Thermal stability and crystallochemical analysis for Co ${ }^{\text {II }}$-based coordination polymers with TPP and TPPS porphyrins

Arkaitz Fidalgo-Marijuan, ${ }^{a}$ Gotzone Barandika, ${ }^{*}$ Begoña Bazán, ${ }^{a}$ Miren-Karmele Urtiaga ${ }^{a}$ and María Isabel Arriortua ${ }^{a}$

${ }_{5}$ Received (in $X X X, X X X$) Xth $X X X X X X X X X$ 20XX, Accepted Xth $X X X X X X X X X$ 20XX
DOI: 10.1039/b000000x

Abstract

Two new CoP-bipy compounds have been synthesised and characterised, where P is TPP for compound $\mathbf{1}$ (TPP = meso-tetraphenylporphyrin) and TPPS for compound 2 (TPPS = meso-tetraphenylporphinetetrasulfonic acid tetrasodium salt), and bipy is $4,4^{\prime}$-bipyridine. Compound $\mathbf{1}$ consists of 1D polymers ${ }_{10}$ packed in a network where isolated porphyrin units are immobilized by an extended π-bond system. On the other hand, as we are aware, compound $\mathbf{2}$ is the first Co-TPPS compound in literature. It also consists of 1D polymers that are formed by the alternation of two distinct metal centres. These unprecedented polymers are packed forming cavities where crystallization molecules of water are located. The robustness of the hydrogen bond system and a topology based on interpenetrated nets are responsible for ${ }_{15}$ the high thermal stability of compound 2 . Additionally, a crystallochemical study confirmed the existence of a correlation between the degree of ruffled distortion of the porphyrin macrocycle and some selected dihedral angles and distances for $\mathrm{Co}^{\text {II }}$ porphyrins in literature.

Introduction

Metal-organic frameworks (MOFs) have emerged as an ${ }_{20}$ interesting class of porous solids that can be constructed from a variety of molecular complexes ${ }^{1-4}$ and explored for a range of applications in gas storage, ${ }^{5,6}$ compound separation, ${ }^{7,8}$ chemical sensing, ${ }^{9-12}$ nonlinear optics, ${ }^{13}$ biomedical imaging, ${ }^{14-16}$ drug delivery, ${ }^{17-19}$ and heterogeneous catalysis. ${ }^{20-23}$ On the other hand, ${ }_{25}$ it is worth mentioning that facile chemical modification, high thermal and chemical stability allow metalloporphyrins to be remarkable catalysts for numerous reactions. ${ }^{24-26}$ In particular, porous metalloporphyrinic frameworks have great potential to act as heterogeneous catalysts with shape- and size-selectivity. In this
${ }_{30}$ sense, Suslick et al. must be cited as they first demonstrated the catalytic property of a porphyrinic MOF. ${ }^{27}$

In this context, metalloporphyrins are remarkable precursors in supramolecular chemistry, giving rise to a variety of materials because of their unique chemical, physical and biological ${ }_{35}$ properties. ${ }^{28-30}$ In order to enhance the connectivity between metal centres, a secondary ligand can be used in porphyrinic systems. In fact, the Choe group demonstrated that a range of metalloporphyrinic frameworks can be generated by using porphyrin metallo-ligands and bipyridyl molecules. ${ }^{31}$ However, it ${ }_{40}$ must be pointed out that research on the applications of porphyrinic MOFs is just in the initial stage. ${ }^{32}$

Taking into account the above mentioned aspects, this work was focused on the preparation of metalloporphyrin-based coordination networks. Our strategy also includes the use of
${ }_{45}$ different bipyridyl ligands, as they have been observed to produce a variety of porphyrin-based MOFs. ${ }^{33}$ In addition, we have a large experience with these connectors. ${ }^{34-39}$ In this context, we have been exploring CoP-bipy combinations where P is either TPP (TPP=meso-tetraphenylporphyrin) or TPPS (TPPS= meso${ }_{50}$ tetraphenylporphine-tetrasulfonic acid tetrasodium salt), and bipy is $4,4^{\prime}$-bipyridine. It is worth mentioning that just four crystalline compounds have been reported for TPPS-based metalloporphyrins, ${ }^{40-42}$ and none of them has cobalt. On the other hand, even if the number of TPP-based metalloporphyrins is
${ }_{55}$ higher, the number of Co-based compounds exhibiting extended networks is also significantly low. ${ }^{43,44}$

Thus, the work herein presented consists of the synthesis and characterisation of two new CoP-bipy compounds where the metal ion is $\mathrm{Co}^{\mathrm{II}}$ and P is TPP for compound $\mathbf{1}$, and TPPS for 60 compound 2. Both of them have been structurally characterised by single-crystal X-ray diffraction (XRD) and IR and EPR spectroscopies. Thermal stability has been explored by means of thermogravimetry (TGA), and X-ray thermodiffractometry (TDX).
65 Distortion of macrocycles is biologically relevant ${ }^{45}$ and influences physical ${ }^{46,47}$ and chemical ${ }^{48,49}$ properties of porphyrin complexes. In this sense, we have also analysed the out-of-plane displacement of porphyrin backbones for both compounds. In order to contextualise this analysis the study was extended to all
${ }_{70}$ the $\mathrm{Co}^{\text {II }}$ porphyrins found in the CSD. A similar study has been previously reported for $\mathrm{Co}^{\text {IIII }}$ porphyrins. ${ }^{50}$

Experimental section

General

All solvents and chemicals were used as received from reliable commercial sources. The reagents meso-tetraphenyl-porphine 5 cobalt (II) (CoTPP), meso-tetraphenyl porphine-4,4',4",4"'tetrasulfonic acid tetrasodium salt (TPPS), Cobalt (II) nitrate hexahydrate 99% and 4,4'-bipyridine 98% (bipy) and the solvent N, N-dimethylformamide (DMF) 99.8% were purchased from Sigma-Aldrich Co.; ethanol absolute was purchased from ${ }_{10}$ Panreac.

Synthesis of compounds 1 and 2

[CoTPP(bipy)]•([CoTPP]) $\mathbf{0 . 2 2} \cdot \mathbf{(T P P})_{0.78} \quad$ (1). meso-tetraphenyl-porphine cobalt (II) $(6.7 \mathrm{mg}, 0.01 \mathrm{mmol}), 4,4^{\prime}$ bipyridine ($9.4 \mathrm{mg}, 0.06 \mathrm{mmol}$) and $40 \mu \mathrm{~L} \mathrm{NaOH}$ (3M) were 15 added to a mixture of DMF (3 mL) and ethanol (1 mL) in a small capped vial, sonicated to ensure homogeneity and heated to 120 ${ }^{\circ} \mathrm{C}$ for 48 h , following by slow cooling to room temperature at 2 ${ }^{\circ} \mathrm{C} / \mathrm{h}$, yielding diffraction quality prismatic dark blue crystals. (Found: C, 79.5(3); H, 4.60(4); N, 10.00(2). Calc. for $\left.{ }_{20} \mathrm{C}_{98} \mathrm{H}_{65.56} \mathrm{Co}_{1.22} \mathrm{~N}_{10}: \mathrm{C}, 80.89 ; \mathrm{H}, 4.54 ; \mathrm{N}, 9.62\right) . v_{\max } / \mathrm{cm}^{-1} 3052$ and $3028\left(\mathrm{C}\left(\mathrm{sp}^{2}\right) \mathrm{H}\right), 1596-1441(\mathrm{CC}), 1349(\mathrm{CN}), 1210$ and 1069 (bipy), 1000 (CoTPP) and 795-700 (CH) (Fig. S1, ESI \dagger).
[CoTPPS $\mathbf{0 . 5}^{\mathbf{5}} \mathbf{(b i p y) (\mathrm { H } _ { 2 } \mathbf { O }) _ { 2 }] \cdot 6 \mathrm { H } _ { 2 } \mathbf { O }}$ (2). meso-tetraphenyl porphine- $4,4^{\prime}, 4^{\prime \prime}, 4^{\prime \prime \prime}$-tetrasulfonic acid tetrasodium salt $(10.2 \mathrm{mg}$, $\left.{ }_{25} 0.01 \mathrm{mmol}\right)$ and $\mathrm{Co}\left(\mathrm{NO}_{3}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O}(5.8 \mathrm{mg}, 0.02 \mathrm{mmol})$ were dissolved in distilled water (10 mL) and the solution was stirred for 30 min . Then, $4,4^{\prime}$-bipyridine ($9.4 \mathrm{mg}, 0.06 \mathrm{mmol}$) was dissolved in hot $\left(70^{\circ} \mathrm{C}\right)$ distilled water $(5 \mathrm{~mL})$ and added to the mixture in a 100 mL CEM EasyPrep microwave vessel. The ${ }_{30}$ mixture was heated by microwave under autogenous pressure at $160^{\circ} \mathrm{C}$ for 2 h , and then cooled naturally to room temperature, yielding diffraction quality prismatic dark blue crystals. (Found: C, $45.8(3) ; \mathrm{H}, 4.47(3) ; \mathrm{N}, 6.89(2) ; \mathrm{S}, 7.80(3)$. Calc. for $\left.\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{CoN}_{4} \mathrm{O}_{14} \mathrm{~S}_{2}: \mathrm{C}, 46.66 ; \mathrm{H}, 4.40 ; \mathrm{N}, 6.80 ; \mathrm{S}, 7.79\right)$. $35 v_{\max } / \mathrm{cm}^{-1} 3397(\mathrm{OH}), 1624-1410(\mathrm{CC}), 1394$ and $1174(\mathrm{SO})$, 1349 (CN), 1208 and 1076 (bipy), 1000 (CoTPPS) and 863-744 (CH) (Fig. S2, ESI \dagger).

Single-crystal X-ray diffraction

Prismatic dark blue single-crystals of compounds $\mathbf{1}$ and 2 with 40 dimensions given in Table 1 were selected under polarizing microscope and mounted on MicroMounts. Single-crystal X-ray diffraction data were collected at 100 K on a SuperNova single source diffractometer with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($\lambda=1.5418 \AA$). The Lorentz-polarization and absorption corrections were made with
45 the diffractometer software, taking into account the size and shape of the crystals. ${ }^{51}$

The structure of compound 1 was solved in the monoclinic C2/c space group with SIR-92 ${ }^{52}$ program, which allowed us to obtain the position of Co atoms, as well as nitrogen and some of ${ }_{50}$ the carbon atoms of the TPP and bipyridine molecules. The refinement of the crystal structure was performed by full matrix least-squares based on F^{2}, using the SHELXL-97 program ${ }^{53}$ obtaining the remaining carbon atoms. Anisotropic thermal parameters were used for all non-hydrogen atoms (Fig. S3, ESI \dagger).
${ }_{55}$ All the hydrogen atoms, connected to the aromatic rings (C-H $0.95 \AA ́$) were fixed geometrically and were refined using a riding
model with common isotropic displacements.
Compound 2 was solved in the tetragonal $I 4_{1} / a$ space group with Superflip ${ }^{54}$ program, which allowed us to obtain the position 60 of Co atoms, as well as nitrogen and some of the carbon atoms of the TPPS and bipyridine molecules. The refinement of the crystal structure was performed by full matrix least-squares based on F^{2}, using the SHELXL-97 program ${ }^{53}$ obtaining the remaining carbon atoms and the oxygen and sulphur atoms of the porphyrin and ${ }_{65}$ water molecules. Anisotropic thermal parameters were used for all non-hydrogen atoms (Fig. S4, ESI \dagger). All the hydrogen atoms, connected to the aromatic rings ($\mathrm{C}-\mathrm{H} 0.95 \AA$) were fixed geometrically and were refined using a riding model with common isotropic displacements. The position of the hydrogen 70 atoms bonded to the coordination water molecule were fixed using DFIX and DANG instructions in the refinement to adjust the $\mathrm{O}-\mathrm{H}$ distance to $0.82 \AA$ and the $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angle to 112°, respectively. All of the crystallization molecules of water for compound 2 were disordered in two groups of three water 75 molecules. The hydrogen atoms of these water molecules were not considered due to the lack of density in the residual density map. Crystal data for both structures are listed in Table 1. Atomic coordinates, anisotropic thermal parameters and hydrogen atom coordinates for both compounds are given in Tables S1, S2, S3, ${ }_{80}$ S4, S5 and S6, ESI \dagger.

Table 1 Details of the crystal data, structural resolution and refinement procedure for $\mathbf{1}$ and $\mathbf{2}$.

	1	2
Formula	$\mathrm{C}_{98} \mathrm{H}_{65.56} \mathrm{Co}_{1.22} \mathrm{~N}_{10}$	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{CoN}_{4} \mathrm{O}_{14} \mathrm{~S}_{2}$
FW, $\mathrm{g} \cdot \mathrm{mol}^{-1}$	1455.06	811.62
a, \AA,	25.1252(4)	17.9776(2)
b, \AA	11.7811(2)	
c, \AA	23.9790(4)	22.3567(3)
β, deg	93.5960(10)	
V, \AA^{3}	7083.9(2)	7225.55(15)
Space group	C2/c	I $41 / a$
Z	4	8
$\rho_{\text {obs }}, \rho_{\text {cal }}, \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.371(6), 1.364	1.488(4), 1.492
$F(000)$	3026	3320
μ, mm^{-1}	2.761	5.445
Crystal size, mm	$0.26 \times 0.19 \times 0.06$	$0.12 \times 0.12 \times 0.021$
Absorption correction	Multi-scan	Analytical
Radiation, λ, \AA	1.54184	1.54184
Temperature, K	100(2)	100(2)
Reflections collected, unique	$\begin{aligned} & 25120,7352 \\ & \left(R_{\text {int }}=0.0405\right) \end{aligned}$	$\begin{aligned} & 23662,3774 \\ & \left(R_{\text {int }}=0.096\right) \end{aligned}$
Limiting indices	$-29<=h<=31$	$-22<=h<=22$
	$-14<=k<=14$	$-14<=k<=22$
	$-30<=l<=23$	$-28<=l<=25$
Refinement method	Full-matrix leastsquares on F^{2}	Full-matrix leastsquares on F^{2}
R1, wR2 [I > $2 \sigma(\mathrm{I})]$	$\begin{aligned} & \mathrm{R} 1=0.0416 \\ & \mathrm{wR} 2=0.1095 \end{aligned}$	$\begin{aligned} & \mathrm{R} 1=0.0669 \\ & \mathrm{wR} 2=0.1845 \end{aligned}$
R1,	$\mathrm{R} 1=0.0438$,	$\mathrm{R} 1=0.0856$,
wR2 (all data)	wR2 $=0.1115$	wR2 $=0.2040$
Goodness of fit on F^{2}	1.056	1.051
Parameters/restraints	504 / 0	274 / 3

Physicochemical characterisation techniques

The IR spectra were collected on a JASCO FT/IR-6100 ${ }_{85}$ spectrometer at room temperature at the range of $4000-400 \mathrm{~cm}^{-1}$, in KBr pellets (1% of the sample). $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and S elemental analyses were measured using a Euro EA 3000 elemental
analyser. Electron paramagnetic resonance (EPR) spectra were measured with a Bruker ESP-300 spectrometer operating at X band and equipped with a nitrogen and helium cryostat.

The thermal analyses were carried out in air atmosphere using 5 a NETZSCH STA 449F3 instrument for compound 1 and SDT 2960 Simultaneous DSC-TGA TA Instruments for 2. A crucible containing approximately 10 mg of sample was heated at $5{ }^{\circ} \mathrm{C}$ $\min ^{-1}$ in the temperature range $30-600^{\circ} \mathrm{C}$. The thermal behaviour was also studied using X-ray thermodiffractometry. A Bruker D8 ${ }_{10}$ Advance Vantec diffractometer ($\mathrm{Cu}-\mathrm{Ka}$ radiation) equipped with a variable-temperature stage (Anton Paar HTK2000) with a Pt sample holder was used in the experiments. The powder patterns were recorded in 2θ steps of 0.0333° in the $5-38^{\circ}$ range, counting for 0.8 s per step and increasing the temperature at $10^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$ ${ }_{15}$ from room temperature to $550^{\circ} \mathrm{C}$.

Results and discussion

Crystal structures

The crystal structure for compound $\mathbf{1}$ consists of 1D polymers extending along the [010] direction where CoTPP units are 20 axially bonded to two bipy ligands resulting in a porous coordination network (Fig. 1a).

b

Fig. 1 View of the structure for compound 1 where the packing of the 1D polymers is observed (a). Detail of the structure showing a single 25 crystallization molecule of TPP connected to four 1D polymers through the π-bonding system (dashed lines) (b). Color codes: Co(1) (TPP chain) in turquoise, $\mathrm{Co}(2)$ (isolated TPP) in purple, N in blue, C (TPP chain) in yellow, C (isolated TPP) in green, C (bipy) in pink. H atoms have been omitted for clarity.

30 Additionally, isolated TPP units are located in the voids (3.4 x $3.4 \AA$) generated by the packing of these chains, due to an
intricate system of π bonds (Fig. 1b). 78% of these isolated porphyrin units are metal-free, while the remaining 22% are metallated, in accordance with the chemical formula obtained by
${ }_{35}$ single crystal X-ray diffraction and elemental analysis $[$ CoTPP(bipy $)] \cdot([\mathrm{CoTPP}])_{0.22} \cdot(\mathrm{TPP})_{0.78}$. Therefore, most of the CoTPP units have lost the metal ion during the synthesis. Each isolated TPP unit is surrounded by four 1D polymers producing a dense network. As observed, there are multiple edge-to-face π -
40 interactions stabilising the crystal structure. These are robust interactions (distances from $2.45 \AA$ to $2.97 \AA$, and angles from 73.96° to 89.16°), that are accompanied by weaker face-to-face ones (centroid-to-centroid distance $4.04 \AA$, and angle is 10.77°). (Table S7, ESI \dagger).
45 The bond distances and angles for $\mathrm{Co}(1)$ and $\mathrm{Co}(2)$ coordination spheres in compound 1 lie among typical values (Table S8, ESI \dagger). It must be pointed out that $\mathrm{Co}(1)$ atom lies on a two-fold axis, and $\mathrm{Co}(2)$ on an inversion centre. As a result, both polyhedra are close to ideal.
${ }_{50}$ Topological features for compound 1 have been analysed by means of the TOPOS software. ${ }^{55}$ The simplification shows the connectivity due to the π-bond system (Fig. S5, ESI \dagger). Due to the nature of these intermolecular interactions no classification of the topology is provided.
55 Considering the isolated molecules of porphyrin in compound 1, it was tested in order to explore its capability as a catalyst for the oxidation of water. Unfortunately, these tests demonstrated no catalytic activity (Fig. S6, ESI \dagger).

Compound 2 has the chemical formula
${ }_{60}\left[\mathrm{CoTPPS}_{0.5}(\right.$ bipy $\left.)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and exhibits some similarities with compound 1. In fact, compound 2 also consists of 1D polymers where CoTPPS units are axially bonded to bipy ligands. However, the extension of the 1D polymers for compound 2 consists of the link between alternating metal centres along the
${ }_{65}$ [001] direction. These links take place through the bipy ligands according to the bipy-CoTPPS-bipy- $\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$ - fashion. From a crystallographic point of view, this is an unprecedented bimetallic chain for this type of systems (Fig. 2).

70 Fig. 2 Detail of the structure for compound 2 showing the extension of the 1D polymers. Color codes: $\mathrm{Co}(1)$ (TPPS) in turquoise, $\mathrm{Co}(2)$ in purple, N in blue, C (TPPS) in yellow, C (bipy) in pink, O in red, S in grey. H atoms have been omitted for clarity.

Compound 2 exhibits a robust system of hydrogen bonds that ${ }_{75}$ reinforce the stability of the framework (Table S9, ESI \dagger). This way, each chain is surrounded by another four, and multiple hydrogen bonds are formed between the coordination molecules of water and the terminal SO_{3} groups of the TPPS molecules.

As observed in Fig. 3, the relative position of the chains give ${ }_{80}$ rise to cavities where crystallisation molecules of water are
located. These molecules form a disordered chain along the [001] direction, reinforcing the robustness of the hydrogen-bond system.

5 Fig. 3 Detail of the structure showing relative position of the chains for compound 2. Crystallisation molecules of water are shown in red. H atoms have been omitted for clarity.

As mentioned below, compound 2 exhibits a remarkable thermal stability that is related to its crystal structure. Therefore, ${ }_{10}$ topological features for compound 2 were analysed by means of the TOPOS software, ${ }^{55}$ revealing a pcu α-Po primitive cubic 6/4/c1 sqc1 net. ${ }^{56}$ As shown in Fig. 4 this consists on a two-fold interpenetrated 6-c nets framework (Point Symbol= $4^{12} .6^{3}$ and Vertex Symbol $=$ 4.4.4.4.4.4.4.4.4.4.4.4.*.*.*).

Fig. 4 Topology of the two-fold interpenetrated net for compound 2.

Distortion of coordination spheres for metal centers

Distortion of coordination polyhedra as been evaluated according to Avnir ${ }^{57,58}$ method, based on the continuous symmetry ${ }_{20}$ measures (CSM), by means of SHAPE program, ${ }^{59}$ and the results can be seen on Table 2.

Table 2 Distortion values calculated for the hexacoordinated and tetracoordinated spheres (calculated by means of SHAPE software).

	Hexacordinate	$S\left(O_{h}\right)$	$S\left(D_{3 h}\right)$
Compound 1	$\operatorname{Co}(1)$	0.68	17.25
Compound 2	$\operatorname{Co}(1)$	0.07	15.76
	$\operatorname{Co}(2)$	0.02	16.33
	Tetracoordinate	$S\left(D_{4 h}\right)$	$S\left(T_{d}\right)$
Compound 1	$\operatorname{Co}(2)$	0.004	33.34
$S=$ symmetry			

$S=$ symmetry
The projection of the as-calculated values on the distortion
${ }_{25}$ diagram 60 can be seen in Fig. 5. As observed, for compound 1 there is a weak Jahn-Teller distortion for Co(1), in fact the axial $\mathrm{Co}(1)-\mathrm{N}(3)$ distance is longer than equatorial ones, and the cis and trans $\mathrm{N}-\mathrm{Co}(1)-\mathrm{N}$ angles go from $89.79(6)$ to $90.21(6)^{\circ}$, and from $179.68(8)$ to $180.00(4)^{\circ}$, respectively. For the ${ }_{30}$ tetracoordinated cobalt centre, the $\mathrm{Co}(2)-\mathrm{N}$ distances go from 2.032(1) to $2.055(1) \AA$ and the cis and trans angles are close to 90 and 180°, respectively. Thus, the distortion values indicate that the coordination geometry is close to an ideal square planar sphere for $\mathrm{Co}(2)$. All bond distances and angles are reported in ${ }_{35}$ Table S10, ESI \dagger.

Fig. 5 Distortion modes diagram of an octahedron. In the upper right is a zoom of the distortion for compound $1 \mathrm{Co}(1)$ octahedra (red circle), and for compound $2 \mathrm{Co}(1)$ (green circle) and $\mathrm{Co}(2)$ (blue circle) spheres.

40 Distortion of coordination polyhedra was also evaluated for compound 2 (Table 2), and the results indicate that, while $\mathrm{Co}(2)$ octahedra is nearly ideal, the $\operatorname{Co}(1)$ sphere exhibits weak axial bending distortion. Both metal atoms lie on a four-fold inversion, where all $\mathrm{Co}(1)-\mathrm{N}$ are equal (1.963(3) \AA). Obviously, the same ${ }_{45}$ occurs for $\mathrm{Co}(2)-\mathrm{O}$ equatorial distances (2.092(3) \AA). On the other hand, cis and trans angles for $\operatorname{Co}(1)$ go from 88.20(7) to $91.80(7)^{\circ}$ and for $176.4(1)$ to 180.0°, respectively. For $\operatorname{Co}(2)$ octahedra these angles vary from $89.24(6)$ to $90.76(6)^{\circ}$ and from $178.05(1)$ to 180.0° resulting in a perfect octahedra (Fig. 2). All ${ }_{50}$ bond distances and angles are reported in Table S11, ESI \dagger.

Distortion of porphyrins

Distortion of macrocycles has been also analysed for compounds 1 and 2. There are six types of distortion defined for non-planar porphyrins: saddle (sad), ruffle (ruf), dome (dom), wavy(x) ${ }_{55}(\operatorname{wav}(\mathrm{x})), \operatorname{wavy}(\mathrm{y})(\operatorname{wav}(\mathrm{y}))$ and propeller (pro).

The out-of-plane distortion of the porphyrin macrocycles was analysed by the normal-coordinate structural decomposition method developed by Shelnutt et al. (NSD). ${ }^{61,62}$

For compound 1 the results indicate a ruffle-type distortion ${ }_{60}\left(r u f, \mathrm{~B}_{1 \mathrm{u}}\right)$ for the coordinated porphyrin, and a slight wavy one (wav $\left.(y),\left[\mathrm{E}_{\mathrm{g}(\mathrm{y}}\right]\right)$) for the crystallisation complex. The contribution of the ruffled porphyrin (1.4813) to the total displacements is 82.5%, while the wavy porphyrin shows a principal contribution of $\operatorname{wav}(y)(-0.1910)$ mixed with a small amount of the $\operatorname{wav}(x)$ ${ }_{65}(0.0884)$ deformation. The contribution of each type is 68.3% and 31.6%, respectively.

In compound 2 the principal distortion corresponds to the ruffled type (1.3203 and 67.8% of the total displacements), but the saddle-type ($s a d, \mathrm{~B}_{2 \mathrm{u}}$) is also observed (0.6261 and 32.2%).

As shown in Fig. 6, for compounds $\mathbf{1}$ and 2, the occurrence of ${ }_{5}$ ruffled-type deformation for the polymeric porphyrins, means that the meso carbons (non-pyrrolic carbon atoms) are alternatively above and below the porphyrin mean plane, while the pyrrole nitrogens are placed on the plane. In compound 2, the saddle contribution is observed by the distribution of the pyrrole 10 rings. In fact, an opposing pair of pyrrole rings tilts up, while the other pair tilts down.

The crystallisation molecule of porphyrin in compound $\mathbf{1}$ shows the two opposing pyrrole rings tilted up and down with respect to the porphyrin mean plane, indicating a wavy distortion. ${ }_{15}$ However, due to the small out-of-plane displacement this porphyrin is nearly planar.

Fig. 6 Out-of-plane displacements (in units of $0.01 \AA$) of the porphyrin core atoms from the mean porphyrin plane (of 24 atom). Co (1) coordinated porphyrin and $\mathrm{Co}(2)$ crystallization porphyrin.

There are some studies in literature exploring the relationships between the ruffle distortion and some structural parameters. However, they are referred to $\mathrm{Co}^{\mathrm{III}}$ compounds.

Cullen et al. ${ }^{63}$ proposed the use of the cis and trans $\mathrm{C}_{\alpha}-\mathrm{N}-\mathrm{N}$ ${ }_{25} \mathrm{C}_{\alpha}$ torsion angles as a quantitative measure of ruffling. Inspired by this work, we have analysed the cis and trans $\mathrm{C}_{\alpha}-\mathrm{N}-\mathrm{N}-\mathrm{C}_{\alpha}$
dihedral angles $\left(\mathrm{C}_{\alpha}\right.$ is a pyrrolic carbon atom bonded to a nitrogen atom) (Fig 7) for our ruffled porphyrins.

$30 \quad$ Fig. 7 Porphyrin macrocycle and nomenclature used. Cis $\mathrm{C}_{\alpha}-\mathrm{N}-\mathrm{N}-\mathrm{C}_{\alpha}$ dihedral angle is shown in bold and trans $\mathrm{C}_{\alpha}-\mathrm{N}-\mathrm{N}-\mathrm{C}_{\alpha}$ dihedral angle in blue.

The average value for cis dihedral angles of $\mathbf{1}\left(31.6^{\circ}(1)\right)$ is higher than for $2\left(28.4^{\circ}(1)\right)$. This is in accordance for the ${ }_{35}$ conclusions for $\mathrm{Co}^{\text {III }}$ compounds, since the higher the cis dihedral angle is, the higher ruffle distortion is expected.

The average value for trans dihedral angles are $145.7^{\circ}(1)$, for $\mathbf{1}$; and $151.6^{\circ}(1)$, for $\mathbf{2}$. Distortion values found for compounds $\mathbf{1}$ and 2 are expected to produce values of $\left(145^{\circ}(1)\right)$ and $\left(148.7^{\circ}(1)\right)$, 40 respectively, for $\mathrm{Co}^{\mathrm{IIII}}$ compounds. ${ }^{63}$ As observed, the prediction for $\mathbf{2}$ is not that good, probably due to the occurrence of saddle distortion. Therefore, conclusions by Cullen et al. seem to be effective for $\mathrm{Co}^{\mathrm{II}}$ compounds.

On the other hand, Imura et al. ${ }^{50}$ found a linear relationship ${ }_{45}$ between the ruffled distortion and the Co- N_{p} distances $\left(\mathrm{N}_{\mathrm{p}}\right.$ are the pyrrolic nitrogen atoms) for $\mathrm{Co}^{\text {III }}$ porphyrins.

Due to the lack of correlation studies for $\mathrm{Co}^{\mathrm{II}}$ compounds, we have performed a search on the Cambridge Structural Database $(\mathrm{CSD})^{64}$ v5.33 to find all the Co porphyrin complexes. This ${ }_{50}$ research indicated the existence of 221 cobalt-based metalloporphyrins, 124 of them containing $\mathrm{Co}^{\text {IIII }}$. We have analysed the remaining $97 \mathrm{Co}^{\mathrm{II}}$ compounds (Fig. 8).

Fig. 8 Out-of-plane distortion distribution for Co " porphyrins.
${ }_{55}$ As observed in Fig. 8 the most typical distortion for $\mathrm{Co}^{\mathrm{II}}$ porphyrins are sad and ruf. As the main distortion observed for compounds $\mathbf{1}$ and $\mathbf{2}$ is the ruffle-type, we have performed a study with the 28 compounds found in literature exhibiting the same type of distortion, to establish the relationship with $\mathrm{Co}-\mathrm{N}_{\mathrm{p}}$ ${ }_{60}$ distances (N_{p} are the pyrrolic nitrogen atoms).

Fig. 9 shows a linear relationship between ruffle distortion and Co- N_{p} distances for $\mathrm{Co}^{\mathrm{II}}$ compounds. As observed for $\mathrm{Co}^{\text {III }}$ compounds, we have also found that the presence of low ruffled distortion leads to longer $\mathrm{Co}-\mathrm{Np}$ distances. In particular, for 5 compounds 1 and 2, with distances of 1.964(1) and $1.963(3) \AA$, respectively, a value of 1 is expected for the distortion. Therefore, real values (1.4813 and 1.3203 , respectively) lie among the typical ones.

10 Fig. 9 Plot of the average $C o^{\prime \prime}-N_{p}$ distance vs. the amount of ruffled (B_{14}) deformation.

Electronic paramagnetic resonance

Electron paramagnetic resonance (EPR) measurements were performed for compounds 1 (Fig. S7, ESI \dagger) and 2. (Fig. S8, $\left.{ }_{15} \mathrm{ESI} \dagger\right)$. The simulation of the EPR spectrum for both compounds gave us the following set of values: $g_{\perp}=2.232$ and $g_{\|}=2.030$ for compound $\mathbf{1}$, and $\mathrm{g}_{1}=5.7, \mathrm{~g}_{2}=3.95$ and $\mathrm{g}_{3}=3.42$ for $\mathbf{2}$. The main signal for compound $\mathbf{1}$ is due to $\operatorname{Co}(1)$ atom, and it is in accordance with an octahedral low-spin $\mathrm{Co}^{\mathrm{II}}$ ion. For compound
${ }_{20} \mathbf{2}$, the signal is the sum of the contribution of both metal centres. The observed value for the sum of the three orthogonal g values ($\mathrm{g}_{\mathrm{s}}=13.07$) is in excellent agreement with the theoretical value near 13 proposed by Abragam and Pryce ${ }^{65}$, in accordance with an octahedral high-spin $\mathrm{Co}^{\mathrm{II}}$.

${ }_{25}$ Thermogravimetry

The thermogravimetric decomposition curve for compound $\mathbf{1}$ shows a two-stage mass loss. The first step occurs between 230$290{ }^{\circ} \mathrm{C}$ with 10.6% weight loss, and the second one from $410^{\circ} \mathrm{C}$ to $500{ }^{\circ} \mathrm{C}$ with 81% weight loss. These values have been 30 attributed to bipyridine (10.7%) and to isolated and polymeric TPP units (84.3%) (Fig. S9, ESI \dagger). The residue has been identified by X-ray powder diffraction as $\mathrm{Co}_{3} \mathrm{O}_{4}$ [S.G. Fd-3m, a $=8.11 \AA] .{ }^{66}$

Compound 2 shows a two-stage mass loss. The first of them ${ }_{35}$ starting at RT and finishing at about $370^{\circ} \mathrm{C}$, is a smooth decrease of mass, and has been assigned to the removal of the crystallisation molecules of water (10% weight loss). On the contrary, the second one (approximately 81%) is abrupt, and corresponds to the removal of the coordination molecules of
40 water, and both organic ligands (Fig. S10, ESI \dagger). The calcination product was also $\mathrm{Co}_{3} \mathrm{O}_{4}$.

X-ray thermodiffractometry (TDX)

The thermal behaviour of compounds $\mathbf{1}$ and $\mathbf{2}$ was also studied by

X-ray thermodiffractometry (Fig. 10a). Compound 1 is thermally 45 stable until $190{ }^{\circ} \mathrm{C}$. At higher temperatures, the removal of the bipy ligands provokes the formation of CoTPP^{67} (Fig. $\mathrm{S} 11, \mathrm{ESI} \dagger$). This phase is stable until $370^{\circ} \mathrm{C}$, temperature at which $\mathrm{Co}_{3} \mathrm{O}_{4}$ is formed.

The thermal stability of compound 2 is remarkably high. In ${ }_{50}$ fact, TDX analysis reveals that it is stable up to $370^{\circ} \mathrm{C}$ (Fig. 10b). Above this temperature an amorphous phase is formed. The robust hydrogen bond network and the fact that the structure is two-fold interpenetrated are thought to be responsible for the high thermal stability of this compound.

55
Fig. 10 Thermodiffractogram of compound $\mathbf{1}$ (a) and for compound 2 (b).

Conclusions

TPP and TPPS porphyrins produce 1D polymers with $\mathrm{Co}^{\mathrm{II}}$. Stabilisation of the network for Co-TPP compound takes place ${ }_{60}$ through crystallisation metalloporphyrins and molecules of porphyrin, via an extended π-bond system. For Co-TPPS compound an extended hydrogen bond system along with an intricate topology yields the first compound with this metalloporphyrin combination. In addition, this Co-TPPS ${ }_{65}$ compound exhibits an unprecedented bimetallic chain and shows a remarkably high thermal stability.

For both compounds, the distortion of the porphyrins has been observed to be ruffled-type. A crystallochemical study confirmed the existence of a correlation between the degree of ruffled ${ }_{70}$ distortion and $\mathrm{Co}-\mathrm{N}_{\mathrm{p}}$ distances not only for both compounds, but also for all the $\mathrm{Co}^{\mathrm{II}}$ porphyrins found in the CSD.

Acknowledgements

This work has been financially supported by the "Ministerio de Ciencia e Innovación" (MAT2010-15375) and the "Gobierno ${ }_{75}$ Vasco" (Basque University System Research Groups, IT-630-13) which we gratefully acknowledge. SGIker (UPV/EHU) technical support (MEC, GV/EJ, European Social Fund) is gratefully acknowledged. The authors like to thank Dr. L. Lezama
(UPV/EHU) for her help in the interpretation of EPR measurements and Prof. A. Llobet (ICIQ), Dr. X. Sala (UAB) and J. Aguiló (UAB) for the catalytic tests. A. Fidalgo-Marijuan thanks to the UPV/EHU fellowships.

${ }_{5}$ Notes and references

${ }^{a}$ Departamento de Mineralogía y Petrología, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain. Fax:+34 946013 500; Tel: +34 946015 984; E-mail: arkaitz.fidalgo@ehu.es, bego.bazan@ehu.es, karmele.urtiaga@ehu.es, 10 maribel.arriortua@ehu.es
${ }^{b}$ Departamento de Química Inorgánica, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain. Fax: +34 945013 014; Tel: +34 945013 080; E-mail: gotzone.barandika@ehu.es
$15 \dagger$ Electronic Supplementary Information (ESI) available: Crystallographic data, IR, TGA, EPR, PXRD. CCDC 890986 and 890987. See DOI: 10.1039/b000000x/

1. J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38, 1213.

20 2. O. K. Farha and J. T. Hupp, Acc. Chem. Res., 2010, 43, 1166.
3. K. K. Tanabe and S. M. Cohen, Chem. Soc. Rev., 2011, 40, 498.
4. A. Fidalgo-Marijuan, G. Barandika, B. Bazan, M. K. Urtiaga and M. I. Arriortua, Polyhedron, 2011, 30, 2711.
5. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe

25 and O. M. Yaghi, Science, 2002, 295, 469.
6. L. J. Murray, M. Dinca and J. R. Long, Chem. Soc. Rev., 2009, 38, 1294.
7. J.-R. Li, R. J. Kuppler and H.-C. Zhou, Chem. Soc. Rev., 2009, 38, 1477.

30 8. S.-C. Xiang, Z. Zhang, C.-G. Zhao, K. Hong, X. Zhao, D.-R. Ding, M.-H. Xie, C.-D. Wu, C. Das Madhab, R. Gill, K. M. Thomas and B. Chen, Nat Commun, 2011, 2, 204.
9. M. D. Allendorf, R. J. T. Houk, L. Andruszkiewicz, A. A. Talin, J. Pikarsky, A. Choudhury, K. A. Gall and P. J. Hesketh, J. Am. Chem.
35 Soc., 2008, 130, 14404.
10. A. Lan, K. Li, H. Wu, D. H. Olson, T. J. Emge, W. Ki, M. Hong and J. Li, Angew. Chem., Int. Ed., 2009, 48, 2334.
11. Z. Xie, L. Ma, K. E. de Krafft, A. Jin and W. Lin, J. Am. Chem. Soc., 2010, 132, 922.
40 12. G. Lu and J. T. Hupp, J. Am. Chem. Soc., 2010, 132, 7832.
13. O. R. Evans and W. Lin, Acc. Chem. Res., 2002, 35, 511.
14. K. E. deKrafft, Z. Xie, G. Cao, S. Tran, L. Ma, O. Z. Zhou and W. Lin, Angew. Chem., Int. Ed., 2009, 48, 9901.
15. J. Della Rocca and W. Lin, Eur. J. Inorg. Chem., 2010, 3725.
${ }_{45}$ 16. D. Liu, R. C. Huxford and W. Lin, Angew. Chem., Int. Ed., 2011, 50, 3696.
17. P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, J.-S. Chang, Y. K. Hwang, V. Marsaud, P.-N. Bories, L. Cynober, S. Gil, G. Ferey, P.
$50 \quad$ Couvreur and R. Gref, Nat. Mater., 2010, 9, 172.
18. W. Lin, J. W. Rieter and K. M. L. Taylor, Angew. Chem., Int. Ed., 2009, 48, 650.
19. W. J. Rieter, K. M. Pott, K. M. L. Taylor and W. Lin, J. Am. Chem. Soc., 2008, 130, 11584.
55 20. L. Ma, C. Abney and W. Lin, Chem. Soc. Rev., 2009, 38, 1248.
21. L. Ma, J. M. Falkowski, C. Abney and W. Lin, Nat. Chem., 2010, 2, 838.
22. F.-J. Song, C. Wang, J. M. Falkowski, L.-Q. Ma and W.-B. Lin, J. Am. Chem. Soc., 2010, 132, 15390.
${ }_{60}$ 23. M. Banerjee, S. Das, M. Yoon, H. J. Choi, M. H. Hyun, S. M. Park, G. Seo and K. Kim, J. Am. Chem. Soc., 2009, 131, 7524.
24. J. P. Collman, R. Boulatov, C. J. Sunderland and L. Fu, Chem. Rev., 2004, 104, 561.
25. R. A. Sheldon, in Metalloporphyrins in Catalytic Oxidations, ed. R.
${ }_{65}$ A. Sheldon, Marcel Dekker, Inc., New York, 1994.
26. X.-L. Yang, M.-H. Xie, C. Zou, Y. He, B. Chen, M. O'Keeffe and C.D. Wu, J. Am. Chem. Soc., 2012, 134, 10638.
27. K. S. Suslick, P. Bhyrappa, J. H. Chou, M. E. Kosal, S. Nakagaki, D. W. Smithenry and S. R. Wilson, Acc. Chem. Res., 2005, 38, 283.
${ }_{70}$ 28. I. Beletskaya, V. S. Tyurin, A. Y. Tsivadze, R. Guilard and C. Stern, Chem. Rev., 2009, 109, 1659.
29. C. M. Drain, A. Varotto and I. Radivojevic, Chem. Rev., 2009, 109, 1630.
30. I. Goldberg, CrystEngComm, 2008, 10, 637.

75 31. L. D. DeVries and W. Choe, J. Chem. Crystallogr., 2009, 39, 229.
32. C. Zou and C.-D. Wu, Dalton Trans., 2012, 41, 3879.
33. R. K. Kumar, S. Balasubramanian and I. Goldberg, Chem. Commun., 1998, 1435.
34. A. Calderon-Casado, G. Barandika, B. Bazan, M. K. Urtiaga, O.
${ }_{80}$ Vallcorba, J. Rius, C. Miravittles and M. I. Arriortua, CrystEngComm, 2011, 13, 6831.
35. M. G. Barandika, M. L. Hernandez-Pino, M. K. Urtiaga, R. Cortes, L. Lezama, M. I. Arriortua and T. Rojo, J. Chem. Soc., Dalton Trans., 2000, 1469.
${ }_{85}$ 36. M. G. Barandika, R. Cortes, Z. Serna, L. Lezama, T. Rojo, M. K. Urtiaga and M. I. Arriortua, Chem. Commun., 2001, 45.
37. N. de la Pinta, S. Martin, M. K. Urtiaga, M. G. Barandika, M. I. Arriortua, L. Lezama, G. Madariaga and R. Cortes, Inorg. Chem., 2010, 49, 10445.
90 38. M. L. Hernandez, M. K. Urtiaga, M. G. Barandika, R. Cortes, L. Lezama, N. de la Pinta, M. I. Arriortua and T. Rojo, J. Chem. Soc., Dalton Trans., 2001, 3010.
39. Z. F. Serna, L. Lezama, M. K. Urtiaga, M. I. Arriortua, M. G. Barandika, R. Cortes and T. Rojo, Angew. Chem., Int. Ed., 2000, 39,
$95 \quad 344$.
40. H. Kanemitsu, R. Harada and S. Ogo, Chem Commun, 2010, 46, 3083.
41. W.-T. Chen, Y. Yamada, G.-N. Liu, A. Kubota, T. Ichikawa, Y. Kojima, G.-C. Guo and S. Fukuzumi, Dalton Trans., 2011, 40,
$100 \quad 12826$.
42. W.-T. Chen, Z.-G. Luo, J.-H. Liu, H.-L. Chen and H.-M. Kuang, J. Chem. Res., 2011, 35, 571.
43. R. K. Kumar, Y. Diskin-Posner and I. Goldberg, J. Inclusion Phenom. Macrocyclic Chem., 2000, 37, 219.
105 44. A. L. Litvinov, D. V. Konarev, A. Y. Kovalevsky, I. S. Neretin, P. Coppens and R. N. Lyubovskaya, Cryst. Growth Des., 2005, 5, 1807.
45. J. A. Shelnutt, in The Porphyrin Handbook, Academic Press, eds. K. M. Kadish, K. M. Smith, R. Guilard, New York, Academic Press, vol. 7, 2000.
110 46. N. Karakostas, D. Schaming, S. Sorgues, S. Lobstein, J. P. Gisselbrecht, A. Giraudeau, I. Lampre and L. Ruhlmann, J. Photochem. Photobiol., A, 2010, 213, 52.
47. F. Nifiatis, W. Su, J. E. Haley, J. E. Slagle and T. M. Cooper, J. Phys. Chem. A, 2011, 115, 13764.
48. P. Bhyrappa and K. Karunanithi, Inorg. Chim. Acta, 2011, 372, 417.
49. Z. Zhou, C. Cao, Q. Liu and R. Jiang, Org. Lett., 2010, 12, 1780.

5 50. Y. Iimura, T. Sakurai and K. Yamamoto, Bull. Chem. Soc. Jpn., 1988, 61, 821.
51. W. Yinghua, J. Appl. Crystallogr., 1987, 20, 258.
52. A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343.
10 53. G. M. Sheldrick, Acta Crystallogr., Sect. A Found. Crystallogr., 2008, A64, 112.
54. L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786.
55. V. A. Blatov, IUCr CompComm Newsl., 2006, 4 http://www.topos.ssu.samara.ru.
15 56. H. Chung, P. M. Barron, R. W. Novotny, H.-T. Son, C. Hu and W. Choe, Cryst. Growth Des., 2009, 9, 3327.
57. H. Zabrodsky, S. Peleg and D. Avnir, J. Am. Chem. Soc., 1992, 114, 7843.
58. M. Pinsky and D. Avnir, Inorg. Chem., 1998, 37, 5575.

20 59. M. Llunel, D. Casanova, J. Cirera, J. M. Bofill, P. Alemany, S. Álvarez, M. Pinsky and D. Yatunir, SHAPE v1.1a, "Program for Continuous Shape Measure Calculations of Polyhedral Xn and MLn Fragments" edn., 2003.
60. S. Álvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell and D.

25 Avnir, Coord. Chem. Rev., 2005, 249, 1693.
61. W. Jentzen, X.-Z. Song and J. A. Shelnutt, J. Phys. Chem. B, 1997, 101, 1684.
62. W. Jentzen, J.-G. Ma and J. A. Shelnutt, Biophys. J., 1998, 74, 753.
63. D. L. Cullen, L. V. Desai, J. A. Shelnutt and M. Zimmer, Struct.

30 Chem., 2001, 12, 127.
64. F. H. Allen, Acta Crystallogr., Sect. B Struct. Sci., 2002, B58, 380.
65. A. Abragam and M. H. L. Pryce, Proc. R. Soc. London, Ser. A, 1951, 206, 173.
66. J. D. Hanawalt, H. W. Rinn and L. K. Frevel, Ind. Eng. Chem., Anal.

35 Ed., 1938, 10, 457.
67. B. F. O. Nascimento, M. Pineiro, A. M. d. A. Rocha Gonsalves, M. R. Silva, A. M. Beja and J. A. Paixao, J. Porphyrins Phthalocyanines, 2007, 11, 77.

