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1

Introduction

1.1 Preliminaries

An epidemic model is a mathematical description of the behavior of a population
when it interacts with a specific disease. The main objective for creating a mathe-
matical model is to understand the impact of the disease over the population at a
global state, predict, and eventually, discuss the best way of interacting with such
diseases in order to remove or lessen their effects. There are multiple agents that
can be responsible for the apparition of a disease, and they are organized in differ-
ent categories: When a disease can be developed because of the transmission from
another sick individual, such as AIDS or common cold, it is called infectious disease,
whereas the non-infectious diseases can be developed without such interactions, and
it is usually associated to a existing predisposition, environmental causes or specific
lifestyles.
This does not mean that those categories cannot overlap; for example, cirrhosis and
liver cancer is firmly associated with contracting and developing hepatitis (an infec-
tious diseases), although contracting this diseases is not necessary for the cirrhosis or
the cancer to happen [1].
In other diseases, the variables derived from the ecosystem of the agents of infec-
tion can affect the parameters of the model to a level where they are of no use [3].
Such are the cases of the infectious diseases, caused by "macroparasites" such as
flukes or helminths are not taken into account, as the environment of the host and
the number of the agents of infection have so much influence that the complexity of
the models are increased up to a level where the parameters involving the diseases
cannot be properly described. Thus, the most successful mathematical models focus
on the "fast" transmitted infectious diseases, where the within-host density of the
pathogens is ignored and the life cycle of the pathogen is not relevant to the model.
Typical epidemic diseases studied are influenza, pertussis, standard cough, tubercu-
losis, smallpox, malaria, dengue, diphtheria, etc [2].
The mechanic of these epidemic diseases share a set of common parameters charac-
terized by the transmission of the illness from infected individuals to uninfected ones,
and typically have some periods of time where the illness has not external symptoms
(incubation period) but the patients become infective to others. Later one, the in-
fected present external symptoms of different kinds and intensity depending on the
particular disease and individuals and becomes able to transmit the disease to others
(infectious). After a certain illness-dependent period of time, the infected population
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can become recovered population, in the sense that the disease is removed from the
hosts.
The epidemic models are referred to by acronyms which refer to the various kinds of
populations being considered.

The "susceptible" subpopulation (S) are the portion of population individuals
of the total population which could become infected.

The "infected" subpopulation (E) are those with the disease still without symp-
toms, also called the "exposed".

The "infectious" subpopulation (I) are those with external symptoms and an
infectious capacity.

The "recovered" subpopulation (R) also sometimes refereed to as the "removed
by immunity" or the "immune" or the "recovered" are those which are infection-
free.

Some epidemic models also include an extra subpopulation called the "vacci-
nated" subpopulation (V ).

The sum of all the subpopulation i.e. the total population (N).
In this way, we have the following typical models with different degrees of complexity:

• SI ( susceptible/ infectious) models

• SIR (susceptible/infectious/ recovered) models

• SEIR( susceptible /infected /infectious/recovered) models

• SVEIR ( susceptible/vaccinated/ infected/infectious/recovered) models
The models can consider a forcing function called the vaccination function which is
also often referred to by (Vc). These basic models will be explained in detail in the
following sections. Usually, a typical epidemic model can be describe with a flow
diagram similar to the one from figure 1.1.
The blue arrows represent the transitions between the different subpopulations. The
dotted arrow represent the influence of certain subpopulations on the transitions be-
tween them. The development of the disease is sequential, and it goes from susceptible
to recovered through all the stages.
Given the specific nature of the disease and the reaction of the immunity system of
the host, some variants of the above models include a new final "S" in its correspond-
ing acronym (cf. SEIRS), as the final stage of the disease goes back from recovered to
susceptible. Depending on the velocity of the process and the impact on the health
of the sick population, the fluctuations on the total population can be taken into
account. Thus, the rate of production of newborns and the death rates are taken into
account although, for simplicity, sometimes the population is assumed constant and
these parameters omitted.
There are several methods to reduce, in statistical terms the probability of infection
over the population and the spread of the disease. Many of them involve removing
certain amount of susceptible or infected individuals from the population (culling), or
isolation of the known infected from the rest of the healthy individuals (quarantine).
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Figure 1.1: A representation of a SEIRS epidemic model, in which the transition
between subpopulations and the rates of birth and death are taken into account

Medicine has a long history with this forms of disease control which in our models
would become control laws. They are generic and can be applied when the informa-
tion about the disease is minimal. However the resources needed using these ways are
not always affordable and other methods less intrusive are needed. Thus, vaccination
is considered a control law so that there are several possible strategies can be applied:
constant vaccination and impulsive vaccination, being these vaccinations controlled
by laws based on feedback information of the subpopulations, etc.
The vaccination control laws can include observers to estimate the subpopulations in
order to synthesize the controls based on them. An important fact to be taken into
account concerning vaccination is the following: Epidemic models are never (state)
controllable under any vaccination control law and, equivalently, epidemic models are
always (state) uncontrollable so that there is no control law which allows to take
simultaneously all the subpopulations to suited prescribed final values in finite time.
The intuitive reason for uncontrollability is that epidemic models describe transitions
in-between the subpopulations and typically an individual which becomes infected,
provided it does not die, passes along all the disease phases through time so that this
makes impossible to accomplish with controllability in the usual sense. However, it
must be noted that the property of "output controllability" is a feasible objective if the
output is defined with some combination of subpopulation. For instance, if the output
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is the sum of infected+infectious, it can be fixed as output controllability objective to
fix to zero this output. If it is defined as the sum of the susceptible+immune, it can
be fixed as output controllability objective to fix this output to the total population.
This doctoral thesis is devoted to discuss some properties on the dynamics of sev-
eral classes of SIRS, SEIRS and SVEIRS epidemic models. The major relevance is
given to the local (around the equilibrium points) and global stability properties as
well as to the vaccination rules which are implemented in order to asymptotically re-
move the disease and /or to improve their transient behavior towards to its practical
annihilation. Epidemic models can be developed with either un-normalized subpopu-
lations or with normalized ones (the total population is unity and the subpopulations
are fractions of unity whose sum equalizes unity). In the second case, the evolution
through time of the subpopulations is interpreted as a percentage of a quantity of
individuals for each subpopulation at each time instant. Other properties of interest
in the context of differential equations for continuous-time or discrete-time difference
equations systems are:

i) Global/local stability: The total stability of the population is irrelevant for nor-
malized models since all the subpopulations are bounded for all time. In the case
of un-normalized models, it is of interest in the case that the total population is
unbounded.

ii) Global/local asymptotic (partial) stability: It is relevant for both kinds models
in the sense that the infected and infectious subpopulations are suited to asymp-
totically converge to zero. Equivalent, the sum of all the other subpopulations
converges asymptotically to the whole population.

iii) Permanence of the infection: It is related to the case when the infected/infectious
subpopulations cannot be removed. If the model is permanent for any initial
condition then its disease-free equilibrium point (i.e. that which has zero infected
and infectious subpopulations ) cannot be asymptotically stable. The disease-
free equilibrium point is discussed more in detail in the following subsections of
this chapter.

iv) Positivity of the solution: Just because of coherency related to the problem
nature, the epidemic models do not admit negative subpopulations.

1.1.1 Pseudomass-action and mass-action models

The first thing needed in order to describe the spread of an epidemic in a mathematical
formalism is a proper definition of the force of infection. The force of infection is
defined as the probability of transmission of a disease per unit of time to a susceptible
individual. Then, the number of infected people per unit of time would be λX, being
X the number of susceptible individuals and λ the force of infection. Assuming that
the population suffering the epidemic is homogeneously mixed and move through
the space where the epidemic is happening, the probability of interaction with sick
individuals should be equally distributed. Thus, for a susceptible individual with an
average of Cr contacts per unit of time with other individuals, a fraction of those
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interactions would be with infected individuals I = Y/N , where Y is the number of
infectious individuals an N the total population. During a small time interval δt, the
number of interaction with infected population would be δt Cr I/N . The probability
of contagion due to one of these interactions is defined as a constant PC , so 1−PC is
the probability of not contracting the disease in that specific contact. If the contacts
are independent, the probability of not contracting the disease in that small time
interval would be

(1− δq) = (1− PC)δtCrY/N (1.1)

So the probability of contagion in that time would be δq = 1− (1− PC)δtCrY/N . The
parameter beta is defined as β = −Crlog(1− PC) so that δq = 1− e−βδtY/N and the
force of infection, defined as δλ/δt is reduced to :

λ =
δq

δt
= (1− e−βδtY/N)/δt = βY/N +O(δt) (1.2)

As δt→ 0, the term O(δt)→ 0. Then, the total rate of transmission of the susceptible
subpopulation can be described as

dX

dt
= −λX = −βXY/N → dS

dt
= Ṡ = −βSI (1.3)

The mode of transmission can vary depending in how the contact rate is assumed to
work [8]. The approach given in equation (1.3) is called "frequency dependent", and
is based upon the assumption that contact rate does not depend on the size, but on
the density of the subpopulations. This simple model is inspired in the concentration
of molecules in a chemical reaction, to which the law of mass action applies [4] [5] [6]
[7]. In a sense, this correspond to our expectations, as the average interactions of an
individual in a city with a population of order 10.000.000 is not 1000 times higher than
Cr in a small city of 10.000. The etiquette of "mass action" model has been a matter
of confusion over the years for many epidemiologists as, in many human diseases,
the size of the population and the density are usually equivalent (the area of action
of the epidemic is considered constant) and the size of the total population is not
affected by it significantly . As a result, the diverse approaches on the transmission
mechanisms have conflictive nomenclature, and sometimes "mass action" is confused
with "pseudo-mass action" models, in which the contact rate Cr depends on the
density of the population [9]. The "pseudo-mass action" model considers that an
increase in the density of populations results in an increase of the contact rate and
thus, the number of infections, and the force of infection is defined as λ = βY instead
of the one from equation (1.2). Other approaches to the transmission of the disease
may present a middle point between both models, by having a saturation factor in
which the value of the contact rate increases with the density of the subpopulations,
until it reaches a maximum and tends to a constant value. In general, the difference
between both models is only relevant when the population size fluctuates significantly;
otherwise, the parametrization of β absorbs the 1/N term and the notation is quite
similar, as seen in equation (1.3).
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1.2 Characterization of the epidemic models

The models are described by a set of parameters, some of them being dependent on
the species dealt with and some of them of the particular illness.

1.2.1 Terminology and main parameters

The following is a summary of the notation used in this and the next sections.

b1/ν, b3: Birth rates of the population, a constant one (b1/ν) and a population-
dependent one (b3). The birth rate is related to the population that is born/introduced
to the population per unity of time,on average. It is measured as population per
unity of time for b1/ν time and plain unity of time−1 for b3. Usually years−1 is
used as a measure of time and the number of individuals a measure of the size
of the population, although both can vary when necessary.

b2/µ: Natural death rate of any subpopulation. The death rate is related to
the death of individuals/retired from the population due to old age and causes
non-related to the disease. As the birth rate b1/ν, the death rate is measured
as population per unity of time and, when necessary, has the same value such
that the total population remains constant. It is proportional to the inverse of
the average life-spam of a healthy individual in that population.

γ: Ratio of transition to recovered from infected subpopulation (I→ R). It is
proportional to the inverse of the time, on average, of recovery from the disease.

α: Extra death rate caused by the disease in the infected (I) subpopulation. As
in the natural death rate, it is proportional to the inverse life-span, on average,
of an individual affected by the disease.

τ : Average time of transition from exposed to infected (E→ I) subpopulations.
A similar parameter is sometimes used, analogous to γ and α, using the inverse
of τ to define the parameter

κ, which is the ratio of transition from exposed to infected subpopulation.

ω: Average time of transition from immune to susceptible subpopulations (R→
S).

β: Disease transmission constant. As defined in previous section, it is measured
depending on the type formulations used for the model.

η: A saturation constant related to a transmission of the disease and incidence
rate alternative to the pseudo mass and mass action models.

δ: A diminishing factor related to the disease transmission in the vaccinated
subpopulation in contrast to that corresponding to the susceptible one.

Vc: Fraction of the population which is vaccinated since birth (Vcε[0, 1]).

R0: Basic reproduction number, it is defined as the average number of secondary
cases generated from an average primary case in an entirely susceptible subpop-
ulation. This parameter is derived from the models, and it is fundamental for
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the understanding the nature of the diseases and their evolution through time.
This parameter will be explained in more detail in the following sections.

A series of typical models are now presented in order to describe the more general
characteristics observed in this context.
The SI epidemic model First, it is presented a model with the minimal number
of subpopulations possible to describe an epidemic: A susceptible and an infectious
subpopulation. It is assumed that the disease has a chronic component that affects
the health of the hosts, so their average life expectancy is reduced. The dynamic of
the subpopulations is described in figure 1.2 and in the following equations:

dS(t)

dt
= Ṡ(t) = ν − βS(t)I(t)− µS(t) (1.4)

dI(t)

dt
= İ(t) = βS(t)I(t)− (µ+ α)I(t) (1.5)

Even though the model presented is quite simple, the non-linear βSI term makes
analytical study of the solutions of S(t) and I(t) expressions futile. However, that
does not mean that some analytical study is not possible. By setting to zero the
equations (1.4) and (1.5) it is obtained the values of the subpopulations where, if
there is no perturbation, will remain in the same state indefinitely. The equilibrium
states obtained for this model are two, one where the disease is prevalent and another
where it has been eradicated, which will be defined as endemic equilibrium (END)
[S∗, I∗] = [α+µ

β
, ν

α+µ
− µ

β
] and disease-free equilibrium (DFE) [S∗, I∗] = [ν/µ, 0],

respectively.
Also, it is seen that if the susceptible subpopulation is below S0 = S∗END = (µ+α)/β
it is obtained from the equation (1.5) that

İ(t) = I(t)(βS(t)− (µ+ α)) ≤ 0 ∀S(t) ≤ S0 (1.6)

So it is seen that an analysis of the parameters of the disease can predict, partially
but significantly, the evolution of the epidemic.

Figure 1.2: A Simple SI epidemic model
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The SIR epidemic model The idea of "closed population" is introduced in this
model, where the effects of demographics, i.e., migration of population, death or
newborn individuals are discarded. The scenario presented is a large population in
which a low level of infectious agent is introduced, and the epidemic spreads fast
enough so that none of the demography is relevant to the evolution of the disease.
The contact rate is frequency dependent and the population is assumed homogeneous
mixed, so that the equations for the dynamics is defined as

dS(t)

dt
= Ṡ(t) = −βS(t)I(t) (1.7)

dI(t)

dt
= İ(t) = βS(t)I(t)− γI(t) (1.8)

dR(t)

dt
= Ṙ(t) = γI(t) (1.9)

A diagram of the model is shown at fig 1.3. After an initial state before interacting
with the disease, the susceptible subpopulation goes to an infectious stage which
last, on average γ−1. Then the disease carry on and reach the final recovered state,
immune to the disease. The solution of the model is obtained numerically as the non
linear term βSI, again , does not facilitate obtaining an analytical solution. As in

Figure 1.3: A Simple SIR epidemic model

the previous model, an analysis of the parameters can be made so that the threshold
susceptible subpopulation is defined as

İ(t) = I(βS0 − γ) ≤ 0 → S0 = γ/β (1.10)

SEIR epidemic model The SEIR model is based on a SIR model, but in this
model it is taken into account as a relevant parameter the time between the host
being exposed to the pathogen to the time where the host is considered infectious.
Thus the new subpopulation is introduced. The dynamic of the SEIR model, as seen
in figure 1.4 is similar to the SI and SIR model, with a stage between the susceptible
and the infectious subpopulation and a disease relevant to the demography of the
population. This exposed subpopulation will have a transition rate which, in this
case, will be proportional to the inverse of the mean time of the latent period of
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Figure 1.4: A Simple SEIR epidemic model

infection.

Ṡ(t) = ν − βS(t)I(t)− µS(t) (1.11)
Ė(t) = βS(t)I(t)− (κ+ µ)E(t) (1.12)
İ(t) = κE(t)− (γ + α + µ)I(t) (1.13)
Ṙ(t) = γI(t)− µR(t) (1.14)

An analysis of the parameters produce two equilibrium states. A DFE state

[S∗DFE, E
∗
DFE, I

∗
DFE, R

∗
DFE] = [ν/µ, 0, 0, 0]

and an END state
S∗END
E∗END
I∗END
R∗END

 =


(α+γ+µ)(κ+µ)

βκ
ν

κ+µ
− µ(α+γ+µ)

βκ
κν

(α+γ+µ)(κ+µ)
− µ

β
γκν

µ(α+γ+µ)(κ+µ)
− γ

β


Observe that, depending on the disease, the parameters for the characterization can
be bigger than the demographic parameters in various orders of magnitude, and the
latent period time be small enough so that the previous SIR model is a simplified
version of a fast acting SEIR one.
SVEIR epidemic model The final example presented here increases the complex-
ity of the model a step further, as the susceptible subpopulation is divided into two
different subpopulations: the normal susceptible subpopulation, in which the hosts
are not protected against infection, and the vaccinated subpopulation, in which the
immune system of the hosts has been stimulated so that their response is more posi-
tive. Thus, the way this subpopulations is affected from the disease is different, as it
may reach a complete immunity without the need to suffer the effects of the infection
or becoming a vector of the diseases itself. In fig 1.5, the evolution of the epidemic
is presented. Usually, the vaccinated subpopulation enters in these dynamics due to
different vaccination strategies. Sometimes, a flux from the susceptible to the vacci-
nation subpopulation appears describing a vaccination campaign acting on the whole
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Figure 1.5: A Simple SVEIR epidemic model

susceptible individuals, Other times, the vaccination only acts on the newborns or
the population migrating into the area of the epidemic. In this case, the equations
describing the dynamics are

Ṡ(t) = ν(1− Vc)− βS(t)I(t)− µS(t) (1.15)
V̇ (t) = νVc − δβS(t)I(t)− (γ1 + µ)V (t) (1.16)
Ė(t) = β(1 + δ)S(t)I(t)− (κ+ µ)E(t) (1.17)
İ(t) = κE(t)− (γ + µ+ α)I(t) (1.18)
Ṙ(t) = γI(t) + γ1V (t)− µR(t) (1.19)

As in the previous models, observe that a wise choose in the parameters can simplify
this model into one like in the previous here presented. However this does not mean
that every model has the same force of infection, as it will be seen in the following
chapters. Saturation rates in the infection, complex networks of interaction between
subpopulations and other approaches when modeling the mechanics of the disease
affects the way it is designed. The prediction of the evolution of the disease based
on the parameters on this model require a more complex analysis than in the more
simple models, and it will be explained in the following section.

1.3 The basic reproduction number

The examples of a threshold susceptible subpopulation of the previous section can
be differently interpreted as a condition of the relative removal rate of the disease to
be small enough to spread. The inverse of the relative removal rate is called basic
reproduction number or reproductive number, usually represented as R0. The R0 is
defined, from an epidemiologist perspective [10], as the average number of secondary
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cases arising from an average primary case in an entirely susceptible population. The
basic reproduction number is used to study the global impact that a disease can
produce on a population, as a R0 > 1 would mean that the number of individuals
infected will increase with respect to the previous generation of infected individuals,
and a R0 < 1 would mean the opposite, which is a decrement in that number. R0

is then obtained by multiplying the average infectious time of an individual with the
average rate of infection of an infected individual in a disease-free population.
From a mathematical perspective, however, this alone infected individual in a disease-
free population is considered a perturbation of the DFE state, one of the many possible
small changes made on a equilibrium state. Then, given the differential equations gov-
erning the dynamic of these models, the general effect of any perturbation on the evo-
lution of the system when it is in an equilibrium state can be calculated. Assume that
the system for a generic epidemic with n different subpopulations Ni, i = 1, 2, ..., n,
corresponding to the different stages of the disease, is defined by the equations

dNi

dt
= fi(N1 , N2, ..., Nn) , i = 1, 2, ..., n (1.20)

Then, the DFE state correspond to the state where fi(N∗1 , N∗2 , ..., N∗n) = 0 ∀i =
1, 2, ..., n and the subset of Nj, Nj+1, ..., Nn where the infection is present is equal
to zero. Then, for a small perturbation on any subpopulation, the evolution can be
approximately predicted using a multivariable taylor series of the functions around
the DFE state. From equation (1.20)

~̇N( ~N) = ~̇N( ~N∗ + ~ε) = ~̇N( ~N∗) + ~ε TD ~̇N‖N∗ = ~ε TJ‖ ~N∗ (1.21)

being ~N = [N1, N2, ..., Nn]T , ~̇N = [f1( ~N), f2( ~N), ..., fn( ~N)]T , and the Jacobian
matrix J defined as

Ji,j =
∂fi
∂Nj

‖ ~N∗ → J =


∂f∗1
∂N1

∂f∗1
∂N2

...
∂f∗1
∂Nn

∂f∗2
∂N1

∂f∗2
∂N2

...
∂f∗2
∂Nn

... ... ... ...
∂f∗n
∂N1

∂f∗n
∂N2

... ∂f∗n
∂Nn

 (1.22)

Then, the tendency of change of the system, when the disturbance is small and is
approximated at first order, is characterized by the Jacobian matrix J . The sign of
the eigenvalues of this matrix will determine the tendency of these disturbances to
increase or decrease over time. The eigenvalues λi are defined as the solutions of
det (λI − J) = 0. If all the real parts of λi, i = 1, 2, ..., n are less than zero then
the system will react decreasing the subpopulations which have risen and increase the
subpopulations which have dropped, until it reaches again the DFE. Thus, it can be
said that the equilibrium state is, at least, locally stable.
The reproduction number is a manifestation of all the eigenvalues of the Jacobian
matrix at the disease free equilibrium. Consider a SIR model as in the previous
section with a death and a newborn rates µ and ν respectively. The characteristic
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Jacobian matrix would be

J =

−βI∗ − µ −βS∗ 0
βI∗ βS∗ − (µ+ γ) 0
0 γ −µ

 (1.23)

and the polynomial derived from det (λI − J) = 0 would be

(λ+ µ)(−(βS∗ − γ − λ− µ)(λ+ µ) + βI∗(γ + λ+ µ)) = 0 (1.24)

which, in the case of the DFE becomes

(S∗DFEβ − γ − λ− µ)(λ+ µ)2 = 0 (1.25)

So the eigenvalues are λ = {−µ,−µ, βS∗DFE−(γ+µ)}. The negativity of the first two
eigenvalues are trivial, while the condition of negativity for the third one correspond
to a S∗DFE below a threshold as seen in the previous section. The reproduction
number, then, is constructed from the condition of negativity of this eigenvalue, as
βS∗DFE < γ + µ is equivalent to βS∗DFE

γ+µ
= R0 < 1.

The study of the equilibrium can also extend to the study of the endemic equilibrium,
in which the reproduction number can also be a useful parameter for determine the
stability of this point. In this example, the equation from equation (1.24) can be
rearranged as a function of R0

(λ+ µ)(λ2 + µR0λ+ (µ+ γ)µ(R0 − 1)) = 0 (1.26)

so the eigenvalues for the endemic equilibrium are

λ = {−µ,
−µR0 −

√
(µR0)2 − 4(R0 − 1)µ(µ+ γ)

2
,
−µR0 +

√
(µR0)2 − 4(R0 − 1)µ(µ+ γ)

2
}

(1.27)

so for R0 < 1 → R0 − 1 < 0, the third eigenvalue λ3 = 1
2
µR0(−1 +

√
1 + ξ), being

ξ > 1 so λ3 will be positive and thus the equilibrium is unstable. As you can see,
the role of the reproduction number when studying the disease is not only confined
to make predictions about the disease-free state. R0 is also a parameter useful when
studying other equilibrium states of the diseases, where the initial definition made by
epidemiologists cannot be applied to those specific situations.

A terminology note We want to point out that in the English literature, we use
the article "An" if the word "epidemic" follows after the model acronym. For instance,
"An SEIR epidemic model". We change "an" to the usual "a" if the word "epidemic"
is not written after the acronym. For instance, "A SEIR model". This is the standard
notation for the case in the literature on the subject.

1.4 Contents of the Thesis

The content of this work is now briefly described.
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Chapter 2 Chapter 2 is devoted to the study of the equilibrium points, bounded-
ness and positivity of an SVEIRS epidemic model under constant regular vaccination.
That is, it is discussed the main properties of a model which includes a vaccinated
population and, furthermore, a constant vaccination control term. First at all the
disease-free and endemic equilibrium points of the model are discussed, as well as
their positivity and stability. Then, a set of simulations is made, and the chapter
concludes with some remarks and recommendations for the current model.

Chapter 3 Chapter 3 relies on a general SVEIRS epidemic model under regular
and adaptive vaccination. There are three kinds of vaccination strategies, namely, the
constant (or regular) one, an impulsive one implemented at constant time intervals
and a mixed one, i.e. there are vaccination impulses at variable inter-vaccination time
intervals. The study of this chapter relies in a certain sense and adapted, "ad hoc" for
this kind of problem, with former studies of Professors Mellado, Dormido, De la Sen
and others in the context of proposing adaptive sampling laws for signal adaptation
so as either to improve the transient responses or to keep a similar performance as for
constant sampling by smaller sampling effort (i.e. with the use of less samples along
the whole evaluated time interval). It is presented an exhaustive comparative simula-
tion study, including an evaluation with a real parameterization of a pertussis disease,
showing the efficacy of the adaptive vaccination with variable inter-vaccination times
interval over the regular strategies. A complete stability study is also allocated in an
appendix.

Chapter 4 Chapter 4 is devoted to the study of limit periodic oscillations in a
SEIRS model. Typically, this behavior is associated to the case when global stability
is guaranteed but none of the equilibrium points is globally asymptotically stable.
The local stability of the equilibrium points is studied in detail. An analysis based
on Fourier methods is given for the case of periodic vaccination and periodic infective
rate. This is a typical situation appropriate for the analysis of seasonal diseases like,
for instance, influenza. The study is completed with the periodic equilibrium states
obtained for this situation, and some simulations of the dynamics of these systems.

Chapter 5 Chapter 5 considers an extended SIRS model with several (n) infective
stages all taken from a common susceptible population. The various infective stages
have successive starting points along time. This model treats to extend the typical
SEIR sequential model to a more general interpretation, where a disease may remain
dormant on an individual during a period of time and become again infectious, or the
treatment of a disease may reduce the infectivity or the mortality of a disease after
medication, or increase as a tolerance to the treatment is developed by the sick hosts.
Since there are multiple infective stages, the presence of a specific exposed subpop-
ulation is not considered. This role can be assimilated to any stage of the disease,
depending on how the parameters are chosen. Several variants of the model related
to the presence or not of delays are considered in the study. Also, there is a parallel
study for a closed model formulated in the discrete context. Some simulations are
also given and discussed.
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Chapter 6 Chapter 6 is devoted to several aspects which have been studied along
the period of this thesis but with either different analysis methods or more specific
models. Therefore, it is included in this last chapter. In particular, the themes in this
chapters cover the study of a disease propagation with temporal immunity, described
by a SIRS (susceptible plus infected plus recovered populations) epidemic model and
a simple SEIRS model. Another part of the this chapter is devote to the construc-
tion of a discrete model from the continuous SEIRSS model. Some variations on the
vaccination control strategies have been implemented on those models. Specifically,
some feedback and constant vaccination laws based on partial stability techniques by
considering the manifold defined by the zero exposed and infectious subpopulations;
also, an observer-based vaccination law are developed for the SEIR model. A control
technique based on a model linearization approach is used to design the vaccination
strategy in order to eradicate the infection from the population. Moreover, the con-
trolled system is guaranteed to be positive and stable under such vaccination control
strategy. A detailed simulation example is given for validating the theoretical results
relative to the stability and positivity of the controlled system while guaranteeing the
eradication of the epidemics.

Chapter 7 In Chapter 7 it is presented a conclusion to the studies made in this
thesis, and new perspectives and potential uses for the health care, being it focused
on humans or any other type of hosts susceptible to diseases. Future projects are also
comented
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2

On the equilibrium points, boundedness and
positivity of a SVEIRS model under constant

regular constrained vaccination

This chapter discusses the disease-free and endemic equilibrium points of a SVEIRS
mathematical model for disease propagation. The positivity of the five subpopulations
in the model is discussed as well as the boundedness of the total population. The
model takes also into consideration the natural population growing and the mortality
associate to the disease as well as the lost of immunity of newborns. It is assumed
that there are two finite delays affecting to the susceptible, recovered, exposed and
infected subpopulation dynamics. The conditions for the stability of the disease-free
equilibrium are studied and tested in a simulation.

2.1 Introduction

Important control problems nowadays related to Life Sciences are the control of eco-
logical models like those of population evolution as Beverton-Holt model, Hassell
model, Ricker model etc. via the online adjustment of the species environment carry-
ing capacity, that of the population growth or that of the regulated harvesting quota as
well as the disease propagation via vaccination control [1]- [6]. In a set of papers, sev-
eral variants and generalizations of the Beverton-Holt model (standard time-invariant,
time-varying parameterized, generalized model or modified generalized model) have
been investigated at the levels of stability, cycle-oscillatory behavior, permanence
and control through the manipulation of the carrying capacity [1]-[5].The design of
related control actions has been proved to be important in those papers at the lev-
els, for instance, of aquaculture exploitation or plague fighting. On the other hand,
the literature about epidemic mathematical models is exhaustive in many books and
papers [7]-[20].The sets of models include the most basic ones [13], [10], namely:

i) SI- models where not removed- by immunity subpopulation is assumed. In other
words, only susceptible and infected subpopulations are assumed.

ii) SIR-models, which include susceptible, infected and removed- by immunity sub-
populations.

iii) SEIR-models where the infected subpopulations is split into two ones (namely,
the ’infected’ which incubate the disease but do not still have any disease symp-
toms and the ’infectious’ or ’infective’ which do exhibit the external disease symp-
toms).
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The three above models have two possible major variants, namely, the ’pseudo-
mass action’ models, and the ’true-mass action’ models (density dependant and non-
dependant), although there are other many variants of the above, for instance, includ-
ing vaccination of different kinds: constant [18] impulsive [21], [22], [23], discrete-time
etc.,incorporating point or distributed delays [20], [23], oscillatory behaviors [14] etc.
It also should be noted that variants of such models become considerably simpler for
the disease transmission among plants [13], [10].Some generalizations involve the use
of a mixed regular continuous-time and impulsive vaccination control strategies for
generalized time-varying epidemic model which is subject to point and distributed
either constant or time-varying delays [17], [20], [24]-[26].
Other well-known types of epidemic models are the so-called SVEIRS epidemic mod-
els which incorporate the dynamics of a vaccinated subpopulation and the ’infected’
subpopulation without external symptoms of the SEIR-type models is replaced with
an ’exposed’ subpopulation subject to a certain dynamics [17], [23], [26].
Thus, in the context of SVEIRS models, the infected and infectious subpopulations
of the SEIR models are joined in a single ’infected’ subpopulation I(t) while there
is an exposed subpopulation E(t) present in the model. This chapter is focused on
the existence and some properties of disease-free and endemic equilibrium points of
a SVEIRS model, while it is subjected to an eventual constant regular vaccination
rather than to an impulsive vaccination type. Some issues about boundedness and
positivity of the model are also investigated.

2.2 The SVEIRS model

Figure 2.1 describe the interactions between the subpopulations of the SVEIRS epi-
demic model, with regular constant vaccination. The equations describing this inter-
actions are:

Ṡ(t) = b (1− S (t))− β S (t) I (t)

1 + ηS (t)
+ γI (t− ω) e−bω + ν(1− Vc)N (t) (2.1)

V̇ (t) = νVcN(t)− δβ V (t)I(t)

1 + ηV (t)
− (γ1 + b)V (t) (2.2)

E (t) = β

∫ t

t−τ

(
S (u) I (u)

1 + ηS (u)
+ δ

V (u) I (u)

1 + ηV (u)

)
eb(u−t)du (2.3)

İ (t) = β

(
S (t− τ)

1 + ηS (t− τ)
+

δV (t− τ)

1 + ηV (t− τ)

)
I (t− τ) e−bτ

− (γ + b+ α) I (t) (2.4)
Ṙ (t) = −bR (t) + γ1V (t) + γ

(
I (t)− I (t− ω) e−bω

)
(2.5)

where S, V, E, I and R are, respectively, the susceptible, vaccinated, exposed, infected
(or infective or infectious) and recovered (or removed-by-immunity) subpopulations,
N is the total population being the sum of the above ones, Vc ∈ [0, 1] is a constant
vaccination action. There are potential latent and immune periods denoted by τ and
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Figure 2.1: SVEIRS epidemic model

ω, respectively, which are internal delays in the dynamic epidemic model (2.1)-(2.5),
b is the natural birth rate and death rate of the population. The parameter ν < b
takes into account a vaccination action on newborns which decreases the incremental
susceptible subpopulation through time, γ1 is the average rate for vaccines to obtain
immunity and move into recovered subpopulation, β (disease transmission constant)
and δβ are, respectively, the average numbers for contacts of an infective with a sus-
ceptible and an infective with a vaccinated individual per unit of time, [23], [17].The
periodic impulsive, rather than regular, vaccination action proposed in [23] can be
obtained from equations (2.1)-(2.5) with Vc = 0 and a regular impulsive vaccination
period consisting of a culling action on the susceptible plus the corresponding in-
crease of the vaccinated subpopulation. It should be pointed out that the epidemic
model delays, representing here the latent and immune periods, parameterize the epi-
demic model apart from the role they play through the delayed model state in the
dynamics and thus in the trajectory solution. This phenomenon is not very com-
mon in standard time-delay systems, where delays do not play usually a relevant role
in the parameterizations, but only in the state-trajectory solution through the de-
layed state dynamics, [28]-[30].It should be pointed out that the use of mathematical
models supported by electronics instrumentation is also very relevant for the study
of biological process, such as models of blood circulation, because of its facility for
discretized implementation of real testing experiments [31].Take into account that
epidemic models are not controllable in the sense that all the subpopulations cannot
be simultaneously governed [32].Therefore, the main vaccination objective is to re-
duce the infected subpopulation as faster and as close to zero as possible [6],[27]. In
this chapter it is investigated the disease-free and endemic equilibrium points, their
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local stability properties and, under optional constrained vaccination, the positivity
and boundedness properties of the state-trajectory solutions.

2.3 The disease-free equilibrium point

The potential existence of a disease-free equilibrium point is now discussed which
asymptotically removes the disease if ν < b.
Proposition 2.1. Assume that ν < b. Then, the disease-free equilibrium point E∗ =
I∗ = 0 fulfills

R∗ =
νγ1VcN

∗

b(γ1 + b)
=

νγ1Vc
(b− ν) (b+ γ1)

= γ1
(b− ν (1− Vc))N∗ − b

b (γ1 + b)

V ∗ =
νVcN

∗

γ1 + b
=

(b− ν (1− Vc))N∗ − b
γ1 + b

S∗ = 1 +
νN∗ (1− Vc)

b
= 1 +

ν (1− Vc)
b− ν

with N∗ = b
b−ν so that V ∗ +R∗ = νVcN∗

b
= νVc

b−ν .
Two particular disease-free equilibrium points are S∗ = N∗ = b

b−ν , E
∗ = I∗ = V ∗ = 0

if Vc = 0, and S∗ = 1, V ∗ = νN∗

(γ1+b)
, R∗ = νγ1

(γ1+b)(b−ν)
, E∗ = I∗ = 0 if Vc = 1.

If ν ≥ b then there is no disease-free equilibrium point.
Proof.
The equilibrium points are calculated by zeroing equations (2.1), (2.2), (2.4) and (2.5)
and making identical to a disease-free equilibrium value, which leads to:

b−
(
b+

βI∗

1 + ηS∗

)
S∗ + γI∗e−bω + νN∗ (1− Vc) = 0 (2.6)

−
(

δβI∗

1 + ηV ∗
+ γ1 + b

)
V ∗ + νN∗Vc = 0 (2.7)

E∗ − β

b

(
1− e−bτ

)( S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗

)
I∗ = 0 (2.8)

βe−bτ
(

S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗

)
I∗ − (γ + b+ α) I∗ = 0 (2.9)

γ1V
∗ − bR∗ + γ

(
1− e−bω

)
I∗ = 0 (2.10)
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Thus, the disease-free equilibrium point satisfies the constraints:

E∗ = I∗ = 0 (2.11)

b (1− S∗) + νN∗ (1− Vc) = 0→ S∗ = 1 +
νN∗ (1− Vc)

b
(2.12)

γ1V
∗ − bR∗ = 0→ V ∗ =

bR∗

γ1

(2.13)

− (γ1 + b)V ∗ + νN∗Vc = 0→ V ∗ =
νN∗Vc
γ1 + b

=
bR∗

γ1

(2.14)

N∗ = S∗ + V ∗ +R∗ = 1 +
νN∗Vc
b

+

(
1 +

b

γ1

)
R∗ (2.15)

= 1 +
νN∗Vc
b

+

(
1 +

b

γ1

)
+
νN∗Vc
b

=
b+ νN∗

b
(2.16)

→ N∗ = b
b−ν , provided that ν < b

The proof follows directly from the above equations.
Remark 2.2.
Note from equation (2.9) that the identity S∗

1+ηS∗
+ δV ∗

1+ηV ∗
= γ+b+α

β
ebτ has always to

be fulfilled by endemic equilibrium points, if any, but non-necessarily by disease-free
equilibrium points for which I∗ = 0. Note also that if γ1 = b then R∗ = V ∗ = νVcN∗

2b
=

νVc
2(b−ν)

. If ν = 0, as in the particular case of impulsive-free SVEIRS model obtained
from that discussed in other works [23], [17], then the disease-free equilibrium satisfies
E∗ = V ∗ = I∗ = R∗ = 0, N∗ = S∗ = 1. In such a case, the model can be ran out
with population normalized to unity. Note that the recovered subpopulation increases
at the equilibrium as the vaccination increases while the susceptible one decreases.

Note that the exposed subpopulation at the equilibrium defined by equation (2.3) can
be equivalently described by a differential equation obtained by applying the Leibniz
differentiation rule under the integral symbol to yield:

˙̃E(t) = −bẼ (t) + β

(
S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗

)
(Ĩ (t)− Ĩ (t− ω) e−bω) (2.17)

Note also from the equalities of Proposition 2.1 that

S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗
= K∗ :=

b− νVc
(1 + η) b− ν (1 + ηVc)

+
δνbVc

(γ1 + b) (b− ν) + ηνbVc
(2.18)

Also, since max (S∗, V ∗) ≤ N∗ = b
b−ν , the following relation in equation (2.19) fol-

lows irrespective of the vaccination Vc, provided that the transmission constant is
sufficiently small, satisfying β = (γ + b+ α− εβ) ebτ b(1+η)−ν

b(1+δ)
≤ (γ + b+ α) ebτ b(1+η)−ν

b(1+δ)

for some real constant 0 ≤ εβ < γ + b+ α:

S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗
≤ 1 + δ

N∗−1 + η
=

b (1 + δ)

b (1 + η)− ν
=

(γ + b+ α− εβ) ebτ

β
(2.19)
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The local stability of the disease-free equilibrium point independent of the sizes of
the delays τ and ω is discussed in the sequel for the particular case of sufficiently
small β satisfying equation (2.19) and for the general case of equation (2.18). Also,
the local asymptotic stability of the disease-free equilibrium point is guaranteed by
that of the linearized incremental system around it. The linearized model around
the equilibrium becomes to be defined from equations (2.1)-(2.2), (2.17) and (2.4)-

(2.5) by the state vector x̃ (t) :=
(
S̃ (t) , Ṽ (t) , Ẽ (t) , Ĩ (t) , R̃ (t)

)T
which satisfies the

differential equation system:

x̃ (t) := A∗0x̃ (t) + A∗τ x̃ (t− τ) + A∗ωx̃ (t− ω) ; x̃ (0) = x̃0 (2.20)

where

A∗
0 = A∗

0d + Ã∗
0 (2.21)

:=


ν (1− Vc)− b ν (1− Vc) ν (1− Vc) ν (1− Vc)− βS∗

1+ηS∗ ν (1− Vc)
νVc νVc − (γ1 + b) νVc νVc − δβV ∗

1+ηV ∗ νVc

0 0 −b β
(

S∗

1+ηS∗ + δV ∗

1+ηV ∗

)
0

0 0 0 − (γ + b+ α) 0
0 γ1 0 γ −b

 (2.22)

=


ν (1− Vc)− b ν (1− Vc) ν (1− Vc) ν (1− Vc)− β(b+ν(1−Vc)N

∗)
b+η(b+ν(1−Vc)N∗) ν (1− Vc)

νVc νVc − (γ1 + b) νVc νVc − δβνVcN
∗

γ1+b+ηνVcN∗ νVc
0 0 −b (γ + b+ α− ε̄β) ebτ 0
0 0 0 − (γ + b+ α) 0
0 γ1 0 γ −b


(2.23)

for sufficiently small transmission constant β if equation (2.19) holds for some pos-
itive real constant ε̄β > εβ where the diagonal and non-diagonal matrix additive
decomposition Ã∗0 is given from equation (2.23) by

Ã∗0d :=


ν (1− Vc)− b 0 0 0 0

0 νVc − (γ1 + b) 0 0 0
0 0 −b 0 0
0 0 0 − (γ + b+ α) 0
0 0 0 0 −b

 (2.24)

Ã∗0 := A∗0 − A∗0d obtained from equations (2.23)-(2.24), so that its off-diagonal part
is identical to that of A∗0d while the diagonal is identically zero, and the matrices A∗τ
and A∗ω are entry-wise defined by:

(A∗τ )4,4 = γ + b+ α− ε̄β (2.25)

(A∗ω)1,4 = γe−bω

(A∗ω)5,4 = −γe−bω

(A∗ω)3,4 = − (γ + b+ α− ε̄β) eb(τ−ω)
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with all the remaining entries being zero. The following inequalities apply for equiv-
alent norms of vectors and square matrices M of dimension or, respectively, order
n:

n−1 ‖M‖2 ≤ n−1/2 ‖M‖∞ ≤ ‖M‖2 ≤ n1/2 ‖M‖1 ≤ n ‖M‖2 (2.26)

Thus, one gets from the above inequalities from equation (2.26) that

‖A∗τ‖2 +‖A∗ω‖2 ≤
√

5 (‖A∗τ‖∞ ‖A
∗
ω‖∞) ≤

√
5 (γ + b+ α)max

[
1, eb(τ−ω)

]
≤ γ̄ (2.27)

where

γ̄ =

{√
5 (γ + b+ α) if τ ≤ ω√
5 (γ + b+ α) eb(τ−ω) if τ > ω

(2.28)

Note from equation (2.28) that
√

5 (γ + b+ α) eb(τ−ω) ≤ b− b0 for a given b and any
given positive real constant b0 < b if (γ + b + α) and (τ − ω), if positive, are small
enough such that, equivalently,

−∞ ≤ 1

2
ln(5) + ln (γ + b+ α) + b (τ − ω) ≤ ln (b− b0) (2.29)

Thus, one gets from equations (2.27)-(2.29)

‖A∗τ‖2 + ‖A∗ω‖2 ≤ γ̄ ≤ b− b0 (2.30)

It can be use from L’ Hopital rule the following limit relations in the entries (1, 4)
and (2, 4) of Ã∗0:

β (b+ ν (1− Vc)N∗)
b+ η (b+ ν (1− Vc)N∗)

→ β

1 + η
;

δβνVcN
∗

γ1 + b+ ηνVcN∗
→ 0 as b→∞ (2.31)

if the remaining parameters remain finite and then N∗ = S∗ = 1 and E∗ = I∗ =
V ∗ = R∗ = 0 from Proposition 2.1. By continuity with respect to parameters, for any
sufficiently large M ∈ R+, ∃ε1,2 = ε1,2 (M) ∈ R+ with ε1,2 → 0 as t → ∞ such that
for b ≥M :

β (b+ ν (1− Vc)N∗)
b+ η (b+ ν (1− Vc)N∗)

≤ β + ε1
1 + η

;
δβνVcN

∗

γ1 + b+ ηνVcN∗
≤ ε2 (2.32)

and, one gets for Ã∗0 being obtained from equations (2.22)-(2.24),

∣∣∣Ã∗0∣∣∣ =


0 ν (1− Vc) ν (1− Vc)

∣∣∣ν (1− Vc)− β+ε1
1+η

∣∣∣ ν (1− Vc)
νVc 0 νVc |νVc − ε2| νVc
0 0 0 (γ + b+ α− ε̄β) ebτ 0
0 0 0 0 0
0 γ1 0 γ 0

 (2.33)
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and for the parameter b being large enough such that it satisfies:

b ≥ max

(
1

τ
max

(
ln

(
γ + γ1

γ + b+ α

)
, ln

(
4max(1, ν)

γ + b+ α

))
, ba

)
(2.34)

with babeing some existing real positive constant, depending on the vaccination con-
stant Vc, such that ν (1− Vc) ≥ β+ε1

1+η
, it follows from inspection of equations (2.32)-

(2.33) that
∥∥∥Ã∗0∥∥∥ ≤ (γ + b+ α) ebτ . Using again equations (2.26)-(2.27), it follows

that the following close constraint to equation (2.29):

−∞ ≤ 1

2
ln (5) + ln (γ + b+ α) + b (τ − ω)

≤ 1

2
ln(5) + ln (γ + b+ α) + bτ + ln

(
1 + e−bω

)
≤ ln(b− b0) (2.35)

guarantees

‖A∗τ‖2 + ‖A∗ω‖2 +
∥∥∥Ã∗0∥∥∥

2
≤
√

5
(
‖A∗τ‖∞ + ‖A∗ω‖∞ +

∥∥∥Ã∗0∥∥∥∞)
≤
√

5 (γ + b+ α)
(
max

(
1, eb(τ−ω)

)
+ ebτ

)
≤ γ̄1 (2.36)

where

γ̄1(> γ̄) =

{√
5 (γ + b+ α) (1 + ebτ ) if τ ≤ ω√
5 (γ + b+ α) ebτ

(
1 + e−bω

)
if τ > ω

(2.37)

On the other hand, note that the linearized system equations (2.20)-(2.25) is asymp-
totically stable if and only if

Det
(
sI − A∗0d − Ã∗0 − Ã∗τe−τs − Ã∗ωe−bω

)
6= 0 ∀s ∈ C0+ := {s ∈ C : Res ≥ 0} (2.38)

which is guaranteed under the two conditions below:
i) Det (sI − A∗0d) 6= 0, ∀s ∈ C0+ ,equivalently, A∗0d is a stability matrix
ii) The l2-matrix measure µ2 (A∗0d) of (A∗0d) is negative, and, furthermore, the fol-

lowing constraint holds

γ̄1 ≤ b−max (|γ1 − νVc| , ν (1− Vc))

which guarantees the above stability condition ii) via equations (2.36)-(2.37) if
is sufficiently small to satisfy equation (2.19) and, furthermore,

‖A∗τ‖2 + ‖A∗ω‖2 +
∥∥∥Ã∗0∥∥∥

2
≤
√

5 (γ + b+ α)
(
max

(
1, eb(τ−ω)

)
+ ebτ

)
≤ γ̄1

< |µ2 (A∗0d)| =
1

2

∣∣λmax (A∗0d + A∗T0d
)∣∣ = |λmax (A∗0d)|

= b−max (|γ1 − νVc|, ν (1− Vc)) (2.39)

The following result is proven from Proposition 2.1, the above asymptotic stability
conditions for the linearized incremental system around the disease-free equilibrium
point, which implies the local asymptotic stability of the nonlinear one from equations
(2.1)-(2.5) about the equilibrium point, and the related former discussion for being
small enough fulfilling equation (2.19):
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Proposition 2.3. Assume that β ≤ (γ+b+α)ebτ b(1+η)ν
b(1+δ)

. Then it exists a sufficiently
large b > max (|γ1 − νVc| , ν (1− Vc)) such that the disease-free equilibrium point is
locally asymptotically stable for any constant vaccination Vc ∈ [0, 1] and a sufficiently
small amount (γ + b+ α), a sufficiently small delay τ and a sufficiently small differ-
ence delay (τ − ω) (this being applicable if) such that equation (2.39) holds.
An alternative result to Proposition 2.3 concerned with the asymptotic stability of
the linearized SVEIRS model (and then the local asymptotic of that of the nonlinear
SVEIR model) around the disease-free equilibrium for sufficiently small delays based
on their parameterized quotient is given and proven in Appendix B. The result and
its proof are based on an existence theorem of the first destabilizing delay and the
use of the Jacobian matrix of the linearized system around the disease-free equilib-
rium. A more general related result can be obtained from equation (2.18), rather than
from equation (2.19), without involving any "a priori" constraint on the transmission
constant. By using equation (2.18), the following changes appear in the parameteri-
zation (2.22)-(2.25) of the linearized system around the disease-free equilibrium with
the auxiliary real constant being defined in (2.18):(

Ã∗0d

)
34

= βK∗, (A∗τ )44 = βe−bτK∗, (A∗ω)34 = −βe−bωK∗ (2.40)

The basic relation from equation (2.36) used for stability independent of the delays
in Proposition 2.3 becomes accordingly modified as follows:

‖A∗τ‖2 + ‖A∗ω‖2 +
∥∥∥Ã∗0∥∥∥

2
≤
√

5
(
‖A∗τ‖∞ + ‖A∗ω‖∞ +

∥∥∥Ã∗0∥∥∥∞)
≤
√

5
(
β
(
1 + e−bτ

)
K∗ + e−bωmax (γ, βK∗)

)
(2.41)

≤
√

5

(
2β

1 + η
+max

(
γ,

β

1 + η

))
≤ γ̃1 (as b→∞) (2.42)

where (2.41) holds for any positive parameter b and equation (2.42) holds as such a
parameter tends to infinity and also for a sufficiently large parameter b since K∗ →

1
1+η

< 1 as b→∞ from (2.18). Thus, for a sufficiently large bM ∈ R+ and b ≥ bM , γ̃1

may be taken as follows:

γ̃1 =
√

5max

(
2β

1 + η
+ γ,

3β

1 + η

)
(2.43)

and the former stability sufficient condition (2.39), derived from (2.19), is modified
as follows for the general case from (2.18):

‖A∗τ‖2 + ‖A∗ω‖2 +
∥∥∥Ã∗0∥∥∥

2
≤
√

5

(
2β

1 + η
+max

(
γ,

β

1 + η

))
≤ γ̃1 (2.44)

≤ b−max (|γ1 − νVc| , ν (1− Vc)) (2.45)

Proposition 2.4. Assume that b > max (bM ,max (|γ1 − νVc| , ν (1− Vc))) and equa-
tion (2.45) holds. Then it exists a sufficiently large bM ∈ R+ such that the disease-
free equilibrium point is locally asymptotically stable for any constant vaccination
Vc ∈ [0, 1] such that (2.45) holds.
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Note that the statement of Propositions 2.3-2.4 guarantee the local stability
of the disease-free equilibrium point under its existence condition of Proposition 2.1
requiring ν < b.

2.4 Endemic equilibrium points and some character-
izations

The existence of endemic equilibrium points which keep alive the disease propagation
is now discussed:
Proposition 2.5. Assume that ω > 0. Then, the following properties hold:

i) Assume β ≥ ηebτ (γ+b+α)
1+δ

for Vc > 0 and β ≥ ηebτ (γ + b+ α) for Vc = 0. It
exists at least one endemic equilibrium point at which the susceptible, vaccinated,
infected, exposed and recovered subpopulations are positive and the vaccinated
population is zero if and only if Vc = 0 (i.e. in the absence of vaccination action).
Furthermore, such an equilibrium point satisfies the constraints:

E∗ =
β

b

(
1− e−bω

)( S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗

)
I∗ > 0

min

(
S∗ + δV ∗,

1 + δ

η

)
≥ S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗
=
γ + b+ α

βe−bτ
> 0

R∗ =
γ1V

∗ + γ
(
1− e−bω

)
I∗

b
≥
γ
(
1− e−bω

)
I∗

b
> 0

ii) If the transmission constant is small enough satisfying β < β̄ := ηebτ (γ+b+α)
1+δ

for
Vc > 0 and β < ηebτ (γ + b+ α) for Vc = 0 then there is no reachable endemic
equilibrium point.

Proof.
The endemic equilibrium point is calculated as follows:

0 = βe−bτ
(

S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗

)
− (γ + b+ α) (2.46)

E∗ =
β

b

(
1− e−bω

)( S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗

)
I∗ > 0 (2.47)

with

E∗ > 0, I∗ > 0 (2.48)(
S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗

)
=

(γ + b+ α)

βe−bτ
> 0 (2.49)

(since, otherwise, the above disease-free equilibrium point would be being considered).
S∗ > 0 since, otherwise, the following contradiction would follow:

0 < b+ γI∗e−bω + νN∗ (1− Vc) = 0 (2.50)
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V ∗ = 0 if and only if Vc = 0, since otherwise for Vc > 0 and V ∗ = 0, it would follow
that νN∗Vc = 0 which is only possible in the disease- free equilibrium point if the
total population is extinguished, which is a contradiction at the endemic point.

R∗ =
γ1V ∗+γ(1−e−bω)I∗

b
≥

γ
(
1− e−bω

)
I∗

b
> 0 for ω 6= 0 (2.51)

Property (i) has been proven. Property (ii) follows from the fact that the second
separate condition for the endemic equilibrium point in Property (i) fails if

1

1 + η
<
ebτ (γ + b+ α)

β
for Vc = 0

1 + δ

1 + η
<

(γ + b+ α)

βe−bτ
for Vc > 0

since S∗ = V ∗ = 0 is impossible at the endemic equilibrium point from such second
condition of Property (i). Hence, the proof of Property (ii).
Remark 2.6.
Note that if ω = 0 then it follows from (2.3) and (2.8) that E (t) = E∗ = 0; ∀t ∈ R0+

so that the SVEIRS model from equations (2.1)-(2.5) becomes a simpler SVIRS one
without specification of the exposed subpopulation dynamics.
Remark 2.7.
Note that, under the constraints in Proposition 2.5(ii) for α−1

S + α−1
V + α−1

E + α−1
I +

α−1
R = 1, being αS = N∗/S∗, αV = N∗/V ∗, αE = N∗/E∗, αI = N∗/I∗, αR =
N∗/R∗, if there is no reachable endemic equilibrium point because β < β̄, then the
solution trajectory of equations (2.1)-(2.5) can only either converge to the disease-
free equilibrium point, provided that it is at least locally asymptotically stable, or to be
bounded (converging or not) to an oscillatory solution, or to diverge to an unbounded
total population depending on the values of the parameterization of the model from
equations (2.1)-(2.5).

Note that the endemic free transmission constant upper-bound β̄ increases as η, τ
and (γ + b+ α) increase and also as δ decreases. If Vc > 0 then it follows from
Proposition 2.5 that there exist positive constants αS, αV ,αE, αI and αR satisfying
α−1
S + α−1

V + α−1
E + α−1

I + α−1
R = 1 such that the endemic equilibrium points, if any,

satisfy the constraints:

N∗ = αSS
∗ = αV V

∗ = αEE
∗ = αII

∗ = αRR
∗ (2.52)

so that, one gets from (2.51) that

R∗ =
γ1/αV + γ

(
1− e−bω

)
/αI

b
αRR

∗ =
γ1αI + γ

(
1− e−bω

)
αV

bαIαV
αRR

∗ (2.53)

β

b

(
1− e−bω

) 1 + δ

1+η
≤ E∗

I∗
=
αI
αE

=
β

b

(
1− e−bω

)( S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗

)
≤β
b

(
1− e−bω

) 1 + δ

η
(2.54)
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if min(S∗, V ∗) ≥ 1, otherwise, only the upper-bounding constraint holds strictly in
equation (2.54). Moreover, equations (2.6) and (2.46) may be equivalently written,
respectively, as

b−
(
b+

βαSS
∗

αI (1 + ηS∗)

)
S∗ + γ

αS
αI
S∗e−bω + ναSS

∗ (1− Vc) = 0

(2.55)
αV V

∗

αS + αV ηV ∗
+

δV ∗

1 + ηV ∗
=

γ + b+ α

βe−bτ

(2.56)

Equation (2.53) is equivalent, since R∗ > 0 at the endemic equilibrium point, to

γ1αIαR + γ
(
1− e−bω

)
αV αR

bαIαV
= 1 (2.57)

Equation (2.55) is equivalent to[
αSη

(
ναI (1− Vc) + γe−bω

)
+ βαS − bαIη

]
S∗2

+
[
αS
(
γe−bω + ναI (1− Vc)

)
+ bαI (η − 1)

]
S∗ + bαI = 0 (2.58)

Equation (2.58) is an algebraic equation of real coefficients of the form

aS∗2 + dS∗ + c = 0 with c > 0

Such an equation has two positive real roots if a > 0, d < 0 and d2 ≥ 4ac and one
positive real root if a < 0 and d > 0. Thus, since there is a nonzero susceptible
subpopulation at an endemic equilibrium point then either (2.59)-(2.61) below hold:

αSη
(
ναI (1− Vc) + γe−bω

)
+ βαS > bαIη (2.59)

αS
(
γe−bω + ναI (1− Vc)

)
< bαI (1− η) provided that η < 1 (2.60)[

αSγe
−bω + ναI (1− Vc) + bαI (η − 1)

]2 ≥ 4bαI
[
αSη

(
ναI (1− Vc) + γe−bω

)
+ βαS − bαIη

]
(2.61)

or, alternatively,

β <
αI
αS
bη−

(
ναI (1− Vc) + αe−bω

)
η =

η

I∗
[
bS∗ −

(
νN∗ (1− Vc) + γe−bω

)]
(2.62)

and

b <
αS
(
γe−bω + ναI (1− Vc)

)
αI (1− η)

=
γe−bωI∗ + νN∗(1− Vc)

S∗ (1− η)
(2.63)

with η < 1 hold. On the other hand, the equation in (2.56) is equivalent to

αV β0 (1 + ηV ∗)V ∗ + δβ0V
∗ (αS + ηαV V

∗) = (1 + ηV ∗) (αS + ηαV V
∗) (2.64)

where β0 := βe−bτ

γ+b+α
so that (2.64) is of the form

aV ∗2+dV ∗+c ≡ η (η − (1 + δ) β0)αV V
∗2+(αV (η − β0) + (η − δβ0)αS)V ∗+αS = 0
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(2.65)

Now, a close reasoning to that used for the susceptible endemic equilibrium component
is applied to (2.65) to construct the subsequent reasoning for a potential nonzero
vaccinated subpopulation at most two possibly existing endemic equilibrium points.
Note that either

αV η (η − (1 + δ) β0) > 0⇐⇒ β0 <
η

1 + δ
, (2.66)

αV (η − β0) + αS (η − δβ0) = η (αV + αS)− β0 (αV + δαS) < 0

⇔ β0 > η
αV + αS
αV + δαS

⇔ β > η
αV + αS
αV + δαS

(α + b+ α) ebτ (2.67)

and

(αV (η − β0) + αS (η − δβ0))2 > 4 (η − (1 + δ) β0) ηαV αS (2.68)

or, alternatively,

αV η(η − (1 + δ)β0) < 0⇐⇒ β0 >
η

1 + δ
(2.69)

αV (η − β0) + αS(η − δβ0) > 0

⇔ β0 < η
αV + αS
αV + δαS

⇔ β < η
αV + αS
αV + δαS

(α + b+ α) ebτ (2.70)

However, note that (2.67)-(2.68) imply that

η
αV + αS
αV + δαS

< β0 =
βe−bτ

α + b+ α
<

η

1 + δ
(2.71)

which is well-posed if and only if δ < −αS
αV

< 0 which contradicts the positivity of
the parameter δ. As a result, only the alternative constraints (2.69)-(2.70) need to
be considered with a non-zero vaccinated subpopulation at the endemic equilibrium
point which is always the case under a nonzero regular constant vaccination Vc ≤ 1.
The above discussion concerning the endemic equilibrium point is summarized as
follows:
Proposition 2.8. Assume that Vc ∈ (0, 1] and that β ≥ (α + b+ α) ηebτ

1+δ
so that

N∗ = αSS
∗ = αV V

∗ = αEE
∗ = αII

∗ = αRR
∗ for some positive constants αS, αV ,

αE, αI and αR. Then, it exists at least one endemic equilibrium point, and at most two
endemic equilibrium points, with all the corresponding subpopulations being positive
and the following parametrical constraints hold:

α−1
S + α−1

V + α−1
E + α−1

I + α−1
R = 1, αI/αE ≤

β

b

(
1− e−bω

) 1 + δ

η
(2.72)

Also, the constants αS, αI and αV satisfy either (2.59)-(2.61), or (2.62)-(2.63), and
(2.69)-(2.70).
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Remark 2.9.
Note that if min(S∗, V ∗) ≥ 1 then

(γ + b+ α) ebτ
η

1 + δ
≤ β ≤ (γ + b+ α) ebτ

1 + η

1 + δ
(2.73)

This implies that the coefficient ’a’ in (2.65) is non-positive. If a = 0 then

V ∗ =
αS

|αV (η − β0) + (η − δβ0)αS|
> 0 if αV (η − β0) + (η − δβ0)αS < 0

This implies that β0 > η αV +αS
αV +δαS

which is compatible with equation (2.73) if

β ≥ (γ + b+ α) ηebτmax

(
1

1 + δ
,
αV + αS
αV + δαS

)
(2.74)

and η ≤ αV +αS
αV +δαS

, so that η αV +αS
αV +δαS

≤ 1+η
1+δ

.
Also, if a<0 then β < η αV +αS

αV +δαS
ebτ (γ + b+ α) from (2.70) which is coherent with

(2.73) if

β ≤ (γ + b+ α) ebτmin

(
1 + η

1 + δ
, η

αV + αS
αV + δαS

)
(2.75)

since 1
1+δ
≤ αV +αS

αV +δαS
for any δ > 0, min (αV , αS) > 1.

The existence of a unique endemic equilibrium point under zero vaccination is dealt
with in Appendix C.

2.5 About infection propagation, the uniform bound-
edness of the total population and the positivity
of the subpopulations

This section discuses briefly the monotone increase of the infected subpopulation and
the boundedness of the total population as well as the positivity of the model:
Proposition 2.10.
If the infection propagates through with the infected subpopulation being non-decreasing
then S(σ)

1+ηS(σ)
+ δV (σ)

1+ηV (σ)
≥ γ+b+α

β
ebσ;∀σ ∈ (t∗ − 2τ, t∗ − τ)

Proof.
Note from (2.4) that for ∈ (t∗ − 2τ, t∗)

İ(t) > 0⇔ I(t)

I(t− τ)
<

βe−bτ

γ + b+ α

(
S(t− τ)

1 + ηS(t− τ)
+

δV (t− τ)

1 + ηV (t− τ)

)
and if, furthermore,I(t) ≥ I(t− τ) for t ∈ (t∗ − τ, t∗), thus

1 ≤ I(t)

I(t− τ)
<

βe−bτ

γ + b+ α

(
S(t− τ)

1 + ηS(t− τ)
+

δV (t− τ)

1 + ηV (t− τ)

)
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Now, rewrite (2.3) in differential equivalent form by using Leibniz’ s rule as follows:

Ė(t) = −bE(t)+β

[(
S(t)

1 + ηS(t)
+

δV (t)

1 + ηV (t)

)
−
(

S(t− ω)

1 + ηS(t− ω)
+

δV (t− ω)

1 + ηV (t− ω)

)
e−bω

]
(2.76)

Proposition 2.11. Assume that ν < b. Then, the following properties hold provided
that the SVEIR epidemic model (2.1)-(2.5) has non-negative solution trajectories of
all the subpopulations for all time:

i) Assume furthermore that ψ := eντ +
β(1+δ)(1−e−(b−ν)τ)

η(b−ν)
e−bτ < 1. Then, the total

population is uniformly bounded for all time, irrespective of the susceptible and
vaccinated subpopulations, for any bounded initial conditions and

lim sup
t→∞

N(t) ≤ 1− e−(b−ν)τ

b− ν
(1− ψ)−1 <∞

ii) Assume that the transmission constant is large enough satisfying

β ≥ 1

1 + δ
sup
t∈R0+

(
bη (1 + η)

ηe−bωI(t− ω)− (1 + η)e−bτI(t− τ)

)
subject to η

1+η
> eb(ω−τ) and ω < τ . Then N : R0+ → R0+ is monotone decreas-

ing and of negative exponential order so that the total population exponentially
extinguishes as a result.

Proof.
Consider the SVEIRS model in differential form described in equations (2.1)-(2.2),
(2.4)-(2.5) and (2.76). Summing up the five equations, one gets directly:

Ṅ(t) = (ν − b)N(t) + b− αI(t)

+ β

[(
S (t− τ)

1 + ηS (t− τ)
+

δV (t− τ)

1 + ηV (t− τ)

)
e−bτI(t− τ)

−
(

S(t− ω)

1 + ηS(t− ω)
+

δV (t− ω)

1 + ηV (t− ω)

)
e−bωI(t− ω)

]
(2.77)

≤ (ν − b)N(t) + b+ β

(
S (t− τ) I (t− τ)

1 + ηS (t− τ)
+
δV (t− τ) I (t− τ)

1 + ηV (t− τ)

)
e−bτ

≤ (ν − b)N(t) + b+ β
1 + δ

η
e−bτI(t− τ)

≤ ν − bN(t) + b+ β
1 + δ

η
e−bτN(t− τ) (2.78)

since
S (t)

1 + ηS (t)
+

δV (t)

1 + ηV (t)
≤ 1 + δ

η
; ∀t ∈ R0+

Then, N(t) ≤ ψ

(
sup

t−τ≤σ≤t
N(σ) +

b(1−e(b−ν)τ)
b−ν

)
< ∞; ∀t ∈ R0+ and Property (i) fol-

lows since ψ < 1. Two cases are now discussed separately concerning the proof of
Property 2.11(ii):
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i) Note that if the solution trajectory is positive subject to min (S(t), V (t)) ≥ 1
(equivalently if max (S−1(t), V −1(t)) ≤ 1) then

0 <
1 + δ

1 + η
≤ S(t)

1 + ηS(t)
+

δV (t)

1 + ηV (t)
≤ 1 + δ

η
(2.79)

so that one gets:

Ṅ(t) ≤ (ν − b)N(t)− αI(t) +

(
b− β

[
1 + δ

1 + η
I(t− ω)e−bω − 1 + δ

η
I(t− τ)e−bτ

])
≤ − (b− ν)N(t)− αI(t) ≤ − (b− ν)N(t) < 0 (2.80)

if N(t) > 0 since b > ν and N(t) = 0 if and only if N(t) = I(t) = 0 since
β ≥ 1

1+δ
bη(1+η)

ηe−bωI(t−ω)−(1+η)I(t−τ)e−bτ
> 0 provided that η

1+η
> eb(ω−τ) with ω < τ .

Then

N(t) ≤ e−(b−ν)tN(0) < N(t′); ∀t, t′ < t ∈ R0+

ii) If max (S(t), V (t)) ≤ 1(equivalently, if min (S−1(t), V −1(t)) ≥ 1) then

0 <
1 + δ

1 + η
≤ S(t)

1 + ηS(t)
+

δV (t)

1 + ηV (t)
≤ 1 + δ

1 + η
≤ 1 + δ

η
(2.81)

so that (2.80) still holds and the same conclusion arises. Thus, Property (ii) is
proven.

A brief discussion about positivity is summarized in the next result:
Proposition 2.12. Assume that Vc ∈ [0, 1]. Then, the SVEIRS epidemic model
from equations (2.1)-(2.5) is positive in the sense that no subpopulation is negative at
any time, if its initial conditions are non-negative and the vaccinated subpopulation
exceeds a certain minimum measurable threshold in the event that the recovered pop-
ulation is zero as follows: V (t) ≥ max

(
γ
γ1
I(t− ω)e−bω − I(t), 0

)
if R(t) = 0. The

susceptible, vaccinated, exposed and infected subpopulations are non-negative for all
time irrespective of the above constraint. If, in addition, Proposition 2.11 (i) holds
then all the subpopulations of the SVEIRS model are uniformly bounded for all time.
Proof.
First note that all the subpopulations are defined by continuous- time differentiable
functions from (2.1)-(2.5). Then, if any subpopulation is negative, it is zero at some
previous time instant. Assume that S(σ) ≥ 0 for σ < t and S(t) = 0 at some time
instant t. Then from (2.1):

Ṡ(t) = b+ γI(t− ω)e−bω + ν(1− Vc)N(t) ≥ 0; ∀Vc ∈ [0, 1]

Thus, S(t+) ≥ 0. As a result, S(t) cannot reach negative values at any time instant.
Assume that V (σ) ≥ 0 for σ < t and V (t) = 0 at some time instant t. Then, V̇ (t) =
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νVcN(t) ≥ 0 from (2.2) so that V (t+) ≥ 0. As a result, V (t) cannot reach negative val-
ues at any time. E(t) ≥ 0 for any time instant t from (2.3). Assume that I(σ) ≥ 0 for
σ < t and I(t) = 0 at some time instant t. Then, İ(t) ≥ 0 from (2.4). As a result, I(t)
cannot reach negative values at any time. Finally, assume that R(σ) ≥ 0 for σ < t and
R(t) = 0 at some time instant t. Thus, Ṙ(t) = γ1V (t) + γ

(
I(t)− I(t− ω)e−bω

)
≥ 0

from equation (2.5) if V (t) ≥ max
(
γ
γ1
I(t− ω)e−bω − I(t), 0

)
. Thus, if V (t) ≥

max
(
γ
γ1
I(t− ω)e−bω − I(t), 0

)
when R(t) = 0 then all the subpopulations are uni-

formly bounded, since they are non-negative and the total population N(t) is uni-
formly bounded from Proposition 2.11 (i).

2.6 Simulation results

This Section contains some simulation examples which are concerned with the exis-
tence and allocation of disease-free and endemic equilibrium points. The objective
of these examples is to numerically show the potential existence of both types of
equilibrium points and that the calculated values for their coordinates are given by
the presented expressions. The particular values for the equilibrium points as well
as the time taken by the model to converge to them depend on the specific choice
of the parameter values which correspond to the particular disease under study and
the species being considered in the epidemic model. For a different parameterization,
these values would be different. Also, simulations have been run for a long time inter-
val in order to show that the reached steady-state values are true equilibrium points.
The parameters of the epidemic model are: b = 0.05 days −1, 1/α = 1/γ = 200 days,
1/γ1 = 15 days, β1 = β/2, δ = β1/β, τ = 6 days, η = 0.5 and ω = 10 days. It
can be pointed that in the case that the parameters for a particular epidemic model
are unknown they can be estimated from the analysis of population data by using,
either statistical methods [33], [34], or heuristic methods [35], or adaptive methods
by using either batch or recursive parametrical estimation algorithms. See, for in-
stance the works in [36], [37] being updated from collected real measured data on the
subpopulations through time.

2.6.1 Disease-free equilibrium point

Consider now β = 0.0166 days−1 and ν = 0.2b and the initial subpopulations
S(0) = 250, V (0) = 150, E(0) = 150, I(0) = 250, R(0) = 200. The two par-
ticular cases corresponding to Vc = 0 and Vc = 1 in Section 2.3 will be studied sep-
arately. Thus, the following simulations have been obtained for the SVEIR system
from equations (2.1)-(2.5) and Vc = 0. Figure 2.3 shows a zoom on the equilibrium
point reached by the model in Figure 2.2.
Note from Figures 2.2 and 2.3 that the vaccinated, exposed, infected and removed-
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Figure 2.2: Solution trajectories for Vc = 0

by-immunity (recovered) populations converge to zero. This situation corresponds to
the case when the disease is naturally eradicated from the population. On the other
hand, the susceptible presents a different dynamics, converging to a non-zero equilib-
rium point. Figure 2.3 shows that the vaccinated, exposed, infectious and recovered
populations are actually zero (which is represented by the superimposed graphics)
while the susceptible converges to 1.25. Furthermore, these values correspond to the
ones stated in Proposition 2.1 for Vc = 0, since all the populations vanish except
the susceptible which converges to S∗ = b

b−ν = 1.25. If Vc = 1 then the solution
trajectories converge to the equilibrium point as depicted in Figure 2.4.
In this case, only the exposed and infected tend to zero while the remaining subpop-
ulations tend to the values calculated in Proposition 2.1 when Vc = 1:

S∗ = 1, V ∗ =
νb

(γ1 + b) (b− ν)
= 0.107

R∗ =
νγ1

(γ1 + b) (b− ν)
= 0.14 E∗ = I∗ = 0

2.6.2 Endemic equilibrium point

In order to study the endemic equilibrium point, the value of β is changed now to a
new value β = 0.099 satisfying the condition β ≥ ηebτ (γ + b+ α) stated in Propo-
sition 2.5(i) for Vc = 0 and ν = 0.65b. Thus, the model trajectory solutions are
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Figure 2.3: Zoom on the solution trajectories for the disease-free equilibrium point
for Vc = 0

depicted in Figure 2.5:
A zoom on Figure 2.5 will show the equilibrium point of the system as represented
in Figure 2.6. Figure 2.6 shows that there is an endemic equilibrium point, associ-
ated to non-zero populations of exposed and infectious, whose coordinates in view of
Proposition 2.5(i) satisfy the constraints

E∗ =
β

b
(1− e−bω)(

S∗

1 + ηS∗
+

δV ∗

1 + ηV ∗
)I∗ = 0.7

R∗ =
γ1V

∗ + γ(1− e−bω)I∗

b
= 0.043

while the remaining variables, which are not given explicitly in Proposition 2.5(i),
are I∗ = 1.1, V ∗ = 0 and S∗ = 1.38. Thus, the validity of the results is numerically
verified.

2.6.3 The epidemic model versus the evolution of fractional subpopula-
tions

It is interesting to discuss the practical use of the model with fractional or percentage
of populations with respect to a total population by making the model to be more
versatile. Such fractions of the partial total populations can be taken, for instance,
with respect to the initial total population of the habitat under study or with respect
to that of the disease-free equilibrium. Note that in time-varying models or even
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Figure 2.4: Disease-free equilibrium point for Vc = 1

in time-invariant ones with external interchange of population, newborn vaccination
strategy or mortality associated with the disease, it can happen that overshoots and
undershoots with respect to the unit Heaviside function of some of the total population
evolution through time can occur. The reason is that the total population is not
necessarily constant. The percentages of the subpopulations can be manipulated by
using initial conditions in the model which are themselves percentages or by using
absolute values of subpopulations and then displaying the percentage evolution of the
subpopulations through time. A numerical simulation is made with initial conditions
S(0) = 25, V (0) = 15, E(0) = 15, I(0) = 25, R(0) = 20. The parameters of the
model are b = 0.075 days−1, ν = 0.995b < b and N(0) = N∗ = S∗ = b

b−ν = 200. The
results are depicted in Figure 2.7 and Figure 2.8 for Vc = 0 and Vc = 1, respectively.
Figure 2.9 displays a zoom of the final evolution of the vaccinated and recovered
subpopulations towards the disease-free equilibrium for Vc = 1.

2.7 Conclusions

The disease-free and endemic equilibrium points of a modified epidemic SVEIRS
model of true-mass action type are studied, taking into account the loss of immunity
of newborns. It contains potential latent and immune periods, which are internal
delays in the model, and the total population is not considered constant, in general.
A constant regular vaccination forcing term is incorporated to interchange numbers
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Figure 2.5: Solution trajectories converging to an endemic equilibrium point

of susceptible and vaccinated subpopulations. The incorporation of such term is one
of the main novelties of the proposed SVEIRS model since they do not incorporate
usually such a vaccination action . The existence and uniqueness of a disease-free
equilibrium point as well as that of an endemic equilibrium point have been proven,
and also, conditions of positivity and stability have been formulated and proven for
reasonable constraints on the parameterization. A reproduction number-like thresh-
old has been computed to elucidate the maintenance of the local asymptotic stability
of the disease-free equilibrium for sufficiently small delays in the model. Roughly
speaking, the disease-free equilibrium stability margin increases with the value of the
constant vaccination while it decreases as the disease transmission constant increases.
The main vaccination recommendation is to increase the constant vaccination effort
as much as possible to a threshold value being compatible with the stability of the
disease-free equilibrium point given by the threshold previously calculated. This
strategy has a triple joint objective, namely,

i) to increase the recovered subpopulation at a stable disease-free equilibrium point
while jointly decreasing the susceptible one

ii) to increase the effective value of the disease transmission constant being compat-
ible with the stability of such an equilibrium, and

iii) to avoid the convergence of the trajectory solutions to the endemic equilibrium
point for larger values of the transmission constant compared to the case of
absence of vaccination.
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Figure 2.6: Zoom of the solution trajectories showing the endemic equilibrium point

After thinking in the use of the model in a practical way, provided that either the
disease-free equilibrium point or the various formulas defining such an equilibrium
are known, it is considered the followings:

i) First, the concept that the susceptible, vaccinated and recovered disease-free
equilibrium subpopulations are multiplicative coefficients of a given standard
testing total population while, obviously, the exposed and infected populations
are zero at a such stable disease-free equilibrium. This is a logical strategy to
evaluate the subpopulations evolving through time, since their values are not
ensured to be integer numbers without incorporating a discrete quantization
model.

ii) Secondly, to study the model simulations with values for the initial suscepti-
ble, vaccinated and recovered subpopulations being close to their corresponding
above mentioned equilibrium coefficients, while the exposed and infected subpop-
ulations are initially close to zero, but nonzero, (otherwise, the infection would
never appear and propagate).

iii) Run the model evolution through time. The total and the various subpopulations
are calculated at any time instant with the various multiplicative coefficients
applied to the standard testing population. This set up would be a logic scenario
to model common infectious diseases since, in these situations, the exposed and
infected subpopulations remain for all time within small deviations with respect
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Figure 2.7: Percentages of populations evolving to the disease-free equilibrium point
for Vc = 0
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Figure 2.8: Percentages of populations evolving to the disease-free equilibrium point
for Vc = 1

to the whole population under study.
A relevant extension of this formalism could be devoted to the incorporation of the
hybrid modeling by a simultaneous consideration of both discrete-time modeling (for
instance, for the dynamic of the system) and continuous time-modeling (for instance,
for the vaccination effort). Hybrid systems are of greater interest in different problems
of Control Theory because of their ability to a combined treatment of the formal
accommodation and use of models which have continuous-time and discrete-time (or
eventually digital) coupled dynamics or for the use of discrete-controllers operating
on continuous time systems [38], [39], [40].
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Figure 2.9: Zoom of the final evolution of the fractional vaccinated and recovered
subpopulations towards the disease-free equilibrium point for Vc = 1
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3

On a generalized SVEIRS epidemic model under
regular and adaptive impulsive vaccination

In this chapter, a SVEIRS model for a generic disease with incubation and recovered
stages is proposed. It incorporates a vaccinated subpopulation, which presents a par-
tial immunity to the disease. A study of the stability, periodic solutions and impulsive
vaccination design is made in the SVEIRS model under impulsive and non-impulsive
vaccination strategies. The effect of a regular impulsive vaccination on the evolution
of the subpopulations is first studied and then, a non-regular impulsive vaccination
strategy is introduced, based on an adaptive control law that changes the frequency
and quantity of applied vaccines. Numerical simulations will show the efficiency of
the later vaccination strategies and the rapid reduction of the infectious subpopulation
over time, compared to a regular impulsive vaccinations with constant values.

3.1 Introduction

There is a network of interactions that define the spreading of any infectious disease.
It usually involves different types of susceptible and infectious subpopulations [1]-[5]
as well as the transitions between them. These transitions and the system dynamics
derived from them strongly depend on the type of disease and the circumstances in
which it is transmitted, such as the number of different hosts susceptible to the in-
fection and the development of the infectious disease in each of those subpopulations
[6]. Infectious disease have been modeled and described in many papers both in the
absence of vaccination and with different vaccination strategies. The use of impulsive
vaccination is also considered, and several design methods are provided to adjust both
the inter-vaccination time period and the fraction of vaccinated population. Also, a
reproduction number is developed to describe the stability of the periodic regime.
Consequently, the resulting mathematical model introduces two types of susceptible
subpopulation with different incidence rates of contagion: the susceptible and the
vaccinated subpopulation [7]-[10]. Moreover, there are two classes of infected sub-
populations since the infectious process is divided in two stages. The primary stage
assumes that the infectious agent is already inside the host but remains latent and
non-infectious. At the secondary stage the host develops the disease and becomes
symptomatic and infectious [11], [12]. Finally, the host recovers from the disease and
becomes immune to the disease for a certain time after becoming susceptible again.
When only a regular non-impulsive vaccination is applied the dynamics of the SVEIR
model asymptotically leads the state variables of the system (subpopulations) to ei-
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ther a disease-free equilibrium (DFE) regime or an endemic one. The reached final
state depends on the model parameters, i.e., the propagated disease. This study is
focused on the stability of the DFE point. A regular impulsive vaccination is added
to the regular non-impulsive one, in order to avoid a permanence of the infectious
subpopulation. In this way, this oscillating state can be maintained around the DFE
point and the induced periodicity is studied under these circumstances. Furthermore,
non-regular impulsive vaccination strategies will be developed in order to improve the
disease removal when the DFE point is unstable or if the disease prevalence decreases
slowly, when the DFE point is stable. Consequently, a regime where the infectious
subpopulation tends to zero will be obtained. Such vaccination strategies will be
based on adaptive control techniques: The rules for generating the impulsive vacci-
nations are updated based on those used formerly for signal adaptation [13]-[19], but
whose application in disease control and vaccination is novel. In this sense, a closed
loop control system governs the vaccination impulses, each one characterized by a
vaccination rate θ (the fraction of vaccinated subpopulation at that impulse), and
an inter-vaccination period tv (the time until the next impulse is applied). In this
sense, various laws for updating tv or θ and their capabilities to lead the system to
the desired state will be presented and discussed.
The chapter is organized as follows. In section 3.2 the mathematical model of the
disease is presented giving a significance to all the parameters included in it. Section
3.3 studies the equilibrium points of the dynamics without impulsive vaccination and
establishes the stability of such points by defining a regular reproduction number [6].
The stability of the disease-free state of a set of regular impulsive vaccinations, with
constants θ and tv, is discussed in section 3.4, and all the preceding theoretical re-
sults are verified through simulations in section 3.5. First, a simulation for a regular
non-impulsive vaccination system, and then simulations for a set of regular impulsive
systems are developed. In section 3.6 a set of adaptive sampling laws are defined,
namely, each vaccination action θ or tv is set to a certain range of values, based on
the available data of susceptible and infectious subpopulation measures [20]-[23]. In
the first part, the adaptive laws involves a constant inter-vaccination time interval tv,
while the vaccination rate θ is updated. In the last part, however, tv is adjusted in real
time while the vaccination rate θ remains constant. After applying the two proposed
different adaptive sampling laws, one adjusting the θ and the other adjusting tv, the
efficiency of this research is compared to the regular impulsive vaccination in section
3.7, and in section 3.8, the SVEIR model will be used to describe a possible outbreak
of pertussis and the evolution of the disease applying different vaccination strategies.
Final conclusions will be presented in section 3.9.

3.1.1 Notation

The model is described in the following terms:

i) Parameters. Here it is presented all the parameters involving the epidemic
model. Observe that all the parameters are non-negative.
• b1, b3: Birth rates of the population, a constant one (b1) and a population-

dependent one (b3).
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• b2: Natural death rate of any subpopulation.
• γ, γ1: Ratio of transition to recovered from infected (I→ R) and vaccinated

(V→ R) subpopulations, respectively.
• α: Extra death rate caused by the disease in the infected (I) subpopulation.
• τ : Average time of transition from exposed to infected (E→ I) subpopula-

tions.
• ω: Average time of transition from immune to susceptible subpopulations

(R→ S).
• β: Disease transmission constant.
• η: Constant saturation related to the transmission of the disease which

defines the incidence rate.
• δ: A diminishing factor related to the disease transmission in the vaccinated

subpopulation in contrast to that corresponding to the susceptible one.
• Vc: Fraction of the population which is vaccinated since birth (Vcε[0, 1]).
• tv: Time intervals between two consecutive impulsive vaccinations.
• θ: Vaccination rate or the fraction of the susceptible subpopulation affected

by the impulsive vaccination.

ii) Vaccination Strategies. Three different vaccination strategies can be applied
to the SVEIR model:
• Regular non-impulsive vaccination: This vaccination strategy is applied at

all time instants to a fraction Vc of the arriving (newborn) susceptible sub-
population. This strategy can be applied alone or complementary to the
other two.
• Regular impulsive vaccination: This vaccination strategy is applied to a

constant fraction θ of the susceptible subpopulation at uniformly distributed
time instants, i.e.,at time instant ntv, with n ∈ N and a constant tv > 0.
• Non-regular impulsive vaccination: This vaccination strategy is applied

to a time-varying fraction θ(ti) of the susceptible subpopulation at non-
uniformly distributed time instants ti with i ∈ N.

3.2 The model

A generic model of five subpopulations is proposed, similar to the one of the previous
chapter,where the full immunity acquired by vaccination has been replaced with the
same temporal immune response derived from experiencing the disease.This model
is, in turn, based on simpler SIR and SVEIR epidemic models [4, 7, 12],[24]-[26].
The term ω is called to the delay from the moment one individual recovers and
acquires the immunity to the moment such an individual becomes susceptible to the
disease again (susceptible subpopulation). The second delay τ is defined from the
time instant when the host becomes infected to that when it becomes infective to
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others. Also, it is assumed that the recovered subpopulation presents an immunity to
the disease obtained through two different ways: either it is acquired after recovering
from the disease or it is induced by vaccination. This vaccination is administered
regularly to a fraction of newborn individuals that depend on the total population
and, at specific moments in time, to a fraction of the susceptible subpopulation by
means of an impulsive vaccination strategy. Both transitions, from vaccinated and
infectious subpopulations to the recovered one, lead to an immunity indistinguishable
from each other. The natural death rate b2 is the inverse of the life expectancy, and
the rates γ and γ1 are the inverse of the average times of transition from infectious to
immune and from vaccinated to immune subpopulations, respectively. The infectious
incidence rate in the susceptible subpopulation is proportional to β and depends
on I(t) and S(t). Due to the effects of the impulsive vaccination, there is a great
variation in the number of the susceptible individuals, so a saturation factor, similar
to some other previous true mass action-type models [3, 27], is introduced in order
to maintain a reasonable infection rate irrespective of the value of S(t) is high or
low. This saturation factor is proportional to 1

1+ηS(t)
with η ∈ R, η > 0. A similar

incidence rate occurs in the vaccinated subpopulation with the parameter β reduced
by a diminishing factor δε[0, 1), which implies the reduced possibility of a successful
contagion to the disease in this subpopulation, and a saturation factor analogous
to that of the susceptible subpopulation given by 1

1+ηV (t)
. The SVEIRS model with

delays is described by the following equations:

Ṡ(t) = b1 − b2S(t)− βS(t)I(t)
1+ηS(t)

+e−b2ω (γI(t− ω) + γ1V (t− ω)) + b3(1− Vc)N(t) (3.1)

V̇ (t) = −δβV (t)I(t)

1 + ηV (t)
− γ1V (t)− b2V (t) + b3VcN(t) (3.2)

Ė(t) = β
[
S(t)I(t)
1+ηS(t) + δ V (t)I(t)

1+ηV (t) − e
−b2τ

(
S(t−τ)I(t−τ)

1+ηS(t−τ) + δ V (t−τ)I(t−τ)
1+ηV (t−τ)

)]
− b2E(t) (3.3)

İ(t) = βe−b2τ
(
S(t−τ)I(t−τ)

1+ηS(t−τ) + δ V (t−τ)I(t−τ)
1+ηV (t−τ)

)
− (b2 + α+ γ)I(t) (3.4)

Ṙ(t) = γ1V (t) + γI(t)− (γI(t− ω) + γ1V (t− ω)) e−b2ω − b2R(t) (3.5)

Figure 3.1: A block diagram of the SVEIRS model
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

S(t+) = (1− θ)S(t)

V (t+) = V (t) + θS(t)

E(t+) = E(t) if t = ntv (n = 1, 2, 3, ...)

I(t+) = I(t) θε[0, 1]

R(t+) = R(t)

(3.6)

with N(t) = S(t) + V (t) + E(t) + I(t) + R(t) being the total population. Equation
(3.6) is an impulsive function representing a vaccination campaign acting periodically
on a fraction (0 ≤ θ ≤ 1) of the susceptible subpopulation, which is converted into
vaccinated subpopulation. A visual representation of the model structure can be seen
at figure 3.1 where all the transition between subpopulations are represented through
arrows, and the influence of the disease on those transitions is depicted by dashed
arrows. Through the chapter the notation for the left limit at the impulse time
instants nt−v will be simply denoted by ntv. The parameters ω and τ are the internal
delays at (3.1),(3.5) and (3.3),(3.4) respectively. The above model is different from
other models [3] not only due to the distinct growth and death rates involved, but also
because an additional population-dependent birth rate is considered and vaccination
is administered to a fraction of the newborn. Furthermore, note that the presence
of delays is often relevant in dynamic systems [12],[23],[26], and the migrations from
vaccinated and infectious to the susceptible subpopulation (through the temporary
immune recovered subpopulation) are taken into account.

3.3 Disease-free equilibrium point with no impulsive
vaccination

In order to study the equilibrium points, first the SVEIRS model will be developed
with regular non-impulsive vaccination, i.e., θ = 0 in (3.6), and a constant vaccination
rate Vc applied. Let S∗, V ∗, E∗, I∗, R∗ be the respective subpopulations at the even-
tual equilibrium points, i.e: lim

t→∞
(S(t), V (t), E(t), I(t), R(t)T = (S∗, V ∗, E∗, I∗, R∗)T .

Since the values of the subpopulations at an equilibrium point are constant, delay-
dependency disappears at the equilibrium so that lim

t→∞
I(t − τ) = lim

t→∞
I(t − ω) =

lim
t→∞

I(t) = I∗ and lim
t→∞

E(t − τ) = lim
t→∞

E(t) = E∗. The model equations (3.1)-(3.5)
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lead to:

b1 − b2S
∗ − βS∗I∗

1+ηS∗
+ (γI∗ + γ1V

∗) e−b2ω + b3(1− Vc)N∗ = 0

−δ βV ∗I∗
1+ηV ∗

− γ1V
∗ − b2V

∗ + b3VcN
∗ = 0

(1− e−b2τ )β
(

S∗

1+ηS∗
+ δ V ∗

1+ηV ∗

)
I∗ − b2E

∗ = 0

e−b2τβ
(

S∗

1+ηS∗
+ δ V ∗

1+ηV ∗

)
I∗ − (b2 + α + γ)I∗ = 0

(1− e−b2ω)(γ1V
∗ + γI∗)− b2R

∗ = 0

Ṡ∗ + V̇ ∗ + Ė∗ + İ∗ + Ṙ∗ = b1 − (b2 − b3)N∗ − αI∗ = 0

(3.7)

for the purpose of obtaining the respective subpopulations at the equilibrium points.
By assuming the condition of non-negativity for all subpopulations, i.e.,

(S∗, V ∗, E∗, I∗, R∗)T ≥ 0

the solution of the equation (3.7) reveals a set of points at which the equilibrium is
reached. A solution of (3.7) such that I∗ 6= 0 is defined as an endemic equilibrium
point and, if I∗ = 0 then it can be said that it is a disease-free equilibrium point.
The model discussed here presents only one disease-free equilibrium (DFE) point,
where I∗ = 0 and E∗ = 0. The values of the susceptible, vaccinated and recovered
subpopulation as well as the total population at such DFE point are obtained from
the equations in (3.7) by introducing I∗ = E∗ = 0. In this way:

N∗ =
b1

b2 − b3

(3.8)

S∗(ω) =
b1

b2

[
1 +

b3

b2 − b3

(
1 + Vc

(
e−b2wγ1

b2 + γ1

− 1

))]
(3.9)

V ∗ = Vc
b3b1

(γ1 + b2)(b2 − b3)
(3.10)

R∗(ω) =
(1− e−b2w)

b2

γ1V
∗ = Vc

b1

b2

b3γ1(1− e−b2w)

(γ1 + b2)(b2 − b3)
(3.11)

Observe that the susceptible and recovered subpopulation depend on the ω delay.

3.3.1 Linearization

Proposition 3.1. The following properties hold:

i) The DFE point (S∗(ω), V ∗, 0, 0, R∗(ω))T of the system (3.1)-(3.5) is locally asymp-
totically stable for any delays τ ′ ∈ (τ−∆τ, τ+∆τ) and ω′ ∈ (ω−∆ω, ω+∆ω) for
∆τ ∈ [0,∆τ ∗), ∆ω ∈ [0,∆ω∗), with sufficiently small ∆τ ∗ and ∆ω∗, if b2 > b3

and α + γ1 + b2 > βe−b2τ
(

S∗(ω)
1+ηS∗(ω)

+ δ V ∗

1+ηV ∗

)
.

ii) The DFE point (S∗(0), V ∗, 0, 0, R∗(0))T of the system (3.1)-(3.5) is locally asymp-
totically stable for any delays τε[0, τ ∗) and ωε[0, ω∗), with small enough τ ∗ andω∗,
if b2 > b3 and
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α + γ1 + b2 > β
(

S∗(0)
1+ηS∗(0)

+ δ V ∗

1+ηV ∗

)
.

Proof.
First, the dynamic equations are linearized (3.1)-(3.5) around the DFE point by
means of the associated Jacobi matrix J = [Jij] = [ ∂ẋi

∂xj
] for i, j ∈ {1, 2, ...5} with

x1 ≡ S, x2 ≡ V, x3 ≡ E, x4 ≡ I and x5 ≡ R evaluated at the DFE point. The
eigenvalues of this matrix are obtained by calculating the roots of the characteristic
equation:

Det(λI − J) = 0 (3.12)

Such eigenvalues are given by:

λi = {−b2,−b2,−b2−γ1,−b2+b3, βe
−b2τ

(
S∗(ω)

1 + ηS∗(ω)
+ δ

V ∗

1 + ηV ∗

)
−(b2+α+γ)} (3.13)

where S∗(ω) and V ∗ at the DFE point are given in (3.9) and (3.10) respectively. The
real part of all the eigenvalues of the Jacobi matrix must be less than zero so that
the linearized model around the DFE point is asymptotically stable, which means
that this point is locally stable in the non-linear model. Note that all parameters of
the model are always defined as positive or zero for any infectious disease. Thus, the
DFE point is locally asymptotically stable around some given delays τ and ω if

b3 − b2 < 0 (3.14)

βe−b2τ
(

S∗(ω)

1 + ηS∗(ω)
+

δV ∗

1 + ηV ∗

)
− (b2 + α + γ) < 0 (3.15)

Since the eigenvalues of the Jacobian matrix are continuous functions of all its entries,
there are sufficiently small delay perturbations ∆τ ∗ and ∆ω∗ which guarantee the
local stability of the DFE point for any delays τ ′ ∈ (τ − ∆τ, τ + ∆τ) and ω′ ∈
(ω −∆ω, ω + ∆ω) for all ∆τ ∈ [0,∆τ ∗), ∆ω ∈ [0,∆ω∗). Hence, Property (i).
In the same way, if ω = 0 and τ = 0 the stability conditions follow from a well known
result in general theory of time-delay systems [18]. Just in this sense, the stability
conditions of the equilibrium point for zero delays

α + γ1 + b2 > β

(
S∗(0)

1 + ηS∗(0)
+ δ

V ∗

1 + ηV ∗

)
; b2 > b3 (3.16)

directly guarantee the stability for small delays τε[0, τ ∗] and ωε[0, ω∗]. Hence, Prop-
erty (ii).

Remark 3.2.
If α + γ + b2 < β

(
S∗(0)

1+ηS∗(0)
+ δ V ∗

1+ηV ∗

)
then the DFE point is unstable for zero and

sufficient small delays τε[0, τ ∗] and ωε[0, ω∗], as it would happen if b2 < b3 which
would also imply negative subpopulations. If α + γ + b2 = β

(
S∗(0)

1+ηS∗(0)
+ δ V ∗

1+ηV ∗

)
and

b2 > b3 then the linearized system around the DFE point is critically stable. Finally,
if b2 = b3 then I∗ = b1

α
6= 0 from (3.7). As a consequence, the system does not posses

a DFE point.
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Remark 3.3.
Proposition 3.1 (i) establishes the conditions to have a DFE point asymptotically
locally stable for delays ω,τ . The first condition (3.14) implies that the population
does not grow exponentially as the death rate is greater than the population-related
birth rate. The parameters from the second condition (3.15) can be rearranged so it
can be obtained:

R0 =
βe−b2τ

b2 + α + γ

(
S∗(ω)

1 + ηS∗(ω)
+ δ

V ∗

1 + ηV ∗

)
(3.17)

where S∗(ω) and V ∗ at the DFE point are given in (3.9) and (3.10) respectively.
The parameter R0 defined through (3.17) is referred to the basic reproduction num-
ber, which is defined in epidemic research as the expected number of secondary in-
fections derived per infected individual βe−b2τ

(
S∗(ω)

1+ηS∗(ω)
+ δ V ∗

1+ηV ∗

)
during the av-

erage course of the infectious phase of the disease (b2 + γ + α)−1 [31]-[33]. Since
S∗(ω) = S∗(Vc, b1, b2, b3, ω, γ1) and V ∗ = V ∗(Vc, b1, b2, b3, γ1) the reproduction number
will be R0(β, b1, b2, b3, δ, η, α, γ, γ1, ω, τ) and will give us information about the local
stability around the DFE point, as condition from (3.15) is equivalent to R0 < 1. A
consequence from Proposition 3.1 follows below.

Remark 3.4.
If R0 > 1 then the DFE point is locally unstable, as it would happen if b2 < b3, which
would also imply negative subpopulations. If R0 = 1 and b2 > b3 then the linearized
system around the DFE point is critically stable.

3.4 Regular impulsive vaccination around the disease-
free equilibrium point

The behavior of the model under a regular impulsive vaccination is studied in this sec-
tion. The main motivation is to mitigate and, potentially, eradicate the infection from
the host population when the DFE point is unstable under a regular non-impulsive
vaccination strategy. The regular impulsive vaccination is characterized by a constant
vaccination rate θ and a constant inter-vaccination time interval tv. This vaccination
strategy is applied to an auxiliary model constructed from the original model (3.1)-
(3.6), in which there are not infected subpopulations: E(t) = 0 and I(t) = 0 ∀t ≥ t0,
being t0 the hypothetical time instant at which the disease has been eradicated. The
results obtained in this auxiliary model would be analogous to the SVEIRS model
when it hypothetically tends to the disease-free state. The dynamic equations for this
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reduced model are:
Ṡ ′(t) = b1 − b2S

′(t) + b3(1− Vc)N ′(t) + γ1V
′(t− ω)e−b2ω

V̇ ′(t) = −γ1V
′(t)− b2V

′(t) + b3VcN
′(t) ∀t 6= ntv

Ṙ′(t) = γ1(V ′(t)− V ′(t− ω)e−b2ω)− b2R
′(t)

(3.18)

and 
S ′(t+) = (1− θ)S ′(t)
V ′(t+) = V ′(t) + θS ′(t) θε[0, 1] ∀t = ntv

R′(t+) = R′(t)

(3.19)

The equation of the total population in such a disease-free situation is:

Ṅ ′(t) = Ṡ ′(t) + V̇ ′(t) + Ṙ′(t) = b1 − (b2 − b3)N ′(t) (3.20)

Such a total population presents a time evolution given by
N ′(t) = N∗ − (N∗ − N0)e−(b2−b3)t where N0 denotes the initial value N ′(0) ≥ 0. By
supposing that b2 > b3, it follows that lim

t→∞
N ′(t) = N∗ and the system reaches the

DFE state where the total population N∗ is given by (3.8).
The solution of these simplified equations (3.18)-(3.19) will be found under a periodic
impulsive vaccination showing that they exhibit a periodic steady regimen of period
T = T (m,σ) = mtv + σ, with σ ∈ [0, tv), m ∈ N ∪ {0} , N0. Furthermore, the
maximum values of the susceptible and vaccinated subpopulations will be obtained
within such a periodic regime. Proposition 3.5 establishes that the period T (m,σ) of
such a solution must be always a multiple of tv. and that such period is always tv.

Proposition 3.5. The following properties hold

i) For a general periodic solution of (3.18)-(3.19) with a time period T = T (m,σ) =
mtv + σ it is required that σ = 0.

ii) There is a unique general solution with time period T (1, 0) = tv. This solution
would be, from (i) that with the smallest time period.

Proof.
Assuming that the solutions of (3.18)-(3.19) exhibits a periodic behavior and that
the period is given by T (m,σ), withσ 6= 0, this would imply that, for any n1 ∈ N,
S(n1tv) = S((n1+m)tv+σ). However, while the susceptible subpopulation is required
by the dynamic equation in (3.18) to show an impulse at t = n1tv, this impulse is not
present at t′ = (n1 + m)tv + σ since (n1 + m)tv < t′ < (n1 + m + 1)tv. Therefore,
periodicity is not reached if σ 6= 0. Hence Property (i).
The demonstration of Property (ii) is omitted here due to length constraints. This
proof is included in Appendix D, and shows that the generic T (n, 0) solution is unique
and based on a superposition of T (1, 0) solutions which, from Property (i), would be
the solution with the smallest period. Hence Property(ii).
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In order to simplify the notation,a redefinition is made to the variables for the vac-
cinated and susceptible subpopulations within the interval between two consecutive
impulses after a large enough time so that they have reached the periodic regime and
lim
t→∞

N(t) = N∗. In such a situation, the susceptible and vaccinated subpopulations
can be denoted by:

∀{i, r} ∈ N0, τ ∈ [0, tv)→

Si(τ) , lim
r→∞

S ′(τ + (i+ r)tv)

Vi(τ) , lim
r→∞

V ′(τ + (i+ r)tv)
(3.21)

where (3.8) and (3.10) has been taken into account. Once that it is known that
{Si(τ) = Sj(τ), Vi(τ) = Vj(τ)}∀i, j ∈ N the equations in (3.18) at the periodic regime
can be rearranged by using (3.21). In this way, the dynamics of the vaccinated
subpopulation (3.2) is described by:

V̇i(τ) = (γ1 + b2)(V ∗ − Vi(τ)) (3.22)

On the other hand the dynamics of the susceptible subpopulation (3.1) is rewritten
as a two part equation due to the discontinuity derived from the delay ω = ktv + xtv,
being k ∈ N0 and x ∈ [0, 1) ∩ R, namely:

Ṡi(τ) =


b2(S∗(ω)− Si(τ)) + γ1(Vi(0

+)− V ∗)e−b2ω−(b2+γ1)(τ−(1−x)tv) 0 ≤ τ < xtv

b2(S∗(ω)− Si(τ)) + γ1(Vi(0
+)− V ∗)e−b2ω−(b2+γ1)(τ−xtv) xtv ≤ τ < tv

(3.23)

where V ∗ and S∗(ω) are the values of the susceptible and vaccinated subpopulations
from (3.9) and (3.10) respectively. It can be seen from these equations that in the
periodic regime Ṡi(τ) > 0 and V̇ i(τ) < 0 if Si(τ) < S∗ and Vi(τ) > V ∗ ∀τ ∈ (0, tv).
This means that the susceptible subpopulation is continuously increasing, while the
vaccinated subpopulation is continuously decreasing, within the time interval [jtv, (j+
1)tv) for any j ∈ N and large enough such that the model dynamics has reached the
stationary periodic regime. Therefore, the maximum values of both subpopulations
will be:

max
0≤τ<tv

{Si(τ)} = Si(tv) =
Si(0

+)

1− θ
(3.24)

max
0≤τ<tv

{Vi(τ)} = Vi(0
+)

where the values for Vi(0+), Si(0
+) are defined as:

Si(0
+) = S0 =

s1(1− θ)
s2 − eb2(xtv−ω)θs3

(3.25)

Vi(0
+) = V ∗ +

s1θ

(s2 − eb2(xtv−ω)θs3)(1− e−(b2+γ1)tv)
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with s1, s2 and s3 given by:

s1 =
(
eb2tv − 1

) (
e(b2+γ1)tv − 1

)
S∗(ω)

s2 =
(
e(b2+γ1)tv − 1

) (
eb2tv − (1− θ)

)
(3.26)

s3 =
(
eγ1xtv + e(b2+γ1)tv − e(b2+xγ1)tv − 1

)
The subpopulations S ′(t) and V ′(t) in the auxiliary model will be, respectively, above
the values S(t) and V (t) of the original SVEIRS model. When the disease is perma-
nent, i.e. lim

t→∞
inf {S ′(t)− S(t)} ≥ 0 and lim

t→∞
inf {V ′(t)− V (t)} ≥ 0 if I(t) > 0 and

E(t) > 0, the values from the auxiliary model is used in (3.24) to define the impulsive
reproduction number R(θ, tv) as:

R(θ, tv) =
βe−b2τ

γ + b2 + α

(
max

0≤t<tv

{
Si(t)

1 + ηSi(t)

}
+ max

0≤t<tv

{
δ

Vi(t)

1 + ηVi(t)

})
(3.27)

R(θ, tv) =
βe−b2τ

γ + b2 + α

(
Si(tv)

1 + ηSi(tv)
+ δ

Vi(0
+)

1 + ηVi(0+)

)
(3.28)

Now the dynamic equation for the infectious subpopulation from (3.4) is studied. For
a sufficiently large time t ≥ t′ = n0tv, n0 ∈ N, so that (3.21) is fulfilled, it can be
established an upper-bound for the growth of the infectious subpopulation, namely :

İ(t) ≤ βe−b2τ
(

max
t′≤t<t′+tv

{
S(t)

1+ηS(t)
+ δV (t)

1+ηV (t)

})
I(t− τ)− (γ + b2 + α)I(t)

≤ βe−b2τ
(

max
t′≤t<t′+tv

{
S(t)

1+ηS(t)

}
+ max

t′≤t<t′+tv

{
δV (t)

1+ηV (t)

})
I(t− τ)− (γ + b2 + α)I(t)

≤ βe−b2τ
(

max
t′≤t<t′+tv

{
S′(t)

1+ηS′(t)

}
+ max

t′≤t<t′+tv

{
δV ′(t)

1+ηV ′(t)

})
I(t− τ)− (γ + b2 + α)I(t)

İ(t) ≤ βe−b2τ
(
max
0≤t<tv

{
Si(t)

1+ηSi(t)

}
+ max

0≤t<tv

{
δ Vi(t)

1+ηVi(t)

})
I(t− τ)− (γ + b2 + α)I(t)

İ(t) ≤ (γ + b2 + α)(R(θ, tv)I(t− τ)− I(t)) (3.29)

The interpretation given to the impulsive reproduction number R(θ, tv) is intuitively
analogous to the standard reproduction number R0 from (3.17), but under a more
complex regular impulsive vaccination instead of only a regular non-impulsive vac-
cination Vc. It leads to the identification of the parameters which make the model
presents a stable oscillation around the DFE point under an impulsive vaccination
strategy when R0 > 1, i.e., when the DFE point is unstable with the application of
only a regular non-impulsive vaccination Vc.
The following result in proposition 3.6 is addressed to give conditions for guarantee-
ing that the infectious subpopulation converges asymptotically to zero provided that
R(θ, tv) < 1.
Proposition 3.6. If R(θ, tv) < 1 then I(t)→ 0 as t→∞.
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Proof.
For all t > 0, it is known from (3.4) that:

İ(t) = aI(t) + b(t)I(t− τ) (3.30)

being a = −(α + b2 + γ) and b(t) = βe−b2τS(t−τ)
1+ηS(t−τ)

+ δ βe
−b2τV (t−τ)

1+ηV (t−τ)
. At a sufficient large

t, it is known from (3.28) that

|b(t)|/|a| ≤ R(θ, tv) < 1 (3.31)

and then lim
t→∞

I(t) = 0 is obtained from [19].

Proposition 3.7. If θ = 0 (i.e., in the absence of impulsive vaccination) then the
impulsive reproduction number R(0, tv) becomes the standard, non-impulsive, repro-
duction number, i.e., R(0, tv) = R0, and implies that the stability at the DFE point
when R0 < 1 is not only local, but also globally asymptotically stable.
Proof.
As θ = 0, R(0, tv) = βe−b2τ

γ+b2+α

(
S∗(ω)

1+ηS∗(ω) + δ V ∗

1+ηV ∗

)
= R0 < 1. Then, from proposition

3.6, it is deduced lim
t→∞

I(t) = 0.The dynamic for the exposed subpopulation from (3.3)

becomes Ė(t) → −b2E(t), so that lim
t→∞

E(t) = 0 since b2 > 0. Then, the susceptible,
vaccinated and recovered subpopulations reach their values in (3.9)-(3.11) at the DFE
point.

3.5 Numerical simulations with regular impulsive vac-
cination

3.5.1 Parameter Settings

In order to check if the reproduction number R0 is equally valid in the periodic
stationary regime of the non linear SVEIRS model, a simulation of the dynamics of
the disease is made for a given set of initial conditions during a sufficient time to
obtain a stationary regime, and the results are studied. It has been decided to use a
student version of MATLAB c©7.11.0 (R2010)b Language for setting different values
for the model parameters, displaying the solution data, and performing the technical
computing, while the Simulink block-module environment from Matlab resolves the
dynamics of the SVEIRS model (3.1)-(3.5). The Simulink system is designed using
such equations, plus the following restriction that guarantees the non-negativity of
the subpopulations:

If Xi(t0) < 0 → Xi(t0) = 0 ∀t0 (3.32)
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The proposed SVEIRS model is now tested numerically for a given parameterization.
A real case study for pertussis is later on discussed in section 3.8. The average life
span is established as 70 years, so b−1

2 = 70 years. It is defined b3 < b2, as the
population would grow exponentially otherwise, and choose b−1

1 = b−1
3 = 140 years

in order to have a disease-free total population equal to 1
(
N∗ = b1

b2−b3 = 1
)
. The

vaccination parameters are set Vc = 1 and δ = 0.2 while the saturation constant
η = 0.18. For the transition rate from vaccinated to recovered subpopulation it is
chosen five months of partial immunity before getting a total one in the recovered
state, so γ−1

1 = (150
365

) years.The extra death rate for the infected is 0.5 months−1, so
α−1 = ( 2

12
) years. About the parameters τ, ω and γ, a range of possible values from

the data available [34]-[39] will be taken in order to study further the dynamics of
the epidemic:

• τ= 0.04-4 years (15-1500 days)

• ω= 1-100 years

• γ= 12.2-2.4 years−1

Finally, a value of the disease transmission constant β is chosen so the reproduction
number reach a value higher than one, since as it is seen in (3.17), the reproduction
number R0 is directly proportional to β.

3.6 Vaccination strategies

3.6.1 Non-regular impulsive vaccination strategy with adaptable vacci-
nation rate θ

After proving the convenience of a regular impulsive vaccination, it is studied the
implantation of a more sophisticated impulsive vaccination strategy. Two concepts are
introduced: the concept of vaccination cost (V C), directly related to the treatment
and the number of consumed vaccines, and the disease cost (DC), related to the
quantity of infected subpopulation over time. The main purpose is to guarantee
the health of the population while minimizing both DC and VC costs. A constant
interval tv between consecutive impulsive vaccination time instants is chosen, with
a vaccination rate varying according to different rules within the range θε[0, 1]. The
notation for the time varying vaccination rate will be θi = θ(itv) = θ(ti). Also, the
normalization of the infectious and susceptible subpopulation with respect to the total
population N∗ at the DFE point, i.e., I ′(t) = I(t)/N∗, S ′(t) = S(t)/N∗ are used for
defining the rules which on-line adjust θi.
Vaccination Rate updating rule based on Infectious subpopulation Quan-
tity (VR-IQ)

This strategy updates the impulsive vaccination rate θi by using a rule based on the
quantity of infectious subpopulation. As R(θ, tv) is a strictly decreasing function with
respect to θ ∈ [0, 1] i.e. ∂R(θ,tv)

∂θ
< 0, there is only one value of θ corresponding to a

given value of R(θ, tv) with tv being constant. Moreover, Proposition 3.6 establishes
that if the impulsive reproduction number is smaller than 1 the disease is guaranteed
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to be eradicated, i.e., if R(θ, tv) < 1 then lim
t→∞

I(t) = 0. Such a result is used in the
following way. Given a set of values for the SVEIRS model parameters, a fixed value
for tv is chosen such that R(0, tv) ≥ 1 and R(1, tv) < 1. Then, a database of R(θ, tv)
for θε[θmin, 1] is built, where θmin = arg{θε[0, 1]|R(θ, tv) = 1} by taking into account
(3.24), (3.25) and (3.28).
The aim of the VR-IQ rule is to increment the impulsive vaccination rate if the
infectious subpopulation exceeds a predefined size in order to reduce it. For such
purpose, the law used for updating such vaccination rate at each vaccination time
instant is given by:

θi = arg{θ|R(θ, tv) = 1 + gi(R(1, tv)− 1)} (3.33)

where gi is an auxiliary value given by:

gi =


1 if log10[I ′(ti)] > 0

1−
∣∣∣ log10[I′(ti)]

CI

∣∣∣ if log10[I ′(ti)] ∈ [−CI , 0]

0 if log10[I ′(ti)] < −CI

(3.34)

with I ′(ti) being the normalized infectious subpopulation at the moment before the
vaccination time instant ti, and CI > 0 a predefined constant. Note that the vaccina-
tion rate θi takes the minimum value θmin when the infectious subpopulation is very
small, namely, I ′(ti) < 10−CI � 1 if CI is large enough. In other words, θi = θmin
when the infection is near to be eradicated.
Vaccination Rate updating rule based on Susceptible subpopulation Quan-
tity (VR-SQ)

Two different rules will be used in order to update the value θi based on the susceptible
subpopulation. The first one (VR-SQ1) is similar to the rule VR-IQ . The main
difference between them is that the subpopulation accountable in the rule V R−SQ1

for setting the vaccination rate θi is not the infectious one, but the susceptible one. By
taking into account that the contagion rate is directly proportional to the susceptible
subpopulation from (3.1)-(3.5), the updating rule for θi has to maintain the susceptible
subpopulation below a small upper-bound. For such purpose, the law used to update
the impulsive vaccination rate is given by:

θi = arg{θ|R(θ, tv) = 1 + gi(R(1, tv)− 1)} (3.35)

where the auxiliary value gi is:

gi =


1 if log10[S ′(ti)] > 0

1−
∣∣∣ log10[S′(ti)]

CS

∣∣∣ if log10[S ′(ti)] ∈ [−CS, 0]

0 if log10[S ′(ti)] < −CS

(3.36)

with a predefined constant CS > 0 and S ′(ti) the value of the normalized susceptible
subpopulation at the moment before the impulsive vaccination time instant ti. Note
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that θi takes the minimum value when S ′(ti) < 10−CS , i.e., when the susceptible
subpopulation is very small if a suitable value for CS is chosen.
In the second rule (VR-SQ2) the values θi are updated by using an explicit function
of the susceptible subpopulation at the impulsive vaccination time instants:

θi = 1− 1

1 + aS ′(ti)
with a ≥ 0 (3.37)

Vaccination rate updating rule based on the Infectious subpopulation Growth
(VR-IG)

In this case, the impulsive vaccination rate θi is slightly increased or decreased from
the previous value at each impulsive vaccination time instant with a function that
depends on the growth of the infectious subpopulation, namely:

θi+1 = θi + ∆θi

∆θi = sign[İ ′(ti)]
∣∣∣log10

[∣∣∣İ ′(ti)∣∣∣]∣∣∣ /CI (3.38)

θi+1 =


0 if θi+1 < 0

θi+1 if θi+1 ∈ [0, 1]

1 if θi+1 > 1

with a predefined constant CI > 0. Here, İ ′(ti) can be estimated in practice in two
ways, namely:

i) İ ′(ti) can be the growth of the normalized infectious subpopulation at the time
of the impulse, or

ii) İ ′(ti) can be replaced by I′(ti)−I′(ti−1)
tv

, i.e., the difference between the normalized
infectious subpopulation just before the current impulse time instant (ti) and
just before the previous one (ti−1) divided by the constant inter-vaccination time
interval (tv). Such a measure can be used as a suitable approximation to the true
growth İ ′(ti).

Vaccination Rate updating rule based on the Susceptible subpopulation
Growth (VR-SG)

The θi rate, like in the VR-IG rule, is readjusted at each vaccination impulse time
instant, but the purpose here is to react against the increase of the susceptible sub-
population with an increase of the impulsive vaccination rate, given that it indicates
that the disease is still present:

θi+1 = θi + ∆θi, ∆θi = CS Ṡ ′(ti) (3.39)

θi+1 =


0 if θi+1 < 0

θi+1 if θi+1 ∈ [0, 1]

1 if θi+1 > 1

(3.40)

with a predefined constant CS > 0. Here Ṡ ′(ti), as the İ ′(ti) before, can be
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(1) the growth of the normalized susceptible subpopulation at the time of the im-
pulse, or

(2) it can be replaced by S′(ti)−S′(ti−1)
tv

, i.e., the difference between two data of the
normalized susceptible subpopulation, one just before the current impulse time
instant (ti) and the other just before the previous impulse (ti−1), divided by the
constant inter-vaccination time interval (tv).

3.6.2 Non-regular impulsive vaccination strategy with adaptable inter-
vaccination time intervals

In the second approach for obtaining an optimization of the vaccination and disease
costs related to a disease, a set of rules for updating the time period tv(i) from the
current vaccination time instant to the next one is developed while the impulsive
vaccination rate θ remains constant. Again, the infectious and susceptible subpop-
ulations are normalized with respect to the total population N∗ at the DFE point.
As the inter-vaccination time interval is time-varying, it is defined now the current
vaccination time instant as the sum of all preceding inter-vaccination time intervals,

namely, ti =
i∑

j=1

tv(j), where tv(j) = tj − tj−1 for j ∈ N and tv(1) = t1 − t0 = t1 since

t0 = 0, i.e., since the initial time instant is denoted by t0.
Inter-Vaccination time Intervals updating rule based on Infectious sub-
population Quantity (IVI-IQ)

The inter-vaccination time interval, as θ in the VR-IQ rule, depends on the quantity of
infectious subpopulation. Analogous to the previous methods, it is created a database
of R(θ, tv) between a maximum and a minimum tv. The more convenient time interval
tv is chosen within the range tv ∈ [tminv , tmaxv ] with tminv such that R(θ, tminv ) < 1 for
a prefixed θ. The fact that R(θ, tv) decreases as the inter-vaccination time interval
does is taken into account, since ∂R(θ,tv)

∂tv
> 0∀tv for a constant θ. Furthermore,

from Proposition 3.6 an impulsive vaccination reproduction number R(θ, tv) < 1
will guarantee lim

t→∞
I(t) = 0, so in order to decrease the infectious subpopulation the

impulsive vaccination time intervals will be reduced as the infectious subpopulation
exceeds a predefined size. For such purpose, the following rule is used:

tv(i+ 1) = arg{tvε[tminv , tmaxv ]|R(θ, tv) = 1 + gi(R(θ, tminv )− 1)} (3.41)

where the auxiliary function gi is given by:

gi =


1 if log10 [I ′(ti)] > 0

1−
∣∣∣ log10[I′(ti)]

CI

∣∣∣ if log10 [I ′(ti)] ∈ [−CI , 0]

0 if log10 [I ′(ti)] < −CI

(3.42)

with a predefined constant CI > 0, and where I ′(ti) is the normalized infectious
subpopulation at the moment before the vaccination time instant.
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Inter-Vaccination time Intervals updating rule based on Susceptible sub-
population Quantity (IVI-SQ)

As in the previous VR-SQ1 and VR-SQ2 rules, two alternative ways are now proposed
to update the time interval between consecutive impulsive vaccinations. The first rule
(IVI-SQ1) is defined as the IVI-IQ one, with the difference that the subpopulation
used for measuring the state of the disease propagation is not the infectious one, but
the susceptible one. The aim is to reduce the susceptible subpopulation by vaccination
so the following law is used for updating the inter-vaccination time intervals:

tv(i+ 1) = arg{tvε[tminv , tmaxv ]|R(θ, tv) = 1 + gi(R(θ, tminv )− 1)} (3.43)

where gi is given by:

gi =


1 if log10 [S ′(ti)] > 0

1−
∣∣∣ log10[S′(ti)]

CS

∣∣∣ if log10 [S ′(ti)] ∈ [−CS, 0]

0 if log10 [S ′(ti)] < −CS

(3.44)

with a predefined constant CS > 0, and S ′(ti) being the value of the normalized sus-
ceptible subpopulation at the moment before the impulsive vaccination time instant.
The second rule (IVI-SQ2) used to update the inter-vaccination time intervals is:

tv(i+ 1) = tminv +
(tmaxv − tminv )

1 + aS ′(ti)
with a ≥ 0 (3.45)

Inter-Vaccination time Intervals updating rule based on Infectious sub-
population Growth (IVI-IG)

In this case, the inter-vaccination time interval tv(i + 1) is slightly increased or de-
creased from the previous one at each impulsive vaccination time instant with a rule
based on the growth of the infectious subpopulation. In this sense, the following
adjusting law is proposed:

∆tv(i) = sign[İ ′(ti)]
∣∣∣log10

[∣∣∣İ ′(ti)∣∣∣]∣∣∣ /CI (3.46)

tv(i+ 1) = tv(i)−∆tv(i) (3.47)

tv(i+ 1) =


tminv if t̄v(i+ 1) < tminv

t̄v(i+ 1) if t̄v(i+ 1)ε[tminv , tmaxv ]

tmaxv if t̄v(i+ 1) > tmaxv

with CI > 0 being a predefined constant. İ ′(ti) can be
i) the growth of the normalized infectious subpopulation at the time of the impulse,

or
ii) İ ′(ti) can be replaced by I′(ti)−I′(ti−1)

tv(i)
, i.e., the difference between the normalized

infectious subpopulation just before the current impulse time instant (ti) and
just before the previous one (ti−1) divided by the inter-vaccination time interval
(tv(i) = ti − ti−1). Such a measure can be used as a suitable approximation to
the true growth İ ′(ti).
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Inter-Vaccination time Intervals updating rule based on Susceptible sub-
population Growth (IVI-SG)

Here tv(i), like in the IVI-IG rule of the previous section, is readjusted at each impul-
sive vaccination time instant, although the proposed adaptation law is based on the
susceptible subpopulation instead of the infectious one. Now, an increase of the sus-
ceptible subpopulation gives place to a decrease of the time interval between impulsive
vaccination time instants, namely:

∆tv(i) = CS Ṡ
′(ti) (3.48)

tv(i+ 1) = tv(i)−∆tv(i) (3.49)

tv(i+ 1) =


tminv if t̄v(i+ 1) < tminv

t̄v(i+ 1) if t̄v(i+ 1)ε[tminv , tmaxv ]

tmaxv if t̄v(i+ 1) > tmaxv

with CS > 0 a predefined constant. Ṡ ′(ti) can be

i) the growth of the normalized susceptible subpopulation at the time of the im-
pulse, or

ii) replaced by S′(ti)−S′(ti−1)
tv(i)

, i.e., the difference between two data points of the nor-
malized susceptible subpopulation, one just before the current impulse time in-
stant (ti) and the other just before the previous impulse (ti−1), divided by the
inter-vaccination time interval (tv(i) = ti − ti−1).

3.7 Efficient method for coherency in the comparison
of non-regular impulsive vaccination strategies
against regular ones

The impact of the different rules for updating the vaccination rate θi and the time
interval tv(i) from sections 3.6.1 and 3.6.2 is studied. For such purpose, a simu-
lation of an outbreak is run, beginning with initial conditions near the DFE point
plus a small fraction of infectious subpopulation. It is set a constant time interval
tv = 1 for the adaptive laws adjusting the time-varying rate θi in section 3.6.1 and a
constant vaccination rate θ = 0.05 for the adaptive laws adjusting the time-varying
inter-vaccination time intervals within a range of tv(i)ε(0.46, 1.50) in section 3.6.2.
The parameters of the system are set as those used in section 3.4 giving place to a
reproduction number R0 = 1.25 associated to an unstable DFE point. The reproduc-
tion number R0 is also small enough so the impulsive reproduction number R(θ, tv)
achieves values under 1 given the proposed range for θ and tv. The disease cost is
defined as DC = A

∫ tf
0
I(t)dt, related to the value of the infectious subpopulation

during the simulation time, and the vaccination cost is defined as V C = V1 + V2.
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i) The first part V1 =
∫ tf

0
b3VcN(t)dt is related to the amount of newborns vacci-

nated during the simulation from 0 to tf and it is proportional to the constant
vaccination rate Vc.

ii) The second part V2 =
n

Σ
i=1
θiS(ti) is related to the total amount of vaccinated

individuals by means of impulsive vaccinations, with n being the number of
impulsive vaccinations during the simulation.

Figure 3.2: A comparison between the model dynamics with a non-regular impulsive
vaccination with a VR-IQ strategy and a regular impulsive vaccination with the same
Vaccination Cost.

After running the simulation and gathering information about the dynamics of the
non-regular impulsive vaccination strategy and their DC and VC, the simulation
is re-run again, now using a regular impulsive vaccination strategy with constant
vaccination parameters θ and tv. The data from the non-regular impulsive vaccination
strategy will be used to get the most approximate vaccination parameters so the
regular impulsive vaccination presents a VC comparable to the non-regular one. In
this sense, a regular impulsive vaccination strategy of constants rates θm and inter-
vaccination time intervals tm will be applied, where θm and tm are defined by the data
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registered from the vaccination rate θi and the inter-vaccination time intervals of the
non-regular impulsive vaccination strategies of section 3.6.1 and 3.6.2 respectively.
Namely:

θm =

n∑
i=1

S(ti)θi

n∑
i=1

S(ti)
, tm =

1

n

n∑
i=1

tv(i) (3.50)

i.e., tm is the average value of the inter-vaccination time intervals in the simulation
corresponding to the strategies of Section 3.6.2 and θm is and average value of the
vaccination rate corresponding to strategies of section 3.6.1 pondered with the suscep-
tible subpopulation at the impulsive instants. The results show the differences over 70
years of simulation of the susceptible and the vaccinated subpopulations between the
regular and the VR-IQ strategy, as it can be seen at the 1st and 2nd graphic of figure
3.2. The change of rate between the vaccinated and susceptible subpopulations has a
direct impact in the evolution of the recovered and exposed subpopulations (3rd and
5th graphic) which subsequently, shapes the value of the infectious subpopulation as
is seen in the 4th graphic dropping to depreciable amounts at (I < 10−7) so that the
disease is considered effectively controlled. Finally, the value of the total population
(6th graphic) is influenced by the extra death derived from the disease. The velocity
of the disease decrement is also very important, as the disease cost DC can be too
high if the infectious subpopulation presents high values for a long time. It is seen
that the infectious subpopulation reaches an acceptable minimum level more rapidly
when the VR-IQ is applied instead of the regular impulsive vaccination. The death
rate related to the disease is proportional to the number of infectious subpopulation,
so the disease cost (DC) will give us also the total number of deaths caused by the
disease after the simulation time, namely, DC = A

∫ tf
0
I(t)dt = A′[Death by disease],

where A and A’ are some positive constants.

It can be seen at figure 3.3 the consequences of the different dynamics induced in fig-
ure 3.2 for the regular impulsive vaccination and the non-regular impulsive one using
the VR-IQ rule. Both strategies have similar vaccination cost but they differ clearly
in the disease cost. In this sense, the mortality by causes related to the infection
is higher when a regular impulsive vaccination is used instead of a non-regular one
with the VR-IQ rule. Table 3.1 present the death numbers after 70 years for each
vaccination strategy against a regular impulsive vaccination with the same VC.
It can be seen in table 3.1 that, with the exceptions of the IVI-IG2 and the VR-SG
rules, the non-regular impulsive vaccination strategies are more effective and are able
to control more rapidly an outbreak than the regular impulsive vaccination one. A
better visualization of the costs of these strategies can be seen in figure 3.4. In these
graphics, the vaccination and disease costs corresponding to different non-regular im-
pulsive vaccination strategies are compared to the costs of several regular impulsive
vaccination strategies. For such purpose, two set of simulations are developed. The
first set (discontinuous line) uses the same value for the inter-vaccination time inter-
vals (tv = 1) and different constants values for θ, one value for each simulation The
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Figure 3.3: Vaccination cost and number of deaths by infection versus time for a
non-regular impulsive vaccination with VR-IQ strategy and a regular impulsive vac-
cination.

second (continuous lines) uses a constant value for θ and different constant values for
tv within tv ∈ (0.4 − 1.5), one value of θ for each line (θ = {0.05, 0.25, 0.45, 0.65}).
The most adequate non-regular impulsive vaccination strategy can be identified in the
graphic as the costs decreases in both axis. The non-regular impulsive vaccination
rate strategies based on the VR-IQ rules clearly present the minimum VC and the
fastest decrement of the infectious subpopulation minimizing DC.

3.8 Vaccination strategies on a known disease: Per-
tussis

After proving the efficiency of the vaccination strategies in a generic disease, the
method is applied to a specific disease so it can be tested in a simulation of an actual
disease. The pertussis (whooping cough) has been chosen as it presents a temporary
immunity while it still has a significant death ratio [35], [36] so all the parameters are
suitable to the SVEIRS model. According to the available data of pertussis, these
model parameters are: τ = 8 days, ω = 12 years, γ−1 = 15 days, γ−1

1 = 4 days. A
small mortality rate associated to the disease is given by α−1 = 3.8 years, while the
parameters independent of the disease, such as the characteristic growth and death
rate of the population, the newborn vaccination rate and the saturation parameters
for the vaccine and susceptible subpopulation remain the same as in the previous
simulation (b−1

2 = 70 years, b−1
1 = b−1

3 = 140 years, Vc = 1, δ = 0.2, η = 0.18). The
disease transmission constant β is set so that the reproduction number is R0 = 1.5.
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Vacc. Strategy Deaths (Non-Regular) Deaths (Regular)
VR-IQ -CIε(4− 12) 10−3 − 8× 10−3 9× 10−3 − 13× 10−3

VR-SQ1-CSε(.04− .12) 5× 10−4 − 2× 10−4 9× 10−3 − 12× 10−3

VR-SQ2 − a ∈ (1.3− 4) 5 · 10−4 − 6× 10−4 7× 10−4 − 10× 10−4

VR-IG1−CIε(40− 120)− İ ′ ∼ 5× 10−4 5× 10−4 − 50× 10−4

VR-IG2−CIε(40− 120)− ∆I′

∆t
∼ 5× 10−4 5× 10−4 − 40 · 10−4

VR-SG1−CSε(10− 90)− Ṡ ′ 5× 10−4 − 28× 10−4 5× 10−4 − 14× 10−4

VR-SG2−CSε(10− 90)− ∆S′

∆t
5× 10−4 − 15× 10−4 5× 10−4 − 14× 10−4

IVI-IQ-CIε(50− 125) 3× 10−3 − 3.5× 10−3 4× 10−3 − 6× 10−3

IVI-SQ1 − CSε(2− 6) 2.85× 10−3 − 2.87× 10−3 2.9× 10−3 − 3.1× 10−3

IVI-SQ2 − a ∈ (0.67− 1.67) 2× 10−2 − 6× 10−2 2× 10−2 − 6× 10−2

IVI-IG1−CIε(25− 62)− İ ′ 0.9× 10−2 − 1.7× 10−2 2.2× 10−2 − 2.3× 10−2

IVI-IG2-CIε(25− 62)− ∆I′

∆t
3× 10−3 − 6 · 10−3 14 · 10−3 − 30× 10−3

IVI-SG1−CSε(0.67− 1.67)− Ṡ ′ 27 · 10−3 − 28 · 10−3 3.4 · 10−3 − 3.8× 10−3

IVI-SG2−CSε(0.67− 1.67)− ∆S′

∆t
2.9 · 10−3 − 3.1 · 10−3 2.82 · 10−3 − 2.85 · 10−3

Table 3.1: Deaths for different strategies.

Initial conditions are set near to the DFE (S(0) = S∗, V (0) = V ∗ and R(0) = R∗)
plus a small perturbation of infected subpopulation (I(0) = 0.0001N∗). First, given
the same initial conditions, it is compared the DC and VC (see section 3.7) of a non-
regular impulsive vaccination strategy with an adaptive vaccination rate θi to the DC
and VC derived from a regular vaccination strategy. The VR-IQ strategy from Section
3.6.1 is chosen, in which an impulse vaccination is administered annually (tv = 1) to
a fraction θi of the susceptible subpopulation, which can vary between 0 and 1. It is
seen in figure 3.5 that when the non-regular strategy is applied the DC, proportional
to the deaths resulting from pertussis, is reduced substantially (56%), while the VC,
derived from the number of vaccines administered, is only slightly increased (4%). An-
other comparison is made between a non-regular impulsive vaccination strategy with
adaptive inter-vaccination time intervals and a regular impulsive vaccination strategy.
The IVI-IG vaccination rule based on the infectious population growth from section
3.6.2 is chosen, in which an impulsive vaccination is administered at a constant rate to
the susceptible subpopulation (θ = 0.05) varying the interval between the impulses
from 5 to 18 months (tv ∈ [0.41, 1.5]), and compare the DC and VC to a regular
vaccination strategy with the same vaccination rate and an inter-vaccination time
interval which would be the average obtained from the non-regular IVI-IG strategy.
It can be seen at figure 3.6 the result in terms of vaccines administered over time
and extra deaths resulting from pertussis, which are proportional to the VC and DC
respectively. It can be seen that when the non-regular strategy is applied, the DC is
reduced approximately to a 19% while the VC only increases a 5%. The difference of
the vaccinated subpopulation between the impulsive vaccination with adaptive time
intervals and the regular one can be seen at figure 3.7. Observe that in the case of
the non-regular impulsive vaccination, a pattern of intensive vaccination emerges at
intervals concurring with the average immunity time.
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3.9 Conclusion

Theoretically valid impulsive vaccination strategies are presented and studied in order
to eradicate an infectious disease. A new impulsive reproduction number is developed
here,related to the inter-vaccination time interval and the impulsive vaccination rate.
The impulsive reproduction number gives us a first method for studying the stability
of periodic solutions for subpopulations around the DFE point when such an equilib-
rium point is unstable with a regular non-impulsive vaccination strategy. It is the basis
for controlling contagious diseases by means of prevention actions and for describing
the model and the usefulness of the application of regular or non-regular (adaptive)
impulsive vaccination strategies. The model may present an unstable disease-free
equilibrium point under regular non-impulsive vaccination, but if a certain impulsive
vaccination is applied, the system reaches a disease-free periodic state. Although
the values of the subpopulations are constantly adjusted by impulsive vaccination,
both the steady state oscillation reached under the regular impulsive vaccination and
the DFE state have virtually eradicated the infected subpopulation. A non-regular
adjustable vaccination strategy is proposed based on a set of rules that update the
vaccination rate at each vaccination instant, which are uniformly distributed in time.
Another set of rules maintain the vaccination rate constant and update the inter-
vaccination time intervals. Both alternatives improve the result about the eradication
of the disease compared with the results obtained with a regular impulsive vaccina-
tion. In the case of pertussis, the disease cost is reduced substantially at the expense
of a small increase in the vaccination cost.
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Figure 3.5: Vaccination cost and number of deaths by infection versus time for a
regular and a non-regular impulsive vaccination strategy (VR-IQ).
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Figure 3.6: Vaccination cost and number of deaths by infection versus time for a
regular and a non-regular impulsive vaccination strategy (IVI-IG).
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Figure 3.7: Evolution over time (years) of vaccinated subpopulation from initial con-
ditions near to DFE, given a regular and a non-regular impulsive vaccination strategy
(IVI-IG).
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4

Limit periodic solutions of a SEIRS mathematical
model for non-lethal infectious disease

In this chapter, the equilibrium states of a simple SEIRS model of an infectious disease
with variable parameters are analysed. The SEIRS model with a delay is presented
under a set of parameters varying periodically, characteristic to the seasonality of
the disease. The final equilibrium state, determined by these parameters, is obtained
with a general method, proposed in this chapter, based on a Fourier analysis of the
dynamics of the subpopulations. Then the stability of these equilibrium states for a
general and some particular cases will be contemplated, and simulations will be made
in order to confirm the predictions.

4.1 Introduction

The real impact a disease may produce on a population is usually difficult to esti-
mate.The complex interactions between the sick and the healthy individuals that get
infected play an important role in this uncertainty. Also, the conditions of this disease
transmission may not be always the same as the season changes, or the immunity of
the population may be boosted with vaccines, so the predictions become even more
problematic. However, on big populations, a mathematical model representing the
different possible stages of the disease can be a great aid in order to make a quanti-
tative analysis of its evolution over time [1]-[3]. In this context, the whole population
is classified in different subpopulations based on the status of each individual, with
respect to the disease. The dynamics of such subpopulations can be described with
multiple models, from simple equations with constant parameters [4], [5] to big com-
plex models with many different subpopulations [6]-[10] and variable parameters over
time [11], [2]. Sometimes these variable parameters represent a disease with a seasonal
transmission rate or a disease being treated with a vaccination strategy applied only
at specific moments of the year. Thus, the analysis of these mathematical models
can be helpful to determine the best control strategy against the infection of new
individuals [12], [13].
In this chapter, a SEIRS model is introduced based on a simplified version of the
SVEIR model of previous chapters and other works studied in [14] and [15], [6]-[10].
As the vaccined subpopulation is omitted, the effects of the saturation on the dis-
ease transmission are discarded.The purpose of this simplification is to obtain a less
complicated formula for the values for the endemic subpopulations, so an analysis
of the oscillatory regime can be made. The SEIRS model presents a disease with
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two different stages: The first stage affects to the subgroup of the population which
has been exposed and infected, but has not fully developed the disease yet. The
second stage arises from the previous latent state to a fully developed one, in which
all symptoms are present and the disease is infectious. The recovered state refers to
the moment when the disease is defeated by the organism and becomes immune for
a certain period of time, before it becomes susceptible to the disease again[16]-[18].
In this model it is also applied a vaccination strategy to the newborns which immu-
nizes them from the disease without having to suffer from it. The strategy can be
constant or adapt to the state of the disease. In this chapter, the simplest disposition
of the SEIRS parameters will be studied in first place, analyzing the model under a
constant vaccination and disease transmission rate. The equilibrium points and their
stability will be obtained and discussed. Then, the new equilibrium states and their
stability will be obtained after introducing a periodic vaccination rate Vc(t+T ) = Vc(t)
which immunizes a fraction of the susceptible subpopulation, and a periodic disease
transmission rate β(t+T ) = β(t). The predictions from the theory will be verified in
the following simulations.

4.1.1 Notation

Parameters

• b1, b3: Birth rates of the population, a constant one (b1) which produces suscep-
tible individuals and another one with an access to vaccination (b3) producing
a fraction (Vc) of immune individuals.

• b2: Natural death rate of any subpopulation.

• Vc: Fraction of the population which is vaccinated since birth (Vc ∈ [0, 1]). It
can be constant through time or present a periodicity Vc(t+ T ) = Vc(t).

• β: Transmission rate of the disease. It can be constant through time or present
a periodicity β(t+ T ) = β(t).

• κ: Transition rate from the latent disease at the exposed subpopulation to the
infectious subpopulation (E → I).

• γ: Transmission rate from the infectious subpopulation to the recovered sub-
population (I → R).

• ω: Average time of transition from immune to susceptible subpopulation.

4.2 The SEIRS model

Figure 4.1 represents the dynamics of an infectious disease, which can be described
by the equations:
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Figure 4.1: The SEIRS epidemic model

Ṡ(t) = b1 + b3(1− Vc(t))− β(t)S(t)I(t) + γI(t− ω)e−b2ω − b2S(t) (4.1)
Ė(t) = β(t)S(t)I(t)− (b2 + κ)E(t) (4.2)
İ(t) = κE(t)− (b2 + γ)I(t) (4.3)
Ṙ(t) = b3Vc(t) + γ(I(t)− I(t− ω)e−b2ω)− b2R(t) (4.4)

Observe that there is no additional death rate for the infectious subpopulation, as the
disease is non lethal. Therefore, the dynamics of the total population S(t) + E(t) +
I(t) +R(t) = N(t) is described as:

Ṅ(t) = b1 + b3 − b2N(t) (4.5)

The final total population tends to:

N∗ =
b1 + b3

b2

(4.6)

This model holds an important interaction between the susceptible, exposed and
infectious subpopulations, whose dynamics are independent from the recovered sub-
population. Observe also that, under conditions S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, if the
time tE is defined

tE = {t|E(t) = 0 ∧ S(t0) ≥ 0 ∧ I(t0) ≥ 0 ∀t0 ≤ t} (4.7)
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then, from equation (4.2) Ė(tE) = βS(tE)I(tE) ≥ 0, so the first of the three (S, E,
I) subpopulations to be negative cannot be the exposed one. In the same way, if the
time tI is defined

tI = {t|I(t) = 0 ∧ S(t0) ≥ 0 ∧ E(t0) ≥ 0 ∀t0 ≤ t} (4.8)

then, from equation (4.3) İ(t) = κE(tI) ≥ 0, therefore the infectious subpopulation
cannot be the first subpopulation to be negative either. Finally for the susceptible
subpopulation the time tS is defined as

tS = {t|S(t) = 0 ∧ E(t0) ≥ 0 ∧ I(t0) ≥ 0 ∀t0 ≤ t} (4.9)

such that from equation (4.1) Ṡ(tS) = b1 + b3 (1− Vc(tS)) + γe−b2ωI(tS − ω) ≥ 0.
Therefore, neither the exposed or infected nor the susceptible subpopulation will be
the first negative subpopulation of the three. Thus, one deduces that S(t) < 0 is
impossible for any t ≥ 0.
From equations (4.5) and (4.6), the evolution of the total population is defined as

N(t) = N(0)e−b2t +N∗(1− e−b2t) (4.10)

The maximum value of the total population will be defined asNmax = max{N(0), N∗}
and given Nmax it is determined a new value Rm = γe−b2ω

b2−γe−b2ω
Nmax, and defined the

time instant :

tR = {t|R(t) = −Rm} (4.11)

As the infectious subpopulation is defined non-negative, it is obtained that

min
t∈(0,tR)

(
I(t)− e−b2ωI(t− ω)

)
≥ min

t∈(0,tR)
(I(t))− e−b2ω max

t∈(0,tR)
(I(t)) ≥ −(Nmax−Rm)

(4.12)

so

Ṙ(tR) ≥ −b2R(tR) + γ min
t∈(0,tR)

(
I(t)− e−b2ωI(t− ω)

)
+ b3Vc(tR) ≥ b3Vc(tR)

≥ −b2R(tR)− γ max
t∈(0,tR)

(
e−b2ωI(t− ω)

)
+ b3V (tR) ≥ b3V (tR) (4.13)

Therefore, the recovered subpopulation will never reach a value below the value de-
fined as −Rm.

4.3 Equilibrium points under a constant Vc and β
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4.3.1 Disease free equilibrium

Given the equations in (4.1)-(4.4) and constant values for the vaccination Vc and the
infectious rate β, let {S∗, E∗, I∗, R∗} be the subpopulations at the equilibrium point,
i.e.: lim

t→∞
(S(t), E(t), I(t), R(t))T = (S∗, E∗, I∗, R∗)T .

Since the subpopulation values are constant at this point, the delay dependence dis-
appears as lim

t→∞
I(t− ω) = lim

t→∞
I(t) = I∗, and equations (4.1)-(4.4) become:

b1 + b3(1− Vc)− βS∗I∗ − b2S
∗ + γI∗e−b2ω = 0

βS∗I∗ − (b2 + κ)E∗ = 0

κE∗ − (b2 + γ)I∗ = 0

b3Vc + γ(1− e−b2ω)I∗ − b2R
∗ = 0

(4.14)

These equations present two possible solutions representing two equilibrium points.
One of them is free from the disease as subpopulations E and I are equal to zero, and
the other one presents an endemic state with a permanent infected subpopulation.
First it is consider the disease-free equilibrium (DFE) point, where E∗ = I∗ = 0 and
the final state from equation (4.14) is used to obtain the values of the subpopulations:

S∗ = Sdfe =
b1 + b3(1− Vc)

b2

(4.15)

E∗ = Edfe = 0 (4.16)
I∗ = Idfe = 0 (4.17)

R∗ = Rdfe =
b3Vc
b2

(4.18)

Local Stability of the DFE point

Proposition 4.1.
The DFE equilibrium point is locally asymptotically stable for any delay ωε[0, ω∗) for
some small enough ω∗, if R0 =

Sdfeβκ

(b2+κ)(b2+γ)
< 1.

Proof.
First, the dynamic equations (4.14) around the DFE point are linearized by means of
the associated Jacobi matrix J = [Jij] = [ ∂ẋi

∂xj
] for i, j ∈ {1, 2, 3, 4}, with x1 ≡ S, x2 ≡

E, x3 ≡ I and x4 ≡ R evaluated at the DFE point.
Such a Jacobi matrix is defined as

J|xdfe =


−b2 0 −βSdfe + γe−b2ω 0

0 −(b2 + κ) βSdfe 0
0 κ −(b2 + γ) 0
0 0 γ

(
1− e−b2ω

)
−b2

 (4.19)

The eigenvalues of the Jacobi matrix are obtained by calculating the roots of the
characteristic equation:

Det(λI − J) = 0 (4.20)
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Such eigenvalues are given by:

λi = {−b2,−b2,
−(2b2 + γ + κ)−

√
(γ − κ)2 + 4βκSdfe

2
,

−(2b2 + γ + κ) +
√

(γ − κ)2 + 4βκSdfe
2

} (4.21)

The real part of λi must be negative so that the linearized system is asymptotically
stable and the SEIRS model locally stable. The eigenvalues λ1, λ2 and λ3 are defined
always negative, as all parameters are positive. However, the fourth eigenvalue λ4 is
only defined negative if (2b2 + γ + κ) >

√
(γ − κ)2 + 4βκSdfe. This inequality can be

rearranged as:

R0 =
βκSdfe

(b2 + κ)(b2 + γ)
< 1 (4.22)

Since the eigenvalues of the Jacobian matrix are continuous functions of all its entries,
there is a sufficiently small delay perturbation ω∗ which guarantee the local stability
of the DFE point for any delay ω ∈ [0, ω∗).

4.3.2 Endemic equilibrium

From the equations in (4.14) it is obtained the subpopulations at endemic equilibrium
point, namely:

S∗ = Send =
(b2 + κ)(b2 + γ)

βκ
(4.23)

E∗ = Eend =
b2(b2 + γ)(Sdfe − Send)
κ(βSend − γe−b2ω)

(4.24)

I∗ = Iend =
b2(Sdfe − Send)
βSend − γe−b2ω

(4.25)

R∗ = Rend = Rdfe +
γ(1− e−b2ω)(Sdfe − Send)

βSend − γe−b2ω
(4.26)

Observe that the term βSend−γe−b2ω will be defined positive, since all parameters are
defined positive, so it is obtained

βSend − γe−b2ω =
(b2 + κ)(b2 + γ)

κ
− γe−b2ω (4.27)

= γ(1− e−b2ω) + b2

(
1 +

b2 + γ

κ

)
≥ 0

A sufficient condition for the positivity of the recovered subpopulation at the equi-
librium point, and necessary and sufficient for the positivity of the exposed and in-
fectious, is that Sdfe ≥ Send or, equivalently, R0 =

Sdfe
Send
≥ 1 (at R0 = 1 the subpop-

ulations becomes the ones of the DFE point). Observe that since the exposed and
infectious subpopulations have been proven to be positive or zero, there is only one
possible equilibrium point when R0 < 1, which is the DFE.
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Local stability of the Endemic Point

Proposition 4.2.
The endemic equilibrium point is locally asymptotically stable for ω ∈ [0, ω∗) for some
ω∗ small enough, if R0 =

Sdfeβκ

(b2+κ)(b2+γ)
> 1.

Proof.
As in the DFE point of the proposition 4.1, the dynamic equations from (4.14) is
linearized around the endemic point, by means of the associated Jacobi matrix J =
[Jij] = [ ∂ẋi

∂xj
] for i, j ∈ {1, 2, 3, 4} with x1 ≡ S, x2 ≡ E, x3 ≡ I and x4 ≡ R evaluated

at such an endemic point.
The Jacobi matrix is given by

J|xend =


− b2Φ

Λ
0 −Λ 0

b2(Φ−Λ)
Λ

−(b2 + κ) Λ + γe−b2ω 0
0 κ −(b2 + γ) 0
0 0 γ

(
1− e−b2ω

)
−b2

 (4.28)

being Λ = βSend − γe−b2ω and Φ = βSendR0 − γe−b2ω. The eigenvalues of this matrix
are obtained by calculating the roots of the characteristic equation:

Det(λI − J) = F (λ) = 0 (4.29)

In order to have a locally asymptotically stable state, the four roots of the equation
λi from the solutions F (λi) = 0 must have a negative real part.

F (λ) = (λ+ b2)

(
λ3 + (b2

Φ

Λ
+ 2b2 + γ + κ)λ2+

+b2(2b2 + κ+ γ)
Φ

Λ
λ+ b2κ(Φ− Λ)

)
= 0 (4.30)

A characteristic root is λ1 = −b2. The remaining equation is equivalent to g(λ) =
b2κΛ(p − 1) + αpb2λ + (α + pb2)λ2 + λ3, being α = (2b2 + γ + κ) and p = φ/Λ. For
R0 < 1, which implies that p < 1, coefficients have different signs, implying that at
least there is a non negative root of g(λ). The Routh-Hurwitz criterion [19, 20] says
that for p > 1, i.e. R0 > 1, all roots present a negative real part so the system is
locally asymptotically stable. Thus, since the eigenvalues of the Jacobian matrix are
continuous functions of all its entries, there is sufficiently small delay perturbation ω∗
which guarantee the local stability of the endemic point for any delay ω ∈ [0, ω∗).

4.4 Equilibrium states under a periodic vaccination
Vc(t) and infectious rate β(t)

In this section, a periodic vaccination Vc(t) and a periodic transmission rate β(t)
are applied to the SEIRS model. This periodic variables can be described using the
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Fourier series formalism as:

β(t) =
∞∑

n=−∞

βne
i(nρt) (4.31)

Vc(t) =
∞∑

n=−∞

Vne
i(nρt) (4.32)

being the frequency related to the seasonal periodicity T, ρ = 2π
T
. The dynamic of

the subpopulations at the periodic equilibrium state would be also described in the
same way, namely:

S∗(t) =
∞∑

n=−∞
Sne

i(nρt)

E∗(t) =
∞∑

n=−∞
Ene

i(nρt)

I∗(t) =
∞∑

n=−∞
Ine

i(nρt)

R∗(t) =
∞∑

n=−∞
Rne

i(nρt)

(4.33)

The dynamic equations from (4.1)-(4.4) are applied to the periodic equilibrium state
from 4.14

(b1 + b3)δn − b3Vn −Qn − b′nSn + γe−b
′
nωIn = 0

Qn − (b′n + κ)En = 0

κEn − (b′n + γ)In = 0

b3Vn + γ(1− e−b′nω)In − b′nRn = 0

(4.34)

where b′n = b2 + inρ and

δn =

{
1 if n = 0

0 if n 6= 0
(4.35)

Being

Qn =
∞∑

j=−∞

βjPn−j (4.36)

and Pn =
∞∑

j=−∞

SjIn−j (4.37)

Then, the solution for each subpopulation and each coefficient is:

Sn =
δn(b1 + b3)− b3Vn

b′n
− ΥnQn

b′nαn
En = Qn

κ+b′n

In = Qn
αn

Rn = b3
b′n
Vn + γ(1−e−b′nω)

αnb′n
Qn

(4.38)
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being αn = (b′n+κ)(b′n+γ)
κ

and Υn = αn − γe−b
′
nω. The DFE solution, where En = In =

0 ∀n, will lead to Qn = 0 and the definition of the DFE coefficients as:
Sdfen = δn(b1+b3)−b3Vn

b′n

Edfe
n = 0

Idfen = 0

Rdfe
n = b3

b′n
Vn

(4.39)

Observe that both in the DFE and in the endemic equilibrium solution, the equations
for the coefficient shows that Sn+En+In+Rn = δnN

∗. Observe also that the general
solution for a situation where there is a permanent infected subpopulation E 6= 0 and
I 6= 0 is not trivial, as each Qn contains infinite terms; however, Qn are negligible
after certain number n > n0, as they converge to zero (See Appendix E). This fact
can be used in order to calculate the coefficients for the subpopulations using diverse
numerical simulation works.

4.5 Local stability of the equilibrium states

Proposition 4.3.
The DFE equilibrium state is locally asymptotically stable for any delay ωε[0, ω∗) and
some small enough ω∗, if R0(t) =

Sdfe(t)β(t)κ

(b2+κ)(b2+γ)
< 1 ∀t.

Proof.

First, dynamic equations from (4.1)-(4.4) are linearized around the DFE state by
means of the associated Jacobi matrix J = [Jij] = [ ∂ẋi

∂xj
] for i, j ∈ {1, 2, 3, 4}, with

x1 ≡ S, x2 ≡ E, x3 ≡ I and x4 ≡ R evaluated at the DFE. The columns of such
Jacobi matrix are given by

J|xdfe =


−b2 0 −β(t)Sdfe(t) + γe−b2ω 0

0 −(b2 + κ) β(t)Sdfe(t) 0
0 κ −(b2 + γ) 0
0 0 γ

(
1− e−b2ω

)
−b2

 (4.40)

The eigenvalues of this matrix are obtained by calculating the roots of the character-
istic equation :

Det(λI − J) = 0 (4.41)

Such eigenvalues are given by:

λi = {−b2,−b2,
−(2b2 + γ + κ)−

√
(γ − κ)2 + 4β(t)κSdfe(t)

2
,

−(2b2 + γ + κ) +
√

(γ − κ)2 + 4β(t)κSdfe(t)

2
} (4.42)
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The real part of λi must be negative so that the linearized system is asymptotically
stable and the SEIRS model locally stable. The eigenvalues λ1, λ2 and λ3 are defined
always negative, as all parameters are positive. However, the fourth eigenvalue λ4 is
only defined negative if (2b2 + γ + κ) >

√
(γ − κ)2 + 4β(t)κSdfe(t). This inequality

can be rearranged as :

R0(t) =
β(t)κSdfe(t)

(b2 + κ)(b2 + γ)
< 1 (4.43)

Since the eigenvalues of the Jacobian matrix are continuous functions of all its entries,
there is sufficiently small delay perturbation ω∗ which guarantee the local stability of
the DFE state for any delay ω ∈ [0, ω∗).
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Figure 4.2: The graphics shows the final periodic state of the subpopulations un-
der a R0(t) > 1 (endemic). The dotted lines represent the expected subpopulation
given the constant average parameters ({SEIR}end), and the average values of the
subpopulations ({SEIR}0) respectively.

4.6 Simulation

A simulation of the model is presented in this section. The SEIRS model is imple-
mented in a Simulink environment integrated in Matlab, with initial parameters for
the mortality rate b2 = 1/70 years−1 and the natality rates b1 = b3 = 1/140 years−1,
so the final population from equation (4.5) would be equal to 1 at the equilibrium
(N∗ = 1).
The transition rate from the exposed subpopulation to the infectious one is κ =
0.5 years−1, the transition rate from the infectious subpopulation to the recovered
one is set to γ = 10 years−1, and the average time of immunity is set to ω = 10 years.
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A series of simulations are presented with different parameters for the transmission
rate of the disease β and the vaccination strategy Vc, in order to show the evolution
of the subpopulations over time given a reproduction number R0 higher and below 1.
The initial conditions for all simulations will be closed to the DFE point:
S(0) = Sdfe, E(0) = 0, R(0) = Rdfe and I(t) = 0.001N∗ ∀t ∈ (−ω, 0) from equations
(4.5) and (4.15)-(4.18).
After the simulation has ran a time long enough, the evolution of the dynamics of the
subpopulations reaches the final stable equilibrium state and results can be analyzed.
The simplest model is characterized in figure 4.2, where it can be seen the final os-
cillatory state of the subpopulations given a variable sinusoidal vaccination Vc(t) =
0.5(1 + cos(ρt)) and a variable disease transmission rate β(t) = 400(1 + 0.5cos(ρt)),
being ρ = 2π rad/year, so that during the warm seasons the transmission rate drops
to zero, and the maximum values exhibits at the beginning and the ending of the
year (the colder season). It should be noted that the equilibrium state is the endemic
equilibrium state, as predicted by section 4.5, since R0(t) > 1∀t. After analyzing the

Table Simulated Predicted
S0

E0

I0

R0

.0263

.1269

.0063

.8404

.0263

.1269

.0063

.8404

|S1|
|E1|
|I1|
|R1|

2.7× 10−3

2.4× 10−3

0.1× 10−3

0.3× 10−3

2.7× 10−3

2.4× 10−3

0.1× 10−3

0.3× 10−3

|S2|
|E2|
|I2|
|R2|

1.144× 10−4

1.12× 10−4

0.03× 10−4

0.004× 10−4

1.144× 10−4

1.12× 10−4

0.03× 10−4

0.004× 10−4

|S3|
|E3|
|I3|
|R3|

2.06× 10−6

2.04× 10−6

0.05× 10−6

0.03× 10−6

2.06× 10−6

2.04× 10−6

0.05× 10−6

0.02× 10−6

Table 4.1: Coefficients of the Fourier series corresponding to the figure 4.2

coefficients from the simulations at the periodic states, a comparison is made with
the coefficients predicted numerically from the parameters, using a Newton-Raphson
method considering a set of 2n+1 coefficients, with n large enough so that the co-
efficients {Sn0 , En0 , In0 , Rn0} are negligible for |n0| > n and a seed value defined by
the endemic equilibrium point derived from the average transmission rate (β0) and
the average vaccination rate (V0). The table 4.1 present the values of first coefficients
of the Fourier series for the simulations. Observe the significant decrease of the
coefficients and the accuracy of the predictions, presenting errors with negligible val-
ues. These errors can be attributed not to the predictions, but to the errors derived
from running the simulation, as the time-step must be approachable in computation
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Figure 4.3: At the left side, the periodic vaccination strategy. At the right side,
the final periodic states of the subpopulations reached under a vaccination Vc(t) =
1−Θ (sin(2πt)) and β = 400(1 + 0.5cos(ρt)) (R0(t) > 1).

terms.
In figure 4.3 it is shown the periodic state derived from a more complex vaccina-
tion strategy, which can be seen at the left graphic to be a step function whose
values changes during a year between 1 and 0 and disease transmission rate β(t) =
400(1 + 0.5cos(ρt)), with ρ = 2π.

At figure 4.4 the final periodic state for an impulsive vaccination Vc(t) = −
∞∑
n=0

θS(t)δ(t−

nT ), is presented for β = 800. As in the previous figure, the values of the coefficients
for the final periodic states obtained from both the numerical predictions and the
simulation are the same with a relative error ε ≤ 10−5.
The importance of the moment to apply the vaccination in terms of introducing
the appropriate phase in the vaccination function is shown at figure 4.5, where
it is obtained the maximum and the average infectious subpopulation of an en-
demic equilibrium state defined, as in figure 4.2, by a disease transmission rate
β(t) = 400(1 + 0.5cos(ρt)) and vaccination rate Vc(t) = 0.5(1 + cos(ρt + Φ)). In
this case, the different phases between the maximum vaccination rate and the max-
imum disease transmission rate Φ, is revealed to be important, as it can change the
effectivity of the vaccination in an appreciable way.

4.7 Conclusions

A model describing four subpopulations with a periodic vaccination strategy and
transmission rate either constant or periodic have been developed and studied. A
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Figure 4.4: Final periodic states of the subpopulations reached under an impulsive

vaccination for β = 800 and Vc(t) = −
∞∑
n=0

θS(t)δ(t− nT ), being θ = 1/2.

generic periodicity has been introduced in order to describe the major number of
possible situations, related to the presence of a control vaccination strategy against a
seasonality in the transmission of the disease. A reproduction number, describing the
stability of the equilibrium states of the dynamics of the subpopulations is obtained
when the parameters of the model remain constant, and the stability of the disease-
free equilibrium is further studied from the generic model. The numerical predictions
for a periodic endemic state is confirmed by the simulations. The relevance of the
work presented in this chapter is reflected on the versatility of the method, as it sets
the basis for studying any type of vaccination strategy, as could be a quadratic wave
representing different campaigns during the year, or even a peak in Vc, representing a
massive punctual vaccination as it could happen in a potential emergency vaccination
of the whole population. An analogous study could be done to the transmission rate,
which can present also a complex seasonality, like migration paths or weather seasons,
and predict the best prevention action and vaccination strategy in order to optimize
them and minimize the impact of the disease.
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Figure 4.5: Maximum and average values of the infectious subpopulation equilibrium
state for Vc(t) = 0.5(1+cos(2πt+Φ)) and β = 400(1+0.5cos(2πt)) (R0(t) > 1) under
different phases Φ.
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5

On the Positivity and Stability of a new SInRS
Epidemic Model

This chapter proposes an extended SEIR model, being referred to as SInRS-model.
The physical interpretation of the SInRS model is that the dynamics of the disease
exhibits n different stages in which the infectivity and the mortality rates vary as the
hosts of the disease go through the process of recovery, with a characteristic average
time at each stage. The model includes n successive stages of infectious subpopu-
lations, each one acting as the exposed subpopulation for the next infectious stage,
in a cascade global disposal of infectious stages.Internal delays are introduced, which
characterize the time intervals of the coupling of the susceptible dynamics with the
infectious populations of the various cascade infectious stages. Then, an increasing
delay is set as the stages index increases from 1 to n in the coupled dynamic action
on each of those infectious stages. In order to study the stability, the concept of next
generation matrix is introduced to obtain easily the reproduction number from large
matrices used to describe this model.

5.1 Introduction

There is a very relevant interest in the literature concerning different aspects of dy-
namics of populations and related biological modeling issues including their positivity,
stability, controllability and observability and appropriate design of control rules for
such models. The interest is twofold, namely:

i) On one hand, they have an undoubted mathematical interest because of the rich
nonlinear dynamics they can exhibit, which makes its analysis nontrivial in most
cases,

ii) on the other hand they have relevant interests in the real world concerning aspects
such that health, resource exploitation or rationalization of the labor manage-
ment force towards economical issues.

The related models are based on differential, difference or hybrid ordinary or func-
tional equations, eventually including internal delayed dynamics (i.e. delays in the
state) or external delays (i.e. delays in the forcing action, if any), [11], [14], [18],
[20], [25], [26], [31], [34]. The delays can be, in general, modeled as point-delays or
as distributed delays and as constant or as time-varying delays. The background
literature on the various involved subjects is exhaustive. In that context, important
interest has been devoted to models of interaction of species versus their habitat, such
as, for instance, the various Beverton-Holt models and some related generalizations,
with their intrinsic problems of positivity, equilibrium analysis, stability, oscillatory
solutions and their control. See, for instance, [1]-[2] and references therein. Impor-
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tant attention is paid to the study of their inverse models and their control which
are equivalent to the initial direct ones while being much more tractable mathemati-
cally, [1]-[2]. Control rules through the online design of the habitat carrying capacity
have been dealt with, and applied in, aqua-culture exploitation, [1]. Logistic equa-
tions, predator-prey models and related oscillatory regimes have been also studied
in the background literature (see, for instance, [3]-[5]). Epidemic models of various
kinds ranging from very elementary to sophisticated have received and still receive
important attention. The literature is exhaustive (see, for instance, [6]-[35]). There
is also a wide variety of extended models available built with combinations and ex-
tensions of the above ones. The main properties dealt with are the calculation and
related stability analysis of the disease-free and endemic equilibria, the infection per-
manence, which leads to the impossibility of reaching the disease-free equilibrium,
and the positivity of the trajectories whose combined analysis with the boundedness
of the total population leads to the internal stability [10], [13], [14], [16], [18], [19] of
the whole model implying the boundedness of all the subpopulations [20]-[25], [28],
[29], [35]. The control action on an epidemic model is performed through vaccination
rules which can be of different types, for instance, constant or based either on linear
or nonlinear feedback of some measurable or known subpopulations.Vaccination laws
can also be of an impulsive nature (in practice, acting with large efforts along very
short periods of time) or of a combined regular/impulsive nature, [14], [22]-[29], [31].
In particular, the technique of adaptive sampling to design the relevant vaccination
time instants is combined with the design of vaccination rules in [28] so as to increase
the vaccination performance towards the disease eradication. It has to be pointed
out that epidemic models are essentially uncontrollable so that it is not possible to
drive simultaneously ,via a vaccination rule, all the subpopulations to prefixed arbi-
trary values in finite prefixed time intervals since the total population is a constrain
for all time for the sum of all the subpopulations, [14], [22], [31]. However, most of
the models are output controllable, or at least output stabilizable, with the outputs
being defined "ad hoc" by either the infected and/or infectious subpopulations or
the susceptible plus the immune subpopulations, those defined to be the output of
the dynamic system, if necessary. The relevant idea in the epidemic models is that
there is a transfer in-between subpopulations along the infection process (from there,
their uncontrollability). The agent transmitting the infection is a quadratic dynam-
ics of the susceptible and infected population with some either constant or functional
factor (the incidence rate) which depends on a parameter or functional factor (the
coefficient transmission rate) which depends on each infectious disease and the pop-
ulation nature, [8], [18]. There is a very basic parameter to analyze, called the basic
reproduction number, which can have two interpretations, namely:

i) If it ranges from zero to one, the disease- free equilibrium point is asymptotically
stable and the infection asymptotically vanishes without requiring any external
action on the system. In this case, the Jacobian matrix of the dynamics of the
epidemic model defining the linearized state- trajectory has all its eigenvalues in
the stable region. If it exceeds one the disease-free equilibrium is unstable so that
the state trajectories can converge asymptotically to the endemic equilibrium or
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exhibit an oscillatory behavior.

ii) The infection cannot progress if the reproduction number is less than one since
the minimum available initial infected population to propagate the disease is
below its critical value for spreading.

However, the explicit expression of the reproduction number is neither direct nor easy
to obtain in sophisticated epidemic models. Therefore more advanced techniques,
based on the so called next generation matrix, have been proposed to define such
reproduction number [32]-[35]. More recent studies on epidemic models are described
in [38, 39]. The importance of demographics are takes into account in [38], while the
stability of the equilibrium points of a delayed disease is described in [39]. This chapter
addresses the concept of the next generation matrix for a new proposed extended SEIR
model referred to as SInRS model with delays where there are n-successive stages of
infectious subpopulations, each one acting at the exposed subpopulation of the next
infectious stage in a cascade global disposal. Since the susceptible subpopulation is
common to all infectious stages, its impact on each of those stages is modeled with an
increasing delay as the infectious stage index increases from 1 to n. A second model
is used without the above delay. A continuous-time model and a related discrete-time
are presented and discussed. The physical interpretation of the SInRS models is that
the incubating period of any disease is not identical for all the susceptible individuals
so that they can become infected at different times. So, each of the infectious stages
is an infectious class which includes a certain number of individuals which become
infected at times centered about a reference average time instant which is considered
common for the whole group. The stability analysis is performed by defining a basic
reproduction number from an ad hoc next generation matrix for this model. The
basic properties which are proved are the following:

i) All the trajectories remain bounded since the differential equations system is
non-negative, in the sense that all the subpopulations are non-negative for all
time, and the total population is uniformly bounded for all time.

ii) If the defined basic reproduction number is less than one then the disease-free
equilibrium point is globally asymptotically stable as it is proved through the
definition and use of a Lyapunov function. In this case, the endemic equilib-
rium point is locally unstable and, furthermore, it is unfeasible since it is not
compatible with the system positivity.

iii) If such a basic reproduction number is equal to one then the endemic equilibrium
does not exist as such since it is identical to the disease-free equilibrium and then
globally stable since the system is positive and the total population is uniformly
bounded for all time so that none of the subpopulation can be unbounded.

iv) If the basic reproduction number exceeds one then the disease-free equilibrium
point is locally unstable.
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5.2 The Model

This section contains the description and main properties of the introduced models.
Previous models of multi-staged infectious diseases have been described in [37] in-
cluding: a) the so-called epidemic models with multi-stage infectious period where
the susceptible population influences the first infectious stage, that one the second
infectious stage and so on; b)the epidemic models with several types of infective sub-
populations which are influenced in a parallel disposal and all of them have transitions
to a unique removed population; c) the epidemic among a number of homogeneous
groups ( each susceptible group generates its own SIR model). It can be considered,
in a general context, that the structure proposed in this paper lies in the first of the
above classes of the multi-stage models. Figure 5.1 describes in general terms the
dynamic of the subpopulations that will be introduced in the following section.

Figure 5.1: The dynamic of a generic staged SInRS epidemic model

5.2.1 SInRS Model with no delays

The proposed model is described as a succession of infectious stages of the disease,
each one with a characteristic infectivity rate βi. The susceptible individuals go
through each infected subpopulation until they reach the recovered subpopulation,
immune to the disease for a certain time until they become susceptible again. The
susceptible population is born at a rate ν while the death rate of each infectious
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subpopulation is µi = b+ ξi, being b the natural death rate of the population and ξi
the mortality rate associated to the disease at each infectious stage. The transition
rate from the i-th infectious subpopulation to the next one as well as the transition
rate from the last infectious subpopulation to the recovered one are denoted by γi,
while the transition from the recovered to the susceptible is γn+1.All the parameters
are assumed to be positive so as to possess full physical meaning. The equations for
the dynamics of the subpopulations are coupled as follows:

Ṡ(t) = ν −

(
b+

n∑
j=1

βjIj (t)

)
S(t) +R (t) γn+1 (5.1)

İ1 (t) = S (t)
n∑
j=1

βjIj (t)− (µ1 + γ1) I1 (t) (5.2)

İm(t) = γm−1Im−1 (t)− (µm + γm) Im (t) ∀m = 2, 3, ..., n (5.3)
Ṙ(t) = γnIn (t)− (b+ γn+1)R (t) (5.4)

where the S and R are the susceptible and recovered subpopulations and the Ii are
the various infectious subpopulations corresponding to the different infection stages.
For notation simplicity, the vector x is defined as

x(t) = (I1(t), I2(t), ..., In(t), R(t), S(t))T (5.5)

Now the positivity, existence of equilibrium points and stability are studied for this
model.
Positivity and boundedness

Proposition 5.1. All the subpopulations remain non-negative for all time for any
given non-negative initial conditions, xi ≥ 0 ∀i ∈ [1, ..., n+ 2] and all t ≥ 0.
Proof.
Let ts > 0 be so that S(ts) = 0 and R(ts), Ii(ts) ≥ 0∀i ∈ [1, ..., n]. Then, from
equation (5.2)

Ṡ(ts) = ν +R(ts)γn+1 ≥ 0 (5.6)

Now, let t1 > 0 be so that I1(t1) = 0 and S(t1), Ii(t1) ≥ 0 ∀i ∈ [2, ...n]. Then, from
equation (5.2)

İ(t1) = S(t1)
n∑
j=2

βjIj (t1) ≥ 0 (5.7)

For the next (n− 1) infectious subpopulations the same operation is made: let tj > 0
be so that Ij(tj) = 0 and S(tj), Ii(tj) ≥ 0 ∀i 6= j. Then, from equation (5.2)

İj(tj) = γj−1Ij−1(tj) ≥ 0 (5.8)

Finally, let tr > 0 so that R(tr) = 0 and S(tr), Ii(tr) ≥ 0, ∀i ∈ [1, ..., n]. Then, from
equation (5.2)

Ṙ(tr) = γnIn(tr) ≥ 0 (5.9)
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Since it has been proven that none of the subpopulations will have a negative deriva-
tive at any time instant when they vanish and the rest of the subpopulations are non-
negative, then all the subpopulations must have non-negative values for all time.

Not only does the epidemic system possess non-negative solutions under non-negative
initial conditions but also the total population and all the subpopulations are bounded
for all time with a uniform finite upper-bound as it is discussed in the subsequent
two results:
Proposition 5.2. The total population Σn+2

i=1 xi(t) = N(t) is finitely upper-bounded
for any given non-negative initial conditions.
Proof.
If all the equations (5.1)-(5.4) are summed up, it is obtained:

Ṅ(t) = ν − bN(t)−
n∑
j=1

ξjIj(t) (5.10)

Since Proposition 5.1 guarantees the non-negativity of subpopulations and all the
parameters are assumed to be positive. Then, as ξj ≥ 0 and Ij(t) ≥ 0 for all time
t ≥ 0,

∑n
j=1 ξjIj(t) ≥ 0 for all t ≥ 0, and

Ṅ(t) = ν − bN(t)−
n∑
j=1

ξjIj(t) ≤ ν − bN(t) (5.11)

The solution to the differential inequality from equation (5.11) is given by:

N(t) ≤ e−btN(0) +
ν

b
(1− e−bt) ≤ max

(
N(0),

ν

b

)
(5.12)

for all t ≥ 0. Thus, the total population is finitely upper-bounded and the proposition
is proved.
Corollary 5.3. All the subpopulations are finitely upper-bounded for all time for
any given non-negative initial conditions, obeying the constraints xi(t) ≤ N(0)e−bt +
N∗dfe(1 − e−bt) ∀i ∈ [1, 2, ..., n + 2], where N∗dfe = ν

b
is the total population at the

disease-free equilibrium.
Equilibrium points

The equilibrium points are obtained by zeroing the left-hand side of equations (5.2),
resulting in:

0 = ν −

(
b+

n∑
j=1

βjIj (t)

)
S(t) +R (t) γn+1

0 = S (t)
n∑
j=1

βjIj (t)− (µ1 + γ1) I1 (t) (5.13)

0 = γm−1Im−1 (t)− (µm + γm) Im (t) ∀m = 2, 3, ..., n

0 = γnIn (t)− (b+ γn+1)R (t)
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This system possesses in general two solutions. The first one is the disease-free equi-
librium point (DFE) in which the infectious and recovered subpopulations vanish so
that the susceptible becomes the total population N∗dfe

S∗dfe =
ν

b
(5.14)

I∗i dfe = 0 ∀i ∈ [1, 2, ...n]

R∗dfe = 0

and the endemic equilibrium point (END), described as:

S∗end =

(
n∑
i=1

βiΛi

)−1

(5.15)

I∗1, end =

(1 + b/γn+1)

(
−b+ b

n∑
j=1

(βjΛj)

)
(b/γn+1 +

n∑
j=1

µjΛj)(µ1 + γ1)
n∑
j=1

βjΛj

=
(b/γn+1 + 1)b

(
S∗dfe − S∗end

)
(b/γn+1 +

n∑
j=1

µjΛj)(µ1 + γ1)

I∗m, end =
γm−1

γm + µm
I∗m−1, end∀m ∈ [2, 3, ...n]

R∗end =
γn

b+ γn+1

I∗n, end

being Λi =

i−1∏
j=1

γj

i∏
j=1

(µj+γj)
. Note that if S∗end > S∗dfe, then I∗m < 0 ∀m ∈ [1, 2, 3...n], so

the endemic equilibrium is not feasible so that the only reachable equilibrium point
is the disease-free equilibrium point. In the next section, it is seen that this situation
corresponds to the reproduction number R0 to be less than one. Once the expressions
of both equilibrium points are obtained, it is possible to discuss their equilibrium in
the next section.
Stability analysis: Next generation matrix

The local stability of the DFE point is proved in this section after introducing the
reproduction number R0, which is the average number of new cases that produce an
infected individual during the average duration of the disease. In order to find this
number easily, a next-generation matrix with small domain is constructed as follows:
The Jacobi matrix defined around the disease-free equilibrium is composed of four
different submatrices: F , Σ, A and C

J =
∂ẋ

∂x

∣∣∣∣
dfe

=

(
F − Σ 0
A C

)

=



(
β1Sdfe − (µ1 + γ1)

)
β2Sdfe ... βn−1Sdfe βnSdfe 0 0

γ1 − (µ2 + γ2) ... 0 0 0 0
... ... ... ... ... ... ...
0 0 ... −

(
µn−1 + γn−1

)
0 0 0

0 0 ... γn−1 − (µn + γn) 0 0
−β1Sdfe −β2Sdfe ... −βn−1Sdfe −

(
βnSdfe − γn

)
−
(
b + γn+1

)
0

0 0 ... 0 0 1γn+1 −b


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where the important submatrix would be the transmission matrix F, representing the
appearance of new infections, defined as :

F =


β1Sdfe β2Sdfe ... βn−1Sdfe βnSdfe

0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 0
0 0 ... 0 0

 (5.16)

while Σ would be defined as :

Σ =


(µ1 + γ1) 0 ... 0 0
−γ1 (µ2 + γ2) ... 0 0
... ... ... ... ...
0 0 ... (µn−1 + γn−1) 0
0 0 ... −γn−1 (µn + γn)


and represents the remaining transitions of the infected subpopulation unrelated to
the infection such as the deaths, or the transition from recovered to susceptible.
Then, the inverse of that matrix Σ−1 would represent the average time in which a
subpopulation stays in an infected state. The next generation matrix will be then
defined as K = −FΣ−1, and the reproduction number R0 correspond to the spectral
radius of K. Thus, the spectral radius is given by:

ρ(K) = R0 =
n∑
i=1

βiS
∗
dfe

i−1∏
j=1

γj

i∏
j=1

(γj + µj)
= S∗dfe

n∑
i=1

βiΛi =
S∗dfe
S∗end

(5.17)

Thus, the stability of the disease-free equilibrium point is directly related to this spec-
tral radius. In this way, it will be locally asymptotically stable when R0 < 1, while
R0 > 1 will imply instability of such DFE point [35]. Studies of epidemic models
with a parallel disposal of several submodels of susceptible-infectious-recovered sub-
populations have proven that for R0 > 1, the endemic point is locally asymptotically
stable [40]. Remember that it has been proven in previous section, equation (5.15),
that if R0 < 1 the only reachable point is the disease-free equilibrium, which is also
locally asymptotically stable. If R0 = 1, both equilibrium points coincide (see equa-
tion (5.15)).

5.2.2 Discrete SInRS Model with no delays

This section considers the discrete-time counterpart of the continuous-time model
from equations (5.1)-(5.4). In the discrete framework notation the subpopulations
are written as xm(t) = xmk, for any time t ∈ [kτ, (k + 1)τ). The discrete model, will
be based on the continuous one from equations (5.1)-(5.4), with a step size τ > 0.
Thus, it is defined the change ẋk → xk+1−xk

τ
, with xk = (I1

k , I
2
k , ..., I

n
k , Rk, Sk, ) as in
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the continuous subpopulations from equation (5.5). Therefore, it is obtained:

Sk+1 = τν −

(
1− τb+

n∑
j=1

τβjI
j
k

)
Sk +Rkτγn+1

Rk+1 = γnI
n
k + (1− τb− τγn+1)Rk (5.18)

I1
k+1 = Sk

n∑
j=1

τβjI
j
k + (1− τµ1 − τγ1) I1

k

Imk+1 = τγm−1I
m−1
k + (1− τµm − τγm) Imk

Proposition 5.4. The discrete system described in (5.18) is non-negative for any
non-negative initial conditions if the step size τ is small enough to satisfy

τ ≤ min[τ1, τ2, τ3, ...τn+2] (5.19)

with τ−1
m+2 = µm + γm ∀m ∈ [1, ..., n], τ−1

2 = b+ γn+1, and τ−1
1 = b+ nβM(N1 + ν/b),

being βM = max
1≤j≤n

[βj] and N1 the initial total population.

Proof.
Given a set of non-negative subpopulations at the kth-sample, from the second equa-
tion of (5.18) it can be deduced that:

Rk+1 = Rk(1− τ(b+ γn+1)) + γnI
n
k ≥ Rk(1− τ(b+ γn+1)) (5.20)

Then, Rk+1 ≥ 0 if τ ≤ τ2.
The same method can be applied for guaranteeing the non-negativity of Imk+1 ∀m ∈
[1, ..., n]. From the third and fourth equations at (5.18), it is deduced that:

Imk+1 ≥ (1− τ(µm + γm))Imk ∀m ∈ [1, ..., n] (5.21)

Then, Imk+1 ≥ 0 ∀m ∈ [1, ..., n] if τ ≤ min
1≤m≤n

[τm+2].

In order to guarantee the non-negativity of the susceptible subpopulation first it is
set a maximum value for Nk. From (5.18)

Sk+1 +Rk+1

n∑
j=1

Ijk+1 = Nk+1 = ντ +Nk(1− bτ)−
n∑
j=1

Ijk(µj − b) (5.22)

Nk+1 ≤ ντ +Nk(1− bτ) (5.23)

Nk+1 ≤ (1− bτ)k−1N1 + ντ
1− (1− bτ)k

bτ
(5.24)

then ∀k ≥ 1, it can be said that

Nk+1 ≤ max[(1− bτ)k−1N1] +max[ντ
1− (1− bτ)k

bτ
]

= N1 +
ν

b
(5.25)

So from the first equation at (5.18) it is known that:

Sk+1 ≥

(
1− τ

(
b+

n∑
j=1

βjI
j
k

))
Sk (5.26)
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Then, given that Ijk ≤ Nk ∀k, j > 0; it is defined τ1 = 1
b+βM (N1+ν/b)

so that the
susceptible subpopulation remains non-negative if

τ ≤ τ1 =
1

b+ βM(N1 + ν/b)
≤ 1

b+
n∑
j=1

βjI
j
k

Thus, for a step size τ ≤ min[τ1, τ2, τ3, ..., τm], the system remains positive.

The equilibrium points are obtained by making xk+1 = xk = x∗ in equation (5.18):

S∗ = τν −

(
1− τb+

n∑
j=1

τβjI
j∗

)
S∗ +R∗τγn+1

R∗ = γnI
n∗ + (1− τb− τγn+1)R∗ (5.27)

I∗1 = S∗
n∑
j=1

τβjI
j∗ + (1− τµ1 − τγ1) I1∗

I∗m = τγm−1I
m−1∗ + (1− τµm − τγm) Im∗ ∀m = 2, 3, ..., n

The solutions of the above system of equations are the same as in the continuous-time
case and given by equations (5.14) and (5.15) for the disease-free and endemic equi-
librium points, respectively. A next generation matrix approach for discrete models
is made so that the Jacobian matrix evaluated at the disease-free equilibrium

J =
∂xk+1

∂xk
(5.28)

xk+1 − xdfe = J (xk − xdfe) (5.29)

The Jacobian takes the form

J = I−



τ
(
µ1 + γ1 − β1Sdfe

)
−β2Sdfeτ ... −βn−1Sdfeτ −βnSdfeτ 0 0

−τγ1 τ (µ2 + γ2) ... 0 0 0 0
... ... ... ... ... ... ...
0 0 ... τ

(
µn−1 + γn−1

)
0 0 0

0 0 ... −τγn−1 τ (µn + γn) 0 0
β1Sdfeτ β2Sdfeτ ... βn−1Sdfeτ

(
βnSdfe − γn

)
τ

(
b + γn+1

)
τ 0

0 0 ... 0 0 τγn+1 τb


(5.30)

The Jacobian can be separated in four submatrices as follows:

J =

(
F − Σ 0
A C

)
(5.31)

where the two relevant n × n submatrices are the fertility submatrix, related to the
new infections and represented as F , and the transition submatrix Σ, with the same
dimensions, related to the transition of the individuals between the different subpop-
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ulations:

Σ =


τ (µ1 + γ1) 0 ... 0 0
−τγ1 τ (µ2 + γ2) ... 0 0
... ... ... ... ...
0 0 ... τ (µn−1 + γn−1) 0
0 0 ... −τγn−1 τ (µn + γn)

− I (5.32)

F =


β1Sdfeτ β2Sdfeτ ... βn−1Sdfeτ βnSdfeτ

0 0 ... 0 0
... ... ... ... ...
0 0 ... 0 0
0 0 ... 0 0

 (5.33)

A simple calculation with the Jacobian matrix results into an equivalent decompo-
sition of the whole linearization about the equilibrium system into two complete
subsystems, one describing the infection progress while the other one expresses the
disease-free subpopulation dynamics as follows:

yk+1 = (F − Σ) yk (5.34)
lk+1 = Ayk + Clk

The term Σi,j represents the fraction of the individuals from the jth infected sub-
population that will survive and move to the ith. Because of these demographic
interpretations, from Perron-Froebenius theory on the maximum modulus [36], it is
set the parameters so that the column sum of Σ and the maximum moduli of its
eigenvalues are less than one, i. e. ρ[Σ] < 1 , so as to exclude the case of an immortal
population. Then, it can be established for the vector of initial infectious individuals
that lim

k→∞
(−Σ)k y0 = 0. Then, the next generation matrix Q can be defined as the

sum of the infections ever produced by the infected individuals at tk for all the time
they remain infectious, which would be Fyk at tk, −FΣyk at tk+1, FΣ2yk at tk+2 ad
infinitum:

Qyk = F
(
yk − Σyk + Σ2yk − Σ3yk + Σ4yk...

)
Q represents the distribution of all infections accumulated during the lifespan of the
infectious population:

Q = F
(
I − Σ + Σ2 − Σ3 + Σ4...

)
= F (I + Σ)−1

Then the basic reproduction number is defined as the spectral radius of the Q matrix
R0 = ρ [Q] = ρ

[
F (I + Σ)−1]. The spectral radius of the F−Σ is defined as ρ[F−Σ] =

r. It is proven in [36] that either r = R0 = 1 or 1 < r < R0 or 1 > r > R0 > 0, so
the stability of the disease-free equilibrium is determined by the value of R0. In this
model the reproduction number is obtained as

R0 =
n∑
i=1

τβiSdfe
i−1∏
j=1

τγj

i∏
j=1

τ (γj + µj)
=
Sdfe
Send

(5.35)

99



Thus, the disease-free equilibrium state will be locally stable when the reproduction
number is less than 1, and unstable otherwise. From known previous calculations of
the stability of a similar models in [35]-[36], this decomposition technique for stability
analysis can be compared to the previous chapter for the SEIRS model, which is an
specific version of a continuous SInRS model in which n = 2 β1 = 0, µ1 = µ2 = b and
γ1 = κ. From the definition in equation (5.35), it is obtained R0 =

β2Sdfeκ

(b+κ)(b+γ2)
, which

agrees with the study of the eigenvalues of the Jacobian matrix in a continuous-time
model [22].

5.2.3 SInRS Model with delays

Construction of the model

A new model is proposed based on the previous one in which the transition rates
between subpopulations are substituted by delays, implying that each individual must
stay at each stage of the infection during a certain period of time (latent period)
before recovery. Such time periods are defined as τi = γ−1

i for the infectious stages
of the disease and τR = γ−1

n+1 for the recovered state. The model also preserves the
infectivity mechanism of the previous one, in which all the infectious subpopulations
affect the infection of the first stage at different rates. For notational abbreviation

in the subsequent exposition it is now defined the function f (ω) = S (ω)
n∑
j=1

βjIj (ω).

Thus, the value of the infected subpopulation I1 at a certain time t is defined by the
ratio of the people that became infected at time ω < t that has not passed to the
I2 infectious subpopulation yet. In order to calculate the total amount, consider the
probability:

1−
∫ t−ω

0

ρ1 (ξ) dξ =

∫ ∞
t−ω

ρ1 (ξ) dξ (5.36)

being ρ1(ξ) the probability distribution of the transition I1 → I2 plus the probability
to stay alive after time t − ω, which would be equal to eµ1(ω−t). An integration
ω ∈ (−∞, t) is made in order to obtain the value of the subpopulation at the instant
t resulting in:

I1 (t) =

∫ t

−∞

(∫ ∞
t−ω

ρ1 (ξ) dξ

)
f (ω) eµ1(ω−t)dω (5.37)

Given the above integral function of the first stage of the infectious subpopulations,
its derivative through time is easily obtained as

İ1(t) = f(t)− µ1I1 (t)−
∫ ∞

0

ρ1 (ω) f(t− ω)e−µ1ωdω (5.38)

Since in this case the probability of transition is equal to zero before the latent time
interval τ1 occurs, and is equal to 1 after it, the probability distribution of transition
is defined as ρ1(ω) = δ(ω − τ1), so that equation (5.38) transforms to:

İ1(t) = f (t)− µ1I1 (t)− e−µ1τ1f(t− τ1) (5.39)
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As the rate of death in the subpopulation I1(t) corresponds to −µ1I1(t), it is inferred
that the term e−µ1τ1f(t− τ1) corresponds to the rate of transition from I1(t) to I2(t).
Then, the value of the people that arrive at I2 at ω < t would be e−µ1τ1f(ω− τ1), and
I2 at certain time would be written as
I2 (t) =

∫ t
−∞

(∫∞
t−ω ρ1 (ξ) dξ

)
eµ2(ω−t)e−µ1τ1f(ω − τ1)dω.

For any subpopulation m ∈ [1, 2, .., n], it can be written that

Im (t) = e−µmt
∫ t

−∞

(∫ ∞
t−ω

ρm (ξ) dξ

)
Cm−1f (ω − Tm−1) eµmωdω (5.40)

For the recovered subpopulation the same technique is used, so that the dynamic of
R over time can be written as:

R(t) = e−µRt
∫ t

−∞

(∫ ∞
t−ω

ρR (ξ) dξ

)
Cnf (ω − Tn) eµRωdω

with Ci =
i∏

j=1

e−µiτi , Cn+1 = Cne
−µRτR and Ti =

i∑
j=1

τj, Tn+1 = Tn+τR. The dynamic

equations of the subpopulations are then defined as:

Ṡ(t) = ν − bS (t)− f (t) + Cn+1f (t− Tn+1)

Ṙ(t) = Cnf(t− Tn)− Cn+1f (t− Tn+1)− µRR (t) (5.41)
İm(t) = Cm−1f (t− Tm−1)− Cmf (t− Tm)− µmIm (t) ∀m ∈ [1, 2, .., n]

where, as in the previous model, ν is the constant birth rate, and the fully immune
recovered subpopulation eventually becomes susceptible again after the period of time
τR.
Positivity and boundedness

Proposition 5.5. The model from equation (5.41) is non-negative for any initial non
negative conditions. Thus,

xi(ω) ≥ 0;∀m = 1, 2..., n+ 2 ∀ω ∈ (−∞, t0) (5.42)

which implies xi(t) ≥ 0;∀m = 1, 2..., n+ 2 ∀t ∈ [t0,∞).
Proof.

Since βi ≥ 0, it is then deduced from equation (5.42) that f(ω) = S (ω)
n∑
j=1

βjIj (ω) ≥

0 ∀ω ∈ (−∞, t0). Assume that

∃λ > 0|S(t0 + λ) = 0, Im(t) ≥ 0 ∀m = 1, 2, .., n+ 1; ∀t ∈ [t0, t0 + λ)

then, from (5.41) at the time t0 + λ

Ṡ(t0 + λ) = ν + Cn+1f(t0 + λ− Tn+1) > 0

therefore, the subpopulation S will not be the first subpopulation to be negative.
From (5.40) assume that ∃t1 ≥ t0 such that Im(t1) = 0 for the first time, and the
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value ζ ≥ 0 as small as desired such that I(t1 − ζ) > 0; I (t1 + ζ) < 0. Then it can
be said that

Im (t1 + ζ) =

∫ t1−ζ

−∞

(∫ ∞
t1−ζ−ω

ρm (ξ) dξ

)
Cm−1f (ω − Tm−1) eµm(ω−(t1−ζ))dω

+

∫ t1+ζ

t1−ζ

(∫ ∞
t1+ζ−ω

ρm (ξ) dξ

)
Cm−1f (ω − Tm−1) eµm(ω−(t1+ζ))dω

(5.43)

Since f(t1− ζ) ≥ 0, and knowing that f(t) is continuous and derivable for all t, from
the mean value theorem it can be deduced that

lim
ζ→0

Im (t1 + ζ) ≥
∫ t1+ζ

t1−ζ

(∫ ∞
t1+ζ−ω

ρm (ξ) dξ

)
Cm−1f (ω − Tm−1) eµm(ω−(t1+ζ))dω

≥ Cm−1f (t1 − Tm−1) eµm(ω−t1)2ζ ≥ 0 (5.44)

which is in direct contradiction with the original assumption of I(t1−ζ) > 0; I (t1 + ζ) <
0. Then as S(ω) is not negative before t1 ≥ 0, the term f(ω) will remain non-negative.
∀ω ∈ (−∞, t1 + ζ+). Therefore, neither the infectious nor the susceptible subpopula-
tion will be the first one to have a negative value. The same method can be applied
to demonstrate that the recovered subpopulation will not be the first to have a neg-
ative value either. Then, xi(t) ≥ 0∀i = [1, ..., n + 2] holds for all time for any given
non-negative initial conditions.

Since the lower bound of the subpopulations is established as 0, an upper bound for
all the subpopulations is set in the following proposition.

Proposition 5.6. S(t) ≤ Ndfe, Im(t) ≤ Ndfe, R(t) ≤ Ndfe Ndfe =
n+2∑
i=1

x∗i dfe = ν/b, for

any given initial conditions
n+2∑
i=1

xi(0) = N(0) ≤ ν/b.

Proof.

The dynamic of N(t) is obtained from (5.41): Ṅ(t) = ν−bN(t)−
n∑
i=1

Ii(t) (µi − b). As

µi ≥ b ∀i = [1, 2, ..n], and given the previous boundary of non negativity from Propo-

sition 5.5, it can be seen that for any t0|N(t0) = ν/b, Ṅ(t0) = −
n∑
i=1

Ii(t) (µi − b) ≤ 0.

Thus, N(t) ≤ ν/b ∀t > t0. Then, for each subpopulation

x(t) = (S(t), I1(t), I2(t), ...In(t), R(t))T

it is established that

xi(t) = N(t)−
n+2∑
j 6=i

xj(t) ≤ ν/b−
n+2∑
j 6=i

xj(t) ≤ ν/b; ∀t > t0
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Equilibrium points

The existence of equilibrium points in the model is now studied. The dynamics of
the subpopulation described in (5.41) is zero at the equilibrium points, so that

0 = b (ν/b− S∗)− f ∗ (1− Cn+1)

0 = f ∗ (Cm−1 − Cm)− µmI∗m (5.45)
0 = f ∗ (Cn − Cn+1)− µRR∗

being f ∗ = S∗
(

n∑
j=1

βI∗j

)
. Two equilibrium points are obtained and result to be

S∗dfe = ν/b

I∗i dfe = 0 (5.46)
R∗dfe = 0

and

S∗end =

(
n∑
j=1

(βjηj)

)−1

, (5.47)

I∗i end = Γηi ∀i ∈ [1, ..., n]

R∗end = Γηn+1

with ηj =
Cj−1−Cj

µj
and Γ =

b

ν/b−( n∑
j=1

(βj lj)

)−1


1−Cn+1
. Note that 1 ≥ C1 ≥ C2 ≥ ... ≥

Ci−1 ≥ Ci ≥ ... ≥ Cn+1 ≥ 0 and µj ≥ 0 ∀j, so ηj ≥ 0 ∀j. Given any non-
negative initial conditions, the endemic equilibrium point would not be reachable if

S∗end =

(
n∑
j=1

(βjlj)

)−1

> ν/b, as Γ and I∗i end would be <0. Take into account that if

S∗ = ν/b, xend = xdfe, the endemic and the disease-free equilibrium are the same, so
there is only one equilibrium point in the system.
Stability of the disease-free equilibrium (DFE) point

The local stability of the DFE point is proved in this section after introducing the
reproduction number R0, the average number of new cases that produce an infected
individual during the average duration of the disease. In order to find this number
easily, a next-generation matrix with small domain [35] is constructed as follows.
First, the vector of the subpopulations is reorganized as in (5.5), so that the Jacobian
matrix around the DFE point can be properly written as:

J =
∂ẋ

∂x

∣∣∣∣
dfe

=

(
F − Σ 0
A C

)
(5.48)

where F is the transmission matrix, representing the appearance of new infections
Fij = Ci−1βj, while Σ represent the remaining transitions of the subpopulation which
are unrelated directly to the infection, such as the deaths, or the transition from re-
covered subpopulation to susceptible subpopulation.
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Then, the next generation matrix is given by K = −FΣ−1. The submatrices com-
posing the Jacobian are:

F − Σ =

S∗dfe


(C0 − C1)β1 (C0 − C1)β2 ... (C0 − C1)βn−1 (C0 − C1)βn
(C1 − C2)β1 (C1 − C2)β2 ... (C1 − C2)βn−1 (C1 − C2)βn

... ... ... ... ...
(Cn−1 − Cn)β1 (Cn−1 − Cn)β2 ... (Cn−1 − Cn)βn−1 (Cn−1 − Cn)βn
(Cn − Cn+1)β1 (Cn − Cn+1)β2 ... (Cn − Cn+1)βn−1 (Cn − Cn+1)βn



−


µ1 0 ... 0 0
0 µ2 ... 0 0
... ... ... ... ...
0 0 ... µn−1 0
0 0 ... 0 µn

 (5.49)

A = S∗dfe

(
(Cn − Cn+1)β1 (Cn − Cn+1)β2 ... (Cn − Cn+1)βn−1 (Cn − Cn+1)βn
− (C0 − Cn+1)β1 − (C0 − Cn+1)β2 ... − (C0 − Cn+1)βn−1 − (C0 − Cn+1)βn

)
(5.50)

C =

(
−b 0
0 −b

)
(5.51)

so the transmission and transition matrices are defined as :

Fij = (Ci−1βj)S
∗
dfe (5.52)

Σij =
(
µiδij + CiβjS

∗
dfe

)
(5.53)

∀i, j = 1, ..., n. The element Kij is the number of new cases generated in the stage of
the disease i by one infected case who has just arrived from the stage of the disease j.
Then, the dominant eigenvalue of the next generation matrix K would correspond to
the reproduction number R0. However, it is possible in this case to construct a small
domain next generation matrix [35] KS with a lower dimension than K, from which
it will be much easier to obtain this dominant eigenvalue. Since

i) R is a matrix whose rows are linearly independent vectors spanning the rows of
F and

ii) C is a matrix whose columns are linearly independent vectors spanning the
columns of F then F=CR,

and the small domain next generation matrix will be defined as KS = −RΣ−1C. In
this case C=(C0, C1, C2, ..., Cn−1)T and R=(β1, β2, ...βn), so

KS = − (β1, β2, ...βn) Σ−1


C0

C1

...
Cn−1

 =

n∑
i=1

βiCi−1

µi

b/ν +
n∑
i=1

βiCi
µi

= R0 (5.54)

since that dim (KS) = 1, the dominant eigenvalue of KS would be R0. Note that

KS = R0 implies that if R0 ≶ 1, then
(

n∑
i=1

βi(Ci−1−Ci)
µi

)−1

= S∗ ≷ S∗dfe, which is also

the condition of reachability of the endemic equilibrium, as stated in the previous
section.
Proposition 5.7. The DFE is globally asymptotically stable if R0 < 1
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Proof.
A candidate for a Lyapunov function Φ is defined as Φ = φ1 + φ2 + φ3, being the
auxiliary functions φ1, φ2, φ3 defined as:

φ1 =
n∑
i=1

(
βi
µi
Ii(t)

)
(5.55)

φ2 = −
n∑
i=1

βi
µi
Ci

∫ t−Ti−1

t−Ti
f(ω)dω (5.56)

φ3 =
n∑
i=1

βi (Ci−1 − Ci)
µi

∫ t

t−Ti−1

f(ω)dω (5.57)

now, φ3 is positive definite ∀t, since f(ω) ≥ 0 ∀ω, βi ≥ 0, bi > 0 and Ci−1 > Ci =
Ci−1e

−biτi ∀i = 1, 2, ..., n. To verify the positivity of φ1 + φ2, consider the definition
of the infectious subpopulation from (5.40) and the probability transition function
ρi(ξ) = δ(ξ − τi).
It is then established that

Ii(t) = Ci−1

∫ t

−∞
θ(ω + τi − t)f (ω − Ti−1) eµi(ω−t)dω

This integral function can be reconfigured as

Ii(t) = Ci−1

∫ t−Ti−1

−∞
θ(ω′ + Ti − t)f (ω′) eµi(ω

′+Ti−1−t)dω′ (5.58)

= Ci−1

∫ t−Ti−1

t−Ti
f (ω) eµi(ω−(t−Ti−1))dω (5.59)

= Ci

∫ t−Ti−1

t−Ti
f (ω) eµi(ω−(t−Ti))dω (5.60)

Given this definition of Ii(t), the parameter σi(t) is defined as

σi(t) = Ii(t)−Ci
∫ t−Ti−1

t−Ti
f (ω) dω = Ci

∫ t−Ti−1

t−Ti
f (ω) (eµi(ω−(t−Ti)) − 1)dω (5.61)

Since f(ω) ≥ 0 and (eµi(ω−(t−Ti)) − 1) ≥ 0∀ω ∈ [t − Ti, t − Ti−1], it is deduced that

σi(t) ≥ 0∀t, ∀i ∈ [1, ..., n]. Then φ1(t) + φ2(t) =
n∑
i=1

βi
µi
σi(t) ≥ 0 ∀t and φ3(t) ≥ 0 ∀t.

Thus the non-negativity of the Φ function is proven. The function Φ is equal to zero for
Ii(ω) = 0 ∀i = 1, ..., n,∀ω ∈ [t−Tn, t].Then the derivative over time Φ̇ = φ̇1 + φ̇2 + φ̇3
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is calculated as:

Φ̇ =
n∑
i=1

βi
µi

(Ci−1f(t− Ti−1)− Cif(t− Ti)− biIi(t))

+
n∑
i=1

βi
µi
Ci (f(t− Ti)− f(t− Ti−1))

+
n∑
i=1

βi(Ci−1 − Ci)
µi

(f(t)− Cif(t− Ti−1))

Φ̇ =
n∑
i=1

βi(Ci−1−Ci)
µi

f(t)− βiIi(t) = f(t)
(
S(t)−S∗
S∗S(t)

)
. For R0 < 1 → S∗ > ν/b ≥ S(t), so

Φ̇ = 0 for Ii = 0∀i = 1, ..., n and Φ̇ < 0 otherwise from equation (5.41). Thus the
proposition is proved.

Stability of the endemic equilibrium point (END) model with n=1

For simple models, i.e., models with only one or two infectious subpopulations, a
study of the stability of their endemic points is also made. The model is linearized
around the endemic point and the eingenvalues of the Jacobi matrix are obtained.The
function f(λ) is defined as:

f(λ) = Det[λI − J ] = 0 (5.62)

with J the 3x3 Jacobi matrix from (5.41), defined at the endemic equilibrium point
from (5.47):

J =
∂ẋ

∂x

∣∣∣∣
end

(5.63)

The solutions of f(λ) = (−b+ λ)(bµ1(S∗dfe/S
∗
end − 1) + bS∗dfe/S

∗
endλ+ λ) = 0 are

λ1 = −b (5.64)
λ2 = A−

√
A2 +B (5.65)

λ3 = A+
√
A2 +B (5.66)

respectively, with A =
−bS∗dfe
2S∗end

and B = −bµ1(
Sdfe
S∗end
− 1). Since b > 0 and

S∗dfe
S∗end

> 0,
λ1 and λ2 are defined negative. The third solution will be defined negative λ3 < 0 if
|A| >

∣∣√A2 +B
∣∣ → |A2| > |A2 +B| → B < 0, which is satisfied for

S∗dfe
S∗end

> 1 or, as
it is shown in previous section, when R0 > 1.
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Stability of the endemic equilibrium point (END) model with n=2

For n=2 (i.e. there are two infectious subpopulations) a function g(λ) will be defined
as in (5.62), this time with J a 4x4 jacobi matrix from the susceptible, the recovered,
and the two stages of the infectious subpopulations.

g(λ) = (b+ λ)(g0 + g1λ+ g2λ
2 + g3λ

3)

with

g0 = bµ1µ2(
S∗dfe
S∗end

− 1) (5.67)

g1 = b(µ1 + µ2)
S∗dfe
S∗end

− bX (5.68)

g2 = (µ1 + µ2 + b
S∗dfe
S∗end

)−X (5.69)

g3 = 1 (5.70)

beingX = µ1µ2(β1(1−C1)+β2(C1−C2))
(β1(1−C1)µ2+β2(C1−C2))µ1

. The first eigenvalue is trivially obtained as λ = −b.
The other eigenvalues will not be directly obtained, as it is only needed to demonstrate
that their real part is negative in order to prove the local asymptotic stability of
the model. The Routh-Hurwitz criterion [41][42] says that in order to have all the
solutions of g(λi) = 0 on the left half plane, the coefficients of g must satisfy the
following conditions:

gi > 0∀i = 0, 1, 2, 3

g1g2 > g3g0

Both conditions can be satisfied once that the limits of the X parameter are estab-
lished. Given µM = max[µ1, µ2] and µm = min[µ1, µ2] then

µ1µ2(β1(1− C1) + β2(C1 − C2))

µM (β1(1− C1) + β2(C1 − C2))
≤ X ≤ µ1µ2(β1(1− C1) + β2(C1 − C2))

µm(β1(1− C1) + β2(C1 − C2))
(5.71)

µm ≤ X ≤ µM (5.72)

so that, for R0 > 1→ S∗dfe
S∗end

> 1, it is deduced that the coefficients are positive:

0 < bµ1µ2(
S∗dfe
S∗end

− 1) = g0 (5.73)

0 < b

(
µm

S∗dfe
S∗end

+ (
S∗dfe
S∗end

− 1)µM

)
≤ g1 (5.74)

0 < (µm + b
S∗dfe
S∗end

) ≤ g2 (5.75)

0 < 1 = g3 (5.76)

And the lower limit of the second condition is defined as:

g1g2 − g1g0 ≥ min[g1]min[g2]− g3g0 =

b
S∗dfe
S∗end

(µm(b
S∗dfe
S∗end

+ µm) + b(
S∗dfe
S∗end

− 1)µM ]) > 0 (5.77)
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so all the real parts of the eigenvalues are negative and the equilibrium endemic point
is locally asymptotically stable as long as R0 > 1.
5.2.4 Discrete SInR Model with delay

The dynamic equation equation (5.41) is approximated to ẋk → xk+1−xk
τ

, being xk =
(I1
k , I

2
k , ..., I

m
k , Rk, Sk)

T the vector of the subpopulations to obtain a discrete-time
counterpart of the continuous-time model. The notation for any subpopulation at
the time interval t ∈ [kτ, (k + 1)τ) is established as xm(t) = xmk, . Thus, it is obtained
the analogous discrete equations to the model from (5.18):

Sk+1 = τν −

(
1− τb+

n∑
j=1

τβjI
j
k

)
Sk +Dn+1Sk−σn+1

n∑
j=1

τβjI
j
k−σn+1

Rk+1 = DnSk−σn

n∑
j=1

τβjI
j
k−σn −Dn+1Sk−σn+1

n∑
j=1

τβjI
j
k−σn+1

+ (1− τb)Rk (5.78)

Imk+1 = Dm−1Sk−σm−1

n∑
j=1

τβjI
j
k−σm−1

−DmSk−σm

n∑
j=1

τβjI
j
k−σm + (1− τµm) Imk ∀m ∈ [2, ..n]

I1
k+1 = Sk

n∑
j=1

τβjI
j
k + (1− τµ1) I1

k −D1Sk−σ1

n∑
j=1

τβjI
j
k−σ1

with σi =
i∑

j=1

Ni and Di =
i−1∏
j=1

e−µjNjτ , being Ni the rounded half down value for

τi/τ ∀i ∈ [1, ..., n]. Now, at the equilibrium point, the delays are not relevant, while
the dynamic equation at the equilibrium can be rewritten as:

S∗ = τν − (1− τb)S∗ + (Dn+1 − 1)S∗
n∑
j=1

τβjI
j∗

R∗ = (Dn −Dn+1)S∗
n∑
j=1

τβjI
j∗ + (1− τb)R∗ (5.79)

Im∗ = (Dm−1 −Dm)S∗
n∑
j=1

τβjI
j∗ + (1− τµm) Im∗ ∀m ∈ [2, ..n]

I1∗ = (1−D1)S∗
n∑
j=1

τβjI
j∗ + (1− τµ1) I1

The reproduction number will be obtained again with a next generation matrix
method as in the previous section, so the value would be

KS = R0 =

n∑
i=1

βiDi−1

µiτ

b/ντ +
n∑
i=1

βiDi
µiτ

(5.80)

which is similar to the reproduction number from the continuous model, with the only
difference of the Di constants instead of the previous Ci. However, given their similar
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origins and values, the properties exhibited in both set of constants will be the same, in
the sense that 0 ≤ Cn ≤ Cn−1 ≤ ... ≤ C1 ≤ 1 such as 0 ≤ Dn ≤ Dn−1 ≤ ... ≤ D1 ≤ 1.
Given the same SInRS model with the same characteristics, the values of the repro-
duction number will be very similar too.

5.3 Simulation

A set of Matlab simulations are made based on the models described in the previous
section, in order to contrast the predictions on their respective endemic and disease-
free equilibrium states. A large enough number of infectious subpopulations is chosen,
n = 3, so the stability of the models will be tested regarding their reproduction
numbers. A common initial conditions are set to all the susceptible subpopulations
in the disease-free equilibrium plus a 0.1 of that value of infected subpopulation at the
first stage of the disease. For exposition and calculations convenience, the mortality
rate b and the birth rate ν will be both taken equal to the inverse of the average
lifespan of a human b = ν = 1

70
year−1. The mortality rate of the three stages of

the infection will be µ1 = 2b, µ2 = 3b, µ3 = 3b/2, and the average time in which an
individual spends in each stage will be 19, 29 and 61 days respectively.
When simulating the discrete models, an appropriate time step size is chosen in order
to guarantee the non-negativity of model with no delays. As for the discrete model
with delays, given that non-negativity of the subpopulations in the continuous model
has been proved in Proposition 5.5, an algorithm is established during the simulation
so that the discrete dynamics approximates to the continuous one in any critical
positivity points. A loop in which the following point is evaluated is introduced,
acting over the time step size. While any of the subpopulations of the next point
present a negativity xk+1,i < 0 for any i ∈ [1, ..., n+ 2], then the step size is reduced
τ jk = λτ k−1

j , with j being the jth loop iteration, τ 0
k = τk and λ ∈ (0, 1). Another

loop is set after this resetting the time step size τ jk = λ−1τ j−1
k while the next point is

non-negative or the time step size is equally or below the original value.

5.3.1 SI3RS model with no delays

Given the parameters previously commented, the transition ratios between the dif-
ferent subpopulations are obtained as the inverse of their average times during each
stage. Thus, γ1 = 365/19 year−1, γ2 = 365/29 year−1, γ3 = 365/61 year−1, and the
final transition from recovered to susceptible again will be set as γ4 = 365/670 year−1.
Given a value of the transition rates β̄ = (7β0, 4β0, 7β0) the reproduction number is
set to 0.5 and 1.5 respectively. For the continuous model, two graphics representing
the evolution of each subpopulation for both situations are presented in figure 5.2
and figure 5.3. while for the discrete model, a step time τ is set to 0.1 years and the
simulations are run with the same parameters. The results of these simulations are
presented in figure 5.4 and figure 5.5.
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Figure 5.2: Dynamic of the subpopulations for R0 = 1.5. The dotted lines represent
the predicted endemic values.

5.3.2 SI3RS model with delays

The common parameters are set as in the previous cases, but in this case the delayed
times will be equal to their respective average times τ1 = 19/365 years, τ2 = 29/365
years and τ3 = 61/365 years. The delay of the transition between the recovered to
the susceptible subpopulation will be changed from 610/365 to 80/365 years in order
to let the simulation achieve the equilibrium at a reasonable time. The values of the
transmission rates will maintain their proportionality, but the range of the possible
reproduction number is not so wide as in the previous case. Their values are changed
to now be R0 = 1.01 and R0 = 0.92 respectively. The evolution of the subpopulations
are presented in figure 5.6 and figure 5.7 In the discrete model, the same time step
as before is fixed to τ = 0.1 years. The evolution of the subpopulations for each
reproduction number can be seen in figure 5.8 and figure 5.9 respectively
Observe that the subpopulations rapidly tend to the disease-free equilibrium point
in figure 5.9. While it is seen that the discrete time and continuous time models
reach the same final states when the conditions are equal, it is also been noticed the
irregularity of the dynamics in the discrete models over the continuous. This fact
reveals that the discretization procedure along with the time step must be selected
carefully prior to simulate the discrete-time model.
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Figure 5.3: Dynamics of the subpopulations for R0 = 0.5. The dotted line represents
the predicted disease-free value of the susceptible subpopulation.

5.4 Conclusions

A model of a disease spreading with multiple infectious stages has been studied in
depth. The next generation techniques have been proven to be quite useful when
operating with models with complex interactions as in the variations of the model
presented in this work. The reproduction numbers obtained in each case have also
proven to predict correctly the final stable state of the subpopulations when they are
properly simulated. The simulations have also shown that the different discretizations
of a continuous model can cause significant discrepancies in the resulting dynamics.
An appropriate integration step should be considered taking this into account as well
as other factors like the computation time available, or, if the model is being used in
a controlled system, the available time for data acquisition.
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Figure 5.4: Dynamics of the subpopulations for R0 = 1.5. The dotted lines represents
the predicted endemic values.
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Figure 5.5: Dynamics of the subpopulations for R0 = 0.5.
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Figure 5.6: Dynamics of the subpopulations for the SI3RS model for R0 = 1.01. The
dotted lines represent the predicted endemic values.
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Figure 5.7: Dynamics of the subpopulations for the SI3RS model for R0 = 0.92.
Observe that the subpopulations rapidly tend to the disease-free equilibrium.
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Figure 5.8: Dynamics of the different subpopulations of the discrete delayed SI3RS
model for R0 = 1.01. The dotted lines represent the predicted endemic values.
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Figure 5.9: Dynamics of the subpopulations of the SI3RS discrete delayed model for
R0 = 0.92.
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6

Feedback vaccination control for SIRS and SEIRS
epidemic models: Partial stability, observer design

and linealization-based techniques

This chapter deals with control topics in the context applied to epidemic models:
Linearization-based techniques, observer design, partial stability and some discretiza-
tion techniques. The topics here presented take part of the Phd work under financial
support by the Spanish Ministry of Economy and Competitiveness, the Basque Gov-
ernment and the Faculty of Science and Technology of UPV/EHU, and are unified
in this chapter because of the difficulty of including them in the former chapters or
as individual ones. The propagation of a disease is described by a series of SEIRS
and SIRS epidemic models. Some feedback vaccination law control techniques will
be used in order to design a strategy to eradicate the infection from the population
optimally. Those laws are based on different concepts, such as partial stability (en-
suring the boundedness of the infectious and infected in order to get the disease under
control), observer-based or discrete models. The partial stability of the models will be
studied in the vaccination-free case. Moreover, the controlled systems are guaranteed
to be positive and stable under such a vaccination control strategy. Simulation ex-
amples illustrates the theoretical results relative to the stability and positivity of the
controlled system while guaranteeing the eradication of the epidemics, along with some
comparison with previous vaccination laws.

6.1 Introduction

In order to understand the persistence of the infection in a host population, the
development of numerical tools has been crucial. Furthermore, the analysis of mathe-
matical models describing epidemics spreading allows us to obtain valuable knowledge
of underlying aspects of the disease and make decisions regarding vaccination policies,
establishment of quarantines, and so on. In this way, a large number of mathematical
models have been proposed [1], as well as constant, regular and/or impulsive vacci-
nation strategies have appeared in several researches [2]-[7]. Many specific features
regarding these models have been studied in many works, such as the presence of
bifurcations [8], oscillating behavior [2] and existence of waves [11]. However, the
stability of the model has been by far the most important property to be studied
[8],[9]-[16]. Typically, global stability is the main stability property to be analyzed
[12]- [14], [16]. Global stability is referred to the boundedness of all the variables

119



composing the model as time goes by. Nevertheless, this approach seems to be quite
conservative for the study of epidemics since a globally stable model would never
capture a potential natural increase of a population, which would lead to diverging
subpopulations. It is also worth noting that, from an epidemic point of view, it is
only needed the boundedness (and eventually the convergence to zero) of the infected
and infectious subpopulations regardless the behavior of the other ones, which are not
directly suffering from the disease. Thus, if global stability is required, the analysis
and conditions found may not be applicable to situations where the total population
grows. This is a great inconvenience since the model may be globally unstable be-
cause the susceptible or the immune diverge while no specific information is obtained
for the infected and infectious, which are the most important subpopulations from an
epidemic point of view.
The concept of partial stability [17] is introduced and applied to controlled epidemic
model with different types of nonlinear incidence rates. Partial stability focus on the
analysis of the infected subpopulations and their boundedness, regardless the behavior
of the other variables, including a potential natural increase of the total population.
Also it is introduced other regular vaccination strategy, based on a feedback control
law for exact input-output linearization, combined with an observer, as in [5], [6]. The
observer is designed to estimate on-line the susceptible and the infected (or exposed)
populations since such measures are not available in a real situation where only the
infectious population is measurable. The estimates provided by the observer are used
to synthesize the control law instead of the true susceptible and infected popula-
tions. Other potential situation is that the parameters of the epidemic model are not
fully known what may be circumvented by using adaptive control strategies [18].Also,
although conventional epidemiology has used continuous models [1],[19],[20]-[30], par-
tially because of the mathematical analysis is simpler, there are some advantages on
applying discrete models [31]-[34], as the data from the subpopulation are not in-
stantly obtained, and the possible actions made in order to restrain the disease may
require certain time to be accomplished.
In this last chapter, a series of studies concerning this and other methods of disease
eradication through vaccination are introduced to a series of SIRS and SEIR epidemic
models. First, the continuous model are analyzed, and the subpopulations dynamics
examined to verify if they have a behavior coherent with a real population. Then a
series of feedback-type vaccination control laws are implemented in order to eradicate
the illness.
The two different types are studied separately: First, a generic SEIR model is intro-
duced, and control laws based on the partial stability frame through a Lyapunov-type
adapted [17],[35] and observers are designed and implemented. Then, the study of
the continuous model is combined with the study of the discrete model, which is con-
structed in order to run the simulations with diverse vaccination strategies. Several
simulations of the dynamics of the subpopulations are made for each model and vac-
cination strategy, with the diseases being eradicated at different rates depending on
the chosen parameters. Finally, a normalized SIRS epidemic model is introduced, to
circumvent the complexity from the fact that the whole population may be varying,
increasing or decreasing in time. Moreover, such a normalized model is used to syn-

120



thesize the vaccination control law, which ensures the eradication of the infection from
the host population and the positivity of the normalized SIRS model as well as the
original SIRS epidemic model. The approach considers the possibility of the suscepti-
ble subpopulation converging and not converging to zero, as it happened in previous
vaccination control laws, [9],[36]. Simulation results showing the usefulness of the
proposed approach are included and a comparison with respect other feedback-type
vaccination strategies is performed.

6.2 SEIR Model and problem formulation

6.2.1 Model description

Consider the SEIR epidemic model with vaccination described by :

Ṡ(t) = −µS(t) + ωR(t)− ϕ(S,E, I, R)(t) + νN(t)(1− V (t)) (6.1)
Ė(t) = ϕ(S,E, I, R)(t)− (µ+ κ)E(t) (6.2)
İ(t) = −(µ+ γ)I(t) + κE(t) (6.3)
Ṙ(t) = −(µ+ ω)R(t) + γI(t) + νN(t)V (t) (6.4)

where S(t), E(t), I(t) and R(t) denote the subpopulations of susceptible, exposed,
infectious and immune respectively.
N(t) denotes the total population at time t (i.e. N(t) = S(t) +E(t) + I(t) +R(t)), µ
is the rate of deaths from causes unrelated to the infection, ν denotes the birth rate
and ω is the rate of losing immunity. The typically non-linear function ϕ(S,E, I, R) is
referred to as the disease incidence rate. When ϕ(S,E, I, R) = βS(t)I(t) it is said to
be the bilinear incidence rate; when ϕ(S,E, I, R) = ϕ1(S,E, I, R) = β S(t)I(t)

N(t)
it is said

to be the standard incidence rate and when ϕ(S,E, I, R) = ϕ2(S,E, I, R) = βS(t)I(t)
1+αS(t)

or ϕ(S,E, I, R) = βS(t)I(t)
1+αI(t)

it is said to be the saturated incidence rate, where β
is the transmission constant and α is the saturation coefficient. κ−1 and γ−1 are,
respectively, the average durations of the latent and infective periods. All the above
parameters are assumed to be positive so as to represent a real situation. The total
population dynamics at time t can be calculated by summing up all the equations
(6.1)-(6.4), leading to:

Ṅ(t) = (ν − µ)N(t) (6.5)

It can be deduced from equation (6.5) that the total population is constant when
ν = µ, increases when ν > µ and decreases when ν < µ. The relation between
µ and ν also determines the existence or not of equilibrium points as the following
proposition for incidence rate ϕ1 shows:
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Proposition 6.1. The equilibrium points of the system of equations (6.1)-(6.4) with
incidence rate ϕ1 and V (t) = 0 are given by:

i) If ν 6= µ then, the only equilibrium point is given by S∗ = E∗ = I∗ = R∗ = 0.
This point represents the case of total population extinction.

ii) If ν = µ, the total population is constant, i.e. N(t) = N = N(0) = S(0)+E(0)+
I(0) +R(0) and there are two equilibrium points given by:
• S∗ = N,E∗ = I∗ = R∗ = 0, i.e., the total population becomes susceptible.
•

S∗ =
(µ+ κ)(µ+ γ)

κβ
N (6.6)

E∗ =
(µ+ ω)(µ+ γ)(κβ − (µ+ γ)(µ+ κ))

κβ((µ+ γ + κ)(µ+ ω) + γκ)
N (6.7)

I∗ =
(µ+ ω)(κβ − (µ+ γ)(µ+ κ))

β((µ+ γ + κ)(µ+ ω) + γκ)
N (6.8)

R∗ =
(κβ − (µ+ γ)(µ+ κ))

β((µ+ γ + κ)(µ+ ω) + γκ)
N (6.9)

Proof.
Part ii) was proved in [37] and, therefore, it is only necessary to prove i). Thus, the
equilibrium point implies, in particular, that equation (6.5) zeroes. Hence, there is:

Ṅ(t) = 0 = (ν − µ)N(t) (6.10)

Since ν − µ 6= 0, then N(t) = 0 is the only possibility of equilibrium which implies
that S∗ = E∗ = I∗ = R∗ = 0.

Thus, as equation (6.5) reveals, this model is able to describe the case when the
total population experiences a natural increase. Moreover, if ν > µ global stability
of the epidemic model from equations (6.1)-(6.4) will not hold. However, from an
epidemic point of view, it is not needed all the populations to be bounded, just the
infected, E(t), and infectious, I(t). Hence, in this paper the use the concept of partial
stability is used to study the stability of the SEIR epidemic model given by equations
(6.1)-(6.4) rather than the concept of global stability. An introduction to partial sta-
bility is given in the next subsection.

6.2.2 Partial stability of systems

The problem of partial stability is referred to the problem of studying the stability of
a system restricted only to a part of the variables (but not all). Pioneering results in
this field have been made by Rumyantsev [38], but a large number of researches have
subsequently contributed to the field through years.
Now, a brief introduction to the partial stability problem is provided. Consider a
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nonlinear dynamic system ẋ(t) = f(x) with state vector x(t) decomposed in the
form:

x(t)T = [y(t)T z(t)T ] (6.11)

in such a way that the nonlinear system can be written as:

ẏ(t) = Y (y(t), z(t)), ˙z(t) = Z(y(t), z(t)) (6.12)

Consider also that the origin x(t)T = 0 = [0 0] is an equilibrium point. If the
equilibrium point is located at other position it can be placed at the origin by a
coordinates transformation. Thus, the concept of partial stability reads:
Definition 6.2. An equilibrium position x = 0 of the system from equation (6.12) is:

i) locally y-stable if, for any ε > 0, there exists a δ(ε) > 0 such that ||x0|| < δ
implies ||y(t)|| < ε for all t ≥ t0 with x0 denoting the initial condition,

ii) locally asymptotically y-stable if it is locally y-stable and furthermore y(t) → 0
as t→∞.

iii) globally asymptotically y-stable if the asymptotically y-stability holds for any
bounded initial condition ||x0||.

The intuitive meaning of Definition 6.2 is that the partial state variables in y are
bounded for all time for a bounded initial condition of the full state regardless the
tendency of the variables in z. This is an important issue since it allows us to study
the behavior of just a subset of all the state variables as is convenient in epidemic
models. The design of the vaccination control law will be based on the partial stability
frame. One of the main tools to analyze the partial stability of a nonlinear system is
the extension of the classical Lyapunov theorems to this concept [17], [35]. Thus, the
following proposition 6.3 holds:
Proposition 6.3. For system from equation (6.12), assume that there exists a func-
tion L satisfying:

L(x) ≥ a(||y||) (6.13)
L̇(x) ≤ 0 (6.14)

where a(·) denotes any continuous increasing function with argument ‖y(t)‖. Then,
the equilibrium position x = 0 of the system from equation (6.12) is y-stable.

The meaning of proposition 6.3 is that if a positive definite function is used only
in the variables y, the Lyapunov theorem will be able to prove the partial stability
of just those variables. Thus, this result will be used to design a novel vaccination
control law.
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6.3 Partial Stability of the Vaccination-Free model

This section is devoted to the study of the partial stability of the vaccination-free
system (i.e. when V = 0 in Equations (6.1) and (6.4)). The work from [36] proved
that Equations (6.1)-(6.4) lead to non-negative solutions for all t ≥ 0 if V = 0. It
will be proved that the infected and infectious may still be bounded for all time when
the total system does not exhibit a global stability property. Hence, a further insight
into the dynamics of the overall system is gained. The following proposition holds:
Proposition 6.4. The nonlinear system from equation (6.1)-(6.4) is (E, I)-stable for
any set of positive parameters with α ≥ 1 and incidence rate ϕ1 or ϕ2 provided that
(µ+ κ)(µ+ γ)− βκ ≥ 0.
Proof.
Since N = S+E+I+R and the system is non-negative (see [37]), then S/N ≤ 1 and
ϕ1(S,E, I, R) = β IS

N
≤ βI. In addition, since α ≥ 1 then 1 + αS > S and S

1+S
< 1.

Hence, ϕ2(S,E, I, R) = βI S
1+S

< βI. Thus, regardless of the incidence rate, equation
(6.2) can be upper-bounded as:

Ė(t) ≤ βI(t)− (µ+ κ)E(t) (6.15)

Now, equations (6.3) and (6.15) form a system of linear differential inequalities whose
stability can be stated through the comparison principle by analyzing the stability of
the dynamics matrix:

A =

(
−(µ+ κ) β

κ −(µ+ γ)

)
(6.16)

whose characteristic equation is:

det(sI − A) = s2 + (2µ+ κ+ γ)s+ (µ+ κ)(µ+ γ)− βκ (6.17)

According to the Routh-Hurwitz criterion [39], [40], all the coefficients in equation
(6.17) must be non-negative in order to make the dynamics matrix stable. Since all
the parameters of the model are assumed to be positive, (2µ + κ + γ) is trivially
positive and it is only needed to require that:

(µ+ κ)(µ+ γ)− βκ ≥ 0 (6.18)

and the proposition is proved.

Notice that the system may still be (E, I)-stable despite ν > µ, which implies that
some of the other variables diverge. Furthermore, the following corollary may be
obtained:
Corollary 6.5. The system from equations (6.1)-(6.4) is (E, I)-stable for both inci-
dence rates provided that all the parameters are positive, α ≥ 1 and µ+ γ ≥ β.
Proof.
Since µ+ κ > κ, then equation (6.18) can be satisfied if µ+ γ ≥ β.
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Corollary 6.5 provides an insight concerning when the epidemics is bounded despite
any natural increasing of the population (global instability). As it has been estab-
lished, µ represents the rate of deaths for causes unrelated to the infection, γ the rate
at which a new infective losses its infectivity and β the rate of new infectious. Thus,
when people die soon and the latent period is small compared to the transmission ve-
locity (I.e. µ+γ > β ), the infected and infectious subpopulations (E,I) are bounded.
Hence, the application of partial stability gives another insight in the analysis of the
model, and relates stability properties with more practical issues.

6.4 Vaccination laws based on partial stability

In this section a series of feedback-type vaccination control laws applied on the dif-
ferent proposed models will be designed starting from the concept of partial stability.
Thus, the objective of the control is not to stabilize all the variables of the system,
but only (E, I)-stabilize the system regardless the other variables.

6.4.1 Partial stability-based vaccination law based on recovered subpop-
ulation

For this, Lyapunov’s type proposition 6.3 will be used to prove that:
Proposition 6.6. The vaccination law given by:

V (t) = 1 +
ω

νN(t)
R(t) (6.19)

(E, I)-stabilizes the system of equations (6.1)-(6.4) for any set of positive parameters
and any incidence rate. Furthermore, S(t), E(t), I(t)→ 0 as t→∞.

To perform the proof of proposition 6.6 it will be needed the following result:
Proposition 6.7. The solution of the system of Equations (6.1)-(6.4) under the vac-
cination law from equation (6.19) satisfies S(t), E(t), I(t), R(t) ≥ 0 for all t ≥ 0 for
any incidence rate and any set of positive parameters provided that S(0), E(0), I(0), R(0) ≥
0.
Proof.
It is firstly proved that the total population remains non-negative for all time. Thus,
from equation (6.5) have:

N(t) = eν−µN(0) ≥ 0 (6.20)

since N(0) = S(0)+E(0)+I(0)+R(0) ≥ 0. Now it will be proved that the susceptible
are non-negative. For this, notice that both incidence rates ϕ1 and ϕ2 can be expressed
as ϕ = ϕ′(S,E, I, R) · S(t). Thus equation (6.1) under vaccination law (6.19) takes
the form:

Ṡ(t) = −(µ+ ϕ′(S,E, I, R))S(t) (6.21)
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Now a proof by contradiction will be made: Assume that there exists a time instant
t∗ such that S(t∗) < 0. Thus, since S(t) is a continuous function, there must be a
time instant tS < t∗ such that S(tS) = 0. However, equation (6.21) implies Ṡ(tS) = 0,
deducing that S(t) = 0 for all t ≥ tS. Thus, this contradicts the existence of such t∗
and the susceptible cannot become negative. A case-based reasoning will be used to
prove the non-negativeness of E and I. For this, recall that the incidence rates can
also be expressed as ϕ = ϕ′(S,E, I, R) · I(t), i.e. ϕ vanishes when I vanishes. Thus,
assume that there exists a time instant tEI such that E(tEI) = I(tEI) = 0. Hence,
equations (6.2) and (6.3) imply that Ė(tEI) = İ(tEI) = 0 and E(t) = I(t) = 0 for all
t ≥ tEI . This means that when both variables vanish simultaneously, they remain in
zero for all time onwards. Now, define the following time instants:

tE = {t|E(t) = 0 ∧ I(t) > 0 ∧ S(t) > 0} (6.22)
tI = {t|I(t) = 0 ∧ E(t) > 0} (6.23)
tE2 = {t|E(t) = 0 ∧ I(t) > 0 ∧ S(t) = 0} (6.24)

These time instants can be interpreted as the time instants when one variable E or I
zeroes. Notice that in all cases it is supposed that the other variable is positive since
as it has been proved before, if both variables vanish simultaneously, they remain in
zero for the rest of the time. Thus, for tE, there is I(tE) > 0 and:

Ė(tE) = ϕ(S,E, I, R) = ϕ∗(S,E, I, R) · I(tE) > 0 (6.25)

implying that E does not become negative, but tends to be positive again, while for
tI there is E(tI) > 0 and:

İ(tI) = κE(tI) > 0 (6.26)

implying that I does not become negative, but it tends to be positive again. Now,
from the definition of tE2, the equations Ė(t) = 0 and İ(t) = −(µ + γ)I(t) are
established for all t ≥ tE2 implying:

I(t) = e−(µ+γ)(t−tE2)I(tE2) ≥ 0 (6.27)

for all t ≥ tE2. Hence, both variables E and I remain non-negative for all time.
Finally, the explicit solution of equation (6.4) under vaccination law from equation
(6.19) can be written as:

R(t) = e−µtR(0) +

∫ t

0

e−µ(t−τ)[γI(τ) + νN(τ)]dτ ≥ 0 (6.28)

which is non-negative for R(0) ≥ 0 since the rest of variables S,E, I and N have been
proved to be non-negative. Thus, the proposition is proved.

Now, it can be proven proposition 6.6.
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Proof. of proposition 6.6.
Consider the partially positive function:

L(t) = S(t) + E(t) + I(t) (6.29)

L(t) is positive definite in S, E and I from proposition 6.7 but it is not a positive
definite function in the complete state x = [S E I R]. The time derivative of equation
(6.29) is calculated as:

L̇ = Ṡ(t) + Ė(t) + İ(t)

= −µS(t) + ωR(t) + νN(t)(1− V (t))

−µE(t)− (µ+ γ)I(t) (6.30)

If equation (6.19) is introduced into (6.30) one obtains:

L̇(t) = −µS(t)− µE(t)− (µ+ γ)I(t) ≤ 0 (6.31)

Thus, the conditions for applying proposition 6.3 are met, and therefore, S,E and I
are bounded for all time. Furthermore, while any of the variable S,E, I are positive,
L̇(t) < 0, implying that L decreases continually until it arrives to S = E = I = 0.
Hence, all these variables converge to zero, proving the theorem.

Therefore, the epidemics is eradicated while the rest of variables evolve. Appreci-
ate the rationale behind the vaccination law from equation (6.19). It is designed in
order to cancel the positive terms appearing in equation (6.30) so as to make the
derivative of L negative semidefinite (in the complete state). Furthermore, this de-
sign technique would not be used if a Lyapunov function in the complete state (e.g.
L = S + E + I + R) would be proposed, since the vaccination function V (t) dis-
appears when all the subpopulations are summed up. In consequence, the partial
stability approach has also provided a practical vaccination design tool. Moreover,
the proposition 6.6 also proves the convergence of the susceptible to zero despite now
the only interest are in the infected and infectious subpopulations. Finally, note that
the vaccination control law holds for any kind of incidence rate since its particular
value is canceled when summing up the equations for Ṡ and Ė. Therefore, the vacci-
nation strategy holds for general nonlinear incidence rate equations.

6.4.2 Partial stability-based vaccination law based on susceptible subpop-
ulation

Another vaccination law is designed, this time for the ϕ1 specifically. This vaccination
law considers a partial Lyapunov candidate function composed of only the exposed
and infectious subpopulations, instead of including the immune subpopulation. This
fact substantially modifies the design of the control law since the vaccination function
does not appear explicitly in the Lyapunov function derivative, so that the design is
indirectly carried out by controlling the subpopulation of susceptible. In the end the
susceptible subpopulation is required to converge to a certain reference value located
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on a safety band that allows the natural vanishment of the epidemic. The start-
ing point of this vaccination law is the definition of the partial Lyapunov candidate
function:

L(E(t), I(t)) = E(t) + I(t) (6.32)

Note that this function does not contain all the state vector components, but only a
subset of them. Therefore, it can be regarded as just a partial Lyapunov function.
Its time derivative is given by (where the standard incidence rate has already been
used):

L̇(t) = β
S(t)I(t)

N0

− µE(t)− (µ+ γ)I(t) (6.33)

It can be noticed that the vaccination function V (t) does not appear in equation
(6.33). However, it can be rewritten from equation (6.33) as:

L̇(t) =

(
βS(t)

N0

− (µ+ γ)

)
I(t)− µE(t) (6.34)

If the subpopulations were positive, the Lyapunov candidate function from equation
(6.32) would have negative-definite derivative if

(
βS(t)
N0
− (µ+ γ)

)
≤ −ε < 0 for a

given ε > 0. Therefore, if the susceptible subpopulation satisfied:

S(t) ≤ Sref,ε =
N0

β
(µ+ γ − ε) (6.35)

then the time derivative from equation (6.34) would be negative and the exposed and
infectious subpopulations would vanish according to proposition 6.3. In this way the
control objective has been converted into attaining S(t) ≤ Sref,ε. The notation Sref,ε
points out the fact that the reference value for the susceptible subpopulation depends
on the choice of ε.
Remark 6.8. Note that Sref,ε ≥ 0 (since it acts as a reference population or threshold
and must be non-negative) implies (µ+ γ − ε) ≥ 0, i.e. 0 < ε ≤ (µ+ γ).

The controller design is based on feedback linearization, [36], while the objective is
to attain S(t) ≤ Sref,ε. For this purpose, consider the tracking error:

S̃(t) = Sref,ε − S(t) (6.36)

With this notation, the control law reads:

V̄ (t) = Vcancel(t) + Vlinear dynamics(t) (6.37)

where:

Vcancel(t) =
1

µN0

(
µN0 − β

S(t)I(t)

N0

+ ωR(t)

)
(6.38)

Vlinear dynamics(t) =
1

µN0

(
−µSref,ε − ΞS̃(t)

)
(6.39)
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with Ξ > 0 denoting the minimum rate at which the susceptible subpopulation must
converge to the reference value Sref,ε. Vaccination law (6.37) has two parts; the first
one (Vcancel(t)) is in charge of canceling the nonlinear dynamics of the susceptible sub-
population given by equation (6.1) while the second one (Vlinear dynamics(t)) specifies
the desired linear dynamics for the closed-loop. The substitution of the vaccination
law from equation (6.37) in equation (6.1) leads to the closed-loop system for the
susceptible subpopulation (taking into account that ν = µ and the total population
is constant, i.e. N(t) = N0 for all t ≥ 0):

˙̃S(t) = −(µ+ Ξ)S̃(t) (6.40)

whose solution is given by:

S̃(t) = e−(µ+Ξ)tS̃(0) (6.41)

Thus, S̃(t) → 0 as t → ∞. However, it is preferable to force S̃(t) → 0 only when
S(t) ≥ Sref,ε since when S(t) < Sref,ε, the time derivative L̇(t) is already negative
and no external action is necessary. Therefore, the control law may be simplified to:

V (t) =


V̄ (t) if S(t) ≥ Sref and V̄ (t) ≥ 0

0 otherwise
(6.42)

where the fact that the control law cannot be negative has also been included. The
proposed control law from equation (6.42) is able to make the susceptible subpopu-
lation converge to the reference value Sref,ε and eradicate the exposed and infectious
subpopulations, as it is stated in the following part of the chapter.
Remark 6.9. The convergence rate of the tracking error to zero when the vaccination
law (6.37) is applied is given by (µ+ Ξ) according to equation (6.41).

Remark 6.10. When S(t) > Sref,ε, then S̃(t) < 0 from equation (6.36). Therefore,
˙̃S(t) > 0 means that S̃(t) grows implying that the susceptible subpopulation decreases
and approaches Sref,ε. The higher the value of ˙̃S(t) > 0 is, the faster the susceptible
subpopulation tends to the reference value.

Remark 6.11. The susceptible subpopulation reference value is related to the well-
known critical immunization threshold, framed now within the partial stability theory.

As in the previous vaccination law, it must be proved that equation (6.32) is a properly
defined Lyapunov function, i.e. L(0, 0) = 0 and L(E, I) ≥ 0. The first statement
is obvious while the second one is proved in two stages. When S(t) < Sref,ε the
vaccination law equals zero an the system is vaccination free. In 6.7 it is proved that
the vaccination free system is non-negative for any set of positive parameters and any
non-negative at all time . When S(t) ≥ Sref,ε → S(t) ≥ 0 the positivity of E and
I is proven on the same principles as in proposition 6.6. Thus, the analysis of the
closed-loop stability can be made and enable us to state the following theorem:

129



Proposition 6.12. L(E, I) = E(t)+I(t) is a positive-definite function in (E(t), I(t))
under vaccination law from equation (6.42).

In order to prove the stability of the closed-loop it is also needed the following fact.
Lemma 6.13. If S(t) > Sref,ε, then the control law from equation (6.42) makes S̃(t)
converge to zero non-slower than (µ+ Ξ).

Proof.
When S(t) > Sref,ε and V̄ (t) > 0, then the tracking error dynamics is given by
equation (6.40), implying that S̃(t) converges to zero at a rate of (µ+ Ξ) as equation
(6.41) shows. On the other hand, when S(t) > Sref,ε and V̄ (t) ≤ 0 then V (t) = 0 as
the result of projection in equation (6.42). Under these circumstances, Ṡ = − ˙̃S since
Sref,ε is constant in equation (6.36) and equation (6.1) can be re-written as:

˙̃S(t) = µS(t)− ωR(t) + ϕ(S,E, I, R)

− νN(t) +N(t)V (t) (6.43)

Now, let’s denote as ˙̃S(t)V + , ˙̃S(t)V − and ˙̃S(t)V 0 the derivatives of the tracking error
when the vaccination function V (t) in equation (6.43) is positive, negative and no
vaccination is applied, respectively. Thus, following chain of inequalities is presented:

˙̃S(t)V − <
˙̃S(t)V 0 < ˙̃S(t)V + (6.44)

If the control law is zero when S(t) > Sref,ε then V̄ (t) is negative or zero and this is
the reason why the vaccination V (t) is equated to zero. According to the chain from
equation (6.44) this fact means that the convergence rate chosen for the closed-loop is
smaller than the natural tendency of the susceptible subpopulation to decrease (given
by ˙̃S(t)V 0). As a consequence, a value of V̄ (t) < 0 and V (t) = 0 in this case implies
that the susceptible subpopulation is converging to the reference value faster than
when the control action is taken. Therefore, the proposition is proved.

Lemma 6.13 means that when the vaccination law is zero and S(t) > Sref,ε, the
susceptible subpopulation naturally converges to the reference value. This fact will
help us prove the stability of the closed-loop system. Finally, the last result needed
is given in Lemma 6.14
Lemma 6.14. The set S = {0 ≤ S(t) ≤ Sref,0 = Sref,ε=0, E(t), I(t), R(t) ≥ 0} is
invariant under the vaccination law from equation (6.42) with a prescribed 0 < ε ≤
(µ+ γ).
Proof.
It will be proved that once the susceptible subpopulation belongs to the set S, it is
confined there by the action of the vaccination law from equation (6.42). The proof
is based on considering two separate cases: Sref,0 ≥ S(t) ≥ Sref,ε and S(t) < Sref,ε.
When Sref,ε ≤ S(t) ≤ Sref,0 then the control law acts and the closed loop equation is
given by equation (6.40) that makes the error signal converge monotonously to zero.
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Therefore, for any value belonging to that interval the susceptible subpopulation
converges to Sref,ε ∈ S and the whole trajectory belongs to S.
On the contrary, assume that S(t) < Sref,ε. Since S(t) is a continuous variable it
must cross Sref,ε when it tries to arrive the border of the set S (taking into account
that proposition 6.7 proves that it cannot become negative). Thus, if the susceptible
subpopulation tries to get out the set there must be a time instant tc such that
S(tc) = Sref,ε. At this precise time, the control law acts and the closed-loop equation
reads:

˙̃S(t) = −(µ+ Ξ)S̃(t) (6.45)

with S̃(tc) = 0. The solution to equation (6.45) is S̃(t) = 0 for t ≥ tc and the
susceptible subpopulation remains in S. Thus, the set is invariant and the proposition
is proved.

Now the stability of the closed-loop can be proved.
Proposition 6.15. E(t), I(t) converge asymptotically to zero under the action of
control law from equation (6.42) with a prescribed 0 < ε ≤ (µ + γ) for any set of
positive parameters and any initial conditions S(0), E(0), I(0), R(0) ≥ 0.
Proof.
Consider the Lyapunov candidate function L = E(t) + I(t) with the vaccination law
given by equation (6.42). This function is positive-definite as proved in proposition
6.12. Its time derivative is given by equation (6.34). If S(0) < Sref,ε then the suscep-
tible subpopulation remains within the set S (Lemma 6.14) and the time derivative
is negative definite since the exposed and infectious subpopulations are non-negative
(proposition 6.7). Thus, E(t) and I(t) converge to zero asymptotically according to
proposition 6.3. On the other hand, if S(0) > Sref,ε, then the closed-loop equation is
given by equation (6.40) and the susceptible subpopulation converges to Sref,ε either
V (t) = V̄ (t) or V (t) = 0 as Lemma 1 claims. Thus there exists a finite time ts such
that Sref,ε < S(ts) < Sref,0 i.e. S(ts) ∈ S. Since the set S is invariant and within that
set the Lyapunov candidate function is negative-definite then E(t) and I(t) converge
asymptotically to zero. Thus, the proposition is proved.

Proposition 6.15 proves that the vaccination law from equation (6.42) is capable of
removing the epidemics from the population taking into account that the only interest
is to vanish the exposed and infectious subpopulations. Furthermore, the vaccination
control is well-defined in the sense that it provides always non-negative values for the
control.

6.5 Observed-based Vaccination

It turns out that while the assumption of the knowledge of the total population N is
not quite restrictive in practice, the knowledge of partial populations of susceptible,
infected, infectious and immune may be considered severely restrictive. If the partial
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initial populations are unknown then their evolution through time cannot be com-
puted in a closed form from the differential system of (6.1)-(6.4). A practical solution
to circumvent the problem might be to estimate them based on percentages of the
total population through time from experimental knowledge of the disease propaga-
tion. Another solution may be to estimate them online by using an on-line observer.
This solution is focused on in the current manuscript by using a SEIR-estimation
algorithm (observer) of the SEIR model with a standard incidence rate ϕ1, which
estimates through time the individual populations being involved. The vaccination
strategy is obtained as a control strategy from the date supplied by the observer
through time. Such a strategy does not require the knowledge of the partial popula-
tions to organize and perform the vaccination strategy. The estimates of the various
individual populations are denoted by the same notations as the real populations with
hat superscripts, namely Ŝ, Ê, Î and R̂. Thus, consider the SEIR-type observer for
the SEIR model with ϕ1 as follows:

˙̂
S(t) = −µ̂Ŝ(t) + ω̂R̂(t)− β̂ Ŝ(t)Î(t)

N
+ µ̂N(1− V (t))

˙̂
E(t) = β̂

Ŝ(t)Î(t)

N
− (µ̂+ κ̂) Ê(t)

˙̂
I(t) = − (µ̂+ γ̂) Î(t) + κ̂Ê(t)
˙̂
R(t) = − (µ̂+ ω̂) R̂(t) + γ̂Î(t) + µ̂NV (t) (6.46)

subject to initial conditions Ŝ(0) ≥ 0, Ê(0) ≥ 0, Î(0) ≥ 0 and R̂(0) ≥ 0 under the
constant through time estimated population constraint equalizing the true one, i.e.,

N = N(0) = Ŝ(t) + Ê(t) + Î(t) + R̂(t)

= Ŝ(0) + Ê(0) + Î(0) + R̂(0) (6.47)

∀t ∈ R0+ and the vaccination law V : R0+ → R0+ given by:

V (t) =
1

µ̂N

(
λ1Ŝ(t) + λ2Ê(t) + λ3Î(t) + λ4R̂(t) + λ5Ŝ(t)Î(t) + gN

)
(6.48)

In the above estimated SEIR-model, µ̂ is the estimated rate of deaths from causes
unrelated to the infection, ω̂ is the estimated rate of losing immunity, β̂ is the esti-
mated transmission constant (with the total number of infections per unity of time
at time t being β̂Ŝ(t)Î(t)/N), κ̂−1 and γ̂−1 are finite and, respectively, the estimated
average durations of the latent and infective periods. The above parameter estimates
can be done, through the use of available "a priori" knowledge, to be identical to the
true values if those ones are known or estimated on-line from data measurements.
Through this chapter, it has been assumed that those estimated parameters are fixed
but not necessarily identical to the true parameters and all of them are non-negative.
The substitution of equation (6.48) in equation (6.46) yields the following combined
observer-controller for the SEIR-model:

˙̂x(t) = Â(t)x̂(t) + b̂ (6.49)
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where

x̂(t) = [Ŝ(t) Ê(t) Î(t) R̂(t)]T , (6.50)
b̂ = [(µ̂− g)N 0 0 gN ]T and (6.51)

Â(t) = (6.52)
−
(
µ̂+ λ1 +

(
β̂1 + λ5

)
Î(t)

)
−λ2 −λ3 ω̂ − λ4

β̂1Î(t) −(µ̂+ κ̂) 0 0
0 κ̂ −(µ̂+ γ̂) 0

λ1 + λ5Î(t) λ2 γ̂ + λ3 −(µ̂+ ω̂ − λ4)


with β̂1 = β̂/N . The substitution of equation (6.48) into equation (6.46) yields the
following SEIR observer-based vaccination controlled SEIR-model:

ẋ(t) = A(t)x(t) +B(t)x̂(t) + b (6.53)

where

x(t) = [S(t) E(t) I(t) R(t)]T (6.54)

b =

[(
1− g

µ̂

)
µN 0 0

gµN

µ̂

]T
(6.55)

A(t) =


− (µ+ β1) Î(t) 0 0 ω

β1I(t) −(µ+ κ) 0 0
0 κ −(µ+ γ) 0
0 0 γ −(µ+ ω)

 (6.56)

with β1 = β/N and

B(t) =

(
µ

µ̂

)
− (λ1 + λ5) Î(t) −λ2 −λ3 −λ4

0 0 0 0
0 0 0 0

λ1 + λ5Î(t) λ2 λ3 λ4

 (6.57)

The systems from equations (6.49)-(6.52) and (6.53)-(6.57) may be compacted as an
extended system as follows:

˙̄x(t) = A(t)x(t) + b (6.58)

where

x(t) = [x̂T (t) x̃T (t)]T , (6.59)
b̄ = [b̂T b̃T ]T and (6.60)

Ā =

(
Â(t) 0

A(t)− Â(t) +B(t) A(t)

)
(6.61)

with x̃(t) = x(t)− x̂(t) being the observation error, and a parametrical error defined
by:

b̃ = b− b̂ =

(
µ

µ̂
− 1

)
N [µ̂− g 0 0 g]T (6.62)
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It is direct to see that ‖b̃‖ ≤ ε for any given real ε ≥ 0, with

‖b̃|| = |(µ/µ̂)− 1|N
√

(µ̂− g)2 + g2

being the Euclidean norm of b̃, if |µ− µ̂| ≤ µ̂ε/(N
√

(µ̂− g)2 + g2). Decompose

A(t) = A0 + ∆A(t)

Â(t) = Â0 + ∆Â(t)

A(t)− Â(t) +B(t) = B0 + ∆B(t) (6.63)

where A0, Â0 and B0 are constant matrices and the non-unique decompositions from
equation (6.63) are as follows:

A0 =


− (µ+ β1Ir) 0 0 ω

0 − (µ+ κ) 0 0
0 κ −(µ+ ω) 0
0 0 γ −(ω + µ)

 (6.64)

Â0 =


−
(
µ̂+ λ1 +

(
β̂1 + λ5

)
Îr

)
−λ2 −λ3 ω̂ − λ4

0 −(µ̂+ κ̂) 0 0
0 κ̂ −(µ̂+ γ̂) 0

λ1 + λ5Îr λ2 γ̂ + λ3 −(µ̂+ ω̂ − λ4)



∆A(t) =


β1(Ir − I(t)) 0 0 0

β1Ir 0 0 0
0 0 0 0
0 0 0 0

 and (6.65)

∆Â(t) =


(β̂1 + λ5)(Îr − Î(t)) 0 0 0

β̂1Î(t) 0 0 0
0 0 0 0

λ5(Î(t)− Îr) 0 0 0

 (6.66)

for any given prefixed constant values Ir ≥ 0 and Îr ≥ 0. Moreover,

∆B(t) = A(t)− Â(t) +B(t)−B0 (6.67)

=


−µ̃− f1(t) + f2(t)− b011 k′2 k′3 ω̃ + k′4

f1(t)− b021 −(κ̃+ µ̃) 0 0
0 κ̃ −(µ̃+ γ̃) 0

−f2(t) −k′2 γ̃ − k′3 −(µ̃+ ω̃ + k′4)


with

f1(t) = β1I(t)− β̂1Î(t), (6.68)
f2(t) = (1− (µ/µ̂))(λ1 + λ5Î(t)), (6.69)
k′i = (1− µ/µ̂)λi, for i = 1, 2, 3, 4, (6.70)
µ̃ = µ− µ̂, κ̃ = κ− κ̂
γ̃ = γ − γ̂, ω̃ = ω − ω̂
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with b011 and b021 being, respectively, the coefficients in the first and the second row
of the first column of matrix B ∈ R4x4. The rest of the coefficients of such matrix are
identically zero. In this way, Ā(t) is decompose as follows:

Ā(t) = Ā0 + ˜̄A0(t) with (6.71)

Ā0(t) =

(
Â0(t) 0
B0 A0

)
and ˜̄A0 =

(
∆Â(t) 0
∆B(t) ∆A(t)

)
(6.72)

If A0 and Â0 are stability (or Hurwitz) matrices then the block triangular matrix
Ā0 is also a stability matrix with stability abscissa (−ρ) subject to the constraint
max{Re(λi(A0)), Re(λi(Â0))} ≤ −ρ < 0 where the first inequality is non strict if
there is some multiple eigenvalue of Ā0.

6.5.1 Stability of the observed-based Vaccination law

A simple inspection shows that A0 is a stability matrix if

det(sI4 − A0) = (s+ µ+ β1Ir)(s+ µ+ κ)(s+ µ+ γ)(s+ µ+ ω)

where I4 denotes the 4-order identity matrix, is Hurwitz. Also, Â0 is a stability matrix
if det(sI4 − Â0) = d̂(s) + (λ1 + λ5Îr)n̂(s) has all its zeros in Re(s) < 0 where:

n̂(s) = (λ4 − ω̂)(s+ µ̂+ κ̂)(s+ µ̂+ γ̂) (6.73)
d̂(s) = (s+ µ̂+ λ1 + (β̂1 + λ5)Îr)(s+ µ̂+ κ̂) (s+ µ̂+ γ̂) (s+ µ̂+ ω̂ − λ4)

Assume that d̂(s) is a Hurwitz polynomial, that is, λ4 < (µ̂+ω̂), (µ̂+λ1+(β̂1+λ5)Îr) >
0, ω̂ + κ̂ > 0 and µ̂+ γ̂ > 0 and define ĥ(s) , (λ1 + λ5Îr)n̂(s)/d̂(s).
Note that:

det(sI4 − Â0) = d̂(s) + (λ1 + λ5Îr)n̂(s) = 0

→ 1 + ĥ(s) = 0 (6.74)

has all its solutions in Re(s) < 0 if and only if ‖ĥ‖∞ < 1 since d̂(s) is a Hurwitz
polynomial, where ‖ĥ‖∞ is the H∞-norm of the transfer function ĥ(s).
Since Ā0 is block-triangular and constant then the following result is direct.
Assertion 6.16. Ā0 is a stability matrix if and only if µ + β1Ir > 0, µ + κ > 0,
µ + γ > 0, µ + ω > 0 and ĥ ∈ RH∞ (i.e. λ4 < µ̂ + ω̂, µ̂ + λ1 + (β̂1 + λ5)Îr > 0,
µ̂+ κ̂ > 0 and µ̂+ γ̂ > 0) with ‖ĥ‖∞ < 1.

From remark 6.16 and Gronwall’s Lemma [41], it follows.
Assertion 6.17. The matrix function Ā(t) is stable if Ā0 is a stability matrix and,
furthermore, ρ > sup

t∈R0+

{‖ ˜̄A0(t)‖} where (−ρ) < 0 is the stability abscissa of the matrix

Ā0.

Note that the Euclidean norm of b̄ may be directly calculated from those of b̂ and b̃
using equations (6.51) and (6.62) leading to:

‖b̄‖ ≤ (µ̂+ |µ− µ̂|)N
µ̂

√
(µ̂− 2g)µ̂+ 2g2 (6.75)
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Note that ρ0 , ρ− sup
t∈R0+

{‖ ˜̄A0(t)‖} > 0 so that (−ρ0) < 0 is larger than the maximum

of the stability abscissas of Ā(t) for t ∈ R0+ if assertion 6.17 holds.
Assertion 6.18. If assertion 6.17 holds then any solution of the forced system (6.58)-
(6.72) satisfies the following inequality:

‖x̄(t)‖ ≤M(t) = λ0e
−ρ0t

(
‖x̄(0)‖+ ‖b̄‖

∫ t

0

eρ0τdτ

)
→ λ0

ρ0

(µ̂+ |µ− µ̂|)N
µ̂

√
(µ̂− 2g)µ̂+ 2g2 (6.76)

as t → ∞, for some real constant λ0 ≥ 1, and the corresponding sub-states of x̄(t)
satisfy:

‖x̂(t)‖ ≤ M̂(t) = λ0e
−ρ0t

(
‖x̂(0)‖+ ‖b̂‖

∫ t

0

eρ0τdτ

)
→ λ0

ρ0

N
√

(µ̂− 2g)µ̂+ 2g2 (6.77)

and

‖x̃(t)‖ ≤ M̃(t) = λ0e
−ρ0t

(
‖x̃(0)‖+ ‖b̃‖

∫ t

0

eρ0τdτ

)
→ λ0

ρ0

|µ− µ̂|N
µ̂

√
(µ̂− 2g)µ̂+ 2g2 (6.78)

as t→∞.

Note that ‖x̃(t)‖ → 0 as t→∞ either if µ̂ = µ (and then ‖x̂(t)‖ → λ0

ρ0
N
√

(µ− 2g)µ+ 2g2

as t→∞ and, if in addition, g = 0 then ‖x̂(t)‖ → λ0µN
ρ0

as t→∞ ) or if µ̂ = g = 0

(and then ‖x̂(t)‖ → 0 as t→∞).
Finally, x(t) satisfy:

‖x(t)‖ ≤ ‖M(t)‖ → λ0

ρ0

(µ̂+ |µ− µ̂|)N
µ̂

√
(µ̂− 2g)µ̂+ 2g2 (6.79)

as t→∞ from the definition of b in equation (6.55). However, this upper-bound can
be improved if a version of assertion 6.17 applied to the matrix function A(t) leads
to a smaller ratio of its corresponding constants than the ratio λ0/ρ0 of the whole
extended system.

6.5.2 Positivity of the observed-based vaccination law

Positive systems are those having non-negative solutions in the sense that all the
state components are non-negative for all time, provided that the initial condition
and control are both non-negative [42]. Because of the nature of the SEIR epidemic
model from equation (6.1), it is required to be a positive system for the implemented
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vaccination law. The extended SEIR system has a unique solution for each initial
state given by:

x̄(t) = eĀ0t

(
x̄(0) +

∫ t

0

e−Ā0τ
(

˜̄A0(τ)x̄(τ) + b̄
)
dτ

)
(6.80)

From equations (6.49) and (6.53) the SEIR solution and its estimate through the
observer are uniquely given by:

x̂(t) = eÂ0t

(
x̂(0) +

∫ t

0

e−Â0τ
(

∆Â0(τ)x̂(τ) + b̂
)
dτ

)
(6.81)

and

x(t) = eA0t

(
x(0) +

∫ t

0

e−A0τ (∆A0(τ)x(τ) +B(τ)x̂(τ + b)) dτ

)
(6.82)

respectively. In principle, it is apparently non necessary to require in addition that
the estimation algorithm or the extended system be positive. The following notation
is used for the theoretical results in this section. x ∈ Rn

0+ is a positive real n-vector
in the usual sense that all its components are non-negative. This can be also denoted
by x > 0 if x 6= 0. In the same way, A ∈ Rnxn

0+ (or A > 0) is a positive real n-matrix
in the usual sense that all its entries are non-negative. A square real matrix A is a
Metzler matrix if and only if all its off-diagonal entries are non-negative and then its
associate exponential matrix function is positive.
Assertion 6.19. The following properties hold:

i) Assume that A0 and Â0 are Metzler matrices,

∆A(t) > 0, b+B(t)x̂(t) ≥ 0 and ∆Â(t) > 0 ∀t ∈ R0+

and b > 0 and b̂ > 0. Then [xT (0) x̂T (0)]T > 0 implies that x(t) > 0 and
x̂(t) > 0 ∀t ∈ R0+. In other words, the extended system of state [xT (0) x̂T (0)]T

is positive.

ii) Assume that in Property (i) Â0 fails to be a Metzler matrix because of the value
λ1 or λ5 in its (4,1) entry. Then, for initial conditions x̂(0) > 0 which make x̂(t)
to be non positive, x(t) can fail to be positive for all time for some x(0) > 0 and
some such λ1 or λ5 with sufficiently large absolute values.

Remark 6.20. It is required for modeling coherency that both the epidemic SEIR-
model and its observer be positive dynamic systems. The condition of non-negative
of b + B(t)x̂(t) ≥ 0 ∀t ∈ R0+ in assertion 6.19 requires g ≥ 0 and (µ̂ − g)N ≥
(λ1 + λ5Î(t))Ŝ(t) + λ2Ê(t) + λ3Î(t) + λ4R̂(t) ≥ −gN ∀t ∈ R0+, which may be guar-

anteed by choosing the controller gains under the knowledge N =
4∑
i=1

x̂i(t) ∀t ∈ R0+.

The requirement that Â0 be a Metzler matrix is guaranteed if λ2 = 0, −γ̂ ≤ λ3 ≤ 0,
0 ≤ λ4 ≤ ω̂ and λ1 + λ5Îr ≥ 0. The condition that b̂ > 0 is guaranteed if 0 ≤ g ≤ µ̂.

Finally, min
t∈R0+

{∆Â(t)} > 0 is guaranteed if λ5 is such that (β̂1+λ5)

(
Îr − max

t∈R0+

{Î(t)}
)
≥
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0 and λ5

(
min
t∈R0+

{Î(t)} − Îr
)
≥ 0 are fulfilled. Such conditions require that 0 ≥ λ5 ≥

−β̂1. In this way the observer is a positive system. This restricts the generality of the
choice of the gains in the vaccination control law from equation (6.48). However, if
the requirement for the observer to be positive is removed then it is only needed that the
SEIR model is positive under a modified vaccination law from equation (6.48) by re-
quiring the weaker condition that 0 ≤ g ≤ µ̂ and min{κ, ω, γ} ≥ 0 and Ir ≥ max

t∈R0+

I(t).

Note that while assertion 6.19 (i) is of sufficiency-type to guarantee positivity, the lack
of all the joint above conditions in assertion 6.19 (ii) refer to a necessary condition for
positivity in such cases. Note also that the positivity and a total population equal to
N for all time implies necessary global stability, so that it can be said the following:
Assertion 6.21. If assertion 6.19 (i) holds then the extended SEIR-model (i.e. the
combined SEIR-model plus its observer) is globally stable if all the initial populations
and their estimates are non-negative. Furthermore all the susceptible, infected, infec-
tious and immune populations and their estimates are upper-bounded by N and the
sum of all the populations and that of their estimates is equal to N at any time. The
converse is not true, in general, so that if the extended SEIR-model is stable under
assertion 6.17 then that model is not necessarily positive.

6.6 The reproduction number in the vaccination strat-
egy

Another take of the model from equations (6.1)-(6.4) is studied in this section, using
the predictions on the stability of the equilibrium points of the model from the repro-
duction number associated to the parameters. A discretized version of the model is
presented in order to present a more realistic version of the data acquisition needed
to perform adaptive vaccination strategies. For this version of the model, the disease
incidence rate is chosen to be the bilinear function ϕ = βS(t)I(t), and the acquired
immunity to remain permanent, so it is set ω = 0. Also, the birth rate is detached
from the dependence on the total population ν → µ/N(t). The death rate is then
set to be equal to the birth rate µ = ν so that the population is not continuously
increasing or decreasing and the dynamics of the total population S+E+ I+R = N
can be described as

Ṅ(t) = µ(1−N(t)) (6.83)
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which is independent of the disease, and tends to lim
t→∞

N(t) = N∗ = 1. The nonlinear
dynamics derived from these interactions is presented in the following equations:

Ṡ(t) = µ(1− V (t)− S(t))− βS(t)I(t) (6.84)
Ė(t) = βS(t)I(t)− (µ+ κ)E(t) (6.85)
İ(t) = κE(t)− (µ+ γ)I(t) (6.86)
Ṙ(t) = µV (t) + γI(t)− µR(t) (6.87)

In order to simplify the notation, a real continuous and time-differentiable vector
function x : [0,∞)→ R4 is defined as

x(t) = (S(t), E(t), I(t), R(t))T

Equilibrium states and conditions of stability for a constant vaccination
strategy V

It is considered here the solutions to the population dynamics, given a constant
bounded vaccination strategy V (t) = V ∈ [0, 1]∀t ≥ 0. An equilibrium state where
the values for the infectious and exposed subpopulations are zero is called disease-free
equilibrium (DFE) while, if the exposed or infectious present positive values, is called
the endemic equilibrium (END). Let lim

t→∞
x(t) = x∗ so that lim

t→∞
ẋ(t) = (0, 0, 0, 0)T .

Then, from equations (6.84)-(6.87) it is obtained the following equations for the equi-
librium points:

µ(1− V )− βS∗I∗ − µS∗ = 0

βS∗I∗ − (µ+ κ)E∗ = 0

κE∗ − (µ+ γ)I∗ = 0

µV + γI∗ − µR∗ = 0

(6.88)

Two possible solutions are derived from (6.88) as in proposition 6.1, the disease free
equilibrium (DFE) point and the endemic (END) point:

x∗dfe = (Sdfe, 0, 0, Rdfe)
T (6.89)

x∗end =

(
Send,

µ (Sdfe − Send)
µ+ κ

,

µκ (Sdfe − Send)
(µ+ κ) (µ+ γ)

, Rdfe −
γκ(Sdfe − Send)
(µ+ κ) (µ+ γ)

)T
(6.90)

with Sdfe = 1 − V , Rdfe = V and Send = (µ+κ)(µ+γ)
βκ

. An important parameter
when studying the stability of these possible solutions is the reproduction number
R0, defined in epidemic research as the average number of infections per infected
individual per the duration of the infectious phase:

R0 ≡
βκSdfe

(µ+ κ)(µ+ γ)
(6.91)
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However there can be periodic behaviors that are solutions to the SEIR model from
(6.84)-(6.87), in which lim

t→∞
ẋ(t) 6= (0, 0, 0, 0)T . In the following propositions the re-

production number is used to discuss this possibility in addition to the stability of
the equilibrium points.
Proposition 6.22. Consider the proposed SEIR model from equations (6.84)-(6.87)
under positive initial conditions:

xi(0) ≥ 0; ∀i = 1, 2, 3, 4

with a bounded vaccination V (t) ∈ [0, 1]∀t ≥ 0. Then, the equilibrium regime defined
as lim

t′→∞
x(t′ + t) = x∗(t) ∀t ∈ R holds the property:

x∗i (t) ≤ 1; ∀i = 1, 2, 3, 4 ∀t ≥ 0 (6.92)

Proof.
The time evolution of the total population is derived from (6.83) as

N(t) = (N(0)− 1) e−µt + 1

Thus, at the equilibrium regime, the sum of all the subpopulation must be one, i.e.,
4∑
i=1

x∗i (t) = lim
t′→∞

N (t′ + t) = 1. It is established from proposition 6.7 the positivity of

each subpopulation, so the following inequality is fulfilled:

0 ≤ x∗i (t) = 1−
4∑
j=1
j 6=i

x∗j(t); ∀i = 1, 2, 3, 4 (6.93)

which leads to 1 ≥
4∑
j=1
j 6=i

x∗j(t) ≥ max
j 6=i

[x∗j(t)]; ∀j, i = 1, 2, 3, 4.

Hence x∗i (t) ≤ 1; ∀i = 1, 2, 3, 4; ∀t.

Proposition 6.23. Consider the proposed SEIR model from equations (6.84)-(6.87),
with a constant bounded vaccination strategy V (t) = V ∈ [0, 1] and a time t0 so that
the exposed and infectious subpopulation are zero, i.e., E(t0) = I(t0) = 0. Then, the
SEIR model will reach the DFE point.
Proof.
It is deduced from (6.85)-(6.86) that if I(t0) = E(t0) = 0 , then İ(t) = Ė(t) = 0 ∀t >
t0. The following simplifications for the susceptible and recovered subpopulations are
given as auxiliary equations of the dynamics to be used in the theoretical analysis:

Ṡ(t) = µ(1− V − S(t)) (6.94)
Ṙ(t) = µ(V −R(t)) ∀t > t0 (6.95)
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Then the time evolution of the susceptible and recovered subpopulations is given by
the following equations:

∀t ≥ t0

S(t) = (1− V ) + (S(t0)− (1− V ))e−µ(t−t0) (6.96)
R(t) = (R(t0)− V )e−µ(t−t0) + V (6.97)

Hence, lim
t→∞

x(t) = (1− V, 0, 0, V )T = x∗dfe.

Proposition 6.24. Consider the proposed SEIR model (6.84)-(6.87) under positive
initial conditions:

xi(0) ≥ 0; ∀i = 1, 2, 3, 4

through a bounded vaccination V (t) ∈ [0, 1]∀t ≥ 0 and R0 < 1. Then, there is no
periodic endemic solution for the SEIR model.

Proof.
A proof by contradiction is given here. Assume that there is a periodic solution x∗(t)
where x∗2(t) ≥ me, x∗3(t) ≥ mi ∀t, with me, mi > 0. Then the following inequality is
established from equation (6.84):

Ṡ∗(t) ≤ µ (Sdfe − S∗(t) (1 + βmi/µ)) (6.98)

The dynamic equation of an auxiliary function S ′(t) is defined as:

Ṡ ′(t) = µ (Sdfe − S ′(t) (1 + βmi/µ)) (6.99)

whose solution is given by:

S ′(t) =
Sdfe + e−(µ+βmi)t ((1 + βmi)S

′(0)− Sdfe)
1 + βmi/µ

(6.100)

The difference ∆S∗(t) = S∗(t)− S ′(t) between S∗(t) and the auxiliary function S ′(t)
is used then to define the following inequality:

∆Ṡ∗(t) = Ṡ∗(t)− Ṡ ′(t) ≤ −(µ+ βmi) (S∗(t)− S ′(t)) (6.101)

which leads to ∆S∗(t) ≤ ∆S∗(0)e−(µ+βmi)t. As µ + βmi > 0, it can be deduced that
lim
t→∞

∆S∗(t) ≤ 0, and it is known from propositions 6.7 and 6.22 that S(t) is finite and
bounded, so the following inequality holds

lim
t→∞

sup [S∗(t)] ≤ lim
t→∞

S ′(t) =
Sdfe

1 + βmi/µ
(6.102)

Given the periodicity of the solution, the integral on a time period τ of any subpop-
ulation derivative will be zero:∫ t+τ

t

ẋ∗i (t
′)dt′ = x∗i (t+ τ)− x∗i (t) = 0; ∀i = 1, 2, 3, 4
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Then from equations (6.85) and (6.86), it is defined

κĒ − (µ+ γ)Ī = 0 (6.103)
βSI − (µ+ κ)Ē = 0 (6.104)

being Ī =
∫ t+τ
t

I(t′)dt′, Ē =
∫ t+τ
t

E(t′)dt′ and SI =
∫ t+τ
t

S(t′)I(t′)dt′ the average
values at the periodic equilibrium. Let us combine equations (6.103) and (6.104) to
obtain the following:

βκSI

(µ+ κ)(µ+ γ)Ī
= 1 (6.105)

Given that max
t≤τ ′≤t+τ

[S∗(τ ′)]Ī ≥ SI ≥ min
t≤τ ′≤t+τ

[S∗(τ ′)]Ī, it is established:

βκ max
t≤τ ′≤t+τ

[S∗(τ ′)]

(µ+ κ)(µ+ γ)
≥ 1 ≥

βκ min
t≤τ ′≤t+τ

[S∗(τ ′)]

(µ+ κ)(µ+ γ)
(6.106)

Then, as mi > 0 it is known from equation (6.102) that max
t≤τ ′≤t+τ

[S∗(τ ′)] ≤ Sdfe
1+βmi/µ

<

Sdfe, which leads to the following inequality:

βκSdfe
(µ+ κ)(µ+ γ)

>

βκ max
t≤τ ′≤t+τ

[S∗(τ ′)]

(µ+ κ)(µ+ γ)
≥ 1 (6.107)

However, it is stated that R0 =
βκSdfe

(µ+κ)(µ+γ)
< 1, which lies in direct contradiction of

(6.107). Hence, a periodic solution with a permanent presence of the disease is not
possible for R0 < 1.

Proposition 6.25. Consider the proposed SEIR model (6.84)-(6.87) under positive
initial conditions:

xi(0) ≥ 0; ∀i = 1, 2, 3, 4

with a bounded constant vaccination V (t) = V ∈ [0, 1].
Then, the DFE equilibrium point is unstable if R0 > 1.

Proof.
First, the dynamic equations (6.84)-(6.87) are linearized around the DFE point by
means of the associated Jacobi matrix J = [Jij] = [ ∂ẋi

∂xj
] for i, j ∈ {1, 2, 3, 4} evaluated

at the DFE point. Such a Jacobi matrix is given by:

J|xdfe =


−µ 0 −βSdfe 0
0 −(µ+ κ) βSdfe 0
0 κ −(µ+ γ) 0
0 0 γ −µ

 (6.108)
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The eigenvalues of this matrix are obtained by calculating the roots of the character-
istic equation Det(λI − J) = G(λ), which results in the following:

λi = {−µ,−µ,
−(2µ+ γ + κ)−

√
(γ − κ)2 + 4βκSdfe

2
,

−(2µ+ γ + κ) +
√

(γ − κ)2 + 4βκSdfe
2

} (6.109)

If any eigenvalue λi has a positive real part, the system is locally unstable. The
real part of the eigenvalues λ1, λ2 and λ3 is negative, as the parameters involved
are defined positive. However, the real part of the fourth eigenvalue λ4 is positive if
(2µ+ γ + κ) <

√
(γ − κ)2 + 4βκSdfe. This inequality can be rearranged as:

βκSdfe
(µ+ κ)(µ+ γ)

> 1 (6.110)

Hence, from equation (6.91) it is established that for R0 > 1the DFE point is unstable.

Proposition 6.26. Consider the proposed SEIR model (6.84)-(6.87) under positive
initial conditions:

xi(0) ≥ 0; ∀i = 1, 2, 3, 4

with a bounded constant vaccination V (t) = V ∈ [0, 1]. Then, the END equilibrium
point is locally asymptotically stable if R0 > 1.
Proof.
As in the DFE point of proposition 6.25, the dynamic equations from (6.84)-(6.87)
is linearized around the endemic point, by means of the associated Jacobi matrix
J = [Jij] = [ ∂ẋi

∂xj
] for i, j ∈ {1, 2, 3, 4} evaluated at the endemic point. Such a Jacobi

matrix is given by:

J|xend =


−µR0 0 −βSend 0

µ(R0 − 1) −(µ+ κ) βSend 0
0 κ −(µ+ γ) 0
0 0 γ −µ

 (6.111)

The eigenvalues of this matrix are obtained by calculating the roots of the character-
istic equation Det(λI − J), i.e. :

Det(λI − J) = (λ+ µ)
(
λ3 + (µR0 + 2µ+ γ + κ)λ2+ (6.112)

+µ(2µ+ κ+ γ)R0λ+ βSendµκ (R0 − 1))

In order to have a locally asymptotically stable state, the four roots of λi from the
solutions of Det(λiI −J) = 0 must have a negative real part. A characteristic root is
found directly λ1 = −µ, while the Routh-Hurwitz criterion [39], [40] tells us that all
the roots of the remaining characteristic equation βSendµκ(R0 − 1) + αµR0λ+ (α+
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R0µ)λ2 + λ3 = 0, being α = 2µ + κ + γ, present a negative real part if the following
coefficients derived from the polynomial are positive: α + µR0, βκSend(R0 − 1) and
µ
(
αR0 + βκSend(R0−1)

µR0+α

)
. Hence, for R0 > 1, the END equilibrium point is locally

asymptotically stable.

Propositions 6.22-6.26 emphasize the importance of the value of R0 in order to de-
scribe the properties of the equilibrium states of the model. Two only possible non-
periodic stable states are established and the reproduction number serves as a switch
between them, a fact that is used in the following sections.

6.6.1 Discretization of the SEIR model

Even thought the continuous model has proven to be excellent for describing the dy-
namics of the subpopulations for a fixed set of parameters, an interactive vaccination
law based on a feedback loop requires a continuous data acquisition and the ensu-
ing vaccination adjustment. As a result, the SEIR model is discretized with a ZOH
(zero-order hold) in order to adapt to the common minimum reaction time T, which
is taken as the sampling time. Two different SEIR models are used. The primary
model is the discretized version of the non-linear SEIR model given by equations
(6.84)-(6.87), while the secondary model is a linearized version of the primary one,
associated to the Jacobi matrix evaluated at a state given by the initial conditions.
The primary model, more precise and complex, is chosen to represent the dynamics
of the populations under a specific vaccination law. The secondary model would give
the same analytical result as the primary one with a reasonable accuracy at a given
range, with the advantage of being simpler and more manageable. Such a model
is employed for the development of the control signal that gives the values for the
vaccination strategies, which are also applied to the primary model. Given that the
values of the subpopulations in this linearized model will eventually diverge from the
principal model, it will be periodically reset and linearized with the current data
from the subpopulation of the primary model. Two different non-regular vaccination
strategies are chosen for the secondary model, both based on a linear relation between
the vaccination and the susceptible subpopulation:
Let V0 and V1 be two auxiliary functions defined as:

V0 =

{
1− 1

R0
if R0 ≥ 1

0 if R0 < 1
(6.113)

and

V1 =
1 + V0

2
(6.114)

where V0 is the minimum possible vaccination in which R0 ≤ 1 given a constant rate,
and V1 an arbitrary vaccination rate between V0 and 1. A reactive vaccination law is
defined as:

V (k) = V0 + (V1 − V0)S(k) (6.115)
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where V (k) and S(k) are, respectively, the values of the vaccination rate and the
susceptible subpopulation of the secondary model at the time tk. Such a vaccination
strategy would interpret a possible decrement of the susceptible subpopulation as a
sign of infection, increasing their value. Contrary to the reactive strategy, a preventive
vaccination law is defined as:

V (k) = V1 + (V0 − V1)S(k) (6.116)

being V (k) and S(k) the vaccination rate and the secondary susceptible subpopula-
tion at time tk. This vaccination law increases the vaccination rate for high values
of the susceptible subpopulation as a preventing action since all individual within
the susceptible subpopulation can potentially become infectious. Observe that the
evaluation and application of the vaccination rate once the data of the susceptible
subpopulation is collected is presumed to be instant for all practical purposes. Ob-
serve also that for a susceptible subpopulation in the range S(k) ∈ [0, 1], any possible
vaccination provided by the reactive and preventive laws would lead to a reproduction
number below 1.

6.7 Simulations and discussion of the proposed strate-
gies

In this section, a series of mathematical models implemented in a Matlab environ-
ment are defined and the results shown, in order to illustrate the theoretical results
stated in the models of previous sections.

6.7.1 Partial stability-based vaccination control based on recovered sub-
population

The following parameters have been used for the simulations of a model with standard
incidence rate ϕ = ϕ1(S,E, I, R) = β S(t)I(t)

N(t)
, and a vaccination law as in equation

(6.19) :

µ−1 = 200 days, κ−1 = 2.2 days

ω−1 = 15 days, γ = κ

ν−1 = 150 days β = 1.66 days−1

The initial conditions are given by S(0) = 400, E(0) = 150, I(0) = 250 and R(0) =
200. Notice that since ν−1 is smaller than µ−1, then the total population increases
through time. These parameters have been chosen so as to illustrate the theoretical
results in a short-time simulation. The total simulation period is 50 days. Figure
6.1 shows the evolution of the disease in the absence of vaccination. There are two
significant facts that deserve commentary. The first one is that there is a number of
infected and infectious through time, i.e. the disease does not disappear in a natural
way. Note that according to proposition 6.1 there is not an equilibrium point and
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thus, the values of the subpopulations always change through time. The other one
is that the model is not globally bounded since the total population diverges, as
Figure 6.2 confirms. Thus, a vaccination policy is applied to this model in order
to make the infectious and infected vanish. Figure 6.3 depicts the evolution of the

Figure 6.1: Dynamics of the system without vaccination.

disease when the vaccination law from equation (6.19) is applied to the system. Thus,
the susceptible, infected and infectious converge to zero while the total population
tends to be immune, as proposition 6.6 states. Figure 6.4 shows a zoom on the
final period of the simulation. It can be verified that the infective and infectious are
already zero while the susceptible tends to zero. The rate at which the susceptible
tends to zero is given by µ once the infectious and infected subpopulations have
vanished. Since this value is in general small, then the convergence of the susceptible
to zero is slow. Finally, Figure 6.5 shows the vaccination law. Note that the total
population is still not bounded since Figure 6.3 shows the immune diverging. Hence,
the vaccination control law does not try to globally stabilize the system but only the
variables corresponding to the epidemics, i.e. it only tries to partially stabilize the
system.
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Figure 6.2: Dynamics of the total population, N, without vaccination.

A comparison with other vaccination laws

In this section, a comparative study of the proposed control law with respect to others
recently proposed in the literature is done. Under this concrete model, three indexes
will be used in order to perform the comparison:

• The total Vaccination cost (VC) is defined here as:

V C =

∫ Tfinal

0

N(t)V (t)dt (6.117)

where Tfinal denotes the final time of simulation, which in this case is 50 days.

• The maximum value of the control (MV):

MV = max{V (t)|t ≥ 0} (6.118)

• The time in days needed to eradicate the illness (TE):

TE = min{t0|I(t0) < 1 and I(t) < 1∀t ≥ t0} (6.119)

The lower all the above values are, the better the control law is. Moreover, three
control laws will be used for comparison. The one proposed in [9] and two proposed
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Figure 6.3: Dynamics of the system with the proposed vaccination.

in [36] through equations (26b) and (69) introduced therein.The obtained results are
condensed in Table (6.1). The free design parameters of the compared control laws

VC MV TE
Proposed 5.252 · 105 10.93 22.58

[9] 5.371 · 105 11.08 22.83
[36] Eq. (26b) 5.407 · 105 11.04 22.91
[36] Eq. (69) 5.233 · 105 20.21 22.75

Table 6.1: Comparison between different vaccination laws

have been adjusted in order to obtain a similar time to eradicate the illness, TE,
among all of them. In this way, the comparison will be fair since the same perfor-
mance with respect to infectious vanishing is used for all of them. The first conclusion
is that all the control laws offer a similar behavior once fixed the TE parameter. The
only one to offer a distinct value is the last one which possesses a larger peak value
for the control law, MV.
Hence, the proposed control law is slightly better than the others. However, the ap-
proach has the advantage that its derivation and proof of stability and convergence
is much easier than those made in [9] and [36]. Hence the presented approach is more
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Figure 6.4: Zoom on a large-term simulation of the controlled system.

convenient than a classical global-stability frame to deal with this problem.

6.7.2 Partial stability-based vaccination law based on susceptible subpop-
ulation

For the control law defined in section (6.4.2), another simulations is introduced. The
actual parameters for the model ϕ1 are given by:

µ−1 = 255 days, κ−1 = 2.2 days,

ω−1 = 15 days, γ = κ,

ν = µ, β = 1.66 days−1

The parameters of the model are taken from an outbreak of influenza in a British
boarding school in late 70’s [43], [44] , where the µ parameter has been modified in
such a way that a short-term simulation is enough to show the dynamic behavior
of the system. The initial conditions are S(0) = 450, E(0) = 150, I(0) = 300 and
R(0) = 100 for a total population of N0 = 1000 individuals. The parameters of the
controller are Ξ−1 = 100 days and ε = µ+γ

2
. The dynamic of the vaccination-free

system is depicted in Figure 6.6. It can be noticed that the epidemic is persistent
and there are a number of exposed and infectious in the equilibrium. Under these
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Figure 6.5: Vaccination function, V (t).

circumstances, the vaccination control policy from (6.42) is applied to the system to
obtain the closed-loop dynamics depicted in Figure 6.7.
Figure 6.7 shows that the exposed and infectious subpopulations converge to zero
eradicating the epidemic from society asymptotically. Furthermore, the susceptible
subpopulation converges to the reference value. In this way, it is not necessary to
vaccinate the whole population since the susceptible subpopulation does not converge
to zero as previous works enforce [9], [36]. Figure 6.8 depicts the vaccination effort
needed to achieve the control objective. It is shown that the vaccination effort is
zero during the first steps of disease spreading. This happens because the susceptible
subpopulation decreases in a natural way at the beginning faster than the selected
convergence rate, the non-saturated vaccination law V̄ (t) is negative as figure 6.9
shows and no vaccination is needed to reduce the number of susceptible individuals.
Notice that despite V (t) vanishes, the susceptible subpopulation decreases in time,
as stated in Lemma 6.13.
Finally, a sensitivity analysis is performed on the behavior of the closed-loop. To this
end the parameter Ξ has been varied from Ξ−1 = 10 days to Ξ−1 = 100 days. The
results are depicted in Figures 6.10 and 6.11. As expected, the larger Ξ is the faster
the convergence of the susceptible subpopulation to the reference value is. On the
other hand a faster convergence rate requires a larger vaccination effort. Thus, the
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Figure 6.6: Dynamics of the subpopulations of a vaccination-free system based on a
standard incidence rate model.

vaccination also increases as Ξ enlarges. A particular tuning for Ξ would then ap-
pear as a trade-off between celerity in epidemic eradication and vaccination capacity.

6.7.3 Simulation of an observed-based vaccination law

The observed-based vaccination law is also studied in a SEIR model described by the
following parameters taken from an influenza outbreak [45]:

µ−1 = 25550 days κ−1 = γ−1 = 2.2 days,

ω−1 = 15 days and β = 1.66 days−1.

The initial conditions are given by S(0) = 400, E(0) = 150, I(0) = 250, and R(0) =
200 individuals so that the total population is N(0) = 1000 individuals. The observer
from equation (6.46) is used to estimate the partial populations for all time since they
are not measurable. The initial estimates are Ŝ(0) = 250, Ê(0) = Î(0) = 150, and
R̂(0) = 450 individuals. Moreover, an estimation of the values of the unknown true
model parameters is used to parameterize the observer. Such estimates are:

µ̂−1 = 23550 days κ̂−1 = γ̂−1 = 2 days,

ω̂−1 = 14 days and β̂ = 1.46 days−1.
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Figure 6.7: Dynamics of the subpopulations with the vaccination control law from
equation (6.42) applied .

A vaccination strategy given by equation (6.48) is introduced in the system. The fol-
lowing values have been used for the control gains: λ1 = 1, λ2 = −0.1, λ3 = −γ̂, λ4 =
0.95, λ5 = −β̂1 and g = µ̂. Figure 6.12 shows the time-evolution of the populations.
Figure 6.13 shows the error between the observation and the real states. Figure 6.12
does not only show that the SEIR-model is globally stable regardless the observation
error depicted in Figure 6.13 but also that the observer-based control law eradicates
the infective and infectious, while the immune almost reaches to be the total popula-
tion N. A small number of susceptible still appear in the steady-state.
However, this behavior is much better than that obtained with the combined SEIR-
model and observer system without vaccination where a number of infective and
infectious appear as it can be seen in Figure 6.14. In summary, this example points
out the improvement in the eradication of an infection disease if a vaccination control
law based on an observer for the SEIR-model is applied compared with the results
obtained in a free vaccination case. Note also that the true partial populations are
bounded for all time, i.e., the combined SEIR control-observer model is stable. How-
ever, it is not a positive system since the control gain λ2 = −0.1 makes Â0 not be a
Metzler matrix, so the observer is not a positive system (remark 6.20). This fact is

152



Figure 6.8: Vaccination effort N(t)V (t) with the control policy from equation (6.42)
applied.

according to the theoretical result pointed out in assertion 6.21.

6.7.4 Simulation of vaccination laws on a discretized SEIR model

A simulation of the discretized SEIR model from equations (6.84)-(6.87) is made ap-
plying two vaccination laws: the reactive vaccination law and the preventive vaccina-
tion law from equations (6.115) and (6.116) respectively. The two Simulink models run
simultaneously recreating the outbreak of a disease with no permanent immunity, both
associated to a set of parameters from a measles infection [46], so initial conditions are
set up to a normalized population of S(0) = 0.99, E(0) = R(0) = 0, and I(0) = 0.01.
The transition rate from the exposed to the infectious and from the infectious to the
recovered are defined by mere weeks, hence the values are κ = 14/365 year−1 and
γ = 14/365 year−1 respectively, while the birth-death rate is set with the average
natural death rate of humans in a first world country ν = 1/70 year−1. The infectiv-
ity rate β is set so the reproduction number from equation (6.91) is above 1, namely
R0 = 1.6. Both the primary and secondary models are discretized with a sample
time T = 0.05 year, while the matrix for the dynamics of the secondary model and
the divergences from the primary one are reset each year. Under this conditions, fig-
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Figure 6.9: Non-saturated vaccination effort N(t)V̄ (t) with the control policy from
(6.37) applied.

ure 6.15 presents the dynamics of the subpopulations when a preventive vaccination
strategy is applied, while a closer look of the initial evolution of the subpopulations
and the vaccination rate can be seen at figure 6.16 and figure 6.17 respectively. The
effectivity of the strategies tested in these simulations are measured according to the
vaccination cost (VC) and disease cost (DC), defined as the total number of vaccines
used, in this case as

V C = ν

kf∑
k=0

Vk

and the total of infectious subpopulation present during the simulation:

DC =

kf∑
k=0

Ik

The cost of both feedback-loops strategies from equations (6.115) and (6.116) ob-
tained for a 20 years simulation are compared to the costs of applying, under the
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Figure 6.10: Behavior of the susceptible subpopulation as λ varies.

same circumstances, open-loop vaccination rules for different constant vaccination
rates ranging between V0 and V1 in figure 6.18. Although the subtle differences in the
vaccination costs due to the dynamics of the subpopulations cannot be seen clearly in
figure 6.18, the relation between the VC and DC for the different vaccination strate-
gies can be seen properly at figure 6.19, where the preventive strategy shows to be
more efficient than a constant vaccination, as it shows a lower DC for what would
be the same VC, while the contrary happens with the reactive strategy, as the VC
required for reaching a certain DC is higher than the regular vaccination.

6.8 SIRS epidemic model and problem formulation

Here it is proposed a SIRS epidemic model with normalized subpopulations, and a
vaccination strategy is introduced based on a linearization control techniques of the
mapping from the vaccination control to the infected population. The main differ-
ences of the current model with respect to the previous ones is the simplification of
the infected subpopulations into one, and the fact that the mortality from causes rel-
ative to the infection is appreciable in the population. Also, the birth and mortality
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Figure 6.11: Behavior of the vaccination effort as λ varies.

from nature causes may be different so that the whole host population may be time-
varying. The sum of all the subpopulations in a normalized SIRS epidemic model is
invariable 1. Such a normalized model is obtained from the original SIRS one via a
suitable variables change. Moreover, it is used to synthesize the vaccination control
law which will ensure the eradication of the infection from the host population and the
positivity of the normalized SIRS model as well as the original SIRS epidemic model.
Finally, the described control strategy may be extended to more complex epidemical
models which consider more population categories than those presented in the SIRS
model. In this sense, vaccinated, quarantine, susceptible population with different
risk of catching infection, asymptomatic or symptomatic infected populations have
been considered in other compartmental models for describing the propagation of in-
fectious diseases within a host population [47]-[49].
Notation:
R+ , (0,∞) ∩ R is the set of strictly positive real numbers and R0+ , R+ ∪ {0}.
R− , (−∞, 0) ∩ R is the set of strictly negative real numbers and R0− , R− ∪ {0}.
R2

+ is the first open real quadrant and R2
0+ is the first closed real quadrant.

R2
− is the third open real quadrant and R2

0− is the third closed real quadrant.

156



	
  

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

time (days)

Po
pu

la
tio

ns
R

I

E

Figure 6.12: Evolution of the populations with standard incidence rate and
vaccination-based observer from equation (6.48).

6.8.1 SIRS epidemic model

Let S(t), I(t) and R(t) be, respectively, the susceptible, infected and recovered or
removed-by-immunity subpopulations at time t. Consider a time-invariant SIRS epi-
demic model given by:

Ṡ(t) = −µS(t) + ωR(t)− βS(t)I(t)

N(t)
+ νN(t)[1− V (t)] (6.120)

İ(t) = −(µ+ γ)I(t) + β
S(t)I(t)

N(t)
(6.121)

Ṙ(t) = − (µ+ ω)R(t) + γ(1− ρ)I(t) + νN(t)V (t) (6.122)

subject to initial conditions S(0) ≥ 0, I(0) ≥ 0 and R(0) ≥ 0 under a vaccination
function V : R0+ → R0+ . In this SIRS model, as in the previous SEIR models,
N(t) ≥ 0 is the total population at any time instant t ∈ R0+ , µ > 0 is the death rate
from natural causes unrelated to the infection, ν > 0 is the birth rate, ω > 0 is the rate
of losing immunity, β > 0 is the transmission constant (with a standard incidence rate
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Figure 6.13: Evolution of the observation error with vaccination.

βS(t)I (t) /N(t)), γ > 0 is the recovery rate (or γ−1 > 0 the average duration of the
infective period) and ρ ∈ [0, 1) is the probability of death from infection causes. The
total population dynamics is obtained by summing-up equations from (6.120)-(6.122)
yielding:

Ṅ (t) = Ṡ(t) + İ(t) + Ṙ(t) = (ν − µ)N(t)− ργI(t) (6.123)

so that the total population is time-varying.

6.8.2 Normalized SIRS epidemic model

The SIRS model from equations (6.120)-(6.122) is normalized with respect to the
whole population by using the following variables change:

s(t) =
S(t)

N(t)
; i(t) =

I(t)

N(t)
; r(t) =

R(t)

N(t)
(6.124)
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Figure 6.14: Evolution of the actual population through time in the vaccination-free
case.

By introducing this variables change in equations (6.120)-(6.122), it is obtained the
normalized SIRS model given by:

ṡ(t) = −νs(t) + ωr(t) + (ργ − β) s(t)i(t) + ν[1− V (t)] (6.125)
i̇(t) = − (ν + γ) i(t) + βs(t)i(t) + ργi(t)2 (6.126)
ṙ(t) = − (ν + ω) r(t) + γ (1− ρ) i(t) + ργi(t)r(t) + νV (t) (6.127)

By summing-up equations (6.125)-(6.127), it follows that ṡ(t)+ i̇(t)+ ṙ(t) = 0 so that
s(t) + i(t) + r(t) = 1 for all time irrespective of the vaccination function.

6.9 Design of a linealization-based control vaccina-
tion law in the SIRS model

The main control objective is that the infected population asymptotically tends to
zero as t → ∞, so the infection is eradicated from the population, while guaran-
teeing the positivity of the controlled system. A vaccination control law based on a
static-state feedback linearization strategy is developed for achieving such a control
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Figure 6.15: Evolution of the subpopulations for the discretized SEIR model with a
preventive vaccination strategy and R0=1.6
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Figure 6.16: An amplified view of figure (6.15). The initial evolution of the subpop-
ulations for a preventive vaccination strategy with R0=1.6

objective. This technique requires a nonlinear coordinate transformation, based on
the Lie derivatives Theory in the system representation [50]. The dynamics equa-
tions (6.125)-(6.127) of the normalized SIRS model can be equivalently written as the
following nonlinear control affine system:

ẋ(t) = f (x(t)) + g (x(t))u(t); y(t) = h (x(t)) (6.128)

where y(t) = i(t) ∈ R0+ , u(t) = V (t) ∈ R0+ and x(t) = [i(t) s(t)] ∈ R2
0+ are

considered, respectively, the output signal, the input signal and the state vector of
the system ∀t ∈ R0+ , and r(t) = 1− s(t)− i(t) has been used, with:

f (x(t)) =

[
−(ν + ω)i(t) + βs(t)i(t) + ργi2(t)

−(ν + ω)s(t)− ωi(t) + (ργ − β)s(t)i(t) + ν + ω

]
∈ R2 (6.129)

g (x(t)) = [0 − ν]T ∈ R2
0−; h (x(t)) = i(t) ∈ R0+
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Figure 6.17: Initial vaccination rate for the discretized SEIR model based on the
preventive and reactive vaccination with R0=1.6

The first step to apply a coordinate transformation based on the Lie derivation is
to determine the relative degree of the system. For such a purpose, the following
definitions are taken into account:

i) Lkfh (x(t)) ,
∂(Lk−1

f h(x(t)))
∂x

f(x(t)) is the kth-order Lie derivative of h (x(t)) along
f (x(t)) with L0

fh (x(t)) , h (x(t)) and

ii) the relative degree r of the system is the number of times that the output
must be differentiated to obtain the input explicitly, i.e., the number r so that
LgL

k
fh (x(t)) = 0 for k < r − 1 and LgLr−1

f h (x(t)) 6= 0.
From equation (6.129), Lgh (x(t)) = 0 while LgLfh (x(t)) = −νβi(t), so the relative
degree of the system is 2 in D , {[i, s]T ∈ R2

0+ |i 6= 0}, i.e.,∀x ∈ R2
0+ except in the

singular surface i = 0 of the state space where the relative degree is not well-defined.
Since the relative degree of the system is exactly equal to the dimension of the state
space for any x ∈ D, the nonlinear coordinate change

ī(t) = L0
fh (x(t)) ; s̄(t) = Lfh (x(t)) = −(ν + γ)i(t) + βs(t)i(t) + ργi2(t) (6.130)

allows to represent the model in the so-called normal form in a neighborhood of any
x ∈ D. Namely:

˙̄x (t) = f̄ (x̄(t)) + ḡ (x̄(t))u(t); y(t) = h (x̄(t)) (6.131)

where x̄(t) = [̄i(t) s̄(t)]T and:

f̄ (x̄(t)) = [s̄(t) φ (x̄(t))]T ; ḡ (x̄(t)) = [0 − νβī(t)]T h (x̄(t)) = ī(t) = i(t)

φ (x̄(t)) = (β − ν − γ)(ω + ν )̄i(t)− (ν + ω)s̄(t) + (ργ(2ν + ω + γ)− β(ν + ω + γ))̄i2(t)

+(2ργ − β)s̄(t)̄i(t) +
s̄2(t)

ī(t)
− ργ(ργ − β)̄i3(t) (6.132)
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Figure 6.18: Vaccination cost over time for both the preventive and reactive vacci-
nation strategies (dotted lines) and a set of constant vaccination rates (continuous
lines)

The following result being relative to the input-output linearization of the system is
established.
Proposition 6.27. The state feedback control law

u(t) =
−L2

fh (x(t))− λ0h (x(t))− λ1Lfh (x(t))

LgLfh (x(t))
(6.133)

where λ0 and λ1 are the controller tuning parameters, induces the linear closed-loop
dynamics

ÿ(t) + λ1ẏ(t) + λ0y(t) = 0 (6.134)

around any point x ∈ D.
Proof.
The state equation for the closed-loop system[

˙̄i(t)
˙̄s(t)

]
=

[
s̄(t)

φ (x̄(t))− L2
fh (x(t))− λ0ī(t)− λ1s̄(t)

]
(6.135)

is obtained by introducing the control law from equation (6.133) in (6.131), and taking
into account the fact that LgLfh (x(t)) = −νβi(t) = −νβī(t) 6= 0 ∀x ∈ D and the
coordinate transformation from equation (6.130). Also, it follows that L2

fh (x(t)) =
φ(x̄(t)) by direct calculations. Thus, the state equation of the closed-loop system in
the state space defined by x̄(t) can be written as:

˙̄x(t) = Ax̄(t) with A =

[
0 1
−λ0 −λ1

]
(6.136)

Furthermore, the output equation of the closed-loop system is y(t) = Cx̄(t) with
C = [1 0] since y(t) = i(t) = ī(t). From equation (6.136) and the closed-loop output
equation, it follows that:

ÿ = ¨̄i(t) = ˙̄s(t) = −λ0ī(t)−λ1s̄(t) = −λ0y(t)−λ1ẏ(t) → ÿ(t)+λ1ẏ(t)+λ0y(t) = 0

162



0.6205 0.6215 0.6225 0.623
2

3

4

Disease Cost (DC)

V
a
c
c
in

a
ti
o
n
 C

o
s
t 
(V

C
)

Prev. Vacc.

React. Vacc.V
1

V
0

Figure 6.19: VC and DC for different constant vaccinations (dotted line) ranging
between V1 and V0. Upside triangle correspond to the preventive vaccination strategy,
while the downside triangle to the reactive vaccination strategy.

(6.137)

Remark 6.28. The roots of the characteristic polynomial P (s) = s2 + λ1s + λ0

corresponding to the closed-loop dynamics from equation (6.134) are given by p1,2 =
−λ1±
√
λ2

1−4λ0

2
. Then, the stability of the closed-loop dynamics is guaranteed if the

control parameters are choosing strictly positive so that such roots have real parts being
strictly negative. Moreover, such choice implies the exponential convergence to zero
of the output variable i(t) = ī(t) as time tends to infinity and, as a consequence, the
eradication of the infection from the host population. However, the control parameters
choice has also to guarantee the positivity of the susceptible, infected and recovered
populations for all time as the system nature requires. This constraint implies that
the model variables i(t) and s(t) have to be such that i(t) + s(t) ∈ [0, 1]∀t ∈ R0+ so
that r(t) ∈ [0, 1] ∀t ∈ R0+ in view of the constraint i(t) + s(t) + r(t) = 1∀t ∈ R0+.
Such a positivity property implies additional conditions to be satisfied by the controller
parameters λ0 and λ1. This analysis is carried out in subsection 6.9.1 below.

6.9.1 Control parameters choice

The application of the control law from equation (6.133), obtained from the exact
input-output linearization strategy, makes the closed-loop dynamics of the normalized
infected population be given by equation (6.134). Such a dynamics depends on the
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control parameters λ0 and λ1. Such parameters have to be appropriately chosen in
order to guarantee the following suitable properties:

i) the stability and positivity of the controlled SIRS model,

ii) the eradication of the infection, i.e., the asymptotic convergence of i(t) to zero
as time tends to infinity and

iii) the non-negativity of the vaccination function for all time.

The following theorems related to the choice of the controller tuning parameters in
order to meet such properties are proven.

Proposition 6.29. Assume that the initial condition x(0) = [i(0) s(0)]T ∈ R2
0+ ful-

fills i(0) ∈ [0, 1], s(0) ∈ [0, 1] and i(0) + s(0) ∈ [0, 1]. Moreover, both roots p1 and p2

of the characteristic polynomial P (s) associated with the closed-loop dynamics from
equation (6.134) are of strictly negative real part via an appropriate choice of the free-
design controller parameters λ0 and λ1. Then, the control law from equation (6.133)
guarantees the exponential stability of the transformed controlled SIRS model from
equations (6.131)-(6.132).
Moreover, the normalized SIRS model from (6.125)-(6.127) has the following proper-
ties: i(t), s(t)i(t) and s(t) + r(t) are bounded for all time, i(t) → 0, s(t) + r(t) → 1
and s(t)i(t)→ 0 exponentially as t→∞, and i(t) = o (1/s(t)).
Proof.
The dynamics of the normalized controlled SIRS model from equation (6.134) can be
equivalently written with the state equation from (6.136) and the output equation
y(t) = Cx̄(t), where C = [1 0], by taking into account that y(t) = ī(t) and ẏ(t) = s̄(t).
The initial condition x̄(0) = [̄i(0)s̄(0)]T in such a realization is bounded, since it is
related to x(0) via the coordinate transformation from equation (6.130), and x(0)
is bounded. Such a controlled model is exponentially stable since the eigenvalues of
the matrix A are the roots p1 and p2 of P (s), which are assumed to be in the open
left-half complex plane. Then, the state vector x̄(t) exponentially converges to zero
as t → ∞, while being bounded for all time. It implies that i(t) is bounded for
all time and converges exponentially to zero as t → ∞ from the boundedness and
exponential convergence to zero of x̄(t) as t→∞, since i(t) = ī(t). Furthermore, the
boundedness of s(t) + r(t) for all time and its exponential convergence to unity as
t→∞ are derived from the boundedness of i(t), the exponential convergence to zero
of i(t) as t→∞ and the fact that i(t) + s(t) + r(t) = 1 ∀t ∈ R0+ .
Finally, from the second equation of (6.130), it follows that i(t)s(t) is bounded and
it exponentially converges to zero as t → ∞ from the boundedness and exponential
convergence to zero of i(t) and x̄(t) as t→∞. The facts that i(t)→ 0 and s(t)i(t)→ 0
as t→∞ imply directly that i(t) = o (1/s(t)).

Proposition 6.30. Assume that the parameters and the initial condition of a SIRS
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epidemic model describing the propagation of an epidemic disease satisfy that:

N(0) > 0 ; β > max{ν + γ, 2ργ} ; 0 <
ν + γ(1− ρi(0))

β
< s(0) ≤ 1

0 ≤ i(0) < min{β − ν − γ
β − ργ

,
(β − ν − γ) (ν + ω)

(β − ργ)(ν + γ + ω)− ργν
} < 1 (6.138)

If a vaccination strategy based on the control law from equation (6.133) with the tuning
parameters λ0 and λ1 chosen such that the poles p1 and p2 of the controlled normalized
system are reals and satisfy:

− (ν + γ(1− ρεi(0))) < p1 < min{0, µ− ν} ;

p2 =
1

ε− 1
(εp1 + ν + γ − βs(0)− ργi(0)) < p1 (6.139)

for some real parameter ε ∈ (1, εmax) where the upper bound is given by:

εmax = min{ ν + γ

ργi(0)
,
βs(0) + ργi(0)

p1 + ν + γ
, ε̄1(p1), ε̄2(p1)} (6.140)

with:

ε̄1(p1) = {
(βs(0)+ργi(0)−ν−γ)p1−g1(·)

p2
1−g1(·) ; if p2

1 < g1

∞ ; otherwise;
(6.141)

ε̄2(p1) = {
g2(·)(βs(0)+ργi(0)−ν−γ)

g2(·)p1+(βs(0)+ργi(0)−ν−γ−p1)g3(·)i(0)
; if p1 > −g3(·)i(0)(βs(0)+ργi(0)−ν−γ)

g2(·)−g3(·)i(0)

∞ otherwise

where

g1(β, ν, γ, ρ) = β(β − ν − 2ργ) + ργ (ν + γ)

g2(β, ν, γ, ρ) = (β − ν − γ) (ν + ω)

g3(β, ν, γ, ρ) = (β − ργ) (ν + γ + ω)− ργν

then:

i) The normalized populations are non-negative ∀t ∈ R0+, i.e., 0 ≤ i(t) ≤ 1, 0 ≤
s(t) ≤ 1 and 0 ≤ r(t) ≤ 1, ∀t ∈ R0+,

ii) the populations I(t), S(t), R(t) and N(t) are non-negative ∀t ∈ R0+,

iii) the epidemics is eradicated from the population, i.e., I(t) tends asymptotically to
zero as t→∞ and

iv) the vaccination control function is non-negative ∀t ∈ R0+, i.e., u(t) = V (t) ≥
0 ∀t ∈ R0+.

Proof.
i) The dynamics of the normalized controlled SIRS model from (6.134) can be equiv-
alently written with the state equation (6.136) and the output equation y(t) = Cx̄(t),
where C = [1 0], by taking into account that y(t) = ī(t) and ẏ(t) = s̄(t). From such
realization and taking into account the first equation (6.130) it follows that:

i(t) = ī(t) = y(t) = c1e
p1t + c2e

p2t (6.142)
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∀t ∈ R0+ for some constants c1 and c2 being dependent on the initial conditions
y(0) = ī(0) and ẏ(0) = s̄(0), and where p1 and p2 denote the eigenvalues of A,
i.e., the roots of the characteristic polynomial P (s) = s2 + λ1s + λ0, which may be
fixed to desired values by appropriately adjusting the control parameters λ1 and λ0.
The values ī(0) and s̄(0) are related to the initial conditions of the normalized SIRS
model in its original realization, i.e., in the state space defined by x(t) = [i(t) s(t)]T

via equation (6.130). In this way, the constants c1 and c2 can be obtained by solving
the following set of linear equations:

y(0) = ī(0) = c1 + c2 = i(0); (6.143)
ẏ(0) = s̄(0) = c1p1 + c2p2 = −(ν + γ)i(0) + βs(0)i(0) + ργi2(0)

where equations (6.130) and (6.142) have been used. One obtains directly from equa-
tion (6.143) and by taking into account the assignment of p2 in (6.139) that:

c1 =
βs(0)i(0) + ργi2(0)− (p2 + ν + γ) i(0)

p1 − p2

= εi(0) , c2 = i(0)− c1 = (1− ε) i(0)

(6.144)

Then, it follows from equations (6.142) and (6.144) that:

i(t) = εi(0)
(
ep1t − ep2t

)
+ i(0)ep2t ≥ 0 ∀t ∈ R0+ (6.145)

since ep1t − ep2t ≥ 0 ∀t ∈ R0+ as the constraints from equations (6.138)-(6.140) says
that p2 < p1 < 0. From equations (6.130), (6.142), (6.144) and the facts that s̄(t) =
ẏ(t) and 0 ≤ i(t) ≤ εi(0)ep1t, which implies that 0 ≤ i2(t) ≤ ε2i2(0)e2p1t ≤ ε2i2(0)ep1t

since p1 < 0, it follows that:

βs(t)i(t) = s̄(t) + (ν + γ) i(t)− ργi2(t) ≥ εi(0) (p1 + ν + γ − ργεi(0)) ep1t

+ (1− ε) i(0) (p2 + ν + γ) ep2t ≥ 0 (6.146)

∀t ∈ R0+ , since p1 + ν + γ − ργεi(0) ≥ 0 from equation (6.139), ε > 1 and:

p2 + ν + γ =
ε (p1 + ν + γ)− βs(0)− ργi(0)

ε− 1
< 0 (6.147)

by taking into account equation (6.139) and the fact that ε < βs(0)+ργi(0)
p1+ν+γ

from equation
(6.140). The fact that i(t) ≥ 0 ∀t ∈ R0+ and equation (6.146) implies that s(t) ≥
0 ∀t ∈ R0+ , since β > 0. From the fact that i(t) + s(t) + r(t) = 1 ∀t ∈ R0+ and
equation (6.130), it follows that:

r(t) = 1− i(t)− s(t) =
(β − ν − γ) i(t)− (β − ργ) i2(t)− s̄(t)

βi(t)
(6.148)

∀t ∈ R0+ , and then:

βi(t)r(t) = (β − ν − γ) i(0)
(
εep1t + (1− ε)ep2t

)
(6.149)

− (β − ργ)i2(0)
(
εep1t + (1− ε)ep2t

)2 − i(0)
(
p1εe

p1t + p2(1− ε)ep2t
)
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∀t ∈ R0+ by taking into account equations (6.142), (6.144) and that s̄(t) = d
dt

(i(t)).
By introducing the expression from equation (6.139) for p2 in (6.149), one obtains
that:

βi(t)r(t) = f1(t)− f2(t)− f3(t) (6.150)

t ∀t ∈ R0+ where:

f1(t) = ε (β − ν − γ − p1) i(0)ep1t

f2(t) = ((ε− 1)β + βs(0) + ργi(0)− ε(ν + γ + p1)) i(0)ep2t

f3(t) = (β − ργ)i2(0)
(
εep1t + (1− ε)ep2t

)2 (6.151)

Note that fi(t) ≥ 0 ∀t ∈ R0+ , for i ∈ {1, 2, 3}, from equations (6.138)-(6.140), and
that all of them are monotone decreasing functions which exponentially decrease to
zero as time tends to infinity since p2 < p1 < 0. Moreover, both f2 and f3 decrease
faster than f1 so that the initial constraint f1(0) − f2(0) − f3(0) = βi(0)r(0) ≥ 0
implies that f1(t)− f2(t)− f3(t) = βi(t)r(t) ≥ 0 ∀t ∈ R0+ . Then, r(t) ≥ 0 ∀t ∈ R0+

is deduced from the fact that i(t) ≥ 0∀t ∈ R0+ as it was previously proven. Finally,
the facts that i(t) ≥ 0, r(t) ≥ 0, s(t) ≥ 0 and i(t) + r(t) + s(t) = 1 ∀t ∈ R0+ directly
imply that 0 ≤ i(t) ≤ 1, 0 ≤ s(t) ≤ 1 and 0 ≤ r(t) ≤ 1 ∀t ∈ R0+ .
ii) From equation (6.123) it follows that:

Ṅ(t)

N(t)
= ν − µ− ργi(t) → d[ln (N(t))] = (ν − µ− ργi(t)) dt

→ N(t) = N(0)e(ν−µ)t−ργ
∫ t
0 i(τ)dτ (6.152)

so the total population N(t) ≥ 0 ∀t ∈ R0+ since N(0) > 0. Then, 0 ≤ I(t) ≤ N(t),
0 ≤ S(t) ≤ N(t) and 0 ≤ R(t) ≤ N(t) ∀t ∈ R0+ from equation (6.124) taking into
account that 0 ≤ i(t) ≤ 1, 0 ≤ s(t) ≤ 1 and 0 ≤ r(t) ≤ 1 ∀t ∈ R0+ .
iii) From equations (6.124), (6.142) and (6.152) it follows that:

I(t) = N(0)i(0)
(
εep1t + (1− ε)ep2t

)
(6.153)

· exp

{
(ν − µ) t− ργi(0)

(
ε

p1

(ep1t − 1) +
1− ε
p2

(ep2t − 1)

)}
∀t ∈ R0+

and then:

lim
t→∞
{I(t)} = N(0)i(0)e

ργi(0)
ε(p2−p1)+p1

p1p2 lim
t→∞
{
(
εep1t + (1− ε)ep2t

)
e(ν−µ)t} (6.154)

As a consequence, the infected population tends exponentially to zero as time tends
to infinity, and then the infection is eradicated from the host population, since p2 <
p1 < 0 and p1 < µ− ν from equation (6.139).
iv) The control law from equation (6.133) can be equivalently written as:

u(t) =
φ (x̄(t)) + λ0ī(t) + λ1s̄(t)

βνī(t)
(6.155)
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in the state space defined by x̄(t) = [̄i(t) s̄(t)]T . One can obtain by direct calculations,
and taking into account equation (6.132), that:

u(t) =
1

βνī2(t)

{
(β − ν − γ) (ν + ω) ī2(t)− (ν + ω) ī(t)s̄(t)

−[(β − ργ) (ν + γ + ω)− ργν ]̄i3(t)− (β − 2ργ) s̄(t)̄i2(t)

+s̄2(t) + ργ (β − ργ) ī4 + λ0ī
2(t) + λ1s̄(t)̄i(t)

}
(6.156)

The normalized infected population ī(t) presents a unique maximum value at the time
instant t∗ when ˙̄i(t∗) = s̄∗(t) = 0 as it can be deduced from equation (6.145). Fur-
thermore, from equations (6.130) and (6.138), the fact that ˙̄i(0) = s̄(0) = i(0)[βs(0)+
ργi(0)−ν−γ] > 0 is implied. As a consequence, one knows that s̄(t) > 0 ∀t ∈ [0, t∗)
and s̄(t) ≤ 0 ∀t ∈ [t∗,∞). In the following the proof of the non-negativity of u(t) is
split into two parts. First, when s̄(t) > 0, i.e., ∀t ∈ [0, t∗), one can deduce that:

u(t) ≥ 1

βνī2(t)
{λ0ī

2(t)λ1s̄(t)̄i(t) + s̄2(t)

−[β(β − ν − 2ργ) + ργ(ν + γ)]̄i3(t) + (β − ργ)2ī4(t)} (6.157)

by taking into account that−s̄(t) ≥ (β−ργ)̄i2(t)−(β−ν−γ)̄i(t) from equation (6.148)
and the facts that r(t) ≥ 0, i(t) = ī(t) ≥ 0 ∀t ∈ R0+ and β > 2ργ from equation
(6.138). From equation (6.157), if g1(β, ν, γ, ρ) = β (β − ν − 2ργ) + ργ(ν + γ) ≤ 0
then u(t) > 0 ∀t ∈ [0, t∗). Otherwise, it follows that:

u(t) >
1

βνī2(t)
{[p1p2 − g1(·)]̄i2(t) + λ1s̄(t)̄i(t) + s̄2(t) + (β − ργ)2ī4(t)}

=
1

βνī2(t)

{
[p2

1 − g1(·)]ε− p1[βs(0) + ργi(0)− ν − γ] + g1(·)
ε− 1

ī2(t)

+λ1s̄(t)̄i(t) + s̄2(t) + (β − ργ)2ī4(t)
}

(6.158)

where λ0 = p1p2 and equation (6.139) have been used. From equation (6.158), if
p2

1 ≥ g1(·) then u(t) > 0 ∀t ∈ [0, t∗) since p1 < 0, ε > 1 and βs(0) +ργi(0)−ν−γ > 0
from equation (6.138). Otherwise, from equation (6.158) it follows that:

u(t) >
1

βνī2(t)
{λ1s̄(t)̄i(t) + s̄2(t) + (β − ργ)2ī4(t)} > 0 ∀t ∈ [0, t∗) (6.159)

by using the upper-bound ε̄1(p1) defined in equation (6.141). In summary, u(t) >
0 ∀t ∈ [0, t∗) irrespective of the value of g1(·) and p1 whenever p1 and ε satisfy
equations (6.139) and (6.140).
Now, when s̄(t) ≤ 0, i.e., ∀t ∈ [t∗,∞), from equation (6.156) one obtains that:

u(t) ≥ 1

βνī2(t)
{(β−ν−γ)(ν+ω)̄i2(t)−[(β−ργ)(ν+ω+γ)−ργν ]̄i3(t)+s̄2(t)+λ0ī

2(t)+λ1s̄(t)̄i(t)}

(6.160)

where β > 2ργ from equation (6.138) has been used. By direct calculations, it follows
that:

s̄2(t) + λ0ī
2(t) + λ1s̄(t)̄i(t) = ε(ε− 1)(p1 − p2)2ī2(t)e(p1+p2)t ≥ 0 (6.161)
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∀t ∈ [t∗,∞), where λ0 = p1p2, λ1 = −(p1+p2), ε > 1, equation (6.145) and ˙̄i(t) = s̄(t)
have been used. Then, from equation (6.160):

u(t) ≥ 1

βν
{(β − ν − γ)(ν + ω)− [(β − ργ)(ν + γ + ω)− ργν ]̄i(t)} (6.162)

=
1

βν
[g2(·)− g3(·)̄i(t)] ∀t ∈ [t∗,∞)

where equation (6.141) has been used. If g3(·) ≤ 0 then u(t) ≥ (β−ν−γ)(ν+ω)
βν

> 0 ∀t ∈
[t∗,∞) from equation (6.162) by using the fact that β > ν + γ from equation (6.138).
Otherwise, i.e., if g3(·) > 0 then h(t) = g2(·) − g3(·)̄i(t) reaches its minimum value
at the time instant t∗ when ī(t) = i(t) reaches its maximum value. Such a minimum
value is given by:

h(t∗) = g2(·)−g3(·)i(0)[εep1t∗+(1−ε)ep2t∗ ] = g2(·)−g(·)i(0)ε

(
1− p1

p2

)
ep1t∗ (6.163)

where the fact that ep2t∗ = εp1

(ε−1)p2
ep1t∗ since ˙̄i(t∗) = s̄(t∗) = 0 has been used. From

introducing the relation between p1 and p2 of equation (6.139) in (6.163), one obtains:

h(t∗) ≥ g2(·)− g3(·)i(0)ε
βs(0) + ργi(0)− ν − γ − p1

βs(0) + ργi(0)− ν − γ − εp1

=
p1[g2(·)− g3(·)i(0)]ε

βs(0) + ργi(0)− ν − γ − εp1

(6.164)

+
[βs(0) + ργi(0)− ν − γ]g2(·)− εg3(·)i(0)[βs(0) + ργi(0)− ν − γ]

βs(0) + ργi(0)− ν − γ − εp1

If p1 ≤ g3(·)i(0)[ν+γ−βs(0)−ργi(0)]
g2(·)−g3(·)i(0)

then h(t) ≥ h(t∗) ≥ βs(0)+ργi(0)−ν−γ
βs(0)+ργi(0)−ν−γ−εp1

g2(·) > 0 ∀t ∈
[t∗,∞) for any ε > 1, where the facts that p1 < 0, βs(0) + ργi(0) − ν − γ > 0 and
g2(·) − g3(·)i(0) > 0 from equations (6.138)-(6.139) have been used. Otherwise, i.e.,
if g3(·)i(0)[ν+γ−βs(0)−ργi(0)]

g2(·)−g3(·)i(0)
< p1 < 0, then h(t) ≥ h(t∗) > 0 ∀t ∈ [t∗,∞) from using

the upper-bound ε̄2(p1) defined in equation (6.141) for ε. In summary, u(t) > 0
∀t ∈ [t∗,∞) irrespective of the value of g3(·) whenever p1 and ε satisfy the constraints
in equations (6.139) and (6.140). This fact completes the proof that u(t) > 0 ∀t ∈ R0+

irrespective of the values for g1(·) and g3(·) if p1 and ε satisfy the constraints in
equations (6.139) and (6.140).

Remark 6.31. The constraints in equations (6.138) relative to the initial conditions
and the parameters of the SIRS model are fulfilled for the majority of the epidemic
diseases. On one hand, the disease transmission constant β is usually much higher
than both the birth rate ν and the recovery rate γ so that the constraint about β
in equations (6.138) can be considered. On the other hand, at the beginning of the
infection propagation the number of infected individuals is usually small enough and
the almost population is susceptible so that the conditions in equations (6.138) relative
to i(0) and s(0) are satisfied.
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Remark 6.32. The process to select the desired poles p1 and p2, via a suitable choice
of ε, is the following. First, once one knows or has estimated the values for the
parameters ν, β, ω, ρ and γ corresponding to the propagation of a specific epidemics,
a value for p1 such that − (ν + γ) < p1 < 0 is chosen. Then, the upper bounds in
equations (6.140)-(6.141) for the parameter ε can be computed in order to choose a
value for ε satisfying ε ∈ (1, εmax).

6.10 Simulation results of the SIRS model

An example based on the rabbit hemorrhagic disease in United Kingdom is considered
to illustrate the theoretical results presented in the paper [51]. An initial population
of N(0) = 1000 rabbits is used. Such an epidemics can be described by the SIRS
model from equations (6.120)-(6.123) with the parameter values:

µ = 0.01 days−1, ν = 0.017 days−1

β = 0.936 days−1, ω = 0.0333 days−1

γ = 0.0125 days−1 and ρ = 0.9314

Such values are commonly used in the literature [51], [1] . The main characteristic
of such an infection is its high mortality, note the value of the probability of dying
from the infection (ρ = 0.9314 ) close to 1. The initial conditions for the individual
populations are given by: S(0) = 990, I(0) = 10 and R(0) = 0. Two sets of simulation
results are presented to compare the time evolution of the populations within the SIRS
mathematical model in two different situations, namely:

i) when no vaccination control actions are applied and

ii) when a vaccination based on the described feedback input-output linearization
control technique is applied.

6.10.1 Evolution of the disease without vaccination

The time evolution of the system populations in the free-vaccination case, i.e. if
V (t) = 0 ∀t ∈ R0+ is displayed in Figure 6.20. The population of rabbits disappears
because of the high mortality of the infection as it can be seen in this figure. As a
consequence, a vaccination strategy has to be applied if the eradication of the epi-
demics is required while guaranteeing the persistence of the rabbits.

6.10.2 Epidemics evolution with a feedback control law

First, note that the considered initial condition and the parameters of the SIRS model
for the propagation of the rabbit hemorragic disease satisfy the constraints in equa-
tions (6.138). Then, the control law given by equations (6.133), or equivalently written

170



	
  

0   200 400 600 800 1000
0

200

400

600

800

1.000

Time (days)

To
ta

l a
nd

 p
ar

tia
l p

op
ul

at
io

ns

N(t)
S(t)
I(t)
R(t)

Figure 6.20: Time evolution of the total and partial (susceptible, infected and recov-
ered) populations without vaccination.

as in equation (6.155), can be applied in order to eradicate the epidemics while guar-
anteeing the non-negativity of the populations and the vaccination control function.
The free-design controller parameters λ0 = p1p2 and λ1 = −(p1 + p2), where p1 and
p2 are the desired roots for the characteristic polynomial P (s) associated with the
closed-loop dynamics, are prefixed in the following way. The desired dominant root
p1 is chosen satisfying the constraint − (ν + γ) < p1 < 0, namely, p1 = −ν = −0.017.
Then, the upper bound in equation (6.140) for the value of ε is calculated, namely
εmax = 1.0186.
The theoretical results developed in Section 6.9 prove that a choice of ε ∈ (1 , 1.086)
is sufficient to guarantee the non-negativity of the populations and the vaccination
control function in the controlled SIRS model as well as the eradication of the infec-
tious disease. For such purpose, the value ε = 1.018 is chosen. Such a choice for p1

and ε determines the value for the root p2 by the relation in equation (6.139), namely,
p2 = −50.809. Also, the values λ0 = p1p2 = 0.8638 and λ1 = −(p1 + p2) = 50.826 for
the control law are derived from such a procedure.
The time evolution of the respective populations is displayed in Figures 6.21 and 6.22
while the vaccination control function is shown in Figures 6.23.
The vaccination control action achieves the control objectives as it is seen in Figure
6.21, 6.22 and 6.23. In this sense, the infection is eradicated from the population
since the infected population exponentially converges to zero as Figure 6.21 shows.
Also, all of the partial populations, the whole population and the vaccination control
function are non-negative for all time. Such properties are coherent with the results
proved in proposition 6.30. A consequence of the vaccination control action is that the
total population of the rabbits monotonically grows through time in a fast way, like it
occurs in absence of disease, as it can be seen in Figure 6.22. These simulation results
point out the improvement of the use of a vaccination strategy in order to guarantee
a suitable growth of the rabbit population against a high mortality infectious disease.
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Figure 6.21: Evolution of the infected population with vaccination.

Remark 6.33. The conditions in proposition 6.30 are sufficient but non necessary to
ensure the positivity of the controlled model. Concretely, the upper-bounds ε̄1(p1) and
ε̄2(p1) are sufficient to guarantee the non-negativity of the vaccination function V (t)
for all time. However, such upper-bounds can be relaxed in the current example by
taking into account the results obtained from an exhaustive simulation work. In such
work, the non-negativity of the vaccination control function is maintained for all time
although the value of the free design parameter ε is not smaller than εmax = 1.0186.
In this context, the following section analyzes the influence of the parameter ε in the
controlled system dynamics.

6.10.3 Influence of the control free-design parameter ε in the time evolu-
tion of the disease

Again, the rabbit hemorrhagic disease is considered for this study and the same dom-
inant pole is chosen for the controlled system dynamics, namely, p1 = −ν = −0.017.
Four different values for the parameter ε are considered, namely, ε = 1.018 (which
corresponds to the non-dominant pole of the closed-loop dynamics located in p2 =
−50.809), ε2 = 1.5 (p2 = −1.8455 ), ε3 = 2 (p2 = −0.9313) and ε4 = 5 (p2 = −0.2456)

172



	
  

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

Time (days)

Su
sc

ep
tib

le
, r

ec
ov

er
ed

 a
nd

 to
ta

l p
op

ul
at

io
ns

S(t)
R(t)
N(t)

Figure 6.22: Evolution of the susceptible, recovered and total populations with vac-
cination.

for analyzing the influence of such a parameter, and then the influence of the pole p2

via the relation in equation (6.139) in the controlled system dynamics. Figures 6.24
display the time evolution of the infected and total populations for the four different
values of ε. The infected population increases until it reaches a maximum value and
then it exponentially decreases to zero as time tends to infinity. Moreover, such a
maximum value is smaller and is reached earlier as smaller the parameter ε is. In
this sense, a value for ε > 1 and closed to unity is convenient for a fast eradication
of the infection from the host population. On other hand, the influence of ε in the
time evolution of the total population is less appreciable. The total population expo-
nentially increases in a fast way in all cases. Figures 6.25 display the time evolution
of the vaccination control function for the different values of ε. One can see that the
vaccination control function takes a large value at the initial time instant and then
it decreases until reaching a quasi-stationary regime where its value is maintained
below a small threshold for any of the considered values of ε. The magnitude of
the vaccination control function at such an initial time instant is larger as smaller
the parameter ε is. Moreover, the vaccination control function shows an oscillatory
behavior in the quasi-stationary regime if a value of ε closed to unity (concretely if
ε = ε1) is used while it does not oscillate if ε ≥ 1.5. As a consequence, a value for
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Figure 6.23: Evolution of the vaccination control function in three different time
ranges.

ε large enough so that the maximum of the vaccination control function does not
exceed a prescribed threshold can be interesting in order to minimize the cost of the
treatment of the infection by means of vaccines application. However, a large value of
ε implies a non appropriate time evolution of the infected population as it has been
previously discussed in relation to Figures 6.24. As a consequence, a tradeoff between
the treatment cost and the evolution of the epidemics has to be taken into account
when choosing the value of the parameter ε used to generate the vaccination control
function.
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Figure 6.24: Evolution of the infected and total populations with different values of
the parameter ε used to generate the vaccination function.

6.11 Conclusions

A set of models of diseases spreading over large populations have been established,
based indifferent works on the matter. Vaccination control strategies based on feed-
back input-output linearization, partial stability and observer operators have been
proposed to fight against the propagation of these epidemics within the hosts pop-
ulations. The simulations of the strategies here presented acting on the SEIR and
SIRS epidemic models show the different efficiencies of the possible vaccination cam-
paigns overall, in particular the partial stability provides a meaningful analysis of
the problem since it only focuses on the behavior of some of the variables (infected
and infectious) instead of the complete population. Thus, it can capture the situ-
ation when a natural increase of the population occurs which would not lead to a
global stability property. In addition, a feedback-type vaccination control law has
been designed from the concept of partial stability through adapted Lyapunov-type
methods. Since the Lyapunov function is only set up from the exposed and infectious
subpopulations, its time-derivate does not contain the vaccination function V (t) so
that it has to be indirectly defined through an appropriate definition of a reference
value for the susceptible subpopulation.
These theoretical results are complemented with some simulation results to illustrate
the operation of the control law and its usefulness. The proposed techniques in this
chapter open a new line to design vaccination strategies, where it is not required
that the susceptible subpopulation converge to zero to guarantee the eradication of
the epidemic disease, but just to stay below a prescribed threshold. Also, as not
all the individuals have to be vaccinated, it theoretically provides an economic sav-
ing from other approaches. Future researches in the subject are going to deal with
the combination of this control technique with the design of an observer to estimate
the susceptible and infected populations when their true data are not available as it
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Figure 6.25: Evolution of the vaccination function with different values of the param-
eter ε used to generate the vaccination function

usually occurs in a real situation.
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7

Conclusions, perspectives and future works

The fact that the computation power used in epidemic simulations is not as demand-
ing as in other types of modelization, such as weather prediction or aerodynamic
engineering, proves that this is a not a limiting factor for improving our models.
There is lots of space in that area to grow. However, the main weakness and/or
criticism it can be made to epidemic modelling has always been the lack of good data
supporting the model.
The increase of connectivity and personal data collection, on the human side, and
the increasingly cheaper sensor for monitoring livestock and nature may bring a
change into that. Even though the concerns over the privacy of individuals are
rightly raised, our focus centers on the potential benefits of the data acquisition.
As a remarkable example, the multinational company Google has recently opened
"www.google.com/flutrends" in which the flu activity is linked to the frequency of
appearance of certain key words in their search engine. Given the large number of
people using google, the data sample is big enough and distributed enough to show,
with a good approximation, how many people in that area may be affected by the
disease, with the advantage over other monitoring techniques of being at real-time
and more source over other techniques of vigilance.
Other examples less ethical conflictive include monitoring of the position, tempera-
ture and ph of the digestive tract of a large cattle herd, geo-tagging the movements
and dispersion in big animal migrations. Data provided by this new technological
advances could be the tipping point of disease dynamic research, and improve sig-
nificantly the reaction time when fighting an emerging epidemic. Living up to the
challenges of the upcoming plagues is not only a matter of social responsibility, but
survivalism. Under this situations, the work here presented is a good basis to under-
stand and fight diseases in a world where the flow of data is continuously increasing.
We have included most types of infectious diseases, not categorized in any case by
biological terms, but by the relation of the affected host to the population. A com-
pendium of all the possible interactions made between individuals suffering from an
infectious disease, have been described mathematically, including temporal or per-
manent immune response, a variable population, different mortality, recovery and
infection rate, depending on the chosen characterization. Even more, the counter
measures to the spreading of the disease are also integrated in the models so the dif-
ferent vaccination strategies, being it continuous over time or an action in a specific
moment, are also represented in this models. The equilibrium points deduced from
these models and their stability is analyzed mathematically. After the study through
several simulations of the dynamics over time of these models the conclusions sug-
gest that a vaccination strategy adapted with feedback from the quantity of infected
and infectious individuals can be more efficient in terms of cost vaccines adminis-
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tered over number of infectious people treated. These strategies are compared to the
regular ones, in which there is no outside influence on the rate and/or frequency of
vaccination. So, given the capabilities of these methods, we consider several proposals
to continue with this work in the future:

• To introduce other methods of disease control similar to the ones used to develop
vaccination control, such as culling and quarantine, in which a selection of the
population is retired from the population instead of being immunized.

• To introduce the concept of migration on the models. The importance of the
migration could vary from a simple new parameter representing the introduction
of new individuals in the subpopulations to creating a "metapopulation", which
is a set of populations, each one with their own dynamic, interacts between each
other depending on the spatial analysis of the location of such subpopulations.

• To obtain discrete models based on the given and discussed continuous-time
ones.The simple idea is to approximate the left-hand-sides containing first-order
derivatives by incremental discrete one-step values associated with a running
sampling period. All those models can be analyzed from a point of view of
equilibrium points, their stability properties and local and global asymptotic
stability properties. A further extension would be to consider different kinds
of vaccination laws like constant vaccination or feedback vaccination or even
culling-time vaccination. All the relevant suited stability and positivity proper-
ties can be obtained and evaluated.

• A second kind of discrete models could be got by using zero-order holds, first-
order holds or partial rate corrector holds for vaccination on the continuous-
time models. It turns out that these models are distinct from those of the
above extension proposal since they imply and external control action with a
modified device. For instance, a zero-order hold has the effect of taking a piece-
wise constant vaccination law being constant in-between sampling instants. The
relevant stability and positivity properties can be also discussed for those classes
of models and "ad hoc" vaccination laws can be proposed.

• Comparative studies between those kinds of discrete models and the continuous
ones counterparts can be performed analytically and through numerical simu-
lation. Note that it can be interesting to use those models so as to decrease
computational effort related to their continuous counterparts since the magni-
tude of the sampling period in this kind of application is not very critical so
that it can be chosen rather large, for instance, of the order of days.

• All those discrete models can be revisited and extended in the multi-stage in-
fective context in the guidelines of chapter 5 with a wide comparative study
with the single stage and continuous-time counterparts.

• Generalization of all the above studies to time-varying models with eventual
time-varying infective rate and seasonal migrations.

• The possible existence and characterization of periodic solutions can be also
investigated for those new models for the case when no equilibrium point be
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asymptotically stable, for instance, in the context of some time-varying model
parameterizations or under periodic infective transmission parameter of the
illness.
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APPENDIX A

Solution trajectory of the SVEIRS model

The solution trajectories of the SVEIRS differential model from equations (2.1)-(2.5)
are given below. Equation (2.1) yields:

S(t) = e−
∫ t
0 (b+β I(ξ)

1+ηS(ξ))dξS(0)

+

∫ t

0

e−
∫ t
ξ (b+β

I(κ)
1+ηS(κ))dκ

(
γI (ξ − ω) e−bω + ν (1− Vc)N(ξ) + b

)
dξ (A.1)

Equation (2.2) yields:

V (t) = e−
∫ t
0 (b+δβ I(ξ)

1+ηV (ξ))dξV (0) + νVc

∫ t

0

e−
∫ t
ξ (b+δβ

I(κ)
1+ηV (κ))dκN(ξ)dξ (A.2)

Equation(2.3) is already in integral form. Equation(2.4) yields:

I(t) = e−(γ+b+α)tI(0)

+βe−bτ
∫ t

0
e(γ+b+α)ξ

(
S(ξ − τ)

1 + ηS(ξ − τ)
+

δV (ξ − τ)

1 + ηV (ξ − τ)

)
I (ξ − τ) dξ(A.3)

Equation(2.5) yields:

R(t) = e−bt
[
R(0) +

∫ t

0

ebξ
(
γ1V (ξ) + γI(ξ)− I(ξ − ω)e−bω

)
dξ

]
(A.4)
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APPENDIX B

Disease-free equilibrium stability for sufficiently
small delays with quotient parameterization

The following alternative result to Proposition 2.3 is based on an existence of the
first sufficiently small destabilizing delay size of the linearized system around the
equilibrium, provided that the linearized zero-delay model is asymptotically stable
around the disease-free equilibrium point.
Proposition B.1. Assume that b > ν and

Rp0 = β

(
b− νVc

b− ν + η (b− νVc)
+

δbνVc
(b+ γ1) (b− ν) + ηbνVc

)
1

γ + b+ α
< 1

Then, the SVEIRS epidemic model is locally asymptotically stable around the disease-
free equilibrium point for τ = λω; ∀ω ∈ [0, ω∗), any prefixed λ ∈ R+ and some
ω∗ ∈ R+, if the so-called reproduction number satisfies the following constraint:

Rp(λ, ω
∗) := βe−bλω

∗
(

b− νVc
b− ν + η (b− νVc)

+
δbνVc

(b+ γ1) (b− ν) + ηbνVc

)
1

γ + b+ α
< 1

For any prefixed, (λ, ω) ∈ R2
+, the above property holds for sufficiently small disease

transmission constant that satisfies:

β < ebλω
∗

(λ+ b+ α)

(
b− νVc

b− ν + η (b− νVc)
+

δbνVc
(b+ γ1) (b− ν) + ηbνVc

)−1

Proof.
Consider the linearized system about the disease-free equilibrium point of state vector

x̃(t) :=
(
S̃(t), Ṽ (t), Ẽ(t), Ĩ(t), R̃(t)

)T
characterized in Proposition 2.1 which satisfies

the differential system (2.20) which becomes for x∗(t) = x∗(t− τ) = x∗(t− ω) :

x̃(t) = A∗(t, ω)x̃(t) = (A∗0 + A∗τ + A∗ω)x̃(t); x̃(0) = x̃0 (B.1)

where A∗(τ, ω) = ∂ ˙̃x
∂x̃T

∣∣∣
(S∗,V ∗,0,0,R∗)T

is the Jacobian matrix of equations (2.1) (2.5)

at the disease-free equilibrium point. Define the delay quotient λ = τ/ω for ω 6= 0,
resulting in λ = ∞ if ω = 0 and τ 6= 0, with such a definition modified as λ = 0 if
τ = ω = 0. Then, there is a bijective mapping from the Jacobian matrix A∗(τ, ω) to
A∗(λ, ω), for a such a definition of λ, for any triple (τ, ω, λ) ∈ R3

0+ where:

A∗(λ, ω) :=

(1− Vc) ν − b (1− Vc) ν (1− Vc) ν (1− Vc) ν − βS∗

1+ηS∗ + γe−bω (1− Vc) ν
νVc ν − (b+ γ1) νVc νVc − δβV ∗

1+ηV ∗ νVc

0 0 −b β
(
1− e−bω

) (
S∗

1+ηS∗ + δV ∗

1+ηV ∗

)
0

0 0 0 βe−bλω
(

S∗

1+ηS∗ + δV ∗

1+ηV ∗

)
− (γ + b+ α) 0

0 γ1 0 1− e−bωγ −b


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The eigenvalues of A∗(λ, ω) are:

(−b,−b,−(b+ γ1), ν − b,

βe−bλω
(

(b− νVc)
b− ν + η (b− νVc)

+
δbνVc

(b+ γ1) (b− ν) + ηbνVc

)
− (γ + b+ α)

)
Assume that is a stability matrix so that the above matrix has eigenvalues of negative
real parts, i.e. b > ν, and

Rp(λ, ω) := βe−bλω
(

b− νVc
b− ν + η (b− νVc)

+
δbνVc

(b+ γ1) (b− ν) + ηbνVc

)
1

γ + b+ α
< 1

Thus the linearized system about the disease-free equilibrium is asymptotically stable
and the nonlinear one is locally asymptotically stable for zero delays ω = 0, τ = λω =
0 (λ = 0). By continuity arguments of the eigenvalues with respect to the parameters,
for any prefixed λ ∈ R+, there exist ω∗ ∈ R+ and τ ∗ = λω∗ ∈ R+ such that the
linearized system about the disease-free equilibrium is asymptotically stable and also
the nonlinear one is locally asymptotically stable for τ = λω; ∀ω ∈ [0, ω∗), that is if
b > ν and the reproduction number

Rp(λ, ω
∗) :=

βe−bλω
∗

γ + b+ α

(
b− νVc

b− ν + η (b− νVc)
+

δbνVc
(b+ γ1) (b− ν) + ηbνVc

)
< 1

If Rp(λ, ω
∗) ≥ 1 then the linearized system is either critically stable or unstable.

Remark B.2.
Note that for small model delays, the disease- free equilibrium stability margin de-
creases as the transmission constant increases for a given vaccination term. However,
the modification of the value of the vaccination effort to a new appropriate value can
compensate a certain increase of the transmission constant to still keep the disease-free
equilibrium point stability.
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APPENDIX C

Allocation of a unique endemic equilibrium point
for the vaccination-free case Vc = 0

This appendix contains the location of the endemic equilibrium points in the special
case corresponding to Vc = 0 so that equation (2.7) implies V ∗ = 0. Furthermore,
equation (2.9) yields for the endemic point:

βe−bτ

γ + b+ α

(
S∗

1 + ηS∗

)
= 1 (C.1)

Then the value of S∗ can be obtained:

S∗ =
γ + b+ α

βe−bτ − (γ + b+ α) η
(C.2)

In order to obtain a positive value for S∗ the constraint β > ηebτ (γ + b+ α) must
be satisfied which is the one required in proposition 2.5(i) for the presence of an
endemic equilibrium point. The remaining variables can be deduced from equations
(2.6), (2.8) and (2.10) by using the value of the total population in the equilibrium
is the sum of all partial populations at such an equilibrium point. Hence, the total
population in the equilibrium is obtained by zeroing the left-hand side of equation
(2.77), i.e.:

0 = ν − bN∗ + b− αI∗ + β
S∗I∗

1 + ηS∗
(
e−bτ − e−bω

)
(C.3)

Thus,

N∗ =
b

b− ν
+

1

b− ν

[
β

S∗I∗

1 + ηS∗
(
e−bτ − e−bω

)
− α

]
I∗ (C.4)

=
b

b− ν
+

1

b− ν
[
(γ + b+ α)

(
e−bτ − e−bω

)
− α

]
I∗ (C.5)

On the other hand, equation (2.8) together with (C.2) implies that:

E∗ =
γ + b+ α

b

(
ebτ − eb(τ−ω)

)
I∗ (C.6)

and equation (2.10) becomes

R∗ =
γ

b

(
1− e−bω

)
I∗
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for Vc = 0. The total population is then given using (C.1)-(C.6) by:

N∗ =
b

b− ν
+

1

b− ν
[
(γ + b+ α)

(
1− eb(τ−ω)

)
− α

]
I∗ (C.7)

=
γ + b+ α

βe−bτ − η (γ + b+ α)
+

(γ + b+ α)
(
ebτ − eb(τ−ω)

)
I∗

b

+ I∗ +
γ

b

(
1− e−bω

)
I∗ (C.8)

and the value of I∗ is given by:

I∗ =
(γ + b+ α) b (b− ν)− b2β

(
e−bτ − (γ + b+ α) η

)
(βe−bτ − (γ + b+ α) η) [(ν (1− e−bω)− b) (γ + b+ α) ebτ + ν (b+ γ) + γ (b− ν) e−bω]

(C.9)

Thus, the remaining components of the endemic equilibrium point, which is seen to
be unique, are given by (C.6) and (C.7) by using (C.8):

E∗ =
(γ + b+ α)

(
ebτ − eb(τ−ω)

)
(βe−bτ − (γ + b+ α) η)

×
(γ + b+ α) (b− ν)− b

(
βe−bτ − (γ + b+ α) η

)
[(ν (1− e−bω)− b) (γ + b+ α) ebτ + ν (b+ γ) + γ (b− ν) e−bω]

(C.10)

R∗ =
γ
(
1− e−bω

)
(βe−bτ − (γ + b+ α) η)

×
(γ + b+ α) (b− ν)− b

(
βe−bτ − (γ + b+ α) η

)
[(ν (1− e−bω)− b) (γ + b+ α) ebτ + ν (b+ γ) + γ (b− ν) e−bω]

(C.11)
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APPENDIX D

Periodic disease-free solutions of a generalized
delayed model under impulsive vaccination

Proposition D.1. There is a unique general periodic solution of equations (3.18)-
(3.19) with time period T = T (1, 0) = tv. This solution would be, from Proposition
3.5 (i), that with the smallest time period.
Proof.
Assuming that a generalized periodic solution of equations (3.18)-(3.19) with time
period T (n, 0) = ntv exists, the possible values for n are obtained. In order to
simplify the notation, it is defined the variables for the vaccinated and susceptible
subpopulations within the interval between two consecutive impulses after a large
enough time so that they have reached the periodic regime and the total population
is constant, namely N(t) = N∗dfe. The susceptible and vaccinated subpopulations in
such a situation can be denoted by:

∀{i, r} ∈ N0 , N ∪ {0} , τ ∈ [0, tv)→

Si(τ) , lim
r→∞

S ′(τ + (i+ r)tv)

Vi(τ) , lim
r→∞

V ′(τ + (i+ r)tv)
(D.1)

The periodicity requires that :

Si+n(τ) = Si(τ) , Vi+n(τ) = Vi(τ), ∀τ ∈ [0, tv) (D.2)

Also, the delayed vaccinated subpopulation term of equation (3.18) for ω = ktv +xtv,
where k εNo and xε[0, 1)

⋂
R, can be written as:

Vi(τ − ω) = Vi(τ − ((k + x)tv)) =

{
Vi−(k+1)(τ + (1− x)tv) 0 ≤ τ < xtv

Vi−k(τ − xtv) xtv ≤ τ < tv
(D.3)

and with this equation the susceptible subpopulation dynamics in the periodic state
can be written as:

Ṡi(τ) =


b1 − b2Si(τ) + γ1Vi−(k+1)(τ + (1− x)tv)e

−b2ω

+b3(1− Vc)N∗dfe 0 ≤ τ < xtv

b1 − b2Si(τ) + b3(1− Vc)N∗dfe + γ1Vi−k(τ − xtv)e−b2ω xtv ≤ τ < tv

(D.4)

while the equation for the dynamics of the vaccinated subpopulation is:

V̇i(τ) = −γ1Vi(τ)− b2Vi(τ) + b3VcN
∗
dfe (D.5)
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By solving this equation between two consecutive impulses, one obtains:

Vi(τ) = (Vi(0
+)−V ∗dfe)e−(b2+γ1)τ +V ∗dfe = V ∗dfe(1−e−(b2+γ1)τ )+Vi(0

+)e−(b2+γ1)τ (D.6)

with V ∗dfe defined in equation (3.10). Then, using this result, it is obtained the time-
evolution for the periodic solution of the susceptible subpopulation from (D.4):

Si(τ) =



e−b2(t+ω)
(
V ∗dfe(e

b2t − 1)γ1/b2

+(Vi−(k+1)(0
+)− V ∗dfe)e−(b2+γ1)(τ+(1−x)tv)(1− eγ1τ )

)
+(1− e−b2τ )S∗dfe + e−b2τSi(0

+) 0 ≤ τ < xtv

e−b2(t+ω)
(
(Vi−k(0

+)− V ∗dfe)eb2xtv(1− eγ1(xtv−τ))

+(Vi−(k+1)(0
+)− V ∗dfe)e−(b2+γ1)tv(1−x)(1− e−γ1xtv)

)
(1− e−b2τ )S∗dfe + e−b2τSi(0

+) + e−b2(t+ω)V ∗(eb2t − 1)γ1/b2

)
xtv ≤ τ < tv

(D.7)

with S∗dfe defined in equation (3.9). From the equations of (3.19) and the time evo-
lutions (D.6),(D.7) at τ = tv, it can be described the relation between the different
values of the subpopulations after different impulses as:

Si(0
+) = (1− θ)Si−1(tv)

Si(tv) = aSi(0
+) + bVi−k(0

+) + cVi−(k+1)(0
+) + d

Vi(tv) = Cv0 + Cv1Vi(0
+)

Vi(0
+) = Vi−1(tv) + θSi−1(tv)

(D.8)

being Cv1 = e−(b2+γ1)tv , Cv0 = V ∗dfe(1− Cv1) and a = e−b2tv , b = Cv1e
−b2(ω−xtv)(eγ1tv −

eγ1xtv), c = aCv1e
−b2(ω−xtv)(eγ1xtv−1) and d = (1−a)S∗dfe−(b+c+(1−a)e−b2ωγ1/b2)V ∗dfe.

As is seen in equation (D.2) the relations in equation (D.8) describe a n-cycle. Then,
such equations can be presented in matrix form:

S1(0+)
S2(0+)
..

Sn(0+)

 = (1− θ)R


S1(tv)
S2(tv)
..

Sn(tv)

 (D.9)


S1(tv)
S2(tv)
..

Sn(tv)

 = a


S1(0+)
S2(0+)
..

Sn(0+)

+ bRk


V1(0+)
V2(0+)
..

Vn(0+)



+cRk+1


V1(0+)
V2(0+)
..

Vn(0+)

+


d
d
..
d

 (D.10)
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
V1(0+)
V2(0+)
..

Vn(0+)

 = R




V1(tv)
V2(tv)
..

Vn(tv)

+ θ


S1(tv)
S2(tv)
..

Sn(tv)


 (D.11)


V1(tv)
V2(tv)
..

Vn(tv)

 =


Cv0

Cv0

..

..
Cv0

+ Cv1


V1(0+)
V2(0+)
..

Vn(0+)

 (D.12)

with the row switching matrix R =


0 0 .. 0 1
1 0 .. 0 0
0 1 .. 0 0
.. .. .. .. ..
0 0 .. 1 0

 which satisfies R


1
1
...
1

 =


1
1
..
1

 .

The equations from equations (D.12) and (D.11) are rearranged using equation (D.10),
so it is obtained:

V1(0+)
V2(0+)
..

Vn(0+)

 = R


Cv0

Cv0

..
Cv0

+ Cv1R


V1(0+)
V2(0+)
..

Vn(0+)

+ θR


S1(tv)
S2(tv)
..

Sn(tv)

 (D.13)

= R


Cv0

Cv0

..
Cv0

+ Cv1R


V1(0+)
V2(0+)
..

Vn(0+)



+θR

a


S1(0+)
S2(0+)
..

Sn(0+)

+ Rk(bI + cR)


V1(0+)
V2(0+)
..

Vn(0+)

+


d
d
..
d




Then it is obtained the values of the susceptible subpopulation after the impulsive
time instants in relation to the values of the vaccinated subpopulation at such time
instants:

S1(0+)
S2(0+)
..

Sn(0+)

 =
1

θa

(R−1 − Cv1I− θRk(bI + cR)
)

V1(0+)
V2(0+)
..

Vn(0+)

− (Cv0+θd)


1
1
..
1


 (D.14)

Note that if θ = 1 then, from equation (D.9), it is known that Si(0+) = 0∀i ∈ N,
and it follows from equation (D.14) that:

(Cv0 + d)


1
1
..
1

 =
(
R−1 − Cv1I−Rk(bI + cR)

)
V1(0+)
V2(0+)
..

Vn(0+)

 (D.15)

It is defined a matrix M0 as:

M0 = (Cv0+d)−1 (R−1 − Cv1I−Rk(bI− cR)
)

(D.16)
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Note that the sum of all the elements which compose any row in the matrices Rk,∀k ∈
Z, is equal to 1. Such a fact implies that :

M0


1
1
..
1

 =


m0

m0

..
m0

 (D.17)

being m0 = 1−Cv1−b−c
Cv0+d

. As M0 is row-equivalent to I, it is known from Chapter 3-
[38] that:

∃M−10 →M0
−1M0


1
1
..
1

 =


1
1
..
1

 (D.18)

Then, from equation (D.15) it is obtained:
V1(0+)
V2(0+)
..

Vn(0+)

 = M−1
0


1
1
..
1

 =
1

m0


1
1
..
1

 (D.19)

proving that {Vj(0+) = Vi(0
+), Sj(0

+) = Si(0
+)}, ∀i, j ∈ N, for θ = 1.

If θ 6= 1, then the values of Si(tv) and Vi(tv) can be found from equatinons (D.9) and
(D.12), respectively, and by applying them on equation (D.11) it follows that:

V1(0+)
V2(0+)
..

Vn(0+)

 = R


Cv0

Cv0

..
Cv0

+ Cv1R


V1(0+)
V2(0+)
..

Vn(0+)

+
θ

1-θ


S1(0+)
S2(0+)
..

Sn(0+)

 (D.20)

Then, by applying (D.14) in equation (D.20) it can be obtained:
V1(0+)
V2(0+)
..

Vn(0+)

 =

(
Cv0 −

(
Cv0 + θd

a(1− θ)

))
1
1
..
1

 (D.21)

+

(
Cv1R +

(
R−1 − Cv1I− θRk+1(bR−1 + cI)

a(1− θ)

))
V1(0+)
V2(0+)
..

Vn(0+)


so the values of the vaccinated subpopulation after the impulsive time instants are
defined as:

V1(0+)
V2(0+)
..

Vn(0+)

 =

[
Cv0 −

(
Cv0 + θd

a(1− θ)

)][
I−

(
Cv1R +

(
R−1 − Cv1I− θRk(bI + cR)

a(1− θ)

))]−1


1
1
..
1

 (D.22)

It is defined a matrix M as:

M =

[
Cv0 −

(
Cv0 + θd

a(1− θ)

)]−1 [
I−

(
Cv1R +

(
R−1 − Cv1I− θRk+1(bR−1 + cI)

a(1− θ)

))]
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(D.23)

Note that the sum of all the elements which compose any row in the matrices Rk,∀k ∈
Z, is equal to 1. Such a fact implies that :

M


1
1
..
1

 = m


1
1
..
1

 (D.24)

being m =
(

1− Cv1 − 1−Cv1−θ(b+c)
a(1−θ)

)
/
(
Cv0 −

(
Cv0+θd
a(1−θ)

))
. Since, as in the previous

demonstration, M is row equivalent to I, then it is known from Chapter 3- [38] that
is invertible so that:

∃M−1 →M−1M


1
1
..
1

 =


1
1
..
1

 (D.25)

so the values of the vaccinated subpopulation after the regular impulsive vaccination
instants are:

V1(0+)
V2(0+)
..

Vn(0+)

 = M−1


1
1
..
1

 =
1

m


1
1
..
1

 (D.26)

and, from (D.14), the susceptible subpopulation after such impulsive instants are:
S1(0+)
S2(0+)
..

Sn(0+)

 =
1

aθ

[
1− Cv1 − θ(b+ c)

m
− (Cv0 + θd)

]
1
1
..
1

 (D.27)

In summary, it is established that, either if θ = 1 or θ ∈ (0, 1) the values of the suscep-
tible and vaccinated subpopulations just after any impulsive vaccination instant at the
periodic regime will be the same, i.e : {Si(0+) = Sj(0

+), Vi(0
+) = Vj(0

+)}, ∀i, j ∈ N.
As the time evolutions of the susceptible and the vaccinated subpopulations within the
time period between any two consecutive impulsive vaccination instants depend only
in such initial values (see (D.7) and (D.6)) then {Si(τ) = Sj(τ), Vi(τ) = Vj(τ)},∀τ ∈
[0, tv), ∀j, i ∈ N. The matrices M and M0 are invertible so this solution is unique for
any T (n, 0) = ntv. It can be seen in (3.20) that, if b2 > b3, after a sufficiently large time
t0 the total population reaches a constant value N(t) = N∗ ∀t > t0, so the recovered
subpopulation Ri(τ) = N∗dfe − (Si(τ) + Vi(τ)) must also present the same periodic-
ity that the susceptible and vaccinated subpopulations. Therefore, from equations
(D.26) and (D.27), the solution of the generalized periodic solution of the subsystem
of subpopulations S ′, V ′ and R′ is periodic and present the smallest periodic solution
with time period T (1, 0).
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APPENDIX E

Convergence of the periodic solution coefficients of
a SEIR model

The coefficients {Sn, En, In, Rn} from equation (4.34) are studied as n → ∞. As
the subpopulations at the equilibrium {S∗(t), E∗(t), I∗(t), R∗(t)} and Vc(t), β(t) are
defined real and bounded, from Bessel inequality it is known that

1

T

∫ T

0

‖V (t)‖2 dt ≥
∞∑

n=−∞

‖Vn‖2

1

T

∫ T

0

‖β(t)‖2 dt ≥
∞∑

n=−∞

‖βn‖2

and

1

T

∫ T

0

‖{S∗, E∗, I∗, R∗}(t)‖2 dt ≥
∞∑

n=−∞

‖{Sn, En, In, Rn}‖2

so it is deduced that the coefficients for the vaccination and disease transmission
rate and all the subpopulations must tend to zero as |n| tends to infinity: Then, as
lim
n→∞

Sn = 0, lim
n→∞

En = 0, lim
n→∞

In = 0 and lim
n→∞

Rn = 0, it is deduced from equation
(4.37) and (4.36) that for all n:

Pn ≤ max{Si}
−∞<i<∞

∞∑
j=−∞

Ii = S0I
∗(0)

Qn ≤ max{Pi}
−∞<i<∞

∞∑
j=−∞

βi ≤ S0I
∗(0)β(0)

so from equation (4.34):

lim
n→∞

|Sn| ≤ lim
n→∞

b3 |Vn|
ρn

+
|Qn|
ρn
≤ lim

n→∞

S0I
∗(0)β(0)

ρn
= 0

lim
n→∞

|In| = lim
n→∞

βκ |Pn|
(ρn)2

≤ lim
n→∞

βκS0I
∗(0)

(ρn)2
= 0
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So, as the for Pn

lim
n→∞

Pn = lim
n→∞

∞∑
j=−∞

Sn−jIj

= lim
n→∞

InS0 + 2Re

[
∞∑
j=1

SjIn−j

]

= 2 lim
n→∞

Re

[
n/2−1∑
j=1

SjIn−j +
∞∑

j=n/2

SjIn−j

]
+ lim

n→∞
InS0

≤ 2 lim
n→∞

Re

[
In/2

n/2−1∑
j=1

S−j + Sn/2

∞∑
j=n/2

In/2−j

]
+ lim

n→∞
InS0 = 0

Also, for the Qn from equation (4.36) it is deduced :

lim
n→∞

Qn =
∞∑

j=−∞

βjPn−j

= β0 lim
n→∞

Pn + lim
n→∞

2Re

[
n/2−1∑
j=1

βjPn−j +
∞∑

j=n/2

βjPn−j

]

≤ β0 lim
n→∞

Pn + lim
n→∞

2Re

[
Pn/2

n/2−1∑
j=1

βj + βn/2

∞∑
j=n/2

Pn−j

]
= 0
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