
Kharon

A self-hosted, open source and lightweight
directory synchronization application.

Mikel Alejo Barcina Ribera
Student in Computer Science degree

mabarcina001@ikasle.ehu.eus

To Felix Ángel and Manuela.

Acknowledgements

To family, friends and directors, the gratitude I feel towards you is too great to be
expressed in such few words. I hope that in these few lines I could show you my
appreciation and indebtedness.

Thank you, family and friends —who I also consider as family—, for always be-
ing supportive and encouraging me to keep going, even in the hardest of times.

Thank you, dear directors, for making my journey in the university worth it, and
in this last year, for believing in me and my project.

And last but not the least, my deepest thanks, to my beloved parents, for abso-
lutely everything that I am and all that I have. You have always been there for me.
I will be eternally grateful.

Abstract

The objective of this project is to develop an open source application, which allows
synchronizing a directory in real time, between a client and a server. Kharon has
been built using cutting edge libraries and tools, such as Qt for the graphical user
interface, Boost libraries for networking, concurrency and function composition,
Inotify for file monitoring or Librsync for comparing and updating files remotely,
among others. The result of combining these libraries is Kharon, an application that
not only meets the aforementioned objective, but also runs on systems with very
low resources.

Contents

Contents I

List of Figures III

1 Project charter 1
1.1 Introduction . 1
1.2 The why . 1

2 Project planning 2
2.1 Information system’s definition . 2

2.1.1 Directory structure . 2
2.1.2 Tools to be used in the documentation 3
2.1.3 Naming conventions for the report 3

2.2 Project objectives . 4
2.3 Scope definition . 6
2.4 Work breakdown structure . 6
2.5 Gantt chart . 6
2.6 Milestones . 8
2.7 Quality plan . 8

2.7.1 Minimum quality . 8
2.7.2 Added value . 8

2.8 Risk management plan . 8
2.8.1 Risk identification . 9
2.8.2 Contingency plans . 9

3 Technologies 10
3.1 Boost libraries . 10

3.1.1 Asio . 10
3.1.2 Thread . 14
3.1.3 Bind . 16

3.2 librsync . 17
3.3 Scrum methodology . 18

Mikel Alejo Barcina Ribera Page I

4 Kharon, the application 21
4.1 The client . 21

4.1.1 A general idea of how it works 21
4.1.2 The graphical user interface 25

4.1.2.1 Class diagram . 27
4.1.3 The client module . 28

4.1.3.1 Class diagram . 28
4.1.4 The Inotify module . 29

4.1.4.1 The class diagram 30
4.2 The server . 33

4.2.1 A general idea of how it works 33
4.2.1.1 The class diagram 33

4.3 The challenges . 34
4.3.1 Starting from scratch . 34
4.3.2 Compiling Qt projects with CMake 35
4.3.3 How to make forward declarations in C++ 36
4.3.4 Understanding Boost libraries 37
4.3.5 Minor issues . 38

5 Conclusions 39
5.1 Tracking and control . 39

5.1.1 Gantt chart’s snapshots . 39
5.2 Limitations . 46

5.2.1 Lack of testing . 46
5.2.2 Networking . 46
5.2.3 Threading . 46

5.3 Future work lines . 46
5.4 Project conclusions . 47

Acronyms 48

Glossary 49

Bibliography 51

Mikel Alejo Barcina Ribera Page II

List of Figures

2.1 Directory structure of the information system 2
2.2 The application’s general idea . 5
2.3 Project’s work breakdown structure 6

3.1 Diagram of the first steps of an asynchronous operation 11
3.2 Diagram of the last steps of an asynchronous operation 12
3.3 Flow diagram of the way librsync works 18
3.4 An schematic of the Scrum Framework process. By Dr ian mitchell,

CC BY-SA 4.0 . 19

4.1 Illustration of the threading problem 21
4.2 Illustration of the threading solution 22
4.3 Screenshot of the graphical user interface 25
4.4 Screenshot of the directory selection dialog 26
4.5 Screenshot of the graphical user interface when the connection at-

tempt fails . 26
4.6 Screenshot of the graphical user interface when the connection is suc-

cessful . 27
4.7 Class diagram of the graphical user interface 27
4.8 Class diagram of the client class without the rest of the elements . . . 28
4.9 Class diagram of the client module 29
4.10 Class diagram of the Inotify module 30
4.11 Class diagram of the server module 33
4.12 Diagram of how the Session class works 34

Mikel Alejo Barcina Ribera Page III

1 Project charter

1.1 Introduction

This document is the report of the Undergraduate Project of name “Kharon”, which
has been carried out by Mikel Alejo Barcina Ribera, a student of the Faculty of
Computer Science of the University of the Basque Country. Directed by Javier
Dolado Cośın, and co-directed by Iñaki Morlán Santa Catalina.

1.2 The why

Initially, this was not meant to be a project. In fact, there was only just a simple
question to be answered: “How do I synchronize a directory and all its contents
with my Raspberry Pi? R©”. The idea was to have a client running all the time
caching every event in the monitored directory, and transmitting those events to the
server. Although many solutions do exist1, none of them seemed to suit my needs.
Moreover, more questions arose:

1. Can the application be lightweight?

2. Can I have an application with a simple and intuitive Graphical User Interface
(GUI)?

3. Can the application’s options be tweaked in order to have it the way I like it?

After those questions, inevitably, some others came up:

1. Can the application have an advanced hidden menu, for more advanced users?

2. Can the application have a simple user system that allows them share files
among themselves, with a permission system?

3. Can I run the application securely without laying on protocols like SSH ?

Et cetera. Thus, instead of wondering about all this, a more deep research was
carried out to find an application that would suit all the above requirements, and
some more. Unfortunately, nothing convincing was found. The poor Raspberry
Pi R©—1, Model B—could not handle some of the solutions, and even less combine
them with other services that were already running in its tiny but fierce processor.

Therefore, I thought about using this premises as my motivation to realize a
software project. That way, I would be able not only to finish my degree doing
something that inspires me, but also to contribute to the open source community,
by releasing a software that may result useful for some others too.

1https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software

Mikel Alejo Barcina Ribera Page 1

https://en.wikipedia.org/wiki/Comparison_of_file_synchronization_software

2 Project planning

2.1 Information system’s definition

The information system for the project will be digitally held. The project will be
saved in three main places: a personal computer, an external hard drive disk, and
GitHub R©—this last one will be used for the code—.

2.1.1 Directory structure

Figure 2.1: Directory structure of the information system

As shown in the Figure 2.1, the first level will contain two main directories:

• Kharon directory: the directory that contains the application’s source code
and binaries.

• Report directory: the directory containing the report of the project.

Inside the Kharon directory:

• src directory: it will contain all the source files of the application. It might
be subdivided in many other directories, or even be substituted if rearranging
the directory structure helps generating a cleaner source code.

• build directory: it will contain all the executable files.

Inside the Report directory:

• contents directory: it will contain the source .tex files and, their correspond-
ing subdirectories —if any —, will be stored here.

• images directory: it will contain all the images used in the report.

• template directory: it will contain all the source files that are somehow related
to the LATEX template used for the report.

Inside the images directory, a src sub-directory will be used to store all the
source files for the diagrams and images created in other programs.

Mikel Alejo Barcina Ribera Page 2

2.1.2 Tools to be used in the documentation

The project’s report will be done, mainly, using the following tools:

• LATEX for the texts and the report.

• LibreOffice1 Draw for the diagrams.

• GanttProject2 for the Gantt charts.

• Umbrello3 for the class diagrams.

2.1.3 Naming conventions for the report

The files will be named all in lower case, using underscores if there is any information
that would help either organize the directory or add meaningful information about
the file contents.

1https://www.libreoffice.org/
2https://www.ganttproject.biz/
3https://umbrello.kde.org/

Mikel Alejo Barcina Ribera Page 3

https://www.libreoffice.org/
https://www.ganttproject.biz/
https://umbrello.kde.org/

2.2 Project objectives

The objective of the project is to:

• Develop a simple, open source application which allows synchronizing a direc-
tory between a client and a server.

The idea is to be able to create an application that allows synchronizing a directory
and all its contents with a remote directory. Ideally, they would end up being a copy
of each other. In the figure 2.2, there is a basic diagram of how the application is
intended to work.

Mikel Alejo Barcina Ribera Page 4

Figure 2.2: The application’s general idea

In the diagram, we can observe that in the left side there is a little blue box which
stands for the client application. That client application monitors everything that is
going on inside the directory. In this case, there are only files represented, but there
could be directories with subdirectories as well. Once an action is taken over a file
or a directory —create, modify, rename, move, delete, etc. —those actions would
be sent to the server in order to be replicated in the remote directory. In the case
of having little changes, instead of submitting the whole file, those changes would
be sent instead, in order to patch the file. Obviously if there is a whole file missing
in the server side, the entire file would be transmitted.

Mikel Alejo Barcina Ribera Page 5

The medium which would be used for transmitting the data is the network, either
a local area network or a wide area network. If there were enough time to develop
some other features, the link would be secured using symmetric key cryptography,
and a two-way synchronization would be implemented —from the client to the server
and vice versa —.

Summarizing, and as stated before, the main objective is: to develop a client-
server application, with an easy to use GUI, which allows synchronizing in real time
a specified directory.

2.3 Scope definition

The scope of this project is to meet the Project objectives —section 2.2—and reach
to the minimum quality specified in the Quality plan —section 2.7—.

2.4 Work breakdown structure

Figure 2.3: Project’s work breakdown structure

2.5 Gantt chart

The planning is as follows: one week to have a first glance at the tools, libraries and
technologies to be used in the project development, as well as to finish the planning
of the project. Four weeks of development of the project, which will be combined
with the formation on the different technologies. Two weeks to polish and complete
the report. One final week to review the things done and deliver the project.

Mikel Alejo Barcina Ribera Page 6

Kh
ar

on
02

-M
ay

-2
01

6

G
an

tt
 C

ha
rt

3

N
am

e
Be

gi
n

da
te

En
d

da
te

Tr
ai

ni
ng

02
/0

5/
16

27
/0

5/
16

C+
+

02
/0

5/
16

26
/0

5/
16

KD
ev

el
op

02
/0

5/
16

19
/0

5/
16

CM
ak

e
02

/0
5/

16
15

/0
5/

16
Bo

os
t

As
io

09
/0

5/
16

13
/0

5/
16

lib
rs

yn
c

16
/0

5/
16

20
/0

5/
16

Q
t

23
/0

5/
16

27
/0

5/
16

D
ev

el
op

m
en

t
09

/0
5/

16
04

/0
6/

16
N

et
w

or
k

09
/0

5/
16

15
/0

5/
16

Sy
nc

hr
on

iz
at

io
n

16
/0

5/
16

22
/0

5/
16

G
U

I
23

/0
5/

16
29

/0
5/

16
Fi

na
l t

w
ea

ks
30

/0
5/

16
04

/0
6/

16
D

oc
um

en
ta

tio
n

02
/0

5/
16

16
/0

6/
16

Pl
an

ni
ng

02
/0

5/
16

08
/0

5/
16

Sc
ru

m
09

/0
5/

16
05

/0
6/

16
Co

rr
ec

tio
ns

06
/0

6/
16

09
/0

6/
16

Fi
na

l t
w

ea
ks

10
/0

6/
16

16
/0

6/
16

Al
ph

a
06

/0
6/

16
06

/0
6/

16
Be

ta
10

/0
6/

16
10

/0
6/

16
Ap

pl
y

fo
r

th
e

de
fe

ns
e

17
/0

6/
16

17
/0

6/
16

Pr
oj

ec
t

up
lo

ad
24

/0
6/

16
24

/0
6/

16

20
16

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

W
ee

k
27

W
ee

k
28

W
ee

k
29

W
ee

k
30

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

04
/0

7/
16

11
/0

7/
16

18
/0

7/
16

25
/0

7/
16

Be
ta

Ap
pl

y
fo

r
th

e
de

fe
ns

e
Pr

oj
ec

t
up

lo
ad

Al
ph

a

Mikel Alejo Barcina Ribera Page 7

2.6 Milestones

• Alpha version of the report: 2016-06-06.

• Beta version of the report: 2016-06-10.

• Apply for the defense of the project: 2016-06-17.

• Project upload or delivery: 2016-06-24.

2.7 Quality plan

2.7.1 Minimum quality

• Shared directory: The application must be able to monitor and synchro-
nize in real time a directory between two systems, including all the files and
subdirectories placed inside.

• Intuitive GUI: The application must provide an intuitive GUI that helps
using the application, even for the more novice users.

2.7.2 Added value

• End to end encryption: The server and the client should be able to com-
municate securely over the network using end to end encryption, in order to
provide confidentiality.

• Multi-user system: A user system could be implemented in order to allow
more than one user utilize the application, and have his own personal shared
directory.

• Sharing system: A sharing system could be implemented so as to allow users
share files among them.

• Customization: The user could tweak the application’s parameters using
the GUI, and he could be given the option of choosing between a basic set of
options and a more advanced one.

• Traceability: The end user should be able to keep traceability of every action
done by the application.

2.8 Risk management plan

There are some risks that should be taken into account, and these are enlisted below.
As well as the risks, a contingency plan is proposed in order deal with the identified
risks, in case they end up happening.

Mikel Alejo Barcina Ribera Page 8

2.8.1 Risk identification

• Data loss.

It is likely to happen some kind of data loss during the project life. An unconscious
deletion or a hardware error can trigger this problem and make the project disappear
in seconds. Therefore, this is considered a high risk.

• Not reaching minimum quality.

Even though the minimum requirements do not seem very demanding, there is
a possibility of not reaching to them. The libraries to be used need to be studied
and correctly integrated in order to assure the correct functioning of the application.
The main risk is to end up changing the structure of the application on a regular
basis, and not advancing into meeting the deadlines and project objectives.

This is considered a high risk.

2.8.2 Contingency plans

• Data loss.

In order to deal with this risk a simple yet effective solution is proposed: perform
periodic backups of the project. The project itself will be saved in three different
places —a personal computer, an external hard drive disk and an on line repository
for the code —, but apart from those two dedicated USB keys will be used to store
the backups of the project.

The backups must be made, at least, weekly, and at most, daily.

• Not reaching minimum quality.

So as to deal with this an agile methodology will be used in order to provide
continuous stable releases of the application. In theory, this would help in readjust-
ing the application’s development objectives, while the development is taking place.
Therefore, if something is taking too much time to be developed or improving it
is impossible due to deadlines, it will be left like that, in order to work towards
meeting the main objective of the project.

Mikel Alejo Barcina Ribera Page 9

3 Technologies

3.1 Boost libraries

Boost is a set of libraries made by some of the greatest experts of C++, who at the
same time are part of the ISO C++ Committee, which takes care of the standard
releases of the programming language. These libraries include some useful resources
that in the vast majority of the cases are not platform specific; this is, the library
allows us to program once, as the library will take care of adapting our code to the
operating system’s specific system calls. Therefore, it makes it easier to develop
multi platform applications.

Among those useful libraries we can find one that takes care of the file system’s
basic operations1, another one that copes with threading 2, or even another library
that deals with input-output operations of any kind3. Of course, there are many,
many more4.

3.1.1 Asio

Boost Asio takes care of the input-output operations of an operating system. It does
not matter whether it is a file descriptor, a socket or any other type of stream or
descriptor that we want to manage, Asio takes care of them all. However, platform-
independent code is just the tip of the iceberg. The actual striking feature of this
library is asynchrony. In a nutshell: it allows launching several asynchronous opera-
tions, and retrieving the results when the operations have been completed, without
blocking the program. The following example is borrowed from the library’s overview
page 5

1http://www.boost.org/doc/libs/release/libs/filesystem/
2http://www.boost.org/doc/libs/release/libs/thread/
3http://www.boost.org/doc/libs/1_61_0/doc/html/boost_asio.html
4http://www.boost.org/doc/libs/
5http://www.boost.org/doc/libs/1_61_0/doc/html/boost_asio/overview/core/

basics.html

Mikel Alejo Barcina Ribera Page 10

http://www.boost.org/doc/libs/release/libs/filesystem/
http://www.boost.org/doc/libs/release/libs/thread/
http://www.boost.org/doc/libs/1_61_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/
http://www.boost.org/doc/libs/1_61_0/doc/html/boost_asio/overview/core/basics.html
http://www.boost.org/doc/libs/1_61_0/doc/html/boost_asio/overview/core/basics.html

Figure 3.1: Diagram of the first steps of an asynchronous operation

The thing that makes different this asynchronous call from any other synchronous
call is the io service, and this is how it works —note: the io service is nothing but
an event processing loop—:

1. After creating the IO object, we call the asynchronous operation, which in this
particular case is the connect operation.

socke t . async connect (endpoint , handler) ;

2. The IO call, will forward the request to the io service.

3. The io service immediately tells the operating system that it has to perform
a connect operation.

Mikel Alejo Barcina Ribera Page 11

Figure 3.2: Diagram of the last steps of an asynchronous operation

4. The operating system places the results on a io service queue.

5. The programmer calls the function run of the io service in order to retrieve
the results. Here, the main program flow will block until the io service runs
out of work. Once the handlers have been executed and return, the io service
run statement unblocks.

6. The io service encodes the result in an error code and dispatches the results
to the corresponding handler. The handler, is just a function that is called
when the asynchronous operation is over.

However, the implementation of this flow is platform specific. In the case of
GNU/Linux systems, the asynchronous call is not made until the programmer calls
io service’s run function. Although the main functionality is still there: the thread

Mikel Alejo Barcina Ribera Page 12

is not blocked when calling to the asynchronous functions. This is due to the un-
derlying system calls —like epoll6—to provide this asynchrony, which have their
limitations.

#include <iostream>
#include <boost / a s i o . hpp>

void connect hand le r (const boost : : system : : e r r o r c ode& e r r o r)
{

i f (e r r o r)
{

std : : cout << e r r o r . message () << std : : endl ;
e x i t (EXIT FAILURE) ;

}
else
{

std : : cout << ” Su c c e s s f u l l y connected ! ” << std : :
endl ;

}
}

int main ()
{

boost : : a s i o : : i o s e r v i c e i o s e r v i c e ;
boost : : a s i o : : ip : : tcp : : socke t socke t (i o s e r v i c e) ;
boost : : a s i o : : ip : : tcp : : endpoint endpoint (

boost : : a s i o : : ip : : address : : f r om s t r i ng (” 1 2 7 . 0 . 0 . 1
”) , 9000) ;

socke t . async connect (endpoint , connect hand le r) ;

i o s e r v i c e . run () ;
e x i t (EXIT SUCCESS) ;

}

The code above shows a simple program that attempts to connect to localhost
or “127.0.0.1 ”. It creates an io service object, then, the actual IO object —the
socket—is created, it defines the endpoint to connect to, and the async connect
receives as parameters the endpoint, and the handler or function that will take
care of the following actions when the operation is complete. Finally, calling the
io service.run() function will launch the asynchronous connect operation and the
main flow of the program will be blocked there. Once the connect operation com-
pletes, the io service will execute the handler, and once the execution has finished
and the handler returns, the io service run statement unblocks and the main flow
continues.

One last thing to take into account about the io service is that once the pro-

6https://en.wikipedia.org/wiki/Epoll

Mikel Alejo Barcina Ribera Page 13

grammer makes a call to the run function and the service finishes up all the work,
if subsequent calls want to be made in order to give the service more work, it must
be reseted with the reset function. One of the ways of avoiding this is to wrap
the io service with an Work object, which will make the service not return, and
therefore that allows giving the service more and more work until the service is
unwrapped from the Work class.

3.1.2 Thread

Boost Thread gives a platform independent way of implementing multi-threaded ap-
plications. It makes it easy for the programmer to create, manage and join threads.
This is extremely useful to perform several tasks at the same time. Below there is
a code snippet which tries to shed light on the concept:

#include <iostream>
#include <boost / a s i o . hpp>
#include <boost /bind . hpp>
#include <boost / date t ime / pos ix t ime / pos ix t ime . hpp>

#include <boost / thread . hpp>

/∗∗ A mutex f o r b l o c k i n g the s tandard output , because i t i s not
thread sa f e .

∗ This means t ha t i f a l l t he threads t r y to use the standard
output at the

∗ same time some unexpected behav iour may occur .
∗/

boost : : mutex g l o b a l l o c k ;

int sum(int a , int b , boost : : a s i o : : i o s e r v i c e ∗ i o s e r v i c e)
{

/∗∗ Lock the standard output and p r i n t the ID of the
c a l l e r thread ∗/

g l o b a l l o c k . l o ck () ;
s td : : cout << ”Thread [”<< boost : : t h i s t h r e ad : : g e t i d ()

<< ”] ” << std : : endl ;
g l o b a l l o c k . unlock () ;

/∗∗ Create a dead l i ne t imer and wai t f i v e seconds ∗/
boost : : a s i o : : d ead l i n e t ime r

t imer (∗ i o s e r v i c e , boost : : po s ix t ime : : seconds (5))
;

t imer . wait () ;

/∗∗ Print the r e s u l t s ∗/
g l o b a l l o c k . l o ck () ;

Mikel Alejo Barcina Ribera Page 14

std : : cout << ”The r e s u l t f o r [” << a << ” + ” << b << ”]
i s : [” << (a + b)

<< ”] ” <<std : : endl ;
g l o b a l l o c k . unlock () ;

return (a + b) ;
}

int main (int argc , char∗ argv [])
{

boost : : a s i o : : i o s e r v i c e i o s e r v i c e ;

/∗∗ Create threads one by one and as s i gn them work ∗/
boost : : thread thread one (boost : : bind(&sum , 2 , 1 , &

i o s e r v i c e)) ;
boost : : thread thread two (boost : : bind(&sum , 5 , 5 , &

i o s e r v i c e)) ;
boost : : thread th r ead th r e e (boost : : bind(&sum , 21 , 55 , &

i o s e r v i c e)) ;

i o s e r v i c e . run () ;

/∗∗ Wait u n t i l a l l t he threads to terminate ∗/
thread one . j o i n () ;
thread two . j o i n () ;
th r ead th r e e . j o i n () ;

i o s e r v i c e . stop () ;
return (EXIT SUCCESS) ;

}

In this example, three threads are manually created and given the work of per-
forming a simple calculation. For the sake of example, those calculations last five
seconds each. As the three created threads are concurrent, the program is expected
to last around five seconds.

What if, this program used only the main thread instead of the concurrent
threads? Well, there would only be one thread making those calculations, and
therefore the same thread would be waiting five seconds first, another five seconds
for the second call, and another five seconds for the third one. Therefore the program
would be expected to last around fifteen seconds.

Note that in this example there might be racing conditions when accessing the
standard output. The fastest thread locking the standard output will be the one
getting the access to it, and even though the threads are fired in a certain order, this
does not mean that the thread which was launched first will be the one getting the
access first to every use of the standard output. Nonetheless Boost Thread provides
ways of synchronizing that access, so as to set an order in which the threads should

Mikel Alejo Barcina Ribera Page 15

access those functions7. However, this topic is out of the scope of the project, as it
is not used in the application.

Finally, the example shows how useful the threads can be, and how easy it is to
implement them in a platform independent way. Boost Thread takes care of trans-
lating the abstract code into operating system specific Application Programming
Interface (API) calls.

3.1.3 Bind

Boost Bind states the following[1] as its purpose: “boost::bind is a generalization of
the standard functions std::bind1st and std::bind2nd. It supports arbitrary function
objects, functions, function pointers, and member function pointers, and is able
to bind any argument to a specific value or route input arguments into arbitrary
positions.”

This is too complicated to understand. Even more if you are told that this is
used for partial function application8. Thus, below I attach a code snippet that
might help understanding what this library is about:

#include <iostream>

#include <boost /bind . hpp>

int sum(int a , int b)
{

return a + b ;
}

int sub s t r a c t (int a , int b)
{

return a − b ;
}

void p r i n t r e s u l t (int r e s u l t)
{

std : : cout << ”The r e s u l t i s : ” << r e s u l t << std : : endl ;
}

int main (int argc , char∗ argv [])
{

int number = 2 ;

/∗∗ Ca l l p r i n t r e s u l t (sum(number , 1)) ∗/
boost : : bind (p r i n t r e s u l t , boost : : bind (

sum , number , 1

7http://www.boost.org/doc/libs/1_59_0_b1/doc/html/thread/synchronization.html
8 https://en.wikipedia.org/wiki/Partial_application

Mikel Alejo Barcina Ribera Page 16

http://www.boost.org/doc/libs/1_59_0_b1/doc/html/thread/synchronization.html
https://en.wikipedia.org/wiki/Partial_application

)) (1) ;

/∗∗ Ca l l p r i n t r e s u l t (s u b s t r a c t (5 , number)) ∗/
boost : : bind (p r i n t r e s u l t , boost : : bind (

subst rac t , 1 , 2
)) (5 , number) ;

/∗∗ Ca l l p r i n t r e s u l t (sum(2 , s u b s t r a c t (2 ,1))) ∗/
boost : : bind (p r i n t r e s u l t , boost : : bind (

sum , 2 , boost : : bind (
subst rac t , 1 , 2

)
)) (1 , 2) ;

return (EXIT SUCCESS) ;
}

This is one of the uses of this library. As shown in the example, it allows us
nesting calls to functions, which in certain situations might turn useful. Further-
more, placholders come in place —in the example the arguments of the functions are
specified with 1 and 2 —, which allow us to bind the arguments in whichever order
we want to, or even repeat the same argument if we specify the same placeholder.

So as to make it easier for the reader to understand the concept underlying, the
values bound to the functions are simple values. Nonetheless bind allows us to make
much more complex things with it.

In this particular application, bind essentially does “tell the io service which
handler has to execute”. This is: after launching the asynchronous operations and
having the io service ready to return those values, we have to tell it which is going
to be the function or the handler that will take care of that. A really simple example
of how handlers work is included in section 3.1.1.

3.2 librsync

librsync is a library that allows calculating and patching the differences between
two files over the network. This library contains the algorithms that the rsync9

application uses. The good thing is, the two files do not need to be in the same
file system in order to make comparisons and apply the differences between them.
Basically, it works the following way:

9https://en.wikipedia.org/wiki/Rsync

Mikel Alejo Barcina Ribera Page 17

https://en.wikipedia.org/wiki/Rsync

Figure 3.3: Flow diagram of the way librsync works

librsync generates a signature file—a set of checksums—from the outdated file.
The signature file is sent afterwards to the other end, which makes use of it to make
comparisons with the updated version of the file, and generate a delta file as an
output —a file which contains the actual differences between the outdated and the
updated file—. That delta file is transferred back to where the outdated file is, and
with both files the differences are “patched”.

3.3 Scrum methodology

This methodology is considered one of the agile methodologies, and its aim is to
release stable releases of the software in an enclosed period of time, called sprints.
This way, it is possible to adapt to the clients needs and opinions, as the client may
want to include or remove some of the functionalities the application provides.

There are three main roles in the Scrum methodology:

• Product owner: A person who acts as a bridge between the client and the
Scrum team. This person will be responsible for including or removing user
stories, and arranging them with priorities.

• Scrum master: this person is the one that will act as a supporter for the
team, not as the project manager. The task of this person is to act as a coach,
and help the team meeting the goals set. It is there to facilitate communication
among the members of the team, and to ensure that the Scrum processes are
followed correctly.

Mikel Alejo Barcina Ribera Page 18

• Development team: the group of people responsible of carrying out all the
planning, development, testing, etc.

Figure 3.4: An schematic of the Scrum Framework process. By Dr ian mitchell, CC
BY-SA 4.0

For a development to happen, first the product stakeholders or the product
owners must specify the features to have in the application. Those features, are
placed in a list which is called the product backlog. Then, the development team
plans the sprint, taking some user stories from the product backlog, and making
them part of the sprint backlog. The development team will have meetings everyday,
called daily scrum meetings, and they will not last more than fifteen minutes. These
meetings will help readjusting the sprint backlog in case that some user stories
are taking longer to develop, and each team member must answer the following
questions:

• What did I do yesterday that helped the development team meet the sprint
goal?

• What will I do today to help the development team meet the sprint goal?

• Do I see any impediment that prevents me or the development team from
meeting the sprint goal?

At the end of the sprint, the team must make a sprint review, in which the
met —and unmet—goals are commented. Plus, the work done until that time
is presented to the team members and, of course, the product owner. After this
review, a sprint retrospective must be done, in which two main questions need to be
answered:

Mikel Alejo Barcina Ribera Page 19

• What went well during the sprint?

• What could be improved in the next sprint?

Mikel Alejo Barcina Ribera Page 20

4 Kharon, the application

4.1 The client

4.1.1 A general idea of how it works

The client part is divided in three main classes —there are many more but they are
secondary—:

• The Kharon class: dedicated to the user interface.

• The Client class: used for networking.

• The Inotify class: used for the file system events monitoring and processing.

A thread is created for each module, with the intention of making each class’s
work to be assigned to their corresponding thread. However, there is a little prob-
lem with this approach. When a class calls to the other class’s member functions,
the caller’s thread takes care of executing all the statements of that function, and
consequently, it ends up carrying out all the work. The figure 4.1 illustrates the
problem.

Figure 4.1: Illustration of the threading problem

Mikel Alejo Barcina Ribera Page 21

The solution which has been found in order to overcome this problem, is to create
little functions in the receiver class that assign work to the receiver’s thread, and
the consequence is that the caller’s thread has only to execute an statement that
performs that assignment. The figure 4.2 illustrates the solution.

Figure 4.2: Illustration of the threading solution

The threads are of two kinds: there is one thread of the Qt kind, and the other
two are of the Boost kind. This is important, because there is an exception in which
one class’s thread runs code from the other class: when the Client attempts to
connect, it calls a member function from Kharon with the result of that attempt,
in order to update some graphic elements of it. Here, instead of giving the task of
updating the graphic elements according to the result to Kharon’s thread, the code
is executed by the Client ’s thread, breaking the “each thread stays in its scope”
rule.

Finally, the client and the server communicate using a very simple protocol.
That protocol makes use of a Message class —see 4.9 for the class diagram —,
which separates each packet into two parts: the header and the body. On the one
hand, the header includes the action to be taken and the size of the body. On the
other hand, the body is the data. Basically, it is like a buffer that helps managing
the packets. Here is the file containing the commands:

/∗
∗ This f i l e i s par t o f Kharon .
∗

Mikel Alejo Barcina Ribera Page 22

∗ Kharon i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/or
modify

∗ i t under the terms o f the GNU General Pub l i c License as
pub l i s h ed by

∗ the Free Sof tware Foundation ; e i t h e r ve r s i on 2 o f the License
, or

∗ (a t your opt ion) any l a t e r ve r s i on .
∗
∗ Kharon i s d i s t r i b u t e d in the hope t ha t i t w i l l be u s e fu l ,
∗ but WITHOUT ANY WARRANTY; wi thout even the imp l i ed warranty

o f
∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
∗ GNU General Pub l i c License f o r more d e t a i l s .
∗
∗ You shou ld have r e c e i v ed a copy o f the GNU General Pub l i c

License a long
∗ with Kharon ; i f not , wr i t e to the Free Sof tware Foundation ,

Inc . ,
∗ 51 Frank l in S t ree t , F i f t h Floor , Boston , MA 02110−1301 USA.
∗
∗/

/∗∗
∗ @f i l e commands . hpp
∗ @author MikelAlejoBR
∗ @br ie f F i l e con ta in ing command d e c l a r a t i o n s .
∗
∗ This f i l e con ta ins the d e f i n i t i o n o f the commands used by

both the c l i e n t
∗ and the s e r v e r .
∗/

#ifndef COMMANDSHPP
#define COMMANDSHPP

#define MAX HEADER SIZE 7

#define NOTGOOD 20
#define GOOD 21

#define ROOT DIR 30
#define CREATE DIR 31
#define CREATE FILE 32
#define MODIFY FILE 33
#define MOVE FILE 34
#define DELETE DIR 35
#define DELETE FILE 36

Mikel Alejo Barcina Ribera Page 23

#define END 50

#endif // COMMANDSHPP

Mikel Alejo Barcina Ribera Page 24

4.1.2 The graphical user interface

The GUI is one of the important parts of the application. If the user does not like
the user interface, or thinks it is too complicated to use, he or she might end up not
using it. Although this application does not have many functionalities, the design
is clean and simple, allowing almost every person to use it. Below, there is a set of
screenshots showing the graphical user interface’s behaviour.

Figure 4.3: Screenshot of the graphical user interface

Mikel Alejo Barcina Ribera Page 25

Figure 4.4: Screenshot of the directory selection dialog

Figure 4.5: Screenshot of the graphical user interface when the connection attempt
fails

Mikel Alejo Barcina Ribera Page 26

Figure 4.6: Screenshot of the graphical user interface when the connection is suc-
cessful

4.1.2.1 Class diagram

Figure 4.7: Class diagram of the graphical user interface

The figure 4.7 shows the basic class diagram of the graphical user interface, which
it is pretty straightforward. The main class is Kharon, which has a Ui class that is
generated from an .ui file. This file, is generated using the graphical user interface
generator software known by the name Qt Creator. This is extremely useful, as
it allows us as programmers to access every element of our user interface, using
pointers. Here is an actual example of that:

ui−>pushButton connect−>setEnabled (true) ;

Finally, the Kharon class depends on the Client class and vice versa, as they
share some member function calls of each other. In fact, they needed to be forward
declared in order to make this work.

Mikel Alejo Barcina Ribera Page 27

The functions worth commenting are the connection status and start functions.
The former one is used when a connection attempt has been made, and it is called
from the Client object. It activates or deactivates the inputs and buttons depending
on the successfulness of the operation. The latter function passes the shared pointer
of the Kharon object to the Client object. This function is called after the Kharon
object has been completely constructed, as otherwise the shared pointer would not
be ready to be used[2].

Finally, the closeEvent function closes the application nicely when the user clicks
the close button of the window. It stops the Inotify service, makes the client send
a terminate session message to the server, shuts down the client, and finally closes
the GUI.

4.1.3 The client module

Another big module of the client side is the client module. Its the glue that sticks
together the three main classes mentioned in section 4.1.1. It processes the actions
sent by the GUI, it communicates with the server, and it also takes the actions from
the monitoring module and performs the corresponding network operations with
them.

4.1.3.1 Class diagram

Figure 4.8: Class diagram of the client class without the rest of the elements

Mikel Alejo Barcina Ribera Page 28

Figure 4.9: Class diagram of the client module

The Client class is very simple to understand. It has a few public members that
are just the way of giving the Client ’s thread work. There are some functions that
need to be run externally, like the constructor, or the ones that do not have the post
prefix in their name. However, those functions are usually called when the class is
initialized or destroyed, and they do not perform any heavy operations. The public
post functions just call the non-post private functions of the similar name, using
Boost io service’s post function, which in this case assigns the work to the running
thread —see section 3.1.1 for more information about this —.

The client also has access to the FSManager and Librsync classes: the former
helps dealing with some basic file system operations, and the latter helps, in this
case, to generate the delta file from the signature file and the updated file, once the
signature file has been received from the server —see section 3.2 for the complete
explanation —.

4.1.4 The Inotify module

The last class of the three main classes that make the client is the Inotify class.
Built on top of the Inotify program written in C, and using borrowed code from
“pkrnjevic”1 —he gave me the express permission to use it—I modified the code a

1https://github.com/pkrnjevic

Mikel Alejo Barcina Ribera Page 29

https://github.com/pkrnjevic

bit in order to suit the needs of the application. Basically, it monitors the events
on a given directory, and if new sub directories are created, those are monitored
too. The events are processed using a polling system —an asynchronous way of
knowing if a descriptor has any updates —and a loop. Inside the loop, depending
on the event, there are some calls to the Client class which make it interact with
the server.

4.1.4.1 The class diagram

Figure 4.10: Class diagram of the Inotify module

This class also creates a new thread when starting, as otherwise its nested loop could
block any other thread calling this class’ object member functions —check section
5.2.3 for a more detailed explanation of the problem —. The general idea of how it
works is shown in the following pseudo code snippet:

/∗∗ . . . ∗/
int i n o t i f y i n s t a n c e f d ;
struct wa i t f o r a c t i v i t y wfa ;
EVENTSLIST = {CREATE, MODIFY, MOVE, DELETE} ;
FILEVENTS = {MODIFY} ;

/∗∗ . . . ∗/
i n o t i f y i n s t a n c e f d = i n i t i a l i z e i n o t i f y () ;
wfa . f i l e d e s c r i p t o r t o w a t c h = i n o t i f y i n s t a n c e f d ;

/∗∗ . . . ∗/
i no t i f y add watch (i n o t i f y i n s t a n c e f d , ” d i r e c t o r y /” , EVENTSLIST)

;

Mikel Alejo Barcina Ribera Page 30

i no t i f y add watch (i n o t i f y i n s t a n c e f d , ” o t h e r d i r /” , EVENTSLIST)
;

i no t i f y add watch (i n o t i f y i n s t a n c e f d , ” my f i l e . txt ” , FILEVENTS)
;

while (true)
{

int t h e r e i s a c t i v i t y = wa i t f o r a c t i v i t y (wfa) ;
i f (t h e r e i s a c t i v i t y)
{

bu f f e r = read event s (i n o t i f y i n s t a n c e f d) ;
for (int i =0; i<bu f f e r . s i z e ; i++)
{

eventType event = bu f f e r [i] ;

i f (event . i sCrea t eD i r)
/∗∗ Do th i n g s ∗/

i f (event . i sC r e a t eF i l e)
/∗∗ Do th i n g s ∗/

i f (event . i s . . .)
/∗∗ . . . ∗/

}
}

}

Firstly the Inotify instance is created and represented with a file descriptor.
That descriptor is polled using a function specially designed for such purposes,
which blocks until activity is detected in the file descriptor. Internally, the Inotify
instance manages a list of what are called watch descriptors, which are bound to a
specific path —let that path be a directory or a file—. The Kernel is the one who
tells Inotify instance about the new events, and the instance takes care of grouping
those events and getting them ready to be read. Once they are read, they can be
used to perform specific tasks related to that event.

The problem with the Inotify instance is that it only reports which file descriptor
generated the event. Imagine the directory “A” is being monitored for create file
events, and that it has the file descriptor “0” assigned to it. If a file “F ” is created
inside, the event generated will tell us that descriptor “0” has reported a create
file event, with the name of “F ”. Therefore, if we want to know to which directory
corresponds that descriptor, we have to somehow store that relation externally. And
here it is when the clever solution from “pkrnjevic” comes in place.

He figured out a way of storing that data in C++ maps. Maps, are structures
that can bind a key value to data. In the code snippet below a little example of the
usage of this tool is shown:

std : : map <int , s td : : s t r i ng> str ing map ;
str ing map [2 1 5 5] = ”He l lo World ! ” ;

Mikel Alejo Barcina Ribera Page 31

/∗∗ Print ”He l l o World !” ∗/
std : : cout << str ing map [2 1 5 5] << std : : endl ;

Here, a simple map is created and the “Hello World!” string is mapped to the key
value “2155 ”, and printed afterwards.

“pkrnjevic”, has a little bit more complex map. He creates a little structure
containing the parent watch descriptor and the name of the directory, in the following
format:

struct wd info {
int parent wd ;
std : : s t r i n g name ;

}

std : : map <int , wd info> wd s l i s t ;

/∗∗ Assume the roo t f o l d e r ’ s watch d e s c r i p t o r i s 1 ∗/

/∗∗ The va lue as s i gned to watch d e s c r i p t o r i s 2 , f o r
example ∗/

int watch de s c r ip to r = ino t i f y add watch (. . .) ;

/∗∗ I n s e r t i n g a watch d e s c r i p t o r in the map l i s t ∗/
wd info wd struct ;

wd struct . parent wd = 1 ;
wd struct . name = ”my directory ” ;
wd s l i s t [wat ch de s c r ip to r] = wd struct ;

When Inotify detects an event in the watch descriptor number “2” —the one cor-
responding to the directory “my directory”—, for example a file creation event, the
following can be done to obtain the full path:

/∗∗ Assume the roo t f o l d e r ’ s parent watch d e s c r i p t o r i s
s e t to zero ∗/

std : : s t r i n g g e t f u l l p a t h (int wd)
{

i f (wd s l i s t [wd] . parent wd == 0)
return wd s l i s t [wd] . name ;

else
return (g e t f u l l p a t h (wd s l i s t [wd] .

parent wd) + ”/” + wd s l i s t [wd] . name)
;

}

/∗∗ . . . ∗/
eventType event = ev en t bu f f e r [i] ;

int watch de s c r ip to r = event−>getwd ;

Mikel Alejo Barcina Ribera Page 32

std : : s t r i n g f u l l p a t h = g e t f u l l p a t h (watch de s c r ip to r) ;

/∗∗ . . . ∗/

This way, a watch descriptor is associated to a path and its parent descriptor, and
the full path can be obtained recursively.

4.2 The server

4.2.1 A general idea of how it works

The server is just an application that listens at a given port. It makes heavy use of
the asynchrony that Boost Asio provides, and therefore it focuses on efficiency and
responsiveness, with the aim of being able to rapidly process every event that comes
from the client. A session is created for each client, which makes the connection
independent to the rest of the connected users.

4.2.1.1 The class diagram

Figure 4.11: Class diagram of the server module

The Server class just accepts connections and creates sessions for them. The Session
class is the one that will keep the session alive, by chaining operations, and depending
on which command is received from the client the corresponding handler will be
executed.

Mikel Alejo Barcina Ribera Page 33

The following example shows how that chaining works, and the logic behind it:

Figure 4.12: Diagram of how the Session class works

1. The Session class is created, and an asynchronous read is performed, in order
to read the message header.

2. The header is read, and the io service forwards the results to the handler.

3. The handler decodes header, and extracts the following information: the com-
mand which has been sent from the client, and the size of the body of the
incoming message —in this case with the path of the file being deleted —.

4. The handler performs another asynchronous read, expecting a message of the
size which was decoded from the header.

5. The body is read, and the io service forwards the results to the handler.

6. The handler attempts to delete the file.

7. The handler performs an asynchronous read for a new header message, closing
the loop.

Playing with different handlers depending on the command received, it is possible
to build a fully functional Session class that can handle a wide variety of commands.

4.3 The challenges

4.3.1 Starting from scratch

One of the biggest challenges of this project has been to learn how the tools and
libraries are used. Starting from the documentation itself, LATEX has sometimes

Mikel Alejo Barcina Ribera Page 34

become in a painful tool to use. Even for the minimum and supposedly easiest
thing to do LATEX turns it into a nightmare. Once one figures out how everything
works on LATEX, everything becomes a little bit more easier, but still. Proof of this
is the uncountable resources that have been consulted in order to fix common LATEX
problems. [3–24]

After struggling with the documentation, C++ comes into place. If learning the
language was not challenging enough, the planning said that it had to be learned
along with Boost, which is a library intended for intermediate C++ programmers.
That made the first weeks of development slow, as the consultations were of the fol-
lowing kind: knowing what was a virtual destructor in C++ [25], compiling projects
built with Boost [26], learning about C++ constructors [27], facing threading errors
[28], consulting CMake examples to make more complex projects [29], linking the
Boost libraries to the targets [30], fixing errors on host name resolution [31], follow-
ing complete guides which teach how to use Boost [32], learning about Boost Bind
[1], consulting specific data types and functions [33–44], consulting on Boost File
system library and facing errors [45, 46], learning how to run io service in a different
thread [47], learning about which signals package should be used in C++ [48] and
finally using Boost Signals for it [49], propagating exceptions between threads [50],
figuring out which way is the best in order to transfer files using Boost [51], and
many, many secondary resources that have not been listed.

4.3.2 Compiling Qt projects with CMake

Qt Creator and KDevelop use different ways to organize, arrange and compile the
projects. Qt Creator uses an integrated compiled, and an special syntax to indicate
the files and modules that need to be compiled. It automates the generation of
makefiles interpreting the syntax of that special, .pro suffixed file. On the other
hand, KDevelop uses CMake, which turns compiling Qt projects into a little prob-
lem. Qt applications make use of different modules —such as the Qt Widgets or Qt
Network used in this application —in order to add functionality to our graphical
user interface. Nonetheless, those modules must be specified —either in the .pro file
or in the CMakeLists—when compiling the application as otherwise the compiler
will complain about their absence. Essentially, this problem can be solved checking
the on line manual of Qt [52]. Here is a code snippet that shows the proper usage
of CMake to compile projects that contain Qt modules. The AUTOMOC [53] [54]
and AUTOUIC [55] [56]files generate the Meta-Object Compiler. See: Meta-object
system (MOC) and User Interface Compiler. See: UIC (UIC) files automatically,
whereas CMAKE INCLUDE CURRENT DIR includes the current source directory
and the current binary directory to the targets [57].

cmake minimum required (VERSION 3 . 0 . 0 FATAL ERROR)
p ro j e c t (Example)

s e t (CMAKEAUTOMOC ON)
s e t (CMAKEAUTOUIC ON)

Mikel Alejo Barcina Ribera Page 35

s e t (CMAKE INCLUDE CURRENT DIR ON)

f ind package (Qt5Widgets REQUIRED)
f ind package (Qt5Network REQUIRED)

i n c l u d e d i r e c t o r i e s (${Qt5Widgets INCLUDE DIRS})
a dd d e f i n i t i o n s (${QT DEFINITIONS})

add executab le (main main . cpp)
t a r g e t l i n k l i b r a r i e s (main Qt5 : : Widgets Qt5 : : Network)

4.3.3 How to make forward declarations in C++

One of the biggest problems I faced when developing the client part of the application
was how to properly include one class in another and vice versa. I thought that
adding a simple #include in each of the class headers would make it, but this
little problem made the compiler complain a lot. After a lot of research and many
hours spent visiting websites, tutorials and much more, I learned that this way of
“including” is called a forward declaration. Therefore, as I already knew what was
the name of the technique I had to use, I finally stumbled upon some resources [58]
[59] [60] that helped me compile the application without any kind of error.

The trick is to consists on declaring a class without its structure or implementa-
tion, and later in the header file declare a pointer to an object of that class. Finally,
in the source code file —the .cpp file—, is where the header of that class is included,
which makes the pointer have all the functionality that the class may have. Here is
a little example of that:

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ c l a s s a . hpp ∗
∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗/

#include ” c l a s s b . hpp”

class ClassA
{
public :

ClassA () ;
˜ClassA () ;

/∗∗ . . . ∗/

private :
ClassB b ob j e c t ;

} ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ c l a s s a . hpp ∗

Mikel Alejo Barcina Ribera Page 36

∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗/

/∗∗ Implementation o f ClassA ∗/

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ c l a s s b . hpp ∗
∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗/

class ClassA ;

class ClassB
{
public :

ClassB () ;
˜ClassB () ;

void add r e f a ob j e c t (ClassA∗ ptr) ;

/∗∗ . . . ∗/

private :
ClassA∗ a ob j e c t ;

} ;

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ c l a s s b . cpp ∗
∗ ∗∗∗∗∗∗∗∗∗∗∗ ∗/

#include ” c l a s s a . hpp”

/∗ . . . ∗/

void ClassB : : a dd r e f a ob j e c t (ClassA∗ ptr)
{

a ob j e c t = ptr ;
}

/∗ . . . ∗/

4.3.4 Understanding Boost libraries

Maybe this has been the most challenging part of the project. I was not used to
program so differently, with things like Boost Asio, Boost Bind and Boost Thread. It
has supposed a massive challenge, and a big amount of problems and misconceptions
I had were altruistically solved by the people of the official Boost Internet Relay Chat
(IRC) channel.

They helped me by not giving me the direct answer. Instead, they helped by
giving me tips and making me figure out the answer to my question.

Mikel Alejo Barcina Ribera Page 37

Probably you are asking yourself why this section is so short, and why I do not
include any specific problem here. This is because of two reasons:

1. Many problems were much more advanced than the explanations shown in
this report. Because of this reason, trying to explain the problems I had
would extend too much the report, and probably I would not achieve making
the reader understand what the problem is, and what was the solution to it.

2. The clearest representation of the problems and difficulties I had with the
libraries are spread throughout the report, in the form of concept explanations
and examples.

4.3.5 Minor issues

Some other minor issues have involved learning about some specific topics:

• Using simple labels [61].

• Defining events for visual elements in order to learn the syntax and implement
them manually afterwards [62].

• Converting from the Qt type QString to const char* [63] [64].

• Learning about how to properly use signals and slots in Qt [65] [66].

• And learning how to implement a directory browse dialog [67].

Mikel Alejo Barcina Ribera Page 38

5 Conclusions

5.1 Tracking and control

It has been tried to follow the initial planning —the one shown in the Gantt chart—,
but as shown in the Gantt charts of the section 5.1.1, some delays have been suffered
throughout the project. Initially, the project was thought to be rather simple, just
like the technologies to be learned. Nonetheless, appearances can be deceiving. The
task of developing an application while learning a new language, new tools and new
libraries is a massive challenge.

Although the Scrum methodology helped a bit in focusing on small tasks, and
setting concrete goals, the constant learning which had to be done led to many
structural changes and therefore, kept delaying more and more the finish date of the
application development.

For example, the part which has been kept untouched for a long time has been the
GUI part, which it did not change much since it was developed. Instead, the client
module, the synchronization module and the server module have been constantly
changing, as new concepts, ways and tricks were being learned.

The table below represents the work invested in the project, and how it has been
in constant growth since the project started —except for a sprint in which it had
to be shortened due to academic obligations—. The granularity was set in fifteen
minutes, in order to make tracking and control easier.

Task Time invested
Develop the first draft of the report 23h 30’

Correct the first draft 2h 15’
Learning the tools 35h 45’

First sprint Network 44h 30’
Second sprint Synchronization 43h 15’

Third sprint GUI 46h 15’
Fourth sprint Final tweaks 39h 45’

Fifth sprint Bonus: network, sync and gui 46h 30’
Sixth sprint Bonus: network, sync and gui 45h 15’

Alpha version of the report 6h 15’
Beta version of the report 9h
Final version of the report 12h 45’

5.1.1 Gantt chart’s snapshots

The following pages include snapshots of the Gantt chart at different stages of the
project. The snapshots were taken every Monday.

Mikel Alejo Barcina Ribera Page 39

Kh
ar

on
09

-M
ay

-2
01

6

G
an

tt
 C

ha
rt

3

N
am

e
Be

gi
n

da
te

En
d

da
te

Tr
ai

ni
ng

02
/0

5/
16

27
/0

5/
16

C+
+

02
/0

5/
16

26
/0

5/
16

KD
ev

el
op

02
/0

5/
16

19
/0

5/
16

CM
ak

e
02

/0
5/

16
15

/0
5/

16
Bo

os
t

As
io

09
/0

5/
16

13
/0

5/
16

lib
rs

yn
c

16
/0

5/
16

20
/0

5/
16

Q
t

23
/0

5/
16

27
/0

5/
16

D
ev

el
op

m
en

t
09

/0
5/

16
04

/0
6/

16
N

et
w

or
k

09
/0

5/
16

15
/0

5/
16

Sy
nc

hr
on

iz
at

io
n

16
/0

5/
16

22
/0

5/
16

G
U

I
23

/0
5/

16
29

/0
5/

16
Fi

na
l t

w
ea

ks
30

/0
5/

16
04

/0
6/

16
D

oc
um

en
ta

tio
n

02
/0

5/
16

16
/0

6/
16

Pl
an

ni
ng

02
/0

5/
16

08
/0

5/
16

Sc
ru

m
09

/0
5/

16
05

/0
6/

16
Co

rr
ec

tio
ns

06
/0

6/
16

09
/0

6/
16

Fi
na

l t
w

ea
ks

10
/0

6/
16

16
/0

6/
16

Al
ph

a
06

/0
6/

16
06

/0
6/

16
Be

ta
10

/0
6/

16
10

/0
6/

16
Ap

pl
y

fo
r

th
e

de
fe

ns
e

17
/0

6/
16

17
/0

6/
16

Pr
oj

ec
t

up
lo

ad
24

/0
6/

16
24

/0
6/

16

20
16

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

W
ee

k
27

W
ee

k
28

W
ee

k
29

W
ee

k
30

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

04
/0

7/
16

11
/0

7/
16

18
/0

7/
16

25
/0

7/
16

Be
ta

Ap
pl

y
fo

r
th

e
de

fe
ns

e
Pr

oj
ec

t
up

lo
ad

Al
ph

a

Mikel Alejo Barcina Ribera Page 40

Kh
ar

on
16

-M
ay

-2
01

6

G
an

tt
 C

ha
rt

3

N
am

e
Be

gi
n

da
te

En
d

da
te

Tr
ai

ni
ng

02
/0

5/
16

27
/0

5/
16

C+
+

02
/0

5/
16

26
/0

5/
16

KD
ev

el
op

02
/0

5/
16

19
/0

5/
16

CM
ak

e
02

/0
5/

16
15

/0
5/

16
Bo

os
t

As
io

09
/0

5/
16

13
/0

5/
16

lib
rs

yn
c

16
/0

5/
16

20
/0

5/
16

Q
t

23
/0

5/
16

27
/0

5/
16

D
ev

el
op

m
en

t
09

/0
5/

16
04

/0
6/

16
N

et
w

or
k

09
/0

5/
16

15
/0

5/
16

Sy
nc

hr
on

iz
at

io
n

16
/0

5/
16

22
/0

5/
16

G
U

I
23

/0
5/

16
29

/0
5/

16
Fi

na
l t

w
ea

ks
30

/0
5/

16
04

/0
6/

16
D

oc
um

en
ta

tio
n

02
/0

5/
16

16
/0

6/
16

Pl
an

ni
ng

02
/0

5/
16

08
/0

5/
16

Sc
ru

m
09

/0
5/

16
05

/0
6/

16
Co

rr
ec

tio
ns

06
/0

6/
16

09
/0

6/
16

Fi
na

l t
w

ea
ks

10
/0

6/
16

16
/0

6/
16

Al
ph

a
06

/0
6/

16
06

/0
6/

16
Be

ta
10

/0
6/

16
10

/0
6/

16
Ap

pl
y

fo
r

th
e

de
fe

ns
e

17
/0

6/
16

17
/0

6/
16

Pr
oj

ec
t

up
lo

ad
24

/0
6/

16
24

/0
6/

16

20
16

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

W
ee

k
27

W
ee

k
28

W
ee

k
29

W
ee

k
30

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

04
/0

7/
16

11
/0

7/
16

18
/0

7/
16

25
/0

7/
16

Be
ta

Ap
pl

y
fo

r
th

e
de

fe
ns

e
Pr

oj
ec

t
up

lo
ad

Al
ph

a

Mikel Alejo Barcina Ribera Page 41

Kh
ar

on
23

-M
ay

-2
01

6

G
an

tt
 C

ha
rt

3

N
am

e
Be

gi
n

da
te

En
d

da
te

Tr
ai

ni
ng

02
/0

5/
16

27
/0

5/
16

C+
+

02
/0

5/
16

26
/0

5/
16

KD
ev

el
op

02
/0

5/
16

19
/0

5/
16

CM
ak

e
02

/0
5/

16
15

/0
5/

16
Bo

os
t

As
io

09
/0

5/
16

13
/0

5/
16

lib
rs

yn
c

16
/0

5/
16

20
/0

5/
16

Q
t

23
/0

5/
16

27
/0

5/
16

D
ev

el
op

m
en

t
09

/0
5/

16
04

/0
6/

16
N

et
w

or
k

09
/0

5/
16

15
/0

5/
16

Sy
nc

hr
on

iz
at

io
n

16
/0

5/
16

22
/0

5/
16

G
U

I
23

/0
5/

16
29

/0
5/

16
Fi

na
l t

w
ea

ks
30

/0
5/

16
04

/0
6/

16
D

oc
um

en
ta

tio
n

02
/0

5/
16

16
/0

6/
16

Pl
an

ni
ng

02
/0

5/
16

08
/0

5/
16

Sc
ru

m
09

/0
5/

16
05

/0
6/

16
Co

rr
ec

tio
ns

06
/0

6/
16

09
/0

6/
16

Fi
na

l t
w

ea
ks

10
/0

6/
16

16
/0

6/
16

Al
ph

a
06

/0
6/

16
06

/0
6/

16
Be

ta
10

/0
6/

16
10

/0
6/

16
Ap

pl
y

fo
r

th
e

de
fe

ns
e

17
/0

6/
16

17
/0

6/
16

Pr
oj

ec
t

up
lo

ad
24

/0
6/

16
24

/0
6/

16

20
16

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

W
ee

k
27

W
ee

k
28

W
ee

k
29

W
ee

k
30

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

04
/0

7/
16

11
/0

7/
16

18
/0

7/
16

25
/0

7/
16

Be
ta

Ap
pl

y
fo

r
th

e
de

fe
ns

e
Pr

oj
ec

t
up

lo
ad

Al
ph

a

Mikel Alejo Barcina Ribera Page 42

Kh
ar

on
30

-M
ay

-2
01

6

G
an

tt
 C

ha
rt

3

N
am

e
Be

gi
n

da
te

En
d

da
te

Tr
ai

ni
ng

02
/0

5/
16

27
/0

5/
16

C+
+

02
/0

5/
16

26
/0

5/
16

KD
ev

el
op

02
/0

5/
16

19
/0

5/
16

CM
ak

e
02

/0
5/

16
15

/0
5/

16
Bo

os
t

As
io

09
/0

5/
16

13
/0

5/
16

lib
rs

yn
c

16
/0

5/
16

20
/0

5/
16

Q
t

23
/0

5/
16

27
/0

5/
16

D
ev

el
op

m
en

t
09

/0
5/

16
04

/0
6/

16
N

et
w

or
k

09
/0

5/
16

15
/0

5/
16

Sy
nc

hr
on

iz
at

io
n

16
/0

5/
16

22
/0

5/
16

G
U

I
23

/0
5/

16
29

/0
5/

16
Fi

na
l t

w
ea

ks
30

/0
5/

16
04

/0
6/

16
D

oc
um

en
ta

tio
n

02
/0

5/
16

16
/0

6/
16

Pl
an

ni
ng

02
/0

5/
16

08
/0

5/
16

Sc
ru

m
09

/0
5/

16
05

/0
6/

16
Co

rr
ec

tio
ns

06
/0

6/
16

09
/0

6/
16

Fi
na

l t
w

ea
ks

10
/0

6/
16

16
/0

6/
16

Al
ph

a
06

/0
6/

16
06

/0
6/

16
Be

ta
10

/0
6/

16
10

/0
6/

16
Ap

pl
y

fo
r

th
e

de
fe

ns
e

17
/0

6/
16

17
/0

6/
16

Pr
oj

ec
t

up
lo

ad
24

/0
6/

16
24

/0
6/

16

20
16

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

W
ee

k
27

W
ee

k
28

W
ee

k
29

W
ee

k
30

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

04
/0

7/
16

11
/0

7/
16

18
/0

7/
16

25
/0

7/
16

Be
ta

Ap
pl

y
fo

r
th

e
de

fe
ns

e
Pr

oj
ec

t
up

lo
ad

Al
ph

a

Mikel Alejo Barcina Ribera Page 43

Kh
ar

on
06

-Ju
n-

20
16

G
an

tt
 C

ha
rt

3

N
am

e
Be

gi
n

da
te

En
d

da
te

Tr
ai

ni
ng

02
/0

5/
16

27
/0

5/
16

C+
+

02
/0

5/
16

26
/0

5/
16

KD
ev

el
op

02
/0

5/
16

19
/0

5/
16

CM
ak

e
02

/0
5/

16
15

/0
5/

16
Bo

os
t

As
io

09
/0

5/
16

13
/0

5/
16

lib
rs

yn
c

16
/0

5/
16

20
/0

5/
16

Q
t

23
/0

5/
16

27
/0

5/
16

D
ev

el
op

m
en

t
09

/0
5/

16
04

/0
6/

16
N

et
w

or
k

09
/0

5/
16

15
/0

5/
16

Sy
nc

hr
on

iz
at

io
n

16
/0

5/
16

22
/0

5/
16

G
U

I
23

/0
5/

16
29

/0
5/

16
Fi

na
l t

w
ea

ks
30

/0
5/

16
04

/0
6/

16
D

oc
um

en
ta

tio
n

02
/0

5/
16

16
/0

6/
16

Pl
an

ni
ng

02
/0

5/
16

08
/0

5/
16

Sc
ru

m
09

/0
5/

16
05

/0
6/

16
Co

rr
ec

tio
ns

06
/0

6/
16

09
/0

6/
16

Fi
na

l t
w

ea
ks

10
/0

6/
16

16
/0

6/
16

Al
ph

a
06

/0
6/

16
06

/0
6/

16
Be

ta
10

/0
6/

16
10

/0
6/

16
Ap

pl
y

fo
r

th
e

de
fe

ns
e

17
/0

6/
16

17
/0

6/
16

Pr
oj

ec
t

up
lo

ad
24

/0
6/

16
24

/0
6/

16

20
16

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

W
ee

k
27

W
ee

k
28

W
ee

k
29

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

04
/0

7/
16

11
/0

7/
16

18
/0

7/
16

Be
ta

Ap
pl

y
fo

r
th

e
de

fe
ns

e
Pr

oj
ec

t
up

lo
ad

Al
ph

a

Mikel Alejo Barcina Ribera Page 44

Kh
ar

on
13

-Ju
n-

20
16

G
an

tt
 C

ha
rt

3

N
am

e
Be

gi
n

da
te

En
d

da
te

Tr
ai

ni
ng

02
/0

5/
16

27
/0

5/
16

C+
+

02
/0

5/
16

26
/0

5/
16

KD
ev

el
op

02
/0

5/
16

19
/0

5/
16

CM
ak

e
02

/0
5/

16
15

/0
5/

16
Bo

os
t

As
io

09
/0

5/
16

13
/0

5/
16

lib
rs

yn
c

16
/0

5/
16

20
/0

5/
16

Q
t

23
/0

5/
16

27
/0

5/
16

D
ev

el
op

m
en

t
09

/0
5/

16
04

/0
6/

16
N

et
w

or
k

09
/0

5/
16

15
/0

5/
16

Sy
nc

hr
on

iz
at

io
n

16
/0

5/
16

22
/0

5/
16

G
U

I
23

/0
5/

16
29

/0
5/

16
Fi

na
l t

w
ea

ks
30

/0
5/

16
04

/0
6/

16
D

oc
um

en
ta

tio
n

02
/0

5/
16

16
/0

6/
16

Pl
an

ni
ng

02
/0

5/
16

08
/0

5/
16

Sc
ru

m
09

/0
5/

16
05

/0
6/

16
Co

rr
ec

tio
ns

06
/0

6/
16

09
/0

6/
16

Fi
na

l t
w

ea
ks

10
/0

6/
16

16
/0

6/
16

Al
ph

a
06

/0
6/

16
06

/0
6/

16
Be

ta
10

/0
6/

16
10

/0
6/

16
Ap

pl
y

fo
r

th
e

de
fe

ns
e

17
/0

6/
16

17
/0

6/
16

Pr
oj

ec
t

up
lo

ad
24

/0
6/

16
24

/0
6/

16

20
16

W
ee

k
18

W
ee

k
19

W
ee

k
20

W
ee

k
21

W
ee

k
22

W
ee

k
23

W
ee

k
24

W
ee

k
25

W
ee

k
26

W
ee

k
27

W
ee

k
28

W
ee

k
29

02
/0

5/
16

09
/0

5/
16

16
/0

5/
16

23
/0

5/
16

30
/0

5/
16

06
/0

6/
16

13
/0

6/
16

20
/0

6/
16

27
/0

6/
16

04
/0

7/
16

11
/0

7/
16

18
/0

7/
16

Be
ta

Ap
pl

y
fo

r
th

e
de

fe
ns

e
Pr

oj
ec

t
up

lo
ad

Al
ph

a

Mikel Alejo Barcina Ribera Page 45

5.2 Limitations

Although the minimum quality planned for the application has been achieved, the
software presents some limitations, mainly because of the strict deadlines and plan-
ning restrictions. The general learning curve of this project has been steep, and
consequently the speed at which the development was taking place was considerably
slow. Some of the limitations are explained in the following sections.

5.2.1 Lack of testing

Due to the delays caused by the learning process, and the demanding planning in
terms of meeting the deadlines, I decided to reduce the effort put in this regard, in
order to be able to release an application as complete as possible. Consequently, the
application may misbehave in certain situations.

5.2.2 Networking

Transmission Control Protocol (TCP) is presented to the programmer as an contin-
uous stream of bytes, whereas User Datagram Protocol (UDP) is presented as a mes-
sage oriented protocol. Due to an initial misunderstanding of how TCP worked, the
application was developed with the “packets idea” in mind. Although the examples,
guides and tutorials followed used TCP as the network protocol, this misconception
may have led to an less efficient network code.

5.2.3 Threading

Threads are tend to be used in pools. These pools hold an amount of threads that
when they are idle, take some work and do it. However, in this project’s application,
the threads have not been grouped in a pool. The GUI launches a thread, the client
another one and the directory monitoring module the third one.

This is due to how the io service works, and due to the demanding deadlines set
in the planning which made me decided leave the investigation of turning the syn-
chronous, loop based Inotify module into an asynchronous module. The io service
executes the specified handlers in the asynchronous operations once these have been
finished, and until those handlers return, no more handlers are executed. Therefore,
if the io service is told to execute a function or a handler which has an infinite loop
within, the handler will never return and no more handlers will be executed.

5.3 Future work lines

The functionalities mentioned in the 2.7.2 are a good example of how this application
could be improved in the future. However, before adding any new functionalities
the actual limitations should be overcome first. By order of relevance, the essential
core aspects of the application should be reviewed:

Mikel Alejo Barcina Ribera Page 46

1. Whether the network code could be simplified or not, by checking if the TCP
concept has been efficiently applied.

2. Find a way of getting rid of the nested loops that the current implementation
of the synchronization module presents, by making it asynchronous.

3. Continue and go in depth about error handling and testing, which would im-
prove the application’s stability.

5.4 Project conclusions

The objective of building a client-server application which synchronizes a directory
between the two ends has been achieved, although with some limitations. From the
beginning, it was thought to use libraries that already were developed, as otherwise
the full development of all the three main modules of the application would have
been independent projects themselves.

Therefore, the outcome of this project is the result of the integration of different
libraries, being some of them written in a different programming language and having
being wrapped into the main programming language that has been used to develop
the application. This focus on using already developed libraries has made the project
be similar to an non-academic project, as usually when working in a company, the
usage of frameworks and already developed and tested libraries is crucial in order
to be able to meet the deadlines.

Not only the application has been important, as the amount of knowledge gained
into advanced topics like sending file differences over the network, or using asyn-
chrony in order to enhance scalability and efficiency are widely used by professionals
nowadays in a wide range of applications.

Another important aspect of this application is that it has been entirely built
using open source tools and libraries. Besides, these assets are free to use —except
for Qt if it is used for a commercial project —and surprising though it may seem,
they provide support for those developers that may have some sort of problem using
the aforementioned assets.

In general, it has been a successful project, not only because of the final appli-
cation, but also because of the knowledge gained in cutting edge technologies.

Mikel Alejo Barcina Ribera Page 47

Acronyms

API Application Programming Interface. 16, 49

GUI Graphical User Interface. 1, 6, 8, 25, 28, 39, 46

IDE Integrated Development Environment. 49

IRC Internet Relay Chat. 37

MOC Meta-Object Compiler. See: Meta-object system. 35

SDK Software development kit. 50

TCP Transmission Control Protocol. 46, 47

UDP User Datagram Protocol. 46

UIC User Interface Compiler. See: UIC. 35

Mikel Alejo Barcina Ribera Page 48

Glossary

Agile software development Agile software development is a set of principles for
software development in which requirements and solutions evolve through col-
laboration between self-organizing cross-functional teams. It promotes adap-
tive planning, evolutionary development, early delivery, and continuous im-
provement, and it encourages rapid and flexible response to change. https:

// en. wikipedia. org/ wiki/ Agile_ software_ development . 9, 18

CMake is cross-platform free and open-source software for managing the build
process of software using a compiler-independent method. It is designed to
support directory hierarchies and applications that depend on multiple li-
braries. It is used in conjunction with native build environments such as
make, Apple’s Xcode, and Microsoft Visual Studio. It has minimal depen-
dencies, requiring only a C++ compiler on its own build system. Source:
https: // en. wikipedia. org/ wiki/ CMake . 35, 49

CMakeLists is the file that CMake uses. 35

Forward declaration is a declaration of an identifier for which the programmer
has not given yet a complete definition. In this project, it is used when two
classes need to include each other. 27, 36

Inotify is an API which provides a mechanism for monitoring filesystem events.
Inotify can be used to monitor individual files, or to monitor directories. When
a directory is monitored, Inotify will return events for the directory itself, and
for files inside the directory.. 28, 29, 31, 32, 46, 49

KDevelop is a free software integrated development environment Integrated De-
velopment Environment (IDE) for the KDE Platform on Unix-like computer
operating systems. KDevelop includes no compiler; instead, it uses an exter-
nal compiler such as GCC or Clang to produce executable binaries. Source:
https: // en. wikipedia. org/ wiki/ KDevelop . 35

make is a build automation tool that automatically builds executable programs and
libraries from source code by reading files —called makefiles —which specify
how to derive the target program. Source: http: // www. boost. org/ doc/

libs/ 1_ 58_ 0/ libs/ smart_ ptr/ shared_ ptr. htm . 49

Makefile is a file containing a set of directives used with the make build automation
tool. Source: https: // en. wikipedia. org/ wiki/ Makefile . 35, 49

Mikel Alejo Barcina Ribera Page 49

https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/CMake
https://en.wikipedia.org/wiki/KDevelop
http://www.boost.org/doc/libs/1_58_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_58_0/libs/smart_ptr/shared_ptr.htm
https://en.wikipedia.org/wiki/Makefile

Meta-object system is a part of Qt framework core provided to support Qt ex-
tensions to C++ like signals/slots for inter-object communication. Source:
https: // en. wikipedia. org/ wiki/ Meta-object_ System . 35, 48

Qt is a cross-platform application framework that is widely used for developing
application software that can be run on various software and hardware plat-
forms with little or no change in the underlying codebase, while still be-
ing a native application with the capabilities and speed thereof. Source:
https: // en. wikipedia. org/ wiki/ Qt_ %28software% 29 . 22, 35, 38, 47,
50

Qt Creator is a cross-platform C++, JavaScript and QML integrated development
environment which is part of the Software development kit (SDK) for the
Qt GUI Application development framework. It includes a visual debugger
and an integrated GUI layout and forms designer. Source: https: // en.

wikipedia. org/ wiki/ Qt_ Creator . 27, 35, 50

Shared pointer is a container for an standard raw pointer pointing to a dy-
namically allocated object. The object will only be destroyed when all the
shared pointers referencing to it are deleted or reseted. Source: http: // www.
boost. org/ doc/ libs/ 1_ 58_ 0/ libs/ smart_ ptr/ shared_ ptr. htm . 28,
50

UIC reads an XML format user interface definition (.ui) file as generated by Qt De-
signer —or Qt Creator—and creates a corresponding C++ header file. Source:
http: // doc. qt. io/ qt-4. 8/ uic. html . 35, 48

Mikel Alejo Barcina Ribera Page 50

https://en.wikipedia.org/wiki/Meta-object_System
https://en.wikipedia.org/wiki/Qt_%28software%29
https://en.wikipedia.org/wiki/Qt_Creator
https://en.wikipedia.org/wiki/Qt_Creator
http://www.boost.org/doc/libs/1_58_0/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/doc/libs/1_58_0/libs/smart_ptr/shared_ptr.htm
http://doc.qt.io/qt-4.8/uic.html

Bibliography

[1] Boost. Boost.Bind. unknown. url: http:
//www.boost.org/doc/libs/1_61_0/libs/bind/doc/html/bind.html

(visited on 05/09/2016).

[2] Barry. Getting ’bad weak ptr’ error. June 2016. url:
http://stackoverflow.com/questions/37630593/getting-bad-weak-

ptr-error (visited on 06/04/2016).

[3] egreg. Comments in BibTex. June 2015. url:
http://tex.stackexchange.com/questions/21709/comments-in-bibtex

(visited on 01/28/2016).

[4] Heiko Oberdiek. Line breaks of long URLs in bibliography? Sept. 2013. url:
http://tex.stackexchange.com/questions/134191/line-breaks-of-

long-urls-in-bibliography (visited on 01/28/2016).

[5] herohuyongtao. How to center the table in Latex. Feb. 2014. url:
http://tex.stackexchange.com/questions/162462/how-to-center-

the-table-in-latex (visited on 01/28/2016).

[6] Wikibooks. LaTeX/Macros. Dec. 2015. url:
https://en.wikibooks.org/wiki/LaTeX/Macros (visited on 01/28/2016).

[7] Stefan Kottwitz. Color changes cell height in tabular. Oct. 2011. url:
http://tex.stackexchange.com/questions/31547/color-changes-cell-

height-in-tabular (visited on 01/28/2016).

[8] Wikibooks. LaTeX/Colors. Jan. 2016. url:
https://en.wikibooks.org/wiki/LaTeX/Colors (visited on 01/28/2016).

[9] Wikibooks. LaTeX/Tables. Jan. 2016. url:
https://en.wikibooks.org/wiki/LaTeX/Tables (visited on 01/14/2016).

[10] Ignasi. How to make pgfgantt scale to specific widths in the page? (ex.
textwidth). June 2012. url:
http://tex.stackexchange.com/questions/59001/how-to-make-

pgfgantt-scale-to-specific-widths-in-the-page-ex-textwidth

(visited on 01/31/2016).

[11] domwass. What’s the quickest way to write “2nd” “3rd” etc in LaTeX? Oct.
2014. url: http://tex.stackexchange.com/questions/4118/whats-the-
quickest-way-to-write-2nd-3rd-etc-in-latex (visited on 02/04/2016).

[12] Yiannis Lazarides. How to get “LaTeX” symbol in document. Dec. 2010. url:
http://tex.stackexchange.com/questions/7546/how-to-get-latex-

symbol-in-document (visited on 05/07/2016).

Mikel Alejo Barcina Ribera Page 51

http://www.boost.org/doc/libs/1_61_0/libs/bind/doc/html/bind.html
http://www.boost.org/doc/libs/1_61_0/libs/bind/doc/html/bind.html
http://stackoverflow.com/questions/37630593/getting-bad-weak-ptr-error
http://stackoverflow.com/questions/37630593/getting-bad-weak-ptr-error
http://tex.stackexchange.com/questions/21709/comments-in-bibtex
http://tex.stackexchange.com/questions/134191/line-breaks-of-long-urls-in-bibliography
http://tex.stackexchange.com/questions/134191/line-breaks-of-long-urls-in-bibliography
http://tex.stackexchange.com/questions/162462/how-to-center-the-table-in-latex
http://tex.stackexchange.com/questions/162462/how-to-center-the-table-in-latex
https://en.wikibooks.org/wiki/LaTeX/Macros
http://tex.stackexchange.com/questions/31547/color-changes-cell-height-in-tabular
http://tex.stackexchange.com/questions/31547/color-changes-cell-height-in-tabular
https://en.wikibooks.org/wiki/LaTeX/Colors
https://en.wikibooks.org/wiki/LaTeX/Tables
http://tex.stackexchange.com/questions/59001/how-to-make-pgfgantt-scale-to-specific-widths-in-the-page-ex-textwidth
http://tex.stackexchange.com/questions/59001/how-to-make-pgfgantt-scale-to-specific-widths-in-the-page-ex-textwidth
http://tex.stackexchange.com/questions/4118/whats-the-quickest-way-to-write-2nd-3rd-etc-in-latex
http://tex.stackexchange.com/questions/4118/whats-the-quickest-way-to-write-2nd-3rd-etc-in-latex
http://tex.stackexchange.com/questions/7546/how-to-get-latex-symbol-in-document
http://tex.stackexchange.com/questions/7546/how-to-get-latex-symbol-in-document

[13] Rasmus. Command line tool to crop PDF files. Aug. 2012. url:
http://askubuntu.com/questions/124692/command-line-tool-to-

crop-pdf-files (visited on 05/07/2016).

[14] phi. Citation overfull hbox error. Nov. 2008. url:
http://latex-community.org/forum/viewtopic.php?f=5&t=3239 (visited
on 05/30/2016).

[15] Joseph Wright. Bibliography error: ”Use of
blx@bbl@verbadd@i doesn’t match its definition.
verb”. May 2016. url:
http://tex.stackexchange.com/questions/311426/bibliography-

error-use-of-blxbblverbaddi-doesnt-match-its-definition-ve

(visited on 06/08/2016).

[16] Wikibooks. LaTeX/Source Code Listings. Jan. 2016. url:
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings (visited
on 06/09/2016).

[17] ShreevatsaR. How can I make an enumerate list start at something other than
1? July 2010. url: http://tex.stackexchange.com/questions/142/how-
can-i-make-an-enumerate-list-start-at-something-other-than-1

(visited on 06/09/2016).

[18] Ulrike Fischer. pdfTeX warning (ext4): destination with the same identifier
(nam e{page.1}) has been already used, duplicate ignored. May 2011. url:
http://tex.stackexchange.com/questions/142/how-can-i-make-an-

enumerate-list-start-at-something-other-than-1 (visited on
06/10/2016).

[19] myrtille. Bad formatting of Bibliography. Jan. 2013. url:
http://tex.stackexchange.com/questions/89751/bad-formatting-of-

bibliography (visited on 06/10/2016).

[20] ShareLatex. Page numbering. Unknown. url:
https://www.sharelatex.com/learn/Page_numbering#Numbering_styles

(visited on 06/10/2016).

[21] Werner. Use
textwidth for Image width Only when it outgrows the page [duplicate]. Jan.
2012. url: http://tex.stackexchange.com/questions/41787/use-
textwidth-for-image-width-only-when-it-outgrows-the-page (visited
on 06/12/2016).

[22] Wikibooks. LaTeX/Glossary. June 2016. url:
https://en.wikibooks.org/wiki/LaTeX/Glossary (visited on
06/12/2016).

[23] Werner.

Mikel Alejo Barcina Ribera Page 52

http://askubuntu.com/questions/124692/command-line-tool-to-crop-pdf-files
http://askubuntu.com/questions/124692/command-line-tool-to-crop-pdf-files
http://latex-community.org/forum/viewtopic.php?f=5&t=3239
http://tex.stackexchange.com/questions/311426/bibliography-error-use-of-blxbblverbaddi-doesnt-match-its-definition-ve
http://tex.stackexchange.com/questions/311426/bibliography-error-use-of-blxbblverbaddi-doesnt-match-its-definition-ve
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings
http://tex.stackexchange.com/questions/142/how-can-i-make-an-enumerate-list-start-at-something-other-than-1
http://tex.stackexchange.com/questions/142/how-can-i-make-an-enumerate-list-start-at-something-other-than-1
http://tex.stackexchange.com/questions/142/how-can-i-make-an-enumerate-list-start-at-something-other-than-1
http://tex.stackexchange.com/questions/142/how-can-i-make-an-enumerate-list-start-at-something-other-than-1
http://tex.stackexchange.com/questions/89751/bad-formatting-of-bibliography
http://tex.stackexchange.com/questions/89751/bad-formatting-of-bibliography
https://www.sharelatex.com/learn/Page_numbering#Numbering_styles
http://tex.stackexchange.com/questions/41787/use-textwidth-for-image-width-only-when-it-outgrows-the-page
http://tex.stackexchange.com/questions/41787/use-textwidth-for-image-width-only-when-it-outgrows-the-page
https://en.wikibooks.org/wiki/LaTeX/Glossary

printglossaries is not generating anything for me. Mar. 2014. url:
http://tex.stackexchange.com/questions/43759/printglossaries-is-

not-generating-anything-for-me (visited on 06/12/2016).

[24] Stefan K. Bibliography does not appear in TOC. July 2010. url:
http://latex-community.org/forum/viewtopic.php?p=36233#p36233

(visited on 06/12/2016).

[25] ProgrammerInterview. C++: What is a Virtual Destructor. Jan. 2016. url:
http://www.programmerinterview.com/index.php/c-

cplusplus/virtual-destructors/ (visited on 02/04/2016).

[26] Devin Watson. Using Boost.asio with cmake? 2013. url:
http://stackoverflow.com/questions/15290386/using-boost-asio-

with-cmake (visited on 04/13/2016).

[27] Ranjit Bhatta. C++ Constructors. Unknown. url:
http://www.programiz.com/cpp-programming/constructors (visited on
05/02/2016).

[28] AlaskaJoslin. Boost thread error: undefined reference. Feb. 2011. url:
http://stackoverflow.com/questions/3584365/boost-thread-error-

undefined-reference/35345376#35345376 (visited on 05/02/2016).

[29] Daviddoria. CMake/Examples. Nov. 2010. url:
https://cmake.org/Wiki/CMake/Examples (visited on 05/02/2016).

[30] Mat. specifying link flags for only one static lib while linking executable. Apr.
2011. url: http://stackoverflow.com/questions/5693405/specifying-
link-flags-for-only-one-static-lib-while-linking-

executable/5693465#5693465 (visited on 05/02/2016).

[31] Neeraj Adhikari. boost::asio failed to connect to localhost without WLAN.
July 2014. url:
http://stackoverflow.com/questions/22322506/boostasio-failed-to-

connect-to-localhost-without-wlan/24830462#24830462 (visited on
05/03/2016).

[32] Drew Benton. A guide to getting started with boost::asio. Jan. 2011. url:
http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-

getting-started-with-boostasio (visited on 05/09/2016).

[33] TutorialsPoint. C++ Strings. Unknown. url:
http://www.tutorialspoint.com/cplusplus/cpp_strings.htm (visited
on 05/12/2016).

[34] cppreference. std::strncpy. Unknown. url:
http://en.cppreference.com/w/cpp/string/byte/strncpy (visited on
05/14/2016).

[35] cppreference. memcpy. Unknown. url:
http://www.cplusplus.com/reference/cstring/memcpy/ (visited on
05/15/2016).

Mikel Alejo Barcina Ribera Page 53

http://tex.stackexchange.com/questions/43759/printglossaries-is-not-generating-anything-for-me
http://tex.stackexchange.com/questions/43759/printglossaries-is-not-generating-anything-for-me
http://latex-community.org/forum/viewtopic.php?p=36233#p36233
http://www.programmerinterview.com/index.php/c-cplusplus/virtual-destructors/
http://www.programmerinterview.com/index.php/c-cplusplus/virtual-destructors/
http://stackoverflow.com/questions/15290386/using-boost-asio-with-cmake
http://stackoverflow.com/questions/15290386/using-boost-asio-with-cmake
http://www.programiz.com/cpp-programming/constructors
http://stackoverflow.com/questions/3584365/boost-thread-error-undefined-reference/35345376#35345376
http://stackoverflow.com/questions/3584365/boost-thread-error-undefined-reference/35345376#35345376
https://cmake.org/Wiki/CMake/Examples
http://stackoverflow.com/questions/5693405/specifying-link-flags-for-only-one-static-lib-while-linking-executable/5693465#5693465
http://stackoverflow.com/questions/5693405/specifying-link-flags-for-only-one-static-lib-while-linking-executable/5693465#5693465
http://stackoverflow.com/questions/5693405/specifying-link-flags-for-only-one-static-lib-while-linking-executable/5693465#5693465
http://stackoverflow.com/questions/22322506/boostasio-failed-to-connect-to-localhost-without-wlan/24830462#24830462
http://stackoverflow.com/questions/22322506/boostasio-failed-to-connect-to-localhost-without-wlan/24830462#24830462
http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-getting-started-with-boostasio
http://www.gamedev.net/blog/950/entry-2249317-a-guide-to-getting-started-with-boostasio
http://www.tutorialspoint.com/cplusplus/cpp_strings.htm
http://en.cppreference.com/w/cpp/string/byte/strncpy
http://www.cplusplus.com/reference/cstring/memcpy/

[36] Unknown. The GNU C Library: Deleting Files. unknown. url: http:
//www.gnu.org/software/libc/manual/html_node/Deleting-Files.html

(visited on 05/19/2016).

[37] C++ Reference. strcat. Unknown. url:
http://www.cplusplus.com/reference/cstring/strcat/ (visited on
05/19/2016).

[38] fopen - Linux programmer’s manual. (Visited on 05/19/2016).

[39] remove - Linux programmer’s manual. (Visited on 05/19/2016).

[40] cppreference. std::ifstream::ifstream. unknown. url:
http://www.cplusplus.com/reference/fstream/ifstream/ifstream/

(visited on 06/04/2016).

[41] cppreference. std::istream::gcount. unknown. url:
http://www.cplusplus.com/reference/istream/istream/gcount/

(visited on 06/04/2016).

[42] cppreference. std::ios base::openmode. unknown. url:
http://www.cplusplus.com/reference/ios/ios_base/openmode/ (visited
on 06/04/2016).

[43] cppreference. std::istream::read. unknown. url:
http://www.cplusplus.com/reference/istream/istream/read/ (visited
on 06/04/2016).

[44] Oliver Charlesworth. How to store a const char* in std :: string? June 2011.
url: http://stackoverflow.com/questions/6214160/how-to-store-a-
const-char-in-std-string (visited on 06/06/2016).

[45] Boost. Filesystem Home. unknown. url: http:
//www.boost.org/doc/libs/1_61_0/libs/filesystem/doc/index.htm

(visited on 05/22/2016).

[46] Kerrek SB. c++ boost::filesystem undefined reference to
‘boost::filesystem3::path::root name() const’. Nov. 2011. url:
http://stackoverflow.com/questions/7972314/c-boostfilesystem-

undefined-reference-to-boostfilesystem3pathroot-nam (visited on
05/22/2016).

[47] Nick. Using boost::asio::io service in another thread. June 2013. url:
http://codelever.com/blog/2013/06/18/using-boost-asio-io-

service-in-another-thread/ (visited on 05/24/2016).

[48] Klaim. Which C++ signals/slots library should I choose? Dec. 2008. url:
http://stackoverflow.com/questions/359928/which-c-signals-

slots-library-should-i-choose (visited on 06/02/2016).

[49] MattyT. Complete example using Boost::Signals for C++ Eventing. Apr.
2009. url: http://stackoverflow.com/questions/768351/complete-
example-using-boostsignals-for-c-eventing (visited on 06/02/2016).

Mikel Alejo Barcina Ribera Page 54

http://www.gnu.org/software/libc/manual/html_node/Deleting-Files.html
http://www.gnu.org/software/libc/manual/html_node/Deleting-Files.html
http://www.cplusplus.com/reference/cstring/strcat/
http://www.cplusplus.com/reference/fstream/ifstream/ifstream/
http://www.cplusplus.com/reference/istream/istream/gcount/
http://www.cplusplus.com/reference/ios/ios_base/openmode/
http://www.cplusplus.com/reference/istream/istream/read/
http://stackoverflow.com/questions/6214160/how-to-store-a-const-char-in-std-string
http://stackoverflow.com/questions/6214160/how-to-store-a-const-char-in-std-string
http://www.boost.org/doc/libs/1_61_0/libs/filesystem/doc/index.htm
http://www.boost.org/doc/libs/1_61_0/libs/filesystem/doc/index.htm
http://stackoverflow.com/questions/7972314/c-boostfilesystem-undefined-reference-to-boostfilesystem3pathroot-nam
http://stackoverflow.com/questions/7972314/c-boostfilesystem-undefined-reference-to-boostfilesystem3pathroot-nam
http://codelever.com/blog/2013/06/18/using-boost-asio-io-service-in-another-thread/
http://codelever.com/blog/2013/06/18/using-boost-asio-io-service-in-another-thread/
http://stackoverflow.com/questions/359928/which-c-signals-slots-library-should-i-choose
http://stackoverflow.com/questions/359928/which-c-signals-slots-library-should-i-choose
http://stackoverflow.com/questions/768351/complete-example-using-boostsignals-for-c-eventing
http://stackoverflow.com/questions/768351/complete-example-using-boostsignals-for-c-eventing

[50] Gerardo Hernandez. How can I propagate exceptions between threads? Sept.
2015. url: http://stackoverflow.com/questions/233127/how-can-i-
propagate-exceptions-between-threads (visited on 06/02/2016).

[51] Jonathan Potter. Writing simple file-transfer program using boost::asio. Have
major send
receive desync. Nov. 2014. url:
http://stackoverflow.com/questions/26765701/writing-simple-file-

transfer-program-using-boostasio-have-major-send-receive (visited
on 06/04/2016).

[52] The Qt Company. CMake Manual. unknown. url:
http://doc.qt.io/qt-5/cmake-manual.html (visited on 05/23/2016).

[53] The Qt Company. Using the Meta-Object Compiler (moc). unknown. url:
http://doc.qt.io/qt-4.8/moc.html (visited on 05/23/2016).

[54] Wikipedia. Meta-object System. unknown. url:
https://en.wikipedia.org/wiki/Meta-object_System (visited on
05/23/2016).

[55] Kitware Inc. AUTOUIC. unknown. url:
https://cmake.org/cmake/help/v3.0/prop_tgt/AUTOUIC.html (visited
on 05/23/2016).

[56] The Qt Company. User Interface Compiler (uic). unknown. url:
http://doc.qt.io/qt-4.8/uic.html (visited on 05/23/2016).

[57] Filipe Sousa. [CMake] CMAKE INCLUDE CURRENT DIR? Mar. 2015.
url: https://cmake.org/pipermail/cmake/2007-March/013216.html
(visited on 05/23/2016).

[58] GManNickG. ”does not name a type” error. Jan. 2010. url:
http://stackoverflow.com/questions/2133250/does-not-name-a-

type-error (visited on 06/03/2016).

[59] pnezis. QT/C++ yet another issue about accessing UI files. Jan. 2012. url:
http://stackoverflow.com/questions/8868916/qt-c-yet-another-

issue-about-accessing-ui-files (visited on 06/03/2016).

[60] Macmade. ”Field has incomplete type” error. Sept. 2012. url:
http://stackoverflow.com/questions/12466055/field-has-

incomplete-type-error (visited on 06/03/2016).

[61] The Qt Company. QLineEdit Class. unknown. url:
http://doc.qt.io/qt-4.8/qlineedit.html (visited on 05/23/2016).

[62] user362638. How to define an OnClick event handler for a button from within
Qt Creator? Aug. 2013. url:
http://stackoverflow.com/questions/18041876/how-to-define-an-

onclick-event-handler-for-a-button-from-within-qt-creator

(visited on 05/23/2016).

Mikel Alejo Barcina Ribera Page 55

http://stackoverflow.com/questions/233127/how-can-i-propagate-exceptions-between-threads
http://stackoverflow.com/questions/233127/how-can-i-propagate-exceptions-between-threads
http://stackoverflow.com/questions/26765701/writing-simple-file-transfer-program-using-boostasio-have-major-send-receive
http://stackoverflow.com/questions/26765701/writing-simple-file-transfer-program-using-boostasio-have-major-send-receive
http://doc.qt.io/qt-5/cmake-manual.html
http://doc.qt.io/qt-4.8/moc.html
https://en.wikipedia.org/wiki/Meta-object_System
https://cmake.org/cmake/help/v3.0/prop_tgt/AUTOUIC.html
http://doc.qt.io/qt-4.8/uic.html
https://cmake.org/pipermail/cmake/2007-March/013216.html
http://stackoverflow.com/questions/2133250/does-not-name-a-type-error
http://stackoverflow.com/questions/2133250/does-not-name-a-type-error
http://stackoverflow.com/questions/8868916/qt-c-yet-another-issue-about-accessing-ui-files
http://stackoverflow.com/questions/8868916/qt-c-yet-another-issue-about-accessing-ui-files
http://stackoverflow.com/questions/12466055/field-has-incomplete-type-error
http://stackoverflow.com/questions/12466055/field-has-incomplete-type-error
http://doc.qt.io/qt-4.8/qlineedit.html
http://stackoverflow.com/questions/18041876/how-to-define-an-onclick-event-handler-for-a-button-from-within-qt-creator
http://stackoverflow.com/questions/18041876/how-to-define-an-onclick-event-handler-for-a-button-from-within-qt-creator

[63] Eli Bendersky. QString to char* conversion. Mar. 2010. url: http:
//stackoverflow.com/questions/2523765/qstring-to-char-conversion

(visited on 05/25/2016).

[64] The Qt Company. QString Class. unknown. url:
http://doc.qt.io/qt-5/qstring.html (visited on 06/01/2016).

[65] The Qt Company. Signals & Slots. unknown. url:
http://doc.qt.io/qt-4.8/signalsandslots.html (visited on
06/02/2016).

[66] ProgrammingKnowledge. QT C++ GUI Tutorial 3- Qt Signal and slots
(QSlider and QProgressBar). July 2013. url:
https://www.youtube.com/watch?v=iwe-uW0P7ys (visited on 06/02/2016).

[67] The Qt Company. QFileDialog Class. unknown. url:
http://doc.qt.io/qt-5/qfiledialog.html#getExistingDirectory

(visited on 06/01/2016).

[68] ProgrammerInterview. How to use GNU licenses for your own software. Apr.
2014. url: http://www.gnu.org/licenses/gpl-howto.html (visited on
02/04/2016).

[69] FreeMemory. return statement vs exit() in main(). Jan. 2009. url:
http://stackoverflow.com/questions/461449/return-statement-vs-

exit-in-main (visited on 02/04/2016).

[70] librsync. librsync. Unknown. url:
https://librsync.sourcefrog.net/index.html (visited on 05/18/2016).

[71] williamkun. williamkun/librsync-example. Apr. 2013. url:
https://github.com/williamkun/librsync-example (visited on
05/18/2016).

[72] Jason. When should I use perror(”...”) and fprintf(stderr, ”...”)? Aug. 2012.
url: http://stackoverflow.com/questions/12102332/when-should-i-
use-perror-and-fprintfstderr (visited on 05/19/2016).

[73] David Abrahams. Error and Exception Handling. unknown. url:
http://www.boost.org/community/error_handling.html (visited on
05/30/2016).

Mikel Alejo Barcina Ribera Page 56

http://stackoverflow.com/questions/2523765/qstring-to-char-conversion
http://stackoverflow.com/questions/2523765/qstring-to-char-conversion
http://doc.qt.io/qt-5/qstring.html
http://doc.qt.io/qt-4.8/signalsandslots.html
https://www.youtube.com/watch?v=iwe-uW0P7ys
http://doc.qt.io/qt-5/qfiledialog.html#getExistingDirectory
http://www.gnu.org/licenses/gpl-howto.html
http://stackoverflow.com/questions/461449/return-statement-vs-exit-in-main
http://stackoverflow.com/questions/461449/return-statement-vs-exit-in-main
https://librsync.sourcefrog.net/index.html
https://github.com/williamkun/librsync-example
http://stackoverflow.com/questions/12102332/when-should-i-use-perror-and-fprintfstderr
http://stackoverflow.com/questions/12102332/when-should-i-use-perror-and-fprintfstderr
http://www.boost.org/community/error_handling.html

	Contents
	List of Figures
	Project charter
	Introduction
	The why

	Project planning
	Information system's definition
	Directory structure
	Tools to be used in the documentation
	Naming conventions for the report

	Project objectives
	Scope definition
	Work breakdown structure
	Gantt chart
	Milestones
	Quality plan
	Minimum quality
	Added value

	Risk management plan
	Risk identification
	Contingency plans

	Technologies
	Boost libraries
	Asio
	Thread
	Bind

	librsync
	Scrum methodology

	Kharon, the application
	The client
	A general idea of how it works
	The graphical user interface
	Class diagram

	The client module
	Class diagram

	The Inotify module
	The class diagram

	The server
	A general idea of how it works
	The class diagram

	The challenges
	Starting from scratch
	Compiling Qt projects with CMake
	How to make forward declarations in C++
	Understanding Boost libraries
	Minor issues

	Conclusions
	Tracking and control
	Gantt chart's snapshots

	Limitations
	Lack of testing
	Networking
	Threading

	Future work lines
	Project conclusions

	Acronyms
	Glossary
	Bibliography

