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Abstract

First-exit time problems in different settings are investigated. An accurate and
efficient Monte Carlo simulation technique to estimate first-exit time probabilities
of a jump diffusion process with two constant barriers is implemented. This tech-
nique gives rise to applications such as the pricing of financial derivatives whose
value depend on (a) barrier(s) hitting event and in structural credit risk models
with early payment and default events. Furthermore, the probability distribution of
the mean of default times, which are dependent under the Marshall–Olkin law, is
computed. The Marshall–Olkin distribution is a core probability law in reliability
and life-testing applications. Exact expressions for the distribution of the mean of
default times are derived in the general bivariate case and for low dimensions in the
exchangeable one. When the dimension tends to infinity, we prove that the mean
of these dependent default times converges to the exponential functional of a Lévy
subordinator. Finally, different simulation techniques to simulate Lévy-frailty cop-
ulas, that are built from an α-stable Lévy subordinator, are analysed in terms of
computational speed. The possibility to simulate these copulas in an efficient way
allows us to numerically compute, with a low computational cost, the exponential
functional of a Lévy subordinator.
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1
Introduction

“Talent is luck. The important thing in life is courage.”

Manhattan (1979).

The efficient management of various risk sources (market risk, default risk, etc.) is a
crucial concern for all agents acting on financial markets. An inappropriate treatment of
the risks that can be faced within financial activities repeatedly lead to economic catas-
trophes in history. Examples of financial disasters with a significant influence on society
can be found in the stock market crash which took place in 1987 or the global financial
crisis generated in 2008. Consequently there exists a necessity to develop sophisticated
tools that provide security against financial crisis.

Besides the mentioned tools that protect financial markets against negative events,
the well understanding of markets is also essential to avoid downturns. One example of
an “unrealistic” assumption is to consider the elements in financial markets to be inde-
pendent. The joint behaviour of assets, and therefore the joint behaviour of portfolios
in which these assets are contained, is a statistical fact that should not be neglected
when implementing stochastic models. These comovement effects claim an appropriate
treatment of the dependent multivariate stochastic models which is fundamental in asset
pricing and risk management. These are reasons why dependence structures achieve a
significant importance.

The problems considered in this thesis are divided into two parts: in the first one first-
exit time probabilities are analysed. They provide efficient tools to price certain options
and are thus relevant to understand market risk. Moreover, they apper in the context
of credit risk via the framework of structural default models. The second part aims at
investigating the dependence structures of Marshall–Olkin type.

One way to reduce the exposure to risk is to apply hedging strategies, i.e. insuring
oneself from negative events. Barrier options can be used to construct an appropriate
hedge in different situations. As a consequence an accurate method of pricing them will
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ensure an efficient protection against the risk of losses. However, a common situation in
mathematical finance is the fact that it is just possible to observe quantities of interest
at a finite number of moments, while reality is happening in continuous time. Therefore
the information between these observation moments is missing. This is the reason for
the necessity of procedures that help understanding what occurs in these “blind” peri-
ods. The mentioned circumstance is obvious in applications where the event of reaching
a threshold or an objective is crucial such as in pricing barrier options. Here resides
one of the reasons to analyse first-exit times. In the same direction first-exit time prob-
abilities are useful for estimating default probabilities in structural credit-risk approaches.

Diffusion processes have been used in the literature over the years to model stock
prices, see e.g., [Black and Scholes, 1973], [Barndorff-Nielsen and Shephard, 2001], [Mer-
ton, 1976], [Duffie et al., 2000]. Nevertheless, none of these models simultaneously covers
the properties present in real applications such as leptokurtic stock returns or jumps
in stock prices. And the models that cover some of these characteristics possess the
disadvantage of analytical complexity to get closed-form solutions of first-passage time
probabilities. A possibility to circumvent this disadvantage is to use the jump-diffusion
process proposed by [Kou, 2002], [Scott, 1997].

One of the applications motivating this research is the computation of first-passage
time probabilities of a jump-diffusion process. Analytical solutions exist when the jump
size follows the double exponential distribution: an explicit solution of the Laplace trans-
form of the first-exit time is obtained in [Kou and Wang, 2003] for a single barrier and
in [Sepp, 2004] for the double barrier case. However when one aims at extending this
problem to models with arbitrary jump-size distributions or non-constant barriers, the
question becomes analytically challenging and in most cases numerical schemes have to
be considered.

Different numerical techniques have been treated in the literature for this purpose,
e.g., [Boyarchenko and Levendorskĭi, 2002], [Boyarchenko and Levendorskĭi, 2012], [Cont
and Voltchkova, 2005]. We rely on Monte Carlo simulations. Monte Carlo methods have
become a key tool in the treatment of different problems in financial engineering. These
simulations possess the property of being simple to understand and work with. The basic
idea behind this numerical method is to simulate trajectories over a temporal path and
to compute the average of the final values of the sample paths.

The standard Monte Carlo technique, when applied to estimate first-passage time
probabilities, has the disadvantages of a sampling and discretization error. The sampling
error is caused by the fact of just using a finite number of trajectories to estimate the
expectation. The magnitude of this error can be estimated by the central limit theorem
and the law of large numbers proves that it can be reduced if one simulates an infinite
amount of trajectories (see, e.g., [Glasserman, 2004], [Hull, 2008]). The discretization er-
ror appears when aiming at analysing continuous-time models. It is a direct consequence
of observing the trajectories just at finite instants during their lifetime. One natural way
of improving this situation is considering a finer grid. Nevertheless, the fact of increasing
the number of simulated trajectories and sharpening the grid implies a higher computa-



tional cost. These handicaps motivated researchers to implement renewal Monte Carlo
methods, e.g., [Boyle et al., 1997], [Caflisch, 1998], [Ribeiro and Webber, 2006], [Figueroa-
Lopez and Tankov, 2014].

In the current work, we focus on the Brownian-bridge technique, e.g., [Gobet, 2009],
[Metwally and Atiya, 2002]. The Brownian-bridge technique presents the advantages of
being unbiased and significantly faster than the standard Monte Carlo method. It has
different applications in finance, see e.g., [Hieber and Scherer, 2010], [Ruf and Scherer,
2011], [Henriksen, 2011]. The contribution of this thesis is the design of fast and reliable
Brownian-bridge algorithms to price exotic double-barrier products that consider different
events depending on which barrier has been reached first and to evaluate products that
depend on first-passage times in structural credit-risk models.

Moreover, first-exit times constitute the main element in the construction of an inter-
esting subfamily of the Marshall–Olkin law. This multivariate exponential distribution,
which has key impact in reliability theory and life testing among others (see, e.g., [Vesely,
1977], [Klein et al., 1989], [Rao, 2009]), was first introduced by [Marshall and Olkin,
1967b]. Since the canonical construction of this probability distribution is based on a
fatal-shock model, it allows to describe events of default which are interesting in credit-
risk modelling, e.g., [Giesecke, 2003], [Mai, 2010]. The Marshall–Olkin law has interesting
statistical properties such as: its parameters possess an intuitive interpretation, it allows
the extension of the lack-of-memory property to the multidimensional case, and it be-
longs to the class of extreme-value distributions, e.g., [Mai and Scherer, 2011], [Mai and
Scherer, 2012]. Other important features are the asymmetric tail distribution that fits in
most financial applications where there is often a stronger dependence among big losses
than among big gains (see, e.g., [Li, 2008]) and the existence of the singular component
i.e. there is a positive probability that all components take the same value (see, e.g., [Mai
and Scherer, 2011]).

The existence of dependence structures in different real-world applications, such as in-
surance, e.g., [Müller, 1997] or finance, e.g., [Embrechts et al., 2002], motivates the study
of how to “build” dependence. Copulas have become a basic tool to construct multivari-
ate distributions, see e.g., [Embrechts et al., 2003], [Durante and Sempi, 2010], [Mai and
Scherer, 2012].

Within the research of dependence structures, we first analyse the average lifetime of
the Marshall–Olkin law. The distribution of a sum of random variables has been treated
considerably in the literature, e.g., [Wüthrich, 2003], [Cossette and Marceau, 2000], [Ar-
benz et al., 2011], [Puccetti and Rüschendorf, 2013]. For mathematical tractability and
computational convenience, the individual random variables (X1, . . . , Xd) are often con-
sidered to be independent, see e.g., [Bennett, 1962]. But this assumption is unrealistic in
a financial context. The distribution of the sum of dependent variables is known when
the variables are elliptically distributed (see, e.g., [Fang et al., 1990]), a stability result
that (at least partially) explains the popularity of elliptical distributions. However it
could be that it does not hold in all existing applications. In [de Acosta, 1985] upper



bounds for the sum of exchangeable vectors of conditionally independent and identically
distributed (CIID) variables are provided. In [Wüthrich, 2003] the asymptotic quantile
behaviour of a sum of dependent variables, where the dependence structure is given by
an Archimedean copula, is analysed. The contribution of the present thesis regarding the
sum of dependent components is the explicit implementation of the distribution of the
sum of dependent random variables when the dependence is given by the Marshall–Olkin
law. Closed-form solutions are derived for the survival and density function as well as
for the Laplace transform in the general bivariate case. The expression for the survival
function is obtained for low dimensional cases in the exchangeable Marshall–Olkin sub-
family and a guide on how to extend these results to higher dimensions is provided. In
addition, the asymptotic distribution in the infinite case within the extendible subclass,
i.e. the subfamily of Marshall–Olkin distribution CIID components, is identified. And
this way we cover the behaviour of the probability distribution of the average lifetime of
the Marshall–Olkin law for large dimensions.

Studying the extendible subclass of Marshall–Olkin copulas more deeply one identi-
fies the family of Lévy-frailty copulas. These copulas were discovered in 2009 by [Mai
and Scherer, 2009]. Their dynamic structure and the possibility to simultaneously model
default events make them interesting in credit portfolio models. In addition, they serve
as a starting point to develop more sophisticated models in the field of credit risk, see
e.g., [Bernhart et al., 2013]. They possess several interesting properties such as the link
they provide between completely monotone sequences and multivariate distribution func-
tions or their connection with widely investigated Archimedean copulas, see e.g., [Mai and
Scherer, 2009], [Kimberling, 1974]. Lévy-frailty copulas constitute the extendible subfam-
ily of the Marshall–Olkin law (see, e.g., [Mai, 2010]). They make initially independent
exponential random variables dependent via the first-passage times of Lévy subordinators.
Regarding possible applications, Lévy-frailty copulas can be used to efficiently simulate
the exponential functional of a Lévy subordinator as it is analysed within this research.
Distributional properties of such type of random numbers make them interesting in several
applications, e.g., [Gjessing and Paulsen, 1997], [Carmona et al., 2001], [Bertoin et al.,
2004], [Bertoin and Yor, 2005], [Kuznetsov and Pardo, 2010], [Rivero, 2009].

As it is mentioned previously, the necessity to design models based on dependence
structures motivates the investigation of copulas and therefore of algorithms to sample
from them. The simulation of copulas have been treated in the literature over the last
years: [Mai and Scherer, 2012] provides different simulation techniques for the efficient
sampling of Archimedean, Marshall–Olkin and elliptical copulas, [Jäckel and Bubley, 2002]
explains how to simulate some specific copulas using Monte Carlo simulations or [Hofert,
2010] provides algorithms to efficiently simulate nested Archimedean copulas. Marshall–
Olkin copulas, in their general version, present the disadvantage to be arduous to simulate
in high dimensions. Nevertheless, due to the existence of a stochastic model behind the
construction of the extendible subfamily of the Marshall–Olkin law, Lévy-frailty copu-
las have advantages in simulation with respect to more general Marshall–Olkin copulas
(see [Mai and Scherer, 2012], Chapter 3).



The present thesis investigates different simulation techniques for Lévy-frailty copulas
that are built from α-stable Lévy subordinators. One the one hand, these copulas are
based on first-exit times of the α-stable Lévy subordinator. α-stable Lévy subordinators
are a special case of stable Lévy processes and due to the heavy-tailed property, as well
as their asymmetric behaviour, they become suitable in several applications in different
financial areas, e.g., [Janicki and Weron, 1993], [Samoradnitsky and Taqqu, 1994]. On the
other hand, Lévy-frailty copulas are characterized by the Laplace exponent of the respec-
tive Lévy subordinator and the α-stable subordinator possess a convenient form of this
exponent (see, e.g., [Applebaum, 2009]). In addition, the stable subordinator has a close
link to the Pareto distribution which allows to approximate it by a compound Poisson
process with Pareto distributed big jumps. The Pareto distribution plays a key role in
extreme-value theory being significantly useful in insurance and finance (see, e.g., [Em-
brechts et al., 1999]). Therefore, we provide an approximation of the α-stable Lévy
subordinator by a compound Poisson process that allows to sample these Lévy-frailty
copulas in high dimensions with low computational effort.

As mentioned in the beginning of this section, this dissertation is divided in two main
parts: the simulation of first-exit times of jump-diffusion processes on the one hand, and
the analysis of the dependence structures of the Marshall–Olkin kind, on the other hand.
The thesis is constituted of six chapters despite of the present introduction. Chapter
2 introduces basic notions on the concepts mentioned through this thesis. Chapter 3
describes an efficient and unbiased Monte Carlo simulation to obtain estimates for double-
barrier first-passage time probabilities of a jump-diffusion process. Chapters 4 and 5 are
concerned with dependence structures of Marshall–Olkin kind. Chapter 4 computes the
probability distribution of the average lifetime of the Marshall–Olkin law while Chapter
5 compares different numerical techniques to simulate Lévy-frailty copulas built from the
α-stable Lévy subordinator. The pseudocodes of the algorithms described in Chapters 3
and 5 are given in Chapter 6. Finally Chapter 7 summarizes the results.





2
Mathematical preliminaries

“Life has a malicious way of dealing with great potential.”

Melinda & Melinda (2004).

In this chapter we introduce the required mathematical notion. Section 2.2 is ded-
icated to basic definitions on stochastic processes: we introduce Brownian motion, the
Poisson process and the compound Poisson process, which belong to the family of Lévy
processes. In Section 2.3 we introduce Lévy subordinators, almost sure non decreasing
Lévy processes. In Section 2.4 basics on first-passage times and the Brownian-bridge
construction are explained. Section 2.6 introduces copulas and finally in Section 2.7 we
explain standards on the Marshall–Olkin distribution.

2.1 Notation

Let us first clarify some notation we use through this work.

• Sets:
We denote by N the set of positive integers and by R the set of real numbers. Rd is
the set of d-dimensional vectors of real numbers. N0 represents the set of positive
integers and 0. We interpret the variable t ≥ 0 as time.

• Probability spaces:
We denote probability spaces using (Ω,F ,P), where Ω denotes the set of all possible
outcomes. F is the σ-algebra, a collection of measurable subsets of Ω such that
Ω ∈ F , ∅ ∈ F , if A ∈ F , Ac = Ω/A ∈ F , and ∀Ai ∈ F ,∪∞

i=1Ai ∈ F , i ∈ N. We will
interpret Ft as the information accumulated until time t. One important σ-algebra
is the Borel σ-algebra, B(Rd), the smallest σ-algebra containing all open sets in Rd.
The filtration F = {Ft}t≥0 is an increasing and right continuous family of subsets
of F satisfying Fs ⊆ Ft ∀ s ≤ t. Finally P is the probability measure, a set function
P : F → [0, 1] such that P(Ω) = 1, P(Ai) ≥ 0, and P (∪∞

i=1Ai) =
∑∞

i=1 P(Ai),
∀Ai ∩Aj = ∅ ∈ F , i 6= j, i, j ∈ N. P assigns probability P(Ai) to all possible events
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Ai ∈ F , i ∈ N. The expectation on this probability space is denoted by E and
random variables (mapping from Ω to R) by capital letters, e.g., X, U , E.

• Stochastic processes:
The stochastic processes we work with in this dissertation are mostly denoted by
Xt, we introduce the generic notation Wt for the standard Brownian motion and Bt

for the Brownian motion with drift µ ∈ R and volatility σ > 0, Bt = µ t+ σWt. Λt

denotes Lévy subordinators.

• Distribution functions, densities and related objects:
We use capital letters, F , G, for cumulative distribution functions and F̄ , Ḡ for
survival functions. We use small letters, f , g, for probability density functions.
Copulas are denoted by C and survival copulas by Ĉ. Variables for probability and
density functions are x1, x2, . . ., y1, y2, . . . and for copulas u1, u2, . . .

• Some probability distributions:

• Poisson distribution with mean β > 0: P(β). The probability (discrete)
density function of X ∼ P(β) is given by

P(X = k) = βk e
−β

k!
, k ∈ {0, 1, 2, . . .}.

• Gaussian distribution: N (µ, σ2), where µ ∈ R is the mean and σ > 0
the standard deviation. The probability density function and the probability
distribution function are given by

f(x;µ, σ) =
1√
2πσ2

e−
(x−µ)2

2σ2 , x ∈ R,

F (x;µ, σ) =
1√
2πσ2

∫ x

−∞
e−

(y−µ)2

2σ2 dy, x ∈ R.

• Continuous uniform distribution on −∞ < a < b < ∞: U ([a, b]), where
its probability density function and its distribution function are

f(x; a, b) =







1
b−a

, x ∈ [a, b]

0, otherwise ,

F (x; a, b) =







0, x < a

x−a
b−a

, x ∈ [a, b] .

1, x > b

• Exponential distribution: Exp(λ), where λ is a positive real number. The
density function and the distribution function are given by

f(x;λ) = λe−λx, x ≥ 0,

F (x;λ) = 1− e−λx, x ≥ 0.



• Erlang distribution: continuous distribution with shape parameter k ∈ N

and rate parameter λ > 0 (real). Its density and distribution functions are
given by

f(x;λ, k) =
xk−1λke−λx

(k − 1)!
, x ∈ [0,∞),

F (x;λ, k) = 1− e−λx

k−1∑

i=0

(λx)i

i!
, x ∈ [0,∞).

• Pareto distribution: power law probability distribution whose parameters
are γ > 0 (real), shape parameter, and κ > 0 (real), scale parameter. The
probability density function and distribution function are given by

f(x; γ, κ) =
γκγ

xγ+1
, x ≥ κ,

F (x; γ, κ) = 1−
(
1

x

)γ

, x ≥ κ.

• α-stable distribution: S(α), α ∈ (0, 1). The probability density function
and the probability distribution function are not known in closed-form and
thus it is characterized by its Laplace transform, i.e. for X ∼ S(α) we have

E[e−xX ] = e−xα

, x > 0.

• Some convergence laws of sequences of random variables:

On the probability space (Ω,F ,P), let {Xn}n∈N be a sequence of random variables
with cumulative distribution function Xn ∼ FXn

and X a random variable with
cumulative distribution function FX .

• Convergence in distribution:

Xn converges in distribution to X, Xn
L−−−→

n→∞
X, if,

lim
n→∞

FXn
(x) = FX(x),

for all x ∈ R at which FX is continuous.

• Almost sure convergence:

Xn converges to X P-almost surely, Xn
a.s.−−−→

n→∞
X, if

P

({

ω : lim
n→∞

Xn(ω) = X(ω)
})

= 1.

Note that almost sure convergence implies convergence in distribution, but not the
other way round (see, e.g., [Meyer, 2002], Chapter 1, [Brémaud, 1988], Chapter 5).



2.2 Jump-diffusion processes

The model we consider when working with jump-diffusion processes is the sum of a com-
pound Poisson process, {Xt}t≥0, and a Brownian motion {Bt}t≥0. In the sequel we present
the Brownian motion, the Poisson process, and the compound Poisson process.

Definition 2.2.1 ((one-dimensional) Brownian motion)
Let {Wt}0≤t<∞ be a continuous, adapted stochastic process on (Ω,F ,P). Wt is a one-
dimensional standard Brownian motion if it satisfies the following conditions:

(1) W0 = 0 a.s.

(2) The increment Wt −Ws is independent of Fs, ∀ 0 ≤ s < t.

(3) Wt −Ws ∼ N (0, t− s), ∀ 0 ≤ s < t,

where {Ft}0≤s≤t is the natural filtration of the process {Ws}0≤s≤t, i.e. Ft = σ({Ws}0≤s≤t)
is the smallest σ-algebra with respect to which Ws is measurable for all 0 ≤ s ≤ t.

Definition 2.2.2 (Poisson process)
Let Nt = {Nt}t≥0 be the standard Poisson process with intensity β > 0. The standard
Poisson process is a Lévy process1 with increasing piecewise constant paths that is repre-
sented in the following way:

Nt :=
∞∑

n=1

1{τ1+...+τn≤t}, t > 0, (2.1)

where {τn}n∈N are i.i.d. random variables exponentially distributed with parameter β > 0.

Definition 2.2.3 (Compound Poisson process)
Considering a sequence of independent random variables {Yk}k≥1 with a given distribution
L(Yk), ∀k ≥ 1, and a standard Poisson process {Nt}t≥0 with parameter β independent of
{Yk}k≥1, the compound Poisson process, {Xt}t≥0, is defined as:

Xt =

Nt∑

k=1

Yk. (2.2)

Compound Poisson processes belong to the class of Lévy processes which can be in-
terpreted as random walks in continuous time. For more information on Lévy processes
we refer to [Bertoin, 1998], [Sato, 1999], [Cont and Tankov, 2004].

1A Lévy process {Xt}t≥0 is a càdlàg (right continuous with left limits) process that satisfies stochastic
continuity, i.e. limh↓0 P (|Xt+h −Xt| ≥ ǫ) = 0, ∀t ≥ 0, ∀ǫ > 0, has independent and stationary increments,
and X0 = 0 holds P-almost surely.
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Figure 2.1: Simulated path of a Poisson process with parameter β = 1 (on the left) and
β = 8 (on the right). The number of jumps in [0, T ] is Poisson-distributed with parameter
β · T .
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Figure 2.2: Simulated path of a compound Poisson process with β = 1 (on the left) and
β = 8 (on the right). The distribution of the jumps is the standard Gaussian distribution.
The compound Poisson process jumps at the same time as the Poisson process Nt.



2.3 Basics in Lévy subordinators

Lévy subordinators are a special case of Lévy processes, namely, the set of non-decreasing
ones. The increments of Lévy processes are independent and stationary, i.e. do not depend
on the past values of the process, not even on the present value.

Definition 2.3.1 (Lévy subordinator)
On the probability space (Ω,F ,P) let Λ = {Λt}t≥0 be a positive real-valued stochastic
process. Λ is a Lévy subordinator if it is almost surely non decreasing Lévy process, has
càdlàg2 paths. More precisely, it satisfies the following conditions:

(1) Λ is stochastically continuous, i.e.

lim
h↓0

P(|Λt+h − Λt| ≥ ǫ) = 0, ∀t ≥ 0, ∀ǫ > 0.

(2) The increments of Λ, Λt1 − Λ0, . . . ,Λtn − Λtn−1 , 0 = t0 < t1 < t2 < . . . < tn, are
stochastically independent.

(3) The increments of Λ are stationary, i.e.

Λt+h − Λt
d
= Λh, ∀t ≥ 0, ∀h ≥ 0.

(4) t→ Λt is almost surely non-decreasing.

The characteristic function of Lévy processes gives an easy way to work with these
stochastic processes. Since Lévy subordinators only take non-negative values, it is natural
to consider the Laplace transform.

Definition 2.3.2 (Laplace transform of Lévy subordinators)
On the probability space (Ω,F ,P) we define the Laplace exponent of a Lévy subordinator
Λ as Ψ : [0,∞) → [0,∞). So that the Laplace transform of Λ is given by

E[e−xΛt ] = e−tΨ(x), x ≥ 0, t ≥ 0. (2.3)

The Lévy–Khintchine formula gives a characterisation of Lévy processes (resp. subordi-
nators) through their characteristic function (resp. Laplace transform) (see, e.g., [Bertoin,
1998], [Sato, 1999], [Protter, 2004]).

Theorem 2.3.1 (Lévy–Khintchine formula for Lévy subordinators)
Let (Ω,F ,P) be a probability space and Λ a Lévy subordinator. Then there exists a unique
non-negative drift µ ≥ 0 and a unique positive measure ν which satisfies

∫

(0,1]

tν(dt) <∞, ν((ǫ,∞]) <∞, ∀ǫ > 0, (2.4)

so that the Laplace exponent of Λ can be written as

Ψ(x) = µx+

∫

(0,∞]

(1− e−tx)ν(dx), x ≥ 0, t ≥ 0. (2.5)

2càdlàg refers to the abbreviation of the French sentence “continues à droite, limites à gauche”, right
continuous with left limits.



Proof. This theorem was first established by Paul Lévy [Lévy, 1954] and A. Khintchine
[Khintchine, 1937,Khintchine, 1938]. A sketch of a proof can be found in [Applebaum,
2009] and [Bertoin, 1998].

The positive measure ν, mentioned above, is called Lévy measure. More details about
the Lévy measure are given in Chapter 5. The distribution of Lévy subordinators is
completely characterized by the Laplace transform of Λ, i.e. subordinators with the same
Laplace transform have the same probability law.

Example 1 (Poisson process)
Let Nt = {Nt}t≥0 be the standard Poisson process:

Nt :=
∞∑

n=1

1{τ1+...+τn≤t}, t > 0, (2.6)

where {τn}n∈N are i.i.d. random variables exponentially distributed with parameter β > 0.
The Laplace transform of Nt is computed as

E[e−xNt ] =

∞∑

k=0

e−xk (βt)
k

k!
e−βt = e−tβ(1−e−x), x ≥ 0. (2.7)

For a more detailed background on Lévy subordinators we encourage the reader to
study [Bertoin, 1998], [Bertoin, 2000], [Cont and Tankov, 2004], [Applebaum, 2009].

2.4 First-exit times and Brownian-bridge construction

First-exit times:
There exist situations where we are interested in the exact moment a phenomenon takes
place for the first time. Since the occurrence of this event can change the course of other
phenomenons, we need to focus our attention on investigating when, for the first time,
these events happen.

We can find a formal definition as well as standards on stopping times in
[Karatzas and Shreve, 1991].

Definition 2.4.1 (Stopping times)
On a measurable space (Ω,F) we define a random time T as a first stopping time of a
filtration {Ft}t≥0 if the event {T ≤ t} belongs to the σ-field Ft, for all t ≥ 0.

In terms of stochastic processes, first-passage times are defined as first moments where
a given stochastic process reaches a threshold. There are situations where the process is
influenced by just one threshold and situations with two reachable barriers.

On the probability space (Ω,F ,P) let X = {Xt : t ≥ 0, X0 = 0} be a stochastic
process. For a single constant upper (respectively lower) threshold, a > 0 (resp. b < 0),
the first-passage time is given by:

Ta := inf{t > 0 : Xt ≥ a}, Tb := inf{t > 0 : Xt ≤ b}. (2.8)
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Figure 2.3: Simulated stochastic process within two barriers b < 0 < a.

In a double barrier case, let b < 0 < a be two constant barriers:

Tab := inf{t > 0 : Xt /∈ (b, a)}. (2.9)

There are situations in the double barrier case where the order which barrier has been
reached first matters. We denote the first-exit time when the upper (resp. lower) barrier
has been hit first as T+

ab (resp. T−
ab):

T+
ab := inf{t > 0 : Xt ≥ a |Xs > b, ∀s < t}, (2.10)

T−
ab := inf{t > 0 : Xt ≤ b |Xs < a, ∀s < t}.

Brownian-bridge construction:
When simulating stochastic processes on a discrete time grid, one can not observe the
behaviour of the simulated path between two given observation points, ti−1 and ti, but we
know the value that the simulated process takes on these nodes, Xti−1

and Xti . Through
this work we apply the Brownian-bridge technique to compute the probability of reaching
a barrier between two observation points.

The construction of the Brownian-bridge is based on conditioning the one-dimensional
Brownian motion on its start- and endpoints. Let W = {Wt}0≤t≤T be a one-dimensional
Brownian motion. And let us assume that at time points t = 0, t = 1, . . . , t = T , the
values W takes are known: W0,W1, . . . ,WT .

Using the conditioning formula3 and the independence of the Brownian motion incre-

3Conditioning formula: Assuming that the partitioned vector X := (X[1], X[2]), into subvectors
X[1] and X[2], follows the multivariate normal distribution,

(
X[1]

X[2]

)

∼ N
((

µ[1]

µ[2]

)

,

(
Σ[11] Σ[12]

Σ[21] Σ[22]

))

,

such that Σ−1
[22] exists. Then,

(
X[1]|X[2] = x

)
∼ N

(

µ[1] +Σ[12]Σ
−1
[22](x− µ[2]),Σ[11] − Σ[12]Σ

−1
[22]Σ[21]

)

.
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Figure 2.4: Possible situations while simulating stochastic processes within two barriers.
In the plot above the barrier hitting event is clear, since the end-points of the paths are on
a different side of the barrier than the start-point. In the plot below, however, the start
and end-points are on the same side of the barriers but the barriers have been reached.



ments, it is possible to show that for a given t ∈ [0, T ],
(
Wt |Wti−1

= xi−1,Wti = xi
)

(2.11)

= N
(
xi−1(ti − t) + xi(t− ti−1)

ti − ti−1
,
(ti − t)(t− ti−1)

ti − ti−1

)

,

such that ti−1 and ti are the closest points to t where the values Wti−1
and Wti are known

(see, e.g., [Glasserman, 2004] (Chapter 3), [Korn et al., 2010] (Chapter 4)).
Since W0,Wt1 , . . . ,WT are known, the sampling of the Brownian-bridge at one specific

intermediate point t ∈ (ti−1, ti) is achieved via the conditional distribution in (2.11) by
setting

Wt =
xi−1(ti − t) + xi(t− ti−1)

ti − ti−1
+

√

(ti − t)(t− ti−1)

ti − ti−1
Z,

such that ti−1 < t < ti. Z is a random variable N (0, 1)-distributed independent of
W0,Wt1 , . . . ,WT . Repeating this procedure with all known values one can sample all the
intermediate values in [W0,Wt1 ], [Wt1 ,Wt2 ], . . . , [Wtn−1 ,WT ].

2.5 Black–Scholes model

In this section we introduce the Black–Scholes model and briefly explain the pricing of
options in this framework (for a more detailed background on pricing options under the
Black–Scholes model, see e.g., [Wilmott, 2006], [Hull, 2008]).

The simplest financial options, named plain vanilla options, are contracts that give
the holder of the option the right, but not the obligation, to buy (or sell) the underlying
asset of the option at the fixed maturity date of the contract at a price (strike price)
which has been previously set. On the other hand, the counterpart has the obligation to
trade the asset when the holder exercises the right to buy (or sell) it. When the option
is exercised the holder will get the payoff f(ST ), which varies depending on an option, at
time t = T (maturity of the contract). Through this study we evaluate barrier options
which are options whose payoff depends on whether the price of the underlying asset of
the contract approaches a given threshold during the lifetime of the option.

[Black and Scholes, 1973] introduce a simple model to evaluate options which consist
of a risky and a riskless asset. The risky asset is interpreted as a stock price of the option
and its dynamics are described as

dSt

St
= µ dt+ σ dWt, t ≥ 0, (2.12)

where µ ∈ R is the drift, σ > 0 the volatility, and W the standard Wiener process. Note
that µ dt is the deterministic term of the process and σ dWt the stochastic one. The
process that solves Equation (2.12) is called geometric Brownian motion. Applying Itô’s



Lemma yields the solution for the stochastic differential equation (SDE) in (2.12) (see,
e.g., [Karatzas and Shreve, 1991] Chapter 3)

St = S0 e
(µ−1/2 σ2) t+σWt , (2.13)

S0 being the initial value (at time t = 0) of the process.
The riskless asset grows in time deterministically at a constant rate r ∈ R:

dβ(t)

β(t)
= r dt, β(0) = 1, (2.14)

whose unique solution is β(t) = e
∫ t

0 rds.

Risk-neutral measure:
Before we formally explain the risk-neutral measure let us first introduce the concept

of a martingale.

Definition 2.5.1 (Martingale)
On the probability space (Ω,F ,P) let {Xt}t≥0 be a real-valued process, adapted to a filtra-
tion {Ft}t≥0. Let us assume that E[|Xt|] < ∞ for all t ≥ 0. Then Xt is a martingale, if
for every 0 ≤ s < t. E[Xt|Fs] = Xs. In case E[Xt|Fs] ≤ Xs, Xt is called submartingale
and if E[Xt|Fs] ≥ Xs a supermartingale.

Starting from the fact that participants in financial markets are risk averse, it seems
natural to consider the existence of attempts to profit with no risk. This procedure, which
is called arbitrage, can be done by simultaneously entering into transactions in different
–two or more– markets. Nevertheless, the big amount of riskless profiting attempts has
the consequence of a decrease in arbitrage opportunities.

In a framework with no arbitrage opportunities there exists a discount factor β̃(t) such
that β(t)/β̃(t) is a positive martingale with initial value β(0)/β̃(0) = 1. Using this positive
martingale it is possible to define a change of probability measure (see, e.g., [Glasserman,
2004], Chapter 1)

dQ

dP
=
β(t)

β̃(t)
, 0 ≤ t ≤ T.

The measure Q is called a risk-neutral measure, and it is equivalent to P, i.e. Q(A) =
0 ⇔ P(A) = 0, ∀A ⊆ F .

The risk-neutral measure is an equivalent martingale measure under which St/β(t) is
a martingale. For pricing purposes risk-neutrality is a crucial tool. More precisely, the
risk-neutral pricing formula (see, e.g., [Bingham and Kiesel, 2004], p. 120) states that in
an arbitrage-free complete market4 every financial derivative can be priced computing the
present value of its expected payoff, so

4A complete market is a market where all financial assets can be replicated using some self-financing
strategy. For a more detailed background in complete markets see [Bingham and Kiesel, 2004], Chapter
4.3



V (St, t) =
β(t)

β(T )
EQ [f(St)|Ft] .

Coming back to the dynamics of the assets in the Black–Scholes model, in (2.14) we
define the dynamics of the riskless asset. r, which is interpreted as the riskless interest
rate, can be assumed to be the drift of β(t). Let us further consider the following relation:

dW̃t = dWt + µ̃tdt, (2.15)

for µ̃ ≡ µ−r
σ

. It follows from Girsanov’s Theorem (given in Appendix A) that W̃ is a
standard Brownian motion under the risk-neutral measure Q.

Now substituting (2.15) in (2.12), we get the dynamics of the risky asset in terms of
the riskless interest rate:

dSt

St

= µ dt+ σ dWt = µ dt+ σ

(

dW̃t −
µ− r

σ
dt

)

= r dt+ σ dW̃t,

where r is the riskless interest rate and in this case

St = S0e

(

r−σ2

2

)

t+σ W̃t .

Note that since W̃ is the standard Brownian motion under the risk-neutral measure
Q, the discounted price process, St/β(t) = e−rtSt is a martingale under the risk-neutral
measure.

Now if we aim at computing the present price (at time t = 0) of plain vanilla options
with initial value of the underlying asset S0, strike price K, and maturity T , in the
Black–Scholes model, we need to compute

call option : C(S0, 0) =
1

β(T )
EQ

[
(ST −K)+

]
; f(ST ) = (ST −K)+

put option : P (S0, 0) =
1

β(T )
EQ

[
(K − ST )

+
]
; f(ST ) = (K − ST )

+.

2.6 Basics in copula theory

In order to describe the probability distribution of a random vector, the knowledge of
all marginal laws as well as how these univariate marginals are related is needed. We
express the information about how the marginals are related via copulas. We graphically
describe copulas using a two-dimensional scatterplot, i.e. a graphical set of bivariate data
(two variables) which gives a visual picture of the relationship between the two variables.



Definition 2.6.1 (Copula)
Let C : [0, 1]d → [0, 1] be the multivariate distribution function of a random vector
(U1, . . . , Ud) with uniform marginals, Ui ∼ U [0, 1], i = 1, . . . , d, so C satisfies

C(u1, . . . , ud) := P (U1 ≤ u1, . . . , Ud ≤ ud) , u1, . . . , ud ∈ [0, 1]. (2.16)

Sklar’s Theorem [Sklar, 1959] states that the multivariate distribution of each random
vector (X1, . . . , Xd) can be built combining univariate marginals and a copula.

Theorem 2.6.1 (Sklar’s Theorem)
Let (X1, . . . , Xd) be a random vector with d-dimensional distribution function F and
F1, . . . , Fd the univariate marginal functions of F . Then there exist a copula C such
that,

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (x1, . . . , xd) ∈ Rd. (2.17)

In addition, if F1, . . . , Fd are continuous, the copula C is unique.

Proof. This theorem was originally stated in [Sklar, 1959]. The proof can be found in
[Rüschendorf, 2009], [Mai and Scherer, 2012] (Chapter 1).

Through this investigation the variables (X1, . . . , Xd) are interpreted as lifetimes and
in this case it is more convenient to describe the dependence between them using survival
probability functions. The analogous version of Sklar’s Theorem [Sklar, 1959] states that
a multivariate survival function F̄ (x1, . . . , xd) := P(X1 > x1, . . . , Xd > xd) can be split
into its marginal functions and a survival copula Ĉ:

F̄ (x1, . . . , xd) = Ĉ(F̄1(x1), . . . , F̄d(xd)), (x1, . . . , xd) ∈ Rd. (2.18)

The relation between a copula C and the respective survival copula Ĉ is given by

Ĉ(u1, . . . , ud) = 1 +
d∑

k=1

(−1)k
∑

1≤j1≤...≤jk≤d

Cj1,...,jk(1− uj1, . . . , 1− ujk), (2.19)

such that u1, . . . , ud ∈ (0, 1).
The proof of this result can be found in [Mai and Scherer, 2012] (Chapter 1).

Example 2 (Basic copulas)
In this example we analyse two simple copulas. Remember that from Definition 2.6.1
C(u1, . . . , ud) := P(U1 ≤ u1, . . . , Ud ≤ ud), Ui ∼ U([0, 1]), (U1, . . . , Ud) ∼ C, and
u1, . . . , ud ∈ [0, 1].

(1) Independence copula: Let U1, . . . , Ud be uniformly distributed i.i.d. random variables,
Ui ∼ U([0, 1]). Then the independence copula is given by,

C : [0, 1]d → [0, 1],

C(u1, . . . , ud) :=
d∏

i=1

ui.



(2) Comonotonicity copula: Let U ∼ U([0, 1]) be a random variable on the probability
space (Ω,F ,P). In addition, let us consider (U, . . . , U) ∈ [0, 1]d a random vector
with U([0, 1]) distributed marginal functions and joint distribution function,

C : [0, 1]d → [0, 1],

C(u1, . . . , ud) := min{u1, . . . , ud}.

In this case, the distribution function C defines the comonotonicity copula.
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(a) Independence copula.
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(b) Comonotonicity copula.

Figure 2.5: Scatterplots of 500 samples from the bivariate independence copula and 100
samples from the bivariate comonotonicity copula. (a) We sample U1 ∼ U([0, 1]) and
U2 ∼ U([0, 1]) independent of U1. (b) We sample U1 ∼ U([0, 1]) and set U2 = U1.

2.7 Marshall–Olkin law

The Marshall–Olkin distribution is a d-dimensional exponential distribution character-
ized by lifting the univariate lack of memory property to higher dimensions. It was first
introduced by [Marshall and Olkin, 1967b].

The exponential distribution possess some statistically attractive properties (in the
univariate and multivariate cases) such as the lack of memory property or the min-stability
property.

Lack of memory property:
Let X be a variable supported on [0,∞). The univariate lack of memory property is
defined as:

P(X > x+ y|X > y) = P(X > x), ∀x, y > 0. (2.20)

If X has support [0,∞) and satisfies the univariate lack of memory property , then X is
exponentially distributed. Generalizing to higher dimensions, if (X1, . . . , Xd) has support



[0,∞)d and all possible subvectors (Xi1 , . . . , Xik), where 1 ≤ i1 < . . . < ik ≤ d, satisfy the
multidimensional lack of memory property,

P(Xi1 > xi1 + y, . . . , Xik > xik + y|Xi1 > y, . . . , Xik > y) (2.21)

= P(Xi1 > xi1 , . . . , Xik > xik),

where xi1 , . . . , xik , y > 0, it is shown in [Marshall and Olkin, 1967b] that the only dis-
tribution with support [0,∞)d satisfying condition (2.21) is characterized by the survival
function of Marshall–Olkin kind.

Example 3 (Increments of the Poisson and compound Poisson processes)
In case of Poisson and compound Poisson processes mentioned in Section 2.2, the waiting
times between the jump times {τn}n∈N, follow the exponential distribution with parameter
β. Due to the lack of memory property satisfied by the exponential distribution, we can en-
sure that the increments of the Poisson and compound Poisson processes are independent
and identically distributed.

Definition 2.7.1 (Marshall–Olkin distribution)
Let (X1, . . . , Xd) represent a system of residual lifetimes with support [0,∞)d. Assume
that the remaining components in this vector have a joint distribution that is independent
of the age of the system, i.e. (X1, . . . , Xd) satisfies the multidimensional lack of memory
property (2.21). Then

F̄ (x1, . . . , xd) := P(X1 > x1, . . . , Xd > xd) (2.22)

= exp



−
∑

∅6=I⊂{1,...,d}
λI max

i∈I
{xi}



 , x1, . . . , xd ≥ 0,

for certain parameters λI ≥ 0, ∅ 6= I ⊂ {1, . . . , d}, and
∑

I:k∈I λI > 0, k = 1, . . . , d.
This multivariate law is called Marshall–Olkin distribution.

Min-stability of the Marshall–Olkin distribution:
Note that an interesting property of the exponential distribution is the min-stability,
i.e. if X1, . . . , Xd are independent variables exponentially distributed with parameters
λ1. . . . , λd, {λi > 0 : i = 1, . . . , d}, then the minimum between these variables is also
exponentially distributed:

min{X1, . . . , Xd} ∼ Exp(λ1 + . . .+ λ2). (2.23)

The proof of this result is given in Appendix B.
The Marshall–Olkin distribution belongs to the class of min-stable multivariate ex-

ponential distributions, i.e. if (X1, . . . , Xd) and (Y1, . . . , Yd) are two independent random



vectors following the Marshall–Olkin distribution with parameters λI ≥ 0 and ηI ≥ 0
respectively, then

(min{X1, Y1}, . . . ,min{Xd, Yd}) ,

follows the Marshall–Olkin distribution with parameter λI + ηI , ∅ 6= I ⊂ {1, . . . , d}.
The proof of this result can be found in [Mai and Scherer, 2012] (page 138).

Canonical construction:
The canonical construction of the Marshall–Olkin distribution is based on the following
fatal-shock model, see [Marshall and Olkin, 1967a,Downton, 1970].

Let EI , ∅ 6= I ⊂ {1, . . . , d}, be exponentially distributed random variables with pa-
rameters λI ≥ 0. We assume all EI to be independent and interpret them as the arrival
times of exogenous shocks to the respective components in I and define

Xk := min {EI |∅ 6= I ⊂ {1, . . . , d} , k ∈ I} ∈ [0,∞), k = 1, . . . , d, (2.24)

where the variable Xk is the first time a shock hits component k. The parameters λI ≥ 0
represent the intensities of the exogenous shocks. Some of these can be 0, in which case
EI ≡ ∞. We require

∑

∅6=I:k∈I λI > 0, so for each k = 1, . . . , d there is at least one
subset I ⊂ {1, . . . , d}, containing k, such that λI > 0. Therefore, (2.24) is well-defined.
The random vector (X1, . . . , Xd) as defined in Equation (2.24) follows the Marshall–Olkin
distribution.

Singular component:
Marshall–Olkin multivariate distributions are not absolutely continuous, i.e. there is a
positive probability that several components take the same value. These probabilities are
computed in the following way:

P(X1 = . . . = Xd) =
λ{1,...,d}

∑

∅6=I⊂{1,...,d} λI
≥ 0. (2.25)

The proof of this results can be found in [Mai and Scherer, 2012], page 120.

Lemma 2.7.1 (Marshall–Olkin survival copula)
Let (X1, . . . , Xd) be a random vector built as in (2.24). Then the survival copula Ĉ of the
Marshall–Olkin distribution is defined as

Ĉ(u1, . . . , ud) =
∏

∅6=I⊂{1,...,d}
min
k∈I

{
u

λI∑
J:k∈J λJ

k

}
, u1, . . . , ud ∈ [0, 1]. (2.26)

We can distinguish different subfamilies with additional properties within the Marshall–
Olkin distribution. This subfamilies are introduced in Chapters 4 and 5.
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Figure 2.6: Subfamilies of the Marshall–Olkin law.





3
Double-barrier first-passage times of jump-diffusion

processes

“You know not everything in the world is sinister... just practically

everything.”

Scoop (2006).

First-passage time problems have become of interest in a wide range of applications
e.g., finance (see, e.g., [Kou and Wang, 2003], [Alili and Kyprianou, 2005], [Hieber and
Scherer, 2012]), engineering (see, e.g., [Crandall et al., 1966], [Vanmarcke, 1975], [Peters
and Barenbrug, 2002]) and physics (see, e.g., [Siegert, 1951], [Montroll, 1969]), over the
past decades. Due to the lack of analytical solutions in some cases, fast and accurate
numerical techniques have been developed to compute the distribution of first-exit times.
We analyse an efficient and unbiased Monte-Carlo simulation to obtain double-barrier
first-passage time probabilities of a jump-diffusion process with arbitrary jump size dis-
tribution. The pricing of exotic derivatives, e.g., corridor bonus certificates or digital
first-touch options, that depend on whether or not the underlying asset price exceeds cer-
tain threshold levels are some of the applications of the double-barrier first-passage time
in mathematical finance. They also have become relevant in structural credit-risk models
if one considers two exit events, e.g., default and early repayment.

This chapter is based on the paper “Double-barrier first-passage times of a jump-
diffusion processes”, written by Fernández L., Hieber P. and Scherer M., and published in
Monte Carlo Methods Appl. 19 (2013), 107− 141, DOI 10.1515/mcma-2013-0005.

3.1 Brownian-bridge and first-exit times probabilities

We aim at analysing first-passage times probabilities of Brownian motion on two constant
barriers a, b ∈ R. On the probability space (Ω,F ,P) let us consider the jump-diffusion
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process {Xt}t≥0, which is the sum of a Brownian motion and a compound Poisson process,

Xt = µt+ σWt +

Nt∑

i=1

Yi, t ≥ 0, (3.1)

with drift µ ∈ R, volatility σ > 0, and initial value X0 = 0, where {Wt}t≥0 is a Wiener
process. N = {Nt}t≥0, the counting process, is a Poisson process with intensity λ ≥ 0, and
the jumps Y = {Yi}i∈N are i.i.d. with distribution PY . All random elements are mutually
independent. Removing the jumps from Equation (3.1) we get the Brownian motion with
drift µ and volatility σ, i.e.

Bt = µt+ σWt. (3.2)

We define in the following the Brownian-bridge probabilities for two constant barriers
b < 0 = B0 < a, a, b ∈ R i.e. the probability that a Brownian motion reaches one of the
thresholds conditioning on the start- and endpoint of the stochastic process.

Definition 3.1.1 (Brownian-bridge probabilities)
Let {Bt}t≥0 be a Brownian motion as defined in Equation (3.2). Let us denote its start-
and endpoint in the time interval (ti−1, ti) by xi−1 := Bti−1

∈ (b, a), respectively xi := Bti ∈
R. Assume that xi−1 and xi are known, so we define the Brownian-bridge probabilities as

BB+
ab(ti−1, ti, xi−1, xi) := P

(
ti−1 < T+

ab < ti |Bti−1
= xi−1, Bti = xi

)
,

BB−
ab(ti−1, ti, xi−1, xi) := P

(
ti−1 < T−

ab < ti |Bti−1
= xi−1, Bti = xi

)
.

[Jeanblanc et al., 2009] provide the Brownian-bridge probabilities when there is just
a single barrier.

BB+
a−∞ = lim

b→−∞
BB+

ab(ti−1, ti, xi−1, xi) =

{

exp
(

− 2(a−xi−1)(a−xi)
σ2(ti−ti−1)

)

, max(xi, xi−1) < a,

1, else.

BB−
∞b = lim

a→∞
BB−

ab(ti−1, ti, xi−1, xi) =

{

exp
(

− 2(xi−1−b)(xi−b)
σ2(ti−ti−1)

)

, min(xi, xi−1) > b,

1, else.

In Lemma 3.1.1 we display the closed-form solutions for Brownian-bridge probabilities
BB+

ab and BB−
ab in Definition 3.1.1. These probabilities are computed depending on the

location of the endpoint of the Brownian motion.

Lemma 3.1.1 (Brownian-bridge probabilities)
Let {Bt}t≥0 be a Brownian motion with volatility σ > 0. Assuming that xi−1 := Bti−1

∈
(b, a) and 0 ≤ ti−1 < ti <∞.

(i) If xi := Bti ∈ (b, a),

BBab(ti−1, ti, xi−1, xi) := BB+
ab(ti−1, ti, xi−1, xi) +BB−

ab(ti−1, ti, xi−1, xi)



=

∞∑

n=−∞

[

exp

(

− 2n(a− b)

σ2(ti − ti−1)

(
xi−1 − xi + n(a− b)

)

)

+ exp

(

− 2
(
xi − na + (n− 1)b

)(
xi−1 − na+ (n− 1)b

)

σ2(ti − ti−1)

)]

− 1.

(ii) If xi := Bti /∈ (b, a), BBab(ti−1, ti, xi−1, xi) = 1.

(iii) If xi := Bti ∈ (−∞, a),

BB+
ab(ti−1, ti, xi−1, xi)

=

∞∑

n=1

[

exp

(

− 2(xi−1 − na + (n− 1)b)
(
xi − na + (n− 1)b

)

σ2(ti − ti−1)

)

− exp

(

− 2n(a− b)

σ2(ti − ti−1)

(
xi−1 − xi + n(a− b)

)

)]

, (3.3)

(iv) If xi := Bti ∈ (b,∞),

BB−
ab(ti−1, ti, xi−1, xi) =BB+

−b−a(ti−1, ti,−xi−1,−xi).

(v) If xi > a, the probability of hitting the level a first is BB+
ab(ti−1, ti, xi−1, xi) = 1 −

BB−
ab(ti−1, ti, xi−1, xi).

(vi) If b > xi, the probability of hitting the level b first is BB−
ab(ti−1, ti, xi−1, xi) = 1 −

BB+
ab(ti−1, ti, xi−1, xi).

(vii) If xi−1 := Bti−1
/∈ (b, a), we set BB±

ab(ti−1, ti, xi−1, xi) = 0.

Proof. The proof can be found in [Anderson, 1960] or in [Novikov et al., 1999], Remark
2. For the proof of BBab(ti−1, ti, xi−1, xi), see, e.g., [Geman and Yor, 1996].

Let us analyse in the following the convergence of the infinite series in Lemma 3.1.1
above. [Schröder, 2000] introduces a way to measure the distance of the process to the
barriers, i.e.

κ := σ
√

(ti − ti−1)/2 exp(b− a). (3.4)

If we aim at numerically computing the infinite series, we need to truncate them. It
is possible to observe the accuracy of the truncation in terms of κ (Equation (3.4)). We
show in Figure 3.1 the logarithmic absolute error produced when we truncate the series
in Equation (3.3) after N summands.

If we analyse the plot in Figure 3.1, we can conclude that the truncated series rapidly
converges to the infinite one. So a low number of terms in the sum in Equation (3.3),
e.g., N = 6, is sufficient for applications.
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Figure 3.1: Logarithmic absolute error of the infinite series in Lemma 3.1.1, Equation (3.4)
after truncating it for different values of κ. We choose xi−1 = 0, xi = 0.1, ti − ti−1 = 1,
a = log(1.2), and b = log(0.8). The parameter σ is computed in terms of κ, σ =

κ/
(√

(ti − ti−1)/2 exp(b− a)
)

.

There are cases where the information whether a barrier has been reached or not is
enough but there exist applications where we need to know in addition which barrier has
been hit first. This information is obtained by the first-passage time probabilities. In
Lemma 3.1.2 these probabilities for two constant barriers are computed and we display
them using two different representations.

Lemma 3.1.2 (First-passage time probabilities)
Let {Bt}t≥0 be a Brownian motion with drift µ ∈ R and volatility σ > 0. Assuming that
xi−1 := Bti−1

∈ (b, a) and 0 ≤ ti−1 < ti < ∞, and setting BM+
ab(ti−1, ti, xi−1) := P(ti−1 <

T+
ab < ti):

(i) First representation,

BM+
ab(ti−1, ti, xi−1) (3.5)

=

∞∑

n=1

[

exp

(

−2µ(xi−1 − (na− (n− 1)b))

σ2

)

×

F

(
xi−1 − µ(ti − ti−1)− ((2n− 1)a− 2(n− 1)b)

σ
√
ti − ti−1

)

− exp

(
2n(a− b)µ

σ2

)

×

F

(−xi−1 − µ(ti − ti−1)− ((2n− 1)a− 2nb)

σ
√
ti − ti−1

)]

+
∞∑

n=1

[

exp

(

−2µ ((n− 1)(a− b))

σ2

)

×

F

(
xi−1 + µ(ti − ti−1)− ((2n− 1)a− 2(n− 1)b)

σ
√
ti − ti−1

)



− exp

(

−2µ(xi−1 + (n− 1)a− nb)

σ2

)

×

F

(−xi−1 + µ(ti − ti−1)− ((2n− 1)a− 2nb)

σ
√
ti − ti−1

)]

,

where F ( · ) represents, in this case, the cumulative distribution function of a stan-
dard normally distributed random variable.

(ii) The second representation is given by:

if µ 6= 0

BM+
ab(ti−1, ti, xi−1) (3.6)

=
exp

(

−2µ(b−xi−1)
σ2

)

− 1

exp
(

−2µ(b−xi−1)
σ2

)

− exp
(

−2µ(a−xi−1)
σ2

)

+
σ2π

(a− b)2
exp

(

µ(a− xi−1)

σ2

) ∞∑

n=1

n(−1)n+1

µ2

2σ2 +
σ2n2π2

2(a−b)2

×

exp

(

−
( µ2

2σ2
+

σ2n2π2

2(a− b)2

)

(ti − ti−1)

)

sin

(
nπ(b− xi−1)

a− b

)

,

and if µ = 0

BM+
ab(ti−1, ti, xi−1)

=
xi−1 − b

a− b
+

∞∑

n=1

2(−1)n+1

nπ
exp

(

− σ2n2π2

2(a− b)2
(ti − ti−1)

)

× (3.7)

sin

(
nπ(b− xi−1)

a− b

)

.

Note that,

P(ti−1 < T−
ab < ti) = BM+

−b−a(ti−1, ti,−xi−1),

P(ti−1 < Tab < ti) = P(ti−1 < T+
ab < ti) + P(ti−1 < T−

ab < ti).

Proof. The proof of this lemma is given in Appendix A.

Figure 3.2 shows the logarithmic absolute error generated when the infinite series in
Equations (3.5) and (3.6) are truncated after N terms. We measure this error in terms of
the parameter κ. One can observe that for small parameters of κ the first representation
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Figure 3.2: Logarithmic absolute error of the truncation of the infinite series in Lemma
3.1.2, Equation (3.5) (Representation (i)) and Equation (3.6) (Representation (ii)) for
different values of κ. We choose µ = 0.1, xi−1 = 0, xi = 0.1, ti − ti−1 = 1,
a = log(1.2), and b = log(0.8). The parameter σ is computed in terms of κ, σ =

κ/
(√

(ti − ti−1)/2 exp(b− a)
)

.

works better than the second one. However, for bigger values of κ it is more suitable to
choose the second representation. If we analyse the convergence, we can conclude that in
both representations the series rapidly converges.

There exist two different methods, which provide closed-form solutions in terms of infi-
nite series, to compute these probabilities: renewal-type arguments together with Fourier
inversion (see, e.g., [Darling and Siegert, 1953]) and risk-neutral valuation (see, e.g., [Ku-
nitomo and Ikeda, 1992], [Lin, 1998])

In some applications we are also interested in the time ti−1 < t < ti this first-exit
event happens. Definition 3.1.3 introduces first-passage time intensities. Due to the fact
that there is a non-zero probability that the upper, respectively lower, barrier is never hit
and thus

∫∞
0

f±
ab(t, xi−1) dt ≤ 1, the term “intensity” instead of “density” is used.

Definition 3.1.2 (First-passage time intensities)
Let {Bt}t≥0 be a Brownian motion with drift. Let us consider two constant barriers b <
0 < a and assume that xi−1 = Bti−1

∈ (b, a). First-passage time intensities are defined as

f+
ab(t, xi−1) :=P

(
T+
ab ∈ dt | Bti−1

= xi−1

)
,

f−
ab(t, xi−1) :=P

(
T−
ab ∈ dt | Bti−1

= xi−1

)
.

We display in Lemma 3.1.3 the analytical expressions for f±
ab(t, xi−1).



Lemma 3.1.3 (First-passage time intensities)
Let {Bt}t≥0 be a Brownian motion with volatility σ > 0 and xi−1 := Bti−1

∈ (b, a).
Considering ti−1 < t < ti <∞,

f+
ab(t, xi−1) =

σ2π

(a− b)2
exp

(µ(a− xi−1)

σ2

) ∞∑

n=1

(−1)nn sin
(πn(b− xi−1)

a− b

)

×

exp

(

−
( µ2

2σ2
+

π2n2σ2

2(a− b)2

)

(t− ti−1)

)

,

f−
ab(t, xi−1) =

σ2π

(a− b)2
exp

(µ(b− xi−1)

σ2

) ∞∑

n=1

(−1)nn sin
(πn(−a + xi−1)

a− b

)

×

exp

(

−
( µ2

2σ2
+

π2n2σ2

2(a− b)2

)

(t− ti−1)

)

.

Proof. These intensities are obtained from the second representation in Lemma 3.1.2 (see
Appendix A, proof of Lemma 3.1.2). Note that, when a→ ∞, f+

ab(t, xi−1), converges to an
inverse Gaussian density and we obtain Equation (11) in [Metwally and Atiya, 2002].

In a similar way we introduce the Brownian-bridge first-passage time intensities in the
sequel, i.e. Lemma 3.1.4.

Definition 3.1.3 (Brownian-bridge first-passage time intensities)
Let {Bt}t≥0 be a Brownian motion with drift and fix start- and endpoint xi−1 := Bti−1

∈
(b, a), respectively xi := Bti ∈ R, considered on the interval [ti−1, ti]. We define the
Brownian-bridge first-passage time intensities as

g+ab(t, xi−1, xi) :=P
(
T+
ab ∈ dt | Bti−1

= xi−1, Bti = xi
)
,

g−ab(t, xi−1, xi) :=P
(
T−
ab ∈ dt | Bti−1

= xi−1, Bti = xi
)
.

Closed-form expressions for the Brownian-bridge first-passage time intensities are pro-
vided in Lemma 3.1.4

Lemma 3.1.4 (Brownian-bridge first-passage time intensities)
Let {Bt}t≥0 be a Brownian motion with volatility σ > 0. Assume that xi−1 := Bti−1

∈
(b, a). Considering xi := Bti and ti−1 < t < ti <∞, the first-passage time intensities

g+ab(t, xi−1, xi) =
σ2π

(a− b)2

√
ti − ti−1√
ti − t

exp

(
(xi − xi−1)

2

2σ2(ti − ti−1)
− (xi − a)2

2σ2(ti − t)

)

× (3.8)

∞∑

n=1

(−1)nn exp

(

− π2n2σ2

2(a− b)2
(t− ti−1)

)

×

sin
(πn(b− xi−1)

a− b

)

,

g−ab(t, xi−1, xi) = g+−b−a(t,−xi−1,−xi).



Proof. We now aim at getting the expressions for the Brownian-bridge first-passage time
intensities (Definition 3.1.3, Chapter 3). The idea for this work can be found in [Feller,
1966] and [Metwally and Atiya, 2002]. We compute g+ab, however note that since g+ab and
g−ab are symmetric, g−ab is implemented in the same way.

g+ab(t, xi−1, xi) := P
(
T+
ab ∈ dt |Bti−1

= xi−1, Bti = xi
)

=
P
(
T+
ab ∈ dt, xi ∈ dx |Bti−1

= xi−1

)

P
(
xi ∈ dx |Bti−1

= xi−1

)

=
P
(
T+
ab ∈ dt |Bti−1

= xi−1

)
· P
(
xi ∈ dx | t = T+

ab, Bti−1
= xi−1

)

P
(
xi ∈ dx |Bti−1

= xi−1

)

=
P
(
T+
ab ∈ dt |Bti−1

= xi−1

)
· P
(
xi ∈ dx | t = T+

ab, Bt = a
)

P
(
xi ∈ dx |Bti−1

= xi−1

)

=
f+
ab(t, xi−1) · f{a+µ(ti−t),σ

√
ti−t}

(
xi
)

f{xi−1+µ(ti−ti−1),σ
√
ti−ti−1}

(
xi
) ,

where f{µ,σ}(·) is the density function of a Gaussian variable with mean µ and variance
σ2,

=

∞∑

n=1

σ2π(−1)nn

(a− b)2
exp
(

−
( µ2

2σ2
+

π2n2σ2

2(a− b)2

)

(t− ti−1)
)

sin
(πn(b− xi−1)

a− b

)

×

exp
(µ(a− xi−1)

σ2

)
1√

2π(ti−t)σ
exp

(

− (xi−a−µ(ti−t))2

2σ2(ti−t)

)

1√
2π(ti−ti−1)σ

exp
(

− (xi−xi−1−µ(ti−ti−1))2

2σ2(ti−ti−1)

)

=
σ2π

(a− b)2

∞∑

n=1

(−1)nn exp
(

− π2n2σ2

2(a− b)2
(t− ti−1)

)

sin
(πn(b− xi−1)

a− b

)

×
√
ti − ti−1√
ti − t

exp
(

− µ2

2σ2
(t− ti−1)

)

exp
(µ(a− xi−1)

σ2

)

×

exp

(
(xi − xi−1 − µ(ti − ti−1))

2

2σ2(ti − ti−1)
− (xi − a− µ(ti − t))2

2σ2(ti − t)

)

=
σ2π

(a− b)2

√
ti − ti−1√
ti − t

exp

(

(xi − xi−1)
2

2σ2(ti − ti−1)
− (xi − a)2

2σ2(ti − t)

)

×

∞∑

n=1

(−1)nn exp
(

− π2n2σ2

2(a− b)2
(t− ti−1)

)

sin
(πn(b− xi−1)

a− b

)

.



3.2 Simulation of first-exit times. Algorithms

In this section we describe the idea behind the algorithms to simulate the first-passage
times for a jump-diffusion process within two constant barriers using the Brownian-bridge
technique. The first algorithm computes the probabilities of first reaching one of the barri-
ers (Algorithm 6.2.1). The second algorithm (Algorithm 6.2.4) calculates the probabilities
of first hitting any of the barriers and in addition, the expectations of the payoff of the
product we aim at pricing E[w(Tab, BT , ε)], i.e. a function that depends on a first-exit time
Tab, the final value of the asset path BT , and the barrier hitting event ε. The pseudocodes
for these algorithms are provided in Chapter 6.

In a nutshell the idea consists of first sampling the jump-times which are the observa-
tion points through the temporal path [0, T ]. Then we simulate the jump-diffusion process
between two successive jump-times and check whether the barrier hitting event took place
between these two observation nodes. Two possibilities should be taken into account:

(i) The start- and endpoint of the stochastic process are not on the same side of the
barrier. In this case, the barrier has been reached.

(ii) The start- and endpoint of the simulated process are on the same side of the barrier.
In this case it could be that the barrier has been reached between the observation
points (start- and endpoint of the process) or it could be that the barrier has not
been reached. We compute the Brownian-bridge probabilities to answer how likely
the two cases are.

One also has to take into consideration that the stochastic process could cross any of
the barriers due to the jumps. In Figure 4.4 there is a graphical explanation of the idea
behind the algorithms.

Note that the barrier hitting probabilities after the first time step need to be cumula-
tive, e.g., the probability that the process reaches one of the barriers in the second-time
step could only happen in case it survived in the first time step.

Let us introduce the cumulative probabilities.

• The probability of hitting first the upper or lower barrier from t = ti−1 to t = ti,

P+
i−1,i = BB+

ab(ti−1, ti, Bti−1
, Bti) or P−

i−1,i = BB−
ab(ti−1, ti, Bti−1

, Bti).

• The probability of surviving during the interval (ti−1, ti),

Pi−1,i = 1− P+
i−1,i − P−

i−1,i.

So, after the first-time interval (t0, t1):

• The probability that a trajectory reaches the upper or the lower barrier in (ti−1, ti), i ≥
2 (see Figure 3.2),

i−1∏

j=1

Pj−1,j · P+
i−1,i, or

i−1∏

j=1

Pj−1,j · P−
i−1,i, i ≥ 2.
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Figure 3.3: Brownian-bridge algorithm: the graph (top) shows the simulated number of
jumps, NT = 2, and the simulated jump-times, t1 = 0.4 and t2 = 0.9. The graph (middle)
shows possible simulated paths of the process from t0 till t1. It could happen that a path
reaches a barrier (dark path) or that it does not reach any barrier (light path) between
two observation points. In the lower graph, possible paths are simulated between two
successive jump instants. Note that a barrier crossing event could also happen due to a
jump.



• The probability that the process hits any of the barries due to a jump in ti, i ≥ 1,

i−1∏

j=1

Pj−1,j.

In general:

• The probability of reaching the upper barrier first in [t0, ti),

i−1∑

j=1

Pj−1,j · P+
i−1,i.

• The probability of crossing the lower barrier first in [t0, ti),

i−1∑

j=1

Pj−1,j · P−
i−1,i.

• The probability of surviving within [t0, ti)

i−1∏

j=1

Pj−1,j.

3.3 Applications

In this section we present possible applications for the algorithms presented in the previ-
ous section. We display numerical results for the pricing of some financial products and
we explain a possible application in credit-risk management.

3.3.1 Pricing financial products

For the pricing of financial derivatives we consider the generalization of the Black–Scholes
model given in [Merton, 1976] (for the Black–Scholes model see Chapter 2, Section 2.5).
We define the stock price process as the exponential value of the jump-diffusion process
in (3.1),

St := S0 exp(Xt) = S0 exp






(

r − 1

2
σ2 − δ

)

t + σWt +
Nt∑

i=1

Yi

︸ ︷︷ ︸






Xt

, t ≥ 0, (3.9)

where r is the risk-free interest rate and δ = λ (E[exp(Y1)]− 1) the drift adjustments
due to the jumps. Since we assume the exponential of the jump-diffusion process to
describe the stock price process, we also need to modify the barriers according to it. In
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Figure 3.4: Different situations and respective probabilities of barrier reaching events.
The plot (top) shows all possible situations in the first time step: (i) the upper or lower
barrier has been reach with probability P+

0,1 or P−
0,1 respectively, (ii) non of the barriers

have been hit, the probability of this event is P0,1. The plot (down) shows all possible
situations in the next time step knowing that non of the barriers have been reached in the
previous step: (i) the upper barrier is hit, the probability of this event is P0,1 · P+

1,2, (ii)
the lower barrier is hit, the probability of this event is P0,1 · P−

1,2, (iii) non of the barriers
have been reached, this event happens with probability P0,1 · P1,2.
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Figure 3.5: Situation where a barrier is reached due to a jump. Non of the barriers have
been reached in the first two steps and in the third step the upper barrier is reached due
to an upper jump. The probability of this event is P0,1 ·P1,2. Note that the only possibility
to hit a barrier in ti, i ≥ 1 is that the process survives in the previous time-steps.



this new setting we define the upper barrier as ã = S0 exp(a) and the lower barrier as
b̃ = S0 exp(b). Therefore the barrier hitting probabilities can be written as

P(Tab > T ) = P(Xt ∈ (b, a), ∀t ∈ [0, T ])

= P

(

Xt ∈ (log(b̃/S0), log(ã/S0)), ∀t ∈ [0, T ]
)

= P(St ∈ (b̃, ã), ∀t ∈ [0, T ]).

The jumps, in this case, follow the double exponential distribution, which could be
interpreted as two exponential distributions, one on each side of a given boundary (x = 0
in this case), together added (see, e.g., [Kou and Wang, 2003]):

PY (dx) = p λ⊕e
−λ⊕x

1{x≥0}dx+ (1− p) λ⊖e
λ⊖x

1{x<0}dx,

where 0 ≤ p ≤ 1 is the probability for a positive jump. Positive jumps are exponentially
distributed with parameter λ⊕ > 11, and negative jumps with parameter λ⊖ > 0. The
drift adjustment in this case is given by δ := λ

(
EQ[exp(Y1)]−1

)
= λ

(
pλ⊕/(λ⊕−1)+(1−

p)λ⊖/(λ⊖ + 1)− 1
)
.

The double exponential jump-diffusion process has the advantage that one can com-
pare the results with the Laplace transforms of the first-passage times as presented in,
e.g., [Kou and Wang, 2003], [Sepp, 2004]. Nevertheless, the Brownian-bridge algorithm
allows to change the jump-size distribution.

Digital first-touch options

A digital first touch option is a financial contract that pays $1 at maturity T if the
underlying process, during the lifetime of the derivative, reaches one or both barriers in
case of a knock-in option, and if it does not cross any threshold in case of a knock out
option. These options are the most liquid and actively traded exotic options on FX mar-
kets (see, e.g., [Carr and Crosby, 2010]) and they can be used as a tool to construct more
complex derivatives (see, e.g., [Boyarchenko and Levendorskĭi, 2002]).

Through this work we price knock-in options. The owner of an up-and-in option
receives $1 if the underlying process crosses first the upper barrier. In contrast the owner
of a down-and-in gets the payment of $1 if the stock-price process reaches first the lower
barrier. The owner does not get anything if the underlying does not reach any of the
barriers. Note that in case of knock-out options, the owner receives the payment in case
the underlying remains within both barriers until the expiration date of the contract or
hits the upper (resp. lower) barrier in case of down-and-out (resp. up-and-out) options.

Under the risk-neutral measure Q, the up-and-in option can be priced as

X+(0) := e−rT EQ

[
1{T+

ab
≤T}
]
= e−rT Q(T+

ab ≤ T ),

where a := ln(ã/S0), b := ln(b̃/S0).

1The condition λ⊕ > 1 is required to guarantee the existence of the first moment of St in (3.9).



Similarly, the price of a down-and-in option is given by

X−(0) := e−rT EQ

[
1{T−

ab
≤T}
]
= e−rT Q(T−

ab ≤ T ). (3.10)

Table 3.1 compares the prices of (knock-in) digital first-touch options in a double
exponential jump-diffusion model obtained by the standard Monte-Carlo simulation on
a discrete grid using the Brownian-bridge algorithm, Algorithm 6.2.1. The parameters
considered in the simulation are: r = 5%, σ = 20%, p = 0.5, α⊕ = α⊖ = 5, and T = 1
(expiration date of the contract). Furthermore, we set b̃ = 80, ã = 120, and S0 = 100.

In the standard Monte-Carlo algorithm, we use 250, respectively 1000, discretization
steps. According to the expected number of jumps per year λ. We consider different
scenarios for different intensities of jumps: “Black–Scholes” (λ = 0), “Low” (λ = 0.5),
“Middle” (λ = 2), and “High” (λ = 8).

In Table 3.1, we can see that the Brownian-bridge algorithm is significantly faster than
the brute–force Monte-Carlo simulation on a discrete grid. In addition the Brownian-
bridge algorithm computes unbiased results so we can conclude that the values got using
the Brownian-bridge technique are close to the exact prices by [Sepp, 2004].

Once that we conclude that it is more convenient, regarding the simulation accuracy
and simulation speed, to use the Brownian-bridge algorithm to simulate first-passage
times problems, we apply the Brownian-bridge technique (Algorithm 6.2.1) to price cor-
ridor bonus certificates.

Corridor bonus certificates

Corridor bonus certificates are financial products whose payoff depends on a barrier
hitting event and in addition the amount that the owner of the certificate gets varies
depending on which barrier has been reached first. These certificates are emitted by
(major) banks, e.g., Société Générale, and there is a variety of these financial products
depending on the underlying assets.

We again consider a scenario with two constant barriers, 0 < b̃ < ã, ã, b̃ ∈ R, and the
stock-price process with initial value b̃ < S0 < ã. We assume that the expiration time of
the certificate is T . The payoff of these certificates depends on the value of the underlying
at time T , a prior committed value F and the first-passage time events during the lifetime
of the certificate:

(i) If the stock-price remains between the two barriers, during the lifetime of the cer-
tificate, then the owner gets the fixed amount F at time T .

(ii) If the stock-price hits the lower barrier first, then the payoff is the minimum between
the value of the stock price at time T , ST , and the fixed amount F .

(iii) If the upper barrier has been reached first, then the payment the owner of the
certificate receives is max{min{2S0 − ST , F}, 0}.



Black–Scholes Jump-diffusion
λ = 0 Low (λ = 0.5) Middle (λ = 2) High (λ = 8)

StdMC (250) X̂+(0) 0.3734 ± 0.0008 0.3765 ± 0.0008 0.3836 ± 0.0008 0.3815 ± 0.0008
relative bias 4.6% 3.8% 1.7% 0.3%
runtime 47.2s 46.1s 45.0s 41.7s

StdMC (1000) X̂+(0) 0.3820 ± 0.0003 0.3838 ± 0.0003 0.3880 ± 0.0008 0.3825 ± 0.0004
relative bias 2.2% 1.8% 1.3% 0.2%
runtime 185.6s 183.8s 179.4s 161.7s

Brownian-bridge X̂+(0) 0.3907 ± 0.0002 0.3915 ± 0.0002 0.3928 ± 0.0003 0.3821 ± 0.0003
relative bias 0.0% 0.0% 0.0% 0.0%
runtime 18.1s 19.3s 14.3s 30.1s

Exact price X+(0) 0.3908 0.3913 0.3928 0.3822

Table 3.1: Estimated prices for X+(0) and confidence intervals at the confidence level α = 90% of (upper barrier) digital first-
touch options for different jump intensities λ. The prices are estimated using the standard Monte-Carlo technique, with 250 and
1000 times-steps respectively and the Brownian-bridge algorithm (Algorithm 6.2.1) using K = 106 simulation runs. The exact
value of the option was estimated by inverting the Laplace transforms presented by, e.g., [Sepp, 2004]. We also display the bias
and runtime for each algorithm. The relative bias is the relative difference between the simulated value X̂+(0) divided by the
true value X+(0) of the option. The computation time was calculated using Matlab 2012a on a 3.1 GHz PC.



Black-Scholes Jump-diffusion
λ = 0 Low (λ = 0.5) Middle (λ = 2) High (λ = 8)

λ⊕ = λ⊖ = 10 118.75 ± 0.00 116.88 ± 0.02 109.84 ± 0.04 82.46 ± 0.07

λ⊕ = 2λ⊖ = 20 118.75 ± 0.00 118.05 ± 0.01 114.01 ± 0.03 89.68 ± 0.07

λ⊕ = λ⊖/2 = 10 118.75 ± 0.00 117.28 ± 0.02 112.47 ± 0.04 91.06 ± 0.07

Table 3.2: Estimated prices for CB+(0) using Algorithm 6.2.1 for different values of λ⊕
and λ⊖, and for different scenarios depending on jump-size intensities, λ. The parameters
we use are S0 = 100, ã = 140, b̃ = 60, r = 1%, T = 1, σ = 10%, and F = 120. The
numbers of simulated trajectories is K = 106.

So,

payoff({St}0≤t≤T ) =







F, Tab > T,
min(ST , F ), T−

ab ≤ T,
max (min(2S0 − ST , F ), 0) , T+

ab ≤ T,
(3.11)

remember that a and b are the barriers in the logarithmic setting: a = log(ã/S0) and
b = log(b̃/S0).

The price of these certificates under the Black–Scholes framework, using the risk-
neutral measure Q, conditional on P(T−

ab ≤ T ), P(T+
ab ≤ T ), and ST is computed in the

following way:

CB+(0) := e−rT EQ

[
payoff({St}0≤t≤T )

]

=e−rT EQ

[

EQ

[
payoff({St}0≤t≤T )

∣
∣T−

ab, T
+
ab, ST

]]

= e−rT EQ

[

F ,
(
1− 1{T+

ab
≤T} − 1{T−

ab
≤T}
)

+ 1{T+
ab
≤T}max(min(2S0 − ST , F ), 0) + 1{T−

ab
≤T} min(ST , F )

]

.

Table 3.2 displays the prices of corridor bonus certificates simulated with Algorithm
6.2.1 for different values of λ⊕ and λ⊖ in four different scenarios depending on the intensity
of the jumps, λ: Black–Scholes (no jumps, λ = 0), “low”, “middle” and “high”.

3.3.2 Credit-risk

Credit-risk can broadly be defined as the risk of failing on a payment of a debt. In
structural models this failure, named default, is a consequence of not having sufficient
assets, i.e. the number of assets of a company reaches a significantly low level comparing
to the liabilities of the company (standards in credit-risk and structured credit-risk can
be found in e.g., [Shimko, 2004], [Duffie and Singleton, 2012]). Therefore, bonds can be
priced as an option on firm’s assets. Let us consider, as an illustrative example, a company
funded with shares (equity) and bonds (debt). Let us assume that the company makes
the compromise to pay the debt to the bondholder at an agreed time T . If at time T
the total value of the firm’s assets, S, is higher than the value of the debt, D, then the



company pays to the bondholder the value of the debt. However, if the total value of the
assets is lower than the value of the debt, the bondholder exercises the right to liquidate
the company and gets the amount obtained from the liquidation, L. In this case D is the
lower barrier, b̃ = D. But there are situations where the company would like to repay the
bond before maturity T , for example due to its healthy condition to improve the credit
rating. This case is described as having an upper threshold ã (see, e.g., [Downing et al.,
2005], [Gabaix et al., 2007], [Dobránszky and Schoutens, 2008]) and when this barrier is
reached first the bondholder gets the same amount as in the case with no default.

Let B(0) be the present value (at time t = 0) of a bond with nominal value 1 which
pays continuous interest at a rate d. The riskless interest rate is denoted by r. Assume
that the maturity of the bond is T . In addition the holder of the bond will get an amount
L ∈ [0, 1], recovery rate, in case the default happens and he exercises the right to get his
debt paid. Then B is computed in the following way:

B(0) = e−rTQ(Tab > T ) + EQ

[∫ T

0

de−rt
1{Tab>T}dt

]

+B+(0) +B−(0)

= e−rTQ(Tab > T ) +
d

r

(
1− e−rT

)
Q(Tab > T ) +B+(0) +B−(0)

=

[
d

r
+

(

1− d

r

)

e−rT

]

Q(Tab > T ) +B+(0) + B−(0),

where

B+(0) = EQ

[

e−rT+
ab +

∫ T+
ab

0

d e−rtdt1{T+
ab
≤T}

]

,

B−(0) = EQ

[

Le−rT−
ab +

∫ T−
ab

0

d e−rtdt1{T−
ab
≤T}

]

,

such that a := log(ã/S0) and b := log(b̃/S0). B+(0) describes the prepayment case and
B−(0) the situation where the firm defaults.

Note that to price these bonds we need the first-exit time events as well as the moment
when exactly these events occurs. Therefore the value of these bonds can be estimated
using Algorithm 6.2.4.



4
The mean of Marshall–Olkin dependent exponential

random variables

“People are afraid to face how great a part of life is dependent on luck.

It’s scary to think so much is out of one’s control.”

Match Point (2005).

In this chapter we investigate the probability distribution of Sd := X1+. . .+Xd, where
the vector (X1, . . . , Xd) is distributed according to the Marshall–Olkin law. Closed-form
solutions are derived in the general bivariate case and for d ∈ {2, 3, 4} in the exchange-
able subfamily. Our computations can be extended to higher dimensions, which, however,
become cumbersome due to the large number of involved parameters. We consider the
extendible subfamily of Marshall–Olkin distributions to identify the limiting distribution
of Sd/d when d tends to infinity. This result might serve as a convenient approximation
in high-dimensional situations. Possible fields of application for the presented results are
reliability theory, insurance, and credit-risk modelling.

This chapter is based on the paper “The mean of Marshall–Olkin dependent exponential
random variables”, written by Fernández L., Mai J.-F. and Scherer M., and published in
Marshall–Olkin Distributions - Advances in Theory and Practice, Cherubini U., Mulinacci
S., Durante F. (eds.), Springer Proceedings in Mathematics & Statistics. Springer (2015).

4.1 General bivariate case

In this section we derive the probability distribution of S2 = aX1 + bX2, where a, b are
positive constants. Knowing that the dimension d represents the number of components
in the system, the quantity S2/2 (a = b = 1/2) is precisely the average lifetime of the two
components in the system.

43



Remark 4.1.1 (Simplify notation)
To derive the results in this chapter we will use the concepts introduced in Section 2.7,
Chapter 2. To simplify notation, regarding parameters λI , instead of using λ{1}, λ{2},
λ{12} . . . we use λ1, λ2, λ12 . . . and referring to variables EI instead of denoting them by
E{1}, E{2}, E{12} . . . we use the notation E1, E2, E12 . . ..

Lemma 4.1.1 (The weighted sum of two lifetimes)
On the probability space (Ω,F ,P) let (X1, X2) be a random vector constructed as in (2.24)
and let a, b be positive constants. The survival function of the weighted sum of X1 and X2

is computed as

P(aX1 + bX2 > x) =
λ1

λ1 − (λ2 + λ12)
a
b

e−(λ2+λ12)
x
b

(

1− e−(λ1−(λ2+λ12)
a
b
) x
a+b

)

(4.1)

+
λ2

λ2 − (λ1 + λ12)
b
a

e−(λ1+λ12)
x
a

(

1− e−(λ2−(λ1+λ12)
b
a
) x
a+b

)

+e−(λ1+λ2+λ12)
x

a+b .

Proof.

We need to compute the following probability:

P(aX1 + bX2 > x) = P(aX1 + bX2 > x,X1 < X2) + P(aX1 + bX2 > x,X2 < X1)

+P(aX1 + bX2 > x,X1 = X2).

Observe that,

X1 < X2 ⇔ E1 < X2,

X2 < X1 ⇔ E2 < X1,

X1 = X2 ⇔ E12 < min{E1, E2},

and by the so called min-stability of the exponential distribution (Equation (2.23)),

min{E1, E2} ∼ Exp(λ1 + λ2).

Then,

P(aX1 + bX2 > x,X1 < X2)

= P(aX1 + bX2 > x,E1 < X2)
(∗)
=

X2 > E1 ⇔ min{E2, E12} > E1 ⇒ E12 > E2 > E1 or E2 > E12 > E1.

So, E12 > E1, and therefore, X1 = min{E1, E12} = E1

(∗)
= P

(

X2 > E1 >
x− bX2

a

)

= E

[

P

(

X2 > E1 >
x− bX2

a
|E1

)]



=

∫ ∞

0

P

(

X2 > y1 >
x− bX2

a

)

fE1(y1)dy1

=

∫ ∞

0

P

(

X2 > max

{

y1,
x− aX1

b

})

fE1(y1)dy1

=

∫ x
a+b

0

P

(

X2 >
x− ay1

b

)

fE1(y1)dy1 +

∫ ∞

x
a+b

P(X2 > y1)fE1(y1)dy1

=
λ1

λ1 − (λ2 + λ12)
a
b

e−(λ2+λ12)
x
b

(

1− e−(λ1−(λ2+λ12)
a
b
) x
a+b

)

+
λ1

λ1 + λ2 + λ12
e−(λ1+λ2+λ12)

x
a+b .

P(aX1 + bX2 > x,X2 < X1) and P(aX1 + bX2 > x,X1 = X2) are computed in the
same way so,

P(aX1 + bX2 > x) =
λ1

λ1 − (λ2 + λ12)
a
b

e−(λ2+λ12)
x
b

(

1− e−(λ1−(λ2+λ12)
a
b
) x
a+b

)

+
λ2

λ2 − (λ1 + λ12)
b
a

e−(λ1+λ12)
x
a

(

1− e−(λ2−(λ1+λ12)
b
a
) x
a+b

)

+ e−(λ1+λ2+λ12)
x

a+b .
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Figure 4.1: The survival and density function of S2 = aX1 + bX2, where a = 30% and
b = 70%.

Once the survival function of S2 is known, one can further compute the density and
the Laplace transform of S2.



Corollary 4.1.1 (Probability density function)
Let (Ω,F ,P) be a probability space, (X1, X2) a random vector constructed as in (2.24),
and let a, b be positive constants. The probability density function of S2 = aX1 + bX2 is
given by,

fS2(x) =
λ1(λ2 + λ12)

λ1b− (λ2 + λ12)a
e−(λ2+λ12)

x
b

(

1− e−(λ1−(λ2+λ12)
a
b )

x
a+b

)

(4.2)

+
λ2(λ1 + λ12)

λ2a− (λ1 + λ12)b
e−(λ1+λ12)

x
a

(

1− e−(λ2−(λ1+λ12)
b
a)

x
a+b

)

+
λ12
a + b

e−(λ1+λ2+λ12)
x

a+b .

Proof. The density function is derived using the survival function in Equation (4.1), i.e.

fS2(x) =
d

dx
(1− P(aX1 + bX2 > x)) .

Remark 4.1.2 (Conflictive points)
Note that in Equations (4.1) and (4.2) there is a non-defined situation when λ1 = (λ2 +
λ12)a/b or λ2 = (λ1 + λ12)b/a. However, these parameter constellations can be treated
computing the existing limits when λ1 and λ2 approach these conflictive points.

lim
λ1→(λ2+λ12)a/b

P (aX1 + bX2 > x) =

(
(λ2 + λ12)ax

b(a + b)
+ 1

)

e−(λ2+λ12)
x
b

− λ2a

λ12(a + b)
e−(λ2

a
b
+λ12

a+b
b )x

a

(
1− e−λ12

x
a

)
,

lim
λ2→(λ1+λ12)b/a

P (aX1 + bX2 > x) =

(
(λ1 + λ12)bx

a(a+ b)
+ 1

)

e−(λ1+λ12)
x
a

− λ1b

λ12(a + b)
e−(λ1

b
a
+λ12

a+b
a )x

b

(
1− e−λ12

x
b

)
,

lim
λ1→(λ2+λ12)a/b

fS2(x) =

(
(λ2 + λ12)

2ax

b2(a+ b)
+
λ2(λ2a + λ12(a + b))

bλ12(a+ b)
+

λ12
a+ b

)

e−(λ2+λ12)
x
b

− λ2(λ2a + λ12(a + b))

λ12b(a+ b)
e−(λ2a+λ12(a+b)) x

ab , (4.3)

lim
λ2→(λ1+λ12)b/a

fS2(x) =

(
(λ1 + λ12)

2bx

a2(a+ b)
+
λ1(λ1b+ λ12(a+ b))

aλ12(a + b)
+

λ12
a+ b

)

e−(λ1+λ12)
x
a

− λ1(λ1b+ λ12(a+ b))

λ12a(a+ b)
e−(λ1b+λ12(a+b)) x

ab . (4.4)

Proof. Remember that,

P(aX1 + bX2 > x) =
λ1

λ1 − (λ2 + λ12)
a
b

e−(λ2+λ12)
x
b

(

1− e−(λ1−(λ2+λ12)
a
b
) x
a+b

)



+
λ2

λ2 − (λ1 + λ12)
b
a

e−(λ1+λ12)
x
a

(

1− e−(λ2−(λ1+λ12)
b
a
) x
a+b

)

+ e−(λ1+λ2+λ12)
x

a+b .

Then,

lim
λ1→(λ2+λ12)a/b

P(aX1 + bX2 > x)

=
0

0
− λ2a

λ12(a+ b)
e−(λ2

a
b
+λ12

a+b
b )x

a

(
1− e−λ12

x
a

)
+ e−(λ2+λ12)

x
b ,

we solve the “ 0
0
” problem using l’Hôpital’s rule:

lim
λ1→(λ2+λ12)a/b

λ1
λ1 − (λ2 + λ12)

a
b

e−(λ2+λ12)
x
b

(

1− e−(λ1−(λ2+λ12)
a
b )

x
a+b

)

= “
0

0
”

⇔ e−(λ2+λ12)
x
b lim
λ1→(λ2+λ12)a/b

1− e−(λ1−(λ2+λ12)
a
b )

x
a+b + λ1

x
a+b

e−(λ1−(λ2+λ12)
a
b )

x
a+b

1

=
λ1x

a+ b
e−(λ2+λ12)

x
b

=
(λ2 + λ12)ax

b(a + b)
e−(λ2+λ12)

x
b ,

For the probability density function,

fS2(x) =
λ1(λ2 + λ12)

λ1b− (λ2 + λ12a)
e−((λ2+λ12)

x
b )
(

1− e−(λ1−(λ2+λ12)
a
b )

x
a+b

)

+
λ2(λ1 + λ12)

λ2a− (λ1 + λ12b)
e−((λ1+λ12)

x
a)
(

1− e−(λ2−(λ1+λ12)
b
a)

x
a+b

)

+
λ12
a+ b

e−(λ1+λ2+λ12)
x

a+b

lim
λ1→(λ2+λ12)a/b

fS2(x) = “
0

0
” − λ2(λ2a+ λ12(a+ b))

λ12b(a + b)
e−(λ2a+λ12(a+b)) x

ab

+
λ2(λ2a+ λ12(a+ b))

λ12b(a + b)
e−(λ2+λ12)

x
b +

λ12
a+ b

e−(λ2+λ12)
x
b ,

we deal with the “ 0
0
” term applying l’Hôpital’s rule:

lim
λ1→(λ2+λ12)a/b

λ1(λ2 + λ12)

b
(
λ1 − (λ2 + λ12)

a
b

)e−(λ2+λ12)
x
b

(

1− e−(λ1−(λ2+λ12)
a
b )

x
a+b

)

= “
0

0
”

⇔ (λ2 + λ12)e
−(λ2+λ12)

x
b lim
λ1→(λ2+λ12)a/b

1− e−(λ1−(λ2+λ12)
a
b )

x
a+b + λ1

a+b
e−(λ1−(λ2+λ12)

a
b )

x
a+b

b



=
(λ2 + λ12)

2ax

b2(a+ b)
e−(λ2+λ12)

x
b .

For the survival function and the density function, the procedure when λ2 = (λ1 +
λ12)b/a is exactly the same.

Corollary 4.1.2 (Laplace transform)
On the probability space (Ω,F ,P), let us consider (X1, X2) a random vector constructed as
in (2.24) and let a, b be positive constants. Then the Laplace transform of S2 = aX1+bX2

is given by

ψS2(t) = E
[
e−tS2

]
(4.5)

=
λ1(λ2 + λ12)b

(λ1b− (λ2 + λ12)a) (λ2 + λ12 + bt)

+
λ2(λ1 + λ12)a

(λ2a− (λ1 + λ12)b) (λ1 + λ12 + at)

−
(

λ1(λ2 + λ12)

λ1 b− (λ2 + λ12)a
+

λ2(λ1 + λ12)

λ2 a− (λ1 + λ12)b

)

×

a + b

λ1 + λ2 + λ12 + (a+ b)t

+
λ12

λ1 + λ2 + λ12 + (a+ b)t
.

Proof. The Laplace transform is computed by evaluating the integral

ψS2(t) =

∫ ∞

0

e−txfS2(x)dx

=
λ1(λ2 + λ12)

λ1b− (λ2 + λ12)a

∫ ∞

0

e−(λ2+λ12+tb) x
b dx

− λ1(λ2 + λ12)

λ1b− (λ2 + λ12)a

∫ ∞

0

e−(λ1+λ2+λ12+t(a+b)) x
a+bdx

+
λ2(λ1 + λ12)

λ2a− (λ1 + λ12)b

∫ ∞

0

e−(λ1+λ12+ta) x
adx

− λ2(λ1 + λ12)

λ2a− (λ1 + λ12)b

∫ ∞

0

e−(λ1+λ2+λ12+t(a+b)) x
a+bdx

+
λ12
a+ b

∫ ∞

0

e−(λ1+λ2+λ12+t(a+b)) x
a+bdx.



0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

ψ
S

2(t
)

 

 

λ
1
 = 0.1, λ

2
 = 0.3, λ

3
 = 0.6, a = 0.1, b = 0.8

λ
1
 = 1/3, λ

2
 = 1/3, λ

3
 = 1/3, a= 0.5, b = 0.5

λ
1
 = 0.4, λ

2
 = 0.4, λ

3
 = 0.2, a = 0.2, b = 0.4

Figure 4.2: Laplace transform for different values of parameters λ1, λ2, λ12 and weights a
and b.

Remark 4.1.3 (Conflictive points in the Laplace transform)
When λ1 = (λ2+λ12)a/b or λ2 = (λ1+λ12)b/a, the Laplace transform has to be computed
evaluating the integral

∫∞
0
e−txfS2(x)dx using the expressions for fS2(x) in Equations (4.3)

and (4.4). This yields:

ψS2(t)|λ1=(λ2+λ12)a/b
=

(λ2 + λ12)
2a

(a+ b)(λ2 + λ12 + bt)2

− λ2(λ2a+ λ12(a+ b))a

λ12(a+ b)(λ2a+ λ12(a+ b) + abt)

+
λ2(λ2a+ λ12(a+ b))

λ12(a+ b)(λ2 + λ12 + bt)

+
λ12b

(a + b)(λ2 + λ12 + bt)
,

ψS2(t)|λ2=(λ1+λ12)b/a
=

(λ1 + λ12)
2b

(a+ b)(λ1 + λ12 + at)2

− λ1(λ1b+ λ12(a + b))b

λ12(a+ b)(λ1b+ λ12(a+ b) + abt)

+
λ1(λ1b+ λ12(a+ b))

λ12(a+ b)(λ1 + λ12 + at)

+
λ12a

(a + b)(λ1 + λ12 + at)
.

If one aims at generalizing these results to higher dimensions, one notices that the
number of involved shocks and parameters, i.e. 2d − 1 in dimension d, renders this prob-
lem extremely intractable already for moderate dimensions d. A subclass with fewer
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Figure 4.3: Laplace transform when λ1 = (λ2 + λ12)a/b (left) and λ2 = (λ1 + λ12)b/a
(right) for different values of parameters λ1, λ2, λ12 and weights a and b.

parameters is obtained by considering the Marshall–Olkin law with exchangeable compo-
nents. This yields a parametric family with d parameters in dimension d, allowing us to
derive the distribution of Sd in higher dimensions.

4.2 The exchangeable Marshall–Olkin law

The aim of this section is to derive the survival function of Sd in the exchangeable case.
We introduce the subfamily of exchangeable Marshall–Olkin laws in order to deal with the
problem of overparameterization. For a deeper background on exchangeable Marshall–
Olkin laws see [Mai and Scherer, 2011], [Mai and Scherer, 2012] (Chapter 3, Section 3.2).

Definition 4.2.1 (Exchangeable random vector)
A random vector (X1, . . . , Xd) is said to be exchangeable if for all permutations π on
{1, . . . , d} it satisfies

P(X1 > x1, . . . , Xd > xd) = P(X1 > xπ(1), . . . , Xd > xπ(d)), x1, . . . , xd ∈ R.

Alternatively in the Marshall–Olkin context, if it satisfies the exchangeability condition:

|I| = |J | ⇒ λI = λJ . (4.6)

The proof that (4.6) is equivalent to (X1, . . . , Xd) being exchangeable can be found
in [Mai and Scherer, 2012], page 124. Condition (4.6) intuitively means that two shocks
affecting subsets with identical cardinalities have the same intensity λI . Hence, in this
section we denote by λ1 the intensity of all shocks affecting precisely one component, by
λ2 all shocks affecting two components, and so on. In addition, this condition allows to
identify the parameters of each EI in a simple way as we illustrate it in Example 4 below.



Example 4 (Influence of the exchangeability condition)
Let us check the influence of the exchangeability condition in our problem comparing the
non-exchangeable and the exchangeable cases when d = 3:

(i) Non-exchangeable case:

E1 ∼ Exp(λ1), E2 ∼ Exp(λ2), E3 ∼ Exp(λ3),

E12 ∼ Exp(λ12), E13 ∼ Exp(λ13), E23 ∼ Exp(λ23),

E123 ∼ Exp(λ123),

X1 = min{E1, E12, E13, E123} ∼ Exp(λ1 + λ12 + λ13 + λ123),

X2 = min{E2, E12, E23, E123} ∼ Exp(λ2 + λ12 + λ23 + λ123),

X3 = min{E3, E13, E23, E123} ∼ Exp(λ3 + λ13 + λ23 + λ123).

(ii) Exchangeable case:

E1, E2, E3 ∼ Exp(λ1), E12, E13, E23 ∼ Exp(λ2), E123 ∼ Exp(λ3),

X1 = min{E1, E12, E13, E123} ∼ Exp(λ1 + 2λ2 + λ3),

X2 = min{E2, E12, E23, E123} ∼ Exp(λ1 + 2λ2 + λ3),

X3 = min{E3, E13, E23, E123} ∼ Exp(λ1 + 2λ2 + λ3).

Observe that in the exchangeable case instead of dealing with 2d−1 parameters λI we just
have to work with d parameters λ1, . . . , λd, which simplifies the process of computing the
required probabilities.

Definition 4.2.2 (Exchangeable Marshall–Olkin distribution)
Let (X1, . . . , Xd) be a random vector following the Marshall–Olkin distribution, defined as
in Equation (2.24). Then the survival function of the exchangeable Marshall–Olkin law is
given by

F̄ (x1, . . . , xd) = exp

(

−
d∑

k=1

x(d+1−k)

d−k∑

i=0

(
d− k

i

)

λi+1

)

, x1, . . . , xd ≥ 0,

x(1) ≤ . . . ≤ x(d) being the ordered list of x1, . . . , xd.

In the following, we present the survival function of the sum of components of Marshall–
Olkin random vectors in low dimensional exchangeable cases (2, 3, and 4-dimensional).

Lemma 4.2.1 (The sum of d ∈ {2, 3, 4} lifetimes)
On the probability space (Ω,F ,P) . . .

1. . . . let (X1, X2) be a 2-dimensional exchangeable Marshall–Olkin random vector.
Then,

P(X1 +X2 > x) =
2λ1e

−(λ1+λ2)x

λ2

(
eλ2

x
2 − 1

)
+ e−(2λ1+λ2)

x
2 , x ≥ 0. (4.7)



2. . . . let (X1, X2, X3) be a 3-dimensional exchangeable Marshall–Olkin random vector.
Then,

P(X1 +X2 +X3 > x) = e−(3λ1+3λ2+λ3)
x
3 (4.8)

+
6λ1(2λ1 + 3λ2 + λ3)

(3λ2 + λ3)(λ2 + λ3)
×

e−(2λ1+3λ2+λ3)
x
2

(

e

(
3λ2+λ3

2

)

x
3 − 1

)

+
3λ2(λ2 + λ3)− 6λ1(λ1 + λ2)

(λ2 + λ3)(3λ2 + 2λ3)
×

e−(λ1+2λ2+λ3)x
(

e(3λ2+2λ3)
x
3 − 1

)

, x ≥ 0.

3. . . . let (X1, X2, X3, X4) be a 4-dimensional exchangeable Marshall–Olkin random vec-
tor. Then,

P(X1 +X2 +X3 +X4 > x) = 24 · P1 + 12 · P2 + 12 ·+12 · P4 (4.9)

+4 · P5 + 4 · P6 + 6 · P7 + P8, x ≥ 0,

where,

P1 = P(X1 +X2 +X3 +X4 > x |X1 < X2 < X3 < X4)

= λ1(λ1 + λ2)f11

( 32f10
f1f2f4f5

e−f1
x
4 − 27f10

f2f3f7f8
e−f3

x
3 +

4f10
f4f6f7f9

e−f9
x
2

− 1

f5f6f8
e−f10x

)

,

P2 = P(X1 +X2 +X3 +X4 > x |X1 < X2 < X3 = X4)

= λ1(λ1 + λ2)f6

( 8

f1f2f4
e−f1

x
4 − 9

f2f3f7
e−f3

x
3 +

2

f4f7f9
e−f9

x
2

)

,

P3 = P(X1 +X2 +X3 +X4 > x |X1 < X2 = X3 < X4)

= λ1(λ2 + λ3)
[f10
f2

( 16

f1f5
e−f1

x
4 − 9

f3f8
e−f3

x
3

)

+
1

f5f8
e−f10x

]

,

P4 = P(X1 +X2 +X3 +X4 > x |X1 = X2 < X3 < X4)

= λ2f11

[( 2f10
f4f6f9

− 1

f5f6
+

1

f1f9

)

e−f1
x
4 − 2f10

f4f6f9
e−f9

x
2 +

1

f5f6
e−f10x

]

,

P5 = P(X1 +X2 +X3 +X4 > x |X1 = X2 = X3 < X4)

= λ3

(4f10
f1f5

e−f1
x
4 − 1

f5
e−f10x

)

,

P6 = P(X1 +X2 +X3 +X4 > x |X1 < X2 = X3 = X4)

=
λ1
f2

(λ3 + λ4)
( 4

f1
e−f1

x
4 − 3

f3
e−f3

x
3

)

,



P7 = P(X1 +X2 +X3 +X4 > x |X1 = X2 < X3 = X4)

=
λ2f6
f4

( 2

f1
e−f1

x
4 − 1

f9
e−f9

x
2

)

,

P8 = P(X1 +X2 +X3 +X4 > x |X1 = X2 = X3 = X4) =
λ4
f1
e−f1

x
4 ,

and

f1 = 4λ1 + 6λ2 + 4λ3 + λ4, f5 = 6λ2 + 8λ3 + 3λ4, f9 = 2λ1 + 5λ2 + 4λ3 + λ4,

f2 = 6λ2 + 4λ3 + λ4, f6 = λ2 + 2λ3 + λ4, f10 = λ1 + 3λ2 + 3λ3 + λ4,

f3 = 3λ1 + 6λ2 + 4λ3 + λ4, f7 = 3λ2 + 4λ3 + λ4, f11 = λ1 + 2λ2 + λ3.

f4 = 4λ2 + 4λ3 + λ4, f8 = 3λ2 + 5λ3 + 2λ4,

Proof. We prove the case d = 2 in details and we give a sketch of a prove when d = 3 and
d = 4. The cases d = 3 and d = 4 are in Appendix B.1.

To clarify notation, fY (·) represents the probability density function of the distribution
of variable Y .

P(X1 +X2 > x) = P(X1 +X2 > x |X1 < X2)P(X1 < X2)

+P(X1 +X2 > x |X2 < X1)P(X2 < X1)

+P(X1 +X2 > x |X1 = X2)P(X1 = X2),

such that E1, E2 ∼ Exp(λ1) and E12 ∼ Exp(λ2), and note that since we are working
on the exchangeable case,

P(X1 +X2 > x |X1 > X2)P(X1 > X2) = P(X1 +X2 > x |X1 < X2)P(X1 < X2).

So,

P(X1 +X2 > x) = 2P(X1 +X2 > x |X2 < X1)P(X2 < X1)

+P(X1 +X2 > x |X1 = X2)P(X1 = X2).

Taking into account that, X2 < X1 ⇔ E2 < min {E1, E12} and X1 = X2 ⇔
min {E1, E2} > E12,

P(X1 +X2 > x)

= 2P(E2 +min {E1, E12} > x |E2 < min {E1, E12})P(E2 < min {E1, E12})
+ P(E12 + E12 > x |E12 < min {E1, E2})P(E12 < min {E1, E2})

= 2
P(min{E1, E12} > E2 > x−min{E1, E12})

P(E2 < min{E1, E12})
P(E2 < min{E1, E12})



+
P(min{E1, E2} > E12 >

x
2
)

P(E12 < min{E1, E2})
P(E12 < min{E1, E2})

= 2E [P(min {E1, E12} > E2 > x−min {E1, E12} |E2)]

+ E

[

P

(

min {E1, E2} > E12 >
x

2
| min {E1, E2}

)]

.

Then, from the so-called min-stability of the exponential distribution (Lemma B.1),

min {E1, E2} ∼ Exp(2λ1) and min {E1, E12} ∼ Exp(λ1 + λ2),

Therefore,

E [P(min {E1, E12} > E2 > x−min {E1, E12} |E2)]

=

∫ ∞

0

P(min {E1, E12} > E2 > x−min {E1, E12})fE2(y)dy

=
λ1
λ2
e−(λ1+λ2)x

(

eλ2
x
2 − 1

)

+
λ1

2λ1 + λ2
e−(2λ1+λ2)

x
2 ,

and following the same procedure

E

[

P

(

min {E1, E2} > E12 >
x

2
| min {E1, E2}

)]

=

∫ ∞

0

P

(

y > E12 >
x

2

)

fmin{E1,E2}(y)dy

=
λ2

2λ1 + λ2
e−(2λ1+λ2)

x
2 .

So,

P(X1 +X2 > x)

= 2
(λ1
λ2
e−(λ1+λ2)x

(

eλ2
x
2 − 1

)

+
λ1

2λ1 + λ2
e−(2λ1+λ2)

x
2

)

+
λ2

2λ1 + λ2
e−(2λ1+λ2)x

2

=
2λ1e

−(λ1+λ2)x

λ2

(
eλ2

x
2 − 1

)
+ e−(2λ1+λ2)

x
2 .

Remark 4.2.1 (Generalizing the results to higher dimensions)
Marshall–Olkin multivariate distributions are not absolutely continuous, i.e. there is a
positive probability that several components take the same value, i.e. P(X1 = . . . = Xd) >
0. It is possible to compute the expression

P(X1 + . . .+Xd > x,X1 = . . . = Xd),

for all dimensions d ∈ N, by recalling Pascal’s triangle (see Table 4.1).

PMd
d := P(X1 + . . .+Xd > x,X1 = . . . = Xd) (4.10)

=
λd

∑d
i=0

(
d
i

)
λi
e−(

∑d
i=0 (

d
i)λi)x

d , λ0 = 0.
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Figure 4.4: Plots of the survival and density function for Sd, d = 2, 3, 4, in the exchange-
able case. The parameters considered are in the two-dimensional case: λ1 = 0.6, λ2 = 0.4,
in the three-dimensional case: λ1 = 0.1, λ2 = 0.2, λ3 = 0.5, and in the four-dimensional
case: λ1 = 0.05, λ2 = 0.1, λ3 = 0.15, λ4 = 0.2.

1

1 1

d = 2 : 1 2 1

d = 3 : 1 3 3 1

d = 4 : 1 4 6 4 1

d = 5 : 1 5 10 10 5 1

Table 4.1: Pascal’s triangle.

Observe that on the one hand from a sum of d elements in Sd we have to take into
account the cases where we have k, k ∈ {0, 1, . . . , d − 1}, equalities in the condition of
the conditional probabilities, and on the other hand we need to calculate how many times
each conditional probability has to be added in the sum Sd.

The number of cases with k equalities in the condition of the conditional probabilities
is given by the binomial coefficient

(
d−1
k

)
.

Take for example the case d = 4:

(i) Number of cases where k = 0, i.e. there is no equality in the condition:
(
3
0

)
= 1,

P(X1 + . . .+X4 > x,Xi1 < . . . < Xi4), where ik 6= ij ∈ {1, 2, 3, 4}.



(ii) Number of cases where there is one equality (k = 1) in the condition:
(
3
1

)
= 3,

P(X1 + . . .+X4 > x,Xi1 = Xi2 < Xi3 < Xi4),

P(X1 + . . .+X4 > x,Xi1 < Xi2 = Xi3 < Xi4),

P(X1 + . . .+X4 > x,Xi1 < Xi2 < Xi3 = Xi4),

where ik 6= ij ∈ {1, 2, 3, 4}.

(iii) Number of cases where there are 2 equalities (k = 2) in the condition:
(
3
2

)
= 3,

P(X1 + . . .+X4 > x,Xi1 = Xi2 = Xi3 < Xi4),

P(X1 + . . .+X4 > x,Xi1 < Xi2 = Xi3 = Xi4),

P(X1 + . . .+X4 > x,Xi1 = Xi2 < Xi3 = Xi4),

such that ik 6= ij ∈ {1, 2, 3, 4}.

And the number of times each conditional probability has to be added in the sum Sd

can be computed using the permutation of multisets

PM
a1,a2,...,ak−1,ak
d :=

d!

a1! · a2! · . . . · ak−1! · ak!
, (4.11)

where in our case a1, . . . , ak represent the number of elements which are equal and how
they are located in each condition. Note that

∑k
i=1 ai = d. Let us illustrate this relation

with the example of d = 4:

P(X1 + . . .+X4 > x) = PM1,1,1,1
4 · P(X1 + . . .+X4, X1

︸︷︷︸

1

< X2
︸︷︷︸

1

< X3
︸︷︷︸

1

< X4
︸︷︷︸

1

)

+PM2,1,1
4 · P(X1 + . . .+X4 > x,X1 = X2

︸ ︷︷ ︸

2

< X3
︸︷︷︸

1

< X4
︸︷︷︸

1

)

+PM1,2,1
4 · P(X1 + . . .+X4 > x, X1

︸︷︷︸

1

< X2 = X3
︸ ︷︷ ︸

2

< X4
︸︷︷︸

1

)

+PM1,1,2
4 · P(X1 + . . .+X4 > x, X1

︸︷︷︸

1

< X2
︸︷︷︸

1

< X3 = X4
︸ ︷︷ ︸

2

)

+PM2,2
4 · P(X1 + . . .+X4 > x,X1 = X2

︸ ︷︷ ︸

2

< X3 = X4
︸ ︷︷ ︸

2

)

+PM3,1
4 · P(X1 + . . .+X4 > x,X1 = X2 = X3

︸ ︷︷ ︸

3

< X4
︸︷︷︸

1

)

+PM1,3
4 · P(X1 + . . .+X4 > x, X1

︸︷︷︸

1

< X2 = X3 = X4
︸ ︷︷ ︸

3

)

+PM4
4 ,

the expression for PM4
4 is given in Equation (4.10).



Example 5 (Illustrating the effect of different levels of dependence)
We analyse the effect of different levels of dependence on the survival and density function
of Sd. We show this influence graphically in Figure 4.5.

a) Independence case: Shocks arriving to just one element are the only ones present in the
system, i.e. λ1 > 0 and λ2 = λ3 = λ4 = 0. In this case the probability distribution
of Sd follows the Erlang distribution with rate λ1 and shape parameter k = 4.

b) Comonotonic case: The shock arriving to all components at the same time is the only
one influencing the system, i.e. λ1 = λ2 = λ3 = 0 and λ4 > 0, and the distribution
of Sd is exponential with mean 4/λ4.

c) Moderate dependence case: In this case the shocks influencing fewer components jointly
have the strongest influence, i.e. λ1 > λ2 > λ3 > λ4 > 0.

d) High dependence case: Shocks arriving to most components jointly have the strongest
influence, i.e. λ4 > λ3 > λ2 > λ1 > 0.

e) Non-special case: λ1, λ2, λ3, λ4 > 0.
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(a) Survival function.
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(b) Density function.

Figure 4.5: P(S4 > x) and fS4(x) for different assumptions concerning the dependence: a)
independence, b) comonotonicity, c) moderate dependence (we consider λ4 = 0), d) high
dependence (we consider λ1 = 0), e) non-special case. In all examples, the marginal laws
are considered to be the same, Xi unit exponential random variables, i = 1, . . . , 4.

One can observe in Figure 4.5 that the intersection of the survival functions is around
the expected value E [S4] = 4. When the dependence between the components of the system
is strong, the probability of the system to collapse before this intersection is lower than in
the cases where the dependence is weak, but once the system survives till this intersection
point, in cases with strong dependence the probability that the system will last alive longer
is higher than in cases where the dependence is weak. This interpretation can be also seen



in the densities. In weak dependence cases, the mass of the probability is concentrated
around the expected value, which is translated into having a strong depth in the slope of
the survival function.

While working with the exchangeable subfamily of the Marshall–Olkin distribution we
simplify the number of parameters we needed to deal with in Section 4.1. However, due
to the large number of cases that one has to take into account as d increases, i.e. 2d−1,
the analytical derivation of P(X1 + . . .+Xd > x) becomes cumbersome for d≫ 2.

4.3 The extendible Marshall–Olkin law

Until now we have investigated the distributional behaviour of Sd in low dimensional
cases d ∈ {2, 3, 4}. But, because of the large number of parameters involved in the
implementation of the results (Section 4.1) and the extensive number of cases that has to
be taken into consideration while d increases (Section 4.2), the generalization of P(X1 +
. . .+Xd > x) to all dimensions d ∈ N becomes challenging.

In this section we aim at analysing how the probability distribution of Sd/d behaves in
the limit when the system grows in dimension, i.e. for d→ ∞. For this purpose we work
with the extendible subfamily of the Marshall–Olkin law, since we must be able to extend
the dimension of the vector (X1, . . . , Xd) without destroying its distributional structure.
This subfamily of the Marshall–Olkin distribution is based on a stochastic model with
conditionally independent and identically distributed components.

Definition 4.3.1 (Extendible random vector)
A random vector (X1, . . . , Xd) is called extendible if there exists an infinite exchangeable
sequence {X̃k}k∈N such that

(X1, . . . , Xd)
L
= (X̃1, . . . , X̃d).

De Finetti’s Theorem (see [Finetti, 1937]) states that this is equivalent to (X̃1, . . . , X̃d)
being conditionally i.i.d.

Definition 4.3.2 (Lévy-frailty canonical construction)
Let {Λt, t ≥ 0} be a Lévy subordinator. For extendible Marshall–Olkin laws there is a
canonical construction based on these processes:

Xk = inf{t > 0 : Λt ≥ εk}, k = 1, . . . , d. (4.12)

Component Xk is the first-passage time of Λt across εk and {εk}k∈N is an i.i.d. sequence of
unit exponential random variables. This construction is called the Lévy-frailty construction
and it defines the subclass of extendible Marshall–Olkin distributions. Further information
on these distributions can be found in [Mai and Scherer, 2009], [Mai and Scherer, 2012]
(Chapter 3).

Definition 4.3.3 (Extendible Marshall–Olkin distribution)
Let {Λt, t ≥ 0} be a Lévy subordinator, {Ψ(k)}k∈N a sequence derived from evaluating the
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Figure 4.6: Illustration of the Lévy-frailty canonical construction for a compound Poisson
process with Exp(1)-distributed jump sizes and jump-intensity β = 8 in dimension d = 3.
ε1, ε2, and ε3 follow the exponential distribution with parameter λ = 1.

Laplace exponent Ψ of Λt at the natural numbers, and (X1, . . . , Xd) an extendible vector.
We define the survival function of (X1, . . . , Xd) as:

P(X1 > x1, . . . , Xd > xd) = exp

(

−
d∑

k=1

x(d−k+1) (Ψ(k)−Ψ(k − 1))

)

,

where x(1) ≤ . . . ≤ x(d) is the ordered list of x1, . . . , xd ≥ 0.

It is shown in [Mai, 2010] that (X1, . . . , Xd) follows the Marshall–Olkin distribution
with parameters

λk =
k−1∑

i=0

(−1)i (Ψ(d− k + i+ 1)−Ψ(d− k + i)) , k = 1, . . . , d.

Once we construct the vector of first-passage times of a Lévy-subordinator, (X1, . . . , Xd),
we can prove that when d→ ∞, Sd/d has the same distribution as the exponential func-
tional of a Lévy-subordinator, I∞ =

∫∞
0
e−Λsds, defined in the following definition.

Definition 4.3.4 (Exponential functional of a Lévy subordinator)
Let {Λt, t ≥ 0} be a Lévy subordinator. Then the exponential functional of a Lévy process,
Λt, is defined as

It =

∫ t

0

e−Λsds,

and at its terminal value t = ∞ it is given by

I∞ =

∫ ∞

0

e−Λsds.



For further information on exponential functionals of Lévy subordinators we refer the
reader to [Bertoin and Yor, 2005] and [Carmona et al., 2001].

Lemma 4.3.1 (The sum of d ր ∞ lifetimes)
Let (X1, . . . , Xd) be a random vector following the extendible Marshall–Olkin distribution.
Then,

lim
dր∞

Sd

d
L−→ I∞. (4.13)

Proof. Define from Equation (4.12) Xk := inf{t > 0 : Λt ≥ εk}. If we prove that
limdր∞

Sd

d
converges to I∞ P-almost surely, since P-almost sure convergence implies con-

vergence in distribution, limdր∞
Sd

d
converges in distribution to I∞.

lim
dր∞

1

d

d∑

k=1

Xk
a.s.−−→ I∞ =

∫ ∞

0

e−Λsds⇔ P

(∣
∣
∣
∣
∣
lim
dր∞

1

d

d∑

k=1

Xk −
∫ ∞

0

e−Λsds

∣
∣
∣
∣
∣
= 0

)

= 1.

So,

P

(∣
∣
∣
∣
∣
lim
dր∞

1

d

d∑

k=1

Xk −
∫ ∞

0

e−Λsds

∣
∣
∣
∣
∣
= 0

)

= E
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1
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0
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Observe that,

E[X1 |Λ] =
∫ ∞

0

xdP(X1 ≤ x |Λ) =
∫ ∞

0

xdP(ε1 ≤ Λx |Λ) =
∫ ∞

0

xd(1− e−Λx) =

∫ ∞

0

−xd(e−Λx)

applying integration by parts

=
[

− xe−Λx

]x=∞

x=0
+

∫ ∞

0

e−Λxdx

= 0 +

∫ ∞

0

e−Λxdx.

Example 6 (The limit of Sd/d in a Poisson-frailty model)
In this example we aim at numerically illustrating the result presented in Lemma 4.3.1
above. For this purpose we consider the standard Poisson process Nt = {Nt}t≥0 with
intensity β > 0, which is a Lévy subordinator (see Definition 2.2.2 in Chapter 2). We
want to analyse that P(Sd/d > x), d = 2, 3, 4, x ≥ 0 converges to the survival function of
the exponential functional of the Poisson process,

I∞ =

∫ ∞

0

e−Ntdt, (4.14)



when d → ∞.
[Bertoin et al., 2004] compute the Laplace transform of the exponential functional of

the standard Poisson process

E[eλ̃I∞ ] =

( ∞∏

j=0

(1− λ̃e−j)

)−1

, λ̃ < 1.

Using the Gaver–Stehfest Laplace inversion technique (see [Kou and Wang, 2003],
[Gaver, 1966], [Stehfest, 1970]), we numerically compute the survival function of the
exponential functional of I∞:

P(I(q)∞ > x), x ∈ R+.
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Figure 4.7: Plot of P(Sd/d > x), d = 2, 3, 4 together with P(I∞ > x), x ≥ 0, where β = 1.

With this example we visualize how P (Sd/d > x), d ∈ N, converges to P (I∞ > x) when
d → ∞. In this case the components of the system strongly depend on each other, i.e.
0 < λ1 < λ2 < λ3 < λ4.
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Figure 4.8: Zoom into Figure 4.7.



5
Simulating Lévy-frailty copulas built from an

α-stable Lévy subordinator

“I really doubt that it’s mathematically possible for me to be in two

dreams at one time.”

Whatever Works (2009)

Lévy-frailty copulas, which belong to the family of survival copulas of the Marshall–
Olkin law (see Figure 2.6), were originally introduced in [Mai and Scherer, 2009]. These
copulas are based on a stochastic model with conditionally independent and identically
distributed components (CIID). Lévy-frailty copulas are defined in terms of the Laplace
exponent of Lévy subordinators. They allow to construct dependence structures over ini-
tially independent random vectors using first-passage times of Lévy subordinators. We
focus on Lévy-frailty copulas built from an α-stable Lévy subordinator. Since α-stable
subordinators possess a convenient functional form of the Laplace exponent, they are
attractive in different applications (see e.g. [Applebaum, 2009]). Different simulation
techniques to sample Lévy-frailty copulas built from α-stable subordinators are inves-
tigated in this chapter. We measure the efficiency of these computational methods to
sample these copulas in terms of computational speed. We compare a method based on
the recursive formula for general exchangeable Marshall–Olkin copulas, the simulation of
the involved α-stable subordinator on a fine grid, and the simulation of the approxima-
tion of the α-stable subordinator by a compound Poisson process. For this purpose we
consider different values of the dimension of the copulas and index α of the subordinator.

5.1 α-stable Lévy subordinators

In this section α-stable Lévy subordinators are introduced. As it was previously mention in
Chapter 2 (Section 2.3), Lévy subordinators are a special case of Lévy processes. We first
introduce basic concepts about Lévy processes. Standard references on these processes
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are provided in, e.g., [Bertoin, 1998], [Sato, 1999], [Applebaum, 2009]. Concerning the
simulation of Lévy processes and applications in finance we refer the reader to [Schoutens,
2003] and [Cont and Tankov, 2004].

Definition 5.1.1 (Jump process)
The jump process of a Lévy process {Xt}t≥0 is given by

{∆Xt := Xt −Xt−}t≥0.

Definition 5.1.2 (Random jump measure)
On the probability space (Ω,F ,P) let {Xt}t≥0 be a Lévy process. Then the number of
jumps of Xt with jump size in A ⊂ R \ {0} in a time interval [0, t] is measured by the so
called random jump measure:

mX(ω; [0, t]×A) := |(s,∆Xs(ω)) ∈ [0, t]× A| , ∀ω ∈ Ω,

such that, ∆Xs(ω) = Xs(ω)−Xs−(ω).

Note that, for a given time interval [0, t] and jump size in A ⊂ R, mX(ω, ·) is a ran-
dom measure. In case of Lévy subordinators the definition remains the same besides of
A ⊂ (0,∞] due to the non-decreasingness of the subordinator.

Taking the average of the jump measure in a unit-time interval, it is possible to
calculate the average number of jumps of Xt in this interval with jump size in B ∈ B(R).
This measure is called Lévy measure (see [Cont and Tankov, 2004], Chapter 3).

Definition 5.1.3 (Lévy measure)
On the probability space (Ω,F ,P) let {Xt}t≥0 be a Lévy process. The Lévy measure is
given by,

ν(B) := E [|{s ∈ (0, 1] : ∆Xt 6= 0,∆Xt ∈ B}|] , B ∈ B(R \ {0}).

The Lévy measure for a Lévy subordinator, {Λt}t≥0, is given by:

ν(B) := E [|{s ∈ (0, 1] : ∆Λt 6= 0,∆Λt ∈ B}|] , B ∈ B((0,∞]).

As previously mentioned in Chapter 2 (Section 2.3) the distributional law of Lévy pro-
cesses is characterized by their characteristic function. In case of Lévy subordinators, due
to their non-negativity, this characterization is given by the Laplace transform (Definition
2.3.2). In the Lévy–Khintchine formula (Theorem 2.3.1) for Lévy subordinators we find
that the Lévy measure also satisfies the following properties:

∫

(0,1]

x ν(dx) <∞, (5.1)

ν((ǫ,∞]) <∞, ∀ ǫ > 0. (5.2)



Let us now describe the structure of a Lévy process in terms of a continuous part and
a part that can be expressed as a compensated sum of jumps. This representation is given
by the Lévy–Itô decomposition.

Theorem 5.1.1 (Lévy–Itô decomposition)
Let {Xt}t≥0 be a Lévy process with jump process {∆Xt}t≥0. Then, the following holds:

Xt = µ t+ σWt +

∫ t

0

∫

|x|≥1

xmX(ds, dx)

+ lim
ǫ→0

(∫ t

0

∫

ǫ<|x|<1

xmX(ds, dx)− t

∫

ǫ<|x|<1

x ν(dx)

)

, (5.3)

where µ and σ > 0 are real numbers and Wt is the standard Brownian motion.

Note that the third term in (5.3) represents jumps with absolute jump size bigger than
one, big jumps. However, in the last term we consider jumps with absolute jumps size
smaller than one, which are named small jumps.

For the proof of this theorem we refer the reader to [Sato, 1999] (Chapter 4) or
[Kyprianou, 2006] (Chapter 2).

Remark 5.1.1 (Convergence of small jumps)
The last term in the above Equation (5.3) is the so called compensated sum of jumps.
Note that when ǫ→ 0 it is not possible to ensure that

∫ t

0

∫

ǫ<|x|<1

xmX(ds, dx)

converges. However, the difference

∫ t

0

∫

ǫ<|x|<1

xmX(ds, dx)− t

∫

ǫ<|x|<1

x ν(dx)

uniformly converges to

∫ t

0

∫

0<|x|<1

xmX(ds, dx)− t

∫

0<|x|<1

x ν(dx)

when ǫ→ 0.

This convergence is proved in [Sato, 1999], Lemma 20.6.

Definition 5.1.4 (Lévy process with finite variation)
Let {Xt}t≥0 be a Lévy process with Lévy measure ν. {Xt}t≥0 is said to be a process with
finite variation if it fulfills

∫

(0,1]
x ν(dx) <∞.



In case of finite variation the small jumps do not have to be compensated. Since Lévy
subordinators, {Λt}t≥0, have finite variation, the Lévy–Itô decomposition for {Λt}t≥0 with
jump process {∆Λt}t≥0, and jump sizes ∆Λt = x ∈ [0,∞) is represented as

Λt = µ t+

∫ t

0

∫

x>0

xmΛ(ds, dx),

such that µ is a non-negative real number (see [Sato, 1999], Theorem 19.3).

In conclusion Lévy subordinators can be written as a sum of a deterministic drift
process, {µ t}t≥0, small and big jumps. We introduce in the following the concept of finite
and infinite activity.

Definition 5.1.5 (Finite/infinite activity of Lévy subordinators)
Let {Λt}t≥0 be a Lévy subordinator with Lévy measure ν. Λt is said to have a finite or
infinity activity if,

ν((0, ǫ)) <∞ or ν((0, ǫ)) = ∞, ǫ > 0.

Providing an interpretation, infinite activity means that in a finite time interval the
subordinator has almost surely infinite many jumps.

The α-stable Lévy subordinator belong to the set of Lévy subordinators with infinite
activity.

Definition 5.1.6 (α-stable Lévy subordinator)
A Lévy subordinator Λ is said to be α-stable, α ∈ (0, 1), if it has zero drift, µ = 0, and
Lévy measure, which is absolutely continuous with respect to the Lebesgue measure, given
by

ν(dx) =
α

Γ(1− α)
x−(1+α)

1{x≥0}dx. (5.4)

Figure 5.1 shows paths of the α-stable subordinator for different values of α.
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Figure 5.1: Simulated paths of an α-stable subordinator with α = 0.1, α = 0.25, and
α = 0.5, respectively.



The α-stable subordinator has the advantage that its Laplace exponent has a conve-
nient analytical form.

Lemma 5.1.1 (Laplace exponent of Λ)
Let {Λt}t≥0 be the α-stable subordinator. Then the Laplace exponent of Λ is given by

Ψ(x) = xα, x ≥ 0, α ∈ (0, 1).

Proof. From the Lévy–Khintchine formula, taking into account that µ = 0 and the ex-
pression for the Lévy measure of the α-stable subordinator (Equation (5.4)), we get

Ψ(x) =
α

Γ(1− α)

∫ ∞

0

(1− e−xt)
dt

t1+α
.

Now applying the so called Method of Sato (see [Sato, 1999], p. 46) we write the repeated
integral as a double integral and change the order of integration,

=
α

Γ(1− α)

∫ ∞

0

(1− e−xt) t−1−α dt

substitute 1− e−xt =
∫ t

0
xe−xydy,

=
α

Γ(1− α)

∫ ∞

0

(∫ t

0

x e−xy dy

)

t−1−α dt

swap the limits of integration using Fubini’s Theorem,

=
α

Γ(1− α)

∫ ∞

0

(∫ ∞

y

t−(1+α) dt

)

x e−xy dy

=
α

Γ(1− α)

x

α

∫ ∞

0

e−xyy−α dy

apply the change of variable: xy = u, dy = du/x,

=
xα

Γ(1− α)

∫ ∞

0

u−α e−u du

=
xα

Γ(1− α)
Γ(1− α)

= xα,

where Γ(·) is the Gamma function.
This proof is also provided in [Applebaum, 2009] (Chapter 1, Appendix).



5.2 Lévy-frailty copulas

We introduce in the sequel Lévy-frailty copulas. [Mai and Scherer, 2009] display different
examples of these copulas while [Mai, 2010] (Chapter 6) provides applications of these
copulas in portfolio-credit risk.

Definition 5.2.1 (Lévy-frailty copula)
Let Ψ be a Laplace exponent of the Lévy-subordinator Λ satisfying Ψ(1) = 1. The Lévy-
frailty copula is defined as

CΨ(u1, . . . , ud) :=

d∏

i=1

u
Ψ(i)−Ψ(i−1)
(i) ,

where u(1) ≤ . . . ≤ u(d) is the ordered list of u1, . . . , ud ∈ [0, 1].

Since the extendible subfamily of Marshall–Olkin distribution is part of the exchange-
able one (see Figure 2.6), they possess a close link with exchangeable Marshall–Olkin
copulas (previously introduced in Chapter 4, Definition 4.2.1) which we explain in the
sequel.

Definition 5.2.2 (d-monotone sequence)
Let {θ1, θ2, . . . , θd} be a finite sequence of real numbers and ∆j, j ∈ N, the difference
operator, such that ∆0θk = θk, ∆1θk = θk+1 − θk, ∆2θk = ∆θk+1 − ∆θk, etc. Then
{θ1, θ2, . . . , θd} is said to be d-monotone if,

(−1)j∆jθk ≥ 0, k = 1, . . . , d, j = 1, . . . , d− k.

Exchangeable Marshall–Olkin copulas can be defined in terms of d-monotone sequences
(see [Mai and Scherer, 2011], [Mai and Scherer, 2012], Lemma 3.7).

Definition 5.2.3 (Exchangeable Marshall–Olkin copula)
Exchangeable Marshall–Olkin copulas can be reparameterized using a d-monotone sequence
{θk}k∈N:

eMO =

{
d∏

i=1

u
θi−1

(i) |(θ0, . . . , θd−1) d-monotone, θ0 = 1

}

,

where u(1) ≤ u(2) ≤ . . . ≤ u(d) is the ordered list of u1, . . . , ud ∈ [0, 1].

If it is possible to extend a finite d-monotone sequence to an infinite sequence {θd}d∈N,
then we get a completely monotone sequence.

Definition 5.2.4 (Completely monotone sequence)
{θd}d∈N is a completely monotone sequence if,

(−1)j∆jθd ≥ 0, d, j ∈ N.



When a d-monotone sequence can be extended to a completely monotone sequence,
then the extendible subfamily of the Marshall–Olkin distribution can be derived. As we
mentioned in Chapter 4, within this subfamily we can extend the dimension of a random
vector without modifying its distributional structure.

Lévy-frailty copulas built the dependence over initially independent and unit expo-
nentially distributed random variables. Applying the Lévy-frailty canonical construction
(see Definition 4.3.2), we can sample first-exit times of a Lévy subordinator:

Xk := inf{t > 0 : Λt ≥ εk}, k ∈ {1, . . . , d}, (5.5)

being {εk}k∈N a sequence of i.i.d. unit exponential random variables and Λ an independent
non-zero Lévy subordinator.

The survival copula for the random vector (X1, . . . , Xd), built using Equation (5.5)
above, is precisely the exchangeable Marshall–Olkin copula which is parameterized using
the d-monotone sequence (Definition 5.2.3). For the interested readers in the proof of this
statement we refer to Theorem 3.2 in [Mai and Scherer, 2012].

Theorem 5.2.1 (Hausdorff, 1921)
On the probability space (Ω,F ,F) let X : Ω → [0, 1] be a random variable and {θk}k∈N0 a
sequence of real numbers. Then {θk}k∈N0 is completely monotone if and only if θk = E[Xk],
for all k ∈ N0.

Proof. This theorem was originally stated in [Hausdorff, 1921]. The sketch of a proof is
given in [Mai and Scherer, 2012], p. 141. For a full proof we refer the reader to [Feller,
1966], p. 225.

Theorem 5.2.2 (A bijection)
On the probability space (Ω,F ,P) let µ > 0 be the drift, ν the Lévy measure, and Ψ the
Laplace exponent of the Lévy subordinator Λ, such that Ψ(1) = 1. Then there exists the
following bijection between the set of all probability measures on [0, 1] and (µ, ν):

(i) µ := P(X = 1), ν(A) := E

[
1

1−X
1{−ln(X)∈A}

]

, A ∈ B((0,∞]).

(ii) P(x ∈ B) := µ1{1∈A} +
∫

{−ln(a) | a∈A−{1}}(1− e−t)ν(dt).

Proof. We refer the reader to [Mai and Scherer, 2012], p. 144.

On the one side using Theorem 5.2.1 it is possible to get a one-to-one correspondence
between measures on [0, 1] and completely monotone sequences. On the other side in
Theorem 5.2.2 a one-to-one correspondence between measures on [0, 1] and characteristics
of a Lévy subordinator, Λ, is set. In addition, the following relation between measures on
[0,1] and Laplace exponent of Lévy subordinators is true (see [Mai and Scherer, 2012], p.
145):

Ψ(k + 1)−Ψ(k)



= µ+

∫

(0,∞]

e−kt (1− e−t)ν(dt)

= P(X = 1) +

∫

(0,∞]

e−kt (1− e−t) (1− e−t)−1 P(−logX ∈ dt)

= E
[
Xk

1{X=1}
]
+ E

[
Xk

1{X∈[0,1)}
]

= E[Xk]

= θk, k ∈ N0.

So, for each completely monotone sequence {θk}k∈N0 with θ0 = 1 there exists a unique
Lévy subordinator satisfying Ψ(1) = 1.

In conclusion, the link between Lévy-frailty copulas and exchangeable Marshall–Olkin
copulas is given by:

d∏

i=1

u
Ψ(i)−Ψ(i−1)
(i) ↔

d∏

i=1

u
θi−1

(i) ,

where u(1) ≤ u(2) ≤ . . . ≤ u(d) is the ordered list of u1, . . . , ud ∈ [0, 1].
So, Lévy-frailty copulas are survival copulas of random vectors of first-passage times

of Lévy subordinators.

Figure 5.2 shows scatterplots of 500 samples of the Lévy-frailty copula built from the
α-stable subordinator in dimension d = 2. We compare the dependence in terms of the
index α of the subordinator and conclude that the dependence is lighter for bigger values
of α.

In the following section we approximate the α-stable Lévy subordinator by a compound
Poisson process (CPP).

5.3 Approximation of the α-stable subordinator by a

CPP

One of the techniques to simulate Lévy-frailty copulas built from an α-stable Lévy subor-
dinator is based on simulating an approximated process of the α-stable subordinator by
the compound Poisson process and sampling the first-exit times applying the Lévy-frailty
canonical construction.

From the Lévy–Itô decomposition we know that Lévy subordinators can be written
via,

Λt = µ t+

∫ t

0

∫

[0,∞)

xmΛ(ds, dx) (5.6)

being x the jump size, x = ∆Λt ∈ [0,∞).
Since subordinators are finite variation processes, it is not necessary to compensate

the small jumps, in this case it is enough if one considers the expectation (see [Cont and
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(a) Lévy-frailty copula built from
an 0.1-stable Lévy subordinator.
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(b) Lévy-frailty copula built from
an 0.25-stable Lévy subordinator.
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(c) Lévy-frailty copula built from
an 0.5-stable Lévy subordinator.
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(d) Lévy-frailty copula built from
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Figure 5.2: Scatterplots of 500 samples of a two-dimensional Lévy-frailty copula built from
an α-stable Lévy subordinator with indexes α = 0.1, α = 0.25, α = 0.5, and α = 0.9. We
can observe that for bigger values of α lighter is the dependence.



Tankov, 2004], p. 185). Taking into consideration that one of the properties of the α-stable
subordinators is that µ = 0, the subordinator in Equation (5.6) can be approximated in
the following way:

Λǫ
t =

∑

s<t

∆Λs 1{∆Λs≥ǫ} + E

[
∑

s<t

∆Λs 1{0<∆Λs<ǫ}

]

. (5.7)

We can now compute the expectation of the small jumps:

E

[
∑

s≤t

∆Xs1{0<∆Xs<ǫ}

]

=

∫ t

0

∫

[0,∞)

x1{0<∆Xs<ǫ}ν(dx)ds (5.8)

=

∫ t

0

∫

[0,∞)

α

Γ(1− α)
xx−(1+α)

1{0<x<ǫ}dxds

=

∫ t

0

∫ ǫ

0

α

Γ(1− α)
xx−(1+α)dxds

=
α · ǫ1−α

(1− α)Γ(1− α)
t.

In conclusion, substituting this expectation in (5.7), the approximation of the α-stable
subordinator by a compound Poisson process is given by:

Λǫ
t =

∑

s<t

∆Λs 1{∆Λs≥ǫ} +
α · ǫ1−α

(1− α)Γ(1− α)
t. (5.9)

Note that the term α·ǫ1−α

(1−α)Γ(1−α)
now serves as the drift µ.

Let us now compute the Lévy measure and the Laplace exponent of the approximated
process in (5.9).

The Lévy measure gives the information of the average number of jumps in a unit
time interval, i.e. the intensity and magnitude of the jumps. So, in this case the intensity
of the jumps:

∫ ∞

ǫ

α

Γ(1− α)
x−(1+α)dx =

1

Γ(1− α)

(

ǫ−α − lim
x→∞

x−α
)

=
ǫ−α

Γ(1− α)
. (5.10)

Recall that the Lévy measure of the α-stable distribution is

ν(dx) =
1

Γ(1− α)

α

x1+α
1{x≥0} dx,

multiplying and dividing it by ǫα and taking into consideration that the small jumps have
been already truncated, we get that

νǫ(dx) =
ǫ−α

Γ(1− α)

ǫα α

x1+α
1{x≥ǫ} dx =

α

Γ(1− α) x1+α
1{x≥ǫ} dx, (5.11)



being ǫ−α

Γ(1−α)
the intensity of jumps computed in Equation (5.10) and ǫα α

x1+α1{x≥ǫ}dx the
density function of the Pareto distribution (see Chapter 2, Section 2.1).

Therefore, the approximated process of the α-stable subordinator by the compound
Poisson process is based on a sum of big jumps following the Pareto distribution and the
expected value of the small jumps used as drift.

The following Figure 5.3 displays the paths of the approximated process of the α-stable
subordinator by a compound Poisson process for different values of parameter α.
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Figure 5.3: Simulated paths of the α-stable subordinator approximated by the compound
Poisson process for α = 0.1, α = 0.25, α = 0.5, and ǫ = 10−3.

Lemma 5.3.1 (Laplace exponent of Λǫ)
Let Λt be an α-stable subordinator with Laplace exponent Ψ(x) = xα, x ≥ 0, α ∈ (0, 1).
Let Λǫ be the approximated α-stable subordinator by a compound Poisson process. Then
the Laplace exponent, Ψǫ, of Λǫ is given by,

Ψǫ(x) =
(1− α) Γ(1− α, ǫ x) xα + α ǫ1−α x+ (1− α) ǫ−α (1− e−ǫx)

α ǫ1−α + (1− α) ǫ−α (1− e−ǫ) + (1− α) Γ(1− α, ǫ)
. (5.12)

such that Γ(·) is the Gamma function and Γ(·, ·) the upper incomplete Gamma function,
which is defined as Gamma(b, s) =

∫∞
s
ub−1 e−udu, that satisfies Γ(b) = Γ(b, 0), and being

b a complex number and strictly positive integer, and s an integer number.

Proof. This result is proved in the same way as the result in Lemma 5.1.1.

Λǫ
t =

∑

s<t

∆Λs 1{∆Λs≥ǫ} +
α · ǫ1−α

(1− α)Γ(1− α)
t

where big jumps,
∑

s≤t∆Λs1{∆Λs≥ǫ}, follow the Pareto distribution.

From the Lévy–Khintchine formula

Ψǫ(x) = µ x+

∫

(0,∞]

(1− e−tx)νǫ(dt)
(∗)
=



and remembering that,

νǫ(dt) =
ǫ−α

Γ(1− α)

α ǫα

t1+α
1{t>ǫ}dt,

(∗)
=

α ǫ1−α

(1− α) Γ(1− α)
x+

α

Γ(1− α)

∫

(0,∞]

(1− e−t x)
1

t1+α
1{t>ǫ}dt

(∗∗)
=

Note that, we can express (1− e−t x) in the following way:

1− e−t x =

∫ t

0

xe−x ydy,

so,

(∗∗)
=

α ǫ1−α

(1− α) Γ(1− α)
x+

α

Γ(1− α)

∫

(ǫ,∞]

[∫ t

0

xe−x ydy

]
1

t1+α
dt,

now we change the order of the integrals,

=
α ǫ1−α

(1− α) Γ(1− α)
x+

α

Γ(1− α)

∫ ǫ

0

[∫ ∞

ǫ

1

t1+α
dt

]

xe−x ydy

+
α

Γ(1− α)

∫ ∞

ǫ

[∫ ∞

y

1

t1+α
dt

]

xe−x ydy

=
α ǫ1−α

(1− α) Γ(1− α)
x+

α

Γ(1− α)

∫ ǫ

0

([
t−α

−α

]∞

ǫ

)

xe−x ydy

+
α

Γ(1− α)

∫ ∞

ǫ

([
t−α
]∞
y

)

xe−x ydy

=
α ǫ1−α

(1− α) Γ(1− α)
x+

ǫ−α

Γ(1− α)

∫ ∞

0

xe−x ydy +
α

Γ(1− α)

x

α

∫

(ǫ,∞]

y−αe−x ydy,

choosing x y = u,

=
α ǫ1−α

(1− α) Γ(1− α)
x+

ǫ−α

Γ(1− α)
(1− e−ǫ x) +

x

Γ(1− α)

∫ ∞

ǫ x

u−α

x1−α
e−udu

=
α ǫ1−α

(1− α) Γ(1− α)
x+

ǫ−α

Γ(1− α)
(1− e−ǫ x) +

xα

Γ(1− α)

∫ ∞

ǫ x

u−α e−udu

=
α ǫ1−α

(1− α) Γ(1− α)
x+

ǫ−α

Γ(1− α)
(1− e−ǫ x) +

xα

Γ(1− α)
Γ(1− α, ǫ x). (5.13)

Note that Ψǫ has to fulfil Ψǫ(1) = 1, so we divide the expression in Equation (5.13)
by Ψǫ(1),

Ψǫ(1) =
α ǫ1−α

(1− α) Γ(1− α)
+

ǫ−α

Γ(1− α)
(1− e−ǫ) +

Γ(1− α, ǫ)

Γ(1− α)
,



therefore,

Ψǫ(x) =
(1− α) Γ(1− α, ǫ x) xα + α ǫ1−α x+ (1− α) ǫ−α (1− e−ǫx)

α ǫ1−α + (1− α) ǫ−α (1− e−ǫ) + (1− α) Γ(1− α, ǫ)
.

Lemma 5.3.2 (Quality of the approximation)
Let Ψǫ be the Laplace exponent of the approximated α-stable Lévy subordinator by a com-
pound Poisson process. We call CΨǫ

the Lévy-frailty copula parameterized in terms of Ψǫ.
Then the quality of the approximation between CΨǫ

and CΨ is given by,

‖CΨǫ
− CΨ‖∞ ≤ δ ⇔ ǫ ≤

(
δ(1− α)Γ(1− α, 1)

4(d− 1)

) 1
1−α

. (5.14)

Proof. We need to find ǫ that satisfies

‖CΨǫ
(u1, . . . , ud)− CΨ(u1, . . . , ud)‖∞

= sup
u1,...,ud∈[0,1]

|CΨǫ
(u1, . . . , ud)− CΨ(u1, . . . , ud)| ≤ δ. (5.15)

Recall that θk = Ψ(k + 1) − Ψ(k) = (k + 1)α − kα ≤ 1. {θk}k∈N0 is a completely
monotone sequence, i.e., (−1)k∆θk ≥ 0, so (k + 1)α − kα is decreasing, for every k. In
conclusion,

1 = θ0 ≥ θk, ∀k ≥ 1.

Let us consider the bivariate case in (5.15):

sup
u1,u2∈[0,1]

∣
∣
∣u(1)u

θ1,ǫ
(2) − u(1)u

θ1
(2)

∣
∣
∣ = sup

u1,u2∈[0,1]
u(1)

∣
∣
∣u

θ1,ǫ
(2) − uθ1(2)

∣
∣
∣ ≤

∣
∣
∣u

θ1,ǫ
(2) − uθ1(2)

∣
∣
∣ ≤ δ,

note that,

sup
u1,...,ud∈[0,1]

|CΨǫ
(u1, . . . , ud)− CΨ(u1, . . . , ud)|

= sup
u1,...,ud∈[0,1]

∣
∣
∣u(1)u

θ1,ǫ
(2) · . . . · uθd−1,ǫ

(d) − u(1)u
θ1
(2) · . . . · u

θd−1

(d)

∣
∣
∣

≤
∣
∣
∣u

θd−1,ǫ

(d) − u
θd−1

(d)

∣
∣
∣+
∣
∣
∣u

θd−2,ǫ

(d−1) − u
θd−2

(d−1)

∣
∣
∣+ . . .+

∣
∣
∣u

θ1,ǫ
(2) − uθ1(2)

∣
∣
∣ .

Let us now work with one of the terms on the sum above:
∣
∣
∣u

θk,ǫ
(k+1) − uθk(k+1)

∣
∣
∣.

We apply now the Mean Value Theorem (e.g. [Larson and Edwards, 2013], p. 172).
Let us consider f(x, t) = xt. Then,

|f(x, a)− f(x, b)| ≤
∣
∣
∣
∣
∣
sup
t∈[a,b]

∂

∂t
f(x, t)(a− b)

∣
∣
∣
∣
∣
=
∣
∣xt log(x)(a− b)

∣
∣ , a > b ∈ R.



Since x ∈ [0, 1],

|f(x, a)− f(x, b)| ≤ |x log(x)| |a− b| ≤ |a− b| .

Now choosing a = θk,ǫ and b = θk:

∣
∣
∣u

θk,ǫ
(k+1) − uθk(k+1)

∣
∣
∣

≤ |ak,ǫ − ak|

=

∣
∣
∣
∣
∣

αǫ1−α + (1− α)ǫ−α
(
e−ǫ·k(1− e−ǫ)

)

αǫ1−α + (1− α)ǫ−α(1− e−ǫ) + (1− α)Γ (1− α, ǫ)

+
(1− α) [Γ (1− α, ǫ(k + 1)) (k + 1)α − Γ (1− α, ǫk) kα]

αǫ1−α + (1− α)ǫ−α(1− e−ǫ) + (1− α)Γ (1− α, ǫ)
− [(k + 1)α − kα]

∣
∣
∣
∣
,

note that Γ (1− α, ǫ(k + 1)) ≤ Γ (1− α, ǫk),

≤
∣
∣
∣
∣
∣

αǫ1−α + (1− α)ǫ−α
(
e−ǫ·k(1− e−ǫ)

)
+ (1− α)Γ (1− α, ǫk) [(k + 1)α − kα]

αǫ1−α + (1− α)ǫ−α(1− e−ǫ) + (1− α)Γ (1− α, ǫ)

− ((k + 1)α − kα)| ,

since Γ(1− α, ǫk) ≤ Γ(1− α, ǫ) and e−ǫk ≤ 1,

≤
∣
∣
∣
∣

αǫ1−α + (1− α)ǫ−α(1− e−ǫ) + (1− α)Γ (1− α, ǫ) [(k + 1)α − kα]

αǫ1−α + (1− α)ǫ−α(1− e−ǫ) + (1− α)Γ (1− α, ǫ)
− ((k + 1)α − kα)

∣
∣
∣
∣

=

∣
∣
∣
∣

αǫ1−α + (1− α)ǫ−α(1− e−ǫ) + [(k + 1)α − kα] [−αǫ1−α − (1− α)ǫ−α(1− e−ǫ)]

αǫ1−α + (1− α)ǫ−α(1− e−ǫ) + (1− α)Γ (1− α, ǫ)

∣
∣
∣
∣
,

we apply now the triangular inequality,

≤ |αǫ1−α|+ |(1− α)ǫ−α(1− e−ǫ)|+ |[(k + 1)α − kα] [−αǫ1−α − (1− α)ǫ−α(1− e−ǫ)]|
|αǫ1−α + (1− α)ǫ−α(1− e−ǫ) + (1− α)Γ (1− α, ǫ)| ,

recall that (k + 1)α − kα ≤ 1,

≤ 2αǫ1−α + 2(1− α)ǫ−α(1− e−ǫ)

αǫ1−α + (1− α)ǫ−α(1− e−ǫ) + (1− α)Γ(1− α, ǫ)
,

due to αǫ1−α → 0 and (1− α)ǫ−α(1− e−ǫ) → 0 when ǫց 0,

≤ 2αǫ1−α + 2(1− α)ǫ−α(1− e−ǫ)

(1− α)Γ(1− α, ǫ)
,

since α ∈ (0, 1) and Γ(1− α, ǫ) ≥ Γ(1− α, 1),

≤ 2ǫ1−α + 2ǫ−α(1− e−ǫ)

(1− α)Γ(1− α, ǫ)
,



w.l.o.g. we can consider ǫ ∈ [0, 1], so (1− e−ǫ) =
∑∞

n=1(−1)n+1 ǫn

n!
≤ ǫ,

≤ 4ǫ1−α

(1− α)Γ(1− α, 1)
.

So, if we get the value of ǫ such that 4ǫ1−α

(1−α)Γ(1−α,1)
≤ δ

d−1
, δ ∈ R, then

sup
u1,...,ud∈[0,1]

|CΨǫ
(u1, . . . , ud)− CΨ(u1, . . . , ud)|

≤
∣
∣
∣u

θd−1,ǫ

(d) − u
θd−1

(d)

∣
∣
∣ +
∣
∣
∣u

θd−2,ǫ

(d−1) − u
θd−2

(d−1)

∣
∣
∣+ . . .+

∣
∣
∣u

θ1,ǫ
(2) − uθ1(2)

∣
∣
∣

≤ (d− 1)
4ǫ1−α

(1− α)Γ(1− α, 1)
≤ δ,

In conclusion,

4ǫ1−α

(1− α)Γ(1− α, 1)
≤ δ

d− 1
⇔ ǫ ≤

(
δ(1− α)Γ(1− α, 1)

4(d− 1)

) 1
1−α

.

Figure 5.4 describes how the parameter δ performs depending on the values of the
index α of the stable subordinator and dimension d of the copula.
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Figure 5.4: Behaviour of the parameter ǫ in terms of δ in Equation (5.14) for different
values of the parameter α and dimension of a copula, d.

5.4 Simulating Lévy-frailty copulas: Algorithms

In this section we aim at explaining the numerical techniques we consider to simulate Lévy-
frailty copulas built from α-stable subordinators. The pseudocodes of these algorithms
are provided in Chapter 6.



Algorithm 5.4.1 (Simulate eMO copulas)
In Section 5.2 we explained that there exists a link between Lévy-frailty copulas and ex-
changeable Marshall–Olkin copulas, therefore the dependence structure built either using
the exchangeable Marshall–Olkin copula or the Lévy-frailty copula is the same. Algorithm
5.4.1 recursively simulates the exchangeable Marshall–Olkin copula.

Intuitively, let us consider a system with d components in it. This system is influenced
by external shocks that kill the components in the system. It could happen that a shock
arriving in the system kills just one component or several at once.

The idea behind this algorithm is based on counting the amount of components in the
system destroyed at each step and on measuring the time needed to destroy them.

The number of components H destroyed at each time step follows a discrete probability
distribution given by (see [Mai and Scherer, 2012], p. 135):

P(H = k) =

(
d
k

) ∑k−1
j=0(−1)j

(
k−1
j

)
θd−k+j

∑d−1
j=0 θj

, 1 ≤ k ≤ d ∈ N. (5.16)

Note that at each time at least one component is killed.
Since within the simulation it is not possible to know exactly which components are an-

nihilated at each step, we randomly permute the killing times at the final step. Remember
that these first-exit times (X1, . . . , Xd) follow the Marshall–Olkin distribution, however
using the Probability Integral Transform (e.g. [Roussas, 2014], Chapter 11) we get the
normalization to uniform variables (U1, . . . , Ud):

Uk = exp(−Xk) ∼ U([0, 1]), Xk ∼ Exp(1), k = 1, . . . , d.

Algorithm 5.4.2 (Simulate the α-stable Lévy subordinator)
In this case we simulate the α-stable Lévy subordinator on a fine grid. Due to the infinite
activity property of these subordinators there exists a discretization bias so the finer we
choose the grid the more accurate are the results. The simulation of the paths of the
α-stable subordinator is achieved via the cumulative sum of

(dt)
1
α S(α),

being S(α), α-stable random variables, α ∈ (0, 1), and dt the time step in the discretization
of the temporal path. Time steps are equidistant through the time interval.

The first-exit times are estimated using the canonical construction in the Lévy-frailty
environment

Xk = inf{t > 0 : Λt ≥ εk}, (5.17)

where {εk}k=1,...,d are unit exponential i.i.d. random variables. And applying the Probabil-
ity Integral Transform we normalize the first-exit times to uniform distribution obtaining
U1, . . . , Ud.

While simulating Lévy-frailty copulas applying this technique there is a practical sug-
gestion one should take into consideration. As we mentioned above the idea behind this



algorithm is to simulate the stable subordinator on a grid and to check whether the thresh-
olds given by ε1, . . . , εd have been reached. One “natural” way of proceeding could be
checking the canonical condition in Equation (5.17) in every node of the grid for each Xi,
i = 1, . . . , d, i.e. at each time step. However there exists the possibility to first sample
the vector of (ε1, . . . , εd) and sort it afterwards, ε(1) < . . . < ε(d). This way the canoni-
cal construction does not have to be checked more than once through the whole temporal
path, i.e. as soon as the condition in (5.17) is satisfied for a given ε(i) we obtain X(i),
and we continue computing X(i+1). Once we get the vector (X(1), . . . , X(d)) we apply the
order statistics of (ε1, . . . , εd) to sort back (X(1), . . . , X(d)) and get (X1, . . . , Xd). Figure
5.5 graphically illustrates this procedure.
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Figure 5.5: Possible situation while checking the canonical construction Xk = inf{t > 0 :
Λt ≥ εk} after sorting the vector (ε1, . . . , εd).

The advantage of sorting the vector (ε1, . . . , εd) can be observed for big values of the
dimension of the copula as it is shown in the bar charts in Figure 5.6. For small values of
d the differences regarding the computational effort are not significant. This is due to the
complexity of the algorithm: in case the vector (ε1, . . . , εd) is not sorted, the condition
Λt > εk has to be checked in all nodes N of the grid for each Xk, k = 1, . . . , d so the
cost is N · d. However when (ε1, . . . , εd) is sorted, the grid has to be run just once so the
complexity resides just in sorting the vector and therefore the cost is N + d · ln(d).

Algorithm 5.4.3 (Approximate Λt by a compound Poisson process)
In this case we approximate the α-stable Lévy subordinator by a compound Poisson sub-
ordinator. We consider the big jumps to follow the Pareto distribution and we truncate
the small jumps by their expected value. The discretization of the temporal path [0, T ] is
given by the (big) jump times {tj | tj ≤ T, j ∈ N0}. From Equation (5.9), taking into
consideration that big jumps follow the Pareto distribution, we simulate:
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(a) non-sorted (ε1, . . . , εd).
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(b) sorted (ε1, . . . , εd).

Figure 5.6: Computational effort of Algorithm 5.4.2 depending on whether the vector of
the arrival times of the shocks in the system, (ε1, . . . , εd), has been sorted or not. The
advantage of sorting the vector is significant for big values of the dimension d.

Λtj = Zp +
α · ǫ1−α

(1− α)Γ(1− α)
tj, (5.18)

being Zp a random variable following the Pareto distribution.

This algorithm is based on simulating first the arrival times of the shocks ε1, . . . , εd
and a “large enough” sample of jump times and jump sizes. Once the data for shocks and
jumps are simulated, the cumulative sum of the process in (5.18) is computed 1. The first-
exit times X1, . . . , Xd are obtained using the canonical construction (5.17) and normalized
to uniform distribution applying the Probability Integral Transform.

Remark 5.4.1 (Simulating Pareto distributed random numbers)
It is possible to generate Pareto distributed (pd) random numbers from Generalised Pareto
distribution (gpd) available in most simulation softwares. The relation between both dis-
tributions is given by

gpd(x;µ, σ, ξ) = gpd

(

x; κ,
κ

γ
,
1

γ

)

= pd(x; γ, κ),

being µ ∈ (−∞,∞) the location parameter, σ ∈ (0,∞) the scale parameter, and ξ ∈
(−∞,∞) the shape parameter. Standard references in Pareto distribution and Generalised
Pareto distribution can be found in e.g. [Arnold, 2015], [Embrechts et al., 1997].

5.5 Numerical results and application

We compare the numerical techniques introduced in the previous section according to the
computational speed. For this purpose we simulate Lévy-frailty copulas built from the α-
stable subordinator and measure the time each algorithm needs to sample these copulas.

1One can check whether the simulated sample is large enough computing the maximum of ε1, . . . , εd
and comparing with the values of the process Λt.



We first analyse how each algorithm performs depending on the different parameters d and
α, and afterwards we proceed with the overall comparison between the three techniques.

We analyse the average value of a sample of k = 106 computational times, i.e. we sim-
ulate k times the involved copula measuring the computational effort at each simulation
and compute the expected value of these computational times 2.

5.5.1 Simulate eMO copulas

These results are obtained after simulating Lévy-frailty copulas with Algorithm 5.4.1.
Due to the existing link between Lévy-frailty and exchangeable Marshall–Olkin copulas
(Section 5.1), the idea behind this technique is to recursively simulate these latter ones. In
Figure 5.7 the scatterplot of 1000 samples for a 2-dimensional Lévy-frailty copula as well
as the histograms of the marginals are plotted. The marginals follow the unit exponential
distribution.
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Figure 5.7: Scatterplot of 1000 samples of a 2-dimensional Lévy-frailty copula built
from an 0.25-stable Lévy subordinator simulated by Algorithm 5.4.1, (U1, U2) :=
(exp(−X1), exp(−X2)) (left). Histograms of the marginals of the random vector (X1, X2),
which follows the Marshall–Olkin distribution built by Equation (5.17) (middle and right).
One can observe that the marginals follow the exponential distribution with parameter
λ = 1.

Table 5.1 shows the computational times for this algorithm.

2Computational times were computed using Matlab R2014a on a 2.4 GHz PC.



α = 0.1 α = 0.25 α = 0.5

d CpTime (s)

2 0.0003 0.0003 0.0004

5 0.0010 0.0012 0.0021

10 0.0033 0.0045 0.0104

20 0.0129 0.0193 0.0641

Table 5.1: Computational time (CpTime) measured in seconds to simulate a Lévy-frailty
copula built from the α-stable Lévy subordinator using Algorithm 5.4.1. We compare the
computational speed between different dimensions, d, and different values of parameter
α. For bigger dimension and bigger values of α the algorithm becomes more expensive.

We can observe that for a larger dimensional copula the algorithm needs more time to
simulate it. This is explained by the fact that for bigger dimensions more exit-times have
to be computed. In addition one has to consider that the worst case in this algorithm
is given when at each step just one element of the system is reached and therefore the
algorithm is recursively called as many times as the value of the dimension, d.

It is also possible to realise that for bigger values of parameter α, i.e. for lighter
dependence between elements in the system, the time required to simulate the copula
is bigger. This could be due to the fact that in cases with stronger dependence the
probability to annihilate several elements at once is higher and in conclusion the whole
set of the components in the system is reached by the shocks in a shorter time.

5.5.2 Simulate the α-stable Lévy subordinator

In this case the Lévy-frailty copulas are obtained using Algorithm 5.4.2: simulating first
the α-stable subordinator on a fine grid and computing the first-exit times using the
canonical construction in the Lévy-frailty environment

Xk = inf{t > 0 : Λt ≥ εk},

where Λt is the α-stable subordinator and {εk}k=1,...,d the sequence of i.i.d. unit exponential
random variables.

The time steps are equidistant, i.e. dt = 1/n, n ≥ 103 ∈ N. Remember that the
stable subordinator is simulated via the cumulative sum of (dt)

1
α S(α), such that S(α) is

a random variable following the stable distribution, independent for each time step.

Figure 5.8 displays the scatterplot in dimension 2 of the Lévy-frailty copula built from
the 0.5-stable subordinator and the marginals that follow the exponential distribution
with parameter λ = 1.
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Figure 5.8: Scatterplot of 1000 samples of a 2-dimensional Lévy-frailty copula
built from an 0.25-stable Lévy subordinator using Algorithm 5.4.2, (U1, U2) :=
(exp(−X1), exp(−X2)) (left). And the histograms of the marginals of the random vec-
tor (X1, X2) which follows the Marshall–Olkin distribution (middle and right). Both
marginals follow the unit exponential distribution.

In the following Table 5.2 the computational effort, depending on the index α and the
dimension d, to simulate the copulas using Algorithm 5.4.2 is displayed. We compare the
results for different time-steps, ∆t = 10−3 and ∆t = 10−4.

There are no significant differences concerning the dimension d of the copula. Con-
cerning the parameter α, the algorithm needs similar time to sample the copula. We
can observe that the algorithm works “a little” faster when α = 0.5. This is due to
the effort Matlab makes to generate random variables following the stable distribution.
Nevertheless, the computational time increases (∼ 8 times) when the grid becomes finer
(∆t = 10−4).

The fact that it is not possible to determine the accuracy of this simulation technique
is a disadvantage that has to be taken into consideration. Due to this downside it is not
possible to establish a suitable size of the time-step on the discretization of the temporal
path.

5.5.3 Approximation by a compound Poisson process

We analyse in the following the computational effort to simulate the Lévy-frailty copulas
built from the stable subordinator using Algorithm 5.4.3. Remember that in this case,
the idea is based on simulating a process of a compound Poisson type

Λtj = Zp +
α ǫ1−α

(1− α) Γ(1− α)
tj, Zp ∼ pd(x; γ, κ), ǫ > 0,

and computing the first-passage times via the canonical construction

Xk = inf{t > 0 : Λt ≥ εk}, εk ∼ Exp(1) (i.i.d), k = 1, . . . , d.

Figure 5.9 shows the scatterplot of 1000 samples of a 2-dimensional Lévy-frailty copula
built from the 0.25-stable subordinator using Algorithm 5.4.3 as well as the histograms



CpTime (s) (∆t = 10−3) CpTime (s) (∆t = 10−4)

d α = 0.1 α = 0.25 α = 0.5 α = 0.1 α = 0.25 α = 0.5

2 0.0017 0.0016 0.0012 0.0135 0.0134 0.0105

5 0.0017 0.0016 0.0013 0.0136 0.0137 0.0106

10 0.0017 0.0016 0.0013 0.0136 0.0141 0.0106

20 0.0017 0.0016 0.0013 0.0136 0.0141 0.0107

Table 5.2: Computational effort to simulate the α-stable Lévy subordinator and to mimic
the canonical construction in (5.5) in order to simulate the required Lévy-frailty copulas.
We consider different dimensions d, indexes α, and time steps ∆t. There are no signif-
icant differences regarding the dimension and the index α of the copula. However, the
computational time increases when we consider a finer grid.

of the marginals of the random vector (X1, X2) which follows the Marshall–Olkin distri-
bution.

In Table 5.3 the computational times to simulate the Lévy-frailty copulas built from
the stable subordinator using Algorithm 5.4.3 are displayed. The parameters for the
Pareto distribution in order to sample big jumps are chosen according to Equation (5.11):
γ = α and κ = ǫ.

If we analyse the results, we can conclude that there are no significant differences
regarding the dimension d and index α when the dependence is strong, i.e. the algorithm
works in a similar way for different values of d and parameter α ∈ (0, 0.25). However,
for lower dependence levels and bigger dimensions of the copula, the computational effort
increases. Due to the efficiency this algorithm shows when simulating Lévy-frailty copulas
in dimension d = 20, we analyse the simulation times for bigger dimensions of the copula
(see Table 5.4).

Analysing the results in Table 5.4 we can conclude that when α takes small values,
the algorithm shows low computational times. Nevertheless, when α takes bigger values
(α = 0.5) the simulation effort considerably increases.

5.5.4 Overall comparison

Within this section we collect the results we obtained above and we compare them and
analyse which algorithm is the most efficient one with respect to its computational time.

We can observe that, besides of very small dimensions, the first algorithm, simulate
eMO copulas, is the most expensive whatever the value parameter α takes. This is due to
the possibility that at each time just one element is reached so the algorithm is potentially
called as many times as the value of the dimension, d. However, note that this simulation
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Figure 5.9: Scatterplot of 1000 samples of a 2-dimensional Lévy-frailty copula
built from an 0.25-stable Lévy subordinator using Algorithm 5.4.3, (U1, U2) :=
(exp(−X1), exp(−X2)) (left), and histograms of marginals of the random vector (X1, X2)
which follows the Marshall–Olkin law built using the canonical construction in Equation
(5.17) (middle and right).

α = 0.1 α = 0.25 α = 0.5

d CpTime (s) ǫ δ CpTime (s) ǫ δ CpTime (s) ǫ δ

2 0.0002 10−3 0.0218 0.0002 10−4 0.0175 0.0003 10−6 0.0132

5 0.0002 10−4 0.0110 0.0002 10−5 0.0080 0.0008 10−7 0.0167

10 0.0002 10−4 0.0247 0.0002 10−5 0.0181 0.0011 10−7 0.0375

20 0.0002 10−4 0.0522 0.0002 10−5 0.0381 0.0044 10−8 0.0251

Table 5.3: Computational time needed to simulate Lévy-frailty copulas built from the α-
stable Lévy subordinator approximating the subordinator by a compound Poisson process.
We display the results for different values of the copula dimension, d, and parameter α.
We consider different values of ǫ in order to get accurate results regarding δ. Regarding
the dimension of the copula, when α takes small values, the differences are not significant.
However, when the dependence becomes weaker, i.e. α takes bigger values, the algorithm
becomes more expensive for bigger dimensions. Concerning parameter α, for stronger
dependence, the algorithm is more efficient.



α = 0.1 α = 0.25 α = 0.5

d CpTime (s) ǫ δ CpTime (s) ǫ δ CpTime (s) ǫ δ

50 0.0002 10−5 0.0169 0.0003 10−6 0.0175 0.0354 10−9 0.0204

100 0.0003 10−5 0.0349 0.0003 10−6 0.0353 0.0528 10−9 0.0413

Table 5.4: Computational times for the simulation of Lévy-frailty copulas in high dimen-
sions using Algorithm 5.4.3. The computational cost is higher for bigger copulas when
the index α takes values close to 0.5. The differences are not significant for small values
of α. If we compare the computational times regarding the parameter α, we can conclude
that for lower dependence levels the algorithm is slower.

technique is exact, so that it ensures that the results are precise.

Algorithm 5.4.2, simulate α-stable Lévy subordinator, when ∆t ≤ 10−3 shows smaller
simulation times than Algorithm 5.4.1 for bigger dimensions. Nevertheless, it is not pos-
sible to determine how accurate the results, computed using this simulation method, are.
If we modify the size of the time step in order to get a finer grid and in conclusion more
accurate results, the computational effort increases considerably.

The third algorithm, Approximate by a compound Poisson process, shows an efficient
behaviour when simulating these Lévy-frailty copulas for either small or big dimensions.
Therefore, it provides a simulation technique to sample these copulas in bigger dimensions
than the previous techniques with a low computational cost. In addition, it allows to
measure the accuracy of the results.

5.5.5 Application

We consider in the following an example where the simulation of Lévy-frailty copulas built
from an α-stable subordinator in large dimensions is applied. In Chapter 4, Lemma 4.3.1
it is proved that an exponential functional of a Lévy subordinator in its terminal value
converges in distribution to the arithmetic mean of a sum of dependent variables following
the Marshall–Olkin distribution:

lim
dր∞

X1 + . . .+Xd

d

L
= I∞,

where the random variable I∞ =
∫∞
0
e−Λtdt is the exponential functional of a Lévy

subordinator Λ.

Therefore these algorithms, most precisely Algorithm 5.4.3, provide a tool to estimate
the distribution of the exponential functional of the α-stable subordinator and this way
they allow to compute the average lifetime of the Marshall–Olkin law in the infinite case.



6
Algorithms

“They took a bite out of crime.”

Small Time Crooks (2000).

6.1 Notation

Let us explain first the notation used in the pseudo codes for a better understanding of
the algorithms.

• Random numbers:

• poissonrnd(β): Poisson random numbers with parameter β.

• uniformrnd(a,b): (continuous) uniformly distributed random numbers on the
interval [a, b].

• normalrnd(µ,σ2): normally distributed random numbers with mean parame-
ter µ and variance σ2.

• exprnd(λ): exponentially distributed random numbers with parameter λ.

• paretornd(γ,k): standard Pareto distributed random numbers with parame-
ters γ and k.

• Functions:

• @NAME_ OF_ FUNCTION: calls to an external function called “NAME_ OF_ FUNCTION”

• Given commands:

• mean: computes the arithmetic mean of a given vector.

• sort: sorts the elements of a given array in increasing order.
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• length: computes the length of a given vector.

• diff: returns (in a vector) the differences between adjacent elements of a
vector.

6.2 Brownian-bridge techniques

Algorithm 6.2.1 (Brownian-bridge technique 1)
This algorithm samples the first-passage time probabilities P(T+

ab ≤ T ) and
P(Tab ≤ T ). To this end, it requires as input variables the number of simulation runs, K,
the drift and volatility coefficients, µ and σ, respectively, the barriers a and b, the param-
eters for the jumps (in our case the jumps follow the double exponential distribution with
parameters: λ, λ⊕, λ⊖, and p), and the truncation number of the sum in Equation (3.3)
in Lemma 3.1.1. As an output, the algorithm generates a K × 3 matrix whose columns
contain for each simulation run:

1. the realised final path value, BT ,

2. the conditional probability of hitting the upper barrier, P+
ab,

3. the conditional probability that the path stays within the corridor (b, a), Pab.

FUNCTION [BT, P
+
ab, Pab] = sample_ firstPassage(K, µ, σ, a,b, λ, λ⊕, λ⊖, p,N)

(1) Simulate the paths and compute the conditional barrier crossing probabilities

FOR k = 1, . . . , K

(A) Simulate the number of jumps within [0, T ]

NT := poissonrnd(λT );

(B) Simulate the jump times. Conditional on NT , these jumps are distributed as
order statistics of i.i.d. U([0, T ]) random variables, see [Sato, 1999], p. 17.

FOR i = 1, . . . , NT

t̃[i] := uniformrnd(0,T);

END

Order the random numbers such as 0 < t1 < . . . < tNT
< T

t := sort(t̃);

Compute the time-steps

∆t := diff(t) ;



(C) Generate two independent series of random variables independent of NT :

FOR i = 1, . . . , NT

b[i] := normalrnd
(
µ∆t[i], σ2∆t[i]

)
;

y[i] := @DoubleExpRN(λ, λ⊕, λ⊖, p,1)1;

END

(D) Simulate the asset path on the grid of the jump times (set Bt0 = 0 and tNT+1 =
T ):

Set B̃[0] := 0;

FOR i = 1, . . . , NT + 1

B̃[i] := B[i-1] + b[i]; (before the jumps)

B[i] := B̃[i] + y[i]; (after the jumps)

END

B := B[1:end-1]; (there are no jumps in t = 0 and t = T )

(E) Compute the conditional barrier crossing probabilities between the grid points.

Set P[0] := 1;

P+[0] := 1;

FOR i = 1, . . . , NT + 1

(a) Compute the probabilities

P+i-1,i := @COMPUTE_ BBup(a,b,B[i-1], B̃[i], σ,∆t, N);

P−i-1,i := @COMPUTE_ BBup(-b,-a,-B[i-1],−B̃[i], σ,∆t, N);

Pi-1,i := 1-P+i-1,i − P−i-1,i;

P[i] := P[i-1] · Pi-1,i;
P+[i] := P+[i-1] + P[i-1] · P+i-1,i;

(b) Check the location of the paths before the jumps

IF B̃[i] ≤ b OR B̃[i] ≥ a, THEN

BB+[k] := P+[i];

BB := 0;

i := NT + 1; (go to (F))

ELSEIF B̃[i] > b AND B̃[i] < a, THEN

1Simulate the jump size.



(c) Check the endpoint of the path

IF i = NT + 1, THEN

BB+[k] := P+[NT + 1];

BB[k] := P[NT + 1];

(d) Check whether the barrier crossing occurs due to a jump

ELSE

IF B[i] > a, THEN

BB+[k] := P[i] + P+[i];

BB[k] := 0;

i := Nt + 1; (go to (F))

ELSEIF B[i] < b, THEN

BB[k] := 0;

i := Nt + 1; (go to (F))

END

END

END

END

(F) Compute the realised final path value,

Set BT[k] := B̃[NT + 1];

END

(2) Estimate the unconditional quantities in question via the sample mean of all condi-
tional quantities over all runs

P+ab := mean(BB+);

Pab := mean(BB);

Algorithm 6.2.2 (Brownian-bridge probabilities)
Algorithm 6.2.2 computes the Brownian-bridge probabilities BB+

ab in Lemma 3.1.1. The
input variables for this algorithm are the upper and lower barriers, a and b, respectively,
the start- and endpoint of the path in a given time interval, B0 and B1, respectively,
volatility σ, time step ∆t, and the truncation number of the infinite sum N (Equation
(3.3)).



FUNCTION BB+ab = COMPUTE_ BBup(a,b,B0, B1, σ,∆t,N)

sum := 0;

FOR n = 1, . . . , N

s := exp

{
2 (−B0 + n · a-(n-1) · b) (B1 − n · a+(n-1) · b)

σ2∆t

}

− exp

{
2 · n · (a− b) · (B1 − B0 − n · (a− b))

σ∆t

}

;

sum := sum + s;

END

BB+ab := sum;

Algorithm 6.2.3 (Generate double exponential random numbers)
This algorithms generates random numbers following the double exponential distribution
needed to sample the jump sizes in Algorithm 6.2.1 and Algorithm 6.2.4. As input vari-
ables parameters λ, λ⊕, λ⊖, p, and the size of the sample of this random numbers N are
required.

FUNCTION Y = DaubleExpRN(λ, λ⊕, λ⊖, p,N)

(1) Simulate a sample of standard uniform random number U([0, 1]) and two samples
of exponentially distributed random numbers with parameter λ⊕ and λ⊖ respectively

FOR n = 1, . . . , N

U[n] := uniformrnd(0,1);

E1[n] := exprnd(λ⊕);

E2[n] := −exprnd(λ⊖);

END

(2) Differentiate the positive and negative jumps comparing the values of U with p and
safe the indices in two vectors: positiveJ and negativeJ

positiveJ := index of U ≤ p;

negativeJ := index of U > p;

(3) Distribute the values of vectors E1 and E2 in Y according to the indices in vectors
positiveJ and negativeJ

Y(positiveJ) := E1;

Y(negativeJ) := E2;



Algorithm 6.2.4 (Brownian-bridge technique 2)
This algorithm evaluates expectations of the form X(0) :=E[w

(
T̂ab, BT , E

)
], where E ∈

{⊕,⊖, ∅}, that depend on the first-passage times Tab, T
+
ab, and T−

ab and the final path value
BT . The inter-jump periods (ti−1, ti) are considered sequentially. The first Steps (1)(A-D)
are implemented in the same way as in Algorithm 6.2.1. Since the only difference from
Algorithm 6.2.1 resides in the evaluation of expectation X(0) :=E[w

(
T̂ab, BT , E

)
] the in-

put variables are the same for both algorithms.

FUNCTION [BT, X] = sample_ firstPassage2(K, µ, σ, a,b, λ, λ⊕, λ⊖, p)

(1) Repeat Steps (A)–(E) for each simulation

FOR k = 1, . . . , K

(A)–(D) The same as in Algorithm 6.2.1.

(E) Check whether a barrier crossing occurs continuously.

FOR i = 1, . . . , NT + 1

(a) Sample a standard uniform random variable U ∼ U([0, 1]) which will de-
termine whether a barrier has been reached

U := uniformrnd(0,1)

(b) Calculate the barrier crossing probabilities

V := @COMPUTE_ BBup(−b,−a,−B[i-1],−B̃[i], σ,∆t,N);

W := @COMPUTE_ BBup(a,b,B[i-1], B̃[i], σ,∆t,N);

IF U < V, THEN (the lower barrier has been hit)

E[k] := ⊖;

Tab[k] := t[i-1] + (t[i]-t[i-1])
U

V
;

g−ab := @gUp(-b,-a,-B[i-1], − B̃[i], σ, Tab[k], t[i-1], t[i], N);

p[k] := g−ab
t[i]− t[i-1]

V
;

and return to Step (1)

ELSEIF U > 1-W, THEN (the upper barrier has been hit)

E[k] := ⊕;

Tab[k] := t[i-1] + (t[i]-t[i-1])
(1-U)

W
;

g+ab := @gUp(a,b,B[i-1], B̃[i], σ, Tab[k], t[i-1], t[i], N);

p[k] := g+
ab

t[i]-t[i-1]

W
;

and return to Step (1)

ELSEIF i = NT + 1, THEN



E[k] := ∅;
Tab[k] := T;

p[k] := 1;

return to Step (1)

ELSE

continue with Step (c)

END

(c) Check whether a barrier crossing occurs due to a jump

IF Bti > a, THEN

E[k] := ⊕;

Tab[k] := t[i];

p[k] := 1;

return to Step (1)

ELSEIF Bti < b, THEN

E[k] := ⊖;

Tab[k] := t[i];

p[k] := 1;

return to Step (1)

ELSEIF (Bti > b) AND (Bti < a), THEN

non of the barriers have been reached so return to Step (E)

END

END

END

(2) Compute expectation2 X(0) :=E[w
(
Tab, BT , E

)
]

Set BT[k] := B̃[NT + 1];

Compute X := mean
(
p · w

)
;

Note that if the lower (resp. upper) barrier has been crossed (Step (1)(E)(b)), the first-
exit time is taken uniform in (ti−1, ti) and it is weighted according to its actual density,
p. Recalling that,

∫ ti

ti−1

g−ab
(
t, Bti−1

, Bti−
)

v
dt = 1 =

∫ ti

ti−1

1

ti − ti−1
p(t) dt,

and
∫ ti

ti−1

g+ab
(
t, Bti−1

, Bti−
)

w
dt = 1 =

∫ ti

ti−1

1

ti − ti−1
p(t) dt.

2X(0) ∼= 1
K

∑K
k=1 p(k, T̂ab(k)) w

(
T̂ab(k), BT (k), E(k)

)
where w

(
T̂ab(k), BT (k), E(k)

)
is the quantity

that needs to be estimated conditional on the sampled quantities.



The two densities in the latter expressions coincide, thus we can conclude that p =
g−ab
(
T̂−
ab, Bti−1

, Bti−
)
(ti − ti−1)/v and p = g+ab

(
T̂+
ab, Bti−1

, Bti−
)
(ti − ti−1)/w. We note that

the importance sampling weight is on average 1, i.e. E
[
p
]
= 1. If the barrier-hitting event

has happened due to a jump, then the weight of the path is p = 1 and the first-exit time
ti.

Algorithm 6.2.5 (Brownian-bridge first-passage time intensities)
This algorithm calculates the Brownian-bridge first-passage time intensity (Lemma 3.1.4,
Equation (3.8)). The input variables for this algorithms are the barriers, a and b, the
start- and endpoint of the process B, B0, and B1 respectively, the volatility σ, the time
where the barrier hitting event has ocurred t, the jump times t0 and t1 such that t0 < t < t1,
and the truncation number of the infinite sum in (3.8).

FUNCTION g+
ab

= gUp (a,b, B0, B1, σ, t, t0, t1, N)

sum := 0;

FOR n = 1, . . . , N

s := (-1)n n exp

{

− π2 n2 σ2

2(a-b)2

}

sin

(
π n (b− B0)

a-b

)

;

sum := sum + s;

END

g+ab :=
σ2 π

(a-b)2

√
t1 − t0√
t1 − t

exp

{
(B1 − B0)

2

2 σ2 (t1 − t0)
− B1 − a

2σ2 (t1 − t)

}

· sum;

6.3 Simulating Lévy-frailty copulas

Algorithm 6.3.1 (Simulate eMO copulas)
Algorithm 6.3.1 recursively simulates the exchangeable Marshall–Olkin copula. The idea is
based on counting the amount of components in the system destroyed at each time step and
on measuring the time needed to destroy them, first-exit times. Since within the simulation
it is not possible to know exactly which components are annihilated at each time, we ran-
domly permute the first-exit times in the final step. This algorithm requires as input vari-
ables the dimension of the copula, d, the d-monotone vector, θ := (θ0, . . . , θd−1), and the

vector where the first-exit times are stored, initialized as the zero vector, X := (0, (d). . ., 0).

FUNCTIONX = SIMULATE_ eMO(d, θ, X)

(1) Set the number of components that are “still alive” and the number of “already de-
stroyed” ones

alive := length(a);

destroyed := d− alive;



(2) Fix the time that all “remaining” components survived

IF destroyed = 0,

THEN

t0 := 0;

ELSE

t0 := max{X[1], . . . , X[destroyed]};
END

(3) Compute the intensity of the next extinction time

λnext := a[1] + . . .+ a[alive];

(4) Simulate the time until the next shock arises

tnext := t0 + exprnd (λnext) ;

(5) Simulate the number of destroyed components

h := @DISCRETE_ RN;

(6) Extend the vector of first-exit times by the number of destroyed elements, h

FOR j = 1, . . . , h

X[j + destroyed] := tnext;

END

(7) Check whether all the components were already destroyed

IF alive > h, THEN

θ̃ = (θ[1], . . . , θ[alive-h]);

@SIMULATE_ eMO
(

d, θ̃, X
)

; (recursively call the function)

ELSE

x := exp(−X); (normalization to U([0,1]))

X := @PERMUTE_ VECTOR (x) ;

END

This pseudocode with more detailed description of each step and runtime estimations can
be found in [Mai and Scherer, 2012] (p. 131-138).



Algorithm 6.3.2 (Random numbers from discrete distribution)
As we already mentioned in Chapter 5, Section 5.4, the number of elements destroyed at
each time step is given by a discrete variable |Y | such that

|Y | ∼ P(|Y | = k) = pk =

(
alive
k

)∑k−1
j=0(−1)j

(
k−1
j

)
a[alive− k + j]

∑alive−1
j=0 a[j]

.

This random variables are computed using

Y = min

{

k ∈ N :
k∑

i=1

pi ≥ u

}

, u ∼ U ([0, 1]) . (6.1)

FUNCTION Y = DISCRETE_ RN

(1) Generate a random number from continuous uniform distribution

U := uniformrnd(0, 1);

(2) Compute the random numbers using Equation (6.1)

k := 1;

sum := 0;

WHILE sum < U, THEN

sum := 0;

FOR i = 1, . . . , k

dp := 3@SAMPLE_ PROB;

sum := sum + dp;

END

k := k+ 1;

END

Y := k− 1;

Algorithm 6.3.3 (Random permutation of a vector)
Algorithm 6.3.3 randomly permutes the elements of an array using the order statistics of
a uniformly distributed random vector.

3
SAMPLE_ PROB computes the discrete probabilities in (6.1)



FUNCTION ω = PERMUTE_ VECTOR(x)

(1) Simulate n independent random numbers from continuous uniform distribution

n := length(x) ;

FOR i = 1, . . . , n

U[i] := uniformrnd(0,1);

END

(2) Order the elements of the vector U and store the indices of U in the ordered vector V

V := sort(U);

FOR i = 1, . . . , n

index[i] := indices of vector U in V ;

END

(3) Permute vector X using indexes of vector V

ω := X(index);

Algorithm 6.3.4 (Simulate the α-stable Lévy subordinator)
Algorithm 6.3.4 simulates the α-stable Lévy subordinator in a fine grid and then it mimics
the canonical construction of first-exit times in the Lévy-frailty environment Xk = inf{t >
0 : Λt ≥ εk}, where {εk}k=1,...,d are unit exponential i.i.d. random variables. The stable

subordinator is simulated by the cumulative sum of dT
1
αS(α), where S(α) denotes the

stable distribution.

The input variables for this algorithm are the index α of the subordinator, the dimen-
sion of the Lévy-frailty copula, d, the grid, dT , and the vector where the first-exit times as

well as the vector where the normalized values are stored X :=
(

0, (d). . ., 0
)

, U :=
(

0, (d). . ., 0
)

.

FUNCTION U = SIMULATE_ STBSUBORDINATOR(α,d,dT,X,U)

(1) Simulate d independent unit exponential random variables

ε := (0, (d). . ., 0);

FOR k = 1, . . . , d

ε[k] := exprnd(1);

END

(2) Find the maximum of ε

ε_ max := max{ε[1], . . . ε[d]};



(3) Sort the vector ε and store the indices of ε in the sorted vector ε̃

ε̃ := sort(ε);

index := indices of ε in vector ε̃;

(4) Simulate a “long enough” sample of the α-stable Lévy subordinator

n := 1;

Λt[0] := 0;

WHILE Λt ≤ ε_ max

S := @GENERATE_ STBRND(α);

Λt[n] := Λt[n-1] + (dT)
1

α · S;
n = n+ 1;

END

(5) Set the number of components in the system that are “still alive” and the ones that
have been already “destroyed”

alive := d;

destroyed := d-alive;

(6) Check the condition Λt ≥ εk of the canonical construction

t := 0;

n := 1;

WHILE alive > 0

WHILE Λt[n] ≥ ε̃(destroyed+1)

t := t + dT;

n := n+1;

END

(7) Compute how many components, h, have been destroyed at each time step and store
the first-exit times in X

h := length (ε̃[(ε̃ < Λt[n]) & (ε̃ > Λt[n-1])]) ;

X[1+destroyed:h+destroyed] := t;

(update variables: alive, destroyed, n, t)

alive := alive - h;

destroyed := d - alive;

n := n + 1;

t := t + dT;

END



(8) Sort the vector X using the indices stored in Step (4) and standardised them such
that it follows the standard uniform distribution

X̃(index) := X;

U := exp(−X̃);

Algorithm 6.3.5 (Generate α-stable random numbers)
This algorithm generates random numbers following the stable distribution. One can find
more details about this procedure in [Mai and Scherer, 2012], p. 246. A general back-
ground on stable processes can be found in [Samoradnitsky and Taqqu, 1994]. The input
variable for this algorithm is the index α > 0, (α ∈ (0, 1) for Lévy subordinators).

FUNCTION S = GENERATE_ STBRND(α)

(1) Sample a standard uniform random number U ∼ U([0, 1]) and transform it to
Ũ ∼ Ũ([−π/2, π/2])

U := uniformrnd(0,1);

Ũ := π · (U-1/2);

(2) Sample a unit exponentially distributed random number

ε = exprnd(1);

(3) Generate stable random numbers

S := sin (α (π/2+ U)) cos (U)−
1

α cos ((U− α (π/2+ U))/ε)
1−α
α ;

Algorithm 6.3.6 (Approximate by a compound Poisson subordinator)
Algorithm 6.3.6 approximates the α-stable Lévy subordinator by a compound Poisson pro-
cess (CPP). The big jumps follow the Pareto distribution and the small jumps are trun-
cated by their expected value. We simulate the process in (5.18) and we compute the
first-passage times by Xk = inf{t > 0 : Λt ≥ εk}, where {εk}k=1,...,d are i.i.d. unit expo-
nential random variables.

In this algorithm the following variables are required as input variables: dimension of
the Lévy-frailty copula, d, the intensity of the jumps, β := ǫ−α

Γ(1−α)
(Equation (5.10)), the

parameters of the Pareto distribution, k and α, the expected value of small jumps which will
work as a drift, µ = αǫ1−α

Γ(1−α)(1−α)
(Equation (5.8)), and the vector where the first-passage

times and copula components are stored, initialized as zero vectors, X :=
(

0, (d). . ., 0
)

,

U :=
(

0, (d). . ., 0
)

.



FUNCTION U = SIMULATING_ CPP

(1) Generate d independent unit exponential random variables

ε := (0, (d). . ., 0);

FOR k = 1, . . . , d

ε[k] := exprnd(1);

end

(2) Compute the maximum of ε

εmax := max {ε[1], . . . , ε[d]} ;

(3) Generate and store all required jumps sizes and jump times in the matrix jumps :=
matrix[0 0]

Λǫ
t[0] := 0;

While Λǫ
t[indi] ≤ εmax, THEN

indi := indi + 1;

jumpsize := paretornd(α, k);

jumptime := exprnd

(
1

β

)

;

Λǫ
t[indi] := Λǫ

t[indi-1] + jumpsize + jumptime · µ;
jumps := [jumpsize jumptime];

END.

(4) Simulate for each ‘d’ the compound Poisson process and check the condition of the
canonical construction in order to compute first-exit times. Normalized them to
standard uniform variables

FOR k = 1, . . . , d

indi := 0;

time := 0;

WHILE Λǫ
t[indi] < ε[k], THEN

indi := indi + 1;

time := time + jumps[indi,2];

END

IF ((Λǫ
t[indi] − jumps[indi,1]) > E[k]) , THEN4

X[k] := time− Λǫ
t[indi] − jumps[indi-1,1] − ε[k]

µ
;

ELSE

X[k] := time;



END

U[k] := exp (−X[k]) ;

END

In our case we use MATLAB R2014a to generate these Lévy-frailty copulas. MATLAB
offers the possibility to sample Pareto distributed random numbers following the gener-
alized Pareto distribution. Therefore, taking into consideration the link between νǫ and
the Pareto distribution explained in Equation (5.11) and Remark 5.4.1, the parameters
we used to generate these numbers are: ξ = 1/α (shape), σ = ǫ/α (scale), and µ = ǫ
(location).

A deeper description of this algorithm is in [Mai and Scherer, 2012], p. 150-153.

4Note that the subordinator can reach any of the thresholds set by the arrival times of the shocks
{εk}k=1,...,d between two jump times which are the nodes of the discretization of the temporal path.
Therefore it is not possible to directly know when exactly has happened the barrier hitting event. This
is way the first-exit time has to be adjusted. We explained in Appendix C how this drift adjustment is
computed.





7
Conclusion

“Well, the universe is everything, and if it’s expanding, someday it will

break apart and that would be the end of everything!”

Annie Hall (1977).

The problems we dealt with through this dissertation can be classified in two main
categories: firstly, the simulation of first-exit time probabilities of a jump-diffusion process
and, second, the investigation of the dependence structures of Marshall–Olkin kind.

First of all in Chapter 3, we extended the existing Brownian-bridge technique, im-
plemented by [Metwally and Atiya, 2002] for a single barrier, to two constant barri-
ers and simulateed first-passage time probabilities of a jump-diffusion process. We used
Monte-Carlo simulations to get the mentioned first-passage times probabilities. Due to its
simplicity regarding implementation, the Monte-Carlo technique is a convenient tool for
the pricing of different exotic double-barrier derivatives and for credit-risk management.
Although standard Monte-Carlo simulations based on a discrete grid are affected by a
discretization error, we proved that the Brownian-bridge technique computes unbiased
results with a lower computational cost. Therefore, the Brownian-bridge method is a fast
and reliable pricing technique. This technique can also be applied in credit-risk manage-
ment with two possible events: early repayment and default.

Chapters 4 and 5 focus on the study of a specific dependence structure: Marshall–Olkin
copulas. Recalling on the importance that dependence has on real-world applications,
copulas provide a simple way to construct dependence over initially independent random
variables.

In Chapter 4 we considered a sequence of dependent random variables under the
Marshall–Olkin law and studied the probability distribution of the sum of these variables.
We developed explicit expressions of the survival and probability density functions as well
as the Laplace transform for the general bivariate case. Nevertheless, the large number
of parameters involved in the problem makes it difficult to extend these results to higher
dimensions. We dealt with the mentioned overparameterization drawback considering
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the subclass of exchangeable Marshall–Olkin law and in this way we derived closed-form
solutions for the distribution of the average lifetime in dimensions d = 2, d = 3, and d = 4.
Although we explained the procedure of how to extend these results to bigger dimensions,
the extension becomes cumbersome analytically and expensive computationally. This
setback is explained by the fact that adding one factor in the sum entails an increment of
2d−1 on the number of cases into consideration in the implementation of the probabilities.
The extendible subfamily of the Marshall–Olkin law, however, provides a way to analyse
the law of the mentioned average lifetime when the dimension, d, tends to infinity. We
proved that in the infinite dimensional case the probability distribution of the mean of
dependent Marshall–Olkin variables converges to the probability law of the exponential
functional of a Lévy subordinator.

Finally in Chapter 5 we remained working with the subclass of the extendible Marshall–
Olkin law and aimed at designing a fast numerical technique to simulate Lévy-frailty
copulas built from an α-stable Lévy subordinator. These copulas are based on stochastic
models with conditionally independent and identically distributed components. Due to
this stochastic representation, Lévy-frailty copulas present advantages when simulating
them, ı.e. they present a lower computational effort comparing to the other Marshall–
Olkin copulas. We compared three different computational techniques to simulate the
mentioned copulas. And since the simulation of copulas in high dimension is often a
handicap regarding the computational cost, we provided within this research a fast tech-
nique to simulate Lévy-frailty copulas built from an α-stable Lévy subordinator when the
dimension of the copula is large.



8
Appendix

A Double–barrier first passage times

We will need the next two results to prove some results in this section.

Theorem A.1 (Novikov’s Condition)
On the probability space (Ω,F ,P), where {Ft}t≥0 is the natural filtration, let us consider the
standard Brownian motion {Wt}t≥0. Let {θs}s≥0 be an adapted process satisfying the square

integrability condition, i.e. E
[∫ t

0 θ
2
s ds

]

< ∞, and let us define

Z(t) := exp

(∫ t

0
θsdWs −

1

2

∫ t

0
θ2sds

)

, t ≥ 0, (8.1)

where
∫ t
0 θsdWs is a well-defined stochastic integral, named Itô’s Integral. If,

(i) E

[

exp
(
1
2

∫ t
0 θ

2
sds
)]

< ∞, 0 ≤ s ≤ t,

(ii) E[Z(t)] = 1, t ≥ 0,

then, the process {Zt}t≥0 is a positive martingale.

Proof. The proof of this result can be found in e.g., [Novikov, 1973], [Ruf, 2013].

Theorem A.2 (Girsanov’s Theorem)
Let us assume that all conditions in Theorem A.1 are satisfied. Let Z(t) be given by (8.1) and
let us define

P̃(A) = E[Z(T )1A], (8.2)

a new probability measure on (Ω,F). Let us, in addition, define

W̃t := Wt −
∫ t

0
θsds, t ≥ 0. (8.3)

Then, under the probability measure P̃, the process {W̃t}t≥0 is a Wiener process.

Proof. The proof of this results can be found in [Revuz and Yor, 1999], [Musiela and Rutkowski,
2006].
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Lemma A.1 (Jacobi transformation formula)
Let us consider x ∈ R and t∗ ≥ 0, then the next equality is fulfilled:

−2√
πt∗

∞∑

n=−∞

(x+ 1/2 − n)

t∗
exp

(

− (x+ 1/2 − n)2

t∗

)

= 4π

∞∑

n=1

(−1)n+1n exp(−π2n2t∗) sin(2πnx).

Proof. For the proof of this lemma we refer the reader to [Jacobi, 1828], [Abramowitz and Stegun,
1965].

Proof of Lemma 3.1.2. (i) First representation:

BM+
ab(ti−1, ti, xi) = P(ti−1 < T+

ab < ti)

= P(a > xi, ti−1 < T+
ab < ti) + P(xi > a, ti−1 < T+

ab < ti).

Now we aim at changing P(xi > a, ti−1 < T+
ab < ti) to P(a > xi, ti−1 < T+

ab < ti) and for
this purpose we apply the reflectioin principle and the change of measure using Girsanov’s
Theorem above.

We define

Z(t) = exp

(
µ

σ2
(xi − xi−1) +

µ2

2σ2
(ti − ti−1)

)

, (8.4)

and

dP = Z(t) P̃,

Since

xi − xi−1 ∼ NP

(
0, σ2(ti − ti−1)

)
, xi − xi−1 ∼ N

P̃

(
−µ (ti − ti−1), σ

2(ti − ti−1)
)
, (8.5)

if we define x̄i = xi + µ (ti − ti−1), then,

x̄i − xi−1 ∼ NP

(
µ (ti − ti−1), σ

2(ti − ti−1)
)
, x̄i − xi−1 ∼ N

P̃

(
0, σ2(ti − ti−1)

)
. (8.6)

Therefore, using (8.2),

P(xi > a, ti−1 < T+
ab < ti)

= EP

[

1{xi>a | ti−1<T+
ab
<ti}

]

= E
P̃

[

exp

(
µ

σ2
(xi − xi−1) +

µ2

2σ2
(ti − ti−1)

)

1{xi>a | ti−1<T+
ab
<ti}

]

= E
P̃

[

exp

(
µ

σ2
(x̄i − µ(ti − ti−1)− xi−1) +

µ2

2σ2
(ti − ti−1)

)

×

1{x̄i−µ(ti−ti−1)>a | ti−1<T+
ab
<ti}

]

recall that x̄i − µ(ti − ti−1) > a ⇔ x̄i > a+ µ(ti − ti−1) > a

= E
P̃

[

exp

(
µ

σ2
(x̄i − xi−1)−

µ2

σ2
(ti − ti−1) +

µ2

2σ2
(ti − ti−1)

)

1{x̄i>a | ti−1<T+
ab
<ti}

]



= E
P̃

[

exp

(
µ

σ2
(x̄i − xi−1)−

µ2

2σ2
(ti − ti−1)

)

1{x̄i>a | ti−1<T+
ab
<ti}

]

now taking the reflection of x̄i at the barrier a, x̄i → 2 a− x̄i = x̃i,

= E
P̃

[

exp

(
µ

σ2
(2a− x̄i − xi−1)−

µ2

2σ2
(ti − ti−1)

)

1{2a−x̄i>a | ti−1<T+
ab
<ti}

]

= E
P̃

[

exp

(−µ

σ2
(−2a+ x̄i + xi−1)−

µ2

2σ2
(ti − ti−1)

)

1{a>x̃i | ti−1<T+
ab
<ti}

]

= E
P̃

[

exp

(−µ

σ2
(−2a+ 2xi−1)

)

exp

(−µ

σ2
(x̄i − xi−1)−

µ2

2σ2
(ti − ti−1)

)

×

1{a>x̃i | ti−1<T+
ab
<ti}

]

changing notation: x̄i = xi and x̃i = xi,

= exp

(
2µ

σ2
(a− xi−1)

)

E
P̃

[

exp

(

− µ

σ2
(xi − xi−1)−

µ2

2σ2
(ti − ti−1)

)

×

1{a>xi | ti−1<T+
ab
<ti}

]

= exp

(
2µ

σ2
(a− xi−1)

)

EP

[

1{a>xi | ti−1<T+
ab
<ti}

]

= exp

(
2µ

σ2
(a− xi−1)

)

P
(
a > xi, ti−1 < T+

ab < ti
)
.

Therefore,

P(xi > a, ti−1 < T+
ab < ti) (8.7)

= exp

(
2µ

σ2
(a− xi−1)

)

P(a > xi, ti−1 < T+
ab < ti)

=

∫ a

−∞
BB+

ab(ti−1, ti, xi−1, xi)

[

f(xi − xi−1) + exp

(
2µ(a− xi−1)

σ2

)

g(xi − xi−1)

]

dxi,

such that f(·) is the probability density function of a normally distributed variable with
mean µ (ti − ti−1) and variance σ2 (ti − ti−1) while g(·) represents the density function of
a normally distributed random variable with mean −µ (ti−ti−1) and variance σ2 (ti−ti−1).

Recall that the expression for BB+
ab(ti−1, ti, xi−1, xi) is given in Equation (3.3) in Chapter

3. So computing the integral in Equation (8.7),

∫ a

−∞
BB+

ab(ti−1, ti, xi−1, xi)

[

f(xi − xi−1) + exp

(
2µ(a− xi−1)

σ2

)

g(xi − xi−1)

]

dxi

=
1

√

2πσ2(ti − ti−1)

∫ a

−∞

[ ∞∑

n=1

exp

(

−2(xi−1 − na+ (n− 1)b)(xi − na+ (n− 1)b)

σ2 (ti − ti−1)

)

×

exp

(

− 2n(a− b)

σ2 (ti − ti−1)
(xi−1 − xi + n(a− b))

)][

exp

(

−(xi − xi−1 − µ(ti − ti−1))
2

2σ2(ti − ti−1)

)

+ exp

(
2µ(a− xi−1)

σ2

)

exp

(

−(xi − xi−1 + µ(ti − ti−1))
2

2σ2(ti − ti−1)

)]

dxi,



now completing the squares

=
1

√

2πσ2(ti − ti−1)

∞∑

n=1

[

exp

(

−2µ(xi−1 − na− (n− 1)b)

σ2

)

×

∫ a

−∞
exp

(

−1

2

(
xi + xi−1 − µ(ti − ti−1)− 2(na− (n− 1)b)

σ
√
ti − ti−1

)2
)

dxi

− exp

(
2n(a− b)µ

σ2

) ∫ a

−∞
exp

(

−1

2

(
xi − xi−1 − µ(ti − ti−1)− 2n(a− b)

σ
√
ti − ti−1

)2
)

dxi

+ exp

(

−2µ(n− 1)(a− b)

σ2

)

×
∫ a

−∞
exp

(

−1

2

(
xi + xi−1 + µ(ti − ti−1)− 2(na− (n− 1)b)

σ
√
ti − ti−1

)2
)

dxi

− exp

(

−2µ(xi−1 + (n− 1)a− nb)

σ2

)

×
∫ a

−∞
exp

(

−1

2

(
xi − xi−1 + µ(ti − ti−1)− 2n(a− b)

σ
√
ti − ti−1

)2
)

dxi

]

=

∞∑

n=1

[

exp

(

−2µ(xi−1 − (na− (n− 1)b))

σ2

)

× (8.8)

F

(
xi−1 − µ(ti − ti−1)− ((2n − 1)a − 2(n − 1)b)

σ
√
ti − ti−1

)

− exp

(
2n(a− b)µ

σ2

)

F

(−xi−1 − µ(ti − ti−1)− ((2n − 1)a− 2nb)

σ
√
ti − ti−1

)]

+

∞∑

n=1

[

exp

(

−2µ ((n− 1)(a− b))

σ2

)

F

(
xi−1 + µ(ti − ti−1)− ((2n − 1)a− 2(n − 1)b)

σ
√
ti − ti−1

)

− exp

(

−2µ(xi−1 + (n− 1)a− nb)

σ2

)

F

(−xi−1 + µ(ti − ti−1)− ((2n − 1)a− 2nb)

σ
√
ti − ti−1

)]

,

where F (·) is the standard Gaussian distribution function.

(ii) Second representation:

We will consider the case µ > 0. The case µ < 0 is done in a similar way substituting n
by −n+ 1 in Equation (8.8) and setting

0∑

n=−∞
exp

(

− µ

σ2
(2xi−1 − kn + 2a)

)

−
∞∑

n=1

exp
(µkn

σ2

)

=
exp

(

−2µ(b−xi−1)
σ2

)

− 1

exp
(

−2µ(b−xi−1)
σ2

)

− exp
(

−2µ(a−xi−1)
σ2

) .

After resubstituting n by −n+ 1 the same final result is obtained.

From part (i) above,



P(ti−1 < T+
ab < ti)

=
∞∑

n=1

[

exp

(

−2µ(xi−1 − (na− (n− 1)b))

σ2

)

×

F

(
xi−1 − µ(ti − ti−1)− ((2n − 1)a− 2(n − 1)b)

σ
√
ti − ti−1

)

− exp

(
2n(a− b)µ

σ2

)

F

(−xi−1 − µ(ti − ti−1)− ((2n − 1)a− 2nb)

σ
√
ti − ti−1

)]

+

∞∑

n=1

[

exp

(

−2µ ((n− 1)(a − b))

σ2

)

×

F

(
xi−1 + µ(ti − ti−1)− ((2n − 1)a− 2(n − 1)b)

σ
√
ti − ti−1

)

− exp

(

−2µ(xi−1 + (n − 1)a − nb)

σ2

)

×

F

(−xi−1 + µ(ti − ti−1)− ((2n − 1)a− 2nb)

σ
√
ti − ti−1

)]

=
∞∑

n=1

[

exp

(

−2µ(xi−1 − (na− (n− 1)b))

σ2

)

×

F

(
xi−1 − µ(ti − ti−1)− ((2n − 1)a− 2(n − 1)b)

σ
√
ti − ti−1

)]

−
0∑

n=−∞

[

exp

(

−2µ(n− 1)(a− b)

σ2

)

×

F

(−xi−1 − µ(ti − ti−1) + (2n − 1)a− 2(n − 1)b)

σ
√
ti − ti−1

)]

+

∞∑

n=1

[

exp

(

−2µ(n− 1)(a− b)

σ2

)

×

F

(
xi−1 + µ(ti − ti−1)− ((2n − 1)a− 2(n − 1)b)

σ
√
ti − ti−1

)]

−
0∑

n=−∞

[

exp

(

−2µ(xi−1 − na+ (n − 1)b)

σ2

)

×

F

(−xi−1 + µ(ti − ti−1) + (2n − 1)a− 2(n − 1)b

σ
√
ti − ti−1

)]

.

We apply now the following property of the standard Gaussian distribution function
F (−x) = 1− F (x):

=

∞∑

n=1

[

exp

(

−2µ(xi−1 − (na− (n− 1)b))

σ2

)

×

F

(
xi−1 − µ(ti − ti−1)− ((2n − 1)a− 2(n− 1)b)

σ
√
ti − ti−1

)]

(8.9)



−
0∑

n=−∞

[

exp

(

−2(n − 1)(a− b)µ

σ2

)

×

F

(−xi−1 − µ(ti − ti−1) + (2n − 1)a− 2(n− 1)b

σ
√
ti − ti−1

)]

(8.10)

+
∞∑

n=1

[

exp

(

−2µ ((n− 1)(a− b))

σ2

)

×
(

1− F

(−xi−1 − µ(ti − ti−1) + (2n− 1)a− 2(n − 1)b

σ
√
ti − ti−1

))]

−
0∑

n=−∞

[

exp

(

−2µ(xi−1 − na+ (n− 1)b)

σ2

)

×
(

1− F

(
xi−1 − µ(ti − ti−1)− ((2n − 1)a− 2(n − 1)b)

σ
√
ti − ti−1

))]

=

∞∑

n=1

exp

(

−2µ ((n − 1)(a − b))

σ2

)

−
0∑

n=−∞
exp

(

−2µ(xi−1 − na+ (n− 1)b)

σ2

)

+

∞∑

n=−∞

[

exp

(

−2µ(xi−1 − (na− (n− 1)b))

σ2

)

× (8.11)

F

(
xi−1 − µ(ti − ti−1)− ((2n− 1)a− 2(n − 1)b)

σ
√
ti − ti−1

)

− exp

(

−2(n− 1)(a − b)µ

σ2

)

×

F

(−xi−1 − µ(ti − ti−1) + (2n − 1)a− 2(n− 1)b

σ
√
ti − ti−1

)]

.

Since we are in the case where µ > 0, we can apply the Geometric power series property.
Let us remember that

∞∑

n=0

xn =
1

1− x
⇔ |x| < 1,

so

∞∑

n=1

xn =

( ∞∑

n=0

xn

)

− 1 =
1

1− x
− 1 =

x

1− x
⇔ |x| < 1.

On one side,

∞∑

n=1

exp

(

−2µ ((n − 1)(a − b))

σ2

)

=

∞∑

n=1

exp
(

− µ

σ2
(2n(a− b)− 2(a− b))

)

= exp
( µ

σ2
2(a− b)

) ∞∑

n=1

[

exp
(

− µ

σ2
2(a− b)

)]n (∗)
=

note that exp
(
− µ

σ2 2(a− b)
)
< 1, so

(∗)
= exp

( µ

σ2
2(a− b)

) exp
(
− µ

σ2 2(a− b)
)

1− exp
( µ
σ2 2(a− b)

)



=
1

1− exp
( µ
σ2 2(a− b)

) .

On the other side,

0∑

n=−∞
exp

(

−2µ(xi−1 − na+ (n− 1)b)

σ2

)

=

∞∑

n=0

exp

(
2µ

σ2
(−xi−1 − na− (−n− 1)b)

)

= exp

(
2µ

σ2
(b− xi−1)

) ∞∑

n=0

exp

(

−2µ

σ2
n(a− b)

)

= exp

(
2µ

σ2
(b− xi−1)

) ∞∑

n=0

[

exp

(

−2µ

σ2
(a− b)

)]n

=
exp

(
2µ
σ2 (b− xi−1)

)

1− exp
(

−2µ
σ2 (a− b)

) .

Therefore,

∞∑

n=1

exp

(

−2µ ((n− 1)(a− b))

σ2

)

−
0∑

n=−∞
exp

(

−2µ(xi−1 − na+ (n − 1)b)

σ2

)

=
1

1− exp
( µ
σ2 2(a− b)

) −
exp

(
2µ
σ2 (b− xi−1)

)

1− exp
(

−2µ
σ2 (a− b)

)

=
exp

(

−2µ
σ2 (b− xi−1)

)

− 1

exp
(

−2µ
σ2 (b− xi−1

)

− exp
(

−2µ
σ2 (a− xi−1)

) .

So coming back to Equation (8.9),

P(ti−1 < T+
ab < ti) =

exp
(

−2µ
σ2 (b− xi−1)

)

− 1

exp
(

−2µ
σ2 (b− xi−1

)

− exp
(

−2µ
σ2 (a− xi−1)

)

+

∞∑

n=−∞

[

exp

(

−2µ(xi−1 − (na− (n− 1)b))

σ2

)

×

F

(
xi−1 − µ(ti − ti−1)− ((2n − 1)a− 2(n − 1)b)

σ
√
ti − ti−1

)

− exp

(

−2(n− 1)(a− b)µ

σ2

)

×

F

(−xi−1 − µ(ti − ti−1) + (2n − 1)a− 2(n− 1)b

σ
√
ti − ti−1

)]

.

Let us define in the sequel pn := xi−1 + (2n − 2)b− (2n− 1)a, so that we obtain

P(ti−1 < T+
ab < ti)



=
exp

(

−2µ
σ2 (b− xi−1)

)

− 1

exp
(

−2µ
σ2 (b− xi−1

)

− exp
(

−2µ
σ2 (a− xi−1)

)

+ exp
( µ

σ2
(a− xi−1)

) ∞∑

n=−∞

[

exp
(

−µpn
σ2

)

F

(
pn − µ(ti − ti−1)

σ
√
ti − ti−1

)

− exp

(

−2µpn
σ2

)

F

(−pn − µ(ti − ti−1)

σ
√
ti − ti−1

)]

.

Recall that this sum is related to the distribution function of the inverse Gaussian distri-
bution

G(t) = 1−
(

F
(α− µ(ti − ti−1)

σ
√
ti − ti−1

)

− exp
(2µ

σ2
α
)

F
(−α− µ(ti − ti−1)

σ
√
ti − ti−1

)
)

.

The density function of the inverse Gaussian distribution is given by,

f(t) =
α

√
2πσt

3
2

exp

(

−
(
α− µ(ti − ti−1)

)2

2σ2(ti − ti−1)

)

.

So we derive now the first-passage time intensity (Definition 3.1.3, Chapter 3)

f+
ab(t, xi−1) := lim

∆t→0

P(t−∆t < T+
ab < t+∆t)

2∆t

= exp
( µ

σ2
(a− xi−1)

) ∞∑

n=−∞
exp

(

− µ

σ2
pn

)pn exp
(

−
(
pn−µ(t−ti−1)

)2

2σ2(t−ti−1)

)

√
2πσ(t− ti−1)

3
2

= exp
( µ

σ2
(a− xi−1)

)

exp
(

− µ2(t− ti−1)

2σ2

) ∞∑

n=−∞

pn exp
(

− p2n
2σ2(t−ti−1)

)

√
2πσ(t− ti−1)

3
2

= exp
(

− µ2(t− ti−1)

2σ2

)

exp
(µ(a− xi−1)

σ2

)

×
∞∑

n=−∞

xi−1 − 2(n − 1)a+ (2n− 3)b√
2πσ2(t− ti−1)

3
2

×

exp

(

− (xi−1 − 2(n − 1)a+ (2n− 3)b)2

2σ2(t− ti−1)

)

,

we apply now the Jacobi transformation formula in Lemma A.1, choosing x = (xi−1 −
b)/(2(a − b)) and t∗ = σ2(t− ti−1)/(2(a − b)2),

= exp
(µ(a− xi−1)

σ2

) σ2π

(a− b)2

∞∑

n=1

(−1)nn sin
(πn(xi−1 − b)

a− b

)

×

exp
(

−
( µ2

2σ2
+

π2n2σ2

2(a− b)2

)

(t− ti−1)
)

.

Integrating over t the first-passage intensity we get the expression for P(ti−1 < T+
ab <

ti) =
∫ ti
ti−1

f+
ab(t, xi−1)dt. In the similar way one can compute P(ti−1 < T−

ab < ti) and

P(ti−1 < Tab < ti)



To complete the proof it is missing to verify the Equations (8.5) and (8.6). Let us consider
Z(t) as in Equation (8.4), note that, on one side

dP = exp

(
µ

σ2
(xi − xi−1) +

µ2

2σ2
(ti − ti−1)

)

dP̃.

Then,

P(x ∈ dx) = P̃(x ∈ dx)Z(t)

=
1

√

2π σ2(ti − ti−1)

∫ ∞

−∞
exp

(

−1

2

(
xi − xi−1 + µ(ti − ti−1)

σ
√
ti − ti−1

)2

+
µ

σ2
(xi − xi−1) +

µ2

2σ2
(ti − ti−1)

)

dxi

=
1

√

2π σ2(ti − ti−1)

∫ ∞

−∞
exp

(

−1

2

(xi − xi−1) + 2µ(ti − ti−1) + µ2(ti − ti−1)
2

σ2(ti − ti−1)

+
µ

σ2
(xi − xi−1) +

µ2

2σ2
(ti − ti−1)

)

dxi

=
1

√

2π σ2(ti − ti−1)

∫ ∞

−∞
exp

(

−1

2

(
xi − xi−1

σ
√
ti − ti−1

)2
)

dxi,

therefore, xi − xi−1 ∼ NP(0, σ
2(ti − ti−1)).

On the other side,

dP̃ = exp

(

− µ

σ2
(xi − xi−1)−

µ2

2σ2
(ti − ti−1)

)

dP.

Let xi = x̄i − µ(ti − ti−1), so,

dP̃ = exp

(

− µ

σ2
(x̄i − µ(ti − ti−1)− xi−1)−

µ2

2σ2
(ti − ti−1)

)

dP

= exp

(

− µ

σ2
(x̄i − xi−1) +

µ2

σ2
(ti − ti−1)−

µ2

2σ2
(ti − ti−1)

)

dP

= exp

(

− µ

σ2
(x̄i − xi−1) +

µ2

2σ2
(ti − ti−1)

)

dP,

and we denote Z̄(t) = exp
(

− µ
σ2 (x̄i − xi−1) +

µ2

2σ2 (ti − ti−1)
)

. Then,

P̃(x̄ ∈ dx̄) = P(x̄ ∈ dx̄)Z̄(t)

=
1

√

2π σ2(ti − ti−1)

∫ ∞

−∞
exp

(

−1

2

(
(x̄i − xi−1 − µ(ti − ti−1)

σ
√
ti − ti−1

)2

− µ

σ2
(x̄i − xi−1) +

µ2

2σ2
(ti − ti−1)

)

dx̄i



=
1

√

2π σ2(ti − ti−1)

∫ ∞

−∞
exp

(

−1

2

(x̄i − xi−1)

σ2(ti − ti−1)
+

µ

σ2
(x̄i − xi−1)

− µ2

2σ2
(ti − ti−1)−

µ

σ2
(x̄i − xi−1) +

µ2

2σ2
(ti − ti−1)

)

dx̄i

=
1

√

2π σ2(ti − ti−1)

∫ ∞

−∞
exp

(

−1

2

(
x̄i − xi−1

σ
√
ti − ti−1

)2
)

dx̄i,

so, x̄i − xi−1 ∼ N
P̃
(0, σ2(ti − ti−1)).

B The average lifetime of the Marshall–Olkin law

Lemma B.1 (Minimum of independent exponential random variables)
Let X1, . . . ,Xd be exponentially distributed and independent random variables with parameters
λ1, . . . , λd > 0, respectively. Then,

min{X1, . . . ,Xd} ∼ Exp
( d∑

i=1

λi

)

.

Proof of Lemma B.1.

P(min{X1, . . . ,Xd} > x) = P({X1 > x} ∩ . . . ∩ {Xd > x}).

Since X1, . . . ,Xd are independent,

P({X1 > x} ∩ . . . ∩ {Xd > x}) = P(X1 > x) · . . . · P(Xd > x).

X1, . . . ,Xd are exponentially distributed with parameters λ1, . . . , λd, and so

P(X1 > x) · . . . · P(Xd > x) = e−λ1x · . . . · e−λdx = e−
∑d

i=1 λix.

Therefore,

min{X1, . . . ,Xd} ∼ Exp
( d∑

i=1

λi

)

B.1 The exchangeable Marshall–Olkin law

Proof of Lemma 4.2.1. The sum of d ∈ {2, 3, 4} lifetimes

We prove the cases when d = 3 and d = 4.



• Case d = 3:

In case d = 3 the following survival function has to be computed:

P(X1 +X2 +X3 > x) (8.12)

= 6P(X1 +X2 +X3 > x |X1 < X2 < X3)P(X1 < X2 < X3)

+ 3P(X1 +X2 +X3 > x |X1 = X2 < X3)P(X1 = X2 < X3)

+ 3P(X1 +X2 +X3 > x |X1 < X2 = X3)P(X1 < X2 = X3)

+ P(X1 +X2 +X3 > x |X1 = X2 = X3)P(X1 = X2 = X3).

Each conditional probability in the sum (8.12) is derived exactly in the same way as when
d = 2 obtaining the next results:

P(X1 +X2 +X3 > x,X1 < X2 < X3)

= P(X1 +X2 +X3 > x,E1 < min{E2, E12} < X3)

= P(X1 +X2 +X3 > x,E1 < min{E2, E12} < X3)

we call min{E2, E12} = X
(d=2)
2

= P(X3 > X
(d=2)
2 > E1 > x−X

(d=2)
2 −X3)

= E[P(X3 > X
(d=2)
2 > E1 > x−X

(d=2)
2 −X3 |E1)]

=

∫ ∞

0
P(X3 > X

(d=2)
2 > y1 > x−X

(d=2)
2 −X3)fE1(y1)dy1,

where

P(X3 > X
(d=2)
2 > y1 > x−X

(d=2)
2 −X3)

= E[P(X3 > X
(d=2)
2 > y1 > x > X

(d=2)
2 −X3 |X(d=2)

2 )]

=

∫ ∞

0
P(X3 > y2, y2 > y1, y1 > x− y2 −X3)fX(d=2)

2

(y2)dy2

=

∫ ∞

y1

P(X3 > max{y2, x− y1 − y2})fX(d=2)
2

(y2)dy2.

So,

P(X1 +X2 +X3 > x,X1 < X2 < X3)

= λ1(λ1 + λ2)

(

9(λ1 + 2λ2 + λ3)e
−(3λ1+3λ2+λ3)x/3

(3λ2 + λ3)(3λ2 + 2λ3)(3λ1 + 3λ2 + λ3)

− 2(λ1 + 2λ2 + λ3)e
−(2λ1+3λ2+λ3)x/2

(2λ1 + 3λ2 + λ3)(λ2 + λ3)
(
3λ2+λ3

2

) +
e−(λ1+2λ2+λ3)x

(λ2 + λ3)(3λ2 + 2λ3)

)

.



In the same way,

P(X1 +X2 +X3 > x,X1 = X2 < X3)

= P(X1 +X2 +X3 > x,E12 < min{E1E2,X3})
= P(E12 + E12 +X3 > x,E12 < min{E1E2,X3})
= P(2min{E1, E2,X3} > 2E12 > x−X3)

= P(2min{E1, E2,X3} > 2E12 > x−X3 | min{E1, E2} < X3)P(min{E1, E2} < X3)

+ P(2min{E1, E2,X3} > 2E12 > x−X3 |X3 < min{E1, E2})P(X3 < min{E1, E2})
= P(2X3 > 2min{E1, E2} > 2E12 > x−X3)
︸ ︷︷ ︸

(1)

+ P(2min{E1, E2} > 2X3 > 2E12 > x−X3)
︸ ︷︷ ︸

(2)

,

on one hand,

(1) P(2X3 > 2min{E1, E2} > 2E12 > x−X3)

= E[P(2X3 > 2min{E1, E2} > 2E12 > x−X3 |E12)]

=

∫ ∞

0
P(X3 > min{E1, E2},min{E1, E2} > y, 2y > x−X3)fE12(y)dy,

such that

P(X3 > min{E1, E2},min{E1, E2} > y, 2y > x−X3)

= E[P(X3 > min{E1, E2},min{E1, E2} > y, 2y > x−X3 | min{E1, E2})]

=

∫ ∞

0
P(X3 > y1, , y1 > y,X3 > x− 2y)fmin{E1,E2}(y1)dy1

=

∫ ∞

y
P(X3 > max{y, x− 2y})fmin{E1,E2}(y1)dy1.

On the other hand,

(2) P(2min{E1, E2} > 2X3 > 2E12 > x−X3)

= E[P(2min{E1, E2} > 2X3 > 2E12 > x−X3 |E12)]

=

∫ ∞

0
P(2min{E1, E2} > 2X3 > 2y > x−X3)fE12(y)dy

=

∫ ∞

0
P(min{E1, E2} > X3,X3 > y, 2y > x−X3)fE12(y)dy,

where

P(min{E1, E2} > X3,X3 > y, 2y > x−X3)

= P(min{E1, E2} > X3,X3 > max{y, x− 2y})
= E[P(min{E1, E2} > X3,X3 > max{y, x− 2y} |X3)]



=

∫ ∞

0
P(min{E1, E2} > y1, y1 > max{y, x− 2y})fX3(y1)dy1

=

∫ ∞

max{y,x−2y}
P(min{E1, E2} > y1)fX3(y1)dy1.

Computing these integrals,

P(X1 +X2 +X3 > x,X1 = X2 < X3) =
3λ2(λ1 + 2λ2 + λ3)e

−(3λ1+3λ2+λ3)x/3

(3λ2 + 2λ3)(3λ1 + 3λ2 + λ3)

− λ2e
−(λ1+2λ2+λ3)x

3λ2 + 2λ3
.

Similarly,

P(X1 +X2 +X3 > x,X1 < X2 = X3)

= P(X1 +X2 +X3 > x,E1 < min{E23, E123} < min{E2, E3, E12E13})

we call min{E23, E123} = X̃ and min{E2, E3, E12, E13} = X̄

= P(X̄ > X̃ > E1 > x− 2X̃) = E[P(X̄ > X̃ > E1 > x− 2X̃ |E1)]

=

∫ ∞

0
P(X̄ > X̃ > y > x− 2X̃)fE1(y)dy,

where

P(X̄ > X̃ > y > x− 2X̃) = E[P(X̄ > X̃ > y > x− 2X̃ | X̃)]

=

∫ ∞

0
P(X̄ > y1, y1 > y, y > x− 2y1)fX̃(y1)dy1

=

∫ ∞

0
P

(

X̄ > y1, y1 > max

{

y,
x− y

2

})

fX̃(y1)dy1

=

∫ ∞

max{y,x−y

2 }
P
(
X̄ > y1

)
fX̃(y1)dy1.

Therefore,

P(X1 +X2 +X3 > x,X1 < X2 = X3)

=
3λ1(λ2 + λ3)e

−(3λ1+3λ2+λ3)x/3

2
(
3λ2+λ3

2

)

(3λ1 + 3λ2 + λ3)
− λ1(λ2 + λ3)e

−(2λ1+3λ2+λ3)x/2

(2λ1 + 3λ2 + λ3)
(
3λ2+λ3

2

) .

Finally, from Equation (4.10), one can directly calculate

P(X1 +X2 +X3 > x,X1 = X2 = X3) =
λ3

3λ1 + 3λ2 + λ3
e−(3λ1+3λ2+λ3)x/3.

• Case d = 4:

In this case we need to compute the next probability:



P(X1 +X2 +X3 +X4 > x) (8.13)

= 24P(X1 +X2 +X3 +X4 > x |X1 < X2 < X3 < X4)P(X1 < X2 < X3 < X4)

+ 12P(X1 +X2 +X3 +X4 > x |X1 < X2 < X3 = X4)P(X1 < X2 < X3 = X4)

+ 12P(X1 +X2 +X3 +X4 > x |X1 < X2 = X3 < X4)P(X1 < X2 = X3 < X4)

+ 12P(X1 +X2 +X3 +X4 > x |X1 = X2 < X3 < X4)P(X1 = X2 < X3 < X4)

+ 4P(X1 +X2 +X3 +X4 > x |X1 = X2 = X3 < X4)P(X1 = X2 = X3 < X4)

+ 4P(X1 +X2 +X3 +X4 > x |X1 < X2 = X3 = X4)P(X1 < X2 = X3 = X4)

+ 6P(X1 +X2 +X3 +X4 > x |X1 = X2 < X3 = X4)P(X1 = X2 < X3 = X4)

+ P(X1 +X2 +X3 +X4 > x |X1 = X2 = X3 = X4)P(X1 = X2 = X3 = X4).

Let us define some notation to simplify the computations. We denote:

X̃ = min{E1, E2},
X̃2 = min{E2, E12},
X̃23 = min{E23, E123},

X̃1234 = min{E234, E1234},
X̃123 = min{E2, E3, E12, E13},
X̃3 = min{E3, E13, E23, E123},
X̃34 = min{E34, E134, E234, E1234},

X̃{1,2,3} = min{E1, E2, E3, E12, E13, E23},
X̃234 = min{E3, E4, E13, E14, E23, E24, E123, E124},

X̂ = min{E2, E3, E4, E12, E13, E14, E23, E24, E34, E123, E124, E134}.

We calculate each of the probabilities in Equation (8.13) in the following way:

Let us start with P(X1 +X2 +X3 +X4 > x,X1 < X2 < X3 < X4):

note that

X1 < X2 < X3 < X4 ⇔ E1 < X̃2 < X̃3 < X4.

Then,

P(X1 +X2 +X3 +X4 > x,X1 < X2 < X3 < X4)

= P(X4 > X̃3 > X̃2 > E1 > x− X̃2 − X̃3 −X4)

= E[P(X4 > X̃3 > X̃2 > E1 > x− X̃2 − X̃3 −X4 |E1)]

=

∫ ∞

0
P(X4 > X̃3 > X̃2 > y1 > x− X̃2 − X̃3 −X4)fE1(y1)dy1,



where

P(X4 > X̃3 > X̃2 > y1 > x− X̃2 − X̃3 −X4)

= E[P(X4 > X̃3 > X̃2 > y1 > x− X̃2 − X̃3 −X4 | X̃2)]

=

∫ ∞

0
P(X4 > X̃3 > y2, y2 > y1, y1 > x− y2 − X̃3 −X4)fX2(y2)dy2

=

∫ ∞

y1

P(X4 > X̃3 > y2, y1 > x− y2 > X̃3 −X4)fX2(y2)dy2,

in the same way

P(X4 > X̃3 > y2, y2 > y1, y1 > x− y2 − X̃3 −X4)

= E[P(X4 > X̃3 > y2, y2 > y1, y1 > x− y2 − X̃3 −X4 | X̃3)]

=

∫ ∞

0
P(X4 > y3, y3 > y2, y1 > x− y2 − y3 −X4)fX̃3

(y3)dy3

=

∫ ∞

y2

P(X4 > y3,X4 > x− y1 − y2 − y3)fX̃3
(y3)

=

∫ ∞

y2

P(X4 > max{y3, x− y1 − y2 − y3})fX̃3
(y3)dy3.

Let us compute now P(X1 +X2 +X3 +X4 > x,X1 < X2 < X3 = X4):

taking into consideration that

X1 < X2 < X3 = X4 ⇔ E1 < X̃2 < X̃34 < X̃234,

we get

P(X1 +X2 +X3 +X4 > x,X1 < X2 < X3 = X4)

= P(X̃234 > X̃34 > X̃2 > E1 > x− X̃2 − 2X̃34)

= E[P(X̃234 > X̃34 > X̃2 > E1 > x− X̃2 − 2X̃34 |E1)]

=

∫ ∞

0
P(X̃234 > X̃34 > X̃2 > y1 > x− X̃2 − 2X̃34)fE1(y1), dy1,

where

P(X̃234 > X̃34 > X̃2 > y1 > x− X̃2 > 2X̃34)

= E[P(X̃234 > X̃34 > X̃2 > y1 > x− X̃2 > 2X̃34 | X̃2)]

=

∫ ∞

0
P(X̃234 > X̃34 > y2, y2 > y1, y1 > x− y2 > 2X̃34)fX̃2

(y2)dy2

=

∫ ∞

y1

P(X̃234 > X̃34 > y2, y1 > x− y2 − 2X̃34)fX̃2
(y2)dy2,



and

P(X̃234 > X̃34 > y2, y1 > x− y2 − 2X̃34)

= E[P(X̃234 > X̃34 > y2, y1 > x− y2 − 2X̃34 | X̃34)]

=

∫ ∞

0
P

(

X̃234 > y3, y3 > y2, y3 >
x− y1 − y2

2

)

fX̃34
(y3)dy3

=

∫ ∞

max{y2,x−y1−y2
2

}
P(X̃234 > y3)fX̃34

(y3)dy3

We calculate in the following, P(X1 +X2 +X3 +X4 > x,X1 < X2 = X3 < X4):

paying attention on

X1 < X2 = X3 < X4 ⇔ E1 < X̃23 < min{X4, X̃123},

we obtain,

P(X1 +X2 +X3 +X4 > x,X1 < X2 = X3 < X4)

= P(X1 +X2 +X3 +X4 > x,E1 < X̃23 < X4 < X̃123)

+ P(X1 +X2 +X3 +X4 > x,E1 < X̃23 < X̃123 < X4)

= P(X̃123 > X4 > X̃23 > E1 > x− 2X̃23 −X4)

+ P(X4 > X̃123 > X̃23 > E1 > x− 2X̃23 −X4).

On one hand,

P(X̃123 > X4 > X̃23 > E1 > x− 2X̃23 −X4)

= E[P(X̃123 > X4 > X̃23 > E1 > x− 2X̃23 −X4 |E1)]

=

∫ ∞

0
P(X̃123 > X4 > X̃23 > y1 > x− 2X̃23 −X4)fE1(y1)dy1,

such that

P(X̃123 > X4 > X̃23 > y1 > x− 2X̃23 −X4)

= E[P(X̃123 > X4 > X̃23 > y1 > x− 2X̃23 −X4 | X̃23)]

=

∫ ∞

y2

P(X̃123 > X4 > y2, y1 > x− 2y2 −X4)fX23(y2)dy2,

and

P(X̃123 > X4 > y2, y1 > x− 2y2 −X4)

= E[P(X̃123 > X4 > y2, y1 > x− 2y2 −X4 |X4)]

=

∫ ∞

0
P(X̃123 > y3 >, y3 > y2, y3 > x− 2y2 − y1)fX4(y3)dy3

=

∫ ∞

max{y2,x−y1−2y2}
P(X̃123 > y3)fX4(y3)dy3



On the other hand,

P(X4 > X̃123 > X̃23 > E1 > x− 2X̃23 −X4)

= E[P(X4 > X̃123 > X̃23 > E1 > x− 2X̃23 −X4 |E1)]

=

∫ ∞

0
P(X4 > X̃123 > X̃23 > y1 > x− 2X̃23 −X4)fE1(y1)dy1,

where

P(X4 > X̃123 > X̃23 > y1 > x− 2X̃23 −X4)

= E[P(X4 > X̃123 > X̃23 > y1 > x− 2X̃23 −X4 | X̃23)]

=

∫ ∞

y1

P(X4 > X̃123 > y2, y1 > x− 2y2 −X4)fX̃23
(y2)dy2,

and

P(X4 > X̃123 > y2, y1 > x− 2y2 −X4)fX̃23
(y2)

= E[P(X4 > X̃123 > y2, y1 > x− 2y2 −X4 | X̃123)]

=

∫ ∞

0
P(X4 > y3, y3 > y2,X4 > x− 2y2 − y1)fX̃123

(y3)dy3

=

∫ ∞

y2

P(X4 > max{y3, x− 2y2 − y1})fX̃123
(y3)dy3.

Let us now come to the computations for P(X1+X2+X3+X4 > x,X1 = X2 < X3 < X4):

note that,

X1 = X2 < X3 < X4 ⇔
(

E12 < X̃3 < X4 < X̃
)⋃(

E12 < X̃3 < X̃ < X4

)

⋃(

E12 < X̃ < X̃3 < X4

)

So,

P(X1 +X2 +X3 +X4 > x,X1 = X2 < X3 < X4)

= P(E12 + E12 + X̃3 +X4 > x,E12 < X̃3 < X4 < X̃)

+ P(E12 + E12 + X̃3 +X4 > x,E12 < X̃3 < X̃ < X4).

We calculate first,

P

(

X̃ > X4 > X̃3 > E12 >
x− X̃3 −X4

2

)

= E

[

P

(

X̃ > X4 > X̃3 > E12 >
x− X̃3 −X4

2
|E12

)]

=

∫ ∞

0
P

(

X̃ > X4 > X̃3 > y1 >
x− X̃3 −X4

2

)

fE12(y1)dy1,



such that

P

(

X̃ > X4 > X̃3 > y1 >
x− X̃3 −X4

2

)

= E

[

P

(

X̃ > X4 > X̃3 > y1 >
x− X̃3 −X4

2
| X̃3

)]

=

∫ ∞

0
P

(

X̃ > X4 > y2, y2 > y1, y1 >
x− y2 −X4

2

)

fX̃3
(y2)dy2

=

∫ ∞

y1

P

(

X̃ > X4 > y2, y1 >
x− y2 −X4

2

)

fX̃3
(y2)dy2,

and

P

(

X̃ > X4 > y2, y1 >
x− y2 −X4

2

)

= E

[

P

(

X̃ > X4 > y2, y1 >
x− y2 −X4

2
|X4

)]

=

∫ ∞

0
P

(

X̃ > y3, y3 > y2, y3 > x− y2 − 2y1

)

fX4(y3)dy3.

Let us proceed with,

P

(

X4 > X̃ > X̃3 > E12 >
x− X̃3 −X4

2

)

= E

[

P

(

X4 > X̃ > X̃3 > E12 >
x− X̃3 −X4

2
|E12

)]

=

∫ ∞

0
P

(

X4 > X̃ > X̃3 > y1 >
x− X̃3 −X4

2

)

fE12(y1)dy1,

from where we get,

P

(

X4 > X̃ > X̃3 > y1 >
x− X̃3 −X4

2

)

= E

[

P

(

X4 > X̃ > X̃3 > y1 >
x− X̃3 −X4

2
| X̃3

)]

=

∫ ∞

0
P

(

X4 > X̃ > y2, y2 > y1, y1 >
x− y2 −X4

2

)

fX̃3
(y2)dy2

=

∫ ∞

y1

P

(

X4 > X̃ > y2, y1 >
x− y2 −X4

2

)

fX̃3
(y2)dy2,



and

P

(

X4 > X̃ > y2, y1 >
x− y2 −X4

2

)

= E

[

P

(

X4 > X̃ > y2, y1 >
x− y2 −X4

2
| X̃
)]

=

∫ ∞

0
P (X4 > y3, y3 > y2,X4 > x− y2 − 2y1) fX̃(y3)dy3

=

∫ ∞

y2

P (X4 > max{y3, x− y2 − 2y1}) fX̃(y3)dy3.

Finally,

P

(

X4 > X̃3 > X̃ > E12 >
x− X̃3 −X4

2

)

= E

[

P

(

X4 > X̃3 > X̃ > E12 >
x− X̃3 −X4

2
|E12

)]

=

∫ ∞

0
P

(

X4 > X̃3 > X̃ > y1 >
x− X̃3 −X4

2

)

fE12(y1)dy1,

such that

P

(

X4 > X̃3 > X̃ > y1 >
x− X̃3 −X4

2

)

= E

[

P

(

X4 > X̃3 > X̃ > y1 >
x− X̃3 −X4

2
| X̃
)]

=

∫ ∞

0
P

(

X4 > X̃3 > y2, y2 > y1, y1 >
x− X̃3 −X4

2

)

fX̃(y2)dy2

=

∫ ∞

y1

P

(

X4 > X̃3 > y2, y1 >
x− X̃3 −X4

2

)

fX̃(y2)dy2,

and

P

(

X4 > X̃3 > y2, y1 >
x− X̃3 −X4

2

)

= E

[

P

(

X4 > X̃3 > y2, y1 >
x− X̃3 −X4

2
| X̃3

)]

=

∫ ∞

0
P (X4 > y3, y3 > y2,X4 > x− 2y1 − y3) fX̃3

(y3)dy3

=

∫ ∞

y2

P(X4 > max{y3, x− 2y1 − y3})fX̃3
(y3)dy3.



Let us derive now P(X1 +X2 +X3 +X4 > x,X1 = X2 = X3 < X4):

taking into consideration that,

X1 = X2 = X3 < X4 ⇔ E123 < min{X4, X̃{1,2,3}},

then,

P(X1 +X2 +X3 +X4 > x,X1 = X2 = X3 < X4)

= P(3E123 +X4 > x,E123 < X4X̃{1,2,3})

+ P(3E123 +X4 > x,E123X̃{1,2,3} < X4)

= P

(

X̃{1,2,3} > X4 > E123 >
x−X4

3

)

+ P

(

X4 > X̃{1,2,3} > E123 >
x−X4

3

)

.

On one side,

P

(

X̃{1,2,3} > X4 > E123 >
x−X4

3

)

= E

[

P

(

X̃{1,2,3} > X4 > E123 >
x−X4

3
|E123

)]

=

∫ ∞

0
P

(

X̃{1,2,3} > X4 > y1 >
x−X4

3

)

fE123(y1)dy1,

where

P

(

X̃{1,2,3} > X4 > y1 >
x−X4

3

)

= E

[

P

(

X̃{1,2,3} > X4 > y1 >
x−X4

3
|X4

)]

=

∫ ∞

0
P(X̃{1,2,3} > y2, y2 > y1, y2 > x− 3y1)fX4(y2)dy2

=

∫ ∞

max{y1,x−3y1}
P(X̃{1,2,3} > y2)fX4(y2)dy2.

On the other side,

P

(

X4 > X̃{1,2,3} > E123 >
x−X4

3

)

= E

[

P

(

X4 > X̃{1,2,3} > E123 >
x−X4

3
|E123

)]

=

∫ ∞

0
P

(

X4 > X̃{1,2,3} > y1 >
x−X4

3

)

fE123(y1)dy1,



such that

P

(

X4 > X̃{1,2,3} > y1 >
x−X4

3

)

= E

[

P

(

X4 > X̃{1,2,3} > y1 >
x−X4

3
| X̃{1,2,3}

)]

=

∫ ∞

0
P

(

X4 > y2, y2 > y1, y1 >
x−X4

3

)

fX̃{1,2,3}
(y2)dy2

=

∫ ∞

y1

P(X4 > y2,X4 > x− 3y1)fX̃{1,2,3}
(y2)dy2

=

∫ ∞

y1

P(X4 > max{y2, x− 3y1})fX̃{1,2,3}
(y2)dy2.

We now aim at computing P(X1 +X2 +X3 +X4 > x,X1 < X2 = X3 = X4):

we need to take into consideration that

X1 < X2 = X3 = X4 ⇔ E1 < X̃1234 < X̂.

Then,

P(X1 +X2 +X3 +X4 > x,X1 < X2 = X3 = X4)

= P(X̂ > X̃1234 > E1 > x− 3X̃1234)

= E[P(X̂ > X̃1234 > E1 > x− 3X̃1234 |E1)]

=

∫ ∞

0
P(X̂ > X̃1234 > y1 > x− 3X̃1234)fE1(y1)dy1,

where

P(X̂ > X̃1234 > y1 > x− 3X̃1234)

= E[P(X̂ > X̃1234 > y1 > x− 3X̃1234 | X̃1234)]

=

∫ ∞

0
P

(

X̂ > y2, y2 > y1, y2 >
x− y1

3

)

fX̃1234
(y2)dy2

=

∫ ∞

max
{

y1,
x−y1

3

}

P(X̂ > y2)fX̃1234
(y2)dy2.

Let us now calculate P(X1 + . . .+X4 > x,X1 = X2 < X3 = X4):

note that:

X1 = X2 < X3 = X4 ⇔
(

E12 < X̃ < X̃34 < X̃234

)⋃(

E12 < X̃34 < X̃ < X̃234

)

⋃(

E12 < X̃34 < X̃234 < X̃
)

,

and we proceed as

P(X1 + . . .+X4 > x,X1 = X2 < X3 = X4)

= P(X1 + . . . +X4 > x,E12 < X̃ < X̃34 < X̃234)



+ P(X1 + . . .+X4 > x,E12 < X̃34 < X̃ < X̃234)

+ P(X1 + . . .+X4 > x,E12 < X̃34 < X̃234 < X̃).

We first compute

P(X1 + . . . +X4 > x,X1 = X2 < X3 = X4)

= P

(

X̃234 > X̃34 > X̃ > E12 >
x− 2X̃34

2

)

= E

[

P

(

X̃234 > X̃34 > X̃ > E12 >
x− 2X̃34

2
|E12

)]

=

∫ ∞

0
P

(

X̃234 > X̃34 > X̃ > y1 >
x− 2X̃34

2

)

fE12(y1)dy1,

where

P

(

X̃234 > X̃34 > X̃ > y1 >
x− 2X̃34

2

)

= E

[

P

(

X̃234 > X̃34 > X̃ > y1 >
x− 2X̃34

2
| X̃
)]

=

∫ ∞

0
P

(

X̃234 > X̃34 > y2, y2 > y1, y1 >
x− 2X̃34

2

)

fX̃(y2)dy2

=

∫ ∞

y1

P

(

X̃234 > X̃34 > y2, y1 >
x− 2X̃34

2

)

fX̃(y2)dy2,

and

P

(

X̃234 > X̃34 > y2, y1 >
x− 2X̃34

2

)

= E

[

P

(

X̃234 > X̃34 > y2, y1 >
x− 2X̃34

2
| X̃34

)]

=

∫ ∞

0
P

(

X̃234 > y3, y3 > max

{

y2,
x− 2y1

2

})

fX̃34
(y3)dy3

=

∫ ∞

max
{

y2,
x−2y1

2

}

P(X̃234 > y3)fX̃34
(y3)dy3.

We proceed now with

P(X1 + . . . +X4 > x,E12 < X̃34 < X̃ < X̃234)

= P

(

X̃234 > X̃ > X̃34 > E12 >
x− 2X̃34

2

)

= E

[

P

(

X̃234 > X̃ > X̃34 > E12 >
x− 2X̃34

2
|E12

)]



=

∫ ∞

0
P

(

X̃234 > X̃ > X̃34 > y1 >
x− 2X̃34

2

)

fE12(y1)dy1,

such as

P

(

X̃234 > X̃ > X̃34 > y1 >
x− 2X̃34

2

)

= E

[

P

(

X̃234 > X̃ > X̃34 > y1 >
x− 2X̃34

2
| X̃34

)]

=

∫ ∞

0
P

(

X̃234 > X̃ > y2, y2 > max

{

y1,
x− 2y1

2

})

fX̃34
(y2)dy2

=

∫ ∞

max
{

y1,
x−2y1

2

}

P(X̃234 > X̃ > y2)fX̃34
(y2)dy2,

and

P(X̃234 > X̃ > y2)

= E

[

P(X̃234 > X̃ > y2 | X̃)
]

=

∫ ∞

0
P(X̃234 > y3, y3 > y2)fX̃(y3)dy3

=

∫ ∞

y2

P(X̃234 > y3)fX̃(y3)dy3.

And finally,

P(X1 + . . .+X4 > x,E12 < X̃34 < X̃234 < X̃)

= P

(

X̃ > X̃234 > X̃34 > E12 >
x− 2X̃34

2

)

= E

[

P

(

X̃ > X̃234 > X̃34 > E12 >
x− 2X̃34

2
|E12

)]

=

∫ ∞

0
P

(

X̃ > X̃234 > X̃34 > y1 >
x− 2X̃34

2

)

fE12(y1)dy1,

where

P

(

X̃ > X̃234 > X̃34 > y1 >
x− 2X̃34

2

)

= E

[

P

(

X̃ > X̃234 > X̃34 > y1 >
x− 2X̃34

2
| X̃34

)]

=

∫ ∞

0
P

(

X̃ > X̃234 > y2, y2 > max

{

y1,
x− 2y1

2

})

fX̃34
(y2)dy2

=

∫ ∞

max
{

y1,
x−2y1

2

}

P(X̃ > X̃234 > y2)fX̃34
(y2)dy2,



and

P(X̃ > X̃234 > y2) = E[P(X̃ > X̃234 > y2 | X̃234)]

=

∫ ∞

0
P(X̃ > y3, y3 > y2)fX̃234

(y3)dy3

=

∫ ∞

y2

P(X̃ > y3, )fX̃234
(y3)dy3.

We conclude the sketch of the proof calculating P(X1+ . . .+X4 > x,X1 = X2 = X3 = X4)
but this can be computed directly from the generalized case (Equation (4.10)):

P(X1 + . . . +X4 > x,X1 = X2 = X3 = X4) =
λ4

4λ1 + 6λ2 + 4λ3 + λ4
e−(4λ1+6λ2+4λ3+λ4)x/4.

C Simulating Lévy-frailty copulas

C.1 Drift adjustment

While simulating Lévy-frailty copulas using Algorithm 5.4.3, the first-exit times are computed
using the canonical construction in the Lévy-frailty environment

Xk = inf{t > 0 : Λt ≥ εk}, εk ∼ Exp(1) (i.i.d.), k = 1, . . . , d,

where Λt is a Lévy subordinator.
Note that if the subordinator reaches the threshold Ek between two jump times (as it is

shown in Figure 8.1), one does not know a priory when exactly the threshold has been reached.
However it is possible to compute it.
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Figure 8.1: Drift adjustment in case the threshold has been reached between two jump
times.



Algorithm 5.4.3 simulates a subordinator of a compound Poisson type. Compound Poisson
processes are piecewise constant (see [Sato, 1999], Theorem 21.2) and since we add the drift,
µ > 0,

Λt = µ t+
∑

s≤t

∆Λs 1{∆Λs≥ǫ},∀ǫ > 0,

it performs as in Figure 8.1.
The exact time τ when the subordinator hits the threshold εk can be computed using the

value of the subordinator at jump time t = t7, the jump size at t = t7, and the drift:

τ = t7 − x, where, µ =
Λt7 −∆Λt7 − εk

x
⇔ x =

Λt7 −∆Λt7 − εk
µ

.
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