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Abstract

Phosphoglucose isomerase (PGl) catalyzes the reversible isomerization of glucose-6-
phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of
glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloro-
plasts of illuminated mesophyll cells PGl also connects the Calvin-Benson cycle with the
starch biosynthetic pathway. In this work we isolated pgi7-3, a mutant totally lacking pPGl
activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1.
Starch content in pgi7-3 source leaves was ca. 10-15% of that of wild type (WT) leaves,
which was similar to that of leaves of pgi7-2, a T-DNA insertion pPGI null mutant. Starch de-
ficiency of pgi1 leaves could be reverted by the introduction of a sex7 null mutation impeding
B-amylolytic starch breakdown. Although previous studies showed that starch granules of
pgil-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and sto-
mata guard cells, microscopy analyses carried out in this work revealed the presence of
starch granules in the chloroplasts of pgi7-2 and pgi1-3 mesophyll cells. RT-PCR analyses
showed high expression levels of plastidic and extra-plastidic B-amylase encoding genes in
pgi1 leaves, which was accompanied by increased 3-amylase activity. Both pgi7-2 and
pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes
even under continuous light conditions. Metabolic analyses revealed that the adenylate en-
ergy charge and the NAD(P)H/NAD(P) ratios in pgi7 leaves were lower than those of WT
leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol
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4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly
lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the
low starch content phenotype of pgi7 leaves. The overall data show that pPGl is an impor-
tant determinant of photosynthesis, energy status, growth and starch accumulation in me-
sophyll cells likely as a consequence of its involvement in the production of OPPP/
glycolysis intermediates necessary for the synthesis of plastidic MEP-pathway derived hor-
mones such as CKs.

Introduction

Starch is a branched homopolysaccharide of o.-1,4-linked glucose subunits with o.-1,6-linked
glucose at the branched points. Synthesized by starch synthases (SS) using ADP-glucose
(ADPG) as the sugar donor molecule, this polyglucan accumulates as predominant storage car-
bohydrate in plants. Starch is found in the plastids of photosynthetic and non-photosynthetic
tissues. Mature chloroplasts occurring in photosynthetically active cells possess the capacity of
providing energy (ATP) and fixed carbon for the synthesis of starch during illumination. By
contrast, production of long-term storage of starch taking place in amyloplasts of reserve or-
gans such as tubers, roots and seed endosperms depends upon the incoming supply of carbon
precursors and energy from the cytosol. This difference between the metabolic capacities of
chloroplasts and amyloplasts has lead to the generally accepted view that the pathway(s) in-
volved in starch production are different in photosynthetic and non-photosynthetic cells (for a
review see [1]).

In leaves, up to 50% of the photosynthetically fixed carbon is retained within the chloro-
plasts during the day to synthesize starch [2,3], which is then remobilized during the subse-
quent night to support non-photosynthetic metabolism and growth by continued export of
carbon to the rest of the plant. Due to the diurnal rise and fall cycle of its levels, foliar starch is
termed “transitory starch”. Many environmental factors such as photoperiod, light quality, se-
nescence, temperature, contact with microorganisms, etc., influence transitory starch metabo-
lism [4-8]. Because starch is a major integrator in the regulation of plant growth to cope with
fluctuations in the carbon and energy status of the plant [9] the synthesis of this polyglucan in
leaves is highly regulated at multiple levels in response to light and sugar signals and hormones
such as cytokinins (CKs) [10,11], abscisic acid [12,13] and brassinosteroids [14,15].

It is widely accepted that the whole photosynthesis-driven starch biosynthetic process occur-
ring in mesophyll cells of leaves resides exclusively in the chloroplast [16-18]. According to this
classical view of starch biosynthesis, starch is considered the end-product of a metabolic path-
way that is linked to the Calvin-Benson cycle by means of the plastidic phosphoglucose isomer-
ase (pPGI). This enzyme catalyzes the conversion of fructose-6-phosphate (F6P) from the
Calvin-Benson cycle into glucose-6-phosphate (G6P), which is then converted into glucose-
1-phosphate (G1P) by the plastidic phosphoglucomutase (pPGM). ADPG pyrophosphorylase
(AGP) then converts G1P and ATP into inorganic pyrophosphate and ADPG necessary for
starch biosynthesis. This view also implies that AGP is the sole source of ADPG, and functions
as the major regulatory step in the starch biosynthetic process [17-20]. However, despite the
monumental amount of data supporting the classic interpretation of transitory starch biosyn-
thesis in mesophyll cells, mounting evidence previews the possible occurrence of important ad-
ditional pathway(s) involving the cytosolic and plastidic compartments (reviewed in [1]).
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In addition to its involvement in the connection of the Calvin-Benson cycle with the starch
biosynthetic pathway in illuminated leaves, pPGI is involved in glycolysis and in the regenera-
tion of G6P molecules in the oxidative pentose pathway (OPPP) in heterotrophic organs and
non-illuminated leaves. pPGI is strongly inhibited by light [21] and by 3-phosphoglycerate
(3PGA) [22], a Calvin-Benson cycle intermediate accumulating in the chloroplast during illu-
mination that allosterically activates AGP [19,20]. Although these characteristics of pPGI, and
the low stromal G6P/F6P ratio occurring in the illuminated chloroplast (far lower than the
equilibrium constant for pPGI [22,23]) would indicate that this enzyme is inactive to some ex-
tent during illumination (and thus during transitory starch accumulation), genetic evidence
showing that transitory starch biosynthesis occurs solely by the pPGI pathway has been ob-
tained from characterization of starch-deficient mutants impaired in pPGI [24-28]. In Arabi-
dopsis, such evidence has been obtained from the characterization of the pgil-1 and pgil-2
pPGI mutants accumulating up to 40% and 10% of the wild type (WT) starch content, respec-
tively [27,28]. The pgil-1 allele has a single nucleotide substitution resulting in ca. 7% of the
WT pPGI activity [26], whereas pgil-2 is a T-DNA insertion null mutant of PGII that
completely lacks pPGI activity [28].

pgil-2 leaves accumulate ca. 10-fold more starch than leaves impaired in pPGM and AGP
[28-32], which would apparently conflict with the widely accepted idea that the whole photo-
synthesis-driven starch biosynthetic process solely involves the Calvin-Benson cycle-pPGI-
pPGM-AGP-SS pathway in mesophyll cells. However, consistent with the idea that
pPGI-pPGM-AGP is the sole starch biosynthetic pathway operating in mesophyll cells, Kunz
et al. [28] showed that starch granules are restricted to both bundle sheath cells adjacent to the
mesophyll and stomatal guard cells, and suggested that the occurrence of starch in these cells is
due to the incorporation of cytosolic G6P into the chloroplast, where it is then metabolized
into starch [28].

During our searches for starch deficient plants of Arabidopsis we isolated and characterized
a mutant, designated as pgil-3, totally lacking pPGI activity as a consequence of the aberrant
splicing of intron 6 of the pPGI encoding gene, PGII1. We found that, similar to pgil-2 leaves,
starch content in pgil-3 leaves was ca. 10-15% of that of WT leaves. Contrary to expectations,
microscopy analyses carried out in this work revealed the presence of starch granules in the
mesophyll cells of the two pgil mutants. Subsequent biochemical characterization of pgil
plants showed that pPGI is an important determinant of photosynthesis, energy status, growth
and starch accumulation in mesophyll cells likely as a consequence of its involvement in the
production of OPPP/glycolysis intermediates necessary for the synthesis of plastidic 2-C-
methyl-D-erythritol 4-phosphate (MEP)-pathway derived hormones such as CKs. The data
also support the occurrence in mesophyll cells of important pPGI independent starch biosyn-
thetic pathway(s) involving the cytosolic and chloroplastic compartments.

Results
Identification and molecular characterization of a new pPGI null allele

Data available from the Arabidopsis Information Resource (http://www.arabidopsis.org) on
the pPGI encoding At4¢g24620 gene (PGI1) includes the Cs92274 PGII polymorfism occurring
in ethyl methanesulfonate-mutagenized plants in the Landsberg erecta (Ler) background. To
identify its mutations site(s) we cultured plants from N92274 seeds obtained from the Notting-
ham Arabidopsis Stock Centre (NASC), and sequenced the PGII gene.

PGII contains 14 exons interrupted by 13 introns (Fig. 1A) [26]. Sequencing analyses re-
vealed that the pPGI N92274 allele harbors a G to A transition in the UUCAG/AU sequence of
the 3'splice donor site of intron 6 (Fig. 1B, C). To investigate whether this mutation would
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Fig 1. Molecular characterization of pgi1-3. (A) Genomic PGI1 structure. In “B” and “C”, comparisons between the genomic DNA (i), the mRNA (i), and the
derived protein sequence (jii) of WT and the N92274 (pgi1-3) mutant. In “i” only the splicing sequences between the exon 6 and intron 6, and between the
intron 6 and exon 7 are shown. Arrows indicate the point mutation site in pgi7-3. Exon sequences and their respective deduced amino acidic sequences are
highlighted in red color.

doi:10.1371/journal.pone.0119641.9001

cause mis-splicing of the PGII pre-mRNA in N92274, we amplified by reverse transcription
(RT)-PCR the PGI1 mRNA from both WT and the N92274 leaves. Sequencing of the resulting
complete cDNASs revealed that the cDNA obtained from N92274 leaves lacks 6 nucleotides
(ATCAAG) downstream the single point mutation site (S1 Fig.). The overall data thus showed
that (i) the N92274 mutation leads to aberrant splicing of intron 6 during PGI1 pre-mRNA
maturation (Fig. 1C), resulting in the production of a 6 nucleotides shorter PGII mRNA, (ii)
the 3’ splicing site of intron 6 of N92274 PGI1 pre-mRNA occurs in a non-canonical UCAAG/
AA sequence located 6 nucleotides downstream the WT 3’splicing site of PGI1 pre-mRNA,
and (iii) N92274 PGI1 encodes a protein that lacks two amino acids (Ile346-Lys347) occurring
in the WT pPGI (Fig. 1C and S2 Fig.).

As a first step to investigate whether the above mutation affects pPGI activity we measured
the starch content in leaves of N92274 plants and its corresponding WT (Ler) plants. As refer-
ence, we also measured the starch content in the leaves of pgil-2 T-DNA insertion mutant to-
tally impaired in pPGI activity [28] and its corresponding WT Wasilewskija (Ws-2) plants.
Preliminary iodine staining analyses of leaves revealed that both N92274 and pgil-2 display a
pale brown stain phenotype (Fig. 2A). This phenotype contrasts with the dark brown staining
phenotype of WT leaves and the yellow stain phenotype of the near starch-less apsI and pgm
leaves impaired in AGP and pPGM, respectively (S3 Fig.). This indicated the presence of re-
duced starch content in both N92274 and pgil-2 leaves. In line with this presumption,
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Fig 2. Leaves of the pgi1-3 mutant accumulate low starch. (A) lodine staining and (B) starch content of Ler, pgi1-3, Ws-2 and pgi7-2 leaves. Plants were
cultured on soil under LD conditions and source leaves harvested from 30 DAG plants after 12 h of illumination. In “B” values represent the mean + SE of
determinations on five independent samples.

doi:10.1371/journal.pone.0119641.g002

quantitative starch content measurement analyses revealed that starch content in both N92274
and pgil-2 leaves was ca. 10-15% of that accumulated by WT leaves (Fig. 2B).

The above results indicated that the mutation in the pPGI N92274 allele (thereafter desig-
nated as pgil-3) totally abolishes pPGI activity. To test this hypothesis we measured total PGI
activity in pgil-3 plants. We also carried out zymogramic and Q-sepharose chromatographic
analyses of PGI activity as described in Materials and Methods. Two PGI isozymes exist in Ara-
bidopsis, one in the plastids and the other in the cytosol [26,33]. Typically, pPGI activity con-
stitutes ca. 20-30% of the total cellular PGI [24,28]. Similarly to leaves of the pgil-2 T-DNA
insertion mutant [28], total PGI activity in pgil-3 leaves (928 + 52 mU/g FW) was ca. 80% of
the WT PGI activity (1264 + 134 mU/g FW). Zymogramic analyses of PGI activity revealed the
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Fig 3. pgi1-3 leaves lack pPGl activity. (A) PGl zymogram of proteins extracted from WT (Ler) and pgi7-3 leaves. (B) Q-sepharose chromatography profile
of PGl activity in WT and pgi1-3 leaves. In “B”, loaded WT extract contained 850 mU of total PGl activity, whereas pgi7-3 extract loaded on the column

contained 650 mU of PGl activity.

doi:10.1371/journal.pone.0119641.g003

occurrence of cytosolic PGI (cytPGI) and pPGI in WT leaves, but only cytPGI in pgil-3 leaves
(Fig. 3A). PGI activity analyses of Q-sepharose chromatography eluted fractions revealed two
activity peaks in WT leaves, whereas a single peak (corresponding to cytPGI) could be detected
in pgil-3 leaves (Fig. 3B). The overall data thus provided strong evidence that the pgil-3 chlo-

roplasts totally lack PGI activity.
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Fig 4. pgi1-3 is a pPGl null allele. (A) RT-PCR of PG/1 and (B) starch content in source leaves of WT (Ler),
pgi1-3 and two independent lines each of pgi1-3::PGI1 and pgi1-3::PGI1*. Plants were cultured on soil
under LD conditions and leaves harvested from 30 DAG plants after 12 h of illumination. In “B” values
represent the mean + SE of determinations on five independent samples.

doi:10.1371/journal.pone.0119641.9004

Whether pgil-3 is a pPGI null mutation was further investigated by generating and charac-
terizing various pgil-3 plants expressing the PGII encoding cDNA obtained from either WT
or pgil-3 plants under the control of the CaMV 35S promoter (designated as pgil-3::PGII and
pgil-3:PGII* plants, respectively). As shown in Fig. 4A, real time RT-PCR analyses showed
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that leaves of plants of two independent lines each of pgil-3::PGII and pgil-3::PGII* exhibited
high expression levels of the transgene. Furthermore, leaves of plants of two independent pgil-
3::PGI1 lines accumulated W'T starch content whereas, similar to pgil-3 leaves, pgil-3::PGII*
leaves accumulated ca. 10-15% of the WT starch content (Fig. 4B). The overall data thus fur-
ther provided evidence that pgil-3 is a pPGI null allele.

Mesophyll cells of pgiT1 null mutants contain starch

We carried out transmission electron microscopy (TEM) analyses of pgil-2 and pgil-3 mature
leaves, and confocal fluorescence microscopy (CFM) analyses of mature leaves of granule
bound starch synthase fused with green fluorescent protein (GBSS-GFP) expressing pgil-2 and
pgil-3 plants. Preliminary light microscopy analyses of toluidine stained leaves showed that
mesophyll cells of WT leaves produced several starch granules per chloroplast (Fig. 5A, D).
Noteworthy, these analyses also revealed that chloroplasts of pgil-2 and pgil-3 mesophyll cells
contain starch granules (Fig. 5B, C, E, F). These observations were further confirmed by TEM
analyses of WT, pgil-2 and pgil-3 leaves (Fig. 5G-I), and CFM analyses of transgenic WT,
pgil-2 and pgil-3 leaves expressing the starch granule marker GBSS-GFP (Fig. 5]-L).

SEX1 is required for B-amylase-mediated leaf starch mobilization during the night. Mutants
impaired in this function accumulate high levels of starch in the mesophyll cells [34,35].
Whether mesophyll cells of pgil null mutants accumulate starch was further investigated by
characterizing pgil-2/sexI and pgil-3/sex1 double mutants. The rationale behind this experi-
mental approach was that, if pgil-2 and pgil-3 mesophyll cells do indeed accumulate starch,
pgil-2/sex] and pgil-3/sex1 leaves should accumulate more starch than pgil-2 and pgil-3
leaves, respectively. Confirming this presumption, both iodine staining (Fig. 6A) and starch
content measurement analyses (Fig. 6B) revealed that pgil-2/sex] and pgil-3/sex] mature
leaves accumulate exceedingly higher levels of starch than pgil-2 and pgil-3 leaves, respective-
ly (see also Fig. 2).

GPT2 s not involved in starch biosynthesis in mesophyll cells of pgi1
leaves

Arabidopsis contains two functional plastidic G6P/Pi translocators (GPT) mainly expressed in
heterotrophic tissues (GPT1 and GPT2) whose suggested role is delivery of G6P to non-green
plastids as carbon skeletons for the synthesis of starch and fatty acids, or to drive the OPPP
[36-41]. Kunz et al. [28] proposed that the occurrence of ca. 10% of the WT starch in pgil-2
leaves is ascribed to transport of G6P from the cytosol to the plastids of bundle sheath cells ad-
jacent to the mesophyll and stomatal guard cells. The same authors reported that, unlike WT
leaves, pgil-2 leaves exhibit substantial GPT activity as a consequence of the induction of
GPT2, and proposed that GPT2 could partially contribute in the synthesis of starch in stomatal
guard cells and bundle sheath cells of pgil-2leaves [28]. Whether GPT2 is involved in the syn-
thesis of starch in mesophyll cells of pgil leaves was investigated by carrying out time-course
analyses of the starch content in mature leaves of pgil and pgil/gpt2 plants cultured under long
day (LD) (16 h light/8 h dark) conditions. In these conditions pgil/gpt2 leaves accumulated as
much starch as pgil leaves (Fig. 7A). We also measured the starch content in leaves of pgil and
pgil/gpt2 plants cultured under continuous light (CL) conditions, and found that pgil and
pgil/gpt2 leaves accumulate comparable levels of starch (Fig. 7B). The overall data thus show
that GPT2 plays a minor role in starch biosynthesis in mesophyll cells of mature pgil leaves
when plants are cultured under LD and CL conditions.
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WT pgi1-3 pgit1-2

Fig 5. Microscopic analysis of starch granules in WT (Ler), pgi1-2 and pgi1-3 source leaves. (A-C)
Light microscopy of toluidine stained leaf sections (Bar = 50 ym). (D-F) Magnification of mesophyll sections
indicated in A-C (Bar = 10 ym). (G-I) TEM of WT, pgi1-2 and pgi1-3 leaves. Bar = 2 pm. (J-L) CFM of leaves
of GBSS-GFP expressing WT, pgi1-2 and pgi1-3 leaves. Bar = 5 ym. Plants were cultured on soil under LD
conditions and source leaves harvested from 30 DAG plants after 12 h of illumination. In D-F, arrows indicate
the position of starch granules. St: starch.

doi:10.1371/journal.pone.0119641.9005
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Fig 6. Introduction of sex1 mutation into pgi1 plants reverts the low starch content phenotype. (A)
lodine staining and (B) starch content of Ler, pgi1-3/sex1, Ws-2 and pgi1-2/sex1 leaves. Plants were
cultured on soil under LD conditions and leaves harvested from 30 DAG plants after 12 h of illumination. In “B”
values represent the mean + SE of determinations on five independent samples.

doi:10.1371/journal.pone.0119641.9006

Enzymatic characterization of pgi7 leaves

To examine for possible occurrence of pleiotropic effects that could determine the starch defi-
cient phenotype of pgil leaves we measured the maximum catalytic activities of a range of en-
zymes closely connected to starch and sucrose metabolism in mature leaves of pgil-2 and pgil-3
plants, and in leaves of their corresponding WT plants cultured under LD conditions. Only
minor changes likely due to statistical variation were observed for AGP, alkaline
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WT (Ler and Ws-2), pgi1-2 and pgi1-3 plants. Plants were cultured on soil under LD conditions. Fully
developed, source leaves were harvested from 30 DAG plants after 12 h of illumination. Values represent the
mean * SE of determinations on four independent samples. Asterisks indicate significant differences based

on Student’s t-tests. (*P<0.05, pgi1-2 vs. Ws-2; **P<0.05, pgi1-3 vs. Ler).

doi:10.1371/journal.pone.0119641.9008

pyrophosphatase (PPase), UDP-glucose (UDPG) pyrophosphorylase (UGP), sucrose-phosphate
synthase (SPS), SuSy, acid invertase, o-amylase, adenylate kinase and ribulose 1,5-bisphosphate

carboxylase oxygenase (Rubisco) in pgil leaves (Fig. 8). However, both pgil-2 and pgil-3 leaves

displayed low total PGM and soluble SS activities, and high p-amylase activity.
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Increase of total B-amylase activity is a common feature of various mutants impaired in
starch synthesis or breakdown [42]. Of the nine B-amylase-like proteins encoded in the Arabi-
dopsis genome (BAM1-9), only BAM1-4 are plastidial and thus have direct access to starch
[43-45]. BAMI degrades starch during the day in both mesophyll and in guard cells subjected
to heat shock and osmotic stress [7,46]. BAM3 is a major determinant of leaf starch degrada-
tion during the night [45], playing also an important role in starch degradation during the day
upon cold shock [5]. BAM4 is a noncatalytic protein required for starch breakdown, acting up-
stream of BAM1-3 [45]. Increase of total B-amylase activity in mutants impaired in starch me-
tabolism is largely due to enhanced extraplastidial B-amylase [42]. Consistently, RT-PCR
analyses revealed that the expression levels of the extraplastidial BAM5 encoding gene in pgil
leaves are many fold higher than those of WT leaves (S4 Fig.). Noteworthy, these analyses also
revealed that the expression levels of BAMI1-3 in pgil leaves are exceedingly higher than those
of WT leaves, the overall data suggesting that high plastidic f-amylase activity in pgil leaves
can be the consequence of high expression levels of both intra- and extra-plastidial B-amylases.

AGP activity is subjected to redox regulation of the small AGP subunit (APS1) [47,48]. To
investigate whether the reduced levels of starch in the pgil leaves could be ascribed to redox in-
activation of APS1, we carried out APS1 immunoblot analyses of proteins from WT and pgil
leaves that had previously been extracted and electrophoretically separated under non-
reducing conditions. In these conditions APSI is present as a mixture of ca. 50 kDa active (re-
duced) monomers and ca. 100 kDa inactive (oxidized) dimers formed by intermolecular links
involving Cys bridges. Consistent with previous reports [47,48], these analyses revealed that
most of APS1 is largely oxidized (inactive) in both WT and pgil leaves (S5 Fig.). These analyses
also revealed that pgil leaves accumulate identical amounts of ca. 50 kDa monomers and ca.
100 kDa dimers of APS1 than W'T leaves, the overall data strongly indicating that the reduced
starch content of pgil leaves is not ascribed to redox inactivation of APSI.

pgi1 plants display a slow growth phenotype even under continuous light
conditions

Transitory starch is a major determinant of plant growth [49]. The importance of starch turn-
over in plant growth is demonstrated by studies of mutants that are defective in starch synthe-
sis and mobilization. Thus, near-starchless plants impaired in AGP or pPGM show a large
inhibition of growth when cultured in short day (SD) conditions, but grow at the same rate as
WT plants under CL photoperiod conditions [29,50-53]. Previous studies on pgil mutants did
not include analyses of plant growth under CL conditions [26,28,54]. We thus carried out
time-course analyses of FW of rosettes of pgil-2, pgil-3 and WT plants cultured either under
SD (12 h light/12 h dark) or CL photoperiod conditions. We also carried out analyses of growth
of near-starchless aps1 and pgm mutants (Columbia (Col-O) background)) impaired in AGP
and pPGM, respectively. As shown in Fig. 9, apsI and pgm plants displayed a marked slow
growth phenotype when cultured under SD conditions, and grew as WT plants when cultured
under CL conditions. In clear contrast, pgil-2 and pgil-3 displayed a slow growth phenotype
at any photoperiod regime (Fig. 9) strongly indicating that (a) reduced starch turnover is not
the reason of the slow growth phenotype of pgil mutants, and (b) pPGI is an important deter-
minant of plant growth.

pgil leaves have reduced photosynthetic capacity even under
continuous light conditions

The low rates of growth and leaf starch accumulation of pgil plants in both SD and CL condi-
tions (see above) pointed to the possible occurrence of reduced photosynthetic capacity of pgil
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doi:10.1371/journal.pone.0119641.g009

leaves and/or altered mitochondrial respiration. We thus measured net photosynthetic CO,
fixation rates (A,) in mature leaves of pgil-2 and pgil-3 plants under saturating light intensity
of 350 umol m™ 5" and with a CO, concentration of 450 pmol mol ', and compared with those
of WT plants when cultured under either LD or CL photoperiod conditions. We also analyzed
the stomatal conductance (g,) under the same conditions. Moreover, we evaluated respiration
rates in darkened pgil-2 and pgil-3 leaves. These analyses revealed that whereas respiration
rates of darkened pgil leaves were comparable to that of WT leaves (S6 Fig.), the photosynthet-
ic capacities of pgil-2 and pgil-3 mature leaves were ca. 40-50% lower than that of WT leaves
at any photoperiod regime. Furthermore, g, values in pgil plants were moderately (although
not significantly) lower than those of WT plants (Fig. 10).
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doi:10.1371/journal.pone.0119641.9010

A strong reduction in A, in pgil plants without a parallel strong reduction in g; (and thus
limitation in CO, availability) would suggest the occurrence of biochemical limitations restrict-
ing photosynthesis. To test this hypothesis, we measured A, in pgil plants cultured under both
LD and CL conditions, and under varying intercellular CO, concentrations (Ci). We also
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doi:10.1371/journal.pone.0119641.g011

measured the photosynthetic electron transport rate (ETR) with respect to varying Ci. As
shown in Fig. 11, irrespective of the photoperiod conditions, pgil plants had strongly reduced
values of A, when compared with WT plants. Analyses of the maximum carboxylation rate
(Vcmax), the triose phosphate use (TPU) and the maximum rate of the electron transport
(Jmax) (that is equivalent to the ribulose-1,5-bisP (RuBP) regeneration rate) calculated from
the A,/Ci curves revealed that Vcmax of Rubisco in pgil leaves is significantly lower than that
of WT leaves (Table 1). This indicated that the reduction in A, observed in pgil plants was re-
lated to differences in in planta Rubisco activity. Furthermore, pgil plants displayed significant
reductions in Jmax and TPU with respect to WT plants, thus indicating a role of pPGI in the
protection of the electron transport leading to the regeneration of RuBP and the capacity of
the chloroplast reactions to use triose-phosphates. The absence of significant differences on

PLOS ONE | DOI:10.1371/journal.pone.0119641
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Table 1. Photosynthetic parameters of WT (Ws-2 and Ler), pgi1-2 and pgi1-3 source leaves. Plants
were cultured under LD and CL conditions. Values represent the mean + SE (n = 5).

Line Jmax Vcmax TPU

Ws-2 (LD) 77.5£6.6 56.0 £ 4.0 2.3+0.29
pgi1-2 (LD) 243+1.2 21.6+1.9 1.4 +0.20
Ws-2 (CL) 65.5+3.4 294+29 2.6 +0.21
pgi1-2 (CL) 302+1.9 17.7 £ 3.1 1.9+0.15
Ler (LD) 63.1 £6.5 38.9+4.0 24 +£0.22
pgi1-3 (LD) 30.8+6.5 15.1+1.4 1.5+0.12
Ler (CL) 59.3+4.4 64.5+4.3 2.6+0.30
pgi1-3 (CL) 38.1+27 36.7+4.2 1.7 £0.19

doi:10.1371/journal.pone.0119641.t001

Jmax/Vcmax between pgil leaves and WT leaves indicate that reductions in Jmax and Vemax
in pgil leaves are the consequence of similar factor(s), most likely perturbation in photosyn-
thetic energy transduction in pgil plants. Supporting this view, ETR values in WT plants were
exceedingly higher than those of pgil plants under any Ci conditions (Fig. 11).

Metabolic characterization of pgi7 leaves

We measured metabolites content in leaves of pgil-2, pgil-3 and their corresponding WT
plants cultured under LD conditions. Under these conditions pgil-2 and pgil-3 leaves accu-
mulated nearly WT levels of glucose, fructose, sucrose, G6P, F6P and G1P (Fig. 12). Levels of
ATP in pgil leaves were slightly (but not significantly) lower than those of WT leaves, whereas
levels of ADP and AMP in pgil-2 and pgil-3 leaves were significantly higher than in their cor-
responding WT leaves. Consistently, adenylate energy charge of pgil-2 and pgil-3 leaves was
lower than that of WT leaves (Fig. 12). The NADPH/NADP and NADH/NAD ratios in pgil
leaves were significantly lower than in WT leaves (Fig. 12), which would indicate that pPGl is a
determinant of the cellular redox potential. Consistent with previous reports showing the oc-
currence of important ADPG sources other than the pPGI-pPGM-AGP pathway [32,55], pgil-
2 and pgil-3 leaves accumulated WT ADPG content (Fig. 12).

pgil leaves accumulate low levels of active forms of cytokinins derived
from the plastidic MEP pathway

pPGl is involved in the OPPP and glycolytic pathways in non-illuminated leaves and hetero-
trophic organs. Glyceraldehyde 3-phosphate (GAP) is a glycolytic and OPPP metabolic inter-
mediate that acts as substrate for the initial reaction of the plastidic MEP pathway involved in
the synthesis of isoprenoids [56-58] (Fig. 13). Therefore, pPGI could potentially act as a deter-
minant for the synthesis of plastidic MEP-pathway derived isoprenoid compounds. Among
different plastidic isoprenoid derived molecules, CKs have been shown to act as major determi-
nants of growth, energy status, starch content and photosynthesis in mature leaves [10,11,59-
63]. Therefore, we considered of interest to investigate the possible involvement of pPGI in
CKs metabolism by measuring the levels of different CKs in mature leaves of both Ws-2 and
pgil-2 plants. These analyses revealed that the lack of pPGI causes a decrease of the total con-
tent of plastidic-type, MEP pathway-derived isopentenyladenine (iP)- and trans-zeatin (tZ)-
type CKs, mainly as a consequence of the reduction of the main precursors of the active CKs
iPRMP and tZRMP (Table 2, Fig. 13). The tZRMP content in pgil-2 leaves was only 32% of
that of WT leaves (Table 2). As a consequence, the levels of tZ (the most abundant biologically
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Fig 12. Metabolites content in mature leaves of WT (Ws-2 and Ler), pgi1-2 and pgi1-3 plants cultured
on soil under LD conditions. Fully developed, source leaves were harvested from 30 DAG plants after 12 h
of illumination. Values represent the mean + SE of determinations on five independent samples. Each
sample included leaves from 3 different rosettes. Asterisks indicate significant differences based on
Student’s t-tests. (*P<0.05, pgi1-2 vs. Ws-2; **P<0.05, pgi1-3 vs. Ler).

doi:10.1371/journal.pone.0119641.9012

active CKs) and its riboside tZR in pgil-2 leaves were only 51% and 28% of those of WT leaves,
respectively (Table 2). The iPRMP content in pgil-2 leaves was ca. 70% of that of WT leaves,
whereas the iPR content in pgil-2 leaves was ca. 15% of that of WT leaves (Table 2), pointing
to the possible occurrence of a general down-regulation of conversion of active CK free bases
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to their corresponding ribosides in pgil-2 plants. The content of the biologically less active
DHZ in pgil-2 leaves was 50% of that of WT leaves (Table 2). The levels of the irreversibly gly-
cosylated N9- and N7-glycosylated CKs (tZ9G, tZ7G, iP9G) and the reversibly O-glycosylated
forms of tZ (tZOG and tZROG) were significantly lower than those of WT leaves (Table 2).
Noteworthy, virtually no differences were found between the content of cytosolic mevalonate
(MVA) pathway derived cis-zeatins (cZ) in pgil-2 and WT leaves (Table 2). The overall data
would indicate that the lack of pPGI causes reduction of plastidic MEP pathway derived CKs,
but not of cytosolic MVA pathway derived CKs in pgil-2 leaves.

Exogenous application of CKs reverts the starch deficient phenotype of
pgil plants
pgil mutants exhibit symptoms indicative of reduced plastidic CKs content such as reduced

size, low starch content and reduced photosynthetic capacity at any photoperiod condition (see
above). Whether the low starch content phenotype of pgil leaves could be the consequence, at
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Table 2. CKs content (pmol g™ DW) in leaves of 30 DAG Ws-2 and pgi7-2 plants. CK precursors, transport forms, active forms and glycosylated inactive
forms are separated in two groups based on their origin from MEP and MVA pathway, respectively. Total sums and corresponding percentage is shown for in-
dividual forms. Symbols indicate significant differences according to ANOVA. *< 0.05; **<0.01; **<0.001; ns, not significant; n.a., not analyzed.

Precursors

Transport forms

Active forms

Glycosylated (inactive) forms

Total Y (%)
doi:10.1371/journal.pone.0119641.t002

MEP pathway (plastid) derived CKs MVA pathway (cytosol) derived CKs
ws-2 pgi1-2 ws-2 pgi1-2
iPRMP 465 + 43.4 329 + 34.5 ns cZMRP 51.4+8.5 482 +7.4ns
tZRMP 845.6 + 100.4 269.1 +20.5 **
DHZMP 48+0.3 3.5+0.2ns
> (%) 1315.4 (100%) 601.6 (45.7%) (100%) 93.8%
iPR 34.8+4.4 55%0.5 *** cZR 29+0.2 20+0.2ns
tZR 100.2 £ 10.5 28.4+4.6 **
DHZR 1.6£0.2 21%0.1 *
> (%) 136.6 (100%) 36 (26.4%) (100%) 69%
iP 9.7+0.8 11.8+1.1ns cZ 1.8+0.2 1.6+0.1ns
tZ 45.3+4.2 23.3+1.5 **
DHZ 0.8 +0.18 0.4 £0.01 **
> (%) 55.8 (100%) 35.5 (63.6%) (100%) 88.9%
iP7G 10.2+£0.7 127+12ns cZ7G n.a. n.a.
tZ7G 65.9+2.7 425+2.1 *
DHZ7G 6.1+0.6 5.8+ 0.1 ns
iP9G 16.7 £ 2.0 7.9 0.2 *** cZ9G 0.9 0.1 0.5%0.0 **
tZ9G 445.4 £ 8.0 216.7£12.9 **
DHZ9G 42+0.6 3.5+0.2ns
tZOG 1934+ 5.1 146.3+89ns cZOG 19.0% 2.1 32.1+£0.9 **
DHZOG 1.8+0.1 3.9%0.3 **
tZROG 185+ 0.5 9.7+1.3ns cZROG 23.0+ 3.0 24.0+25ns
DHZROG 1.2+0.1 1.3+0.2ns
> (%) 763.4 (100%) 450.3 (59%) 42.9 (100%) 56.6 (131.9%)
2271.2 (100%) 1123.4 (49.5%) 47.6 (100%) 60.2 (126.5%)

least in part, of reduced plastidic CKs (see Table 2) was investigated by measuring the starch
content in leaves of adult pgil plants cultured for 2 days in solid MS medium supplemented
with different concentrations of tZ. As shown in Fig. 14, these analyses revealed that exogenous
CK application largely reverts the starch deficient phenotype of pgil leaves.

Discussion

The initial objective of this work was to characterize the pgil-3 mutant both at the molecular
and biochemical levels, using pgil-2 as reference. Contrary to expectations, during the course
of our studies we found that mesophyll cells of mature leaves of the two pgil null mutants accu-
mulate ca. 10-15% of the WT starch content (Figs. 2, 4 and 5). The discrepancy between our
results showing the presence of starch granules in mesophyll cells of pgiI leaves and those of
Kunz et al. [28] showing that starch granules are restricted to bundle sheath cells adjacent to
the mesophyll and stomatal guard cells are likely ascribed to the use of different growth condi-
tions. Thus, whereas Kunz et al. [28] carried out their experiments using plants cultured under
SD conditions, we cultured the plants under LD and CL conditions. Another possible reason
explaining the discrepancy between our results and those of Kunz et al. [28] is the use of differ-
ent microscopic techniques.
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Fig 14. Starch content (as percentage of starch occurring in WT leaves) in leaves of pgi1-2 cultured in MS medium including the indicated
concentrations of tZ. Values represent the mean + SE of determinations on four independent samples.

doi:10.1371/journal.pone.0119641.g014

The occurrence of starch granules in the chloroplasts of mesophyll cells conflicts with the
widely accepted view that the whole photosynthesis-driven starch biosynthetic process in
mesophyll cells solely occurs in the chloroplast by means of the Calvin-Benson cycle-pPGI-
pPGM-AGP-SS pathway. Therefore, it is conceivable that at least 10-15% of the starch accu-
mulated in the leaf mesophyll cells is produced by metabolic pathway(s) wherein (a) the
Calvin-Benson cycle is not directly connected to the starch biosynthetic pPPGM-AGP-SS path-
way by means of pPGI, and (b) carbon units linked to starch biosynthesis are imported from
the cytosol. Taking into account that (a) the photosynthetic capacity of pgil leaves at any
photoregime is exceedingly lower than that of WT plants (Figs. 10 and 11), and (b) the adenyl-
ate energy charge and cellular redox potential of pgil leaves are lower than those of WT leaves
(Fig. 12), it is highly likely that starch deficiency of pgil leaves is partially the consequence of ei-
ther reduced CO, fixation capacity and/or low energy status and cellular redox potential, and
not only the consequence of lack of pPGI-mediated flow between the Calvin-Benson cycle and
the pPGM-AGP-SS starch biosynthetic pathway.

Chloroplasts of mature leaves are not capable of transporting G6P [64]. Consistently, stud-
ies of functional reconstitution of membrane proteins in proteoliposomes revealed that chloro-
plasts from Ws-2 and Ler plants do not transport G6P (cf. Table 2 in [28]). These studies also
revealed that 97% of capacity of pgil-2 chloroplasts to transport G6P depends on GPT2, since
G6P/Pi transport activity in proteoliposomes prepared from pgil-2/gpt2 leaves was only 3% of
that found in proteoliposomes prepared from pgil-2 leaves (cf. Table 2 in [28]). Although this
would indicate in principle that GPT2 could be involved in the incorporation of cytosolic G6P
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for its subsequent conversion into starch in pgil-2 mature leaves, results presented in Fig. 7
showing that the rate of starch accumulation in mature leaves of pgil plants cultured under LD
and CL conditions is comparable to that of leaves of pgil/gpt2 plants provide strong evidence
that GPT2-mediated incorporation of cytosolic G6P into chloroplasts plays a minor role in the
synthesis of starch in mesophyll cells of pgil leaves. Although GPT1 only catalyzes the 3% of
the total GP6/Pi transport activity in pgil-2 leaves, a possibility cannot be ruled out that GPT1
may contribute to some extent to the production of starch in mesophyll cells of pgil plants cul-
tured under LD and CL conditions.

Among a large group of plastidic metabolite transporters functionally related to the metabo-
lism of sugars or sugar derivatives, none of them is able to transport G1P [37,65]. However,
Fettke et al. [66] reported that the envelope membranes of chloroplasts of mesophyll cells pos-
sess a yet to be identified G1P transport machinery enabling the incorporation into the stroma
of cytosolic G1P. According to these authors, however, such mechanism would only account
for the accumulation of 1% of the WT starch, explaining the occurrence of trace amounts of
starch in mutants impaired in pPGM. Thus, incorporation of cytosolic G1P into the chloro-
plast and its subsequent conversion into starch could minimally explain the accumulation of
some starch in pgil mesophyll cells chloroplasts. Chloroplasts possess a glucose transporter
(pGlcT) [67] and hexokinase [68] potentially enabling the incorporation of cytosolic glucose
and subsequent conversion into G6P thus bypassing the pPGI step in pgil leaves. However
pglct mutants accumulate WT levels of starch during the day [69], and GIcT has been shown to
act in the export to the cytosol of glucose from the starch breakdown during the night rather
than in the import of cytosolic glucose to the chloroplast [67,69]. Chloroplasts from mature
leaves also possess a yet to be identified ADPG transport machinery [70]. Taking into account
that a sizable pool of ADPG linked to starch biosynthesis has a cytosolic localization in leaves
[32,55,71] it is likely that starch biosynthesis in mesophyll cells of pgil mature leaves involves
the cytosolic production of ADPG and its subsequent transport into the chloroplast and con-
version into starch. Needless to say, further research will be necessary to identify the cytosolic
hexose molecules entering the chloroplast for their subsequent metabolization into starch in
pgil leaves.

The occurrence of a starch biosynthetic pathway in mesophyll cells involving the incorpo-
ration into the chloroplast of cytosolic hexoses (either glucose, hexose-phosphates and/or
ADPQG) likely provides a clue to explain still enigmatic results reported almost 60 years ago
using green leaves exposed to '*CO, for a short period of time [72,73]. According to the widely
accepted view of starch biosynthesis, leaves exposed to '*CO, for a short period of time should
produce starch with '*C symmetrically distributed in the glucose molecules. However, leaves
shortly exposed to "*CO, synthesized starch with '*C asymmetrically distributed in the glucose
molecules [72,73]. Noteworthy, the same asymmetric distribution of '*C was found in the glu-
cose moiety of hexose-phosphates, sucrose and nucleotide-sugars [72,73]. According to the
models of starch biosynthesis involving the incorporation into the chloroplast of cytosolic hex-
oses (reviewed in [1]), triose-Ps exported from the chloroplast to the cytosol can be channeled
into the OPPP, thereby leading to a randomization of the carbons that gives rise to the asym-
metric '*C distribution observed in sucrose, hexose-phosphates and nucleotide-sugars (see Fig-
ure 4 in ref. [1]). Asymmetrically labeled cytosolic hexoses would enter the chloroplast, thus
explaining why leaves shortly exposed to '*CO, synthesize starch and sucrose with identical
'C asymmetric distribution. Also, the occurrence of metabolic pathways involving both the in-
corporation into the chloroplast of cytosolic hexoses, and the occurrence of simultaneous syn-
thesis and breakdown of starch in the illuminated chloroplast (see [1] and references contained
therein) likely provide clues to explain the rapid formation of radiolabelled maltose in leaves
when plants are cultured in 13C0, or CO,-enriched environments [74,75], and the
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asymmetric labeling of maltose formed by illuminated leaves cultured for a short period of
time in "*CO,-enriched environment [74].

It is widely accepted that starch turnover is a major determinant of plant growth as demon-
strated by studies of mutants that are defective in starch synthesis and mobilization. Some au-
thors postulated that restricted growth of starch-deficient plants is the consequence of carbon
starvation occurring every night due to the inability to accumulate starch during the day or to
degrade it during the night [49,76,77]. Others postulated that acute deficiency of sugars occur-
ring in starch mutants during the end part of the dark period temporary inhibits growth [78].
Restricted growth of starch-deficient plants has also been ascribed to regulatory imbalances in
photosynthetic capacities and enzymatic activities triggered by high sugars during the day
[29,79,80]. However, as shown in Fig. 12, pgil leaves accumulate nearly WT levels of soluble
sugars. Thus, factors other than high sugar levels must be responsible for the restricted growth
(Fig. 9), reduced photosynthetic capacity (Figs. 10 and 11) and altered activities of some carbo-
hydrate metabolism enzymes (Fig. 8) of pgil mutants.

Results presented in Fig. 9 showing that pgil plants cultured under CL conditions are
smaller than WT plants, whereas the near-starchless aps! and pgm plants display a WT growth
phenotype in the same culture conditions, provide strong evidence that (a) reduced starch
turnover is not the reason of the slow growth phenotype of pgil mutants, and (b) pPGI is an
important determinant of plant growth. pPGI is involved in the regeneration of G6P molecules
in the OPPP in heterotrophic organs and non-illuminated leaves. OPPP provides precursors
for the synthesis of RNA, DNA and phenolic compounds such as aromatic amino acids, lignin,
flavonoids and phytoalexins [81]. This metabolic pathway also provides NADPH necessary
for biosynthetic redox reactions involved in lipid biosynthesis and nitrogen assimilation
[36,40,82,83], and for NADP-thioredoxin reductase (NTRC) dependent processes such as sup-
ply of reductant necessary for detoxifying hydrogen peroxide in the dark, and maintaining the
redox homeostasis of plastids which in turn determines plant growth and development [84-
86]. Noteworthy, it has been reported that G6P metabolization within the OPPP is required for
generating a signal that governs the regulation of root mediated acquisition of nitrogen and
sulfur necessary for amino acid synthesis [87]. Also, previous reports have shown that, similar
to plants impaired in pPGI, mutants impaired in other plastidic OPPP enzymes such as
6-phosphogluconolactonase display a reduced size phenotype [88,89]. Therefore, it is conceiv-
able that the reduced size of pgil mutants is ascribed, at least in part, to impairments in some
OPPP-dependent processes occurring in heterotrophic organs that are important for growth.

Results presented in Figs. 10 and 11 show that the photosynthetic capacities of starch defi-
cient pgil plants are lower than that of WT plants at any photoregime. Noteworthy, recent
studies have shown that the near-starchless pgmI mutant impaired in pPGM has WT photo-
synthetic CO, fixation rates [90, our unpublished results], providing evidence that starch turn-
over exerts a minor influence on the photosynthetic capacity of the plant. This would strongly
indicate that (a) the lack of pPGI, but not the reduced levels of starch, is the reason for the re-
duced photosynthetic capacity of pgil plants, and (b) pPGI is an important determinant of the
photosynthetic capacity of the plant. That pgil mutants display reduced Vcmax, TPU and
Jmax (Table 1) and ETR (Fig. 11) at any photoregime strongly indicates that impaired Rubisco
carboxylation activity, together with limitations in RubP regeneration (as a consequence
of reduced electron flux towards Rubisco carboxylation) and reduced capacity to use triose-
phosphates are responsible for the low photosynthetic capacity of these mutants.

GAP and pyruvate are the substrates for the initial reaction of the plastidic MEP pathway in-
volved in the synthesis of isoprenoid derived molecules such as CKs (Fig. 13) [58]. In non-
illuminated leaves and heterotrophic organs GAP can be produced in the OPPP and glycolytic
pathways involving pPGI. On the contrary, pyruvate biosynthesis in heterotrophic plastids
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largely depends on pPGI independent pathways, since enzymatic activities of the lower part of
the glycolytic pathway such as phosphoglycerate mutase are marginally low in heterotrophic
plastids [91-93]. Plastidic MEP pathway derived CKs are mainly synthesized in roots and
transported to the aerial parts of the plant, where they regulate plant growth [94]. Noteworthy,
in addition to their involvement in regulating plant growth and development, CKs act as major
determinants of photosynthetic activity, Jmax and TPU by regulating the biogenesis of chloro-
plasts, and providing components of the electron transport chain, structural proteins and the
enzymes for their formation [59-63,95]. Also, CKs maintain stomata open [96,97]. Moreover,
CKs exert a positive effect on starch accumulation both in leaves and heterotrophic sink organs
[10,11,98], most likely by regulating the expression of starch metabolism related genes [99].
Importantly, results presented in Table 2 showed that total levels of plastidic MEP pathway de-
rived forms of CKs in pgil-2 leaves are low when compared with WT leaves, which provides
evidence that pPGI is an important determinant of plastidic MEP pathway derived CKs (see
below). Therefore, it is conceivable that the low net CO, assimilation rate, Jmax, TPU and ETR
(Figs. 10 and 11) (Table 1) as well as the reduced growth, energy and redox potential, and leaf
starch content phenotypes of pgil plants (Figs. 2, 5, 9 and 12) can be ascribed, at least in part,
to the low content of active forms of plastidic MEP pathway derived CKs. In this respect we
must emphasize that, similar to pgil plants, CKs-deficient plants have reduced size and accu-
mulate low starch in their source leaves [10,60,100]. That exogenous application of CKs partial-
ly reverted the reduced starch content phenotype of pgil leaves (Fig. 14) further supports the
view that the low starch content phenotype of pgil leaves can be partially the consequence of
reduced pPGI-mediated production of CKs.

In Arabidopsis the prenyl group of tZ- and iP-type CKs is mainly produced through the
plastidic MEP pathway, whereas a large fraction of the prenyl group of c¢Z derivatives is provid-
ed by the cytosolic MV A pathway [101]. In pgil leaves the most dramatic decrease in CKs con-
tent was found in the levels of CKs derived from the plastidic MEP pathway (iP- and tZ-type
CKs), but not in the levels of cytosolic MV A-pathway dependent cZ-type CKs (Table 2). This
would strongly indicate that pPGI is an important determinant of biosynthesis of CKs in plas-
tids, but not in cytosol. Visible differences between WT and pgil-2 leaves were found in the
levels of iP- and tZ-type CKs (Table 2). While the level of iPRMP (the product of the first
dimethylallyl diphosphate (DMAPP)-dependent step of CK biosynthesis) in pgil-2 leaves was
70% of that occurring in WT leaves, the level of tZRMP in pgil-2 leaves was only 32% of that
occurring in WT leaves (Table 2). Noteworthy, while the lack of pPGI in pgil-2 leaves resulted
in a 50% reduction of the level of tZ free base, the lack of pPGI did not affect the level of iP free
base at all (Table 2). The relatively high level of iPRMP and iP in pgil-2 leaves could be ex-
plained by the transport of DMAPP from cytosolic MVA pathway into plastids [101] to in-
crease the DMAPP pool accessible for plastid localized isopentenyltransferases (IPTs). Such
mechanism of common isoprenoid precursors (e.g. isopentenyl diphosphate or DMAPP) ex-
change between the cytosol and plastids was proposed to explain MV A-derived contribution to
plastidic biosynthesis of gibberellins [102]. Another explanation for the relatively high level of
iPRMP and iP in pgil-2 leaves can be that MV A-derived DMAPP serves as a substrate for
AtIPT4, the cytosolic IPT isoform capable of de novo biosynthesis of iP, which can increase the
overall iP cell pool [101]. It is worth mentioning here that tZRMP can be formed by the
iPRMP-dependent pathway through hydroxylation of its side chain by CYP735A [103], and
also directly through the iPRMP-independent pathway, utilizing a yet unknown side-chain
donor of terpenoid origin [104] (Fig. 13). In this last respect, it can be speculated that the side-
chain precursor is 1-hydroxy-2-methyl-2-butenyl 4-diphosphate (HMBDP), which is down-
stream of GAP in the MAP pathway (Fig. 13). The dramatic decrease of tZRMP and tZ levels
can be thus explained as a combination of the lack of DMAPP needed to form iPRMP that is
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subsequently hydroxylated to tZRMP, together with the lack of a prenyl side chain precursor to
form tZRMP.

Results presented in this work have provided evidence that pPGI is an important determi-
nant of plastidic MEP pathway derived CKs likely as a consequence of its requirement in the
production of GAP. GAP is the substrate for the initial reaction of the plastidic MEP pathway
involved in the synthesis of isoprenoid derived molecules other than CKS such as gibberelins,
abscisic acid, strigolactones, brassinosteroids, monoterpenes, carotenoids, tocopherols and pre-
nylquinones (Fig. 13), some of them mutually interacting and acting as important determi-
nants of growth, photosynthetic capacity, starch content and energy status of the plant
[14,15,56-58]. It is thus likely that the reduced size and low starch content phenotypes of pgil
mutants are largely the consequence of changes in the overall plastidic MEP pathway-derived
isoprenoid metabolism and its regulated processes. Needless to say, further research will be
necessary to test this hypothesis.

Materials and Methods
Plants, growth conditions and sampling

The work was carried out using Arabidopsis thaliana L. (Heynh) (ecotypes Ler, Col-O and
Ws-2), the NASC N92274 (pgil-3), the pgil-2 mutant [28], the apsI::T-DNA mutant
(SALK_040155) [31], the pgm::T-DNA mutant (GABI_094D07), the gpt2::T-DNA mutant
(GABI_454H06), pgil-3 plants expressing either PGII or PGII*, the pgil-3/gpt2 and pgil-2/
gpt2 double mutants and the pgil-2/sexI and pgil-3/sex1 double mutants. The pgil-2/sex1
and pgil-2/gpt2 double mutants were confirmed by PCR using the oligonucleotide primers
listed in S1 Table. The 35S8-PGI1 and 35S-PGI1* plasmid constructs utilized to produce PGI1
or PGII* expressing pgil-3 plants were produced as illustrated in S7 Fig. pgil-3 plants ex-
pressing GBSS-GFP were produced using the 35S-GBSS-GFP plasmid construct [105] whereas
pgil-2 plants expressing GBSS-GFP were produced using the 35S-GBSS-GFP* plasmid con-
struct produced as illustrated in S8 Fig. The plasmid constructs were transferred to Agrobac-
terium tumefaciens EHA105 cells by electroporation and utilized to transform Arabidopsis
plants according to [106]. Transgenic plants were selected on the appropriate antibiotic-
containing selection medium.

Unless otherwise indicated plants were cultured in soil in growth chambers under the indi-
cated photoperiodic conditions (light intensity of 90 umol photons sec”’ m™?) and at a constant
temperature of 22°C. Harvested source leaves were immediately freeze-clamped and ground to
a fine powder in liquid nitrogen with a pestle and mortar.

To analyze the effects of exogenously applied CKs on starch content plants were grown in
vitro on MS agar plates at a constant temperature of 22°C under LD conditions. Three-weeks
old plants were then transferred to MS agar plates containing the indicated concentrations of
tZ. After two additional days leaves were harvested, and starch content was measured as
described below.

Enzyme assays

One g of the frozen powder (see above) was resuspended at 4°C in 3 ml of 100 mM HEPES
(pH 7.5), 2 mM EDTA and 2 mM dithiothreitol, 1 mM PMSF and 10 ml/L protease inhibitor
cocktail (Sigma P9599), and centrifuged at 14,000 x g for 20 min. The supernatant was desalted
by ultrafiltration on Vivaspin 500 centrifugal concentrator (Sartorius) and the protein extract
thus obtained was assayed for enzymatic activities. AGP and UGP activities were measured fol-
lowing the two-step assay method described in [48]. PGI and SuSy were measured as described
in [24] and [107], respectively. Adenylate kinase was assayed in the two directions of the
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reaction as described in [108] using an HPLC system (Waters corporation) fitted with a Partisil
10-SAX column. PGM and acid invertase were assayed as described in [29] and [109], respec-
tively. Rubisco activity was measured according to [110]. Amylolytic activities were assayed as
described in [111]. PPase and SPS were measured as described in [74]. SS activity was measured
in two steps: (1) SS reaction and (2) measurement of ADP produced during the reaction. The
SS assay mixture contained 50 mM HEPES (pH 7.5), 6 mM MgCl,, 3 mM dithiothreitol, 1 mM
ADPG and 3% glycogen. After 5 min at 37°C reactions were stopped by boiling the assay mix-
ture for 2 min. ADP was measured by HPLC on a Waters Associate’s system fitted with a
Partisil-10-SAX column. One unit (U) is defined as the amount of enzyme that catalyzes the
production of 1 pmol of product per min.

Non-reducing western blot analyses of AGP

For non-reducing western blots of AGP, 50 mg of the homogenized frozen material (see above)
was extracted in cold 16% (w/v) TCA in diethyl ether, mixed, and stored at -20°C for at least 2
h as described in [48]. The pellet was collected by centrifugation at 10,000 x g for 5 min at 4°C,
washed 3 times with ice-cold acetone, dried briefly under vacuum, and resuspended in 1x
Laemmli sample buffer containing no reductant. Protein samples were separated on 10%
SDS-PAGE, transferred to nitrocellulose filters, and immunodecorated by using antisera raised
against maize AGP as primary antibody [48], and a goat anti-rabbit IgG alkaline phosphatase
conjugate (Sigma) as secondary antibody.

Chromatographic separation of cytPGl and pPGl

Chromatographic separation of the two PGI isoforms was conducted using an AKTA FPLC
from Amersham Pharmacia Biotech. Protein extracts of WT and pgil-3 leaves (see above)
were loaded onto a HiLoad 16/10 Q-sepharose HP anion exchange column (Amersham Phar-
macia Biotech) equilibrated with 50 mM HEPES (pH 7.5). After washing the column, the ad-
sorbed proteins were eluted with a linear 0-0.8 M NaCl gradient in 50 mM HEPES (pH 7.5).
The flow rate was 5 ml/min and 2.5 ml fractions were collected. Fractions were analyzed for
PGI activity as described above.

Native gel assay for PGl activity

PGI zymograms were performed as described in [29]. Protein extracts (see above) of both WT
and pgil leaves were loaded onto a 7.5% (w/v) polyacrylamide gel. After electroforesis gels were
stained by incubating in darkness at room temperature with 0.1 M Tris-HCl (pH 8.0), 5 mM
F6P, 1 mM NADY, 4 mM MgCl,, 0.2 mM methylthiazolyldiphenyl-tetrazolium bromide
(Sigma M5655) and 0.25 mM phenazine methosulfate (Sigma P9625) and 1 U/mL of G6P de-
hydrogenase from Leuconostoc mesenteroides (Sigma G8404).

Analytical procedures

For determination of metabolites content, fully expanded source leaves of 30 days after germi-
nation (DAG) plants were harvested at the indicated illumination period, freeze-clamped and
ground to a fine powder in liquid nitrogen with a pestle and mortar. ADPG content was mea-
sured by HPLC-MS/MS as described in [55]. For measurement of sucrose, glucose and fruc-
tose, a 0.1 g aliquot of the frozen powder was resuspended in 1 mL of 90% ethanol, left at 70°C
for 90 min and centrifuged at 13,000 x g for 10 min. For measurement of G6P, F6P and G1P
0.5 g aliquot of the frozen powdered tissue was resuspended in 0.4 ml of 1 M HCIO,, left at 4°C
for 2 h and centrifuged at 10,000 x g for 5 min. The supernatant was neutralized with K,CO;
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and centrifuged at 10,000 x g. Sucrose, glucose, fructose, F6P, G6P and G1P from supernatants
were determined by HPLC with pulsed amperometric detection on a DX-500 Dionex system.
NADP(H) and NAD(H) were measured as described in [112]. Starch was measured by using
an amyloglucosydase—based test kit (Boehringer Mannheim, Germany). For measurement of
adenine nucleotides a 0.5 g aliquot of the frozen powder was resuspended in 0.4 ml HCIO,, left
at 4°C for 2 h and centrifuged at 10,000 x g for 5 min. The supernatant was neutralized with
K,COj3 and centrifuged at 10,000 x g. Nucleotides content in the supernatant was measured by
HPLC (Waters corporation) fitted with a Partisil 10-SAX column as described in [113]. Recov-
ery experiments were carried out by the addition of known amounts of metabolites standards
to the frozen tissue slurry immediately after addition of extraction solutions.

For determination of CKs levels, aliquots of the frozen leaves (see above) were lyophilized
and CKs were quantified according to the method described in [114].

lodine staining

Leaves harvested at the end of the light period were fixed by immersion into 3.7% formalde-
hyde in phosphate buffer. Leaf pigments were then removed in 96% ethanol. Re-hydrated sam-
ples were stained in iodine solution (KI 2% (w/v) I, 1% (w/v)) for 30 min, rinsed briefly in
deionized water and photographed.

Gas exchange determinations

Fully expanded apical leaves were enclosed in a LI-COR 6400 gas exchange portable photosyn-
thesis system (LI-COR, Lincoln, Nebraska, USA). The gas exchange determinations were con-
ducted at 25°C with a photosynthetic photon flux density of 350 umol m™s™. A,, was
calculated using equations developed by [115]. g; values were determined as described in [116].
From the A/Ci curves, Vcmax, TPU and Jmax were calculated according to [117]. To avoid
miscalculation of A, and Ci due to leakage into the gasket of the gas analyzer, we performed
CO, response curves using an empty chamber. The values obtained for A, and Ci in the empty
chamber were compared with those of the chamber filled with a leaf and substracted from the
values obtained with the empty chamber. ETR values were calculated according to [118] as
®pgsp; x PPED x 0.84 x 0.5, where PPDF is the photosynthetic photon flux density incident on
the leaf, 0.5 was used as the fraction of excitation energy distributed to PSII [119] and 0.84 as
the fractional light absorbance [120]. The rate of mitochondrial respiration in the dark was de-
termined by measuring the rate of CO, evolution in the dark.

Real-time quantitative PCR

Total RNA was extracted from leaves using the trizol method according to the manufacturer’s
procedure (Invitrogen). RNA was treated with RN Aase free DNAase (Takara). 1.5 ug RNA was
reverse transcribed using polyT primers and the Expand Reverse Transcriptase kit (Roche) ac-
cording to the manufacturer’s instructions. Real time quantitative PCR reaction was performed
using a 7900HT sequence detector system (Applied Biosystems) with the SYBR Green PCR
Master Mix (Applied Biosystems) according to the manufacturer’s protocol. Each reaction was
performed in triplicate with 0.4 pL of the first strand cDNA in a total volume of 20 pL. The
specificity of the PCR amplification was checked with a heat dissociation curve (from 60°C to
95°C). Comparative threshold values were normalized to 18S RNA internal control. The speci-
ficity of the obtained RT-PCR products was controlled on 1.8% agarose gels. Primers used for
RT-PCRs of PGI1, BAM1, BAM2, BAM3 and BAMS5 are listed in S2 Table.
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Confocal microscopy

Subcellular localization of GFP-tagged GBSS was performed using D-Eclipse C1 confocal mi-
croscope (NIKON, Japan) equipped with standard Ar 488 laser excitation, BA515/30 filter for
green emission and BA650LP filter for red emission.

Light and electron microscopy

Light microscopy and TEM analyses were carried out essentially as described in [105]. Briefly,
small pieces (2 mm?) of leaves were immediately fixed by submersion in a solution of 3% glutar-
aldehyde (v/v) in 0.05 M sodium cacodylate buffer, pH 7.4 (3 h at 4°C, under vacuum). After
fixing, the specimens were washed in a cacodylate buffer (0.05 M sodium cacodylate, 1% su-
crose), three times for 30 min each at 4°C, and post-fixed with a solution of 1% osmium tetrox-
ide in the above cacodylate buffer (overnight, 4°C). After two washes, 30 min each, at 4°C with
the same cacodylate buffer, the samples were dehydrated in an ethanol series and progressively
embedded in LR White resin (London Resin Co., Reading, UK). Semithin (1 pm) sections were
stained with 1% (w/v) toluidine blue in aqueous 1% sodium borate for direct observation with a
Zeiss Axiophot photomicroscope (Zeiss, Oberkochen, Germany). Ultrathin (70-90 nm) sec-
tions for TEM were constructed with 2% aqueous uranyl acetate and lead citrate. Observations
were performed with a STEM LEO 910 electron microscope (Oberkochen, Germany) at 80 kV,
equipped with a Gatan Bioscan 792 camera (Gatan, Pleasanton, CA, USA).

Statistical analysis

The data presented are the means of three independent experiments, with 3-5 replicates for
each experiment (means + SE). The significance of differences between the control and the
transgenic lines was statistically evaluated with Student’s t-test using the SPSS software. Differ-
ences were considered significant at a probability level of P<0.05. In CKs analyses, significance
was determined by one-way univariate analysis of variance (ANOVA) for parametric data and
Kruskal Wallis for non-parametric data, using the open source R software 2.15.1 (http://cran.r-
project.org/). Multiple comparisons after ANOVA were calculated using the post hoc Tukey’s
honestly significant difference (HSD) test.

Supporting Information

S1 Fig. Nucleotide sequences of complete pPGI encoding cDNAs obtained from Ler and
N92274 (pgil-3) plants.
(PPT)

S2 Fig. Amino acid sequences deduced from the nucleotide sequences shown in S1 Fig.
(PPT)

S3 Fig. Iodine staining of source leaves of Ler, pgl-3, Ws-2, pgil-2, apsl and pgm plants.
Leaves were harvested from 30 DAG plants after 12 h of illumination. Plants were cultured
under LD conditions.

(EPS)

S4 Fig. High expression levels of plastidial and extraplastidial p-amylase encoding genes in
pgil plants. RT-PCR of (A) BAM1, (B) BAM2, (C) BAM3 and (D) BAMS5 in source leaves of
WT (Ler and Ws-2), pgil-2 and pgil-3 plants. Fully developed, source leaves were harvested
from 30 DAG plants after 16 h of illumination.

(EPS)
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S5 Fig. Non-reducing western blot of APS1 in leaves of Ler, pgl-3, Ws-2 and pgil-2 plants.
Leaves were harvested from 30 DAG plants after 12 h of illumination. Plants were cultured
under LD conditions

(EPS)

S6 Fig. Respiratory CO, production in darkened WT and pgil leaves. Fully developed,
source leaves were harvested from 30 DAG plants. Values represent the mean + SE of determi-
nations on five independent samples. Each sample included leaves from 3 different rosettes.
(EPS)

S7 Fig. Stages to construct the 35S-PGII and 35S-PGII* plasmids necessary to produce
PGII and PGII* expressing plants. To obtain PGII and PGII* cDNAs, 1.5 ug RNA extracted
from WT and pgil-3 roots was reverse transcribed using polyT primers and the Expand Re-
verse Transcriptase kit (Roche) according to the manufacturer’s instructions. PCR reactions
were performed to generate attB-flanked PCR products using PGII specific primers containing
attB1 and attB2 recombinational cloning sites (a#tB1 primer: 5'-GGGGACAAGTTTGTA
CAAAAAAGCAGGCTTAAT GGCCTCTCTCTCAGGC-3'; attB2 primer: 5'-GGGGACCACTTTG
TACAAGAAAG CTGGGTATTATGCGTACAGGTCATCCAC-3') to incorporate complete attB1
and attB2 sequences into the final PCR products.

(PPT)

S8 Fig. Stages to produce the 355-GBSS-GFP* construct.
(PPT)

S1 Table. Primers used to identify pgil-2/sex] and pgil-2/gpt2 mutants by PCR.
(DOC)

S2 Table. Primers used in Real Time PCR.
(DOC)
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