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Abstract

This paper studies the impact of �liberalizing� the cost-sharing of links on
some basic models of network formation. This is done in a setting where both
doubly supported and singly supported links are possible, and which includes
the two seminal models of network formation by Jackson and Wolinsky and Bala
and Goyal as extreme cases. In this setting, the notion of pairwise stability is
extended and it is proved that liberalizing cost-sharing for doubly supported
links widens the range of values of the parameters where the e¢ cient networks
formed by such type of links are pairwise stable, while the range of values of
the parameters where the e¢ cient networks formed by singly supported links are
pairwise stable shrinks, but the region where the latter are e¢ cient and pairwise
stable remains the same.
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1 Introduction

Jackson andWolinsky�s (1996) connections model is perhaps the most in�uential model
of strategic formation of networks1. In this seminal model the formation of links is based
on bilateral agreements, and it is assumed that the cost of a link is equally shared by
the two players involved. In return for their investments in links, players bene�t from
the information received through the network. In this setting2, Jackson and Wolinsky
characterize e¢ cient structures (i.e. those that maximize the aggregate payo¤) and
establish the range of values of the parameters for which each of them is stable.
The initial motivation of this paper is a question that arises naturally when ex-

amining Jackson and Wolinsky�s (1996) connections model: if any two players can
coordinate to form a link, can coordination not be extended to the way in which its
cost is shared? If so, what is the impact on stability in general and on that of e¢ cient
structures in particular? This paper seeks to provide an answer to these questions, but
by addressing them in a more general setting that we outline brie�y3.
A model introduced by Olaizola and Valenciano (2015b) merges and integrates as

extreme cases Jackson and Wolinsky�s (1996) connections model and the strictly non-
cooperative version provided by Bala and Goyal�s (2000) two-way �ow model, where
links can be created unilaterally. The merger is achieved by assuming that two types of
links can be formed: strong links and weak ones. Strong links work better and must be
supported by the two players involved, their cost is twice that of weak links and each
player must pay half that cost. The �ow through them su¤ers some decay, i.e. only
� 2 (0; 1) out of a unit of information at one node reaches the other. Weak links are
those supported by only one player who pays for the cost, and they work worse: only
� 2 (0; �) out of a unit of information at one node reaches the other. Parameters �
and � are referred to as the �ow-level through strong links and weak links respectively.
This link-formation model �bridges the gap�between the two benchmark models in
the following sense: if � = 0 only strong links work, which is equivalent to Jackson
and Wolinsky�s (1996) connections model, and when � = � both strong links and weak
links work equally well, which is equivalent to Bala and Goyal�s (2000) two-way �ow
model.
This bridge-model can be further speci�ed in two ways. One is by assuming a

strictly non-cooperative environment where coordination is not possible. This does not
preclude the formation of strong links if it is assumed that a doubly supported link
necessarily becomes strong. The appropiate stability notion in this setting is the Nash
equilibrium, as in Bala and Goyal�s (2000) setting. Another possible scenario is to
allow for pairwise coordination for the formation of strong links. In this case, pairwise

1Goyal (2007), Jackson (2008) and Vega-Redondo (2007) are excellent monographs on social and
economic networks.

2The model is described in more detail later.
3Meléndez-Jiménez (2008) considers a network formation model where the cost-shares are decided

through a bargaining process, but the approach, the setting and the issues addressed are completely
di¤erent. This is discussed in more detail in the �nal section.
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stability (conveniently adapted) is the appropriate stability notion, as in Jackson and
Wolinsky (1996). In Olaizola and Valenciano (2015b) the e¢ cient networks for the
bridge-model, i.e. those that maximize the aggregate payo¤, which are the same in
both scenarios, are characterized and their stability is studied from both points of
view. In this paper we only consider the second scenario, where pairwise coordination
is possible, given that our purpose is to study the possibility of extending pairwise
coordination further to cost-sharing of strong links. To that end this bridge-model
is further speci�ed so as to allow a precise, complete speci�cation of all admissible
deviations w.r.t. which stability is de�ned. Consistently with Jackson and Wolinsky�s
(1996) results, e¢ cient structures formed by strong links turn out to be pairwise stable
only within a subset of the region where they are e¢ cient4.
The rest of the paper is organized as follows. Section 2 reviews the reference model,

Olaizola and Valenciano (2015b), as outlined above, and its results. Section 3 re�nes
the speci�cation of the bridge model and studies the impact of liberalizing cost-sharing
for strong links. Finally, Section 4 contains some concluding comments on the results
presented in the paper, points out some related literature and suggests possible further
research.

2 A bridge model

We �rst brie�y review the model introduced by Olaizola and Valenciano (2015b), where
costs of strong links must be equally shared, as outlined in the introduction. In-
dividuals may invest in links with other individuals, thus creating a network which
can be described by a graph. Each node i 2 N represents an individual referred
to as player5 i. A map gi : Nnfig ! f0; 1g speci�es the links in which player
i invests. Denote gij := gi(j); and gij = 1 (gij = 0) means that i invests (does
not invest) in a link with j. Thus, vector gi = (gij)j2Nnfig 2 f0; 1gNnfig speci�es
the links in which i invests. Gi := f0; 1gNnfig denotes the set of i�s possible link-
investments and GN = G1 � G2 � ::: � Gn the set of link-investment pro�les. Each
g 2 GN univocally determines a graph or network (N;�g) of links invested in, where
�g := f(i; j) 2 N � N : gij = 1g. If gij = 1 we equivalently write ij 2 g; and if
gij = gji = 1 write ij 2 g and say that i and j are connected by a strong link, while
when only one of them, i or j, invests in it they are said to be connected by a weak
link. If gij = 1 in a graph g, g� ij denotes the graph that results from replacing gij = 1
by gij = 0 in g; and if gij = 0, g + ij denotes the graph that results from replacing
gij = 0 by gij = 1. Similarly, if gij = gji = 1, g� ij = (g� ij)� ji, and if gij = gji = 0,

4In Jackson and Wolinsky�s (1996) model the only e¢ cient structure which is pairwise stable for
the whole range of values of the parameters for which it is e¢ cient is the complete network of strong
links, while the star of strong links is pairwise stable only within a subset of the region where it is
e¢ cient.

5A player can be an individual or a multi-agent entity. Because of this and in order to avoid biased
language, we often refer to players by the more neutral term �nodes�.
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g + ij = (g + ij) + ji. Given g 2 GN , a path of length k � 1 from i to j in g is a
sequence of k + 1 distinct nodes where i is the �rst and j the last, s.t. i and j, and
any two consecutive nodes are connected by a link (weak or strong). N(i; g) denotes
the set of players connected with i by a path.
An all-encompassing star is a graph where one node is involved in links with all

other nodes, and there are no other links. An all-encompassing star of weak links is
said to be periphery-sponsored (center-sponsored) if the center supports no links (all
links). A complete (weak-complete, strong-complete) graph is one where any two nodes
are involved in a link (weak link, strong link). The empty network is the trivial network
where no two players are connected by a link.
If g represents the links invested in by every player, the following is assumed:
1. Investment by a player in a link with another entails a cost c > 0.
2. Each player has a particular type of information or other good6 of value 1 for

any player who receives it complete.
3. Flow through links is not perfect (though it is better through strong links), so

nobody else receives this information intact. Let � (0 < � < 1) be the fraction of the
value of information at one node that reaches the other node through a strong link,
and let � (0 � � � � < 1) be the fraction of the value of information at one node that
reaches the other through a weak link. For a pair of nodes i 6= j, let Pij(g) denote
the set of paths in g from i to j. For each p 2 Pij(g), let `(p) denote the length of p
and !(p) the number of weak links in p. Then i�s valuation of the unit of information
originating from j that arrives via p is

Ii(p) = �
`(p)�!(p)�!(p):

If information at j reaches i via the best possible route from j to i, then i�s valuation
of information originating from j is

Iij(g) = max
p2Pij(g)

Ii(p);

and i�s overall information is

Ii(g) =
X

j2N(i;g)

Iij(g):

Thus player i�s payo¤ in g is:

�i(g) = Ii(g)� c�di (g) =
X

j2N(i;g)

max
p2Pij(g)

�`(p)�!(p)�!(p) � c�di (g); (1)

where �di (g) is the number of links (weak or strong) in which i invests.

6Although other interpretations are possible, in general, we give preference to the interpretation
in terms of information.
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Remark: Note that if � = 0, this model is equivalent to Jackson and Wolinsky�s
(1996) connections model, where only strong links are feasible, and when � = � it
is equivalent to Bala and Goyal�s (2000) two-way �ow model, where strong links are
unstable and ine¢ cient.

2.1 E¢ ciency

A network is said to be e¢ cient if it maximizes the aggregate payo¤. The following
result characterizes the only e¢ cient architectures and establishes the rank of values
of the parameters for which each of them is e¢ cient:

Proposition 1 (Proposition 3, Olaizola and Valenciano (2015b)) If the payo¤ function
is given by (1) with 0 � � � � < 1, then the only e¢ cient networks are:
(i) The strong-complete graph if c < minf� � �2; 2 (� � �)g:
(ii) The weak-complete graph if

2 (� � �) < c < 2
�
�� �2

�
and c (n� 4) < 2n�� 4� � 2 (n� 2) �2:
(iii) All-encompassing stars of strong links if

� � �2 < c < minf2 (� � �) + (n� 2)
�
�2 � �2

�
; � + (n� 2) �2=2g; (2)

and
c (n� 4) > 2n�� 4� � 2 (n� 2) �2: (3)

(iv) All-encompassing stars of weak links if

maxf2 (� � �) + (n� 2)
�
�2 � �2

�
; 2
�
�� �2

�
g < c < 2�+ (n� 2)�2: (4)

(v) The empty network if

c > maxf2�+ (n� 2)�2; � + (n� 2) �2=2g:

Remark: As a corollary, making � = 0 in Proposition 1 yields the characterizing
result of the e¢ cient networks established in Jackson andWolinsky�s (1996) connections
model; while by making � = � it yields the e¢ ciency results in Bala and Goyal�s (2000)
two-way �ow model.

2.2 Stability

In Jackson and Wolinsky�s (1996) setting only strong links make sense and actually
form, thus their notion of pairwise stability consists of two requirements: (i) no player
has an incentive to sever a link, and (ii) no two players not linked have an incentive to
create a strong link. Severing a link is the only unilateral option of a player in Jackson
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and Wolinsky�s model, but in the current setting weak links can be created unilaterally
and so can even strong links by making an existing weak link double. Thus, in this
setting the notion of pairwise stability must be revised. We consider the following
extension of pairwise stability, to which we refer in the same terms (though to avoid
confusion with the original notion we add an asterisk) allowing for a player to invest
in a new link, withdraw support for a link, or switch support from a link to another:

De�nition 1 (Olaizola and Valenciano, 2015b) A network g is pairwise� stable if for
all i; j (i 6= j) :
(i) if ij 2 g; then �i(g � ij) � �i(g);
(ii) if ij =2 g; then �i(g + ij) � �i(g);
(iii) if ij 2 g; ij0 =2 g; then �i((g � ij) + ij0) � �i(g); and
(iv) if ij =2 g; ji =2 g; and �i(g + ij) > �i(g); then �j(g + ij) < �j(g):

The following result establishes the range of values of the parameters for pairwise�

stability of each of the e¢ cient networks:

Proposition 2 (Proposition 6, Olaizola and Valenciano (2015b)) If the payo¤ function
is given by (1) with 0 � � � � < 1, we have:
(i) If 0 < c < minf���2; ���g, then the strong-complete graph is the unique pairwise�
stable network.
(ii) If � � � < c < � � �2 and � < 2�= (1 + �), then weak-complete graphs are the
unique pairwise� stable networks.
(iii) If � � �2 < c < � � �, then all-encompassing stars of strong links are pairwise�
stable.
(iv) If � � �2 < c < �+ (n� 2)�2, then all-encompassing periphery-sponsored stars of
weak links are pairwise� stable.
(v) If maxf(� � �)(1 + (n� 2)�); � � �2g < c < �, then all all-encompassing stars of
weak links are pairwise� stable.
(vi) If c > �, then the empty network is pairwise� stable.

Remarks:
(i) Again, as a corollary, making � = 0 in Proposition 2 yields the range of the

parameters where each of the e¢ cient structures are pairwise stable in Jackson and
Wolinsky�s (1996) connections model.
(ii) For none of the �ve structures do the region where each one is e¢ cient and the

region where it is pairwise� stable coincide. Those with strong links (strong-complete
and all-encompassing stars of strong links) are pairwise� stable only within a subset of
the region where they are e¢ cient. For instance, all-encompassing stars of strong links
are pairwise� stable only if

� � �2 < c < � � �; (5)

while they are e¢ cient in the much wider region where (2) and (3) hold. As to e¢ cient
structures formed by weak links, the regions where they are e¢ cient and those where
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they are pairwise� stable are di¤erent7. Note that these results are obtained under the
assumption that the cost of a strong link is to be shared equally by the two players
supporting it and the cost of a weak link is paid by the player who supports it. As
stated in the introduction, the point of this paper is to study the e¤ect of relaxing this
assumption by allowing players to freely agree on how they share the cost of strong
links.

3 The impact of liberalizing cost-paying

Thus we consider a variation of the bridge model described in Section 2 where the
cost-shares of each strong link can be freely agreed upon by the two players who form
it.
In Jackson and Wolinsky�s model and in the bridge model a network is completely

speci�ed by g 2 GN , which implies the unique link-investment that yields such a
network: the cost of each weak link is paid for by the only player supporting it, and
that of strong links is shared equally by the two players involved, and the assumed �ow-
level through each type of link follows from the assumptions of the model. However, if
the way of sharing the cost of each strong link can be freely settled by the two players
who form it, then for an analysis of stability a complete description of the network in
this scenario is needed. This requires the investment of each player in each link in which
he/she is involved to be speci�ed by introducing a matrix of cost-shares, c = (cij)i;j2N ,
where cij � 0 (with cii = 0) is the investment of player i in the link connecting i and
j. Moreover, the �ow-level of each link in the resulting network must be speci�ed. Let
�ij (c) := (�ij (cij; cji))i;j2N be the �ow-level through link ij in which i invests cij and
j invests cji. Then assume:

�ij (cij; cji) :=

8<:
�, if cij + cji � 2c;
�, if cij + cji < 2c & maxfcij; cjig � c;
0, if maxfcij; cjig < c:

(6)

Remarks: (i) Notice that (6) de�nes a matrix of �ow-levels � (c) which univocally
speci�es a network of strong and weak links g (c) 2 GN for any conceivable8 link-
investment of the players c. Namely, g (c) = g s.t. gij = gji = 1 (strong link) in the
�rst case (cij + cji � 2c); gij = 1 and gji = 0 (weak link) in the second case if i is
the only player which invests at least c; and gij = gji = 0 (no link) in the third case
(maxfcij; cjig < c). Note that di¤erent c�s may yield the same g (c). If g 2 GN , and
g = g (c), c is said to be consistent for g.

7In the case of non periphery-sponsored stars of weak links, the intersection of these regions is
empty for certain values of the parameters.

8This is required in order to avoid unde�ned situations once we specify, as we do presently, the
admissible deviations w.r.t. which stability is to be de�ned.
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(ii) Now the payo¤ function (1) can be rewritten in terms of g = g (c) as

�i(g; c) =
X

j2N(i;g)

max
p2Pij(g)

�`(p)�!(p)�!(p) �
X
j:ij2g

cij: (7)

(iii) Note that the e¢ ciency of a network (g; c) depends on the costs of links (weak
and strong) but not on how the cost of each link is paid for. In other words, the results
relative to e¢ ciency in Proposition 1 apply to this scenario, i.e. the e¢ cient structures
are the same for the same ranges of values of the parameters9. However, the possibility
of freely sharing the cost of strong links may a¤ect stability. In fact, the extension of
Jackson and Wolinsky�s notion of pairwise stability provided in De�nition 1 must be
further revised in this setting. To begin with, the actions allowed for players, given a
network g (c), w.r.t. which a notion of stability is to be formulated must be speci�ed.
In a strictly non-cooperative context each player i would freely choose10 (cij)j2Nni, while
the pairwise stability notion, in both Jackson and Wolinsky (1996) and its extension
in De�nition 1, allows coordination to create strong links but restricts the admissible
unilateral moves of players (w.r.t. Nash equilibrium). Consistently, we assume the
following admissible unilateral moves:
- Any player can modify (increase or decrease) the investment in one link.
- Any player can modify the investment in two links by transferring part of the

investment in one of them to the other11.
We also assume feasible bilateral moves:
- Any two players not connected by a strong link, (i.e. disconnected or connected

by a weak one) can create a strong link and share freely its cost.
The following de�nition formalizes the idea of stability w.r.t. these actions extend-

ing De�nition 1.

De�nition 2 A network g 2 GN admits a pairwise stable cost-share allocation (CSA),
if there exists a matrix of cost-shares c consistent for g s.t. no player has an incentive
to make any unilateral move and no pair of players has an incentive to create a new
strong link. It is said then that c is a pairwise stable cost-share allocation (CSA) for g.

Depending on the network g and the values of the parameters, a pairwise stable
cost-share allocation may not exist for g, and when such allocation do exist, they are
generally not unique. But when a network admits a pairwise stable cost-share alloca-
tion, it represents a feasible outcome stable w.r.t. admissible unilateral and bilateral
actions which adapts pairwise stability to the current scenario. We now address the

9Just observe that if g (c) = g 2 GN ; the cost of g (c) = g cannot be lower than that of g in the
context of the bridge model.
10Which could properly be called i�s strategy, as along with (7) it speci�es a non-cooperative game.
11This move is the natural extension to this setting of the possibility of switching support stated in

condition (iii) in De�inition 1.
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question of the existence of pairwise stable CSAs for the e¢ cient structures character-
ized by Proposition 1.
In order to simplify the proofs the following easy lemma, whose proof is omitted,

stating that a necessary condition for CSA-pairwise stability is that no player wastes
money, will be of use:

Lemma 1 If g 2 GN and g = g(c), for c to be a pairwise stable cost-share allocation
for g the following are necessary conditions:
(i) If ij 2 g and ji =2 g : cij = c and cij = 0:
(ii) If ij 2 g : cij + cji = 2c:
(iii) If ij =2 g and ji =2 g : cij = cji = 0:

Proof. Assume g 2 GN and g = g(c). It is immediate to check that if any of the three
conditions does not hold for a pair of players then at least one of the two players has
an incentive to make an admissible move.
The following result establishes the impact of assuming free-sharing of costs on the

stability of the �ve e¢ cient structures characterized by Proposition 1, by establishing
conditions under which each of them admits a pairwise stable cost-share allocation.
A comparison with the conditions for pairwise� stability in Proposition 2 is discussed
later.

Proposition 3 If the payo¤ function is given by (7) :
(i) A pairwise stable cost-share allocation exists for the strong-complete network when-
ever the following condition holds

c � minf� � �2; � �
�
�2 + �

�
=2; 2 (� � �)g:

(ii) A pairwise stable cost-share allocation exists for a weak-complete network whenever
the following conditions hold

2 (� � �) � c � �� �2:

(iii) A pairwise stable cost-share allocation exists for an all-encompassing star of strong
links whenever the following conditions hold

� � �2 � c � minf(� � �)(2 + (n� 2)�); � (1 + (n� 2)�=2)� �=2g:

(iv) A pairwise stable cost-share allocation exists for a periphery-sponsored all-encompassing
star of weak links whenever the following conditions hold

maxf� � �2; (� � �) (2 + (n� 2)�)g � c � �+ (n� 2)�2:

(v) A pairwise stable cost-share allocation exists for an all-encompassing star of weak
links whenever the following conditions hold

maxf� � �2; (� � �) (2 + (n� 2)�)g � c � �:
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(vi) The trivial allocation of costs (cij = 0 for all i; j) is a pairwise stable cost-share
allocation for the empty network whenever the following condition holds

c � �:

Proof. (i) Let g be the strong-complete network. First, observe that if the cost of
each link in g is shared equally by the two players forming it, i.e. c = (cij)i;j2N with
cij = cji = c for all i 6= j; then c is a pairwise stable CSA for g in the whole region where
g is pairwise� stable (i.e. 0 < c � minf�� �2; �� �g according to Proposition 2-(i)12).
Just note that in this case the feasible moves w.r.t. which CSA-pairwise stability is
de�ned do not actually extend the options of those w.r.t. which pairwise� stability is
de�ned.
Now observe that allowing for non-egalitarian cost-sharing increases the range of

values of the parameters where the strong-complete network admits a pairwise stable
CSA. Assume c = (cij)i;j2N with cij 6= cji for a strong link ij, and assume w.l.o.g.
cij > cji. In view of Lemma 1, assume cij+ cji = 2c: Thus, the only possibly improving
admissible moves for player j entail decreasing investment in the link, but among them
the optimal one is withdrawing support to the link, for which j has no incentive if
� � cji � maxf�2; �g; that is if

cji � minf� � �2; � � �g: (8)

There are two possibly optimal admissible moves for player i: First, to withdraw
support from ij, for which i has no incentive if � � cij � �2; that is if

cij � � � �2; (9)

and second, to lower the investment in the link to c; for which i has no incentive if
� � cij � maxf�2; �g � c; that is if

cij � minf� � �2; � � �g+ c: (10)

The three conditions along with cij + cji = 2c are compatible if

2c � � � �2 +minf� � �2; � � �g and

2c � c+ 2minf� � �2; � � �g:
That is, if

c � minf� � �2; � �
�
�2 + �

�
=2g and

c � 2minf� � �2; � � �g:
12Note that in Proposition 2-(i) both inequalities are strict to ensure uniqueness, but pairwise�

stabilty is also guaranteed at the boundary where c = � � �2.
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That is, if
c � minf� � �2; � �

�
�2 + �

�
=2; 2 (� � �)g: (11)

Finally, note that, this condition is weaker than the one for pairwise� stability. Just
note that the strong-complete network is pairwise� stable if c � minf���2; ���g; and
c = ���; c = �� �2 and c = ��

�
�2 + �

�
=2 intersect at � =

p
�, and for 0 < � �

p
�

we have
(� �

�
�2 + �

�
=2)� (� � �) � �� (�+ �) =2 = 0:

(ii) Let g be a weak-complete network. In view of Lemma 1, assume that each link is
supported by only one player, who pays c for it, i.e. c = (cij)i;j2N withmaxfcij; cjig = c
and minfcij; cjig = 0 for all i 6= j: The only action not included in the repertoire
considered for pairwise� stability but possibly improving is to form a strong link and
freely share its cost. Therefore within the region where this structure is pairwise� stable,
i.e. � � � < c < � � �2 and � < 2�= (1 + �) (see Proposition 2-(ii)), no action can
improve a player�s payo¤, except perhaps forming a strong link. Let us see how this
new option actually further restricts this region. In Olaizola and Valenciano�s (2015b)
model the only way in which this could be done is by one player �doubling�a weak
link, for which there is no incentive if c � ���. But now players forming a strong link
can freely share its cost. Assume that the weak link ij is supported by i, and i and j
envisage forming a strong link and paying cij and cji for it. Both players would have
incentives to do so if � � c < � � cij and � < � � cji, which are compatible with the
necessary condition cij+cji = 2c (Lemma 1) if c < 2 (� � �). In other words, no pair of
players has an incentive to make a strong link if c � 2 (� � �) : Therefore, the weaker
condition c � ��� for pairwise� stability (Proposition 2-(ii)) must be replaced by this
stronger one for the existence of a pairwise stable CSA for g. Moreover, this condition
along with c < � � �2 implies � < 2�= (1 + �). Therefore g admits a pairwise stable
CSA if

2 (� � �) � c � �� �2:
(iii) Let g be an all-encompassing star of strong links. Let io be its center and j any
peripheral node. Let cioj and cjio be the shares of the cost to be paid by each of them.
In view of Lemma 1 assume cioj + cjio = 2c:
It seems natural to expect a wider range of feasible agreements when the center does

not pay more than a peripheral player for the link connecting them13, thus assume:
cioj � cjio for some j: If cioj = cjio for all j; then c is pairwise stable CSA for g in the
same region where according to Proposition 2-(iii) the star of strong link is pairwise�

stable, as in this case the feasible moves w.r.t. which CSA-pairwise stability is de�ned
do not actually widen the options of those w.r.t. which pairwise� stability is de�ned. If
cioj < cjio for all j, then for c to be a pairwise stable CSA for g the following conditions
must hold. For the center to have an incentive to pay cioj, � � cioj � � must hold.
That is

cioj � � � �: (12)

13In fact, there also exist pairwise stable CSAs with cioj > cjio , but within a smaller region.
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For a peripheral player to have an incentive to pay cjio , two conditions must hold.
First,

cjio � �(1 + (n� 2)�); (13)

otherwise it would be pro�table for j to withdraw support for the link. Second,

�(1 + (n� 2)�)� cjio � �(1 + (n� 2)�)� c

i.e.
cjio � (� � �)(1 + (n� 2)�) + c; (14)

otherwise player j�s payo¤ could be improved by lowering the investment in the link
to c. On the other hand, no two peripheral players are interested in creating a strong
link if � � c � �2, i.e.

c � � � �2, (15)

because in that case no share of the cost can improve the payo¤ of one player without
decreasing that of the other. Thus all three conditions (12), (13), and (14) are necessary
for there to be a margin for sharing the cost, in other words, for c to be a pairwise
stable CSA for g. Again by Lemma 1, summing up (12) and (13), and (12) and (14),
yields two upper bounds for 2c. That is

cioj + cjio = 2c � minf(� � �)(2 + (n� 2)�) + c; � (2 + (n� 2)�)� �g;

which along with (15) yields the range of values of the parameters where an all-
encompassing star of strong links admits a pairwise stable CSA:

� � �2 � c � minf(� � �)(2 + (n� 2)�); � (1 + (n� 2)�=2)� �=2g: (16)

(iv)-(v) Assume g is an all-encompassing star of weak links. Under the conditions
for which such structure is pairwise� stable, that is, Proposition 2-(iv) or (v) if it is
periphery-sponsored, and (v) otherwise, no admissible unilateral action can improve
the payo¤ of a player or form a new strong link between two peripheral players. All
that remains is to study the possibility of creating a new strong link between the center
and a peripheral player and freely agreeing how to share its cost.
Let io be the center and j any peripheral node. By Lemma 1, assume that each

link is supported by only one player who pays c for it, i.e. c = (cij)i;j2N with
maxfcioj; cjiog = c and minfcioj; cjiog = 0 for all j: Assume that a peripheral node,
j, supports the weak link with the center io. Player j has an incentive to form a strong
link with io and pay for it cjio if � + (n� 2)�2 � c < � + (n� 2)�� � cjio , and io has
an incentive to pay for it cioj if � < � � cioj. Assuming by Lemma 1 cioj + cjio = 2c,
there is no room for both conditions if

c � (� � �) (2 + (n� 2)�) :

11



The same condition is obtained if the weak link is supported by the center. Therefore,
adding this condition to those in Proposition 2-(iv) and (v) shows that a periphery-
sponsored all-encompassing star of weak links admits a pairwise stable CSA if:

maxf� � �2; (� � �) (2 + (n� 2)�)g � c � �+ (n� 2)�2;

and any all-encompassing star of weak links admits a pairwise stable CSA if:

maxf� � �2; (� � �) (2 + (n� 2)�)g � c � �:

A comparison of these conditions with those established in Proposition 2-(iv) and (v)
clearly shows that the conditions for CSA-pairwise stability are stronger than those for
pairwise� stability.
(vi) Let g be the empty network, with respect to pairwise� stability the new option

of forming strong links and sharing their cost in any way o¤ers no chance of improving
any two players payo¤s if c � �:
Remarks:
(i) In view of Proposition 3-(i), the strong-complete network admits a pairwise

stable CSA whenever (11) holds. As shown in the proof of Proposition 3-(i), these
conditions are weaker than those under which the strong-complete network is pairwise�

stable (Proposition 2-(i)). Therefore, interestingly enough, the possibility of asymme-
try in the way of sharing the cost of links in a strong-complete network extends the
region where this entirely symmetric structure can be stabilized. Counterintuitive as it
may seem at �rst sight, the reason is clear: in comparison with the situation of equal
sharing of the cost of strong links, the player paying less for a link has less incentive to
withdraw support for it. As to the player paying more, withdrawing support for the
link would make it disappear altogether, which makes him willing to pay more than c
for it.
Comparing Proposition 1-(i), Proposition 2-(i) and Proposition 3-(i) reveals the

following: the region where the strong-complete network is e¢ cient and not pairwise�

stable, but admits a pairwise stable CSA is

� � � < c < minf2 (� � �) ; � �
�
�2 + �

�
=2g:

Note however that this is so only if the costs of all links are shared asymmetrically
and conditions (8), (9), (10) and cij + cji = 2c hold for all i; j. While in the region

c < minf� � �2; � � �g;

where the strong-complete network is e¢ cient and pairwise� stable, a pairwise stable
CSA may include both symmetrically and asymmetrically cost-shared links, as far as
(8), (9), (10) and cij+ cji = 2c for all i; j hold for the asymmetrically cost-shared links.
Figure 1 represents the region where the strong-complete network is e¢ cient and

admits a pairwise stable CSA for n = 20 and � = 0:2 (Figure 1-a) and � = 0:6 (Figure

12



1-b) bounded by continuous thick lines, while the region where it is pairwise� stable is
the smaller region below the dashed line.
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Figure 1-a: Strong-complete
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Figure 1-b: Strong-complete

� = 0:6

(ii) A comparison of Proposition 2-(ii) and Proposition 3-(ii) shows clearly that the
region where weak-complete networks are stable shrinks when costs are freely-shared.
But observe that the region where a weak-complete network is stable in either sense,
i.e. is pairwise� stable or admits a pairwise stable CSA, and e¢ cient is the same.
Figure 2 represents this region for n = 20 and � = 0:2 (Figure 2-a) and � = 0:6

(Figure 2-b) bounded by continuous thick lines, while the region where it is pairwise�

stable is the greater region that results by expanding it rightwards up to the dashed
line. The region above, bounded by a thin continuous line, is where this structure is
e¢ cient but is not stable in either sense.
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Figure 2-a: Weak-complete
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Figure 2-b: Weak-complete
� = 0:6;n = 20

(iii) Note that pairwise� stability conditions for a star of strong links (5) require
c � � � �, while if free-sharing of the cost of strong links is assumed a pairwise stable
CSA is admitted for a considerably wider set of values of the parameters. It also
follows from (16) that the number of players contributes to the widening of the range
of values of the other parameters where a star of strong links admits a pairwise stable
CSA, while the greater � is the more stringent this condition becomes.
Figure 3 represents this region for n = 20 and � = 0:2 (Figure 3-a) and � = 0:6

(Figure 3-b) enclosed by continuous thick lines, which is the intersection of two regions
bounded by thin continuous lines, where the star of strong links is e¢ cient and admits
a pairwise stable CSA, while the region where it is pairwise� stable is the considerably
smaller subset of this region below the dashed line.
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Figure 3-c: Strong-stars
� = 0:2;n = 10
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Figure 3-d: Strong-stars
� = 0:6;n = 10
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(iv) Again, as with weak-complete networks, free-sharing of the cost of strong links
reduces the region of stability of stars of weak links. Among the stars of weak links,
periphery-sponsored ones are also stable in this sense in a wider region. But, as with
weak-complete networks, the intersection of the region where an all-encompassing star
(periphery-sponsored or not) of weak links is e¢ cient and that where it is pairwise�

stable is the same to the intersection with the region where it admits a pairwise stable
CSA.
For the case of a periphery-sponsored all-encompassing star of weak links, Figure

4 represents this region for n = 20 and � = 0:2 (Figure 4-a) and � = 0:6 (Figure 4-b)
bounded by continuous thick lines, while the region where it is pairwise� stable is the
greater region that results by expanding rightwards up to the dashed line. The region
above, bounded by a thin continuous line, is where this structure is e¢ cient but is not
stable in either sense.
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Figure 4-a: Weak-stars
� = 0:2;n = 20
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Figure 4-b: Weak-stars
� = 0:6;n = 20

(v) Finally, the empty network admits a pairwise stable CSA in the same region
where it is pairwise� stable, that is, for c � �.
(vi) The extreme case � = 0 corresponds to Jackson and Wolinsky�s (1996) model.

In this case condition (11) in Proposition 3-(i) becomes c � � � �2 which is the region
where the complete network in their model is e¢ cient and pairwise stable (Propositions
1 and 2, Jackson and Wolinsky, 1996), and consequently free-sharing of costs does not
extend the stability region of the complete network, which is pairwise stable in their
model.
As for all-encompassing stars of strong links, condition (16) becomes

� � �2 � c � � + (n� 2)�2=2
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when � = 0, which is the region where such structures are e¢ cient (Proposition 1,
Jackson and Wolinsky, 1996). This means that in Jackson and Wolinsky�s (1996)
model all-encompassing stars can be stabilized by cost-share equilibrium allocations
within the whole region where they are e¢ cient. Thus the following corollary arises for
Jackson and Wolinsky�s model:

Corollary 1 If the payo¤ function is given by (7) with � = 0, i.e. in Jackson and
Wolinsky�s (1996) model:
(i) A pairwise stable cost-share allocation exists for the strong-complete network if and
only if it is e¢ cient.
(ii) A pairwise stable cost-share allocation exists for an all-encompassing star of strong
links if and only if it is e¢ cient.

4 Concluding remarks

We explored the impact of extending the possibility of coordination to form strong links
to how their cost is shared within the model introduced in Olaizola and Valenciano
(2015b). In a context where any two players can coordinate to create such links, it
seems natural to extend the possibility of pairwise coordination to cost-sharing. We
show that this possibility favors the formation and stability of strong links to the
detriment of weak ones. Speci�cally, it extends the range of values where the strong-
complete network and all-encompassing stars of strong links are stable. Moreover, the
same is true for the region where such structures are stable and e¢ cient. By contrast,
this possibility reduces the range of values where weak-complete networks and all-
encompassing stars of weak links are stable, but not the region where such structures
are stable and e¢ cient, which remains the same. In other words, liberalizing cost-
sharing never negatively a¤ects the stability of e¢ cient structures.
These conclusions apply in their strongest terms to Jackson and Wolinsky�s (1996)

model, which corresponds to the particular case � = 0 in ours. In this case, the non-
empty14 e¢ cient structures admit a pairwise stable cost-share allocation whenever they
are e¢ cient and then alone.

4.1 Related literature

Asmentioned in the introduction, Meléndez-Jiménez (2008) (see also Meléndez-Jiménez
(2007)) considers a network formation model where cost shares are not exogenously
�xed. But this is the only point in common with the model considered here. In his
model, links are a direct source of revenue for the players who form them, determined
by a stag-hunt coordination game between them, who bargain the resulting bene�t. He
analyzes the model in both static and dynamic settings, showing that while the static

14Note that the empty network admits a pairwise stable cost-share allocation in the same region
where it is pairwise� stable.
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game has multiple equilibria only one is stochastically stable. The di¤erences between
this model and the one presented in this paper are clear. First, our setting is an ex-
tension of Jackson and Wolinsky�s (1996) connections model where the information
that runs through the network is the only source of revenue, not links themselves as in
Meléndez-Jiménez (2008), where the resulting network is only a by-product of bilateral
negotiations on bene�ts accessible to every pair of players. Second, in our setting, ne-
gotiation between the players who form each link can implicitly be interpreted as the
source of cost-shares, but we pass over this bargaining process and concentrate on the
stability of possible outcomes of those processes, while explicit assumptions about the
formation of links in Meléndez-Jiménez (2008) allow him to specify such bargaining
problems. The stochastic dynamic analysis is the most important ingredient in the
approach in his model, while in ours dynamics is completely missing, and is mentioned
later as a line of further research.
A more closely related paper is Olaizola-Valenciano (2015b), which addresses a

similar study to the one undertaken here, but based on a simpler model that also
allows weak and strong links introduced in Olaizola-Valenciano (2015a). This is a �rst
step toward Olaizola-Valenciano (2015c), which is the starting point here.

4.2 Further work

The model studied here suggests other variations, perhaps extending the possibility of
liberalizing cost-sharing to links of two or more levels of strength and cost. On the
other hand, in the model presented here we have not addressed the question of how the
network forms, i.e. we have not provided a dynamic model of network formation that
gives support for pairwise stable cost-share allocations, which suggests an interesting
line for extending the model.
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