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Abstract

As a necessary condition for the validity of the present value model, the price-
dividend ratio must be stationary. However, significant market episodes seem to pro-
vide evidence of prices significantly drifting apart from dividends while other episodes
show prices anchoring back to dividends. This paper investigates the stationarity of
this ratio in the context of a Markov-switching model à la Hamilton (1989) where an
asymmetric speed of adjustment towards a unique attractor is introduced. A three-
regime model displays the best regime identification and reveals that the first part of
the 90’s boom (1985-1995) and the post-war period are characterized by a stationary
state featuring a slow reverting process to a relatively high attractor. Interestingly, the
latter part of the 90’s boom (1996-2000), characterized by a growing price-dividend
ratio, is entirely attributed to a stationary regime featuring a highly reverting process
to the attractor. Finally, the post-Lehman Brothers episode of the subprime crisis can
be classified into a temporary nonstationary regime.
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1 Introduction

According to traditional asset pricing literature, prices should not drift apart permanently
from dividends. In other words, the price-dividend (PD hereafter) ratio should show a
reverting behavior towards an attractor. However, around 1985, the US stock market
started its latest remarkable episode of apparent divergence between equity prices and
dividends. As a consequence of this, the PD ratio showed a sustained increase during
the so-called 90’s boom. During this particular episode, dividends seem to have become
less important as the key payout mechanism.1 A few years later, this episode of sustained
increase was followed by the episode of significant drops in equity prices experienced during
the latest recession or subprime crisis. Around the subprime crisis, equity prices seem to
anchor back to dividends. The dynamics of the ratio around these two episodes reopened
the debate on the relation between equity prices and their fundamentals around recessions.

This paper provides an alternative view of the PD ratio dynamics consistent with the
existence of a high, unique attractor and the presence of alternative regimes. The idea of
a unique attractor is closely linked to that of a long-run equilibrium relationship between
prices and dividends whereas the existence of a high attractor is motivated by the rapid
increase in the PD ratio during the late 20th century.2 This alternative view is based on
the empirical evidence obtained from the estimation of a Markov-switching (MS) model
à la Hamilton (1989) where neither the number of states nor the parameters driving the
PD ratio dynamics in each state are restricted. Applying this methodology to US stock
market data from 1871 to 2009, our empirical results show evidence of three alternative
regimes in the dynamics of the PD ratio. The characteristics of the states identified differ
significantly from those previously identified in the related literature. In particular, our
results suggest that the PD ratio has experienced transitory episodes where it has drifted
apart from its attractor.

The relationship between equity prices and fundamentals is a basic concern for market
participants and researchers since it determines the uniqueness of prices, the rationality

1 Fama and French (2001) show that firms, regardless of their characteristics, have become less likely to
pay dividends. Other papers like Baker and Wurgler (2004) and Hoberg and Prabhala (2009) investigate
the phenomenon of disappearing dividends. Some changes to the dividend policy regulation may partially
explain this decreasing dividend payment trend. In particular, the enactment of U.S. Securities and
Exchange Commission (SEC) rule 10b-18 in 1982 (see, for instance, Grullon and Michaely, 2002; Boudoukh,
Michaely, Richardson and Roberts,2007), and the 2003 tax cut (as investigated by Chetty and Saez, 2005).

2 The idea of a transition to a relatively high attractor advocated in this paper is not completely new,
although somewhat controversial. This idea follows the initial beliefs of a “permanently high plateau”
of stock prices proposed by Irving Fisher just before the 1929 crash. Even more, it is in line with the
hypothesis in Glassman and Hasset (1999) that stock prices might keep rising in relation to dividend
payments in order to reach what they believe is an appropriate risk premium. By no means are we arguing
that our results support the hypothesis in Glassman and Hasset (1999) that the Dow Jones will someday
hit 36,000 or their beliefs about the risk premium. Our approach simply considers the possibility that the
long-run attractor for the ratio could be higher than what historical data initially suggest, and of course,
different from the historical mean.
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of agents, and the forecastability of returns (Cochrane, 2008). Since the seminal paper
by Shiller (1981), the dynamic features of the relationship between equity prices and
dividends has been investigated by many authors. The papers in this area of research can
be classified into two strands of literature. There is a first strand that considers that the
reversion process of the PD ratio exhibits linear dynamics. Several studies have found
nonconclusive empirical evidence for the cointegration relation linking stock prices and
dividends as shown in Cochrane (1992, 2001) and Lettau and Ludvigson (2005), among
others. In particular, the evidence on cointegration between equity prices and dividend
series turns out to be highly sensitive to the sample considered. This sample-dependence
is not surprising given the different characteristics of alternative episodes in the equity
market. These episodes clearly suggest the presence of an asymmetric behavior in the
dynamics of the ratio, which implies that the reversion process may not be linear. The
second strand of literature, where this paper can be classified into, is somewhat more
flexible and allows precisely for the possibility of an asymmetric reverting process for the
PD ratio. In this line of research, the long-run relationship implied by the present value
model holds while the short run dynamics of the ratio can be affected by certain episode-
specific characteristics such as the existence of transaction costs, noise traders and swings
in market sentiment. Most papers in this line of research propose different versions of
threshold autoregressive (TAR) models where the speed of adjustment to an attractor is
assumed to depend on a threshold variable driving regime-switches.3

The MS approach followed in this paper allows for the possibility of a state-dependant
speed of adjustment towards a unique long-run equilibrium as in the TAR-related papers.
However, the MS method provides several unique features to go deeper and investigate
further the dynamics of the PD ratio during particular market episodes. First of all,
this method makes simpler to consider additional regimes. This feature allows us to
deviate from the two-state (bull and bear markets or recession and non recession episodes)
framework traditionally investigated in the previous literature. Moreover, within this
method we do not impose any predetermined characteristics for the dynamics of the ratio
within each regime. The lack of restrictions of the MS method stands in sharp contrast
to the approach suggested by the TAR method. We argue that the MS approach is more
flexible since the estimation results from TAR models may depend on the definition of
the threshold variable chosen by the researcher. The definition of the threshold variable
imposes a priori features identifying the alternative regimes. In contrast, the switching
process characterized by an MS approach is governed by a latent variable that is not
predefined by the researcher. In this sense, we believe that the MS approach allows the
data to speak more freely than a TAR approach because the variable governing regime-
switches is not defined a priori under the MS approach.4 Finally, the MS approach

3 See, for instance, Bohl and Siklos (2004), Coakley and Fuertes (2006) and McMillan (2006, 2007).
This branch of literature stands in sharp contrast with papers that consider switches in the attractor (see
for instance Lettau and Van Nieuwerburgh, 2008).

4 The flexibility of our methodology as in the number of states, their characteristics and the possibility of
nonstationary states has of course a trade off. In particular, this methodology might be prompt to deliver
nonidentifiable states. For example, the states obtained might be hard to interpret and not related to any
characteristic of either the stock market or the business cycle. In order to avoid this potential drawback
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allows for the possibility of transitory episodes where the PD ratio shows no evidence
of convergence to the attractor. The possibility of temporary non-stationary regimes is
motivated, as mentioned above, by the high sensitivity of the evidence on cointegration
between stock prices and dividends to the sample period considered found in previous
studies.5

Within the three-regime MS specification, we investigate the particular characteristics
of some relevant historical episodes such as the post-war period (up to 1975), the 90’s boom
and the subprime crisis. We find that the post-war period and the first part of the subprime
crisis are characterized by a stationary behavior, but with a low speed of adjustment to
the attractor. Moreover, two sub-periods can be identified in the 90’s boom. The first sub-
period (1985-1995) shows a slow reversion to the attractor whereas the second sub-period,
characterized by a fast growing PD ratio, features a strong reversion regime. Interestingly,
this last result suggests that the period 1996-2000 is characterized by a stationary regime.
A result that stands in sharp contrast to the conclusions reached by previous papers which
rely on a TAR approach, especially to those papers that identify the long-run attractor
with the historical mean of the PD ratio. The contrasting regime characterization is
determined by another important estimation result found: even if the attractor is poorly
identified, by using alternative samples and MS specifications, we robustly find larger
estimated values of this parameter than those reported in the previous related literature.
More important, the remaining parameter estimates and the regime features identified by
the MS approach are not affected whenever the attractor parameter is fixed to a particular
value as long as this value is close to the historical maximum reached by the PD ratio.
This high attractor in turn explains why a fast growing PD ratio is linked to a stationary
state where the PD ratio is catching up the high long-run equilibrium. Finally, we also
find that a short-lived nonstationary regime characterizes several remarkable recession
episodes. In particular, recession episodes involving significant drops in equity prices such
as the 1929 crisis and the post-Lehman Brothers episode during the subprime crisis belong
to this regime.

The rest of the paper is organized as follows. Section 2 summarizes the related litera-
ture on the analysis of PD ratio stationarity within the PV framework. Section 3 describes
the data and presents a preliminary investigation on the stability of the PD ratio reversion
process. Section 4 presents the MS model considered in this paper and discusses the em-
pirical results found using the benchmark three-regime model. This section also assesses
the importance of attractor estimation. Section 5 provides a robustness analysis along
several dimensions. Finally, Section 6 concludes.

and keep the state identification interpretable, we carry out an analysis of the relationship between the
states identified using the MS methodology and several business cycle and stock market characteristics
such as inflation, GDP growth and equity market volatility.

5 Put differently, the presence of transitory non-reverting regimes may lead to the non-conclusive ev-
idence of cointegration in a linear framework found in the literature. By contrast, the MS approach
accommodates the possibility of detecting temporary non-stationary regimes together with at least one
stationary regime featuring a strong reversion to an attractor, which implies a strong cointegration rela-
tionship.
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2 Nonlinear Processes and the PD Ratio Dynamics

In this section, we introduce the present value (PV) model as well as its implications on the
stationarity of the PD ratio. We then summarize the results found in the related literature
with respect to the PD ratio stationarity. We review first those papers considering linear
processes in the dynamics of the ratio. Then, we summarize the literature considering
nonlinear processes in the dynamics of the ratio.

Campbell and Shiller (1988a, 1988b) develop a log-linear approximation to the PV
framework that can be used to study stock price behavior under any model of expected
returns. Their approach leads to the following PV equation:

pt =
k

(1− φ)
+Et





∞�

j=0

φj [(1− φ)dt+j − rt+j]



+ lim

j→∞
Et(φ

jpt+j), (1)

where pt is the logged value of the stock price at the beginning of period t, dt is the logged
value of the dividend accruing to the stock paid out throughout period t, and rt is the
log return associated with stocks at time t (i.e. rt = ln(1 + Rt+1)). Finally, k and φ
are constants obtained from the log-linear approximation. Equation (1) can be written in
terms of the (log of the) PD ratio as follows:

pt − dt−1 =
k

(1− φ)
+Et





∞�

j=0

φj[∆dt+j − rt+j ]



+ lim

j→∞
Et[φ

j(pt+j − dt−1+j)]. (2)

The last term on the RHS of equation (2) drops out under the transversality condition
limj→∞Et[φ

j(pt+j − dt−1+j) = 0,6 which implies that

pt − dt−1 =
k

(1− φ)
+Et





∞�

j=0

φj[∆dt+j − rt+j]



 . (3)

In addition, if dividends are assumed to be I(1) and returns are stationary, equation (3)
implies that the stationarity of the PD ratio can be viewed as a necessary condition for
the validity of the PV model, and the logged values of prices and dividends are then coin-
tegrated, with a cointegration vector given by (1,−1). To understand this cointegration
relationship, one may intuitively think that if current stock prices are high in relation
to current dividends (the stock is overpriced with respect to actual/lagged dividends, or
there are expectations of future high dividend payments), dividends are expected to grow.
That is, if agents are fully rational under this model, prices and dividends cannot drift
apart forever and the ratio will show a reverting behavior towards an attractor. In other
words, in the presence of rational agents assigning unique prices to stocks in relation to

6 Imposing the transversality condition ensures the uniqueness of the solution for stock prices obtained
from the PV model.
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their dividend payments, the stationarity of the PD ratio is a necessary condition for the
PV model.

Previous studies such as Cochrane (1992, 2001), and Lettau and Ludvigson (2005),
among others consider linear dynamics for the analysis of the PD ratio reversion process.
These papers have investigated different samples as well as alternative model specifications
and have found nonconclusive evidence for the cointegration relationship implied by the
PV model. In particular, the evidence on cointegration reported in these studies depends
highly on the sample period considered. This nonconclusive evidence as well as the differ-
ent characteristics of alternative equity market episodes suggest that the reversion process
of the PD ratio may not be linear, and then, any inference based on a linear framework
might be at least misleading.

The key difference among papers following a nonlinear approach comes from the al-
ternative driving forces assumed for the asymmetric reversion process.7 There is a branch
of literature in which the non-linearity features come from stock price fundamentals (for
instance, dividends). In Shiller (1989), for example, there are different types of agent
who react differently to historical events, macroeconomic news or just fads. These agents
can be long-run investors who show a more stable behavior or noise traders who tend to
react to fads or overreact to news. Alternatively, Froot and Obstfeld (1991) introduce the
possibility of an “intrinsic bubble” which depends exclusively on dividends. Extending
the intrinsic bubble specification, Drifill and Sola (1998) include structural breaks in the
dividend process. The possibility of having structural breaks in the dividend series is in
turn motivated by the empirical evidence on unstable dividend processes. This evidence
on structural breaks paved the way for other regime-switching specifications as in Evans
(1998) and Gutiérrez and Vázquez (2004).8

Another branch of literature focuses entirely on the stationarity of the PD ratio im-
plied by the PV model and considers that stock prices are driven by non-fundamental
components. In particular, Bohl and Siklos (2004), Coakley and Fuertes (2006), Kapetan-
ios, Shin and Shell (2006) and McMillan (2006, 2007), introduce a non-fundamental term
ut in equation (3) as in

pt − dt−1 =
k

(1− φ)
+Et





∞�

j=0

φj[∆dt+j − rt+j ]



+ ut. (4)

There are different interpretations for the error term ut in Eq. (4). For example, Bohl
and Siklos (2004) argue that ut is a bubble term that captures run-ups in stock prices

7 In this paper, we focus our attention on the literature that considers nonlinearities towards a unique
long-run attractor. A widely analyzed alternative considers that the nonlinearity comes from shifts in the
attractor as analyzed by Lettau and Van Nieuwerburgh (2008) and papers cited therein. In their paper,
the hypothesis analyzed is that deviations around different steady-states are stationary.

8 Related papers considering alternative specifications including regime changes not directly linked with
the dividend process can be found in Cecchetti, Lang and Mark (1990), Veronessi (1999), Timmermann
(2001), and Bonomo and Garcia (1994), among others.
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before a crash, suggesting the presence of asymmetries in the PD ratio reverting process.
Kapetanios et al. (2006) interpret this term as capturing the presence of transaction costs
such that small, uncorrected deviations may arise but larger deviations would be arbi-
traged away. McMillan (2006, 2007) and Coakley and Fuertes (2006) link this mispricing
term to market sentiment as in behavioral finance models or as in one of the hypotheses
explaining disappearing dividends (Baker and Wurgler, 2004). In those behavioral models,
the existence of noise traders in the market who react differently to the arrival of good or
bad fundamental news provides a possible source for asymmetries since the trend-chasing
behavior of such traders after the arrival of positive news leads to a market over-reaction
such that the price change is greater than required by the news. In contrast, these noise
traders would be more conservative in bear markets thus anchoring prices to dividends.
Therefore, the reversion process of the PD ratio could be more persistent in bull markets
and more rapidly reverting in bear markets.

The evidence found by Bohl and Siklos (2004), Coakley and Fuertes (2006) and McMil-
lan (2007) is based on a two-regime framework for the speed of adjustment. In general,
these papers consider alternative TAR specifications for the dynamics of the PD ratio
that build on the model of Enders and Granger (1998), i.e., using a model similar to the
augmented Dickey-Fuller (ADF) regression specification such as:

∆pdt = Itρ1(pdt−1 − µ) + (1− It)ρ2(pdt−1 − µ) +
l�

j=1

βj(∆pdt−j) + εt, (5)

where pdt denotes the (log of the) PD ratio at time t; ρj (j = 1, 2) is the speed of
adjustment in each regime to the attractor, µ; εt is an i.i.d. shock; and It is an indicator
function that takes the value of one if qt ≥ 0, and zero otherwise. Finally, qt is the
threshold variable that predetermines the regimes.

Following the TAR setting, Coakley and Fuertes (2006) propose a priori a two-regime
framework (called bull and bear regimes) for the speed of adjustment around the same
long-run equilibrium. In their paper, the threshold variable is highly persistent with
respect to dividend growth and is defined as qt(w, d) = w1∆pdt−1 + ...wd∆pdt−d, where
w′ = (w1, ...wd) > 0 is a vector of predefined weights, and d is the number of lags to be
selected from the data. The regime changes work as follows: if qt > 0, the stock market is in
a bull episode with speed of adjustment ρ1 and if qt < 0 the market is in a bear episode with
speed of adjustment ρ2. By contrast, Bohl and Siklos (2004) assume a threshold variable
showing lower persistence simply defined as qt = ∆pdt−1 − τ , where τ is a threshold
parameter to be estimated. Recently, McMillan (2006, 2007) considers an exponential
smooth transition model specification for the dividend-price ratio. His model implies
that the dynamics of the middle ground differ from the dynamics associated with large
deviations. McMillan (2006,2007) also introduces asymmetries between regimes of rising
and falling prices. His model falls into the STAR family of models, where a continuous
transition function G(qt) between 0 and 1 is used instead of the indicator function It.9

9 For a generalization of TAR models and their reversion analysis see, for instance, Tong (1993) and
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The empirical evidence found in this last branch of literature is also dependent on the
sample and the particular specification considered. For instance, the evidence in Coakley
and Fuertes (2006) is based on monthly data from January 1871 to September 2001 for
the Standard and Poors PD ratio. Based on their two-regime TAR framework, they
find support for the hypothesis that the PD ratio regularly behaves as a random walk
with an upward drift where stock prices drift away from fundamentals during bull market
episodes. In particular, they find that the 90’s boom falls into this category. However,
in bear markets, the adjustment of the ratio towards the equilibrium level is reinstated.
Their conclusion remains the same if observations from 1993:01 onwards are excluded. A
result that could be interpreted either as quite robust or as driven by the small weight
of the observations corresponding to the last eight years relative to the whole sample.
Moreover, Coakley and Fuertes (2006) report an estimate of the attractor smaller than
the historical mean, with no associated measure of precision, so its significance cannot be
assessed.

Bohl and Siklos (2004) investigate the (demeaned and detrended) US log dividend-
price ratio from January 1871 to September 2001. For this sample, they find evidence of a
stationary ratio and bubble-like asymmetric short-run adjustments such that stock prices
increase relative to fundamentals followed by a crash. The exception to these dynamics
is the episode between 1947 and 1982. They suggest that the different pattern observed
for this period is due to the absence of bull market periods followed by crashes which
makes this an atypical period relative to the rest of the sample. Moreover, they also find
strong differences between two non-overlapping periods: 1871-1936 and 1937-2001. In the
first period they find no evidence of either a unit root in the log dividend-price ratio nor
asymmetric effects in its dynamics, whereas the opposite is true for the second period.

Finally, McMillan (2006) finds that for the period 1980-1995 the cointegration rela-
tionship between stock prices and dividends gets stronger. This episode is followed by an
increase in real dividends from the beginning of 1995 that is in turn followed by an increase
in real prices. Given the dynamics of prices and dividends from 1995, the strength of the
stationary relationship falls quite significantly for the period 1995-1999, when it enters a
slow transition from a reverting regime to a random walk regime. However, for the period
2000-2004 he finds that the adjustment becomes stronger again. The results in McMillan
(2007) also support the presence of nonlinearities in the reversion process of the PD ratio
for the period February 1965 to May 2004. For this sample, he obtains that the speed
of transition is lower when stock prices rise relative to dividends than when prices are
below the level supported by dividends. In particular, he finds that the recent dynamics
of the PD ratio (in the episode related to the technological boom) falls into a random walk
regime where stock prices seem to diverge from fundamentals. It is important to remark
that all conclusions reached by McMillan (2006, 2007) are affected by the fact that he
considers demeaned time series, so the historical mean is taken a priori as the long-run
attractor.

Enders and Granger (1998).
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The MS method proposed in this paper adds to this literature by allowing for more
flexibility in the investigation of the dynamics of the PD ratio. First, we do not impose any
number of regimes that may have been present during the sample period. The flexibility
in the number of regimes allows us to deviate from the two-states framework traditionally
considered in the literature. In contrast with the TAR-related papers summarized above,
we do not impose any predetermined characteristics for the dynamics of the ratio within
each regime. In particular, we argue that the possibility of a long-run equilibrium different
from the historical mean of the PD ratio may play a key role as a reference point in the
identification of regimes as well as in the interpretation of their characteristics. Thus, in
this paper we investigate the asymmetric reversion hypothesis together with the estima-
tion of a unique attractor. Finally, the MS method allows for the possibility of transitory
episodes where the PD ratio shows no evidence of convergence to the attractor. That is,
again in contrast to the related literature, our approach allows for the possibility of identi-
fying temporary nonstationary regimes for which the cointegration relationship between
stock prices and dividends breaks down temporary until the stock market switches to a
stationary state.

3 Data and Preliminary Stability Analysis for the Dynamics
of the PD Ratio

Before introducing the MS model, this section presents the data and performs a prelimi-
nary analysis. This analysis motivates empirically the presence of switches in the dynamics
of the ratio during the sample considered as well as the possibility that the attractor is
not well captured by the sample mean of the PD ratio.

In this paper, we consider annual and quarterly data for the Standard and Poor’s index
price as well as for the dividends and earnings accruing to this index. These series are
available at Robert Shiller’s web site for the period 1971 to 2009. For this sample, we
calculate the PD and PE ratios. The PD ratio is calculated as pdt = pt − dt−1, where pt
is the log of the (closing) price of the SP500 index and dt−1 is the log of the dividends
accruing to the index paid out throughout period t − 1. Now, the price-earnings (PE
hereafter) ratio used to investigate the robustness of the results to alternative proxies for
payouts is calculated as pet = pt−

�10
k=1 et−k, where et−k is the log of the earnings reported

in period t− k.

Throughout the paper, we mainly focus our attention on the annual frequency. The
use of this frequency is justified by the main interest of the paper in relating switching
regimes to business cycle characteristics. We believe that this relationship is in principle
well captured by using annual data that ignore the noise associated with higher frequency
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data.10 Nevertheless, we also consider quarterly data below as an additional robustness
check.

Figure 1 shows the annual pdt and pet for the full sample. This figure already provides
some preliminary motivation for the nonlinear analysis of the dynamics of these ratios.
It is interesting for example to identify several episodes where the magnitude of the ratio
remains above or below the historical mean for several years. In particular, there is one
such episode of high prices related to dividends and earnings (ratios above the mean for
long episodes) between around 1955 and 1975, and a more recent one starting around 1990
and running at least to 2009. The latter episode includes the maximum values of both the
PD and PE ratios for the whole sample, the trend shift after the technology boom and
the large drop in stock prices related to the recent crisis episode or subprime crisis.11

Table 1 shows a summary of descriptive statistics for the PD ratio for several alternative
samples.12 The information in this table includes a commonly used test for cointegration
in a non-state-dependent context namely the ADF test. The values of the statistics for this
test suggest that only for the pre-1993 sample can the null hypothesis of nonstationarity of
the PD ratio be rejected for any standard significance level. This preliminary result implies
that if one does not consider the possibility of nonlinear reversion, the hypothesis of the
PD ratio being stationary might be rejected when the last part of the sample (1993-2009)
is included in the analysis. In sum, the preliminary evidence suggests that the PD ratio
varies considerably through time, shows episodes of sustained increase, large drops and
significant peaks related to particular business cycle episodes. The evidence also suggests
that the stationarity of the PD ratio implied by the PV model is not decisively supported
by the data for different subsamples.

The information in Table 1 and Figure 1 summarizes in a simple way part of the
evidence already found in the relevant literature considering a linear framework for the
analysis of PD ratio stationarity. In short, the empirical evidence presented here as well
as that found in this literature is nonconclusive when testing the stationarity implications
of the PV model. These results also show how difficult it may prove to reach a conclusion
about the stationarity of the PD ratio in a non-state-dependent context, especially after
the significant increase in the PD ratio that took place at the end of the millennium and
the subsequent drop in prices related to the subprime crisis.

10 Several related papers rely on the annual frequency. See, for instance, Froot and Obstfeld (1991), Driffill
and Sola (1998), Gutiérrez and Vázquez (2004), Cochrane (2008) and Lettau and Van Nieuwerburgh
(2008), among others. As for the monthly frequency considered in other papers such as Coakley and
Fuertes (2006) and McMillan (2007), we also believe that since monthly data on dividends are actually an
interpolation of quarterly data, the noise contained in these data may potentially affect the results.

11 Throughout the paper, we focus our attention mainly on the PD ratio at the annual frequency. The
dynamics of the PE ratio as well as the discussion for the quarterly frequency are left to be discussed in
Section 5.

12 We investigate the pre-1993 sample mostly for comparison with previous papers such as Coakley and
Fuertes (2006), and Lettau and Van Nieuwerburgh (2008).
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Figure 1: Standard and Poors Composite Index PD and PE ratios. Full sample.
Note: This figure plots the PD and PE ratios calculated as in Shiller (1989). That is, the PD
ratio is calculated as pdt = pt−dt−1, where pt is the log of the (closing) price of the SP500 index
and dt−1 is the log of the dividends accruing to the index paid out throughout period t− 1. The
price-earnings (PE hereafter) ratio is calculated as pet = pt −

�10
k=1 et−k, where et−k is the log

of the earnings reported in period t − k. In order to simplify the preliminary analysis and make
the ratios comparable, the figure shows the demeaned series.

Mean Median St. Dev Min. Max. Skew. ADF 5% Crit.
Full sample 3.21 3.16 0.41 2.32 4.45 0.84 −2.95 −2.91
Pre 1993 sample 3.09 3.12 0.27 2.32 3.63 −0.33 −5.11 −2.92
Pre 2001 sample 3.15 3.13 0.35 2.32 4.45 0.74 −3.04 −2.92
Post 1950 sample 3.46 3.42 0.43 2.67 4.45 0.50 −1.73 −2.94

Table 1: Summary Statistics for the PD ratio.
Note: The results under the column ADF represent the Augmented Dickey Fuller test statistic
(for the equation with an intercept and one-year lag for the PD ratio). The null hypothesis of this
test is that the speed of adjustment of the ratio towards an attractor is null. The column named
5% Crit. reports the 5% critical value for the rejection of the null hypothesis.
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Given the nonconclusive nature of the evidence based on a linear framework, we now
introduce the possibility of nonlinearities in the dynamics of the ratio. Figure 2 provides a
preliminary, but highly intuitive, analysis for considering the possibility of an asymmetric
speed of adjustment around a constant attractor. More precisely, this figure shows the
rolling estimates for the parameters α and the speed of adjustment ρ in a non state-
dependent framework based on a Dickey-Fuller-type equation for the PD ratio such as:

∆xt = α+ ρx(dmd)t−1 + ut, (6)

where x(dmd)t is the demeaned value of the PD ratio using the sample mean xt for the
associated window of data.13 In order to interpret the figure, it is useful to consider first
the following equation for the ratio

xt = η + γtxt−1 + ut. (7)

If we subtract xt−1 from both sides of the equation, we can write (7) as follows,

∆xt = η + ρtµ+ ρt(xt−1 − µ) + ut, (8)

where ρt = (γt − 1) and µ is the constant attractor. Then, we can write the following
identity

µ ≡ xt + at,

where at is just the deviation of the sample mean associated with the window from the
attractor. Substituting this identity into (8), we obtain a time-varying parameter version
of (6):

∆xt = αt + ρt(xt−1 − xt) + ut, (9)

where αt = η + ρtxt.

The information in Figure 2 and the implications of equations (7) to (9) can be used as
preliminary evidence that the dynamics of the ratio might show asymmetry in the speed
of adjustment towards an attractor. This information also challenges the usual estimate
of the attractor as the historical mean since the rolling sample mean, xt, appears to follow
an upward trend in the sample considered in this paper.

4 An MS model for adjusting the PD ratio

In the previous sections we have reviewed the literature that considers a nonlinear frame-
work to investigate the stationarity of the PD ratio in light of the implications of the PV

13 In this rolling-regression, we use a constant data size of 57 observations for each window. The choice of
this number is determined by the number of observations available until the 1929 crash. The first window
corresponds to an episode where the PD ratio seems to follow a stationary process fluctuating around the
sample mean associated with this pre-crash period.

12



Panel A: α stability.

Panel B: ρ stability.

Figure 2: Rolling regression stability analysis.
Notes: This figure analyzes the stability of parameters α and ρ in equation (9). We report the
estimated parameters and their respective 95% confidence intervals (in dashed lines) for rolling
windows with a length of 57 years. The mean PD ratio or xt denotes the rolling sample mean
(roll.mean) and its scale is depicted on the right-hand side vertical axe of both panels.
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model. We have also provided preliminary evidence on the possibility of an asymmetric
speed of adjustment of the PD ratio towards a long-run attractor and how this attractor
is not necessarily the average PD ratio. In this section, we explain the unique features of
the MS method to explain the relation between prices and dividends in particular stock
market episodes. In sum, the MS approach (Hamilton, 1989) provides a more flexible non-
linear framework for the dynamics of the PD ratio than the TAR approach. In the TAR
models reviewed in Section 2, the characterization of the alternative regimes is driven by
the choice of a particular threshold variable and the transition function between regimes.
However, on the one hand, the definition of the threshold variable chosen by the researcher
clearly determines the features and the asymmetric behavior of the PD ratio associated
with each regime. On the other hand, the number of regimes considered is limited by
the features assumed by the researcher a priori, such as growing and decreasing markets,
run-ups in prices and crashes, or bubble episodes, etc.

4.1 The MS setting

The MS approach for the dynamics of the PD ratio can be seen as a generalization of Eq.
(5) given by the following model:

∆pdt = α+ ρst(pdt−1 − µ) +
l�

j=1

βj(∆pdt−j) + εt, (10)

where εt is assumed to be i.i.d. as a normal with mean zero and standard deviation σ.14 In
this framework, the variable characterizing the transition between regimes is not defined
by the researcher. Instead, it is driven by an unobserved variable st that describes the
state or regime of the process at time t. The latent variable st is the outcome of a k-regime
Markov chain with st being independent of εt.15 ,16

As stated above, the basic difference between imposing a threshold variable as in TAR
models and the k-regime MS model is that the latter does not impose any particular

14 We will also briefly discuss the possibility of regime-dependent volatility σst . However, in order
to maintain the parsimony of the model, and given the minor gains in fitting the actual data for this
specification, we consider the model with only regime-dependent speed of reversion as the benchmark
specification.

15 The MS estimation methodology for a three-regime specification is briefly described in Appendix 1.
16 As for an alternative specification with a regime-dependent attractor, it must be clear that the MS

approach allows for transitory shifts in the characteristics of the dynamics which may have a relatively
short duration. Frequent attractor switches that might be captured by an alternative MS specification
clearly go against the concept of a long-run equilibrium motivated in the introduction. We believe that
structural break approaches might be more suited for dealing with the hypothesis of a switching attractor,
whereas TAR and MS approaches may be more suitable for capturing temporary switches in the speed of
adjustment.
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characteristic on each regime. Thus, this method allows us to analyze the unique charac-
teristics of alternative stock market episodes in our sample. In particular, we investigate
the possibility of having two and three regimes to capture these market episodes. Now, for
each particular specification and for each state, we estimate the parameters characterizing
the dynamics of the ratio (Eq. 10). These estimation results will allow us to (i) identify
which episodes belong to each regime; (ii) assess which episodes exhibit a reverting be-
havior and which ones do not; and (iii) link those regimes to particular business cycle and
stock market episodes previously discussed in the relevant literature.

By no means are we arguing that an MS approach is better than a TAR approach
under all circumstances. There is always a trade-off between imposing more restrictions
that might help to interpret the different regimes and imposing less restrictions giving
more freedom to the data and trying later to match the characteristics of the regimes
obtained. The MS approach followed in this paper should be viewed rather as a way of
assessing, and perhaps challenging, some of the results and interpretations obtained in the
recent literature by following alternative TAR approaches.

4.2 Evidence from a k-Regime MS Model

Table 2 shows the estimation results for the three-regime MS model in Eq. (10) for the full
and pre-1993 samples. In order to evaluate the state identification, the characteristics of
each regime and their relation to the business cycle are analyzed below. Figure 3 shows the
estimated smoothed probabilities of being in each regime for the two alternative samples
investigated under the benchmark specification (columns 2 and 7 of Table 2). Table 3 shows
the contemporaneous correlation between the probabilities in Figure 3 and some business
cycle and stock market characteristics. More precisely, the left-hand panel shows the
correlations between the smoothed probabilities of each state with inflation, GDP growth
and realized volatility of stock market excess returns, respectively. The middle panel
shows the correlations between the smoothed probabilities of each regime with moderate

and extreme events related to inflation, GDP growth and stock market volatility. Thus,
an extreme event of high (low) inflation is defined as a period where inflation is above
(below) the 90% (10%) percentile. A moderate event of high (low) inflation is defined as a
period where inflation is above (below) the 70% (30%) percentile. Similarly, moderate and
extreme events are defined for GDP growth and realized market volatility. Finally, the
last panel completes the characterization of the alternative regimes identified by showing
the correlations of each regime with different sets of event co-exceedances.

We find that the regimes are clearly identified by the three-regime MS benchmark
specification. That is, at least one of the smoothed probabilities in each period is close to
1, which is confirmed by the low (adjusted) regime classification measure (RCM) reported
in Table 2 and described in Appendix 2. Thus, regime 1 is a state that occurs occasionally
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Full Sample Pre 1993
Mean Log-lik. 0.84 0.82
Adj RCM 7.21 9.55

Param.
α −0.77 0.01

(0.67) (0.09)
ρ1 −0.08 0.15

(0.05) (0.10)
ρ2 −0.14 −0.02

0.03 0.05
ρ3 −0.18 −0.18

(0.03) (0.06)
µ 9.07 4.88

(4.34) (0.67)
β1 0.18 0.16

(0.05) (0.05)
σ1 0.08 0.08

(0.01) (0.01)
P11 1.00 0.99
P12 0.00 0.01
P21 0.02 0.06
P22 0.95 0.91
P31 0.01 0.00
P33 0.96 0.97

Table 2: Estimated parameters and stationarity analysis results for the three-regime
model.
Notes: This table reports the estimated parameters in equation (10), as well as their standard
deviations (in parenthesis) for the full and the pre-1993 samples. The table also reports the
adjusted RCM diagnostic tool briefly described in Appendix 2. Pij are the components of the
transition matrix P , defined as Pij = p(st = j, st−1 = i), for i, j = 1, 2, 3 (see Appendix 1).
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Figure 3: Smoothed probabilities for the three-regime benchmark specification.
Notes: This figure shows the smoothed probabilities of states 1, 2 and 3 for the PD ratio for the
full sample and the pre-1993 sample for the model in Eq. (10) (benchmark model). The smoothed
probabilities are calculated as in Hamilton (1989) and described in Appendix 1.
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in very short episodes which never last more than 3 years (its average duration is 1.47
years), most of them before 1950, and most recently in 2009. This regime is a near (non-)
stationary state, i.e., the speed of adjustment ρ1, is either positive or negative depending
on the sample considered, and in any case non-significant. This regime is associated with
a few relevant market episodes involving large drops in the PD ratio that took place
just after a strong run-up in stock prices relative to dividends, such as the 1929 crash
and the subsequent crises (1929-1932) as well as the first oil crisis (1974-1975) and more
recently, the post-Lehman Brothers episode during the latest recession. As can be seen in
Table 3, this regime is correlated with episodes of high inflation, low economic activity
and high realized volatility of excess stock returns. The co-exceedances analysis shows
that this regime is also related to episodes of stagflation and high volatility in the stock
market.17,18

Regime 2 is the most likely state in over two thirds of the sample.19 In particular, this
regime (with an average duration of 5.55 years) identifies two key historical episodes: the
post-war period up to the mid 70’s and the first part of the 90’s boom from 1980 to 1995.
When compared to the stock market or business cycle characteristics, this regime turns
out to be in general not related to periods where any moderate or extreme events occur.

Finally, regime 3 is a very interesting state. Before 1995, this regime only occurs
occasionally in very short episodes, which never last more than two years. All these
episodes are related to temporary run-ups in prices with respect to dividends. Interestingly,
it is clearly the most likely regime in the second part of the 90’s boom, from 1996 to 2000.
That is, this state identifies the episode with the highest slope of the PD ratio. Intuitively,
one might think that if the estimated attractor is higher than the maximum value, as
the upward drift of the PD ratio suggests, episodes of large and persistent growth of the
PD ratio are related to a high speed of adjustment consistent with a highly reverting
process to a high attractor. Interestingly, this highly reverting process associated with
the second part of the 90’s boom stands in sharp contrast with McMillan (2006), who
identifies almost the same subsample period with a significant fall in the strength of the
stationary relationship by considering the sample mean as an attractor.

Regime 3 exhibits quite distinctive features when compared to the particular business
cycle characteristics around the episode 1996-2000. Table 3 shows that this regime is
related to low inflation and high GDP growth. In addition, this third regime differs sub-
stantially from the other two regimes since it is also associated (i.e. positively correlated)

17 There are two exceptions for the probability of being in regime 1 around episodes of stagflation. These
exceptions are the 1929 crash and the year 2009, which are assigned to regime 1 but which are also
characterized by extreme low inflation or even deflation.

18 It is important to highlight that p11 (the probability of staying in regime 1) is very close to 1 suggesting
an absorbing regime. Nevertheless, in unreported results, we find that regime characterization holds if p11
is restricted to be strictly lower than 1.

19 This percentage is obtained following a rule of thumb by associating any time period with a particular
regime only when the smoothed probability of being in that regime is higher than 80%.
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with episodes featuring low inflation, high economic growth and high realized volatility
simultaneously. It is interesting to see how these characteristics (high real growth and
increasing market risk) are clearly related to the technological boom.

In sum, although our estimation results support the evidence of nonlinearities in the
dynamics of the ratio in Bohl and Siklos (2004), Coakley and Fuertes (2006) and McMillan
(2006, 2007), these results show significant differences on the reversion features displayed
by the alternative regimes. Thus, regime 1 is hardly identified with a stationary state, i.e.,
the estimated speed of adjustment for this regime is statistically non-significant for most
specifications considered. Regime 2 is a stationary state where the reversion parameter
ρ2 is negative and significant. Finally, regime 3 is a stationary state featuring a high,
significant speed of adjustment that identifies the episode 1996-2000. These differences
in regime characterization crucially depend on the attractor considered. This comes as
no surprise since we estimate this parameter while most of the related literature relies
on the historical PD ratio as the long-run attractor. Thus, we obtain a (relatively) high
and imprecise estimation of the attractor that leads to a characterization of the PD ratio
dynamics that stands in sharp contrast with the one provided in this literature. Given
the relevance of these results, next subsection assesses the importance of estimating the
attractor for regime identification.

4.3 The importance of estimating the attractor

The different characteristics of the states identified with the MS approach depend highly on
the estimated attractor. The attractor that we obtain turns out to be very large although
imprecisely estimated for every specification (and sample) considered. Given that the
estimated attractor is very high, the reader may worry that it really just functions as a
time trend, and that the changing speeds of adjustment just capture changes in the trend.
This is an easy hypothesis to investigate; we have simply added linear trends to each of
their three regimes and (i) test the exclusion restrictions on the three trends, (ii) test the
exclusion restrictions on the three adjustment terms. Our estimation results show that the
linear trend coefficients are all close to zero and non-significant, whereas the adjustment
coefficient estimates for states 2 and 3 remain significant as in the benchmark model.20

To understand the lack of precision in the estimation of the attractor parameter, it
is useful to note that its estimated value is much larger than the maximum value for
the PD ratio (4.45) and its sample mean (3.21). Then, under the view that the PD
ratio is reverting to a high level of the attractor, it is reasonable to obtain an imprecise
estimation of an attractor that has not yet been reached. However, a large value of the
attractor makes sense if we consider that the attractor might not be directly linked to
the historical mean when the PD ratio starts from a low level and the transition to the

20 These results are not reported in order to save space and are available from the authors upon request.
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long-run equilibrium or attractor is not symmetric. This hypothesis is supported by the
long-run upward drift followed by the PD and PE ratios around the technological boom
episode as shown in Section 3. This upward drift in the PD ratio may be the outcome
of several forces such as the fact that firms have become less likely to pay dividends,
the changes introduced in legislation such as the enactment of new SEC rules, a more
favorable treatment for corporate taxes than for personal income tax, new participants in
the market, and changing risk profiles as previously investigated in the literature.21

We further assess the importance of a high attractor estimate in the regime character-
ization of the PD ratio by estimating the MS model under three alternative upper-bound
restrictions on the attractor. The first restriction imposes that the estimated attractor
must be less or equal than 6 (i.e. a value which is much lower than the unrestricted esti-
mate of µ and yet higher than the maximum value of the PD ratio). The second restriction
imposes that µ must be lower than the historical maximum (i.e. µ ≤ 4.45). Finally, the
third alternative restriction (µ ≤ 4) imposes that the attractor cannot be much higher
than the historical mean as often assumed in the relevant literature. Table 4 and Figure
4 show the estimation results and state identification of the MS model under these three
alternative restrictions on the attractor, respectively. Two important conclusions emerge
from this analysis. First, the estimated value of the attractor reaches the upper bound
imposed unless the upper-bound for the attractor is restricted to be close to the histor-
ical mean. Second, regime features and state identification are mostly similar to those
obtained in the unrestricted MS model as long as the estimated attractor is allowed to
be sufficiently different from the historical mean. In particular, the stationary regime 3
characterizes (almost uniquely) the second part of the 90’s boom when the attractor is
allowed to be equal or larger than the maximum value for the PD ratio as in the bench-
mark specification. However, when the attractor is restricted to be lower than 4, its point
estimate is 3.66, close to the historical mean. Moreover, the state identification implied by
this estimated attractor becomes similar to that obtained in the previous literature where
the 90’s boom is characterized by a non-stationary (ρ1 = 0.23) state.

In sum, our analysis shows that the size of the attractor parameter is crucial in our
understanding of the PD ratio dynamics. In particular, our investigation highlights the
limitation of regime characterization in previous related literature. That is, by relying on
the assumption that the historical mean of the PD ratio is a good proxy for this parameter
previous literature provides, at least, a limited view of the PD ratio dynamics.

21 See, for instance, Fama and French (2001), Grullon and Michaely (2002), Baker and Wurgler (2004),
Chetty and Saez (2005), Boudoukh, Michaely, Richardson and Roberts (2007), and Hoberg and Prabhala
(2009).
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µ ≤ 6 µ ≤ 4.45 µ ≤ 4
Mean Log-lik. 0.829 0.747 0.703
RCM 8.973 10.611 12.826

Param.
α −0.367 −0.095 −0.110

(0.100) (0.058) (0.017)
ρ1 −0.034 0.139 0.233

(0.033) (0.044) (0.052)
ρ2 −0.139 −0.092 −0.251

(0.034) (0.043) (0.032)
ρ3 −0.235 −0.293 −0.636

(0.035) (0.043) (0.064)
µ 6.000 4.450 3.658

(0.047)
β1 0.185 0.207 0.058

(0.049) (0.053) (0.052)
σ 0.084 0.089 0.092

(0.006) (0.008) (0.006)

Table 4: Estimated parameters for the three-regime model. Upper bounds for the attractor
Notes: This table reports the estimated parameters in equation (10), as well as their standard
deviations (in parenthesis) when an upper bound for parameter µ is imposed. The following
bounded models are considered µ ≤ 6, µ ≤ 4.45 (the maximum value of the PD ratio for the full
sample), and µ ≤ 4. The table also reports the adjusted RCM diagnostic tool briefly described
in Appendix 2.
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Figure 4: Smoothed probabilities for the three-regime model. Upper bounds for the
attractor
Notes: This figure shows the smoothed probabilities of states 1, 2 and 3 for the PD ratio for the
full sample and the pre-1993 sample for the model in Eq. (10) with upper bouds for the parameter
µ. The smoothed probabilities are calculated as in Hamilton (1989) and described in Appendix 1.24



5 Robustness Checks

In this section, we carry out an evaluation of the robustness of our results in four important
dimensions. First, we investigate the possibility that the volatility of the ratio varies
through time. Second, we investigate the more traditional two-regime approach for the
asymmetry of the PD ratio reversion process in the context of an MS model. Third, we
analyze the robustness of results to considering PD ratio quarterly data. Finally, we move
on to analyze the estimated results in the case where the PE ratio is considered instead
of the PD ratio.

5.1 Time-varying volatility

Table 5 shows the estimation results for the regime-dependent volatility specification. The
estimated characteristics within the states for this alternative MS specification are quite
similar to those under the benchmark specification. Under the regime-dependent volatility
specification, regime 1 turns out to be a stationary state, but it is again characterized by
the lowest speed of reversion and the highest volatility of the PD ratio, while regime
3 is characterized by the highest speed of reversion and the lowest volatility as under
the benchmark specification.22 Figure 5 shows the smoothed probabilities for the state-
dependent volatility specification. A comparison of Figures 3 and 5 shows that the main
difference among these specifications occurs in the identification of regime 3. Interestingly,
regime 3 is the most likely state for a much longer period, from 1996 to 2008, under the
regime-dependent volatility specification which reinforces the importance of considering a
third regime in the analysis.

5.2 Two-state MS model

We also investigate the more traditional two-regime approach for the asymmetry of the
PD ratio reversion process in the context of an MS model. The related literature has
mainly focused on this two-regime specification due to the link established by researchers
between regime identification and the specific characteristics attributed to each regime (for
instance, the market episodes defined as bull and bear markets in Coakley and Fuertes,
2006; and the outer -reverting- and inner -random walk- regimes defined by McMillan,

22 A simple likelihood ratio test shows that the augmented model with regime-dependent volatility hardly
increases the estimation fit. The p-value for this test is 0.027 (formally, the null hypothesis of this test is
σ1 = σ2 = σ3). A likelihood ratio test is a limited, but rather useful test in this context since the number
of regimes both under the null and under the alternative hypotheses is identical. A much more reliable
comparison between alternative specifications is performed below using the Hamilton specification tests
described in Appendix 2.
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ρst ;σst
Mean Log-lik. 0.87
Adj RCM 11.14

Param.
α −1.57

(1.34)
ρ1 −0.21

(0.06)
ρ2 −0.26

0.03
ρ3 −0.31

(0.02)
µ 9.39

(4.67)
β1 0.15

(0.04)
σ1 0.10

(0.02)
σ2 0.08

(0.01)
σ3 0.07

(0.01)
P11 0.97
P12 0.03
P21 0.04
P22 0.95
P31 0.00
P33 0.98

Table 5: Estimated parameters and stationarity analysis results for the three-regime model
with regime-dependent volatilities
Notes: This table reports the estimated parameters in equation (10), as well as their standard
deviations (in parenthesis) for a model with regime-dependent volatility (σst). The table also
reports the adjusted RCM diagnostic tool briefly described in Appendix 2. Pij are the components
of the transition matrix P , defined as Pij = p(st = j, st−1 = i), for i, j = 1, 2, 3 (see Appendix
1).

26



Figure 5: Smoothed probabilities for the three-regime model with regime-dependent
volatility.
Notes: This figure shows the smoothed probabilities of states 1, 2 and 3 for the PD ratio for the
full sample for a specification of model (10) with regime dependent volatility σst. The smoothed
probabilities are calculated as in Hamilton (1989) and are described in Appendix 1.
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Full Sample Pre 1993
Mean Log-lik. 0.55 0.58
Adj RCM 15.42 16.60

Param.
α −0.80 −0.38

(1.05) (0.23)
ρ1 −0.10 −0.11

(0.07) 0.09
ρ2 −0.16 −0.30

(0.04) 0.07
µ 8.97 4.82

(6.57) 0.75
β1 0.02 0.03

(0.07) 0.10
σ 0.11 0.11

(0.01) 0.01
P11 0.97 0.97
P12 0.93 0.93

Table 6: Estimation results for the two-regime model.
Notes: This table reports the estimated parameters in equation (10), as well as their standard
deviations (in parenthesis) for the full and pre-1993 samples for a two-regime model. The table
also reports the Regime Classification Measure (RCM) diagnostic tool briefly described in Appendix
2. Pij are the components of the transition matrix P , defined as Pij = p(st = j, st−1 = i), for
i, j = 1, 2 (see Appendix 1).

2006). However, we maintain that one of the relevant features of the MS method is that
we are not assigning a priori features neither to the states identified nor to the transition
mechanism from one state to another. In other words, our approach does not impose, prior
to estimating, any of the alternative definitions of states and market episodes proposed in
the related literature.

Table 6 shows the results for the two-regime MS model. The results for this specifi-
cation as for the three-regime specification show a high estimated attractor, especially if
the full sample is considered. This estimated attractor suffers again from a lack of pre-
cision. Figure 6 shows the smoothed probability of being in state 1 for the full and the
pre-1993 samples under the two-regime specification. As can be seen from this figure, the
two-regime specification displays a less clear state identification, so we do not go further
analyzing the implications of this specification.23

23 The estimation results as well as the state identification for the two-regime specification are also
not robust to considering a regime-dependent volatility. Results for this specification are available upon
request.
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Figure 6: Two-regime model. Smoothed probability of state 1 for PD ratio.
Note: This figure compares the results for a two-regime model (Eq. 10) for the full and pre-1993
samples at the annual frequency.

In order to evaluate the correct specification and compare the alternative MS spec-
ifications, Table 7 includes the Lagrange multiplier tests proposed in Hamilton (1996).
These tests are explained in more detail in Appendix 2. As can be seen from this ta-
ble, the MS assumptions (absence of autocorrelation and heteroskedasticity in the form
of ARCH structure within regimes) hold for almost all cases. There are two exceptions
though. On the one hand, there is evidence of ARCH effects in regime 2 for the three-
regime specification and on the other hand, there is evidence of autocorrelation for regime
2 in the two-regime specification at the 10% confidence level. In general, the results for
the specification tests suggest that although the three-regime specification provides the
most accurate and robust state identification, there is evidence of autocorrelation and
heteroskedasticity structure in the residuals across states.24

5.3 Quarterly frequency

Table 8 shows the results for the three-regime specification using quarterly data and Figure
7 displays the smoothed probabilities for this data frequency. The overall effect of using a
higher frequency data on the state identification appears clear from this figure. That is, it
is harder to identify episodes of several quarters that are linked to one of the regimes since
on the one hand regime switching is likely to be a low frequency feature that is harder
to identify when quarterly data is considered. On the other hand, the regime switching
is determined by the dynamics of a latent (unobservable) variable and its identification

24 As pointed out by Hamilton (1996), “all of the tests are more difficult for a correctly specified model
to pass than one would have anticipated based on an asymptotic distribution.” However, the specification
tests proposed in his paper are, as far as we know, the only tool specifically designed to test for the correct
specification in the residuals for this type of models.
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3 States 2 States
Benchmark µ = 4.45 ρst,σst Benchmark

Autocorr. In Regime 1 0.07 0.00 0.24 2.32
0 .80 0 .98 0 .63 0 .13

Autocorr. In Regime 2 1.48 1.22 0.07 0.97
0 .23 0 .27 0 .79 0 .33

Autocorr. In Regime 3 0.05 0.11 0.68
0 .82 0 .74 0 .41

Autocorr. Across regimes 5.27 1.88 0.01 0.75
0 .02 0 .17 0 .92 0 .39

ARCH effects in regime 1 0.03 0.19 0.03 1.89
0 .86 0 .66 0 .86 0 .17

ARCH effects in regime 2 11.77 2.87 2.24 1.02
0 .00 0 .09 0 .14 0 .32

ARCH effects in regime 3 0.01 0.37 0.51
0 .92 0 .54 0 .48

ARCH across regimes 11.19 2.83 3.06 1.73
0 .00 0 .10 0 .08 0 .19

Table 7: Lagrange Multipler Specification tests. Annual Data. Full sample. Two and
three regimes.
Notes: This table reports the Lagrange Multiplier test statistics for the specification of MS models
proposed by Hamilton (1996) as well as the p-values (in italics). The p-values are reported for the F
distributions with (1, T −m+1) degrees of freedom, where T is the total sample size and m is the
number of parameters estimated in each case. The Lagrange Multiplier Tests are performed with
modified versions of the programs used in Hamilton (1996). These specification tests investigate
the MS specification model in equation (10) for the two- and three-regime specifications against an
alternative specification that allows for autocorrelation and ARCH structure in the residuals from
one period to the next one. The statistics and the small sample correction used for these tests can
be found in Hamilton (1996) and are described in more detail in Appendix 2.
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Full sample Pre 1993
Mean Log-lik. 1.31 1.36
Adj RCM 16.08 17.89

Param.
α −0.11 −0.25

(0.08) (0.13)
ρ1 0.01 −0.03

(0.04) (0.05)
ρ2 −0.06 −0.12

(0.03) (0.03)
ρ3 −0.13 −0.19

(0.04) (0.05)
µ 5.30 4.89

(0.61) (0.97)
β1 −0.07 −0.10

(0.10) (0.06)
σ 0.05 0.05

(0.01) (0.00)
P11 0.96 0.97
P12 0.03 0.02
P21 0.05 0.03
P22 0.93 0.91
P31 0.02 0.00
P33 0.96 0.95

Table 8: Estimation results for quarterly data.
Notes: This table reports the estimated parameters in equation (10), as well as their standard
deviations (in parenthesis) for the full and the pre-1993 samples for the quarterly frequency. The
table also reports the adjusted RCM diagnostic tool briefly described in Appendix 2. Pij are the
components of the transition matrix P , defined as Pij = p(st = j, st−1 = i), for i, j = 1, 2, 3
(see Appendix 1).

becomes harder when using quarterly data, which are noisier than annual data. Never-
theless, a third regime with a clearly significant speed of adjustment parameter is again
attributed to the 1996-2000 episode when data at the quarterly frequency are considered.
For the data at this frequency, the estimated attractor is again much higher than the
historical mean, but close to the maximum value of the PD ratio.
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Figure 7: Smoothed probabilities for the benchmark specification using PD ratio quarterly
data.
Notes: This figure shows the smoothed probabilities of states 1, 2 and 3 for the full sample and
the pre-1993 sample for the benchmark model (10) using quarterly data for the PD ratio.
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5.4 PE ratio

Finally, we also consider earnings as a proxy for payouts, and investigate an MS specifica-
tion for the PE ratio. In the PE ratio, the proxy for payouts is an average of the earnings
paid out in the last 10 years. By including 10-year average earnings we also incorporate a
more stable measure of payouts that could be less affected by particular short-lived mar-
ket episodes. Table 9 shows the estimated parameters for this ratio and Figure 8 shows
the smoothed probabilities in comparison to those obtained for the PD ratio. The results
suggest that some parameter estimates and the presence of a third regime associated with
the 90’s boom for the PE ratio are qualitatively similar features to those found for the
PD ratio estimated under both the benchmark and the regime-dependent volatility spec-
ifications. In particular, the estimated attractor is much higher than the historical mean
of the PE ratio, as was the case when considering the PD ratio above. Moreover, it is also
fair to say that the state identification and the characteristics of the states are not robust
across ratios. This comes as no surprise since, as can be observed from Figure 1, the two
ratios exhibit quite different short-term dynamics. Nonetheless, as shown by the bottom
graph in Figure 8, the two ratios identify the 90’s boom with a stationary, highly reverting
state, although that state is also related to other sample periods when considering the PE
ratio. Thus, this highly reverting state is also present in other episodes of run-up in prices
relative to earnings with relatively long duration.

6 Conclusions

Previous research related to the present value model and its implications for the sta-
tionarity of the price-dividend (PD) ratio has been nonconclusive to say the least when
analyzing the reversion process of the PD ratio in a linear framework. In this paper, we
find empirical evidence that the speed of adjustment of the PD ratio has not been con-
stant over time. More precisely, that there are several transitory episodes in the US stock
market characterized by a nonsignificant reversion to a long-run equilibrium or attractor.
A finding that might explain the nonconclusive evidence on the stationarity of the PD
ratio found in the related literature. Moreover, our empirical results show major changing
episodes closely related to historical events in the US stock market. The nonlinear analysis
of the reversion process of the PD ratio based on a three-regime Markov-switching (MS)
model à la Hamilton (1989) carried out in this paper shows robust empirical evidence of
switching regimes in the parameters characterizing the speed of adjustment of the PD
ratio around a constant long-run attractor.

We find evidence of an asymmetric speed of adjustment identifying at least three
relevant market episodes: the post-war period (up to 1975), the so called “90’s boom”
and the subprime crisis. A three-regime MS model shows a sharp regime classification.
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ρst , σst
Mean Log-likelihood 0.89 0.97
Adj RCM 11.55 14.11

Param.
α 0.07 −0.02

(0.16) (0.09)
ρ1 0.20 0.10

(0.04) (0.04)
ρ2 0.04 0.00

(0.05) (0.03)
ρ3 −0.06 −0.08

(0.07) (0.04)
µ 4.94 5.54

(0.54) (0.87)
β1 0.03 0.09

(0.07) (0.04)
σ1 0.08 0.11

(0.01) (0.02)
σ2 0.05

(0.00)
σ3 0.07

(0.01)
P11 1.00 0.96
P12 0.00 0.03
P21 0.02 0.02
P22 0.94 0.95
P31 0.02 0.02
P33 0.95 0.94

Table 9: Estimation results for the PE ratio based on annual data.
Notes: This table reports the estimated parameters in equation (10), as well as their standard
deviations (in parenthesis) for the full sample for the PE ratio. The table shows the results for
the benchmark model and for the alternative specification with regime-dependent volatility (σst).
It also reports the adjusted RCM diagnostic tool briefly described in Appendix 2. Pij are the
components of the transition matrix P , defined as Pij = p(st = j, st−1 = i), for i, j = 1, 2, 3
(See Appendix 1).
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Figure 8: Three-regime model. Smoothed probabilities. PE ratio. Annual data
Notes: This figure shows the smoothed probabilities of states 1, 2 and 3 for PE ratio in comparison
with those estimated for the PD ratio for the full sample. To save space, we only report the results
for the benchmark model. However, the state identification for this ratio remains robust when
regime-dependent volatility is considered.
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Moreover, the three-regime model suggests that the post-war period (up to 1975) and the
90’s boom episodes do not share the same characteristics and that the additional third
state is needed to properly model the PD ratio dynamics, as suggested by the unique
characteristics of the market in the last part of the sample. The post-war period is
characterized by a stationary regime featuring low speed of adjustment to the attractor,
and the 90’s boom is divided into two parts. The first part exhibits features similar to the
post-war period, whereas the second part (1996-2000), when the PD ratio grows faster and
the apparent divergence between prices and dividends becomes greater, is characterized by
a new regime with a stronger reversion to the large estimated attractor. Finally, the results
from this specification suggest that the post-Lehman Brothers episode of the subprime
crisis can be classified into a temporary nonstationary regime. This state identification is
related to another interesting finding on the value of the attractor. Even when the attractor
is poorly identified, by using alternative samples and MS specifications we robustly find
higher estimated values of this parameter than those estimated in the previous related
literature. More important, the remaining parameter estimates and the regime features
identified are not affected whenever the attractor parameter is restricted by an upper-
bound value as long as this value is close to the historical maximum reached by the PD
ratio.

The empirical evidence of a high estimated attractor suggests that the apparent di-
vergence between prices and dividends reflects the transition to a long-run equilibrium
(attractor) that has not yet been reached. The evidence then suggests that the high
increase of the PD ratio during the 90’s boom is consistent with a higher speed of ad-
justment to the long-run equilibrium. This interpretation stands in sharp contrast to
alternative interpretations of this episode suggested in the previous literature considering
a regime-dependent speed of adjustment specification.

The evidence found for the three-regime MS model supports the idea that the station-
arity hypothesis implied by the present value model is better understood as a long-run
concept. While there are occasional episodes of non-stationary behavior of the PD ratio
(as in regime 1), those episodes are followed with higher probability by stationary regimes
(regime 2 in almost the entire sample and regime 3 in the last part of it). Non-stationary
periods, such as the one related to the recent recession episode, can therefore be under-
stood as temporary episodes if we consider a unique long-run equilibrium.
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APPENDIX 1

State-dependent models: the Markov-switching approach

This appendix briefly describes the MS framework for estimating nonlinear models.
Following Hamilton (1989, 1990), in a three-regime MS model, for estimating an equation
such as (10), a transition matrix for st (the latent variable governing the switching-regime
process) must be defined as:

P =




p11 p21 p31
p12 p22 1− p31 − p33

1− p11 − p12 1− p21 − p22 p33


 ,

where pij = P (st = j | st−1 = i, xt−1) , and xt−1 is a vector containing all observations
for the PD ratio obtained through date t− 1. If at time t, st = j, the conditional density
of ∆xt is given by:

f(∆xt | xt−1, st = j, st−1 = i, st−2 = k, ...;Θ),

where Θ is a vector containing the estimated parameters (depending on each case consid-
ered). It is assumed that the conditional density depends only on the current regime st,
so the conditional density is given by:

f(∆xt | xt−1, st = j;Θ).

For instance, in the three-regime model, the conditional densities are gathered together
on a vector denoted by ηt

ηt =



f(∆xt | xt−1, st = 1;Θ)
f(∆xt | xt−1, st = 2;Θ)
f(∆xt | xt−1, st = 3;Θ)


 =




1√
2πσ2

exp
�
−(∆xt−α−ρ1(xt−1−µ)−β1(∆xt−1))2

2σ2

�

1√
2πσ2

exp
�
−(∆xt−α−ρ2(xt−1−µ)−β1(∆xt−1))2

2σ2

�

1√
2πσ2

exp
�
−(∆xt−α−ρ3(xt−1−µ)−β1(∆xt−1))2

2σ2

�


 .

The maximum-likelihood algorithm seeks to find a vector Θ∗ that maximizes the log-
likelihood function L(Θ) for the observed data xt. L(Θ) is given by
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L(Θ) =
T�

t=1

log f(∆xt | xt−1;Θ), (11)

where

f(∆xt | xt−1;Θ) = 1́(�ξt|t−1 ⊙ ηt),

1 is a (3x1) vector of ones, and �ξt|t−1 are the filtered probabilities defined as

�ξt|t−1 = P · �ξt−1|t−1, (12)

where

�ξt−1|t−1 =
(�ξt−1|t−2 ⊙ ηt−1)
1́(�ξt−1|t−2 ⊙ ηt−1)

. (13)

The optimization algorithm works as follows. Given an initial value �ξ1|0, equations

(13) and (12) can be used to calculate �ξt|t−1 and �ξt|t for any t. Following Hamilton (1989),
we choose set ξ1|0 equal to the vector of unconditional probabilities, π, determined by
π = (ÁA)−1Áe4, where A = [I4 − P , 1′]′ and e4 denotes the fourth column of I4 (i.e. the
4x4 identity matrix). The value of �ξt|t−1 is introduced in (11) and the procedure iterates
until Θ∗ is found according to a predefined convergence criterion.

In addition to the filtered probabilities previously obtained for each t, as a by-product
the procedure also finds the probability of being in each state given the information from
the whole sample considered. These probabilities are called smoothed probabilities

pi,t = P (st = i | xT ; Θ).

Kim and Nelson (1999) suggest the following algorithm to compute the smoothed
probabilities:

�ξt|T = �ξt|t ⊙
�
P
′ · [�ξt+1|T (÷)�ξt+1|t]

�
,

where (÷) denotes element-by-element division. From the filtered probabilities, one can
obtain the vector �ξT |T and iterate backward to obtain the smoothed probabilities for each
t.
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APPENDIX 2

Model diagnostics

Two types of test are commonly used in the relevant literature for evaluating perfor-
mance when estimating MS models. The first type assesses the correct specification of the
model. The Lagrange Multiplier test used in this paper compares the MS specification
against one where the errors potentially show autocorrelation or heteroskedastic structure.
The second type of test assesses the ability of the model to correctly identify states. More
precise, we consider regime classification measures (RCM) to evaluate whether the model
is clearly able to attribute a regime to each period of time.

• Lagrange Multiplier Tests

Lagrange multiplier tests for MS models were proposed by Hamilton (1996). Of all
these tests, we apply only those for testing for autocorrelation in each regime and
across regimes, and those for ARCH effects in residuals (within and across regimes).
In all tests displayed in Table 7, the null hypothesis is the model in equation (10).
The alternative hypotheses tested are:

- For autocorrelation within regimes:

HA : (εt | xt−1, st = j, st−1 = i, st−2 = k, ...;Θ) ∼ N [δ[st=i,st−1=i]φiεt−1, σ],

H0 : φi = 0.

- For autocorrelation across regimes:

HA : (εt | xt−1, st = j, st−1 = i, st−2 = k, ...;Θ) ∼ N [φεt−1, σ],

H0 : φ = 0.

Similarly, for the possible structure in the variance of the residuals or ARCH test:

- For ARCH effects (across regimes)

HA : (εt | xt−1, st = j, st−1 = i, st−2 = k, ...;Θ) ∼ N [0, ht], where ht = σ[1+ ξ(εt−1)2

σ ],

H0 : ξ = 0.

The statistics obtained by Hamilton (1996) are distributed as a χ2(1). We also use
a small sample correction for these tests suggested by Hamilton (1996). With the
correction proposed, the statistics are distributed as F (1, (T −m+ 1)), where m is
the number of parameters estimated in each specification and T is the total sample
size.25

25 Although Hamilton (1996) points out that the bias in small samples is less significant for samples of
size 100 or more, which is our case, we still perform the correction for small sample bias. Inference based
on χ2 distributions is in any case close to the inference based on F given our sample size.
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• Regime classification measures

Ang and Bekaert (2002) suggest a summary statistic that assesses the regime clas-
sification quality provided by a k-regime MS model. The RCM is defined as

RCM = 100k2
1

T
(
T�

t=1

k�

i=1

pi,t),

where pi,t is the smoothed probability of being in regime i in period t as defined in
Appendix 1. This measure captures the fact that if at least one of the smoothed
probabilities in t is close to 0 for every t, the RCM will also be close to 0. In this case,
regimes are properly identified and the model provides a good regime classification.
If regimes are not well identified, the probabilities of being in a particular regime will
be far from 1, and close to 1/k in the worst possible scenario. Thus, the RCM will
be close to 100 in this case. The RCM measure is not always useful. For instance, it
is not useful for comparing MS models with different numbers of regimes. Moreover,
for k > 2, the RCM does not punish the fact that as more regimes are included
the probability of at least one of those regimes being close to zero is always higher,
but this does not necessarily mean that the model correctly identifies at least one of
the regimes. Baele (2005) proposes an extended RCM for k-regime models that is
equivalent to Ang and Bekaert’s (2002) measure when k = 2. His measure allows
for a comparison between models with different numbers of regimes and correctly
captures the case where the model is clearly identifying one state in each period.
The RCM2 proposed by Baele (2002) is defined as:

RCM2 = 100(1−
k

k − 1

1

T

T�

t=1

k�

i=1

(pi,t −
1

k
)2).

The RCM reported in the tables is a modified version of RCM and RCM2. It is
actually equivalent to RCM and RCM2 when k = 2. This new measure also shares
with RCM2 two desired characteristics for an RCM. First, it is useful for comparing
models with different numbers of regimes. Second, it provides a measure closer to
0 only when the model correctly identifies one regime in each period and a measure
closer to 100 when no information about the regime identification is obtained. The
adjusted RCM is defined as:

Adj RCM = 100(
k

k − 1
)k
1

T
(
T�

t=1

k�

i=1

(1− pi,t)).
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