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“Questioning is the shortest path to learning!”

To be proven in the future.



Abstract

This thesis is devoted to the formulation and implications of the time-dependent density

functional theory (TDDFT). The work is divided into two main parts. In the first part

we develop rigorous theorems for the density-potential mapping in quantum many-body

systems on a lattice. We prove the uniqueness of the TDDFT map and demonstrate

that a given density is v-representable if both the initial many-body state and the den-

sity satisfy certain well-defined conditions. In particular, we show that for a system

evolving from its ground state, any density with a continuous second time derivative is

v-representable .

Then the lattice TDDFT formulation is extended to cover a system of interacting lattice

electrons strongly coupled to cavity photons. We prove that under some mathematical

conditions the electron-photon wave function is a unique functional of the electronic

density and the expectation value of the photonic coordinate. Then we further generalize

the ground state v-representability theorem to include the ground state of a general

lattice electron-photon Hamiltonian.

The second part of this thesis is focused on the applications of the analytic density-

potential maps in TDDFT and the current-potential map in the time-dependent current

density functional theory (TDCDFT).

We use the analytic lattice map to analyze and quantify the role of non-adiabaticity

(”memory effects”) in the exchange-correlation functional for describing non-linear dy-

namics of many-body systems. Studying time-dependent resonant processes using the

available functional in TDDFT is a big challenge and that is due to their strong non-

linear and non-adiabatic character. Here we study the Rabi oscillations within the

solvable 2-site Hubbard model as an example for the resonant processes. We construct

the exact adiabatic exchange-correlation functional and show that it cannot reproduce

resonant Rabi dynamics correctly. It turns out the non-adiabatic contribution to the ex-

act exchange-correlation potential is significant throughout the dynamics and it is small

only when the ground state population is significant. Afterwards we reconstruct the ex-

act time-dependent exchange-correlation functional within the two-level approximation.

This fully non-adiabatic and explicit density functional captures Rabi dynamics both

for resonant and detuned oscillations.

Finally we apply the analytic current-potential maps of TDCDFT in a completely dif-

ferent context. We use them to inverse engineer analytically solvable time-dependent

quantum problems. In this approach the driving potential (the control signal) and

the corresponding solution of the Schrödinger equation are analytically parametrized in

terms of the basic TD(C)DFT observables.

We describe the general reconstruction strategy and illustrate it with few explicit exam-

ples ranging from real space one-particle dynamics to controlling quantum dynamics in



a discrete space. In particular we construct a time-dependent potential which generates

prescribed dynamics on a tight-binding chain. We also apply our method to the dy-

namics of spin-1/2 driven by a time-dependent magnetic field and construct an analytic

control pulse for the quantum NOT gate.
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Chapter 1

Introduction

The physical and chemical properties of systems composed of low energy particles are

determined by the non-relativistic Schrödinger equation . This equation has been proven

extremely successful (essentially exact) in describing quantum mechanical systems, e.g.

atoms and molecules, but unfortunately it can be solved efficiently only for systems with

very few interacting particles.

The Schrödinger equation for a system of N interacting particles in a three dimensional

space is a partial differential equation with 3N special coordinates which are mutu-

ally coupled through the Coulomb interaction. This makes the complexity of the wave

function to increase exponentially with the number of particles until eventually we en-

counter an “exponential wall” .[1] To put it in perspective, to discretize the space even

for a “humble” system with around 20 electrons (For example, a water molecule, or a

Titanium atom),the number of bits to store the wave function can easily exceed the

estimated number of atoms in the observable universe 1072 − 1082. 1

1To make this fact more clear let’s make crude estimation of amount of memory occupied by the
discretized wave function. For the discretization we define a mesh with M points in each direction. by
choosing the proper basis set for this discrete space we can expand the state of the system

|Ψ(t)〉 =
∑

r1,r2,...,rN

ψ (r1, r2, ..., rN ; t) |r1〉|r2〉 · · · |rN 〉, (1.1)

where ri = (xi, yi, zi) is the position of the ith electron which takes values on discrete points.
ψ (r1, r2, ..., rN ; t) is the interpretation of the wave function in a discrete space. In total there are
M3N ψ’s and if each occupies a bits we will need the total memory R of

R = aM3N . (1.2)

So if we just decide to choose M = 10, 1000 mesh point in total, to store the state of a caffeine
molecule,C8H10N4O2, with 102 electrons we need at least 5× 10287 TB. This is considering each ψ only
takes x = 4 bits to store. To put things in perspective, it is around 5.5 × 10281 times the estimated

1
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However there is an ingenious and extremely nontrivial way to treat this problem and

that is by using the one-to-one correspondence between single particle density and the

external potential in the Density Functional Theory (DFT) and its time-dependent ver-

sion (TDDFT).

DFT is a formulation of the stationary quantum mechanics derived from the time-

independent Schrödinger equation which states that the ground state density of many-

body quantum system is uniquely determined by the external potential.[2] In other

words, there is a unique density for a given external potential which minimizes the

total energy functional of the system. This means that to calculate any observable

in the ground state, in principle, all we need is the ground state density and, thus,

the complicated many-body wave function of the ground state does not contain any

information in addition to that in the single particle ground state density.

The pinnacle of this theory is the Kohn-Sham construction which makes DFT usable

in practice.[3] By definition the Kohn-Sham system is an auxiliary system of N non-

interacting electrons in an effective external potential which has the same ground density

as the original one with N interacting electrons. The effective, Kohn-Sham, potential is

a unique functional of the density and this reduces the static many-body problem to a

self consistent Hartree-like problem. 2

Time-dependent density functional theory (TDDFT) is a non-trivial extension of DFT

to non-stationary systems in the presence of time-dependent external potentials. This

theory is rapidly becoming the method of choice for modeling dynamics of the realistic

many-body systems. The reasons for the popularity of TDDFT are the same as those

for the ground state DFT. It significantly reduces complexity of the problem by allowing

to calculate the density through an auxiliary system of non-interacting Kohn-Sham par-

ticles. The possibility of such a reduction rests on two fundamental mathematical state-

ments: (i) the one-to-one map between the density and the external potential and (ii)

v-representability of the density both in the interacting and non-interacting system, i. e.

the time-dependent density can be as a result of a time evolution driven by an external

scalar potential. The first statement, known as a mapping theorem, guarantees that

the many-body wave function and, thus, any observable are unique functionals of the

size of the world wide web (Internet) at 2010 and 10205 times the number of atoms in the observable
universe.

2 An explicit definition of the Kohn-Sham system is given in chapter 2.
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density. The v-representability is required for both the interacting and non-interacting

systems to guarantee the Kohn-Sham construction.

Finding a rigorous proof for the v-representability and uniqueness of the map is a highly

nontrivial and, to some extend, still an open problem. Moreover, having such a proof

of the concept does not necessarily translate to a practical use unless we either discover

the universal map explicitly, which is highly unlikely, or develop a proper approximation

which captures properties of the system. More on the latter will come later.

The first mapping theorem for the static DFT was presented in a paper by Hoheberg and

Kohn [2] while a general solution of the more tricky v-representability problem appeared

much later and only for lattice systems. [4, 5]

Proving the corresponding theorems in TDDFT turned out to be even more difficult

because of the absence of minimum principle for the dynamics. Thus one has to use

equations of motion to prove any mappings statement. In fact, only 20 years after the

first paper on DFT, Runge and Gross (RG) succeeded to find a sufficiently general proof

of the TDDFT mapping theorem for a class of analytic in time (t-analytic) potentials

[6].

More than a decade after an attempt to attack the more tricky problem of time-

dependent v-representability has been performed in Ref. [7] by assuming t-analyticity both

for potentials and for allowed densities. Under this restriction a formal power series for

the potential can be uniquely reconstructed from a given Taylor expansion of the density.

Unfortunately the convergence of that series is not proven up to now, and thus a com-

plete solution of the v-representability problem within the series expansion technique

is still missing. We note that the issues of t-analyticity and a uniform convergence of

power series in quantum dynamics are not as exotic as it may appear at the first sight

[8–10]. Despite a number of indications[11, 12] that t-analyticity was not a fundamental

limitation of the theory, a question of a more general and clean justification of TDDFT

remained open for many years.

In the past few years it has been recognized [9, 13–18] that the existence of all TDDFT-

type theories is equivalent to the solvability of a certain universal nonlinear many-body

problem which determines the potential and the many-body wave function in terms

of a given basic observable. Mathematically this universal problem can be posed in
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two different forms. The first possibility is to view it as a Cauchy problem for a spe-

cial nonlinear Schrödinger equation (NLSE) [9, 13–16]. The uniqueness and the exis-

tence of solutions to this NLSE are equivalent, respectively, to the mapping and the

v-representability problems in TDDFT. Alternatively it can be formulated as a fixed

point problem for a certain nonlinear map in the space of potentials [17, 18]. First ap-

plications of the two formulations above appeared almost simultaneously in Refs. [16]

and [17].

The fixed point approach has been used in Ref. [17] to address the existence of the “classi-

cal“ TDDFT in its original Runge-Gross form. In this work the t-analyticity requirement

was relaxed and effectively replaced by a more physical (though still unproven) assump-

tion – a boundness of a certain generalized response function related to a stress-density

correlator.

A rigorous formulation of a time-dependent current density functional theory (TD-

CDFT) on a lattice was presented in Ref. [16] within NLSE formulation of the problem.

The lattice TDCDFT turned out to be the first and, in fact, the simplest example of a

TDDFT-type theory for which both the mapping and the v-representability theorems

have been proven without any unjustified assumption.

However despite all the efforts, a rigorous proof of the TDDFT formalism is yet to

be presented. Moreover, in the most general setting the v-representability problem re-

mains open till now. In chapter 3 we answer the fundamental questions of TDDFT by

reformulating the density-potential map for a lattice. We realize that this reduction

massively simplifies the mathematical structure of the problem. We further develop

the lattice NLSE technique of Ref. [16] to address a long standing problem of TDDFT

for lattice many-body systems. It may seem surprising, but before this work even the

Runge-Gross mapping theorem for t-analytic potentials for the lattice TDDFT was ab-

sent. This should be contrasted to the lattice TDCDFT where the standard power series

argumentation can be easily adapted [19]. Many discussions of technical and conceptual

difficulties of the lattice TDDFT can be found in the literature [20–24]. We demon-

strate that the lattice analogue of NLSE answers to those conceptual problems. We

prove both the uniqueness and existence theorems for the lattice TDDFT and analyze

conditions which have to be imposed on the initial state and the density to guarantee v-

representability. In particular we demonstrate that practically any properly normalized
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density is locally v-representable provided the dynamics start from the ground state.

These results as the first rigorous proof of the TDDFT formalism put applications of

TDDFT to various lattice models [20–24, 24–28] on a firm ground, and shed new light

on the general mathematical structure of TDDFT.

Afterwards we generalize the lattice TDDFT to include lattices strongly coupled to the

quantum light. This is in contrast to the standard TDDFT which assumes the system

is driven by a classical time-dependent electric field. Although the TDDFT approach

is sufficient for most typical situations in quantum chemistry and condensed matter

physics, however, in the recent years, with the impressive progress in the fields of cavity

and circuit quantum electrodynamics (QED) it has been made possible to experimentally

study systems interacting strongly with quantum light, like atoms in optical cavity [29–

31], superconducting qubits and quantum dots [32–35] , trapped ions [36] and molecules

interacting with cavity photons. [37–39].

Recently a generalization of TDDFT mapping theorem for quantum many-electron sys-

tems coupled to cavity photons has been proposed [40, 41]. This theory, called QED-

TDDFT, relies on the statement that there exists a unique map from a set of basic

variables, the density and the expectation value of the Bosonic field, to the set of driv-

ing potentials. The latter consists of a classical external electromagnetic field driving

the electronic subsystem and an external radiative source, e.g. external current, stim-

ulating the photonic modes. In Ref. [40] the uniqueness of this generalized mapping

has been demonstrated using the Taylor expansion technique under the previously dis-

cussed t-analyticity assumption. [6] However, as we discussed, the Taylor expandability

is not a natural criteria deduced from the equations of motion. In addition the v-

representability problem, convergence of the Taylor series, is yet to be addressed.

In chapter 4 we extend the NLSE formalism of chapter 3 to cover the situation where

the lattice electrons are interacting strongly with quantized photonic modes. First we

demonstrate the procedure by proving the QED-TDDFT map for the simplest nontrivial

system of an electron on a two-site lattice (a Hubbard dimer) coupled to a single photonic

mode. It is worth noting that indeed, the QED-TDDFT formulation for a dimer coupled

to a quantum Bose field has its own value. This system is equivalent to well known and

popular models as the quantum Rabi model and the spin-boson model [42–44] which have

a wide variety of applications ranging from quantum optics [45] and molecular physics
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[46] to the magnetic resonance in solid state physics. [47] We prove that, provided some

well-defined conditions are fulfilled, there exists a unique mapping from the set of basic

variables to the driving potentials. Then we extend the QED-TDDFT mapping theorem

to the general case of N interacting electrons on an M -site lattice coupled to multiple

photonic modes. We also prove that, similar to the standard lattice TDDFT, the local

existence/v-representability is guaranteed if the dynamics start from the ground state of

a lattice Hamiltonian. These rigorous statements answer both the v-representability and

uniqueness problems of QED-TDDFT for lattices.

Next, we move our attention to the direct consequence of the TDDFT and that is the

functional dependence of the external potential on the density. As a result of the TDDFT

mapping provided a density is non-interacting v-representable , its dynamics can be

reproduced by an auxiliary system of non-interacting Kohn-Sham particles with a unique

effective Kohn-Sham potential. Traditionally the Kohn-Sham potential is expressed as a

sum of three terms with each having a particular physical significance. The first term is

the external potential of the interacting system and the second term, Hartree potential,

is a mean-field Coulomb interaction through the density. The remaining potential from

the interaction is put in a term called exchange-correlation potential.

However, the functional dependence of the exchange-correlation potential on the den-

sity, except for very special occasions, is unknown and most probably never be known.

So not surprisingly, it has been an ever continuing quest to better approximating it

.[48, 49] The TDDFT formalism, with the available approximations to the exchange-

correlation functional, has been greatly successful in describing optical properties of a

large variety of molecules and nanostructures. [50–52] However these approximations

exhibit serious deficiencies in the description of non-linear processes, long range charge

transfer [53–55] and double excitations [56–58], to mention a few.

The theoretical challenge is to improve the available functionals in order to capture the

nonlocality both in space and time of the exact exchange-correlation functional which

depends on the history of the density, the initial (interacting) many-body state and the

initial Kohn-Sham state.[59–62] Currently almost all of the TDDFT calculations are

done under the adiabatic approximation which assumes the instantaneous density is the

ground state of density of the system. This approximation is completely local in time

and neglects both the history and the initial state dependence of the exact functional.
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In chapter 5 we exemplify the failure of the adiabatic approximation of the exchange-

correlation functional in reproduction of the non-linear dynamics for a solvable lattice

model, 2-site Hubbard model.[63–65] Specifically, we study resonant and slightly de-

tuned resonance Rabi oscillations where the population of states changes dramatically

in time. We first derive the exact ground state Hartree-exchange-correlation (Hxc) func-

tional for the Hubbard dimer using the Levy-Lieb constrained search. [66–68] Then the

functional is used in a TDDFT context with the instantaneous time-dependent density

as the input which constitutes the exact adiabatic approximation. By carefully studying

and quantifying the dynamics produced by TDDFT with the adiabatic Hxc potential

we demonstrate that it fails both quantitatively and qualitatively to describe Rabi os-

cillations. In addition by comparing it with the exact Hxc functional calculated from

the propagated density we identify the source of the failure. Afterwards we apply the

analytic density-potential map for lattice systems of chapter 3 to derive an explicit,

fully non-adiabatic exchange-correlation density functional which correctly captures all

features of Rabi dynamics in the Hubbard dimer. This functional is considered one of

the main results of chapter 5.

Another potential application of the TD(C)DFT functionals, proposed in this thesis, is

a reconstruction/inverse engineering analytic control pulses for single-particle quantum

dynamics. Analytically solvable quantum problems have been always of interest in the

theoretical physics since they deepen our intuition of the quantum mechanical systems.

However unlike the static quantum problems where there is a handful of solvable exam-

ples [69], there is just a very few analytically solvable examples with a time-dependent

potential. To name a few: solutions of the Landau-Zener [70, 71] and Rabi [72] prob-

lems, or the solution for a driven harmonic oscillator [73, 74] which is closely related to

a so-called harmonic potential theorem.[75–77]

In the recent years and with the impressive progress in the fields of quantum computing

and quantum control the interest in analytically solvable quantum dynamical problems

is renewed. In order to further develop quantum gates it is necessary to accurately

control [78–80] and prepare the state of a qubit [81–83]. It has been recognized that

analytic pulses in quantum control lead to a more robust evolution against errors and

noise in pulse parameters [78, 84, 84–87] which can explain the great interest in finding

new pulses to analytically control two-level systems. [88–96]
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In the last decade a new trend has emerged where they inverse engineer time-dependent

Hamiltonian to result prescribed dynamics for a set of parameters. Most of the examples

of these studies are based on two level systems [94, 97–100] and a few for the three level

systems. [101]

In chapter 6 we propose an alternative strategy of reconstructing time-dependent driving

potentials for analytically solvable quantum problems. Our proposal employs the explicit

(current) density-(vector) potential map of TD(C)DFT for single particle systems.[102–

106] These maps imply that the knowledge of some properly chosen one particle ob-

servables, such as the density or the current, is sufficient to explicitly reconstruct the

corresponding driving fields, and therefore, the full wave function of the system. The

same strategy would be applicable to a general many-particle quantum system, if a

proper reconstruction of the density-potential map is possible. For example, recently

using the global fixed point formalism, mentioned above, the external potential for a

prescribed density evolution in a model system was numerically constructed. [107, 108]

In chapter 6 we address, within a common scheme, control problems for the real space

dynamics and for dynamics of discrete systems with a finite dimensional Hilbert space,

such as a motion of quantum particle on tight-binding lattices, or the dynamics of a spin

in the presence of a time-dependent magnetic field. To illustrate our strategy of inverse

engineering we will recover the known exact solution for a driven harmonic oscillator

[73, 74], and present nontrivial examples of analytic control for a particle on a finite 1D

chain and for a spin-1/2 (qubit) system.

Finally we conclude this work with a short discussion on the results and outlook of the

further research.



Chapter 2

Theoretical Background

In this chapter we present some theoretical basics underlying our work. As mentioned

in the introduction, the focus of this work is on the mapping theorems for the non-

stationary quantum problems. However we think, mainly for two reasons, it makes sense

to start with the original mapping theorems for the static problem. First, it reviews the

very first steps of a revolution in the computational physics and chemistry which made

possible studies of realistic many-electron systems. Second and more important for our

work, it emphasizes on the fact that the DFT formalism relies on the minimum principle.

This is in contrast to the dynamics where there is no minimum principle to rely and

thus the mapping theorems need to be based on the equations of motion.

Then in the section for TDDFT we present a detailed review of the Runge-Gross theorem

which proves the uniqueness of the density-potential map. The proof is for Taylor

expandable densities and moreover, the v-representability of the density is taken for

granted. Later in chapter 3 we see that both of these assumptions can be relaxed on

lattices.

Afterwards, we present an alternative formulation of the density-potential mapping prob-

lem. This formulation as a mathematically well posed problem, in principle, can lead us

to the solution for both v-representability and uniqueness problems. Then a review of

the two approaches to this formulation is presented.

This covers most of the basics for chapters 3, 5 and 6. In the last section we present a

derivation for the electron-photon Hamiltonian in the context of non-relativistic QED.

9
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This provides us with a sufficient material for the chapter 4 where we prove the lattice

QED-TDDFT mapping.

2.1 Density functional theory

We start this section with the original Hohenberg-Kohn theorem and its proof. Then

we will move onto the Kohn-Sham formulation.

2.1.1 Hohenberg-Kohn Theorem

Let’s assume a system of N interacting fermions. The solution to the time-independent

Schrödinger equation determines the energy spectrum and eigenstates of the system

Ĥ|Ψ〉 = E|Ψ〉. (2.1)

The Hamiltonian Ĥ is the total energy operator of the system

Ĥ = T̂ + Ŵ + V̂ext, (2.2)

where T̂ is the kinetic energy operator, Ŵ the two-particle interaction operator

T̂ = −1

2

N∑
i=1

∇2
i , (2.3)

Ŵ =
1

2

∑
i 6=j

w(ri, rj). (2.4)

V̂ext, the time-independent external scalar potential, is a multiplicative operator which

includes the nuclei potential in the case of Born-Oppenheimer approximation

V̂ext =

N∑
i=1

v(ri). (2.5)

The density operator of an N -particle system is defined

n̂(r) =

N∑
i=1

δ(r− ri). (2.6)
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Considering the Hamiltonian (2.2) to have a non-degenerate ground state |Ψg〉, with the

eigenenergy Eg, the expectation value of the density operator at the ground state ng(r)

is given by

ng(r) = N

∫
dr2 · · ·

∫
drN |ψg(r, r2, ..., rN )|2, (2.7)

where the ground state wave function ψg(r1, r2, ..., rN ) = 〈r1, r2, ..., rN |Ψg〉.

As a result of Eqs. (2.1) and (2.7) we conclude that the ground state |Ψg〉 and the ground

state density ng are functionals of the external potential, but the question in DFT is if

these maps are unique and thus invertible? The Hohenberg-Kohn theorem is an attempt

to answer this question.

Theorem 2.1.1 (Hohenberg-Kohn Theorem). In a finite interacting system of N fermions

with a given interaction Ŵ the map from the external potential V̂ext to the ground state

density ng is unique, up to a constant shift in the potential.

Proof. We prove the theorem in a two step sequence and both using the proof by con-

tradiction. In the first step we prove that the map from the external potential to the

ground state wave function is unique, {Vext} ↔ {Ψg}. Then we prove the uniqueness

statement for the map from the ground state wave function to the ground state density,

{Ψg} ↔ {ng}.

To prove the first statement we show two external potentials, V̂ext and V̂ ′ext, which differ

by more than a constant, V̂ext 6= V̂ ′ext + C cannot lead to the same ground state |Ψg〉.

So, for the moment, let assume that two potentials V̂ext and V̂ ′ext have the same ground

states |Ψg〉 = |Ψ′g〉. Therefore writing two eigenvalue equations for Ĥ = T̂ + Ŵ + V̂ and

Ĥ ′ = T̂ + Ŵ + V̂ ′

Ĥ|Ψg〉 = Eg|Ψg〉, (2.8a)

Ĥ ′|Ψ′g〉 = E′g|Ψ′g〉, (2.8b)

and then subtracting them we get

(
V̂ext − V̂ ′ext

)
|Ψg〉 =

(
Eg − E′g

)
|Ψg〉. (2.9)
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Since the external potential is a multiplicative operator we can divide both sides by |Ψg〉

provided that the ground state is non-zero for a set of positive measure.[109] This results

V̂ext − V̂ ′ext = Eg − E′g, (2.10)

which is in contradiction with the assumption on V̂ext and V̂ ′ext.

Like the first step, we prove the second one by contradiction. We prove that if two

different ground states, |Ψg〉 6= eiβ|Ψ′g〉, have the same density ng we encounter a con-

tradiction.

First let show that the expectation value of the Hamiltonian Ĥ with respect to |Ψ′g〉 is

always bigger than the ground state energy of Ĥ. For the expectation value of Ĥ we

have

〈Ψ′g|Ĥ|Ψ′g〉 =
∑
n=0

|an|2En, (2.11)

where we expanded |Ψ′g〉 over the eigenbasis of Ĥ, |Ψ′g〉 =
∑

n=0 an|Ψn〉, with n = 0

representing the ground state. On the other hand for the summation on the right hand

side of the equation we have:

∑
n=0

|an|2En > Eg
∑
n=0

|an|2 = Eg. (2.12)

Thus we find:

Eg < 〈Ψ′g|Ĥ|Ψ′g〉. (2.13)

As we see later this inequality, known as the minimum energy principle, is the essential

statement in the Hohenberg-Kohn this theorem and in general DFT.

For the expectation value on the right hand side of the equation we can write

〈Ψ′g|Ĥ|Ψ′g〉 = 〈Ψ′g|Ĥ − V ′ext + Vext|Ψ′g〉 = E′g +

∫
dr
(
v′(r)− v(r)

)
ng(r), (2.14)

where we used he definition of the external potential Eq. (2.31). Then we substitute the

expectation value back into the inequality (2.13)

Eg < E′g +

∫
dr
(
v′ext(r)− vext(r)

)
ng(r). (2.15)
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We can also write the corresponding inequality for E′g

E′g < Eg +

∫
dr
(
vext(r)− v′ext(r)

)
ng(r). (2.16)

Finally adding the two inequalities (2.15) and (2.16) we get

Eg + E′g < Eg + E′g, (2.17)

which is an obvious contradiction. Therefore the map from the ground state wave

function to the ground state density is unique and thus bijective, {Ψg} ↔ {ng}.

Consequently the map from the external potential to the ground state density is unique,

{Vext} ↔ {ng}.

The main argument in the Hohenberg-Kohn proof, the minimum principle (2.13), un-

derlies the density-potential map in DFT. As a direct consequence of this map, the

expectation value of any observable Ô in the ground state is uniquely determined by the

ground state density ng. Mathematically speaking, the ground state expectation value

of Ô is a unique functional of ng

O[ng] = 〈Ψg[ng]|Ô|Ψg[ng]〉. (2.18)

One of these observables is the total ground state energy of the system, the expectation

value of the total Hamiltonian (2.2) with respect to |Ψg〉

Evext [ng] := 〈Ψg[ng]|T̂ + Ŵ + V̂ext|Ψg[ng]〉 = FHK +

∫
drv(r)ng(r), (2.19)

where FHK is the Hohenberg-Kohn energy functional which is sum of the kinetic and

interaction energies.

As a consequence of the minimum energy principle (2.13), the energy in the right hand

side is minimum if only the density is the ground state density of the Hamiltonian

with the specified V̂ext and therefore the ground state density can be found through a

variational search: [66, 110, 111]

Eg = min
n∈N

Ev[n]. (2.20)
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where N is the set of the v-representable ground state densities. One can also rewrite

the variational principle in a differential form

δ

δn(r)
Ev[n]

∣∣∣∣
n=ng

= 0. (2.21)

However one needs to show first, there is a proper norm convergence in N in the vicinity

of the ground state density ng and, second, the energy functional is differentiable.

2.1.2 Kohn-Sham system in DFT

Lets assume an auxiliary system of N non-interacting fermions described by the Hamil-

tonian

Ĥs = T̂ + V̂s. (2.22)

According to the Hohenberg-Kohn , the ground state energy of a non-interacting system

is a unique functional of its ground state density ns. Therefore from (2.19) we have:

Evs [ns] = Ts[ns] +

∫
drvs(r)ns(r), (2.23)

where Ts[n] is the universal kinetic energy functional.

This non-interacting system is Kohn-Sham if it reproduces the same ground state density

of the interacting system under the study

ns(r) = ng(r). (2.24)

Obviously this is possible if the ground state density of the interacting system is also

non-interacting v-representable .

From the Hohenberg-Kohn theorem, again, we know that the ground state wave function

is uniquely determined by the external potential for a specified interaction. In this case

since the particles are non-interacting the non-degenerate ground state can be written
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in terms of a single Slater determinant

ψs(r1, r2, ..., rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ2(r1) · · · ϕN (r1)

ϕ1(r2) ϕ2(r2) · · · ϕN (r2)
...

...
. . .

...

ϕ1(rN ) ϕ2(rN ) · · · ϕN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.25)

where ϕj(r) is the jth eigenfunction of the single-particle Schrödinger equation with the

eigenenergy εj (
−∇

2

2
+ vs(r)

)
ϕj(r) = εjϕj(r). (2.26)

The single particle eigenfunctions, ϕj(r), are called the Kohn-Sham orbitals.

Therefore the Kohn-Sham density is a direct sum of the individual orbital densities

ns(r) =
N∑
j=1

|ϕj(r)|2. (2.27)

We can rewrite the Kohn-Sham potential by addition and subtraction of the interacting

external and Hartree potential

vs[ns](r) = vext(r) +

∫
drw(r, r′)ns(r) + vxc[ns](r) (2.28)

where vxc, the exchange-correlation potential, is a functional of the density and in prin-

ciple, it includes all many-body effects like correlations and exchange.

Provided the exact exchange-correlation functional is known, the self-consistent solution

of the Kohn-Sham equation (2.26) together with Eqs. (2.27) and (2.28) determines the

exact ground state density of the Kohn-Sham system and consequently the ground state

density of the interacting system. Unsurprisingly, the functional is not known and

approximations are needed to be performed. However the DFT theory does not suggest

any systematic way to construct approximations which can be strategically improved.

In chapter 5 we find the exact Hohenberg-Kohn functional for a two site Hubbard model

by using the constrain search.
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2.2 Time-dependent density functional theory

In this section we summarize some of the basic theorems in TDDFT. This theory, in some

sense, is a generalization of the static DFT to time-dependent many-particle quantum

problems. However, the similarity does not go beyond the very basic idea of density-

potential mapping. For example it is not possible to simply extend the DFT’s basic

theorems to the time-dependent problems.

The system under the study, here, is a group of N interacting identical Fermions, for ex-

ample electrons, which evolves from a some given initial state |Ψ0〉. The time-dependent

state |Ψ(t)〉 is the solution to the time-dependent many-body Schrödinger equation

i∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉. (2.29)

The system is characterized by a non-relativistic time-dependent Hamiltonian

Ĥ(t) = T̂ + Ŵ + V̂ext(t), (2.30)

where the kinetic energy T̂ and the two-particle interaction are given by Eqs. (2.3) and

(2.4) and the external potential V̂ext is a classical time-dependent scalar potential

V̂ext(t) =
N∑
i=1

v(ri, t). (2.31)

The time-dependent density n(r, t) is the expectation value of the density operator with

respect to |Ψ(t)〉

n(r, t) = N

∫
dr2 · · ·

∫
drN |ψ(r, r2 · · · rN ; t)|2 (2.32)

where, as before, the wave function is the projection of the state vector over the position

coordinate ψ(r1, r2, ..., rN ; t) = 〈r1, r2, ..., rN |Ψ(t)〉.

Using the Schrödinger equation (2.29) one can show that expectation value of observables

obeys the Heisenberg equation of motion

d

dt
〈Ô〉 = i〈Ψ(t)|[Ĥ(t), Ô]|Ψ(t)〉+ 〈 ∂

∂t
Ô〉. (2.33)
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So for the time evolution of the density this gives

d

dt
n(r, t) = i〈Ψ(t)|[Ĥ(t), n̂(r)]|Ψ(t)〉. (2.34)

The commutator between n̂ and Ŵext and between n̂ and V̂ext are zero. and [T̂ , n(r)]

can also be computed with few lines of algebra. The result is the well-known continuity

equation which connects the first derivative of the density ṅ to the current density 1

ṅ(r, t) = −∇ · j(r, t), (2.35)

where the current density operator is defined ĵ(r)

ĵ(r) = − i
2

N∑
j=1

[∇jδ(r− rj) + δ(r− rj)∇j ]. (2.36)

The continuity equation expresses the conservation of particles, that is the number of

particles in a given volume changes only if there is a current flow through its boundary.

2.2.1 The Runge-Gross theorem

The ”direct” map from the time-dependent external potential V̂ext to the time-dependent

state |Ψ(t)〉 is defined through the Schrödinger equation (2.29). And the map from the

wave function |Ψ(t)〉 to the density is given through the expectation value (2.32). This

establishes the direct potential-density map {Vext} → {n}.

TDDFT, in the contrast, deals with the ”inverse” map, {n} → {Vext}. The questions in

TDDFT can be categorized in 3 main categories. First, v-representability problem, does

the inverse map exist? Second, uniqueness problem, is the inverse map unique? Third,

functional problem, what is the explicit inverse map?

The Runge-Gross theorem, in 1984, [6] answers the second question for a particular case

of t-analytic densities. It states that the one-particle density n(r, t) of a many interacting

electron system, for a given initial state, is indeed uniquely determined by the driving

potential, provided the density is v-representable .

1A derivation on the continuity equation in a lattice is given in the appendix A.1
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Theorem 2.2.1 (Runge-Gross ). For every single particle potential v(r) which can be

expanded into a Taylor series with respect to the time around t = t0 a map G : v(r, t)→

n(r, t) is defined by solving the time-dependent Schrödinger equation with a fixed initial

state |Ψ0〉 and calculating the corresponding densities n(r, t). This map can be inverted

up to an additive merely time-dependent function.

Proof. Let us assume two identical quantum systems evolving from the same initial state

|Ψ0〉 and thus having the same initial density n(r, t0). We prove that at t > 0 these two

systems have different time-dependent densities n(r, t) 6= n′(r, t) if they are driven by

two Taylor expandable external potentials, v(r, t) and v′(r, t), which differ by more than

a time-dependent constant, see Fig. 2.1

v(r, t)− v′(r, t) 6= c(t). (2.37)

'

Figure 2.1: Schematic graph of the TDDFT mapping stated in the Runge-Gross The-
orem 2.2.1.

Therefore there is a smallest integer k such that the k-th time derivative differs by more

than a constant
∂k

∂tk
[v(r, t)− v′(r, t)]|t=0 6= C. (2.38)

Next, we show that consequently the (k + 2)-th time derivative of the densities, n(r, t)

and n′(r, t), are different.

The first step is to prove that these two different external potentials, v and v′, lead to

different time-dependent currents. So, using the Heisenberg equation (2.33), we write
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the equations of motion for the currents driven by the potentials

∂

∂t
j(r, t) = −i〈Ψ(t)|[̂j(r), Ĥ(t)]|Ψ(t)〉, (2.39)

∂

∂t
j′(r, t) = −i〈Ψ′(t)|[̂j(r), Ĥ ′(t)]|Ψ′(t)〉, (2.40)

where Ĥ and Ĥ ′ are the Hamiltonians (2.30) with v and v′ respectively.

Then we calculate the difference of the current derivatives at the initial time, t = 0:

∂

∂t

(
j(r, t)− j′(r, t)

)
|t=0 = −i〈Ψ0|[̂j(r), Ĥ(0)− Ĥ ′(0)]|Ψ0〉. (2.41)

The kinetic T̂ and interaction Ŵ cancels between the Hamiltonians and the only remain-

ing term is the difference between the external potentials which can be easily calculated

∂

∂t

(
j(r, t)− j′(r, t)

)
|t=0 = −n(r, 0)∇

(
vext(r, 0)− v′ext(r, 0)

)
. (2.42)

Assuming the density n(r, 0) is non-zero 2, the condition Eq. (2.38) is fulfilled for k = 0.

Otherwise we need to go beyond the first derivative and calculate the difference between

higher derivatives of the currents until we encounter a non-zero difference. So calculating

(k + 1)-th derivative of the current difference we have

(
∂

∂t

)k+1 (
j(r, t)− j′(r, t)

)
|t=0 = −n(r, 0)∇uk(r, 0), (2.43)

where we define a new function uk

uk(r, 0) =
∂k

∂tk
(
v(r, t)− v′(r, t)

)
|t=0. (2.44)

By assumption (2.38) there is such k that uk(r, 0) is non-constant. We also assumed the

density is nodeless n(r, t) 6= 0. Therefore the (k+ 1)-th derivatives are different and this

proves the currents, j and j′, are different infinitesimally after t = 0.

By now, we showed that different potentials lead to different currents. However, we need

to prove that the difference in the currents always translates to the densities.

2This is an extra assumption which is not required by the original Runge-Gross proof. Nonetheless
this is a common assumption in density functional type theories
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By taking divergence of the equation (2.43) and using the continuity equation (2.35)

we get the time derivative of the density difference

(
∂

∂t

)k+2 (
n(r, t)− n′(r, t)

)
|t=0 = ∇ · [n(r, 0)∇uk(r, t)] . (2.45)

The right hand side of this equation is zero only if the term in the square brackets are

purely rotational. To show that this cannot be the case let us calculate the following

integral

∫
d3ruk(r, 0)∇ · [n(r, 0)∇uk(r, 0)] = −

∫
d3rn(r, 0) [∇uk(r, 0)]2

+

∮
dS · [uk(r, 0)n(r, 0)∇uk(r, 0)] . (2.46)

By sending the surface of the integral to infinity the second integral in the right hand

side goes to zero presuming that the density falls fast enough. By assumption, there is

some r that the integrand of the first integral is non-zero and always non-negative.

Thus the whole integral is positive. This means there must be some r where ∇ ·

[n(r, 0)∇uk(r, 0)] 6= 0 . This proves that n and n′ are different just infinitesimally

after the initial time t = 0.

Assumption of the Runge-Gross theorem

In the Runge-Gross theorem the density-potential mapping was proven under some es-

sential assumptions. However it seems that the result of this theorem is valid well beyond

some of the assumptions. Below we list the assumptions of the Runge-Gross theorem

and proof, some more obvious and some more subtle:

• The time-dependent density n(r, t) is v-representable at t > 0.

• The potential v(r, t) is Taylor expandable around the initial time t = 0.

• The time-dependent density n(r, t) is analytic in t.

• The density is nodeless n(r, t) 6= 0.

• The system is finite, i.e. there is some finite r0 such that n(r, t) = 0 for r ≥ r0.
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2.3 Alternative formulation of the problem, Non-linear

Schrödinger equation formalism

The Runge-Gross theorem answers the uniqueness question using the Taylor expansion;

however, it does not suggest any systematic way to invert the map or, in other words,

to find the potential from the density. Here we formulate the density-potential mapping

in terms of a set of closed equations where its solution determines the universal density

potential map.

The Schrödinger equation (2.29) defines the direct map from the external potential to the

wave function and the density. The strategy is to find an additional equation which links

the density to the external potential and/or the wave function. Therefore the resulting

equation together with the Schrödinger equation can form a closed set of equations for

the external potential and the wave function in terms of given density and initial state.

Although the continuity equation (2.34) determines the first derivative of the density

for a given wave function, it does not uniquely fix the current for a given density, as

a result of the divergence in the right hand side , so we cannot solve it for the wave

function in terms of the density.

Differentiating the continuity equation (2.35) with respect to t results in an equation

which plays a key role in TDDFT

n̈(r, t) = ∇ · (n(r, t)∇v(r, t)) + i∇ · 〈Ψ(t)|̂j(r, t), T̂ + Ŵ ]|Ψ(t)〉. (2.47)

This equation is the divergence of the so called force balance equation, however, from

now on we follow the standard practice and simply call it the force balance equation. The

force balance equation is a hydrodynamical equation which states that the acceleration

for a volume element of a liquid is equal to the sum of the external forces and the internal

forces and the stress force, in the liquid. The first term in the right hand side of the force

balance equation (2.47) is the divergence of the external force, the Sturm-Liouville term,

and the second term is the divergence of the stress force. The force balance equation

plays a central role in the TDDFT mappings. It connects the density n to the external

potential v and the wave function |Ψ(t)〉. By rearranging the force balance equation we
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get an equation which relates the external potential vext to the density and the wave

function |Ψ(t)〉.

The force balance equation together with the Schrödinger equation (2.29) form a closed

set of closed equations for potential v, wave function |Ψ(t)〉 provided the density n and

the initial state |Ψ0〉 are known

i∂t|Ψ(t)〉 = Ĥ[vext]|Ψ(t)〉, (2.48)

∇ · (n(r, t)∇vext(r, t)) = n̈(r, t)− i∇ · 〈Ψ(t)|̂j(r, t), T̂ + Ŵ ]|Ψ(t)〉. (2.49)

Consequently the v-representability and uniqueness problems are reduced to the exis-

tence of a unique solution to this system of equations for a given pair of initial state

|Ψ0〉 and time-dependent density n.

Importantly the density n and initial state |Ψ0〉 are not independent of each other and

fixing |Ψ0〉 uniquely determines n and ṅ

〈ψ0|n̂(r)|ψ0〉 = n(r; t0), (2.50)

−∇〈ψ0 |̂j(r)|ψ0〉 = ṅ(r; t0). (2.51)

This puts a condition on the initial state |Ψ0〉 and the density n which, means that

densities which are not consistent with the initial state |Ψ0〉 are non-v-representable .

There are two ways suggested in the literature to tackle v-representability and uniqueness

problem using the system of equations (2.48). First one is known as the fixed point

approach. [17] In this approach one assumes a time-dependent density n(r, t) consistent

with an initial state |Ψ0〉. Then in an iterative procedure, starts with a guess potential

v0 and solves the Schrödinger equation with the initial state |Ψ0〉 to find |ψ0(t)〉. Then

by solving the force balance with n(r, t) and |ψ0(t)〉 he/she gets a potential v1 which

will substitute it back into the Schrödinger equation . It is proven in Ref. [17] that this

iteration converges to a unique potential v provided that the response function of the

divergence of the internal forces is bounded.
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In the second approach one solves the force balance (2.49) equation to find the external

potential vext in term of the density n and the wave function |Ψ(t)〉

vext[n,Ψ] = (∇ · n(r, t)∇)−1
[
n̈(r, t)− i∇ · 〈Ψ(t)|̂j(r, t), T̂ + Ŵ ]|Ψ(t)〉

]
. (2.52)

Substituting it back into the Schrödinger equation results a non-linear Schrödinger equa-

tion (NLSE) with a cubic non-linearity in the wave function |Ψ(t)〉. [9, 104] In this case

the v-representability and uniqueness problems are reduced into existence of a unique

solution to NLSE for a given initial state |Ψ0〉 and density n.

In both approaches one needs to invert the Sturm-Liouville operator, Eq. (2.52), which

is in general a non-trivial problem. Fortunately it has been shown recently that for a

bounded domain with a periodic or zero boundary condition the Sturm-Liouville op-

erator is guaranteed to be invertible. [112, 113] So the only thing that remains is to

study the Lipschitz continuity of vext[n,Ψ] (2.52) and then using the well established

theorems for quasilinear PDE’s [114, 115] we will be able to fully answer both the v-

representability and uniqueness questions in TDDFT.

However, for the moment, there is an alternative way to approach the problem. By

approximating the infinite-dimensional Hilbert space with a finite-dimensional one, e.g.

tight-binding approximation, the Sturm-Liouville operator reduces to a matrix with

finite dimensions which can be easily ”inverted”. 3 In addition NLSE reduces to a

system of ordinary differential equations (ODE) which is much easier to handle. By

using this approach in chapter 3 we prove the basic theorems for the lattice TDDFT.

Then in chapter 4 we will extend those theorems into electronic systems interacting with

quantized electric field.

2.4 Electronic system interacting with quantized electro-

magnetic field

By now we introduced the density-potential mapping for the system of interacting par-

ticles in a classical electric field. In this construction the electric field is treated as an

external variable where its value is determined by a time-dependent scalar function vext.

3The invertibility of the discretized Sturm-Liouville operator is discussed in chapter 3.
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However, despite its generality, this construction is an approximation to a more accurate

setup in which we consider the quantum mechanical nature of electromagnetic field. For

example the quantum electrodynamical (QED) description of the light becomes essential

when we are studying a Fermionic system in an optical cavity. [29–31, 37–39]

In this section we present a brief introduction to the non-relativistic photonic Hamil-

tonian. We start with the wave equation in the classical electromagnetism and then

by defining canonical variables we quantize the energy of the field. Afterwards using

the radiation Hamiltonian we write the full Hamiltonian for a Fermionic system in an

optical cavity. The discrete version of the electron-photon Hamiltonian introduced here

is later used in chapter 4 where we prove the basic QED-TDDFT theorems on a lattice.

2.4.1 Canonical quantization

The time evolution of the classical electromagnetic field in vacuum is given by the

Maxwell equations for free field

∇×E + ∂tB = 0, (2.53a)

∇×B− ∂tE = 0, (2.53b)

∇ ·E = 0, (2.53c)

∇ ·B = 0. (2.53d)

The electric E and magnetic field B can be expressed in terms of the scalar v and vector

A potential

B = ∇×A′ (2.54a)

E = −∂tA +∇v, (2.54b)

where E and B are invariant under the following gauge transformation

A→ A′ +∇χ, (2.55a)

v → v′ − ∂tχ. (2.55b)
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Therefore it is possible to choose a gauge where the scalar potential is zero everywhere

v = 0, the temporal gauge.

Using the Maxwell equations (2.53) one can show that the vector potential obeys the

wave equation

∇2A− ∂2
t A = 0. (2.56)

Considering the periodic boundary condition we can easily write the vector potential in

terms of plane waves

A(r, t) =

√
2π

L3

∑
k,λ

εkλ
k

[
eiβeik·rakλ(t) + e−iβe−ik·ra∗kλ(t)

]
, (2.57)

where L3 is the volume of the cavity, εkλ is the polarization vector for the mode with

wave vector k and polarization λ, and β is an arbitrary constant phase. The time-

dependent coefficient akλ(t) for each mode is given by

akλ(t) = eiωktakλ, (2.58)

where the constant akλ is fixed through the initial value and boundary conditions. The

vector potential A of (2.57) fulfills the wave equation (2.56) if ωk = k and k · εkλ = 0.

Substituting A(r, t) of (2.57) back into the equations for the electric E and magnetic

field B (2.59) we get

E(r, t) =

√
2π

L3

∑
k,λ

εkλ
k

[
ei(β+π/2)eik·rakλ(t) + c.c.

]
, (2.59a)

B(r, t) =

√
2π

L3

∑
k,λ

εkλ × k

k

[
ei(β+π/2)eik·rakλ(t) + c.c.

]
. (2.59b)

Now we can write the Hamiltonian of the classical radiation field. The energy of the

radiation field is given by

U =
1

8π

∫ (
E2 +B2

)
dr. (2.60)
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Therefore substituting the expressions of the Electric and magnetic fields (2.59) we get

U =
∑
k,λ

ωka
∗
kλakλ =

1

2

∑
k,λ

ωk (a∗kλakλ + akλa
∗
kλ) . (2.61)

Of course the constants a∗kλ and akλ in the right hand side commute here but to quantize

the field we need to write everything in a symmetric manner. It also makes sense to

write the energy U in terms of canonical variables before quantization

qkλ = (
1

2ωk
)
1
2 (akλ + a∗kλ) , (2.62)

pkλ = −i(ωk

2
)
1
2 (akλ − a∗kλ) . (2.63)

The field energy in terms of the new canonical coordinates become

U =
1

2

∑
k,λ

(
p2
kλ + ω2

kq
2
kλ

)
. (2.64)

pkλ and qkλ are called canonical variables since they follow

q̇kλ =
∂U

∂pkλ
, ṗkλ = − ∂U

∂qkλ
. (2.65)

To quantize the field we substitute the canonical variables with non-commutative oper-

ators

[q̂kλ, p̂k′λ′ ] = iδkk′δλλ′ (2.66)

Consequently the field energy U is promoted to the Hamiltonian for the field

Ĥf =
1

2

∑
k,λ

(
p̂2
kλ + ω2

kq̂
2
kλ

)
. (2.67)

The Hamiltonian for the free field is nothing but the Hamiltonian of an ensemble of

harmonic oscillators with frequencies ωk, where each ωk is twofold degenerate with

respect to the polarization λ.
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Converting akλ and a∗kλ to non-commuting operators in the field energy U (2.49) results

the field Hamiltonian in the second quantization

Ĥf =
1

2

∑
k,λ

ωk

(
b̂†kλb̂kλ + b̂kλb̂

†
kλ

)
=
∑
k,λ

ωk

(
b̂†kλb̂kλ +

1

2

)
(2.68)

where b̂†kλ ( b̂kλ) creates (annihilates) a photon with the wave vector k and with the

polarization λ. The photon creation and annihilation operators fulfill the following

commutation relation

[b̂kλ, b̂
†
k′λ′ ] = δkk′δλλ′ . (2.69)

Having the field energy quantized in the next section we will write the Hamiltonian for

the electromagnetic field interacting with matter.

2.5 N electrons coupled to the quantized light

Let us turn to a problem where a system of N electrons interacts with quantized light.

There is an external time-dependent current Jext(t) which acts as the external pertur-

bation for the field. The following expression describes the Hamiltonian of this system

in the temporal gauge (2.54)

Ĥ =
1

2m

N∑
j=1

[
i∇j + Â(r)

]2
+ Ŵ + Ĥf − Jext(t) · Â(r). (2.70)

Where the vector potential operator Â(r) is found by replacing the complex functions

akλ and a∗kλ in Eq. (2.57) by the annihilation b̂kλ and creation operator b̂†kλ respectively.

Therefore Â(r) in the Schr̈odinger representation reads as:

Â(r) =

√
2π

L3

∑
k,λ

εkλ
k

[
eik·rb̂†kλ + e−ik·rb̂†kλ

]
. (2.71)
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In the long wave length limit we can adopt the dipole approximation where exp ik.r ≈ 1

and so we have for the vector potential

Â =

√
2π

L3

∑
k,λ

εkλ
k

[
b̂†kλ + b̂†kλ

]
, (2.72)

Using definition for the canonical coordinate q̂ (2.62) we can rewrite the vector potential

as

Â =

√
4π

L3

∑
k,λ

q̂kλεkλ. (2.73)

Substituting back Â into Eq. (2.70) we get the full Hamiltonian for the system in the

temporal gauge

Ĥ =
1

2m

N∑
j=1

[
i∇j +

∑
α

q̂αλα

]2

+
1

2

∑
i 6=j

w(ri, rj)

+
∑
α

(
1

2
p̂2
α +

1

2
ω2
αq̂

2
α − Jext · λαq̂α

)
. (2.74)

where the α summation is over {(k, λ)} and the vector λ is a renormalized polarization

vector λ =
√

4π
L3ε.

As a result of the dipole approximation the Hamiltonian Ĥ in the length gauge is fully

independent of the vector potential. Therefore doing a simple gauge transformation

(2.55) the Hamiltonian transforms to:

Ĥ =
N∑
j=1

(
∇2
j

2m
+
∑
α

λα · rj p̂α

)
+

1

2

∑
i 6=j

w(ri, rj)

+
∑
α

(
1

2
p̂2
α +

1

2
ω2
αq̂

2
α + λα · dext(t)p̂α

)
, (2.75)

where dext(t) is the dipole moment of the charge accumulated from the external current.∑
λp̂ in the first and the last term is the operator form of the electric field Ê.

Later in chapter 4 we use the discretized version of Eq. (2.75) in the context of density-

potential mapping for systems interacting with quant light.



Chapter 3

Time-dependent density

functional theory on a lattice

3.1 Introduction

In the previous chapter we showed that the v-representability and uniqueness problems

in TDDFT are equivalent to the existence of a unique solution to the universal NLSE

which determines the potential and the many-body wave function in terms of a given

basic observable like density. Mathematically this universal problem can be formulated

in two distinct ways. One possibility is to formulate it as a fixed point problem. [17, 18]

However here we pose it alternatively as a Cauchy problem for the NLSE. [9, 13–16] We

apply the NLSE technique of Ref. [16] for the lattice TDCDFT to address the TDDFT

mapping problem on a lattice.

First we present a proof of uniqueness and existence theorems for the lattice TDDFT

and analyze conditions which have to be imposed on the initial state and the density

to guarantee v-representability . Afterwards a special case will be discussed where we

show any properly normalized density is locally v-representable provided the dynamics

starts from the ground state. Then we clarify the problem further by an example of a

single particle on a two-site lattice.

This chapter is a part of the article ”Time-dependent density functional theory on a lattice”, Physical
Review B 86, 125130 (2012), by Mehdi Farzanehpour, I. V. Tokatly.

29
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This chapter is structured as the following. In section 3.2 we present a general formu-

lation of the lattice many-body theory and derive a lattice analog of the force balance

equation that plays a key role in the NLSE formalism for TDDFT. section 3.3 is the

central part of this chapter. Subsection 3.3.1 starts with a brief overview of our approach

to TDDFT in a more familiar continuum case. Then we derive the corresponding NLSE

for a lattice theory, and finally, formulate and prove the general existence of a unique-

ness theorem on the lattice TDDFT. Several important aspects of the basic theorem

for a generic initial state are discussed in subsection 3.3.2. Section 3.4 presents an ex-

plicit illustration of the general existence theorem for a simple exactly solvable model

– one particle on a two-site lattice. In section 3.5 we consider a practically important

case of a system evolving from its ground state. The main outcome of this section is a

v-representability theorem for the initial ground state.

3.2 Preliminaries: Many-body problem on a lattice

Let us consider dynamics of a system of N interacting quantum particles on a lattice that

consists of a finite but arbitrary large number M of sites. The many-body wave function

ψ(r, r2, ..., rN ; t) characterizes the state of the system at time t , where coordinates ri of

particles (i = 1, 2, .., N) take values on the lattice sites. And the following Schrödinger

equation describes dynamics driven by an external on-site potential v(r; t):

i∂tψ(r1, ..., rN ; t) = −
N∑
i=1

∑
xi

Tri,xiψ(...,xi, ...; t)

+
N∑
j=1

v(rj ; t)ψ(r1, ..., rN ; t)

+
∑
j>i

wri,rjψ(r1, ..., rN ; t), (3.1)

where real coefficients Tr,r′ = Tr′,r correspond to the rate of hopping from site r to

site r′ (we assume Tr,r = 0), and wr,r′ is a potential of a pairwise particle-particle

interaction. Here we do not specify the geometry of the lattice and neither assume that

the interaction depends only on the distance between particles. For example, the latter
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is important in a typical transport setup where non-interacting or weakly interacting

leads connected to a strongly interacting central region . 1[25, 27, 28, 116, 117]

Equation (3.1) determines the wave function as a unique functional of continuous and

bounded external potential and a given initial state,

ψ(r1, r2, ..., rN ; t0) = ψ0(r1, r2, ..., rN ). (3.2)

As we discussed in the previous chapter the density n(r; t) of particles is the basic

variable in TDDFT. However in the present context it corresponds to the number of

particles on a given site and it is defined as:

n(r; t) = N
∑

r2,...,rN

|ψ(r, r2, ..., rN ; t)|2, (3.3)

where we assumed that the particles are identical. By taking the time derivative of the

density’s definition (3.3) and using the Schrödinger equation (3.1), we find the following

equation of motion for the density

ṅ(r; t) = i
∑
r′

[Tr,r′ρ(r, r′; t)− Tr′,rρ(r′, r; t)], (3.4)

where ‘ṅ = ∂tn, and ρ(r, r′; t) is a density matrix on the [r, r′]-link,

ρ(r, r′; t) = N
∑

r2,...,rN

ψ∗(r′, r2, ..., rN ; t)ψ(r, r2, ..., rN ; t). (3.5)

A derivation for the continuity equation on a lattice can be found in the appendix A.1

Equation (3.4) is the lattice version of the continuity equation (2.35). Since in the left

hand side of Eq. (3.4) we have the time derivative of the on-site number of particles,

the right hand side should be identified with the sum of outgoing currents flowing along

links attached to the site. Indeed introducing a link current from site r to site r′ as

follows

J(r, r′) = 2Im[Tr,r′ ρ(r, r′; t)], (3.6)

1Formally Eq. (3.1) corresponds to a system of MN linear ordinary differential equations (ODE). For
example, in the case of a single particle on a two-site lattice it is a system of two coupled equations.
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Figure 3.1: The continuity equation (3.4) can be understood as an integral over the
continuum continuity equation integrated over a given volume surrounding the site i.
Therefore the term ∇ · J would transform to a surface integral over the boundary of

the volume which results sum of outgoing integral from the surface.

we can rewrite the continuity equation (3.4) in a more familiar way

ṅ(r; t) = −
∑
r′

J(r, r′). (3.7)

This equation shows that the rate which the density decreases on each site is equal to

the sum of all outgoing currents. Equation (3.7) can be also viewed as an integral of the

usual differential continuity equation (2.35) over a small volume element surrounding

the site r. See Fig. 3.1.

Now we need to introduce another equation of primary importance for the lattice

TDDFT. This is a lattice analogue of a divergence of the local force balance equa-

tion (2.47). Like before It can be derived by differentiating the continuity equation (3.4)

with respect to time, and using Eq. (3.1) to transform the derivative of the right hand

side. After straightforward calculations, the lattice force balance equation reduces to

the following form

n̈(r; t) = 2Re
∑
r′

Tr,r′ρ(r, r′; t)[v(r′; t)− v(r; t)] + q(r; t). (3.8)

Here q(r; t) stands for a ”lattice divergence” of the internal stress force,

q(r; t) = −2Re
∑
r′,r′′

Tr,r′
{
ρ2(r, r′′, r′; t)(wr,r′′ − wr′,r′′)

+ [Tr′,r′′ρ(r, r′′; t)− Tr,r′′ρ(r′, r′′; t)]
}
, (3.9)
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where ρ2(r, r′′, r′; t) in the right hand side is the two body density matrix,

ρ2(r, r′′, r′; t) = N (N − 1)
∑

r3,...,rN

ψ∗(r, r′′, ..., rN ; t)

× ψ(r′, r′′, ..., rN ; t). (3.10)

A detailed derivation of the continuity equation can be found in the appendix A.2.

A special role of the force balance equation (3.8) for TDDFT follows from the fact that it

explicitly relates the potential v(r; t) to the density n(r; t) and the instantaneous many-

body state ψ(t). As we already discussed in the previous chapter it has a defining role in

the TDDFT and together with the Schrödinger equation form a non-linear Schrödinger

equation . This equation (3.8) is the main result of the present section, which we will

use in the next section to analyze the existence of the lattice TDDFT.

3.3 TDDFT on a lattice

The whole concept of TDDFT is based on the existence of a 1:1 map between the time

dependent density and the external potential. In this section we will present the mapping

and the v-representability theorems for the lattice TDDFT which were published in Ref.

[106].

3.3.1 Statement of the problem and the basic existence theorem

Here we will use the NLSE approach to TDDFT-type theories [9, 13, 15, 16] introduced

in the chapter II.

In this framework the proof of the existence of TDDFT reduces to proving the uniqueness

and existence of solutions to a nonlinear many-body problem, e.g., NLSE in Eqs. (2.48) in

real space supplemented with an initial condition which satisfies the consistency relations

of Eqs. (2.50) and (2.51).

Strategically the solution of the outlined nonlinear problem contains two major steps: (i)

inverting the Sturm-Liouville operator in the left hand side of Eq. (2.49) to find the po-

tential as a functional of a given density and the instantaneous state, v[n(t), |ψ(t)〉](r);

and (ii) inserting this potential into Eq. (2.48) and solving the resulting NLSE. In a
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continuum proving the corresponding existence theorems for either step is a highly non-

trivial and currently unsolved problem, although a significant progress has been made

recently [17, 18, 118]. However the problems (i)-(ii) for the lattice many-body theory

due to the finite dimensionality of the Hilbert space is more manageable and therefore

a rigorous proof of existence and uniqueness can be given.

On a lattice the construction of the inverse map {n(t),Ψ0} 7→ {v(t),Ψ(t)} consists of

solving the discrete Schrödinger equation (3.1), where the potential v(r; t) is determined

self-consistently from the lattice force balance equation of Eq. (3.8) which we rewrite as

follows ∑
r′

kr,r′ [ψ(t)]v(r; t) = n̈(r; t)−q[ψ(t)](r). (3.11)

Here the functional q[ψ(t)](r) is defined by Eq. (3.9) and we introduced the following

notation

kr,r′(ψ) = 2Re

[
Tr,r′ρ(r, r′)− δr,r′

∑
r′′

Tr,r′′ρ(r, r′′)

]
. (3.12)

The initial condition for the nonlinear problem of Eq. (3.1) and (3.11) should satisfy the

consistency conditions which follow from the definition of the density Eq. (3.3) and the

continuity equation (3.2)

N
∑

r2,...,rN

|ψ0(r, r2, ..., rN )|2 = n(r; t0), (3.13)

−2Im
∑
r′

Tr,r′ρ0(r, r′) = ṅ(r; t0). (3.14)

Equations (3.1), (3.11), (3.13), and (3.14) are the lattice analogs of Eqs. (2.29), (2.47)

and (2.50). A dramatic simplification of the lattice theory comes from the fact that

both the Hilbert space H and the space V of lattice-valued potentials become finite

dimensional with dimensions MN and M , respectively. In particular, the lattice N -

body Schrödinger equation (3.1) corresponds to a system of MN ODE, while the force

balance equation (3.11) reduces to a system of M algebraic equations. In fact, Eq. (3.11)

can be conveniently rewritten in a matrix form

K̂(ψ)V = S(n̈, ψ), (3.15)
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where K̂ is a real symmetric M ×M matrix with elements kr,r′ of Eq. (4.33), and V

and S are M -dimensional vectors with components

vr = v(r) and sr(n̈, ψ) = n̈(r)− q[ψ](r), (3.16)

respectively. The K̂-matrix in Eq. (3.15) is a lattice analog of the Sturm-Liouville

operator m−1∇n∇ in Eq. (2.47). Hence on a lattice the step (i) in solving our nonlinear

many-body problem reduces to the simple matrix inversion which can be performed if

the matrix K̂ is nondegenerate. At this point it is worth noting that because of the

gauge invariance K̂ matrix of Eq. (4.33) it always has at least one zero eigenvalue that

corresponds to a space-constant eigenvector. Therefore if V is the M -dimensional space

of lattice potentials v(r), then the invertibility/nondegeneracy of K̂ should always refer

to the invertibility in theM−1-dimensional subspace of V orthogonal to a constant vector

vC(r) = C. Physically this means that the force balance equation (3.11) determines the

self-consistent potential v[n, ψ](r) only up to an arbitrary constant.

Now we are in a position to formulate and prove the basic existence and uniqueness

theorem on the lattice TDDFT. All statements of Theorem below refer to the lattice

N -body problem defined in section 3.2.

Theorem 3.3.1 ( existence of the lattice TDDFT). Assume that a given time-dependent

density n(r; t) is nonnegative on each lattice site, sums up to the number of particles

N , and has a continuous second time derivative n̈(r; t). Let Ω be a subset of the N -

particle Hilbert spaceH where the matrix K̂(ψ) of Eq. (4.33) has only one zero eigenvalue

corresponding to a space-constant vector. If the initial state ψ0 ∈ Ω, and the consistency

conditions of Eqs. (3.13) and (3.14) at time t0 are fulfilled, then

(i) There is a time interval around t0 where the nonlinear many-body problem of

Eqs. (3.1), (3.11) has a unique solution that defines the wave function ψ(t) and the

potential v(t) as unique functionals of the density n(t) and initial state ψ0;

(ii) The solution of item (i) is not global in time if and only if at some maximal existence

time t∗ > t0 the boundary of Ω is reached.

Proof. By the condition of theorem 3.3.1 ψ0 belongs to Ω where K̂(ψ) has only one

trivial zero eigenvalue. Hence there is a neighborhood of ψ0, such that for all ψ’s from

this neighborhood the matrix K̂(ψ) can be inverted (in the M −1-dimensional subspace
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of V, orthogonal to a constant). In other words, we can solve the force balance equation

(3.15) as V = K̂−1S and express (up to a constant) the on-site potential in terms of the

instantaneous wave function and the density

v[n, ψ](r) =
∑
r′

K̂−1
r,r′(ψ)sr(n̈, ψ). (3.17)

Substituting this potential into Eq. (3.1) we obtain the following NLSE,

i∂tψ(r1, ..., rN ; t) =
N∑
j=1

∑
r

K̂−1
rj ,rsrψ(r1, ..., rN ; t)

−
N∑
i=1

∑
xi

Tri,xiψ(...,xi, ...; t)

+
∑
j>i

wri,rjψ(r1, ..., rN ; t). (3.18)

Equation (4.15) supplemented with the initial condition of Eq. (3.2) constitutes a uni-

versal nonlinear many-body problem which determines the wave function in terms of

the density. Formally it corresponds to a Cauchy problem for a system of NH = MN

ODE of the following structural form

ψ̇ = F (ψ, t), ψ(t0) = ψ0, (3.19)

where ψ is an NH-dimensional vector living in the Hilbert space H and the right hand

side is a nonlinear function of ψ’s components.

The nonlinearity of F (ψ, t) in Eq. (4.15) comes from the dependence of the potential

v[n, ψ](r) in Eq. (4.12) on the wave function, which, in turn, is determined by the

functions K̂−1(ψ) and S(n̈, ψ). Both kr,r′(ψ) of Eq. (4.33), and sr(n̈, ψ) of Eq. (4.34)

are linear in the density matrices, and thus bilinear in ψ, forms. Therefore the potential

v[n, ψ](r) and, as a consequence, the whole right hand side F (ψ, t) in Eq. (3.19) are

rational functions of components of the wave function. Moreover, the denominator of

these rational functions never turns into zero for all ψ ∈ Ω, which implies that in Ω the

function F (ψ, t) satisfies a uniform Lipshitz condition. An explicit time dependence of

F (ψ, t) is determined by the time dependence of n̈(t) that is continuous by the condition

of the theorem. Thus we conclude that for all ψ ∈ Ω the right hand side F (ψ, t) in Eq.

(3.19) is Lipshitz in ψ and continuous in time.
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After identifying the subset Ω with the domain of Lipshitz continuity we can directly

employ the standard results of the theory of nonlinear ODE. Namely, if the initial state

ψ0 ∈ Ω, the Picard-Lindelöf theorem [119] guarantees the existence of a finite interval

t0 − δ < t < t0 + δ, with δ > 0, where the initial value problem (3.19) has a unique

solution. This solution defines a unique map {n(t), ψ0} 7→ {v(t), ψ(t)} locally in time,

in accordance with the statement (i) of the theorem.

The extension theorems for nonlinear ODE imply that the local solution cannot be

extended beyond some maximal existence time t∗ > t0 only in two cases: first, at t→ t∗

the solution becomes unbounded or, second, at t→ t∗ it reaches the boundary of Ω. In

our case the solution is guarantied to be normalized and thus bounded. Therefore we

are left only with the second possibility, which proves the statement (ii) and completes

the proof of the theorem.

We note that in the special case of t-analytic density Picard-Lindelöf theorem reduces to

the classical Cauchy theorem for the first order ODE with an analytic nonlinearity. The

Cauchy theorem implies that for a given t-analytic density the NLSE procedure returns

the wave function and the potential which are also t-analytic. Similarly t-analyticity is

preserved in the direct map – a given t-analytic potential always produces a t-analytic

density. Therefore the generation of nonanalytic densities by analytic potentials, dis-

cussed in Refs.[8–10] for continuum systems, is not possible on a lattice, which is probably

related to the boundness of lattice Hamiltonians.

3.3.2 Discussion and comments on the existence theorem

3.3.2.1 Definition of the v-representability subset Ω

According to Theorem 3.3.1, any sufficiently smooth density n(r; t) is v-representable, at

least locally, if the dynamics starts inside the subset Ω of the Hilbert space. In general

to ensure that state ψ belongs to Ω we need to check the invertibility of matrix K̂(ψ).

Although this is possible in principle, but become difficult in practice, especially for

lattices with a large number of sites. Is it possible to formulate simpler, but possibly

more restrictive criteria, which would guarantee the validity of the lattice TDDFT.
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One simple necessary condition immediately follows from the form of the matrix elements

kr,r′ in Eq. (4.33). Matrix K̂(ψ) is nondegenerate only if a lattice state ψ is connected

in a sense that any two sites can be connected by a line composed of links with nonzero

values of Tr,r′Reρ(r, r′). Indeed, for a disconnected state K̂(ψ) takes a block-diagonal

form and new zero eigenvalues appear which correspond to piecewise constant in space

eigenvectors. The number of such zero eigenvalues equals to the number of disconnected

regions on a lattice. We emphasize that a purely geometric connectivity of the lattice

does not automatically guaranty v-representability – two sites connected geometrically

by a nonzero hopping matrix element Tr,r′ can be disconnected in the above sense if for

a state ψ the quantity Reρ(r, r′) vanishes. An explicit example of such a disconnected

(one-particle) state on a connected 4-site tight-binding cluster has been recently proposed

in Ref.[22] to demonstrate a possible non-v-representability in the lattice TDDFT. We

have considered an excited state with nodes on two opposite corners of a square formed

by four sites (see Fig. 1 in Ref. [22]). The two nodes effectively separate the system into

two disconnected parts. Therefore the matrix K̂ acquires an extra zero eigenvalue and

Theorem 3.3.1 does not apply if the dynamics starts from such a state. In fact, one can

show that this particular state belongs to the border of the v-representability subset Ω.

Obviously the connectivity of the lattice state is only a necessary but not a sufficient

condition for ψ to be in Ω. The reason is that for a connected state the quantities

Tr,r′Reρ(r, r′) for different links may have different signs which can be responsible for

extra zero eigenvalues of K̂. Hence the simplest sufficient condition is the connectivity of

the state and the positivity (or negativity) of Tr,r′Reρ(r, r′) for all lattice links. In other

words, a state ψ ∈ Ω if its K̂ matrix is primitive and does not have a block-diagonal

form. This condition is easy to check in practice, but it appears to be quite restrictive.

A less restrictive criterion that in many cases can still be checked easily, is a positive

(negative) definiteness of K̂(ψ). In section 3.5 we will show that this is exactly the case

for a many-body ground state on a connected lattice. Namely, if ψ0 is a ground state,

then K̂(ψ0) is negative definite and thus ψ0 ∈ Ω, which implies the existence of the

lattice TDDFT for a system evolving from its ground state.
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3.3.2.2 Boundness of ṅ(r; t) in the lattice TDDFT

A specific feature of quantum dynamics on a lattice, which narrows the class of v-

representable densities, is the boundness of the time derivative of the density [16, 21,

24, 103]. Since the hopping rate along a given link is fixed to be Tr,r′ , the link current

of Eq. (4.7) cannot exceed a certain maximal value, i. e. |J(r, r′)| ≤ |Jmax(r, r′)|, where

|Jmax| can be estimated [16, 20, 24] using the Cauchy-Schwarz inequality

|Jmax(r, r′)| = 2|Tr,r′ρ(r, r′)| ≤ 2|Tr,r′ |
√
n(r)n(r′). (3.20)

A physical density should satisfy the continuity equation (3.7) which imposes a bound

on its time derivative,

|ṅ(r)| ≤
∑
r′

|Jmax(r, r′)|. (3.21)

At the first glance Theorem 3.3.1 does not say anything about the boundness of ṅ(r; t).

Therefore it is instructive to see how the latter can be deduced from the conditions

of the theorem. First of all we note that if the solution of the universal NLSE exists,

then the continuity equation is necessarily satisfied, which can be true only if our given

density does not violate the bound of Eq. (3.21). According to the assumptions of the

theorem the density should satisfy the consistency conditions, Eqs. (3.13) and (3.14),

and its second time derivative n̈(r; t) should be continuous in time for all t > t0. By

imposing the condition of Eq. (3.14) we explicitly require the boundness of ṅ(r; t0) at

the initial time t0, while the continuity of n̈(r; t) ensures that the physical bound of

Eq. (3.21) cannot be violated immediately. It is also worth noting that the boundness

of ṅ(r; t) is closely related to the invertibility of hatK matrix or, more precisely, to

the connectivity of the instantaneous state ψ(t). Indeed, the link current J(r, r′) of

Eq. (4.7) and the off-diagonal element kr,r′ of Eq. (4.33) are, respectively, the imaginary

and the real parts of the quantity 2Tr,r′ρ(r, r′; t). Therefore for any state ψ and r 6= r′

the following identity holds true

|J(r, r′)|2 + |kr,r′ |2 = |Jmax(r, r′)|2. (3.22)

Equation (3.22) shows that when the current J(r, r′) reaches the maximal value of

Eq. (3.20), kr,r′ turns into zero, which breaks the link between sites r and r′. Hence
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saturation of the bound in Eq. (3.21) implies breaking all links attached to a site r. This

site becomes disconnected from the rest of the lattice and the K̂ matrix acquires an

extra zero eigenvalue, indicating that the state ψ is not anymore in the v-representability

subset Ω. Thus the saturation of the bound on ṅ(r) at some time t = t∗ automatically

assumes that at this time the solution hits the boundary of Ω. This behavior is in a

clear agreement with the statement (ii) of Theorem 3.3.1.

3.4 Explicit illustration: One particle on a two-site lattice

This section is aimed to illustrating the general NLSE scheme using a simple exactly

solvable example – one particle on two sites. In spite of its simplicity this example

practically contains all features of the most general N -body case, and thus displays all

subtle points of the general formulation in a clear and transparent form. Therefore it

is advisable to read this section to get a better feeling of the formalism presented in

section 3.3. Another explicit example of NLSE for an interacting two-particle system is

given in Appendix B.

Consider a particle living on a two-site lattice. The state of the system is described

by the one-particle wave function ψr(t), where the coordinate r takes values 1 or 2

corresponding to the two lattice sites.

The dynamics of the system is described by Eq. (4.1) where the number of the particles

N = 1 and there is no interaction term in the right hand side. Therefore Eq. (4.1)

reduces to the following system of two ODE

i∂tψ1 = v1ψ1 − Tψ2, (3.23a)

i∂tψ2 = v2ψ2 − Tψ1, (3.23b)

where T is the hopping rate, and v1 and v2 are the time-dependent external potentials

on sites 1 and 2, respectively. The system of Eqs. (3.23) determines the components

of the wave functions ψ1 and ψ2 as functionals of the external potential and the initial

state ψ1,2(0) (for brevity we set t0 = 0).

To find the wave function as a functional of the density we have to construct the proper

NLSE, and for this we need an additional equation which relates the potential to the
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density and wave function. In the general framework of section 3.3 the force balance

equation of Eq. (3.8) [or, equivalently, Eq. (3.15)] serves exactly for this purpose. For

two sites K̂ is a 2× 2 matrix and therefore Eq. (3.15) takes the form

−k12 k12

k12 −k12

v1

v2

 =

n̈1−q1

n̈2−q2

 (3.24)

where krr′ and qr can easily be derived from the general definitions of Eqs. (4.33) and

(3.9), respectively,

k12 = 2T Reρ12, (3.25)

q1 = −q2 = 2T 2(|ψ2|2 − |ψ1|2). (3.26)

The link density matrix ρ12, which is in general determined by Eq. (4.6), in the present

one-particle case reduces to the product ρ12 = ψ∗1ψ2. The 2×2 matrix in the right hand

side of Eq. (3.24) is the K̂ matrix extensively discussed in the previous section. Obviously

K̂ always has a zero eigenvalue corresponding to a space-constant potential v1 = v2 = C.

If there is no other zero eigenvalue we can invert K̂ in the space perpendicular to the

constant vector vC(r) = C. Being perpendicular to vC(r) simply means that on-site

potentials sum up to zero, which for two sites implies

v1 = −v2 = v. (3.27)

This equation defines a 1-dimensional subspace of V where K̂, in principle, can be

inverted. In the present two-site case the K̂ matrix is invertible if k12 6= 0. Therefore

the v-represenatability subset Ω of the Hilbert space is defined by the following simple

condition

Re[ψ∗1ψ2] 6= 0. (3.28)

For all states satisfying the condition Eq. (3.28) we can invert K̂ matrix in Eq. (3.24)

and find the potential v = v1 = −v2 as a functional of the density and wave function,

v = − n̈1 − 2T 2(|ψ2|2 − |ψ1|2)

4TReρ12
. (3.29)

where we substituted the explicit expressions for k12 and q1 from Eqs. (3.25) and (3.26).
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The final NLSE is obtained by inserting the potential of Eq. (3.29) into the Schrödinger

equation (3.23)

i∂tψ1 = − n̈1 − 2T 2(|ψ2|2 − |ψ1|2)

4TRe[ψ∗1ψ2]
ψ1 − Tψ2, (3.30a)

i∂tψ2 =
n̈1 − 2T 2(|ψ2|2 − |ψ1|2)

4TRe[ψ∗1ψ2]
ψ2 − Tψ1. (3.30b)

This system of equations perfectly illustrates the generic structure of NLSE appearing

in the TDDFT context. Firstly, as described in section 3.3, the nonlinearity is always a

rational function with enumerator and denominator having bilinear forms in the com-

ponents of the wave function ψ. For all ψ ∈ Ω [i. e. for ψ satisfying Eq. (3.28)] the

denominator never turns to zero. Secondly, the explicit time dependence enters NLSE

only via the second time derivative of the density n̈r(t) that is assumed to be continuous.

The two properties above ensure that the right hand side of our NLSE is Lipshitz in

ψ and continuous in t. By Picard-Lindelöf theorem this guarantees the existence of a

unique solution to Eqs. (3.30) for any initial state ψ(0) from Ω.

However, this is not yet the whole story. Since the density enters the equations only

via n̈r(t), our unique solution to NLSE, in general, will reproduce only the second time

derivative of the prescribed density correctly. The whole externally given density nr(t)

is recovered from NLSE if the dynamics starts from a special manifold of the “density-

consistent” initial states which are defined by the consistency conditions of Eqs. (3.13)

and (3.14).

To proceed further with our example, we represent the wave function in the polar form

ψ1(t) = |ψ1(t)|eiϕ(t)/2, ψ2(t) = |ψ2(t)|e−iϕ(t)/2, (3.31)

and substitute it into the consistency conditions. As a result Eqs. (3.13) and (3.14)

simplify as follows, respectively,

|ψr(0)| =
√
nr(0), r = {1, 2}, (3.32)

ṅ1(0) = 2T
√
n1(0)n2(0) sinϕ(0), (3.33)

where nr(0) is the (prescribed) initial density, and ṅr(0) is the initial time derivative.

The first condition, Eq. (3.32), uniquely determines the modulus of the allowed initial
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states in terms of the initial density. Finding the “density-consistent“ initial phases

is a bit more tricky as the right hand of Eq. (3.33) is not a single valued function.

Equation (3.33) has two solutions which can be written in the following form

ϕ(+)(0) = arcsin

(
ṅ1(0)

2T
√
n1(0)n2(0)

)
≡ φ0, (3.34)

ϕ(−)(0) = π − φ0, (3.35)

where arcsin stands for the principal value of the inverse sin. In other words, φ0 defined

after Eq. (3.34) is a solution to Eq. (3.33) in the interval [−π
2 ,

π
2 ]. The existence of

two solutions to the consistency conditions means that for a given density in our simple

system the manifold of density-consistent initial states consists of the following two wave

functions

ψ
(+)
1 (0) =

√
n1(0)ei

φ0
2 , ψ

(+)
2 (0) =

√
n2(0)e−i

φ0
2 (3.36)

ψ
(−)
1 (0) =

√
n1(0)e−i

φ0
2 , ψ

(−)
2 (0) = −

√
n2(0)ei

φ0
2 (3.37)

where we disregarded an irrelevant common phase factor. By substituting Eqs. (3.36)

and (3.37) into the condition of Eq. (3.28) we find that the initial states ψ(±)(0) ∈ Ω

provided φ0 6= ±π/2. Obviously this puts a restriction on the initial values of n and

ṅ. Equation (3.34) tells us that the condition φ0 6= ±π/2 actually ensures that ṅ(0) is

properly bounded [see Eqs. (3.20) and (3.21)].

It is interesting to note that if ṅ(0) = 0, than φ0 = 0 and the density-consistent initial

states Eqs. (3.36) and (3.37) can be viewed as the ground (symmetric) and the excited

(antisymmetric) states of a dimer in the presence of some static potential.

Now we can solve NLSE of Eq. (3.30) starting from one of the allowed initial states.

The solution should return the wave function and the potential as unique functionals of

the given density nr(t). Inserting the polar representation Eq. (3.31) into Eq. (3.30) we

observe that the following form of ψr(t),

ψ1(t) =
√
n1(t)eiϕ(t)/2, ψ2(t) =

√
n2(t)e−iϕ(t)/2, (3.38)



TDDFT on a lattice 44

solves NLSE if the time-dependent phase ϕ(t) satisfies the equation

ṅ1(t) = 2T
√
n1(t)n2(t) sinϕ(t). (3.39)

For each initial state from the set of Eqs. (3.36) and (3.37) this equation has a unique

solution, provided the condition k12(ψ) 6= 0 is fulfilled.

Assume that we started from the state ψ
(+)
1 (0), Eq. (3.36). Then the solution to

Eq. (3.39) reads

ϕ = arcsin

(
ṅ1

2T
√
n1n2

)
. (3.40)

This equation together with Eq. (3.38) gives the wave function as a functional of the

density. As long as this solution exists, the element k12 = 2TReρ12 of the K̂ matrix

stays positive

k
(+)
12 = 2T

√
n1n2 cosϕ =

√
4T 2n1n2 − ṅ2

1 (3.41)

To find the potential v(t) as a functional of the density we insert Eqs. (3.38) and (3.41)

into Eq. (3.29). The results takes the following form

v(+)[n] = − n̈1 + 2T 2(n1 − n2)

2
√

4T 2n1n2 − ṅ2
1

. (3.42)

This functional reproduces the result obtained in Ref. [103]. In addition there is another

solution that corresponds to another density-consistent initial state.

If we start from the second initial state, ψ
(−)
1 (0) of Eq. (3.37), we should take the second

solution of Eq. (3.39) for the phase, namely

ϕ = π − arcsin

(
ṅ1

2T
√
n1n2

)
. (3.43)

In this case k12 changes a sign,

k
(−)
12 = −

√
4T 2n1n2 − ṅ2

1, (3.44)

which implies that the sign of the potential v is also reversed

v(−)[n] =
n̈1 + 2T 2(n1 − n2)

2
√

4T 2n1n2 − ṅ2
1

. (3.45)
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Thus, for different initial conditions the NLSE machinery produces unambiguously dif-

ferent functionals v[n] and ψ[n]. This nicely displays the initial state dependence in

TDDFT [102, 120], although in the present case the dependence is very simple.

For each density-consistent initial state the unique solution to NLSE of Eq. (3.30) exists

as long as the boundary of the subset Ω is not reached. This happens if k12(ψ) = 0,

i. e. when the expression under the square root in Eqs. (3.41) or (3.44) turns into zero.

In agreement with the general discussion in section 3.3, at this point the bound on the

time derivative of the density,

|ṅ1| < 2T
√
n1n2, (3.46)

is saturated.

In our simple model we can also visualize and completely characterize the geometry

of the v-representability subset Ω in the Hilbert space H. Since we have an effective

2-level system the projective Hilbert space can be represented by a 2-sphere, known as

a Bloch sphere. Specifically, after taking out a common phase factor, each normalized

state from H is mapped to a point on a 2-sphere in R3 (see Fig. 1) by parametrizing the

wave function as follows

|ψ〉 = cos θ/2eiϕ/2 |1〉+ sin θ/2 e−iϕ/2|2〉, (3.47)

where |1〉 and |2〉 are the orthogonal states corresponding to the particle residing on

sites 1 and 2, respectively. In this mapping the moduli of the on-site amplitudes are

represented by the azimuthal angle θ, while the phase difference ϕ corresponds to the

polar angle in spherical coordinates. As we can see from Fig. 1 the line k12(ψ) = 0 divides

the projective Hilbert space into two hemispheres, left and right, with k12 > 0 and

k12 < 0. The two hemispheres represent two disconnected parts of the v-representability

subset Ω, separated by the boundary line k12 = 0. The boundary line contains all states

for which the statements of Theorem 3.3.1 do not hold. Starting from any point on those

hemispheres, i. e. from a state ψ ∈ Ω, we uniquely recover the time evolution of the

system with a given density by solving NLSE of Eq. (3.30). As long as the trajectory

stays within the original hemisphere and does not touch the boundary, the one-to- one

density-potential map exists with the functional v[n] given by Eq. (3.42) or by Eq. (3.45),

depending on the hemisphere. Whether or not it is possible to construct a unique and



TDDFT on a lattice 46

Figure 3.2: Each normalized state in the Hilbert space H maps to a point on the
Bloch sphere. The north |1〉 and the south |2〉 poles correspond to the particle on sites
1 and 2. The line k12 = 0 divides the sphere into two (left and right) hemispheres

corresponding to two disconnected parts of the v-representability subset Ω.

universal analytic continuation for crossing the boundary and covering the whole subset

Ω is an interesting question which cannot be answered at the level of Theorem 3.3.1.

3.5 Time-dependent v-representability for a system evolv-

ing from the ground state

In this section we return to the most general case, and show that the ground state of a

lattice N -particle system always belongs to the v-representability subset Ω. This implies

that the lattice TDDFT is guaranteed to exist if the dynamics starts from the ground

state.

Assume that ψk = |k〉 form a complete set of eigenstates for the lattice many-body

Hamiltonian describing N -particle system in the presence of a static scalar potential

v0(r). Let ψ0 = |0〉 be the ground state. We are going to prove that the matrix K̂(ψ0)

evaluated at the ground state is strictly negative definite in the subspace of potentials
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that are orthogonal to a space-constant vector VC , i. e.,

V T K̂(ψ0)V ≡
∑
r,r′

v(r)kr,r′v(r′) < 0, (3.48)

for all M -dimensional vectors V = {v(r)} which satisfy the following orthogonality

relation

V TVC = C
∑
r

v(r) = 0, (3.49)

where V T stands for the transposed vector.

Our starting point is the f -sum rule (see, e. g., Ref. [121]) for the density-density response

function χr,r′(ω) = 〈〈n̂r; n̂r′〉〉ω:

− 2

π

∫ ∞
0

ωImχr,r′(ω)dω = i〈0|[ ˙̂nr, n̂r′ ]|0〉. (3.50)

To calculate the commutator in the right hand side of Eq. (3.50) we switch to the second

quantized representation and write the equation of motion for the density operator

n̂r = â†râr,
dn̂r
dt

= i
∑
r′

(Tr,r′ â
†
râr′ − Tr′,râ

†
r′ âr), (3.51)

where ar and â†r are the on-site annihilation and creation operators. Equation (3.51)

is nothing but the operator form of the continuity equation. Using Eq. (3.51) one can

easily calculate the commutator entering the right hand side of Eq. (3.50),

i[ ˙̂nr, n̂r′ ] = −Tr,r′ â†râr′ + δrr′
∑
r′′

Tr,r′′ â
†
râr′′ + h.c. (3.52)

Taking the ground state expectation value of this equation and comparing the result

with Eq. (4.33) we find

i〈0|[ ˙̂nr, n̂r′ ]|0〉 = −kr,r′ . (3.53)

Therefore the right hand side of the lattice f -sum rule is identified with the K̂ matrix

entering the definition of the v-representability subset.2

2This result is not surprizing as the matrix K̂ is a lattice analog of the Sturm-Liouville operator
m−1∇n∇, while the latter defines the right hand side of the usual f -sum rule in the contunuum (it
reduces to q2n/m for a homogeneous system).
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On the other hand, for the imaginary part of density response function we have the

following spectral representation [121]

∞∫
0

ωImχr,r′(ω)dω = −2πRe
∑
k

ωk0〈0|n̂r|k〉〈k|n̂r′ |0〉, (3.54)

where ωk0 = Ek − E0 are excitation energies of the system. Substitution of Eqs. (3.53)

and (3.54) into Eq. (3.50) leads to the spectral representation for the elements of K̂

matrix

kr,r′ = −4Re
∑
k

ωk0〈0|n̂r|k〉〈k|n̂r′ |0〉. (3.55)

Finally, inserting kr,r′ of Eq. (4.41) into the left hand side of Eq. (4.39), we arrive to the

following remarkable result

V T K̂(ψ0)V = −4
∑
k

ωk0

∣∣∣∑
r

v(r)〈0|n̂r|k〉
∣∣∣2

= −4
∑
k

ωk0|〈0|v̂|k〉|2 ≤ 0, (3.56)

where v̂ is a many-body operator corresponding to the potential v(r),

v̂ =
∑
r

v(r)n̂r. (3.57)

Let us show that the equality in Eq. (4.42) holds only for a space-constant potential

vC(r) = C. Since each term in the sum in Eq. (4.42) is non-negative, the result of

summation is zero if and only if

〈0|v̂|k〉 = 0, for all k 6= 0. (3.58)

Physically the right hand side of Eq. (4.42) is proportional to the energy absorbed by a

system after a small amplitude pulse of the form v(r; t) = v(r)δ(t). Then the condition

Eq. (4.44) simply states that nothing is absorbed only if the potential v(r) does not

couple the ground state to any excited state.

Assume that Eq. (4.44) is fulfilled and expand the vector v̂|0〉 in the complete set of

states {|k〉}

v̂|0〉 =
∑
k

|k〉〈k|v̂|0〉 = |0〉〈0|v̂|0〉 ≡ λ|0〉. (3.59)
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Therefore the condition of Eq. (4.44) implies that the ground state |0〉 is an eigenfunction

of the operator v̂. Since v̂ corresponds to a local multiplicative one-particle potential,

this can happen only if the potential is a constant. For clarity we write Eq. (4.45) in

the coordinate representation

N∑
j=1

v(rj)ψ0(r1, ..., rN ) = λψ0(r1, ..., rN ). (3.60)

Obviously this equation can be fulfilled only if the function v(r) takes the same value

λ/N on all lattice sites, which corresponds to a space-constant potential. A notable

exception is a geometrically disconnected lattice consisting of several pieces that cannot

be connected by a path composed of links with nonzero Tr,r′ . In this case the arguments

of the wave function ψ0(r1, ..., rN ) form “disconnected groups” of coordinates corre-

sponding to particles residing in the disconnected parts of the system. The coordinates

of different disconnected groups take values in “non-overlapping” parts of the lattice.

Since the number of particles in each part (number of coordinates in each group) is fixed,

Eq. (3.60) can also be satisfied with a piecewise constant potential.

Therefore we arrive to the following conclusion: for a connected lattice Eq. (4.44) is ful-

filled, and the inequality in Eq. (4.42) is saturated only for a constant in space potential.

For all potentials which are orthogonal to a constant in a sense of Eq. (4.40) the strict

inequality in Eq. (4.42) takes place. This means that matrix K̂(ψ0) is negative definite

and thus invertible in the M − 1-dimensional subspace of V orthogonal to a constant

vector VC . In other words, the ground state of an N -particle system on a connected

lattice does belong to the v-representability subset Ω. This result combined with the

general existence theorem of section 3.3 proves the following particular version of the

time-dependent v-representability theorem.

Theorem 3.5.1 (Ground state v-representability ). Let the initial state ψ0 for the time-

dependent many-body problem on a connected lattice correspond to a ground state in

the presence of some scalar potential v0(r). Then any density n(r; t) which satisfies

the consistency conditions of Eqs. (3.13) and (3.14) and has a continuous second time

derivative is locally v-representable.

This theorem is in a clear agreement with the known statement of v-representability in

the linear response regime [11].
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It is worth noting that the above ground state-based argumentation can be straight-

forwardly extended to a thermal equilibrium state. In this case Eq. (4.42) takes the

form

V T K̂βV = 4
∑
k>l

ωkl
e−βEk − e−βEl

Z
|〈l|v̂|k〉|2, (3.61)

where β is the inverse temperature, K̂β is the K̂ matrix evaluated for the thermal

equilibrium state, Z is the partition function, and ωkl = Ek−El. By the same token the

form defined by Eq. (3.61) is strictly negative for all potentials orthogonal to a constant

vector. Therefore Theorem 2 should also apply to the ensemble version of TDDFT

based on the von Neuman equation for the N -body density matrix. Of course in this

case we need to prove the ensemble extension of Theorem 1, but currently this also

seems relatively straightforward.



Chapter 4

Quantum electrodynamical

time-dependent

density-functional theory for

many-electron systems on a

lattice

4.1 Introduction

In the present chapter we extend the uniqueness and existence theorems of the lattice

TDDFT to systems strongly interacting with quantized electromagnetic field. This

generalization, which can be named as QED-TDDFT, has been proposed recently in

Ref. [40].

To make the idea of the proof more transparent we start with the simplest nontrivial

system of one electron on a two-site lattice (a Hubbard dimer) coupled to a single

photonic mode. It is worth noting that formulation of TDDFT for this system has

This chapter is a part of the article ”Quantum electrodynamical time-dependent density-functional
theory for many-electron systems on a lattice”, Physical Review B 90, 195149 (2014), by Mehdi Farzaneh-
pour, I. V. Tokatly.
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its own value. Indeed, a dimer coupled to a quantum Bose field is equivalent to such

well known and popular models such as the quantum Rabi model and the spin-boson

model. [42–44] For this system we prove that, provided some well-defined conditions

are fulfilled, there exists a unique mapping from the time-dependent on-site density and

the expectation value of the bosonic coordinate to the wave function and the external

driving potentials. Afterwards we extend the QED-TDDFT mapping theorem to the

general case of N interacting electrons on an M -site lattice coupled to multiple photonic

modes. Finally we extend theorem 3.5.1 to cover the local existence/v-representability of

the dynamics started from the ground state of general lattice Hamiltonian.

This chapter is structured as the following. In section 4.2 we present a complete formu-

lation of QED-TDDFT for the Hubbard dimer coupled to a single photonic mode. We

derive the equation of motion for the expectation value of the field and the force balance

equation and construct the corresponding universal (NLSE). Then we prove the mapping

theorem of QED-TDDFT for this model by applying the known results from the theory

of semilinear PDE [114, 115]. In section 4.3 we generalize the formalism to the system of

many particles on a many-site lattice which is coupled to multiple photonic modes. We

derive the corresponding NLSE to the many-body system and then formulate and prove

the general existence and uniqueness theorem for the lattice QED-TDDFT. Section 4.4

presents a practically important case of a system evolving from its ground state. The

main outcome of this section is the theorem of a local v-representability for the initial

ground state. In Conclusion we summarize our results.

4.2 QED-TDDFT for a Hubbard dimer coupled to a single

photonic mode

To make our approach more transparent and clear we first consider a simple system of

one quantum particle on a two-site lattice, which is coupled to a single mode photonic

field. The state of the system at time t is characterized by the electron-photon wave

function ψi(p; t) = 〈i, p|Ψ(t)〉, where the index i = {1, 2} corresponds to the particle

“coordinate” and takes values on the lattice sites, and the real continuum variable p

describes the photonic degree of freedom.
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Figure 4.1: A schematic view of a two-site lattice in a cavity. The electron, which
can tunnel from one site to the other with the hopping rate T , experiences the on-site
potential vi(t) specific to that site. The photonic field in the cavity is driven by a time-
dependent external dipole moment dext(t). The wave length of the electromagnetic field
2π/ω is proportional to the cavity size and assumed to be much larger than the lattice
size, so that we can adopt the dipole approximation for the electron-photon interaction.

In this model the electronic density is coupled to the external on-site potential vi(t)

which acts on the individual sites, while the photonic subsystem can be driven (excited)

independently by an external time-dependent dipole moment dext(t). Assuming that the

wavelength of the photon field is much larger than the size of the system, we adopt the

dipole approximation, see section 2.4. It is convenient to use the length gauge for the

photon field. In this case the photon variable p is associated to the electric field which

is coupled to the electron dipole moment [40, 41]. Figure 4.1 shows a schematic view of

a two-site lattice in a quantum cavity.

The following time-dependent Schrödinger equation governs the time evolution of the

electron-photon wave function ψi(p; t) from a given initial state ψi(p, t0)

i∂tψ1(p; t) = −Tψ2(p; t) +

(
−∂2

p

2
+
ω2p2

2
+ dext(t)p+ λp+ v1(t)

)
ψ1(p; t),(4.1a)

i∂tψ2(p; t) = −Tψ1(p; t) +

(
−∂2

p

2
+
ω2p2

2
+ dext(t)p− λp+ v2(t)

)
ψ2(p; t),(4.1b)

where the real coefficient T corresponds to the rate of hopping from one site to the other,

ω is the frequency of the photon mode and λ is the electron-photon coupling constant

(see figure 4.1).

Formally Eqs. (4.1) describes a driven two-level system coupled to a quantum harmonic
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oscillator. The Hamiltonian of this system is a discretized version of the general electron-

photon Hamiltonian in the length gauge Eq. (2.75). Because of the gauge invariance the

physics is not changed if we add a global time-dependent constant to the potential.

Therefore without loss of generality we can adopt the gauge condition v1 + v2 = 0 and

define the on-site potential as follows v(t) = v1(t) = −v2(t). With this definition the

Hamiltonian in Eq. (4.1) takes the form

Ĥ(t) = −T σ̂x + v(t)σ̂z + λpσ̂z −
∂2
p

2
+
ω2p2

2
+ dext(t)p. (4.2)

σ̂x, and σ̂z are the Pauli matrices, and a 2× 2 unit matrix is assumed in the last three

terms. The first two terms in Eq. (4.2) correspond to a two-level system (spin 1/2),

while the last three terms describe a driven harmonic oscillator. Finally the third term

in Eq. (4.2) is a linear coupling between the discrete and continuous variables. It is

now clear the Eq. (4.1) is equivalent to the Schrödinger equation for the Rabi model

or single mode spin-boson model[42–44]. Therefore the subsequent discussion and all

results of this section are directly applicable to these models. We also note that a

detailed derivation of Hamiltonian Eq. (4.2) for a nonrelativistic system in a cavity can

be found in Ref. [41] (see Appendix E).

Now, let us turn to the formulation of QED-TDDFT. In general all DFT-like approaches

assume that the state of the system is uniquely determined by a small set of basic

observables, such as the density in TDDFT, the current in TDCDFT. Below we prove

a theorem which generalizes the lattice-TDDFT theorem 3.3.1 to the system coupled to

a quantum oscillatoric degree of freedom as defined in Eq. (4.1). Namely, we will prove

that, provided that some well defined conditions are fulfilled, the electron-photon wave

function Ψ(t) is uniquely determined by the on-site density ni and the expectation value

of the photonic coordinate P = 〈p〉.

In our formulation we follow the NLSE approach to TDDFT[9, 13, 104–106] and adopt

the same general logic as in Ref. [106]. We start with defining the basic observables for

our two-site model. The first basic variable, is the on-site density ni – the number of

particles on the site i

ni(t) =

∫
dp|ψi(p; t)|2. (4.3)
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For the electron-photon system the second, photon-related variable is required. The

most natural choice [40, 41] is the expectation value P of the photonic coordinate p

P =

∫
dp(|ψ1(p; t)|2 + |ψ2(p; t)|2)p. (4.4)

The next step is to find the equations which relate the basic observables, the density ni

and the field average P , to the “external potentials”, the on-site potential vi and the

external dipole moment dext. Therefore we proceed by deriving the equations of motion

for these two fundamental variables.

In order to derive the relevant equation of motion for ni we calculate the time-derivative

of (4.3) and then substitute the derivatives of the wave function from the Schrödinger

equation (4.1). The result takes the following form

ṅ1(t) = −2Im[Tρ12(t)], (4.5)

where ṅ = ∂tn, and ρ12(t) is the density matrix ,

ρ12 =

∫
ρ12(p; t)dp =

∫
ψ∗1(p; t)ψ2(p; t)dp. (4.6)

The conservation of the particles dictates that the change in the density in one site

is equal to minus the change in the other site ṅ2 = 2ImTρ12. Obviously Eq. (4.5) is

a lattice version of the continuity equation for site 1. Since in the left hand side of

Eq. (4.5) we have the time derivative of the on-site density, the right hand side should

be identified with a current flowing along the link connecting the two sites

J12(t) = 2Im[Tρ12(t)]. (4.7)

Differentiating the continuity equation (4.5) with respect to time and replacing the

derivative of the wave function from the Schrödinger equation we get an equation which

connects the on-site density ni to the on-site potential vi

n̈1(t) = −2T
(

Re[ρ12](v1(t)− v2(t))

+T (n1 − n2) + 2λ

∫
Re[ρ12(p)]pdp

)
. (4.8)
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Physically this equation can be interpreted as the (discrete) divergence of the force

balance equation for the two-site model.

A special role of Eq. (4.8) for TDDFT follows from the fact that it explicitly relates the

potential disbalance v1(t) − v2(t) to the density ni(t) and its derivatives. Like before,

the conservation of the particle imposes n̈2 = −n̈1. Hence, the force balance equation

for n2(t) is obtained from Eq. (4.8) by changing the sign in the right hand side.

It is worth noting that the coefficient of the potential disbalance, v1(t)−v2(t), in the force

balance equation (4.8) is the kinetic energy k12 = 2TRe[ρ12] therefore for the current

J12 and kinetic energy k12 we have:

K12 + iJ12 = 2Tρ12. (4.9)

Importantly, Eq. (4.8) contains only the potential disbalance v1 − v2 which reflects the

well known gauge redundancy of TDDFT. For a given density the force balance equation

fixes the on-site potential up to a constant. In order to resolve this issue we fix the

gauge by considering on-site potentials which sum up to zero v1 = −v2 = v. This can be

interpreted as a switching from the whole two dimensional space of all allowed potentials

to the one dimensional space of equivalence classes for physically distinct potentials.

Next, we need to derive a similar equation for P . So we differentiate (4.4) with respect

to t and simplify the right hand side using the Schrödinger equation (4.1) and the result

is as follows:

Ṗ = Im
[ ∫ (

ψ∗1∂pψ1 + ψ∗2∂pψ2

)
dp
]
. (4.10)

For brevity we suppressed the explicit p- and t-dependence of the wave function.

By differentiating Eq. (4.10) with respect to time and again substituting the time deriva-

tives from the Schrödinger equation (4.1) we get an equation which relates dext to P , P̈

and ni

P̈ = −ω2P − λ(n1 − n2)− dext(t). (4.11)

This equation is, in fact, the inhomogeneous Maxwell equation projected on the single

photon mode [41].
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In the next subsection we will use the force balance equation (4.8) and equation of

motion (4.11) to analyze the existence of a TDDFT-like theory for a two-site lattice

coupled to a photonic field.

Statement of the mathematical problem and the basic existence theorem

The standard TDDFT is based on the existence of a one-to-one map between the time-

dependent density and the external potential. In the case of the electron-photon system

the map is slightly different. Here the two basic observables, the on-site density ni and

the expectation value of the field P , are mapped to the two external fields, the on-site

potential v(t) and the external dipole moment dext(t).

Equations (4.1), (4.3) and (4.4) uniquely determine the instantaneous wave function

Ψ(t), the on-site density ni and the field average P as functionals of the initial state Ψ0 ,

the on-site potential v(t) and the external dipole moment dext(t). This defines a unique

“direct” map {Ψ0, v, dext} → {Ψ, n, P} that is related to the standard direct quantum

mechanical problem – reconstruction of the wave function Ψ(t) from the initial data and

the external potentials.

The TDDFT formalism for this problem relies on the existence of a unique map from the

density n, the field average P and Ψ0 to the potential v, the external dipole moment dext,

and the wave function Ψ. In other words, TDDFT assumes the existence of a unique

solution to the “inverse” problem of reconstructing the state Ψ(t) and the potentials

from the given observables and the initial data. In the following we will refer to the

corresponding map {Ψ0, n, P} → {Ψ, v, dext} as the“inverse map” to indicate that it is

related to the above inverse problem. To prove the inverse map we follow the NLSE

approach to TDDFT-type theories [9, 13, 104–106].

Assuming ni(t) and P (t) are given functions of time, we express v and dext from the

equations (4.8) and (4.11) as follows

v = −
n̈1 + 2T 2(n1 − n2) + 4Tλ

∫
Re[ρ12(p)]pdp

4TRe[ρ12]
, (4.12)

dext = −P̈ − ω2P − λ(n1 − n2), (4.13)

where we assumed that Re[ρ12] 6= 0.
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We note that at any time, including the initial time t = t0 , the given density has to

be consistent with the wave function. At t = t0 this means that the right hand side

of Eq. (4.3) evaluated at the initial wave function Ψ0 has to be equal to ni(t0) in the

left hand side. The same follows for the first derivative of the density ṅi and the field

average P and its first derivative Ṗ . All of them should be consistent with the initial

state Ψ0 through Eqs. (4.5), (4.4) and (4.10) respectively. The consistency conditions

which should be fulfilled are the following

ni(t0) =

∫
dp|ψi(p; t0)|2, (4.14a)

ṅ1(t0) = −2Im[Tρ12(t0)], (4.14b)

P (t0) =

∫
dp p

(
|ψ1(p; t0)|2 + |ψ2(p; t0)|2

)
, (4.14c)

Ṗ (t0) = Im
[ ∫

dp
(
ψ∗1(p; t0)∂pψ1(p; t0)

+ ψ∗2(p; t0)∂pψ2(p; t0)
)]
. (4.14d)

The on-site potential v of Eq. (4.12) and the external dipole moment dext of Eq. (4.13)

can be substituted as functionals of n, P and Ψ into the Schrödinger equation (4.1). The

result is a universal NLSE in which the Hamiltonian is a function of the instantaneous

wave function and the (given) basic variables

i∂tΨ(t) = H[n, P,Ψ]Ψ(t). (4.15)

Now the question of existence of a unique QED-TDDFT map {Ψ0, ni, P} → {Ψ, v, dext}

can be mathematically formulated as the problem of existence of a unique solution to

NLSE (4.15) with given ni(t), P (t) and Ψ0.

Theorem 4.2.1 (existence of QED-TDDFT for a Hubbard dimer coupled to a photonic

mode). Assume that the on-site density ni(t) is a positive, continuous function of time,

which has a continuous second derivative and adds up to unity, n1(t) + n2(t) = 1.

Consider P (t) to be a continuous function of time with a continuous second derivative.

Let Ω be a subset of the Hilbert space where Re[ρ12] 6= 0. If the initial state Ψ0 ∈ Ω ,

and the consistency conditions of Eqs. (4.14) hold true, then:

(i) there is an interval around t0 in which NLSE (4.15) has a unique solution and,

therefore, there exists a unique map {Ψ0, ni, P} → {Ψ, v, dext}.
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(ii) The solutions (i. e. the QED-TDDFT map) is not global in time if at some t∗ > t0

the boundary of Ω is reached.

Proof. By the condition of the theorem, Ψ0 ∈ Ω where Re[ρ] 6= 0. Therefore the on-site

potential v can be expressed in terms of the density and the wave function as given by

(4.12), and the Hamiltonian Ĥ[n, P,Ψ] in the universal NLSE is well defined.

Let us rewrite NLSE (4.15) in the following form

i∂tΨ =
(
Ĥ0 + Ĥ1[n, P,Ψ]

)
Ψ, (4.16)

where Ĥ0 is the time-independent (linear) part of the Hamiltonian,

Ĥ0 = −1

2
∂2
p +

1

2
ω2p2 + λpσ̂z − T σ̂x, (4.17)

and Ĥ1 contains all time-dependent, in particular non-linear, terms,

Ĥ1[n, P,Ψ] = dext[n, P ]p+ v[n, P,Ψ]σ̂z. (4.18)

Here dext[n, P ] and v[n, P,Ψ] are defined by Eqs. (4.13) and (4.12), respectively.

Since Ĥ0 is the Hamiltonian of the static shifted harmonic oscillator, it defines a continu-

ous propagator in the Hilbert space of square integrable functions. Therefore Eq. (4.16)

can be transformed to the following integral equation,

Ψ(t) = e−iĤ0(t−t0)Ψ0 (4.19)

−i

∫ t

t0

e−iĤ0(t−s)Ĥ1[n(s), P (s),Ψ(s)]Ψ(s)ds.

To prove the existence of solutions to this equation we can use well established theorems

from the theory of quasilinear PDE. [114, 115] 1 In particular, we apply the following

result. Consider an integral equation of the form,

u(t) = W (t, t0)u0 +

∫ t

t0

W (t, s)Ks(u(s))ds, (4.20)

1Theorem 8 page then of Harauz.
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where W (t, s) is a continuous linear propagator on T = [t0,∞) and the kernel Kt(u) is

continuous function of time, which is locally Lipschitz in a Banach space B. Then there

is an interval [t0, t
∗) where Eq. (4.20) has a unique continuous solution.

In our case we consider L2 as the proper Banach space B. The kernel Kt(Ψ) =

Ĥ1[n(t), P (t),Ψ]Ψ in Eq. (4.19) is continuous and Lipschitz in L2 if n(t), n̈(t), P (t)

and P̈ (t) are continuous functions of time, Ψ ∈ Ω, n1, n2 > 0, n1 + n2 = 1 and the

consistency conditions Eqs. (4.14) are fulfilled. Hence if all conditions of the theorem

are satisfied Eq. (4.19) has a unique solution. Moreover since in this case Ψ0 is in the

domain of H0, Ψ0 ∈ D(H0), there exists a unique differentiable (strong) solution of

Eq. (4.19) which proves the statement (i) of the theorem.

The extension theorems for quasilinear PDE imply that the local solution cannot be

extended beyond some maximal existence time t∗ > t0 only in two cases: first, at t→ t∗

the solution becomes unbounded or, second, at t→ t∗ it reaches the boundary of Ω. In

our case the solution is guaranteed to be normalized and thus bounded. Therefore we

are left only with the second possibility, which proves the statement (ii) and completes

the proof of the theorem.

The above theorem generalizes the results of Ref. [41] where the uniqueness (but not the

existence) of the map {Ψ0, ni, P} → {Ψ, v, dext} has been proven for analytic in time

potentials using the standard Taylor expansion technique.

The Theorem 4.2.1 can be straightforwardly generalized to the case of multiple photon

modes. The only difference is that Ĥ0 in Eq. (4.17) becomes the Hamiltonian of a

multidimensional shifted harmonic oscillator. The rest of the proof remains unchanged.

This proves the existence of QED-TDDFT for the spin-boson model in its standard

form [43]. A less obvious generalization for the system of many interacting electrons on

a many-site lattice is presented in the next section.

4.3 QED-TDDFT for many electrons on many-site lattices

interacting with cavity photons

In the previous section we proved the QED-TDDFT existence theorem for a system of

one electron on a two-site lattice coupled to a photonic mode. Below we generalize our
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results to the case of N interacting electrons on an M -site lattice coupled to L pho-

tonic modes. The state of the system is described by an electron-photon wave function

ψ(r1, · · · , rN ; {p}) where coordinates ri of the particles (i = 1, 2, · · · , N) take values on

the lattice sites and {p} is the set of continuous coordinates describing the photonic

(oscillatoric) degrees of freedom {p} = {p1, p2, ..., pL}. Again we assume that the elec-

tronic subsystem is driven by classical on-site potentials v(r; t) and each photonic mode

is coupled to corresponding external dipole moment dαext(t). As usual, assuming that the

size of the lattice is much smaller than the wave length of the photon field, we describe

the electron-photon coupling at the level of the dipole approximation with λα being the

coupling constant to the α-photon.

The following time-dependent Schrödinger equation describes the time evolution of the

system from the initial state ψ0(r1, · · · , rN ; {p})

i∂tψ(r1, ..., rN ; {p}) = −
N∑
i=1

∑
xi

Tri,xiψ(...,xi, ...; {p})

+

N∑
i=1

v(rj ; t)ψ(r1, ..., rN ; {p}) +
∑
j>i

wri,rjψ(r1, ..., rN ; {p})

+
K∑
α=1

[
− 1

2
∂2
p +

1

2
ω2
αp

2
α + dαext(t)pα

]
ψ(r1, ..., rN ; {p})

+
N∑
i=1

K∑
α=1

λα · ripαψ(r1, ..., rN ; {p}), (4.21)

where the real coefficients Tr,r′ = Tr′,r correspond to the rate of hopping from site r

to site r′ (for definiteness we set Tr,r = 0), and wr,r′ is the potential of a pairwise

electron-electron interaction.

Following the logic of section 4.2 we define the on-site density n(r) and the expectation

value of the field Pα for a mode α, which are the basic variables for the QED-TDDFT

n(r) = N
∑

r2,...,rN

∫
|ψ(r, r2, ..., rN ; {p})|2dp, (4.22)

Pα =
∑

r1,...,rN

∫
pα|ψ(r, ..., rN ; {p})|2dp, (4.23)

where dp = dp1 · · · dpL.
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Similar to the two-site case we derive the force balance equation by calculating the

second derivative of the density (4.22) and using the Schrödinger equation (4.21) to

simplify the terms with the time derivative of the wave function

n̈(r) = 2Re
∑
r′

Tr,r′ρ(r, r′)(v(r′; t)− v(r; t)) + q(r; t) + f(r; t), (4.24)

where q(r; t) is the lattice divergence of the internal forces

q(r; t) = − 2Re
∑
r′,r′′

Tr,r′
[
Tr′,r′′ρ(r, r′′)− Tr,r′′ρ(r′, r′′)

+ ρ2(r, r′′, r′)(wr,r′′ − wr′,r′′)
]
, (4.25)

and f(r; t) is the force exerted on electrons from the photonic subsystem

f(r; t) = 2Re
∑
α

∑
r′

Tr,r′λα · (r′ − r)

∫
pαρ(r, r′; pα)dpα. (4.26)

Here ρ(r, r′) is the one-particle density matrix

ρ(r, r′) =

∫
ρ(r, r′; pα)dpα (4.27)

= N
∑

r2,...,rN

∫
ψ∗(r, r2, ..., rN ; {p})ψ(r′, r2, ..., rN ; {p})dp

and ρ2(r, r′′, r′) is the two-particle density matrix

ρ2(r, r′′, r′) = N(N − 1)
∑

r3,...,rN

∫ [
ψ∗(r, r′′, ..., rN ; {p})

×ψ(r′, r′′, ..., rN ; {p})
]
dp (4.28)

The equation of motion for the field average Pα (4.23) is derived in the same manner as

in section 4.2 by calculating the second time derivative of Pα and using the Schrödinger

equation (4.21),

P̈α = −ω2
αPα − dαext − λα · d, (4.29)

where d is the total dipole moment of the N -electron system

d =
∑
r

rn(r). (4.30)
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The existence of QED-TDDFT is equivalent to the existence of the inverse map {Ψ0, n(r), Pα} →

{Ψ, v, dαext}. To study this map we compile the universal NLSE by expressing the on-

site potential v(r) and the external dipole moment dαext in terms of the fundamental

observables n(r) and Pα, and the wave function Ψ.

To find the dipole moment dαext as a functional of the field average Pα and the density

n(r) we only need to rearrange Eq. (4.29)

dαext = −
(
P̈α + ω2

αPα + λα · d
)
. (4.31)

The problem of finding the potential v(r) as a functional of n(r) and Ψ is more involved

[106] as we need to solve the system of M linear equations, Eq. (4.24), for v(r). Let us

first rewrite (4.24) in a matrix form as follows

K̂[Ψ]V = S[n̈,Ψ], (4.32)

where K̂ is a real symmetric M ×M matrix with elements

kr,r′ [Ψ] = 2Re

[
Tr,r′ρ(r, r′)− δr,r′

∑
r′′

Tr,r′′ρ(r, r′′)

]
(4.33)

and V and S are M -dimensional vectors with components

vr = v(r), (4.34a)

sr[n̈,Ψ] = −n̈(r)− q[Ψ](r)− f [Ψ](r) . (4.34b)

The problem of inverting (solving for v(r)) the force balance equation (4.32) for a general

lattice, in the context of the standard electronic TDDFT, is analyzed in the previous

chapter. The same argumentation regarding the properties of the matrix K̂ is applicable

in the present case. Solving Eq. (4.24) for the on-site potential v(r) is equivalent to

multiplying both sides of Eq. (4.32) by inverse of the K̂-matrix. Therefore the matrix

K̂ must be non-degenerate. At this point it is worth noting that because of the gauge

invariance K̂ matrix (4.33) always has at least one zero eigenvalue that corresponds

to a space-constant eigenvector. Therefore if V is the M -dimensional space of lattice

potentials v(r), then the invertibility/nondegeneracy of K̂ should always refer to the

invertibility in an M − 1-dimensional subspace of V, which is orthogonal to a constant
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vector vC(r) = C. In more physical terms this means that the force balance equation

(4.33) determines the self-consistent potential v[n,Ψ](r) only up to an arbitrary constant,

like Eq. (4.8) in section 4.2. Therefore in the orthogonal subspace of V we have

V = K̂−1S, (4.35)

where by K̂−1 we mean inversion in the subspace of V. Equation (4.35) is the required

functional v[n,Ψ](r) which can be used to construct the universal NLSE.

Finally, like in the two-site case (see section 4.2) the initial state Ψ0, the density n(r)

and the field average Pα should satisfy the consistency conditions at t = t0

n(r; t0) = N
∑

r2,...,rN

∫
|ψ0(r, ..., rN ; {p})|2dp, (4.36a)

ṅ(r; t0) = −2Im[
∑
r′

Tr,r′ρ0(r, r′)], (4.36b)

Pα(t0) =
∑

r1,...,rN

∫
pα|ψ0(r1, ..., rN ; {p})|2dp, (4.36c)

Ṗα(t0) = Im
∑

r1,...,rN

∫ [
ψ∗0(r1, ..., rN ; {p})

× ∂pαψ0(r, ..., rN ; {p})
]
dp. (4.36d)

By substituting the on-site potential v(r) from Eq. (4.35), and the field average Pα from

Eq. (4.31) into the Schrödinger equation (4.21) we find the proper NLSE

i∂tΨ(t) = H[n, P,Ψ]Ψ(t), (4.37)

which we use to prove the existence of the unique inverse map {Ψ0, n(r), Pα} → {Ψ, v(r), dαext}

and thus the existence of the QED-TDDFT in a close analogy with the Theorem 4.2.1.

Theorem 4.3.1 (existence of the QED-TDDFT for lattice systems coupled to cavity pho-

tons). Assume that a given time-dependent density n(r; t) is nonnegative on each lattice

site, sums up to the number of particles N , and has a continuous second time derivative

n̈(r; t). Also assume that Pα(t) is a continuous function of t and has a continuous sec-

ond time derivatives P̈α(t). Let Ω be a subset of the N -particle Hilbert space H where

the matrix K̂[Ψ] (4.33) has only one zero eigenvalue corresponding to the space-constant

vector. If the initial state Ψ0 ∈ Ω, and at time t0 the consistency conditions of Eq. (4.36)

are fulfilled, then:
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(i) There is a time interval around t0 where the many-body NLSE (4.37) has a unique

solution that defines the wave function Ψ(t), the external potentials v(t) and dαext(t) as

unique functionals of the density n(r; t), field average Pα, and the initial state Ψ0;

(ii) The solution of item (i) is not global in time if and only if at some maximal existence

time t∗ > t0 the boundary of Ω is reached.

The proof of this theorem goes along the same lines as the proof of Theorem 4.2.1 in

section 4.2 . We transform NLSE (4.37) to a multidimensional integral equation similar

to (4.19) and then apply the general existence results [114, 115] for equations of the

type of Eq. (4.20) to show that the statements (i) and (ii) are in fact true. We skip the

details as the procedure is mostly a straightforward repetition of the proof presented in

section 4.2.

4.4 Time-dependent v-representability for a system evolv-

ing from the ground state

In this section we will show that the ground state of a quite general lattice Hamiltonian

belongs to the v-representability subset Ω. This implies that the map {Ψ0, n, Pα} →

{Ψ, v, dαext} is guaranteed to exist if the dynamics starts from the ground state. The

main theorem of this section is a generalization of Theorem 3.5.1.

Consider the following lattice Hamiltonian of many mutually interacting electrons cou-

pled to photonic modes

Ĥα,β,γ = (T̂ + V̂ + αŴe−e)⊗ Îph + Îe ⊗ Ĥph + βHe−ph, (4.38)

where T̂ is the usual lattice operator of the kinetic energy, V̂ corresponds to the interac-

tion with a local external potential, Ŵ describes the electron-electron interaction, Ĥph

is the photonic Hamiltonian and He−ph is the Hamiltonian for the interaction between

electrons and the photon modes, Îph and Îe are, respectively, the unit matrices in the

photonic and the electronic sectors of the Hilbert space, and α and β are real coefficients.

Here we demonstrate that the ground state of the Hamiltonian (4.38), for any α, β ∈ R

and any on-site potential, belongs to the v-representability subset Ω if all terms in
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Eq. (4.38) except for T̂ commute with the density operator n̂r. The proof of this quite

general statement closely follows the proof of the Theorem 3.5.1. Therefore, below we

only briefly go through the main line of arguments.

Assume that Ψk = |k〉 form a complete set of eigenstates for the Hamiltonian (4.38)

and let Ψ0 = |0〉 be the ground state. We will show that the matrix K̂[Ψ0] evaluated

at the ground state is strictly negative definite in the subspace of potentials that are

orthogonal to a space-constant vector VC . That is,

V T K̂[Ψ0]V ≡
∑
r,r′

v(r)kr,r′v(r) < 0, (4.39)

for all M -dimensional vectors V = {v(r)} which are orthogonal to the spatially constant

potential

V TVC = C
∑
r

v(r) = 0, (4.40)

where V T stands for a transposed vector. Therefore K̂[Ψ0] is nondegenerate in the

subspace orthogonal to the constant potentials.

Using the f -sum rule and the spectral representation of the density-density response

function (see, for example, Ref. [122]) one can represent the elements of K̂-matrix

Eq. (4.33) as follows (see chapter 3 for details)

kr,r′ [Ψ0] = −4Re
∑
k

ωk0〈0|n̂r|k〉〈k|n̂r′ |0〉. (4.41)

where ωk0 = Ek − E0 is excitation energy of the system from the ground state to the

state k.

Substituting kr,r′ of Eq. (4.41) into the left hand side of Eq. (4.39) we find the following

result

V T K̂[Ψ0]V = −4
∑
k

ωk0

∣∣∣∑
r

v(r)〈0|n̂r|k〉
∣∣∣2

= −4
∑
k

ωk0|〈0|v̂|k〉|2 ≤ 0, (4.42)

where v̂ is an operator corresponding to the potential v(r),

v̂ =
∑
r

v(r)n̂r. (4.43)
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The equality in Eq. (4.42) holds only for a space-constant potential vC(r) = C. Indeed,

since each term in the sum in Eq. (4.42) is non-negative, the result of summation is zero

if and only if

〈0|v̂|k〉 = 0, for all k 6= 0. (4.44)

Assuming that Eq. (4.44) is fulfilled and expanding the vector v̂|0〉 in the complete set

of states {|k〉} we get

v̂|0〉 =
∑
k

|k〉〈k|v̂|0〉 = |0〉〈0|v̂|0〉 ≡ λ|0〉. (4.45)

Therefore the condition of Eq. (4.44) implies that the ground state |0〉 is an eigenfunction

of the operator v̂. Since v̂ corresponds to a local multiplicative one-particle potential

this can happen only if the potential is spatially constant. Hence, for all potentials which

are orthogonal to a constant in a sense of Eq. (4.40) the strict inequality in Eq. (4.42)

takes place. This means that matrix K̂[Ψ0] is negative definite and thus invertible in

the M − 1-dimensional subspace of V orthogonal to a constant vector VC . In other

words, the ground state of N -particle system on a connected lattice does belong to the

v-representability subset Ω. This result combined with the general existence theorem

4.3.1 proves the following particular version of the time-dependent v-representability

theorem.

Theorem 4.4.1 (Ground state v-representability ). Let the initial state Ψ0 for a time-

dependent many-body problem on a connected lattice correspond to a ground state of

a Hamiltonian of the form (4.38). Consider continuous positive density n(r; t) and field

average P (t) which satisfy the consistency conditions of Eqs. (4.36) and has a continuous

second time derivative. Then there is a finite interval around t0 in which n(r; t) and

P (t) can be reproduced uniquely by a time evolution of Schrödinger equation (4.21) with

some time-dependent on-site potential vi(t) and external dipole moment dext(t).

Note that 4.4.1 is valid for any Hamiltonian of the form of Eq. (4.38) as long as all the

terms in the Hamiltonian, except for the kinetic part, commute with the density operator

n̂r, and therefore, do not contribute to the K̂-matrix. An important special case is when

the initial state is the interacting many-electron ground state which is decoupled from the

photonic field, β = 0. In this case the ground state is a direct product of the electronic

ground state and photonic ground state. Another practically relevant case of α = β = 0

corresponds to the initial state in a form of the direct product of the noninteracting
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many-electron wave function (the Slater determinant) and the photonic vacuum. For all

those cases the local v-representability is guarantied by the above Theorem 4.4.1.



Chapter 5

The time-dependent

exchange-correlation functional

for a Hubbard dimer: quantifying

non-adiabatic effect

5.1 Introduction

In this chapter we exploit the possibilities of a solvable lattice model – the 2-site Hubbard

model 3.4 – to address the impact of non-locality in time in the exchange correlation

functional of TDDFT. Specifically, we study resonant Rabi oscillations, a prototypical

example of non-linear external field driven dynamics where the population of states

changes dramatically in time. We first derive the exact ground-state Hartree-exchange-

correlation (Hxc) functional for the 2-site model using the Levy-Lieb constrained search

[66, 110, 111]. This functional, when used in a TDDFT context with the instantaneous

time-dependent density as input, constitutes the exact adiabatic approximation which

can be used as a reference to quantify the role of memory effects. By carefully studying

This chapter is a part of the article ”The time-dependent exchange-correlation functional for a
Hubbard dimer: quantifying non-adiabatic effect ”, Physical Review A 88, 062512 (2013), by Johanna I.
Fuks, Mehdi Farzanehpour, Ilya V. Tokatly, Heiko Appel, Stefan Kurth, Angel Rubio.

69
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and quantifying the dynamics produced by TDDFT with the adiabatic Hxc potential

we demonstrate that it fails both quantitatively and qualitatively to describe Rabi os-

cillations. In the second part of this work we apply an analytic density-potential map

for lattice systems given in chapter 3 [103] to derive an explicit, fully non-adiabatic

exchange-correlation density functional which correctly captures all features of Rabi dy-

namics in the Hubbard dimer. This functional is one of the main results of this chapter.

We introduce the physics of the Rabi effect for the Hubbard dimer, showing how the

dipole moment and state occupations evolve with time during the course of resonant

Rabi oscillations in Section 5.2. Then in Section 5.3 we address the same problem from a

TDDFT perspective. In particular we use the exact adiabatic exchange-correlation func-

tional as a reference to quantify memory effects. In the Section 5.4 we consider the exact

interacting system in a two-level approximation which allows us to derive a new approx-

imate Hxc potential as an explicit functional of the time-dependent density. At the end

of this chapter the excellent performance of this approximation is demonstrated and

explained.

5.2 Rabi oscillations for two-site Hubbard model

We consider the dynamics of two electrons on a Hubbard dimer, that is, a two-site

interacting Hubbard model with on-site repulsion U and hopping parameter T . The

Hamiltonian of the system reads

Ĥ =− T
∑
σ

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ

)
+ U (n̂1↑n̂1↓ + n̂2↑n̂2↓)

+
∑
σ

(v1(t)n̂1σ + v2(t)n̂2σ) , (5.1)

where ĉ†iσ and ĉiσ are creation and annihilation operators for a spin-σ electron on site i,

respectively. The n̂iσ = ĉ†iσ ĉiσ are the operators for the spin-σ density at site i, and the

v1,2(t) are time-dependent on-site potentials. We use ~ = e = 1 throughout this work.

Energies are given in units of the hopping parameter T . As we will see, this simple

model captures most qualitative features of Rabi oscillations in interacting systems as

well as the main difficulties of describing Rabi dynamics within TDDFT.
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The many-body time-dependent Schrödinger equation,

i∂t|ψ(t)〉 = H(t)|ψ(t)〉, (5.2)

describes the evolution of the system from a given initial state |ψ0〉. Since the Hamilto-

nian (5.1) is independent of spin, the spin structure of the wave function |ψ(t)〉 is fixed

by the initial state. In the following we study the evolution from the ground state of

the Hubbard dimer and therefore it is sufficient to consider only the singlet sector of our

model.

In the absence of an external potential, v1,2 = 0, the stationary singlet eigenstates of

the Hamiltonian (5.1) take the form

|g〉 =Ng
(
ĉ†1↑ĉ

†
1↓ + ĉ†2↑ĉ

†
2↓ + β+

(
ĉ†1↑ĉ

†
2↓ − ĉ

†
1↓ĉ
†
2↑
))
|0〉 , (5.3a)

|e1〉 = 1/
√

2
(
ĉ†1↑ĉ

†
1↓ + ĉ†2↑ĉ

†
2↓
)
|0〉, (5.3b)

|e2〉 =Ne2
(
ĉ†1↑ĉ

†
1↓ + ĉ†2↑ĉ

†
2↓ + β−

(
ĉ†1↑ĉ

†
2↓ − ĉ

†
1↓ĉ
†
2↑
))
|0〉,

(5.3c)

Here |0〉 is the vacuum state, |g〉 is the ground state, and |e1,2〉 are two excited singlet

states. The Ng/e2 = (2 + 2β2
±)−1/2 are normalization factors and the coefficients β± are

defined as

β± = (U ±
√

16T 2 + U2)/4T. (5.4)

The energy eigenvalues corresponding to the eigenstates (5.3) are

Eg = 2Tβ− , (5.5a)

Ee1 = U , (5.5b)

Ee2 = 2Tβ+ . (5.5c)

To simplify notations, we rewrite the external potential part in Eq. (5.1) in the form

∑
σ

(v1n̂1σ + v2n̂2σ) =
∆v

2
(n̂1 − n̂2) + C(t)(n̂1 + n̂2) (5.6)

where n̂i =
∑

σ n̂iσ is the operator of the number of particles on site i, ∆v = v1 − v2
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is the difference of on-site potentials, and C(t) = (v1(t) + v2(t))/2. The last term in

Eq. (5.6) corresponds to a spatially uniform potential. This term can be trivially gauged

away and will be ignored from now on without loss of generality. Nontrivial physical

effects come only from the external potential ∆v which is coupled to the difference of

on-site densities. The quantity d̂ = n̂1 − n̂2 can be interpreted as the dipole moment of

our simplified model of a diatomic system and its expectation value d(t) = 〈ψ(t)|d̂|ψ(t)〉

uniquely determines the on-site densities n1(t) and n2(t) if the total number of particles

is fixed. In the following, in particular for TDDFT, we will use the dipole moment d(t)

as the basic “density variable”.

Since the dipole moment operator d̂ is odd under reflection (interchange of site indices),

it has nonzero matrix elements only between states of different parity. In particular, d̂

connects the ground state |g〉 of Eq. (5.3a) only to the first excited state |e1〉

dge = 〈g|d̂|e1〉 =
2√

1 + β2
+

, (5.7)

while the matrix element of d̂ between the ground state and the second excited state

vanishes, 〈g|d̂|e2〉 = 0.

Now we are ready to discuss Rabi oscillations in the Hubbard dimer. Let us consider

the evolution of the systems from its ground state |ψ(0)〉 = |g〉 under the action of a

time periodic potential

∆v(t) = 2E0 sin(ωt). (5.8)

The Rabi regime of dynamics occurs when the frequency ω of a sufficiently weak driv-

ing field approaches the frequency ω0 of the main dipole resonance. In our case this

corresponds to the frequency ω ∼ ω0 = Ee1 −Eg close to the energy difference between

ground and first excited states, and the amplitude E0 � ω0/dge.

Fig. 5.1 shows resonant dynamics of the dipole moment and state populations obtained

by the numerical propagation of Eq. (5.2) for a moderately strong interaction U = T = 1,

frequency ω = ω0 = 2.56, dge = 1.23, amplitude E0 = 0.1 and fixed electron number

N = n1 + n2 = 2. We see that the populations pg = |〈g|ψ〉|2 and pe1 = |〈e1|ψ〉|2 of

the ground and the first excited state oscillate between zero and one, while the second

excited state stays practically unpopulated, pe2 = |〈e2|ψ〉|2 ≈ 0. The dipole moment

shows fast oscillations at the driving frequency ω superimposed with slow oscillations
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of the envelope at the Rabi frequency ΩR = dgeE0. The maximal value of the dipole

moment |dmax| = dge = 1.23 is reached at 1/4 and 3/4 of the Rabi cycle when the ground

and the first excited states have equal populations of 1/2.
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 d(t)

0
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Figure 5.1: Rabi oscillations for resonant laser ω = ω0 = 2.56 T . Upper panel: dipole
moment d(t). Lower panel: Population of ground state pg = |〈g|ψ〉|2 (solid red),first
excited state pe1 = |〈e1|ψ〉|2 (dotted orange) and second excited state pe2 = |〈e2|ψ〉|2

(dashed green). Time is given in units of 1/T , where T is the hopping parameter.

The main characteristic feature of the Rabi regime is a strong variation of the state

populations. It is this feature which makes the description of Rabi oscillations one of

the most difficult cases for TDDFT [123, 124]. In the rest of this chapter we discuss the

TDDFT approach to the Rabi dynamics for our simple two-site system.

5.3 Time-dependent Kohn-Sham equations for a Hubbard

dimer

In the present two-electron case the Kohn-Sham system corresponds to two non-interacting

particles which reproduce the time dependent dipole moment d(t) of the interacting sys-

tem. The Kohn-Sham Hamiltonian has the form of Eq. (5.1) but with no interaction

(U = 0) and the external potential ∆vs is chosen such that the correct time-dependent

density of the interacting system is reproduced.

For a singlet state both Kohn-Sham particles occupy the same one-particle Kohn-

Sham orbital, which is described by two on-site amplitudes ϕ1(t) and ϕ2(t). There-

fore the time-dependent Kohn-Sham equations reduce to a single 2 × 2 one-particle
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Schrödinger equation of the form

i∂tϕ1 = −Tϕ2 +
∆vs

2
ϕ1, (5.9a)

i∂tϕ2 = −Tϕ1 −
∆vs

2
ϕ2. (5.9b)

As our dynamics starts from the ground state, Eq. (5.9) has to be solved with the

initial condition ϕ1(0) = ϕ2(0) = 1/
√

2 which corresponds to the noninteracting Kohn-

Sham ground state. By definition the Kohn-Sham potential ∆vs(t) entering Eq. (5.9)

produces a prescribed (interacting) dipole moment. In the present case this KS potential

can be found explicitly as a functional of the density d(t) using Eq. (3.29)

∆vs[d] = − d̈+ 4T 2d√
4T 2 (4− d2)− ḋ2

. (5.10)

It is important to note that the functional ∆vs[d] is given by Eq. (5.10) only if the system

evolves from, and remains sufficiently close to, the ground state. More precisely, it is

shown in section 3.4 that the functional form of Eq. (5.10) is valid as long as the condition

| arg(ϕ1)− arg(ϕ2)| < π/2 is satisfied during the course of the evolution. If the opposite

inequality holds, the overall sign on the right hand side of Eq. (5.10) has to be changed

from − to +. Moreover, the sign changes every time the line | arg(ϕ1)− arg(ϕ2)| = π/2

is crossed. In terms of the dipole moment, crossing this line corresponds to a vanishing

expression under the square root in Eq. (5.10) 1. The above behavior can be viewed as

a manifestation of the initial state and history dependence in TDDFT [125].

The exact Kohn-Sham potential can be calculated by inserting the exact dipole moment

d(t) obtained from a numerical solution of the many-body Schrödinger equation (5.2)

into Eq. (5.10). In order to get the Hartree-exchange-correlation (Hxc ) potential we

subtract the physical external potential ∆v from the Kohn-Sham potential,

∆vHxc = ∆vs −∆v. (5.11)

The time dependence of the exact ∆vHxc which corresponds to the dipole moment d(t)

presented in Fig. 1 (i. e., to the regime of resonant Rabi oscillations, described in Sec. II)

1Since the whole right hand side in this equation is proportional to the time derivative of the denom-
inator, turning the square root into zero does not lead to a divergence because the numerator vanishes
at the same time. Also, for any physical evolution the expression under the square root always stays
nonnegative as |ḋ| for a lattice is properly bounded from above (3.21).
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is shown in the top panel of Fig. 5.3.

In practice the exact Hxc functional is unknown and one has to rely on approximations.

The simplest and the most common approximation in TDDFT is based on the adiabatic

assumption for exchange-correlation effects. Below, we present and test the adiabatic

approximation for our model system.

5.3.1 Adiabatically exact functional

To construct the adiabatic approximation for the Hubbard dimer we first find the exact

ground-state Hxc functional by the Levy-Lieb constrained search, i.e., we perform an

exhaustive search over the space of all allowed two-particle wave functions Ψ that yield

a given dipole moment d to find the Hohenberg-Kohn energy functional FHK[d],

FHK[d] = min
Ψ→d
〈Ψ|T̂ + Û |Ψ〉, (5.12)

where T̂ and Û are operators of the kinetic energy and the interaction energy, i. e., the

first and the second terms in the Hamiltonian (5.1), respectively.

The exact ground state Hxc potential is given by the derivative of the Hxc energy with

respect to the dipole moment,

∆vgsHxc [d] = 2
∂

∂d

(
FHK[d]− T s[d]

)
(5.13)

where T s[d] is the kinetic energy functional that is defined by Eq. (5.12) with U = 0.

More details on this construction can be found in the Appendix C.

In the adiabatically-exact approximation the exact ground-state Hxc potential of Eq. (5.13)

is used in the time-dependent Kohn-Sham equations, i.e., the Hxc potential at time t is

calculated by inserting the instantaneous value of d(t) into the ground-state functional

∆vadHxc [d](t) = ∆vgsHxc [d(t)]. (5.14)

We note that the adiabatically-exact Hxc potential has also been found numerically for

real-space one-dimensional two-electron systems in Refs. [59, 126, 127] using the iterative

procedure introduced in Ref. [126]. A big advantage of the present simple model is that
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we know explicitly the functional dependence of the exact ground-state Hxc potential

(see Appendix C), i. e., we do not need any prior knowledge of the time-dependent

density.

To test the performance of the adiabatically-exact functional in the regime of Rabi

oscillations we propagate self-consistently the Kohn-Sham equations with vadHxc [d](t) for

the same parameters as in Sec. 5.2.
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Figure 5.2: Upper panel : d(t) (solid blue) in the presence of a laser of frequency
ω = ω0 = 2.56 T, compared to dad(t) (dotted red) propagated using the exact ground
state functional ∆vgsHxc [d] in the presence of a laser resonant with the adiabatically
exact linear response frequency ωLR

ad = 2.60 T. Lower panel: d(t) for slightly detuned
laser ω = ω0 + 0.03 (solid blue) compared to dad(t) using ω = ωLR

ad + 0.03 (dotted red).
Time is given in units of the inverse of the hopping parameter T .

The results of the propagation confirm a general conclusion of Ref. [123] about the pres-

ence of an artificial dynamical detuning in the description of Rabi oscillations using

adiabatic functionals. In Fig. 5.2 we compare the evolution of the exact dipole moment

d(t) (blue) with the dipole moment dad(t) (red) obtained from Kohn-Sham equations

with the adiabatically-exact Hxc potential for resonant (upper panel) and slightly de-

tuned (lower panel) applied lasers. The upper panel shows the dynamics at resonant

conditions when the frequency ω of the driving field is equal to the frequency ωres of

the main dipole resonance. In the exact interacting system this frequency is obviously

ωres = ω0, while in the approximate TDDFT it is approximation-dependent, and should

be determined consistently as the frequency ωres = ωLR of the corresponding linear re-

sponse resonance. At the first sight, the function dad(t) resulting from TDDFT with the

adiabatic Hxc potential (upper panel in red on Fig. 5.2) looks qualitatively similar to the
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exact d(t) (upper panel in blue on Fig. 5.2). However, there is a deep difference in the

underlying microscopic dynamics. The physical system returns to its initial state after

two periods of the dipole moment’s envelope, which corresponds to the Rabi period of

TR = 2π
E0dge = 51.10. In contrast, the microscopic period of the Kohn-Sham system with

the adiabatic Hxc potential coincides with that of the dipole moment, which is the char-

acteristic feature of detuned Rabi oscillations. In fact, the Kohn-Sham Rabi dynamics is

always internally detuned by the presence of the adiabatic potential ∆vgsHxc [d(t)] which

depends on the instantaneous density [123]. While this important difference is hidden

in the case of resonant dynamics of the dipole moment, it is revealed immediately when

the driving frequency is a bit shifted (detuned) from the exact resonance. The dipole

moments d(t) and dad(t) for a slightly detuned driving field with ω = ωres +0.03 are pre-

sented in the lower panel on Fig. 5.2. The exact dipole moment d(t) develops a “neck”

at t ∼ TR showing that the actual physical period is indeed TR ≈ 50. On the other

hand, the function dad(t) is practically unaffected by the external detuning because the

Kohn-Sham system, being already strongly detuned internally, is insensitive to small

external variations of the driving frequency. This qualitative failure of the adiabatic

approximation clearly demonstrates the important role of exchange-correlation memory

effects in the correct description of Rabi oscillations.

To further quantify non-adiabatic effects in the Rabi regime we extract a non-adiabatic

contribution to the total Hxc potential. Namely, we subtract the adiabatic potential

∆vgsHxc [d(t)] evaluated at the exact dipole moment d(t) from the exact ∆vHxc (t) defined

by Eqs. (5.11) and (5.10). In Fig. 5.3 we present the non-adiabatic part of Hxc potential

together with the exact ∆vHxc (t). The non-adiabatic contribution to ∆vHxc (t) turns

out to be more than double the amplitude of the external potential and in fact as large as

the Hxc potential itself during a significant part of the Rabi-cycle. Not surprisingly, the

non-adiabatic effects are small at the beginning and at the end of the Rabi cycle when

the ground-state population is dominant and the system is close to the linear response

regime. But they grow fast when the system is driven away from the ground-state and

they remain large for a large part of the Rabi-cycle. It is interesting to notice that,

centered around TR/2, there is a long period of time during which the amplitude of the

adiabatic effects remains almost constant (see Fig. 5.3).

Apparently a better approximation for the exchange-correlation potential is needed to

capture non-adiabatic effects relevant to describe Rabi oscillations. In the next section



TD exchange-correlation functional for a Hubbard dimer 78

-1

-0.5

 0

 0.5

 1

10 20 30 40 50 60

Δ
v

t

ΔvHxc 
ΔvHxc - ΔvHxc

ad 

Figure 5.3: Time-dependent Hxc potential ∆vHxc (t) (in units of the hopping parame-
ter T ) (solid blue) and its non-adiabatic contribution defined as ∆vHxc (t)−∆vgsHxc [d(t)]

(in units of the hopping parameter T ) (dotted red). Time is given in units of 1/T .

we propose an explicit non-adiabatic density functional based on a two-level description

of the interacting system.

5.4 Time-dependent exchange-correlation potential in the

two-level approximation

In general, the Hxc functional ∆vHxc [d] can be found via Eq. (5.11) if we know the

external potential as a functional of d(t). The presence of interactions makes the problem

of finding the functional ∆v[d] highly nontrivial even in our simple model. Fortunately

in some cases like the Rabi oscillations the problem is simplified dramatically because

the behavior of the system is close to that of an effective two-level system.

Let us assume that the second excited state |e2〉 is not participating in the dynamics.

We write the many-body Schrödinger equation (5.2) in the two level approximation as

i∂tψg(t) = Egψg(t) + dge
∆v(t)

2
ψe(t) , (5.15a)

i∂tψe(t) = Ee1ψe(t) + dge
∆v(t)

2
ψg(t) , (5.15b)

where ψg(t) = 〈g|ψ(t)〉, and ψe(t) = 〈e1|ψ(t)〉 are the projections of the time-dependent

wave function onto the ground and first excited state, respectively.

By rotating the basis we can represent Eq. (5.15) in the form of a Schrödinger equation for

one particle on an effective “two-site lattice”. In other words, Eq. (5.15) is unitarily
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equivalent to Eq. (5.9) with hopping constant ω0/2 and external potential given by

dge∆v/2. Using this mapping and the Kohn-Sham potential ∆vs of Eq. (5.10) we can

immediately write the external potential ∆v of the interacting system as a functional of

the dipole moment d

∆v2L[d] =
(−1)p

dge

 d̈+ ω2
0d√

ω2
0(d2

ge − d2)− ḋ2

 , (5.16)

where the integer p counts how many times the square root turns into zero during the

evolution. The factor (−1)p accounts for the sign changes explained after Eq. (5.10).

In order to find the Hxc potential ∆vHxc [d] as a functional of the dipole moment we

substitute the external potential ∆v of Eq. (5.16) and the Kohn-Sham potential of

Eq. (5.10) into Eq. (5.11):

∆v2L
Hxc [d] = − d̈+ 4T 2d√

4T 2 (4− d2)− ḋ2

− (−1)p

dge

 d̈+ ω2
0d√

ω2
0(d2

ge − d2)− ḋ2

 (5.17)

This expression is one of the main results of this chapter. It provides us with an explicit

fully non-adiabatic density functional which, by construction, should correctly describe

the Rabi oscillations. It is worth emphasizing that the functional Eq. (5.17) contains

history dependence via the integer p in the second term.

One can easily check that the non-linear functional ∆v2L
Hxc of Eq. (5.17) produces the

exact dynamic exchange-correlation kernel in the linear response regime. The formally

exact Hxc functional in the linear response can be written as follows

∆vLRHxc [d](ω) =
[
χ−1
s (ω)− χ−1(ω)

]
d = fxc(ω)d, (5.18)

where χs(ω) and χ(ω) are the density response functions for the Kohn-Sham and the

interactiving system, respectively. By definition the term in parentheses is the exact

exchange-correlation kernel fxc(ω). Since the eigenfunctions for the Hubbard dimer are

known, Eqs. (5.3) and (5.5), we can write the exact response functions χ(ω) in the

Lehmann representation [122], and substitute it into Eq. (5.18). The result takes the
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following form

∆vLRHxc [d](ω) =

(
T − ω0

2d2
ge

+
( 1

4T
− 1

2ω0d2
ge

)
ω2

)
d. (5.19)

Now it is straightforward to see that this equation is identical to the linearized version

of the approximated functional ∆v2L
Hxc [d] defined by Eq. (5.17) with p = 0. In other

words our approximation becomes exact in the linear regime. This nice property is not

accidental because the functional of Eq. (5.17) is based on the two-level approximation.

In the linear response regime, the symmetric Hubbard dimer becomes an effective two-

level system because the dipole transition matrix element between the ground state |g〉

and the second excited state |e2〉 vanishes.

A subtle property of the non-adiabatic functional Eq. (5.17) is the dependence on the

second time derivative d̈ of the dipole moment. The presence of d̈ does not mean

that the exchange-correlation potential assumes a dependence on the future. In general

the existence theorem 3.3.1 requires the second time derivative of the density to be

continuous. Therefore d̈ can be calculated as a left limit for any time greater than the

initial time, t > 0. At t = 0 the value of d̈(0) is determined by the initial value of the

external potential as follows

d̈(0) = −dde∆v(0)
√
ω2

0

(
d2
ge − d2(0)

)
− ḋ2(0)− ω2

0d(0), (5.20)

where the d(0) and ḋ(0) are fixed by the Kohn-Sham -initial state

d(0) = 2(|ϕ1(0)|2 − |ϕ2(0)|2), (5.21a)

ḋ(0) = −4T Im[ϕ∗1(0)ϕ2(0)]. (5.21b)

After this preliminaries we can plug the Hxc potential Eq. (5.17) into the Kohn-Sham equa-

tions and propagate them self-consistently to test the performance of our non-adiabatic

approximation. It is, however, clear that the functional ∆v2L
Hxc [d], by construction,

should exactly reproduce the results of the two-level approximation to the full interact-

ing problem. Therefore TDDFT with the Hxc potential of Eq. (5.17) is as accurate as

the two-level approximation itself.

In Fig. 5.4 we compare the exact resonant Rabi dynamics of the dipole moment with
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Figure 5.4: Upper panel: d(t) (solid blue) for resonant laser frequency ω = ω0 =
2.56 T compared to two-level approximation d2L(t) (dashed brown) using ∆v2LHxc ,
Eq. (5.17), and same laser frequency. Lower panel: d(t) (solid blue) and d2L(t) (dashed
red) for slightly detuned laser ω = ω0 + 0.03 T (same detuning as lower panel on

Fig. 5.2). Time is given in units of 1/T .

the one obtained in the two-level approximation or, alternatively, by solving the Kohn-

Sham equations self-consistently with the potential ∆v2L
Hxc [d]. The exact and approxi-

mate dipole moments are practically on top of each other. The non-adiabatic functional

of Eq. (5.17) excellently reproduces Rabi oscillations for a resonant excitation. Appar-

ently it also works perfectly for detuned Rabi dynamics provided that the detuning is

not too large. Another nice property of this approximation is that it becomes essentially

exact for a sufficiently weak non-resonant driving potential which corresponds to the

linear response regime.



Chapter 6

Collective variables and

time-dependent solvable systems,

Using TD(C)DFT to control

quantum systems

6.1 Introduction

In this chapter we use the explicit TDCDFT maps to construct analytic control signals

driving a system in such a way that the prescribed behavior of the basic collective

variable, the current and/or the density, is reproduced. The time dependence of the

control signal and the dynamics of the wave function are then parametrized in terms of

the physically intuitive observables. The analytic TDCDFT maps are known both for a

particle in the real continuum space and for discrete lattice (e. g. tight binding) systems

(3.1). This allows us to address, within a common scheme, control problems for the real

space dynamics and for dynamics of discrete systems with a finite dimensional Hilbert

space, such as a motion of quantum particle on tight-binding lattices, or the dynamics

of a spin in the presence of a time-dependent magnetic field. To illustrate our strategy

of inverse engineering we will recover the known exact solution for a driven harmonic

This chapter is a part of the article ”Dynamics of observables and exactly solvable quantum problems:
Using time-dependent density functional theory to control quantum systems”, arXiv:1506.08786 (2015),
by Mehdi Farzanehpour, I. V. Tokatly.
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oscillator [73, 74], and present nontrivial examples of analytic control for a particle on

a finite 1D chain and for a spin-1/2 (qubit) system.

The structure of this chapter is the following. In section 6.2 we present the general idea

of reconstructing driving potentials for solvable problems using analytic TD(C)DFT

maps. In section 6.3 we use TDCDFT to construct solvable problems for the real space

one-particle dynamics. As a particular example we reconstruct the potential and the

wave function generated by a density evolution in the form of a time-dependent rescaling

of some initial distribution supplemented with a rigid shift in space. The corresponding

solution recovers the one for the driven harmonic oscillator [73, 74]. In section 6.4 the

formalism for discrete spaces is presented. In the first subsection we give an explicit

example for controlling motion of a particle on atomic chain. In the second subsection

the formalism is allied to a spin-1/2 control that is isomorphic to the control problem

for a particle on a two-site lattice.

6.2 Construction of solvable problems via TDDFT maps:

The basic idea

In the standard ”direct” statement of a quantum mechanical problem the Schrödinger

equation determines evolution of the wave function ψ(t) from the initial state ψ0 in

the presence of a given time-dependent external potential. Thus for a given initial

state the Schrödinger equation generates a map V 7→ H from the space V of external

potentials to the Hilbert space H. This direct map is shown schematically on Fig. 6.1a.

Unfortunately, analytically solvable time-dependent quantum problems are exceptionally

rare and to solve the time-dependent Schrödinger equation even for simplest two-level

systems practically always requires numerical calculations.

To understand how TDDFT can help in finding analytically solvable problems we analyze

mapping between different sets of object entering this approach. All TDDFT-type the-

ories rely on the existence of a unique solution to a special “inverse” quantum problem.

That is a possibility to uniquely reconstruct the driving field from a given evolution of

the conjugated observable (such as, the density in TDDFT or the current in TDCDFT)

and a given initial state. In other words, if N is the space of basic observables, then the

existence of TDDFT implies that for a given initial state there exist two unique maps
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(a)

(b)

Figure 6.1: (a) The direct map from a trajectory in the space V of potentials to the
trajectory in the Hilbert space H, generated by the time-dependent Schrödinger equa-
tion for a given initial state ψ0. (b) TDDFT mappings between trajectories in the space
N of observables (densities or currents), space V of potentials and the Hilbert space H.
For a given initial state, by choosing a desired time evolution of the density/current we

can reconstruct the driving potential and the wave function.

N 7→ V and N 7→ H which relate a given trajectory in the space N of observables to

the corresponding trajectories in V and in H. The composition of these TDDFT maps

recovers the usual direct map V 7→ H generated by the time-dependent Schrödinger

equation .

In general for many-particle systems the solution of the inverse problem is even more

difficult than the solution of the usual Schrödinger equation . In fact, mathematically

construction of the TDDFT maps is equivalent to solving a certain nonlinear quantum

many-body problem [104]. However, there are special situations when the inverse prob-

lem possesses a simple analytic solution. These situations cover, in particular, generic

driven one-particle dynamics both in the real space and on lattices with some mild re-

strictions on allowed initial states and the behavior of observables. For those cases, the

TD(C)DFT maps N 7→ V and N 7→ H can be found explicitly in the analytic form [102–

106]. For example, in the case of a particle driven by a time-dependent vector potential

A(t) the wave function and the vector potential are the explicit analytic functionals of

the current density j(r, t) and the initial state, that is A[j, ψ0] and ψ[j, ψ0]. By con-

struction the wave function and the potential, obtained in such a way, are connected by

the Schrödinger equation with the proper initial condition. Hence by assuming different

space-time distributions of the observable we can generate infinitely many solutions to

the Schrödinger equation , where the potential in the Hamiltonian and the solution are

expressed analytically in terms of the prescribed observable. In this setup the space

of the observables plays the role of the parameter’s space, while the TD(C)DFT maps
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provide us with the analytic parametrization formulas for the Hamiltonian and the so-

lution.

In the next sections we present the explicit framework for designing solvable one-particle

problems in continuous and discrete spaces and illustrate our strategy of inverse engi-

neering with several nontrivial examples.

6.3 Reconstruction of the real space potentials

In this section we illustrate our strategy of generating the exact solutions for a simpler

and more familiar case of a single quantum particle in the real space. Let us consider an

electron in the three-dimensional space subjected to a time-dependent external electro-

magnetic field. It is convenient to use the temporal gauge in which the electric E and

magnetic B fields are related to the vector potential A(r, t) as follows 1

B = ∇×A; E = −∂tA. (6.1)

Given the vector potential A(r, t) and the initial state ψ0(r) = |ψ0(r)|eϕ0(r) the wave

function ψ(r, t) is obtained by solving the following Schrödinger equation

i∂tψ(r, t) =
1

2m

(
− i∇−A(r, t)

)2
ψ(r, t). (6.2)

Here we are interested in the vector potentials for which the Schrödinger equation pos-

sesses an analytic solution. Therefore we follow our strategy and apply TDCDFT maps

j 7→ A and j 7→ ψ from the time-dependent current j(r, t) to the vector potential and

the wave function. These maps can be easily found explicitly provided the initial state

is nodeless ψ0(r) 6= 0, and the current j(r, t) fulfills the condition

∫ t

t0

∇ · j(r, t) 6= |ψ0(r)|2 = n0(r), (6.3)

which ensures the state to remain nodeless in the course of evolution. Then A(r, t)

and the time-dependent wave function ψ(r, t) are uniquely reconstructed from the given

1Throughout this article we work in the system of units in which ~, c, e = 1.
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current [104]

A[ψ0, j] = ∇ϕ(r, t)−mv(r, t), (6.4a)

ψ[ψ0, j] =
√
n(r, t)eiϕ(r,t), (6.4b)

ϕ[ψ0, j] = ϕ0 +

∫ t

t0

dt′
(
∇2
√
n(r, t′)

2m
√
n(r, t′)

− 1

2
mv2(r, t)

)
.

(6.4c)

where the density n(r, t) and the velocity v(r, t) are defined as follows

n(r, t) = −
∫ t

t0

∇ · j(r, t) + n0(r), (6.5a)

v(r, t) =
j(r, t)

n(r, t)
. (6.5b)

One can straightforwardly check, by a direct substitution, that these formulas indeed

give a solution to Eq. (6.2). These equations allow us to reconstruct the driving potential

for a prescribed evolution of the current.

Using Eqs. (6.4) with different time-dependent currents we can construct infinitely many

Schrödinger equations with time-dependent vector potentials, which are all analytically

solvable and the solutions are given by Eqs. (6.4b) and (6.4c).

Now we turn to a more specific situation when the system is driven by a longitudinal

electric field E at zero magnetic field, B = 0. In the absence of the magnetic field

∇×A = 0 and therefore Eq. (6.4a) implies that the curl of the velocity also vanishes,

∇ × v = 0. The velocity of a one-particle system driven by a potential field must be

potential. In this case it is natural to use the Coulomb gauge (∇·A = 0) and express the

electric field as a gradient of the scalar potential V (r, t), that is E = −∇V . By applying

the standard gauge transformation to Eq. (6.2) we obtain the Schrödinger equation of

the following form

i∂tψ(r, t) =

(
−∇

2

2m
+ V (r, t)

)
ψ(r, t). (6.6)

where ψ(r, t) is now the time-dependent wave function in the Coulomb gauge.

Applying the gauge transformation Eqs. (6.4) we find the mapping from the current

j(r, t) or equivalently the velocity and density n(r, t) to the external potential V (r, t)
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and the wave function ψ(r, t) [102]

V (r, t) =
∇2
√
n(r, t)

2m
√
n(r, t)

−m
∫ r

0
v̇(r′, t) · dr′

− 1

2
mv2 − Ċ(t) (6.7a)

ψ(r, t) =
√
n(r, t)eiφ̃(r,t), (6.7b)

φ̃(r, t) =

∫ r

0
mv(r′, t) · dr′ + C(t), (6.7c)

where C(t) is a time-dependent constant. Since the velocity is irrotational by construc-

tion the line integrals in Eqs. (6.7a) and (6.7c) do not depend on the integration path.

Therefore we indicate only the initial and the final points of the path. The value C(t0)

at the initial time is uniquely determined by the initial condition, while for t > t0 the

function C(t) is arbitrary and can be chosen at convenience, for example to fix the value

of the potential at infinity. The presence of a time-dependent constant in the density-

potential mapping is in agreement with the Runge-Gross theorem [6]. The first term

in Eq. (6.7a) is the Bohm potential that can be physically interpreted as an adiabatic

potential for which the prescribed (nodeless) n(r, t) is the instantaneous ground state

density. The second and the third terms in Eq. (6.7a) are related to inertia forces.

These terms compensate the inertia forces exerted on a particle in a local non-inertial

frame moving with the velocity v(r, t). As a result in this co-moving frame the den-

sity stays stationary and equal to the initial density distribution. In the original frame

the velocity-dependent contribution appears as a deformation of the adiabatic potential,

which is aimed to support the prescribed density in the case of arbitrary fast evolution.

There is an important difference of the present construction and the explicit current-

vector potential mapping of Eqs. (6.4)-(6.5b). Eqs. (6.7) state that given the density

n and the corresponding velocity v, the external potential V and the wave function ψ

can be found analytically. However the density and the velocity are not independent

variables as they have to be consistent through the continuity equation

ṅ(r, t) = −∇ · [n(r, t)v(r, t)] . (6.8)

The complication comes from the requirement of irrotational velocity, ∇× v = 0 which

implies the velocity field of the form v = ∇Φ. Because of this condition there is no

simple and universal analytic relation between the observables entering equation (6.7).
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Such a relation can be found only for 1D systems, or if we assume a 1D inhomogeneity

of the observables. In higher dimensions our ability of constructing solvable quantum

problems is limited by the possibility to analytically solve a classical hydrodynamics

problem of reconstructing the density from the velocity or vice versa for an irrotational

flow. Below we present a simple example of such a reconstruction.

6.3.1 Exact solution generated by a time-dependent scaling of observ-

ables

Let the evolution start from the ground state ψ0 of a potential V0(r) with the ground

state density n0(r) and the energy E0. The simplest irrotational velocity field v(r, t)

for which Eq. (6.8) can be solved analytically is a linear function of coordinates with

time-dependent coefficients

v(r, t) = λ̇(t)[r− r0(t)] + ṙ0(t). (6.9)

This velocity corresponds to rigid motion of a fluid supplemented with a uniform expan-

sion/compression with respect to the origin moving along the trajectory r = r0(t). The

expansion/compression scaling factor is related to the parameter λ(t), as α(t) = eλ(t).

This interpretation is confirmed by solving the continuity equation (6.8) with the velocity

of Eq. (6.9). The corresponding solution for the density takes the form

n(r, t) =
1

α3(t)
n0

(
r− r0(t)

α(t)

)
, (6.10)

which indeed corresponds to a rescaled density moving along the trajectory r = r0(t).

The assumed initial conditions, n(r, t0) = n0(r) and v(r, t0) = 0, are fulfilled if the

time-dependent parameters λ and r0 have zero values and zero time derivatives at the

initial time, that is λ(t0) = 0, r0(t0) = 0, λ̇(t0) = 0 and ṙ0(t0) = 0.

Now we can insert the prescribed observables, Eqs. (6.9) and (6.10), into Eq. (6.7) to

reconstruct the corresponding potential and the wave function.

To calculate the Bohm potential entering Eqs. (6.7a) we make use of the fact that n0(r)

is the ground state density of the potential V0(r) with the energy E0. This implies that

the shifted and rescaled density n(r, t) of Eq. (6.10) corresponds to the instantaneous
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ground state of the shifted and rescaled potential α−2V0 ((r− r0)/α) with the ground

state energy α−2E0. Therefore, the Bohm potential can be represented as

∇2
√
n(r, t)

2m
√
n(r, t)

=
1

α2(t)
V0

(
r− r0(t)

α(t)

)
− 1

α2(t)
E0. (6.11)

The final results for the potential and the wave function generated by the velocity (6.9)

or, equivalently by the density (6.10), take the following form

V (r, t) =
1

α2
V0

(
r− r0

α

)
−mr̈0 · r

− m

2

α̈

α
(r− r0)2, (6.12a)

ψ(r, t) =

√
1

α3
n0

(
r− r0

α

)
eiϕ(r,t), (6.12b)

ϕ(r, t) =
m

2

α̇

α
(r− r0)2 +mṙ0 · r

−
∫ t

0
(

1

α2
E0 +

m

2
ṙ2

0)dt′ (6.12c)

Obviously, the first term in Eq. (6.12a) is the adiabatic potential. The other two terms

describe two types of inertia forces – the usual linear acceleration force (the second term)

and the inertial force related to a time-dependent deformation (the third term).

In the special case of a rigid motion, α = 1 or λ = 0, only a linear acceleration inertial

correction survives, so that the potential of Eq. (6.7a) simplifies to V (r, t) = V0(r−r0)−

mr̈0 · r. This potential rigidly transports a quantum system along a given trajectory

without any reshaping of the initial density profile. It is worth noting that in this

particular case our solution to the Schrödinger equation is not limited to one particle and

can be trivially generalized to a system of any number of interacting identical particles.

Indeed, the solution generated by a spatially uniform velocity field v(r, t) = ṙ0(t) can be

obtained by the transformation to a uniformly accelerated reference frame [76]. Since

the relative motion of particles is unaffected by this transformation the above potential

will transport the centre of mass while keeping the quantum state for the relative motion

unchanged. It is absolutely clear that if the initial state ψ0 corresponds to that of the

harmonic potential, our solution becomes identical to the harmonic potential theorem

[75–77].
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One can also easily see that the analytic solution of the Schrödinger equation for a

harmonic oscillator with a time-dependent frequency ω(t) and a driving force f(t) [74]

i∂tψ(r, t) =

(
−∇

2

2m
+

1

2
mω2(t)r2 − f(t) · r

)
ψ(r, t), (6.13)

is a particular case of our Eq. (6.12). Assuming V0(r) = 1
2mω

2
0r2 in Eq. (6.12a) we find

that the reconstructed potential V (r, t) coincides (up to irrelevant constant) with the

potential in Eq. (6.13), where

ω2(t) =
ω2

0

α4
− α̈

α
, (6.14)

f(t) = m

(
ω2

0

α4
− α̈

α

)
r0 +mr̈0. (6.15)

From these two equations we observe that the center of mass position r0 is the solution

to the Newton equation for a driven harmonic oscillator

mr̈0 +mω2(t)r0 = f(t). (6.16)

Hence in this particular case the solution of Schrödinger equation for the driven quantum

oscillator is expressed in terms of the solution for a classical driven oscillator, which is

the main observation made in Refs. [73, 74].

6.4 Inverse engineering of solvable quantum problems on

a discrete space

In this section we describe and illustrate our general reconstruction strategy for lattice

systems. In this case we use the maps for a generalized lattice-TDCDFT [105] to inverse

engineer analytically solvable one-particle problems (or problems isomorphic to one-

particle dynamics on a lattice) [105].

Our starting point is the Schrödinger equation for the wave function ψi(t0) describing a

particle on an M -site lattice with time-dependent complex hopping parameters Tij ,

i∂tψi(t) = −
M∑
j=1

Tij(t) ψj(t) ; Tii = 0, (6.17)
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where indices i and j take values on the lattice sites indicating the position in the

discrete space, and Tij = T ∗ji to have a Hermitian Hamiltonian. In the Schrödinger

equation (6.17) we adopted a temporal gauge in which the scalar on-site potential and,

possibly, a magnetic field enter via the phase of the hopping parameters Tij(t) [105]. For

generality we also allow a time-dependent hopping rate |Tij(t)|.

In the generalized lattice-TDCDFT of Ref. [105] the complex hopping Tij(t) plays the

role of a driving potential. The corresponding observable in this approach can be called

a ”complex current” [105]

Qij(t) = 2Tij(t)ψ
∗
i (t)ψj(t). (6.18)

The real part of Qij(t) is equal to physical current Jij on the lattice link connecting sites

i and j, while its real part Kij represents the kinetic energy on the link

Qij = Kij + iJij . (6.19)

The link current Jij(t) and the on-site density ni(t) = |ψi(t)|2 are connected by the

lattice continuity equation

ṅi(t) = −
∑
j

Jij(t). (6.20)

Since the link current and the link kinetic energy are respectively antisymmetric and

symmetric with respect to reversing the direction of the lattice link, Jij = −Jij and

Kij = Kij , the combined complex observable Qij is a Hermitian matrix, Qij = Q∗ij .

Given the complex current Qij(t) and the initial state ψi(t0) = |ψi(t0)|eϕi(t0) 6= 0, the

complex hopping Tij(t) and the wave function ψi(t) = |ψi(t)|eϕi(t) can be expressed

explicitly as functions of Qij and ψi(t0)

Tij(t) =
Qij(t)

2ψ∗i (t)ψj(t)
, (6.21a)

|ψi(t)| =

√√√√|ψi(t0)|2 −
∫ t

t0

∑
j

Jij(t′) dt′, (6.21b)

ϕi(t) = ϕi(t0) +

∫ t

t0

∑
jKij(t

′)

2|ψi(t′)|2
dt′. (6.21c)

These formulas provide us with the analytic lattice-TDCDFT map from the observable

to the conjugate driving potential and the corresponding solution of the time-dependent
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Schrödinger equation . Using this map we can construct infinitely many analytically

solvable problems generated by different time-dependent Hermitian observables Qij(t).

Below we will give two examples which illustrate the possibility to analytically control

quantum dynamics time in a discrete space.

6.4.1 Dynamics of one particle on a 1D chain

In this subsection we use our approach to manipulate the on-site density of a quantum

particle on a finite tight-binding chain. Let us consider a particle on an atomic chain

with a nearest neighbor hopping parameters Ti,i+1 of fixed amplitude |Ti,i+1| = T0. The

dynamics of the system is described by Eq. (6.17). Since for 1D systems only scalar (on-

site) driving potentials are allowed, one can always gauge transform the Hamiltonian

to the form with real hopping parameters Ti,i+1 = T0 and the real on-site potential

vi(t).[105] In the new gauge, which is the lattice analog of the Coulomb gauge, the

time-dependent Schrödinger equation reads:

i∂tψi = −T0(ψi+1 + ψi−1) + vi(t)ψi. (6.22)

In the following, for definiteness, we assume that the evolution starts from the ground

state ψ0 of the chain.

The equations for the observables (6.18) and (6.19) for Qij ,Jij and Kij remain the same

except for the right hand side of Eq. (6.18) in which the hopping Tij and the density

matrix ρij need to be replaced by their counterparts in the Coulomb gauge.

The map (6.21) from the complex current Qij to the hopping Tij and the wave function

ψi in the new gauge is transformed to an analytic map from Qij to the on-site potential

vi and the wave function ψi

vi =
M∑
j=i

(
− Kj,j+1 +Kj−1,j

2nj
+
Kj,j+1 +Kj+1,j+2

2nj+1

+
J̇j,j+1Kj,j+1 − Jj,j+1K̇j,j+1

4T 2
0 ninj+1

)
, (6.23a)

ψi(t) =
√
ni(t)e

iϕi(t), (6.23b)

ϕi(t) = ϕi(t0) +

∫ t

t0

[Ki,i+1 +Ki−1,i

2ni
− vi

]
dt′. (6.23c)
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The important point is that in the considered physical situation with the fixed hopping

amplitude the above formulas are not sufficient to reconstruct the potential from the

given dynamics of observables. The fixed value of the hopping amplitude sets an upper

bound on allowed values of link currents. As a result not all possible Q become physically

allowed, or v-representable in the TDDFT terminology. In fact, from the definition of

Eq. (6.18) we find that the modulus of physically allowed Qij(t) is bounded from above

|Qij(t)|2 = 4T 2
0 ni(t)nj(t) < 4T 2

0 . (6.24)

Formally the condition of the fixed hopping amplitude reduces the dimension of the

space N of observables. In the present case this restriction can be taken into account

by expressing Jij(t) and Kij(t) in terms of on-site density ni(t). Firstly, in 1D we can

solve the continuity equation (6.20) to get the link current

Ji,i+1 = −
i∑

j=1

ṅj . (6.25)

Secondly, we express Kij(t) in terms of ni(t) using Eqs. (6.24) and (6.25)

Ki,i+1 = ±

√√√√4T 2
0 nini+1 −

( i∑
j=1

ṅj

)2
, (6.26)

where the sign is determined by the sign of Kij(t0) at the initial time through the given

initial state ψ0.[106] Finally, by inserting Eqs. (6.25) and (6.26) into Eq. (6.23a) we

obtain the explicit analytic formulas for the reconstruction of the on-site lattice potential

and the corresponding wave function from a given time-dependent density distribution.

These formulas correspond to the maps of the lattice TDDFT [103, 106]. It is interesting

to note that exact solution proposed recently in Ref. [98] for a driven two-level system

is, in fact, based on the above lattice TDDFT maps for a particular case of a two-site

lattice.

Let us now demonstrate how this map works in practice by constructing a potential that

produces prescribed evolution of a density. Consider a particle on an atomic chain with

11 sites and a positive hopping constant T0 = 1 and assume that the dynamics starts
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from the ground state of the chain with zero on-site potential,

ψi(0) = ψgsi =
1√
6

sin
(πi

12

)
, (6.27)

We will construct the driving potential which generates the following two-stage evolution:

(i) On the first stage for 0 < t < t1 the system evolves from the ground state of Eq. (6.27)

to a state with a homogeneous density distribution ni = 1/11; (ii) On the second stage

for t1 < t < t2 the homogeneous density distribution shrinks to the center of the chain

and by t = t2 concentrates at site 6 with a Gaussian envelope, ni ∝ e−(i−6)2 . The

required time evolution of density ni(t) for this two-stage process is the following,

ni(t) =


1
11S(t/t1) +

(
1− S(t/t1)

)
|ψgsi |2 0 ≤ t ≤ t1

N (t) exp [−S( t−t1
t2−t1

)
(i− 6)2

]
t1 < t ≤ t2

(6.28)

where N (t) is the normalization factor

N (t) =
( 11∑
i=1

e
−S(

t−t1
t2−t1

)(i−6)2
)−1

. (6.29)

Here S(x) is a smooth step-like function which starts from zero at x = 0 and reaches

unity at x = 1. For the reason that will be clear later we choose a function which has

a zero first and second derivatives at x = 0, 1. Specifically here we use the following

smooth step function which satisfies the above conditions

S(x) = x− 1

2π
sin(2πx). (6.30)

The time dependence of on-site densities ni(t) defined by Eq. (6.28) with t1 = 3 and

t2 = 12 is shown on Fig. 6.2. Each line on this figure shows the prescribed evolution

of the density on a particular site. At t = 0 the system is in the ground state (6.27),

then it goes gradually to the homogeneous distribution at t = 3. Afterwards the density

starts shrinking and finally at t = 12 it reaches a bell shaped Gaussian centered at the

middle site.

The analytic representation for the corresponding driving potential now can be found

immediately by inserting Eq. (6.28) into Eq. (6.23a) where the link current Jij and

the kinetic energy Kij are given by Eqs. (6.25) and (6.26), respectively. Since for the
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Figure 6.2: (Color online) The time evolution of the on-site densities determined by
Eq. (6.28). Each line represents the dynamic of the density in a particular site. The
time duration for the first stage is 3 units, t1 = 3 and for the second stage is 9 units,
t2 = 12. Dots and their envelops indicate the density distribution in the initial t = 0,

intermediate (t = 3), and the final (t = 12) states.

initial ground state Kij(0) is negative the minus sign must be chosen in Eq. (6.26), see

section 3.4. Fig. 6.3 shows the on-site potentials for the first stage of the dynamics,

0 ≤ t ≤ 3. Each curve represents the time dependence of the potential for a particular

site. Similarly, Fig. 6.4 shows the driving potential for the second stage of the time

evolution.

Figure 6.3: (Color online) On-site potentials (6.23a), for the first stage of the evolu-
tion, 0 ≤ t ≤ 3, as a function of time. The on-site potentials for all sites are zero at
the beginning. At t = 3 all vi except those for the boundary sites reach 1, while the

potentials for the two ending points stay zero. Color online.

Our reconstructed potential has one interesting property: on the first stage of the evolu-

tion the potential shown on Fig. 6.4 drives the system from its ground state at t = 0 an

takes it into a state with a homogeneous density at t = 3 which is also the ground state

of the system with the instantaneous potential vi(t = 3). Similarly, for the second stage

of the evolution the driving potential shown in Fig. 6.4 takes the system from ground

state and brings it into a new ground state with a Gaussian envelope. At the first glance

this behavior looks surprising as the dynamics is by far non-adiabatic. The explanation
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Figure 6.4: (Color online) On-site potentials (6.23a) as functions of time for the
second stage of the evolution, 3 ≤ t ≤ 12. The evolution for 3 < t < 7, is zoomed in

the magnified box.

is, however, simple. The system at t = t1 and t = t2 is in its instantaneous ground state

because the first and second derivative of the step function S (6.30) are zero at those

times and therefore the current Jij and its first time derivative also vanish. By setting

Jij = J̇ij = 0 in Eq. (6.23a) we find the potential of the form

vi = T0

M∑
j=i

(√
nj +

√
nj+2

√
nj+1

−
√
nj−1 +

√
nj+1

√
nj

)
. (6.31)

This is a lattice analog of the Bohm potential that corresponds to the ground state

potential for a given instantaneous density. Therefore our construction can be used to

make a fast transfer of a system between different ground states.

6.4.2 Reconstruction of a driving magnetic field for a spin-1/2 system

In the last example we inverse engineer an analytically solvable Schrödinger equation for

a driven spin-1/2 system, or equivalently, a generic two-level system. This formalism

can be used, for example, to control the state evolution of a spin-1/2 using the time-

dependent magnetic field. A similar problem has been addressed recently in Ref. [99].

Below we apply our general reconstruction strategy based on the lattice TDCDFT map-

ping.

Assume a spin in the initial state |ψ0〉 subject to a time-dependent magnetic filed B(t).

The time-dependent Schrödinger equation for the state vector |ψ(t)〉 reads

i∂t|ψ(t)〉 = −B(t) · Ŝ |ψ(t)〉, (6.32)

where Ŝ is the spin-1/2 operator.
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By a gauge transformation one can always eliminate z-component of the magnetic filed

and therefore reduce the problem to solving the Schrödinger equation with the magnetic

field in the xy-plane

i∂t

ψ↑(t)
ψ↓(t)

 = −

 0 B

B∗ 0

ψ↑(t)
ψ↓(t)

 , (6.33)

where the ”complex” magnetic field B is

B = (Bx − iBy)/2, (6.34)

and ψ↑(t) = 〈ψ(t)| ↑〉 and ψ↓(t) = 〈ψ(t)| ↓〉 are the projections of the state vector on

the eigenstates of Ŝz.

Equation (6.33) is identical to the Schrödinger equation (6.17) for a two site lattice where

the spin indecis ↑ and ↓ label the sites, and B(t) is the complex hopping parameter.

Therefore we can directly apply the lattice-TDCDFT maps of Eqs. (6.21) to reconstruct

the driving magnetic field and the wave functions ψ↑,↓ = |ψ↑,↓|eiϕ↑,↓ from given dynamics

of the complex observable Q(t) = K(t) + iJ(t) defined in Eq. (6.18). In the present case

the reconstruction formulas reduce to the form

|ψ↑,↓(t)| =

√
|ψ↑,↓(0)|2 ∓

∫ t

0
ImQ(t′) dt′, (6.35a)

ϕ↑,↓(t) = ϕ↑,↓(0) +

∫ t

0

ReQ(t′)

2|ψ↑,↓(t′)|2
dt′, (6.35b)

B(t) =
Q(t)

2ψ∗↑(t)ψ↓(t)
. (6.35c)

Equations (6.35) provide an analytic parametrization of the driving field and the wave

function in terms of a given trajectory in the two-dimensional space N = {K,J} of

observables. The point in the space N corresponds to a given kinetic energy K and

intersite current J for a particle on the two-site lattice. This physical parametrization

is universally applicable to lattice systems with any number of sites. In the particular

two-site case one can propose an alternative parameterization of the driving field, which

has an intuitive interpretation in the physical context of the spin-1/2 system. Below we

map the space N = {K,J} onto a Bloch sphere and rearrange Eqs. (6.35) accordingly to

relate the driving field to a given trajectory in the projective Hilbert space for spin-1/2.
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As the first step we represent the state vector of spin-1/2 as follows

|ψ(t)〉 = eiβ
[
cos(θ/2)| ↑〉+ eiφ sin(θ/2)| ↓〉

]
(6.36)

where θ(t) and φ(t) are the spherical angles representing a point on the Bloch sphere,

and β(t) is an overall phase of the wave function. Next, to map the trajectory Q(t) to a

trajectory on the Bloch we use Eq. (6.35) and express Q in terms of the wave function

amplitudes |ψ↑,↓| and the relative phase φ

Q = 2φ̇
|ψ↑|2|ψ↓|2

|ψ↑|2 − |ψ↓|2
− i∂t|ψ↑|2. (6.37)

By substituting |ψ↑,↓| from Eq. (6.36) we relate the complex coordinate Q in the space

N to the spherical coordinates (θ, φ) on the Bloch sphere

Q =
1

2

(
φ̇ sin θ tan θ + i θ̇ sin θ

)
. (6.38)

This equation gives the required map between the trajectory in the original space of

observables to the corresponding trajectory of spin-1/2 on the Bloch sphere. Finally, by

inserting Q of Eq. (6.38) into Eq. (6.35c) for B (6.35c) we get a new analytic represen-

tation for components of the magnetic field

Bx = φ̇ tan θ cosφ+ θ̇ sinφ, (6.39a)

By = −θ̇ cosφ+ φ̇ tan θ sinφ. (6.39b)

The spherical coordinates (θ, φ) determine the wave function Eq. (6.36) up to a common

phase β. The phase β = ϕ↑ is calculated directly from Eq. (6.35b) by substituting the

expressions of |ψ↑| and ReQ in terms of θ and φ,

β(t) = β(0) +
1

2

∫ t

0
dt′φ̇ tan θ tan

θ

2
. (6.40)

Equations (6.39), (6.36), and (6.40) solve the problem of reconstructing the driving field

and the wave function from a given trajectory on the Bloch sphere.

Equations (6.39) demonstrate one subtlety, which is very similar to the v-representability

problem in TD(C)TDFT. Not all trajectories on the Bloch sphere are physically repro-

ducible if the driving magnetic field is limited to the (x, y)-plane. For example, it is
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impossible to drive the system along the equator (π/2, φ(t)) with a finite magnetic field

because the right hand side in Eq. (6.39) diverges at θ = π/2. Similarly, any trajectory

which causes a divergence in right hand side of Eq. (6.39) is not B-representable. All

physically allowed trajectories when crossing the equator should approach it in a way

that φ̇ tan θ stays finite, which translates to the condition φ̇→ 0 when θ → π/2. In other

words, a physical trajectory, generated on the Bloch sphere by an in-plane magnetic field,

can cross the line θ = π/2 only if it is perpendicular to that line at the crossing point.

This is absolutely clear physically because at any instant the magnetic filed generates

rotation of the spin vector about the direction of B. Therefore the initially coplanar to

B spin is always driven out of the plane. Apparently when reconstructing the driving

field from a trajectory on the Bloch sphere we should take it from a B-representable set

containing trajectories which either do not touch the equator or cross it perpendicularly.

Now we are ready to present an explicit example of the reconstruction.

Analytically controlled spin flip: design of a quantum NOT gate

To illustrate our inverse engineering formulas we construct a control pulse which does the

operation. Initially the system is in the ground state corresponding to some magnetic

field B(0). During the pulse duration τ the magnetic field is changing and at the end

of the pulse returns to its initial value B(τ) = B(0) while the system is driven to the

excited state in the field B(0). Therefore after the pulse the Hamiltonian returns to the

initial form, but the direction of the spin is reversed.

For definiteness we assume the initial/final field in the x-direction, B(0) = B(τ) = x̂B0.

Therefore the initial state is | ←〉 = 1/
√

2(| ↑〉 + | ↓〉). The target state which should

be reached at the end of the pulse corresponds to another eigenstate of Ŝx, that is

| →〉 = 1/
√

2(| ↑〉 − | ↓〉). On the Bloch sphere the initial and the final (target) states

correspond to the points (π/2, 0) and (π/2, π), respectively.

The first step in constructing the required control pulse is to find a B-representable

trajectory which at t = 0 starts at the point (π/2, 0) and arrives to the point (π/2, π) at

the time t = τ . We note either boundary point belongs to the equatorial line. Therefore

the trajectory should leave the initial point and arrive to the final point along the

corresponding meridians. In order take care of the B-representability automatically we
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introduce a new independent variable γ = φ̇ tan θ. The angle θ in the relevant range of

0 < θ < π is related to the new variable as follows

θ = 2 arctan

[√
(φ̇/γ)2 + 1− φ̇/γ

]
. (6.41)

Now the “dangerous” equatorial points correspond to the points of the trajectory with

φ̇/γ = 0.

By re-expressing the magnetic field of Eqs. (6.39) and the common phase β of Eq. (6.40)

in terms of γ and φ we find

Bx = γ cosφ− ∂t(φ̇/γ)

(φ̇/γ)2 + 1
sinφ, (6.42a)

By =
∂t(φ̇/γ)

(φ̇/γ)2 + 1
cosφ+ γ sinφ. (6.42b)

and

β(t) = β(0) +
1

2

∫ t

0
dt′
[
γ

√
(φ̇/γ)2 + 1− φ̇

]
. (6.43)

Now we need to find two functions γ(t) and φ(t) which will do the required job. The

first obvious set of conditions for φ(t) is

φ(0) = 0, φ(τ) = π, and φ̇(0) = φ̇(τ) = 0. (6.44)

It follows from Eq. (6.42) that the requirement B(0) = B(τ) = B0x̂ will be fulfilled if

γ(0) = −γ(τ) = B0, (6.45)

and ∂t(φ̇/γ) = 0 at the boundary points, t = 0, τ . The latter condition is satisfied if at

t = 0, τ the second derivative of φ(t) vanishes

φ̈(0) = φ̈(τ) = 0. (6.46)

In addition we have to make sure that the ratio φ̇/γ is finite for all 0 < t < τ .
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Figure 6.5: Trajectory of the spin state on the Bloch sphere generated by Eqs. (6.47)
for τ = 12 and B0 = 1. The trajectory leaves ground state | ←〉 and arrives to the

excited state | →〉 perpendicularly (φ̇ = 0) to the equatorial line.

As an example we suggest the following γ(t) and φ(t) which fulfill all above conditions

γ(t) =
1

2
Bx0(1− 2t/τ)

[
(1− 2t/τ)2 + 3

]
, (6.47a)

ϕ(t) =
πt

τ
− 1

4
sin(

4πt

τ
). (6.47b)

Here γ(t) is a smooth monotonically decreasing function antisymmetric with respect to

the point t = τ/2. It goes from −B0 to B0 and crosses zero at the middle of the pulse. As

an extra condition we require that γ̇(0) = γ̇(τ) = 0 which allows to smoothly continue

the driving field beyond the interval 0 < t < τ . The function φ(t) in Eq. (6.47b) increases

monotonically from 0 to π and has zero first and second derivatives at the boundary

points t = 0 and t = τ , and at t = τ/2. The derivative φ̇(t) = 2πt
τ sin2(4πt

τ ) is symmetric

with respect to the middle point t = τ/2.

The corresponding trajectory on the Bloch-sphere is shown in Fig. 6.5 for B0 = 1 and

τ = 12. The trajectory starts from the state | ←〉 on the equator, goes to the upper

hemisphere, then at t = τ/2 it crosses the equatorial line at the point (π/2, π/2) and

reaches the final state | →〉 from the lower hemisphere. Because of the special symmetry

of the generating functions the trajectory has a central symmetry with respect to the

middle point.

Substituting γ(t) and φ(t) into Eqs. (6.42) we find magnetic field generating this dy-

namics. In Fig. 6.6 we plot the path of the time-dependent magnetic field vector in the

xy-plane. Each dot represents the magnetic field vector at integer times from 0 to 12.
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Figure 6.6: The trajectory traced out the magnetic field vector (6.42) in the xy-
plane. Starting from the initial value B(0) = x̂ the magnetic field follows the trajectory
clockwise and comes back at t = τ = 12. Each arrow represents the magnetic field vector

at integer times t = 0, 1, . . . 12.

The corresponding wave function is given by Eq. (6.36) with the common phase β(t)

defined after Eq. (6.43). For our particular example we easily find the overall phase at

the end of the pulse, β(τ) = β(0) − π/2. 2 Hence by the end of the pulse, the system

which initially was in the ground state is transferred to the excited state and the wave

function acquires a common phase shift of π/2.

One can check that if the pulse defined by Eqs. (6.42) and (6.47) is applied to the initial

excited state |ψ(0)〉 = | →〉, the system is driven to the ground state | ←〉. Therefore

our pulse can be viewed as a realization of a quantum NOT gate which transforms (up

to a common phase shift) | ←〉 into | →〉, and | →〉 into | ←〉.

2Because γ(t) is antisymmetric and φ̇(t) is symmetric with respect to τ/2, the integral of the term
with the square root vanishes. Therefore we are left with the result β(τ) = β(0)− [φ(τ)− φ(0)]/2.



Chapter 7

Dicussion and Conclusion

In this dissertation we studied the very core principles of the TDDFT and then extended

it beyond its standard formalism and applications. Following the flow of the thesis we

start the conclusion by an ideological comparison between DFT and TDDFT.

DFT as a theory based on the static quantum mechanics focuses on the single state

with minimal energy.[2] As a result the DFT formulation is a direct consequence of

the minimum principle which allows for a variational search of the universal ground

state functional. In contrast, in quantum dynamics we are dealing with the initial value

problem. Since there is no minimum principle in dynamics, except in a few special

cases [128–130], a direct extension of DFT is not possible. One of the breakthroughs

of the Runge-Gross work was their approach to the problem by explicit use of the

equations of motion. This led to the first sufficiently generic proof of the unique time-

dependent density-potential mapping which pioneered a major advancement in the study

of quantum dynamics. The Runge-Gross proof of the uniqueness using the power series

expansion is reminiscent to the Taylor series-based approach by Cauchy to the theory of

ODE. Despite a relatively straightforward proof of uniqueness the proof for the existence

is much more involved, as one needs to prove the convergence of the Taylor series.[131]

With this comparison it should not be very surprising that the v-representability problem

has not been fully solved yet.

However there is an alternative approach to the density-potential map, inspired by the

Runge-Gross theorem, in which the TDDFT map is formulated as a non-linear many-

body problem (NLSE).[9, 13–15] This approach led to the three most general proofs of
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v-representability and uniqueness which include the fixed-point proof of TDDFT under

the assumption of boundness for a certain response function [17] , the rigorous proof of

TDCDFT on a lattice [16] and the rigorous lattice-TDDFT proof in chapter 3.

The NLSE formulation, as a well posed mathematical problem, opens the possibility to

study the density-potential map using the established theorems for non-linear PDEs.[114,

115] Realization of this program requires a solution of two mathematical problems. The

first one, solved recently, is to prove the invertibility of the Sturm-Liouville operator in

the force balance equation. [112, 113] The second one, still open, is to show the Lipschitz

continuity of the inverted Sturm-Liouville operator in the proper functional space.

The complexity of working with infinite-dimensional functional spaces motivated us to

approach the problem from a different direction and to prove the basic mapping for

a lattice-regularized quantum system with a finite dimensional Hilbert space. This is

relevant since truncating the Hilbert space is an inevitable approximation in modeling

physical systems on the computer. Formally it reduces a non-linear PDE to a set of ODEs

while the force balance equation becomes purely algebraic. As a result of such reduction

we were able to prove the basic existence and uniqueness theorem using standard results

from the theory of nonlinear ODE (see chapter 3). As we expected from the previous

works [20–22, 24, 103] the lattice TDDFT is not unconditionally valid. Similarly to the

lattice TDCDFT, Ref. [16], apart from a physical restriction on the time dependence of

the density, there are also limitations on possible many-body initial states, which should

be in Ω, the v-representable subset of the Hilbert space. We proved that this condition

is fulfilled for any ground state of a connected lattice and argued that most physical

states should belong to Ω

The proof of the basic theorem for the lattice TDDFT presented in this thesis as well

as the proof for the lattice TDCDFT [16] essentially rely on the concept of the v-

representability subset Ω in the Hilbert space. It would be very interesting and useful

for the future to carefully study and characterize the structure/geometry of this set.

Formally the v-representable subset is defined as a part of the Hilbert space where the

lattice analogue of the Sturm-Liouville operator has a nonzero determinant. Similarly

to the explicit example of Section 3.4, in general the v-representability subset Ω should

consist of two regions with different signs of the determinant which are separated by

a surface. What is the geometry of each part for a general quantum system? Are



Dicussion and Conclusion 105

they simply- or multiply-connected? Is it possible for a system driven by a physical

potential to cross the surface or is it forever confined to one initially fixed subregion

of Ω? Answering these questions will definitely deepen our understanding of TDDFT-

related theories as well as quantum dynamics in general. In chapter 5, by considering a

special physical example, we found that the answer to the second question is ”yes”. In

the dynamics like Rabi oscillations for a single particle system the state population is

completely transferred to the excited state and therefore the v-representability boundary

is crossed.

All mathematically rigorous proofs presented in this work are limited to lattice systems.

However taking the continuum limit accurately is a highly nontrivial but very inter-

esting problem. A careful generalization of the lattice TDDFT to the continuum limit

should answer a fundamental question of whether or not there is a counterpart of the

v-representability subset Ω in the continuum TDDFT.

The rigorous formulation of TDDFT for lattice electrons driven by the classical external

field suggests a possibility to go beyond the standard setup and take into account the

quantum nature of the driving electromagnetic field. For this system as a result of added

photonic degree of freedom to the wave function we expect that the minimal set of the

basic variables fully describing the state of the system must include an extra observable.

The extra observable, as suggested in the Taylor expansion-based proof of QED-TDDF

Ref. [40], is the expectation value of the photonic canonical coordinate. Therefore the

basic map in QED-TDDFT is from the particle density and the field average to the

external driving potentials. The latter is a scalar potential driving the electronic sector

and a time dependent dipole moment driving the photonic coordinate.

Again the v-representability and uniqueness is equivalent to the existence of a unique

solution to a certain system of NLSE. The main difference and, in fact, the main mathe-

matical difficulty of QED-TDDFT , compared to the purely electronic lattice TDDFT is

the existence of continuum variables describing photonic modes. As a result the Hilbert

space becomes an infinite dimensional functional space, and the universal NLSE turns

into a system of PDEs. This puts the lattice QED-TDDFT, in a certain sense, on half

way between the electronic lattice TDDFT and the usual TDDFT in the continuum

space. Using the theory of PDE we showed the corresponding Cauchy problem indeed

has a unique solution . Therefore, the unique QED-TDDFT map exists, provided, the
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basic variables have continuous second time-derivatives and the initial state belongs to

some well defined v-representability subset of the Hilbert space Ω. We further extended

the ground state v-representability theorem to a very general electron-photon lattice

Hamiltonian. If a system evolves from the ground state of such a Hamiltonian the lo-

cal v-representability is always guaranteed. The simplest non-trivial example of this

construction is a system of a one-electron Hubbard dimer coupled to a single photonic

mode, which is identical to the Rabi and spin-boson models.[42–44]

Apparently any practical application for QED-TDDFT requires development of approx-

imations to the universal exchange-correlation functional. Despite the fact that this

theory is still very young there is an active research in developing such approximate

functionals. [132].

In the second half of the thesis we focused on practical aspects of TDDFT. In chap-

ter 5 we performed a qualitative and quantitative study of the non-adiabatic features

in the TDDFT functional for a Hubbard dimer to exemplify the performance of the

most widely used adiabatic approximation. We chose this system for two main reasons:

First, its Kohn-Sham functional is analytic and known and second, the exact ground

state adiabatic exchange-correlation functional can be calculated using the Levy-Lieb

constrained search. [66, 110, 111]

We propagated the Kohn-Sham equation self-consistently by using the adiabatic exchange-

correlation functional and found that the non-adiabaticity is crucial to properly capture

the physics of resonant and slightly detuned Rabi oscillations. In section 5.4 we used

the analytic density potential map to derive an explicit fully non-adiabatic Hartree-

exchange-correlation functional that accurately describes resonant and slightly detuned

Rabi oscillations. Moreover this quasi-exact functional incorporates explicitly the initial-

state dependence and is non-local in time.

In addition, this functional highlights another important feature of the lattice TDDFT

– the dependence of the exact exchange-correlation functional on the second time-

derivative of the density. This dependence has been proven controversial and even

raised questions about usability of the true exchange-correlation potential.[133, 134] Es-

sentially the point is that one cannot propagate the self-consistent Kohn-Sham equation

if the potential depends on the second time-derivative of the density. Calculation of the
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second derivative at a given time t requires knowledge of the future density. This seems

to prevent using the exact exchange-correlation potential in an iterative scheme.

Fortunately, this does not create any problem because lattice TDDFT, and most likely

standard TDDFT, holds true under the assumption of continuous second time-derivative

of the density. Therefore n̈ can be found by differentiating the first time-derivative

from the left. The only problem is with the density at the initial time which has no

defined history. However, we can determine the second derivative of the density through

the interacting force balance equation for a given interacting initial state and external

potential at t0. Therefore, for the Kohn-Sham propagation all we need apart from the

exchange-correlation functional are the external potential, the interacting initial states,

and the Kohn-Sham initial state.

In chapter 6 we continued our work on practical applications by proposing a new use

for the analytic maps in TD(C)DFT. In this approach we parametrized both the wave

function and the driving potential in terms of intuitive physical observables, e.g. the

density and/or the current, which allows us to design analytical control signals for pre-

scribed dynamics. With this strategy we are able to inverse engineer infinitely many

analytically solvable time-dependent problems covering dynamics both in a real space

and on lattices. Moreover, for problems like the state preparation in which the initial

and target states are known it allows us to incorporate some favourable features, such

as minimal initialization time into the time-evolution.

We considered a number of situations in which the TD(C)DFT maps are known analyt-

ically. In all those cases the basic observables, such as the density or the current, were

used for a convenient and physically intuitive parametrization of the time-evolution. As

the first pedagogical example we considered the control problem for the Schrödinger

equation to describe dynamics of a single quantum particle driven by a time-dependent

electromagnetic field. If the dynamics is restricted to be generated by an electric field,

the solution can be reconstructed from the dynamics of the density or, equivalently, from

the given (irrotational) velocity field. From the general reconstruction formulas one can

recover the known analytic solutions of the time-dependent Schrödinger equation for a

harmonic oscillator driven by a time-dependent frequency [73, 74].

Afterwards we applied our strategy to a problem of quantum dynamics on lattices
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(discrete spaces). We used the analytic maps for the one-particle generalized lattice-

TDCDFT [105] where the basic observables are the intersite current and the kinetic

energy. As the first illustration of this setup we considered a manipulation of a one

particle state on a finite tight-binding chain. We constructed an analytic driving field

that generates a fast reshaping of the initial ground state density to the ground state

density of another potential. In the second example we demonstrated the engineering of

analytically solvable two level Schrödinger equations describing, in particular, dynamics

of spin-1/2 system driven by a time-dependent magnetic field. We constructed a cyclic

analytic control pulse which works as a quantum NOT gate, that is, it flips the direction

of the spin for two basis states.

This universal strategy further develops and extends promising applications of TDDFT

to the quantum control.[107, 108] More importantly, it connects the ideas of the density-

potential mapping in TDDFT and TDCDFT to a wider range of coherent control [135]

and the state preparation problems in the quantum computing [81–83].

To summarize, we hope this thesis will contribute to a better understanding of quantum

dynamics driven by external time-dependent potentials. We mainly focused on quan-

tum dynamics on a lattice for two very important reasons. First of all, it is extremely

popular in computational physics and, second, it simplifies the mathematical construc-

tion of the problem. This strategy led to number of rigorous theorems for TDDFT and

QED-TDDFT which provide a firm foundation for most practical applications in these

formalisms. However, there are still interesting questions to be addressed in the future.

For example, we do not fully understand all the physical situations when the boundary

of v-representability subset is reached. In the study of non-linear dynamics we quantified

the importance of the history and initial value dependence in exchange-correlation func-

tional. Finally, we proposed a new application of the TD(C)DFT maps as we introduced

them to new fields such as quantum control and quantum computing. We believe that

with the development of accurate approximations to the exchange-correlation functional

a similar strategy can be applied to many-body dynamics.



Appendix A

Derivation of the equations of

motions

A.1 Continuity equation on a lattice

To derive the continuity equation on a lattice we first start from the second quan-

tized version of the Hamiltonian for a system of N electrons on an M -site lattice with

Schrödinger equation (3.1)

Ĥ = T̂ + V̂ext + Ŵ

=
∑
r,r′

Tr,r′ â
†
râr′ +

∑
r

vrâ
†
râr +

1

2

M∑
r,r′

wr,r′ â
†
râ
†
r′ ârâr′ , (A.1)

where â†r and âr are the electronic creation and annihilation operators at site r respec-

tively. The summation is over the lattice site coordinates r.

The creation and annihilation operators obey the following anti-commutation relations

{âr, â†r′} = δr,r′ , (A.2)

{âr, âr′} = {â†r, â†r′} = 0. (A.3)

The on-site density operator in the second quantization reads:

n̂(r) = â†râr. (A.4)
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One can calculate the time derivative of the on-site density using the Heisenberg equation

d

dt
n̂(r) = i[Ĥ, n̂(r)]. (A.5)

The only non-commuting term in the Hamiltonian (A.1) is the kinetic term. 1 So we

have 2

[T̂ , n̂(r)] =
∑
r′,r′′

Tr′,r′′ [â
†
r′ âr′′ , â

†
râr]

=
∑
r′,r′′

Tr′,r′′
(
â†r′ [âr′′ , â

†
râr] + [â†r′ , â

†
râr]âr′′

)
=

∑
r′,r′′

Tr′,r′′
(
â†r′ âr{âr′′ , â

†
r} − â

†
r′ â
†
r{âr′′ , âr}+ {â†r′ , â

†
r}ârâr′′ − {â

†
r′ , âr}â

†
râr′′

)
,

Using the anti-commutation relations (A.2).

[T̂ , n̂(r)] =
∑
r′

Tr′,r

(
â†r′ âr − â

†
râr′

)
. (A.6)

There is no external magnetic field so Tr,r′ = Tr′,r. In the case of magnetic field the

indeces are non-interchangeable so we would have:
(
Tr′,râ

†
r′ âr − Tr,r′ â

†
râr′

)
Substituting back into Eq. (A.7) we have the continuity equation in the operator form

d

dt
n̂(r) = i

∑
r′

Tr′,r

(
â†r′ âr − â

†
râr′

)
. (A.7)

taking the expectation value with respect to ψ(r1, ..., rN ; t) we have

ṅ(r; t) =
∑
r′

Tr′,r
(
ρ(r′, r)− ρ(r, r′)

)
, (A.8)

where

ρ(r′, r) = N
∑

r2,...,rN

ψ∗(r′, r2, ..., rN )ψ∗(r, r2, ..., rN ). (A.9)

1[Â, f(Â)] = 0.
2 [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂, [ÂB̂, Ĉ] = Â{B̂, Ĉ} − {Â, Ĉ}B̂
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A.2 Force balance equation on a lattice

To derive the force balance equation (3.8) we need to calculate the second time derivative

of the density which means to calculate

d2

dt2
n̂(r) = i[Ĥ, ˙̂n(r)]. (A.10)

It is an straight forward but lengthy job to calculate the commutator in the right hand

side of this equation. First we substitute the derivative of the density from the operator

form of the continuity equation (A.7)

[Ĥ, ˙̂n(r)] = i
∑
r′

Tr′,r[Ĥ, â
†
r′ âr − â

†
râr′ ] (A.11)

= i
∑
r′

Tr′,r

(
[T̂ , â†r′ âr − â

†
râr′ ] + [V̂ext, â

†
r′ âr − â

†
râr′ ] + [Ŵ , â†r′ âr − â

†
râr′ ]

)
.

We calculate each commutator separately and then we will put them all together

[T̂ , â†r′ âr] =
∑
r′′,r′′′

Tr′′,r′′′([â
†
r′′ âr′′′ , â

†
r′ âr]

=
∑
r′′,r′′′

Tr′′,r′′′
(
â†r′′ [âr′′′ , â

†
r′ âr] + [â†r′′ , â

†
r′ âr]âr′′′

)
=

∑
r′′,r′′′

Tr′′,r′′′
(
â†r′′ âr{âr′′′ , â

†
r′} − â

†
r′′ â
†
r′{âr′′′ , âr}

+{â†r′′ , â
†
r′}ârâr′′′ − {â

†
r′′ , âr}â

†
r′ âr′′′

)
=

∑
r′′,r′′′

Tr′′,r′′′
(
â†r′′ ârδr′′′r′ − â

†
r′ âr′′′δr′′r

)
=

∑
r′′

(
Tr′′,r′ â

†
r′′ âr − Tr,r′′ â

†
r′ âr′′

)
.

To calculate [T̂ , â†râr′ ] we just need to interchange the r and r′ in the above relation.

Thus we have for the fist commutator in (A.11)

[T̂ , â†r′ âr − â
†
râr′ ] =

∑
r′′

(
Tr′,r′′

(
â†r′′ âr + â†râr′′

)
− Tr,r′′

(
â†r′ âr′′ + â†r′′ âr′

))
.(A.12)

Taking the expectation value of this term we find

〈Ψ(t)|[T̂ , â†r′ âr − â
†
râr′ ]|Ψ(t)〉 = 2Re

∑
r′′

(
Tr′,r′′ρ(r, r′′; t)− Tr,r′′ρ(r′, r′′; t)

)
,(A.13)
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where the density matrix is given by Eq. (4.6).

For the next term in Eq. (A.11) we can write

[V̂ext, â
†
r′ âr] =

∑
r′′

vr′′([â
†
r′′ âr′′ , â

†
r′ âr]

=
∑
r′′

vr′′
(
â†r′′ [âr′′ , â

†
r′ âr] + [â†r′′ , â

†
r′ âr]âr′′

)
=

∑
r′′

vr′′
(
â†r′′ âr{âr′′ , â

†
r′} − â

†
r′′ â
†
r′{âr′′ , âr}

+{â†r′′ , â
†
r′}ârâr′′ − {â

†
r′′ , âr}â

†
r′ âr′′′

)
=

∑
r′′

vr′′
(
â†r′′ ârδr′′r′ − â

†
r′ âr′′δr′′r

)
= vr′ â

†
r′ âr − vrâ

†
r′ âr,

where like before we can interchange r with r′ to get the second commutator for the

external potential. So we have

[V̂ext, â
†
r′ âr − â

†
râr′ ] = (vr′ − vr)

(
â†r′ âr + â†râr′

)
. (A.14)

By taking the expectation value we find

〈Ψ(t)|[V̂ext, â†r′ âr − â
†
râr′ ]|Ψ(t)〉 = 2(vr′ − vr)Reρ(r, r′; t), (A.15)

where the density matrix is defined by

ρ(r, r′; t) = 〈Ψ(t)|â†râr′ |Ψ(t)〉. (A.16)
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And for the commutator containing the interaction Hamiltonian Ŵ we have

[Ŵ , â†r′ âr] =
1

2

∑
r′′,r′′′

wr′′,r′′′ [â
†
r′′ â
†
r′′′ âr′′ âr′′′ , â

†
r′ âr]

=
1

2

∑
r′′,r′′′

wr′′,r′′′

(
â†r′′ â

†
r′′′ [âr′′ âr′′′ , â

†
r′ âr] + [â†r′′ â

†
r′′′ , â

†
r′ âr]âr′′ âr′′′

)
=

1

2

∑
r′′,r′′′

wr′′,r′′′

(
â†r′′ â

†
r′′′
(
âr′′ [âr′′′ , â

†
r′ âr] + [âr′′ , â

†
r′ âr]âr′′′

)
+
(
â†r′′ [â

†
r′′′ , â

†
r′ âr] + [â†r′′ , â

†
r′ âr]â

†
r′′′
)
âr′′ âr′′′

)
=

1

2

∑
r′′,r′′′

wr′′,r′′′

(
â†r′′ â

†
r′′′
(
âr′′ âr{âr′′′ , â†r′}+ {âr′′ , â†r′}ârâr′′′

)
−
(
{â†r′′′ , âr}â

†
r′′ â
†
r′ + {â

†
r′′ , âr}â

†
r′ â
†
r′′′
)
âr′′ âr′′′

)
=

1

2

∑
r′′,r′′′

wr′′,r′′′

(
â†r′′ â

†
r′′′
(
âr′′ ârδr′′′r′ + ârâr′′′δr′′r′

)
−
(
â†r′′ â

†
r′δr′′′r + â†r′ â

†
r′′′δr′′r

)
âr′′ âr′′′

)
=

1

2

∑
r′′

(
wr′′,r′

(
â†r′′ â

†
r′ âr′′ âr + â†r′ â

†
r′′ ârâr′′

)
−wr′′,r

(
â†r′′ â

†
r′ âr′′ âr + â†r′ â

†
r′′ ârâr′′

))
.

Subtracting the other term in the commutator we get:

[Ŵ , â†r′ âr − â
†
râr′ ] =

∑
r′′

(
wr′′,r′ − wr′′,r

)(
â†r′′ â

†
r′ âr′′ âr + â†r′′ â

†
râr′′ âr′

)
, (A.17)

where we used the fact that â† anti-commutes with â† and â anti-commutes with â.

Taking the expectation value we find

〈Ψ(t)|[Ŵ , â†r′ âr − â
†
râr′ ]|Ψ(t)〉 = 2Re

∑
r′′

(wr,r′′ − wr′,r′′)ρ2(r, r′′, r′; t), (A.18)

where the two particle density matrix is defined by

ρ2(r, r′′, r′; t) = 〈Ψ(t)|â†r′′ â
†
râr′′ âr′ |Ψ(t)〉. (A.19)

Substituting Eqs. (A.13), (A.15) and (A.18) back into Eq. (A.11) and then into Eq. (A.10)

we find the force balance equation for a lattice system (3.8).
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Universal NLSE for two

interacting particles on a two-site

lattice (Hubbard dimer)

Below we present the derivation of the universal NLSE for a system of two interacting

spin-1/2 fermions on a two-site lattice. This gives another explicit example illustrating

the general structure of nonlinear equations appearing in Sec. III.

Since the dynamics of the triplet state on two-sites is trivial we concentrate on the

singlet state. The spatial part of the singlet 2-particle wave function is symmetric with

respect to the permutation of coordinates. It has three components, ψ11, ψ22, and

ψ12 = ψ21, describing different distribution of the particles over the sites. Because only

the potentials orthogonal to a constant are relevant (see Sec. IV) we assume from the

very beginning that v1 = −v2 = v

The Schrödinger equation Eq. (4.1) for two particles in the singlet state on the two-site

lattice takes the form

i∂tψ11 = −
√

2 Tψ12 + (2v + w11)ψ11 (B.1a)

i∂tψ12 = −
√

2 Tψ11 + w12ψ12 −
√

2 Tψ22, (B.1b)

i∂tψ22 = −
√

2 Tψ12 + (−2v + w22)ψ22. (B.1c)
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To construct NLSE for this system we need to substitute the potential from the force

balance equation which relates the on-site potential to the density and wave function. As

we have a two-site lattice the structure of the force balance equation coincides with that

of Eq. (3.24) derived in Sec. IV. We only have to substitute the values of k12 = 2TReρ12

and qr calculated for the two particle system into Eq. (3.24) [by means of Eqs. (4.6) and

(3.9)]

k12 = 2TReρ12 = 4TRe[ψ∗11ψ12 + ψ∗12ψ22], (B.2)

q1 = 4T 2(|ψ22|2 − |ψ11|2)−4T
(

Re[ψ∗11ψ12](w11 − w12)

− Re[ψ∗22ψ12](w22 − w12)
)

= −q2. (B.3)

As we know K̂ matrix has the trivial zero eigenvalue corresponding to a constant po-

tential which is already projected out by setting v = v1 = −v2 . If 2TReρ12 6= 0 we can

invert K̂ matrix in Eq. (3.24), which determines the potential v in terms of density and

the wave function

v(n, ψ) = − n̈1−q1

4TReρ12
. (B.4)

Finally by substituting v of Eq. (B.4) into Eq. (B.1) we arrive to the universal NLSE

for this system

i∂tψ11 =
(
− n̈1−q1

2TRe[ψ∗11ψ12 + ψ∗12ψ22]
+ w11

)
ψ11

− Tψ12, (B.5a)

i∂tψ12 = w12ψ12 − Tψ11 − Tψ22, (B.5b)

i∂tψ22 =
( n̈1−q1

2TRe[ψ∗11ψ12 + ψ∗12ψ22]
+ w22

)
ψ22

− Tψ12. (B.5c)

We again explicitly see a system of nonlinear ODEs with the nonlinearity of the rational

form. As one expects on the general grounds (see Sec III) inclusion of interactions does

not introduce any conceptual modification in comparison with the simplest one-particle

case considered in Sec. IV. In the subset Ω of the Hilbert space where Reρ12 6= 0 all

the terms in the right hand side of Eqs. (B.5a) and (B.5c) are infinitely differentiable

with respect to components ψrr′ of the wave function. Hence the whole right hand side

stays Lipshitz continuous, provided ψ ∈ Ω. If the density has a continuous second time
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derivative n̈, and the initial state ψ(0) ∈ Ω is density-consistent in a sense of Eqs. (3.13)–

(3.14), then there is a unique solution to NLSE of Eqs. (B.5). Therefore there exists

a one-to-one mapping between the density and the potential in the original two-body

problem.



Appendix C

Exact Hohenberg-Kohn

functional of the two-site

Hubbard model by constrained

search

In this Appendix we briefly describe how one can construct the exact Hohenberg-Kohn

functional (5.12) for two electrons in the two-site Hubbard model by carrying out the

constrained search as suggested by Levy [66, 110] and Lieb [111].

The Hilbert space for two fermions on two sites is of dimension six and separates into a

singlet and a triplet sector of dimension three each. Since for any value of d, the ground

state of Ĥ0 = T̂ + Û is a singlet, we may restrict the search in Eq. (5.12) to singlet

wavefunctions only. As a basis for the singlet sector we use the eigenstates of Eq. (5.3).

Then the most general singlet state may be written as

|Ψ〉 = A1|g〉+A2|e1〉+A3|e2〉, (C.1)

where we can, without loss of generality, choose the coefficients Ai to be real. In the

chosen basis, the expectation value of Ĥ0 = T̂ + Û takes the simple form

〈Ψ|Ĥ0|Ψ〉 = 〈Ψ|T̂ + Û |Ψ〉 = EgA
2
1 + Ee1A

2
2 + Ee2A

2
3 (C.2)
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where the eigenvalues Eg, Ee1 , and Ee2 of the basis functions are given by Eq. (5.5).

The expansion coefficients Ai in Eq. (C.1) are not independent. The normalization

condition of the wavefunction |Ψ〉 leads to

A2
1 +A2

2 +A2
3 = 1 . (C.3)

In the constrained search we also have to make sure that we are only searching over

wavefunctions which yield to a given “density” d. This gives a second condition on the

coefficients which reads

d = 〈Ψ|n̂1 − n̂2|Ψ〉 = 4
A1 + β+A3√

1 + β2
+

A2 (C.4)

where β+ is given by Eq. (5.4). We can use Eqs. (C.3) and (C.4) to eliminate two of the

coefficients, say A2 and A3, in the constrained search which then becomes a minimization

in a single variable, i.e.,

FHK(d) = min
A1

〈Ψ(A1, d)|T̂ + Û |Ψ(A1, d)〉 . (C.5)

In general, this minimization has to be carried out numerically. In Fig. C.1 we show

FHK as a function of the dipole moment for various values of U . We note that FHK(d)

is always minimal at d = 0. For large values of U the slope of FHK(d) changes rapidly

as one crosses from negative to positive values of d. For vanishing interaction U = 0,

the minimization can be carried out fully analytically. The resulting functional, the

non-interacting kinetic energy, reads

Ts(d) = min
Ψ→d
〈Ψ|T̂ |Ψ〉 = 2T

(
1− 2

√
1− d2

8

)
. (C.6)

Then the Hartree-exchange-correlation energy is given by

EHxc (d) = FHK(d)− Ts(d) (C.7)

and the corresponding Hxc potential can be easily obtained by differentiation.
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Figure C.1: Exact Hohenberg Kohn density functional FHK[d] (in units of the hopping
parameter T ) for different Hubbard strength’s U .
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