HETEROGENEOUS CATALYTIC ACTIVITY ON Mn, Fe AND **Co-BASED METALLOPORPHYRINIC SOLID COORDINATION** FRAMEWORKS (SCFs) Ę,9

UPV EHU Arkaitz Fidalgo-Marijuan¹, Gotzone Barandika², Begoña Bazán^{1,3}, Miren Karmele Urtiaga¹, Edurne S. Larrea¹, Marta Iglesias⁴ and María Isabel Arriortua^{1,3}

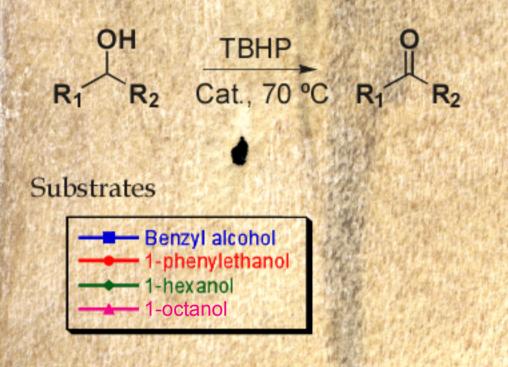
> ¹Dept. of Mineralogy and Petrology and, ²Dept. of Inorganic Chemistry University of the Basque Country (UPV/EHU), Leioa, Spain. ³Basque Center for Materials, Applications and Nanostructices, Derio, Spain. ⁴Institute of Materials Science of Madrid-CSIC, Madrid, Spain.

INTRODUCTION

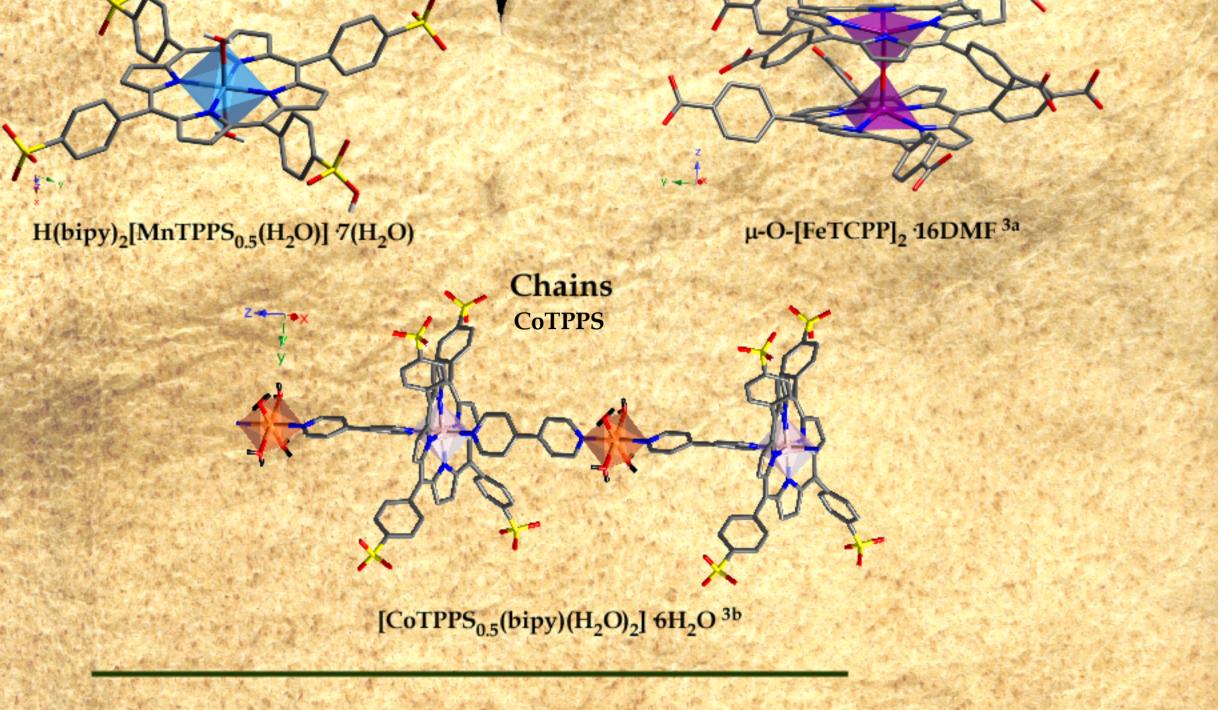
Solid Coordination Frameworks (SCFs) have been widely explored on different catalytic reactions,¹ and during the past years

Monomers **MnTPPS**

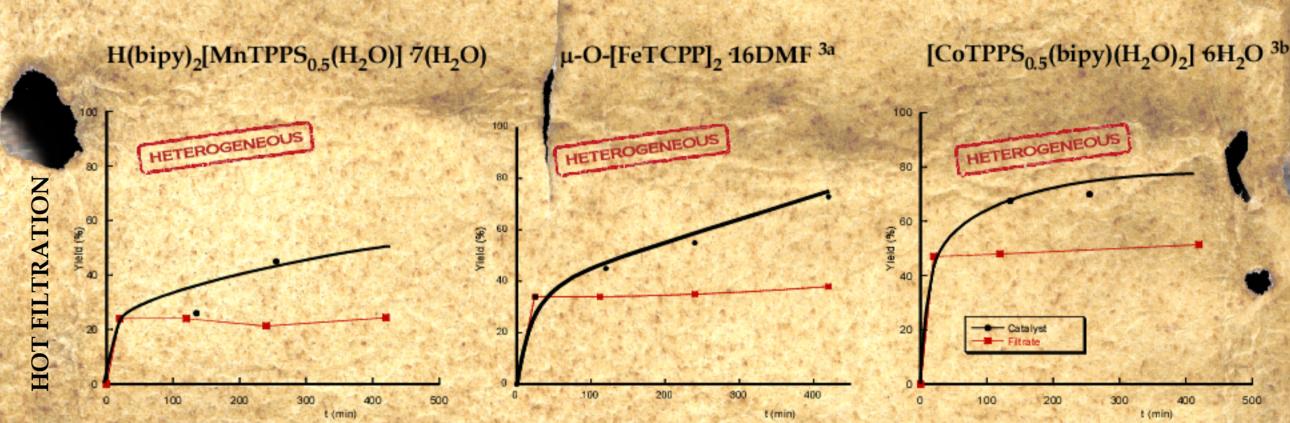
DMPOUNDS

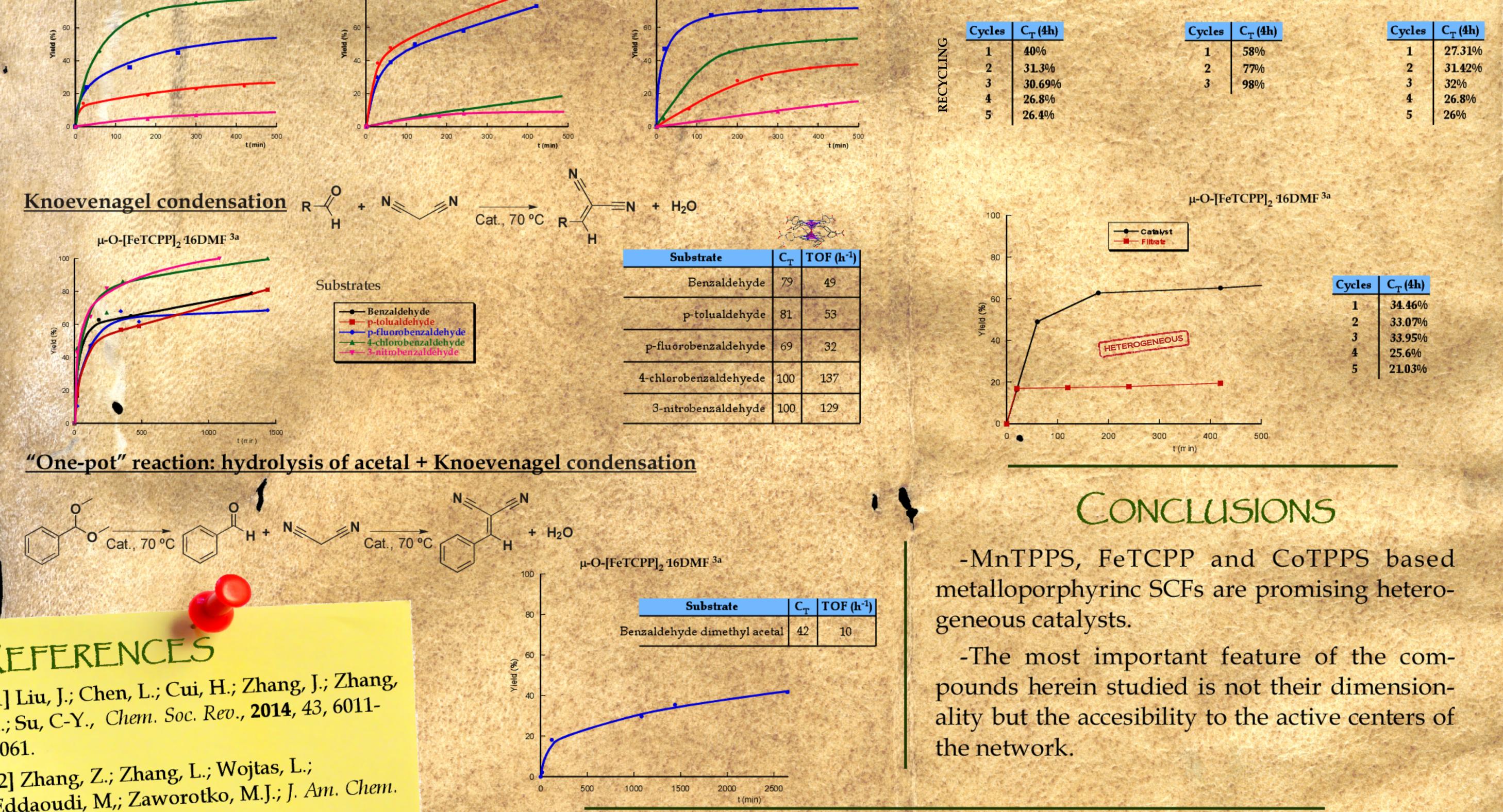

Dimers

metalloporphyrins have been investigating in order to mimick their natural activity in the solid state.²


Herein we present the catalytic activity results towards the oxidation reactions of different alcohols for MnTPPS, FeTCPP and CoTPPS based metalloporphyrinc SCFs (TPPS= meso-tetrasulfonatophenylporphyrin, TCPP= *meso*-tetracarboxyphenylporphyrin).³ Additionally, Knoevenagel condensations and a "one-pot" reaction involving the FeTCPP based SCF catalyst have been carried out.

CATALITYC ACTIVITY TESTS


Alcohol oxidation



		國家的	10		10	Ser.		property	the state of the second
$\frac{\text{TBHP}}{\text{R}_2} \frac{\text{TBHP}}{\text{Cat., 70 °C}} R_1 R_2$	Substrate	Oxidant		InTPPS TOF (h ⁻¹)		eTCPP TOF (h ⁻¹)	C C _T	oTPPS TOF (h ⁻¹)	
	Benzyl alcohol	TBHP	70	72	73	72	77	143	
tes	1-phenylethanol	TBHP	44	46	73	91	44	8	
- Benzyl alcohol - 1-phenylethanol	1-hexanol	TBHP	92	66	15	3	71	22	
- 1-hexanol - 1-octanol	1-octanol	TBHP	12	6	9	3	25	6	
TBHP: tert-butyl hydroperoxyde, TOF: turnover frequency, C _T : total conversion									
H(bipy) ₂ [MnTPPS _{0.5} (H ₂ O)] 7(H ₂ O)	μ-O-[FeTCPP] ₂ 16DMF ^{3a}						1 al	[CoTP	PS _{0.5} (bipy)(H ₂ O) ₂] 6H ₂ O ^{3b}

HETEROGENEITY AND RECYCLABILITY TESTS

REFERENCES [1] Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C-Y., Chem. Soc. Rev., 2014, 43, 6011-6061. [2] Zhang, Z.; Zhang, L.; Wojtas, L.; Eddaoudi, M,; Zaworotko, M.J.; J. Am. Chem. Soc., 2012, 134, 928-933. [3] (a) Fidalgo-Marijuan, A.; Barandika, G.; Bazán, B.; Urtiaga, M.K.; Larrea, E.S.; Iglesias, M.; Lezama, L.; Arriortua, M.I., Dalton Trans., 2015, 44, 213-222. (b) Fidalgo-Marijuan, A.; Barandika, G.; Bazán, B.; Urtiaga, M.K.; Arriortua, M.I., CrystEngComm, 2013, 15, 4181-4188.

ACKNOWLEDGEMENTS

This work has been financially supported by the "Ministerio de Economía y Competitividad" (MAT2013-42092-R), the "Gobierno Vasco" (Basque University System Research Groups, IT-630-13) and the UPV/EHU (UFI 11/15) which we gratefully acknowledge. Technical and human support provided by SGIker (UPV/EHU) is gratefully acknowledged. A. Fidalgo-Marijuan thanks the UPV/EHU for funding. EURO

1st European Conference on Metal Organic Frameworks and Porous Polymers, 11-14 October 2015, Potsdam (Germany)