 a diagram of the extended system is shown where the symbols and *+’ stand

for new methods or attribute definition, and specialisation of previous existing methods,

respectively.

An extension to ADAM can be made along two dimensions:

a the inheritance hierarchy where the description of objects as instances is considered,

a the instantiation hierarchy where the description of objects as classes is taken into

account

The question is now how are these dimensions affected by the introduction of relationship

objects.

Relationship objects seen as instances are handled as any other object in the system:

they are created by sending the message new to their classes, they can have attributes,

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 111

and messages can be sent to them. Since no further features are required, the inheritance

hierarchy does not need to be extended.

Nevertheless, from the point of view of relationship classes, new requirements have been

considered. Like entity classes, relationship classes can have attribute and method de­

scriptions attached to them. So, relationship classes can be seen as entity classes. How­

ever, relationship definition involves additional semantics missing in entity definition

such as the characteristics described by the meta-attributes related-classi, related.class2

and inferrecLconstraints. Hence, the metaclass knowing how relationship classes can

be defined (known as relationship_class) is a subclass of the metaclass entity_class.

Relationship.class inherites the normal behaviour of an. entity object, besides defining

new features to accomplish for the extended semantics of relationships.

Our definition of relationship.class metaclass is as follows:

new([relationship.class,[
is_a([entity.class]),
slot(slot.tuple(related.class 1.global,single,optional.related.class.tuple)),
slot(slot.tuple(related.class2.global,single,optional,related.class.tuple)),
slot(slot.tuple(inferred.constraints.global,set,optional,plog)),
slot(slot_tuple(operational_semantics.global,set,optional,plog)),

'/, This methods are specialised to consider the new requirements of the
'/, inferred attributes whose visibility is not the standard one

method((put_attribute(global,[],[slot.tuple],[],[Slot])
 • •)) ,

method((delete.attribute(global,[],[attribute.desc.tuple],[],[AttributeDesc])
))

]]) => relationship.meta.class.

The four slots 2 described in the above definition hold part of the additional semantics

required for relationship objects. But these slots alone are only repositories of data that

needs to be interpreted. For instance, values of the operationaLsemantics will convey

real meaning if adequated procedures are available tha t achieve the expected behaviour

specified declaratively in the slot.

Since values to both operationaLsemantics and inferred-const.ra.ints 3 can be inserted

2Foi reasons mentioned in chapter 5, attributes cannot be defined when metaclasses are created.
3It is interesting to note that the designer has to be careful not to define new constraints that are

not satisfied by already existing instances. Otherwise, the DB will become inconsistent.

CHAPTER 6. M AKING USER-DEFINED RELATIONSHIPS EXPLICIT 112

once the relationship is created, the corresponding ‘interpreters’ are placed within the

put. and delete. method attached to these slots. This can be achieved as follows:

replace_m ethod([
(p u t .o p e ra t io n a l.s e m a n tic s (g lo b a l, [] , Cplog], [] , [OpSem]) :-

)
]) => r e la t io n s h ip .c la s s .

replace_m ethod([
(d e le te _ o p e ra tio n a l_ se m a n tic s (g lo b a l,[] , [p lo g] , [] , [OpSem])

)
]) => r e la t io n s h ip .c la s s .

rep lace_m ethod([
(p u t . in f e r r e d .c o n s t r a in ts (g lo b a l , □ , [p lo g] ,[] , [C onsts]) :-

)
]) => r e la t io n s h ip .c la s s .

replace_m ethod([
(d e le te . in f e r r e d .c o n s t r a in t s (g lo b a l , [] , [p lo g] , [] , [C onsts])

)
]) => r e la t io n s h ip .c la s s .

However, rela.ted.class i and related.class2 have to be considered only when the rela­

tionship is created, i.e. when the message new is sent to relationship.class. This method

is then defined at the meta-meta-level. By default, the method new to create entity

classes is inherited from entity.meta.class. But this behaviour is not enough. It has to

be specialised to include the interpretation of the related-class attributes. Therefore, the

relationsh ip_nieta_class object is defined as a subclass of entity.meta.cla.ss where the

method new is specialised. This definition is as follows

n e w ([re la tio n s h ip .m e ta .c la s s , [
i s _ a ([e n t i ty .m e ta .c la s s]) ,
m ethod ((new (g loba l,[] , [s t r in g ,p lo g] , [] , [Name,Atts])

(\+ m em ber(is_a([_]) ,A tts)
-> m em ber(C lassl, A t t s) ,

m em ber(C lass2 ,A tts),
'/, Check th a t c la s se s to be r e la te d e x is t

'/, Create role attributes

'/, Create attribute-based view of the relationship

'/, It must be a specialisation of an existing relationship

CHAPTER 6. MAKI NG USER-DEFINED RELATIONSHIPS EXPLICIT 113

'/. Check th a t c la s s to be r e la te d e x is t

*/. Check th a t th e s p e c ia l i s a t io n i s c o r re c t

*/. C reate r o le a t tr ib u te s (i f required)

'/, Create a ttr ib u te -b a se d view o f th e r e la t io n s h ip (i f requ ired)

) .
'/, C reate a t tr ib u te s and gen erate r u le s fo r c o n s tr a in t enforcem ent

))
]]) => m eta _ c la ss .

This semantics is now declared in the meta-attributes defined in the relationship class

(e.g. workingjn) and interpreted by methods specified either in the relationship-class

object or in the relationsliip.meta.class object.

6.7 Conclusion

To cope with the increase in complexity of the domains tackled by DBs. more powerful

semantic tools are needed. Here a proposal has been presented to enhance an OODB

with semantic-rich user-defined relationships. As with any other object, relationships

can have attributes and methods or be arranged in hierarchies. An attribute based ap­

proach is also described so that programs accessing the DB before this integral view of

relationships was considered do not need to be changed.

Besides increasing the domain semantic kept in the DB, the enhanced relationship spec­

ification allows users to have a uniform understanding of the data stored in the DB as

well as gathering together all the information about a relationship, that would otherwise

be spread throughout different objects and user-programs. So far, only binary relation­

ships have been taken into account. By allowing us to represent both structural and

behavioural aspects of the UoD, OODBs have been shown to offer the right paradigm to

implement user-defined relationships. These ideas can be considered as another step on

the way to enhancing knowledge in DBs.

The main contributions of this work can be summarised as follows:

CHAPTER 6. MAKING USER-DEFINED RELATIONSHIPS EXPLICIT 114

• Although we do not claim to have the novelty of defining relationships as objects,

it is less common to find in the DB literature work investigating the ‘inferred’

properties of relationships. In this chapter some insights into inferred attributes

and constraints have been presented and implemented.

• The idea of the operational semantics for relationships, originally proposed for

programming languages in [Rumbaugh 87], has been extended to consider both

propagation and delegation in the context of OODBs. Furthermore, unlike the

approach in [Rumbaugh 87], a rule-based mechanism has been used for supporting

this semantics.

• As with objects, relationships can be arranged in hierarchies. In this chapter, an

approach has been presented and implemented for relationship specialisation.

C hapter 7

M aking active behaviour explicit

7.1 Introduction

Active database systems have been defined as “database systems tha t respond auto­

matically to events generated internally or externally to the system itself without user

intervention” [Banzer 90]. System responses are declaratively expressed using event-

condition-action rules (ECA rules proposed in [Dayal 88]). An EGA rule has an event

that triggers the rule, a condition describing a given situation, and an action to be per­

formed if the condition is met. In this way, not only does the system know how to

perform operations, but also w hen those operations must be performed.

ECA rules should not be confused with methods or situation-action rules. An ECA rule

definition includes not only what to do but also when to do it, and can be seen as be­

haviour exhibited as a result of some event taking place, such as accessing or updating

an attribute. As an example, if a boiler object has an attribute temperature, and it is

known tha t when the value of the temperature rises to 30 degrees the alarm has to go off,

an ECA rule seems the right paradigm to represent this event-driven behaviour within

the system. Unlike ECA rules, methods are invoked explicitly by sending a message to

an object, so method invocation can be seen as a kind of procedure call [Stefik 86].

On the other hand, situation-action rules, as found in production systems such as OPS5

[Forgy 81], lack the trigger part. For instance, in OPS5 the triggering process is done

by the evaluation phase of the inference engine, where the situation part of the rule is

matched against the current state of the problem described by working memory elements,

115

CHAPTER 7. MAKING ACTIVE BEHAVIOUR EXPLICIT 116

i.e. tuples. Unlike production systems, DBs have to cope with larger domains where this

matching mechanism is not feasible. However, an event-driven system can provide a

mechanism for explicit support of integrity constraints, derived data or rule-based infer-

encing, besides providing timed responses and modularity to support time-constrained

applications.

In [Beech 90] rules are seen as a major feature of future database systems, and it is re­

marked tha t “object-oriented database (OODB) researchers have generally ignored the

importance of rules” . The research presented here is an attem pt to provide an insight

into rules in an 0 0 context. The focus is on providing a u n ifo rm ap p ro ach .

W hat is meant by a uniform approach is that rules have to be defined and treated in the

same way as other objects in the system, without defining any additional mechanisms

or auxiliary structures. Rules are seen as ‘first-class’ objects, and are described using

attributes and methods. In this way, rule management operations are conceived and

implemented as methods. This brings all the advantages of the OO paradigm into rule

management: encapsulation, modularity, reusability. In a uniform approach the system

should not distinguish rules from other kinds of object. As a result, rules can be related

to other objects, and also arranged in hierarchies: Since methods attached to objects can

trigger rules, and rules are themselves objects, rules can be defined which are triggered

by methods attached to rules. As with any other entity, the meaning of a rule lies in

the attributes attached to the rule, and their interpretation by the associated methods.

From the point of view of the system, however, no distinction should be made. Treat­

ing rules as objects also has the advantage tha t any new facility introduced for objects

is automatically applicable to rules (e.g. transaction mechanisms, locking mechanisms,

display facilities).

Rule evaluation imposes an overhead on every possible event th a t can be detected by the

system. Whereas in relational databases events are generally restricted to be database

updates, the approach presented here allows any message to raise an event. Thus, the

efficiency requirements for rule support in OODBs are even greater th a t in relational

databases. Here, an attem pt is made to enhance system performance by indexing rules

by class. A single thread of execution is assumed, and topics such as transactions and

optimisation have not been addressed.

CHAPTER 7. M AKING ACTIVE BEHAVIOUR EXPLICIT 117

This chapter is organised as follows. A review of related work is given in section 2. In

section 3, the components involved in rule management are identified. Issues relating to

events in an object oriented context are discussed in section 4. In section 5 the imple­

mentation of a rule manager in ADAM is described. An approach for deriving rules for

constraint maintenance is introduced in section 6. Finally, conclusions are presented.

7.2 Related work

Research on active behaviour has been conducted in the areas of programming languages,

Artificial Intelligence(AI) and DBs. ACTOR [Hewitt 77] was a. pioneer programming

language in providing objects with active behaviour. Modelling parallel and distributed

applications are among the research interests in this area [Ellis 89]. Active behaviour

in AI is provided through procedural-attachments. So procedural-attaehments such as

if-needed or if-added are associated with slots to compute their values on demand, or to

perform some other test or action.

In relational DBs, active capabilities have been used to enforce integrity constraints,

define views, translate update requests and compute derived attributes [Eswaran 75,

Stonebraker 90, Morgenstern 84]. In [Beech 90] rules axe seen as a unifying paradigm

for providing a broad range of DB facilities. However, in relational DBs, rules are im­

plemented as a distinct layer, and additional mechanisms and structures are required to

support rule management.

Several OO systems tha t support rules are described in the literature [Kotz 88, Dayal 89,

Hudson 89, Chakravartliy 89, Bauzer 90]. In [Bauzer 90] a review of different mecha­

nisms for supporting rules is given, namely:

• method-based mechanisms: the rule is precompiled into each place in the code

where it might be activated.

• object-based mechanisms: enlarging the object description to indicate which rule

to invoke whenever message sending takes place. This is the approach followed in

this paper

• external mechanism: additional structures are defined which support checking

when some event occurs (e.g. [Bauzer 90, Kotz 88])

CHAPTER 7. MAKING ACTIVE BEHAVIOUR EXPLICIT 118

Several drawbacks can be enumerated for the first approach:

1.- Rules are buried inside methods, and thus it is difficult to enquire about any of the

rules attributes, e.g. the condition, the action, or whether it is enabled or not.

2.- Modification of any of the attributes of a rule implies making changes to every

method supporting the rule.

3.- Since rules can interact, coding of rules within methods requires tha t the program­

mer understands all the rules that appear in the method, so tha t interaction can

be handled properly.

4.- The rule definition is scattered, compromising the 0 0 philosophy tha t encourages

all information about a given object to be gathered together.

5.- Method code now includes two things: how the operation itself is implemented

and the enforcement of the rule. This severely compromises method overriding.

Overriding of methods is a useful mechanism in 0 0 systems for customising an

operational implementation for special requirements. The problem is that in this

case not only are we overriding the operation but also the embedded concept de­

scribed by the rule (e.g. an integrity constraint).

In [Beech 90] some of these dra.wba.cks are pointed out and the following conclusion is

drawn: “In our opinion there is only one reasonable solution; rules must be enforced by

the DBMS but not bound to any function (i.e. method) or collection”. The other two

approaches to supporting rules overcome these disadvantages by providing a. mechanism

supported by the DBMS.

In [Bauzer 90] a. rule management mechanism is proposed for 0 2- Rules are objects hav­

ing the event as an attribute, and auxiliary structures are defined for storing rule lists

which are checked when specific events occur. However, events are not seen as objects

in themselves, and thus, system extensibility can be compromised in the sense that com­

posite events or events with special requirements are difficult to introduce. Further, a

local mechanism is used to provide rule ‘inheritance’ instead of using a. mechanism based

on the object hierarchy itself.

In HiPAC [Dayal 88] rules and events are seen as different entities with their own at­

CHAPTER 7. MAKING ACTIVE BEHAVIOUR EXPLICIT 119

tributes and methods. A sound approach is taken to rule support, paying special at­

tention to transaction management and optimisation techniques. However, some of the

idiosyncrasies of the 0 0 paradigm have not been considered, such as the primary role

tha t classes play, in which methods are part of the class definition.

7.3 An overview of rule management

The 0 0 paradigm provides a different approach to system design. Whereas procedural

design emphasizes the decomposition of the problem into a set of tasks to be executed

sequentially, 0 0 design focuses on the entities involved and how they interact. Thus, to

provide a rule manager in the context of an OODB, a primary requirement is to identify

the significant entities and their interaction.

Briefly described, the function of a ru le m anager is to provide quick response through

the use of rules, to events generated by some system. Three components can be identified

in this process:

• the rule describes both when and how the system reacts to an event.

• the event is am indicator that signals th a t a. specific situation has been reached to

which reactions may be necessary [Kotz 88]. Not all systems consider events as

first class objects. For example, events can be treated as simple attribute values.

However, this approach can compromise the ability to extend the system to cope

with events coming from different sources, or events tha t need special treatm ent

(e.g. composite events [Dayal 88]).

• the event generator can be seen as any system producing events which may need a

special response in terms of rule triggering. Events can be generated by the DBMS

itself or by any other external system such as a clock or an application program.

Figure 7.1 shows an Entity-Relationship diagram where these entities are depicted to­

gether with the relationships between then. First, a. rule can be triggered by an event,

but an event can trigger several rules. Second, an event can be generated by several

systems and a system can generate several events.

The main interaction between these entities can be described as follows:

CHAPTER 7. MAKIN G AC T I V E BEHAVIOUR EXPLICIT 120

EVENT RUL E
EVENT

GENERATOR

Figure 7.1: E/R. diagram for rule management

1.- an event is produced by any evenl-generator, and is signalled to the event manager

through the message signal,

2.- the event manager checks whether any rule can be triggered by the event signalled.

If so, it sends the message fire to the appropriate rules,

3.- when the message fire is received by a rule, the rule condition is then checked and,

if satisfied, the rule action is executed

Other kinds of interactions are also possible, such as the ‘awakening’ of events as a result

of rule creation.

In the following sections the object rule and the object event are defined. Event gen­

erators have not been described as objects, although conceptually they are seen as the

senders of the signals.

7.4 Events in an ob jec t oriented contex t

An event is an indicator tin.: signals that a specific situation lias occurred to which

reactions may be necessary. In relational DBs. an event can be described by the operation

together with the moment when this operation takes place (i.e. before or after method

invocation). For instance, the pair (insert,before) could specify that the event arises

before the operation insert occurs. In this context, OODBs present some differences

from relational DBs. In 0 0 systems, operations (i.e. methods) are not isolated but are

part of the class definition. The class is not just an argument of the method, but the

method itself is subordinate to the class. As a result, the same method name can be

implemented in different ways in distinct classes, the process known as overloading, or a

method can be specialised down the hierarchy by any of the subclasses, thereby revising

the behaviour of the superclass. Now, let us consider the situation shown in figure 7.2

CHAPTER 7. MAKING AC TI VE BEHAVIOUR EXPLICIT 121

PffJSON
put_age method definition

STUDENT
age of ctudenl < 90

POSTGRADUATE
age of postgraduate > 20 UNDERGRADUATE

Figure 7.2: Person hierarchy

where an integrity rule to prevent students from being older that ninety is defined. This

rule should be fired for instances of the class student before the message put-age begins

execution, i.e. before the student age is altered. Since 0 0 systems allow methods to

be inherited from superclasses, the method put-age can be defined at the level of the

class person and inherited by the subclass student. For this integrity rule to be fired it

is necessary not only that an attempt has been made to insert the age of a person, but

also that this person happens to be a student. Otherwise, the rule should not be invoked

even if the message put-age is detected.

In other words, the method alone does not completely specify the context of invocation,

since a method gets its meaning from a class (subsequently called the active class).

Several alternatives are possible for supporting the idea of an active class, for instance:

1.- The active class could be embedded in the condition part of a rule. For example,

the previous rule would have as an event the pair (put-age,before) and the condi­

tion part of the rule would be extended to check that the receiver of the message

is an instance of the class student. Besides making the context where a rule is

invoked difficult to understand, this approach prevents the system from taking full

advantage of the active class as an indexing mechanism, as shown later.

2.- The event definition could be enlarged with an active class attribute. Thus, in

the previous example, the event would become (student,put-age,before). However

the message receiver can be an instance of some subclass (e.g. postgraduate), and

thus the active class is not its immediate class. Two options are now possible.

One is to check whether the message receiver is an instance of the active class (i.e.

CHAPTER 7. MAKING ACTIVE BEHAVIOUR EXPLICIT 122

student). This process can turn out to be quite expensive since this checking has

to be done for every message sent and for every possible event. Another approach

is to generate all possible ‘inherited’ events automatically. For instance, the events

(postgraduate,puLage, before) and (undergraduate,puKage,before) would be gener­

ated, providing tha t postgraduate and undergraduate are subclasses of student. I t

is worth mentioning that some of the generated events may already be defined (e.g.

an integrity rule constraining postgraduate students to be older than twenty). In

this case, instead of creating a new event, the set of rules activated by this event

has to be extended by the identifier of the younger-than-ninety rule. Moreover,

if a new subclass is introduced, the appropriate events have to be generated. For

instance, if phdstudent is introduced as a subclass of postgraduate, all the events

for postgraduate students have to be ‘inherited’ by PhD students. This process

can be quite cumbersome and expensive to maintain. In our opinion, the rule iden­

tification process should make use of the class hierarchy itself, rather than making

use of some additional mechanism.

3.- The rule definition is extended with an active_class attribute. Previous work

either does not consider explicitly the role played by the active class, or provides

a local mechanism for ‘inheriting’ events. Since rules are truly objects, the extra

active.class attribute can be implemented as a two-way relationship between rules

and classes. The inverse of active jdass is declared to the system to be held in the

c lassjru les attribute of a class. For instance, the younger-than-ninety rule would

have student as the value of its active^class attribute, and thus the student class

would have the object identifier of this rule as the value of its classjrules attribute.

This approach has two important advantages:

• Rules are indexed by class. The class.rules attribute has as its value the set

of rules to be verified when a message is sent to any instance of this class. In

this way the search for applicable rules is considerably reduced.

• The ‘inheritance’ of rules has been moved to the class hierarchy, without

defining any additional mechanism. As discussed above, the rules affecting a

given instance are not just the ones attached to its immediate class, but also

those attached to its superclasses. For example, if the message put.age is sent

to an instance of the class postgraduate, the rules applicable (e.g. representing

CHAPTER 7. MAKING ACTIVE BEHAVIOUR EXPLICIT 123

integrity constraints on the age attribute) are those attached to postgraduate

itself together with those attached to student and person. To handle this

situation, the definition of each class has been enlarged with the attribute:

ac tivated_by . This attribute is defined just like any other attribute:

a t t r i b u t e (
a t t r ib u te _ tu p le (ac tiv a ted _ b y , g lo b a l , s e t , o p t io n a l , g e n e r ic _ ru le ,

[ac tiva ted_by wof class_beh :: ac tiva ted_by of is_ a of class_beh
union

c la s s_ ru le s of c la ss_ b eh]))

This definition states tha t activated.by contains objects of type generic.rule.

The constraint, enclosed between brackets and specified using the constraint

equation approach described in chapter 5, enforces that the value of the

activated-by attribute for a given class has to be equal to the union of the

rules of the class.rules attribute attached to the class and the rules obtained

from the activa.ted.by attribute attached to its superclasses. It is worth notic­

ing the recursive nature of this constraint. This together with the idea of

weak bond 1 achieves the desired behaviour: when an update is made to the

class.rules attribute of any class, the update is propagated to the activatedLby

attribute of all its subclasses. This is done automatically by the system as a

result of the enforcement of the above constraint, without any further mech­

anism being required. Furthermore, when a new subclass is introduced, the

appropriate rules are ‘smoothly inherited’.

The latter approach is described in detail in the next section, where a rule manager is

described for ADAM.

7.5 Extending ADAM to support rule management

7 .5 .1 T h e e v e n t o b je c t

Events are not always seen as first-class objects. In [Bauzer 90], events are seen as rule

attributes, and hence they cannot have attributes or methods of their own. Although

this approach may result in performance gains, it can compromise the ability to extend

1A weak bond -syntacticall_y represented as wof- can be seen as the link to be broken to preserve the
constraint when the equality is violated (see chapter 5 for further details).

CHAPTER 7. MAKING ACTIVE BEHAVIOUR EXPLICIT 124

the system for coping with events coining from different places, or which need special

treatm ent.

As with other objects in the system, event definition involves the description of structure

(i.e. attributes) as well as behaviour (i.e. methods). An event can be seen as specifying

the moment when a rule is to be fired. This moment can be described by the message

firing the rule (the active_m ethod attribute of the event) and the status of the message

(the w hen attribute of the event).

Unlike some previous approaches, a richer and more complex event definition can be

created as a result of working in an 0 0 environment, namely:

1.- Events are not restricted to update operations but can be any message defined in

the system (e.g. display, create a new class, move, get_age).

2 - The possible values describing the status of a message can be enlarged. Previous

work has considered just two values: before and after operation execution. In the

0 0 context, operations are materialised by methods. Besides before and after,

the range of values has now been extended to take into account situations where

the method cannot be found, or other options which reflect the nature of method

invocation supported by the underlying PROLOG evaluation strategy (e.g. back­

tracking into a method) [Diaz 91a]. This broader spectrum of situations attempts

to reflect the core role that methods play in 0 0 systems and the variety of situa­

tions tha t can arise during message sending.

In other approaches, the event description includes the arguments to be passed when a

rule is fired. In our approach, all the methods’ arguments, regardless of whether they are

input or output parameters, are passed by the system without any previous declaration.

The rule manager makes these arguments available to the condition and action part of

the rule through the system-defined predicate currenKarguments. The instance to which

the rule is applied is also available through the predicate currentJnstance. Examples are

given in the next section.

Being objects, events can be related to other objects (e.g. to the rules tha t a given event

activates), or arranged in hierarchies. This allows the system to be enlarged to cope with

later extensions. Events can be manipulated and signalled by some event generator as

CHAPTER 7. MAKING A CTIVE BEHAVIOUR EXPLICIT 125

well as created, modified or deleted in a uniform fashion. For example, an event can be

created by sending the following message:

new([OID,[
active.method([put.age]),
whenC[before])

]]) => generic.event.

This event is raised before the method put-age is executed.

The classes db.event, clock.event and application.event share some attributes and be­

haviour which are abstracted at a higher level in generic.event. Moreover, the procedure

which takes place when a new event is created is the same as the one followed for the

creation of any other object (e.g. instances of person). Nor are the deletion or modifi­

cation methods distinguishable from those used for deleting or modifying other objects.

As a result, this behaviour can be inherited from that already provided by the system,

i.e. from the entity.class.

7 .5 .2 T h e ru le o b je c t

Rule structure is described mainly by the event tha t triggers the rule, the condition to

be checked and the action to be performed if the condition is satisfied. The condition

is a set of queries to check tha t the state of the database is appropriate for action exe­

cution. The action is a set of operations tha t can have different aims, e.g. enforcement

of integrity constraints, user intervention, propagation of methods, etc. Condition and

action definitions can refer to the object to which the rule is being applied and to the

current arguments of the method firing the rule through the system-provided predicates

current-0 bject and current.arguments respectively.

As discussed in the last section, the complete context of invocation is described by the

active_class and ev en t attributes. The event attribute has as its value the object iden­

tifier of an event instance. In figure 7.3 an example is given of an active rule to prevent

students from being older tha t ninety. If S@db.event is the object identifier of the event

shown in the last section, this rule will fire before executing the put.age method. The

condition checks whether the argument of the method (i.e. the age to be introduced) is

greater than ninety or not. If the condition is not met, the rule is not applicable and the

method can continue. Otherwise, the action is executed. In this case, the action fails

CHAPTER 7. MAKING A C T IV E BEHAVIOUR EXPLICIT 126

new([OID,[
event([3<9>db_event]),
active_class([student]),
isit_enabled ([true]),
disabled _for([l@student,23@student]),
condi tion([(

current_arguments([StudentAge]),
StudentAge > 90

)])•
action ([(

current_object(TheStudent),
curren t_arguments ([StudentAge]),
get_cname(StudentName) = > TheStudent,
writeln([‘The student ’,StudentName,

‘with age StudentAge,
‘exceeds the expected age’]),

fail
)])

]) = > integrity .rule.

Figure 7.3: A rule to prevent students from being older than ninety.

after displaying a message, preeventing put.age from proceeding. A condition result can

also be passed to the action part through the condition.resu.il predicate, the argument

of which is instantiated with any value required after condition evaluation.

As well as the event-condition-action description, two more attributes are added to spec­

ify the status of the rule itself, i.e. whether the rule is enabled or disabled. The at­

tribute isJ t.en a b led describes the status at the level of the whole class appearing as

the active.class value, whereas the disabled_for attribute describes the status for spe­

cific instances of this class. In the above example, the rule is enabled for all the students

(i.e. the value of is.it.enabled is true) except for those instances with object identifier

1 ©student and 23@student. Thus, this rule will not be fired if either the is.it.enabled

attribute is false or if the object identifier of the current object appears as one of the

values of the disabled.for attribute.

As part of their structural description, rules can be related to other objects in the system

and arranged in hierarchies. Actually, the active.class attribute is a. relationship between

classes and rules that has been used to speed up the system: the inverse of active.class ,

i.e. class.rules attribute, is used as a class-based index where the inverse constraint is

CHAPTER 7. M AKI NG A C T I V E BEHAVIOUR EXPLICIT 127

ENTITY CLASS RULE CLASS
DATE_RULE_CLASS

new(+)

,.WrtWSW.V.WSWAWA,MW.V.WM,1

GENERIC_RULE
m eth o d s: tire
a ttr ib u tes :

e v e n t ,
a c t iv e _ c la s s ,
co n d itio n ,
a c t io n ,
is _ i t_ e n a b le d .
d is a b le d to r

cPROPAGATING_RULE_CLASS
new(+) .

“ X ---------------

is a

in s ta n c e

INTEGRITY_RULE
d e a c liv a le c M o r
d e c la ra tiv e _ c o n d it io n
d e c la ra tiv e a c tio n

DATE RULE DELEGAT1NG_RULE
a lre a d y _ p ro p a g a te d
l i r e (*)

J j f S .

is a

PROPAGATNG_RULE

a lre a d y _ p ro p a g a te d

Figure 7.4: Rule hierarchy

maintained by the system (see chapter 5). Other relationships can be defined, even be­

tween rules themselves, e.g. a precedence relationship in the order of execution.

Arranging rules in hierarchies brings all the advantages of inheritance to rules. In fig­

ure 7.4 the generic.rule class is specialised into several subclasses, such as date.rule,

integrity.rule or propagating.rule. User-defined rules are those defined by the user,

whereas integrity rules and propagating rules are system-generated, the former from

declarative specification of integrity constraints and the latter from the operational se­

mantics of relationships. Rules for constraint maintenance are interesting examples in­

volving several methods and classes. For instance, to preserve that the age of a PhD

student is always sm aller than the age of h is /her supervisor, all methods modifying the

age (i.e. put.age, delete.age and update.age) either of a student or of a lecturer must

be considered (assuming that the class lecturer is defined and that only lecturers can

supervise PhDs). An approach to derivation of rules for constraint maintenance in this

context is presented later in this chapter.

The next question to be addressed is the behaviour of rules. Unlike other objects, rules

can be fired, i.e. the condition of the rule is evaluated, and if satisfied, the action is

executed. In order that it may be inherited by all the instances, this rule firing method

is defined at the level of generic.rule class. The method fire can be specialised to

account for further requirements in any subclass. Enabling and disabling of rules is

managed through modification of the is .it.enabled and disabled-for attributes, and no

CHAPTER 7. MAKING AC T I V E BEHAVIOUR EXPLICIT 128

new([_,[

event([day 10 month ’Oct’ year every hour 20:15]),

isJt .enabled ([ves]),

condition ([.....]),

action([()])

]]) = > date_rule.

Figure 7.5: A rule triggered by a time event,

special methods are required.

Finally, rule management is implemented using the mechanism already provided by the

system for handling other kinds of objects. However, special requirements arise when

instances of integrity.rule and propagating.rule are created and therefore, the method

new has to be specialised for these classes. Owing to the metaclass mechanism avail­

able in ADAM, this specialisation can be easily and cleanly supported by defining the

special.rule.class class. This situation is shown in figure 7.4. All rule classes are handled

in the same way. However, when the message new is sent to the user.defined.rule class,

the ‘standard’ definition of new is inherited, whereas a specialised definition is used when

this message is sent to the integrity.rule or propagating.rule classes.

7.5.3 Some examples

For the sake of simplicity, in the current implementation where only atomic events have

been considered, event definition has been embedded within rule definition. Therefore,

rule definitions have been extended with the when and event attributes representing the

when and active.met.hod attributes of the event object respectively.

Three examples are given in this section, illustrating the use of rules for timed reactions,

security enforcement and meta behaviour. In the former the use of clock events is shown.

Events axe not restricted to method selectors but any date or time may also be used as

a trigger. These events are declared according to the following syntax:

day <day> month <month> year <year> hour <hour> : <minutes>

CHAPTER 7. M AKIN G AC T IV E BEHAVIOUR EXPLICIT 129

new([_,[
active_class([generic_rule]),
event([new]),
when([before]),
is j t _en abled ([yes]),
condition([(

\ + current_user(graham),
)]).
action ([(

write(’You are not authorised to create generic rules’),nl,
fail

)])
]]) = > generic_rule.

Figure 7.6: A rule on rules.

where <day>, <month>, <year>, <liour> and <minutes> have the obvious range

restrictions. Furthermore, for <day>, <month> and <year> the key word every can be

specified, meaning that the event must be detected every day, month or year respectively.

In figure 7.5 a rule is shown that must be fired on 10th October of every year at a quarter

past eight in the evening. Whereas message-sending events are detected by the DBMS,

time events are signalled by the external UNIX system. When a clock event is created,

a UNIX demon is placed in the operating system and from then on, the demon will be

responsible for detecting and signalling the clock event.

In the second example the advantage of following a uniform approach can be seen. Since

rules are objects, rules can be defined on the rules themselves. In figure 7.6 a rule is

shown that prevents users other than graham from creating instances of generic.rule

class. It is thus a rule about rules. When an attempt is made to create a rule by sending

the message new to the generic.rule class, this rule is fired, and the identity of the user

checked through current-user, a predicate which returns the name of the current user.

Finally, the third example illustrates the use of rules to accomplish metabehaviour in

relationships. As described in chapter 6 , relationships are ‘first-class’ objects in ABEL.

However an attribute-based view of the relationship is provided so that the objects

between which the relationship is established can handle the relationship as any other

attribute. Hence a relationship instance can be created either directly by sending the

message new to the relationship class, or indirectly from any of the participant objects by

CHAPTER 7. M AKING AC TIV E BEHAVIOUR EXPLICIT 130

new([_, [
event([new]),
active.class([relationship.class]),
when([before]),
is_it_enabled([yes]),
condition([(

current_object(RelClass),
condition_result([Rolel,Viewl]),
get_related_classl(related_class_tuple(_,Rolel,Viewl,_)) => RelClass

)]) ,
action([(

current.obj ect(RelClass),
current.arguments(Args),
condition_result([Rolei,Viewl]),
Args = [Oid.Atts],
RolelPred =.. [Rolel,[RolelVal]] ,
member(RoleIPred.Atts),
get_related_class2(RC2.RelClass),
RC2 = related_class_tuple(_,Role2,_,_),
Role2Pred =.. [Role2, [Role2Val]],
member(Role2Pred,Atts),
put.name(Viewl.ViewlPut),
signal([event.tuple(ViewlPut,before,RolelVal),[Role2Val]]) => generic.rule

)])
]]) => generic.rule.

Figure 7.7: A rule on metaclasses.

CHAPTER 7. M AKING ACTIV E BEHAVIOUR EXPLICIT 131

sending the message ‘put- view’ to the appropriate object. As an example consider the

w orkingjn relationship shown in figure 6.4, with works and employees as the attribute-

based view of the relationship. The following three messages each have the same effect:

the creation of an instance of working-in,

n ew ([0 id ,[the_person ([IS person]) ,the_p lace([3@ place])]]) => w orking_in.

put_em ployees([l@ person]) => 3@place.

put_w orks([3@ place]) => lOperson.

Since all three methods have the same consequence, any rule attached to any of these

methods (e.g. put-works) should be fired if any of the other methods is invoked (i.e. new,

put-employees). Of course, three different rules could be defined for each of the possible

triggering methods but this could place an extra burden in the rule designer who would

have to be aware of when an attribute represents a relationship view. To hide this from

the user, rules could be defined for each relationship so th a t before and after a new

relationship instance is created, the system also signals tha t an insertion has occurred

in each of the attribute-based views.. In this way an improvement in transparency is

achieved: the rule designer ignores whether an attribute represents a relationship view

or not 2. Since such rules have to be defined for each relationship, this behaviour can

be considered as part of the relationship definition and thus moved to the relationship

metaclass. Four rules then, are needed in total. One of these metarules is shown in

figure 7.7. This rule is fired before a new relationship instance is created regardless of

the relationship class to which it will belong. The condition checks whether the current

relationship class has a view and if so, signals the corresponding event for this view where

the active-method is the ‘put a/ iew’ method (Viewl Put), the current active object is the

object playing the role indicated by the view (Rolel Val) and the argument of the method

is the object playing the other role in the relationship (Role2Val). The four rules are

quite similar, signalling the before and after events for the two relationship views. In

[Diaz 91b] another example of a. metarule can be found which handles derived classes.

2Sucli transparent support becomes even more necessary if relationship hierarchies are considered.
Here, the creation of a relationship instance must to signal not only the insertion of the attribute-based
views of its own relationship class but also the insertion of the attribute-based views of any of its
superclasses!

CHAPTER 7. M AKING ACTIVE BEHAVIOUR EXPLICIT 132

7.6 Deriving rules for constraint maintenance

In ABEL a constraint language (described in chapter 5) is provided so tha t users can

specify constraints as attribute facets instead of hard-coding into method definitions.

In this section, the way in which the system generates a set of rules to enforce these

declaratively-stated constraints is described. In this way, as well as easing the definition

of constraints, constraint enforcement is moved to a different, rule-based mechanism,

thus overcoming some of the problems pointed out in chapter 5.

In object-oriented systems, related work has been done in [Lafue 87, Caseau 89, Urban 90].

In [Lafue 87] constraints are stored together with the affected objects using demons. Al­

though fast location of affected objects is achieved, constraint specification and enforce­

ment are often still hard-wired into demons. In [Caseau 89] demons are obtained from

logical rules. The stress of this paper is on improving the declarativeness of the system

and its resolution power, while maintaining the efficiency. In [Urban 89], the constraint

language ALICE is proposed. Instead of immediately translating constraints to specific

actions, Urban obtains a set of equivalent Horn rules which “are analysed to help the

designer understand how constraints affect operations on objects and to identify alter­

native propagation actions” . This process, known as constraint analysis, is also used to

generated a set of rules to maintain the constraint [Urban 90].

However, previous approaches do not fully address certain features of the object oriented

paradigm, such as inheritance of constraints through specialisation hierarchies and the

description of situation violating constraints not only by the name of the method but

also with the name of the class. All these features are addressed here where constraint

maintenance and enforcement are achieved by generating a set of rules from the con­

straint definitions.

Figure 7.8 shows a kind of ‘rule template’ at the beginning of the generation process.

The attributes when and is.it-enabled have default values, and the system has to obtain

values for the active.method, active.class, condition and action attributes of the rule.

In the following subsections, the way in which these values are generated is discussed

in detail. Before continuing, the reader is strongly advised to read the first-order logic

counterpart of CEs described in section 5.4.

CHAPTER 7. MAKING A C T IV E BEHAVIOUR EXPLICIT 133

active_class([]),

acti ve_method ([)),

when ([before]),

is J t_enabled ([yes]),

condition (Q),

action ([])

Figure 7.8: A rule template at the beginning of the derivation rule process.

p Q P — > Q

T T T

T F F

F T T

F F T

Figure 7.9: Truth table for the implication operator

7.6.1 Active_method and active.class value generation.

The active_m ethod attribute contains the name of the method firing the rule. To

obtain these methods the approach described in [Nicolas 78] from deductive databases

is taken. This approach is based on the Horn logic counterpart of CEs. The truth table

for the implication operator is shown in figure 7.9. Several remarks can be pointed out

from the implication truth table:

1. If Q is false, P must also be false to make the implication true. Delete operations

on predicates appearing in the head of the clause can falsify the head. To keep the

validity of the implication, delete operations can be necessary to falsify the body

of the clause.

2. If P is true, Q must also be true to satisfy the implication. Insert operations on

predicates appearing in the body of the clause can satisfy the body. Therefore,

insertions may be needed in the head of the clause to make it true, so that the

entire clause can be satisfied.

CHAPTER 7. M AKING ACTIVE BEHAVIOUR EXPLICIT 134

3. If P is false, the implication is evaluated to true regardless of what Q evaluates to.

The clause is trivially satisfied [Urban 91]. This means tha t delete operations on the

body of the clause do not need any compensating action to make the implication

true.

4. If Q is true, the implication is evaluated to true regardless of what P evaluates to.

Therefore, compensating actions are not required when insert operations are made

on the head of the clause.

So the approach in [Nicolas 78] is used not only as a way of detecting the operations

tha t can violate a constraint but also as a mean of indicating the changes to be made to

satisfy it.

As an example, consider a constraint similar to the one proposed in [Morgenstern 84]

which enforces th a t the projects which a lecturer has a responsibility for, are to be the

same as the set of projects his/her research.assistants work on. This can be expressed as

the CE:

projects wof lecturer :: projects wof research_assistants of lecturer

Translating this constraint into first-order logic, one of the Horn rules is the following:

lecturer(M) A research_assistants(M,S) A projects(S,P) -> projects(M,P)

from which several conclusions can be drawn. When a research_assisiani is inserted, the

body of the above clause can become true, forcing the head of the clause to be true also.

On the other hand, the head of the clause can become false when a project of a lecturer is

deleted. To make the whole implication true, deletion of the project from this lecturer’s

research-assistants or deletion of the research-assistant itself may be necessary.

Since the path of a CE is translated into a conjunction of existentially qualified pred­

icates, any path ’s link appears in both the left and right side of a Horn rule. Hence,

insertions and deletions on any relationship occurring in the description of a CE, have to

be checked to verify tha t the constraint will be satisfied after the update. Therefore, two

events are considered for any of these relationships, triggered by put and delete methods,

respectively. However, links in the constraint scope definition, appear only on the left

hand side of Horn rules and then only put events are considered. As an example, the

CHAPTER 7. MAKING A C T I V E BEHAVIOUR EXPLICIT 135

event(before,put_projects,lecturer)

event(before, delete_projects, lecturer)

event, (before, put_research_assistants, lecturer)

event(before,delete _research_assistants,lecturer)

event(before,put_projects, person)

event(before,delete_projects,person)

Figure 7.10: Set of before events generated for the projects-of-lecturer constraint.

project-of-lecturer giving above constraint generates the set of before events shown in

figure 7.10.

It is worth noticing that since links mainly represent relationships and an attribute-based

view of relationships is provided, methods affecting CEs are not only those obtained

from the relationships directly involved in the CE but also those methods which modify

the value of their inverse relationships. For instance, the above constraint referring to

research.assistants, can be modified either directly by methods updating the relationship

research.assistants or indirectly by methods updating its inverse (i.e supervised.by), e.g.

the pu tsu perv ised .by method. However, in our opinion, the constraint mechanism should

not be in charge of this process, i.e. generation of the appropriate inverse events. It is

the relationship mechanism that has to propagate changes to a relationship to its inverse.

In this way, an improvement in transparency is achieved: the constraint mechanism is

unaware of whether a change has occurred directly in a relationship or in its inverse. In

a previous section, a metarule to achieve such behaviour has been given.

The active_m ethod, is obtained from the name of the relationship by adding the prefix

‘p u t . ’ or ‘d e le te .’. The active_class attribute is obtained by the system from the CE

anchor and the domain of the relationship view involved. These two attributes together

with the when attribute define, the event that causes a rule to be fired.

CHAPTER 7. M AKING ACTIVE BEHAVIOUR EXPLICIT 136

7 .6 .2 R u le c o n d it io n v a lu e g e n e r a t io n .

The condition is a set of queries to check that the state of the database is appropriate

for action execution. A single rule could be defined to be invoked when any of the above

events arise. In this case, the condition would check that the constraint was still valid

for all the objects involved. However, this could result in evaluation of the rule’s condi­

tion over a large number of objects. An improvement can be achieved if the condition

is checked only for those changes caused by the current update and assuming tha t the

DB was in a valid state before the update. Hence, if, for example, a project is added

to an research.assistant in the project-of-lecturer constraint, the condition and action of

the rules can be restricted to this update instead of checking the constraint for all the

projects of all the research.assistants of the lecturer. Therefore, a rule will be defined for

each possible event tha t can violate the constraint so that the condition and the action

attribute of the rule will consider only the changes produced by this event. Since rules

are indexed by class, an increase in the number of rules does not lead to a significant

system slow down. In our proposal, a rule-based version of the algorithmic solution for

CE maintenance proposed in [Morgenstern 84] is adapted to an 0 0 environment.

R u le cond itions are used to check whether a constraint will be violated by a given

update. If the condition is satisfied the action is executed either to put the DB into a

valid state or to reject the update.

Unlike in a deductive approach where relationships can be represented as predicates

whose arguments stand for the entities related, in the object oriented paradigm an

attribute-based view of relationships is more popular. Whereas a predicate view provides

a ncm-directional representation (i.e. the same predicate is used regardless of the argu­

ment being instantiated), in an object oriented system relationships are seen as pointers

to the related objects. In this case, the method invoked depends on the direction in

which the relationship is traversed. As a result, the constraint, declaratively stated, by

the user, cannot be directly translated to the rule’s condition as in [Urban 90], but it

is necessary to consider the direction in which the constraint is checked. For example,

in the projects-of-lecturer constraint the research.assistants link is transformed to the

supervised-by link (i.e. its inverse) if the constraint is traversed backwards.

The process of defining a rule’s condition can be better understood if paths are seen as

CHAPTER 7. MAKING A C T I V E BEHAVIOUR EXPLICIT 137

function compositions. In this way, a constraint such as:

rm of of ... r2 of rj of anchor :: ln of ln_ 1 of ... /2 of /j of anchor

can be seen as a comparison of functions S and T:

r2 o r x (anchor J n s ta n ce) = ln o I. h ° 11 (anchor J n s ta n ce)

When an insertion occurs, for instance the object Oi is inserted 3 as an r, of the object

0 2 the equality between functions S and T has to be maintained. Since r, is the modified

link, the condition takes into account only the change produced in rt . Let LS be the set

of rm.range objects that have been affected by the update, which can be worked out as:

L S = r m o rm_! o • • • r,+2 o rt+1 (C^)

Let AS be the set of anchor objects that have been affected by the update, which can be

obtained as:

A S = r f 1 o r2 1 o • ■ • r~}2 ° r ~ \ (0 2)

where r,-1 stands for the inverse of r,-.

As a result of the above insertion, function S has been enlarged with the set of pairs

obtained from the Cartesian product of AS and LS, except those already in S 4:

A S = (.45 © LS) - S

The rule’s condition has to take into account the following cases:

1. if LS = 0 or AS = 0 then the constraint is trivially satisfied

2 . if A S = 0 then the constraint is satisfied

3. if A S 7 ̂ 0 then the constraint is violated

In cases 1 and 2, the condition is evaluated to false and the rule does not fire. In

the third case the action is executed since the constraint has been violated, i.e. the

3The m essage p u l_ r ,([0]]) = > 0 2 would achieve this insertion in A DAM .

4Once the update has been m ade, the original value o f S can be obtained from T.

CHAPTER 7. M AKING ACTIVE BEHAVIOUR EXPLICIT 138

equality is no longer valid. In figure 7.11 the rule generated for an insertion on the

projects relationship in the projects-of-lecturer constraint is shown. Functions AS and LS

are obtained as compositions of methods after the specification of the constraint. In this

case (Anchor = InstanceOid) and (L ea f = N ew V alue) represent such a composition for

AS and LS respectively. Once these functions have been calculated, the rule’s condition

ascertains which of the above cases (1,2 or 3) has occurred. It is worth noticing that the

set of pairs violating the constraint, i.e. A S , is passed to the action part as the result of

condition evaluation. In re-establishing the constraint, the action focuses on this set of

pairs instead of considering the whole of S.

When a deletion occurs, e.g. the object 0 \ is deleted as an of the object 0 2, function

S is reduced to the set of pairs:

V S = {A S ® LS} - S '

where S’ is the function S after the deletion has taken place. As before, three situations

are possible namely, the constraint is trivially satisfied, the constraint is satisfied or the

constraint is violated.

7 .6 .3 R u le a c tio n va lu e g en era tion .

A ru le ac tion is a set of operations directed towards constraint recovery. One of the

strengths of CEs as originally proposed by [Morgenstern 84] is tha t they provide a way

to declaratively state the changes to be done to re-establish a valid state of the DB. In

[Morgenstern 84] the concept of a weak bond is proposed as the attribute “more readily

modified in response to an initial change to the other side of the CE” . In our example, if

function S is enlarged with A S as a result of an insertion, function T must be extended

with the same set of pairs if equality is preserved. A S can be seen as the set of pairs

violating the constraint. The question is: which of the /,• functions have to be modified.

The weak bond indicates such a function. If no weak bond is provided by the user, the

action part rejects the update, displaying an error message. If a weak bond is available

(e.g. lw) the action has to find how to extend lw so tha t the function composition T is

enlarged and the constraint re-established.

For each anchor (e.g. a/;) in AS, i.e.the violating-constraint-pairs, the set of pairs with

which function lw can be extended, is worked out in the following way:

CHAPTER 7. M AKING ACTIVE BEHAVIOUR EXPLICIT 139

lw - range = {rZt- | Z^ij o lw]_2 o ...Z2 1 o 1(bk) = W.-Vt*, € {(a*, b*.) G AS}}

— domain = {<ZZ,- | Zn o Zn_x o ...lw + 2 ° C + i(flfc) = dl{\/ak € {(flfc,&Jfc) € AS}}

To avoid inserting the Cartesian product of lw-range and Z^-domain, a select operator

can be introduced to filter the pairs to be added to the DB, taking into account tha t for

each dl an lw link has to be established with at least a rZ (and at most, if lw is single

valued). If either Z^-range or Z^-domain are empty it means tha t some associations are

not defined and the system will reject the update. In [Morgenstern 84], some kind of

specification or user interaction is proposed to obtain these missing associations. This

process must be repeated for each anchor in the violating constraint pairs.

In figure 7.11, a rule’s action can be seen. The variable ConstViolPairs represents AS

which is obtained after condition evaluation. The objects a^ and b}. are represented by

the variable AAnchor and A Leaf, respectively. To obtain Z^a-ange and Zw_domain the

sequence of methods (getji'esearch.assistants(Ri) = > AAnchor) and (D{ = A Leaf)

are executed, respectively. Different values of Ri and D\ are obtained by backtracking.

For each pair (f£/, D\) the system inserts a project since this link has been marked as the

weak bond.

As far as deletion is concerned, the rule’s action will reduce T by the set of pairs S/S.

This is accomplished by reducing the weak bond function. The Z^-range and Z^-domain

can be worked out as presented above. For each pair, the lw relationship is removed

7.7 Conclusion

Unlike current DBs, active DBs aim to provide automatic answers to events generated

internally or externally to the system itself. System responses are expressed declare

tively through event-condition-action rules. The research presented here is an attem pt

to provide an insight into rules in an 0 0 context, stressing uniformity.

Uniformity stems from seeing rules as ‘first-class’ objects described by attributes and

methods. In this way, rule management operations are conceived and implemented as

methods. This brings all the advantages of the 0 0 paradigm into rule management

allowing rule management operations (e.g. fire, signal) to be specialised to cope with

CHAPTER 7. M AKING A C T IV E BEHAVIOUR EXPLICIT 140

new([RuleOid,[
a c t lv e _ c la s * ([lecturer]),
• c tlve_m «thod([put_projects]),
w hen([befo re]),
l» _ lt_ e n a b le d ([y e s]),
c o n d ltlo n ([(

condltion_result(ConstViolPalrsl
current_object(InstanceOid), */«This is 0 2
current_arguments([NewValue]), %This is O,
findall(Anchor,(Anchor « InstanceOid),Anchors),
findall(Leaf,(Leaf - NewValue),Leaves),

((Anchors - [] ; Leaves » Q)
•> % first case: Constraint trivially satisfied

(ail
; findall([AAnchor,ALea(]),

(memberf AAnchor,Anchors),
member(ALeaf, Leaves),
W (get_research_assistants(Emp) «> AAnchor,

get_projects(ALea() -> Emp))
) .

ConstViolPairs),
(ConstViolPairs - Q

• > fall % aecond case
; true % third case

)

)

))>.
a c t io n ([(

condition_result(ConstViolPairs),
current_object(InstanceOid),

obtaining_anchors(Const Viol Pairs,Anchors),
(member(AAnchor .Anchors),

member([AAnchor,ALeaf]),ConstViolPairs),
((get_research_assistants(R|t *> AAnchor),
(P. - ALeal).

% adding P, as a project of R , if required. Project is the weak bond
% the variable Result reflects the result of this addition

)) .
Result

)]) .
declarative_condition([pro jects wof lecturer]),
declarative_action([projects wof research_assistants of lecturer])

]]) -> integrity_rule.

Figure 7.11: A constraint maintenance rule

CHAPTER 7. M AKING ACTIVE BEHAVIOUR EXPLICIT 141

special requirements. As a result, rules can be related to otlrer objects or arranged in

hierarchies, and rules can even be defined which are triggered by methods attached to

rules themselves. Treating rules as objects also has the advantage tha t any new facility

introduced for objects is automatically applicable to rules.

However rules are not an end on themselves. Rule conditions and actions can be difficult

to state for non-experienced users. Therefore, higher level constructs can be provided

whose semantics are declaratively specified and preserved by system-generated rules.

This approach has been used in this thesis to enforce integrity constraints and the oper­

ational semantics of relationships.

Although it has not been the main concern of this work, efficiency plays a decisive role

in active DBs. Several benchmarks have been performed to measure the overhead im­

posed by the rule management system. The results show th a t the introduction of rules

makes programs on average about twice as slow as they are when the rule mechanism

is disabled. Such a slow-down is predictable, as rule evaluation imposes an overhead on

every possible event th a t can be detected by the system. However, the scale up factor

(i.e. how the number of rules affects system performance) has been kept low by indexing

rules by class. In this way the search for applicable rules is considerably reduced.

The principal contribution of the work presented in this chapter lies on providing some

insights into rule management in OODBs through the extension of ADAM with active

capabilities. Unlike the work presented in [Bauzer 90, Kotz 88] no additional structures

have been defined. Every feature is catered for by enlarging object description with

attributes and/or methods. Our work then, is more in tune with that presented in

[Chakravarthy 89, Dayal 88] as part of the HiPAC project. However, whereas in HiPAC

the underlying DB is relational, we have considered the idiosyncrasies of OODBs by

using ADAM.

C hapter 8

Conclusions

8.1 M aking object-oriented databases more knowledgeable

The next generation of DBs will support knowledge independence, i.e. knowledge will

be removed from the procedural setting in which it is embedded and described in a

declarative format within the DB. Several advantages can be arise from this approach:

• Understandability. Since the knowledge is in a declarative format, it is easier

to capture what its subject matter is. Otherwise, implementation details could

obscure its real meaning.

• Maintainability. Knowledge can be easily modified if it is explicitly stated, without

having to tackle procedural side-effects.

• Reusability. Removed from a particular application, knowledge can be used for

many purposes, even for some not foreseen at the beginning.

OODBs are seen as a promising direction in DB evolution. Two features are considered

to be the principal achievements of this approach. First, being object-oriented, a direct

mapping between entities in the real world and the constructs of the DB is supported,

thus preventing entities from being split. Second, the features modelled refer not only

to the structural aspects of the UoD but also to the behavioural ones. An entity is

described by its attributive structural and relational characteristics as well as by its be­

haviour, described by methods. In this way, OODBs attem pt to cope with the impedance

mismatch problem. Nevertheless, methods can jeopardize knowledge independence by

142

CHAPTER 8. CONCLUSIONS 143

encapsulating not only the implementation of the operation to which it refers but also

other kinds of knowledge.

Our aim has been to extend an OODB, ADAM, with a set of constructs tha t allow the

explicit representation of knowledge tha t was previously hidden in method im plem ents

tions. These constructs allow integrity constraints, user-defined relationships and active

behaviour to be represented explicitly.

In te g rity co n s tra in ts in ABEL are explicitly stated as facets of the attributes. A

constraint equation (CE) approach has been chosen, because of to its path-like syntax

which is more familiar to the user, who does not have to express constraints in a different

paradigm such as first order logic. In this way, the responsibility for constraint enforce­

ment is removed from method definition, allowing methods to be overridden without

jeopardising constraint maintenance. From the point of view of the user, this approach

also relieves him /her from considering constraint maintainability and constraint interac­

tion. Furthermore, system capabilities can be enhanced using the constraints explicitly

stated for other purposes (e.g. semantic query optimisation).

The main contributions of our approach can be summarised as follows:

• Although CEs have already been proposed for relational DBs [Morgenstern 84],

moving then to an object-oriented framework poses xrew challenges. Constraints

no longer refer to attributes in flat relations but to classes arranged in hierarchies.

This raises the problem of constraint inheritance which has been tackled by moving

constraints out of method definitions.

• A rule-based mechanism is proposed for constraint maintenance. A set of rules

are automatically generated by the system from the declarative specification of the

constraint. Such a set is obtained from the first order logic counterpart of CEs.

U ser-defined re la tio n sh ip s are seen as first-class objects: attributes and methods can

be used to describe relationships that can be arranged in hierarchies. Furthermore, novel

features have been considered such as the description of the operational semantics of the

relationship and the introduction of ‘inferred’ constraints and/or attributes of the objects

among which the relationship is established. The operational semantics allow messages

to be propagated and delegated from one participant to the other. In this way, sharing

CHAPTER 8. CONCLUSIONS 144

through other than the is_a and instance links is considered. This is a quite new feature

in OODBs that requires further research. It is our opinion th a t seeing relationships as

first-class objects provides a new way of conceptualising the application, encouraging a

more relational view of the UoD.

Three points can be seen as the main contributions of this work:

• Although we do not claim to have the novelty of defining relationships as objects,

i t is less common, in the DB literature, to find work investigating the ‘inferred’

properties of relationships. In this chapter some insights into inferred attributes

and constraints have been presented and implemented.

• The idea of the operational semantics for relationships, originally proposed for

programming languages in [Rumbaugh 87], has been extended to consider both

propagation and delegation effects in the context of OODBs. Furthermore, un­

like the approach in [Rumbaugh 87], a rule-based mechanism has been used for

supporting this semantics.

• Like objects, relationships can be arranged in hierarchies. Here an approach has

been presented and implemented for relationship specialisation.

E ven t C ond ition A ction R ules (EC A ru les) provide an active dimension to DBMSs.

The system is no longer a passive repository of data but can undertake its own actions

autonomously. Because they are supported in an object-oriented manner, rules are ma­

nipulated in the same way as any other object in the system: rules can be queried,

arranged in hierarchies, related to other objects and so on. But what is more important,

the rule manager itself can be specialised to meet new requirements by using the same

0 0 philosophy: introducing and/or specialising either classes, methods or attributes.

Full advantage of this feature has been taken during the implementation of the system.

Several examples have been given of the direct use of rules. Nevertheless, higher level

tools can be provided of which rules are simply a vehicle for implementation. Integrity

constraints and the operational semantics of relationships have been supported in this

way: rules are generated by the system from some declarative specification. However,

some efficiency penalty has to be paid. The introduction of rules make programs on

average about twice as slow as they are when the rule mechanism is disabled. However,

CHAPTER 8. CONCLUSIONS 145

the scale-up factor (i.e. how the number of rules affects system performance) has been

kept low by indexing rules by class.

The principal contribution of this work lies in providing some insights into rule manage­

ment in OODBs through the extension of ADAM with active capabilities. Unlike the

work presented in [Bauzer 90, Kotz 88] no additional structures have been defined. Every

requirement is accomplished by enlarging object description with attributes and/or meth­

ods. Our work then, is more in tune with tha t presented in [Cha.krava.rthy 89, Dayal 88]

as part of the HiPAC project. However, whereas in HiPAC the underlying DB is rela^

tional, we have considered the idiosyncrasies of OODBs by using ADAM.

During the conceptualisation and implementation of the whole system we have kept in

mind two principles: uniformity and declarativeness. Both help to enhance the under-

standability, maintainability and reusability of the system which had previously been

jeopardised by embedding more information into some method definitions than just

method implementation. As pointed out in [Khoshifian 90] “... in the evolution of

databases and data models, OODBs form an important and necessary phase. The future

of DBs, however, is with intelligent databases” . In our opinion, ABEL is a contribution

towards this end.

8.2 System im plem entation

One of the main contributions of this thesis is the illustration of the use of metaclasses

for extending the system along the lines originally established in [Paton 89a]. Paton’s

OODB, ADAM, has shown itself to be a reliable, sound and flexible system for imple­

menting our ideas. The availability of metaclasses in ADAM has proved to be a rev­

olutionary mechanism. Since data and m etadata are both represented as objects, only

one mechanism is required for browising, querying, relating and specialising objects. As

a result, the distinction between data and m etadata is removed and it becomes a ques­

tion of the level of abstraction at which one is working. Besides uniformity, two main

advantages can be seen from this approach: accessibility and extensibility. The former

allows users to query, update and delete metadata dynamically like any other data in

the system. Extensibility stems from using objects to define the DBMS which can be

enlarged and specialised using the well-known subclass mechanism. In order to cope

CHAPTER 8. CONCLUSIONS 146

with new features, ADAM can be extended along two dimensions: the inheritance hier­

archy where the description of objects as instances is considered, and the instantiation

hierarchy where the description of objects as classes is taken into account. Both kind

of extensions have been required to provide the new features, and their implementation

has been shown throughout the thesis. In our opinion, metaclasses are a breakthrough

in system design, whose importance has not yet been stressed enough.

ABEL has been implemented in QUINTUS Prolog (Version 2.5) running under SUN.

The system can be executed by invoking ‘abel’, an executable file containing a Prolog

save state and obtained once the system has been booted. The system is availabled for

research from

• Computing Science Department, University of Aberdeen, U.K.

• Facultad de Informatica, Universidad del Pals Vasco, Spain

provided permission has been granted for using ADAM (contact: Norman Paton, Heriot-

W att University, Edinburgh).

Finally, the following features of Prolog have been particularly useful throughout the

implementation:

• Meta-level programming. The ability to create data structures tha t are subse­

quently treated as Prolog programs has been widely used during rule generation.

• Homogeneous treatm ent of procedures and data. This proved to be especially

useful in EC A rules.

• The Prolog unification mechanism has been advantageous, specially when imple­

menting delegation sharing for the operational semantics of relationships.

• The flexibility of the structure inspection mechanism through pattern matching.

8.3 Future directions

8 .3 .1 In te g r ity co n stra in ts

To cope with the increase in complexity of the domains tackled by DBs, more powerful

integrity constraint mechanisms are required. This concerns not only the availability of

CHAPTER 8. CONCLUSIONS 147

a constraint definition language but also a new range of issues such as constraint excep­

tions or the definition of a rule language to specify recovery actions if constraints are

violated, in the way initiated by Morgenstern’s weak bond. Such issues have become

particularly im portant in CAD/CAM system [Buchmann 86].

In the current implementation, constraint equations have been defined to check set equal­

ity. A richer constraint language can be provided in the way suggested by Morgenstern

[Morgenstern 84] where more complex set operations would be available.

Besides, as the number of constraints increases and they become more complex, it is

harder for the designer to foresee constraint interaction and possible side-efiects. A con­

straint interaction tool like the one described by Urban [Urban 90] could be very useful.

Finally, since constraints are defined explicitly, they can be used for purposes other than

constraint maintenance. We envisage further use of constraints for semantic query opti­

misation [Chakravarthy 90, Demolombe 90] and intensional query processing [Motro 89].

8 .3 .2 U ser -d efin ed re la tion sh ip s

Enhancing the semantics of relationships should be further investigated. For example,

the system can be extended to consider the mathematical properties of relationships

either in a simple way (e.g. the transitivity, symmetry and reflexivity of the relation­

ship) as presented in [Escamilla 90] or with a more sophisticated language such as the

one found in CRL [Carnegie 85]. N-ary relationships can also be addressed within this

new framework. Some applications should be developed to test the usefulness of the

constructs already provided.

Also, derived classes are a useful mechanism as proved by the SDM data model. Al­

though a rudimentary mechanism has been sketched in [Diaz 91b], a more sound and

richer implementation is required.

8 .3 .3 R u le m a n a g em en t

A t this stage, rules are fired in sequence from the more general to the more specific. This

follows the heuristic tha t rules have to be fired in an adequate context, i.e. more specific

CHAPTER 8. CONCLUSIONS 148

rules wait till more general rules have fired to provide the right framework. Although

this is valid for integrity constraints, other kinds of control can be required. A finer

granularity mechanism is needed.

As the number of rules increases, optimisation and control of rules become fundamental

issues. Work already done in relational and deductive DBs can help here. A rule language

tha t allows conditions and actions of rules to be described in a more declarative fashion,

would facilitate not only the specification of rules but also would provide the basis for

reasoning about rules’ conditions and actions. Such reasoning could check, for instance,

the similarity between rule’s conditions to avoid re-evaluation (in the way of the RETE

mechanism [Forgy 81]). Also some processes can be made to detect when a rule’s action

is affected by another rule’s condition so tha t a network of rules can be supported to

enhance system performance.

Some gains can also be achieved by providing more sophisticated rule indexes other than

by class as in the current implementation. A quicker event detector would also enhance

the efficiency of the rule manager.

8.4 Can we claim to have made ADAM more knowledge­

able?

The answer is ‘Y E S ,B U T ...’. Such a. cautious answer stems from the different views

tha t DBs and AI practitioners have about what knowledge really means.

Our ‘Y E S ’ part of the answer comes from the DB side. In this area the view is:

“... th a t databases represent sets of definite atomic statements (facts) and
tha t knowledge bases may, in addition, represent sets of general statements
and conditional statements (rules)...” [Bubenko 89]

From this perspective, ADAM has definitively been made more knowledgeable, in­

creasing the set of general statements (i.e. universally quantified) kept in the DB. In­

tegrity constraints, relationship semantics and active behaviour were previously embed­

ded in method implementations and can now be stated explicitly.

B U T ... the AI view of knowledge is quite different. Knowledge in AI means:

CHAPTER 8. CONCLUSIONS 149

“... a collection of data structures and interpretive procedures ... which
together produce an intelligent behaviour in some sense. An instance of a
data structure is not seen as knowledge but only as a source of knowledge.
W ithout procedures which can interpret and use it, data is nothing more
than an arbitrary collection of (electronic-magnetic) marks.” [Bubenko 89]

This view is also supported by M.L. Brodie and J. Mylopoulos when they state:

"... any knowledge representation language must be provided with a (rich)
semantic theory for relating an information base to its subject m atter, while
a data model requires an (effective) computational theory for realising infor­
mation bases on physical machines.” [Brodie 86b]

The im portant point is tha t knowledge can be interpreted based on a semantic theory.

And this is what is generally missing in OODB. As an example, classes in OODB are

characterised by the set of message they can respond to. Such a. set of messages refers

not only to the methods explicitly stored with the class but to the ones th a t are inherited

from its superclasses as well. The problem stems from the fact tha t inheritance is an

operational notion where, for example, the order in which superclasses are specified is

im portant in deciding the method to be inherited. As pointed out by Patel-Schneider:

“... the meaning of a class can be determined only by a very close ex­
amination of the operational details of the inheritance mechanism, the data
structures in the class tha t control inheritance, and the data structures in
more-specific classes. If classes were governed by a separate, representational
definition, as in knowledge representation systems, then these operational
details would not be important, and would not have to be investigated”
[Patel-Schneider 90]

This problem worsens if, instead of viewing inheritance as a technique for special­

isation, it is seen as an implementation technique where reusability is maximised by

allowing operations to be excluded from subclasses [Snyder 86].

Some systems are being developed based on these premises by using a terminological

approach, e.g. CLASSIC [Borgida 90]. But no solution is thoroughly satisfactory. These

systems encompass only structure (not behaviour) and have to limit their expressiveness

to avoid becoming intractable.

Unfortunately, a general solution might not be possible [Mylopoulos 90] and in the near

future a range of different systems with distinct capabilities may appear. After all, file

CHAPTER 8. CONCLUSIONS 150

systems have not completely died out with the arrival of DBMSs, being still alive in

transaction systems. As concluded by Mylopoulos:

greater modelling power (to capture knowledge in arbitrary ‘real
world’ applications) and better programming facilities (through the integra­
tion of database management and programming language features) are two
largely exclusive sets of requirements tha t will eventually lead to two different
types of object-oriented notations and supporting systems.” [Mylopoulos 90]

In our opinion, the extensions proposed in this work reach a good balance between

enhancing modelling capabilities and programming facilities.

Bibliography

[Abardanel 87] R.M. Abarbanel, M.D. Willians A Relational Representation for Knowl­
edge Bases, in [Kerschberg 87], pp. 191-206

[Abiteboul 87] S. Abitebout, R. Hull IFO: A Formal Semantic Database Model, in ACM
Transactions on Database Systems, 12(4), pp. 525-565

[Agha 86] G. Agha Actors: A Model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, MA

[Albano 89] A. Albano Conceptual Languages: A Comparison of ADAPLEX, Galileo
and Taxis, in [Schmidt 89], pp. 395-408

[Almorade 89] J. Almorade Rule-Based Delegation for Prototypes, OOPSLA’89, pp. 363-
370

[America 91] P. America A Behavioural Approach to Subtyping in Object-Oriented Pro­
gramming Languages, in [Lenzerini 91], pp. 173-190

[Amy 89] I. Amy Chen, D. McLeod Derived Data Update in Semantic Databases, in 15th
Intl. Conf on Very Large Data Bases, pp.225-2235

[Attardi 89] G. A ttardi, C. Bonini, M. Boscoterecase, T. Flagella., M. Gaspari Metalevel
Programming in CLOS, in Proc. ECOOP, Cook (Ed.), pp. 243-256

[Bancillion 86] F. Bancilhon, R. Ramakrishnan An amateur’s introduction to recursive
query-processing strategies, in ACM SIGMOD Intl. Conf. on Management of
Data, pp. 16-52

[Bancilhon 88] F. Bancilhon Object-Oriented Database Systems, in Proc. 7th ACM
SIGART-SIGMOD-SIGACT Symp. Principles of Database Systems

[Bauzer 90] C. Bauzer Medeiros, P. Pfeffer A mechanism for Managing Rules in an
Object-oriented Database, Altair Technical Report

[Beech 90] D.Beech, P. Bernstein, M. Brodie, M. Carey, B. Lindsay, L. Rowe, M. Stone-
braker Third-generation data base system manifesto, in [Meersman 91], pp.
495-511

[Bernstein 80] P. Bernstein, B. Blaustein, E. Clarke Fast Maintenance of Semantic In­
tegrity Assertions using Redundant Aggregate Data, 6tli Intl. Conf. on Very
Large D ata Bases, Montreal, pp. 126-131

151

BIBLIOGRAPHY 152

[Bertino 91] E. Bertino, L. Martino Object-Oriented Database Management Systems:
Concepts and Issues, IEEE Computer, April, pp. 33-47

[Bobrow 81] D.G. Bobrow, M. Stefik The Loops manual, Tech. Rep. IvB-VLSI-81-13,
Knowledge Systems Area, Xerox, Palo Alto, Research Center

[Borgida 84] A. Borgida, J. Mylopoulos, H.K.T. Wong Generalization/Specialization as
a Basis for Software Specification, in [Brodie 84a], pp. 87-114

[Borgida 90] A. Borgida, R.J. Brachman, D.L. McGuinness, L.A. Resnick CLASSIC: A
Structural Data Model for Objects, ACM Sigmod Notice, pp. 58-67

[Brachman 83] R.J. Brachman, R.E. Fickes, H.J. Levesque KRYPTO N: a functional
approach to knowledge representation, IEEE Computer, 16(10)

[Brachman 85] R.J. Brachman, J.G. Schmolze An overview of the KL-ONE knowledge
representation system , Cognitive Science, 9, pp. 171-217

[Brachman 85] Brachman, R.J., I lied about the trees, The AI Magazine, pp. 80-93, Fall
1985

[Brodie 84a] On Conceptual Modeling, M.L. Brodie, J. Mylopoulos, J.W . Schimidt (Eds.)
Springer-Verlag, 1984

[Brodie 84b] M.L. Brodie, D. Ridjanovic On the Design and specification of Database
Transactions, on [Brodie 84a], pp. 277-306

[Brodie 86a] On Knowldege Base Management Systems, M.L. Brodie, J. Mylopoulos
(Eds.) Springer-Verlag, 1986

[Brodie 86b] M.L. Brodie, J. Mylopoulos Knowledge Bases versus Databases, in
[Brodie 86a], pp. 83-86

[Brodie 86c] M.L. Brodie Database Management: A Survey, in [Brodie 86a], pp. 201-218

[Bubenko 89] J.A. Bubenko, I.P. Orci Knowledge Base Management Systems: A
Database View, in [Schmidt 89], pp. 373-378

[Buchmann 86] A.P. Buchmann, R.S. Carrera, M.A. Vazquez-Galindo A Generalized
Constraint and Exception Handler for an Object-Oriented CAD-DBMS, in
Proc. 1st Intl. Workshop on OODB Systems, K. Dittricli, U. Dayal (Eds.),
pp. 38-49

[Buneman 86] P. Buneman, M.P Atkinson Inheritance and Persistence in Database Pro­
gramming Languages, in Proc. ACM SIGMOD, pp. 4-15

[Cardelli 85] L. Cardelli, P. Wegner On understanding types, data abstraction, and poly­
morphism, Computing Surveys, 17(4), pp. 471-523

[Carey 88] M.J. Carey, D.J. Dewitt, S.L. Vandenberg A Data Model and Query Language
for EXODUS, in Proc. ACM SIGMOD, pp. 413-423

[Carnegie 85] Knowledge Craft Manual Carnegie Group Inc., Pittsburgh, 1985

BIBLIOGRAPHY 153

[Caseau 89] Y. Caseau A Formal System for Producting Demons from Rules in an
Object-Oriented Database, in 1st Intl. Conf on Deductive and Object Oriented
Databases, Kyoto, pp. 188-204

[Ceri 90] S. Ceri, J. Widom Deriving Production Rules for Constraint Maintenance, in
16th Intl. Conf. in Very Large Data Bases, Brisbane, pp. 567-577

[Chandrasekaran 83] S. Chandrasekran, S. Mittal Conceptual Representation o f Medical
Knowledge for Diagnosis by Computer: MDX and Related Systems Advances
in Computers, M. Yovits (Ed.), pp. 217-292

[Chakravarthy 89] S. Chakravarthy Rule Management and Evaluation: an Active DBMS
Perspective SIGMOD RECORD, 18(3), pp. 20-28

[Chakravarthy 90] V.S. Chakravarthy, J. Minker, J. Grant Logic Based approach to Se­
mantic Query Optimization, ACM Transactions on Database Systems, 15(2),
pp. 162-207

[Codd 79] E.F. Codd Extending the database relational model to capture more meaning,
ACM TODS, 4(4), pp. 397-434

[Cointe 87] Cointe, P., Metaclasses are First Class: the ObjVlisp Model, in Proc. OOP-
SLA, pp. 156-167

[Copeland 84] G.P. Copeland, D. Maier Making Smalltalk a database system , in Proc.
ACM SIGMOD, pp. 316-325

[Dahl 66] O.J. Dahl, K. Nygaard SIMULA: An Algol-based simulation language, Comm-
nunications of the ACM, 9(9), pp. 671-678

[Dayal 88] U. Dayal, A.P. Buchmann, D.R. McCarthy Rules Are objects Too: A Knowl­
edge Model for An Active, Object Oriented Database System , in Proc. 2nd Intl.
Workshop on OODBS, K.R. Dittrich (Ed.), Spring-Verlag, pp. 129-143

[Dayal 89] U. Dayal Active Database Management Systems, SIGMOD RECORD, 18(3),
pp. 150-169

[Demolombe 90] R. Demolombe, A. Illarramendi, J.M. Blanco Semantic Optimization in
Data Bases Using Artificial Intelligence Techniques, Artificial Intelligence in
databases and Information Systems (DS-3), IFIP, North-Holland pp. 519-529

[Deux 90] O. Deux The Story of 0 2, IEEE Trans. Knowledge and D ata Engineering,
2(1), pp. 91-106

[Diaz 90] O. Diaz, P.M.D. Gray Semantic-rich User-defined Relationship as a Main Con­
structor in Object Oriented Databases, in [Meersman 91], pp. 207-224

[Diaz 91a] O. Diaz, N.W. Paton Sharing Behaviour in an Object Oriented Database
using a rule-based mechanism in Proc. 9th. British National Conference
on Databases, BNCOD’91, Wolverhampton (United Kingdom), Butterwortli
Publishers, pp. 17-37

[Diaz 91b] O. Diaz, P.M.D. Gray, N.W. Paton Rule Management in Object Oriented
Databases: a uniform approach in 17th Intl. Conf. on Very Large D ata Base,
Barcelona, pp. 317-326

BIBLIOGRAPHY 154

[Dittrich 86] K.R. Dittrich Object-oriented databases: the notion and the issues, Proc.
1st Intl. Workshop on Object-Oriented Databases, 1986

[Ellis 89] C.A. Ellis, S.J. Gibbs Active Objects: Realities and Possibilities, in [Kim 89],
pp. 561-572

[Escamilla 90] J. Escamilla, P. Jean Relations Verticales et Horizontales dans un modele
de representation de Connaissances, in Nouvelles Perspectives des Systems
d’Information, A. Flory, C. Rolland (Eds.) EYROLLES, pp. 153-185

[Eswaran 75] K.P. Eswaran, D.D. Chamberlin Functional Specifications of a Subsystem
for Database Integrity in 1st Intl. Conf. on Very Large D ata Bases, pp. 48-68

[Forgy 81] Forgy, C.L., OPS5 User’s Manual, Report CMU-CS-81-135, Carnegie-Mellon
University, 1981

[Fox 86] M.S. Fox, J.M. Wright, A. David Experiences with SRL: an analysis .of a
frame-based knowledge representation system, in [Kerschberg 86], pp. 161-172

[Fox 79] M.S. Fox On Inheritance In Knowledge Representation, in IJCA I’79, pp. 282-
284

[Freundlich 90] Y. Freundlich Knowledge Bases and Databases: Converging Technolo­
gies, Diverging Interests, IEEE Computer, November, pp. 51-57

[Goldstein 77] I.P. Goldstein,-R.B. Roberts NUDGE, a knowledge-based scheduling pro­
gram in IJCAI-5, pp. 257-263

[Goldberg 83] A. Goldberg, D. Robson Smalltalk-80: The Language and Its Implemen­
tation, Reading, MA, Addison-Wesley

[Gray 88] P.M.D. Gray Expert Systems and Object Oriented Databases: evolving a new
Software Architecture,' in Research and Development in Expert Systems V, B.
Kelly and A. Rector (Eds.), Cambridge University Press, pp. 284-295

[Gray 92] P.M.D. Gray, Iv.G. Ivulkarni, N.W. Paton Object Oriented Databases: A Se­
mantic Data Model Approach, Prentice-Hall, 1992

[Hammer 81] M. Hammer, D. McLeod Database description with SDM: A Semantic
Database Model, ACM Transactions on Database Systems, 6(3), pp. 351-386

[Harris 86] D.R. Harris A hybrid structured object and constraint representation lan­
guage, in AAAI, pp. 986-990

[Hewitt 77] C. Hewitt, Viewing Control Structures as Patterns of Passing Messages,
Artificial Intelligence, 8, pp. 323-364

[Hudson 89] S. Hudson, R. King Cactis: a self-adaptive, concurrent implementation of
an object-oriented database management system, in Proc. ACM SIGMOD, pp.
237-246

[Hull 87] R. Hull, R. King Semantic Database Modelling: Survey, applications and re­
search issues, ACM Computing Surveys, 19(3), pp. 201-260

BIBLIOGRAPHY 155

[Jagannathan 88] D. Jagannathan, R.L. Guck, B.L. Fritchman, F.P. Thompson, D.M.
Tolbert SIM: A database system based on the semantic data model, in Proc.
ACM SIGMOD, pp. 46-55

[Kerschberg 86] Proc. 1st Conf. Expert Database System , L. Kerschberg (Ed.), The Ben-
jaming/Cummings Publishing Company, 1986

[Kerschberg 87] Proc. 1st Intl. Conf. in Expert Database Systems, L. Kerschberg
(Ed.),The Benjaming/Cummings Publishing Company, 1987

[Kerschberg 89] Proc. 2nd Intl. Conf. in Expert Database Systems, L. Kerschberg (Ed.),
The Benjaming/Cummings Publishing Company, 1989

[Khoshifian 86] S.N. Khoshifian, G.P. Copeland, Object Identity, in Proc. OOPSLA, pp.
406-416

[Khoshifian 90] S. Khoshafian, R. Abnous Object Orientation: Concepts, Languages,
Databases, User Interfaces, Wiley, 1990

[Kim 89] Object-Oriented Concepts, Databases and Applications, W. Kim, F.H. Lo-
chowsky (Eds.) ACM Press, 1989

[King 84] R. King, D. McLeod A Unified Model and Methodology for Conceptual
Database Design, in [Brodie 84a], pp. 313-324

[Kingston 87] J. Kingston Technical Overview of Knowledge Craft, Airing, No. 3-6, AIAI
University of Edinburgh, 1987

[Klas 89] W. Klas, E.J. Neuhold, M. Schrefl Tailoring Object-Oriented Data Models
through Metaclasses, Proc. Advanced Database System Symposium, pp. 169-
178

[Kotz 88] A.M. Kotz, K.R Dittrich, J.A. Mulle Supporting Semantic Rules by a Gener­
alized Event/Trigger Mechanism in Advance in Database Technology, EDBT,
Venice, pp. 76-91

[Lafue 82] G.M.E. Lafue Semantic Integrity Dependencies and Delayed Integrity Check­
ing, in 8th Intl. Conf. on Very Large Data Bases, Mexico, pp. 292-299

[Lafue 87] G.M.E. Lafue, R.G. Smith Implementation of a semantic Integrity Manager
with a Knowledge Representation System, in [Kerschberg 87]

[Lambert 88] S. Lambert Functional approaches to Knowledge Representation, in
[Ringland 88], pp. 207-222

[Lassez 87] C. Lassez Constraint Logic Programming, BYTE Magazine, pp. 171-176

[Lenzerini 91] Inheritance Hierarchies in Knowledge Representation and Programming
Languages, M. Lenzerini, D. Nardi, M. Simi (Eds.), Wiley, 1991

[Levesque 85] H.J. Levesque, R.J. Brachman A Fundamental Tradeoff in Knowledge Rep­
resentation and Reasoning, in Readings in Knowledge Representation, R.J.
Brachman and H.J. Levesque (Eds.), Morgan Kaufmann, Los Altos, CA, 1985

BIBLIOGRAPHY 156

[Lieberman 86] H. Lieberman, Using Prototypical Objects to Implement Shared Be­
haviour in Object-Oriented Systems, in Proc. OOPSLA, pp. 214-223

[Masini 89] G. Masini, A. Napoli, D. Colnet, D. Leonard K. Tombre Les Languages a
objects, InterEditions, 1989

[McCarthy 89] D.R. McCarthy, U. Dayal The Architecture O f An Active Data Base Man­
agement System, Proc. Intl. Conf. on the Management of Data, Portland, pp.
215-224

[Meersman 91] Object-Oriented Databases: Analysis, Design and Construction (DS-J,),
R.A. Meersman, W. Kent, S. Khosla (Eds.), IFIP, North-Holland, 1991

[Meyer 88] B. Meyer Object-Oriented Software Construction, Englewood Cliffs, NJ,
Prentice-Hall

[Minsky 75] M. Minsky A framework for representing knowledge, in The Psychology of
computer vision, P. Winston (Ed.), McGraw-Hill, 1975

[Morgenstern 84] M. Morgenstern Constraint Equations: Declarative Expression of Con­
straints with Automatic Enforcement, Proc. Intl. Conf. on Very Large D ata
Bases, pp. 153-299

[Morgenstern 89] M. Morgenstern, A. Borgida, C. Lassez, D. Maier, and G. Wiederhold
Constraint-Based Systems: Knowledge About Data, in [Kerschberg 89], pp.
23-43

[Motro 89] A. Motro Using Integrity Constraints to Provide Intensional Answers to Re­
lational Queries, in 15tli Intl. Conf. on Very Large D ata Bases, Amsterdam,
pp. 237-249

[Mylopoulos 86] J. Mylopoulos, H.K.T. Wong Some features o f the TA XIS Data Model,
Proc. 6th Intl. Conf. on Very Large Data Bases, Montreal, Quebec, Canada,
pp. 399-410

[Mylopoulos 89] Artificial Intelligence and Data Bases J.M. Mylopoulos, M. Brodie
(Eds.) Morgan Kaufmann Publishers, 1989

[Mylopoulos 90] M. Mylopoulos Object Orientation and Knowledge Base Management
in [Meersman 91], pp. 23-38

[Nassif 90] R. Nassif, Y. Qui, J. Zhu Extending The Object-Oriented Paradigm to Support
Relationships and Constraints in [Meersman 91], pp. 305-330

[Nicolas 78] J.M. Nicolas, K. Yazdanian Integrity Checking in Deductive Data Bases,
Logic and Data Bases, Gallaire and Minker (Eds.), pp. 325-346

[Nii 86] H.P. Nii Blackboard Systems, AI Magazine, 7(2), pp. 38-53, 7(3), pp. 82-106

[Oxborrow 91] E. Oxborrow, M. Davy, Z. Kemp, P. Linington, R. Thearle Object-
oriented data management in specialized environments Information and Soft­
ware Technology, 33(1), pp. 22-30

BIBLIOGRAPHY 157

[Patel-Schneider 84] P.F. Patel-Schneider Small can be beautiful in knowledge represen­
tation, in Proc. IEEE Workshop on Principles of Knowledge-Based Systems,
1984

[Patel-Schneider 90] P.F. Patel-Schneider Practical, Object-Oriented Knowledge Repre­
sentation for Knowledge-Based Systems, Information System, 15(1), pp. 9-19

[Patel-Schneider 91] P.F. Patel-Schneider W hat’s Inheritance got to do with Knowledge
Representation, in [Lenzerini 91], pp. 1-12

[Paton 89a] N.W. Paton A Prolog Implementation of an Object-Oriented Database,
Ph.D. Dissertation, University of Aberdeen, Department of Computing Sci­
ence, 1989

[Paton 89b] N.W. Paton ADAM: An Object-Oriented Database System Implemented in
Prolog, Proc. 7th BNCOD, M.H. Williams (Ed.), Cambridge University Press,
pp. 147-161

[Paton 90] N.W. Paton, O. Diaz Metaclasses in Object-Oriented Databases, in
[Meersman 91], pp. 331-348

[Paton 91] N.W. Paton, O. Diaz Object-Oriented Databases and Frame-Based Systems:
Comparison, Information and Software Technology, 33(5), pp. 357-365

[Peckham 88] J. Peckham, F. Maryanski Semantic Data Models Computing Surveys,
20(3), pp. 153-189

[Peltason 89] C. Peltason, A. Schmiedel, C. Kindermann, J. Quantza. The BACK System
Revised, KIT-report, Fachbereicli Informatik, Technische Universitat Berlin,
1989

[Ringland 88] Approaches to Knowledge Representation. An Introduction, G.A. Ring-
land, D.A. Duce (Eds.) Research Studies Press, 1988

[Rumbaugh 87] J. Rumbaugh Relations as semantic Constructors in an Object-Oriented
Language, OOPSLA, pp. 466-481

[Rumbaugh 88] J. Rumbaugh Controlling Propagation of Operations using Attributes on
Relations, in Proc. OOPSLA’88, pp. 285-296

[Schaffert 86] C. Schaffert, T. Cooper, B. Bullis, M. Kilian, C. Wilpot An Introduction
to Trellis/Owl, in Proc. OOPSLA, pp. 9-16

[Schmidt 89] Foundations of Knowledge Base Management, J.W . Schmidt, C. Thanos
(Eds.) Springer-Verlag, 1989

[Segler 91] T.M. Segler A D A M /AB E L Conceptual Modelling MSc. Project Report, Com­
puting Science Department, University of Aberdeen, 1991

[Shepherd 84] A. Shepherd, L. Kerschberg Constraint Management in Expert Database
Systems, in [Kerschberg 86], pp. 309-331

[Snyder 86] A. Snyder Encapsulation and Inheritance in Object-Oriented Programming
Languages, OOPSLA’86, pp. 38-45

BIBLIOGRAPHY 158

[Snyder 87] A. Snyder Inheritance and the Development o f Encapsulated Software Sys­
tems, in Research Directions in Object-oriented Programming, Shriver and
Wegner(Eds.), pp. 165-188

[Steele 80] G.L. Steel The Definition and Implementation o f a Computer Programming
Language Based on Constraints, MIT VLSI memo. 80-32, Ph.D. Dissertation,
1980

[Stefik 81] M. Stefik Planning with constraints (MOLGEN: Part 1), Artificial Intelli­
gence, 16, pp. 111-140

[Stefik 86] M. Stefik, D. G. Bobrow Object-Oriented Programming: Themes and Varia­
tions, The AI Magazine, 6(4), pp. 40-82

[Stein 87] L.A. Stein Delegation is Inheritance, OOPSLA’87, pp. 138-146

[Stein 89] L.A. Stein, H. Lieberman, D. Ungar A Shared View of Sharing: The Treaty
of Orlando, in [Kim 89], pp. 31-48

[Stonebraker 90] M. Stonebraker, L.A. Rowe, M. Hiohama The implementation of
POSTGRES, IEEE Transactions on Knowledge and D ata Engineering, 2(1)

[Stonebraker 90] M. Stonebraker, A. Jhingram, J. Goh and S. Potamianos On rules,
procedures, caching and views in database systems, in Proc. ACM SIGMOD,
pp. 281-290

[Stroustrup 86] B. Stroustrup A n Overview of C++, SIGPLAN Notices, 21(10), pp. 7-18

[Szolovits 86] P. Szolovits Knowledge-Based Systems: A Survey, in [Brodie 86a], pp.
339-352

[TRILOGY 89] TRILOGY user’s manual. Complete Logic Systems Inc., North Vancou­
ver B.C., Canada

[Ullman 88] J.D. Ullman Principles of Database and Knowledge-Base Systems, Com­
puter Science Press, 1988

[Urban 86] S.D. Urban, L.M.L. Delcambre An Analysis of the Structural, Dynamic and
Temporal Aspects of Semantic Data Models, Intl. Conf. on D ata and Engineer­
ing, pp. 382-389

[Urban 89] S.D. Urban ALICE: An Assertion Language for Integrity Constraint Expres­
sion, in Proc. 5th Intl. Conf. on Computer Software and Applications, Los
Angeles

[Urban 90] S.D. Urban, M. Desiderio Translating Constraints to Rules in CONTEXT:
A CONstrainT Explanation Tool, in [Meersman 91], pp. 373-392

[Urban 91] S.D. Urban, L.M.L. Delcambre Constraint Analysis: A Design Process for
Specifying Operations on Objects, Transactions on Knowledge and D ata Engi­
neering, 1991

[Wald 89] J.A. Wald Implementing Constraints in a Knowledge Base, in [Kerschberg 89],
pp. 163-183

BIBLIOGRAPHY 159

[Weinreb 81] D. Weinreb, D. Moon Lisp Machine manual, Symbolics Inc., 1981

[Williams 88] T. Willians, S. Lambert Expressive Power and Computability, in
[Ringland 88], pp. 223-235

[Woods 75] W.A. Woods W hat’s in a link: foundations for semantic networks, in Rep­
resentation and Understanding: Studies in Cognitive Science, D.G. Bobrow,
A.M. Collins (Eds.), Academic Press, NY, 1975

A p p e n d ix A

A B N F grammar for constraint
equations in ABEL.

1

<constraint> <restriction>
<restriction> where <scope>
-[if restriction.class <> scope.class then error}

<restriction> <integer_restriction>
<string_restriction>
<set.restriction>

<integer_restriction> ::= <path> <integer_comparison> <integer>

<string_restriction> ::= <path> <string_comparison> <string>

<set_restriction> ::= <path> <set_comparison> <right_path>
{if path.class <> right.path.class then error}

<right_path> ::= <path>
I <path> <set_operator> <path>

<path> ::= <breakable_path>
I <unbreakable_path>

<unbreakable_path> ::= <unbreakable_rest_path> of <class_name>

<unbreakable_rest_path> ::= <attribute_name>
I <unbreakable_rest_path> of <attribute_name>

<breakable_path> ::= <unbreakable_rest_path> wof <class_name>
I <unbreakable_rest_path> wof <unbreakable_path>

1Tlie set operator u n io n is not yet implemented.

160

APPENDIX A. A BNF GRAM M AR FOR CONSTRAINT EQUATIONS IN ABEL. 161

<integer_comparison>

<string_comparison>

<set_comparison>

<set_operator>

<scope>

:= 'union*

:= <unbreakable_path> <integer_comparison> <integer>
I <unbreakable_path> <string_comparison> <string>

A p p e n d ix B

U sing ABEL: An Exam ple

B .l Purpose

There is notihng tha t can be done in ABEL that cannot be done in ADAM, in the same
way tha t nothing th a t can be done in PASCAL cannot also be done in ASSEMBLER.
It is merely a question of the amount of effort spent in writing, reading and maintaining
the code. However, providing primitives to capture the application domain explicitily
has more substantial consequencies: namely, it enhances data reusability and changes
the designer’s way of thinking.

The latter refers to the way in which designers conceptualise the world. In this context,
supporting relationships as ‘first-class’ constructs changes the terms in which the designer
envisages the world to be modelled. The designer thinks of relationships as proper
entities rather than as simple attributes subordinate to objects. It can be said tha t the
tool changes the user.

Moreover, removing knowledge from the procedural setting in which it is traditionally
embedded, allows the same knowledge to be used for several purposes. The reuse of
knowledge fits perfectly within the database philosophy, whose main postulate is data
independence, i.e. data removed from applications. Knowledge independence is just
another step in the same direction.

This has been the rationale for this work. This appendix is intended to illustrate this
approach.

B.2 Example

Suppose we axe interested in modelling the structural and behavioural features of people
and companies. People can be described by the attributes projects, salary and age and
have, as a behavioural feature, the ability to be moved. The age attribute is constrained
to be less tha t 120. People can be married and thus become the husband or wife of their
partners. The happiness of being married is enhanced by having a charming mother-in-
law. Also we would like to model the idea tha t when a married person has to be moved
so has his/her partner. Academics are a special kind of people who, besides sharing the
features of a person can have a degree.

As far as companies are concerned, they are described by their name and area of business

162

APPENDIX B. USING ABEL: A N EXAMPLE 163

cl: -
new([person, [

attribute(attribute_tuple(proj ects,global,set,optional,string, □)),
attribute(attribute.tuple(salary,global,single,optional,integer,[])),
attribute(attribute.tuple(age,global,single,optional,integer,

[age of person < 120])),

method ((moving (global, □ , □ , [] , □)
message.recipient(Person),
writeln([’The person ’, Person, ’ is moving '])

))
]]) => entity.class.

c2:-
new([academic,[

is_a([person]),
attribute(attribute_tuple(degree,global,single,optional,string,[])),

]]) => entity.class.

Figure B.l: The person and academ ic class definition in ABEL.

and their operations are: m oving (used when a company has to be moved) and stab ility
(used to work out the stability of the company from the area of business and an external
factor called ten den cy which takes as values: t l , t2 or t3). Enterprise and research insti­
tutes are two kinds of companies. Companies can have employees, i.e. people working
in the company. If a company has to be moved all of its employees have to be moved
as well, but not vice versa, the movement of a person does not imply the movement of
his/her company. Moreover, the stability of a person comes from the stability of the
company in which he/she works.

B.3 Im plem entation

From the above description it is clear tha t at least two entities are of interest: person
and company. The definition of the class person in ABEL is shown in figure B .l. Struc­
tural and behavioural features are represented by attributes and methods respectively.
Notice tha t the constraint on the age of person is explicitily represented as a facet. In
ADAM such a restriction would have had to be encoded within the method put-age (see
chapter 5). Although, in this example it is obvious how to extend the method to check
the constraint, more difficult changes involving more than one method are required for
more complex constraints. In ABEL, the user just specifies the constraint and leaves to
the system the generation of the appropriate code for maintaining the constraint.

Less obvious is how to represent the relationships between people, and between a person
and a company. For example, the marriage relationship established between two per­
sonsi, can be represented as pointers within the participating objects (e.g. husband-of and
wife-of attributes can be added to the person class). Where appropriate, these attributes
hold the object identifier of the corresponding partner.

APPENDIX B. USING ABEL: A N EXAMPLE 164

rell:-
new([marriage,[

related_classl([
related_class_tuple(person,the_husband,husband_of.single, □)

]) ,
related_class2([

related_class_tuple(person,the_wife,wife_of.single, □)
]) ,
operational_semantics([

propagating moving from the_husband to the_wife,
propagating moving from the_wife to the_husband

]) ,
attribute(

attribute_tuple(wedding_date,global,single,optional,string, □)),
attribute(

attribute.tuple(husband_mother_in_law,the_husband,s ingle,optional,string, □
attribute(

attribute_tuple(wife_mother_in_law,the_wife.single.optional.string, □))
]]) => relationship_class.

Figure B.2: The marriage relationship definition in ABEL.

However, if consistency is to be maintained, the methods handling these attributes (e.g.
putJiusband.of, putjwife^of, deleteJiusband.of and so on) have to consider more than
just the insertion or deletion of the attribute. For instance, if Alberto is inserted as the
husband^of Ana, the system should automatically consider Ana as the wife^of Alberto.
Otherwise, we can have the situation where Ana is married to Alberto but Alberto is not
married to Ana. To avoid such inconsistencies either the user has to remember to update
both links, or the default methods have to be enlarged with extra code to update the
inverse link. Such situations arise because the system does not know what a relationship
is. From the system’s point of view, it is indistinguishable whether an attribute repre­
sents a relationship or not and thus, it is up to the user to maintain the relationship’s
semantics. In ABEL the system is made aware of relationships by the provision of several
primitives to represent their semantics (see chapter 6).

The definition of the marriage relationship is shown in figure B.2. As explained in section
6.4, the related class attributes indicate the classes participating in the relationship (e.g.
person), the role played by each class (e.g. theJiusband, the-wife), the cardinality (single,
set) and an attribute-based view of the relationship (e.g. husbandLof, wife.of) th a t allows
the user to manipulate the relationship from the participant objects. Futhermore, new
attributes of the participant classes can be defined as a result of the establishment of
the relationships. Mother in law is a case in point. The class person does not have the
attribute mother in law u n til people can get married, i.e. till the marriage relationship
is defined. It would not have been possible to model this situation in ADAM.

The example of people-and-companies also requires the modelling of active behaviour
by which the movement of a person implies the movement of his/her partner. Such a
feature would have been implemented in ADAM by enlarging the moving method with

APPENDIX B. USING ABEL: A N EXAM PLE 165

c3:-
new([company,[

attribute(attribute.tuple(name,global,single,optional,string, □)) ,
attribute(attribute_tuple(area,global,single,optional,string, □)),

method((moving(global
message.recipient(Company),
writeln([’The company ’, Company, ’ is moving ’])

)) ,

method((stability(global, □ ,[string], [],[Tendency]) :-
message_recipient(Company),
get_area(Area) => Company,
member(Area-Tendency-Stability,[

computing-tl-high,computing-t2-medium,computing-t3-low,
insurance-t1-medium,insurance-t2-low,insurance-t3-high,
banking-tl-low,banking-t2-high,banking-t3-medium]),

writeln([’The stability is: ’.Stability])
))

]]) => entity.class.

c4: -
new([enterprise, [

is_a([company])
]]) => entity_class.

c5:-
new([research_institution,[

is_a([company])
]]) => entity_class.

Figure B.3: The com pany class hierarchy definition in ABEL.

instructions for sending the message to the corresponding partner. Other relationships
can later be introduced tha t requires similar modification in the code, but not always;
when the workingJn relationship is introduced relating persons and companies (where
companies can also be moved), the method moving of person is not updated since the
movement of persons does not lead the movement of their companies. Thus, it is the
relationship rather than the method that decides whether methods axe to be propagated
or not.

The definition of the class company and its subclasses enterprise and researchJnstitution
is given in figure B.3. The workingJn relationship is established between the company
class and the person class, where the attribute-based view of the relationship is based on
the working-places and employees ‘attributes’. The operational semantics of workingJn
specifies tha t the movement of the-company implies the movement of the.person. More­
over, we would like to model the situation where the stability of a person comes from

APPENDIX B. USING ABEL: A N EXAMPLE 166

the stability of the company in which he/she works i.e., people inherit their stability from
their company.
Whereas the propagation behaviour could somehow be modelled in ADAM, delegation
would be much more difficult. The question is where could this active behaviour be
encoded in ADAM? Which method (s) have to be enlarged? The answer is not trivial
since it is the absence of a method for obtaining the stability of a person tha t makes the
system automatically refer the request to the person’s company. In ABEL such active be­
haviour is declaratively stated in the operational semantics of relationships, from which
the system generates a set of rules for supporting the right behaviour. The definition of
workingJn is shown in figure B.4.

Representing relationships as ‘first-class’objects allows the user to specialise relationship
classes. Figure B.4 shows an example where the workingJn relationship is specialised
into workingJn^projects and workingJnjresearch. The former restricts the companies
among which the relationship can be established to be enterprise (a subclass of com­
pany), whereas the latter specialises companies to be research.institutions (a subclass of
company) and the person to be an academic (a subclass of person).

The metaclasses, classes and some ground instances involved in our example are shown
in figure B.5.

The following section shows an ABEL session during which the previous example is run.
For simplicity’s sake, instead of typing the whole definition of the classes, we will refer
to the constants assigned to the definitions in the previous figures (e.g. cl stands for
the definition of the class person whereas rell stands for the definition of the marriage
relationship).

B.4 A session with ABEL

The following is the output obtained from a real session in which the previous examples
were run. It has been obtained using the UNIX script command. Comments have been
added to further explain the examples and these are indicated by a double asterisk.

Script started on Mon Jan 20 10:16:02 1992
hawk'/, abel

Quintus Prolog Release 2.5 (Sun-3, SunOS 4.0)
Copyright (C) 1990, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, California (415) 965-7700

I ?- [’Examples/relationships.pi’] .
[consulting /home/eagle/diaz/New/Examples/relationships.pl...]
[relationships.pl consulted 0.500 sec 3,428 bytes]

yes

** CHECKING THE ‘PERSON1 CLASS HAS NOT BEEN CREATED

I ?- get(person) => entity_class.

APPENDIX B. USING ABEL: A N EXAM PLE 167

rel2 :-
new([working.in,[

related.class1([
related_class_tuple(person,the_person,working_places, set, □)

]) .
related_class2([

related_class_tuple(company,the_company,employees,set, □)
]) .
operational.semantics([

propagating moving from the.company to the.person,
delegating get.stability from the.person to the.company

]) ,
attribute(attribute.tuple(duration,global.single,optional,string, □))

]]) => relationship.class.

rel3
new([working.in.projects,[

is_a([working.in]),
related_class2([

related.class.tuple(enterprise.the.company.workers,set,[])]),
attribute(

attribute.tuple(project.incomes,the.person,single,optional,integer, □))
]]) => relationship.class.

rel4 :-
new([working.in.research,[

is_a([working.in]),
related.class1([

related.class.tuple(academic,the.person,works,set,[])
]) .
related_class2([

related.class.tuple(research.institution,the.company.researchers,set, □)
]) ,
attribute(attribute.tuple(publications,the.person,set,optional,string, □)),-
attribute(attribute.tuple(grants,the.person,set,optional,integer, □))

]]) => relationship.class.

Figure B.4: The workingJn relationship hierarchy definition in ABEL.

A P P E N D IX B. U S IN G A B E L: A N E X A M P L E 168

R E L A T IO N SH IP .C L A SSE N T IT Y . CLASS

R E S E A R C H .IN S T IT U I ON

130W 0R K IN G .1H .P R 0JE C T S1 9 RESEA R C H .IN S T IT U 1 OH
i s . a

-► in s la n c e .o f

Figure B.5: Some of the objects involved in the persons-com panies example.

no
I ? - get(X) => in t e g r i t y .r u le .

no

** CREATING THE 'PERSON* CLASS

I ? - c l .

yes

** CONSEQUENCIES OF CLASS CREATION
** - ‘PERSON* i s made an in sta n c e o f 'ENTITY.CLASS* m eta c la ss
** - a new in t e g r i t y r u le has been a u to m a tica lly gen erated by th e system
** to p reserve th e AGE c o n str a in t

I ?- g e t(p erso n) => e n t i t y . c l a s s .

yes
I ?- get(X) => i n t e g r i t y .r u le .

X = l f i in t e g r it y .r u le ;

no
I ? - d isp la y => l f i in t e g r i t y .r u le .

D isp lay o f l f i in t e g r i t y .r u le
i n s t a n c e .o f : in t e g r i t y .r u le
S lo t v a lu es:
i s . i t . e n a b l e : yes
d is a b le .f o r :
a c tio n :

APPENDIX B. USING ABEL: A N EXAMPLE 169

writeln([Integrity is violated by this update. Update rejected]).fail
condition:

current_object(_7536),
current.arguments([.7542]),
findall(.7548,(_7548=_7536,true),.7550),
remove_dups(_7550,_7562),
findall(_7567,_7567=_7542,.7569),
remove.dups(.7569,_7578),
((.7562= □; .7578= □)

-> fail
; findall(_7598,(member(.7598,.7578),\+_7598<120),.7600),

i

(.7600= □ -> fail ; true)
)

event: put.age
when: before
declarative.action: 120
declarative.condition: age of person
deactivated.for:

yes

** META-INFORMATION IS RETRIEVED REFERING TO STRUCTURAL AND
** BEHAVIOURAL FEATURES.

I ?- get.attribute.desc(X) => person.

X = attribute.desc.tuple(projects,person,local,set,optional,string, □ , []) ;

X = attribute.desc.tuple(salary,person,local,single,optional,integer, □, □) ;

X = attribute.desc.tuple(age,person,local,set,optional,integer,
[age of person<120],[[iQintegrity.rule]]) ;

no
I ?- get.method.desc(X) => person.

X = method.desc.tuple(object,display,global, [],[],[]) ;

X = method.desc.tuple(object,get.in.class,global,set, □ .object) ;

X = method.desc.tuple(object,update.instance.of.global, □ , [object,object],[]) ;

X = method.desc.tuple(object,delete_instance_of.global,[],[object] , □)

** AN INSTANCE OF THE CLASS ‘PERSON* IS CREATED

I ?- new([X, [

APPENDIX B. USING ABEL: A N EXAMPLE 170

salary([999]),
proj ects([pr1,pr2])

]]) => person.

X = OCperson

** THE SYSTEM PREVENTS THE USER FROM INSERTING AN ‘AGE' VALUE
** ABOVE 120. THIS IS ACHIEVED BY FIRING THE ‘1SINTEGRITY.RULE’.

I ?- put_age([145]) *> OQperson.
Integrity is violated by this update. Update rejected

no
I ?- put_age([33]) => OOperson.

yes

** CHECKING ‘THE MARRIAGE’ RELATIONSHIP HAS NOT BEEN CREATED

I ?- get(marriage) => relationship.class.

no
I ?- get(X) => propagating.rule.

no

** PEOPLE DO NOT UNDERSTAND THE MESSAGE ‘GET.HUSBAND_MOTHER_IN.LAW’.
** HENCE, THE SYSTEM DISPLAYS AN ERROR.

I ?- get_husband_mother_in_law(X) => OSperson.

ADAM Error in evaluate.message
Unable to respond to message get_husband_mother_in_law sent to OQperson

no

** CREATING THE ‘MARRIAGE’ RELATIONSHIP

I ?- r a i l .

y e s

** CONSEQUENCIES OF CLASS CREATION
** - ‘MARRIAGE’ i s made an in s ta n c e o f ‘RELATIONSHIP.CLASS’ m e ta c la s s
** - a new i n t e g r i t y r u le h as b een a u to m a t ic a lly g e n e r a te d by th e sy stem
** t o p r e s e r v e th e o p e r a t io n a l se m a n tic s o f th e r e la t io n s h ip
* * - th e ‘PERSON’ c l a s s h as been e n la r g e d w ith fo u r ‘ v i r t u a l ’ a t t r ib u t e s

APPENDIX B. USING ABEL: AN EXAMPLE 171

** - 'WIFE.OF' and ‘HUSBAND.OF’ that support an attribute-based view of
** the relationship 'MARRIAGE'
** _ ‘HUSBAND_MOTHER_IN_LAW' and ‘WIFE_MOTHER_IN_LAW’

I ?- get(marriage) => relationship.class.

yes
I ?- get(X) => propagating.rule.

X = OOpropagating.rule

I ?- display => OOpropagating.rule.

Display of OOpropagating.rule
instance.of: propagating.rule
Slot values:
is.it.enable: yes
disable.for:
action:

condition_result(_7500),
current_object(_7505),
current _ argument s(_7510),
(member(_7521,.7500),
put.already.propagated([.7521])=>00propagating_rule,
moving(_7510)=>_7521,
fail;true),

get_already_propagated(_7551)=>00propagating_rule,
(_7505=_7551

-> (get_already_propagated(_7574)=>00propagating_rule,
delete_already_propagated([.7574])=>O0propagating_rule,
fail;true)

; true)
condition:

condition_result(_7506),
current_object(_7511),
(get_already_propagated(_7525)=>00propagating_rule

-> true
; put.already_propagated([.7511])=>00propagating_rule),

findall(_7543,
(instance.of(.7511.person),
get.wife.of(_7543)=>_7511,
instance.of(.7543,person),
\+get _ aiready.propagat ed(.7543)=> OOpropagat ing.rule

instance.of(.7511.person),
get.husband.of(.7543)=>.7511,
instance.of(.7543,person),
\+get_already_propagated(_7543)=>O0propagating_rule),

APPENDIX B. USING ABEL: AN EXAMPLE 172

_ 7 5 0 6),
j
\+_7506=[]

event: moving
when: before
already.propagated:

yes

** NOW PEOPLE CAN UNDERSTAND THE MESSAGE *GET.HUSBAND.MOTHER.IN_LAW’
** IN THE EXAMPLE THE ANSWER IS EMPTY.

I ?- get_husband_mother_in_law(X) => OQperson.

no

** USING THE ATTRIBUTE-BASED VIEW TO CREATE INSTANCES OF 'MARRIAGE'

I ?- new([X,[
husband_of([OQperson])

]]) -> person.

X = lQperson

** CHECKING THAT THE INVERSE LINK HAS BEEN AUTOMATICALLY CREATED

I ?- get_wife_of(X) => OQperson.

X = lQperson

** LOOKING AT THE PREVIOUS CREATED RELATIONSHIP AS AN OBJECT
** RATHER THAT AS AN ATTRIBUTE

I ?- get(X) => marriage.

X = 3®marriage

** DISPLAYING THE OBJECT '3QMARRIAGE'

I ?- display -> 3Qmarriage.

Display of 3®marriage
instance.of: marriage
Slot values:
wife.mother.in.law:
husband.mother_in.law:
wedding.date:
the.wife: OQperson

APPENDIX B. USING ABEL: AN EXAMPLE 173

the.husband: 1©person

yes

** CREATING RELATIONSHIPS AS ANY OTHER OBJECT, I.E. SENDING THE MESSAGE
** 'NEW' TO THEIR CLASS

I ?- new([X,[]]) => person.

X = 2®person

I ?- new([X,[]]) => person.

X = 3fflperson

I ?- new([X,[
the_husband([3©person]),
the.wife([2fiperson]),
ed wedding.date(Cjuly]),
husband.mother.in.law([mary])

]]) => marriage.

X = 4©marriage

** RETRIEVING RELATIONSHIP INFORMATION USING THE ATTRIBUTE-BASED VIEW
** OF 'MARRIAGE'

I ?- get.husband.of(X) => 3®person.

X = 2®person

i ?- get.wedding.date(X) => 4@marriage.

X = july

I ?- get.husband.mother.in.law(X) => 3Qperson.

X = mary

** CHECKING THE OPERATIONAL SEMANTICS OF THE 'MARRIAGE' RELATIONSHIP:
** 'HUSBAND' AND 'WIFE' HAVE TO BE MOVED SIMULTANEOUSLY

I ?- moving => 2®person.
The person 3Qperson is moving
The person 2®person is moving

yes

APPENDIX B. USING ABEL: A N EXAMPLE 174

** EXAMPLES OF MORE COMPLEX RELATIONSHIPS

I ?- c2,c3,c4,c5,rel2,rel3,rel4.

yes

** CHECKING THAT RELATIONSHIPS HAVE BEEN CREATED

I ?- get(X) => relationship.class.

X = activation ;

X = marriage ;

X = working.in ;

X = working.in.projects ;

X = working.in.research ;

** DISPLAYING RULE GENERATED BY THE SYSTEM TO MAINTAIN THE DELEGATION
** OPERATIONAL SEMANTICS OF THE 'WORKING.IN' RELATIONSHIP

I ?- get(X) => delegating.rule.

X = lQdelegating.rule

I ?- display => lffldelegating.rule.

Display of l®delegating_rule
instance.of: delegating.rule
Slot values:
is.it.enable: yes
disable.for:
action:

condition_result(_7S00),
current.object(.7505),
current_arguments(_7510),
(member(_7521,.7500),
put_already_propagated([.7521])=>l©delegating_rule,
stability(.7510)=>.7521,
true;fail),

get_already_propagated(_755i)=>l@delegating_rule,
(_7505=_7551

-> (get_already_propagated(_7574)=>l@delegating_rule,
delete_already_propagated([.7574])=>l®delegating_rule,

APPENDIX B. USING ABEL: A N EXAMPLE 175

fail;true)
; true)

condition:
condition_result(_7506),
current_object(_7511),
(get_already_propagated(_7525)=>lQdelegating_rule

-> true
; put_already_propagated([_7511])=>lQdelegating_rule),

f indall(_7543,
(instance.of(_7511.person),
get_working_places(_7543)=>_7511,
instance.of(_7543,company),
\+get_already_propagated(_7543)=>l®delegating_rule),
.7506),

j
\+_7506= []

event: stability
when: inexistant
already.propagated:

yes

** USING THE ATTRIBUTE-BASED VIEW 'EMPLOYEES' TO CREATE 'WORKING.IN'
** INSTANCES AT THE TIME A 'COMPANY' INSTANCE IS CREATED

I ?- new([X,[
employees([OQperson,2Qperson]),
area([computing])

]]) => company.

X = 4®company

** THE OPERATIONAL SEMANTICS OF 'WORKING.IN' IN ACTION:
** - the employee gets his/her ‘STABILITY’ from his/her company
** - the movement of a ‘COMPANY implies the movement of its 'EMPLOYEES’

I ?- stabilityC[tl]) => OQperson.
The stability is: high

yes
I ?- stabilityC[tl]) => 4®company.
The stability is: high

yes
’** THE MOVEMENT OF A 'COMPANY' IMPLIES THE MOVEMENT OF ITS 'EMPLOYEES’.
** ALTHOUGH ONLY ‘OQPERSON’ AND '2QPERS0N' ARE EMPLOYEES, ‘1QPERS0N’
** AND '3QPERS0N’ HAVE ALSO TO BE MOVED AS A CONSEQUENCE OF BEING
** PARTNERS OF AN EMPLOYEE, I.E. BEING ‘MARRIAGE’ RELATED WITH AN

APPENDIX B. USING ABEL: AN EXAMPLE 176

** EMPLOYEE

| ?- moving => 4®company.
The person lQperson is moving
The person OQperson is moving
The person 3®person is moving
The person 2®person is moving
The company 4®company is moving

yes

** SINCE RELATIONSHIPS ARE OBJECTS, NOTHING PREVENTS US FROM ARRANGING
** RELATIONSHIPS IN HIERARCHIES. HERE IS AN EXAMPLE WHERE
** 'WORKING_IN_RESEARCH' AND ‘WORKING_IN_PROJECTS’ ARE SUBCLASSES OF
** ‘WORKING.IN’

I ?- get_is_a(X) => working.in.projects.

X = working.in

I ?- get.is.a(X) => working.in.research.

X = working.in

** DEFINING RELATIONSHIP HIERARCHIES ALLOWS THE USER TO WORK AT
** DIFFERENT LEVELS OF ABSTRACTION:
** - if we want all the employees of a company regardless whether
** they are workers or researchers, we retrieve the information
** at the higher level (i.e. ‘working.in’ or its view ‘employees’)
** - if we want only employees that are researchers, we retrieve the
** information at a lower level (e.g. ‘working.in.research’ or
** its view: ‘researchers’)

I ?- new([X,[]]) => academic.

X = 5®academic

I ?- new([X,[
employees([lQperson]),
researchers([5®academic])

]]) => research.institution.

X = 6®research_institution

I ?- get.employees(X) => 6Qresearch_institution.

X = lQperson

APPENDIX B. USING ABEL: A N EXAMPLE 177

X = 5®academic ;

no
I ?- get_researchers(X) => 6Qresearch_institution.

X = 5ffiacademic ;

no

** DEFINITION OF A SECURITY RULE. IT PREVENTS USERS OTHER THAT 'GRAHAM'
** FROM RETRIEVING THE 'SALARY' OF A ‘PERSON’.

I ?- new([X,[
active_class([person]),
event([get_salary]),
is_it_enable([yes]),
when([before]),
condition([(

\+ current_user(graham)
)]) ,
action([(nl,write(’You are not authorised to retrieve the salary’),nl,fail)])

]]) => generic.rule.

X = 12@generic_rule

I ?- get_salary(X)=> OQperson.

You are not authorised to retrieve the salary

no ,

** SWITCHING THE RULE OFF. BEING OBJECTS, RULES CAN BE MANIPULATED AS
** ANY OTHER OBJECT. NOTICE THAT IF THIS RULE WERE EMBEDDED WITHIN
** METHODS, THIS UPDATE WOULD HAVE BEEN MORE DIFFICULT TO ACCOMPLISH

I ?- update_is_it_enable([yes ,no]) => 1.2@generic_rule.

yes
I ?- get_salary(X)=> OQperson.

X = 999

** SINCE THE INTRODUCTION OF A ‘WORKING.PLACES’ IMPLIES
** THE INTRODUCTION OF AN ‘EMPLOYEES', THE RULE BELOW IS
** FIRED.

I ?- new([_,[
active_class([company]),

APPENDIX B. USING ABEL: A N EXAMPLE 178

event([put.employees]),
is_it_enable([yes]),
when([before]),
condition([(true)]),
action([(nl,write(’ introducing an employee....’),nl)])

]]) -> generic_rule.

| ?- put_working_places([6®enterprise]) => OQperson.

 introducing an employee....

yes

** SINCE THE INTRODUCTION OF AN 'ACADEMIC' IMPLIES THE
** INTRODUCTION OF A 'PERSON', THE RULE BELOW IS FIRED

I ?- new([_,[
active_class([entity.class]),
event([new]),
is_it_enable([yes]),
when([before]),
condition([(

current.object(Class),
Class = person

)]) ,
action([(nl,write(’=== A new person is being created ====='),nl)])

]]) => generic.rule.

I ?- new([X,[[]]) => academic.

=== A new person is being created =====

X = 9@academic

I ?- halt,
hawk’/, ~Z
script done on Mon Jan 20 10:33:21 1992

