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Abstract

The high performance computing landscape is shifting from assemblies of homogeneous nodes
towards heterogeneous systems, in which nodes consist of a combination of traditional out-of-
order execution cores and accelerator devices. Accelerators, built around GPUs, many-core chips,
or FPGAs, are used to offload compute-intensive tasks. These devices provide superior theoretical
performance compared to traditional multi-core CPUs, but not every application fits into the
programming model they impose, and exploiting their computing power remains a challenging
task.

This dissertation discusses the issues that arise when trying to efficiently use general purpose
accelerators. As a contribution to aid in this task, we present a thorough survey of performance
modeling techniques and tools for general purpose coprocessors. Then we use as case study the
statistical technique Kernel Density Estimation (KDE). KDE is a memory bound application
that poses several challenges for its adaptation to the accelerator-based model. We present a
novel algorithm for the computation of KDE that reduces considerably its computational com-
plexity, called S-KDE. Furthermore, we have carried out two parallel implementations of S-KDE,
one for multi and many-core processors, and another one for accelerators. The latter has been
implemented in OpenCL in order to make it portable across a wide range of devices. We have
evaluated the performance of each implementation of S-KDE in a variety of architectures, trying
to highlight the bottlenecks and the limits that the code reaches in each device. Finally, we
present an application of our S-KDE algorithm in the field of climatology: a novel methodology
for the evaluation of environmental models.
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Introduction

High Performance Computing (HPC) is the branch of computer science related to the use of su-
percomputers and parallel architectures to solve complex computational problems. These prob-
lems are deployed as parallel applications that split their workload among the available computing
resources in order to minimize running time. These applications are usually scientific and tech-
nical codes that try to solve problems from different research fields such as chemistry, earth
sciences or bioinformatics [I].

Traditional HPC environments were built around single or multi-core Central Processing
Units (CPUs), but in the last years these systems include general purpose coprocessors used as
accelerators for offloading computationally intensive tasks. This shift has defined a change from
homogeneous (just CPUs) to heterogeneous (CPUs and accelerators) systems. This is reflected
in the last edition of Top500, the list that contains the 500 most powerful supercomputers in the
world[] In the November 2014 edition, five machines out of the top ten were built as combinations
of CPUs and general purpose coprocessors.

Accelerator devices are hardware pieces designed for the efficient computation of specific tasks
or subroutines, and hold important architectural differences with respect to CPUs: the number
of computing cores, the instruction sets and the memory hierarchy are completely different.
Nowadays most common accelerators in HPC are Graphics Processing Units (GPUs) and many-
core coprocessors. These devices usually work attached to a CPU which controls the offloading
of software fragments and manages the copying and retrieval of the manipulated data [2].

The main strength of state-of-the-art coprocessors is the higher theoretical performance
they provide compared to multi-core CPUs, e.g. recent GPUs and many-cores provide up to
1 TFLOP/s of theoretical double precision performance, while a 16-core AMD CPU can reach
up to 250 GFLOP/s. However, effectively exploiting that performance remains a challenging
task. Accelerators have been designed to work with data intensive applications with high data
locality access, and not every code fits into this computing pattern. We can find highly successful
cases of application porting [3], which may compel programmers to jump onto the accelerator
bandwagon. However, metrics about the effort required for the porting are not that common.
Besides, the way of measuring the degree of success can be misleading [4][5].

Modifying an application to use an accelerator means extensive program rewriting, only to
achieve a preliminary, not really efficient implementation. This process often requires the use
of new programming paradigms and tools that sometimes are not as polished as the ones for
multi-core CPUs. In these cases, the optimization of the code relies almost entirely on the hands
of the developer [6]. In addition, we can find a huge amount of literature about optimizing

! http://www.top500.org/
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accelerator-based applications, but in many cases it can be messy, overwhelming the developer
[7.

This dissertation discusses some of the issues that arise when trying to efficiently use general
purpose coprocessors. In this process, we use as case study the statistical technique Kernel
Density Estimation (KDE), which is a common building block in many HPC applications. The
main motivation is to provide a piece of handy literature that aids developers when using modern
coprocessors, including detailed performance evaluations in different scenarios.

First we present a deep survey that analyzes the literature on techniques for performance
modeling on general purpose coprocessors. Second, we present the design of a novel algorithm to
compute KDE called S-KDE. Then, we present the implementation and performance evaluation
of S-KDE, first in multi-core and many-core processors, and then in a wider range of general
purpose coprocessors. Last, we present an application of this improved KDE algorithm in the
domain of environmental sciences.

1.1 Organization of this Dissertation

This dissertation consists of a compilation of research articles that describe the mentioned con-
tributions. It is organized in two parts. Part [[ gives an introduction to the topic and presents
a summary of the contributions in the following manner: Chapter [I] motivates the research and
Chapter [2] provides a brief background on general purpose coprocessors and KDE. Chapter [3]
is devoted to summarizing the contributions of the dissertation and Chapter |4] provides some
global conclusions and a brief description of the publications included in this thesis. This part
ends with a list of references.

Part is composed of four Chapters to7 each one being a scientific paper published by the
author of this dissertation. In these chapters, the contributions described in Part [[|are explained
with a higher level of detail. Each Chapter (publication) includes its own list of references, which
complements those given in Part [I}
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Background

In this chapter we provide the background and terminology used in this dissertation. First we
briefly describe the hardware devices on which we have focused: general purpose coprocessors.
Then we provide a description of the statistical technique Kernel Density Estimation (KDE),
which is used as case study in several parts of this work.

2.1 General Purpose Coprocessors

This section is devoted to briefly describing the most common coprocessors used in HPC envi-
ronments nowadays: Graphics Processing Units (GPUs), many-core processors and hybrid chips.
We have depicted in Figure a time line of the main hardware devices developed by different
manufacturers, where a dashed line indicates the absence of a product family and a shortened
line indicates the discontinuation of a product. We include as well a brief description of the
development environments used for those devices.

2.1.1 Graphics Processing Units

GPUs are hardware devices designed for the efficient manipulation of computer images [§]. In
the early 2000s, the HPC community began using GPUs as accelerators for general purpose
computations [9], coining the term General Purpose Computing on GPUs (GPGPU) [10]. Since
then, each new generation of devices arrives with significantly improved horsepower in terms
of FLOP/s [11]. Currently the main GPU manufacturers developing HPC-class products are
NVIDIA and AMD (who bought ATIT in 2006). Figure shows the evolution of their GPU
product families. Both AMD and NVIDIA provide desktop and server versions of their cards.
Desktop cards are marketed as graphic accelerators that can also be used for GPGPU, running
punctual workloads at full performance. Server cards are marketed as GPU-based accelerators,
designed to run intensive workloads in an uninterrupted way.

In essence, a GPU is an autonomous compute system composed of a set of processing cores
and a memory hierarchy. A global memory space is accessible to all the cores, which can be
exclusive (this is the common case if the GPU is a discrete accelerator plugged into a PCI-
Express slot) or shared with other processing elements in the system, including the CPU (which
is the common case when using a heterogeneous, multi-core chip). Discrete NVIDIA and AMD
server-class accelerators (Tesla [I2] and FireStream systems [I3] respectively) include up to 8
GB of global memory.
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Fig. 2.1: Timeline of accelerator/hybrid devices

The strong point of GPUs is the way they handle thousands of in-flight active threads, and
make context switching among them in a lightweight way. Running threads may stall when trying
to access global memory, a relatively expensive operation. GPUs hide these latencies by rapidly
context-switching stalled threads (actually, groups of threads) with active ones.

2.1.2 Many-core coprocessors

The main many-core architecture in HPC is the Intel MIC (Many Integrated Core), which is nowa-
days implemented in the Xeon Phi range of coprocessors. These devices have become heavyweight
players in the accelerator arena, as demonstrated by the prominent positions held by Phi-based
supercomputers in the Top500 list.

A device with a preliminary version of the MIC architecture was Larrabee, a PCle accelerator
composed of 32 x86 cores. It was announced in 2008 [I4], and some prototype cards were shipped
in 2010. In 2012, Intel commercially launched the Xeon Phi Coprocessor (codenamed Knights
Corner) as an actual implementation of the MIC architecture, becoming an immediate success
[15].

A Xeon Phi coprocessor of series 3100 houses 57 cores running at 1.1 GHz (1003 GFLOP/s
of peak double precision performance), together with 6 GB of RAM, and can be attached to a
host computer through PCle. Series 7100 devices have better specifications: 61 cores at 1.238
GHz (1208 GFLOP/s) and 16 GB of RAM. The x86 cores used in these devices are less powerful
than those in state-of-the-art Xeon processors, but they are still more general-purpose than those
used in GPUs. They support 4-way Simultaneous Multithreading (SMT) and integrate Single
Instruction, Multiple Data (SIMD) units. Interconnection among them and with the memory is
via a ring bus.

2.1.3 Hybrid architectures

In recent years, manufacturers have marketed hybrid chips combining different types of cores in
the same die. A prototypical example is AMD’s family of Accelerated Processing Units (APUs)
[16], which combine several x86 cores with a GPU composed of several SIMD cores. Similarly,
Intel has its own family of processors with integrated graphics [I7]. The target market of these
hybrid processors is low cost, low power computers, with the focus on mobility. A previous
implementation of this class of hybrid chips was the Cell Broadband Engine [I§].

GPUs integrated into hybrid chips are not very different from those used in discrete acceler-
ators. They may provide reduced performance (fewer cores), due to cost and power limitations,
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thus being less attractive for HPC. However, they have an important advantage when compared
to discrete accelerators: memory spaces for GPU and CPU are not separated; in fact, memory is
shared. This drastically reduces the overheads associated with CPU-GPU communication and
synchronization, because data movement through PCle (required with discrete accelerators) is
not necessary. Studies comparing the performance of the AMD Fusion platform against a discrete
CPU+4GPU system [19] 20] conclude that APUs are more compute efficient than a discrete GPU
for applications involving massive data movements through the system bus.

2.1.4 Development environments

Applications for accelerators are generally written using software development tools provided
by the device manufacturers. They can consist of manufacturer-specific tool chains, or can be
implementations of standard APIs. OpenCL [2]] is a standardized, vendor-neutral framework
for programming all classes of accelerators, defining a hardware model and an API. CUDA [22]
implements similar concepts, but it is specific for NVIDIA GPUs and uses a slightly different
terminology. Both models are widely used for GPGPU.

Compared to GPUs, the Xeon Phi is a relative newcomer to the accelerator arena. However,
it has inherited from Intel’s vast experience with multi-core processing, and the result is the
availability of a diverse collection of tools that makes the learning curve of the developer less
steep. Among other APTs, Phi developers can use OpenMP, OpenCL and MPT [I5].

In order to simplify programming, debugging and tuning accelerator-based applications, a
diversity of higher-level tools and language constructions have appeared in the last years, which
try to hide hardware complexities and to offer programmers a higher-level view of accelerators.
Some of these approaches include the use of optimized libraries (for example, clMath [23]),
programming with directives (such as OpenACC [24] or version 4 of OpenMP [25]), or relying
on the parallelizing capabilities of the compiler (using, for example, the Par4All [26] open-source
compiler workbench).

2.2 Kernel Density Estimation

KDE is a statistical technique used to estimate the probability density function of a sample set
with unknown density function. It was first introduced in the 1960s for univariate data and, due
its widespread adoption, multivariate estimators appeared in subsequent years. It is considered as
a fundamental data smoothing problem and it is widely used due to its properties (smoothness,
continuity) in contrast to other common density estimation techniques, such as histograms [27].

KDE is a common tool in many research areas, used for a variety of purposes. For example,
in [28] authors use density estimates to forecast weather and other factors as part of a model for
optimizing maize production. In the same field, it has been applied to evaluate the signature of
climate change in the frequency of weather regimes [29]. In [30], the effectiveness of a particular
medical treatment is determined by means of KDE. In computer vision [31], it is applied for
image segmentation and tracking. An extensive list of application fields of KDE can be found in
132].

Given several observed data points (samples) from a random variable X, with unknown
density function f, KDE is used to create an estimated density function f from the observed
data. One of the most common techniques for density estimation of a continuous variable is the
histogram, which is a representation of the frequencies of the data over discrete intervals (bins).
Its main drawback is the lack of continuity. The KDE technique relies on assigning a kernel
function K to each sample (observation in the dataset), and then summing all the kernels to
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obtain the estimate. In contrast to the histogram, KDE constructs a smooth probability density
function, which may reflect more accurately the real distribution of the data. We now describe
the KDE technique in more detail.

Given a multivariate sample set (x1,xs...@,) where x; is the i-th sample value from an
unknown density f, KDE builds an estimation the following way:

. 1 <
= - SN"Ky(x—x; 2.1
fe) = 3 L Ko —a) (2.1)
where:
e 1 denotes the cardinality of the sample set.
o Ky(x)=|H| '"K(H '"zx).
e K (x) refers to the kernel function used to define the weight or influence of each sample.
e H is a dxd dimensional diagonal matrix containing the bandwidth or smoothing factor value

for each dimension. If the bandwidth is the same in all dimensions, we refer to it as a scalar
parameter h.

Intuitively, the kernel estimator is a sum of “bumps” placed at the sample points. The kernel
function K determines the shape of the bumps, while the smoothing factor h determines their
width. As an example of KDE, Figure depicts a simple estimator for a one dimensional space
with three sample points. Each of the sample points is surrounded by a kernel depicted as a
bell and the estimator is depicted as the thick line over the kernels. Note that, even though a
density estimation is a continuous function, KDE programs generate as output the values of the
estimation in the discretized space requested by the user.

Density
0.4

0.1

0.0

T
-20 0 20 40 60 80

Fig. 2.2: Example of KDE for 1D data. Small dots represent the samples, and the red lines are
the kernels around them. The estimated density is computed at the indicated points (square
dots) in a discretized grid with a step of 20

The bandwidth parameter h controls the influence area and smoothness of kernels. It is used
to reduce the noise in the density estimation, and it must be carefully selected. To describe its
effect, we depict in Figure [2.3|a simulated random sample from the Gaussian distribution in 1D,
and different estimations of the density derived from those samples. The solid curve depicts the
real density of the data, while the other lines depict (kernel-based) density estimations using
different values of h. The dashed line corresponds to a large h, and results in an over-smoothed
estimator. In contrast, the dotted line corresponds to a small h and results in an exceedingly
sharp estimator. None of the cases reflect accurately the actual density of the samples. Several
techniques to aid in the selection of the optimum bandwidth are detailed elsewhere [27] [33].
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Fig. 2.3: Effect of the smoothing parameter when estimating data sampled from a normal distri-
bution

A kernel function K is a symmetric but not necessarily positive function that integrates to
one. Kernels can be classified into two groups: bounded and unbounded, depending on their area of
influence. Two widely used kernel functions are Epanechnikov (which is bounded) and Gaussian
(which is unbounded). They are defined in Equations [2.2] and [2.3] respectively. In Equation
¢q is the volume of the unit d-dimensional sphere: ¢; = 2,¢o = m,c3 = 47/3, etc. For the sake of
clarity, we have depicted in Figures and the Epanechnikov and Gaussian kernels for 1D
spaces. Note how bounded kernels only affect those points in the space at a limited distance (1 in
the figure), while the influence area of unbounded kernels spans infinitely in both directions. The
choice of the particular kernel to apply is up to the KDE user, taking into account the problem
at hand.

Voc7 Y (d+2)(1 —aTx) ifxTa <1
K(z) = /2¢q " (d +2)( ) i _ (29)
0 otherwise
1 1
K(x) = ——exp (a:Ta:> 2.3
() oD 5 (2.3)
12 Epanechnikov - 1 Gaussian -~
1 0.8
5. 08 -
= L = 0.6
2 04 / -\,_\\ 3 0.4 L
o2l / 0.2 _/_./ \\
/ AN L S
0 : 0 == =
1 0.5 0 0.5 1 -3 2 1 0 1 2 3
X X

Fig. 2.4: Shape of a Epanechnikov kernel in 1D Fig. 2.5: Shape of a Gaussian kernel in 1D
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Contributions

This dissertation aims at providing insights about how a developer can get the most out of general
purpose coprocessors. As described in the previous chapter, accelerators offer the potential of
huge processing power, but not every code can be suitably adapted to the computing model they
impose. Along this chapter we will study different tools, techniques and methods to analyze and
optimize massively parallel codes. To that end, we will use Kernel Density Estimation (KDE),
also described in the previous chapter, as a case study.

3.1 A Survey of Performance Modeling and Simulation Techniques for
Accelerators

A common pitfall when developing programs for accelerators is to carry out code implementation
and tuning using a trial-and-error methodology, without appropriate feedback and guidance
from performance tools. Unfortunately, in the field of accelerator-based computing there is no
outstanding tool or model that can be considered as the reference instrument for performance
prediction and tuning. There is, though, an extensive body of literature related to this (relatively)
novel area. A major contribution of this work is a thorough review of the literature about this
topic.

As support for the developer, tools such as profilers and debuggers, together with best prac-
tices manuals written by the manufacturers of accelerators, are of great help during the process
of porting and tuning an application. However, they lack prediction abilities: they cannot esti-
mate performance on a different platform, or for a new application. Additionally, these tools can
overwhelm the programmer with excessive information, making it difficult to filter out what is
actually limiting the performance.

We initially set our focus on models of parallel applications running on accelerators, that can
be used to analyze (and predict) their combined performance. These models require input data
(the characteristics of the target application and platform), and may provide different sets of
output data, such as performance estimations or a list of bottlenecks.

A performance model can be seen as a system representation that provides output values
based on a given set of input parameters. Depending on the characteristics of the model and the
goal it has been designed for, the input and output datasets can be notably different. In addition,
they can be classified according to different criteria. In this work we propose a classification
criterion based on the output generated by the model, that is, the information it provides about
a particular hardware/software combination. We have identified models designed to:

e predict the execution time of a target application on a target hardware platform,
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identify performance bottlenecks and propose code modifications to avoid them,
provide estimations of power consumption, and
provide detailed, step-by-step information of resource usage, based on simulation

The first group contains models for the estimation of the execution time of an application (or
a portion of an application), that can be useful in situations such as making a decision about
acquiring new hardware or testing the application for scalability. After a review of performance
models aiming to predict the execution time of an accelerator-based parallel application, we
have organized the different works taking into account whether they propose general models
applicable to any program/kernel, or they are specific for a particular application or pattern. We
have also taken into account the input information required by the model: actual kernel codes,
or pseudo-codes/patterns derived from the structure of the program.

The second group contains models developed with the aim of helping developers in off-line
code optimization tasks. While a program is being ported and fine-tuned, it is necessary to
carefully analyze its behavior at run time on the target platform, looking for potential resource
bottlenecks and, if possible, finding alternatives to eliminate or mitigate them. Toolkits for pro-
gramming accelerators commonly include a profiler (e.g. NVIDIA Visual Profiler for the CUDA
platform, CodeXL for the AMD OpenCL platform or VTune for the Intel Xeon Phi platform),
which should be the first tools to use when optimizing a kernel. They analyze code execu-
tion, spotting bottlenecks, and can even make recommendations to the programmer about code
changes or compiler flags. However, they cannot predict the performance benefits associated to
these changes. Models in this second group aim to be complementary to the use of profilers, going
a step further in several aspects. They are discussed in two subgroups: some of them create, given
an application, an entire dissection under different criteria such as execution time or resource
consumption, while others that try to find specific bottlenecks in the code.

The third group contains models that estimate the energy required to run a particular code
on a particular device. A trending topic in the HPC field is improving the power efficiency of
computers. To that extent, significant effort is being devoted to modeling the power character-
istics of systems. These models consider not only code and device properties, but also program
input and some other run-time characteristics. We have reviewed a collection of proposals aiming
to model power efficiency. We found two types of models in this group: standalone, and tied to
simulators.

In the last group we have reviewed simulators. A simulator is a system representation (model)
able to mimic, step-by-step, the behavior of the target (real) system. Simulators are widely used
to carry out performance studies of existing hardware and software platforms, and also to analyze
platforms that either do not exist, or are not available. The accuracy of the output information
provided by a simulator depends on many factors, among them the level of detail with which
the system has been modeled and the quality and detail of the workloads provided to feed the
model.

We surveyed 29 performance models targeting modern coprocessors and classified them fol-
lowing the described taxonomy. For each one we extracted the following features:

Input requirements, such as running uBenchmarks or analyzing intermediate codes.
Limitations, such as lack of detail in memory modeling or inaccuracies for a particular type
of application.

e Highlights and benefits beyond other models, such as ease of use or extendability.

The conducted survey allowed us to identify a few performance models outstanding over
the remaining ones: MWP-CWP by Hong et al. [34] would be the model of choice to predict
execution times in GPUs, due to its ease of extension to upcoming architectures and GPUs of
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different vendors. The roofline model [35] is useful to determine the factor that limits program
performance in parallel systems (including accelerators), due to its ease of use and visual output
to guide optimizations. Finally, GPGPU-Sim [36] seems the simulator of choice for GPU-based
accelerators due to its rich set of features, and its capabilities to be enhanced with a power model.

In addition, we concluded that all currently available models and tools have limitations, that
should be overcome in the future:

e There is no accurate model valid for a wide set of architectures. Each model finds a different
trade-off between being more device-specific and therefore more accurate, or being more gen-
eral purpose at the cost of losing accuracy. Furthermore, the fast pace at which manufacturers
market new products, with new or improved features, makes models obsolete in a very short
time.

e A majority of the discussed models have been designed for CUDA, the most mature develop-
ment environment for GPGPU. However the vendor neutrality of OpenCL and its availability
for non-GPU accelerators is increasing its adoption by HPC programmers.

e Society is becoming aware of the great monetary and environmental costs derived from the
high energy consumption of computing systems. The challenge is not only to squeeze the
maximum performance out of a system, but also to do it with the minimum power. As often
these two requirements cannot be optimized simultaneously, good trade-offs have to be found.
Power models can help to solve this bi-objective optimization problem.

e Reviewed models focus on offloading compute-intensive tasks to accelerator devices, leaving
the CPU idle while the accelerator is busily crunching numbers. It is possible, however, to
make both work simultaneously, to increase system efficiency. There are proposals dealing
with this workload distribution, using static or dynamic scheduling techniques. Energy can
also be included into the equation, making power-aware load balancing across heterogeneous
systems.

The complete survey of performance modeling tools can be found in Chapter [5| This chapter
also includes strong background information about the main benchmark suites used for perfor-
mance analysis; some of them will be used later in this dissertation.

3.2 S-KDE: An Efficient Algorithm for Kernel Density Estimation

A collaborative work with another research group of the UPV/EHU made us focus our attention
on a problem in the climatology field with huge computational requirements: the evaluation of
environmental models. The design and optimization of novel methodologies for climate model
evaluation is a challenging task, that requires extensive use of KDE algorithms. Any accelera-
tion in the execution of KDE translates immediately in enabling faster, more accurate model
evaluation methods.

We soon understood that high levels of acceleration cannot be achieved by simply adapting
the available, serial code, to run in a parallel computing system. In fact, the first thing we did was
understanding the basics and constraints of the problem in order to propose a novel algorithm
with greatly reduced complexity. The achieved performance gains are visible even with a serial
implementation. Only after this was done, we proceed to further accelerate the program using
parallel computing. We describe in this section the algorithmic changes made to the reference
implementation of KDE, and discuss the parallel implementations afterwards.

KDE generates an estimation of the probability density function of a sample set. This esti-
mation is computed in a user defined evaluation space that should include all the observation
points in the sample set. In the example of Figure the evaluation space spans from -20
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to 80, covering the three samples plus some “extra” space at the boundaries in order to fully
accommodate the domain where the kernel is defined.

KDE implementations usually discretize this space, computing the density in equally sep-
arated grid points. This way, the evaluation space can be represented as a multi-dimensional
matrix, the evaluation grid. The separation between grid points is defined by a user-provided
evaluation step or grid step, that can be different in each dimension. In Figure the density
function will be computed at six evaluation points (-20, 0, 20, 40, 60 and 80), which are equally
separated at distance 20.

A common way to compute KDE is described in Algorithm [T} For each evaluation point, the
density that all the samples generate on it is computed, which depends on the kernel of choice.
This computation requires measuring the distance between the evaluation point and each sample.
The combined density at the evaluation point is the sum of all the partial densities. We call this
approach evaluation point-wise KDE or EP-KDE for short.

Algorithm 1 Evaluation point-wise KDE (EP-KDE)

for each Evaluation Point e do
value(e) = 0
for each Sample s do
dist = computeDistance(e,s)
value(e) += computeDensity(dist)
end for
end for

The computational complexity of EP-KDE is O(kgymn), where kq is a constant related to
the dimensionality of the dataset, m is the number of evaluation points, and n the number of
samples. Note that m is proportional to the size of the evaluation space and the grid step. For
large, multi-dimensional spaces or/and tight grid steps, m can be huge.

The EP-KDE approach is valid for both unbounded (e.g. Gaussian) and bounded (e.g.
Epanechnikov) kernels. In the first case, all the samples affect all the evaluation points. In con-
trast, with bounded kernels, samples only contribute to the density in those evaluation points
within its influence area. Therefore, when using EP-KDE with bounded kernels, in most cases
the computeDistance function of Algorithm [I] will return a value outside the bounds of the kernel
and, therefore, function computeDensity will return 0.

As EP-KDE with bounded kernels can lead to a huge amount of worthless computations
(that would depend on the size of evaluation space and on the dispersion of the samples), we
have developed a more efficient algorithm for this group of bounded kernels. It is described in
Algorithm [2| and we call it sample-wise KDE or S-KDEFE for short. Instead of focusing one by
one on each evaluation point and the influences of all samples over it, S-KDE focuses one by
one on each sample, computing its influence on the evaluation points surrounding it. As the
kernel is bounded, the area of influence is confined within a bounding box, which is computed
in advance. This bounding box is a hyperrectangle whose dimensions are determined by the
maximum per-dimension distances of influence of the kernel. Note that this is kernel-dependent,
but not sample-dependent. Thus, the size and shape of the bounding box b is computed just
once. Then, for each sample the bounding box must be aligned to the evaluation grid, defining
the per-sample bounding box bs.

With S-KDE, computations of distance and summations of influences are greatly reduced:
for each sample most evaluation points fall outside the influence area of the kernel, and are not
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Algorithm 2 Sample-wise KDE (S-KDE)

for each Evaluation Point e do
value(e) = 0
end for
b = computeBoundingBox
for each Sample s do
bs = adjustBoundingBox(b,s)
for each Evaluation Point e in b, do
dist = computeDistance(e,s)
value(e) += computeDensity(dist)
end for
end for

considered in subsequent computations. The complexity of S-KDE is O(kqnp), where k4 is a
constant related to the dimensionality of the dataset, n is the number of samples and p is the
size of the bounding box, which is normally much smaller than the total number of points in the
evaluation grid m.

The described S-KDE approach requires the computation of the bounding box b that sur-
rounds the area of influence of each sample. We will now describe how b can be computed,
assuming that an Epanechnikov bounded kernel is used. The area of influence of a sample using
this kernel has an elliptic shape in 2D spaces, and a d-dimensional ellipsoid shape for spaces of
higher dimensions. The challenge is to find a box bounding the ellipsoid, and to align it to the
discretized grid that defines the evaluation space. To do so, we propose an approach based on
the eigenvalues of the covariance matrix of the dataset; this is the natural choice when, as in
our case, a multidimensional Fukunaga estimator with the Mahalanobis distance is used [37]. In
Figure we depict an example: a sample s in position (6.75, 4.5), its area of influence (the
ellipse), and the bounding, aligned rectangle (dashed line).

o ' | i i ' | i ' | i i ' e

Fig. 3.1: Area of influence of a sample and the corresponding bounding box
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The evaluation points influenced by the sample are only those within the ellipsoid, which
means that the bounding box contains evaluation points whose contribution to the density is
zero. In fact, depending on the shape and angle of the ellipsoid, the evaluation points outside the
ellipsoid could be more numerous than those inside it. Motivated by this fact, we define a way
to make a tighter delimitation of bounding boxes. The first idea is to reduce the dimensionality
of the problem, splitting (chopping) the original d-dimensional box into several non-overlapping
d — 1-dimensional boxes. Each of them is again chopped into d — 2-dimensional boxes, repeating
the process until a collection of 2D rectangles (slices) is obtained. Then, each rectangle is cropped
until reducing it to a smaller one minimizing the number of evaluation points not influenced by
the sample. This two-step procedure is represented in Figures and

Fig. 3.2: Chopping a 3D bounding box into 2D Fig. 3.3: Cropping a 2D slice to obtain a
slices minimum-size bounding rectangle

We provide some example figures to illustrate the efficiency of our approach. We will assume
a 3D dataset with 500k samples, and a evaluation grid with 194.81 million points. The traditional
EP-KDE approach that traverses every evaluation point of the grid would execute 9.74 * 10'3
sample-evaluation point operations. In contrast, a rectangular 3D bounding box around each
sample in the mentioned scenario contains on average 102461 points, and using the sample-wise
KDE approach would require 5.12 % 10'° computations. If we apply the Chop & Crop technique,
the number of evaluation points per bounding box is further reduced to 53511 on average, and
the resulting total number of computations is 2.67 * 10'°. S-KDE, thus improves KDE efficiency
by several orders of magnitude. A more extensive description of the S-KDE algorithm can be
found in Chapter [6]

3.3 S-KDE in Multi and Many-Core Processors

In the field of climatology, KDE is used with large datasets and in an iterative manner. Although
S-KDE boosts the speed of KDE computations, any additional acceleration would be welcome.
We tackled this issue using the traditional HPC approach: through parallel computing. Therefore,
our next step was to implement S-KDE as a data-parallel program, initially targeting multi-core
and many-core processors.

The workflow of our parallel S-KDE code is depicted in Figure [3:4] Each thread is in charge
of computing the influence of a set of samples over the evaluation grid. For each sample, the
thread first adjusts its bounding box. If the evaluation space is of dimensionality three or higher,
the Chop & Crop procedure is recursively applied to reduce the computation to 2D slices. Then,



3.3 S-KDE in Multi and Many-Core Processors 17

for each 2D bounding rectangle the density that the sample creates in each evaluation point is
computed. The parallel code has been developed in ANSI-C, making use of OpenMP and Intel
compiler directives.

One of the drawbacks of performing sample-wise computations is the memory contention
that may appear when two or more different threads, managing samples whose influence area
overlap, have to add partial density values into the memory position that represent the same
evaluation point (this may happen in the consolidation step, the last one in Figure . To
reduce this harmful effect, each thread calculates every row of the slice in its private memory,
and adds it into main memory using the atomic OpenMP pragma. This way, we ensure data
write consistency. There is a cost to pay, though: atomic operations causes overheads due to the
serialization of memory write operations.

We have tested our S-KDE code in two different hardware platforms: an Intel Core i7 3820
multi-core CPU (4 cores @ 3.60 Ghz) and an Intel Xeon Phi 3120A many-core coprocessor (57
cores @ 1.1 Ghz), with datasets of diverse dimensionality and size. Here we focus on a single 3D
dataset with 500k samples. The evaluation is conducted varying the grid step in order to increase
or reduce the problem size.

In an initial comparison, we measured the execution times of our S-KDE implementation
against two public implementations of KDE: ks-kde from the R statistical software, linked with
the Intel MKL library to perform multi-core computations [38], and GPUML, a GPU based one
[39]. The tests of the latter were run on a NVIDIA GTX 650 GPU. In addition, we implemented
a parallel version of EP-KDE with OpenMP and run it in the same platforms used to test

Load sample set and
compute bounding box

Distribute sample / /

computation to threads
SAMPLE 0 SAMPLE 1 SAMPLE N

Fit bounding
box to sample

Chop bounding box
into 2D slices
(if required)

Crop slice (if required)
and compute its density

Add computed density
to evaluation space

Fig. 3.4: Workflow of our S-KDE implementation
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S-KDE. Results are depicted in Figure Our S-KDE implementation running in the Xeon
Phi obtained speed-ups over 460x when compared against the ks-kde implementation. Note that
this acceleration includes the combined effects of the algorithmic changes and the OpenMP
parallelization.
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Fig. 3.5: Execution times of the KDE implementations under test, for 3D datasets with 500k
samples

We conducted additional tests to analyze different features of the S-KDE implementation. In
one of the tests we run S-KDE with Chop & Crop enabled and disabled to assess the performance
gains derived from the use of this technique. Some results for a 3D dataset in the Xeon Phi are
depicted in Figure We measured that S-KDE runs 60.4% faster in the Core i7, and 49.2%
in the Xeon Phi, due to the removal of useless computations (and the corresponding memory
accesses). In other tests, we tried to dig and find the bottlenecks of the code. We conducted
a dissection of the execution times to find the portion of time devoted to the different stages
of the code and found the atomic memory writes used for results consolidation to be the main
bottleneck. Figure[3.7] depicts a dissection of the execution for a 3D dataset in both architectures,
showing the large portion of time devoted to memory writes.
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Fig. 3.6: Execution times for 3D dataset 1 with Fig. 3.7: Dissection of execution times of S-KDE
crop-and-chop enabled /disabled in the Xeon Phi for a 3D dataset in the Core i7 and the Xeon Phi
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We concluded from the experiments that:

e The current implementation of S-KDE has shown that, compared with available, state-of-the-
art implementations of KDE, it provides, by far, the best performance, even when running
in a modest i7 processor. This performance can be boosted if a many-core coprocessor is
available.

e Although the overall performance of the code is satisfactory, we have detected several bottle-
necks (the main one being memory write contention) that require further exploration. This
is left as future work.

The complete description of the evaluation and the results, and further discussion on potential
improvements can be found in the Chapter [6] of this dissertation.

3.4 S-KDE in General Purpose Coprocessors

The S-KDE algorithm presents an important advance in the computation of KDE, and its parallel
implementation in multi-cores and many-cores has proven to be very efficient when compared
against competitors. However, the described implementation targets a limited set of coprocessors.
We have already discussed in Chapter 2 the wide spectrum of coprocessors available in the
HPC landscape. Thus, we felt that our S-KDE approach should be available for a larger set of
accelerators.

Porting a code to run in accelerators usually requires a major recoding effort, as it has to
be adapted to a massive data parallel processing model. In order to target the widest possible
set of accelerators, we have chosen OpenCL as development platform. We have structured the
accelerator-based implementation of S-KDE as a sequence of steps, depicted in Figure Steps
between parentheses are additional operations required in the accelerator-based implementation
and not required in the serial or OpenMP codes:

1. Initialization: In a first step, the entire sample dataset is copied into the accelerator, along
with the required support structures. We assume that all the dataset fits in the memory of
the accelerator (note that this is not the evaluation grid). In this step we also compute the
size of the generic bounding box. This is host code (executed in the CPU).

2. Bozx fit and Chop: For every sample, its bounding box is fitted to the grid and chopping is
applied. At this point, the problem has been reduced to a collection of 2D slices. This is
implemented as an OpenCL kernel (executed in the accelerator in a data parallel way).

3. Crop: Cropping is applied to reduce the number of evaluation points in each slice. Additional
information about each slice is computed, such as its coordinates in the evaluation space and
the number of evaluation points it contains. This is an OpenCL kernel.

4. PrefixSum: A PrefixSum is applied to the vector that contains the number of evaluation
points per slice. This support computation is required by the next kernel for its threads to
make ordered stores. This is an OpenCL kernel.

5. Density Computation: Each thread calculates the influence created by a sample on an evalu-
ation point of a given slice. The resulting densities are stored in an auxiliary vector and not
consolidated into the global PDF structure. This is an OpenCL kernel.

6. Densities Transfer: The resulting vector of partial densities is transferred through PCI-
Express from the accelerator to host memory. This is managed by the host.

7. Consolidation: The host reads the vector of partial densities and accumulates them into the
evaluation space. This is host code.
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Fig. 3.8: Workflow of OpenCL KDE implementation

The main program is iterative after the second step. Each iteration consists of processing
a “chunk” of the problem, which is nothing more than a subset of the samples. The size of
this chunk is computed on a per-device and per-problem basis, to guarantee a high degree of
parallelism and a size of intermediate data structures that fit into the accelerator memory. Then
the program operates in a data-parallel fashion, using a chain of OpenCL kernels (Computation
stage in Figure . The per-chunk intermediate results are stored in the accelerator and, later,
transferred (Transfer stage in Figure [3.8]) to the CPU for consolidation into the main densities
matrix (Consolidation stage in Figure [3.8)).

The arrangement in stages has enabled the implementation of a pipeline of operations: while
the device is busy in the Computation and Transfer stages for a chunk, the CPU is consolidating
the results of the previous chunk. An example of the pipeline is depicted in Figure A deeper
pipeline would be possible (simultaneous Computation, Transfer and Consolidation) but, given
the duration of the Consolidation phase, it does not result in performance benefits.

We have carried out a performance analysis of the OpenCL code in three modern accelera-
tors: an AMD Radeon HD 6950 GPU, a NVIDIA GTX 650 GPU and a Intel Xeon Phi 3120A
coprocessor. Our aim was to conduct the analysis using device independent resources instead of
manufacturer specific tools (e.g. profilers). To that extent, we have relied on some of the per-
formance models and tools presented in Chapter [5| (summarized in Section . We report here
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Fig. 3.9: Pipelined execution of the OpenCL implementation of S-KDE

just the results obtained with the 3D, 1M samples dataset, varying the step to increase/decrease
the number of evaluation points (the problem size).

We followed a top-down approach, beginning from global performance measurements to lower
level details. To get an initial assessment of the performance of our non-pipelined OpenCL S-
KDE, we compared its total execution time against that of the serial version, for the three target
devices, see Figure [3.10] The OpenCL code runs significantly faster than the serial code, in
the three accelerators: speed-ups are 3.47x for the AMD GPU, 3.31x for the NVIDIA GPU and
4.27x for the Intel Xeon Phi, for the most complex of the tested problems. With the simultaneous
operation of Computation+Transfer and Consolidation, speedups improve: 4.42x for the AMD
GPU, 5.74x for the NVIDIA GPU and 5.67x for the Intel Xeon Phi, for the same problem.

After this black-box assessment, we went deeper into finer grain details. We first computed
the accumulated time spent in each of the stages executed per program iteration. Results for the
largest problem size are depicted in Figure We identified the Consolidation stage as the
main performance bottleneck: it takes longer that the other two stages together, determining in
the pipelined program the total execution time. These times also explain the lack of additional
benefit derived from a deeper pipeline.
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Fig. 3.10: Execution times of the OpenCL KDE Fig. 3.11: Dissected execution time of OpenCL
implementations S-KDE

To better understand the performance of the code running in the accelerators (the kernels
in the Computation stage), we first characterized several aspects of the devices, such as their
computational efficiency (using the Roofline model) and the PCI-Express transfer capabilities
(with the public SHOC benchmark suite). We depict here as an example the visual output of
these evaluations for the AMD Radeon HD 6950 GPU, see Figures and respectively.

We concluded that our OpenCL S-KDE code reaches acceptable efficiency levels given the
characteristics of the algorithm: it has (relatively) low complexity, but it is also memory-bound.
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Fig. 3.12: Roofline of a AMD HD Radeon 6950 Fig. 3.13: SHOC PCI-Express Test on a AMD
GPU Radeon 6950 GPU

Therefore, it does not fit in the accelerator model in a straightforward way. However, we managed
to get close to the limits of the accelerators.

Additional implementation details and discussions about design and implementation deci-
sions, together with a more thorough evaluation of the OpenCL S-KDE code, can be found in
Chapter [7]

3.5 A Methodology for Environmental Model Evaluation based on
S-KDE

As discussed before, our motivating scenario was in the climatology field, in a problem in which
KDE was extensively used: the evaluation of environmental models. In this section we propose
a novel methodology for this evaluation, which is enabled by the availability of S-KDE, a fast
KDE algorithm.

Climate models are mathematical representations of a climate system, based on physical,
chemical and biological principles [40]. They usually include complex equations that represent
these laws, that are solved numerically. Climate models provide discrete results in space and time,
whose accuracy depend on the resolution of the model. Nowadays climate models are used by
scientists to understand climatic changes from a dynamic point of view and to give quantitative
answers to questions about future climate.

In order to measure the confidence of the results that climate model produce, they must
must be evaluated against different observations [41] or paleoclimate data [42]. The rationale
behind this hypothesis is that models that are the best simulating current climate are expected
to be also the best simulating future climate. Some climate model evaluation exercises are based
principally on seasonal and annual time scales. However, monthly or seasonal averages can hide
biases or ordinal errors that are identifiable in daily data. In addition, climate on time scales of
days has a direct impact on human health and activities (e.g. agriculture). Thus, more recent
model evaluation exercises tend to provide estimates on time scales of days [43].

Many climate model evaluations are based on averaged output values for the target variables,
such as temperature, air pressure and sea level. However, it has been proven that this approach
is not the most accurate one, as a mean value, even when it is precise, does not represent
with fidelity the distribution of a variable. For this reason, recent climate model evaluations are
based on Probability Density Functions (PDFs) of the target variables [44]. These PDFs can
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be generated using KDE techniques, and result in higher computational demands during the
evaluation process. An advantage of using PDFs in climate models is that they are capable of
evaluating the probability corresponding to situations that are currently rare but may become
common in the future [45].

We propose a novel methodology for the evaluation of climate models by means of PDFs,
in the time scale of days. Part of this methodology is based in the work by Perkins et al. [45].
They propose the index for the evaluation of daily climate models based on PDFs limited to
the evaluation of unidimensional PDF's: they can evaluate the performance of a single output
variable, e.g. the temperature. However, in some scenarios it is useful to evaluate several variables
in a single step. This is precisely what our methodology achieves. It works as follows:

1. Identify the optimal bandwidth to be used by the estimation of multidimensional PDFs: Our
methodology requires comparing the PDFs generated by the climate model and the PDFs
built from the real world observations. KDE is used to build these PDFs — in particular, one
of our fast S-KDE implementations. As described in Section the bandwidth parameter
is critical in KDE computations. In this first step the optimal bandwidth for the PDFs is
found using a bootstrap-based cross-validation technique.

2. Compute the multidimensional PDFs: Using the optimal bandwidth values from the previous
step, compute (using, again, S-KDE) the PDF's for the estimations generated by the climate
model, and for the observations.

3. Compute the similarity score: Once the PDFs of the model and the observations are available,
obtain a similarity score (in the range 0..1), that represents to what extent the estimations
produced by the models match the observations. A perfect model would have a score 1. This
score is computed extending the index by Perkins et al. to multiple dimensions.

S-KDE is essential in this methodology, because the most costly steps (the first two) require
multiple estimations of PDFs. In particular, the bootstrap used in the first step requires the com-
putation of multiple realizations of the PDFs for the same datasets, each set of realizations using
a different bandwidth value, until the optimal bandwidth is identified. A slow KDE algorithm
would make this step, and the whole methodology, unfeasible in terms of computation time.

The proposed methodology has been applied to two different case studies. The first one
corresponds to a realistic application of climate model evaluation [46]. The second one requires
working with data of higher dimensionality, and consists of assessing the performance of a coupled
atmosphere-ocean reanalysis in reproducing the global scale Sea Surface Temperature and Sea
Surface Height.

A more detailed explanation of the methodology, and its complete evaluation can be found
in Chapter [8] of this dissertation.
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Conclusions

In this chapter we summarize the conclusions of this dissertation. More specific conclusions are
listed in the previous chapter, and in Part [T We also present the publications included in Part
[T of this dissertation and the future paths to extend the presented work.

4.1 Conclusions

This dissertation deals with the problem of efficiently using state-of-the-art general purpose
coprocessors. These devices have been widely adopted in HPC environments due to their high
theoretical performance compared to multi-core CPUs, and many developers have adopted them
as computing platforms []]. However, achieving that theoretical peak remains challenging for two
main reasons: first, not every application fits in the massively data parallel model that accelerators
are designed for, and second, despite the huge amount of literature and toolsets around these
devices, there is a lack of standardized ways of development and use of performance tools.

In this work we have presented several contributions towards an efficient use of accelerators.
Next, a short description of the main contributions of this dissertation is listed.

e We have conducted an extensive survey on performance models and tools targeting accelera-
tors. We have used a taxonomy to arrange the different proposals of tools and methodologies,
and analyzed their main features and limitations.

e We have proposed a novel algorithm to compute Kernel Density Estimation (KDE) using
a sample-wise approach, instead of the common evaluation point-based approach. The com-
plexity of S-KDE is O(np) instead of O(mn), where m is the size of the evaluation grid, n
is the size of the sample dataset and p is the size of the bounding box. S-KDE is very effi-
cient because p is normally much smaller than m. Furthermore, we propose a Chop & Crop
technique to further reduce the size of p.

e We have implemented and evaluated S-KDE as a parallel application targeting multi-core and
many-core processors using OpenMP. The code, compared against state-of-the-art implemen-
tations of KDE, has an excellent performance, due to the combination of a low-complexity
algorithm and an effective parallelization.

e We have also implemented S-KDE as an OpenCL application targeting modern accelerators,
purposefully avoiding device-specific optimizations in order to guarantee portability. Its per-
formance has been evaluated on two GPUs and a many-core processor, yielding speed-up
values around 4x in all the tested devices. The evaluation included an analysis of application-
dependent and platform-dependent factors that hinders further acceleration.
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e We have designed a novel methodology for the evaluation of environmental models, that
uses extensively KDE computations and that is only feasible in a reasonable time using our
efficient S-KDE implementations.

4.2 Future Work

This work has left open several lines of work and research that the author plans to tackle in the
future:

e The performance of both parallel implementations of S-KDE is greatly affected by the mech-
anisms chosen to avoid memory write contention. We plan to rework these codes in order to
reduce this bottleneck.

e We plan to create a framework to characterize accelerators and accelerator-based applica-
tions to carry out performance predictions. We miss a unified, portable way to characterize
accelerator based environments, in contrast with what is available for single and multi-core
CPUs [47].

e Related to this, we plan to extend the analysis work conducted with the OpenCL S-KDE
code to propose a device-independent methodology to assess accelerator-based applications.
This would complement the current literature on code optimization, which is in most cases
too specific for a class of devices and / or applications.

e The use case presented in this dissertation uses 3D datasets of climate variables after reducing
the dimensionality of the model results. However, recent publications from the Coupled Model
Intercomparison Project (CMIP), part of the World Climate Research Programme (WCRP)EL
could be analyzed with a better diagnostic strategy (from the point of view of physics of the
problem) with higher dimensionality (up to ten), even after a dimensionality reduction. Even
with S-KDE, dealing with those datasets (that do not fit in main memory) poses a significant
storage and processing challenge that we plan to undertake.

4.3 List of Publications

As a result of this research work several papers have been published in different journals and
conferences. In this section we introduce the papers included in Part [T] of this dissertation, and
their associated references.

Chapter |50 A Survey of Performance Modeling and Simulation Techniques for
Accelerator-Based Computing

e This work presents a review of the state-of-the-art in performance tools for heterogeneous
computing, focusing on the most popular families of accelerators: GPUs and the Intel Xeon
Phi. It describes current heterogeneous systems along with their associated development
frameworks and tools. The core of this work is a review of the performance models and tools,
including simulators, proposed in the literature for these platforms. It extends the contribu-
tions described in Section 3.1l Published as:

Unai Lopez-Novoa, Alexander Mendiburu, and Jose Miguel-Alonso. A survey of performance
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Chapter [6} An Efficient Implementation of Kernel Density Estimation for
Multi-core and Many-core Architectures

This work presents a novel strategy to compute Kernel Density Estimation (KDE) using
bounded kernels, trying to minimize memory accesses, and its implementation as a parallel
program targeting multi-core and many-core processors. The implementation is evaluated
with different datasets, obtaining impressive levels of acceleration when taking as reference
alternative, state-of-the-art KDE implementations. It extends the contributions described in
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Chapter [7} Kernel Density Estimation in Accelerators: Implementation and
Performance Evaluation
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Chapter |8 Multi-objective Environmental Model Evaluation by Means of
Multidimensional Kernel Density Estimators: Efficient and Multi-core
Implementations
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ment between Probability Density Functions (PDFs) used in climate studies. A set of high-
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well. They compute multivariate PDFs by means of kernels, the optimal bandwidth using
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is illustrated with two case-studies. Results show that the proposed methodology is robust to
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Abstract—The high performance computing landscape is shifting from collections of homogeneous nodes towards heterogeneous
systems, in which nodes consist of a combination of traditional out-of-order execution cores and accelerator devices. Accelerators, built
around GPUs, many-core chips, FPGAs or DSPs, are used to offload compute-intensive tasks. The advent of this type of systems has
brought about a wide and diverse ecosystem of development platforms, optimization tools and performance analysis frameworks. This
is a review of the state-of-the-art in performance tools for heterogeneous computing, focusing on the most popular families of
accelerators: GPUs and Intel’'s Xeon Phi. We describe current heterogeneous systems and the development frameworks and tools that
can be used for developing for them. The core of this survey is a review of the performance models and tools, including simulators,

proposed in the literature for these platforms.

Index Terms—Accelerator-based computing, heterogeneous systems, GPGPU, performance modeling

1 INTRODUCTION

ACCELERATOR devices are hardware pieces designed for
the efficient computation of specific tasks or subrou-
tines. These devices are attached to a Central Processing
Unit (CPU) which controls the offloading of software frag-
ments and manages the copying and retrieval of the data
manipulated in the accelerator. Most accelerators show
important architectural differences with respect to CPUs:
the number of computing cores, the instruction sets and the
memory hierarchy are completely different, making acceler-
ators suitable for specific classes of computation.

In the early 2000s, the High Performance Computing
(HPC) community began using Graphics Processing Units
(GPUs) as accelerators for general purpose computations
[1], coining the term General Purpose Computing on GPUs
(GPGPU) [2]. GPUs are designed for the efficient manipu-
lation of computer images, and each new generation of
devices arrives with significantly higher horsepower in
terms of FLOP/s [3], [4]. The HPC community soon
became aware of this potential, devising smart tricks to
disguise scientific computations as graphics manipula-
tions. GPU manufacturers noticed this trend and provided
Application Programming Interfaces (APIs) and Software
Development Kits (SDKs) to allow a more direct program-
ming of their devices for non-graphics tasks, while simul-
taneously designing the newer GPUs taking into
consideration the needs of this growing market. Discrete
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accelerators built around GPU chips but without video
connectors were produced and rapidly adopted by the
HPC community. Soon, other hardware manufacturers
started building dedicated accelerator devices, shipping
them with programming environments similar to those
developed initially for GPGPU in order to ease its adoption
by HPC developers.

Effectively exploiting the theoretical performance of an
accelerator is a challenging task, which often requires the
use of new programming paradigms and tools. Porting an
application to an accelerator means extensive program
rewriting, only to achieve a preliminary, not really efficient
implementation. Optimization is even more complex. This
complexity is exacerbated when simultaneously trying to
use the aggregated performance of a processor and the
accelerator(s) attached to it, not to mention massively par-
allel systems with thousands of hybrid nodes. Several
works expound that it is hard to efficiently use (homoge-
neous) massively parallel computing systems [5], and even
harder to deal with heterogeneous, accelerator-based
supercomputers [6].

An added difficulty is that porting codes to use accelera-
tors could be useless if the target application does not fit
into a massively data parallel model. We can find highly
successful porting cases [7], which may compel pro-
grammers to jump onto the accelerator bandwagon. How-
ever, metrics about the effort required for the porting are
not that common. Besides, the way of measuring the degree
of success can be misleading. In particular, it is a common
practice to measure speedup against a serial version of the
code. Works such as [8] claim that achieved speedups are
not that large if the yardsticks are multi-core fine-tuned
applications.

A common pitfall when developing for accelerators is to
carry out code implementation and tuning using a trial-
and-error methodology, without appropriate feedback and

1045-9219 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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guidance from performance tools. Unfortunately, in the
field of accelerator-based computing there is no outstanding
tool or model that can be considered as the reference instru-
ment for performance prediction and tuning. There is,
though, an extensive body of literature related to this (rela-
tively) novel area. The main objective of this survey is pre-
cisely to compile, organize and analyze this literature. We
are not aware of a work similar to this in terms of breadth.
We are convinced that this work will be useful for develop-
ers that want to extract the best possible performance (or
performance/power tradeoff) of the widely available accel-
erator-based platforms.

The remainder of this paper is organized as follows.
In Section 2 we provide some background on hardware,
development tools and modeling methodologies for
accelerator-based computing. Section 3 is devoted to the
review of the literature on performance and power mod-
els and simulators targeting accelerators. Finally, in Sec-
tion 4 we provide some conclusions and discuss future
research lines in this field.

2 BACKGROUND

In this section we provide a summary of the background
information required to understand the analysis of per-
formance models carried out in Section 3, which is the
core part of this survey. The reader is referred to Appen-
dices A to E of the Supplementary File, which can be
found on the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPDS.2014.
2308216, for more details and additional references.

2.1 Accelerators and Heterogeneous Architectures
This survey focuses on heterogeneous hardware, in the
form of (1) hybrid chips integrating several cores of differ-
ent characteristics, including specific-purpose accelerators,
and (2) traditional computing platforms to which a discrete
accelerator is attached using, for example, PCle. Nowadays,
two classes of accelerators are mainstream: GPUs and
many-cores such as Intel’s Xeon Phi coprocessor. Other pos-
sibilities do exist, such as Field Programmable Gate Arrays
(FPGAs) and Digital Signal Processors (DSPs).

Most of the literature on performance analysis for accel-
erator-based computing is devoted to analyze discrete
GPUs and many-cores (specifically, the Xeon Phi), and
therefore we do the same in this survey. Devices targeting
GPGPU have been marketed since mid-2000s, while the Phi
reached the market in 2012. This fact justifies the bias of the
literature towards GPUs.

A GPU is an autonomous computing system composed
of a set of processing cores and a memory hierarchy. A
global memory space is accessible to all the cores, which can
be exclusive (this is the common case if the GPU is a discrete
accelerator plugged into a PCle slot) or shared with other
processing elements in the system, including the CPU
(which is the common case when using a heterogeneous,
multi-core chip). The strong point of GPUs is the way they
handle thousands of in-flight active threads, and make con-
text switching among them in a lightweight way. Running
threads may stall when trying to access global memory, a
relatively expensive operation. GPUs hide these latencies

by rapidly context-switching stalled threads (actually,
groups of threads) with active ones.

The Intel Xeon Phi is an accelerator that attaches to a host
device using PCle. It includes a many-core processor and
memory. Current implementations incorporate up to
61 x86 cores supporting four-way Simultaneous Multi-
threading (SMT) and Single Instruction, Multiple Data
(SIMD) capabilities.

Regarding heterogeneous chips, we pay special attention
to those integrating a traditional multi-core processor and a
GPU that, in addition to be useful for graphics, can be used
for offloading compute-intensive program sections. The
main advantage of these chips is that memory is shared by
GPU and CPU, therefore avoiding the use of expensive
PCle transfers.

2.2 Development Tools for Accelerators

Applications for accelerators are generally written using
software development tools provided by the device manu-
facturers. They can consist of manufacturer-specific tool
chains, or can be implementations of standard APIs.
OpenCL [9] is a standardized, vendor-neutral framework
for programming all classes of accelerators, defining a hard-
ware model and an APIL. CUDA [10] implements similar
concepts, but it is specific for NVIDIA GPUs and uses a
slightly different terminology. Both models are widely used
for GPGPU.

Compared to GPUs, the Xeon Phi is a relative newcomer
to the accelerator arena. However, it has inherited from
Intel’s vast experience with multi-core processing, and the
result is the availability of a diverse collection of tools that
makes the learning curve of the developer less steep.
Among other APIs, Phi developers can use OpenMP,
OpenCL and MPI [11].

It is important to stress that the use of standard APIs may
provide code portability between different platforms, but
this does not translate into performance portability: cur-
rently, device specific, performance-oriented fine-tuning of
an application is required in order to fully exploit the capa-
bilities of an accelerator.

2.3 Tools and Techniques for Performance
Modeling

Tools such as profilers and debuggers, together with best
practices manuals written by the manufacturers of accel-
erators, are of great help during the process of porting
and tuning an application. However, they lack prediction
abilities: they cannot estimate performance on a different
platform, or for a new application. Additionally, these
tools can overwhelm the programmer with excessive
information, making it difficult to filter out what is actu-
ally limiting the performance.

Our focus in this paper is on models of parallel applica-
tions running on heterogeneous platforms, that can be used
to analyze (and predict) their combined performance. These
models require input data (the characteristics of the target
application and platform), and may provide different sets
of output data, such as performance estimations or a list of
bottlenecks.
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In this section we describe methods to characterize devi-
ces and applications in order to feed performance models.
We also describe the different classes of models that have
been proposed and used in the literature: analytical, based
on machine learning (ML), and based on simulation. Once a
model is proposed, it must be validated and evaluated in
order to demonstrate its usefulness beyond a single applica-
tion/platform pair. A common way of doing this validation
is through benchmark applications.

2.3.1 Characterizing Devices

Static information about the characteristics of a particular
device can be collected in several ways, including manufac-
turer data sheets and manuals. Often, a manufacturer-spe-
cific API is available to directly query the device. To gather
dynamic information about the way an application is using
hardware resources, performance counters can be used. Lat-
est chips also provide counters to obtain data about temper-
ature and power usage.

A complementary source of information is that obtained
through micro-benchmarks, programs designed to stress a
particular component of the hardware and return perfor-
mance metrics about it. This technique has been used exten-
sively for CPUs, and has been extended to accelerators.

2.3.2 Characterizing Applications

Application characterization is the task of describing a pro-
gram (or kernel) using metrics that can be used to feed a
performance model. The accuracy of the model will depend
on the quality of the captured metrics, and the metrics to
extract from a program depend on the needs of the model
they will feed. Usually, metrics include memory access pat-
terns, register utilization, number of arithmetic operations,
number of branches, etc. Program metrics can be obtained
using a variety of mechanisms, including:

e Analysis of the source code, directly or after some
transformations.

e Analysis of an intermediate representation (IR) of the
code, an assembly-like code representation pro-
duced by the compiler before the generation of the
binary files. A drawback of this approach is that, as
it relies on the potential optimizations that the com-
piler might have performed, it may not exactly rep-
resent the original source code. CUDA’s PTX format
is a commonly used IR, that can be analyzed using
the Ocelot [12] tool set.

e Analysis (disassembling) of the final binary files.
These are the ones executed by the devices, so they
provide maximum information about what the hard-
ware will do.

2.3.3 Modeling Methodologies

A performance model is designed with the aim of describ-
ing the behavior of a system. A good model has prediction
abilities: providing as input descriptions of an application
and a platform, it generates estimators of the performance
that would be achieved. After a review of the literature, we
have identified three main approaches to modeling the

JANUARY 2015

performance of parallel systems: analytical modeling,
machine learning and simulation.

An analytical model is an abstraction of a system in the
form of a set of equations [13]. These equations try to repre-
sent and comprise all (or most) of the characteristics of the
system. Machine Learning [14] is a branch of artificial intel-
ligence related to the study of relationships between empiri-
cal data in order to extract valuable information. These
techniques learn and train a model, for example a classifier,
based on known data. Later, this model can be used with
new (unseen) data to classify it. Finally, simulators are tools
designed to imitate the operation of a system [13]. They are
able to mimic system behavior step by step, providing infor-
mation about system dynamics. The level of accuracy of the
output information of the simulator depends, as in the other
approaches, on the level of detail introduced in the model,
taking into account that it is not always easy to exactly iden-
tify the actual way a system behaves.

Independently of the nature of the models, most have a
set of parameters that must be tuned to suit the particular
scenario to which they will be applied. Parameter values
may be provided by experts, or measured in previous
experiments but, in general, models are trained with data
obtained from scenarios similar to the target one. For
example, a ML model designed to predict execution times
of a particular application on a particular hardware plat-
form with a particular configuration (number of threads,
thread grouping, input data, etc.) may take as training
data set the execution times of applications running in
the same or similar hardware for a variety of different
configurations. If the data set is large and representative
enough, one could expect promising performance estima-
tions for the target application/hardware combination.
However, the model would probably provide poor results
for different applications or hardware. Benchmark suites
can help to fine tune models, as they usually integrate a
collection of diverse applications aimed to represent
actual workloads that exploit different hardware features.

Additionally, a model will not be widely accepted
unless it has been previously evaluated and tested for
accuracy. Benchmark suites can also be used for this pur-
pose, providing well defined yardsticks, easier to be
accepted by the community than ad-hoc applications that
could be considered unrealistic or barely representative of
actual workloads.

3 A REVIEW OF PERFORMANCE MODELS

Roughly speaking, a performance model can be seen as a
system representation which provides output values based
on a given set of input parameters. Depending on the char-
acteristics of the model and the goal it has been designed
for, the input and output data sets can be notably different.

Performance models can be classified according to dif-
ferent criteria. We already provided a classification in
analytical models, machine-learning models and simula-
tors. However, in this section we use a different classifi-
cation criterion, based on the output generated by the
model, that is, the information it provides about a partic-
ular hardware/software combination. We have identified
models designed to:
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1)  predict the execution time of a target application on a
target hardware platform
2) identify performance bottlenecks and propose code
modifications to avoid them
3) provide estimations of power consumption
4) provide detailed, step-by-step information of
resource usage, based on simulation
In the forthcoming sections we make a review of model
proposals found in the literature, arranged using this classi-
fication. In Appendix F of the Supplementary File, available
online, we have included a table for each model class, sum-
marizing the main features of each model.

3.1 Execution Time Estimation

Estimating the execution time of parallel applications can be
useful in several situations, such as making a decision about
acquiring new hardware or testing an application for scal-
ability. After a literature review of performance models
aiming to predict the execution time of an accelerator-based
parallel application, we have organized the different works
taking into account whether they propose general models
applicable to any program/kernel, or they are specific for a
particular application or pattern. We have also taken into
account the input information required by the model: actual
kernel codes, or pseudocodes/patterns derived from the
program structure.

3.1.1 General-Purpose Models

Models using kernel codes. As previously explained, GPUs
hide latencies by handling thousands of in-flight active
threads, rapidly switching stalled warps (due to memory
transactions) with ready-to-run warps. A warp is the CUDA
name of a group of 32 threads, the minimum scheduling
unit in NVIDIA GPUs. Hong and Kim [15] model this
behavior on NVIDIA GPUs using two different metrics:
MWP and CWP. The first one, memory warp parallelism,
measures the maximum number of warps that can overlap
memory accesses. The second, computation warp parallel-
ism, measures the number of warps that execute instruc-
tions during one memory access period. Expressions are
provided to compute these values for a given device and
application and, from them, the number of cycles required
to run the kernel. The basic idea behind the model is that,
when MWP < CWP, performance is dominated by the
time spent accessing memory but, when MWP > CWP,
memory accesses are mostly hidden and overall perfor-
mance is dominated by the computation cycles. A variety
of kernels and GPUs were used to validate the model.
Authors report a geometric mean error of 13.3 percent
between estimated and actual cycles per instruction (CPI).
Due to its simplicity and accuracy reflecting the way GPUs
work, this model has been used and extended by many
other authors. For instance, Ganestam and Doggett use
MWP-CWP in [16] as part of an auto-tuning tool for the
optimized execution of a ray-tracing algorithm. We will see
some additional examples throughout this paper.

Based on similar concepts, Kothapalli et al. [17] propose
two kernel behaviors, also in a CUDA context: MAX model
(maximum value between compute and memory cycles),
and SUM model (sum of compute and memory cycles).

Authors claim that for most of the tested cases, predictions
provided by these SUM and MAX models are close to the
real measurements but, unfortunately, they do not provide
clues as to how to choose the right one for a given kernel.
An extension of this work, presented by Gonzalez [18],
includes more complex hardware features (memory copy
overheads, branch-divergence latencies, etc.), and improves
modeling accuracy, choosing in most of the cases the SUM
model. As in the original work, no reason is given for this
decision.

In addition to these analytical models, there are also
others which rely on machine learning techniques identify-
ing first a set of code and hardware features, and later using
feature selection, clustering and regression techniques to
estimate execution times. Kerr et al. [19] present four differ-
ent models: application, GPU, CPU, and combined
CPU + GPU. The paper states that the GPU model (estima-
tion of application execution times on an unknown GPU)
provides fairly accurate results, with a maximum deviation
of 16 percent in the worst case. Unfortunately, the remain-
ing models are not that accurate, producing poorer esti-
mates and high variability. The proposal by Che and
Skadron [20] has accuracy levels close to those of the MWP-
CWP model [15] when used to predict the execution time of
different applications on the GPUs used to build the model.
However, accuracy is not that good, although still reason-
able (between 15.8 and 27.3 percent), when estimating exe-
cution time on an unknown, new GPU. Finally, the paper
presented by Sato et al. [21] discusses different machine
learning models, reporting for the best one error rates
around 1 percent. However, the process used to calibrate
the model is not detailed sufficiently.

Models using program skeletons. Given the (serial) source
code of an application, it would be highly desirable to know
its potential performance when running it in an accelerator.
There are some performance-prediction frameworks that
aim to do precisely this, although they do not take the code
directly as an input: the user is required to provide a skele-
ton (abstract view) of the application using a set of construc-
tors that identify parallelization opportunities. Grophecy,
presented by Meng et al. [22], takes an application skeleton
and generates several proposals for implementing the accel-
erated version of the code, with different types of optimiza-
tions, such as tiling and loop unrolling. The framework
makes use of the above-described MWP-CWP model to esti-
mate the execution time of each proposal and recommends
the most promising one.

Nugteren and Corporaal propose in [23] the boat hull
model, inspired by the well-known roofline model [24].
They claim that the roofline model is not designed to predict
performance, but to help a programmer detect bottlenecks
and improve performance (see Section 3.2.1). In contrast,
the boat hull model does provide performance estimations
using a few architectural parameters and a description of
the code. The target program must be split into several
sections, and each section must be characterized as belong-
ing to a certain class. Then, a modified roofline model (per-
formance graph) specific to each class is applied to the
different sections, using in the X axis a “complexity” metric
(instead of operations per byte), and in the Y axis an
“execution time” metric (instead of FLOP/s). All together,
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the model can be used to predict the performance of an
application on different target architectures, including
GPUs and other accelerators. The model is applied to an
image processing application on two GPUs, and the differ-
ence between predicted and measured execution times is
3 percent in one device and 8 percent in the other.

The two proposals discussed in this section can be
used to predict application performance without carrying
out accelerator-specific implementations. However, users
are required to describe application behavior in an
abstract way, learning a new syntax and carefully split-
ting the code into sections that must be well-defined and
properly associated to a collection of skeletons or classes.
These are not trivial tasks, especially when handling
large, complex pieces of code.

3.1.2 Models Designed for Particular Applications

The works discussed above can be considered general-pur-
pose, that is, suitable to any application. We can find in the
literature other proposals which focus on modeling specific
programs or program classes (patterns). For example, Meng
and Skadron propose in [25] a framework that automati-
cally selects the best parameters for an Iterative Stencil
Loops (ISL) application, given some parameters of the
domain and some features of the target GPU. ISL is a tech-
nique applied in many domains, including molecular
dynamics simulation and image processing, that distribute
computations into overlapping regions (tiles), with neigh-
boring regions interacting via halo zones. Similarly, Choi
et al. present in [26] an auto-tuned implementation of the
Sparse Matrix-Vector (SpMV) multiplication. The difficulty
in computing with sparse matrices is related to using com-
pression algorithms (such as BCSR or ELLPACK [27]) that
represent matrix data as lists. Authors designed their own
implementation of the Blocked ELLPACK (BELLPACK)
algorithm and built it with a model that, given architectural
features, finds the application parameters that minimize
execution time.

3.2 Bottleneck Highlighting and Code Optimization
While a program is being ported and fine-tuned, it is neces-
sary to carefully analyze its behavior at run time on the tar-
get platform, looking for potential resource bottlenecks and,
if possible, finding alternatives to eliminate or mitigate
them. Toolkits for programming accelerators commonly
include a profiler (e.g.,, NVIDIA Visual Profiler for the
CUDA platform, CodeXL for the AMD OpenCL platform or
VTune for the Intel Xeon Phi platform), which should be the
first tools to use when optimizing a kernel. They analyze
code execution, spotting bottlenecks, and can even make
recommendations to the programmer about code changes
or compiler flags. However, they cannot predict the perfor-
mance benefits associated to these changes. To this end, sev-
eral models have been proposed in the literature with the
aim of helping developers in code optimization tasks.

3.2.1 The Roofline Model

The work by Williams et al. [24] has provided a well-
accepted mechanism to visually describe those characteris-
tics of a multi-core platform that may limit the performance
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of a particular application. Using a diagram with two axes,
representing an “Operational Intensity (FLOP/Byte)” met-
ric in the X-axis, and an “Attainable GFLOP/s” metric in
the Y-axis, the compute platform is represented by a line or
roof that first grows linearly with the operational intensity,
until it reaches an inflection point and then flattens. An
application (or kernel) fits somewhere in the X-axis (has a
certain operational intensity) and, consequently, can reach a
maximum performance (limited by the line representing the
platform). The programmer can try code optimizations
aimed at increasing operational intensity, moving the kernel
to the right side of the graph, until it reaches the flat section
where further improvements are not fruitful.

The limits imposed by the platform may vary depend-
ing on the use of different features. For example, by using
SIMD instructions or transcendental functional units, if
available, peak performance (the flat portion) can be
improved. Using memory accesses that make better use of
memory channels (such as FastPath in AMD GPUs or
data coalescing in NVIDIA GPUs) raises the growing sec-
tion. Therefore, the platform is not characterized by a sin-
gle line, but by a collection of lines. The particular roof
limiting a given application depends on the use the pro-
grammer makes of the device features. In [28] Jia et al.
make a roofline characterization of two GPUs: AMD
HD5850 and NVIDIA C2050, showing how the set of fea-
tures affecting performance is different for each GPU and,
therefore, the code modifications programmers may apply
in each case are also different. The roofline model has also
been used by Cramer et al. to characterize the Xeon Phi
running OpenMP codes [29].

3.2.2 Program Dissection

Models by Lai and Seznec [30], Zhang and Owens [31] and
Baghsorkhi et al. [32] provide a breakdown of a CUDA ker-
nel execution into several stages, such as compute phases or
memory stalls, although they differ in the way they retrieve
application-related features. In all cases, platform informa-
tion is gathered via micro-benchmarks, while the applica-
tion is characterized by code analysis. Both [30] and [31]
require running the target kernel within a simulator to
gather performance counters. The former also requires an
analysis of the disassembled kernel binary file. In contrast,
Baghsorkhi et al. [32] work with the source code of the ker-
nel, building from it a program dependence graph (PDG)
[33] that represents the workflow of the application.

Once the information characterizing device and applica-
tion has been gathered, the models are constructed and
used to generate different sorts of output (or performance
predictions): Lai and Seznec [30] present statistics of some
hardware features such as the level of contention for the sca-
lar cores; Zhang and Owens [31] present a detailed break-
down of the memory instructions, showing the number of
cycles spent in global or shared memory instructions, along
with the number of bank conflicts for the shared memory;
finally, Baghsorkhi et al. [32] derive from the PDG a break-
down of the instructions into compute instructions and
memory accesses, pointing out the number of cycles spent
in stages such as synchronization or branch divergence, as
well as in the different memory stages.
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Regarding accuracy values, Lai and Seznec [30] report an
average error of 4.64 percent when predicting the number
of cycles used by the kernels chosen for the experiments.
Zhang and Owens [31] report a relative prediction error
within 5-15 percent. The model by Baghsorkhi et al. [32]
could be expected to be the least accurate one, because pro-
gram information is obtained from the source code instead
of from lower-level measurements. Authors do not report
numerical values, but their experiments show that the
model is quite accurate, highlighting the most time-consum-
ing stage in each execution.

3.2.3 Detection of Specific Bottlenecks

When a profiler or some of the previously discussed models
point to a particular issue hindering performance when a
kernel is running on a device, hints are required as to how
to overcome it. Several models have been proposed to char-
acterize specific bottlenecks and, thus, could be of use in
this context.

The work by Ramos and Hoefler [34] is focused on creat-
ing a performance model for the cache coherence protocols
used in many-cores, assessing the ways they impact com-
munication and synchronization. Authors show how their
analytical model helps in defining highly-optimized parallel
data exchanges. Using as target platform the Xeon Phi, their
methodology is tested against vendor-provided primitives
(OpenMP and MPI libraries by Intel), achieving up to 4.3x
faster communications.

Baghsorkhi et al. [35] present a memory hierarchy model
for GPUs through a framework that predicts the efficiency
of the memory subsystem. They predict the latency of main
memory accesses, and the hits and misses in the L1 and L2
caches. This memory model is based on the hardware mem-
ory hierarchy of the Tesla C2050 card, and validations with
this particular hardware provide good results: authors com-
pare the predictions of their model against the hardware
counters, obtaining average absolute errors of 3.4 percent
for L1 read hit ratios, 1.9 percent for L2 read hit ratios and
0.8 percent for L2 write hit ratios.

Cui et al. [36] present a performance model focused on
reducing the effects of control-flow divergence in GPU ker-
nels. They propose a framework that retrieves a representa-
tion of a kernel workflow, from which different groupings
and reorderings of threads are derived, choosing those min-
imizing divergence. Authors report speedups up to 3.19x
in their experiments in GPUs, but the method is tested with
kernels that do not have strong inter-thread dependences or
synchronization.

3.2.4 Selecting Code Optimizations

As stated before, manufacturers provide best practices man-
uals recommending different optimizations that can be
applied to accelerate the execution times of kernels. Some of
these optimizations can even be implemented automatically
by compilers. For example, in Chapter 10 of [37] Rahman
describes a methodology and some heuristics to find and
optimize parallel code in the Xeon Phi. He provides a taxon-
omy of potential optimizations, relates the metrics that indi-
cate the presence of bottlenecks and describes some good
practices to remove them. However, choosing the right

combination of optimizations is not trivial, because of possi-
ble negative interactions among them.

Sim et al. present in [38] two related contributions: an
elaborated analytical model for GPU architectures, and a
framework that suggests the most profitable combination of
optimizations for a CUDA kernel in terms of performance.
The model is an extension of MWP-CWP that takes into
account many hardware features of recent GPUs that were
not present in the original model. These improvements
include considering the effect of the cache hierarchy, the
presence of special function units (which, in NVIDIA GPUs,
implement transcendental functions) and a more detailed
effect of the instruction level/thread level parallelism of the
kernels. The performance projection framework is a tool
that points out the most promising optimizations for a given
kernel. Authors claim that their model closely estimates the
speedup of potential optimizations, although no numerical
values are given. For a particular kernel they tested 44 com-
binations of different optimizations. The best one runs three
times faster, compared to the baseline implementation.

3.3 Power Consumption Estimation

A trending topic in the HPC field is improving the power
efficiency of computers. To that extent, significant effort is
being devoted to modeling the power characteristics of sys-
tems. Application power modeling aims to estimate the
energy required to run a particular code on a particular
device. It has to consider not only code and device proper-
ties, but also program input and some other runtime charac-
teristics. In this section we review a collection of proposals
aiming to model power efficiency.

3.3.1 Standalone Models

Wang and Ranganathan [39] and Hong and Kim [40] pro-
pose analytical power models. Both require the execution of
a set of micro-benchmarks and external power consumption
meters to characterize the target devices (in both cases, NVI-
DIA GPUs). Both use PTX intermediate representation ([40]
processes it through Ocelot) to obtain information about the
target kernel. The models estimate the total power con-
sumed by the kernel execution, and are aimed to identify
the right number of multiprocessors and blocks that would
provide the best performance/power ratio. It is worth men-
tioning that the proposal by Hong and Kim is an extension
of their MWP-CWP performance model (discussed in para-
graph “Models using kernel codes” in Section 3.1.1), and
that model validations carried out by them report a geomet-
ric mean error of 8.94 percent between estimated and actual
power consumption.

In a similar fashion, the work by Shao and Brooks [41]
presents an energy model of the Xeon Phi based on infor-
mation gathered from performance counters and on
measurements by an external meter. Through micro-
benchmarking they characterize the energy consumed by
each instruction type (scalar, vector, prefetch) with oper-
ands in different locations (registers, L1 cache, global
memory, etc.), compiling an energy-per-instruction table.
The model is validated through a collection of bench-
marks, reporting 1-5 percent discrepancies between pre-
dicted and actual power use. This work was carried out



278 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.26, NO.1,

with a pre-release of the Xeon Phi. The current marketed
product implements power-related counters that can be
used to avoid instrumenting the accelerator to perform
power metering.

Other proposals gather performance and power meas-
urements and use this data to build machine learning mod-
els, see for example [42], [43], [44], [45]. Samples of
performance counters and energy measurements are taken
at a given frequency while the kernel runs on the device,
characterizing power use along time. This allows identify-
ing power and performance bottlenecks, as well as efficient
power/performance configurations. A main drawback of
these approaches is that performance counters are col-
lected per warp/GPU multiprocessor, and therefore the
models assume that the applications use all the computing
resources in a GPU. The most recent of these works [45]
uses the NVIDIA Fermi architecture, which implements
power-related hardware counters. This particular model is
based on artificial neural networks (ANNs) and reports
quite accurate estimations (2.1 percent error rate when pre-
dicting power consumption and 6.7 perecnt when predict-
ing execution time).

3.3.2 Models Tied to Simulators

System simulators, such as those that will be discussed in
the forthcoming section, can also be enhanced to provide
not only performance-related metrics, but also power-
related estimations. To that extent, a power model has to be
integrated in the simulator, to allow it to compute cycle-by-
cycle use of resources, together with the power implications
of that use.

We have identified two analytical models that work
with GPGPU-Sim (see Section 3.4): GPUWattch by Leng
et al. [46], and GPUSimPow by Lucas et al. [47]. Both are
adaptations to GPUs of the McPat power modeling
framework for multi-core architectures [48], but differ in
the way GPU architecture and power use is modeled. In
terms of accuracy, comparing model predictions with
power use in actual GPUs, both are similar (using the
data provided by the authors): for GPUWattch the error
is 9.9-13.4 percent, and for GPUSimPow it is 11.7-10.8
percent. An interesting feature of GPUWattch is a
module that can be used by GPGPU-Sim to simulate
power-related runtime optimizations, such as emulating
dynamic voltage and frequency scaling (DVFS). Authors
claim that using DVFS, GPU energy consumption could
be reduced up to 14.4 percent, with less than 3 percent
of performance loss.

3.4 Simulation

A simulator is a system representation (model) able to
mimic, step-by-step, the behavior of the target (real) system.
Simulators are widely used to carry out performance stud-
ies of existing hardware and software platforms, and also to
analyze platforms that either do not exist, or are not avail-
able. The accuracy of the output information provided by a
simulator depends on many factors, among them being the
level of detail with which the system has been modeled and
the quality and detail of the workloads provided to feed the
model.
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3.4.1 Simulators of GPU-Based Accelerators

Two popular simulators for GPU-based accelerators are
GPGPU-Sim [49], [50] and Barra [51], [52]. Both are func-
tional simulators of NVIDIA GPUs, capable of running
CUDA codes (GPGPU-Sim works also with OpenCL). A
collection of user-configurable parameters is required in
order to fine-tune the way the target device is modeled:
number and features of multiprocessors, interconnection
network and its topology, memory size and organization,
etc. As output, the simulators generate detailed step-by-
step information about performance counters, memory
accesses, resource utilization, etc.

Regarding simulation accuracy, authors state that
GPGPU-Sim v3.1.0 reaches an accuracy of 98.3 percent for
the instructions per cycle metric when simulating a NVIDIA
GT-200 card and 97.3 percent for a Fermi card. For Barra,
authors carry out some experiments comparing simulator-
predicted values with hardware counters and, in most
cases, discrepancies range between 0 and 23 percent. Only
for one benchmark and a particular counter (measuring
memory transactions), the discrepancy reaches 81.58
percent.

One of the weakest points of simulators is their execution
speed: depending on the level of simulation detail, slow-
down (comparison against execution on actual hardware)
can be severe. GPGPU-Sim provides two ways of working:
a fast functional way, which only executes the application
and generates its output, and a detailed way (5 to 10 times
slower), which collects performance statistics. However, the
latter is the really useful mode: the fast one should be used
only to verify that the code being analyzed runs in the
GPGPU-Sim environment. Barra has been designed as a
multi-core enabled program and, therefore, if its execution
is slow, it can be accelerated by adding more cores: reported
experiments show excellent scalability for up to four cores.

The flexibility of simulators, and the rich and detailed
information they provide, have made them a tool of choice
to feed other models. They can be used also as a comple-
ment to profilers, in order to drive performance optimiza-
tions (see for example [53], [54]).

3.4.2 Simulators of Hybrid Architectures

The simulators described in the previous section focus on
kernels running on an accelerator (GPU) device. Other sim-
ulators go a step further, modeling hybrid CPU+GPU archi-
tectures that run heterogeneous applications, either as
separate devices (CPU connected to GPU via PCle, with
separate RAMSs) or as a fused chip (GPU+CPU, sharing the
RAM). Three simulators in this class are MacSim [55],
FusionSim [56] and Multi2Sim [57]. In order to narrow
down the description, we will focus on the last one, which
is under active development and whose features increase
with each release. Currently, Multi2Sim supports simula-
tions of systems integrating x86, MIPS-32 and ARM CPUs;
AMD and NVIDIA GPUs; a memory hierarchy (per device
and/or shared) and an interconnection network. It is possi-
ble to run a detailed, architectural simulation that mimics
the use of hardware resources, but also a faster emulator
that just replicates the behavior of program instructions.
Tools are provided to pre-process the target applications in
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order to run them in the simulated environment, with sup-
port for CUDA and OpenCL. A visual tool is provided to
interactively follow (and pause/analyze/resume) a simula-
tion. When assessing Muti2S5im accuracy, authors report
errors between 7 and 30 percent estimating the execution
cycles of OpenCL kernels on an AMD GPU. The large dis-
crepancies are due to the lack of fidelity in the way the
memory subsystem is simulated.

4 CONCLUSIONS

The appearance of new computing devices and the design
of new algorithms in different fields of science and technol-
ogy is forcing a fast evolution of HPC. Designing and devel-
oping programs that use currently available computing
resources efficiently is not an easy task. As stated in [58],
present-day parallel applications differ from traditional
ones, as they have lower instruction-level parallelism, more
challenging branches for the branch-predictors and more
irregular data access patterns. Simultaneously, we are
observing a processor evolution towards heterogeneous
many-cores. The goal of these architectures is twofold: pro-
viding an unified address space that eliminates the need to
interchange data with an external accelerator using a system
interconnect and improving power efficiency reducing the
total transistor count.

Tools to help programmers in this parallel and heteroge-
neous environment (debuggers, profilers, etc.) are slowly
becoming available, but the programmer still needs to have
an in-depth knowledge of the devices in which applica-
tions will run if performance and efficiency have to be
taken into consideration. The performance models that
have been proposed in the last years, and that we have
tried to characterize in this review, aim to make the process
of choosing the right options (device, program settings,
optimizations, etc.) easier in order to efficiently run acceler-
ator-based programs. From all the tools analyzed in this
paper, a few of them stand out: MWP-CWP [15] as the
model of choice to predict execution times on GPUs; the
roofline model [24] to determine the factor limiting pro-
gram performance in parallel systems (including accelera-
tors); and the GPGPU-Sim simulator [49] of GPU-based
accelerators, that can be enhanced with a power model. All
currently available models have limitations, but they will
be the foundation on which better tools will be constructed.
In the following list we analyze some of these limitations,
and different ways to overcome them.

e There is no accurate model valid for a wide set of
architectures. Each model finds a different tradeoff
between being more device-specific and therefore
more accurate (e.g., [38]), or being more general pur-
pose at the cost of losing accuracy (e.g., [23]). Related
to this topic is the fast pace at which manufacturers
market new products, with new or improved fea-
tures, making models obsolete in a very short time.
Performance models should be flexible enough to
allow characterizing new devices.

e A majority of the models discussed in this review
have been designed for CUDA, the most mature
development environment for GPGPU. However the

vendor neutrality of OpenCL and its availability for
non-GPU accelerators is increasing its adoption by
HPC programmers. In the past, OpenCL tools pro-
duced less efficient codes than their CUDA counter-
parts, but this is no longer true with the most current
versions of OpenCL SDKs.

e Society is becoming aware of the great monetary and
environmental costs derived from the high energy
consumption of computing systems. The challenge is
not only to squeeze the maximum performance out
of a system, but also to do it with the minimum
power. As often these two requirements cannot be
optimized simultaneously, good tradeoffs have to be
found. The power models reviewed in this paper can
help to solve this bi-objective optimization problem.

e Reviewed models focus on outsourcing compute-
intensive tasks to accelerator devices. This usually
means leaving the CPU idle while the accelerator is
busily crunching numbers. It is possible, however, to
make both work simultaneously, significantly
increasing system efficiency. There are proposals
dealing with this workload distribution. Some of
them divide the data to be processed into several
chunks, obtaining performance measurements and,
based on them, adjusting the optimal number of
chunks to assign to each type of core [59]. Other
authors run several benchmarks in the different com-
pute resources using different balancing configura-
tions, and use machine learning techniques to train a
model to be able to predict the optimal chunk distri-
bution for new applications [60]. Energy can also be
included into the equation, making power-aware
load balancing across heterogeneous systems [61].

As a final remark, we would like to point out an impor-

tant difficulty we have found when crafting this survey: the
lack of sufficient detail in different parts of the reviewed
papers. For example, some authors neither indicate exactly
which program features are needed by their models, nor the
way used to obtain them. The methodologies used to test
the accuracy of the models often lack detail too: proper test-
ing methods require wide and representative data sets com-
bined with state-of-the-art accuracy estimation techniques
(such as cross-validation or bootstrapping) [62], taking care
of not using test data in any step of the model creation pro-
cess. Often, details about the exact accuracy estimation tech-
nique used with the models are missing;: if this estimation is
not performed in an sound way [63], models tend to over
fit, providing (unrealistic) high levels of accuracy for the
data used for training, but poor estimates for new, unseen
data. Finally, it would be beneficial for the community to
have access to models, tools and benchmarks, in order to
cross-check results, to validate the models against applica-
tions not used by the developers, to test the viability of
model variations, etc.
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APPENDIX A
ACCELERATORS AND HETEROGENEOUS ARCHI-
TECTURES

In this appendix we review the state-of-the-art devices
used for accelerator-based computing. We have sum-
marized in Figure 1 a time line of the main hardware
devices developed by different manufacturers. A dashed
line indicates the absence of a product family, while a
shortened line indicates the discontinuation of a prod-
uct. Brief descriptions of the devices mentioned in the
figure are given throughout the different sections of this
appendix.

AA1

GPUs are processors originally intended for the render-
ing of 2D and 3D images. Currently the main GPU man-
ufacturers developing HPC-class products are NVIDIA
and AMD (who bought ATI in 2006). Figure 1 shows
the evolution of their GPU product families. Both AMD
and NVIDIA provide desktop and server versions of
their cards. Desktop cards are marketed as graphic ac-
celerators that can also be used for GPGPU, running
punctual workloads at full performance. Server cards
are marketed as GPU-based accelerators, designed to run
intensive workloads in an uninterrupted way.

There are other players in the GPU field. Not included
in the figure is ARM [1], designer of a line of GPUs
called Mali, targeting the embedded and mobile market:
they are designed to accelerate graphics in low-power
portable devices. Its design is radically different from
those of AMD and NVIDIA, using a simpler memory
hierarchy and a smaller number of processing units. In
2012, ARM announced the second generation of the Mali
family, the T-600 series [2], which integrates support for
GPGPU.

In essence, a GPU is an autonomous compute system
composed of a set of processing cores and a memory

Graphics Processing Units

hierarchy. A global memory space is accessible to all the
cores, which can be exclusive (this is the common case
if the GPU is a discrete accelerator plugged into a PCI-
Express slot) or shared with other processing elements
in the system, including the CPU (which is the common
case when using a heterogeneous, multi-core chip). Dis-
crete NVIDIA and AMD server-class accelerators (Tesla
[3] and FireStream systems [4] respectively) include up
to 8 GB of global memory.

In terms of processing elements, GPUs are arranged as
a set of multiprocessors, each of them holding, among
other components, several computing cores, a set of
registers and some shared memory for inter-core com-
munication. Common additional components include
double-precision floating-point units, functional units for
transcendental operations, and a cache hierarchy. The
components and their interconnection vary depending
on the manufacturer and card model. We refer the in-
terested reader to [5], where authors make an in-depth
comparison between the architecture of NVIDIA and
AMD GPU families.

The strong point of GPUs is the way they handle
thousands of in-flight active threads, and make context
switching among them in a lightweight way. Running
threads may stall when trying to access global memory, a
relatively expensive operation. GPUs hide these latencies
by rapidly context-switching stalled threads (actually,
groups of threads) with active ones.

A.2 The Intel Xeon Phi coprocessor

Intel has recently developed a many-core architecture
called MIC (Many Integrated Core) that has become a
heavyweight player in the accelerator arena, as demon-
strated by the prominent positions held by Phi-based
supercomputers in the Top500 list [6].

A device with a preliminary version of the MIC ar-
chitecture was Larrabee, a PCle accelerator composed of
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32 x86 cores. It was announced in 2008 [7], and some
prototype cards were shipped in 2010. In 2012, Intel
commercially launched the Xeon Phi Coprocessor [8] (co-
denamed Knights Corner) as an actual implementation
of the MIC architecture, becoming an immediate success.

A Xeon Phi coprocessor of series 3100 houses 57 cores
running at 1.1 GHz (1003 GFLOP/s of peak double
precision performance), together with 6 GB of RAM,
and can be attached to a host computer through PCle.
Series 7100 devices have better specifications: 61 cores
at 1.238 GHz (1208 GFLOP/s) and 16 GB of RAM. The
x86 cores used in these devices are less powerful than
those in state-of-the-art Xeon processors, but they are still
more general-purpose than those used in GPUs. They
support 4-way Simultaneous Multithreading (SMT) and
integrate Single Instruction, Multiple Data (SIMD) units.
Interconnection among them and with the memory is via
a ring bus.

A.3 Other accelerators

Field Programmable Gate Arrays (FPGAs) are pro-
grammable integrated circuits designed to be configured
by the developer or user. Some of the most popular
FPGA manufacturers are Altera and Xilinx. The main
focus of FPGA manufacturers and developers is not
HPC; however, they can be used to offload computation-
ally intensive tasks after the hardware has been appro-
priately programmed, using tools based on languages
such as VHDL, with which most programmers are not
familiar [9]. The availability of new tools that automate
or simplify the transformation of code from high-level,
conventional programming languages (such as C) into
VHDL code has made the HPC community pay renewed
attention to FPGAs. Currently, both Altera and Xilinx
are offering development environments based on the
existing GPGPU frameworks, and (directly or through
partners) PCle-pluggable cards to be used as accelerators
[10].

Digital Signal Processors (DSPs) can also be used
as accelerators for general-purpose computing through
specific or standardized APIs. For example, the SnuCL
OpenCL framework [11] works with the C64x+ DSP by
Texas Instruments.

A.4 Hybrid chips

In recent years, manufacturers have marketed hybrid
chips combining different types of cores in the same die.
A prototypical example is AMD’s family of Accelerated
Processing Units (APUs) [12], which combine several
x86 cores with a GPU composed of several SIMD cores.
Similarly, Intel has its own family of processors with
integrated graphics [13]. The target market of these
hybrid processors is low cost, low power computers,
with the focus on mobility. A previous implementation
of this class of hybrid chips was the Cell Broadband
Engine [14].

GPUs integrated into hybrid chips are not very dif-
ferent from those used in discrete accelerators. They
may provide reduced performance (fewer cores), due
to cost and power limitations, thus being less attractive
for HPC. However, they have an important advantage
when compared to discrete accelerators: memory spaces
for GPU and CPU are not separated; in fact, memory is
shared. This drastically reduces the overheads associated
with CPU-GPU communication and synchronization,
because data movement through PCle (required with
discrete accelerators) is not necessary. Studies comparing
the performance of the AMD Fusion platform against
a discrete CPU+GPU system [15], [16] conclude that
APUs are more compute efficient than a discrete GPU for
applications involving massive data movements through
the system bus.

ARM designs target low power systems on chip, such
as those used in the mobile market. These chips are
often hybrid, integrating blocks with different character-
istics: combinations of low-power and high-performance
CPUs (the big.LITTLE technology described in [17]),
GPUs (we have already described the Mali family) and
other specific-purpose units. Due to the increasing per-
formance of ARM processors, while maintaining low
power requirements, many proposals are appearing to
use them in large-scale computing infrastructures, target-
ing greener cloud datacenters and supercomputers [18].



APPENDIX B
DEVELOPMENT TOOLS FOR ACCELERATORS

This appendix presents some APIs and tools to develop
applications for heterogeneous computing systems. It is
worth mentioning that a given API may be valid for
a variety of devices (providing code portability), but
this does not translate into performance portability: in
most cases, programs must be tweaked for maximum
performance on a target device, and the required repro-
gramming effort can be substantial.

B.1 CUDA

Compute Unified Device Architecture (CUDA) [19] is
a framework released by NVIDIA for the development
of general purpose applications on its GPUs. It in-
cludes a hardware (compute and memory) model, and
a programming environment. CUDA has been widely
adopted for the acceleration of massively data-parallel
applications, due to its maturity and good performance.
The interested reader can check [20] (on line) and [21]
(printed) for additional information and learning mate-
rials targeting CUDA.

Regarding the hardware model, a CUDA GPU com-
prises several Streaming Multiprocessors (SMs) consist-
ing of a collection of Streaming Processors (SPs), which
are the processing cores. Additionally, each GPU has a
dedicated, global memory space of several gigabytes.
The host system (typically, the CPU) can copy data
to/from this memory.

On the software side, each CUDA program is com-
posed of a host side code and a collection of device
kernels. The former runs on the host and manages data
copies from/to host memory to/from device memory,
and also the execution of the kernels on the GPU. The
host part defines the size and geometry of the collection
of threads that will run a kernel, and the organization
of these threads into groups called blocks. At run time,
each block will be assigned to a SM, where the kernel
will be executed in a SIMD way by the SPs. Internally,
each block is divided into sub-groups called warps, the
minimum scheduling unit of the GPU. Up to version 5
of CUDA, warps have a fixed size of 32 threads.

B.2 OpenCL

Open Computing Language (OpenCL) [22] is a frame-
work for the development of data/task parallel ap-
plications defined by the Khronos Group. It aims to
be the vendor-neutral, standard API for programming
accelerator devices. Like CUDA, it provides a hardware
model and a programming environment. For additional
information about OpenCL, the interested reader can
check [23].

An OpenCL platform is a collection of compute devices.
Each device comprises one or more compute units which,
in turn, contain processing elements. A host device is
in charge of managing the platform. A manufacturer

releasing an OpenCL-capable device must deliver a
companion OpenCL SDK, which makes the appropri-
ate mapping of the actual hardware onto the OpenCL
model.

An OpenCL application consists of some host-side
and some device-side code. The host-side code manages
the execution of the device-side code, and also the
data movements between devices, including the host.
OpenCL device applications are called kernels, and they
are executed within a compute device by a number
of developer-defined work-items (equivalent to CUDA
threads). These work-items are aggregated into work-
groups (equivalent to CUDA blocks), and its scheduling
inside each compute unit is manufacturer-dependent. It
is worth mentioning that although CUDA applications
are compiled off-line, OpenCL kernels are commonly
compiled at run time by a dynamic compiler included
in the OpenCL SDKs.

B.3 Developing for the Xeon Phi coprocessor

Compared to GPUs, the Xeon Phi is a relative newcomer
to the accelerator arena. However, it has inherited Intel’s
vast experience with multi-core processors, and the re-
sult is a rich and diverse collection of tools that makes
the learning curve of the developer less steep.

Phi developers can use OpenMP (with Fortran, C and
C++), Cilk Plus (an extension to C providing fine-grained
task support), Intel Threading Building Blocks (a C++
template library to work with threads) and OpenCL.
There is even an implementation of MPI that considers
the coprocessor as a small-scale cluster. Two execution
paradigms are provided: offload and native mode. In the
former, applications are executed in the host processor
and some compute-intensive portions are offloaded to
the accelerator. In the latter, applications are executed
completely in the device. See [24] for more details.

Compatibility with legacy codes and programming
paradigms is one of the keys of the commercial success
of the Xeon Phi. However, specific performance-oriented
fine-tuning for the Phi is a must in order to fully exploit
its capabilities [25].

B.4 Higher level tools

The frameworks described in the previous sections pro-
vide a low level of abstraction over the hardware. The
programmer has a high degree of control of what the
application does, so that he is finally responsible for
fine-tuning the code to make efficient use of the accel-
erator. This is a difficult task, which becomes harder
when we take into account the growing number of
possible accelerators and families within them. In or-
der to simplify programming, debugging and tuning
accelerator-based applications, a diversity of higher-level
tools and language constructions have appeared, which
try to hide hardware complexities and to offer program-
mers a higher-level view of accelerators. Some of these
approaches (whose descriptions fall outside the scope



of this paper) include the use of optimized libraries
(for example, cIMath [26]), programming with directives
(such as OpenACC [27] or version 4 of OpenMP [28]),
or relying on the parallelizing capabilities of the com-
piler (using, for example, the Par4All [29] open-source
compiler workbench).

APPENDIX C
DEVICE CHARACTERIZATION

This appendix carries out a brief review of the literature
about collecting those features that models can use to
characterize a hardware device. The first source of infor-
mation is the data sheets and detailed hardware manuals
that the manufacturers provide (see for example device-
specific details contained in [30], [31], [32]). Often, the
development environment include mechanisms (an API)
to query the device.

Relevant information about a device and the utiliza-
tion that an application makes of it can be gathered using
performance counters. Each device has its own collection
of counters, and the manufacturer provides APIs and
tools to obtain their values. For example, AMD offers
GPUPerfAPI [33] for its line of GPUs, and NVIDIA does
the same with CUPTI [34]. PAPI [35] is a common API
to check performance counters, with bindings for many
devices, including CUDA GPUs and the Intel Xeon Phi.
Through this interface, it is possible to obtain not only
resource-utilization, but also power-related data.

A complementary source of information is that ob-
tained through micro-benchmarks, programs designed
to stress a particular component of the hardware and
return performance metrics about it. This technique has
been used extensively for CPUs, and has been naturally
extended to accelerators. Next we shortlist some of the
works carried out in this field, grouped by device family.

« Wong et al. in [36] explore the behavior of branch se-
quences and memory hierarchies in NVIDIA GPUs.
They are able to unveil some useful and undocu-
mented features of the GT200 architecture.

Taylor and Li identify and measure in [37] the archi-
tectural factors that cause performance bottlenecks
in several AMD cards. Zhang et al. describe in [38]
the use of micro-benchmarks to conduct a statistical
analysis of performance and power consumption of
AMD GPUs.

In [39] and [40], Schmidl, Cramer et al. conduct
several micro-benchmark based experiments on the
Xeon Phi to measure latencies in the memory hi-
erarchy, and also to assess the costs of OpenMP
constructs.

APPENDIX D
APPLICATION CHARACTERIZATION
Techniques to characterize parallel applications have

been widely studied in the context of multi-core systems
[41], in clusters of supercomputers [42] and also in

the field of accelerator based computing [43]. In this
appendix we discuss some of the approaches to retrieve
and characterize kernels, pieces of code offloaded to an
accelerator.

One of the most intuitive ways to extract the features
of a kernel is the analysis of its code in order to identify
memory access patterns, arithmetic operations, branches,
etc. This can be done directly on the source code or
after some transformations. For example, in [44] authors
use Clang [45] (the front-end of the LLVM [46] compiler
infrastructure) to generate an Abstract Syntax Tree. Next,
this tree is traversed to count the desired features.

It is also common to parse an Intermediate Representa-
tion (IR) of the program, an assembly-like code represen-
tation produced by the compiler before the generation
of the binary files. Compared to source code, interme-
diate formats are simpler, easier to parse, and usually
provide additional information, such as the number of
registers per thread, size of buffers allocated in shared
and constants memory, and so on. A drawback of this
approach is that it relies on the potential optimizations
that the compiler might have performed, and that may
not exactly represent the original source code. In the case
of CUDA applications for GPUs, the intermediate repre-
sentation is in PTX, a virtual instruction set developed
by NVIDIA. Regarding OpenCL, as compilation is per-
formed at run-time, the IR of a kernel varies depending
on the target accelerator and SDK. As a consequence,
kernel metrics become device and compiler dependent.
To avoid this undesirable side-effect, in 2012 the Khronos
Group released the 1.0 version of the Standard Portable
Intermediate Representation (SPIR) [47], a proposal of a
common IR for all OpenCL frameworks, which is based
on the one defined for the LLVM compiler toolchain.

A lower-level approach to code analysis consists of
disassembling the final binary files. These are the files
loaded onto and executed by the devices, so they provide
maximum information about what the hardware will
do. The drawback of this approach is that it is device
or architecture specific, and that the obtained binary
code might not be trivial to parse. Examples of this
class of binary code analysis tools are decuda [48] and
cuobjdump [49]; both are disassemblers for the CUDA
binary format.

The Ocelot [50] modular compilation framework is
a popular tool used to analyze CUDA kernels. Ocelot
can transform a kernel from its PTX representation
to LLVM’s intermediate representation, and from this
to other instruction sets (for example, x86 and ARM).
Ocelot is also capable of emulating the execution of PTX
codes and includes several source analysis tools. All
together, it can be used to extract a variety of metrics
from a PTX code (static information) and its execution
(dynamic information).



APPENDIX E
BENCHMARK SUITES FOR ACCELERATORS

Benchmark suites of applications provide high-level
measurements of the performance of a system when
dealing with actual applications, and are considered an
adequate tool to compare systems beyond theoretical
FLOP/s. In fact, the Top500 list is elaborated using the
High Performance LINPACK (HPL) benchmark [51]. In
the context of performance modeling, benchmarks are
widely used to train and adjust models, and to assess
their accuracy. In this appendix we discuss some popular
benchmark suites for HPC-oriented, accelerator-based
computing. All of them contain implementations of com-
monly used algorithms, such as matrix operations, FFT
or N-bodies problems.

Many of the applications included in accelerator-
oriented benchmark suites have “accelerator-friendly”
characteristics, that allow making good use of the ca-
pabilities of the devices: they have high compute-to-
memory ratios, threads do not compete for access to
shared data, or access patterns are regular. However,
there are many real-world applications for which ben-
efiting from the horsepower of accelerator devices is
not trivial: applications that perform irregular memory
access patterns, have complex control flows or make
use of pointer-based structures such as graphs or lists.
Porting these applications to an accelerator usually re-
quires extensive algorithm rework, together with device-
specific optimizations to achieve a good performance. A
description of these classes of applications, represented
in the form of patterns of “dwarfs” can be found in [52].

This is a list of popular benchmark suites targeting
accelerators:

« The Rodinia application suite [53], [54], developed by
the U. of Virginia, collects a large and diverse num-
ber of applications that, currently, are representative
of dwarfs structured grid, graph traversal, unstructured
grid, dense linear algebra, dynamic programming and
N-body. However, this is a work in progress, with
plans to introduce spectral method, map reduce and
sorting. There is a multi-core (OpenMP) and a GPU-
accelerated (CUDA or OpenCL) implementation for
each application.

The Parboil Benchmarks [55], maintained by the U.
of Illinois, are a set of applications from different do-
mains (image processing, biomolecular simulation,
fluid dynamics and astronomy, among others). There
are regular but also irregular applications (sparse
matrix-dense vector multiplication is an example of
the latter). For each application, typical performance
bottlenecks derived from non-optimized implemen-
tations are identified. The suite provides a vari-
ety of multi-core (OpenMP) and accelerated (CU-
DA/OpenCL) implementations, including a simple,
readable (and non-optimized) version, together with
optimized versions.

e The Scalable HeterOgeneous Computing (SHOC)

benchmark suite [56] from ORNL is a collection
of benchmarks that aims to be diverse in the na-
ture of its applications. Authors provide CUDA and
OpenCL implementations of each benchmark, with
an additional feature: the applications can be scaled
to clusters using MPI. Initially tested on AMD and
NVIDIA GPUs, the suite also runs on the Xeon Phi.
LonestarGPU [57] is a collection of widely-used real-
world applications that exhibit irregular behavior,
maintained at the U. of Texas at Austin and the Texas
State University. It includes seven applications, all
written in CUDA.

The Mantevo Project [58] maintains a collection of
“miniapps” and “minidrivers” targeting a variety of
application domains (explicit and implicit unstruc-
tured partial differential equations, explicit and im-
plicit structured partial differential equations, molec-
ular dynamics, hydrodynamics and circuit simula-
tions) and hardware (including GPUs). Miniapps are
small, self-contained programs that embody essen-
tial performance characteristics of key applications,
while minidrivers are used to assess the performance
of libraries.

The NAS Parallel Benchmarks suite (NPB) [59] is a
classic suite used to test the performance of multi-
core computers and supercomputers. In 2011, Seoul
National University adapted several of the NPB
benchmarks to OpenCL and made them publicly
available [60].

Finally, test and demonstration programs included in
the SDKs provided by vendors of accelerators have
also been widely used for testing purposes.

APPENDIX F
SUMMARY OF PERFORMANCE MODELS

This appendix contains a collection of tables that summa-
rize the main features of the models analyzed in Section
3 of the main body of the paper:

o Table 1: summary of the models studied in Section
3.1 Execution time estimation

o Table 2: summary of the models studied in Section
3.2 Bottleneck highlighting and code optimizationn

o Table 3: summary of the models studied in Section
3.3 Power consumption estimation

o Table 4: summary of the simulators studied in Sec-
tion 3.4
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Abstract

Kernel density estimation (KDE) is a statistical technique used to estimate the probability density function of a sample
set with unknown density function. It is considered a fundamental data-smoothing problem for use with large datasets,
and is widely applied in areas such as climatology and biometry. Due to the large volumes of data that these problems
usually process, KDE is a computationally challenging problem. Current HPC platforms with built-in accelerators have an
enormous computing power, but they have to be programmed efficiently in order to take advantage of that power. We
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tested with different datasets, obtaining impressive levels of acceleration when taking as reference alternative, state-

of-the-art KDE implementations.
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I Introduction

Kernel density estimation (KDE) is a statistical tech-
nique used to estimate the probability density function
of a sample set with unknown density function. It was
first introduced in the 1960s for univariate data and,
due to its widespread adoption, multi-variate estima-
tors appeared in subsequent years. It is considered a
fundamental data-smoothing problem, and is widely
used due to its properties, in contrast with other com-
mon density estimation techniques, such as histograms
(Silverman, 1986; Ahamada and Flachaire, 2010).
KDE is a common tool in many research areas, used
for a variety of purposes. For example, in Andrés
Ferreyra et al. (2001) the authors use density estimates
to forecast weather and other factors as part of a model
for optimizing maize production. In the same field, it
has been applied to evaluate the signature of climate
change in the frequency of weather regimes (Corti et
al., 1999). In Weissbach (2006), the effectiveness of a
particular medical treatment is determined by means of
KDE. In computer vision (Elgammal et al., 2003), it is
applied for image segmentation and tracking. In the
field of evolutionary computation, density estimation
has been used to estimate a distribution of the problem

variables in estimation of distribution algorithms
(Bosman and Thierens, 2000; Luo and Qian, 2009). An
extensive list of application fields of KDE can be found
in Sheather (2004).

A common characteristic of the mentioned research
areas is the need to deal with large volumes of data, and
also the need to perform several KDE runs (varying
parameters) in order to select the best estimators. For
example, for some of the tests with real datasets carried
out in Section 5.2, execution times with state-of-the-art
implementations of KDE were longer than 30 hours.
Thus, some form of fast KDE computation is required
to solve in a short time these challenging problems. The
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way to go is the common one in high-performance com-
puting: parallel processing.

Current high-performance systems are becoming
hybrid: a combination of several multi-core CPUs and
one or more accelerator devices, which can be graphics
processing units (GPUs), or many-core coprocessors
such as Intel’s Xeon Phi (Jeffers and Reinders, 2013).
GPUs have a huge raw performance (several TFLOPs),
but require extensive fine-tuning in order to get close to
their peak power. They are usually programmed using
low-level APIs such as CUDA or OpenCL, but recently
annotation-based frameworks such as OpenACC
(OpenACC.org 2013) have eased the development of
accelerator-based parallel applications. The Xeon Phi,
although less powerful (in terms of peak TFLOPs:
around one), is easier to program: a diversity of para-
digms and tools is available for it, including those devel-
oped for state-of-the-art multi-core CPUs. In this paper,
we test our KDE code in an Intel Core i7 multi-core pro-
cessor, and in a many-core Intel Xeon Phi coprocessor.

This paper presents two main contributions. The first
one is an analysis of the KDE problem, resulting in a
novel algorithmic approach that offers important sav-
ings in terms of execution times, even when implemented
as a sequential program. However, given the intrinsic
data parallelism of KDE, a second contribution comes
naturally: a multi-threaded parallel implementation of
our proposal using OpenMP, suitable for both multi-
core and many-core processors. The use of OpenMP has
enabled us to develop a program that is not only porta-
ble, but also performance efficient in both platforms.
We have compared the execution times of our code with
those of two state-of-the-art implementations of KDE,
for different datasets, in order to show the excellent per-
formance achieved. Furthermore, we have analyzed our
program to study its scalability, and to identify possible
ways of further improving its efficiency.

The remainder of this paper is organized as follows.
We provide a description of the KDE problem in Section
2, and present a novel approach to compute it in Section
3. We describe the development environment and our
KDE implementation in Section 4. The experiments car-
ried out to assess its performance are detailed in Section
5. Finally, Section 6 draws some final conclusions and
describes our future lines of work on this topic.

2 Background on KDE

The probability distribution of a random variable X is
described through its probability density function
(PDF) f. This function f gives a natural description of
the distribution of X, and allows us to determine the
probabilities associated with X using the relationship

Pla<X<b) = be(x)dx (1)

a

Given several observed data points (samples) from a
random variable X, with unknown density function f,
density estimation is used to create an estimated density
function f from the observed data. There are two
approaches to density estimation, parametric and non-
parametric. The former assumes that the data is drawn
from a known parametric family of distributions, for
example a normal distribution. The latter does not
make this assumption. The main restriction of para-
metric methods is that they impose restrictions on the
shapes that f can have. KDE is a non-parametric
approach.

One of the most common techniques for density esti-
mation of a continuous variable is the histogram, which
is a representation of the frequencies of the data over
discrete intervals (bins). It is widely used due to its sim-
plicity, but it has several shortcomings, such as the lack
of continuity. The KDE technique relies on assigning a
kernel function K to each sample (observation in the
dataset), and then summing all the kernels to obtain
the estimate. In contrast to the histogram, KDE con-
structs a smooth probability density function, which
may reflect more accurately the real distribution of the
data. We now describe the KDE technique in more
detail.

Given a multi-variate sample set (x,x,...x,) where
x; is the /™ sample value from an unknown density £,
KDE builds an estimation the following way

70 = 13 Kt ) 0)

i=1

where:

® ndenotes the 1cardinglity of the sample set.
Ky(x) = |H| 2KH "x).

e K(x) refers to the kernel function used to define the
weight or influence of each sample.

e Hisad X ddimensional diagonal matrix contain-
ing the bandwidth or smoothing parameter value for
each dimension.

Intuitively, the kernel estimator is a sum of ‘bumps’
placed at the sample points. The kernel function K
determines the shape of the bumps, while the smooth-
ing factor /i determines their width. As an example of
KDE, Figure 1 depicts a simple estimator for a one-
dimensional (1D) space with three sample points. Each
of the sample points is surrounded by a kernel depicted
as a bell and the estimator is depicted as the thick line
over the kernels. Note that, even though a density esti-
mation is a continuous function, KDE programs gener-
ate as output the values of the estimation in the
discretized space requested by the user.

The bandwidth parameter / controls the influence
area and smoothness of kernels. It is used to reduce the
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Figure I. Example of KDE for ID data. Small dots represent
the samples, and the red lines are the kernels around them. The
estimated density is computed at the indicated points (square
dots) in a discretized grid with a step of 20.
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Figure 2. Effect of the smoothing parameter when estimating
data sampled from a normal distribution.

noise in the density estimation, and it must be carefully
selected. To describe its effect, in Figure 2 we depict a
simulated random sample from the Gaussian distribu-
tion in 1D, and different estimations of the density
derived from those samples. The solid curve depicts the
real density of the data, while the other lines depict
(kernel-based) density estimations using different val-
ues of i. The dashed line corresponds to a large 4, and
results in an over-smoothed estimator. In contrast, the
dotted line corresponds to a small z and results in an
exceedingly sharp estimator. None of the cases reflect
accurately the actual density of the samples. Several
techniques to aid in the selection of the optimum band-
width are detailed elsewhere (Silverman, 1986; Scott,
2009).

A kernel function K is a symmetric but not necessa-
rily positive function that integrates to one. Kernels can
be classified into two groups: bounded and unbounded,

1.2
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Figure 3. Shape of a Epanechnikov kernel in ID.
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Figure 4. Shape of a Gaussian kernel in ID.

depending on their area of influence. Two widely used
kernel functions are Epanechnikov (which is bounded)
and Gaussian (which is unbounded). They are defined
in equations (3) and (4) respectively. In equation (3), ¢,
is the volume of the unit d-dimensional sphere:
¢ = 2,c0 = m,c3 = 4m/3,.... For the sake of clarity,
we have depicted in Figures 3 and 4 the Epanechnikov
and Gaussian kernels for 1D spaces. Note how
bounded kernels only affect those points in the space at
a limited distance (1 in the figure), while the influence
area of unbounded kernels spans infinitely in both
directions.

K@) = { Pejld+ (1 —xx) ifaTx<l ()
0 otherwise
K(x) = #ex Ly
p{—5xx (4)
@m)’

The choice of the particular kernel to apply is up to
the KDE user, taking into account the problem at
hand. According to Silverman (1986), asymptotically,
there are no differences between the different kernels at
hand. Moreover, he states that it is desirable to base
the choice of the kernel on other considerations, such
as the degree of differentiability required or the compu-
tational effort involved. In particular, he describes
how, when the right value of / is chosen, almost all the
popular kernels produce a relatively small mean inte-
grated square error in the estimation.
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Figure 5. Example of an original and its corresponding
whitened radial symmetric kernel in 2D.

When dealing with multi-variate scenarios, consider-
ing all dimensions as if they were on the same scale
could lead to poor estimates, particularly when the data
has very different variability in each dimension (Givens
and Hoeting, 2005). To tackle this issue, Fukunaga
(1990) suggested: (1) transforming the data to have a
unit covariance matrix; (2) smoothing it using a radially
symmetric kernel; and (3) transforming it back. The idea
is to adapt the shape of the kernel to the distribution of
the data, as depicted in Figure 5 for a two-dimensional
(2D) space, where the dashed circle represents the origi-
nal kernel and the ellipse is the transformed one. The
distribution of the data is represented by the sample
covariance matrix 2, which contains the variances and
covariances between the d sample vectors of the dataset.
If the original 3 matrix is unknown, an estimated 3
must be created. Then, following Fukunaga (1990),
equation (2) is adapted this way

|i|71/2 g K(h_z(x—x-)Tifl(x—x-)) (5)
nh® =

f(x) =

This transformation is called whitening the data and
the effect is that the obtained estimator is more accu-
rate, as the kernel is adapted to the distribution of the
data. This approach also allows us to use a single, sca-
lar /2 value for all the dimensions.

3 An efficient algorithm to compute
kernel density estimation

KDE generates an estimation of the probability density
function of a sample set. This estimation is computed in
a user-defined evaluation space (or evaluation grid) that
should include all the observation points in the sample
set. In the example of Figure 1, the evaluation space
spans from —20 to 80, covering the three samples plus
some ‘extra’ space at the boundaries.

Algorithm | Evaluation-point-wise KDE (EP-KDE)

for each Evaluation Point e do
value(e) = 0
for each Sample sdo
dist = computeDistance(e, s)
value(e) + = computeDensity(dist)
end for
end for

KDE implementations discretize this space, comput-
ing the density in equally separated grid points. This
way, the evaluation space can be represented as a
multi-dimensional matrix. The separation between grid
points is defined by a user-provided evaluation step or
grid step, that can be different in each dimension. In
Figure 1, the density of the space will be computed for
six evaluation points (—20, 0, 20, 40, 60 and 80), which
are equally separated at distance 20.

The accuracy of the estimation generated by a KDE
program, thus, depends on several parameters that
must be provided by the user:

The choice of kernel function.
The bandwidth parameter.
The evaluation space, determined by a vector of
bounds.
e The grid step vector.

Most programs offer default values for these para-
meters, or heuristics to compute them. In the following
sections we assume that these parameters are known,
that the input of the KDE program is a dataset con-
taining the samples, and that the output is a multi-
dimensional matrix with the density estimation at all
the evaluation points within the discretized evaluation
space defined by the user.

3.1 Methods to compute KDE

KDE is commonly computed as described in Algorithm
1. For each evaluation point, the combined density that
all the samples generate on it is computed, which
depends on the kernel of choice. This computation
requires measuring the distance between the evaluation
point and each sample. The combined density at the
evaluation point is the sum of all the partial densities.
We call this approach evaluation-point-wise KDE or
EP-KDE for short.

The computational complexity of EP-KDE is
O(k mn), where k, is a constant related to the dimen-
sionality of the dataset, m is the number of evaluation
points, and n the number of samples. Note that m is
proportional to the size of the evaluation space and the
grid step. For large, multi-dimensional spaces or/and
tight grid steps, m can be huge.

Downloaded from hpc.sagepub.com by guest on March 25, 2015



Lopez-Novoa et al.

Algorithm 2 Sample-wise KDE (S-KDE)

for each Evaluation Point e do
value(e) = 0
end for
b = computeBoundingBox
for each Sample sdo
bs = adjustBoundingBox(b, s)
for each Evaluation Point e in b, do
dist = computeDistance(e, s)
value(e) += computeDensity(dist)
end for
end for

EP-KDE is directly parallelizable in a data-parallel
fashion: the computations affecting a given evaluation
point are independent of those affecting other points. If
a thread is in charge of computing the density in an eva-
luation point, all the threads can progress concurrently
without any sort of memory-write contention.

The EP-KDE approach is valid for both unbounded
(e.g. Gaussian) and bounded (e.g. Epanechnikov) ker-
nels. In the first case, all the samples affect all the eva-
luation points. In contrast, with bounded kernels,
samples only contribute to the density in those evalua-
tion points within their influence area. Therefore, using
EP-KDE, in most cases the computeDistance function
of Algorithm 1 will return a value outside the bounds
of the kernel and, therefore, function computeDensity
will return 0.

As EP-KDE with bounded kernels can lead to a
huge number of worthless computations (that would
depend on the size of the evaluation space and on the
dispersion of the samples), we have developed a more
efficient algorithm for this group of bounded kernels.
It is described in Algorithm 2, and we call it sample-
wise KDE or S-KDE for short. Instead of focusing one-
by-one on each evaluation point and on the influence
of all samples over it, S-KDE focuses one-by-one on
each sample, computing its influence on the evaluation
points surrounding it. As the kernel is bounded, the
area of influence is confined within a bounding box,
which is computed in advance. This bounding box is a
hyperrectangle whose dimensions are determined by
the maximum per-dimension distances of influence of
the kernel. Note that this is kernel-dependent, but not
sample-dependent. Thus, the size and shape of the
bounding box b is computed just once. Then, for each
sample the bounding box must be aligned to the eva-
luation grid, defining the per-sample bounding box b.

With S-KDE, computations of distance and summa-
tions of influences are greatly reduced: for each sample,
most evaluation points fall outside the influence area of
the kernel, and are not considered in subsequent com-
putations. The complexity of S-KDE is O(knp), where
ks is a constant related to the dimensionality of the

dataset, n is the number of samples and p is the size of
the bounding box, which is expected to be much smaller
than the total number of evaluation points m.

S-KDE is also naturally data-parallel, using a per-
sample approach. However, two concurrent threads
computing the partial densities of two different samples
with overlapping influence areas can incur memory-
write contention. Therefore, a mechanism to coordi-
nate memory accesses must be put in place.

3.2 Computing the bounding box

An efficient implementation of S-KDE requires the
computation of the bounding boxes, which surround
the area of influence of each sample. In this section we
describe how b can be computed, assuming that data is
transformed using the Fukunaga approach described in
Section 2. Our proposal is based on a method described
in Fukunaga (1990). The area of influence of a sample
using the (transformed) kernel has an elliptic shape in
2D spaces as depicted in Figure 5, and a d-dimensional
ellipsoid shape for spaces of higher dimensions. The
challenge is to find a box bounding the ellipsoid, and to
align it to the discretized grid that defines the evaluation
space. In Figure 6 we depict an example: a sample s in
position (6.75, 4.5), its area of influence (the ellipse),
and the bounding, aligned rectangle (dashed line).

The starting point of the calculation is the covariance
matrix of the sample set. It contains the information to
determine the shape and size of the ellipsoid. In addi-
tion, the smoothing parameter 5, which modifies the
size of the kernel, must be taken into account. We first
compute 3 = 3A%, where 3 is the modified covar-
iance matrix with the applied bandwidth value. Then,
the semi-axes of the ellipsoid are computed as the eigen-
values of 3, and its orientations as the eigenvectors of
that matrix. After this, the next step is to compute

0 = VAl (6)

where ® is a diagonal matrix containing the square-
root values of the A eigenvalues vector. [ represents the
identity matrix. The square root of each eigenvalue
gives the length of each semi-axis from the center of the
ellipsoid, but aligned to the coordinates axis. Thus, the
matrix @ of eigenvalues must be multiplied by the &
eigenvectors matrix to transform the axes of the ellip-
soid (to ‘rotate’ them)

Y = $O (7)

The result is a matrix ¥ = [y[y] ... p]] where each
»! column contains the coordinates of the semi-axes of
the ellipsoid.

From this, a vector of distance b is obtained which
determines, per direction, the absolute value of the
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Figure 6. Area of influence of a sample and the corresponding bounding box.

maximum distance at which evaluation points are influ-
enced by the kernel

bi = ||yl (®)

where ||-|| is the Euclidean norm operator. In other
words, each element of vector b defines half the length
of each edge of the hyperrectangle surrounding the ker-
nel. Once b is known (note that this computation is
done just once), the actual, aligned per-sample bound-
ing box b, can be computed, adding and subtracting b
from/to the absolute coordinates of the sample, and
rounding up the resulting values.

3.3 From d -dimensional bounding boxes to two-
dimensional bounding rectangles

Using the process described in the previous section, we
fit a d-dimensional hyperrectangle-shaped box around
the ellipsoid-shaped influence area of a sample, as
determined by the kernel function. The evaluation
points influenced by the sample are only those within
the ellipsoid, which means that the box contains eva-
luation points not belonging to the influence area of
the sample. In fact, depending on the shape and angle
of the ellipsoid, the evaluation points outside the ellip-
soid could be more numerous than those inside it.
Motivated by this fact, we define a way to make a
tighter delimitation of bounding boxes. The first idea is
to reduce the dimensionality of the problem, splitting
(chopping) the original d-dimensional box into several
non-overlapping (d—1)-dimensional boxes. Each of

them is again chopped into (d—2)-dimensional boxes,
repeating the process until a collection of 2D rectangles
(slices) is obtained. Then, each rectangle is cropped,
reducing it to a smaller one to minimize the number of
evaluation points not influenced by the sample. This
two-step procedure is represented in Figures 7 and 8.

The number of slices per bounding box will be deter-
mined by the size of the evaluation space and the grid
step. Without loss of generality, we will use a 3D space
as an example. The chopping is performed along the
third dimension of the space, which corresponds to the
z-axis in the Cartesian coordinate space. For example,
if a bounding box is located between coordinates 8 and
12 of the z-axis, and the step in the z-axis is 0.5, there
would be 9 slices. Once 2D slices are obtained, the
cropping is performed to reduce the 2D bounding box
to make it surround the ellipse tightly. This process
involves several steps that are described below and in
Figure 9. A detailed description of this technique is car-
ried out in the Appendix.

e (Calculate the rotation angle of the ellipse in the
slice.

e (Calculate the length of the principal axes of the
ellipse.

e Using the rotation and the length of the principal
axes, calculate the coordinates of the edge vertices
of the ellipse.

e Using the coordinates of the edge vertices, calculate
the boundaries of the ellipse. Then, align the bound-
aries to the evaluation grid and calculate coordi-
nates for the minimal bounding box.
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Figure 7. Chopping a 3D bounding box into 2D slices.
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Figure 8. Cropping a 2D slice to obtain a minimum-size
bounding rectangle.

4 Parallel implementation of S-KDE

The S-KDE algorithm described in Section 3 has a
much lower computational complexity than the com-
monly used EP-KDE algorithm. However, it can be
computationally challenging when dealing with large
datasets and/or large, dense evaluation spaces. Thus,

we have implemented it from the beginning as a data-
parallel program, targeting multi-core and many-core
processors.

4.1 Target hardware

The current landscape of HPC systems presents a wide
variety of compute devices for the execution of mas-
sively parallel codes, from multi-core processors to
accelerators with hundreds of processing units, such as
GPUs. For our work we have chosen multi-core pro-
cessors, due to their widespread presence, and many-
core coprocessors, due to their growing popularity in
the HPC community and their architectural similarity
with multi-core processors (which simplifies code
portability).

In particular, we have used an Intel Sandy Bridge-E
multi-core processor and an Intel Xeon Phi coprocessor
in the tests reported in this work. Both share the Intel
64-bit x86 architecture and Intel development tools
(compiler suites, VTune Amplifier, ...), but have strong
architectural differences: e.g. Sandy Bridge-E proces-
sors hold at most 8 physical cores with 256-bit-wide
vector units supporting SSE and AVX instruction sets.
Xeon Phi coprocessors hold up to 61 computing cores
with 512-bit-wide vector units and a different vector
instruction set, AVX-512. Furthermore, Sandy Bridge-
E processors have out-of-order execution capable cores
and hold up to 20 MB of shared L3 cache, while Xeon
Phi coprocessors are designed for in-order execution,
and share up to 30 MB of L2 cache among all their
cores. More detailed descriptions of the hardware archi-
tecture of these devices can be found in Jeffers and
Reinders (2013), and a discussion about the program-
ming difficulties of these devices in Lopez-Novoa et al.
(20195).

4.2 Implementation details

We have developed our code in ANSI-C, and paralleli-
zation is achieved by making use of OpenMP and Intel
compiler directives. In particular, we use OpenMP
directives to define how tasks are mapped to threads,
and the #pragma simd directive to vectorize parts of the
code. In addition, we use the Meschach math library
(Leyk and Stewart, 1994) for some matrix operations,
such as the computation of eigenvalues and eigenvec-
tors. All computations are performed in double
precision.

The workflow of our S-KDE code is depicted in
Figure 10. Each thread is in charge of computing the
influence of a set of samples over the evaluation space.
For each sample, the thread first adjusts its bounding
box (as defined in Section 3.2). If the evaluation space
is of dimensionality three or higher, the chop-and-crop
procedure described in Section 3.3 is recursively applied
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1. Find the rotation angle o
the principal axes

2. Find the length of 3. Find the coordinates 4. Adjust the bounding box

of the edge vertices using edge coordinates

Figure 9. Steps to perform the cropping of a 2D bounding box.

Load sample set and
compute bounding box

Distribute sample
computation to threads

SAMPLE 0

Fit bounding
box to sample

Chop bounding box
into 2D slices
(if required)

Crop slice (if required) :
and compute its density  -rOrr-+- » : @

Add computed density
to evaluation space

SAMPLE 1 SAMPLE N

Figure 10. Workflow of our S-KDE implementation.

to reduce the computation to 2D slices. Then, for each
2D bounding rectangle the density that the sample cre-
ates in each evaluation point is computed.

One of the drawbacks of performing sample-wise
computations is the memory contention that may
appear when two or more different threads, managing
samples whose influence area overlap, have to add par-
tial density values into the memory positions that repre-
sent the same evaluation point. To reduce this harmful

effect, each thread calculates every row of the slice in its
private memory, and adds it into main memory using
the atomic OpenMP pragma. This way, we ensure data
write consistency. There is a cost to pay, though: atomic
operations causes overheads due to the serialization of
memory write operations. We analyze this overhead in
detail in Section 5.

Regarding the Xeon Phi, one of our target plat-
forms, it is worth mentioning that this device has two
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working modes: offload and native. In the former, all
the code runs on a host processor and just some parts
are offloaded to the coprocessor. In the latter, the
whole code runs in the Xeon Phi, which behaves as a
separate computer. In our tests we have used the native
mode, which requires cross-compilation, in the host
computer, of the code and the companion libraries.

4.3 Other KDE implementations

We have found an extensive body of literature on KDE
implementations, both general and those targeting spe-
cific computing platforms. We review this literature
and describe it classified according to the algorithmic
approach used to compute the KDE, with a focus on
parallel implementations.

4.3.1 Evaluation-point-wise implementations. Initial parallel
KDE implementations were based on MPI, distributing
the workload among several computing nodes of a
multi-computer. One of these implementations was pre-
sented by Racine (2002). A more complete version was
introduced by tfukasik (2007), introducing approaches
for load balancing and parallel techniques to compute
some of the KDE parameters.

More recent GPU-based implementations of KDE
are also available. We have identified two CUDA
implementations of KDE, one by Srinivasan et al.
(2010) and another by Michailidis and Margaritis
(2013). As the code of the latter was not publicly avail-
able, we will focus on the former, called GPUML. It
offers an interface for C/C++ and Matlab that pro-
vides CUDA implementations of several weighted ker-
nel summation and matrix construction algorithms. It
provides support for several kernel functions (including
Gaussian and Epanechnikov). To speed-up the compu-
tations, the program implements data-reuse mechan-
isms on the shared memory of the GPU. In Section 5
we will compare the execution times of S-KDE and
GPUML using in both cases Epanechnikov kernels.

We also tried to compare our code with some KDE
implementations for the widely used Python environ-
ment, but they were not capable of running our experi-
mental tests. The function Gaussian_KDE from SciPy
(Millman and Aivazis, 2011) package seemed the most
popular choice among Python practitioners, but it was
not capable of loading our sample datasets, raising
memory overflow errors. Function KD Emulti-variate
from StatsModel (Seabold and Perktold, 2010) success-
fully loaded our datasets, but its performance was
exceedingly poor. We linked our Python environment
with the highly optimized Math Kernel Library'
(MKL) by Intel. MKL provides vectorized and multi-
threaded versions of math routines, such as those in
BLAS or LAPACK. Unfortunately, StatsModel
seemed to take no benefit from these optimized math

functions, and worked in a single-core fashion. In addi-
tion, due to its EP-KDE approach, its computational
complexity is much higher than that of our S-KDE
code. Thus, our experiments with KD Emultivariate
were unfeasible in computation time, and we left them
out of this work.

4.3.2 Sample-wise implementations. Within the popular R
software environment, package ks (Duong, 2007)
includes a kde function whose implementation holds
similarities with our S-KDE: it performs computations
in a sample-wise fashion, but using a Gaussian kernel.
A kind-of bounding box around the Gaussian kernel is
defined, using a parameter to limit its influence area.
The default value for the threshold preserves at least
99% of the Gaussian kernel influence.

This approach makes it feasible to apply the S-KDE
approach but, at the expense of losing precision in the
influence area of the kernel. Our choice was to use the
Epanechnikov kernel to make the computations,
avoiding a potential loss of precision. In addition, our
chop-and-crop technique allows us to work with large,
multi-dimensional datasets, whose processing would be
unfeasible otherwise.

As an additional feature, kde in ks includes a mode
to compute the density estimation in a list of points pro-
vided by the user instead of a complete evaluation grid.
This mode allows the user to perform KDE in spaces of
dimensionality greater than three without excessive exe-
cution times, if the list not too long.

As we did with Python, we linked the R environ-
ment with Intel MKL. In this set-up, we verified that
ks-kde effectively took advantage of multi-core CPUs
for matrix operations. We include in Section 5 a com-
parison of S-KDE against R’s ks-kde. Regarding the
kernel influence threshold, we have used the default
value.

5 Evaluation of S-KDE

In this section, we describe the experiments we under-
took to analyze the performance of our S-KDE imple-
mentation under different configurations, comparing
the execution times with those of an evaluation-
point-wise version of KDE (EP-KDE), R’s ks-kde and
GPUML. We also identify possible ways of improving
S-KDE performance even further.

5.1 Testing environment

As detailed in Section 4.1, we tested our S-KDE code
in two different hardware platforms, a multi-core pro-
cessor and a many-core coprocessor. In particular, we
used an Intel Core 17 3820 CPU and an Intel Xeon Phi
3120A coprocessor. We also used an NVIDIA GTX
650 GPU for some comparison tests involving
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Table |I. Hardware features of the processors used to run KDE. Note that the RAM in the i7 is the one installed in the computer
powered by that processor, while the other reported values are those of the accelerator built-in memory.

Core i7 3820 Xeon Phi 3120A GTX 650
Architecture Sandy Bridge-E MIC Kepler
Number of cores 4 57 384
Number of threads 8 228 384
Clock speed 3.6 GHz I.I GHz 1.05 GHz
Vector width 256 bit 512 bit 1024 bit
Main memory 8 GB DDR3 6 GB GDDR5 | GB GDDR5

GPUML. The main features of these processors are
summarized in Table 1.

As explained before, the complexity (or problem
size, which determines the execution time) of S-KDE
depends on two factors: the number of samples in the
dataset and the number of evaluation points in each
per-sample bounding box. The latter depends on three
parameters: the dimensionality of the problem, the dis-
tance between the evaluation points (or per-dimension
evaluation step) and the bandwidth.

In this work, we have performed several tests of
KDE codes varying the size of the evaluation space for
four different datasets (two 2D and two 3D). We have
fixed the boundaries of the evaluation space, but the
per-dimension evaluation step has been modified in
order to increase or reduce the problem size.

For 2D tests we have used datasets from an actual,
real-word problem: DNA sequencing. The datasets
were generated by lonTorrent sequencing machines
(Rothberg et al., 2011), which monitor millions of
simultaneous sequencing reactions, and additionally
produce reports with the collected information. The
IonTorrent community makes publicly available some
sample datasets corresponding to their AmpliSeq
Cancer sequencing machines, along with their corre-
sponding sample reports. In particular, a part of the
generated reports is the density map of the chip, and in
the tests reported in this paper we have reproduced that
computation. More information about the Ion chips
and the available datasets can be found at http://ion-
community.lifetechnologies.com. We used the datasets
reported for the Ion 316 and Ion 318 chips, which con-
tain 3,473,932 and 5,885,326 samples each. The sizes of
the evaluation spaces used in the tests (not in terms of
actual, physical sizes but in terms of the number of
points on which the density is estimated) are listed in
Tables 2 and 3. Note that more points means tighter
grids.

For the 3D tests we created two synthetic datasets
using the mvrnorm function from M ASS library within
the R framework (Venables and Ripley, 2002). These
datasets have 500,000 and 1,000,000 samples each. As
we did with the 2D tests, we fixed the boundaries but
modified the steps in order to compute problems of

Table 2. Size of the evaluation spaces (number of grid points)
used with the lon 316 chip dataset.

Dim X DimY Total

560 540 302,400
560 1350 756,000
1400 1350 1,890,000
1400 2700 3,780,000
2800 2700 7,560,000

Table 3. Size of the evaluation spaces (number of grid points)
used with the lon 318 chip dataset.

Dim X Dim Y Total

760 680 516,800
760 1700 1,292,000
1900 1700 3,230,000
1900 3400 6,460,000
3800 3400 12,920,000

Table 4. Size of the evaluation spaces (number of grid points)
used with the 3D datasets.

Dim X Dim Y Dim Z Total

110 220 322 7,792,400
110 440 322 15,584,800
220 440 322 31,169,600
220 440 805 77,924,000
220 1100 805 194,810,000

different sizes, working with lighter or denser evalua-
tion spaces. The actual numbers of evaluation points
per dimension for each test are listed in Table 4.

In all these tests, the bandwidth value is a relevant
parameter to be taken into account. It modifies the
shape and spread of the kernel, that is its influence area,
which impacts on the number of computations to be
performed per sample. In this work we use a heuristic
detailed in Silverman (1986) to compute an appropriate
bandwidth for a given dataset:
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h=AK)n~1/@+9 (9)

where n is the number of observed samples and d the
number of dimensions. 4(K) is a constant calculated as

AK) = {8¢;'(d + @y}
where ¢, is the volume of the unit d-dimensional sphere
(e.g. 7 for 2D or 47/3 for 3D).

Regarding compilation details, S-KDE was com-
piled for both the Core i7 CPU and the Xeon Phi
coprocessor using the Intel C Compiler version 14.0.1
with — O2 optimization. The cross-compilation for the
Xeon Phi required the — mmic flag.

(10)

5.2 Measuring the performance of S-KDE

In this section we report the results of some tests carried
out to evaluate the performance of our S-KDE parallel
implementation. In order to provide a meaningful com-
parison, we developed a parallel implementation of an
evaluation-point-wise approach (EP-KDE onwards),
also using OpenMP. We will compare S-KDE with R’s
ks-kde (supported by MKL) and GPUML too. Our
purpose is to confirm that our approach represents a
significant improvement over state-of-the-art KDE
implementations. Results confirm this fact: our code is,
by far, the fastest one.

As we are testing different programs, that compute
KDE using different approaches and with different ker-
nel functions, we need to set a ‘fair’ comparison basis.
We have tried to run the programs in such a way that
they produce the same or very similar results. To mea-
sure this similarity we have used the score function
described by Perkins et al. (2007), which returns the
similitude value between two different density functions.
Note that two different algorithm—kernel combinations
may require different values of bandwidth in order to
generate the same density estimation.

Our comparison procedure is as follows. We first
compute the density estimation (DE) for a given data-
set and evaluation space with our code, using the band-
width value provided by the heuristic described above
(Section 5.1), and measure the execution time. Then we
run a competitor program (for example, GPUML) with
the same dataset and evaluation space, but varying the
bandwidth value until the resulting DE reaches a simili-
tude score over 98%. The execution time of the run
passing this similitude threshold is the one assigned to
the competitor program. In the actual tests, the band-
width values used with ks-kde resulted in a 98.2% simi-
litude on average; for GPUML, similitude was 99.1%
on average.

In the test, S-KDE and EP-KDE were executed in a
multi-core 17 processor and in a Xeon Phi coprocessor.
The ks-kde was executed in the multi-core processor
(taking advantage of the parallel processing capabilities

of MKL), and GPUML in a GTX 650 GPU. Each
program—platform combination was used with the four
datasets, varying the problem size (using different steps
in the evaluation space). All the measured execution
times are summarized in Figures 11(a) and 11(b) for the
2D IonTorrent datasets, and in Figures 11(c) and 11(d)
for the 3D synthetic datasets. Note that GPUML data
for the 3D experiments with large evaluation spaces are
not reported because they could not be executed, due to
limitations in the memory size of our GTX 650 GPU.

The first conclusion is that, in all the tested cases, S-
KDE is significantly faster than the competitors. We
show in Table 5 the speed-up of S-KDE running in
both the Core 17 and the Xeon Phi compared to ks-kde,
GPUML and EP-KDE.

The long execution times of ks-kde can be easily
explained considering that: (1) R is an interpreted envi-
ronment and, therefore, R programs have higher run-
time overheads than compiled programs; (2) the
bounding boxes used in ks-kde to prune Gaussian ker-
nels are larger than those defined by Epanechnikov
kernels and, thus, require higher computational effort;
and (3) ks-kde does not implement the chop-and-crop
technique to reduce computations in problems of
dimensionality three and higher. The performance
improvement derived from this feature of S-KDE will
be analyzed in detail later, in Section 5.3.

Regarding GPUML and EP-KDE, the large execu-
tion times are a consequence of the evaluation-point-
wise algorithm implemented: the whole evaluation
space is swept, point-by-point. For each evaluation
point, the influence that each and every sample has on
it is computed—even when, in many cases, this influ-
ence is zero because the used kernel is bounded and the
point falls outside the influence area of the sample. In
addition, GPUML implementation suffers from over-
heads derived from the use of a GPU-based discrete
accelerator, the cost of transferring input data and
results from/to main memory to/from GPU memory
(through a PClIe connection) being the main one. It is
also worth mentioning that the size of the GPU mem-
ory imposes limits on the size of the problems: note
that our GPU has only 1 GB of memory to store the d-
dimensional matrix representing the evaluation space
plus other data structures, while the i7 has 8 GB and
the Xeon Phi has 6 GB.

5.3 Assessing the benefits of parallel computing and
the chop-and-crop technique

The analysis in the previous section presents a high-
level, black box evaluation of the performance of S-
KDE. In this section we explore further into the code,
in order to better understand where the performance
gains are coming from. There are three basic elements
contributing to a fast KDE program: (1) the sample-
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Figure 1 1. Execution times of the KDE implementations under test, for different datasets.

Table 5. Average speed-up of S-KDE (in i7 and Xeon Phi) compared to state-of-the-art KDE implementations.

2D S-KDE (i7) 2D S-KDE (Phi) 3D S-KDE (i7) 3D S-KDE (Phi)
EP-KDE (i7) 764 138.5 1759.1 1797.9
EP-KDE (Phi) 62.9 114.0 1241.9 1257.5
GPUML 66.9 121.4 1628.3 1397.1
ks-kde 85.8 145.5 4435 4638

wise density estimation approach; (2) the chop-
and-crop technique; and (3) the use of parallel proces-
sors. When needed, we compare our code with ks-kde
which also uses bounding boxes and, through MKL,
can take advantage of parallel hardware—but does not
implement chop-and-crop. Also, we focus on a particu-
lar dataset: the 3D dataset 1. This is just to simplify
tables and graphs. Results for other datasets show the
same trends.

5.3.1 Benefits of parallel processing. S-KDE can run as
sequential code, thus allowing us to evaluate the

‘algorithmic’ performance of our sample-wise approach
combined with chop-and-crop. We did some tests run-
ning S-KDE with a single thread (that is, in a single
core) in the four-core i7 platform, and found that the
execution time is, on average 4.28 times longer. This is
for 3D dataset 1, but the experiments for the remaining
datasets report similar slow-down values. Combining
these results with those in Table 5, we find that the
sequential S-KDE is still between 20 and 100 times
faster than ks-kde running in the i7. However, as both
S-KDE and ks-kde have been measured in the same i7
and, through the MKL libraries, ks-kde can take advan-
tage of the underlying parallel hardware, we consider

Downloaded from hpc.sagepub.com by guest on March 25, 2015



Lopez-Novoa et al.

60
40 /./
No Crop-and-Chop —*— ||

20 | ‘
%/ Crop-and-Chop —@—

0 20 40 60 80 100 120 140 160 180 200
Evaluation Points (Million)

(a) Corei7.

12—
110 X

100
90
80

70 "
60
50

30

20

10 + [ No Crop-and-Chop —%— ||

0 ) ) ) ) \ __Crop-and-Chop —@—
0 20 40 60 80 100 120 140 160 180 200

Evaluation Points (Million)

(b) Xeon Phi.

Time (s)

Figure 12. Execution times for 3D dataset | with crop-and-chop enabled/disabled.

that the reported comparisons yielding 85.8 and 443.5
speed-ups for S-KDE are fair. The Xeon Phi accelerator
can add some extra performance when using all its
cores simultaneously.

5.3.2 Benefits of chop-and-crop. As explained before,
when dealing with datasets of dimensionality three or
higher, our code uses a crop-and-chop process to avoid
computations involving evaluation points contained in
a bounding box but not affected by a sample. In order
to assess the performance gains derived from using this
technique, we ran tests with the 3D dataset 1, with
crop-and-chop disabled (meaning that the per-sample
bounding box is a rectangular prism) or enabled
(meaning that, for each sample, a collection of bound-
ing rectangles of different sizes is processed). The
results are reported in Figure 12(a) (S-KDE in the i7)
and 12(b) (S-KDE in the Xeon Phi). These tests clearly
show the performance gains obtained with crop-
and-chop: S-KDE runs 60.4% faster in the Core i7,
and 49.2% faster in the Xeon Phi, due to the removal
of useless computations (and the corresponding mem-
ory accesses). For example, in the tests with 194.81 mil-
lion evaluation points, each 3D rectangular bounding
box contains 102,461 points on average; crop-and-chop
reduces the number of processed evaluation points by
half to 53,511.

5.4 Identifying performance bottlenecks

Although the execution speed achieved by S-KDE in
the two tested platforms is very competitive, we have
performed additional tests and analyses in order to bet-
ter understand the behavior of our code, and to identify
possible bottlenecks and opportunities to improve its
performance. To that extent we have used Intel’s
VTune Amplifier, which provides detailed information

about the time spent by the program running different
portions of the code. We have been able to dissect the
execution times into three portions: (1) computation,
i.e. the time devoted to calculations of KDE, without
taking into account memory writes; (2) memory writes,
i.e. the time spent in synchronized memory writes of
partial results; and (3) overheads, i.e. initialization,
ending and additional operations, including I/O.

As this dissection is very similar for all the tested
scenarios, we focus again on the 3D dataset 1, depicting
the results in Figure 13(a). It shows that, on average,
the code spends half the time computing KDE, and the
other half performing atomic memory writes.
Overheads are almost negligible for the datasets and
evaluation spaces that we tested.

Time spent in writing operations may appear exces-
sive, but we have to consider that any algorithm com-
puting KDE requires extensive traversals of large
datasets: it is a memory-bounded problem. In our par-
ticular case, S-KDE needs to consolidate into main
memory the per-sample results of the partial densities
for each evaluation point inside the bounding boxes.
Additionally, bounding boxes can overlap: the influ-
ence of several samples on the same evaluation point
has to be aggregated. As different threads take care of
different samples, writes must be synchronized using
the atomic OpenMP pragma to avoid race conditions,
and atomicity involves processing overheads. In order
to understand the volumes of data we are talking
about, we can provide these figures: working with the
3D dataset 1 in the largest evaluation space, each
bounding box contains 53,511 evaluation points (with
crop-and-chop enabled); the sum of all the bounding
boxes would use a total of 199.34 GB but, as they
overlap, they have to be consolidated into a matrix
(representing the whole evaluation space) of 1.46 GB.

Considering these facts, there are two possible ways
of accelerating S-KDE: reducing memory operations
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Figure 13. Dissection of execution times of S-KDE for 3D dataset |.

and reducing inter-thread coordination when perform-
ing writes. We have already discussed the chop-and-
crop technique for reducing the set of evaluation points
computed per sample. Before dealing with the second,
we were interested in measuring the potential benefits
of avoiding write synchronization. To do so, we ran the
same experiments removing the atomicity constraint,
reporting the results in Figure 13(b). The resulting out-
put values of those S-KDE runs are not valid, but the
execution times allowed us to estimate the room for
improvement. The removal of the atomic directive
makes our code run, on average, 42.7% faster in the i7,
and 14.5% faster in the Xeon Phi.

The first conclusion we can draw from these figures
is that the effect of synchronized writing is more impor-
tant in the i7 than in the Xeon Phi. This is due to the
differences between these two architectures. The Core
17 CPU has four memory channels, with on-chip mem-
ory controllers, 256 kB of per-core L2 cache and
10 MB of shared L3 cache. In comparison, the 57 cores
in the Xeon Phi are connected through a bidirectional
ring, and share 28.5 MB of L2 cache. We presume that
the cost of atomic writes is relatively higher in the i7
than in the Xeon Phi due to the smaller size of i7’s
caches, and also because memory operations are
already partially serialized in the Xeon Phi by its inter-
connection network.

The second conclusion is that there is room for per-
formance improvement, particularly in the multi-core
CPU, if we guarantee the correct operation of memory
writes while avoiding the overheads derived from the
use of atomic directives. Our first idea is to coordinate
the way threads process samples, in such a way that
those samples being processed simultaneously have
non-overlapping bounding boxes. This approach
requires a previous ordering on samples in non-
overlapping groups, with the risk of suffering from an
ordering overhead that surpasses the achieved benefit.

Another approach could be exploiting even further the
chop-and-crop mechanism, making a different use of
the available parallelism: samples could be processed
sequentially, but per-sample cropped slices could be
processed in parallel, because they never overlap.
Currently, this approach is not applicable to 2D prob-
lems. Additionally, the number of slices should be large
enough to efficiently use all the available processors,
and distribution of slices to threads must be correctly
load balanced, because they are of different sizes. We
have left the implementation of these techniques as
future work.

6 Conclusions and future work

Experiments with the current implementation of S-
KDE have shown that, compared with available, state-
of-the-art implementations of KDE, it provides, by far,
the best performance, even when running in a modest i7
processor. This performance can be boosted if a many-
core coprocessor is available. However, we do not con-
sider S-KDE as a finished product: we have analyzed
its behavior, and identified different mechanisms to
accelerate it, especially for multi-core processors.

The speed achieved by S-KDE come from three
sources. The main one is algorithmic: the sample-wise
approach to estimate densities has lower complexity
than the evaluation-point-wise approach, requiring
fewer memory accesses. These accesses are further
reduced by implementing the chop-and-crop technique
for problems of dimensionality three and higher.
Finally, S-KDE benefits from the exploitation of paral-
lel architectures, in particular multi-core CPUs and
many-core COprocessors.

Currently, S-KDE is only applicable to bounded
kernels, and its scalability is limited by the available
memory. Learning from R’s ks-kde, we could include
support for unbounded kernels if limits to their
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influence area are imposed (effectively implementing
bounding boxes); we could also work with extremely
large evaluation spaces if the output of the program is
not a complete matrix with all the evaluation points,
but a list of user-defined evaluation points in which
estimation of the density is required. Another approach
to deal with large-scale problems in reduced-memory
situations could be to adopt a divide-and-conquer
approach, dividing the evaluation space in zones, con-
solidating them as a final step. These modifications,
together with the exploration of mechanisms to reduce
memory contention, are part of our lines of future
work.

From the point of view of parallel processing, we
are also working on making the multi-core and the
attached coprocessor run concurrently on the same
problem. Going further, several accelerators and CPUs
on a single system could be used simultaneously to
greatly accelerate KDE computations.

The S-KDE code is available upon request, for any
researcher performing density estimation tasks.
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Appendix

Detailed description of the cropping technique

This appendix complements Section 3.3, providing a
detailed explanation of the cropping process. We
describe here equations used to adjust an optimal
bounding box to each ellipse in a slice.

From a d dimensional bounding box, a nested loop
traverses every (d — 1) box until 3D boxes are
obtained. The cropping calculations begin in 3D
spaces. First, the equation that represents the shape of
the kernel, i.e. the equation of a 3D ellipsoid, must be
completed

Ax®> + Bxy + C* + Dxz + Eyz + F22 =1

(11)

where terms A to F are filled with values from the
inverse of the covariance matrix of the dataset 3~ '. At
this point the bandwidth parameter must be applied as
3 7'=37"h"? to modify the kernel accordingly.
Then, terms A, C and F of the equation are completed
with 3,7, 3, and 3 respectively, and terms B, D
and Ewith2 X 3, 2X 33 and 2X 3, ;.

Once the equation of the kernel is completed, the 2D
slices that form the 3D bounding box are traversed
along the z -axis. Using equation (11), we give different
values to z, according to the step of the evaluation grid.
Each z value corresponds to a slice. Then, for a particu-
lar z value, we have an ellipse represented by this
equation

AP+ Bxy + O + Dx+ E'y+F =0 (12)

where D' = Dz, E = Ezand F = FZ* — 1.

From this equation the series of steps described in
Section 3.3 are applied to crop the optimal bounding
box to the 2D slice.

Step 1: Calculate the rotation angle of the ellipse in
the slice. The rotation angle 0 is calculated as

arctan (-2~
0 = r—(ch) (13)
2
Step 2: Calculate the lengths of the principal axes of
the ellipse. We first calculate the equation of the ellipse
in an unrotated manner as

N

. = Acos?6 + Bcosfsing + Csin’6

B, =0

C, = Asin’0 — Bcos6sinf + Ccos’6 (14)
D, = D'cosf + E'sinf

E, = — D'sinf + E'cosf

F,=F

where terms A, B, C, D', E and F are those of the orig-
inal ellipse (equation (12)) and terms A, to F, represent
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the terms of the equation of the same ellipse, but unro-
tated. From this new equation we can derive the lengths
of the principal axes ¢ and b of the ellipse as

B \/—4FuA,,Cu + C,D2 + A,E2

B 44,C2
(15)

po | AFuACy+ CuDE + AE:
442C,

Step 3: Calculate the coordinates of the edge vertices.
To do so, we first calculate the coordinates c,, ¢, of the
center of the ellipse as

_Du
24,

— _Eu
Yo

(16)

Cy =

to then calculate the edge vertices of the unrotated
ellipse vx, and vy, as

qux
VX TGy

= tawne =

VW =c tb (17)

Step 4: Crop the bounding box. First, we must apply
the rotation to edge vertices vx, and vy,, to obtain the
rotated edge vertices vx and vy

VXy = VX,,CO86 + vix,,sinf

VX, = — vxuxsin0 + quycose VVx (18)
= VyurCosf + vy, sinf
Wy = — Wusing + vy,,cos0

to then find the boundaries of the ellipse, applying the
Euclidean norm as

bound, = \/vx2 + vy>  bound, = | /vx2 + vy (19)

The last step is to calculate the coordinates of the
bounding box aligned to the evaluation grid, rounding
bound, and bound, to the evaluation step per
dimension.
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Abstract

Kernel Density Estimation (KDE) is a popular technique used to estimate the probability
density function of a random variable. KDE is considered a fundamental data smoothing algo-
rithm, and it is a common building block in many scientific applications. In a previous work we
presented S-KDE, an efficient algorithmic approach to compute KDE that outperformed other
state-of-the-art implementations, providing accurate results in much reduced execution times.
Its parallel implementation targeted multi and many-core processors. In this work we present an
OpenCL implementation of S-KDE, targeting modern accelerators in a portable way. We also an-
alyze the performance of this implementation on three accelerators from different manufacturers,
to find out to what extent our code exploits the performance offered by those devices.

Keywords:
Kernel Density Estimation, Performance Analysis, OpenCL, Many-core Processors, GPGPU

1. Introduction

Kernel Density Estimation (KDE) is a popular statistical technique to estimate the probabil-
ity density function of a random variable with unknown characteristics [1]. It is considered a
fundamental data smoothing problem in statistics and an alternative to other density estimation
techniques such as the histogram, that relies on a simple binning. KDE is used in a wide variety
of research areas, such as climatology for environmental model evaluation [2], computer vision
for image segmentation and tracking [3] or biometry to estimate the effectiveness of a medical
treatment[4].

Some of the problems that use KDE codes as building block usually require processing large
datasets, which translates into long execution times. The literature shows different approaches to
computing KDE. Given the complexity of the algorithm, a trade-off must be found between ac-
curacy and execution time [5]. In a previous work, we introduced a novel algorithm to compute
KDE whose complexity is lower than that of state-of-the-art KDE implementations, providing
accurate results with shorter execution times. We called this algorithm S-KDE [6]. As modern
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scientific codes run in multi-core processors, we implemented and tested an OpenMP imple-
mentation of S-KDE that exploited the parallel capabilities of current CPUs, and many-core
co-processors such as the Intel Xeon Phi [7]. The combined effect of the novel algorithmic ap-
proach and the exploitation of parallel processing resulted in impressive reductions in execution
times.

We cannot ignore, though, that many of the computing platforms used nowadays, and those
expected to be used in a near future, will integrate other classes of accelerator devices, not only
the Xeon Phi [8]. The spectrum of devices is wide and includes platforms such as Graphics
Processing Units (GPUs), FPGAs and other classes of many-cores. In order to make S-KDE
available to a larger community, we decided to produce a new version of the code targeting
the wider possible set of accelerators, being OpenCL the most logical choice of programming
environment.

Two are the main contributions of this paper. First, the description of the porting of S-
KDE to OpenCL. Redesigning a code for accelerators usually requires major changes due to
the massive data parallel processing model they are aimed for [9], and not every application
fits into it. Second, we evaluate the performance of our code when running it in three state-of-
the-art accelerators: an AMD GPU, a NVIDIA GPU and an Intel Xeon Phi co-processor. We
rely on some popular performance models and benchmark suites to characterize the devices, and
provide some insights about how well our code exploits the performance achievable from each
accelerator.

The remainder of this paper is organized as follows. We provide an overview of the state-
of-the-art accelerator devices in Section 2, and describe briefly the fundamentals of our S-KDE
approach in Section 3. We present the OpenCL implementation of KDE in Section 4, and conduct
a performance analysis over it in Section 5. Finally, we summarize conclusions and future lines
of work in Section 6.

2. Accelerator devices

Current supercomputers and data processing facilities are being built around hybrid compute
nodes that include accelerator devices. The current landscape of devices includes reconfigurable
circuits (e.g. FPGAs), discrete co-processors (e.g GPUs), hybrid chips (e.g. AMD HSA systems)
or low power consumption systems (e.g. ARM or Intel Atom based systems)[10][11]. In this
work we are going to focus on the most popular classes of accelerators, GPUs and Intel’s Xeon
Phi, due to their wide presence in HPC systems and for the extensive body of literature and
ecosystem of tools around them.

GPUs are hardware devices designed to make efficient image processing. They are composed
of hundreds of SIMD cores, capable of handling thousands of active threads, with lightweight
context switching [9]. Since their adoption as general purpose coprocessors (coining the term
GPGPU, from general-purpose processing on GPUs), they have been enhanced with features
such as dedicated double-precision units or large cache hierarchies that make them ready to
run efficiently a wide variety of HPC workloads. GPUs can be found as discrete coprocessors,
connected to a host processor through PCI-Express, or integrated in the same die with other type
of processing cores, as in the AMD APU architectures. In this work we will use two different
discrete GPUs connected through PCI-Express.

The Xeon Phi is a many-core processor presented by Intel in 2012. It holds up to 61 x86 cores,
16 GB of dedicated memory and it is connected to a host system through PCI-Express. Compared
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to the cores in Intel multi-core CPUs, Xeon Phi cores make in-order processing and hold several
differences in the instruction set, such as using AVX-512 for vector computations. Current Xeon
Phi devices present a theoretical peak performance of 1 TFLOP/s in double precision, and support
a wide set of development frameworks, such as MPI, OpenMP, OpenCL or Cilk [7].

3. Kernel Density Estimation

KDE has been applied since the 80’s as a density estimation technique in different environ-
ments [5]. It creates smooth density estimations, in contrast with other techniques, such as the
histogram. Intuitively, given an evaluation landscape and a dataset of samples, KDE places in the
landscape a “bump” around each sample, aggregating the effect of those bumps to create the es-
timated Probability Density Function (PDF). An example for a one-dimensional case is depicted
in Figure 1, where a density estimate is created for a dataset with three samples. A kernel (a red
“bump”) is placed over each sample, and then the influence of all of them is summed creating
the black thick line, which is the estimated PDF [1].

0.4

Density
0.3

0.2

0.1

0.0

Figure 1: Example of KDE for 1D data

The resulting density estimation is continuous, but most KDE implementations provide it
as a set of discrete values. The user defines the boundaries of the landscape and the separation
between the points where the PDF will be evaluated (an array of per-dimension steps). Therefore,
the output is actually a (discrete) evaluation grid, an array of evaluation points. In the example
shown in Figure 1, the 1D evaluation space spans from —20 to 80, and the evaluation step is
20. Thus, the estimated function will be represented as a vector containing the densities in the
evaluation points —20, 0, 20, 40, 60 and 80.

The most common way to compute KDE is to traverse every point in the evaluation grid,
and compute and add, for each of them, the density influenced by each and every sample. This
approach is completely parallelizable using a data parallel approach, but in many cases implies
a vast number of useless computations. This is due to the fact that a sample affects only a
portion of the evaluation space, a set of points around its position. The size of this influence
area depends on the kernel of choice (the shape of the “bump”) and other parameters. Thus, a
more efficient approach is to define the influence area of a sample as a set of evaluation points,
and then traverse just the evaluation points inside that area. The first approach has an O(kymn)
computational complexity, being k; a dimensionality constant, m the number of evaluation points
(the size of the evaluation grid), and n the number of samples. The second approach has an
O(kgnp) complexity, where k; is a dimensionality constant, n the number of samples and p the
number of evaluation points in the influence area of a sample. We must take into account that
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usually p is much smaller than m. In this work we will implement the second approach. We
call it S-KDE (from sample-wise KDE), and include some additional features to further avoid
unneeded computations.

The KDE literature includes different proposals for kernel functions. Depending on the cho-
sen one, the technique to confine the influence area of a sample will be different. In this work we
use an Epanechnikov kernel and a technique based on the eigenvalues of the covariance matrix of
the dataset to calculate a rectangular shaped box that delimits the influence area of a sample [12].
We will refer to this rectangle as the bounding box of a sample. In addition, we apply a technique
called Chop & Crop that minimizes the size of the bounding box by removing evaluation points
not belonging to the influence area of the kernel in spaces of dimensionality three or higher. It
works by first reducing the d-dimensional bounding box to a set of 2D slices, and then cropping
the slice to the minimum squared box. This two-step process is represented in Figures 2 and
3 respectively. The interested reader is referred to [6] for a detailed explanation of the S-KDE
algorithm and its implementation for multi-core CPUs.

v

------ @

Figure 3: Cropping a 2D slice to obtain a minimum-size
Figure 2: Chopping a 3D bounding box into 2D slices bounding rectangle

We can provide some example figures to illustrate the efficiency of S-KDE. We will assume
a 3D dataset with 500k samples, and an evaluation space (grid) with 194.81 million evaluation
points. Using the traditional KDE approach that traverses every evaluation point of the grid
would lead to 9.74 * 10'* sample-evaluation point operations. In contrast, a rectangular 3D
bounding box around each sample in the mentioned scenario contains on average 102461 points,
and using the sample-wise KDE approach would require 5.12 * 10'° computations. On top of
this, if we apply the Chop & Crop technique, the number of evaluation points per bounding box
is reduced to 53511 on average, and the resulting total number of computations is 2.67 * 10'°.
Thus, S-KDE improves KDE efficiency by several orders of magnitude. We can go even further,
exploiting massively parallel accelerators to run S-KDE.

4. An OpenCL KDE implementation for accelerators

In this section we describe the process followed to adapt S-KDE to accelerators. Our aim has
been to create an algorithm fitting into the data-parallel computation model that most accelerators
use, together with an implementation portable across the spectrum of existing hardware devices.
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Currently, the only two frameworks that provide portability in accelerators are Microsoft Direct-
Compute and OpenCL, a standard proposed by the Khronos Group [13]. Given that the former
is only available for Microsoft Windows platforms, we chose OpenCL.

4.1. OpenCL in a nutshell

An OpenCL application consists of a host part and a device part, which is called a kernel (not
to be confused with the kernel functions used for density estimation). The host part orchestrates
data movements from host to device and vice-versa, and manages the execution of kernels. The
device is able to run simultaneously multiple threads or work-items, all of them running the same
kernel code. Work-items are arranged in groups called work-groups, which may have a 1D, 2D
or 3D structure; the developer chooses the shape and size of the work-groups.

An OpenCL platform is a collection of devices managed by a single host. OpenCL defines
a device model in which the device is composed of a set of processing elements, arranged in
compute units. At run time, the OpenCL framework assigns each work-group to a compute unit
for its execution. Internally, work-items are mapped to processing elements.

Regarding memory, there is host memory and per-device global memory. The latter is acces-
sible by all threads running in the device. Additionally, there is local memory shared by all treads
in the work-group. Finally, each thread has its own, small, private memory and registers. The
host code is in charge of moving data from host to device memory (and vice-versa), and threads
can move data from the device’s global memory to other memory zones.

All these abstractions enable the OpenCL framework to launch any data-parallel application
(kernel) over any device, given a mapping between the device’s characteristics and the OpenCL
model, and also given that hardware requirements are fulfilled (for example, a certain amount of
memory per thread is necessary, and while some devices can provide it, others could be more
limited). Further information about OpenCL can be found in [14].

4.2. Implementing S-KDE with OpenCL

The starting point for the OpenCL code is the serial implementation of S-KDE. The steps that
this code follows have been depicted in Figure 4. Note that steps 4 and 6 have been surrounded
with parentheses, as they are operations required in the OpenCL code but not in the serial one.

Step 1 is the initialization, where the evaluation grid is set to zeros and the size of the bound-
ing box is computed; this is a “generic” bounding box, that must be customized per sample,
in order to deal with the discrete and bounded nature of the evaluation space. Then, the code
traverses the samples of the dataset in an iterative way.

For each sample, the bounding box is first fitted to the grid, and then the chopping is applied
(Step 2). This way, no matter the dimensionality of the problem, it is reduced to a computation
of a series of bi-dimensional slices. Then, each slice of the bounding box is processed.

For each slice, cropping is applied to reduce it to its minimum size (Step 3). Once the
size and coordinates of the slice are defined, its evaluation points are traversed. For each point
within the slice, its distance to the sample and the density that the sample influences on the
point are computed (Step 5). Finally, all partial densities affecting a point are accumulated in the
corresponding position of the evaluation grid (Step 7).

The described serial algorithm presents clear opportunities for parallelization, but it also
poses some challenges for its adaption to the accelerator model due to its limited data reuse and
the very low compute to memory access ratio. That being said, a major rework has been done to
adapt it to the OpenCL model, which has required some algorithm re-structuring as well as the
inclusion of additional support operations.
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Figure 4: Workflow of KDE implementation

The main opportunity for adapting the algorithm to a data-parallel model comes from the fact
that the bounding boxes around each of the samples can be processed simultaneously, without
any kind of dependency. Therefore, we can have as many parallel threads as samples in the
dataset. However, all these bounding boxes must be aggregated into a common landscape matrix
in which the final PDF grid is computed, and as influence areas of samples (and, therefore,
bounding boxes) may overlap, the accumulation step must be somehow synchronized to avoid
memory write collisions. The way we have addressed this issue is explained later.

The OpenCL code has been structured as depicted in Figure 4. It includes new steps, as well
as modifications to some of those described for the serial code.

1. Initialization: In a first step, the entire sample dataset is copied into the accelerator, along
with the required support structures. We assume that all the dataset fits in the memory of
the accelerator (note that this is not the evaluation grid). In this step we also compute the
size of the generic bounding box. This is host code (executed in the CPU).

2. Box fit and Chop: For every sample, its bounding box is fitted to the grid and chopping is
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applied. At this point, the problem has been reduced to a collection of 2D slices. This is
implemented as an OpenCL kernel (executed in the accelerator in a data parallel way).

3. Crop: Cropping is applied to reduce the number of evaluation points in each slice. Addi-
tional information about each slice is computed, such as its coordinates in the evaluation
space and the number of evaluation points it contains. This is an OpenCL kernel.

4. PrefixSum: A PrefixSum is applied to the vector that contains the number of evaluation
points per slice. This is a support computation required by the next kernel for its threads
to make ordered stores. We have used the OpenCL implementation of PrefixSum available
in the SHOC benchmark suite [15].

5. Density Computation: Each thread calculates the influence created by a sample on an
evaluation point of a given slice. The resulting densities are stored in an auxiliary vector
and not consolidated into the global PDF structure. This is an OpenCL kernel.

6. Densities Transfer: The resulting vector of partial densities is transferred through PCI-
Express from the accelerator to host memory. This is managed by the host.

7. Consolidation: The host reads the vector of partial densities and accumulates them into
the evaluation space. This is host code.

As explained before, a critical step of S-KDE is the consolidation of partial densities into the
global landscape (Step 7). If done in parallel without the proper synchronization mechanisms,
results can be invalid, because the influence areas of samples overlap and, thus, threads may incur
in memory write collisions. To avoid this issue, the current OpenCL implementation of S-KDE
leaves this task to be performed by the host CPU in a serial way. This is pragmatic because the
host has the whole output structure in main memory, and the serialized access guarantees the
absence of memory write collisions.

We tried alternative approaches to run the consolidation phase in the accelerator, but they
required either some sorting of partial results (an expensive operation that resulted in even longer
execution times) or the use of atomic adds (an operation not supported in OpenCL for double
precision floats [13], although some devices have specific extensions for it). Therefore, we have
kept the consolidation part in the CPU.

As a side note, the presented workflow is intended for KDE problems of dimensionality three
or higher. However, our implementation targets as well two dimensional spaces using the same
workflow but without applying the Chop & Crop technique — because it is not needed. In this
case, the workflow is exactly the same but without the second and third steps.

In terms of the data structures used in the OpenCL code, it should be clear that the threads
running in the accelerator have access to the sample dataset and to auxiliary structures containing
partial, non-consolidated densities. The final density matrix is managed exclusively by the CPU.
The main program is iterative after the initialization step. Each iteration consists of processing a
“chunk” of the problem, which is nothing more than a subset of the samples. This is done in a
data-parallel fashion, using a chain of OpenCL kernels. The per-chunk intermediate results are
stored in the accelerator and, later, transferred to the CPU for consolidation.

The iterative nature of the code has two main advantages. The first one is the ability to deal
with accelerators with different memory sizes, that in many cases are not capable of holding the
complete output matrix. This makes our code limited by the RAM managed by the CPU, but not
by the device’s memory, provided that the selected chunk size uses intermediate data structures
that fit into the device. The second advantage is that it opens the possibility of working in a
pipelined fashion: while the device computes a chunk, the CPU can be consolidating the results
of the previous one. We will explore this possibility later in Section 5.3.
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An important parameter of our program is the chunk size, or number of samples to process
in each iteration of the algorithm. This size must be defined in such a way that the intermediate
results from an iteration fit into a data object in the memory of the device, before being transfered
to the CPU. Therefore, the chunk size has to consider characteristics of the device (maximum
allocatable size) and size (number of points) of each bounding box around a sample. Note that
the maximum allocatable size can be smaller than the device’s global RAM, and that some space
may be already allocated to other required data structures. The chunk size is rounded down to
the closest power of two, to better match the work-group sizes managed by the devices.

For example, in a 3D dataset with 500k samples and an evaluation space with 194 mil-
lion points, each per-sample bounding box could have up to 106609 points or 832.8 kB; this
is problem-dependent, and computed at the initialization phase. In a device with 256 MB of
maximum object size, our heuristic would assign a chunk size of 256 samples.

5. Performance analysis

This section presents a performance analysis of the KDE implementation described above on
three different accelerators. The code was designed for portability, so that it can run, unmodified,
in any modern co-processor supporting OpenCL. We will first present the characteristics of the
platforms and datasets used in the experiments, and then carry out a performance analysis in
top-down manner, i.e. getting first global performance measures and, afterwards, digging into
details.

5.1. Settings used in the experiments

Our experiments have been conducted with three accelerator devices: an AMD Radeon HD
6950 GPU, a NVIDIA GTX 650 GPU and an Intel Xeon Phi 3120A Coprocessor, whose main
features are summarized in Table 1. In addition, our code has been limited to the API features
of OpenCL vl1.1. Even though some of these devices support OpenCL 1.2 or 2.0, version 1.1 is
the most supported one in currently available processors, including the Xeon Phi, GPUs, FPGAs
and ARM-based systems.

AMD Radeon HD 6950 | NVIDIA GTX 650 | Intel Xeon Phi 3120A
Architecture Cayman Kepler MIC
Cores 1408 384 57
Core Clock 800 Mhz 1.05 Ghz 1.1 Ghz
Memory 2 GB GDDR5 1 GB GDDR5 6 GB GDDRS5
DP Performance! 563 GFLOP/s 67 GFLOP/s 1 TFLOP/s
Max. Allocatable Size 445.5 MB 255.8 MB 1435.2 MB
Host CPU Intel Core i5-2400S Intel Core i7-3820 Intel Core i7-3820
OpenCL SDK AMD APP v2.9.1 CUDA v6.0.37 Intel OpenCL v3.2.1

Table 1: Hardware features of the accelerators used in the experiments

As areference, we also run in some experiments the serial implementation S-KDE algorithm
(including Chop & Crop) compiled with gcc v4.7.2 and executed in a Intel Core 17-3820 (3.60

Ghz clock frequency).

I Theoretical peak performance in double precision, as declared by the manufacturer
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As explained in Section 3, the complexity (or problem size) of a KDE execution depends
mainly on the number of samples in the dataset and on the size of the evaluation space (deter-
mined by its boundaries and step size). The latter will also determine the size of the bounding
box that limits the influence area of a kernel. In this work we have performed several tests vary-
ing the size of the evaluation space, for two different 3D datasets. We have fixed the boundaries
of the evaluation space and modified the step size to increase/decrease the number of evaluation
points, see Table 2. The datasets have been created synthetically, sampling a multivariate normal
distribution. The first one contains 500k samples, and the second one contains 1M samples.

Finally, there is a parameter in every KDE computation that must be taken into account, and
that has not been mentioned in Section 3: the bandwidth or smoothing parameter. This value
modifies the smoothness and size of the kernel and, therefore, the number of evaluation points
inside a bounding box. An exploration for the choice of the right bandwidth value is out of the
scope of this work, and we have selected it using the heuristics detailed in [1].

DimX | DimY | Dim Z Total
110 220 322 7792400
110 440 322 15584800
220 440 322 31169600
220 440 805 77924000
220 1100 805 | 194810000

Table 2: Size of the different evaluation spaces (number of evaluation points in the grid) used

5.2. Initial assessment

To get an initial assessment of the performance of our OpenCL S-KDE, we compare its total
execution time against that of the serial program, for the three target devices. Results are shown
in Figures 5 and 6 for the dataset of 500k and 1M samples respectively.

800 i Serial e | ' 1200 i Serial '
Radeon HD 6950 -&- Radeon HD 6950 -&-
700 aceoN STX 650 e / 1050 000N CTX 650 e /
Xeon Phi_-x Xeon Phi --x
600 900
__500 __ 750
@’ @’
400 © 600
E e £ e
F300 = 450
= .
200 / : 300 / 4
100 e = 150 e o
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0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Evaluation Points (Million)

Figure 5: Comparison of execution times for dataset S00k

Evaluation Points (Million)

Figure 6: Comparison of execution times for dataset 1M

The first conclusion is that the OpenCL code runs significantly faster than the serial code.

Speed-ups obtained with the largest problems are 3.47x, 3.31x and 4.27x for the Radeon, the

GTX and the Phi respectively. These results, being good, are not as impressive as those reported

for other HPC applications implemented in accelerators [16]. We can be (partially) satisfied
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because we make use of the extra muscle provided by the accelerator, but we also want to explore
if we could do better.

After this black-box assessment, we try to understand more in detail the limits and bottle-
necks of the code when running in the accelerated platforms. In Figures 7 and 8 we show the
accumulated time spent in each of the three stages depicted in Figure 4: Computation (steps
3, 4 and 5, executed in the accelerator), Transfer (step 6, moving data from the accelerator to
the CPU) and Consolidation (step 7, executed in the CPU). It is to be highlighted that the most
expensive stage in all cases is the non-accelerated part of the code: the Consolidation of partial
results in the global density matrix, carried out by the CPU to avoid memory write collisions.

280

400

T T

Computation Computation
Transfer Transfer

240 - Consolidation 77772 350 - Consolidation 77772

.

ey

0
Radeon HD 6950 GTX 650 Xeon Phi Radeon HD 6950 GTX 650 Xeon Phi

Figure 7: Dissected execution time of OpenCL S-KDE. 500k  Figure 8: Dissected execution time of OpenCL S-KDE. IM
dataset and 194M evaluation points dataset and 194M evaluation points

If we focus on each stage separately, we can observe the effects in the execution time of the
different elements participating in the computation:

o The time required for the Computation stage shows how the Intel Xeon Phi co-processor
is the fastest of the tested accelerators, while the NVIDIA GTX is the slowest.

e The time used for accelerator-to-CPU transfers is approximately the same in the three
tested platforms. This is to be expected, as all of them use the same PCI-Express intercon-
nect.

o For the Consolidation stage, the i7 used in the Phi and GTX platforms is slightly faster
than the i5 used in the Radeon platform.

Therefore, the good comparative results of the Phi platform comes from a combination of a
fast CPU and a fast co-processor.

The main conclusions obtained from these experiments is that we have been partially success-
ful with our OpenCL implementation of S-KDE: the program is faster than the serial version, but
not as fast as we would like. We dig further inside the different parts of the code in order to
understand what is limiting its performance.

5.2.1. Analyzing compute efficiency
In this subsection we focus on the Computation stage: we want to understand how the

OpenCL kernels use the capabilities of the accelerators, and to discover if we are exploiting
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them in an effective way. To do so, we have relied on the popular roofline model, presented by
Williams et al. [17] in 2008. It provides a way to visually describe the features of a machine and
a program. In particular, it is a diagram with two axes: the Operational Intensity of an applica-
tion (FLOP/Byte) in the X-Axis and the Attainable GFLOP/s in the Y-Axis. An application will
be positioned somewhere in the X-Axis depending on its operational intensity, and the maximum
attainable performance will be given by the roof of the machine.

Even though the roofline model was originally presented for multi-core processors, several
papers have extended it to characterize accelerators and massively parallel applications. In [18]
GPUROoofline is proposed, an adaption of the roofline model for NVIDIA and AMD GPUs that
takes into consideration GPU-specific features. In [19] Kim et al. use the roofline model to
explore the scalability of a code for electromagnetic field simulations in a NVIDIA GPU. In [20]
Cramer et al. use the roofline to characterize the Intel Xeon Phi. In [21] Wang et al. use the
roofline model to characterize a GPU and an Intel Xeon Phi, and the scalability of an OpenACC
code in them. However, none of these works presents a generic way to build a roofline model
for accelerator devices. This is what we do in this section using a method applicable to any
OpenCL-capable device.

DP Performance (GFLOP/s) | Off-chip Bandwidth (GB/s)

Radeon HD 6950 556.02 130.09
GTX 650 36.25 66.39
Xeon Phi 3120A 964.48 94.36

Table 3: OpenCL Benchmarking Results

To characterize the device we need to measure the maximum attainable performance in terms
of GFLOP/s and the maximum bandwidth to the off-chip memory in GB/s. These values can
be retrieved using a benchmark suite that stresses the devices and provides the effective peak
values, which are usually lower than the theoretical ones advertised by the manufacturer. In
particular, we use the tests from the ClPeak benchmark suite2. Relevant results for the three
target accelerators have been listed in Table 3. The roofline plot is computed as Min(Bandwidth
* Operational Intensity, GFLOP/s).

The characterization of the application is done kernel by kernel. Each kernel is parsed using
the LLVM compiler [22] to generate its intermediate representation, which we parse to count the
number of floating point operations and memory accesses.

Figures 9, 10 and 11 show the roofline plots for the AMD Radeon, NVIDIA GTX and Xeon
Phi respectively. Each figure shows the roofline of the machine as a line, the position of the Den-
sity Computation kernel (square tick), and the position of the whole Computation stage (without
data transfer, cross tick). We can see how those ticks overlap, because the accelerators use most
of their time to compute densities. Other kernels are not depicted in the graph because they are
fast and, besides, some of them (i.e., PrefixSum) operate with integer type values and, thus, their
operational intensity is zero.

We can see how the NVIDIA GTX accelerator is way below the others in terms of raw
performance. We can also observe how our application has a very low operational intensity and,
therefore, it is far from reaching the top performance in all cases. This is particularly harmful in
powerful and expensive accelerators, such as the Xeon Phi. The low compute-to-memory ratio

Zhttps://github.com/krrishnarraj/clpeak
11



and low data reuse makes S-KDE a memory bound algorithm — but it would be even worse using
the classic, evaluation point-wise approach, or without implementing Chop & Crop.
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Figure 11: Roofline of Intel Xeon Phi 3120A

In order to better exploit the accelerators, modifications in the applications would be required
to increase its operational intensity: running more (double precision) floating point operations
per moved data item. Given the current S-KDE algorithm, we have not discovered any way of
doing this.

In addition, we must highlight the choice of an OpenCL parameter that affects performance:
the work-group size. As explained in Section 4.1, OpenCL assigns work-groups to Compute
Units (CUs) for their execution. Assuming that hardware constraints are fulfilled, an excessively
large work-group size might leave CUs unused in the device, and an excessively small one might
cause stalls in some architectures such as GPUs. In the design of the OpenCL KDE code we
made an exploration on the work-group size to find the one that minimized the execution times.
We found 128 threads per work-group to be the best size for the three tested devices. This size has
given a good CU occupancy / load balancing tradeoff in all tested cases. We refer the interested
reader to [14][23][24] for more information on this topic.
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5.2.2. Analyzing PCI-Express efficiency

Let us analyze now how the OpenCL S-KDE code makes use of PCI-Express. The data trans-
fer stage is mandatory when using discrete accelerators and, depending on its use, it can turn into
a bottleneck. As we did in the previous section, we first characterize the hardware and then the
way our application exploits it. For the former, we used the BusSpeedReadback benchmark from
the SHOC suite [15], which measures the attainable GB/s when reading from the accelerator, for
different block sizes. Then, we measured the GB/s achieved by our application, using the block
size (size of the intermediate data structures) determined by the chosen chunk size. Results are
depicted in Figures 12, 13 and 14 for AMD Radeon, NVIDIA GTX and Intel Xeon Phi respec-
tively. Note how the square tick is not in the same position in the three graphs, because of the
different chunk sizes used.

Regarding the hardware side, we see how maximum efficiency of PCI-Express is only achieved
when moving large data blocks. However, the curves for each device are different, due to differ-
ences in the OpenCL run-times and in the PCI-Express management routines in each platform.
The chunk sizes used in our programs allow the transfers to be in the most efficient regions.
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5.3. Overlapping stages

As described in Section 4, the iterative behavior of our code makes it suitable for working in
a pipelined mode, where operations over different chunks of data are overlapped. This mode of
operation allows the simultaneous use of CPU and accelerator, thus further accelerating program
execution.

We have implemented a two-stage pipeline as depicted in Figure 15: the computation of the
partial densities corresponding to a chunk in the accelerator, followed by the transfer of the partial
results through PCI-Express, is overlapped with the consolidation in CPU of the results from a
previous chunk. This pipeline configuration has been motivated by the execution times of the
different stages shown in Section 4. We have implemented it using the Pthreads API, launching
a thread for the OpenCL-related operations, and a separate one for the Consolidation.

lteration 0 lteration 1 lteration 2

Stream 0:
Computation | Compute Chunk 0 | Transfer Chunk 0 | | Compute Chunk 1 | Transfer Chunk 1 | | Compute Chunk 2 | Transfer Chunk 2 |
& Transfer

Stream 1: | Consolidate Chunk 0 | | Consolidate Chunk 1 |
Consolidation

Time —p

Figure 15: Pipelined execution of the OpenCL implementation of S-KDE

We illustrate the efficiency of the pipelined program with the execution times for the dataset
with 1 million samples, for three different sizes of the evaluation space. Results are shown
in Table 4. Each column shows the accumulated execution times in seconds for each of the
stages, and the total accumulated execution time (excluding, for the sake of clarity, initialization
and finalization). Improvements over the non-pipelined operations are important, for the three
devices.

It is to be remarked that running two operations simultaneously cause, in some cases, extra
delays. For example, in the three devices, the Consolidation costs are higher in the pipelined
program than in the non-pipelined version. The same thing happens with the Transfer stage, but
only in the Radeon GPU. The Computation kernels executed in the accelerators require the same
time for both modes of operation. These overheads seem to be caused by the high pressure on the
memory bus, as both the Transfer and the Consolidation are memory intensive operations. We
tried leaving the Transfer stage out of the pipeline, overlapping in each iteration just Computation
and Consolidation (doing the Transfer immediately afterwards) and then per-stage execution
times where the same obtained without the pipeline. However, this last approach resulted in
worse performance results, and we left the numbers out of the tables.

In a further step, we implemented a three-stage pipeline, where all the stages are over-
lapped. However, the global performance results where similar to the ones given by the two-
stage pipeline. This was to be expected as, in the tested platforms, the Consolidation stage
takes longer than the summed execution times of the Computation and the Transfer stages. This
approach would be beneficial if the relative durations of the different stages was different, for
example if Consolidation times were shorter.

The use of the presented two-stage pipeline improves the execution time differently in each
device. Interestingly, the GTX GPU is the one offering a more efficient simultaneous operation
of CPU and accelerator (1.81 performance gain), while the Xeon Phi and the Radeon are not that
efficient (1.36 and 1.40 respectively). Compared to the serial version, total speed-up values (for
the largest problem size) are now improved to 4.42x, 5.74x and 5.67x for the Radeon, the GTX
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and the Xeon Phi respectively. Note how an efficient pipelined operation results in the GTX
being the best performed, when in theory this is the least powerful accelerator.

5.4. Discussion

We can summarize the analysis stating that we have reached acceptable levels of efficiency
given the memory-bound nature of the S-KDE algorithm, that severely limits the attainable per-
formance. The resulting OpenCL code can be considered useful (it offers 4.42x-5.74x speedup
using the pipelined operation), but it does not make a good use of current accelerators: oper-
ational intensity is too low, and PCI-Express data transfer costs are high. An additional factor
that prevents a really fast S-KDE code is the Consolidation stage: additional recoding efforts are
necessary to improve this CPU-side code.

One of our main objectives when writing this program was portability in terms of both code
and performance. We achieved it, without spending excessive time carrying out per-device op-
timizations. The performance analysis carried out has also been done with device-independent
tools. More detailed information could have been obtained using tools (profilers) provided by
the device manufacturers; for example CodeXL?3, Visual Profiler* or VTune’ for AMD, NVIDIA
and Intel platforms respectively. These tools are essential when coarse-grain optimizations are
not applicable, or to fine-tune for a specific device.

From the previous analysis we can also draw some conclusions about the cost of accelerating
S-KDE. We have not included in the previous tables the prices of the tested devices, because
they change constantly, but they currently are around $100 for AMD and NVIDIA GPUs (these
are consumer-grade devices, now discontinued) and $1700 for the Intel Xeon Phi (a server-
grade device designed for a different, smaller market). In theory, the high price tag of the Xeon
Phi should be balanced with the ease with which its peak performance can be reached. GPUs
are more difficult to exploit, if the application does not show some specific characteristics (high
data-parallelism, high operational intensity, low memory contention, low use of the PCI-Express,
and so on). For S-KDE, which is not particularly well suited for accelerators using the OpenCL
programming model, we can see that the performance of the cheapest GPU is as good as that of
the most expensive accelerator.

6. Conclusions

In this work we have presented briefly S-KDE, an efficient algorithm for kernel density es-
timation, together with its OpenCL implementation targeting modern accelerators. This work
complements [6], which discussed the implementation of S-KDE on multi and many-core de-
vices. We have tested the code in three accelerators: AMD Radeon HD 6950 (GPU), NVIDIA
GTX 650 (GPU) and Intel Xeon Phi 3120A (many-core).

The S-KDE code does not match particularly well with the OpenCL programming paradigm.
It carries out simple operations over massive volumes of data, and it presents memory write
contention issues that makes it difficult to delegate important parts of the code (the Consolidation
stage) to the accelerator. Despite this, we have achieved significant acceleration (5x) in platforms

3http://developer.amd.com/tools—and—sdks/opencl—zone/codexl/
4http://developer.nvidia.com/nvidia—vi sual-profiler
5 http://software.intel.com/en-us/intel-vtune-amplifier-xe

16



with very modest GPUs (around $100). We have been unable, though, to exploit efficiently the
capabilities of more expensive accelerators, such as the Xeon Phi.

We have analyzed thoroughly the characteristics of our code when running on the target
hardware, understanding its limits. The major issues with the current program are (1) the need of
transferring data through PCI-Express, derived from the use of a discrete accelerator; (2) the low
computational intensity of the kernels running in the accelerators, that do not exploit efficiently
the floating point capabilities of those devices; and (3) the need to run at the CPU, to avoid
memory write issues, a costly Consolidation step. Both the code and the tools used to understand
its behavior are device and application independent.

Our future work will address two main issues. The most urgent one is to improve the Con-
solidation stage, which is currently the one determining the global execution time. This is not a
trivial task, because we must deal with synchronization issues. Then, we would like to extend
the work related in this paper to convert it into an simple but powerful analysis methodology,
to be used with any OpenCL code, but device independent. The literature of code optimization
for accelerators includes excellent device-specific resources (such as the good practices manuals
[25][26] shipped by the manufacturers) and also application-specific works (e.g. [27] for cryp-
tographic primitives or [28] for mathematical functions), but device and application-independent
tools are still missing.
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1. Introduction

Climate models are the best tools that scientists currently have
in order to assess the impact of increasing concentrations of
greenhouse gases and other anthropogenic influences on the
observed climate of the Earth. These tools allow scientists to un-
derstand climatic changes from a dynamical point of view and to
give quantitative answers to questions about future climate. They
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make feasible the assessment of the characteristics (deterministic
versus stochastic) of some climatic variations at different temporal
or spatial scales. Finally, they are fundamental in the attribution
phase of the study of the climate change problem, since they allow
to confidently discard competing hypothesis such as whether the
climate change is rooted in natural or anthropogenic causes
(Bengtsson, 2013; Knutti, 2008).

Climate models must be evaluated against different observa-
tions (Otto et al., 2013) or paleoclimate data (Braconnot et al., 2012;
Hind et al., 2012; Moberg, 2013; Sundberg et al., 2012) in order to
get a quantitative indication on the confidence that we can put into
their outputs depending on the efficacy of the models to reliably
represent the climatic processes and feedbacks. Contrary to oper-
ational weather forecast models, there is no way to properly eval-
uate models against future climate, since future climate does not
exist yet (Randall et al., 2007; Stocker et al., 2013). Additionally,
since parameterizations of sub-grid scale processes are not fully
independent from current climate, it is clear that evaluation against
current climate is the only feasible, albeit not perfect, solution in
terms of evaluating the projections for future climate (Errasti et al.,
2011, 2013; Radi¢ and Clarke, 2011; Reichler and Kim, 2008).

The rationale behind this hypothesis is that models that are able
to better simulate current climate are the ones that we expect will
also be the best ones in terms of the simulation of future climate. It
is well known that this is not necessarily true due to the different
behavior of models in terms of their internal feedback mechanisms
(Andrews et al., 2012; Dessler, 2013). These feedbacks lead to
differing values of the climate sensitivity of models and, hence,
future warming is dependent on these different sensitivities,
leading to the question whether all the models are equally valid
(Knutti, 2010).

Particularly for downscaling applications and regional impact
analysis, an evaluation of the adequacy of models is a common step
(Brands et al., 2011; Radi¢ and Clarke, 2011; Walsh et al., 2008).
Considering that numerical downscaling is computationally
expensive, it cannot be performed over all the models available
from a big experiment such as CMIP3 or CMIP5, and it is usually
only performed on a subset of the models (Hewitt and Griggs,
2004). Then, the best models are only used for downscaling in
regional climate assessment, since they have been proven to be the
most suitable over a particular region. This strategy of selecting the
best subset of all the available models has been contested by some
studies (Reifen and Toumi, 2009) and defended by others
(Macadam et al., 2010), since this result depends on the removal of
the seasonal cycle and the use of anomalies instead of raw output
from the models.

There are several inter-comparison experiments that have been
set-up in order to drive the models with common boundary con-
ditions so that results between model runs can be compared. As an
example of this kind of standard experimental setups, that in
several cases have their origins in the nineties, we can cite the
Atmospheric Model Intercomparison Project (Gates et al., 1999), the
Project for Intercomparison of Land Surface Parameterization
Schemes (PILPS) (Henderson-Sellers et al., 1995) or the Palae-
oclimate Modelling Intercomparison Project (PMIP) (Kageyama
et al., 1999), the Atmospheric Chemistry and Climate Model Inter-
comparison Project (ACCMIP), described by Lamarque et al. (2013),
or the one that is most relevant for our study, since we use data
from this experiment, the Coupled Model Intercomparison Project
(CMIP) (Meehl et al., 2007; Taylor et al., 2012). These projects have
covered several phases through the years and for the case of the
CMIP data, CMIP5 can already be used. In general, models grouped
under a similar experimental set-up such as CMIP3 or CMIP5 are
considered as an ensemble of opportunity (Annan and Hargreaves,
2010). There are some limitations because even for coordinated

experiments such as CMIP3, there is some freedom in the way the
external boundary conditions are applied (they are not 100% equal
for all the models), see Table 1 in Wang et al. (2007). The number of
realizations from every model in the ensemble of opportunity is not
the same, neither and, therefore, the influence of each model in the
behavior of the ensemble is not the same. Additionally, models are
less independent than they should be, since critical algorithms or
components are shared by several models (Fernandez et al., 2009;
Knutti et al.,, 2013; Masson and Knutti, 2011; Pennell and Reichler,
2011).

In terms of evaluation of climate models, it is well known that
climate simulations are run, most of the times, past the limit of
deterministic predictability associated with predictability of the
first kind, according to Lorenz's classification. Climate models
simulate climate change under varying boundary conditions in
terms of the Probability Density Functions (PDF) of climatic vari-
ables. The varying boundary conditions consist of external forcings
such as the variability in solar irradiance, orbital parameters or
anthropogenic greenhouse gas emissions, amongst other potential
driving factors (Bengtsson, 2013). Some aspects of climate simula-
tions are deterministic, such as the seasonal cycle at extratropical
latitudes (Errasti et al., 2013). On the other side, some properties of
the atmospheric circulation such as the blocking at extratropical
latitudes can not be precisely forecast with lead times corre-
sponding to several days without the use of ensemble forecast
systems (Marshall et al., 2013) because of the sensitivity to initial
conditions (Frederiksen et al., 2004) and the model formulation
(Pelly and Hoskins, 2003) too. Therefore, climate model evaluations
that are run past the limit of deterministic predictability should not
a priori expect a close consistency between weather-linked varia-
tions of global or regional temperature or precipitation between
models and observations, except at the longer time-scales
responding to external forcings (Gleckler et al., 2008; Santer
et al.,, 2011). These differences reflect the well-known difference
of the sensitivity of the results to errors in the initial conditions
(predictability of the first kind) or to errors in the evolving
boundary conditions (predictability of the second kind) (Chu, 1999;
Lorenz, 2006).

There is not a universally accepted strategy for climate model
evaluation, since it is well known that climate model evaluation
and corresponding skill scores fundamentally depend on the target
area, variable or intended application of the model evaluation study
(Knutti, 2008). Some studies make a focus on the deterministic
parts of the model simulations (basically, the seasonal cycle) (Boer
and Lambert, 2001; Taylor, 2001). Other studies (oriented to the
study of droughts or floods) tend to focus on extreme percentiles,
since they are much more meaningful indicators of climate change
(DeAngelis et al., 2013).

This study by DeAngelis et al. (2013) is currently important for
us, because it shows that models sometimes produce accurate
values for the average of some climatic variable due to error
compensation effects. They can, for instance, underestimate the
frequency of high precipitation events and overestimate the

Table 1
Indices of distributional agreements for points derived from known gaussians using
univariate scores for X and Y variables or two-dimensional scores.

Univariate score 2D score
G1-X G1-Y G1
G2 X 0.998 0.999
Y 0.999
G3 X 0.998 0.463
Y 0.997
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frequency of low precipitation events. This points to the need to
evaluate additional characteristics of climate model simulations
beyond the mean value and standard deviation. Consequently, a
few years ago, an index computed from the whole PDF of climatic
variables was developed (Maxino et al., 2008; Perkins et al., 2007).
It compares two PDFs and computes the minimum value of both
PDFs at every abscissa. The area below this minimum represents
the area below both PDFs. As such, for a perfect model, its value
would be one, if both PDFs matched perfectly. This PDF-index or
index of distributional agreement is the one that we will generalize
to the multidimensional case in this contribution. The PDF-index
analyses the correspondence of the whole PDF both from a model
and observations (Maxino et al., 2008; Perkins et al., 2007). The
one-dimensional PDF-index has very often been used in the liter-
ature through the last years (Brands et al., 2012; Errasti et al., 2011,
2013; Fu et al, 2013; Maxino et al., 2008; Perkins et al., 2007;
Schwalm et al., 2013; Ylhaisi and Radisanen, 2013 to name a few).
In this contribution we propose its extension to multiple di-
mensions, thus allowing to compare several features of climate or
environmental models at a single step. The use of the PDF-index
shows some advantages with respect to other approaches, in the
sense that it samples the full PDF of the climatic variables. There-
fore, the PDF-index is a very good index for the overall evaluation of
the agreement between climate models and observed climate.
However, there are other shortcomings, such as the fact that the
analysis in terms of PDFs does not consider the time sequence of
events, and the number of frost days or the number of continuous
days without precipitation are important in terms of impacts
(Brands et al., 2012). The PDF-index gives less weight to the tails of
the distribution and, it is thus not adequate as the single index for
the analysis of extremes (Brands et al., 2012).

In the case of the papers mentioned previously, the PDF-index is
computed by means of unidimensional PDFs. However, in several
cases, studies using the PDF-index or other scores (Dessai et al.,
2005; Reichler and Kim, 2008) evaluate the skill of climate models
according to several variables that may be of interest for the impact
community. The most obvious instances might be precipitation and
temperature, but if the scientists are interested in downscaling
strategies, other variables such as geopotential height or sea level
pressure appear very often (Brands et al., 2011; Errasti et al., 2011,
2013; Fu et al.,, 2013; Maxino et al., 2008; Radi¢ and Clarke, 2011).
In these previous references, the skill of the models is computed on
a per-variable basis by means of univariate diagnostics. Their final
skill score is computed by aggregating individual per-variable
evaluations either by simple averaging or ranking of skill scores.
However, there is currently a lack of universally accepted way of
performing this combination of scores for different variables and
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the methodology that we propose in this contribution is aimed to fill
this void, since a single index of distributional agreement is returned
from the multidimensional PDF.

The main objective of this contribution is, therefore, to develop a
methodology that can be applied to get a multidimensional score
that allows to evaluate in a single step different variables from
climate simulations against observations. In order to explain the
advantages derived from using a multidimensional approach, we
show a simple example derived from a synthetic dataset. We have
created three synthetic datasets, G1, G2 and G3, derived from two-
dimensional gaussian distributions. For each case, the gaussians are
centered w; = 0 but the corresponding covariance matrices used to
obs 7 5) for G1 and G2,
whilst for G3, the third gaussian, the covariance matrix is given by
S5 — < 1 -0.75

-0.75 1
in the structure of the distributions of points (Fig. 1, left), the uni-
variate PDFs and corresponding indices show a good agreement
(Fig. 1, middle and right and Table 1), even though the distributions
are different. This is quite an artificial example, but it illustrates the
point that some parts of the PDFs close to the diagonals can be
projected onto similar areas over the axis when using unidimen-
sional indexes of agreement, masking the differences between the
PDFs of the model and the observations. Therefore, it is interesting
to analyze the full structure of the multidimensional PDF, since it
yields a realistic difference between the score corresponding to G1
versus G2 (good agreement) and G1 versus G3 (bad agreement).

To fill in the gap illustrated by the example, we generalize the
PDF-index by Perkins et al. (2007) to n-dimensional phase spaces
with the final aim of allowing an easy multi-criteria evaluation of
models. That way, a single PDF-based index can group the perfor-
mance of the models according to the multidimensional phase-
space spanned by all the variables chosen for the evaluation of
the model. In order to make it easier for other researchers to use
this methodology, we present an implementation of this multidi-
mensional extension by means of a set of tools that can properly
address the computational problems that appear when making
kernel-based estimations of PDFs with massive datasets. In the case
studies that we show in this paper, we compute several realizations
of the PDF-index using one to four dimensional phase spaces with
up to 13,000 points for every particular model/realization. This is
very intensive computationally, and for this reason we feel that an
efficient implementation of the estimation of multidimensional
PDFs could be of great help for researchers in this area. Thus, we
have developed a general-purpose tool to compute kernel-based
multidimensional PDF estimations that runs on state-of-the-art

create them are given by S; =S, = (

). It can be seen that, despite the difference

.
G3

5 10 -10 5 0 5 10

Fig. 1. Points created from G1 (red) and G3 (green) distributions (left), univariate probability distributions corresponding to the X variables (middle) from G1 (red) and G3 (green)
and univariate probability distributions corresponding to the Y variable from G1 (red) and G3 (green). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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multi-core processors. Our proposal has two main characteristics:
(1) a fine-tuned algorithm to calculate the PDF that minimizes the
number of computations and (2) a parallel implementation of this
algorithm that allows it to efficiently run in multi-core processors.

The method is applied to two different case-studies. The first
case study corresponds to a realistic application of climate model
evaluation (Errasti et al., 2013). Their results are re-analyzed using
this new methodology. Additionally, a sensitivity of the results to
the selection of the bandwidth parameter is carried out. Finally, the
robustness of the results provided by the method to the existence of
biases in the models is also studied. The second case study corre-
sponds to the analysis of the performance of a coupled atmosphere-
ocean reanalysis in reproducing the global scale Sea Surface Tem-
perature and Sea Surface Height and it corresponds to a higher-
dimensional problem. This second case study will be used to
stress two of the merits attributed to the proposed methodology.
On the one hand, this example in the context of the physical
oceanography will demonstrate the wide range of the applicability
of the methodology. On the other, the combination of variables
with different physical dimensions will illustrate the ability of the
method to process multivariate data and its ability to be applied to
a large family of environmental models.

The remaining of this paper is structured as follows. Section 2
presents the materials and methods used in the paper. Results are
shown in Section 3. The discussion is presented in Section 4, and
the paper finishes with conclusions in Section 5.

2. Material and methods

2.1. Data representing the daily seasonal cycle of zonally averaged temperature from
global climate models and reanalysis

For the first case study shown in this paper, we select a reduced dimensionality
representation of the daily seasonal cycle of temperature that we already analyzed
in Errasti et al. (2013). We analyze temperature of the air at the surface (TAS) daily
data from seven models (20C3M simulations) of the CMIP3 experiment (Meehl et al.,
2007) that were used by the Fourth Assessment Report of the IPCC (Randall et al.,
2007). The models used are the BCCR-BCM2.0, GFDL-CM2.0, GFDL-CM2.1,
MIROC3.2-HR, MIROC3.2-MR, MPI-ECHAM5 and MRI-CGCM2.3, and the basis for
the selection of this subset of models and their characteristics can be found in Errasti
et al. (2013). The same procedure is used for TAS data from ERA40 (Uppala et al.,
2005) and NCEP/NCAR Reanalysis 1 (Kalnay et al., 1996), referred to as NCEP on-
wards. The TAS data from models and reanalyses were re-gridded to the same
2.5° x 2.5° grid by means of bilinear interpolation, since this was the coarsest grid
used by any of the reanalysis used (the one used by NCEP). To reduce the dimen-
sionality of such a gridded dataset, the TAS data were zonally averaged and projected
onto Legendre polynomials that constitute an adequate basis over the sphere. Those
have very often been used as a basis in one-dimensional energy balance models
(North et al,, 1981) and are the basis used for the meridional components of
spherical harmonics used in spectral decompositions of the equations of motion
(Washington and Parkinson, 2005). The Legendre polynomials are orthonormal in
the set of functions over the continuous interval [—1, 1], but their corresponding
discrete-grid counterparts are not orthogonal. For this reason, we applied the Gram-
Schmidt orthogonalization procedure to obtain the leading discrete orthogonal
Py (), Py (1) and P, () Legendre polynomials. In the previous equations, u = sin (f)
refers to the sine of latitude. The zonally averaged TAS profiles have been projected
onto the orthogonal discrete Py (), P (1) and P, (u) Legendre polynomials and this
has provided us with the corresponding time-varying coefficients co(t), c1(t) and
co(t). Due to the meridional shape of the orthogonal discrete polynomials shown in
Fig. 1 in Errasti et al. (2013), the physical meaning of the temporal expansion co-
efficients can be easily understood. The coefficient co(t) describes the seasonal
evolution of global-mean temperature linked to the different distances from the
earth to the Sun corresponding to the apogee or the perigee positions, c1(t) describes
the seasonal evolution of summer-winter from one Hemisphere to the other and
cy(t) describes the TAS differences between the Equator and the poles. These co(t),
c1(t) and cy(t) coefficients represent the daily TAS seasonal cycle with a root-mean
square error of the daily values ranging from 6.3 K (GFDL-CM2.0) to 8 K
(MIROC3.2-HR) for the whole dataset. They represent 5%, 76% and 3.72% of the total
variance of the zonally averaged TAS data for the case of ERA40 and similar values for
the climate models and NCEP reanalysis, as extensively discussed by Errasti et al.
(2013).

The use of two different reanalysis (ERA40 and NCEP) allows us to quantify the
sensitivity of the results to the uncertainty of the temperature field. We consider
that this uncertainty is given by the different values that we get from two reanalysis.

Two different state-of-the-art evaluations of the TAS fields by two different rean-
alysis systems provide realistic representations of the surface temperature field, but
the differences between them reflect the uncertainty in our knowledge of the
detailed characteristics of the problem at hand. Both the 20C3M simulations and the
reanalysis data cover the period 1961—1998 on a daily basis. The idea of using these
data is to be able to compare the results of our multidimensional PDF index with
already published results (Errasti et al., 2013) that used alternative techniques in
terms of the skill score of the models. In Errasti et al. (2013) the PDF indices
computed were one-dimensional and some diagnostics also involved the root mean
square error. In this paper, we revisit the topic from a multidimensional point of
view. For every i-th model, we have a three-dimensional vector of points
ci(t) = (coi(t), cq;(t), c2i(t)) that describes a trajectory in the phase space of the
truncated daily zonally averaged air temperature at the surface. These data provide
us with an interesting case study of the application of the new algorithm to a pre-
vious problem of evaluation of models where the multidimensional evaluation tool
was not applied.

2.2. Multivariate oceanographic data

Two datasets containing joint values for the Sea Surface Temperature (SST) and
Sea Surface Height (SSH, relative to the geoid) are also analyzed as a second case
study. These datasets are used in the second part of the Results section to illustrate
the potential application of the proposed methodology in a multivariate application
that not only combines variables with different physical dimensions (e.g. SST and
SSH), but also different variables resulting from different truncations of the same
physical field with the same physical dimensions (e.g. different projections of the
SST field). Additionally, the interest of this second case study is that it also shows the
potential application of the methodology in the case of other environmental ap-
plications not restricted to climatology.

Gridded global coverage data for the SST and SSH variables over the 1993—2012
period are used. The two datasets include: a reprocessed Level 4 (gridded, gap-free)
product based on the merging by means of optimal interpolation of satellite and in-
situ data called ARMOR-3D (Guinehut et al., 2004, 2012) and the coupled
atmosphere-ocean CFSR reanalysis (Saha et al, 2010). CFSR data covers the
1993—-2010 part of the period considered here. For the 2011—2012 period CFSR is
completed with data from the CFSv2 (Saha et al., 2014) analog product. In the
following the CFSR and CFSv2 product will be referred simply as CFSR.

To allow inter-comparison of the datasets they are averaged to weekly data and
re-gridded to a common 0.5° x 0.5° resolution grid with an identical land-sea mask
(following the minimal weekly time-frequency of the ARMOR-3D dataset and the
minimal 0.5° x 0.5° spatial resolution of the CFSR dataset). Like in the case of the
TAS, it is necessary to reduce the dimensionality of the SST and SSH variables in the
datasets because a global dataset at a 0.5° x 0.5° horizontal resolution yields more
than 2.0 x 10° grid-points, i.e. variables in the phase-space. This makes impossible to
apply the proposed methodology to the raw data. In the case of the first case study
(TAS) the dimensionality reduction is conducted by means of Legendre polynomials
of zonally averaged values. In this case, the truncation is conducted by means of a
Principal Component Analysis (PCA) (von Storch and Zwiers, 1999; Wilks, 2006) that
extracts the Empirical Orthogonal Functions (EOFs) and the Principal Components
(PCs) from the gridded anomalies (obtained after subtracting the time-mean). The
gridded anomalies have been weighted to take into account the reduction of the
grid-area with increasing latitude of a regular latitude—longitude grid. Therefore,
the values at each grid point have been multiplied by the square root of the cosine of
latitude (von Storch and Zwiers, 1999; Wilks, 2006). During this truncation process,
orthonormal EOFs are used and, therefore, the units and the variances are retained
by the new variables or PCs. For the sake of simplicity, the first two PCs will be
retained for the SST (T1, T2) and SSH (H1, H2), making a total of 4 variables when all
of them are combined. The percentage of total variances accounted for by those PCs
are 83% (SST) and 19% (SSH) for the ARMOUR-3D dataset and 85% (SST) and 34%
(SSH) in the case of CFSR.

2.3. Evaluation of the multidimensional PDFs, optimal bandwidth and evaluation of
the multidimensional indices of PDF agreement

The methodology suggested in this paper follows three steps that we describe in
this order:

1. Compute a PDF by means of kernel estimates for the multidimensional case.

2. Identify the optimal bandwidth to be used by the estimation of the multidi-
mensional PDF.

3. Find the amount of space common to the multidimensional PDFs of every model
and observations.

From the point of view of the application, the first step would be to compute the
optimal bandwidth, next, compute the multidimensional PDFs and, finally, compute
the scores of the models' and observations' multidimensional PDFs. However, from
the point of view of the description of the algorithm it is better described using the
previous order because, in order to fully understand the way the optimal bandwidth
is computed, the way the PDF is computed must be considered at the beginning.



U. Lopez-Novoa et al. / Environmental Modelling & Software 63 (2015) 123—136

A different program has been implemented for each step, which will be
described next. Finally, note that the main contribution of this paper is not the use of
these steps, but in the extension to multiple dimensions of the PDF-score. This
extension required completely new programs, or important modifications to pre-
viously available codes. To the best of our knowledge, no other tool set is available to
provide equivalent functionality with similar computational performance.

2.3.1. Multidimensional kernel density estimation

The first program (mpdfestimator) performs an estimation of the multidimen-
sional PDF in a multidimensional space. It takes as input a file containing all the
observed points and optionally, a bandwidth value and the parameters defining the
evaluation space (minimum, maximum and increments for every dimension). If the
bandwidth value is not provided, the default corresponding to a multidimensional
gaussian distribution with the same sample size is applied (Silverman, 1986).

a) Evaluation point-based

estimation (EPB)
for each EvaluationPoint x {

den x = 0

for each ObservedPoint x; {

den_x += density(x,x;)

b)

127

the original phase space. As will be explained below, the internal use of principal
components will also be a critical part in the development of the bootstrap for the
multidimensional case. Additionally, it has to be mentioned that in multivariate
cases, such as the comparison between SST (K) and SSH (m) that we present in the
second case study, the metric that we use to evaluate the kernel using radially
symmetric principal components allows us to use a non dimensional h, thus prop-
erly combining multivariate datasets. Thus, on the following pages, when h is
mentioned, it refers to a non dimensional parameter.

A common approach to compute the estimate of the PDF, valid for any kind of
kernel, is to make a loop that traverses all the evaluation points of the space, and
calculates the kernel function for each < observation point, evaluation point > pair.
This approach, evaluation point-based (EPB onwards), is shown in Listing 1l.a. Its
complexity is O(kg-m-n), being kq a constant related to the dimensionality of the
dataset, m the number of evaluation points and n the number of observed points.

Observed point-based

estimation (OPB)

for each EvaluationPoint x {

}

den x = 0

compute Observation Influence Area A

for each ObservedPoint x; {

}

for each EvaluationPoint x in A {

den_x += density (x, x;)

Listing 1. Approaches to computing PDF estimation expressed as pseudo-code.

Program mpdfestimator computes the PDF as: f(x, h) = #ZK(’%’") where n is
the number of observations, K is the kernel function, d is the number of dimensions
of the dataset, h the bandwidth value, x; is a vector containing each observed point,
and x is a point of the space where the PDF is being evaluated (evaluation point
onwards). The PDF is estimated in a user-defined space called evaluation space.

According to Silverman (1986), asymptotically, there are no differences between
the different kernels at hand (Gaussian, triangular, Epanechnikov, etc.). Moreover, he
states that it is desirable to base the choice of the kernel on other considerations,
such as the degree of differentiability required or the computational effort involved.
Other references also support the fact that the sensitivity of the results to the kernel
chosen is small (Ahamada and Flachaire, 2010) and that the Epanechnikov kernel
is very efficient (Scott, 1992). In our program, since the Epanechnikov kernel is
bounded, we will take advantage of this boundedness to design a computationally
efficient proposal.

The Epanechnikov kernel function is defined as: K(Ax) = (112%2) (1- AxT-Ax)
where ¢4 represents the volume of the d-dimensional sphere of unit radius and
Ax = x—x; is the vectorial difference between an observed x; and an evaluation x
point. The use of a simple euclidean norm would be misleading in case the variables
used to define the phase space were characterized by very different variances. In
order to avoid this, the algorithm computes the spherically symmetric principal
components y; that can be derived from the x; observed points. Note that the data
are also initially centered to be able to compute principal components. There is no
filtering of the main principal components in this step. If a reduction of dimen-
sionality is required by the user, it must be performed by the user before calling this
program. We, therefore, assume that the covariance matrix of the input data is of full
rank. The fact that we use spherically symmetric principal components means that
variables expressing more variance of the input data are given more importance in
the computation of the kernel and, as such, the same bandwidth (h) can be used for
all the dimensions. This is equivalent to using a Fukunaga-like estimator (Silverman,
1986). The same linear mapping that is used onto the observed x; points to compute
the corresponding spherically symmetric principal components y; is applied to the
centered evaluation points x yielding a set of scaled evaluation points y. The dif-
ference vector and the kernel function are computed by using Ay = y—y;. Therefore,
the PDF is actually defined in a set of coordinates y and, after the PDF has been
evaluated, it is transformed back to the original evaluation grid x. This means that it
is divided by the Jacobian of the transformation (square root of the determinant of
the covariance matrix) from the original evaluation space x to the new evaluation
space y in order to recover the proper normalization of the PDF (Menke and Menke,
2012). If the data have been centered when the PDF was being computed, the axes
defining the PDF are again translated at this point according to the original mean
that has been computed before storing the results in the output netCDF files. At this
point, it is convenient to stress that the resulting netCDF files are stored around the
original average of the input dataset using the physical variables corresponding to

In some cases, the kernel that defines the density of each sample is bounded and
it affects only a small subset of the evaluation points in the evaluation space. In these
cases, using the EPB approach is inefficient, as most of the evaluation points lie
outside the area of influence of the kernel (but a calculation is required), being thus
the corresponding density zero. Thus, as we have chosen a bounded kernel (the
Epanechnikov kernel), we have defined a way to estimate the PDF that reduces the
computational complexity of the previous approach, aiming to minimize the
execution time of mpdfestimator.

Our approach, observation point-based (OPB onwards), performs a loop
traversing the observation points, computing for each, the density over the evalu-
ation points affected by the influence area of the kernel. This method requires to
identify the set of evaluation points inside that influence area, which can be done by
means of geometrical equations. As a visual example, we depict in Fig. 2 the influ-
ence area of a kernel as a grey ellipse. In our program, we calculate a square shaped
bounding box around each observation point, which includes some evaluation points
outside the area of influence, but it is easier to process by the program.

X2

A

e

Fig. 2. Example of the influence area around an observed point in a 2D space, iden-
tifying all the grid points affected. The ellipse represents the actual influence area in
the physical space, while the dashed rectangle shows the prismatic bounding box
around it.
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A simplified OPB is described in Listing 1.b and its computational complexity is
O(kg-m-a), being kq a constant related to the dimensionality of the dataset, m the
number of observed points, and a the number of evaluation points inside a bounding
box (generally much smaller than n).

mpdfestimator (as well as the remainder programs) has been implemented using
the C programming language. All the linear algebra routines used are implemented
through calls to the publicly available MESCHACH library (Stewart and Leyk, 1994).
The PDF is written to a netCDF file in the physical evaluation space x requested by
the user with the PDF centered and scaled according to the original data. This means
that the user is free to evaluate PDFs from models and observations that are (are not)
centered at the same n-dimensional average points (biased or unbiased datasets).
We recommend, as shown below, that datasets are always bias-corrected before
performing this analysis, but the system does not enforce the user to do so,
althought it warns the user about this condition.

In the first case study used in this paper the phase-space is tridimensional, but
the implemented program allows the user to go up to any dimension (starting from
one), as shown by the second case study used in this paper. The one-dimensional
case is also covered by our program even though there are other implementations
that can cover the one dimensional case. The novelty of our contribution lays on the
generalization of the one-dimensional score to higher dimensions.

In addition, standard OpenMP programming directives (Dagum and Menon,
1998) have been also included with the aim of exploiting the multi-core capability
of present computers. The set of observed points will be equally distributed amongst
the processors for their computation in parallel. This way, the workload is split
among the available processors, reducing the execution time (almost) linearly to the
number of cores used.

Compute the PDF for the

for each h in the range
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Following Faraway and Jhun (1990), we use a smoothed bootstrap procedure to
estimate the squared error between two estimates of the PDF. The smoothed es-
timate starts from a reference evaluation of the PDF f(x,ho) computed using a
reference bandwidth hoy. Then, several estimations f, (x, h) of the PDF are performed
at varying values of the bandwidth parameter h and a number of n = 1 ... N re-
alizations for every h. The bootstrap program checks the error between the
“reference” PDF used in the smoothed bootstrap procedure and the actual bgot—
strap samples by evaluating the squared error e,(h) = [ (f(x. ho) —fn(xﬁh)) dx.
Then, the bootstrap-derived distribution of the squared errors is used to ‘infer
minimum, maximum, median, Py 25 (2.5%) and Po 975 (97.5%) percentiles of squared
error for every value of h. This information is reported to the user at every h value.
The h value producing the lowest values of the error estimates (we use the median
of ey(h) in the case studies in this paper) is the one selected as the optimum
bandwidth.

This procedure has been implemented in the mpdfestimator_bootstrap pro-
gram. It takes as input all the observed points and optionally (1) a reference
bandwidth value, (2) a range of bandwidth values to be evaluated, (3) the
boundaries of the evaluation space, and (4) the number of repetitions for the
random sampling. If (1) is missing, the default corresponding to a multidimen-
sional gaussian distribution with the same sample size is applied. If (2) is missing a
range (+20% around (1), with a step such that the maximum bandwidth interval is
divided in 10 subintervals) is defined. In case (3) is missing, mpdfestimator_boot-
strap defines a range that ensures a space that surrounds all the observed points.
Finally, if (4) is missing, 500 realizations are performed. The program generates as
output squared errors for each of the provided bandwidth values. The pseudo-
code is shown in Listing 2.

reference bandwidth hjg

[hmin, hmax] {

for iter=1 to max repetitions({

generate a random sub-sample S

compute PDF

for S

compute squared error

}

generate statistics of squared error

}

return statistics

Listing 2. Pseudo-code for the mpdfestimator_bootstrap program.

2.3.2. Selection of the optimal bandwidth

The second step that we describe (although it should be the first step in the
application of the programs) is to find the optimal bandwidth value for the PDF
computed in the first step. It is well known that the computation of the optimal
bandwidth to be used in PDF estimations using kernels is a critical step in obtaining
reliable PDFs. There are two major strategies for the determination of the optimal
bandwidth (Scott, 1992; Silverman, 1986): cross-validation (Duong and Hazelton,
2005) and smoothed bootstrap (Faraway and Jhun, 1990).

The cross-validation approach leads to the convolution of the kernel with itself,
a very tough mathematical problem for the Epanechnikov kernel with an open
number of dimensions. It is usually solved by means of gaussian multiplicative
kernels (Duong and Hazelton, 2005), but this wouldn't allow us to use the OPB
approach explained in Section 2.3.1 above. In our case, we have selected the use of
smoothed bootstrap estimates of the optimal bandwidth, since it simplifies the
generalization of the solution to an open number of dimensions in the multidi-
mensional case for the non-multiplicative Epanechnikov kernel we are using. In
order to produce the new estimations in the multidimensional case we take
advantage of the fact that the kernel is spherically symmetric in the space corre-
sponding to the spherically symmetric principal components. Thus, the same
strategy used by univariate kernel estimations is used for every direction in the
space spanned by the spherically symmetric principal components (Silverman,
1986). Surrogate samples are created in this space, and this procedure guarantees
that the structure of the covariance matrix is properly preserved.

2.3.3. Computation of the PDF score

The final step of the methodology is to compute the PDF score. Once the user has
computed the PDFs (by means of the mpdfestimator program) corresponding both to
the model and the observations using the optimal bandwidth value reported by
mpdfestimator_bootstrap, program mpdf_score has to be executed to get the PDF
score against the reference model.

The program mpdf_score takes as input two n-dimensional PDFs stored as
netCDF files, generated for the same domain by the first program mpdfestimator, and
provides as output a PDF-index S by means of the following equation (adapted in
this case for a three-dimensional example): S = 3=;; ,min ng,Z,.’JT,‘() dx;dx;dx;, where
Zjy and Zj refer to the evaluation of the PDF from observations and the model,
respectively. Please note that for higher dimensions, the extension is
straightforward.

The equation closely follows the one used by Perkins et al. (2007) or Maxino
et al. (2008), but has been extended in this case for its use with a PDF defined
in a multi-dimensional (n-dimensional) space. Additionally, when working in
several dimensions, the volume of the n-dimensional interval where the PDF is
being computed must be taken into account for normalization purposes, and so,
the dx;, dx; and dx, terms account for the fact that the range of the different var-
iables can be very different (the average standard deviations of the coefficients in
our first case study are 1.9 K, 9.7 K and 2.1 K). The program warns the user in case
the bias for any of the dimensions is greater than 5% of the standard deviation of
that variate.
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2.4. Representation of marginalized PDFs for the interpretation of results

Finally, even though it is not part of the methodology we propose, in order to be
able to identify the differences in the index corresponding to individual models and
for illustration purposes of the results corresponding to the first case study, we have
computed marginalized f,p(c;, ¢j, h) = [ f(*,h)dcy, i#j+k two-dimensional PDFs
and projected them onto the i—j C0—C1, CO—C2 and C1—-C2 planes, after marginal-
izing k axes C2, C1 and CO, respectively. This will allow us to show that using a single
multidimensional score is better than using a set of unidimensional scores. We only
present marginalized PDFs for the first case study in the paper and, for the second
case study we just collect the aggregated values of the score in a table.

3. Results

3.1. Application to climate model simulation of the daily cycle of
surface temperature

Fig. 3 shows the evolution of the median of the squared errors
and the 95% confidence interval computed from the bootstrap
analysis corresponding to the ERA40 data when the reference PDF
is computed with two conservative estimates of bandwidth
(hp = 0.8 and hg' = 0.67) against the bandwidth that would
correspond to the same sample size for a gaussian PDF, 0.637. It can
be seen that the bootstrap estimate suggests a slightly lower value
(0.55—0.60) of the bandwidth parameter than the one that would
correspond to a gaussian multidimensional PDF. As will be identi-
fied in the marginalized PDFs later, this is to be expected, since the
zonally averaged surface temperature is very non-normal and pe-
riodic, so that several fine scale features of the PDF must be
resolved, and they can only be properly resolved if the bandwidth is
not very high. Therefore, in the following steps an optimum
bandwidth of h = 0.6 will be used unless otherwise explicitly
stated.

In order to test the sensitivity of the classification to different
values of the bandwidth used, Table 2 presents the results of the
multidimensional PDF scores for different values of the bandwidth
parameter (every model is centered and checked against ERA40).
For the optimum bandwidth (h = 0.6), the best model available is
the alternative reanalysis that is used in this study (the NCEP). This
is something that we expected from the beginning, since both
reanalyses are based on observations. This result supports the use
of the method, since the method yields better results for alternative
observation-based reanalyses. MIROC3.2-MR and HADGEM1 are
the models that follow. Some of the model runs differ only on the
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Fig. 3. Squared errors (median and 95% confidence interval as derived from the
bootstrap estimates) between the randomly generated PDFs and the reference PDF
(left, ho = 0.8 and right, ho = 0.67) used for the generation of the smoothed bootstrap.

initial conditions and most of them are grouped together, with the
exception of HADGEM1. The interpretation of this result is that the
variability of the index to the use of different initial conditions is
very low, as should be expected. MIROC3.2-HR, GFDL, ECHAM5 and
BCM2 follow the previous models. The ranking finishes (for the
subset of models and diagnostic variable used in this study) by the
five random runs corresponding to the MRI model. All the runs
corresponding to MRI are grouped, with low values of the score that
do not mix with values corresponding to the rest of the models. It
seems, therefore, that the intra-ensemble variance is in general
(without the exception of MIROC3.2-MR and HADGEM1) smaller
than the inter-model variance of the score. In general, the main
characteristics of these results are robust even with changes in the
bandwidth that span a —33% to +33% interval from the optimum
value found by means of bootstrap. The models that show the
highest (lowest) performances with the optimum value of the
bandwidth continue showing a similar performance for higher or
lower values of the bandwidth. There are occasional excursions of a
model to at most one alternative position up/down of the ranking,
but, on the whole, models tend to maintain their relative ranks
even when the bandwidth is changed by a + 33% relative change
around the optimum value.

Figs. 4—6 show the plots of the marginalized PDFs for the case of
the NCEP (contours) versus ERA40 (shaded), a model showing a
high value of the score, MIROC-3.2-MR (contours) versus ERA40
(shaded) and a model with a lower score, such as MRI (contours)
versus ERA40 (shaded). In order to show simple numbers in the
plots and scales, values of the marginalized PDFs are multiplied by
one thousand before plotting. Before computing the PDFs, the
biases between every model and ERA40 have been removed by
centering all the series.

Fig. 4, left, shows that on the CO—C1 plane, the PDF is clearly
bimodal, as should be expected from a periodic deterministic signal
such as the seasonal cycle of temperature. CO represents the global
average of surface temperature and C1 represents the difference in
temperature between the Northern and Southern Hemispheres.
The main clusters of the CO—C1 PDF appear aggregated around each
Hemisphere's summer. NCEP values show a slightly warmer global
temperature (CO) during Southern Hemisphere summer than the
values shown by ERA40. Fig. 4 (middle) shows that the amplitudes
and phases of the mean global temperature (C0) and the equatorial
bulge (C2) are similar in both reanalyses. On the C1—C2 plane, the
marginalized PDF shows that the main difference between both
reanalyses appears as a slightly higher difference of temperature
between hemispheres (C1) in NCEP when the coefficient repre-
senting the equatorial bell (C2) is positive (summer in the Northern
Hemisphere). However, the PDFs generated by both reanalysis are
extremely similar, as reflected in the high value of the S index be-
tween NCEP and ERA40 (0.82). This is something that we expected
from the beginning, since they correspond to observational
datasets.

Fig. 5 corresponds to the marginal PDFs for MIROC3.2-MR model
(second run), one of the best CMIP3 models according to the metric
selected in this study. Over the CO—C1 plane (left), there is quite a
good agreement between both PDFs, since both clearly represent
the bimodal structure of the PDF. However, the differences between
MIROC3.2-MR and ERA40 are higher than in the previous case, both
in terms of the location of the Northern Hemisphere summer and
also in transitions between seasons that appear in the areas be-
tween the maxima in the marginal PDF. In the case of the CO—C2
plane (middle), the highest disagreement appears at the precise
location of the maxima of the marginal PDFs, particularly during
Northern Hemisphere summer. A similar diagnostic can be derived
from the marginal PDF over the C1—C2 plane. Despite both mar-
ginal PDFs are clearly bimodal, slight differences exist at the placing
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Table 2
Values of the multidimensional S score corresponding to different values of the bandwidth parameter and associated rankings that would correspond to the models, when
compared with ERA40 reanalysis data.

Model h=04 h=0.5 h=0.6 h=0.7 h=038
S score Rank S score Rank S score Rank S score Rank S score Rank
BCM2.0 0.45 10 0.48 9 0.51 9 0.53 9 0.56 9
ECHAM5 045 9 047 10 0.48 10 0.50 10 0.51 10
GFDL-CM2.0 0.55 8 0.58 8 0.60 8 0.61 8 0.63 8
GFDL-CM2.1 0.58 7 0.60 7 0.62 7 0.64 7 0.65 7
HADGEM1 0.66 5 0.69 4 0.71 4 0.72 4 0.73 4
MIROCS3.2-HR 0.62 6 0.65 6 0.67 6 0.70 6 0.71 6
MIROCS3.2-MR-RUNO1 0.66 4 0.68 5 0.70 5 0.72 5 0.73 5
MIROCS3.2-MR-RUNO2 0.69 2 0.72 2 0.74 2 0.75 2 0.77 2
MIROCS3.2-MR-RUNO3 0.69 3 0.71 3 0.73 3 0.74 3 0.75 3
MRI-RUNO1 0.25 13 0.27 13 0.29 13 0.31 13 0.33 14
MRI-RUNO2 0.25 14 0.27 14 0.29 14 0.31 14 0.33 13
MRI-RUNO3 0.25 11 0.28 11 0.30 11 0.32 11 0.34 11
MRI-RUNO4 0.25 12 0.27 12 0.29 12 0.32 12 0.34 12
MRI-RUNO5 0.23 15 0.25 15 0.28 15 0.30 15 0.32 15
NCEP 0.80 1 0.81 1 0.82 1 0.83 1 0.84 1
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Fig. 4. Marginal PDFs of NCEP (contour) and ERA40 (shaded) projected onto the planes defined by the CO—C1 coefficients (left), CO—C2 coefficients (middle) and C1—C2 coefficients
(right). Values of the PDF have been multiplied by 1000 in order to improve the representation of numbers.
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Fig. 5. Marginal PDFs of MIROC3.2-MR (run 2, contours) and ERA40 (shaded) projected onto the planes defined by the CO—C1 coefficients (left), CO—C2 coefficients (middle) and
C1—C2 coefficients (right). Values of the PDF have been multiplied by 1000 in order to improve the representation of numbers.
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MRI-RUNO1 / ERA40
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Fig. 6. Marginal PDFs of MRI (run 1, contours) and ERA40 (shaded) projected onto the planes defined by the CO—C1 coefficients (left), CO—C2 coefficients (middle) and C1—C2
coefficients (right). Values of the PDF have been multiplied by 1000 in order to improve the representation of numbers.

of the PDF maxima. The equatorial bell (C2) in MIROC3.2-MR is
stronger than the one in ERA40 during negative phases (Northern
Hemisphere winter) of inter-hemispheric temperature differences
(C1).

Fig. 6 corresponds to MRI (run 1) model. The evolution of the
daily seasonal cycle of temperature in terms of CO (global T) and C1
(inter-hemispheric temperature contrast, left) does not present a
bimodal structure with the PDF maxima placed at the same points
shown by the reanalysis. The transitions between summer and
winter regimes happen through routes that do not correspond to
the ones in the ERA40 Reanalysis. The structure of the marginal PDF
for the CO—C2 plane is markedly different between MRI and ERA40,
with the cold maximum in the PDF during summer in the Southern
Hemisphere quite misplaced in the case of MRI. This is also
apparent in the marginal PDF corresponding to the C1—C2 plane,
where maxima of the PDFs do not appear neither on the same
places nor even with the same phases.

Finally, Fig. 7 shows that the index is very sensitive to the ex-
istence of a bias between the models and reference observations. In
this case, the PDFs are computed without previously removing the
bias between the surrogate model (NCEP data) and the observa-
tions (ERA40) and the S score index that we get between ERA40 and

NCEP reanalyses is extremely low (S = 0.075). The marginal PDFs
show that in general there is a very good agreement in the structure
of the 3D PDFs, but the center of masses of both PDFs are not
located at the same places. The biases for every coefficient are not
very high, considering their variances. The bias of the CO compo-
nentis 0.7 K (0.2% relative error), the bias in C1 is 0.4 K (7.5% relative
error) and the bias in C2 is —0.34 K (—1.33% relative error). How-
ever, even such low values of the bias lead to a score index that
could be interpreted as poor performance of the surrogate model
(NCEP reanalysis) versus ERA40 due to the complex structure of the
3D PDF. However, this is a false impression that can not be defended
if the spatial patterns of the marginal PDFs are analyzed in detail.
This means that the index should not be applied to model results
that are biased against the reference observations. The existence of
biases in the models leads to greater observational uncertainty
when the model and observational datasets are not centered. The
code does not force the centering of the datasets and, therefore, the
user must take care of this when the dimensionality reduction
stage of the data analysis is done. In particular, it is interesting to
stress that, internally, when computing the n-dimensional PDFs, all
the datasets are centered (each one using its n-dimensional

NCEP / ERA40 (no centered)
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Fig. 7. Marginal PDFs of non-centered NCEP (contours) and ERA40 (shaded) projected onto the planes defined by the CO—C1 coefficients (left), CO—C2 coefficients (middle) and
C1—C2 coefficients (right). Values of the PDF have been multiplied by 1000 in order to improve the representation of numbers. The bias between both reanalysis has been retained.
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symmetric principal components. When the output netCDF files
holding the PDFs are saved, the original units in the phase space of
each dataset (model or observations) are recovered and the average
is added to the anomalies derived from the PDF in the principal
component space stored in the memory of the computer. Therefore,
the key point here is that if there exists a constant bias between the
model and the reference observations (first and second netCDF files
passed to program mpdf_score), it could lead to very low values of
the score despite the model representing properly the variability
(anomalies). This means that the evaluation of the models in terms
of a constant bias and the n-dimensional PDFs should be carried out
as different steps.

From the point of view of performance, we have measured the
execution time needed by each version of the program to complete
the bootstrap procedure. On average, the serial OPB approach is 140
times faster than the serial GPB approach and, moreover, the parallel
OPB program scales linearly with the number of cores, being 4.3
times faster than its serial counterpart when using 4 cores. This
means that an evaluation of a single model that takes approximately
22 days with the serial GPB program, can be executed inless than 1 h
using the most efficient and parallel implementation presented in
this contribution. These experiments have been conducted in a
desktop computer with an Intel i7 3820 processor (four cores,
3.6 GHz, Hyperthreading enabled) with 8 GB of RAM. Therefore, the
use of this technique is not limited to the availability of specialized
clusters or hardware that would limit its practical use.

3.2. Evaluation of Sea Surface Temperature and Sea Surface Height

The first two PCs of the global coverage weekly time-scale SST
(T1, T2) and SSH (H1, H2) variables belonging to the ARMOR-3D
(Guinehut et al., 2004, 2012) and CFSR (Saha et al., 2010, 2014)
datasets will be used in the following to evaluate the second with
respect to the former. This means that the ARMOUR-3D product
(blended satellite and in-situ observation product) is the reference
to evaluate the CFSR product (coupled atmosphere-ocean modeling
product). Considering the first two PCs of each variable in the
evaluation (T1, T2, H1, H2), the global-scale main variability modes
of each variable are being take into account at a glance. As the
seasonal cycle was not explicitly removed from the anomalies used
to deduce the PCs, the four considered variables are almost
completely related to the global-scale seasonal cycle (H2 contains
some longer time-scale variability). Thus comparing combinations
of different variables from CFSR with those of ARMOR-3D the ca-
pacity of the modeling product to jointly characterize different
main global-scale variability modes (their seasonal cycles) is eval-
uated. For example, if T1 and H1 are considered at the same time
(case T1H1) the capacity of CFSR to simulate the main global-scale
components of the seasonal cycle of the SST and SSH variables is
being evaluated in a single and multivariate score.

Table 3 shows the optimal h and the score obtained with the 6
analyzed cases going from the univariate T1 and H1 cases, the
multi-dimensional univariate T1T2 and H1H2 (reserving the term
multivariate to the cases with variables with different physical di-
mensions, i.e. Kelvins and meters) and the multivariate T1H1 and
T1T2H1H2 cases. All variables have zero mean so no bias related
issues will be observed in this case. Like in the previous case study
on the TAS, the same three-step methodology was applied in this
case: for a given row in Table 3, the optimal h using the bootstrap
procedure is initially estimated. Next, the PDF using the optimal h is
computed and, finally, the score (one dimensional, multidimen-
sional or multivariate) is computed from the PDFs obtained from
the CFSR and the ARMOR-3D variables.

The very high scores of T1 (0.98) and T1T2 (0.97) cases indicate
that the model is reproducing well the global-scale SST seasonal

Table 3

Optimal h and resulting scores obtained from the evaluation of CFSR (model) with
respect to ARMOR-3D (observations) based on the first PCs of the SST (T1, T2) and
SSH (H1, H2) from each of the products. Univariate unidimensional (T1 and T2),
univariate multidimensional (T1T2 and H1H2), multivariate unidimensional (T1H1)
and multivariate multidimensional (TIT2H1H2) cases are shown to illustrate the
number of potential combinations that can be considered in the framework of the
proposed methodology.

Case name h (optimal) Score
T1 0.36 0.98
H1 0.54 0.84
T1T2 0.52 0.97
H1H2 0.69 0.79
T1H1 0.58 0.67
T1T2H1H2 1.04 0.42

cycle. The same stands for the SSH, as slightly lower but still high
values are observed in the analog H1 (0.84) and H1H2 (0.79) cases.
This difference between the SST and SSH is not strange as it is only
showing the fact that the modeling of the SSH involves many more
processes (dynamic anomalies, steric anomalies,...) compared to
that of the SST (mixed layer heat-budget and currents). The
multivariate cases T1H1 (0.67) and TIT2H1H2 (0.42) indicate a loss
of performance with growing number of the dimensions of the
multivariate PDF, or in other words, with increasing complexity.
Any error in any of the tested dimensions leads to a smaller value of
the score. It can be seen that, although univariate scores point to
good modeling performances, the multivariate approaches
combining the same variables yield worse results. In this applica-
tion a single model is being evaluated, but results show that dif-
ferences appear when considering multivariate scores that
discriminate between errors that appear through all the phase
space.

4. Discussion

4.1. Comparison with the results of the evaluation of models using
previous techniques

The results presented in this contribution extend the previous
analysis by Errasti et al. (2013) with a new methodology. Therefore,
the obvious first part of the discussion is a comparison of the
rankings obtained by this methodology and the final rank obtained
in the previous study. It can be seen that, for the most part, the
aggregated rankings behave similarly in the current and previous
studies (see Table 4). In general, the best models (NCEP, MIROC3.2-
MR and MIROC3.2-MR) keep a good ranking also under the new
metric proposed here. For the worst case (MRI-CGCM2.3), the same
result holds, too. However, some changes appear in the relative
rankings of models in the middle part of the classification. It must
be kept in mind that the rankings in Errasti et al. (2013) also
considered the root mean square errors between the seasonal

Table 4

Global rankings for the models according to their representation of the daily zonally
averaged temperature in Errasti et al. (2013) and according to the methodology
proposed in this contribution (3D-PDF).

Errasti et al. (2013) rank 3D-PDF rank
BCM2.0 5 6
GFDL-CM2.0 7 5
GFDL-CM2.1 6 4
MIROCS3.2-HR 2 3
MIROCS3.2-MR 3 2
ECHAM5 4 7
MRI-CGCM2.3 8 8
NCEP 1 1
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cycles, so that the rankings can not be completely the same. Any-
way, as a result of the new technique, we find a similar classification
of models albeit with a single objective index without the need of a
posterior averaging of individual scores or ranks. Therefore, we
think that this methodology makes it easier and more objective to
classify the models according to their performance when simu-
lating several variables.

The technique presented in this contribution is slightly different
of those carried out in other model inter-comparison studies found
in the climate literature. In some studies estimates of simple or
derived climate variables simulated by the models and the obser-
vations are computed, but a final single performance rank is not
presented (e.g., Maxino et al., 2008; Nieto and Rodriguez-Puebla,
2006; Russell et al., 2006; Vera et al., 2006; Ulbrich et al., 2008).
Other studies propose a single final rank but based on the averaging
of skill scores, ranks with or without different relative weight (e.g.
Fu et al., 2013; Errasti et al., 2011, 2013). The use of this new single
multidimensional index on PDFs would avoid the need to establish
a final step in order to combine and weight the different climate
variables analyzed, since the multidimensional distributional
agreement index S already considers the characteristics of the PDF
at the multidimensional space covered by the PDF.

An advantage of our technique is the interpretability of the
rankings if the marginal PDFs are used the same way as in Figs. 4, fig
5, fig 6, fig 7. The marginal PDFs can be very easily computed from
the 3D PDF (in general the n-dimensional PDF) that has been
computed to produce the S score. The geometrical structure of the
marginal PDFs throws light in terms of the differences between
models even when temporal position of every point in the PDF
space is lost, since geometrical relations between variables allow us
to interpret them. This can not be achieved when using one-
dimensional PDFs, since in that case, the relationship of the
points between different variables can not be resolved.

4.2. Multivariate kernel density estimators in the context of model
performance evaluation methods

In this subsection we consider the methodology for model
evaluation based on multidimensional kernel density estimators
proposed in this contribution in the general context of the model
performance evaluation. Bearing in mind only the two case studies
analyzed in the Results section, we could restrict this section to the
framework of the modeling of geophysical fluids. There's no reason,
however, to restrict the discussion in such a manner. On the con-
trary, and as already stated, the framework will be that of the
evaluation of the performance of environmental models in general.
To put the proposed technique in context, we will refer to a recent
position paper by Bennett et al. (2013) in this journal on the char-
acterization of the performance of environmental models. The
paper by Bennett et al. (2013) describes a series of methods and
procedures for both qualitative and quantitative model perfor-
mance characterization. It also proposes a general purpose five-
step recipe for model skill evaluation. Direct references will be
made to the classification of evaluation methodologies and the five-
step recipe proposed in Bennett et al. (2013), avoiding the inclusion
of redundant information or descriptions here. Therefore, the
reader is referred to that contribution for a complete understanding
of the forthcoming discussion.

In the case of the classification categories of quantitative mea-
sures of model performances found in Bennett et al. (2013), the
method based on multidimensional kernel density estimators
would fall in more than a category at the same time. First, amongst
the direct value comparison methods that compare all model and
observation values as a whole (even for multidimensional and
multivariate cases) to give a single value metric, the

multidimensional score that is the result in our case. Note, however,
that this classification is valid only for the final step of the tech-
nique when the multivariate (multidimensional) PDFs belonging to
the observation and the model are compared. Note also that this
PDF to PDF comparison could be understood as a high precision
(number of categories) multidimensional contigency table, since
PDFs are actually evaluated on a discrete grid. According to this, the
last comparison step would fall amongst concurrent comparison
methods. In addition, and paying attention to the step that is car-
ried before the PDFs are compared, it is clear that the method must
also be considered within the data transformation method class
(transformation to PDF space). Summarizing and according to the
classification of quantitative model performance evaluation tools
described in Bennett et al. (2013) the proposed technique can be
considered as a direct comparison method taken as a whole, but
also as a data transformation method and a concurrent comparison
method if two inner steps are considered separately.

Although they are not part of the proposed methodology,
additional verification techniques considered in Bennett et al.
(2013) have also been considered in this contribution, and it is
worth mentioning those here. For instance, 2D marginalized PDFs
(Figs. 4—7) were used in the first case study to understand by
means of a visual inspection the reasons that drove the relative
differences in the scores shown in Table 2. Once again not part of
the proposed technique, but mentioned in Bennett et al. (2013)
and used in our case studies, were the data transformation
methods: the Lengendre polynomials or the zonally averaged
values in the first case study, and the global-scale PCA analysis of
the variables in the second one.

In the case of the five-step general recipe for model performance
evaluation proposed by Bennett et al. (2013), our procedure should
be taken into account in the fifth step of refinements due to its
complexity. This does not mean that previous steps like checking
the data before any additional step, performing some visual checks
and deducing some basic metrics are to be left aside. In fact, they
are more than convenient as part of any good practices procedure
for model performance evaluation and were also applied in both
case studies shown in Results section.

4.3. Additional capabilities and potential applications of the
methodology

The case study described in Section 3.2 shows the evaluation
of a single model with two multidimensional variables. The
objective was not to make a thorough verification of the selected
CFSR model, but to illustrate some concepts of broad applicability
like possibility of using and also combining very different vari-
ables (TAS, SST and SSH in the presented case studies), the po-
tential of the use of techniques to reduce the dimensionality of
the dataset to whom the verification is to be applied (Legrendre
Polinomial of zonally averaged values in the first case study,
global-scale principal components in the second case), or the
relative score changes of the univariate and multivariate cases, to
mention some.

With regard to the results shown in Table 3, the most remark-
able fact is the reduction of the scores in the multivariate case
compared to the considerably better scores obtained in the uni-
variate cases. This could be expected, however, as the growing
complexity of the PDF with growing number of dimensions/vari-
ables will tend to enhance the differences in the model/observation
PDFs. This example, although simple, has other potential uses in
addition to the one discussed here. For instance, one may want to
evaluate the evolution of the performance of a model to see the
impacts of developing stages in the model. Then a comparison like
the one in case study two will be useful, specially if the
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improvement can be identified by a multivariate verification.
Another application could include the joint evaluation of several
model variables, like the one in the first case study. In addition,
other variables could be added with selective criteria to the analysis
(like the surface currents, the depth of the thermocline or the
characterization of ENSO, to mention some) without increasing too
much the number of variables, but considering many aspects of the
physics accounted by the modeling.

4.4, Limitations of the methodology

As with any other model evaluation index, this index has limi-
tations too. First, it is probably not adequate to detect the probability
of very infrequent events, since multidimensional PDF estimations
tend to be unreliable on those areas where the value of the PDF is
already low. It has been shown in this contribution that its reliability
is very low if there exists a bias between models and observations.
Secondly, the sample size must be high enough for a modest
dimensionality to be analyzed. It is well known that, when analyzing
multidimensional datasets, the phase space is too empty when the
dimensionality of the space grows (Bellman, 1961). This might also
happen with environmental models in general if some kind of initial
dimensionality reduction step was not applied to direct model
output at the grid point level. Therefore, working with daily data for
climatic applications is almost a must. For other kind of environ-
mental models, fast time scales should in any case be used.

Anyway, it has to be considered that multivariate density esti-
mation is always computationally expensive, so that the dimen-
sionality of the dataset must be kept modest. When the
dimensionality of the problem increases, the CPU needed increases
as a result of the increase of grid points and the complexity of the
linear algebra operations performed. Additionally, for high
dimensionality, the size of the netCDF files and the memory needed
to evaluate them scale too fast and the user is faced with limitations
in the hardware of computers (memory and disk). As a result, we
must conclude that it is always necessary to perform an initial step
of data dimensionality reduction that allows to work in a funda-
mental set of low-dimensionality variables that reproduce the
behavior of the system. In the two case studies presented in this
contribution, the initial step of dimensionality reduction has been
performed by projections onto Legendre polynomials or by means
of principal component analysis.

Brands et al. (2012) showed that, in some circumstances,
particularly when there exists a clustering of data near zero (such as
it happens for specific humidity), the Kolmogorov—Smirnov test
can be better applied than the univariate similarity index equiva-
lent to the multidimensional one used in this paper. In addition, the
existence of a well known distribution corresponding to the Kol-
mogorov—Smirnov test allows the researcher to make use of sta-
tistical hypothesis testing. This can not be done unless Monte Carlo
techniques are used for the univariate similarity index. However,
when working in multiple dimensions, the univariate Kolmogor-
ov—Smirnov test can not be extended to several dimensions above
two or even three (Fasano and Franceschini, 1987; Justel et al., 1997;
Lopes et al., 2008; Peacock, 1983). Since the methodology that we
propose in this study can work in multiple dimensions, we find that
this methodology will, hopefully, allow to perform an easier eval-
uation of models according to several criteria, as was originally
intended.

5. Conclusions
The index based on the common area between PDFs that is

frequently used in the univariate evaluation of climate models, and
that is computed as the common area under the PDFs

corresponding to models and observations, has been extended to
multidimensional problems. In addition, tools that allow its use
have been developed and made freely available as open source
software. The tools compute the kernel-based multidimensional
PDF, identify the optimum value of the bandwidth by means of
smoothed bootstrap and compute the common volume under two
n-dimensional PDFs.

The use of multidimensional PDFs is very intensive in terms of
CPU time, and it is particularly so for the case of the bootstrap
estimation of the bandwidth, since several realizations of the PDF
must be computed for every bandwidth value tested. The avail-
ability of a parallel version of the tool for higher dimensionality and
for the bootstrap allows to carry out those computations in short
times (less than 1 h in our case, using standard hardware).

The use of a multidimensional analysis produces a single index
corresponding to every model even after analyzing several vari-
ables, and this result makes it easy to perform evaluation of the
models under several target variables. In the contribution pre-
sented here, we have explored one case such as three Legendre
coefficients that expand the daily cycle of zonally averaged tem-
perature. However, the same approach could be applied to the joint
analysis of temperature, outgoing longwave radiation or cloud
cover (to name a few) such that the structure of the multidimen-
sional PDFs (probably properly marginalized as in this contribu-
tion) could shed light over the behavior of models according to
known physical mechanisms.

Even though a tool of the set described in this contribution al-
lows to make an objective selection of the optimal bandwidth to be
used in the generation of the PDFs by means of smoothed boot-
strap, the case study in this paper shows that the ranking of the
models is quite robust even under severe (+30% of the optimal
bandwidth) changes in the bandwidth used for the generation of
the multidimensional PDFs. Thus, the results obtained through the
use of the tools presented in this contribution are reliable.

However, the index is extremely sensitive to the existence of a
constant bias between models and it should not be used without
previously centering the data, a finding in agreement with previous
studies using univariate PDFs (Brands et al., 2011, 2012). The pro-
grams do not request that the datasets are centered, but a constant
bias between the model and observations could lead to unphysical
diagnostics in several dimensions. A potential solution is to perform
the evaluation onto n-dimensional centered data, so that the bias is
automatically removed. Alternatively, the analysis can be per-
formed removing the bias from the model results with respect to
observations. Therefore, the analysis of the bias must still be kept
independent from the analysis of the shape of the PDF presented in
this contribution. The current implementation of the mpdf_score
program provides a warning if the bias at any of the dimensions is
greater than 5% of the standard deviation of the corresponding
variate.

The second case study demonstrated the applicability of the
proposed methodology to multivariate and multidimensional data
using data from oceanographic SST and SSH variables too. In
addition, and although it is not part of the proposed technique, this
case study also demonstrated the potential of the use of a pre-
processing step for the reduction of the dimensionality of the data,
based on a PCA analysis of the original dataset in this case. This
shows that the method can potentially be applied to a large family
of environmental problems.

The overall evaluation of environmental models is a complex
task and different performance scores detect different weak or
strong points of the available global models. We hope that the
addition of a new methodology and tools that allow its easy
application by other researchers make it easier the identification in
future experiments of areas of models that can be improved.
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1. Introduccion

La computacién de alto rendimiento es la practica de utilizar miltiples nodos de computo
para el procesamiento de aplicaciones paralelas. Estas aplicaciones distribuyen su carga de trabajo
entre los distintos procesadores de los nodos de computo, con el objetivo de reducir los tiempos de
ejecucién. Tradicionalmente los nodos de computo han sido sistemas homogéneos, donde todos los
procesadores eran del mismo tipo, pero desde hace aproximadamente 10 anos estos nodos estan
compuestos por procesadores de distintos tipos, conviertiéndose asi en sistemas heterogéneos.

En la actualidad los sistemas heterogéneos estdn comunmente formados por uno o varios pro-
cesadores multi-ntcleo y uno o varios coprocesadores 6 aceleradores de cémputo. Los procesadores
multi-nucleo actuales cuentan con caracteristicas para tratar de manera eficiente cualquier tipo
de c6digo serie (predictores de salto, médulos para ejecucién fuera de orden,...) pero no proveen
un rendimiento 6ptimo con aplicaciones que escalan a miles o millones de hilos. En cambio, los
aceleradores son sistemas con arquitecturas pensadas para ejecutar tareas concretas, general-
mente con alto grado de paralelismo, de manera més eficiente que los procesadores multi-nucleo.
En los entornos de alto rendimiento actuales los aceleradores més comunes son las unidades de
procesamiento grafico (en inglés Graphics Processing Units o GPUs) y los sistemas many-core
como el Intel Xeon Phi.

Las GPUs se empiezan a utilizar en entornos de alto rendimiento de manera extensiva alre-
dedor de 2007, cuando el fabricante NVIDIA publica el entorno CUDA, que permite desarrollar
aplicaciones paralelas para ser ejecutadas en unidades graficas. Una GPU es un procesador con
cientos de ntcleos de capacidades reducidas que dan excelentes resultados en aplicaciones parale-
las que lanzan miles de hilos ligeros. Las més recientes, disenadas para altas prestaciones, pueden
ofrecer una capacidad teérica de cémputo de hasta 1.8 TFLOP/s (1.8 billones de operaciones
en coma flotante por segundo) en doble precisién. Por otra parte el Xeon Phi es un acelerador
many-core comercializado por Intel. Los ntcleos del Xeon Phi son una versién simplificada de
los ntcleos Intel multi-nucleo con consumo energético reducido para poder aunar hasta 61 en un
s6lo acelerador. El actual Xeon Phi proporciona hasta 1 TFLOP/s de capacidad de cémputo en
doble precisién, y uno de sus puntos fuertes es la variedad de entornos de desarrollo con los que
es compatible, tales como OpenMP, OpenCL, Cilk o MPI.

Aunque los actuales aceleradores proporcionan una gran capacidad tedrica de cémputo (entre



4 y 8 veces méds que un procesador multi-nucleo actual), uno de los grandes retos es extraer
todo el rendimiento que prometen. Asi como los multi-nucleo actuales estdn preparados con
caracteristicas que les permiten ejecutar c6digo muy diverso con un rendimiento aceptable, los
aceleradores carecen de ellas. A dia de hoy, aplicaciones que requieren cdlculos de algebra lineal
o que hacen uso extenso de FFTs, han conseguido extraer un rendimiento cercano al pico tedérico
de estos aceleradores.

En esta tesis se analizan algunos de los problemas que surgen al tratar de utilizar de ma-
nera eficiente coprocesadores de propdsito general. Para ello, se utiliza como caso de estudio la
téenica estadistica estimacion de densidades basada en nicleos (en inglés Kernel Density Esti-
mation o KDE), la cual es usada comuinmente en aplicaciones cientificas de altas prestaciones. La
motivacion principal de la tesis es proporcionar una pieza de literatura 1til que ayude a los desa-
rrolladores en el uso eficiente de coprocesadores modernos, incluyendo diferentes evaluaciones de
rendimiento en distintos escenarios.

En primer lugar se presenta un andlisis de la literatura sobre técnicas de modelado de ren-
dimiento en coprocesadores de propédsito general. En segundo lugar, se presenta el diseno de un
nuevo algoritmo para calcular KDE llamado S-KDE. Después presentamos la implementacion y
evaluacién del rendimiento de S-KDE, primero en procesadores y coprocesadores multi-nicleo, y
luego en una gama mas amplia de coprocesadores de proposito general. Por ultimo, presentamos
una aplicacién de S-KDE en el dominio de la climatologia.

2. Estudio de las técnicas de modelado de rendimiento pa-
ra aceleradores

El modelado de rendimiento en el area de la computacién de altas prestaciones se refiere
a representar matematicamente el comportamiento de un sistema o aplicaciéon para su mejor
comprensién y/u optimizacién. Este proceso requiere recoger informacién sobre el sistema y
aplicacién, generalmente en forma de contadores, para crear un modelo de rendimiento que
genere una estimacion, p.e., del tiempo de ejecucién. Las técnicas para crear el modelo pueden
ser variadas, como disenar el modelo matematicamente desde cero, basarse en uno existente, o
crear uno mediante técnicas de aprendizaje automatico.

Desde que aceleradores como las GPUs o el Xeon Phi se popularizaron en la computacion de
altas prestaciones, ha habido multiples contribuciones que modelan algin aspecto del rendimiento
en estos dispositivos, generando estimaciones de tiempos de ejecucién o métricas sobre el uso de
los dispositivos. Sin embargo, debido a la novedad del drea, no hay ningun criterio establecido a
la hora de evaluar las propuestas, ni estd clara su forma de uso o aplicabilidad en algunos casos.

Estos modelos se pueden clasificar segun diferentes criterios. Nuestra propuesta es una clasi-
ficacién basada en la informacién generada por el modelo. Hemos identificado modelos disenados
para:

= Predecir el tiempo de ejecucién de una aplicacién en una plataforma determinada

= Identificar los cuellos de botella en la aplicacién (en cuanto a rendimiento) y proponer
modificaciones de cédigo para evitarlos

= Proporcionar estimaciones de consumo de energia
= Proporcionar informacion detallada del uso de recursos, basado en simulacién

En la revisién realizada, hemos recopilado 29 modelos de rendimiento, los hemos clasificado
en base a esta taxonomia y para cada uno extrajimos las siguientes caracteristicas:



= Requisitos de entrada, como ejecutar micro-Benchmarks o analizar c6digos intermedios

= Limitaciones como, por ejemplo, falta de detalle en el modelado de memoria o inexactitudes
al predecir un tipo particular de aplicacién

= Puntos destacados y beneficios mas alla de otros modelos, como facilidad de uso o la
posibilidad de ampliacién

Tras realizar el estudio pudimos identificar los modelos més relevantes para cada escenario, y
llegar a la conclusion de que todos los modelos y herramientas disponibles en la actualidad tienen
limitaciones, pero forman la base sobre la que seran construidas mejores herramientas. El estudio
nos permitié de la misma forma, identificar algunas limitaciones generales de los modelos, como
la inexistencia de un modelo preciso valido para un amplio conjunto de arquitecturas, o el sesgo
general hacia la plataforma CUDA de NVIDIA.

3. S-KDE: Un algoritmo eficiente para la estimacion de
densidades basada en nucleos

La estimacién de densidades basada en nticleos (o KDE del inglés Kernel Density Estimation)
es una técnica aplicada desde los anos 80 como técnica de estimacién de densidad en diferentes
problemas cientificos. KDE crea estimaciones suaves, en comparaciéon con otras técnicas como el
histograma. Intuitivamente, dado un espacio de evaluacion y un conjunto de observaciones, KDE
coloca un “bulto” sobre cada observacién y agrega el valor de esos bultos para crear la funcién
de densidad de probabilidad.

La estimacion resultante es continua pero la mayoria de implementaciones de KDE la pro-
porcionan como un conjunto de valores discretos. El usuario define los limites del espacio de
evaluacién y la separacién entre los puntos donde KDE evaluard la funcién de densidad de
probabilidad. El resultado es una malla de evaluacién discreta como una serie de puntos de
evaluacién.

La forma més comtun para computar KDE es recorrer cada punto de evaluacién de la malla,
y calcular para cada uno de ellos la densidad asociada a cada observacién. Este enfoque es
completamente paralelizable usando un paralelismo a nivel de datos, pero en muchos casos implica
un gran numero de calculos inutiles. Esto es debido a que una observacién afecta solamente a una
porcién de la malla de evaluacion, es decir, a un conjunto de puntos de evaluacién a su alrededor.

El tamaio del 4rea de influencia de una observacién depende de la eleccién del nicleo (la forma
del “bulto”) y otros pardmetros. Nuestra propuesta comienza por definir el drea de influencia de
una observacién como un conjunto de puntos de evaluacion, y después recorrer sélo los puntos de
evaluacién afectados por cada muestra. La complejidad computacional del enfoque tradicional es
O(kgmn), siendo k4 una constante de dimensionalidad, m el nimero de puntos de evaluacién (el
tamafio de la malla de evaluacién) y n el nimero de observaciones. La complejidad de nuestro
enfoque es O(kqnp), siendo kg una constante de dimensionalidad, n el nimero de observaciones
y p el nimero de puntos de evaluacion en el area de influencia de una observacion. La ventaja de
nuestro enfoque se basa en que p es generalmente mucho mas pequeno que m. Definimos nuestra
propuesta como S-KDE.

La literatura sobre KDE incluye diferentes funciones nicleo a usar. Dependiendo de la elec-
cion, la técnica para definir el drea de influencia de una observacién sera diferente. En este trabajo
usamos un nicleo Epanechnikov (de forma eliptica) y una técnica basada en los valores propios
de la matriz de covarianza del conjunto de observaciones. Esto nos permite calcular un cortono



de forma rectangular que delimita el area de influencia de una observacion, que llamaremos re-
cuadro de delimitacion de una observacién. Ademads, proponemos una técnica llamada Chop &
Crop que ajusta el tamano del recuadro de delimitaciéon mediante la eliminacién de puntos de
evaluacién no pertenecientes a la zona de influencia del niicleo. Esta técnica funciona reduciendo
primero el recuadro d-dimensional a un conjunto de planos bidimensionales, y luego ajustando
cada plano al minimo rectangulo.

Podemos proporcionar algunos nimeros para ilustrar la eficacia de S-KDE. Usaremos como
ejemplo un conjunto de 1 millon de observaciones y un espacio de evaluaciéon con 194 millones
de puntos de evaluacién. Utilizando el enfoque tradicional KDE que atraviesa todos los puntos
de la malla de evaluacién, se requerirfan 1,94 % 10'* operaciones de par observacién- punto de
evaluacién. En contraste, un recuadro de delimitacién 3D alrededor de cada observacién en el
mencionado escenario contiene un promedio de 102.461 puntos, y utilizando el enfoque S-KDE
se requerirfan 1,02 x 10! célculos en total. Ademds, si aplicamos la técnica de Chop & Crop,
el nimero de puntos de evaluaciéon por cada recuadro de delimitacién se reduce a 53.511 de
promedio, y el resultante niimero total de célculos descenderia hasta 5,35 * 1010 .

4. S-KDE en procesadores y coprocesadores multi-niicleo

El algoritmo S-KDE descrito en la secciéon anterior tiene una complejidad computacional
mucho menor que el enfoque tradicional para KDE. Sin embargo, evaluar grandes conjuntos
de datos y/o densos espacios de evaluacién puede ser computacionalmente costoso. Por ello,
nuestro siguiente paso consiste en el diseno e implementacion de S-KDE como un programa
paralelo, enfocado a procesadores y coprocesadores de multiples nicleos. Hemos desarrollado
nuestro cédigo en ANSI-C, y la paralelizacién se realiza haciendo uso de OpenMP y las directivas
que proporciona el compilador Intel.

En nuestra implementacion, cada hilo calcula la influencia de un conjunto de observaciones
sobre el espacio de evaluacion. Para cada muestra, el hilo primero ajusta el recuadro de deli-
mitacién. Si el espacio de evaluacién es de dimensionalidad tres o superior, el Chop & Crop es
recursivamente aplicado para reducir el cémputo hasta una sucesién de planos bidimensionales.
Finalmente, se computa la densidad que cada observacién ejerce en cada plano 2D.

Uno de los inconvenientes de realizar los calculos en base a las observaciones es la contencion
de memoria que podria aparecer cuando dos o més hilos diferentes, computando observaciones
cuyas areas de influencia se solapan, tienen que agregar valores parciales de densidad en la
misma posicién de memoria. Para reducir este efecto, cada hilo calcula cada fila del plano en su
memoria privada, y lo anade a la memoria principal mediante una primitiva de escritura atémica
de OpenMP. De esta manera, aseguramos la consistencia de los datos. Hay un precio a pagar,
sin embargo: las operaciones atémicas provocan una degradacién de rendimiento debido a la
serializacién de las escrituras de memoria.

Hemos ejecutado nuestro cédigo S-KDE en dos plataformas de hardware diferentes: una CPU
Intel Core i7 3820 (4 ntcleos @ 3.60 Ghz) y un coprocesador Intel Xeon Phi 3120A (57 nicleos @
1.1 Ghz), con conjuntos de datos de diversa dimensionalidad y diferentes tamanos de evaluacién.
La evaluacién se lleva a cabo variando el espaciado entre los puntos de evaluacién de la malla
con el fin de aumentar o reducir el tamano del problema.

En una comparacion inicial, medimos los tiempos de ejecucién de nuestra implementacion
S-KDE contra dos implementaciones publicas de KDE: ks, una libreria del software estadistico
R, enlazada con la biblioteca Intel MKL para realizar cémputo multi-nicleo y GPUML, una
implementacién basada en GPUs. Las pruebas de esta iltima se ejecutaron en una GPU NVIDIA
GTX 650. Nuestra implementacién de S-KDE en el Xeon Phi obtuvo valores de speed-up mayores



de 400x comparado con el resto de implementaciones en todos los escenarios.

Adicionalmente, realizamos distintas pruebas para evaluar aspectos mas concretos de la im-
plementacién de S-KDE. En una de las pruebas ejecutamos S-KDE con Chop & Crop habilitado
e inhabilitado para evaluar las mejoras de rendimiento derivadas de la utilizacion de esta técnica.
Medimos que S-KDE funciona un 60,4 % més rapido en el Core i7 y un 49,2 % en el Xeon Phi
usando Chop & Crop, debido a la eliminacién de calculos indtiles (y los accesos a la memoria
correspondientes). A continuacién, tratamos de encontrar los cuellos de botella del cédigo. Se
realizé una diseccién de los tiempos de ejecucion para medir el peso de las diferentes etapas del
c6digo. Encontramos que la parte de escritura atémica en memoria es el mayor cuello de botella.

Con todos los experimentos concluimos lo siguiente: (1) la implementacién actual de S-KDE,
en comparaciéon con implementaciones publicas recientes de KDE, proporciona el mejor rendi-
miento, incluso cuando se ejecuta en un procesador i7 modesto, y (2) aunque el rendimiento
general del c6digo es satisfactorio, hemos detectado varios cuellos de botella (siendo el principal
la contencién de memoria al escribir) que requieren una mayor exploracion.

5. S-KDE en coprocesadores de proposito general

El algoritmo S-KDE presenta una significante mejora en el computo de KDE, y hemos valida-
do cémo su implementacion en procesadores y coprocesadores multi-nticleos es eficaz comparada
con otras implementaciones del estado del arte. Sin embargo, esta implementacién sélo es vélida
para un conjunto limitado de coprocesadores. El espectro de coprocesadores en el area de la
computaciéon de altas prestaciones es muy amplio en la actualidad. Por lo tanto, sentimos que
nuestro enfoque S-KDE deberia ser probado en un conjunto méas amplio de aceleradores.

Debido al modelo de procesamientos masivo de datos para el que los aceleradores estan
pensados, portar un cédigo requiere generalmente un importante rediseno partiendo desde el
serie. En nuestro caso, hemos partido de la versién pensada para procesadores multi-nicleo y
hemos divido el cédigo en diferentes etapas. Con el fin de poder ejecutar nuestro cédigo en el
mayor numero de dispositivos posible, usamos OpenCL como entorno de programacion. Ademas,
la versién para aceleradores ha requerido incluir ciertas operaciones auxiliares que no estaban
presentes en la versién multi-nicleo.

El cédigo OpenCL ha sido evaluado en tres aceleradores modernos: una GPU AMD, una
GPU NVIDIA y un coprocesador Intel Xeon Phi. Ademds, nuestro objetivo ha sido realizar el
analisis utilizando herramientas independientes de la plataforma, es decir, prescindir de herra-
mientas especificas del fabricante. Para ello, utilizamos algunos de los modelos de rendimiento y
herramientas presentadas en nuestro estudio inicial.

En esta evaluacién hemos seguido un enfoque de analisis descendente, partiendo de métricas
de rendimiento global para ir entrando poco a poco en detalles de menor nivel. Las pruebas
iniciales fueron una comparacion de tiempos globales de ejecucién contra una implementacién
serie de S-KDE, donde el cédigo OpenCL obtuvo niveles de aceleracién en el rango de 3.6x
a 5.1x para el mas complejo de los problemas analizados. Después de las pruebas iniciales, nos
centramos en aspectos mas especificos. Utilizando modelos como Roofline y suites de benchmarks
como SHOC, pudimos encontrar los cuellos de botella del c6digo en los diferentes dispositivos.

Llegamos a la conclusién de que nuestro codigo OpenCL S-KDE alcanza una eficiencia acep-
table en los aceleradores probados, dadas las restricciones del algoritmo: tiene una complejidad
computacional (relativamente) baja, pero también hace un uso extensivo de la memoria. Por ello,
aunque no encaja de manera simple en el modelo de procesamiento de los aceleradores, nuestra
implementacién llega cerca de los limites que el hardware permite.



6. Una nueva metodologia para evaluar modelos ambien-
tales basada en S-KDE

En esta parte final de la tesis, aplicamos nuestro algoritmo S-KDE a una operacién costosa
en el campo de la ciencias ambientales: la evaluaciéon de modelos climaticos.

Los modelos climaticos son representaciones matematicas de un sistema climéatico, basados
en los principios bioldgicos, fisicos y quimicos. Por lo general, incluyen ecuaciones complejas
que representan estas leyes, y se resuelven numéricamente. Los modelos climéticos proporcionan
resultados discretos en el espacio y el tiempo, y su precision dependerd de la resolucién del modelo.
Con el fin de medir la confianza de los resultados de un modelo climéatico, dichos resultados deben
ser evaluados contra diferentes observaciones o mediciones reales. La razén tras esta hipotesis es
que los modelos que mejor simulen el clima actual, serdan los mejores en simular el clima futuro.

Usando S-KDE, proponemos una metodologia novedosa para la evaluacién de los modelos
climaticos. Nuestra metodologia se basa en construir funciones de probabilidad de densidad con
los datos a escala diaria que producen los modelos climaticos, y evaluar en una sola vez varias
variables producidas por un modelo climético, como la temperatura o la presién del aire. Parte
de este trabajo se basa en la extensién a multiples dimensiones del indice de Perkins, presentado
en su trabajo como unidimensional: s6lo puede evaluar la calidad de una variable producida por
un modelo climatico a la vez. Sin embargo, en algunos escenarios es util poder evaluar varias
variables en un solo paso y nuestro modelo soluciona este vacio en la literatura.

Nuestra propuesta require un uso iterativo de KDE, para crear multiples funciones de distri-
bucién de probabilidad de un conjunto de observaciones con diferentes pardmetros. Este proceso
toma la mayor parte del tiempo computacional y S-KDE es esencial para reducir los tiempos
totales de ejecucion. Sin S-KDE la evaluacion de un modelo climatico contra diferentes conjuntos
de observaciones no seria posible en un tiempo razonable.

La metodologia propuesta se ha aplicado a dos casos de estudios diferentes. El primero de
ellos corresponde a una aplicacién real de evaluacion de modelos climaticos. El segundo consiste
en evaluar la precisién de un nuevo andlisis de modelos acoplados para la reproduccion a escala
global de la temperatura superficial del mar y la altura de la superficie del mar.





