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ABSTRACT

Image processing techniques represent an ever-growing field of engineering,
which is nowadays taking a great importance in a number of sectors as diverse
as gas sensing or three-dimensional imaging. In order to satisfy the high
demand of imaging systems, not only new cameras are needed, but also a
great deal of frame grabbers in charge of collecting and processing the data
captured by those cameras. These frame grabbers must be customised for

each camera, dealing with its specific features and operation protocols.

In this MSc thesis, a new frame grabber was designed and developed,
customised for an innovative infrared imaging camera. The system is based in a
FPGA device, making use of an external ADC converter to digitalise the video
data coming from the camera and a 2 MB SRAM memory to save this data. The
whole development is done by means of VHDL language, a low level hardware
description language (HDL) used for FPGA design.

The result of the project is a fully operating frame grabber, with a number of
parameters configurable by the final user and with two operation modes for the
final user plus one for calibrating the system. The ones for the final user are:
one for the creation of a real time video stream (up to 12 fps) and the other one
for buffering up to 254 images at high speed (capture rate up to 1025 fps).

Besides, only 2% of the logic resources of the FPGA were used.

Thus, a high quality and inexpensive infrared imaging system was developed.
Furthermore, the universal nature of VHDL design and the reduced number of
resources employed make the migration to a simpler and cheaper FPGA an
easy task. On the other hand, the RS-232 standard used for the transmission of
data to the final computer is the only bottleneck of the system, and it could be

substituted with a faster standard without modifying any other part of the design.
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1 INTRODUCTION

1.1 Context

After a long time under development, image processing is no longer a field of
conceptual experimentation, but a reality in terms of practical implementation.
Nowadays, these techniques mean both the implementation of innovative
methods and the substitution of traditional methods with more efficient and
autonomous alternatives, being used in a number of different sectors: gas

sensing, medical industry, stereo vision...

In the case of gas sensing, capturing images within the infrared wavelengths
range, different gas leakages can be detected. Due to the typically low
resolution of some infrared imaging cameras, certain image processing
techniques must be applied for each specific system, such as the interpolation
of low resolution images in order to obtain the shape of a real gas cloud.
Another example of image processing is the technique used for creating stereo
vision, where the images coming from two cameras placed one next to the other
and focusing to the same point are compared, obtaining a disparity image that

provides an output with a three-dimensional effect.

There is a wide variety of cameras available in the market, each of them with
different features (infrared imaging, high resolution...) depending on the target
application, but all have something in common: the need of a frame grabber for
collecting the captured images and transmitting them to a computer. Apart from
this, the frame grabbers can also perform the specific image processing
techniques requested for each application. However, the process of collecting
and transmitting the data is not a trivial task and, being this the basis for any
frame grabber, it is paramount to design and develop this part of the system as

accurately as possible.

Regarding the technology used for building the frame grabbers, there are some
compelling reasons why traditional systems are all based in FPGAs, which are
devices composed of a large matrix of logic gates configurable by means of

HDL languages. This devices allow the designer to split the processing



algorithms in different parts and to implement them in parallel, working with high
frequency clocks. These features make possible to dramatically decrease the
latency between video frames. Besides, being HDL low level languages, they
are intended to work at bit level and to control the state of every signal in every
clock period, which is essential to synchronise the electronic system with any

camera.

The motivation for this thesis came with the release of a cheap 64x64 InGaAs
image sensor for infrared imaging by Hamamatsu. Traditionally, a sensor with
these features could cost tens of thousands of pounds, whilst the one by
Hamamatsu is available for £1500. In respect to the type of sensor, the ones
based in InGaAs photodiodes cover the wavelength range from ~800 nm to
1700nm, within which many gases absorb the light, whereas standard silicon
cameras stop at 1000 nm. Therefore, this kind of sensors are extremely useful
for gas sensing applications. On the other hand, the Group of Engineering
Photonics of Cranfield University has a research line in gas sensing, where the
use of IR cameras is essential, and they had acquired the IR imaging sensor
created by Hamamatsu. In this context, the need of a frame grabber able to
collect the images captured by the InGaAs image sensor was clear, since it

would allow the use of this innovative sensor in future researches.

1.2 Structure of this report

This report is arranged in 5 main sections. In the INTRODUCTION, the project
IS put into context and the motivation for its development is stated.

In Section 2 (LITERATURE REVIEW) a brief synopsis of the preliminary
research is provided. In this section, a deeper view into the frame grabbers is
given, explaining some important applications for this systems and their general
architecture in the work previously done in the field. Besides, the most suitable

communication standards for the transmission of the images are presented.

In Section 3 (DESIGNED SYSTEM) section, an overview of the system is given,
presenting the equipment used for the development and giving a detailed view

of the system’s architecture.



In section 4 (DEVELOPMENT OF THE SYSTEM) all the details of the
development process are stated, outlining the challenges and problems faced
during the process and explaining the approach taken to overcome them. This
section is separated in four subsections, each of them dedicated to a stage of

the development.

In Section 5 (RESULTS) the results obtained with the developed imaging
system are presented in different forms. First, the raw data received in the
computer is shown and explained. Secondly, the useful data signal decoded
from the raw data is presented, along with the data in image format. Besides,
the performance of the frame grabber in terms of transmission and capture time

is stated, and the usage of the FPGA device’s resources is also shown.

In Section 6 (CONCLUSIONS AND FUTURE WORK), the conclusions for the
results obtained in the previous section are explained, and future work that
could be done to improve the system is stated.



2 LITERATURE REVIEW

2.1 Introduction

A frame grabber is an electronic device aimed to capture, store and transmit
frames from an analogue video signal or digital video stream, being also useful
for performing image processing in certain applications. Initially, frame grabbers
were able to store only one frame of video, but modern ones are already able to
store multiple frames, allowing even the capture of multiple video streams

concurrently.

Regarding the image processing capabilities, there are many techniques usually
performed in frame grabbers, which could well be classified in the following
main categories[1]:

- Transformation of an image into a new image of the same class. E.g.
linear and nonlinear filtering, image resizing.

- Combination of two (or more) different images for the creation of a single
output image of the same type, by means of combining every pair of
elements from the input images.

- Measurement of an image in terms of descriptive statistics, reducing the
input image into a scalar or vector containing information such as mean
or standard deviation of pixel values.

- Conversion of an image into an image of a different class. E.g. Discrete

Fourier Transform.

Among all the available image processing operations, the image resizing and
real time compression (using algorithms like MPEG) [2] stand out due to their

potential towards decreasing the delay between frames.

However, any image processing technique performed in a frame grabber relies
heavily on the plain process of collecting the data coming from the source of
video, converting it into useful digital formats and transmitting it to the opposite
endpoint. The development of a system able to perform this process in a

reliable way is not a trivial task, and it is clearly the most important part in the



development of any frame grabber with further capabilities. Therefore, the
development of this basis is the main target for this project.

2.2 Applications

There are several applications in which the fast rates and resolution of frame
grabbers are paramount, having led the technology to great developments in
those aspects. Some of the most remarkable applications are found within the

next categories:

e Gas Sensing

e Manufacturing

¢ Medical Imaging

e Stereo Vision

e Consumer Devices

e Surveillance Cameras

The most relevant of these categories in terms of scientific and technological

innovation are now explained in more detalil.

2.2.1 Gas Sensing

Aimed to detect and measure gas concentrations in different environments, the
field of Gas Sensing brings one important application for the targeted frame
grabber, since the final imaging system will be mainly used for this purpose.
The application of gas sensing is highly valuable for a wide range of
applications, from safety in process and petrochemical industries to the
monitoring of different gas species (e.g. greenhouse gases) in atmospheric
science[3][4].

Gas sensing is a difficult task, with traditional systems limited to detect leaks a
short distance away due to the nature of the point sampling detectors in which
they are based. Besides, it is hard to set the “zero trace” for which there is no

leakage in every single point [5].

On the other hand, traditional systems are not only inefficient in terms of

technical implementation, but also in the economic aspect, since sensors are



supposed to be installed every 5-6m. Therefore, the deployment of a traditional

system also involves a great cost.

In this context, imaging gas leaks brings the great advantage of covering wide
areas from a remote position with an only IR camera. Furthermore, the leakage
source could be directly found, along with the wind direction, and multisource-

leakages could be more easily identified [5].

Based in the optical absorption of the gas species [3], any imaging system
developed for this application requires the selected camera to capture images in
the IR range, since gases absorb light within this range and can only be
visualised with a sensor able to detect this frequencies, which is not achieved
with conventional cameras. This is the reason why this project will be based on

an IR camera.

Figure 2-1 shows an image of a gas leakage detected with a gas imaging

system:

Figure 2-1. Outdoor methane leak [3] detected with a gas imaging system [image
taken from [6]]



On the other hand, regarding the dimensions of the IR images needed for this
application, Graham Gibson et. al. [7] proved that image dimensions as reduced
as 10x10 pixels are enough for the effective detection of gas leakages. Making
use of an incident laser, they combined the resulting beams scanned over an
area (single points) to create low-resolution images (10x10 pixels). Later, these
low resolution images are interpolated in order to create the image of a gas
cloud detected in a highly reliable way, which is combined with a high resolution
image of the scene [7]. Thus, 10x10 images created from individually scanned
points can be enough to locate gas emissions in a certain scene. The process
and results are shown in Figure 2-2:

1 mm

2 mm

4 mm

8 mm

1 mm
2 mm
. 4 mm
. g mm

Figure 2-2. Image of sample gas bags (top left), low-resolution gas data (bottom
left), gas data interpolated (bottom right) and combined images (top right) [7].

(image taken from [7])



2.2.2 Manufacturing

The most representative example of industrial applications is the use of frame
grabbers in pick and place machines, implementing vision guidance systems.
With the use of this robots for production’s automation, the productivity and
accuracy are hugely improved, whilst decreasing the costs [8]. Those machines
are monitored with cameras whose images are collected and processed with
frame grabbers that convert the data to a format understandable for the

machines.

During the last ages, major improvements have been made in this field, such as
3D image calibrations, which means estimating the parameters for the
interaction among the machine, the camera and the objects’ coordinates,
allowing the calculation of robot’s trajectory using the collected 3D data [8]. In

this process, frame grabbers play a crucial role.

2.2.3 Medical Imaging:

In modern operating room environments, highly accurate and low-latency video
images are needed for surgery procedures (i.e. X-ray, ultrasound and
endoscopy). Since the data can be received in different formats from diverse
sources, a quick and reliable normalization is essential [9]. This task is usually
performed by high resolution frame grabbers, providing resolutions of up to

1080p in space, 60 fps in time and 10 bit in terms of pixel definition [9].

Besides, IR cameras can be particularly interesting in the field of medical
imaging due to their high sensitivity to temperatures, and because some
materials present a high absorption at certain IR wavelengths. The applications
or IR medical imaging are as diverse as the early detection of dental decay
thanks to the low light scattering of dental enamel at certain IR wavelengths [10]
(see Figure 2-3), or the diagnosis of body diseased parts by means of

temperature anomalies [11], being able to detect even breast tumours [12].



Figure 2-3. IR image (B) vs traditional X-ray image of a lesion in atooth (image
taken from [10])

2.2.4 Stereo Vision

Most commonly known as three-dimensional imaging, stereo vision has been a
burgeoning field during the last years. Based in two video input streams
generated with two cameras that recreate the position of the human eyes,
pointing to the same objective and placed with a slight separation between
them, the use of frame grabbers for developing the image processing modules
necessary to create the disparity image is particularly useful. The disparity
image shows the difference in terms of the image location of an object pointed

with both cameras of the stereo vision system.

Thanks to the performance of the FPGAs, the stereo vision processing HW
implementation (in FPGA) can be hundreds of times faster than the processing

performed in conventional computers [13].

An example of three-dimensional estimation of a surface is shown in Figure 2-4:



Figure 2-4. Three-dimensional estimation of a surface using stereo vision

techniques (image taken from [14])

2.3 FPGA based frame grabbers

Field Programmable Gate Array (FPGA) chips are integrated circuits aimed to
be configured after the production process. The internal logic of the chip can be
fitted to the particular needs of each application, providing the final user with a
great flexibility. The internal logic is composed of an array of gates that can be
interconnected however the designer wants to perform complex logical
operations. Those relationships can be easily defined by means of Hardware

Description Languages (HDL), such as VHDL or Verilog.

Thus, the user can easily design complex electronic systems that, afterwards,
can be either transferred to hard-wired designs for manufacturing targeted to
end users, or be used simply integrating the FPGA in a more complex system,
facilitating the alteration of the electronics when updates or corrections are

needed.
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When designing a frame grabber system, the use of an FPGA as a base for it is
a really valuable choice. There are multiple reasons for this, but the main ones
are related to the performance of the device, making FPGA-based frame
grabbers particularly useful for applications that require low latency between
processed frames, being the latency the time that the data of a certain frame
needs to traverse all the system.

FPGAs allow the parallel implementation of different processes. Thus, a vision
algorithm can be split into multiple iterative processes that can be performed in
parallel on the FPGA. In fact, many image processing algorithms operate in
parallel, what makes them suitable for running on FPGA based frame grabbers
[15].

Furthermore, FPGAs are able to receive images data and process individual
bits at rates as high as hundreds of MHz (depending on the particular clock),
performing the data transfer and processing in every clock cycle and achieving
a high-speed bit-level processing [15]. For this two reasons, the image
processing time is reduced and therefore the latency between frames is

decreased significantly.

Another important reason for choosing FPGA devices is that, being configured
by means of low level languages (HDL languages), they are prepared for
working at bit level, offering a full control of every bit involved in the operation in
each clock cycle. This feature is essential for the development of a frame
grabber, because the communication between the system and the camera must
be adapted to the specific protocol of the camera in order to collect the images

correctly.

Apart from this, there are other great assets that could be really valuable in the
FPGA-based frame grabbers, such as the flexibility and accuracy provided by a
system whose functionality could be altered by means of a simple modification
in the HDL code, or the reduced sized of the whole system thanks to the small
package of any FPGA. Besides, for applications in which power consumption is
a serious constraint, low power consumption FPGAs are available for the

optimisation of the system.
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2.3.1 Related work

The field of FPGA-based frame grabbers for image processing has been under
constant development during the last times. There are references of fully
operating systems from more than ten years ago, developed with the
technology constraints of those times, such as memories of only 1MB to store
the images and bit resolution of only 8 bits [16]. However, the design principles
underlying these obsolete systems are perfectly transferrable to current

technologies, what can lead to greater designs.

This is the case of the work developed by Pierre Greisen et. al.[17], who
developed a frame grabber aimed to create stereo vision video (3D imaging)
taking the video streams of two cameras, and getting to a performance of a 30
fps frame rate with an image resolution as high as 1080p (1920x1080). This
system was based in an Altera Stratix Ill FPGA in conjuction with a DRAM
memory, transferring the data to the final computer by means of PCI Express

communication standard.

Georgoulas et. al. [18] presented a frame grabber based in an Altera Stratix IV
FPGA, also receiving two video streams from two different cameras in order to
create an stereo vision video. The modules design within the FPGA are able to
create the signals for the three dimensional recreation with a resolution of
1280x1024 at a frame rate of 251 fps. However, the system does not present a
transmission method, what would more than likely suppose a bottleneck in the

output frame rate.

Mateusz Michalak et. al. [19]. developed a frame grabber for a digital
progressive scan image sensor, based in a Xilinx Spartan 6 FPGA. Using only
two internal block RAMs, this system is able to transfer frames to the final
endpoint with a resolution of 720p (1280x720) at a rate of 60 fps, by means of a
HDMI output.

Apart from the stated ones, there are several technological developments on
this field but, regrettably, they are all clearly too complex for a MSc project.

Therefore, they are not a great target to follow for this project, but they do mean
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a great reference for demonstrating that the development of a FPGA-based
frame grabber is perfectly feasible, and they give a view of the different
equipment and communication systems usually selected for performing the

operation.

In all these frame grabber systems, the communication standard is usually a
bottleneck in the system, which, being based in FPGAs that work with high
frequency clocks, can perform their operation at rates out of the reach of many
communication standards. For this reason, the selection of an appropriate
communication standard is crucial for maximising the performance of the whole

system.

2.3.2 Alternatives

It is also worth to consider the option of implementing the frame grabber in
alternative and more traditional platforms, such as microprocessors or
microcontrollers. However, although it might be possible to implement a frame
grabber system in this kind of platforms, there are some issues making this

option unsuitable.

Firstly, this kind of platforms are not prepared to deal with strict timings, which is
absolutely mandatory for a frame grabber that needs to be adapted to the
clearly defined and high speed communication protocol of any camera. In fact,
due to the constraints in the protocols of the cameras, digital communication
signals must be typically controlled with maximum accuracy, managing them in

every clock cycle, which can be only achieved with a FPGA.

Secondly, although it might be possible to work at bit level in microprocessors,
they are not aimed for this purpose and it would require the use of low-level
languages that would make such a complex design quite difficult to be
implemented. On the contrary, FPGA devices are directly designed for this
purpose, and HDL languages, which are also low-level languages, are able to

deal with bit level operation in a much more convenient way.

In fact, there is a wide catalogue of commercial frame grabbers available in the

market, and all of them are based in FPGA. Regarding the suitability of the
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commercial frame grabbers, they include all the necessary hardware for
building a high performance frame grabber, offering different alternatives,
especially in terms of communication interfaces. Thus, choosing the appropriate
frame grabber board, the designer can optimise the operation of the imaging
system. However, although manufacturers might provide some predesigned
functions to deal with certain aspects of the frame grabber’s operation, the final

development of the system must be done by the designer.

On the other hand, once the decision of developing the frame grabber in base
to a FPGA is made, many evaluation boards available in the market offer
interesting features with a price typically lower than the commercial frame
grabbers. Evaluation boards are electronic cards that, based in a certain FPGA,
include a great deal of generic peripherals, such as memories (SRAM, DRAM,
ROM...), SD card slots, displays, communication interfaces (RS-232, HDMI...)
etc. Thus, the design of a frame grabber system can also be implemented with
this kind of equipment, being able to give a good performance with a more
reduced budget.

2.4 Communication standards for image transmission

When selecting the most suitable frame grabber, the communication standard
that it uses for transmitting the data to the computer after collecting it from the
camera is usually the main factor to be considered. There is a wide catalogue of

commercial frame grabbers, based mainly in the following standards:

2.4.1 SDI (Serial Digital Interface):

Standards used for the transmission of uncompressed and unencrypted digital
video signals, by means of coaxial wires with BNC connectors (see Figure 2-5).
For the data transmission, NRZI (Non Return to Zero Inverted) codification is
used: either positive or negative voltages for every bit (not neutral state
available) with level transitions only when a certain logical level (either O or 1,
depending on convention) is detected in the next bit. An example of level

transition with low level bits in shown in Figure 2-5.
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Figure 2-5. BNC connector and NRZI codification example (image taken from [20])

Since the first SDI standard was introduced, multiple versions have been
developed, with new and higher bitrates. They are shown in Table 2-1, along

with their bitrates and most representative video formats [20]:

Table 2-1. SDI standards

Standard Bitrates (Gbit/s) Video format
SMPTE 259M (SD-SDI) 0.27,0.36 480i, 576i
SMPTE 344M (ED-SDI) 0.54, 0.36 480p, 576p
SMPTE 292M (HD-SDI) 1.485 720p, 1080i
SMPTE 372M (Dual Link HD-SDI) 2.970 1080p60
SMPTE 424M (3G-SDI) 2.970 1080p60
SMPTE ST-2081 (6G-SDI) 6 2160p30
SMPTE ST-2082 (12G-SDI) 12 2160p60

The resolution of the video format allowed for each standard is directly
proportional to the maximum bit rate allowed, with displays resolutions from
640x480 pixels in the case of 480i (with typical display resolution of 640x480) to
3840x%2160 pixels for 2160p standards (commonly known as 4K UHD).

15



2.4.2 HDMI (High Definition Multimedia Interface):

Proprietary standard owned by HDMI Licensing LLC used for the transmission
of uncompressed video (and compressed or uncompressed audio),
implementing the interoperability standards created in CEA (EIA/CEA-861x)
[21]. There are five variants of the HDMI connector, offering either increased
resolution or reduced size (for portable devices) comparing to the original one.

Some of them are shown in Figure 2-6:

Type A
Full Size

HOMI

Figure 2-6. HDMI connectors (image taken from [22])

Regarding the versions, up to 6 have been developed since HDMI was
introduced, with different capabilities in terms of throughput and resolution,
among others. Not all the features of a certain version are always implemented
in the devices, but some variations are usually made. Focussing only in the
maximum throughput of each version, the classification of the version could be
made as presented in Table 2-2 (only useful throughput, the actual one is a
25% higher since every 8-bit colour signal rides in a ten-bit word, with 2 bits of

overhead):
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Table 2-2. HDMI versions

Version Bitrate

HDMI 1.0 3.96 Ghit/s
HDMI 1.1 3.96 Ghit/s
HDMI 1.2 3.96 Ghit/s
HDMI 1.3 8.16 Ghit/s
HDMI 1.4 8.16 Ghit/s
HDMI 2.0 14.4 Gbit/s

2.4.3 USB (Universal Serial Bus):

Standard initially developed for the communication and power supply between
computers and peripherals, which nowadays is used for every kind of devices.

The typical USB connector is shown in Figure 2-7:

Figure 2-7. USB connector (image taken from [23])

Once again, focusing the classification in the data rate offered by each USB

version, the different version of USB can be sorted as in Table 2-3 [24]:

Table 2-3. USB versions

Version Bitrate
USB 1.0 12 Mbit/s
USB 2.0 480 Mbit/s
USB 3.0 5 Gbit/s
USB 3.1 10 Gbit/s
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2.4.4 GigE (Gigabit Ethernet):
Being part of the Ethernet family of communication standards, Gigabit Ethernet
can provide data rates of up to 1 Gbit/s while maintaining compatibility with

systems of the same family deployed over the last three decades [25].

There are two variants within the GIigE standard, each including different
versions. The first variant to be released by IEEE, called 1000Base-X, was
already capable of providing data rates of 1 Gbit/s, carried on optical fibre.
Afterwards, aiming to take this technology to the desktop connection market,
IEEE resealed the other variant of the standard, called 1000Base-T. This new
version provides a new transceiver type to allow operation of GigE over the
traditional UTP (copper lines), using digital signal processing techniques to
compensate attenuation, distortion and the effect of crosstalk coming from other
pairs within the same cable [25]. Thus, the challenge of getting the same data

rate over copper lines as transmitting over optical fibre (1 Gbit/s) is overcome.

The connectors and sockets both variants are shown in Figure 2-8:

Figure 2-8. Connectors and sockets of 1000Base-X (left, optical fibre) and
1000Base-T (right, UTP) (image taken from [26])
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2.4.5 PCI Express (Peripheral Component Interconnect Express)

Presented as an evolution of PCI standard, PCl Express offers a number of
improvements comparing to the original PCI.

The operation protocol of PCI express is based in a complex system of layers,
where the physical layer is composed of a variable number of transmit and
receive pairs (called lanes). The physical layer can provide x1, x2, x4, x8, x12,
x16 or x32 lane widths depending on the number of lanes used in each system,

splitting the data to be sent among these lanes [27].

Thus, in the case of the first version of PCI Express, being each lane able to
give a data rate of 250 MB/s and taking into account that each byte is encoded
in a 8b/10b format, the useful data rate achievable with an only lane is up to 200
MB/s per lane. That is, a single lane in the first version of the system was
already able to transfer useful data at 1.6G bit/s. Then, this data rate can be

multiplied increasing the number of lanes up to 32 [28].

In the case of following versions of PCI Express, the encoding scheme was
improved, reducing the number of overhead bits in each transfer, and
increasing the data rate of each lane.

The capabilities of each version is shown are shown in Table 2-4, stating the
maximum data rate in terms of useful data (after removing overhead bits) for x1,

x16 and x32 lane widths as a reference [28]:

Table 2-4. Versions and data rates of PCI Express

Version Encoding Data Rate (Gbit/s)
System 1 lane 16 lanes 32 lanes
1.0 8b/10b 2 32 64
2.0 8b/10b 4 64 128
3.0 128b/130b 7.8 126 252

As it can be noticed in the table above, this communication system is hugely

powerful in terms of throughput, offering also a great flexibility due to the

19




variable number of lanes. However, the implementation of this system is also

very complex, what makes it very unreachable for this MSc project.

Two PCI connectors are shown in Figure 2-9. PCI Express x16 (top, 164 pins)
and PCI Express x1 (bottom, 36 pins) connectors Figure 2-9:

Figure 2-9. PCI Express x16 (top, 164 pins) and PCI Express x1 (bottom, 36 pins)

connectors (image taken from [29])

2.4.6 RS-232:

Being the most common standard for serial transmission of data, its
transmission rate is not defined in the standard (although it states that it is
intended for data rates lower than 20 kbit/s) [30].

In serial communications, TTL voltage levels (internal levels of the digital
electronics systems) are represented by ground level for logical 0 and Vcc level
(power supply voltage of the system, typically 3.3V or 5V) for logical 1. On the
other hand, RS-232 standard uses two voltage levels: -3V to -15V for logical 1
and 3V to 15V for logical 0. For this reason, when implementing a serial
communication it is necessary to convert the signal levels from TTL to the
chosen serial standard level. The chip in charge of this conversion is precisely
the most important component involved in a digital system performing a RS-232
communication, and it is the key factor for determining the data rate of the

system using the serial standard.

Although not being stated in the standard itself, it is widely known that, with

appropriate hardware, RS-232 can perform data rates far beyond its initially
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targeted value of 20 kbit/s. Thus, with a high performance converter, data rates
of up to 2 Mbit/s can be achieved [31].

The greatest advantage of serial RS-232 standard is the ease for implementing
it in a digital system. It includes some control signals for the communication, but
only the TxD (transmission) and Rxd (Reception) lines are essential. Thanks to
this simplicity, a RS-232 communication can be implemented in a FPGA by
means of a serial transmission module, which sets the value of a certain output
pin of the system alternatively to either logic O or 1 every period of the maximum
frequency allowed, and a serial reception module, which “listens” to a certain

input port to sample the received bits.

Figure 2-10 shows the typical DB9 connector used for RS-232 communications:

Figure 2-10. DB9 female (left) and male (right) for RS-232 communications (image
taken from [32])

2.4.7 RS-422
Standard compatible with the RS-232 version, being the use of differential
signalling in RS-422 the main difference between them, this standard is

especially robust for long distance transmission in noisy environments [33].

In differential signalling, a signal is sent over a pair of wires attached one to the
other with opposite polarities. The resonant effect caused by the crosstalk noise
might affect the quality of the signal [34], but thanks to the closeness of both

differential wires they will presumably be affected in the same way, what means
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that the voltage level between them should not be affected. Thus, decoding the
values of a bit stream by means of the difference between the positive and the
negative wires, the differential signalling gives a greater reliability compared to
serial communication of bits with a single line. Thanks to this fact, RS-422
gives a greater reliability against errors in the transmission line compared to
RS-232, allowing the serial communications to be performed over longer
distances and with higher bit rates [35].

In the same way as RS-232, the RS-422 standard does not define the bit rates
achievable with its use. However, with appropriate hardware, the standard has
been proved to perform with a data rate of 10 Mbit/s over distances of 1200m
[33].

RS-422 standard can be implemented using the same connectors as RS-232.
For this purpose, two of the pins used for control signals must be used for the

extra lines needed for the differential transmission of data.

2.5 Summary

The field of frame grabbers for image processing has been under constant
development for the last decades. The operation of these devices can be

separated in two separated stages:

- The process of collecting the video frames from the camera, saving them
in the memory of the frame grabber and finally forwarding them to the
computer (final endpoint).

- Once the frames are saved in the memory of the frame grabber, apply
different image processing techniques to them.

The first stage is mandatory for any frame grabber, whilst the second one is
dependent on the final application of the system. Due to the tight time
constraints, the target for this MSc thesis is to develope a frame grabber that

effectively collects and forwards video frames without processing them.
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Being gas sensing the application field initially aimed, there is a wide range of
applications demanding a frame grabber for collecting and processing video
frames. Some of these are image monitoring of pick and place machines in

manufacturing, medical imaging and stereo video (three-dimensional imaging).

The use of FPGA devices for the development of frame grabbers is the most
suitable option, since it reduces the latency between frames thanks to its
parallel implementation capability and high frequency operation. Besides, it is
essential to operate at bit level and to manage the timings of the system in
order to synchronise it with the protocol of each camera, which can only be
done with an FPGA. A good proof of the suitability of FPGA devices for building
frame grabbers is the large amount of previous work in the field and the
commercial frame grabbers currently available, which are all based in FPGAs.

The throughput of the system is usually limited by the communication standard
used for the transmission of the data from the frame grabber to the computer.
Therefore, the selection of this standard is the most delicate issue to manage in
the preliminary work. The maximum data rates achievable with each standard

are shown in the Table 2-5:

Table 2-5. Summary of data rates of the main communication standards used in

frame grabbers

Standard Maximum data rate (Gbit/s)
SPI (SMPTE ST-2082) 12
HDMI 2.0 14.4
USB 3.1 10
Gigabit Ethernet 1
PCI Express 3.0 (32 lanes) 252
RS-232 0.002
RS-422 0.01
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Regarding the difficulty of implementation, serial protocols are clearly the
simplest ones. Among these, RS-232 is the simplest one because it only needs

a transmission and a reception line to be implemented.
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3 DESIGNED SYSTEM

3.1 Preliminary decisions

After the exhaustive research on the field done in the literature review, and
taking into account other factors external to the project itself, such as the time
available for the project and the background of the designer, the main decisions

for the design are made.

First, considering the design based in FPGA as the only suitable option, the
frame grabber system is decided to be implemented in an evaluation board
instead of a commercial frame grabber. There are a few heavy reasons for this.
The equipment of evaluation boards is far enough to achieve the targeted
features, being cheaper than a commercial frame grabber with specialised
hardware. Commercial frame grabbers are clearly oriented to the development
of high performance systems, and the frame grabber needed for this project
does not need such powerful features. Furthermore, the Group of Engineering
Photonics of Cranfield University, where the project is developed, has
experience in the use of a certain evaluation platform. This could undoubtedly
mean a great asset, since the support of experienced designers could make a

difference in case of getting to unforeseen difficulties.

Secondly, the camera outputs the images data in analogue format. Therefore,
the FPGA will need to make use of an ADC peripheral for digitalising the
analogue signal but, regrettably, this is not included in the selected evaluation
board. For this reason, an external board compatible with the evaluation board

is needed to perform this operation.

Finally, the most problematic point is addressed: the communication system
used for the transmission of images from the frame grabber to the computer. As
stated earlier in Section 2.3.1 (Related work), this is always a potential
bottleneck for the system, and can convert a fast operating system into a slow
system. However, the communication is very critical for the frame grabber, not
only in terms of performance for the final system but also for the constant

debugging that will be needed during the development. As a consequence, it is
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paramount to deal with this issue as quickly as possible, in order to have time to
develop the core of the frame grabber.

In this context, serial communication standards are clearly the easiest options.
Then, RS-232 is selected because it does not require differential signalling,
what would be an extra difficulty. Besides, USB capable RS-232 chips are
widely available, making the connection to the PC very simple without any
signal conditioning or amplification, as it would needed in RS-422. In order to
facilitate the substitution of this communication standard in the future (once the
frame grabber operation is validated) the transmission process performed by

the serial line is thought to be set apart from the rest of the design.

3.2 General Description of the system and Equipment

The whole IR imaging system could be divided in three main parts: the
Hamamatsu sensor (the IR camera), the computer where the IR images
captured by the camera will be saved and displayed, and the electronic system
allowing this operation between both endpoints, the so-called frame grabber.
This basic view of the system is shown in Figure 3-1:

IR Camera Frame grabber Computer

Figure 3-1. Overview of the IR imaging system

The work of this thesis is principally focused in the design and development of
the frame grabber, although some time was also invested in the development of
the Matlab scripts needed for taking the raw data from the frame grabber in the

computer and then building the images from this data.
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3.2.1 The Hamamatsu Image Sensor (G11097-0606S)

It provides 64x64 pixels infrared images, captured by means of a series of
InGaAs photodiodes (one per pixel) with a spectral response range
(wavelengths captured) from 0.95 pum to 1.7 um. Each pixel’s dimension are
50x50 um, with a pixel pitch (distance between two adjacent pixels’ centres) of
50 um, what means an overall image size of 3.2x3.2 mm. The Hamamatsu

Imaging Sensor is shown in Figure 3-2:

~‘\_/ <

i

Figure 3-2. Hamamatsu sensor (image from [36])

The captured pixels are transmitted by means of an analogue video output,
which is triggered with a digital signal and easily obtained by just supplying a

master clock and master start pulse from external digital inputs [36].

It is extremely important to understand this operation, since the whole system is
based on these control signals. The signals involved in this communication are

listed below:

-  MSP (Master Start Pulse, digital input): also called integration signal, it is
used for indicating the camera when it should start the process of
capturing and sending an image. This order is given to the camera by
means of a low level pulse in the signal. As soon as the camera detects
a low level in the MSP input, it starts capturing a new image, and keeps
the lens capturing until the MSP input is released (until it comes back to

high level). Therefore, the duration in time of the MSP low pulse, the so-
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called integration time, states the exposure time for capturing the new
frame.

-  MCLK (Master Clock, digital input): the reference clock for the camera,
up to 40 MHz.

- VIDEO (video signal, analogue output): Right after the end of the image
capture, the camera starts to send the pixels’ analogue values, one by
one, throughout the analogue VIDEO output at a frequency rate of up to
5 MHz (the frequency of the clock divided by 8). It is important to
highlight that this is an analogue signal and, therefore, it needs to be
digitalised in order to be received in the FPGA.

- AD_TRIG (trigger, digital output): this video trigger digital output is given
to the frame grabber along with the VIDEO analogue output, and

provides a falling edge every time a new pixel value is stable to be read.

The transmission process is arranged in an accurate way, alternating pixels’
transmission with a set of blank spaces, previous to the first pixel of the frame,
after the last one and between rows of the image (blank spaces after each set
of 64 pixels). This is illustrated in Figure 3-3, which is a timing diagram taken

from the datasheet of the IR camera:

One frame scanning period [64 rows x 64 columns (including blank) x 8 MCLK]
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Figure 3-3. Timing diagram of the camera’s signals (image taken from [36])
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3.2.2 The frame grabber

It is the electronic system in charge of controlling the whole imaging system. It
allows the configuration of the operation mode and other parameters from the
computer, and afterwards it takes the images from the camera for sending them
to the computer. It is designed with two different operation modes, plus a third

mode for calibration purposes:

1. Live mode: it takes a frame from the camera, saves it in a SRAM and
sends it to the computer. It repeats this process iteratively, creating a real
time video stream to be displayed in the computer.

2. Buffer mode: it captures at very high speed a certain number of images,
storing them all in a SRAM. Once finished taking the images from the
camera, it transmits them all to the computer.

3. Calibration mode: it takes up to 25 consecutive values of the digitalised
VIDEO signal around the falling edge of the trigger signal, in order to
calculate the delays between both signals. It is used for the calibration of
the system, making possible to find the perfect moment to capture each

pixel.

For the development of the frame grabber, two electronic boards are used:

1. Altera DE2-115 Evaluation Board: based in an Altera Cyclone IV FPGA,
where the main part of the frame grabber will be implemented by means
of VHDL language. It also includes different peripherals needed for the
operation of the system, such as a SRAM, GPIO ports or a HSMC
connector for plugging a data acquisition card that will allow the
digitalisation of the analogue data coming from the camera. The DE2-

115 board is shown in Figure 3-4:
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2.

Figure 3-4. Altera DE2-115 Evaluation Board (image taken from [37])

AD/DA Data Conversion Card: this is the Data Acquisition Card,
equipped with the ADC used remotely by the FPGA to digitise the
analogue data coming from the camera in order to process it. The board

is shown in Figure 3-5:

Figure 3-5. AD/DA Data Conversion Card (image taken from [38])
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3.2.3 Computer

No major developments were needed for the computer. The data is transmitted
from the frame grabber to the computer using the RS-232 standard, and the
configuration of the frame grabber is set sending the parameters to the frame
grabber using the same standard. For this purpose, a Serial Protocols emulator
(Docklight) was used. Apart from this, a Matlab script for decoding raw the data
coming from the frame grabber and building the final images from this data was

developed.

3.2.4 Other hardware

The IR camera could not be connected directly to the Evaluation Board and the
Data Acquisition Card. Some adaptation work must be done first. On the one
hand, the voltage levels of the signals for the communication between the
camera and the frame grabber need to be adapted to the inputs of the frame

grabber. This is managed in an adaptation board attached to the image sensor.

On the other hand, some aspects which are secondary for the communication
but essential to allow camera’s operation, such as power supply and
temperature control, must be also managed with a great deal of care. For this
purpose, the camera is connected to another board. The main blocks of the

resulting system are shown in the diagram of Figure 3-6:

Adaptation Board

) Analogue VIDEQ
» Video Buffer > output (to ADC)
Power Supply - ]
& Temperature |«— Gli?ga7m;6325
Control Digital Signal » AD_TRIG
) Level Translators | MCLK
- MSP

Figure 3-6. Blocks diagram of the adaptation of Hamamatsu imaging sensor to

the overall system
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First, the board for power supply and temperature control is packed in a box
separated to the test of the system. This box is connected to the electrical
power supply of the laboratory, using this to create the voltage levels needed to
power up the camera. Besides, it also performs the needed temperature control

mechanisms using the signals provided by the camera for this purpose?.

Regarding the adaptation board, in the Digital Signal Level Translators it
converts the voltage levels of the digital signals of the camera to the levels
needed in the frame grabber. The Video Buffer, which is an amplifier configured
for an amplification of 1, decouples the VIDEO output from the Hamamatsu

module from the cable and receiver.

Then, both the camera and the adaptation board are packed into a protective
case, getting to the box shown in Figure 3-7. The box includes 4 holes around
the image sensor that will be used for fixing a system of lenses for getting

images once the frame grabber is working.

Hamamatsu
imaging sensor

fixings

£

Figure 3-7. Protective case containing the IR camera chip and the adaptation
board

1 All the adaptation work was done by Dr Steve Staines and Dr Thomas Kissinger
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Regarding the communication between the frame grabber and the computer,
although the DE2-115 includes the DB9 connector typically used for RS-232
communications, another external small platform is used. The serial
communication lines (TX and RX) of the system are mapped to the GPIO ports
of the Evaluation Board, and these are connected to the external platform.
Thus, thanks to the high speed driver included in this platform for the
conversion of the signals coming from the FPGA (TTL) to RS-232 levels, the
serial data transmission is increased to a rate of 1 Mbps. If needed, this driver
could operate at a rate of up to 2 Mbps. The external platform for TTL to RS-

232 conversion is shown in Figure 3-8:
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Figure 3-8. External platform affixed in a corner of the Evaluation Board

As seen in the picture, the driver is directly connected to the PC by means of a

micro-USB cable.
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3.3 Architecture of the IR imaging system

The general architecture of the overall system is shown in Figure 3-9:

Evaluation Board (DE2-115)

FPGA (Cyclone IV)
Data acquisition card
—
_ova e | VIDEO OUT & L SRAM
s (Digital 14~ |S
bits)
L—1
o PLL UART
=
VIDEO OUT 50MHz & RX | T
(Analog) N
o
[€dd¢eeeoedeed |GPIOports
To
x| |9
3 BRE UART_TX E}
2 B g UART RX L
S mak N
( S——msp )
Y

Figure 3-9. Architecture of the IR imaging system

As stated above, there are two endpoints in the overall imaging system: the

camera (shown at the left of image) and the computer (shown at the right).

The control and data signals from the camera are listed in the red ellipse,
connected to the frame grabber after the adaptation explained in Section 3.2.4
(Other hardware). In the particular case of the VIDEO output analogue signal,
the adaptation board outputs it over a coaxial cable. Thus, the signal is received
in the Data Acquisition Card through its SMA connector, passing it to the ADC.
In the ADC, the analogue signal is digitalised into a 14 bits digital signal, which

34



is transmitted to the Evaluation Board by means of the HSMC connector. These

connections are shown in Figure 3-10:

Figure 3-10. Connections in the Data Acquisition Card

Once the digital VIDEO output is introduced in the Evaluation Board, it is easily
received in the FPGA to process it. The value of the analogue VIDEO output is
digitalised and transmitted to the FPGA every clock period. This is the reason
why the AD_TRIG signal is very important, because it states when the VIDEO

data is giving the value of a pixel, once every 8 clock cycles.

Regarding the control signals of the camera, which are already digital, they are
directly connected to the GPIO ports of the Evaluation Board (see Figure 3-11).
One of those signals is MCLK, the reference clock provided to the camera,
which should be not faster than 40 MHz. However, the oscillator of the
Evaluation Board provides the system with a 50 MHz clock. For this reason, it is
necessary to implement a PLL within the FPGA in order to create the 40 MHz

clock needed for synchronising the whole system.
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Figure 3-11. GPIO ports connections

Once inside the FPGA, the pixels data coming from the VIDEO output of the
camera are saved in the SRAM included in the Evaluation Board. Afterwards,
depending on the operation mode, this data is processed in diverse ways, being
always read from the SRAM and sent to the computer through the UART
module, which is implemented within the FPGA.

Finally, the data managed by the UART module is converted to RS-232 levels.
The UART module is used for both transmitting the video data to the computer
and for receiving the configuration parameters from the computer before

starting the data transmission.
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4 DEVELOPMENT OF THE SYSTEM

The development of the system has been divided in four different stages, which

are formed by several subtasks:

- Building Blocks.

- Developing a basic version of the system able to capture an only frame
and to transmit it to the computer.

- Creating the Live and Buffer operating modes, based in the previous
basic version.

- Adapting the design to the actual camera, including the creation of the

third operation mode, the Calibration Mode.

In this section, the most important aspects of the development are stated, along

with the technical details involved in each of the stages.

4.1 Building Blocks

Provided the great deal of hardware involved in the design, before starting the
development of the system, it was important to have a clear view of the
operation of every single component. For this reason, the next modules were

developed:

4.1.1 SRAM read/write module.

A basic module for testing the operation of the memory that would be used for
saving the pixels as they are received from the camera, and to read this data in
order to transmit it to the computer. This might look an easy task, but there are
a few signals to deal with, and the operation protocol is not stated anywhere.
For this reason, it was necessary to invest some time in this apparently simple

module.

4.1.2 UART modules.

Including both data reception and transmission modules, the development of

this modules was paramount for the communication of the frame grabber with
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the computer, for both receiving the configuration parameters from the

computer and sending the images’ data to the computer?.

4.1.3 Mirror test for the Data Acquisition Card (ADC and HSMC
connection test).

For testing the operation of the Data Acquisition Card, although only the ADC of
the card was supposed to be used in the final design, a mirror test involving
both the ADC and DAC was performed. This test was, basically, inputting to the
ADC an analogue signal directly created with a functions generator, receiving
the digitalised data in the FPGA by means of the HSMC connection between
the Data Acquisition Card and the Evaluation Board, and finally outputting the
signal in the opposite way. That means, sending the digitalised signal received
in the FPGA back to the Data Acquisition Card through the HSMC connection,
this time to the DAC, which would convert the signal from digital to analogue
again and output it from the system. This mirrored signal is analysed with an
oscilloscope, which plots the signal with the same shape as the signal

generated by the functions generator.

4.1.4 Hamamatsu Debug Module.

Due to a delay in the delivery of the Hamamatsu image sensor, the operation of
the frame grabber could not be physically tested until the last stage of the
thesis. During the first stages of the design, all the process was tested and
debugged by means of the simulation tools provided for the FPGA. Regrettably,
only the operations performed within the FPGA could be analysed with this
method, and provided that the system manages some external peripherals, the
final operation of the whole system could not be tested by means of the
simulation. Therefore, it was necessary to find a mechanism to perform a
physical debug of the system. Thus, a module that recreates the operation of
the camera was developed in VHDL code and integrated within the FPGA. The
pinout of the module, which includes the signals presented in Section 3.2.1, is

shown in Figure 4-1:

2 UART RX module based in a previous work by Dr. Thomas Kissinger
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Hamamatsu Debug
MSP
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AD_TRIG
VIDEO S

Figure 4-1. Pinout of the Hamamatsu Debug Module

This module performs a communication with the frame grabber system
(implemented both endpoints within the FPGA), based in the operation protocol
used by the actual IR camera. The module recreates only the signals of the
camera that are involved in the communication process (MCLK, MSP, VIDEO
and AD_TRIG), ignoring the signals dealing with secondary aspects (power

supply and temperature control).

The main constraint of this physical debugging method is that, due to the
impossibility of recreating the analogue VIDEO signal within the FPGA, the
digitalisation of the signal by means of the Data Acquisition Card cannot be
tested this way. Therefore, the VIDEO signal is provided as it would be after the
digitalisation, with a digital bus of 14 bits. As real values are not needed for the
debug, a sequence of numbers from 0 to 4095 (for the 4096 pixels of the image)

is given as each image’s pixels values.

Thanks to the mirror test performed for testing the correct operation of the Data
Acquisition Card (see section 4.1.3), this part of the system is considered to be
a non-problematic factor to be implemented afterwards in the final version of the

system, once the camera is available.

The operation of this VHDL module is shown in Figure 4-2, which gives a view
of the simulation of the behaviour of the module when it receives the MSP

signal:
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Figure 4-2. Simulation of the Hamamatsu Debug Module

In this simulation it is shown how the Hamamatsu Debug Module receives the
MSP low pulse (second line) and waits for the first blank period to expire before
starting to send the pixel values (the increasing sequence in the third line,
already in digital format). It gives a falling edge in the AD_TRIG (fourth line) in

certain points where the value of the pixel is supposed to be stable.

4.2 Basic version

Once all the peripherals of the system have been tested, the first basic version
of the system is developed. This is the first stage in the actual development of
the system and, provided that all the posterior design is based upon this first

basic version, it is also the most important stage.

The first point in this development is to define the flow diagram of the system,
which is transferred to the finite-state machine within the FPGA. The finite-
states machine will rule the operation of the system according to the timings set
by the camera’s operation protocol. A basic representation of the flow diagram
is presented in Figure 4-3 (for further details, see the full flow diagram in

Appendix A (Flow Diagrams):
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Figure 4-3. Flow diagram of the basic version of the system

The operation of the basic system is based in three main stages: integration
time, collecting the data from the camera in the frame grabber and sending the
collected data to the computer. In the first state (IDLE), the system is simply
waiting for the order from the user to start the process, order that it receives

when a button of the Evaluation Board is pressed.

4.2.1 Integration Time

The first step in the operation of the imaging system. The only action performed
in this state is setting the value of the MSP signal to 0. Thus, the time this state
is run sets the exposure time for the capture of the image by the camera, which
in the basic version of the system is a fixed value. The capture of the image by
the camera ends right in the same moment in which the MSP comes back to
high level.

4.2.2 Collecting the image‘s data in the frame grabber

After capturing the image, the camera waits for a certain blank period of time to
expire and then starts to send the pixels one by one through the VIDEO output
analogue signal to the frame grabber, along with the AD_TRIG trigger signal. A
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schematic view of this process is given in Figure 4-4, with only the first two

pixels out of 4096 in each image represented in the diagram:

CAMERA FRAME
GRABBER

Exposure time

MSP

Blank

200ns (5MHz)

Digital signals =

Figure 4-4. Beginning of the communication between the camera and the frame

grabber

Every falling edge of the AD_TRIG, a new pixel value is taken in the FPGA.
This value is aimed to be a digitalised version (14 bits) of the analogue VIDEO
output of the camera, but in the first stages of the development this 14 bits
value will be directly taken from the Hamamatsu Debug Module’s VIDEO digital

outpult.

Once the pixel value gets to the FPGA, it is initially saved in an internal register.
Then, it will be saved in the first position available in the SRAM memory of the
Evaluation Board. Being the SRAM cells 16 bits wide, the pixel value must be
first filled with two extra bits in the most significant bits of the word. Following an
iterative process, the SRAM s filled with the pixel values in consecutive
positions, from the first position of the memory to the 4095™" position, the one
corresponding to the last pixel of the image. This process is shown in Figure
4-5, where the values saved in the memory are the ones received from the

Hamamatsu Debug Module: an increasing binary sequence of numbers from 0
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to 4095. When reading the pixels from the real camera these values are

obviously random.

SRAM (ebits) ‘
Input Pixel (14 bits): | 00111111111111 | 0000000000000000 ‘1’
: 0000000000000001
0000000000000010
. L Image data
: i (4096 pixels)
| 4094
v 0000111111111110 |, o0
0000111111111111}------- ->0000111111111111 ]

1048574
1048575

Figure 4-5. Saving the last pixel of the image in its corresponding position
(4095") in the SRAM memory

4.2.3 Transmitting the image’s data

The last step of this basic version of the frame grabber system is taking the
image’s data saved in the SRAM and sending it to the computer. For this
purpose, the words of the SRAM (16 bits) are passed one by one to the UART
TX module, which is in charge of transmitting the data at a rate of 1Mbps to the
computer by means of the external platform mentioned in Section 3.2.4.

Once the pixel, made by 14 useful bits plus two extra 0 bits, is in the UART TX
module, the next procedure is followed.

In order to understand the procedure of the UART TX module, it is essential to
understand previously that RS-232 is an asynchronous communication
standard. This means that it does not transmit any clock for the synchronisation
of both endpoints within the cable. Therefore, it is necessary to arrange the data
in sets of 8 bits and to add a bit stop and a bit start at the beginning and the end
of each byte (8 bits), respectively, in order to let the receptor know when a data
byte is beginning and finishing. For this reason, each data byte must be

transmitted within a set of 10 bits.
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Regarding the pixel values to be transmitted, they are made by 14 bits plus two
extra bits in the SRAM, which are discarded within the UART TX module. Then,
14 bits must be arranged in two separated bytes for the transmission of the
pixel value. For this purpose, the set of 14 bits is split in two sets of 7 bits,

leaving a spare bit in each byte to be transmitted.

Taking advantage of this spare bit, an integrity check and synchronisation
method is implemented in the frame grabber. This bit, called Frame Begin bit,
will be 1 when the transmitted byte is the first byte of the first pixel of each
frame. This mechanism will be used in the receiver to check when a new frame
is received, which will be particularly useful in the future operation modes of the

system, where frames will be sent sequentially one after another.

This process is illustrated in Figure 4-6, with the SRAM memory filled in the
previous stage, represented this time with random values (as it would look like
in the real system) instead of a sequence of numbers from the Hamamatsu
Debug Module:

SRAM (16 bits) o UART TX
0000011001001011 -+ - 0000011001001011 ehior0) R8-232 Driver
0000010101001000 |, TX Byte: 1100011000 |——+——— 10001100 ————
0001101000100111 g

Frame begin: 1

' 4094
0011000001100001

4095 ST -
0000110001001001 Pt s-

H /t’ ~
’ 0:0,1,1,000 \
f 33V N
1
1048573 {‘ ov . ;
1048574 N Useful data K

~ | ’
1048575 S~ Frame begin -

~ -

Figure 4-6. Transmission of the first pixel of the image (first byte)

The byte is transmitted from the LSB to the MSB. For this reason, the bit start is
placed at the end of the byte (right after the LSB) and the stop bit at the
beginning of the byte (before the MSB). Once the set of 10 bits is created, it is
sent to the RS-232 Driver in the external platform mentioned through the GPIO
pin #0. There, the driver converts the FPGA’s internal voltage levels (TTL) to

the levels required for the RS-232 serial line, creating the physical sequence of
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bits shown inside the ellipse and sending it to the computer throughout the

serial line.

After the transmission of the first byte of the pixel, the second byte of the same
pixel is sent following the same process, with the only difference of the Frame

Begin bit, whose value is now set to 0. This difference is shown in Figure 4-7:

SRAM (16 bits) o UART TX
0000011001001011 - {3~~~ >0000011001001011 R5-232 Driver ]
GPIlO(0,
0000010101001000 |, TX Byte: 101001011 -” 01001011
0001101000100111
! 4094 Frame begin: ;
0011000001100001 2095 S _
0000110001001001 ’,"’— “‘x\
-~ 1,1;0,1,0,0,1 \\\
/' 33V \
1
1048573 1\ ov ;
1048574 s Useful data . /,
1048575 R - Frame begin -

-
******

Figure 4-7. Transmission of the second pixel of the image (second byte)

After this, the process of transmission of a pixel will be repeated iteratively
another 4095 times (one iteration for each remaining pixel), with the Frame
Begin bit set always to O.

4.3 Live and Buffer modes

In this stage, the basic design presented in Section 4.2 is used as a base for the
first version of the fully operating system. Like in the development of the basic
version, during the development of this stage the system is debugged by means
of the simulation tool and physically tested using the Hamamatsu Debug
Module.

In this version of the system, the frame grabber already incorporates most of
the functionalities of the final system, with two operation modes already

implemented: Live Mode and Buffer Mode.
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Another important functionality added to the system in this stage is the
capability to get the parameters configuration from the final user, in order to set

the operation of the frame grabber as he wishes in any moment.

Both the new operation modes and the process of configuring the parameters

are presented in this section.

4.3.1 Parameters configuration

Before starting to take any image from the camera, it is necessary to configure
the frame grabber with a certain set of parameters that define its operation.
These parameters are:

- Operation mode of the frame grabber: two operation modes available for
this version of the system: Live Mode and Buffer Mode.

- Integration Time: the time length of the MSP low pulse that the frame
grabber must send to the camera to indicate the beginning of the image
capture and transmission process. As stated in Section 3.2.1, this time
sets also the exposure time for the image capture in the camera.

- Buffer Size: number of images to be stored in the SRAM in the Buffer
Mode.

- FPS. Frames per second rate for the transmission of a stream of images
from the frame grabber to the computer in both Live Mode and Buffer
Mode.

This configuration must be set by the user from the computer and, therefore, it
is implemented by means of the serial cable used for the transmission of the
images from the frame grabber to the computer. This cable is bidirectional,
including a serial line for each direction. For the reception of data coming from

the computer, the UART RX module was developed.

In order to allow an easy access and modification of the parameters, their
values are saved in internal registers of the FPGA, which are identified each
with a different address. Therefore, the configuration of the parameters is based
in an address-value duality, firstly waiting in the FPGA for the data coming from

the computer to identify the parameter to be configured (the address of the
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register), and secondly listening for the value to be saved in the selected
register.

The process of configuration is illustrated in Figure 4-8:

FPGA
RS-232 Driver ’
Parameters’ Reg.
UART RX RX parameter
E ez it P Par 0
GPIO(1)
= = 00000010 anon) o
[ _i\ 1 |
= Par 2
' UART TX .
: T TTTTA No Par 3
! 1
I Yes (Error) Error? ———» pora
I res (Error)

Figure 4-8. Configuring the parameter with address 0x02 (1)

As stated above, first the address of the targeted parameter is sent from the
computer to the frame grabber by means of the serial lines using the standard
RS-232. Then, the data enters the UART RX module within the FPGA
throughout the RS-232 driver and the GPIO pin #1, following the inverse
process as for the transmission of an image from the frame grabber to the
computer (see Section 4.2.3), this time in the opposite direction. Then, the
UART RX takes the received byte from the serial line in digital format and saves
it in the FPGA, saving it as the address within the dual structure of the

parameter.

Then, the system checks the received address and, in case of being wrong
(non-existent parameter), it sends an error code back to the computer by means
of the UART TX module following the transmission process explained earlier
(see Section 4.2.3). In case of being a wrong value, the system comes back to
the previous point, listening again for an address. Otherwise, it waits for the

selected parameter’s value.

Once the address of the incoming parameter is saved in the FPGA, it starts to

listen to the corresponding value, taking as many bytes as needed for filling the
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value of the selected parameter, since the parameters can be from one to four
bytes long. Therefore, the frame grabber will iterate the byte reception as many
times as needed depending on which parameter has been selected by means

of the address. The process is shown in Figure 4-9:

FPGA
RS-232 Driver ,
Parameters’ Reg.
UART RX
. RX parameter Por 0
eei0r) | | L.
GPIO(0) > Val 2 par 1
A ]
<A | Par 2
! UART TX ‘ Val 2
' 'NC‘( bt Par 3
] [ T >
I i - 1 No
e Yes (Error) Error? ———— Par 4
B Jes {Error), =TT :

Figure 4-9. Configuring the parameter with address 0x02 (2)

After having iterated as many times as needed for taking all the bytes of the
parameter value, the frame grabber checks the validity of the value for this
specific parameter. If it is wrong, it sends the corresponding error code to the
computer and starts to listen again to the same parameter’s value (it keeps the
address previously received). If the value is correct, the frame grabber sends an

acknowledgment code (ACK) and saves the value in its corresponding register.

This process of configuration is followed until every parameter has been
configured, and it can be done in any order. The only special parameter is the
START parameter (the number 0). This parameter must be set to 0x01 in order
to start the image capturing operation, and it must be done when the rest of
parameters have already been configured. In that case, the process gets
started. Otherwise, the frame grabber will respond to the computer with a

specific error code.

The addresses and allowed values for the parameters are stated in Table 4-1,

both of them expressed in hexadecimal code to facilitate the visualisation.
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Table 4-1. Parameters' addresses and allowed values

Parameter name Address Value
Start 0x00 0x01

0x01: Live Mode
Operation Mode 0x01

0x02: Buffer Mode
Integration Time 0x02 0x000028 — 0x061A80
Buffer Size 0x03 0x01 — OxFE
FPS 0x04 0x00320009 — 0x02625A00

The range of values of the integration time correspond to the maximum and
minimum exposure time allowed by the camera (0.001lms to 10ms) in terms of

number of clock cycles of the system (clock of 40MHz).

In the case of the buffer size, which states the number of frames to be stored in
the SRAM memory before transmitting them in the Buffer Mode, the minimum is
one frame and the maximum is 254 frames (limited by the size of the SRAM).

Finally, the FPS parameter sets the number of clock cycles that the
transmission of any frame should take in order to get to a certain FPS rate. This

value is calculated with the next equation:

clock frequency 40 -10° (4-1)
desired FPS rate ~ desired FPS rate

FPS atribute value =

Taking into account the influence of the variation in the integration time in the
overall time for capturing and transmitting every image, the maximum FPS rates
corresponding to the minimum and maximum integration times stated above
are, respectively, 12.21 fps and 10.76 fps. However, it was also interesting to
allow the user to set rates as low as 1 fps. Therefore, the allowed range for this
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parameter is from the value corresponding to 12.21 fps (0x00320009) to the
value corresponding to 1 fps (0x02625A00).

Regarding the responses of the frame grabber to the computer, the codes’

meanings are shown in Table 4-2:

Table 4-2. Error and acknowledgement codes

Code Meaning
OXAATA Acknowledgement (sent after the correct configuration of any
parameter)
Error 1. incomplete configuration (sent when START parameter
OxDD7D . : I
is activated before configuring the rest of parameters)
OXEE7E Error 2: wrong value (sent when the stated value is out of range)
Error 3: wrong address (sent when the stated parameter number
OXFF7F .
does not exist)

There is also a global RESET code (OxFF) that, apart from stopping the
operation wherever it is to come back to IDLE state, it also deletes the
configured value of any parameter. This is the only code that can be received in

any operation point of the frame grabber system.

4.3.2 Live mode

Taken the first basic version of the system (see Section 4.2), it is only
necessary to introduce minor changes in the flow diagram to create the Live
Mode. In this stage, the parameters’ configuration explained in the previous
section is introduced as a new state in the finite-state machine of the system,
right after the IDLE state. Thus, the way of starting the system is changed from
simply pressing a button for running it with default configuration parameters to a
configuration process fully controlled by the user of the frame grabber from the
computer. Apart from this, the whole process of the system is constantly
repeated in a loop, starting again in the integration time state every time the
system finishes the transmission of an image. This new flow diagram is

represented in Figure 4-10:
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Figure 4-10. Flow diagram of the Live Mode

With this new operation mode, the system runs continuously with the initial
parameters configuration: it receives an image from the camera, saving it pixel
by pixel in the SRAM, and right after saving the last pixel in the SRAM it starts
to transmit this image. Once the last pixel of the image has been sent, the
system comes back to the integration state, asking the camera for a new image
by means of the MSP signal and, afterwards, overwriting the previous image in
the same positions of the SRAM (from memory cell number 0 to 4095). This
process is run at the frame rate specified in the FPS parameter, which can be
tightly fitted to the estimated minimum times for the whole process or set to a
more conservative frame rate that could allow the user to take the frames of this

video stream in an easier way.

In case of needing to change any of the parameters once the system is already
running, the user must use the global reset (send the code OxFF from the
computer to the frame grabber) and reconfigure all the parameters again.
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In this operation mode, the maximum frame rates achievable depend only on
the configured exposure time for the capture of the images, since the rest of
factors with any influence in this matter are fixed by the Hamamatsu camera. It
is important to remember that the exposure time is stated by the length of the
integration signal (the MSP low pulse). Thus, the time it takes a video frame (an
image) to be captured and to traverse the whole system can be split in different

stages, as shown in Table 4-3:

Table 4-3. Timings in Live Mode

Exposure Time 0.001ms to 10ms

Image reception from the camera @ 5 MHz (1 | 974.65 ps
pixel of 14 bits every 200 ns)

Image transmission from the frame grabber | 81.92 ms
to the PC @ 1 Mbit/s

TOTAL TIME PER FRAME E.T. +82.89 ms

Looking at these timings, one of the conclusions obtained in the literature
review is confirmed: the transmission from the frame grabber to the computer
brings the main bottleneck of the system. In fact, the time it takes to transmit a
single frame represents from 88.19% (10 ms of exposure time) to 98.82%
(0.001 ms of exposure time) of the total time the frame need to be captured by

the camera, received in the frame grabber and sent to the computer.

Taking into account these timings, it is easy to calculate the maximum
throughput achievable in Live Mode (in terms of frame rates), depending on the

exposure time. These rates are shown in Table 4-4:

Table 4-4. Maximum throughputs in Live Mode

Exposure time (ms) Maximum throughput (fps)
0.001 ms 12.06
10 ms 10.8
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It is important to note that these are the maximum achievable frame rates, but
the throughput can be configured to lower values with the corresponding

parameter.

4.3.3 Buffer Mode

In this new operation mode, instead of transmitting each image as soon as it
has been received, it captures and saves a number of images in a row,
transmitting them afterwards. For this purpose, images are saved in
consecutive positions of the SRAM, saving all of them in a row without
overwriting the previous ones. Once all the requested images are saved in the
SRAM, they are transmitted in a row to the computer, at the frame rate specified
in the FPS parameter. This is represented in the flow chart of the Buffer Mode,

shown in Figure 4-11.:

Integration

IR camera = FPGA

no

Figure 4-11. Flow diagram of the Buffer Mode
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This operation is achieved by simply checking the number of images saved in
the SRAM memory after saving each image: if there are as many frames saved
as stated in the Buffer Size parameter, the buffer is considered to be full and the
system jumps to the second stage of the overall operation, starting to transmit
all the frames (saved in the memory one after another) in a row. If the number
of frames saved is still below the Buffer Size stated in the parameters, the
system sends again the integration signal in order to take another image from
the camera. The way in which the images are saved in the SRAM memory is
presented in Figure 4-12, with pixel values represented by random numbers, as
it would happen in the system with the data coming from the camera instead of

the Hamamatsu Debug Module:

SRAM (16 bits)
0000110001001011
0000101001001000
0011010000100111

Imagel — ; 4096 pixels

: 4094
4095

0110000001100001
0001100001001001
0000110001001011
0000101001001000
0011010000100111
Image 2 : 4096 pixels

4097
4098

0110000001100001
0001100001001001

1048573
1048574
1048575

Figure 4-12. SRAM filled with images in Buffer Mode

Transferring this new flow chart to the finite-state machine of the system, the
communication process between both endpoints of the imaging system (camera
and computer) is separated in two parts: the image reception process in the

frame grabber and image transmission process from the frame grabber to the
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computer. Thanks to this, in the Buffer Mode the bottleneck of the transmission
from the frame grabber to the computer is skipped, getting to a very high rate of
images captured per second. Obviously, in exchange for this high speed
capture, the frames are not transmitted in real time and the number of images

captured is limited by the size of the SRAM memory.

Thus, the capture rate depends uniquely on the duration of the exposure time.
Looking at the timings shown in Table 4-3, ignoring the transmission time from
the frame grabber to the PC, the capture rate is calculated using the next

equation:

1 (4-2)
Exposure Time + 974.65us

Capture rate =

Some reference values of this “sampling” speed in relation with the exposure

time for the capture are presented in Table 4-5:

Table 4-5. Reference image capture rates in Buffer Mode

Exposure time (integration time) Image capture rate (images/s)
0.001 ms 1024.95
0.01 ms 1015.58
0.1 ms 930.53
1ms 506.41
10 ms 91.11

On the other hand, the second stage of the Buffer Mode operation, the
transmission of data from the frame grabber to the computer, can be also
slightly increased. However, the time saved from the reception thanks to this

separation of stages is not significant compared to the transmission time, since
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the reception of each is proved to be much faster. Looking at the timings shown
in Table 4-3 and ignoring the exposure and reception times, the transmission
time is taken (81.92 ms) and the maximum frames per second rate from the

frame grabber to the computer is easily calculated: 12.21 fps.

On the other hand, this mode is not aimed for real time operation, and therefore

the FPS rate is not as important as in the Live Mode.

4.4 Adapting the design to the real camera

When the Buffer Mode was almost finished but still being debugged, the IR
camera finally arrived to the laboratory. After creating the adaptation board for
the camera and packing it along with the camera in the protective case (see
Section 3.2.4), in order to check the correct operation of the Hamamatsu
imaging system it was necessary to analyse how the signals coming out from

the camera get to the FPGA. These signals measured are shown in Figure

4-13, Figure 4-14 and Figure 4-15, with the system running in Live Mode:

Figure 4-13 VIDEO (green) and AD_TRIG (yellow) signhals with the frame grabber

running in Live Mode (1)

In this oscilloscope screenshot (Figure 4-13) the periodical reception of images
coming from the camera into the frame grabber can be checked. Each of this
pulses is a whole image, with the data coming in the VIDEO signal (green
signal) and with the AD_TRIG’s falling edges represented in the yellow signal.

Zooming in this graph, the structured transmission of each row can be checked:
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Figure 4-14. VIDEO (green) and AD_TRIG (yellow) signals with the frame grabber

running in Live Mode (2)

In this zoomed graph (Figure 4-14), the transmission of rows with a blank space
between each of them starts to be clearly plotted. Each of those groups of
AD_TRIG’s falling edges represent a row, with the 64 pixels’ values of each row

received by means of the analogue VIDEO signal.
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Figure 4-15. VIDEO (green) and AD_TRIG (yellow) signals with the frame grabber

running in Live Mode (3)

Finally, when zooming in the graph to pixel level (Figure 4-15), the reception of

each pixel along with its corresponding AD_TRIG falling edge can be checked.
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It is important to note that the VIDEO signal is measured directly from the
camera, whilst the AD_TRIG signal plotted above is the signal after getting into
the FPGA, showed as an output of the FPGA for debugging purposes. In order
to know how to signals managed by the FPGA are, the most valuable stage to
plot in the life of the signal is when it is already in the FPGA (the case of
AD_TRIG).

Regrettably, although the AD_TRIG signal is correct right when coming out from
the camera (not shown in the graphs above), for some reason, in the FPGA it is
received with a strong ringing. This means that, after the falling edge of the
signal, the signal should be constant in a low level for a certain period of time
and then come back to high level, but the plot clearly shows some parasite
peaks within the low level pulses. This peaks are strong enough to be a
potential problem for the system, which could read the peaks as rising and
falling edges. Therefore, it is necessary to create a clean AD_TRIG signal to

use it as a reference for the system to know when to take each pixel value.

Regarding the VIDEO signal, after digitalising and receiving it in the FPGA, the
graphical representation of this digitalised signal by means of the oscilloscope
would involve converting the signal back to analogue format. For this purpose, it
would be needed to use the DAC of the Data Acquisition Card, what would have
an extra effect in the VIDEO signal, making impossible to plot the signal in the
oscilloscope just as it is within the FPGA. Therefore, the VIDEO signal
managed by the FPGA cannot be plotted in the oscilloscope, being necessary
to find a way of displaying the actual received video, relating it to the position of
the clean AD_TRIG’s falling edges. This is essential to know the delays
between the received triggers and pixels values (the peaks in VIDEO signal)
and, therefore, to know when to take each pixel value from the digitalised
VIDEO signal.

Finally, there is no fixed ground value in the VIDEO signal. This can be easily
understood looking at Figure 4-14, where the value of VIDEO signal during the
blank space between rows (when it is not giving any pixel's value) is not

constant. Besides, analysing the VIDEO signal in the oscilloscope zoomed to
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pixel level (like in Figure 4-15) it can be checked that not only the peaks of the
VIDEO signal, which are the values corresponding to each pixel, can increase
or decrease, but also the lowest values between pixels can increase or
decrease. Therefore, it would not be useful to save the value of each pixel
(each peak in the VIDEO signal) directly in the SRAM: it is necessary to
calculate the difference between the peak and the next lowest value of the
VIDEO signal in order to get the real value of the pixel. For this purpose, it is
paramount to get the view of the VIDEO signal inside the FPGA in order to
relate its delay with the phase of the clean AD_TRIG signal.

Once stated the problems in the adaptation of the frame grabber using the
Hamamatsu Debug Module to the final frame grabber using the real IR camera,
the whole adaptation process can be separated in three main stages:

- Creating the clean AD_TRIG signal

- Creating an extra operation mode (Calibration Mode) to display the
VIDEO signal as it is within the FPGA in relation to the clean AD_TRIG
signal.

- Calculating the real value of the pixel (difference between VIDEO peaks

and relative grounds).

4.4.1 Creating the clean AD_TRIG signal

For the creation of the clean AD_TRIG signal, which will be internal to the
FPGA, a falling edge of the original AD_TRIG signal must be understood as
valid only if it has been at high level for a minimum time right before the falling

edge.

This method is implemented by means of a shift register of 4 bits. Using the 40
MHz clock, the FPGA takes a bit value from the AD_TRIG signal every 25 ns,
putting it in the LSB of the shift register right after shifting the bits of the register
one position to the left. Thus, when the first falling edge of the original AD_TRIG
signal is received for every pixel, the FPGA will take a 0 value for the AD_TRIG,
having in this precise moment the shift register full of bits with value 1. Then,

the clean AD_TRIG signal will pass from high value to low value, holding the
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low value for two clock cycles and then coming back to high value.
Summarising, the clean AD_TRIG will have a falling edge when the next
conditions are met: shift register = “1111” and original AD_TRIG = ‘0’. This

process is graphically explained in Figure 4-16:

Shift Register: | X | X | X | X [« AD_TRIG = ‘1’ X: undefined value
Shift Register: | X |X|X|1 «---—----- AD_TRIG = ‘1’

Shift Register: | X | X | 1|1 f«---—----- AD_TRIG = ‘1’

Shift Register: | X|1|1|1@«—--— AD_TRIG=‘1

Shift Register: | 1|1 |1|1 f«--—-- AD_TRIG="0’ EDGE DETECTED!! ]
Shift Register: | 1|1 |1|0 f«--—---- AD_TRIG =X

Shift Register: | 1|1 |0|X f«——— AD_TRIG =X

Shift Register: | 1|0 | X | X f«——-—- AD_TRIG = ‘1’

Figure 4-16. Process of detecting falling edges in the original AD_TRIG

In each clock period, the LSB of the shift register is the AD_TRIG value
received in the previous clock period. With this method, the system will detect
only a falling edge per pixel (in the first falling edge of the original AD_TRIG
signal). The next edges within the same low stage of the pixel will be discarded,
regardless of the values that the next two values may take. For instance, if the
first undefined value is 1 and the second one is 0, when detecting the value 0O in
the AD_TRIG the system will not create a falling edge in the clean AD_TRIG
since the values in the shift register will be “1101”.
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This method will create a clean AD_TRIG with a certain delay with respect to
the actual falling edge. Nevertheless, this delay does not mean a new problem
for the development, since the VIDEO and AD_TRIG signals are not
synchronised anymore once inside the FPGA, and the delay between them is
still unknown. This will be calibrated in the next stages of the process, when
displaying the VIDEO signal managed inside the FPGA in relationship with the
clean AD_TRIG signal. The created AD_TRIG signal can be checked in Figure
4-17, were the pink signal is the clean AD_TRIG coming from the FPGA and the
red signal is also the clean AD_TRIG, but this time read as a digital signal in the
oscilloscope (as it would be inside the FPGA):

o A AAA 1
) 4 Pt A ‘.« VRN T "r‘f'-','.b,l )
W b MY fiv LU i
Ao A0 a1l 1 I

I,..""....‘_\_Jrlm.m-‘”p-.\»,\..‘mw_...l.‘mwm.up‘;w. - ‘w-‘\_‘.lr.'l‘h,u.div.-.yw_w'|‘._qu_.s.,..m.\y'

LA A

ol U

Figure 4-17. VIDEO (green), original AD_TRIG (yellow), and clean AD_TRIG read
as both analogue (pink) and digital (red)

4.4.2 Creating the Calibration Mode

Firstly, although this operation mode is developed only for calibration purposes,
it will be kept in the final version of the system. For using it, the only parameter
affected with respect to the original parameters configuration is the Operation

Mode parameter, shown in Table 4-6:
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Table 4-6. Operation Mode parameter’s addresses and allowed values

Parameter name Address Value

0x01: Live Mode

Operation mode 0x01 0x02: Buffer Mode

0x03: Calibration Mode

Once the clean AD_TRIG has been created, the next step is to calculate the
delay between the clean AD_TRIG and the VIDEO signal. For this purpose, as
the VIDEO signal cannot be plotted in the oscilloscope, it is necessary to take
the digital values sampled around the clean AD_TRIG and output them to the
computer. This is the function of the third operation mode: the Calibration Mode.

For this purpose, a shift register as wide as 25 pixel values (25 times 14 bits) is
implemented, which will be running constantly, shifting the register to the left
and inputting the last sampled value of the VIDEO signal in the 14 LSB. Thus,
the system saves in every moment the last 25 values that the VIDEO signal has

taken.

When the first falling edge of the clean AD_TRIG is received, the system shifts
the register 12 more times to the left, in order to leave the value sampled when
receiving the falling edge of the clean AD_TRIG in the middle of the buffer. The
same process is followed shifting only once, to leave the value sampled with the
AD_TRIG at the right, and 23 times, to leave it at the left. Thus, the VIDEO
signal available in the FPGA can be displayed in the surroundings of the first
falling edge of the clean AD_TRIG. This data is taken in the computer and
represented with Matlab in three separated graphs, since the three 25 pixels

data sets are captured for three different images and they cannot be merged.

The first two graphs are available in the Appendices (Calibration mode’s

images), whilst the third one is shown in Figure 4-18:
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Figure 4-18. Digitalised values of the VIDEO signal around the first falling edge of
the clean AD_TRIG signal

First off all, the form of the wave is inverted, most probably because of the
polarity of the transformer involved in the digitalisation of the analogue signal in
the Data Acquisition Card. However, this means no problem, since the target is
not the value of the pixel itself, but the difference between maximums and

minimums of the VIDEO signal.

In Figure 4-18 it is easily noticed how the VIDEO signal gives the value of a new
pixel every 8 clock cycles (from sample 10 to sample 18). This is the expected
behaviour, since the pixels transmission rate from the camera to the computer
is supposed to be 8 times slower than the frequency of the clock that the
camera receives as a reference (which is the same one used in the system:
40MHz).
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Regarding the delay between the falling edge of the clean AD_TRIG and the
correct value to be sampled in the VIDEO signal, it is clearly 10 clock cycles,
since the peak value (minimum) of the plotted wave (the maximum peak in the

real VIDEO signal) is sampled ten clocks cycles after the falling edge.

This can be double checked with the second pixel value, which is in the 18t
position, just 8 samples after the first one, what makes sense considering the

issue of the frequency of image transmission.

4.4.3 Calculating the real value of the pixel

Knowing from the previous section that the pixel is sampled 10 clock cycles
after the falling edge of the trigger, it is only needed to find the position of the
sample that should be considered as the relative ground for each pixel to
calculate the difference between both values. Looking at the graph in Figure
4-18, the sixth sample value after the trigger is chosen for this purpose, since it
is the last sample before the signal starts to change to the pixel value.

In order to perform the subtraction between the ground and the pixel values, a
slight modification in the system is needed. In the versions developed in base to
the Hamamatsu Debug Module, the pixel values were directly taken from the 14
bits bus coming from the Data Acquisition Card. However, for the final version,
the values for calculating the difference between ground and pixel values are
taken from the shift register used for buffering the last 25 VIDEO samples.

Besides, as pixels arrive to the frame grabber with a separation of only 8 clock
cycles and the delay of the targeted samples is beyond this number (10 clock
cycles for the peak), the values cannot be taken sequentially anymore. In case
of doing it sequentially using an only counter to indicate the system when to
take the samples from the shift register, this counter would count up to 10 clock
cycles after the last falling edge of the trigger. However, the next falling edge of
the trigger would appear in the 8™ clock cycle (before the counting has been
finished) and the counter would start again from zero. Thus, the frame grabber

would never take a pixel and the whole system would crash.
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For this reason, it is necessary to implement to parallel counters, initialising
them alternately every time a new falling edge in the clean AD_TRIG is
detected, and running both of them at the same time. Thanks to the nature of

FPGA devices, this can done easily.

Regarding the subtraction operation, it is implemented using an IP core
developed by Altera, which forces the FPGA to perform the operation with a

delay of an only clock cycle.

Once the difference between ground and pixel value to be sent for each pixel is
calculated, the frame grabber follows the same process as in the versions
developed for the Hamamatsu Debug Module, getting to the final system

developed for the real IR camera.
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5 RESULTS

The final version of the frame grabber is a fully configurable system with two
operating modes correctly working and an integrity check and synchronisation

method implemented by means of the frame begin bit.

5.1 Parameters configuration protocol

Before analysing the received images, it is important to show the result of the
parameters configuration stage, which is the first step in the operation of the
frame grabber. This process is done by the final user and from the computer,
using any serial protocols emulator. In Figure 5-1 the process of configuration

(using the serial protocols emulator called Docklight) is presented:

Send Name Sequence [TX] - FFRESET
Global Reset FF Hi% ' g?} Setting Start param (add:0) to 1
Start param add 00 [Rx] - oD 70 ERROR! (params unconfigured)
Operation Mode para... 01 Hi] i 91} Setting Op. Mode param (add:1) to 4
---> | Integration Time para... 02 [1X] - e4

[RX] - EE 7E ERROR! (wrong value for the parameter)

---> | Buffer Size paramadd 03
[Tx] - g;} Setting Op. Mode param (add:1) to 2

---> | FPS param add 04 [Tx] -
---> | Live Mode 01 [RX] - AA 7A ACK v (Param 1 configured)
> | Buffer Mode 02 [TX] - @5 Selecting parameter with address 5
L [RX] - FF 7F ERROR! (wrong address)
---» | Calibration Mode 03 [TX] - @2 st o o B
---> | minIT (lus) 0000 28 [TX] - @@ e1 9@ g Int. Tihe!(add:2) s Opis
---> | mid rangeIT (10us) 000190 [RX] - AA 7A ACK ¥ (Param 2 configured)
---> | maxIT (10ms) 06 1A 80 [TX] - 93} Setting Buffer Size Mode param (add:3) to 2
---> | min buffer size (1 frame) 01 EXY( = 2

[RX] - AA 7A ACK ¥ (Param 3 configured)

i [t e Zad sl [TX] - o4 } Setting FPS param (add:4) to 0x00320000
---> | max FPS rate (with min... 00320009 [TX] - o0 32 @0 00
——> | min FPS rate (1 fps) 02625400 LRX] - EE 6E ERROR! (wrong value, out of range)

TX] -
I B ) . o2 5 0| Setine FPS param (a0 0302625400
(

[RX] - AA 7A ACK ¥ (Param 4 configured)

Figure 5-1. Example of configuration sequence

5.2 Received raw data

Once all the parameters are correctly configured, the start parameter can be set
to Ox01 to start the capturing process. Figure 5-2 shows how images start to be
received right after setting the start parameter. This communication is

performed using the intermediate version of the system based in the
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Hamamatsu Debug Module because, being an increasing sequence of
numbers, it helps in the understanding of the process:

ASCI HEX Decimal || Binary

B8/88/2016 13:36:54.141 [TX] - ©0020800 >
@8/88/2016 13:36:55.891 [TX] - G60BE881

@3/83/2016 13:36:55.1080 [RX] - 10000000 000002040 00000200 20000821
gpabaaes apebaale abebooed abebeall obebooed GboBoled obboooed abbBalel
apaBaaes apeBalle apebeaed GBEBE111 obbbeGGE GbBElasd obboGGBE GdBElasl
apaBaaes apealale aoebaaed apealall esebeaed apeelled opbooaed aaBellel
apeoooes apeallle oobebooee abedllll ebebooee obelooesd obboooes abeleael
gpabaaes apeleale oobobaoed aBeleall oobbeaed adeleled obbooaee adelaelel
apabaaes apelalle aoebeaed @pelalll esebeaes apbllased obbeoass aaellasl

Figure 5-2. Example of image reception from the Hamamatsu Debug Module (first

image of the stream)

This time the values are displayed in binary format to facilitate the identification
of the Frame Begin bit. It can be seen how the values received for the pixels (2
bytes each) are a sequence of binary numbers increasing one by one. The
integrity and synchronization method implemented by means of the Frame
Begin bit can be also checked in this figure: in every byte the first bit is a 0, but
in the first byte of the frame this bit is 1. This can be also checked when the
image is not the first one received from the frame grabber, as shown in Figure
5-3:

@ee81111 ellaeless eeaallll f8llelesl @eeellll @llelele aeeellll allelell aaeellll
allalled eeeallll ellellel a8eellll ellellle @eeellll @llellll aaeellll allleess
@ee81111 ellleasl eeeallll 8llleele @aeellll @ll1le8ll @ee8l1l1ll allleles aaeellll
@lllelel eeeallll elllelle aeeellll 61116111 @8eellll @lllless eeeellll allillesl
@a381111 ellllaele eeeallll 81111611 @6661111 @lllllée @ee61111 81111161 @a86l1lll
@111111& eeeallll 81111111 § coopppae Boboooal cobbbobe cobeeele
aappaaEe 0000411 cbbbOGER BREEE1OE GO00GGERE GOGBE1G1 BbbDEGGE GBBRRl1e GaBoBBBE
aaeEelll eooooobs obbblood cbebbobe ocobolewl oooobbbe abbblele cobbbood aBelell
aapppaee eeealles pbbbooed bBBBllel eecebbbd G888llle abbbooae BBBE1111 aabesabe
aoaleses oooooobe obblooal cbeebobe oooledle oooobbbe Bbelecll cobbbood oBleles
agpppRee eeelalel oobbooed BRelelle ocooooodd 888lelll eobo0000 BBRllecs ooboaaoe

Figure 5-3. Example of image reception from the Hamamatsu Debug Module (any

image in the stream after the first one)
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The shaded two bytes correspond to the first pixel of the second frame,
identified thanks to the first bit of the pixel, which is a 1. Once again, it can be

checked that the first bit of every pixel is 0, except in the first pixel.

Regarding the values of the sequence, the last pixel received from the previous
frame (the one before the shaded pixel) takes the binary value
“0000111101111111”. The 0 in the MSB of the second byte of the pixel is there
because of the Frame Begin bit, which is 0, since the UART TX module is
designed this way and, being the mechanism of the increasing sequence just a
debugging method, it was not worth to modify the UART TX module only for this
issue. Therefore, the real value for the last pixel of the first frame is
“0000111111111111”, which in decimal format can be read as 4095, the
number of the last pixel of the sequence. On the other hand, after the first pixel

the values start to represent the same sequence again, from 0 to 4095.

Obviously, although it is not as descriptive as an image which is just a
sequence of numbers, it is mandatory to show the reception of images with the
final version of the system, taking images generated by the real camera. As

expected, the values received are random, as shown in Figure 5-4:

B8/B8/2016 13:24:33.137 [TX] - 60000080

B8/88/2016 13:24:35.877 [TX] - c0E006081

A8/88/2016 13:24:35.886 [RX] - 10601008 80811118 88888111 88181811
apaeelll eallessl eeeealle eelecael aeseslle @la@lllll esesalel 8111llael
apaaalel elelessal eseealel eeellell aseseelel ealellel eeesales alelella
apaaales alesaall eseeales 8lllllel aeaeelese a@llellll eeesales aeelelal
apaaales eeaallle eseaaall ellelele aeseeell ealellel eeesasll aelellea
apaeeell elllelll eeeaaall elllelee aepeeell alesssll eeesasll &eelllll

Figure 5-4. Example of image reception from the real IR camera (first image of
the stream)

The first bit of every byte is a 0, except in the first byte of the image, where the
frame begin bit sets it to 1. This can be checked for any image received after
the first one, as shown in Figure 5-5, right the same way as when receiving the

mock images from the Hamamatsu Debug Module:
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aalleeas @llllell eellesss ellealle eallesssd allelell ealleses alellell
aalleeas alleeall eellesss 81l1ellll eallesss eallelll ealleses aleeelll
aalleeaa alelelle eellesss eleleale eallesss eallesll ealleses aellllel
aalleeas alelelel eellesss 82l1lllll eallesssd aallesal ealleses alelleal
aalleeaa alleelle aellelll alellell @allelle alelleal
@allelael eleelele eellaelsl eee0o088 881lelel alelesleé aallelel aaeleala
aallelea alesalal eelleles eeleless ealleles eeasalll eallesll allessed
aalleall eaelllll eelleall elellesl ealleall eallelel ealleell aellellea
@alleall eaeelell eelleale eelllele ealleale eeaalell eallesle aaalesed

Figure 5-5. Example of image reception from the real camera (any image in the

stream after the first one)

5.3 Received images (decoded raw data)

Once the images are received in the computer, they can be decoded by means
of a simple script in Matlab. After normalising the values received for each pixel
into the range from 0 to 255 (the full range for greyscale images), the resulting
image signal can be plotted along with the final image. For an easy first testing,
a coin is placed in the edge of the sensor, taking only the first frame of the

stream and getting to the resulting signal plot and image shown in Figure 5-6:
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Figure 5-6. a) IR camera with the coin in front of the lens; b) resulting IR image;

c) resulting signal plotted

Placing the coin in the centre of the lens (note than the coin has a hole in its

centre), the buffer mode is tested. For this purpose, the frame grabber is
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configured in buffer mode with a buffer size of 10 images, and with an
integration time of 10us, what gives a capturing rate of 1015 fps. The 10
buffered images are displayed one after another without separation, just as they

are received in the computer. This is shown in Figure 5-7:
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100

Figure 5-7. 10 buffered images received in a row
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Regarding the Live Mode, it cannot be checked displaying the video stream in
real time because the software needed for this purpose has not been developed
yet (out of the scope of this thesis). Nevertheless, having checked this operation
mode in the serial protocols emulator (checking the reception of raw video
frames in real time) and taking into account that the Buffer Mode, which is
based in the same principles, is working efficiently, it can be concluded that the

Live Mode is also correctly working.

With the correct operation of the camera already proved, it is also interesting to
check its accuracy. Using a complex system of lenses® attached to the

protective case of the imaging system, the IR camera focuses now in a small

bulb. The system of lenses is shown in Figure 5-8, and the resulting images of
the bulb in Figure 5-9:

Figure 5-8. System of lenses for focusing the bulb

8 Mounted by Dr. Tom Charret and Dr. Thomas Kissinger
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Figure 5-9. Images of the bulb off (left) and on (right)

As seen in Figure 5-9, the accuracy of the camera is very good, being able to
catch the filament inside the bulb well defined. It is important to note that the
white pixel in the red circle is a dead pixel of the image sensor, which means no

problem since it does not affect the rest of the pixels.

Now, the bulb is switched on and off intermittently, and the camera is set once
again in buffer mode. The aim of this test is to detect the variation in the bulb’s
illumination. With a buffer of 5 frames, the resulting transition is as shown in
Figure 5-10.

With an integration time of 10us, the camera is capturing images at a rate of
1015 frames per second. On the other hand, the bulb is not able to change its
state (on or off) at such a high frequency. For this reason, the change in only 5
frames is not strong, as it only covers less than 5ms of the transition.
Nevertheless, it can be noticed how the brightness of the images increases
from the first frame to the last one.
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Figure 5-10. 5 frames transition of the bulb, captured in buffer mode at 1015 fps

This slight increase in the intensity of the image pixels can be also checked
looking at the signal directly plotted without formatting it as an image, shown in
Figure 5-11.:
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300

Figure 5-11. 5 frames transition of the bulb, captured in buffer mode at 1015 fps

(signal plotted)

In this plot the separated frames can be easily distinguished as the wave form is
repeated periodically up to 5 times. As expected, the amplitude of the signal is
clearly greater in the last frame than in the first one, what means that the last

image is brighter.

It is also interesting to test the correct operation of the parameter for setting the
exposure time. For this purpose, the same picture is taken after setting the
exposure time to different values: 2.925 ps, 6.4 pys and 10 us. As expected, the
image gets brighter as the exposure time for the capture is increased. These
images are shown in Figure 5-12:
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Figure 5-12. Images captured varying only the exposure time: a) 2.925us, b)
6.4us, c) 10yus.

5.4 Performance

Finally, it is interesting to give a view of the results in terms of performance of
the system. First, the performance in terms of processing time is stated, as a
summary to the values already presented in Sections 4.3.2 and 4.3.3.

In the Live Mode, the interesting feature is the throughput of the system. That
means, the number of frames per second that the frame grabber is able to
receive from the camera and send to the computer. This values must be
configured in the FPS parameter within a range between 1 fps and 12.06 or
10.8, depending on the exposure time set for the image capture. In case of
minimum expose time (0.001 ms), the throughput can get ot 12.06 fps; if the

maximum exposure time is set, the throughput can get to a lower rate: 10.8 fps.

In the Buffer Mode, the most interesting feature is the capture rate. Once again,
it depends of the exposure time set for the camera, ranging from 91.11 frames
captured per second (with 10 ms of exposure time) to 1024.95 frames captured
per second (with 0.001 ms of exposure time).

Regarding the FPGA usage, the percentage values are very low. These are
shown in Table 5-1:
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Table 5-1. FPGA usage percentage values

Device

Logic Elements (%)

Pins (%)

PLLSs (%)

Altera Cyclone IV E
(EP4CE115F29C7)

1,858/114,480 (2%)

149/529 (28%)

1/4 (25%)
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6 CONCLUSIONS AND FUTURE WORK

First, after the analysis of the results, it can be concluded that the project has
been successfully finished, delivering a fully configurable frame grabber,
perfectly operating in not specialised hardware, getting to a system cheaper

than the average commercial frame grabber.

The designed frame grabber offers two different operation modes for the final
user, plus a third method for calibration purposes for the designer. Regarding
the Live Mode, it provides a video stream in real time at a rate of up to 12 fps,
which is enough but not very high to create a video that flows in a natural way

for human eye.

This limitation in the throughput of the Live Mode is only set by the transmission
standard used for sending the images from the frame grabber to the computer
(RS-232), being the core part of the frame grabber (the process implemented in
the FPGA) able to operate much faster. Fortunately, the transmission part was
implemented in a separate state of the VHDL finite-states machine. That
means, this part of the code is separated from the rest and it can be easily

substituted with a more complex standard if faster operation is required.

Regarding the Buffer Mode, it is able to capture images at a rate of up to 1025
fps, being the throughput not relevant in this case. This is a very high capturing
rate, but sometimes it is also interesting to decrease this rate. Regrettably, in
the final system this cannot be configured by the user, depending only on the
exposure time set in the corresponding parameter. For instance, in the case of
Figure 5-10, a transition of a bulb from off to on states was aimed to be
captured with a buffer of 5 images. Although a slight increase in the bright of the
images can be seen, the capture rate is too high for the blinking frequency of
the bulb.

In respect of the FPGA usage, most of the resources are not used (only 2% of
the logic blocks are in use). Taking this into account, and considering the
universal nature of the VHDL language, the system could be transferred to

simpler (and cheaper) equipment using the source files developed in this project
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and doing a bit of adaptation work. Therefore, a simple custom board could be
created, including only the FPGA and the peripherals used in this system (also
the ADC of the external Data Acquisition Card), and be easily configured with
the files created in this MSc thesis. Thus, a very low cost frame grabber could

be achieved for this specific IR camera.

As future work, the first point would be adding another parameter for configuring
the capture rate. Using the already designed structure this could be done very
easily and it would add a valuable feature to the system, solving the problem of
the blinking bulb stated above.

Secondly, now that the system is proved to be working, the bottleneck created
by the RS-232 standard should be eliminated. For this purpose, a faster and
more complex communication standard should be implemented in the FPGA,
making use of the multiple interfaces of the Evaluation Board to communicate
with the computer using this new standard. Thus, throughput rates close to

Thirdly, it would be interesting to develop the Python software required for
decoding the images in real time in the computer. Besides, it could be
complemented with a GUI for the final user, making the control of the whole

imaging system user-friendly.

Finally, there are some image processing techniques that are very relevant to
gas sensing applications, which could be implemented in the frame grabber.
There are several techniques that make use of the frames saved in a buffer,
combining them to create an only output image. For instance, the average
image of a number of frames stored in the buffer could be calculated by means
of the combination of equivalent pixels (combining first pixel of each image and
calculating the average of all of them, and iterating this process for every
position in the pixels array). This image processing techniques could be
implemented in a fourth operating mode.
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APPENDICES

Appendix A Flow Diagrams

A.1 Basic version of the system

In the full flow diagram of the basic system, it can be checked how the operation
of the whole system is based in the timings set by the Hamamatsu camera. All

this times are set in terms of clock cycles, and the system waits by means of

counters that it compares to the expected value and increases in every clock

cycle. This operation can be checked in Figure A.1:

Integration

k.

IR camera = FPGA )—

FPGA > PC )}——

Counter = integration periods

DCounter =90
Counter =90

Rows_counter = 64 Dpfxe.‘s_counter =64

Pixels_counter = 64

Counter = 94

(Rows counter = 64 & counter = 94)
OR
(Rows_counter = 64 & counter = 6)

Rows counter = 64 & counter =6

Counter = 200

———————————————— DPfxe.-'s_sent = 4096

Pixels sent = 4096

Figure A-1. Simplified (left) and complete (right) flow diagrams of the basic

version
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Appendix B Calibration mode’s images

In this appendix the VIDEO waves plotted with the data obtained in the
Calibration Mode are shown. First, the plot with the values of the VIDEO signal
taken before the trigger and next with the trigger in the middle of the window.

These are shown in Figure B-1.:
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Figure B-1. VIDEO signal plotted with data of Calibration Mode, with the window
shifted to the left of the trigger (left) and to the right (right)

As expected, before the first falling edge of the AD_TRIG no pixels are received
in the VIDEO signal (flat wave). On the other hand, right after the falling edge of
the AD_TRIG, the same waveform presented in Figure 4-18 can be seen again.
Thus, the delay of 10 clock periods between the falling edge of the AD_TRIG
signal and the VIDEO pixel value (negative peak in the wave) can be double
checked. The green wave is the corresponding to an image with the light over
the camera off.

The value is high because VIDEO signal is digitalised in two’s complement
format, where the first bit of the bus is used for stating the negative sign of the
number. Therefore, without the proper decoding (removing the sign bit from the
useful bits) negative values appear to be higher values.
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