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Abstract

We provide a model that bridges de gap between the simplest variation of
two benchmark models of strategic network formation: Bala and Goyal�s one-
way �ow model without decay, where links can be unilaterally formed, and a
variation without decay of Jackson and Wolinsky�s connections model based on
bilateral formation of links. In the model introduced here, a link can be created
unilaterally, but when it is only supported by one player the �ow through the
link only occurs towards the player supporting it and su¤ers some degree of
decay, while when it is supported by both the �ow runs without friction in both
directions. When the decay in links supported by only one player is maximal
(i.e. there is no �ow) we have Jackson and Wolinsky�s connections model without
decay, while when �ow in those links is perfect towards the player supporting
them, we have Bala and Goyal�s one-way �ow model. We study Nash, strict
Nash and pairwise Nash stability for the intermediate models. E¢ ciency and
dynamics are also discussed.
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1 Introduction

In the economic literature there are two basic models of strategic network formation:
Jackson and Wolinsky (1996), where the formation of a link between two players re-
quires the agreement of both, and Bala and Goyal (2000), where a link can be formed
unilaterally by any player. The �rst model presents two variants, the connections
model and the coauthor model. Bala and Goyal�s model also has two variants: the
one-way �ow model, where the �ow through a link runs towards a player only if he/she
supports it, and the two-way �ow model, where �ow runs in both directions irrespec-
tive of which player supports the link. Each of these models have been extended in
di¤erent directions1. In two previous papers we study some transitional models. In
Olaizola and Valenciano (2014a) we provide a model that integrates Bala and Goyal�s
one-way and two-way �ow models as particular extreme cases of a more general model
of network formation that we call �asymmetric �ow�model, and characterize Nash
and strict Nash structures for the whole range of intermediate models. In Olaizola and
Valenciano (2014b) we take this uni�cation a step further. More precisely, we provide a
new hybrid model which has Jackson and Wolinsky�s connections model without decay
and Bala and Goyal�s two-way �ow model as extreme cases.
In this paper, in order to make the transition between Jackson andWolinsky�s model

without decay and Bala and Goyal�s one-way �ow model we introduce heterogeneity
relative to link reliability or decay2. In the model introduced and studied here, a link
can be created unilaterally, but when it is only supported by one of the two players that
it connects (such a link is referred to as a �weak�link) the �ow through the link runs
only towards the player that supports it and su¤ers some degree of decay, but when a
link is supported by both players (referred to as a �strong�link) the �ow runs without
friction in both directions. When the decay in weak links is maximal (i.e. there is no
�ow) we have Jackson and Wolinsky�s connections model without decay, while when
�ow towards the player that supports a weak link is perfect we have Bala and Goyal�s
one-way �ow model. This provides in fact an interesting extension of both models and
allows for a study of the �transition� from one model to the other. We study Nash,
strict Nash and pairwise Nash stability for the intermediate models.
The rest of the paper is organized as follows. In Section 2 notation and terminology

relative to graphs is introduced. Section 3 reviews the connections model of network
formation of Jackson and Wolinsky (1996) and Bala and Goyal�s (2000) one-way �ow
model. In Section 4, a model that bridges the gap between these two is presented and
Nash, strict Nash and pairwise Nash stable structures are studied for the intermediate
models in Section 5. Section 6 addresses the question of e¢ ciency. Section 7 is devoted
to dynamics. Finally, Section 8 summarizes the main conclusions and points out some
lines of further research.

1See Goyal (2007), Jackson (2008) and Vega-Redondo (2007) and references therein.
2See Bloch and Dutta (2009) for a �rst model with endogenous heterogeneity.
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2 Graphs

A directed N -graph is a pair (N;�), where N = f1; 2; :::; ng is a �nite set with n � 3
whose elements are called nodes, and � is a subset of N �N , whose elements (i; j) 2 �
are called links. When both (i; j) and (j; i) are in �, we say that i and j are connected
by a strong link, if only one of them exists we say that they are connected by a weak
link. If M � N , then � jM denotes the M -graph (M;� jM) with

� jM := f(i; j) 2M �M : (i; j) 2 �g;

which we refer to as the M -subgraph of �.
Alternatively, a graph � can be speci�ed by a map g� : N �N ! f0; 1g,

g
�
(i; j) :=

�
1; if (i; j) 2 �
0; if (i; j) =2 �:

When we specify a graph � in this way by a map g, we denote gij := g(i; j), and if
gij = 1 link (i; j) is referred to as �link ij in g�, and we write ij 2 g. Note that for
M � N , subgraph � jM is speci�ed by g jM�M , but abusing notation such subgraph is
referred to by g jM . The empty graph is denoted by ge (i.e. ge(i; j) = 0, for all i; j).
If gij = 1 in a graph g, g� ij denotes the graph that results from replacing gij = 1

by gij = 0 in g; and if gij = 0, g + ij denotes the graph that results from replacing
gij = 0 by gij = 1. Similarly, if gij = gji = 1, g� ij = (g� ij)� ji, and if gij = gji = 0,
g + ij = (g + ij) + ji. An isolated node in a graph g is a node that is not involved in
any link, that is, a node i s.t. for all j 6= i, gij = gji = 0. A node is peripheral in a
graph g if it is involved in a single link (weak or strong).
Given a graph g, a path of length k from j to i in g is a sequence of k + 1 distinct

nodes j0; j1; :::; jk, s.t. j = j0, i = jk, and for all l = 1; :::; k, gjl�1jl = 1 or gjljl�1 = 1. If
for all l = 1; :::; k, gjljl�1 = 1, we say that the path is i-oriented. We say that a graph
g is acyclic or contains no cycles if there is not a sequence of k (k > 2) distinct nodes,
i1; :::; ik, s.t. for all l = 1; :::; k � 1, gjljl+1 = 1 or gjl+1jl = 1, and g1k = 1 or gk1 = 1.

De�nition 1 Given a graph g, and C � N , the subgraph g jC is said to be:
(i) A component of g if for any two nodes i; j 2 C (i 6= j), there is an i-oriented path
from j to i in g, and no subset of N strictly containing C meets this condition.
(ii) A strong component of g if for any two nodes i; j 2 C (i 6= j), there is a path
of strong links from j to i in g, and no subset of N strictly containing C meets this
condition.

When a component in either sense consists of a single node we say that it is a
trivial component. In both senses, an isolated node, i.e. a node that is not involved in
any link, is a trivial component. The size of a component is the number of nodes that
forms it. Ci(g) denotes the strong component of g that contains i. A strong component
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is isolated if none of its nodes is involved in a link with any node of another strong
component.
Based on these de�nitions we have two di¤erent notions of connectedness. We say

that a graph g is connected (strongly connected3) if g is the unique component (strong
component) of g. Note that strong connectedness implies connectedness.
A component (strong component) g jC of a graph g is minimal if for all i; j 2 C

s.t. gij = 1, the number of components (strong components) of g is smaller than the
number of components (strong components) of g � ij.
A graph is minimally connected (strongly connected) if it is connected (strongly

connected) and minimal. A minimally strongly connected graph is a tree of strong links
where any node in such tree can be seen as the root, i.e. a reference node from which
there is a unique path connecting it with any other. An oriented wheel is a graph g
s.t. for a certain permutation of N , i1; i2; :::; in, we have gikik+l = 1 (k = 1; :::; n � 1),
and gn1 = 1, and no other links exist.
Given a graph g, the following notation is also used:

Nd(i; g) := fj 2 N : gij = 1g (i.e. set of nodes with which i supports a link),
N e(i; g) := fj 2 N : gji = 1g (i.e. set of nodes which support a link with i),
N o(i; g) := Nd(i; g) [N e(i; g) (i.e. set of nodes involved in a link with i):

The set of nodes connected with i by a path is denoted by N(i; g). The set of
nodes connected with i by a path of strong links is denoted by �N(i; g). The set of
nodes connected with i by an i-oriented path is denoted by ~N(i; g). Their cardinalities
are denoted by �di (g) := #N

d(i; g); �ei (g) := #N
e(i; g); �oi (g) := #N

o(i; g), �i(g) :=
#N(i; g), ��i(g) := # �N(i; g) and ~�i(g) := # ~N(i; g).
We consider two measures of distance between nodes in a graph g based on two

di¤erent notions of the length of a path. When there is no path connecting two nodes
the distance between them in any of the senses is said to be 1. Otherwise, the
distance between two nodes i; j (i 6= j), denoted d(i; j; g), is the length of the shortest
path connecting them. Note that the distance from i to j is the same as from j to i.
In Section 4 we consider a situation where the �ow through a weak link occurs only
towards the node that supports it, and with some friction or decay, in contrast with
strong links, through which �ow is without friction in both directions. This motivates
the following notion. The discounting oriented length of a path from j to i in g is:
1 if it is not an i-oriented path (i.e. the path contains a weak link not supported
by the player closer to i); otherwise, if the path is i-oriented, its discounting oriented
length is the length of the path minus the number of strong links in that path, that
is, the number of oriented weak links in it. The discounting oriented distance from j
to i (i 6= j) in g, denoted ~�(i; j; g), is de�ned as the discounting oriented length of the

3Note that the sense in which the term �strongly connected� is used here di¤ers from its usual
meaning in the literature, which coincides with what we call here �connected�. In our context, the
clear distinction between weak and strong links invites to use the term in the stronger sense we use it
here.
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path from j to i with the shortest discounting oriented length. Note that this distance
is not symmetric.

Example 1: Consider the 6-node graph g consisting of the following path:4

t t t t t t1 2 3 4 5 6

then, d(1; 6; g) = d(6; 1; g) = 5; ~�(1; 6; g) = ~�(6; 1; g) =1, d(2; 3; g) = d(3; 2; g) = 1,
~�(2; 3; g) = ~�(3; 2; g) = 0, d(4; 6; g) = d(6; 4; g) = 2; ~�(4; 6; g) = 2; ~�(6; 4; g) =1.

3 Two strategic models of network formation

We consider situations where individuals may initiate or support links with other in-
dividuals under certain assumptions, thus creating a network formalized as a graph.
We assume that at each node i 2 N there is an agent identi�ed by label i and referred
to as player5 i. Each player i may initiate or, more generally, intend to initiate links
with other players as depending on the assumptions an intended link may actually
form or not6. A map gi : Nnfig ! f0; 1g describes the links intended by i. We denote
gij := gi(j); and gij = 1 (gij = 0) means that i intends (does not intend) a link with j.
Thus, vector gi = (gij)j2Nnfig 2 f0; 1gNnfig speci�es the links intended by i and is re-
ferred to as a strategy of player i. Gi := f0; 1gNnfig denotes the set of i�s strategies and
GN = G1�G2�:::�Gn the set of strategy pro�les. A strategy pro�le g 2 GN univocally
determines a graph (N;�g) of intended links, where �g := f(i; j) 2 N � N : gij = 1g.
Given a strategy pro�le g 2 GN and i 2 N , g�i denotes the Nnfig strategy pro�le that
results by eliminating gi in g, i.e. all links intended by i, and (g�i; g0i), where g

0
i 2 Gi,

denotes the strategy pro�le that results by replacing gi by g0i in g.
Let g be a strategy pro�le representing players�intended links. We denote by g�

the associated graph representing the actual network that results from g. We consider
several models under di¤erent assumptions, but the following are generally assumed:
1. Whether it actually forms or not, an intended link of player i with player j

means a cost cij > 0 for all j 6= i.
2. The player at node j has a particular type of information or other good7 of value

vij for player i.

4Throughout the text, a strong link between two nodes is represented by a thick segment connecting
them, while a weak link is represented by a thin segment between them only touching the node that
supports it.

5However, so as not to complicate unnecessarily the prose trying to avoid a biased language, we
often refer to players by the more neutral term �nodes�.

6This is similar to Myerson�s (1977) model, where all players simultaneously announce the set of
players with whom they wish form links. But while in Myerson�s model links are formed if and only
if they were proposed by both, we consider here di¤erent scenarios.

7Although other interpretations are possible, in general, we give preference to the interpretation
in terms of information.
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3. If v = (vij)(i;j)2N�N is the matrix of values, c = (cij)(i;j)2N�N is the matrix of
costs (it is assumed that cii = vii = 0), and g is the strategy pro�le and g� the resulting
network, the payo¤ of a player is given by a function

�i(g) = Ii(g
�;v)� ci(g; c); (1)

where Ii(g�;v) is the information received by i through the actual network g�, and
ci(g; c) =

P
j2Nd(i;g) cij the cost incurred by i.

Under di¤erent assumptions, di¤erent models specify g� and Ii di¤erently. In all
cases a game in strategic form is speci�ed: (GN ; f�igi2N).
We consider two basic models relating g� to g:

(i) g�ij := g
min
ij = minfgij; gjig: (2)

(ii) g�ij := gij: (3)

Under assumption (2) only links intended by both players actually form. This is
Jackson and Wolinsky�s model of network formation, where establishing a link requires
that both players intend it. Under assumption (3) a directed link forms between two
players as soon as one of them intends it. Thus, in this case a player can create oriented
links unilaterally. This is Bala and Goyal�s one-way �ow network formation model8.
If every node receives the value of the players with whom it is connected in g�

without friction, then, according to each of these speci�cations of the resulting actual
network, i.e., whether g� is given by (2) or (3), the payo¤ of a player i given by (1)
becomes respectively

�mini (g) =
X

j2N(i;gmin)

vij �
X

j2Nd(i;g)

cij; (4)

�i(g) =
X

j2 ~N(i;g)

vij �
X

j2Nd(i;g)

cij: (5)

In fact, the model speci�ed by (2) and (4) is Jackson and Wolinsky�s connections
model without decay9, that is, assuming that the �ow through a link of the actual
network is perfect or without loss. Similarly, (3) and (5) specify Bala and Goyal�s
one-way �ow model without decay.

4 Between two models

In both Jackson and Wolinsky�s (1996) connections model and Bala and Goyal�s (2000)
one-way �ow models, a level of friction or decay in the �ow through a link can be

8A third basic model is Bala and Goyal�s (2000) two-way �ow model, where the actual network is
g�ij := g

max
ij = maxfgij ; gjig:

9In fact, unlike Bala and Goyal (2000), this case is not considered in Jackson and Wolinsky (1996),
where a certain decay is always assumed.
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assumed, so that only a fraction of the information at one node reaches the other
through that link. In order to bridge the gap between these models, we assume that
information �ows through a strong link without friction in both directions, while through
a weak link information runs only towards the node that supports it but with a certain
decay, being � (0 � � � 1) the fraction of the unit of information at a node that �ows
through it, thus � = 0 means no �ow and maximal decay, while � = 1 means perfect
�ow and no decay.
Formally, we assume that the actual �ow level of information from node j to node

i through a link between them when players�strategy pro�le is g, denoted by �gij, is
given by

�gij := �gij + (1� �)gminij ; (6)

for all i; j 2 N , with � 2 [0; 1]. Note that the decay matrix �g =
�
�gij
�
i;j2N encapsulates

all the relevant information about the �ow through the network.
In this model, for 0 < � < 1, when a link is supported by both players (gij = gji = 1)

we have gij = gminij = 1, so that �gij = �gji = 1, i.e. information �ows through strong
links without friction in both directions, while when one and only one player supports
it, say i (i.e. gij = 1 and gji = 0), we have �

g
ij = � and �

g
ji = 0, i.e. �ow through weak

links occurs with some decay towards the only player supporting it and there is no �ow
in the opposite direction. For � = 0 we have Jackson and Wolinsky�s bilateral network
formation model without decay, while for � = 1 we have Bala and Goyal�s unilateral
one-way �ow network formation model.
Note this model�s similarity to and di¤erence from Bala and Goyal�s one-way �ow

model with decay. Weak links, i.e. links supported by only one player, work as in
that model, while �ow through strong links, i.e. links supported by both players, is
perfect. This important di¤erence enriches the setting with the possibility of di¤erent
treatment of links with strong support10.
This �intermediate� model describes a �mixed� situation where both a strictly

non-cooperative approach as well as one admitting bilateral agreements to form new
strong links, make sense. In this transitional model we �rst examine the question of
stability from two points of view: one strictly non-cooperative, focused on Nash and
strict Nash equilibrium, and another allowing for pairwise formation of links. In the
current setting the set of options available to any player is richer than in Jackson and

10Moreover, if an additional level of decay is introduced in the model, we have a new one, whose
decay matrix is

�0gij := ��
g
ij = ��gij + �(1� �)gminij ;

that is, when a link is supported by both players the �ow through it is the same in both directions
(�0gij = �

0g
ji = �), while when only one player supports it (gij = 1 and gji = 0) the information �ows

only towards the player that supports it and with a greater decay (�0gij = �
0g
ji = ��). That is, with and

without decay, doubly supported links are treated di¤erently, which may be a reasonable assumption
in certain contexts. Again, when � = 1 this is Bala and Goyal�s one-way �ow model with decay, while
when � = 0 this is Jackson and Wolinsky�s connections model with decay.
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Wolinsky�s setting where the only unilateral movement is severing a link, which is the
only one considered in their de�nition of pairwise stability (Jackson and Wolinsky,
1996)11. In our model a player can also create a new weak link or double an existing
weak one to make it strong. This leads us to use in this context a strong version of the
pairwise stability notion referred to in the literature as pairwise Nash stability12.
Thus we consider the following three forms of stability.

De�nition 2 A strategy pro�le g is:
(i) A Nash equilibrium if �i(g�i; g0i) � �i(g); for all i and all g0i 2 Gi:
(ii) A strict Nash equilibrium if �i(g�i; g0i) < �i(g); for all i and all g

0
i 2 Gi (g0i 6= gi):

(iii) Pairwise Nash stable if it is a Nash equilibrium and for any pair of players i; j
(i 6= j) s.t. gij = gji = 0, if �i(g + ij) > �i(g) then �j(g + ij) < �j(g).

Note that pairwise Nash stability re�nes both Nash equilibrium and pairwise sta-
bility.
Now the point is to study the stable networks in this model for the di¤erent values

of the parameter � (0 � � � 1) assuming homogeneity in costs and values across
players, that is, we assume throughout the paper

vij = 1 and cij = c, where 0 < c < 113 and i 6= j;

so that, for all values of the parameters, the cost for a player i in a pro�le g is given by

ci(g) = c�
d
i (g):

Let us �rst consider the extreme cases � = 0 and � = 1. When � = 0 we have
Jackson and Wolinsky�s connections model without decay: a link is formed if and only if
both players intend it, and in this case the �ow through it is perfect in both directions.
Thus (4) becomes.

�mini (g) = �i(g
min)� c�di (g): (7)

Proposition 1 If the decay matrix �g is given by (6) with � = 0 and payo¤s by (7) :
(i) The Nash and strict Nash pro�les are those where all links are strong and all strong
components are minimal.
(ii) The pairwise Nash stable pro�les are those minimally strongly connected.

Thus, in equilibrium, for any two players either there is no path that connects them
or there is a unique path formed by strong links, but note that a Nash network can

11In a pairwise stable pro�le no player has an incentive to sever an existing link and no two players
have an incentive to form a new one.
12This re�nement was suggested in Jackson and Wolinsky (1996) in the �nal discussion of their

stability notion.
13The assumption of c < 1 is made only to simplify the formulation of some results. Nevertheless,

the results can be easily adapted when this assumption is removed.
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be non-connected, given that in a noncooperative context when � = 0 a single player
cannot form an actual link. (For a proof of Proposition 1 see Olaizola and Valenciano
(2014b)).
When � = 1 we have Bala and Goyal�s one-way �ow model without decay, where a

link can be unilaterally formed by any player, and (5) becomes

�i(g) = ~�i(g)� c�di (g): (8)

As to noncooperative stability, we have Bala and Goyal�s well-known result.

Proposition 2 (Bala and Goyal, 2000) If the decay matrix �g is given by (6) with
� = 1 and payo¤s by (8) :
(i) The Nash pro�les are those minimally connected.
(ii) The strict Nash pro�les are oriented wheels.

In this model, in a Nash pro�le all players receive all the information in the network
without decay, then pairwise Nash stability does not re�ne Nash equilibrium because
bilateral agreements add nothing in this context.
We consider now the intermediate situations (0 < � < 1) between these two extreme

cases and see how the transition occurs. The payo¤ function is (using the discounting
distance introduced in Section 2) then

�i(g) =
X

j2N(i;g)

�
~�(i;j;g) � c�di (g): (9)

Example 2: Consider the strategy pro�le given by the 6-node graph in Example 1.

t t t t t t1 2 3 4 5 6

Player 1 receives information only from players 2 and 3, a fraction � of the unit of
information at each of these nodes, and pays one link. Thus player 1�s payo¤ is �1(g) =
2� � c. Player 2�s payo¤ is �2(g) = 1� c, given that 2 receives information only from
player 3, but perfectly, and pays one link. Player 4�s payo¤ is �4(g) = 3� + �

2 � 2c,
given that receives � from players 2, 3, and 5, and �2 from player 6; and pays two
links. Similarly, �3(g) = 1� c; �5(g) = � � c; and �6(g) = 0:
We deal then with a model with two parameters, � and c, both ranging from 0 to

1. In the sequel we study stability for di¤erent con�gurations of values (�; c) of these
parameters within the open square (0; 1)� (0; 1) (see Figure 1).

5 Stability

The following lemma allows for a full-characterization of stable architectures below the
line c = 1� � (i.e. for c < 1� �), and a partial characterization above this line.
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Lemma 1 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1,
in a Nash pro�le:
(i) If 0 < c < 1� �; only strong links occur.
(ii) If c � 1��; any link which is not part of a cycle is necessarily strong. In particular,
peripheral players are connected by strong links.

Proof. (i) Let g be a Nash pro�le. Assume gij = 1 and gji = 0. Then there is no path
of strong links connecting i and j, otherwise link ij would be super�uous. This entails
that j receives from i�s unit of worth no more than �, while by doubling its weak link
with i node j would receive 1� c. As c < 1� �, j would increase its payo¤ by doing
so.
(ii) Let g be a Nash pro�le and i and j two players connected by a weak link which is

not part of any cycle. Assume gij = 1 and gji = 0, then j does not receive information
from i, and as c < 1, �j(g + ji) � �j(g) � 1 � c > 0, i.e. j improves its payo¤ by
doubling the link.

The next proposition characterizes the stable architectures within the region below
the line c = 1� �:

Proposition 3 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1
and 0 < c < 1� �; then:
(i) If c � �; a pro�le is Nash (strict Nash) stable if and only if either it is minimally
strongly connected, or, otherwise, all links are strong, all strong components are mini-
mal and the maximal size of a strong component is smaller or equal (strictly smaller)
than c=�.
(ii) If c < �; a pro�le is Nash stable if and only if it is minimally strongly connected,
moreover such pro�le is also strict Nash stable.
(iii) For the whole range of values, a pro�le is pairwise Nash stable if and only if it is
minimally strongly connected.

Proof. (i) Assume g is a Nash pro�le. By Lemma 1-(i), within this range of values
of � and c all links are strong, and no super�uous link would be supported. Therefore
all strong components are minimal. If g is minimally strongly connected no player
has an incentive to intend or sever a link. Otherwise, let s (integer s.t. 1 � s < n)
be the size of a strong component of g, and i a node that does not belong to this
component. By paying a weak link with any node in that component i would receive
�s� c, and if �s� c > 0, i.e., if s > c=�, this would mean a strict improvement of i�s
payo¤. Therefore, for g to be a Nash pro�le no strong component of g may have a size
greater than c=�. Reciprocally, if these conditions hold no node has a best response
that improves its payo¤. As to strict Nash stability, this condition must hold strictly.
(ii) If c < �, as in (i) it is easy to conclude that in a Nash pro�le all links are strong

and all strong components are minimal. But now, as c < �, it is strictly pro�table to
initiate a weak link with an isolated player. Therefore, a Nash pro�le must have a single
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strong component which must be minimal. Reciprocally, in any minimally strongly
connected pro�le no node has a best response that improves its payo¤. Moreover,
all minimally strongly connected pro�les are strict Nash as any unilateral change of
strategy would cause a loss.
(iii) Once bilateral agreements are feasible, a non strongly connected pro�le cannot

be pairwise Nash stable since for any two players in di¤erent strong components of a
Nash network it would be pro�table to form a strong link. Thus, whatever the values of
c and � within the range considered, only minimally strongly connected pro�les remain
pairwise Nash stable.

Then Proposition 3 characterizes the Nash, strict Nash and pairwise Nash stable
architectures within the region c < 1��: Now we show that the same structures remain
stable above the line c = 1 � �, but they are not the only ones that are stable above
this line.

Proposition 4 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1
and c � 1� �; then (i), (ii) and (iii) in Proposition 3 remain true if it is assumed that
the pro�le contains no cycles.

Proof. Assume g is a Nash pro�le with no cycles. By Lemma 1-(ii), within this range
of values of � and c all links are strong, and no super�uous link would be supported.
Therefore all strong components are minimal. Then the proof of (i),(ii) and (iii)
follows the same steps as in Proposition 3.
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β
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. . .

Figure 1: Stability

Remarks:
(i) Figure 1 illustrates the situation described by Propositions 3 and 4. The left-

hand side of the rectangle, i.e. � = 0, represents Jackson and Wolinsky�s connections
model without decay, where Nash and strict Nash pro�les are those where all links
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are strong and all strong components are minimal, and pairwise Nash stable those
minimally strongly connected. In region S all minimally strongly connected pro�les
as well as those pro�les described in Proposition 3-(i) and Proposition 4-(i) where
the size of the greatest strong component is smaller or equal (strictly smaller) than s
are Nash (strict Nash) stable. Moreover, below the straight line c = 1 � � these are
the only Nash (strict Nash) structures, while above this line they are the only Nash
(strict Nash) structures without cycles. As one moves right from the side � = 0, all
the structures characterized in Proposition 1-(i) as Nash and strict Nash when � = 0
remain strict Nash as far as n � 1 < c=�, while at n � 1 = c=� the only isolated
individual in a pro�le where the rest of the players form a minimal strong component
is indi¤erent to pay a weak link with any other individual, but when n� 1 > c=� this
player has an incentive to do it. In this way, as c=� decreases, smaller maximal sizes
of a strong component are enough to make it pro�table for any player that does not
belong to that component to pay a weak link with any player belonging to it. When
c=� > 1, but this value is very close to 1, apart from minimally strongly connected
pro�les, only the empty network, where all strong components are singletons, remains
strict Nash among such pro�les. Beyond this point, i.e., when c < � and c < 1 � �,
the only Nash and strict Nash stable pro�les are those minimally strongly connected,
the same is true when c � 1� � if attention is con�ned to pro�les with no cycles.
(ii) As to pairwise Nash stable pro�les, only minimally strongly connected pro�les

are such below the line c = 1��; and the same is true above this line for strategy pro�les
without cycles. But in view of Proposition 3-(ii) and Proposition 4-(ii), within the
range of values considered, below the line c = � pairwise Nash stability adds nothing
to (i.e. does not re�ne) Nash stability, given that in this case bilateral coordination is
irrelevant because it does not really o¤er new chances to the players.
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Figure 2: Oriented wheel stability: Necessary conditions (n = 11)
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(iii) By Lemma 1-(ii), above the line c = 1� �, in equilibrium all links are strong
unless there are cycles. Nevertheless, unlike when c < 1��, when c � 1�� weak links
may actually occur in equilibrium if there are cycles. The following discussion shows
that the stability of oriented wheels (i.e. the only strict Nash architecture for the Bala
and Goyal�s one-way �ow model without decay) is con�ned to a region close to � = 1,
i.e. to Bala and Goyal�s one-way �ow model. Consider the n-player pro�le consisting
of n weak links which form an oriented wheel. No node has an incentive to sever the
only link it is supporting out of the two it is involved in and double the other one if

� + �2 + �3 + ::: + �n�2 + �n�1 � 1: (10)

Condition (10) sets a lower bound for �: In particular implies that no node is
interested in severing the only link it supports, that is

� + �2 + �3 + ::: + �n�2 + �n�1 � c:
No player has an incentive to double a weak link if

� + �2 + �3 + ::: + �n�2 + �n�1 � c � 1 + � + �2 + �3 + ::: + �n�2 � 2c;

that is, if
c � 1� �n�1: (11)

Therefore, (10) and (11) are necessary conditions for an n-player oriented wheel to
be stable. Note that the greater the number of players, the less constraining the �rst
condition is and the more constraining the latter. In general, these conditions are
not su¢ cient. For instance, assume n is odd, i.e. n = 2m + 1 for some integer m,
N = fi0; i1; :::; i2mg and gi1i0 = gi2i1 = ::: = gi2mi2m�1 = gi0i2m = 1. Then i0 has no
incentive to initiate a link with im if

� + �2 + �3 + ::: + �2m�1 + �2m � c � 2� + 2�2 + ::: + 2�m � 2c;

that is, if
c � �(1� �m)(� + �2 + ::: + �m): (12)

When the number of players increases, these conditions constrain considerably the
region where an oriented wheel can be stable. Figure 2 illustrates this for n = 11.
Condition (10) sets an lower bound on �, and its boundary is represented by a vertical
dashed line, while the other two, (11) and (12), set lower bounds for c relative to �.
Therefore, these necessary conditions constrain the possible stability of oriented wheels
to two regions (their boundaries in thick lines in the �gure): a narrow strip close to
� = 1 (i.e. to Bala and Goyal�s one-way �ow model), along with a small piece between
(10) and (12) (there is always room between) and above (11), which as n increases
shrinks to a small patch close to (�; c) = (1

2
; 1). The following example shows that

cycles are actually feasible in equilibrium.
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Figure 3: Oriented 4-node wheel stability

Example 3: If n = 4, and g consists of 4 links: 12, 23, 34 and 41. Conditions (10)
and (11) become:

� + �2 + �3 � 1 and c � 1� �3:
As to condition (12), no player has an incentive to initiate a new link with the node at
the opposite corner of the square if: � + �2 + �3 � c � 2� + �2 � 2c, that is, if

c � � � �3:

But this is implied by c � 1 � �3. In fact, it can easily be checked that if conditions
(10) and (11) hold no change of strategy by a single node improves its payo¤. Thus,
these conditions are necessary and su¢ cient for the 4-node oriented wheel to be a Nash
network (strict Nash if both conditions hold strictly). Pairwise Nash stability further
requires that not two nodes between which no link exists bene�t from creating a strong
one, that is � + �2 + �3 � c � 1 + 2� � 2c, or

c � 1 + � � �2 � �3: (13)

Figure 3 shows the region where conditions (10) and (11) hold and the 4-node oriented
wheel is Nash (strict Nash in the interior): to the right of line (10) and above curve
(11). Finally, the 4-node oriented wheel is pairwise Nash stable above curve (13),
dashed in the �gure.

6 E¢ ciency

We now address the question of e¢ ciency. A pro�le is e¢ cient if it maximizes the ag-
gregate payo¤ for a particular con�guration of values of the parameters. The following
result shows that e¢ cient pro�les must be connected.
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Lemma 2 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1;
the e¢ cient pro�les are connected.

Proof. Assume g is an e¢ cient pro�le where i and j are in di¤erent components.
Therefore the contribution of i�s (j�s) unit of value to j�s (i�s) payo¤ is 0. If a strong
link between i and j forms the unit of information at each one would reach the other
perfectly at a joint cost of 2c, therefore, as c < 1; the sum of the payo¤s of i and j
would increase, and no other player�s payo¤would decrease. Thus g cannot have more
than one component.

The following proposition provides a partial characterization of e¢ cient pro�les.

Proposition 5 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1
and 0 < c < 2 (1� �) ; the e¢ cient pro�les are those minimally strongly connected.

Proof. Assume g is an e¢ cient pro�le. Assume gij = 1 and gji = 0. Then there
is no path of strong links connecting i and j, otherwise link ij would be super�uous.
This entails that i receives from j�s unit of worth a fraction �, and j receives from
i�s unit of worth no more than �. By doubling the weak link ij, each i and j would
receive the unit of worth at the other node perfectly, at an added cost of c. Then
if c < 2(1 � �) doubling a weak link will increase the sum of the payo¤s of i and j,
and no other player�s payo¤ would decrease, thus in e¢ cient pro�les only strong links
form. Moreover, e¢ ciency rules out cycles in a pro�le where all links are strong. This
together with Lemma 2 ensures that g is minimally strongly connected.

Therefore for c < 2(1 � �) the e¢ cient pro�les, i.e. minimally strongly connected
pro�les, are also stable (Nash, strict Nash and pairwise Nash). Moreover for c < 1� �
the e¢ cient pro�les are the only ones that are stable.
As for c � 2(1��) Example 3 shows that other pro�les, as oriented wheels, can be

stable. Moreover, they can also be more e¢ cient than minimally strongly connected
pro�les. This occurs for an n-node oriented wheel if:�

n�
�n�1 � 1
� � 1 � nc

�
� (n� 1)(n� 2c) > 0:

For instance, for n = 4 this becomes c > 6 � 2� � 2�2 � 2�3, which holds in a
narrow region close to � = 1: As � approaches 1 weak links become more e¢ cient and
therefore more abundant in e¢ cient pro�les. Moreover, at the limit e¢ cient networks
are oriented wheels of weak links.

7 Dynamics

Bala and Goyal (2000) provide a dynamic model that converges to strict Nash networks
for the one-way �ow model without decay. They consider sequential best response
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dynamics: at every period a player chosen at random plays a best response while all
other players keep their links unchanged. This de�nes a Markov chain on the state
space of all networks and they prove that this dynamic model converges to the oriented
wheel for the one-way �ow model. We now address the extension of this dynamic model
to the current setting.
As a full characterization of strict Nash pro�les has been achieved only for c < 1��,

we only address the question of convergence of dynamics for values of the parameters
within this region. We have the following:

Proposition 6 If the decay matrix �g is given by (6) and payo¤s by (9), with 0 < � < 1
and c < 1��, then sequential best response dynamics converge to a strict Nash network
with probability 1.

As this result (and its proof) is entirely similar to Proposition 12 in Olaizola and
Valenciano (2014b), we omit a repetition of all the details. In order to make the
paper basically self-contained we give an informal description of the way of producing
a sequence of best responses starting from any strategy pro�le that yields a strict Nash
pro�le. The idea is the following:
1. After a best response from an arbitrary node i: (i) the set of nodes in the strong

component of the resulting pro�le containing i contains the set of nodes in the strong
component containing i in the previous pro�le; (ii) no further best response will ever
break a strong link in which i is involved; (iii) any weak link supported by i belongs to
a di¤erent strong component (similar to Lemma 7 in Olaizola and Valenciano (2014b)).
2. Therefore, if after an arbitrary player plays a best response another player in the

same (new) strong component plays another, after a �nite number of steps all players
in a strong component must be playing best responses. Then either the component is
isolated or one of its nodes is supporting a weak link with a node j in a di¤erent strong
component. In the latter case, let j play a best response and restart the sequence.
In this way after a �nite number of best responses an isolated strong component C is
generated. (see Procedure 1 and Claim 1, in Olaizola and Valenciano (2014b)).
3. At the end of the sequence described in 2, there are two possible cases: either

#C � c=� or not. In the latter case, apply the sequence described in 2 starting with a
node in a di¤erent strong component. Reiterate the process until a component of size
� c=� is generated or, otherwise, a pro�le consisting of isolated strong components of
size smaller than c=� is generated. In the second case, a strict Nash pro�le is obtained
(Algorithm 1, Claim 2 in Olaizola and Valenciano (2014b)). Otherwise proceed as
follows.
4. If at the end of 3 a strong component of size greater or equal than c=� is

obtained, then it is easy to show that a sequence of best responses exists that yields a
pro�le consisting of a unique minimally strongly connected component, i.e. a minimally
strongly connected pro�le, strict Nash in the whole region (Lemma 8 in Olaizola and
Valenciano (2014b)).
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In Olaizola and Valenciano (2014b) a modi�cation of the sequential best response
dynamics consistent with a scenario where pairwise link formation is allowed is pro-
posed. Namely, in every period a player may either play a best response or propose
the formation of a new strong link to one player. This �extended�best response dy-
namics ensures convergence to a pairwise Nash stable pro�le by just letting players
keep playing once a strict Nash pro�le is reached till the resulting pro�le is strongly
connected.

8 Concluding remarks

Proposition 3 fully characterizes Nash, strict Nash and pairwise Nash stable architec-
tures for the whole range of values of the parameters within the region c < 1 � �: As
to the region where c � 1� �, Proposition 4 does not provide a full characterization.
Cycles are possible, but a characterization of stable architectures with cycles seems
very complicated.
In sum, the transition from Jackson and Wolinsky�s (1996) connections model with-

out decay (case � = 0 in our model) to Bala and Goyal�s (2000) one-way �ow model
(case � = 1 in our model) has certain similarities with the transition to Bala and
Goyal�s (2000) two-way �ow model studied in Olaizola and Valenciano (2014b), and
certain di¤erences.
In the model considered here, below the line c < 1 � � everything occurs as it

does in the model in Olaizola and Valenciano (2014b) below the line c < 1 � �14. In
both cases, in this region we have a smooth extension of the results in Jackson and
Wolinsky�s connections model. The stability of the pro�les for Jackson and Wolinsky�s
connections model without decay (Proposition 1) extends for each of them up to a point:
the moment when the greatest strong component is enough to make the pro�le unstable.
In both models, beyond the point where c = � in the current model, the only Nash,
strict Nash and pairwise Nash stable pro�les are those minimally strongly connected.
As to e¢ ciency, Proposition 7 characterizes e¢ cient pro�les for c < 2 (1� �) ; which
for c < 1� � are also pairwise Nash stable. The dynamics models discussed in Section
7 prove convergence to strict Nash and to pairwise Nash stable pro�les.
On the contrary, above the line c = 1 � � results di¤er with those above the line

c = 1�� in the model in Olaizola and Valenciano (2014b). In both models, only stable
architectures without cycles have been characterized. In the model considered here the
line c = 1 � � has no impact on stability (Proposition 4), while in the other model
above the line c = 1 � � peripheral players must be necessarily connected through
weak links in equilibrium, giving rise to the tree-core-periphery architectures. In the
model in Olaizola and Valenciano (2014b) the existence of cycles above this line was

14In the model studied in Olaizola and Valenciano (2014b) links can be unilaterally created and
�ow is always bidirectional, but it is perfect only when both players support it. Otherwise, only a
fraction � (0 < � < 1) �ows in both directions.
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unsettled, while here their existence has been established (Example 3 and preceding
discussion).
A comparison with the transition from Bala and Goyal�s (2000) one-way �ow model

to their two-way �ow model studied in Olaizola and Valenciano (2014a) is pertinent
here. In that case the oriented wheel remained as the only stable structure for most of
the region of values of the parameters. New stable structures (�rst the center-sponsored
star, then other root-oriented trees and wheels of trees) only appeared for values of �
(the fraction of the unit of information at one player which �ows in the direction
towards a player not supporting a weak link) close to 1 (i.e. very close to the two-way
�ow model), the oriented wheel ceasing to be stable when the last root-oriented tree,
the oriented line, becomes stable. Here instead the stability of the oriented wheel is
con�ned to a region close to � = 1, i.e. the one-way �ow model.
The model presented in this paper completes a �triangle�whose vertices are the

three benchmark models of strategic formation of networks: Jackson and Wolinsky�s
(1996) connections model, and Bala and Goyal�s (2000) one-way and two-way �ow
models. This suggests as a line of further work studying the �interior�of this triangle.
This would mean a 3-paramenter model where the extension of some of the results
obtained for its side-models can be explored. The e¤ects of introducing decay into
the model as pointed out in footnote 10 could also be explored. This would provide a
model that actually bridges the gap between Jackson andWolinsky�s (1996) connections
model and Bala and Goyal�s (2000) one-way �ow model with decay.
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