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Resumen 

Funcionalidades ópticas en cristales líquidos: dispositivos láser y 

óptica no lineal 

Hoy en día los cristales líquidos (CLs) están presentes en múltiples aplicaciones 

cotidianas. Habitualmente en dispositivos visuales como pantallas de móviles, 

televisores o relojes. El presente trabajo se centra en dos propiedades ópticas de 

los mismos, ambas con un amplio potencial tecnológico aunque no tan 

extendidas entre las aplicaciones cotidianas. Una de las propiedades es la 

capacidad que las fases colestéricas tienen para la amplificación de luz y por lo 

tanto para la emisión láser. A esta propiedad le dedicaremos la mayor parte de 

esta tesis, en concreto los capítulos 2, 3, 4 y 5. La segunda propiedad a la que 

nos referimos es la gran capacidad de respuesta óptica no lineal. A esta 

propiedad le dedicaremos el capítulo 6. 

En el capítulo 1 se hace una descripción general del estado líquido cristalino, 

describiéndose las principales moléculas que componen los cristales líquidos y 

las mesofases más habituales que estos presentan. En particular nos centramos 

únicamente en aquellas mesofases que son relevantes para este trabajo. 

Como ya se ha dicho, los capítulos 2, 3, 4 y 5 tratan sobre láseres de cristal 

líquido colestérico (CLC). Estos materiales presentan un ordenamiento 

helicoidal de sus moléculas que le confieren propiedades fotónicas. El capítulo 2 

es una amplia introducción a este tipo de dispositivos. En él, se describe el 

fundamento teórico necesario para comprender el origen de la “photonic band 

gap” o banda prohibida (BP). A su vez se muestra como la existencia de la BP 

da lugar a una peculiar distribución en la densidad de los modos ópticos dentro 

del CLC, y como esto puede usarse para la emisión láser; para posteriormente 

mostrar de forma detallada un caso práctico de emisión láser. Al final del 
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capítulo se expone un modelo de ecuaciones cinéticas propuesto recientemente 

para describir el funcionamiento de dichos láseres. Este modelo es típico de 

láseres de estado sólido. En él, las peculiaridades de la cavidad fotónica del 

CLC se introducen a través del tiempo de vida media de un fotón dentro de la 

misma, 𝜏𝑐. Dicho modelo es muy importante para esta tesis ya que 

posteriormente es usado en los capítulos 3, 4 y 5. 

El capítulo 3 estudia la dependencia que la eficiencia de estos láseres tiene en 

distintas variables de la muestra; como por ejemplo, el espesor, el así llamado 

coeficiente de pérdidas distribuidas (𝛽) o la densidad de moléculas de colorante 

(𝑁). Dicho estudio se realiza tanto desde el punto de vista experimental como 

del teórico y se centra principalmente en el espesor de la muestra. Para esto, 

primero se presentan una serie de medidas experimentales que muestran las 

dependencias del umbral de emisión láser y de la eficiencia láser con el espesor 

de la muestra. Posteriormente, mediante simulación numérica del modelo 

descrito al final del capítulo 2 se comparan nuestros resultados experimentales 

con los derivados de dicho modelo. Cabe destacar que, para esto, previamente 

se realizan algunas mejoras al modelo propuesto. No obstante, antes de obtener 

los resultados teóricos y con el fin de comprender mejor el funcionamiento de 

estos dispositivos, también simulamos la evolución de población de los 

distintos niveles energéticos del colorante. Dicha evolución de poblaciones, 

permite una buena comprensión de la dinámica del láser. Posteriormente, se 

usa dicho sistema de ecuaciones para hallar expresiones analíticas que 

relacionen el umbral de laseo y la eficiencia láser con distintos parámetros de la 

muestra como, por ejemplo, el espesor, 𝑁 o 𝛽. Una vez deducidas estas 

expresiones se comparan los resultados derivados de las mismas con los 

obtenidos experimentalmente y mediante simulación numérica. Se encuentra 

una gran concordancia entre los 3 métodos. Los 3 procedimientos muestran que 

existe un espesor para el cual el umbral de emisión láser es mínimo y otro 
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espesor, cercano al anterior, para el que la eficiencia láser es máxima. Si bien el 

espesor para el mínimo umbral de emisión láser no está bien definido dentro 

del error experimental, sí lo está el espesor para el cual la eficiencia es máxima. 

Por otro lado, de las predicciones teóricas se desprende que el espesor óptimo 

para estos dos parámetros apenas depende de 𝑁 y de 𝛽; al menos dentro de 

rangos razonables. Además mediante dicho modelo se comprende con claridad 

por qué la existencia de un nivel triplete del colorante imposibilita la obtención 

de láseres continuos. 

En el capítulo 4 se estudia la cinética de los pulsos de emisión del láser. En 

particular estudiamos el perfil temporal de los pulsos emitidos en función de la 

energía de bombeo. De nuevo, este estudio consta de una parte experimental y 

otra teórica. El enfoque teórico se realiza mediante la simulación numérica del 

modelo de ecuaciones cinéticas descrito en el capítulo 2 y usado en el capítulo 3. 

Tanto los resultados experimentales como los teóricos muestran como muy por 

debajo del umbral láser la anchura de los pulsos emitidos es similar a la de la 

bomba. Conforme aumenta la energía de bombeo los pulsos se estrechan hasta 

alcanzar una anchura mínima justo en el umbral. Cabe destacar que en nuestro 

caso la anchura experimental del mínimo estaba limitada por la resolución del 

fotodiodo empleado. Por encima del umbral, del mismo modo que ocurre en 

láseres de estado sólido, aparecen oscilaciones de relajación. Dichas oscilaciones 

ocurren de manera un tanto irregular debido a perturbaciones térmicas y 

mecánicas. Además, la anchura media de los pulsos va aumentando conforme 

aumenta la energía de bombeo. A su vez, abordamos el controvertido problema 

de explicar la alteración que experimenta el espectro de fluorescencia del 

colorante cuando este es introducido en el CLC. Según los resultados 

experimentales de algunos autores, el tiempo de vida de fluorescencia (𝜏𝑓) del 

colorante no se ve alterado por la cavidad fotónica. Usando el mismo modelo 

teórico que en los casos anteriores, mostramos que los pulsos fluorescentes que 
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emite la muestra son inversamente proporcionales al tiempo de vida radiativo 

del colorante (∝ 1/𝜏𝑟). A su vez la duración de dichos pulsos viene regida por 

𝜏𝑓. Por lo tanto, las variaciones de los tiempos de vida radiativos y no radiativos 

deben compensarse entre sí. 

A pesar de su potencial tecnológico, estos láseres adolecen de un gran 

inconveniente: se degradan y dejan de funcionar en tiempos relativamente 

cortos. Es por esto que en el capítulo 5, el último dedicado a láseres de CLC, 

tratamos de determinar los orígenes de este deterioro. Como primer paso para 

caracterizar dicha degradación, se mide como varían los espectros de emisión 

láser y de fluorescencia conforme la muestra se degrada. La causa última de 

dicho deterioro es la degradación de las moléculas de colorante debido a su 

calentamiento. Esta degradación tiene una doble cara. Por un lado disminuye la 

densidad de moléculas de colorante operativas (𝑁) y por otro lado las 

moléculas degradadas actúan como centros dispersores aumentando 𝛽 vía 

dispersión. Volviendo de nuevo al modelo de ecuaciones cinéticas vemos que 

en nuestro caso particular la degradación se explica perfectamente debido a una 

disminución de 𝑁. No obstante, en los rangos de concentración habituales una 

disminución de 𝑁, como la observada, apenas afectaría a la operación del láser. 

Curiosamente, nuestros datos experimentales muestran como paralelamente a 

la degradación láser se produce un aumento de la luz de bombeo dispersada, lo 

que presumiblemente aumentará 𝛽. Por este motivo realizamos un estudio 

experimental para caracterizar este aumento de la dispersión Asumiendo un 

modelo de dispersión de Rayleigh se observa que, a pesar de que en el presente 

caso el aumento de 𝛽 queda totalmente eclipsado por la disminución de 𝑁, la 

dispersión puede, en determinados casos, anular la acción láser por sí solo. En 

otras palabras, el aumento de  𝛽 no debe de ser ignorado. De todos modos, en 

última instancia ambos fenómenos son causados por la degradación de las 

moléculas de colorante. En parte, el problema puede abordarse mediante la 
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mejora de los parámetros de la cavidad láser de CLC. Esto permitiría usar 

fuentes de bombeo de baja potencia. Sin embargo, ya que el origen del 

problema de la estabilidad de láser es el calentamiento de las moléculas de 

colorante, el rendimiento de los láseres CLC debería mejorar notablemente 

usando colorantes con bajos rendimientos cuánticos para el nivel de triplete. En 

este sentido, el uso de moléculas fluorescentes especiales con poblaciones 

pequeñas del nivel triplete ha permitido, recientemente, fabricar láseres de CLC 

de onda continua. Una vez más, queda claro el efecto pernicioso del estado 

triplete. De todos modos cabe destacar que, manteniendo un bombeo con baja 

frecuencia de repetición y energías razonables, esta degradación no ocurre o es 

despreciable. De hecho para la mayoría de las medidas de esta tesis se han 

usado muestras que han resultado operativas durante muchos meses e incluso 

años. 

Hasta aquí, la tesis ha tratado sobre CLCs y su peculiar comportamiento 

fotónico. No obstante, los CLs poseen otras propiedades ópticas interesantes 

entre las que destaca la capacidad de presentar gran respuesta óptica no lineal. 

Entre ellas hemos estudiado la generación de segundo y tercer harmónicos 

(GSH y GTH). Al igual que la amplificación de la luz, estas propiedades son de 

gran interés tecnológico. En el último capítulo de esta tesis, el 6, tratamos dichas 

propiedades. Para ello, en primer lugar se describe el trasfondo teórico de estos 

fenómenos no lineales así como las cualidades que debe presentar un CL para 

presentar GSH y GTH. Posteriormente se estudia la GSH en un CL cuya 

geometría molecular ha sido diseñada expresamente para optimizar 

determinadas componentes de su tensor de SH. A este CL se lo conoce como 

‘trímero’. Los resultados muestran que, hasta la fecha, se trata del CL más 

eficiente para la GSH, al menos bajo condiciones no resonantes. Además, para 

completar dicha caracterización, se relacionan las propiedades de respuesta no 

lineal a nivel molecular con los resultados experimentales a nivel macroscópico. 
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Se obtiene un buen acuerdo entre ambos resultados. Por último se comprueba 

que además de una gran capacidad para la GSH, nuestra molécula también se 

muestra muy eficiente en la GTH. 
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Foreword 

Nowadays the society would hardly be able to recognize itself without liquid 

crystals. Liquid crystals (LCs) are present in devices we use every day, like 

mobile phones, computers, watches, TVs, etc., whose displays are based on 

different LC technologies. Furthermore, many other devices have been 

designed to make use of specific properties of LCs. Thus, LCs are used, for 

example, in the development of ultrafast light modulators1, lasers2, or 

photovoltaic cells3, 4. 

This dissertation deals with optical properties of LCs. Particularly it is focused 

on two features of technological interest. On the one hand, it concerns with the 

ability of cholesteric liquid crystals (CLCs) for coherent light amplification 

(lasing). On the other hand, we study the capability for nonlinear optical 

response of LCs. 

First of all, in Chapter 1 we give a general description of the LC state of matter. 

In such introduction we describe the most common mesophases that these 

materials present, paying special attention to those that will exhibit the 

materials studied in this dissertation. 

In a general framework, this work deals with two different topics. The major 

part of this dissertation is concerned with CLCs. The key feature of these 

materials is the existence of a photonic band-gap for visible light. We focus on 

such feature together with its ability for light amplification. In this respect, in 

Chapter 2 we describe in detail the theoretical background of CLC lasers and 

the features that a CLC must exhibit in order to be exploited for lasing. Besides, 

we present an experimental example of such behavior. Then, Chapters 3, 4 and 

5 are dedicated to the study of some particular aspects of such devices. 

Particularly, in Chapter 3 we study the dependence of the CLC laser 
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performance on different parameters, especially on sample thickness. Next, in 

Chapter 4 we focus in the kinetics of laser emission in CLC lasers. Finally, in 

Chapter 5 we throw some light into the problem of laser degradation, which is 

one of the main drawbacks of these devices. 

On the other hand, the last chapter of this dissertation deals with a different 

topic. This is, nonlinear optics. Particularly we focus on second harmonic 

generation (SHG). In this respect, the theoretical background of SHG is 

explained and a novel trimer compound, exhibiting a SmC* ferroelectric 

mesophase, is studied. Besides, third harmonic generation was also observed 

and characterized in the isotropic phase of this material. 

The results presented in this dissertation highlight the promising future that 

LCs deserve as key tools for new technologic devices.

 

1 N. Collings, W. A. Crossland, P. J. Ayliffe, D. G. Vass, and I. Underwood, 

Applied Optics, 28, 4740, (1989). 

2 V. I. Kopp, Z.-Q. Zang, and A. Z. Genack, Opt. Lett. 23, 1707 (1998). 

3 M. Carrasco-Orozco, W. C. Tsoi, M. O’Neill, M. P. Aldred, P. Vlachos and S. 

M. Kelly, Adv. Mat. 18, 1754, (2006). 

4 L. Schmidt-Mende, A. Fechtenkötter, K. Müllen,E. Moons, R. H. Friend, J. D. 

MacKenzie, Science, 293, 1119, (2001). 
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1.1 Introduction 

Liquid crystals (LC) refer to an intermediate state of matter between solids and 

liquids so they also exhibit properties between those of an isotropic liquid and a 

crystalline solid. LC phases (mesophases) lack of long-range tridimensional 

order, as that shown by solid crystals. But unlike liquids, LCs show long-range 

orientational order. In addition, some LC mesophases also show positional 

order in one or even in two dimensions. In some especial cases the periodicity 

can be in three dimensions as for example in blue phases1, 2. A LC material can 

present different mesophases under different conditions. When a compound 

forms LC mesophases by the addition of a solvent, we say that it is a lyotropic 

LC3. When different mesophases appear when varying temperature the 

compound is said to be thermotropic. This dissertation will only deal with 

thermotropic compounds. A more exact definition is that of P.G. de Gennes: 

‘They are systems whose components keep “liquid order” in at least one direction in 

space and a certain degree of anisotropy’4. 

There are no written rules about what kind of materials will show LC phases 

but it is known that molecules must possess a high structural anisotropy; thus 

their shape is an important precondition. So they must present an anisotropic 

geometry in order to promote a preferred orientation. 

 

Fig. 1. Typical shape of LC molecules. From left to right: discotic, calamitic or rod-shaped, 

banana and H-shaped molecules. 
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Traditionally LCs have been divided into calamitic when they are composed of 

elongated or rod-shaped molecules, and discotic when composed of disk-

shaped molecules. However, other geometries have also been studied as those 

of bent-core LCs (with boomerang or banana shape)5, 6, 7 or H-shaped 

compounds8. In fact, as we will see further, in this dissertation we will deal with 

a new type of H-shaped molecule. Fig. 1 shows a sketch of some of these typical 

molecular compounds. 

In this chapter we are going to introduce briefly the main characteristics of the 

most common LC phases, paying especial attention to the mesophases involved 

in the different studies carried out in this dissertation. 

 

1.2 LC phases 

In a mesophase molecules can flow freely as in a liquid whereas certain long-

range order is maintained. Depending on what type of order is kept several 

clearly different mesophases have been identified. Some of the most interesting 

ones are: Nematic (N), smectic A (SmA) and smectic C (SmC) phases4 (see Fig. 

2). In addition, the mentioned mesophases can be chiral or non-chiral. The 

chirality in a mesophase is indicated by the superscript *. In the majority of 

cases, chiral mesophases appear when a chiral dopant is added or when the 

constituent molecules of the mesophase are chiral themselves. A molecule is 

said to be chiral when it cannot be superposed onto its mirror image (see Fig. 3). 
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Fig. 2. Typical LC phases of a calamitic compound. From left to right: Nematic phase (only 

orientational order), smectic A phase (orientational order and arrangement in layers) and 

smectic C phase (also orientational order and arrangement in layers but molecules are tilted 

within layers). 𝐧, 𝐳 and 𝜃 denote the molecular director, the layer normal and the tilt angle 

respectively. 

 

Fig. 3. A typical example of chirality is found in our hands. 

We now give a more detailed description of several mesophases.  

1.2.1 The N phase 

In N phases molecules present liquid order. The centers of mass of the 

molecules are random in space and the translational movement of the 
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molecules is free. Thus, this phase has no long-range positional order. 

Nevertheless, molecules tend to keep certain directional order, pointing along a 

preferred direction. Due to this fact, we say that N phases exhibit orientational 

order. The preferred direction is known as the director and is represented by 𝐧. 

This phase is depicted in Fig. 2. Liquid crystal molecules do not have rotational 

symmetry around their long axis because they are like ‘boards’ rather than like 

‘cylinders’. However, when they are packed in a N phase, their short axes do 

not present orientational order, i.e. they rotate freely along the long axis. As a 

consequence, N phases always have rotational symmetry around the director. 

In addition, N phases present the so-called head-tail invariance. This can be 

understood as the invariance with respect to 180o rotations around an axis 

perpendicular to 𝐧. Therefore the point symmetry group assigned to them is 

∞/𝑚𝑚 (in international notation)4, which prevents spontaneous polarization to 

appear. 

The degree of order in N phases is characterized by an order parameter denoted 

by 𝑆: 

𝑆 =
1

2
〈3 cos2(𝜃) − 1〉 ,                                                 (1.1) 

where 𝜃 is the angle between the long axis of each molecule and 𝐧 (see Fig. 4) 

and <> denotes statistical average. 

 

Fig. 4. Scheme of the nematic phase and of the orientational order of its individual molecules. 
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If we dissolve in the nematic liquid a molecule that is chiral the structure 

undergoes a helical distortion. The same distortion occurs if the material is 

composed by pure chiral molecules. This gives rise to the so-called cholesteric 

nematic phase (N*).  

1.2.2 The N* phase 

The N* phase is locally nematic and was first discovered in 18889. Again, chiral 

nematic phases (CLC) present liquid order and the molecular orientation shows 

a preferred axis. However, the director is not constant in space but describes a 

helix whose axis is perpendicular to the director. The helix is right-handed or 

left-handed depending on the molecular chirality. The distance over which the 

LC molecules undergo a full 360º twist is known as the chiral-pitch 𝑃 (see Fig. 

5). The pitch can be varied by means of several methods as, for example, adding 

different concentrations of chiral dopants or by varying the temperature. The 

symmetry point group associated to this phase is ∞/𝑚𝑚. 

 

Fig. 5. Arrangement of molecules in the N* phase (the successive planes have been drawn for 

convenience, but do not have any specific physical meaning). Note that the structure repeats 

itself every half-pitch 𝑃/2, since in this phase directors at 00 and ±1800 are equivalent. 

In general, nematic phases present dielectric anisotropy. Therefore, they have 

different dielectric constants parallel (𝜀∥) and perpendicular (𝜀⊥) to their 
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molecular director. Thus, the twist of the LC molecules, results in a periodic 

modulation of the local dielectric constant of the LC. This periodic modulation 

causes Bragg reflection for certain optical modes. Such phenomenon can be 

exploited for several technological applications, inter-alia for lasing. In chapter 

2 we will explain such phenomenon in more detail. 

1.2.3 The SmA phase 

These phases are more ordered than the nematic ones. In a SmA phase, 

molecules arrange themselves into parallel layers, which are more or less 

equally spaced. Within layers, molecules also present orientational order, as 

depicted in Fig. 2. In other words, there exists liquid order inside the layer, and 

molecules tend to align their directors perpendicularly to the layers. 

The symmetry point group associated to this phase is ∞/𝑚𝑚 and, therefore 

spontaneous polarization is forbidden. 

1.2.4 The SmC phase 

This mesophase also presents molecular arrangement in layers. Each layer is 

still a two-dimensional liquid, and orientational order is present within layers. 

Nevertheless the director is tilted with respect to the layer normal. The 

symmetry point group is 2/𝑚 and, therefore, no spontaneous polarization is 

allowed. This phase is sketched in Fig. 2. 

1.2.5 The SmC* phase 

If the SmC phase is formed by chiral molecules, chiral smectic C phase appears. 

In this mesophase molecules are also tilted within layers but the direction of tilt 

rotates from layer to layer around the layer normal giving rise to a helical 

configuration. See Fig. 6. 
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Fig. 6. Left: SmC mesophase. Right: SmC*mesophase. 

At this point it is worth re-examining the elements of symmetry present in SmC 

mesophases: 

 -A plane of symmetry (𝑧, 𝑦) in the reference frame of Fig. 6. 

 -A twofold axis (𝐶2) parallel to the 𝑥 axis in Fig. 6. 

 -An inversion point. 

Introduction of chirality suppresses the plane and the inversion centre. Thus, 

polarization appears along the 𝐶2 axis. According to the remark made first by 

R.B Meyer10, SmC*’s are ferroelectric; but because of the helical precession of the 

molecular director, a more rigorous denomination for this structure is 

helielectric. If an electric field parallel to the smectic layers is applied above a 

certain threshold the helix can be easily unwound and a true ferroelectric state 

is obtained. Thus, the phase suffers a transition to a ferroelectric state, where all 

the molecules are tilted in the same direction as in the SmC phase (see Fig. 7). 

Unfortunately, once that the field is removed the phase goes back to the ground 

state becoming again a helielectric state. However, if besides an electric field a 

properly treated glass surface is used, the unwinded ferroelectricity can be 
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stabilized11. Under such conditions, the SmC* becomes actually ferroelectric and 

is named surface stabilized ferroelectric liquid crystal. 

 

Fig. 7. Top: A half pitch of the helix in the SmC* phase: side view (left) and top view (right). The 

latter view shows the orientation of the spontaneous polarization in each layer (red arrows). 

Bottom: The helix unwound due to the reorientation of the dipoles by an electric field. 

LCs can also give rise to other mesophases, as for example columnar ones, 

mesophases that exhibit positional order in two dimensions or modulated 

mesophases. Nevertheless a full description of LC phases is beyond the scope of 

this work since we will only deal with the N*, the SmC and the SmC* phases 

and some of its optical applications. 
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2.1 Introduction 

Most of the applications of liquid crystals are based on the response of the 

molecular director under the application of electric fields, which results in 

changes of their optical properties. Furthermore, most of these applications are 

based on the nematic phase. In this part of the dissertation we will focus on the 

cholesteric phase (CLC) and in its ability for light amplification. This phase is 

locally nematic and was first discovered in 18881.  

The CLC mesophase poses different features. One of them is the existence of a 

helicoidal arrangement of the molecular director which gives rise to a photonic 

band gap for light. Photonic band gaps are known in different materials and 

can exist in one, two or three dimensions. This feature, depends on the number 

of directions in which periodicity exists. The existence of a band gap can be 

used for lasing. The first report of lasing in a CLC material dates from 1998 and 

was carried out by Kopp2, later, lasing has been found in a wide variety of LC 

structures: blue phases I and II3, 4, 5, cholesteric droplets6, 7, 8 , polymerized 

cholesteric droplets9 and paintable LC emulsions and films8, 10. Although other 

mesophases posses some features different from those characteristic of the 

cholesteric phase (for example, blue phase II can lase in three spatial 

directions3), the cholesteric is the most used phase for LC lasers because it is 

easily formed and it exhibit a broad temperature range. 

Part of the recent interest in CLC lasers originates from different promising 

technological features. For example, due to the fact that the helical pitch can be 

easily modified by external stimuli, the lasing wavelength in CLC lasers can be 

tuned by means of several tuning mechanisms: temperature11, 12, electric field13, 

14, 15, mechanical stress16, or even by light irradiation17, 18, 19. That is not possible, 

in general, in solid-state lasers. Furthermore, other advantages are: low 

threshold lasing, high efficiency of energy conversion and ease of construction.
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In the first part of this dissertation we will explain the fundaments of the CLC 

lasers. In addition, some of the concepts related to the peculiarities of the 

fluorescence spectra in CLCs will be experimentally demonstrated. In the next 

chapter about this subject we will study the CLC laser performance, paying 

special attention to the role of sample thickness. In the fourth chapter we will 

focus in the kinetic behavior of the laser emission and finally, in the last section, 

the problem of the degradation of CLC lasers will be studied. 

 

2.2 The forbidden band in CLCs 

Here, we are going to show the main theoretical fundaments to understand the 

origin of the photonic band gap in CLCs. 

2.2.1 Bulky CLC 

First, consider the case of a bulk CLC, i.e. an infinite thick sample. The director 

configuration is sketched in Fig. 1. We will call right handed helix, to one as that 

sketched in Fig. 1. This is a helix where the director describes clockwise rotation 

in the positive direction of 𝑧, for an observer looking against the +𝑧 direction. 

 

Fig. 1. CLC director configuration. 𝑥, 𝑦 and 𝑧 are the coordinate axes in the laboratory reference 

system. 
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In Fig. 1, in the system of reference 𝑥, 𝑦, 𝑧, the director 𝐧(𝑧) varies in the space 

according to 

𝑛𝑥 = cos(𝜃) ,                                                         (2.1) 

𝑛𝑦 = sin(𝜃) ,                                                         (2.2) 

and 

𝑛𝑧 = 0 ,                                                               (2.3) 

where 𝜃 = 𝑞0𝑧 is the angle between the 𝑥 axis and 𝐧(𝑧) and 𝑞0 =
2𝜋

𝑃
 where 𝑃 is 

the helical pitch. 

Let us consider an electromagnetic wave with angular frequency 𝜔 propagating 

in the +𝑧 direction of Fig. 1. We can express this wave as 

𝐸𝑥(𝑧, 𝑡) = 𝐸𝑥(𝑧)exp[−𝑖𝜔𝑡]                                             (2.4) 

and 

𝐸𝑦(𝑧, 𝑡) = 𝐸𝑦(𝑧)exp[−𝑖𝜔𝑡] ,                                           (2.5) 

where 𝐸𝑥,𝑦(𝑧) are complex functions.  

We assume that the medium has no free charges, is nonconductive, the relative 

dielectric tensor and the magnetic permittivity are independent of time and that 

this last one is a scalar. Under these assumptions from the Maxwell equations 

we can obtain the wave equation given by: 

∇2𝐄 = 𝜇 𝜀  
𝜕2𝐄

𝜕𝑡2
 ,                                                      (2.6) 

where 𝜇 is the magnetic permeability and 𝜀 is the dielectric permittivity tensor. 
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Due to the fact that we have a rotating molecular director as we move along 𝑧, 

the corresponding dielectric tensor 𝜀 can be expressed as20 

𝜀 =
(𝜀∥ + 𝜀⊥)

2
( 

1 0
0 1

 ) +
(𝜀∥ − 𝜀⊥)

2
( 

cos(2𝑞0𝑧) sin(2𝑞0𝑧)

sin(2𝑞0𝑧) − cos(2𝑞0𝑧)
 ) ,         (2.7) 

where 𝜀∥ and 𝜀⊥ are the components of the dielectric permittivity parallel and 

perpendicular to the director. 

Introducing Eqs. (2.4), (2.5) and (2.7) in Eq. (2.6) we arrive to 

 
𝑑2𝐸𝑥(𝑧)

𝑑𝑧2
= (

𝜔

𝑐
)
2

[
(𝜀∥ + 𝜀⊥)

2
𝐸𝑥(𝑧)

+
(𝜀∥ − 𝜀⊥)

2
[𝐸𝑥(𝑧) cos(2𝑞0𝑧) + 𝐸𝑦(𝑧) sin(2𝑞0𝑧)]]                            (2.8) 

and 

𝑑2𝐸𝑦(𝑧)

𝑑𝑧2
= (

𝜔

𝑐
)
2

[
(𝜀∥ + 𝜀⊥)

2
𝐸𝑦(𝑧)

+
(𝜀∥ − 𝜀⊥)

2
[𝐸𝑥(𝑧) sin(2𝑞0𝑧) −𝐸𝑦(𝑧) cos(2𝑞0𝑧)]] ,                       (2.9) 

where 𝑐 is the speed of light in vacuum. 

Making the change of variable 

𝐸± = 𝐸𝑥(𝑧) ± 𝑖𝐸𝑦(𝑧)                                                (2.10) 

and after some mathematical calculations, Eqs. (2.8) and (2.9) give rise to 

−
𝑑2𝐸+

𝑑𝑧2
= 𝑘0

2𝐸+ + 𝑘1
2𝐸−exp[𝑖2𝑞0𝑧]                                  (2.11) 

and 
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−
𝑑2𝐸−

𝑑𝑧2
= 𝑘0

2𝐸− + 𝑘1
2𝐸+exp[−𝑖2𝑞0𝑧] ,                               (2.12) 

where 

𝑘0
2 = (

𝜔

𝑐
)
2 (𝜀∥ + 𝜀⊥)

2
                                                (2.13) 

and 

𝑘1
2 = (

𝜔

𝑐
)
2 (𝜀∥ − 𝜀⊥)

2
 .                                               (2.14) 

From Eqs. (2.11) and (2.12) it is straightforward to obtain 

𝐸+ = 𝑎 exp[𝑖(𝑙 + 𝑞0)𝑧]                                              (2.15) 

and 

𝐸− = 𝑏 exp[𝑖(𝑙 − 𝑞0)𝑧] ,                                             (2.16) 

where 𝑎 and 𝑏 are two constants determined by equations  

[(𝑙 + 𝑞0)
2−𝑘0

2]𝑎 − 𝑘1
2𝑏 = 0 ,                                         (2.17) 

−𝑘1
2𝑎 + [(𝑙 − 𝑞0)

2−𝑘0
2]𝑏 = 0 .                                       (2.18) 

Eqs. (2.17) and (2.18) only have non-trivial solution if 

[(−𝑘0
2 + 𝑙2 + 𝑞0

2)2] − 4𝑞0
2𝑙2 − 𝑘1

4 = 0 .                                (2.19) 

As 𝜀∥ and 𝜀⊥have fixed values, for a given frequency 𝜔 Eq. (2.19) gives four 

possible roots of 𝑙. These values of 𝑙 can be real or complex; in the case of real 

values the relation between 𝑙 and 𝜔 is called the dispersion relation. Fig. 2 

shows the typical form of the dispersion relation 𝜔(𝑙). From Fig. 2 it is clear that 

𝜔(𝑙) has two branches. The interval separating the upper and the lower 

branches is the so-called band gap or forbidden band. In general, for each 𝜔 
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there are four real values of 𝑙. Due to the parity of 𝜔(𝑙), these roots can be 

grouped into two pairs of values with the same magnitude and different sign. 

We will refer to them as +𝑙1, −𝑙1 and +𝑙2, −𝑙2. An exception is the forbidden 

gap where the relation (2.19) has only two real roots 𝑙1
±. The other two roots are 

pure imaginary and therefore give rise to evanescent waves. From Eq. (2.19) it 

can be easily obtained that the forbidden band is determined by the relation: 

2𝜋𝑐

𝑃𝑛𝑒
< 𝜔 <

2𝜋𝑐

𝑃𝑛0
 .                                                   (2.20) 

Each root ±𝑙𝑖 defines a normal mode of propagation determined by certain 

values of 𝑎 and 𝑏. These quantities determine the state of polarization of the 

normal modes and can be obtained by solving Eqs. (2.17) and (2.18).  

 

Fig. 2. Dispersion relation for propagating normal modes in a CLC. The frequency interval 

between 𝑎 = 𝑏 and 𝑎 = −𝑏 is the photonic bandgap. 

By introducing 𝑎 and 𝑏 in Eqs. (2.15), (2.16) and using Eqs. (2.4), (2.5) and (2.10) 

we can find the form of the normal modes of propagation along the 𝑧 direction 

in the 𝑥, 𝑦, 𝑧 system of reference. Typically, these normal modes are elliptically 

polarized and are given by: 
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𝐸𝑖𝑥
±( 𝑧, 𝑡 ) =

(𝑎exp[𝑖(𝑙𝑖
± + 𝑞0)𝑧] + 𝑏exp[𝑖(𝑙𝑖

± − 𝑞0)𝑧])

2
exp[−𝑖𝜔𝑡]       (2.21) 

and 

𝐸𝑖𝑦
± ( 𝑧, 𝑡 ) = 𝑖

(𝑏exp[𝑖(𝑙𝑖
± − 𝑞0)𝑧] − 𝑎exp[𝑖(𝑙𝑖

± + 𝑞0)𝑧])

2
exp[−𝑖𝜔𝑡] .     (2.22) 

As we are concerned with the photonic properties of CLCs we will focus the 

attention on the band gap region and the surrounding region.  

In the edge of the band gap 𝑙 = 0. At this point, using the dispersion relation 

(2.19) and Eqs. (2.17) and (2.18) we find two possible cases: 𝑎 = 𝑏 and 𝑎 = −𝑏 . 

Let us first focus in the case 𝑎 = 𝑏. From Eqs. (2.17) and (2.18) it is 

straightforward that 

𝜔 =
2𝜋𝑐

𝑃√𝜀∥

=
2𝜋𝑐

𝑃𝑛𝑒
 .                                                  (2.23) 

Therefore the situation corresponds to the low frequency band gap edge. 

So 

𝐸𝑥( 𝑧, 𝑡 ) = 𝑎exp[−𝑖𝜔𝑡] cos(𝜃)                                      (2.24) 

and 

𝐸𝑦( 𝑧, 𝑡 ) = 𝑎exp[−𝑖𝜔𝑡] sin(𝜃).                                     (2.25) 

Then, for the low frequency edge (and thus for the long wavelength edge), the 

normal mode is linearly polarized and oscillates in every point along the 

direction of the CLC director. Notice that since we are in the band gap edges, it 

is immediate from Fig. 2 that 
𝑑𝜔

𝑑𝑙
= 0, i.e. the group velocity is null. So at the low 

frequency edge we have a standing wave that is linearly polarized along the 

molecular director at every 𝑧. 
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Let us now focus on the high frequency edge. In that case 𝑙 = 0 and 𝑎 = −𝑏. 

From Eqs. (2.17) and (2.18) it is immediate that 

𝜔 =
2𝜋𝑐

𝑃√𝜀⊥

=
2𝜋𝑐

𝑃𝑛0
 ,                                                  (2.26) 

𝐸𝑥( 𝑧, 𝑡 ) = −𝑖𝑏exp[−𝑖𝜔𝑡] sin(𝜃)                                    (2.27) 

and 

𝐸𝑦( 𝑧, 𝑡 ) = 𝑖𝑏exp[−𝑖𝜔𝑡] cos(𝜃).                                     (2.28) 

Then, for the high frequency edge (and thus for the short wavelength edge), the 

normal mode is a standing wave linearly polarized that oscillates at every point 

perpendicularly to the director. Both standing modes are in the origin of lasing 

in CLCs. 

Apart from the band gap edges modes, with 𝑙 = 0, we can also analyze how are 

the other normal modes in the region of interest, i.e. for wavelengths 

comparable to the helical pitch. An important parameter characterizing the 

polarization state of a wave is the ellipticity 𝜌. In our case is given by: 

𝜌 =
−2𝑙𝑞0

𝑘0
2 − 𝑙2 − 𝑞0

2 − 𝑘1
2  .                                             (2.29) 

Taking into account that for small birefringence 

𝑘1 ≪ 𝑘0 .                                                           (2.30) 

We obtain from Eq. (2.19) 

𝑙1
± = ±(𝑘0 + 𝑞0)                                                    (2.31) 

and 

𝑙2
± = ±(𝑘0 − 𝑞0) .                                                   (2.32) 
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By substituting the corresponding 𝑙𝑖  values in Eq (2.29) we obtain  𝜌 ≈ ±1 which 

corresponds to right and left circularly polarized modes respectively (𝑎 = 0 or 

 𝑏 = 0). The corresponding electric fields, in the 𝑥, 𝑦, 𝑧 system of reference, can 

be straightforwardly obtained from Eqs. (2.21) and (2.22). 

Summarizing the previous results. When we have a CLC of infinite thickness, 

along its helix there are four possible optical normal modes of propagation. 

Two of them travelling forwards and two backwards. In the vicinity, but 

outside, of the forbidden band, these modes are circularly polarized. Two of 

them right handed and two left handed. Within the forbidden band there are 

only two normal modes. These normal modes are circularly polarized with 

opposite handedness to that of the helix, one travelling forward and the other 

backwards. Interestingly, at each band edge only exist three normal modes: two 

of them circularly polarized with a handedness opposite to that of the helix. 

And a standing wave linearly polarized. In the low frequency edge, oscillates 

following the director at every 𝑧 and in the high frequency edge oscillates 

perpendicularly to the director. 

2.2.2 Finite CLC sample 

Now, let’s focus our attention on the more realistic case of a finite CLC confined 

between two substrates (see Fig. 3). To study this case we are going to follow 

the procedure used by other authors21, 22. 

Consider the case of an incident wave perpendicularly to the sample, i.e. in the 

helix axis direction. We are interested in knowing the normal modes of 

transmission. These normal modes are defined as those whose state of 

polarization remains unaltered after having been transmitted through the 

sample. 
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Fig. 3. Sample configuration in the laboratory reference system 𝑥, 𝑦, 𝑧. 𝑖 ,𝑟 and 𝑡 denote the 

incident, reflected, and transmitted waves respectively. 𝐄𝑖
± are the normal modes of a bulky 

cholesteric system, shown in Eqs. (2.21) and (2.22).  

The mathematical solution of this problem is more difficult than that of a bulky 

CLC because in a finite sample we have to take into account the boundary 

conditions of the CLC with the substrate. 

For calculating the transmitted and reflected electric fields through the finite 

CLC sample, we have to apply the required conditions at each boundary, i.e. 

the tangential components for 𝐄 and 𝐇23 must be continuous. For a sample of 

thickness 𝑑 these conditions are: 

𝐄𝑖(0) + 𝐄𝑟(0) = 𝐄1
+(0) + 𝐄1

−(0) + 𝐄2
+(0) + 𝐄2

−(0) ,                   (2.33) 

𝐇𝑖(0) + 𝐇𝑟(0) = 𝐇1
+(0) + 𝐇1

−(0) + 𝐇2
+(0) + 𝐇2

−(0) ,                 (2.34) 

𝐄𝑡(𝑑) = 𝐄1
+(𝑑) + 𝐄1

−(𝑑) + 𝐄2
+(𝑑) + 𝐄2

−(𝑑)                            (2.35) 

and 

𝐇𝑡(𝑑) = 𝐇1
+(𝑑) + 𝐇1

−(𝑑) + 𝐇2
+(𝑑) + 𝐇2

−(𝑑) .                        (2.36) 

Notice that the normal modes described by the Eqs. (2.21) and (2.22) must be 

used as the fields inside the sample. From Eqs. (2.33-2.36) the transmitted and 
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reflected electric fields can be obtained from a given incident electric field by 

means of a 4x4 transference matrix:  

[
 
 
 
𝐸𝑖𝑥

𝐸𝑖𝑦

𝐸𝑟𝑥

𝐸𝑟𝑦]
 
 
 
= 𝐴 [

𝐸𝑡𝑥

𝐸𝑡𝑦

0
0

] ,                                                    (2.37) 

where 𝐴 is a 4x4 transference matrix that depends on the sample parameters. 

The detailed procedure of the calculation of 𝐴 can be found in Refs. 21 and 22.  

A normal mode is a wave that does not change its polarization but changes its 

field amplitude and phase. Therefore there exist a relationship between the 

incident and transmitted electric fields given by: 

(
𝐸𝑡𝑥

𝐸𝑡𝑦
) = 𝑡 (

𝐸𝑖𝑥

𝐸𝑖𝑦
) ,                                                    (2.38) 

where 𝑡 is a complex number. By introducing this relation into Eq. (2.37) the 

transmission normal modes can be obtained. In general four normal modes can 

be obtained for a given angular frequency of the incident electromagnetic wave. 

They are nearly circularly polarized, two of them right handed and two of them 

left handed. For each polarization there is a mode travelling in the +𝑧 direction 

and another mode travelling in the – 𝑧 direction. The transmission modes with a 

handedness opposite to that of the CLC helix can always propagate through the 

sample as in the case of a bulky CLC. Furthermore, their transmittance 𝑇 is an 

oscillating function that deviates slightly from 1 independently of the 

wavelength (see Fig. 4 (a)). We will refer to them as non forbidden modes. 

On the other hand, for the transmission modes with the same handedness as 

that of the CLC helix, there is a region of the spectrum where propagation is 

forbidden, this is why we will call them forbidden modes. Fig. 4 (b) represents 

the transmittance 𝑇 for these modes: Outside the forbidden region 𝑇 describes 
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small oscillations around 1. Near the band edges, these oscillations become 

sharp and show a local maximum at both band edges. Within the forbidden 

band 𝑇 is almost 0. An experimental example of this behavior is shown in Fig. 5. 

An analytic expression of these normal modes and their eigenvalues can be 

found in the literature, for example, in Refs. 21 and 22. 

 

 

Fig. 4. (a) Transmittance of the non forbidden, and (b) forbidden modes in a typical CLC 

sample. 

The transmitted and reflected intensities can be obtained by considering that 

𝑅 + 𝑇 = 1. When unpolarized light impinges on the sample, the transmitted 

intensity can be easily calculated by means of the decomposition of the light 

into two circularly polarized waves of opposite handedness. As a consequence, 
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the selective reflection always occurs for the component of the same 

handedness as the helix. Due to this fact many CLCs show bright colors. We 

present in Fig. 6 two typical cases of selective reflection in the optical spectrum. 

 

Fig. 5. Experimental measurement of the transmittance spectrum for unpolarized light of a 

typical CLC. 

 

Fig. 6. Selective reflections in a typical CLC at the blue and orange regions of the optical 

spectrum. 

The position of the band gap and thus the color due to selective reflection 

depends, as in the case of a bulky CLC, on the material parameters and on the 

helix pitch. Such dependence can be written as  

𝑃 =
2𝜆𝐵

𝑛𝑜 + 𝑛𝑒
 ,                                                       (2.39)
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where 𝜆𝐵 is the wavelength corresponding to the middle of the band gap and, 

𝑛𝑜 and 𝑛𝑒 are the ordinary and extraordinary refractive indexes perpendicular 

and parallel to the molecular director respectively. 

 

2.3 The density of optical states (𝑫𝑶𝑺) 

The origins of lasing also requires the understanding of the concept of density 

of optical states (𝐷𝑂𝑆). In this dissertation we will define the 𝐷𝑂𝑆 as:  

𝐷𝑂𝑆 =
𝑑𝑘(𝜔)

𝑑𝜔
 ,                                                     (2.40) 

which is the inverse of the group velocity24 and can be defined as the number of 

wave vectors 𝑘 per unit of angular frequency 𝜔. Evidently modes with a small 

group velocity (quasi-standing waves) are of interest in order to obtain lasing in 

a cavity. These modes in its turn present the highest values of 𝐷𝑂𝑆. 

In infinite and homogeneous optical media such relation is analytically 

accessible by solving Maxwell equations and, calculating the 𝐷𝑂𝑆 is a simple 

problem. Also, in bulky CLCs the dispersion relation is analytically accessible 

and the 𝐷𝑂𝑆 can be obtained by simple differentiation of Eq. (2.19). 

Nevertheless, calculating the 𝐷𝑂𝑆 in a finite CLC is not a trivial task. 

For calculating the 𝐷𝑂𝑆 in a finite sample it is necessary to know the dispersion 

relation 𝑘(𝜔). The general procedure is reported by Dowling and Bedickson in 

Ref. 25. The method consists in obtaining the transmission coefficients of the 

optical eigenmodes of the sample that in general are complex quantities given 

by: 

𝑡 = 𝑥 + 𝑖𝑦 ,                                                         (2.41) 
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The corresponding phase to each mode for a sample of thickness 𝐿 is 

𝜑 = 𝑘𝐿 .                                                            (2.42) 

This quantity can be obtained from the transmission coefficient by means of the 

following expression: 

tan𝜑 =
𝑦(𝜔)

𝑥(𝜔)
 .                                                     (2.43) 

Then, by simple differentiation of Eq. (2.43) with respect to 𝜔 the 𝐷𝑂𝑆 can be 

obtained and is given by: 

𝐷𝑂𝑆 = (
1

𝐿
)
(𝑦´𝑥 − 𝑥´𝑦)

(𝑥2 + 𝑦2)
 ,                                            (2.44) 

where primes indicate derivatives with respect to 𝜔. 

2.3.1 𝐷𝑂𝑆 in a Fabry Perot Cavity 

Since our main purpose is to use CLCs as optical resonators, it is illustrative to 

get a first insight into a classical optical resonator as a Fabry-Perot (F-P) cavity. 

A F-P cavity is a simple device which confines light by two reflecting mirrors 

(see Fig. 7).  

 

Fig. 7. Configuration of fields in a Fabry Perot cavity. 𝑛𝑖 denote the indexes of refraction.  
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Applying the boundary conditions for 𝐄 and 𝐇 at 𝑧 = 0 and at 𝑧 = 𝑑: 

(
𝐸𝑖

𝐸𝑟
) =

1

2𝑛1
(
𝑛1 + 𝑛2 𝑛1 − 𝑛2

𝑛1 − 𝑛2 𝑛1 + 𝑛2
) (𝐸

+

𝐸−)                                (2.45) 

and 

(𝐸
+

𝐸−) =
1

2𝑛2
(
(𝑛1 + 𝑛2)exp[−𝑖𝑘2𝑑] 0

0 (𝑛1 − 𝑛2)exp[𝑖𝑘2𝑑]
) (

𝐸𝑡

𝐸𝑡
) ,     (2.46) 

where 𝑘2 =
𝑛2𝜔

𝑐
 . 

Combining Eqs. (2.45) and (2.46) and operating one arrives to: 

𝐸𝑡 =
(1 − 𝑟2)

√1 − 2𝑟2 cos(𝑥) + 𝑟4
exp[𝑖(𝑘2𝑑 + 𝜓)]𝐸𝑖  ,                      (2.47) 

where 𝑥 = 2𝑘2𝑑, 𝑟 =
𝑛2−𝑛1

𝑛2+𝑛1
 and 𝑡𝑎𝑛(𝜓) =

𝑟2 sin(𝑥)

1−𝑟2 cos(𝑥)
 .  

Then, using Eqs. (2.47) and (2.44), the 𝐷𝑂𝑆 of a F-P cavity can be written as 

𝐷𝑂𝑆 =
𝑛2

𝑐

(1 − 𝑟4)

(1 + 𝑟4 − 2𝑟2 cos(𝑥))
 .                                   (2.48) 

The maximum 𝐷𝑂𝑆 occurs when cos(𝑥) = 1: 

𝐷𝑂𝑆𝑀 =
𝑛2

𝑐
(
1 + 𝑟2

1 − 𝑟2
)

In Fig. 8 we show the typical shape for the transmittance 𝑇 and the 𝐷𝑂𝑆 as a 

function of 𝑥. For the simulation, we have considered that the reflectance of the 

mirrors is of 0.9. Notice that peaks and valleys of the 𝐷𝑂𝑆 coincide with those of 

𝑇. Modes with low 𝐷𝑂𝑆 are almost completely reflected since their 

transmittance is very small. On the other hand, modes with high 𝐷𝑂𝑆 can be 

transmitted through the cavity since their reflectance is small. This behavior can 
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also be interpreted by means of the group velocity. High 𝐷𝑂𝑆 modes 

correspond low 𝑉𝑔. In such cases, quasi-standing waves are formed in the 

cavity. Photons corresponding to those modes ‘stay’ long time inside the cavity. 

Such modes dissipate energy slowly out of the cavity so a high electromagnetic 

energy can be stored in such modes. 

 

Fig. 8. (a) Transmittance and (b) 𝐷𝑂𝑆 in a Fabry Perot Cavity. 

2.3.2 𝐷𝑂𝑆 in an infinite CLC 

Turning back to the case of a bulky CLC the 𝐷𝑂𝑆 can be calculated by simple 

differentiation of Eq. (2.19). Focusing our attention on the vicinity of the stop 

band, the 𝐷𝑂𝑆 of the non-forbidden modes is almost constant independently of 

the wavelength. On the other hand, the 𝐷𝑂𝑆 of the forbidden modes diverges at 

the band edges (see Fig. 9). This divergence can also be understood looking at 

the dispersion curve in Fig 2. As can be seen, at the edges of the photonic band 

gap the group velocity becomes 0; thus the 𝐷𝑂𝑆 of such modes diverges. 

This behavior has important implications. For example, since the 𝐷𝑂𝑆 is infinite 

at the band edges, an infinite quantity of electromagnetic energy can be stored 
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within the photonic cavity with the wavelength corresponding to that of the 

band edges.  

 

Fig. 9. 𝐷𝑂𝑆 of the two normal modes in an infinite CLC. 𝑥 =
𝜆

𝑃
. 

2.3.3 𝐷𝑂𝑆 in a finite CLC 

In the case of a finite CLC sample, the dispersion relation is quite complex and 

the differentiation results in a rather complicated function. However, 𝐷𝑂𝑆 can 

also be obtained analytically26.  

Applying Eq. (2.44) it can be shown that the representation of 𝐷𝑂𝑆 vs. 

wavelength of the forbidden modes presents peaks and valleys outside the stop 

band, such peaks coincide with those of the transmittance (see Fig. 10 (a) and 

(b)). The amplitude of the oscillations increases near the band edges and has 

two characteristic maxima located at both edges of the forbidden band. Inside 

the forbidden band the 𝐷𝑂𝑆 is close to 0. 

Similarly to the case of the Fabry-Perot cavity, the enhanced 𝐷𝑂𝑆 at the band 

edges is useful for storing electromagnetic energy of the corresponding 
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wavelengths. In other words, electromagnetic modes corresponding to the band 

edge wavelength are quasi-standing waves since their group velocity is small. 

On the other hand, the thicker the sample, the higher the 𝐷𝑂𝑆 peaks at the band 

edges and the smaller the transmission inside the photonic band gap. Evidently 

𝐷𝑂𝑆 tends to infinite at the edges for the limit of an infinite sample as 

previously explained. 

 

 

Fig. 10. (a) Transmittance and (b) 𝐷𝑂𝑆 of the forbidden modes in a typical CLC sample.          

𝑃 = 600 nm, 𝐿 =12 μm. 

For the non-forbidden modes the 𝐷𝑂𝑆 is almost constant over the entire 

wavelength range and describes small oscillations (Fig. 11 (b)). The 

transmittance of these modes is near 1 (see Fig. 11 (a)) and describes small 

oscillations around 1. Again, peaks and valleys in the transmittance coincide 
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with those of the 𝐷𝑂𝑆. However, oscillations in 𝑇 and 𝐷𝑂𝑆 are so small that are 

not appreciable in Fig. 11. 

 

 

Fig. 11. (a) Transmittance and (b) 𝐷𝑂𝑆 of the non-forbidden modes in a typical CLC sample. 

 𝑃 = 600 nm, 𝐿 =12 μm. 

 

2.4 Fermi’s golden rule 

Fermi´s golden rule relates the emission rate 𝑊(𝜔) of an oscillating dipole with 

the 𝐷𝑂𝑆. If �̂� is the dipole moment operator, 𝐫 is the position of the oscillating 

dipole and 𝐄 is the electric field of the normal modes, then 

𝑊(𝜔) = 𝐶 𝐷𝑂𝑆|�̂� ∙ 𝐄(𝜔, 𝐫)| ,                                        (2.49) 

where 𝐶 is a constant. 
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From Eq. (2.49) it is clear that the emission rate and, therefore, the intensity of 

emission of the dipole are proportional to the 𝐷𝑂𝑆. So the emission spectrum of 

a light source embedded in a CLC cavity will be proportional to the 𝐷𝑂𝑆 of the 

cavity. As a consequence a light source will emit more light at the edge modes 

of the forbidden band due to the enhancement of 𝐷𝑂𝑆.  

 

2.5 Liquid crystal lasers 

The photonic properties of a CLC cavity can be exploited for laser emission. 

Due to the peculiar 𝐷𝑂𝑆 spectrum of the forbidden modes, and because of 

Fermi’s golden rule, the emission spectrum of a light source embedded within 

the cavity is completely altered with respect to its emission spectrum in an 

isotropic solvent. Such source will emit much more photons at the edge modes. 

An alternative interpretation in terms of electromagnetic waves can be made 

taking into account that the 𝐷𝑂𝑆 is the inverse of the group velocity. Therefore 

light emission at the edges of the photonic band gap will form quasi-standing 

waves at these modes. 

For achieving band edge laser emission, is necessary to introduce a light 

harvester in the CLC. This light harvester is usually a dye dispersed in the 

mixture, as for example DCM. In other cases a LC can be synthesized with a 

light harvester as part of its structure. In this case no dye dispersed in the CLC 

mixture is needed. For example, many liquid crystals, due to their chemical 

composition, absorb and emit in the ultraviolet. This is why ultraviolet lasing 

can be achieved without any dye27. 

Another requisite is fundamental. The emission spectrum of the light harvester 

must overlap the photonic band. Furthermore, in order to minimize the lasing 

threshold the maximum of the non-altered emission spectrum must be matched 
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with the lasing band edge26. An example of this situation is shown in Fig. 12. 

Most of the dyes, that are commonly used, present a high linear dichroism. 

Therefore, the efficiency of the exciting and stimulated emitting modes highly 

depends on their state of polarization respect to the dye orientation. Both band 

edges are not equivalent, in this respect, and the one at which lasing occurs 

depends on the order parameter of the dye molecules respect to the director of 

the host CLC. If dye molecules lie along the director, lasing occurs at the long 

wavelength edge and if they lie perpendicularly to the director, lasing happens 

at the short wavelength edge. In an infinite CLC this can be understood since at 

the long wavelength edge mode the polarization state of the electric field is 

locally parallel to the molecular director whereas at the short wavelength one is 

perpendicular. 

 

Fig. 12. Overlap of the non-altered fluorescence spectrum of DCM with the band gap of a CLC 

sample. Notice that the maximum of fluorescence almost matches the long edge wavelength of 

the forbidden band. 

When the emitting molecules are excited, some of them will spontaneously emit 

a photon in any direction and with many possible optical modes. Light emitted 

in the direction of the helix can be decomposed in forbidden and non forbidden 

modes. Non forbidden photons, independently of their wavelength, will 
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‘escape’ from the cavity due to their relatively low 𝐷𝑂𝑆 and thus high 𝑉𝑔. On the 

other hand, forbidden photons are not allowed so their emission is suppressed. 

When the forbidden modes match the wavelengths of the band edges, they 

have a greatly enhanced 𝐷𝑂𝑆. This, results in a high emission rate at these 

modes. In other words, since their 𝑉𝑔 is very small, these modes form quasi-

standing waves, and photons are ‘kept’ within the cavity, dissipating energy 

slowly out of the cavity. These photons produce stimulated emission among 

excited dyes. Due to the properties of stimulated emission24, the new emitted 

photons will have the same optical properties and they will stimulate in its turn 

other dyes. This is an amplification effect. The quasi-stationary wave leaks 

energy outside the cavity at a very low rate. The emerging radiation is laser 

light that, as previously seen, is circularly polarized with the same handedness 

as that of the helix. Calculations suggest21 that the suppressed radiation within 

the photonic band is transferred to the band edges. 

In order to maintain the population of excited dyes in the laser cavity a 

pumping source is required. In CLC lasers, usually a pulsed Nd:YAG laser is 

used. It is important to choose a pumping wavelength near the absorption 

maximum of the dye. If the wavelength of the pump overlaps the forbidden 

band, part of the pumping intensity will be reflected. In those cases it is 

desirable to use circularly polarized light with opposite handedness to that of 

the helix. The minimum pumping energy required for laser generation is called 

the threshold energy. One of the objectives in CLC lasers is lowering the 

threshold as much as possible. A challenging target in this respect is to diminish 

the threshold energy as much as to allow using simple and economic pumping 

sources.  
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2.5.1 An example of CLC lasing 

At this point we are going to present experimental evidence of the above 

mentioned concepts. With this aim we prepared a CLC mixture of the classical 

nematic LC E7 (Synthon) with a chiral twisting agent (compound 2 in reference 

28) and the classical dye 4-(dicyanomethylene)-2-methyl-6-(p-

dimethylaminostyryl)-4H-pyran (DCM), (Aldrich) in proportions 95:5:1 (wt.-%) 

respectively. The mixture was introduced into a commercial glass cell of 9.9 μm 

of thickness. The glasses were treated with parallel-rubbed polyimide layers. By 

using a polarized optical microscope we observed a high quality alignment in 

the CLC phase (Cano’s geometry). 

The pump source was a Nd:YAG laser operating at the second-harmonic 

frequency (wavelength 532 nm). Pulses of 14 ns and with a repetition rate of 5 

Hz were used. The pump source was focused on the sample using a lens of 20 

cm of focal length; the spot size at the sample was of 40 μm of diameter. The 

incident light was circularly polarized with a handedness opposed to that of the 

CLC sample. The angle of incidence of the pump beam was 450. The emitted 

signal, around the sample normal, was collected using a lens of 5 cm of 

diameter and of 5cm of focal length. This signal was focused on an optical-fiber 

spectrometer with a resolution (FWHM) of 𝛥𝜆 =0.5 nm. Fig. 13 shows the 

experimental setup used in this experiment. 

Measurements were made at the temperature of 22 0C. First, we measured the 

reflectance spectrum of the sample. The reflection band appeared between     

559 nm and 634 nm (see Fig. 14), thus the helical pitch was of 367 nm. The 

calculation is straightforward considering Eq. (2.39) and the typical indexes of 

refraction of E7 at room temperature. 
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Fig. 13. Experimental setup. L1 and L2 are lenses 1 and 2 respectively, 𝑆 is the sample, 𝜃 is the 

angle of incidence, and O.F is the abbreviation for optical fiber. 

 

Fig. 14. Reflectance spectrum of the CLC sample. Unpolarized light was used in this 

measurement. 

In order to measure the isotropic emission spectrum of DCM, we dissolved a 

small quantity of dye in ethanol and simply approached the optical fiber of the 

spectrometer to the container in order to detect the emitted light. The obtained 

spectrum is represented in Fig. 15. 
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Fig. 15. Normalized fluorescence spectrum of the DCM dissolved in ethanol. 

Then, we measured the fluorescence spectrum of the dye dissolved in the 

photonic structure using the experimental setup schematized in Fig. 13. The 

results are shown in Fig. 16. 

 

Fig. 16. Fluorescence spectrum of the DCM dissolved in the CLC host. Unpolarized light was 

measured. The line at 532 nm corresponds to the pumping laser. 
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Finally, we analyzed the fluorescence polarization by using circular polarizers 

corresponding to both hands (see Fig. 13). The obtained spectra are shown in 

Fig. 17. 

Looking at Figs. 14-16 we can see that, since the reflection band overlaps the 

emission spectrum of the dye, its fluorescence is greatly altered. Furthermore, 

in Fig. 17 (b) we can see that such alteration barely affects the shape of LCP light 

spectrum (it is almost the same as the one shown in Fig. 15). The small peak 

observed at 634 nm in the LCP spectrum can be attributed to two facts. On the 

one hand, the most important reason is that the circular polarizer is not 

perfectly circular so a small part of the RCP component leaks through the LCP 

polarizer. On the other hand, and less important, strictly speaking, the normal 

modes are no perfectly circularly polarized but slightly elliptically polarized21. 

As a consequence, a small part of the intense RCP component at the band edge 

of the spectrum (Fig. 17(a)) leaks through the LCP polarizer.  

  

Fig. 17. Fluorescence spectra of the right circularly polarized mode RCP (a) and, left circularly 

polarized mode LCP (b) of the dye within the CLC host. 

The RCP component of the spectrum is drastically modified as expected (Fig. 17 

(a)). It is suppressed within the band gap and enhanced at the edges. In our 
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case, the enhancement is greater at the long wavelength edge of the stop band. 

This fact is related to the order parameter of the dye molecules respect to the 

local director of the CLC host; for DCM in E7, the dye aligns preferentially 

parallel to the director, and thus, is parallel to the electric field of the mode 

corresponding to the long wavelength band edge. This is the optimum electric 

field configuration to excite the dye. On the contrary, for short wavelength 

mode the electric field is perpendicular to the molecular director and thus the 

configuration is the worst. 

 

Fig. 18. Laser radiation spectrum. The peak position corresponds to 634 nm.

Laser was observed just at the long wavelength edge of the stop band (634 nm) 

when the pump power was increased above a threshold (see Fig. 18). The 

polarization of the laser light was RCP i.e., with the same handedness as that of 

the CLC material. This demonstrates that the feedback for lasing action is 

provided by the reflection of RCP light in the cavity. 
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2.6 Radiation dwelling time 

In conventional lasers based on Fabry-Perot cavities, the rate at which radiation 

decreases inside the cavity is the inverse of a characteristic time known as the 

dwelling time 𝜏𝑐. This decrease in radiation is due to photon leakage because of 

the use of semitransparent mirrors, absorption losses in the medium and 

diffraction on the edges of mirrors. The dwelling time is a very important 

parameter to characterize the efficiency of a laser. 

In CLC lasers, at the edges of the forbidden band, the optical density of states 

presents a very pronounced maximum. This fact implies a small group velocity 

and thus a long dwelling time for photons inside the CLC cavity. In these lasers 

the decrease in radiation intensity inside the cavity is due to photon leakage 

through the substrates of the sample and to losses because of radiation 

absorption and/or scattering in the CLC. Taking into account these losses due to 

absorption and scattering, the radiation dwelling time has been approximately 

calculated as29, 30 

1

𝜏𝑐
=

𝑐

𝑛
(𝛽 +

4𝑃2

𝛼2𝐿3
) ,                                                (2.50) 

where 𝐿 is the is the length of the resonant cavity, 𝛽 is a coefficient of 

distributed losses, which accounts for the absorption and scattering in the CLC 

sample, 𝑛 = √𝑛𝑜
2+𝑛𝑒

2

2
 is the mean refractive index, 𝛼 =

(𝑛𝑜
2−𝑛𝑒

2)

(𝑛𝑜
2+𝑛𝑒

2)
 is the optical 

anisotropy parameter and 𝑃 is the pitch.  
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2.7 Rate equations for laser generation 

Here we are going to explain with some detail the model of kinetic equations 

for laser generation proposed by Shytkov and Palto [JETP, 118, 822 (2014)]30.  

These equations are based on a laser scheme of three electronic levels: the 

ground singlet level 𝑆0, first excited singlet level 𝑆1 and ground triplet level 𝑇0. 

This is sketched in Fig. 19. 

 

Fig. 19. Diagram of energy levels in a dye molecule. Solid arrows indicate radiative transitions; 

dashed arrows indicate thermal processes within an energy band, and the doted arrow 

indicates intercombination transitions from an excited singlet to a triplet level. 

In Fig. 19: 

-𝑤12 is the probability of induced transition from 𝑆0 to 𝑆1 upon 

absorption of a pumping photon. 𝑤12 =
𝜎𝑎𝐼𝑎

ℎ𝜈𝑎
,31 where 𝜈𝑎 is the frequency of the 

absorbed pumping photons, ℎ is the Plank constant, 𝜎𝑎 is the cross section of 

absorption, and 𝐼𝑎 is the  intensity of the pumping radiation. 

 -𝑤21 is the probability of induced transition from 𝑆1 to 𝑆0 upon the 

emission of a photon.  𝑤21 =
𝜎𝑒𝐼𝑒

ℎ𝜈𝑒
,31 where 𝜈𝑒 is the frequency of the emitted 

photons, 𝜎𝑒 is the cross section of induced emission, and 𝐼𝑒 is the intensity of 

emitted light. 

 -𝑤𝑠𝑝 =
1

𝜏21
 is the probability of spontaneous transition from 𝑆1 to 𝑆0 upon 

emission of a photon. 𝜏21 is the fluorescence lifetime of level 2. 
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 -𝑃23 is the probability of spontaneous transition from 𝑆1 to 𝑇0.

 -𝑃31 is the probability of spontaneous transition from 𝑇0 to 𝑆0. 

 -𝑁𝑖 is the population per unit volume of level 𝑖. 

In Ref. 30 it is assumed that 𝜎𝑎 = 𝜎𝑒 = 𝜎. However, we will not make such 

assumption here. The pump beam propagates along the CLC helix axis, this is 

the 𝑧 direction. See an scheme of lasing in Fig. 20. 

 

Fig. 20. Scheme of lasing in a CLC sample. The pumping beam is represented by the green 

arrow, it is along the 𝑧 direction and enters at 𝑧 = 0. The generated radiation is represented by 

the red arrows and it escapes from both sample boundaries. 

Considering spatial inhomogeneity of the pump only in the pumping direction 

and, thus in the populations of the different levels, the system of kinetic 

equations is: 

𝜕𝑁2(𝑧, 𝑡)

𝜕𝑡
=

𝜎𝑎𝐼𝑎(𝑧, 𝑡)

ℎ𝜈𝑎
𝑁1(𝑧, 𝑡) −

𝜎𝑒𝐼𝑒(𝑡)

ℎ𝜈𝑒
𝑁2(𝑧, 𝑡) −

𝑁2(𝑧, 𝑡)

𝜏21
− 𝑃23𝑁2(𝑧, 𝑡) , 

𝜕𝑁3(𝑧, 𝑡)

𝜕𝑡
= 𝑃23𝑁2(𝑧, 𝑡)−𝑃31𝑁3(𝑧, 𝑡) , 
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𝑑𝐼𝑒(𝑡)

𝑑𝑡
=

𝑐ℎ𝜈𝑒𝑆

𝑛𝑉
∫(

𝜎𝑒𝐼𝑒(𝑡)

ℎ𝜈𝑒
𝑁2(𝑧, 𝑡) + 𝑘

𝑁2(𝑧, 𝑡)

𝜏21
)𝑑𝑧 −

𝐼𝑒(𝑡)

𝜏𝑐

𝐿

0

 ,          (2.51) 

𝑁1(𝑧, 𝑡) + 𝑁2(𝑧, 𝑡) + 𝑁3(𝑧, 𝑡) = 𝑁. 

where 𝑐 is the speed of light in vacuum, 𝑉 is the volume of the pumped region, 

𝑆 is the section of the pumping beam, 𝐿 is the CLC thickness, and 𝑁 is the total 

number of dye molecules per unit volume. 𝜏𝑐, is the radiation dwelling time of 

an emitted photon in the CLC layer. Finally, the 𝑘 coefficient is the fraction of 

spontaneous radiation at the laser frequency that travels along the helix axis; it 

can be considered as the seed for lasing. 

Note that the partial derivatives in the two first equations of system (2.51) 

denote spatial inhomogeneity of the populations in the 𝑧 direction. The first of 

Eqs. (2.51) describes the evolution of the population of the excited singlet level. 

This level is the responsible of lasing. In such evolution, there is a competition 

between induced absorption, induced and spontaneous emission to the ground 

state, and the transition of the dye molecules from the excited singlet to the 

ground triplet. Transitions to the ground triplet are non radiative. The 

accumulation of excited molecules in this level is taken into account by the 

second of Eqs. (2.51). This accumulation is due to a competition between 𝑃23 

and 𝑃31. In the third equation, the term inside the integral, describes the number 

of photons generated inside the cavity per unit of volume and unit of time, 

traveling along the helix direction. These photons are due to induced and 

spontaneous emission. The last term of this equation takes into account the 

decrease of radiation within the cavity due to the photons dwelling time inside 

the cavity, 𝜏𝑐 that is given by Eq. (2.50). Finally, the last of Eqs. (2.51) describes 

the law of conservation of dye molecules.  

We will now operate with Eqs. (2.51) in order to have them in a simpler form.  
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Let’s define the average population of level 𝑖 along the sample thickness as: 

𝑛𝑖(𝑡) = (∫𝑁𝑖(𝑧, 𝑡)𝑑𝑧

𝐿

0

)
1

𝐿
.                                           (2.52) 

Combining Eqs. (2.51) and (2.52) and integrating respect to 𝑧, one arrives to: 

𝑑𝑛2(𝑡)

𝑑𝑡
=

𝜎𝑎𝑁

ℎ𝜈𝑎𝐿
[∫ 𝐼𝑎(𝑧, 𝑡)𝑑𝑧

𝐿

0

−
1

𝑁
∫ 𝐼𝑎(𝑧, 𝑡)

𝐿

0

𝑁2(𝑧, 𝑡)𝑑𝑧 −
1

𝑁
∫ 𝐼𝑎(𝑧, 𝑡)

𝐿

0

𝑁3(𝑧, 𝑡)𝑑𝑧]

− 𝑛2(𝑡) (
𝜎𝑒𝐼𝑒(𝑡)

ℎ𝜈𝑒
+

1

𝜏21
+ 𝑃23) , 

𝑑𝑛3(𝑡)

𝑑𝑡
= 𝑃23𝑛2(𝑡) − 𝑃31𝑛3(𝑡) ,                                      (2.53) 

𝑑𝐼𝑒(𝑡)

𝑑𝑡
=

𝑐

𝑛
(𝜎𝑒𝐼𝑒(𝑡) + 𝑘

ℎ𝜈𝑒

𝜏21
) 𝑛2(𝑡) −

𝐼𝑒(𝑡)

𝜏𝑐
 ,  

𝑁 = 𝑛1(𝑡) + 𝑛2(𝑡) + 𝑛3(𝑡) . 

The pumping intensity as the beam travels through the sample is given by: 

𝐼𝑎(𝑧, 𝑡) = 𝐼𝑎0(𝑡)exp[−𝜎𝑎𝑛1(𝑡)𝑧].                                     (2.54) 

Note that Eq. (2.54) is an approximation since, strictly speaking, 𝑁1(𝑧, 𝑡) should 

be used instead of 𝑛1(𝑡). 

Now, let’s define the average population of level 𝑖 in the interval (0, 𝑧) as 

�̅�𝑖(𝑧, 𝑡) = (∫𝑁𝑖(𝑥, 𝑡)𝑑𝑧

𝑧

0

)
1

𝑧
 ,                                        (2.55) 

which coincides with the averages 𝑛𝑖(𝑡) in the limit of 𝑧 = 𝐿. Assuming the 

approximation �̅�𝑖(𝑧, 𝑡)𝑧 = 𝑛𝑖(𝑡)𝐿/2, which is the average of this product at the 
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boundaries of the sample, and introducing Eqs. (2.54) and (2.55) in system (2.53) 

we arrive to 

𝑑𝑛2(𝑡)

𝑑𝑡
= −(

𝜎𝑒𝑃𝑒(𝑡)

ℎ𝜈𝑒𝑆
+

1

𝜏21
+

𝜎𝑎𝑃𝑎0(1 + exp[−𝜎𝑎𝑛1(𝑡)𝐿])

2ℎ𝜈𝑎𝑆
+ 𝑃23)𝑛2(𝑡)

−
𝜎𝑎𝑃𝑎0(1 + exp[−𝜎𝑎𝑛1(𝑡)𝐿])

2ℎ𝜈𝑎𝑆
  𝑛3(𝑡) +

𝑁𝑃𝑎0(1 − exp[−𝜎𝑎𝑛1(𝑡)𝐿])

ℎ𝜈𝑎𝑆𝐿𝑛1(𝑡)
 , 

𝑑𝑛3(𝑡)

𝑑𝑡
= 𝑃23𝑛2(𝑡) − 𝑃31𝑛3(𝑡) ,                                      (2.56) 

𝑑𝑃𝑒(𝑡)

𝑑𝑡
=

𝑐

𝑛
(𝜎𝑒𝑃𝑒(𝑡) + 𝑘

ℎ𝜈𝑒𝑆

𝜏21
) 𝑛2(𝑡) −

𝑃𝑒(𝑡)

𝜏𝑐
 , 

where ligth intensity has been replaced by power, i.e. 𝑃𝑒 = 𝐼𝑒𝑆.  

So, under a standard laser scheme for physics of ordinary laser, Shytkov et al. 

arrive to a system of kinetic equations for laser generation in CLCs. The only 

peculiarity of the CLC cavity is introduced through 𝜏𝑐. 
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3.1 Introduction 

One of the main targets in the development of CLC lasers is the improvement of 

their efficiency. A good performance of the laser devices would allow us to use 

simpler and more economic pumping sources. In addition, one of the main 

drawbacks of these devices is their relatively quick deterioration and, therefore, 

the utilization of low-power excitation sources would result in more durable 

CLC lasers, which is an essential requirement for commercial applications. 

The energy conversion in lasers is characterized by the so-called slope efficiency 

𝜂, defined as the slope of the curve obtained by representing the laser output 

power versus the input pumping power. Another important parameter 

characterizing laser performance is the threshold energy 𝐸𝑡ℎ that is the 

minimum pumping energy per pulse required for laser generation. Both 

quantities are connected to each other and depend on the features of the laser 

cavity. In the case of CLC lasers, the main parameters to be considered are the 

thickness of the sample, the local birefringence of the material, the dye 

concentration, the coefficient of distributed losses for the laser radiation, and 

the cross sections of absorption and induced emission of the pumping and laser 

lights, respectively. A detailed knowledge of the dependences of 𝐸𝑡ℎ and 𝜂 on 

the cavity parameters as, for example the thickness, will allow optimizing the 

fabrication of CLC lasers. Fig. 1 shows an example of laser emission energy vs. 

the pumping energy in a CLC laser. Below threshold (blue dots), the energy 

emission is null since there is no lasing but fluorescence. Above threshold (red 

dots) a linear dependence is observed whose slope is the slope efficiency 𝜂. The 

point at which this line intercepts the abscissa can be used for determining the 

lasing threshold energy. 

The aim of this chapter is to characterize the performance of CLC lasers paying 

especial attention to the role of the sample thickness. The main target is to 
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deduce reliable expressions for 𝐸𝑡ℎ and 𝜂 as a function of the most important 

physical parameters of the CLC layer in order to provide us with an important 

tool to design CLC lasers efficiently. To start we will make a brief description of 

the state of art in this respect. 

 

Fig. 1. Laser emission as a function of the incident pump energy for a sample thickness of         

14 μm. 

The general belief when studying the performance of lasers is that the optimum 

efficiency is achieved when the threshold power is minimum. In order to better 

understand previous approaches to deduce expressions for 𝐸𝑡ℎ, we will explain 

some related concepts and we will apply them to the case of standard lasers 

based on Fabry-Perot (F-P) cavities. 

Let’s first consider a scheme of two atomic energy levels 1 and 2 with 

populations 𝑁1 and 𝑁2 respectively, being level 2 the high energy level. The 

probability distribution of the transition frequency between both levels is 

described by a Lorentzian function1: 

𝑔(𝜈) =
(2/𝜋∆𝜈)

1 + [2(𝜈 − 𝜈0)/∆𝜈]2
 ,                                          (3.1) 
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where 𝜈0 is the frequency center of transition and ∆𝜈 is the FWHM of the 

transition spectrum. 

When atoms are excited to level 2, they can stay at this level for a certain period 

of time before decaying to level 1. If the rate at which atoms are excited to level 

2 is higher than the decay rate, it occurs that 𝑁2 > 𝑁1. This is the so-called 

population inversion, which is one of the basic requisites for lasing. 

If a monochromatic wave with frequency 𝜈 and intensity 𝐼 travels through our 

collection of atoms, it can be absorbed or amplified. After travelling a small 

distance 𝑑𝑧, the intensity change of the wave will be: 

𝑑𝐼 = [𝑁2𝐵21𝑔(𝜈)
𝐼

𝑐
− 𝑁1𝐵12𝑔(𝜈)

𝐼

𝑐
] 𝑑𝑧 ,                                 (3.2) 

where 𝐵21 is the Einstein coefficient for stimulated emission and 𝐵12 is the 

Einstein coefficient for stimulated absorption. Using the relation1 

𝐵21 = 𝐵12 = 𝑐3
𝐴21

8𝜋ℎ𝜈3
 ,                                                (3.3) 

where 𝐴21 is the Einstein coefficient for spontaneous emission. We arrive to 

𝑑𝐼

𝑑𝑧
= (𝑁2 − 𝑁1)

𝑐2𝐴21

8𝜋𝜈2
𝑔(𝜈)𝐼 .                                          (3.4)  

Integrating: 

𝐼 = 𝐼(0)exp[𝛾(𝜈)𝑧] ,                                                   (3.5) 

where 

𝛾(𝜈) = (𝑁2 − 𝑁1)
𝑐2𝐴21

8𝜋𝜈2
𝑔(𝜈)                                           (3.6) 
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is the optical gain constant. Notice that under population inversion 𝛾(𝜈) > 0 

and the wave is amplified while propagating through the medium. On the 

other hand, if 𝑁2 < 𝑁1 𝛾(𝜈) is negative and the wave is absorbed. 

The so-called amplitude condition for laser generation implies that the optical 

gain of the laser medium must compensate the losses suffered by laser light in 

one round trip in the laser cavity. In classical lasers, as those based in F-P 

cavities, losses can be localized (caused by the optical mirrors) or distributed. 

Distributed losses are due to photon absorption and/or scattering while 

travelling through the resonator and are very difficult to control. A sketch of a 

photon propagating inside a F-P cavity is shown in Fig. 2, where 𝛽 represents 

the distributed losses and 𝑟1, 𝑟2 are the reflectance of the mirrors. At the starting 

point the field is 𝐸𝑛. After a round trip the field is 𝐸𝑛+1. So, at the threshold, in 

order to compensate all losses, it must occur that 

𝐸𝑛+1

𝐸𝑛
= 1 = 𝑟1𝑟2exp[𝐿(𝛾 − 𝛽)]exp[𝑖2𝑘𝐿]                                (3.7) 

 

Fig. 2. Field configurations of a wave inside a F-P cavity with amplifying medium. 𝛾 is the 

optical gain constant (see Eq. (3.6)), 𝛽 is the coefficient of distributed losses, 𝐿 is the cavity 

length and 𝑟1 and 𝑟2 are the reflection coefficients of the mirrors.  
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Eq. (3.7) implies that  

exp[𝑖2𝑘𝐿] = 1                                                        (3.8) 

and 

𝑟1𝑟2exp[𝐿(𝛾 − 𝛽)] = 1 .                                               (3.9) 

Eq. (3.8) is the phase condition. The cavity modes can be derived from Eq. (3.8). 

The so-called amplitude condition is derived from Eq. (3.9): 

𝛾𝑡ℎ = 𝛽 −
1

𝐿
ln(𝑟1𝑟2) ,                                               (3.10) 

where 𝛾𝑡ℎ is the threshold gain coefficient, 𝛽 is the coefficient of distributed 

losses, 𝐿 is the cavity length and ln(𝑟1𝑟2) takes into account the localized cavity 

losses due to the reflectance of the mirrors (𝑟𝑖). 

In classic F-P resonators, considering that 𝑟1 = 𝑟2 ≈ 𝑟 and at the maximum of 

the optical density of states we obtain, from expression (2.48), 𝑟2 =
𝜌𝑀−1

𝜌𝑀+1
, being 

𝜌𝑀 =
𝑐

𝑛
𝐷𝑂𝑆𝑀. Thus, it results 

𝛾𝑡ℎ
𝐹−𝑃 = 𝛽 −

1

𝐿
ln(𝑟2) = 𝛽 −

1

𝐿
ln (

𝜌𝑀 − 1

𝜌𝑀 + 1
) ≈ 𝛽 +

2

𝜌𝑀𝐿
 ,                (3.11) 

where the subscript 𝑀 denotes that we are at a peak of the density of optical 

states.  

Usually, under laser generation conditions 𝑁2 ≫ 𝑁1. In addition the population 

inversion must be maintained. Therefore, assuming that below the threshold 

the main mechanism for de-excitation is the spontaneous emission, the 

condition for lasing is given by: 

𝑑𝑁2

𝑑𝑡
= 𝐾𝑝𝑢𝑚𝑝 − 𝐴21𝑁2 = 0 ,                                         (3.12) 
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where 𝐾𝑝𝑢𝑚𝑝 is the rate at which dye molecules are being excited to level 2. 

Evidently 𝐸𝑡ℎ ∝ 𝐾𝑝𝑢𝑚𝑝. From Eqs (3.6) and (3.12) we can deduce the following 

dependence for 𝐸𝑡ℎ
1: 

𝐸𝑡ℎ
𝐹−𝑃 = 𝐴𝛾𝑡ℎ

𝐹−𝑃𝐿 = 𝐴 (𝛽 +
2

𝜌𝑀𝐿
) 𝐿 = 𝐴𝛽𝐿 +

2𝐴

𝜌𝑀
 ,                      (3.13) 

where 𝐴 is a constant. 

As an expression for 𝛾𝑡ℎ is not available for CLC lasers, some authors2, 3, 4 have 

adopted expression (3.13), making an analogy with the case of F-P cavities. In 

this case, 𝜌𝑀 must be replaced by the expression corresponding to the CLC 

layer. For 𝐿 values corresponding to practical situations 𝜌𝑀 ≈ 𝐿2𝛼2/2𝑃2 3. 

Therefore: 

𝐸𝑡ℎ
𝐶𝐿𝐶 = 𝐴𝛽𝐿 +

2𝐴′

𝐿2𝛼2
 .                                                (3.14) 

Based on this idea, Blinov3 carried out quantitative predictions for 𝐸𝑡ℎ that were 

compared with the previous experimental results2, 5, 6, 7 reaching a reasonable 

agreement in some cases. However, the extrapolation of the threshold gain for a 

F-P cavity to CLC lasers is not fully justified and a precise expression 

connecting 𝐸𝑡ℎ to 𝐿 is not available up to now. 

An alternative to this approach was presented by Shtykov et al8. The theory is 

based on the rate equations for the populations of the excited states and laser 

generation. The model is a simplified version of the system of equations shown 

in section (2.7) of the introduction. In this case, the key parameter to account for 

the characteristics of the CLC laser is the radiation lifetime for the lasing 

photons in the CLC sample9, 𝜏𝑐. For solving such equations, the authors 

assumed a stationary case. Furthermore, they assumed a system of two levels, 

neglecting the transitions to the triplet level of the dye. Using such 
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approximations, the dependence of 𝐸𝑡ℎ on the sample thickness was found to be 

similar to those of the above-mentioned approaches. The results were also 

compared with the measurements carried out by other authors2, 4, and the 

optimum sample thickness to minimize 𝐸𝑡ℎ was reasonably calculated. 

However, the quantitative predictions for 𝐸𝑡ℎ were poor and only the order of 

magnitude was correctly calculated. This is not surprising taking into account 

the roughness of the considered approximations. For example, the assumption 

of an almost constant pumping source, implies stationary solutions. However, 

this is not the case in real experiments. In addition, as it will be shown in this 

chapter, the triplet level has fundamental implications in CLC lasers and cannot 

be ignored. Inter alia, it prevents laser emission by using continuous pumping 

(CW). 

Concerning the slope efficiency, it was assumed in all the referred works that 

the maximum 𝜂 is achieved when the threshold intensity is minimum. This idea 

is based in the assumption that 𝜂 ∝ 1/𝐸𝑡ℎ. However, this point has never been 

confirmed in CLC lasers neither theoretically nor experimentally. In this regard, 

Morris et al.7 proposed an analytical expression for 𝜂(𝐿). However, the 

approach was based on the assumption that the dye is a two level system, thus 

disregarding transitions to the triplet level. Likewise, 𝜂(𝐿) was obtained from 

the stationary solution of the rate equations, assuming a homogeneous 

pumping. All these approximations are very unrealistic to obtain accurate 

results since, as we have already said, the triplet level cannot be disregarded 

due to its important implications in these devices. 

From the experimental point of view, only a few reports can be found in the 

literature with measurements of both 𝐸𝑡ℎ and 𝜂 versus 𝐿4, 7. In all these works, 

the results for 𝜂 are fitted to a phenomenological expression obtained under the 

assumption 𝜂 ∝ 1/𝐸𝑡ℎ. 
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Very recently, a new work by Shtykov and Palto10 has been published. It makes 

use of improved kinetic rate equations for the excited states and laser 

generation (see section (2.7) of the introduction). This new model improves 

their previous one8 by considering transitions to the triplet level of the dye and 

taking into account the time dependence of the pump. In the study, predictions 

for 𝐸𝑡ℎ are compared with other works in the literature2, 4. The experimental 

values are in general higher than those calculated. However, the authors reach 

an excellent agreement with experimental results carried out by themselves in 

CLC samples with Coumarin 6 dye. Nevertheless, no analytical expression is 

given for 𝐸𝑡ℎ.  

In this chapter, we will focus on the analysis of the CLC laser performance as a 

function of the sample thickness. The study will be carried out both from 

experimental and theoretical points of view. For the theoretical approach we 

will use the model proposed by Shtykov and Palto10 incorporating an additional 

step to calculate the emitted power outside the cavity. By means of such model, 

the profiles of 𝐸𝑡ℎ(𝐿) and 𝜂(𝐿) will be obtained numerically. Finally, 

approximate analytical expressions for 𝐸𝑡ℎ(𝐿) and 𝜂(𝐿) will be deduced and 

compared with the numerical and experimental results. 

 

3.2 Experimental procedure and results 

The materials used to built the CLC laser were obtained by mixing the classical 

nematic LC E7 (Synthon) with a right handed chiral twisting agent (compound 

2 in reference11) and the dye 4-(dicyanomethylene)-2-methyl-6-(p-

dimethylaminostyryl)-4H-pyran (DCM), (Aldrich) in the proportions 

93.9:5.2:0.9 (wt.-%) respectively. 
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A wedge cell with angle of 2x10-3 rad was made with thickness range from 3.7 

to 53.7 μm. The inner surfaces of the sample were pre-treated with parallel-

rubbed polyimide. The material was introduced in the cell in the isotropic 

phase and subsequently cooled down to the CLC mesophase to obtain the Cano 

geometry. 

Then, we checked the photonic properties of the material following the same 

procedure as that of section (2.5.1) of this dissertation. We obtained similar 

results, i.e., lasing consisted on circularly polarized light with the same 

handedness as that of the CLC helix (right handed). However, in this case the 

band gap was shifted because of the difference in the concentration of the chiral 

dopant. The reflection band appeared between 533 nm and 605 nm; thus the 

helical pitch was of 350 nm (see Eq. (2.39)). Lasing occurred at the long edge 

(see Fig. 3). 

The pump source was a Nd:YAG laser operating at the second-harmonic 

frequency (wavelength 532 nm). Pulses of 14 ns and with a repetition rate of      

5 Hz were used. The pump source was focused on the sample using a lens of   

20 cm of focal length; this resulted in a spot size of 40 μm of diameter at the 

sample. We depict in Fig. 4 a sketch of the experimental setup. 

The incidence of the pumping beam was normal to the sample and the light 

was circularly polarized with the handedness opposite to that of the CLC helix 

in order to prevent selective reflection. The cell was placed on a translational 

stage to control the sample thickness. The output laser signal was focused by 

means of a lens of 5 cm of diameter onto a power meter. A 532 nm notch filter 

was placed just behind the sample to remove the pumping light (see Fig.4). For 

some experiments, the power meter was substituted by an optical-fiber 

spectrometer to analyze the spectrum of the emitted light. 
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Fig. 3. Reflectance spectrum for unpolarized light of the CLC material. The background of the 

reflectance is due to the reflectivity of the external faces of the glasses and ITO (a). Normalized 

laser spectrum. The peak wavelength is 605 nm (b). Both measurements correspond to a 

commercial cell of 10 μm thickness. 

 

Fig. 4. Experimental setup for measuring the lasing performance as a function of the CLC 

sample thickness. L1 and L2 are lenses, S is the sample, and N.F is the notch filter to eliminate 

the pumping light.  

As a next step we measured the laser emission power vs. the pump energy in 

order to determine the lasing thresholds and slope efficiencies. At low 

excitation energies, lasing is not observed, and the detected light is due to the 

fluorescence radiation collected by the lens behind the sample. Its intensity 

shows a linear behavior with the pumping energy. In order to separate the pure 

laser emission, the fluorescence contribution was subtracted from the total 
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signal using linear extrapolation. An example of this procedure is shown in   

Fig. 5. 

 

Fig. 5. Energy emission at 605 nm as a function of the incident pump energy, the blue line 

indicates the linear extrapolation (from the blue dots) due to the fluorescence contribution (a). 

Laser emission after subtraction of the fluorescence (b). Both graphs were obtained for a 

thickness of 12.8 μm. 

  

Fig. 6. Laser emission at 605 nm as a function of the incident pump energy for different sample 

thicknesses below (a) and above (b) the optimum thickness of 14 μm. 
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In Fig. 5(a), the blue dots are due only to fluorescence. These dots are fitted by 

linear extrapolation. The resulting line is the fluorescent contribution, which is 

subtracted to all the measured points; the result is shown in Fig. 5(b). Using this 

procedure we performed the measurements for different sample thicknesses. 

Results are shown in Fig. 6. For thicknesses below 8 μm, the fluorescence is 

dominant and the separation of fluorescence from laser emission is problematic. 

Furthermore, under 7 µm thickness no laser was observed. 

From Fig. 6 we directly measured the slope efficiencies corresponding to each 

thickness. The slopes were doubled to take into account the laser emission from 

both sample faces. As can be seen, the maximum slope is achieved at 14 μm. 

The threshold energies were determined by inspection of the fluorescence 

spectrum of the CLC sample. For this task, the optical-fiber spectrometer was 

used instead of the power meter in Fig. 4. The 𝐸𝑡ℎ values correspond to the 

energy to which the intensity peak at the laser wavelength, as that of Fig. 3 (b), 

appears. This method allows for the determination of the 𝐸𝑡ℎ values with higher 

accuracy than that of the standard method based on the extrapolation of the 

linear fitting of the laser power to the pumping power2. In Fig. 7 we present a 

compilation of the measured slope efficiencies and threshold energies for the 

different thicknesses. From the figures, it is easily deduced that the previously 

proposed relation 𝜂 ∝ 1/𝐸𝑡ℎ does not hold. In addition, it is observed that the 

maximum of 𝜂 is very sharp, contrary to what happens to the minimum of the 

threshold energy. In the latter case, the thickness corresponding to the lower 

threshold energy is not well defined within the experimental error. The 

experiment clearly indicates that the slope efficiency value determines by itself 

the whole performance of the laser, with 𝐸𝑡ℎ having much smaller influence. 
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Fig. 7. Threshold energy per pulse of the pumping source (a) and slope efficiency of the laser 

emission vs. sample thickness.  

In order to interpret our results, we will use the already mentioned model10 

based on the rate equations for the populations of the excited states and laser 

generation in CLCs. In the following section, the typical trends of the different 

variables will be analyzed.  

 

3.3 A kinetic model for laser generation in CLCs 

The recently proposed model for laser generation in CLCs makes use of kinetic 

equations for the excited states populations and generated light10. The approach 

is standard in ordinary laser physics and only incorporates the peculiarity of 

the CLCs through the radiation dwelling time in the CLC layer 𝜏𝑐. We have 

already introduced this parameter in chapter 2, 𝜏𝑐 is given by Eq. (2.50): 

1

𝜏𝑐
=

𝑐

𝑛
(𝛽 +

4𝑃2

𝛼2𝐿3
) ,                                                (3.15) 

where 𝐿 is the is the length of the resonant cavity, 𝑃 is the pitch of the helix, 𝛽 is 

the coefficient of distributed losses, which accounts for the absorption and 
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scattering in the CLC sample, 𝑛 = √𝑛𝑜
2+𝑛𝑒

2

2
 is the mean refractive index and 𝛼 =

(𝑛𝑜
2−𝑛𝑒

2)

(𝑛𝑜
2+𝑛𝑒

2)
 is the optical anisotropy parameter. 

 

Fig. 8. Diagram of energy levels in a typical dye molecule. Solid arrows indicate radiative 

transitions, dashed arrows indicate thermal processes within an energy band and the dotted 

arrow indicates intercombination transitions from an excited singlet to a triplet level. 𝑊𝑖𝑗 are the 

probabilities of induced transition from level 𝑖 to level 𝑗 upon emission or absorption of a 

photon, 𝑊𝑠𝑝 is the probability of spontaneous transition from 𝑆1 to 𝑆0 upon emission of a photon 

and 𝑃𝑖𝑗  are the probabilities of transition from level 𝑖 to level 𝑗. 

A detailed deduction of the mentioned rate equations is found section (2.7). 

Here, directly, we will present such equations, as they appear in their final form 

in Ref. 10:  

𝑑𝑛2(𝑡)

𝑑𝑡
= − (

𝜎𝑒𝑃𝑒(𝑡)

ℎ𝜈𝑒𝑆
+

1

𝜏21
+

𝜎𝑎𝑃𝑎0(1 + exp[−𝜎𝑎𝑛1(𝑡)𝐿])

2ℎ𝜈𝑎𝑆
+ 𝑃23) 𝑛2(𝑡)

−
𝜎𝑎𝑃𝑎0(1 + exp[−𝜎𝑎𝑛1(𝑡)𝐿])

2ℎ𝜈𝑎𝑆
  𝑛3(𝑡) +

𝑁𝑃𝑎0(1 − exp[−𝜎𝑎𝑛1(𝑡)𝐿])

ℎ𝜈𝑎𝑆𝐿𝑛1(𝑡)
 , 

𝑑𝑛3(𝑡)

𝑑𝑡
= 𝑃23𝑛2(𝑡) − 𝑃31𝑛3(𝑡) ,                                      (3.16) 

𝑑𝑃𝑒(𝑡)

𝑑𝑡
=

𝑐

𝑛
(𝜎𝑒𝑃𝑒(𝑡) + 𝑘

ℎ𝜈𝑒𝑆

𝜏21
) 𝑛2(𝑡) −

𝑃𝑒(𝑡)

𝜏𝑐
 , 

where 𝑛1(𝑡), 𝑛2(𝑡) and 𝑛3(𝑡) are the ground singlet, first excited singlet and 

ground triplet levels respectively (see Fig. 8), 𝑃𝑎0 is the pumping power, 𝑆 the 

illumination area, 𝐿 the thickness of the sample, 𝜏21 the fluorescence lifetime of 
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level 2, and 𝜎𝑎 and 𝜎𝑒 the cross section of absorption and induced emission 

respectively. The 𝑘 coefficient is the fraction of spontaneous radiation at the 

laser frequency that travels along the helix axis; it can be considered as the seed 

for lasing. ℎ𝜈𝑎 and ℎ𝜈𝑒 are the energies of absorbed and emitted photons 

respectively. The density of dye molecules 𝑁 is given by                                    

𝑁 = 𝑛1(𝑡) + 𝑛2(𝑡) + 𝑛3(𝑡). Finally 𝑃𝑒(𝑡) is the power of emitted light inside the 

CLC layer and 𝑃𝑖𝑗 is the probability of transition from level 𝑖 to level 𝑗. 

Two comments are in order regarding the above system of equations: First, if 

we look at the third equation of system (3.16), we can see that the terms 

between brackets represent the power x m2 generated inside the resonant 

cavity. Nevertheless, in the second of those terms the fluorescence lifetime of 

level 2, 𝜏21 is used. But the decay of level 2 involves radiative and nonradiative 

phenomena. Because we are interested in radiative deexcitation, 𝜏21 must be 

replaced by the lifetime of radiative spontaneous emission 𝜏𝑟  in such equation. 

Secondly, in these equations, 𝑃𝑒(𝑡) represents the generated power inside the 

cavity. However, in real experiments, only photons that escape outside the 

cavity are measured. The light power outside the laser cavity can be obtained in 

the following way: If Ф is the number of photons inside the cavity, the rate at 

which the number of photons inside the CLC layer decreases is 1/𝜏𝑐. However, 

only the photons that are not absorbed or scattered give rise to the laser output. 

As a consequence, we can consider that the output rate of laser photons is 1/𝜏𝑐
0, 

where 𝜏𝑐
0 is obtained from Eq. (3.15) with 𝛽 = 0. Therefore, the output power of 

the laser emission 𝑃𝑜𝑢𝑡 is given by 

𝑃𝑜𝑢𝑡 = ℎ𝜈𝑒

Ф

𝜏𝑐
0  .                                                     (3.17) 

Ф and the power of emitted light inside the cavity, 𝑃𝑒, are related by 

𝑃𝑒 = ℎ𝜈𝑒

Ф

𝑆𝐿

𝑐

𝑛
𝑆 ,                                                     (3.18) 
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Then 

𝑃𝑜𝑢𝑡 =
𝐿

(
𝑐
𝑛)

𝑃𝑒(𝑡)

𝜏𝑐
0  .                                                   (3.19) 

So, the light power outside the cavity 𝑃𝑜𝑢𝑡 is a fraction of the light power inside 

the cavity 𝑃𝑒. This fraction is simply the number of times that the photons cover 

the sample length 𝐿 before escaping from the cavity. 

3.3.1 A typical example 

In order to get a better understanding of Eqs. (3.16), we present here a typical 

case for the level population behavior under fluorescence and laser generation 

regimes. For this task, we will numerically solve Eqs. (3.16) and study the 

evolution of 𝑛1(𝑡), 𝑛2(𝑡), 𝑛3(𝑡) and 𝑃𝑒(𝑡) as the pumping energy is increased. 

The values of the used parameters appear in detail in Table 1, where 𝜏𝑓 

(fluorescence lifetime) replaces 𝜏21 in the first of Eqs. (3.16) and 𝜏𝑟 (radiative 

lifetime) plays the same role in the third one. Data were obtained from the 

literature and from our experimental parameters. 

Parameter Value 

𝑃 (μm) 0.352 

𝑛 1.6 

𝛼 0.125 

𝑃31 (s-1), 𝑃23 (s-1) 104, 5x107 

𝜏𝑓 (ns), 𝜏 𝑟(ns) 1.2, 2.4 

𝐾 10-7 

𝜎𝑒 (cm2), 𝜎𝑎 (cm2) 0.8x10-16, 0.35x10-16 

𝛽 (cm−1) 350 

𝑆 (μm2) 1.26x103 

𝐿(μm) 12 

𝑁 (cm-3) 1.8x1019 

Table 1. Parameters used for the simulations. The pumping and laser emission wavelengths 

were 532 and 605 nm, respectively. 
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Here we study different pumping regimes, below the threshold, at the 

threshold and above the threshold. For the simulations we have represented the 

pumping source as a typical Gaussian pulse of 14 ns (FWHM) (see Fig. 9). 

 

Fig. 9. Normalized temporal profile of a simulated typical pumping pulse.  

Well below the threshold, the emitted power per pulse is very low and the 

profiles of the pulses are similar to that of the pump (see Fig. 10). As the 

pumping power is increased, the emitted profiles barely change and their 

power increases linearly with the pump; under this regime there is no lasing 

but fluorescence. Near the threshold, the emitted pulses show an abrupt 

change: emitted power increases in several orders of magnitude and their 

temporal profiles become very sharp. At the threshold, a minimum width is 

reached at the same time as the power increases several orders of magnitude. 

Above the threshold, lasing occurs showing spiking. We have used the point of 

minimum width, just before spiking starts, for determining the thresholds (see 

Fig. 10). 
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Fig. 10. Simulated temporal profiles of laser emission pulses for different pumping energies per 

pulse up to the threshold, and just above the threshold. Notice that a minimum width is 

reached at the threshold.  

The excited singlet is the responsible for lasing, thus 𝑛2(𝑡) is the population 

responsible for laser generation. In Fig. 11 we can see that under low pumping 

regime less than a 20% of the dye molecules are in level 2, furthermore, it shows 

a gaussian profile similar to that of the pump. As pumping power is increased, 

at the threshold, a maximum of ~40 % of the dye molecules are excited to level 

2. Interestingly, above the threshold, even under high pumping regime, 

population inversion does not exceed 40% of the dye molecules. This behavior 
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is due to stimulated emission. Once the required population inversion is 

achieved (𝑛2
𝑡ℎ), the expected increase of the population in level 2 is compensated 

by de-excitation by stimulated emission. An increase in the pumping power, 

results in a temporal plateau in the population of 𝑛2 that is enlarged in duration 

as the energy increases. Strictly speaking, above the threshold 𝑛2(𝑡) is not 

constant but describes damped oscillations around 𝑛2
𝑡ℎ. On the other hand, 

excited molecules in level 2 can also undergo nonradiative transitions to the 

triplet level. These transitions are governed by the lifetime 𝑃23. Furthermore, 

since 𝑃23 is much larger than 𝑃31, the population 𝑛3(𝑡) increases monotonously, 

as shown in Fig.12. Therefore, this dye population is excluded for laser 

generation.  
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Fig. 11. Simulated temporal profiles of 𝑛2(𝑡) for different pumping regimes. Notice that at the 

threshold a maximum population 𝑛2
𝑡ℎ is reached. For higher pumping energies the 𝑛2(𝑡) value 

remains constant at the maximum (𝑛2
𝑡ℎ) during a certain time. The higher the pumping energy 

the longer the time.  
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Fig. 12. Simulated temporal profiles of 𝑛3(𝑡) for different pumping regimes. Notice that the 

maximum of 𝑛3 increases monotonously as the pumping energy increases. Due to the low rate 

of de-excitation to the fundamental level (𝑃31) the maximum 𝑛3 value is maintained for a 

relatively long time; in our case for about 200 μs. 

Thus, for very intense pulses, the time for which the level 3 is being excited is 

very long and therefore, lasing cannot be maintained. This behavior is shown in 

detail in Fig. 13. 

 

Fig. 13. Temporal profiles of 𝑛2(𝑡) and 𝑛3(𝑡) for different pumping regimes. In the case of        

1.8 𝐸𝑡ℎ, the duration of laser pulse is not limited for the value of the population 𝑛3, on the 

contrary for 100 𝐸𝑡ℎ it is, since the proportion of dye molecules excited in the level 3 is too high .  

Fig. 13 shows the temporal profiles of 𝑛2(𝑡) and 𝑛3(𝑡) for two different 

pumping regimes. For a pumping energy of 1.8 𝐸𝑡ℎ the duration of the laser 
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pulse is not limited by the dye population excited to level 3, i.e. 𝑛3 ≤ 𝑁 − 𝑛2
𝑡ℎ. 

On the contrary, in the case of 100 𝐸𝑡ℎ the laser emission decays once the 

previous condition is not fulfilled. This fact carries with serious limitations for 

the construction of CLC continuous lasers.  

For the sake of completeness it is also interesting to have a look to the evolution 

of 𝑛1(𝑡) = 𝑁 − 𝑛2(𝑡) − 𝑛3(𝑡), see Fig. 14. The same information as that of Figs. 

11-13 can be deduced, i.e. under low pumping regime, the population of the 

ground state decreases, as molecules are excited to level 2 and from level 2 to 3. 

Molecules in level 3 are excluded for laser generation during a relatively long 

period of time respect to the duration of the pump. When 𝑛3 ≥ 𝑁 − 𝑛2
𝑡ℎ occurs, 

population inversion is prevented. 
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Fig. 14. Simulated temporal profiles of 𝑛1(𝑡) for different pumping regimes. 

 

3.4 Dependence of 𝑬𝒕𝒉 and 𝜼 on the sample thickness. Numerical 

simulations and discussion 
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corresponding to different values of the sample thickness and we compared 

them to our experimental results (section 3.2). The used parameters are shown 

in Table 1. 

We first obtained the coefficient of distributed losses 𝛽 of our sample from the 

experimental values of 𝐸𝑡ℎ. With 𝛽 = 350 cm-1, the calculated threshold energies 

are in reasonable agreement with the observed 𝐸𝑡ℎ for all the sample 

thicknesses (see Fig. 15). Such coefficient affects greatly to the pumping 

threshold and the slope efficiency.  

On the other hand, in Fig. 16 we show the calculated 𝜂 values together with our 

experimental results. Red points in Fig. 16 are the simulated slope efficiencies 

and black dots are the experimental results. A very good accordance is obtained 

with the observations, in particular, the existence of an optimum 𝐿 is well 
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reproduced. Remarkably, the optimum thickness is rather insensitive to the 𝛽 

value, showing changes smaller than 1 μm for 𝛽 variations in the range        

100–400 cm-1. Something similar happens with the dependence on the dye 

concentration: the position of the maximum only decreases slightly as 𝑁 is 

raised within reasonable ranges. 

 

Fig. 15. Threshold energy per pulse of the pumping source vs. sample thickness. Red circles 

represent the experimental results and black circles the values calculated numerically. 

 

Fig. 16. Slope efficiency of the laser emission vs. sample thickness. Black circles represent the 

experimental results and red circles the values calculated numerically. The theoretical values 

are normalized by a factor of 0.7 in order to get coincidence with the experimental values. 
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It is worth noting that though the shapes of the 𝜂(𝐿) curves are predicted 

accurately, the absolute values of the calculated efficiencies are always 

overestimated (typically a factor between 1 and 2 is found, see the caption of 

Fig. 16). This is easy to understand because, in practice, there are additional 

contributions to the laser radiation from modes that propagate away from the 

cell normal. These modes, in general, are activated at higher thresholds and 

present smaller 𝜂. Obviously, they are not considered in our 1D model. In 

particular, the so-called leaky modes12, which propagate within the glasses at 

grazing angles, are known to provoke dramatic reductions of the Bragg-mode 

lasing efficiency if precautions are not taken13. 

It is worth noticing that, except for small thicknesses, 𝐸𝑡ℎ only shows a slight 𝐿 

dependence for 𝐿 > 12 μm in contrast to what happens with the slope 

efficiency, that shows a much more pronounced dependence. Also, we 

observed that despite variations in 𝛽 affect greatly to 𝐸𝑡ℎ, variations within a 

reasonable range (100-400 cm-1) do not affect to the position of the minimum of 

𝐸𝑡ℎ. 

As a conclusion, we have seen that Shytkov and Palto’s model can numerically 

account for most of our experimental results. In especial those related to the 

dependence of the slope efficiency and threshold energy on the sample 

thickness. Even more interesting would be the deduction of analytical 

expressions for these quantities as a function of the main parameters of CLC 

lasers. This is the objective of the next section.  
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3.5 Analytical approximations for the slope efficiency and 

threshold 

Starting with 𝜂, let assume that we are under high pumping level conditions. 

Then, 𝜂 is simply equal to the ratio between the emitted and input energies, 

since 𝐸𝑡ℎ is much smaller than the pumping energy. Firstly we will assume that 

the absorbed pumping energy is completely transformed into laser radiation. 

This assertion it is not strictly true since a small amount of the energy is emitted 

as fluorescence and also through non-radiative processes. However, these 

contributions will be disregarded. 

The fraction of pumping energy that is absorbed after traversing the sample is: 

[1 − exp[−𝜎𝑎〈𝑛1(𝑡)〉𝐿]] ,                                            (3.20) 

where 〈𝑛1(𝑡)〉 is the temporal average of the population density of the ground 

level during the lasing. 

Then, taking into account the different energy between absorbed and emitted 

photons, the ratio of absorbed-emitted energy is 

ℎ𝜈𝑒

ℎ𝜈𝑎
[1 − exp[−𝜎𝑎〈𝑛1(𝑡)〉𝐿]] .                                       (3.21) 

However, not all the emitted photons escape from the cavity. Some of them are 

lost due to the coefficient of distributed losses 𝛽. So, taking into account that the 

efficiency with which the absorbed pumping photons are transformed into laser 

photons outside the cavity is (𝜏𝑐/𝜏𝑐
0), the slope efficiency can be expressed as 

follows: 

𝜂 =
ℎ𝜈𝑒

ℎ𝜈𝑎

[1 − exp(−𝜎𝑎〈𝑛1(𝑡)〉𝐿)]
𝜏𝑐

𝜏𝑐
0  .                                (3.22) 
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Remember that in Eq. (3.22), 〈𝑛1(𝑡)〉 is the time average population density of 

the ground state during the lasing, i.e., 〈𝑛1(𝑡)〉 = 𝑁 − 〈𝑛2(𝑡)〉 − 〈𝑛3(𝑡)〉. In order 

to calculate 〈𝑛1(𝑡)〉, we first recall that our simulations show that 𝑛2(𝑡) is 

approximately constant during lasing (see Figs. 11 and 13), with a value 𝑛2(𝑡) ≈

𝑛2
𝑡ℎ, where 𝑛2

𝑡ℎ is given by14 

𝑛2
𝑡ℎ =

𝑛

𝑐𝜎𝑒𝜏𝑐
 ,                                                       (3.23) 

irrespective of the pumping power. 

On the other hand, since 𝑃31 < 𝑃23 (see Table 1), the second equation of system 

(3.16) results in 

𝑑𝑛3(𝑡)

𝑑𝑡
≈ 𝑃23𝑛2(𝑡) ,                                                 (3.24) 

so the population density of the triplet level during lasing process is (see Fig. 12 

for 100 𝐸𝑡ℎ) 

𝑛3(𝑡) ≈ 𝑛2
𝑡ℎ𝑃23𝑡 .                                                    (3.25) 

Thus, under strong pumping regime, 𝑛1(𝑡) has an approximate evolution (see 

Fig. 14 for 100 𝐸𝑡ℎ) 

𝑛1(𝑡) = 𝑁 − 𝑛2
𝑡ℎ − 𝑛2

𝑡ℎ𝑃23𝑡 .                                         (3.26) 

Therefore, taking an average in Eq. (3.26), we can write 

〈𝑛1〉 = 𝑁 − 𝑛2
𝑡ℎ − 𝑛2

𝑡ℎ𝑃23

𝛥𝜏𝑙

2
 ,                                       (3.27) 

where 𝛥𝜏𝑙 is the time interval during which the lasing takes place. That is, the 

time during which population inversion is maintained. 



3.5 Analytical approximations for the slope efficiency and threshold 

86 

Introducing this last result in Eq. (3.22) we have an analytic expression for 𝜂(𝐿). 

Continuous line in Fig. 17 represents the analytical approximation for 𝜂(𝐿). We 

have taken 𝛥𝜏𝑙 ≈ 3∆𝜏𝑝, where 𝛥𝜏𝑝 is the full mean width of the pumping pulse. 

Notice that for very intense pulses 𝛥𝜏𝑙 could be theoretically much higher than 

𝛥𝜏𝑝 but, in practice, for moderate excitations, both times are of the same order 

of magnitude, and 𝛥𝜏𝑙 is a few times larger than 𝛥𝜏𝑝 at most. This possible 

difference barely affects to the shape of 𝜂(𝐿), and only contributes as a scale 

factor. The rest of the parameters are those in Table 1. A very good agreement is 

found with the numerical calculations obtained by solving Eqs. (3.16) (see Fig. 

17). Nevertheless, as in the case of numerical data, we had to normalize 𝜂(𝐿) by 

a factor 0.7 in order to get coincidence with the experimental values. 

 

Fig. 17. Slope efficiency of the laser emission vs. sample thickness. Blue circles represent the 

experimental results, red circles the values calculated numerically and the continuous line 

correspond to the results calculated from the analytical expression (3.22). The theoretical values, 

i.e., blue circles and continuous line, are normalized by a factor of 0.7 in order to get coincidence 

with the experimental values. 
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fraction of the pumping energy absorbed by the system. The effect is the worse 

the longer the pumping pulse as previously shown in the study of the temporal 

profile of 𝑛3 (see Figs. 12 and 13). This is the main drawback for achieving CW 

lasers made of CLCs doped with organic dyes15. 

It is interesting to note the existence of a minimum thickness 𝐿𝑚𝑖𝑛 below which 

lasing is impossible. This is easy to interpret and corresponds to the situation 

where all the dyes in the sample are needed to produce the required population 

inversion 𝑛2
𝑡ℎ, i.e., 𝑁 = 𝑛2

𝑡ℎ. Using Eqs. (3.15) and (3.23), this condition implies 

  𝐿𝑚𝑖𝑛 = [
4𝑃2

(𝑁𝜎𝑒 − 𝛽)𝛼2
]  

1/3

  .                                         (3.28) 

With the data of Table 1, we get 𝐿𝑚𝑖𝑛 = 6.6 μm, which fits rather well with our 

experiment, in which laser emission was hard to be observed for thicknesses 

below 7 µm. The numerical value of 𝐿𝑚𝑖𝑛 is relatively unaffected by variations 

of 𝛽 within reasonable ranges. For example for 𝛽 = 100 cm-1, 𝐿𝑚𝑖𝑛 = 6.2 µm and 

for 𝛽 = 500 cm-1, 𝐿𝑚𝑖𝑛 = 7 µm. Eq. (3.28) also shows that raising 𝛽 above a 

certain limit can kill completely the laser operation (𝐿𝑚𝑖𝑛 = ∞). This situation 

occurs for losses above 𝛽𝑙𝑖𝑚 = 𝑁𝜎𝑒. In our case, 𝛽𝑙𝑖𝑚 ≈ 1500 cm-1, which shows 

the importance of using a sample of good quality in practical devices. 

We finally turn to deducing an analytical expression for 𝐸𝑡ℎ(𝐿). When the 

pumping level achieves the threshold value, the population density of level 2 

must be 𝑛2
𝑡ℎ. The process of raising 𝑛2(𝑡) up to the threshold value 𝑛2

𝑡ℎ is driven 

by the pumping pulse. Therefore 𝑛2(𝑡) exhibits a temporal profile similar to 

that of the pumping pulse, at least up to its maximum.  

Therefore, if the pumping pulse is Gaussian, we have: 

𝑛2(𝑡) = 𝑛2
𝑡ℎexp [− (

𝑡 − 𝑡0

𝛥𝜏𝑝/2
)

2

ln (2)] ,                               (3.29) 
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for 𝑡 ≤  𝑡0, where 𝑡0 is the corresponding time the maximum of the pumping 

pulse. Under the assumption 𝑃31 ≪ 𝑃23, we can integrate Eq. (3.24) to obtain the 

population of level 3 at the threshold 𝑛3
𝑡ℎ. The result is 

𝑛3
𝑡ℎ = 𝑛2

𝑡ℎ√
𝜋

16𝑙𝑛2
𝑃23𝛥𝜏𝑝 ≈ 0.53𝑛2

𝑡ℎ𝑃23𝛥𝜏𝑝 .                          (3.30) 

On the other hand, the pumping energy at the threshold must satisfy the 

equation 

1

2

𝐸𝑡ℎ

ℎ𝜈𝑎𝑆𝐿
[1 − exp(−𝜎𝑎𝐿𝑛1

𝑡ℎ)] = 𝑛2
𝑡ℎ + 𝑛3

𝑡ℎ + ∫
𝑛2(𝑡)

𝜏𝑓

𝑡0

−∞

𝑑𝑡 ,             (3.31) 

where 𝑛1
𝑡ℎ = 𝑁 − 𝑛2

𝑡ℎ − 𝑛3
𝑡ℎ. The left-hand side of Eq. (3.31) is approximately the 

density of photons absorbed up to the maximum of the pumping pulse. The 

factor 1/2 indicates that only half the energy of the pulse is required for 

achieving the threshold. (
1

2
)

𝐸𝑡ℎ

ℎ𝜈𝑎𝑆𝐿
 is the density of photons in the cavity, per 

pulse, when the threshold energy is reached, and the term in brackets is the 

fraction of such photons that are absorbed. These photons raise the population 

of levels 2 and 3 up to their corresponding thresholds. The last term of the right-

hand side of Eq. (3.31) stands for the drop of population of level 2 due to 

fluorescence. By integrating that term, we get 

𝐸𝑡ℎ = 2ℎ𝜈𝑎𝑆𝐿𝑛2
𝑡ℎ

(1 + 0.53𝛥𝜏𝑝(𝑃23 + 1/𝜏𝑓))

1 − exp(−𝜎𝑎𝑛1
𝑡ℎ𝐿)

 .                       (3.32) 

Continuous line in Fig. 18 shows the threshold energy obtained by using        

Eq. (3.32) with the parameters of Table 1. As can be seen, the agreement with 

the numerical values deduced from Eqs. (3.16) (blue points) is excellent. For 

relatively large 𝐿 or high dye concentrations, the dependence of the 
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denominator of (3.32) on 𝐿 is small. In such case, by using Eq. (3.23), it is 

straightforward to deduce that 𝐸𝑡ℎ(𝐿) behaves approximately as 𝐿/𝜏𝑐, i.e., has a 

𝐿 dependence given by 𝛽𝐿 +
4𝑃2

(𝛼𝐿)2 in accordance to reference 8. Differentiating 

respect to 𝐿 and equaling to 0 we can see that the thickness for the smallest 𝐸𝑡ℎ 

scales then as 𝛽−1/3. 

 

Fig. 18. Threshold energy per pulse of the pumping source vs. sample thickness. Red circles 

represent the experimental results, blue circles the values calculated numerically and the 

continuous line correspond to the results calculated from the analytical expression (3.32). 

It is interesting to connect the 𝐿-dependences of 𝜂 and 𝐸𝑡ℎ. Multiplying both 

analytical expressions, using Eq. (3.23) and in the thickness range in which the 

exponential terms in Eqs. (3.22), (3.32) can be disregarded we get: 

 

𝐸𝑡ℎ(𝐿)𝜂(𝐿) ≈ 2𝑆ℎ𝜈𝑒

𝑛

𝑐𝜎𝑒
(1 + 0.53𝛥𝜏𝑝(𝑃23 + 1/𝜏𝑓))

𝐿

𝜏𝑐
0  = 𝐴

𝐿

𝜏𝑐
0 ,       (3.33) 

where 𝐴 is independent of 𝐿. The dwelling time in the absence of losses scales 

as 𝜏𝑐
0 ∝ 𝐿3 (see Eq. (3.15)), and therefore 
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𝐸𝑡ℎ(𝐿)𝜂(𝐿) ∝
1 

𝐿2
 .                                                   (3.34) 

This behavior contrast with that found on a F-P cavity, where 𝜏𝑐
0 is simply 

proportional to the cavity length, 𝜏𝑐
0 ∝ 𝐿, and thus 𝐸𝑡ℎ(𝐿)𝜂(𝐿) ≈ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. For 

large cavity thicknesses, the factor 1/𝐿2 in (3.34) reduces the 𝜂(𝐿) values in CLC 

lasers with respect to those expected in normal lasers. This conclusion contrast 

with the general belief that the expression 𝜂 ≈ 1/𝐸𝑡ℎ, valid for F-P cavities can 

be extrapolate to CLC lasers, as in fact was assumed in references 2, 3, 4 and 7.  

 

3.6 Conclusions 

In this chapter we have studied some general features of the laser generation in 

CLCs and we have clarified several aspects that affect the laser performance. In 

this respect, we have make clear several points that were misinterpreted up to 

now and we have obtained analytical expressions that will be useful tools to 

design efficient CLC lasers. Especial attention has been paid to the role played 

by the sample thickness in the performance of CLC lasers. We have found, both 

experimentally and theoretically, that there is a minimum for 𝐸𝑡ℎ(𝐿) and a 

maximum for 𝜂(𝐿) at somewhat different thicknesses. The assumption            

𝜂 ∝ 1/𝐸𝑡ℎ, previously assumed by most of the researchers in this field, does not 

hold but the maximum for 𝜂(𝐿) is more prominent than that of 1/𝐸𝑡ℎ and, in 

practice, determines the best laser performance. Interestingly, the optimum 

thickness is almost a constant independently of variations of 𝛽 or 𝑁 within 

realistic ranges. 

Analytical expressions for 𝐸𝑡ℎ and 𝜂 have also been deduced. These expressions 

are in excellent agreement with the numerical calculations and permit to 

analyze easily the influence of the dye and CLC parameters on the performance 

of the laser. Considering the cavity thickness, both relations show that there is a 
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competition between two phenomena. On the one hand, the quality of the 

resonant cavity, which is characterized by 𝜏𝑐, increases as 𝐿 increases (see       

Eq. (3.15)). In analogy with conventional mirror lasers this is equivalent to an 

increase in the mirrors reflectivity. This is why in the low thickness range, laser 

performance improves as 𝐿 increases. However, the proportion of laser light 

that escapes the CLC sample decreases as the thickness is enlarged as a 

consequence of the increase of 𝜏𝑐
𝑜, as shown in Eq. (3.19). This is why it is 

important to find the best commitment between both competing phenomena. 

Also, the analytical expressions deduced for 𝐸𝑡ℎ and 𝜂 show that the quantum 

yield to the triplet level and the width of the pumping pulse has been found to 

have a similar effect in the laser operating mechanism. The increase of both is 

detrimental to the laser. This explains, partially, the difficulty in the realization 

of lasers pumped by CW light sources in these structures. Other factors such as 

the thermal stability of the cholesteric helix should also be solved to succeed in 

the fabrication of these kind of lasers. 
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4.1 Introduction 

In order to get further insight on the nature of CLC lasers, in this chapter we are 

going to deal with some dynamical aspects of fluorescence and lasing. 

In chapter 2 we presented a recently proposed model by Shtykov and Palto1 for 

laser generation in CLCs. Such rate equations are useful for studying a great 

variety of laser characteristics. For example, chapter 3 was focused on the 

influence of the cavity thickness in the laser performance. Inter alia, these 

equations can be useful for studying luminescence lifetimes in CLC light 

emission. Up to now, rather few experimental results have been published on 

luminescence lifetimes and, in general, about the kinetics of light emission in 

photonic materials2, 3, 4, 5, 6. In this chapter, we present some studies in this 

respect by examining the response of a CLC laser to nanosecond optical 

pumping. The temporal profiles of the output pulses have been found to 

depend greatly on the pumping power, thus giving information about the 

dynamics of the fluorescence and laser emission. We will interpret the obtained 

results by means of the mentioned rate equations1. 

A molecule in the excited singlet (see Fig. 8 of chapter 3) can decay to the 

ground level by means of radiative or nonradiative processes. The decay rate, 𝑘, 

of the excited singlet can be written as the sum of the decay rates of radiative 

and nonradiative processes: 

𝑘 = 𝑘𝑟𝑎𝑑 + 𝑘𝑛𝑜𝑛𝑟𝑎𝑑 =
1

𝜏𝑟𝑎𝑑
+

1

𝜏𝑛𝑜𝑛𝑟𝑎𝑑
 ,                                  (4.1) 

where 𝜏𝑟𝑎𝑑 and 𝜏𝑛𝑜𝑛𝑟𝑎𝑑  are the radiative and non radiative decay times 

respectively. Thus, the fluorescence lifetime of the excited singlet has the 

following form: 
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𝜏𝑓 =
1

𝑘
=

1

𝑘𝑟𝑎𝑑 + 𝑘𝑛𝑜𝑛𝑟𝑎𝑑
=

𝜏𝑟𝑎𝑑𝜏𝑛𝑜𝑛𝑟𝑎𝑑

𝜏𝑟𝑎𝑑 + 𝜏𝑛𝑜𝑛𝑟𝑎𝑑
 ,                             (4.2)

As we showed in detail in chapter 2, the emission intensities of a dye are 

substantially modified if the dye is dissolved in a CLC compared to the case of 

an isotropic solvent. This can be understood by means of Fermi’s golden rule 

(see Eq. (2.49)). Such rule shows how the rate of fluorescence emission is 

directly proportional to the 𝐷𝑂𝑆. Therefore a modification in the 𝐷𝑂𝑆 results in 

a change in the fluorescence emission spectrum. In principle, it could be 

thought that this alteration may also affect to the fluorescence lifetime of the 

dye. However, some authors have observed that fluorescence lifetimes do not 

suffer appreciable alteration6. This lack of modification occurs regardless of the 

light polarization, sample thickness and wavelength, all of which affect the 𝐷𝑂𝑆 

and, in principle, should have a counterpart in the lifetimes. The mentioned 

authors could not explain why fluorescence times remain unaltered and to the 

best of our knowledge this controversial point remains unsolved. At the end of 

this chapter, we will also go back to this point. 

 

4.2 Experimental procedure and results 

The materials used for the experiments in this chapter were the same as those of 

point (2.5.1) of this dissertation. The proportions in the mixture were also the 

same. The sample cell was made of two glass plates separated a distance  𝐿 =

10 μm. The material was in the Cano geometry, i.e. with the helix axis 

perpendicular to the substrates in the CLC phase.  

The photonic properties of the material were studied in section (2.5.1). The band 

gap appears in the range 559-634 nm of wavelength. The fluorescence spectra 

and lasing emission (at a wavelength of 634 nm) are shown in Figs. 12, 14, 15, 
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and 16 of chapter 2. As expected, lasing consisted on circularly polarized light 

with the same handedness as the CLC helix (right handed). 

The pumping source was a Nd:YAG laser operating at the second-harmonic 

frequency (wavelength 532 nm). Pulses of 14 ns and with a repetition rate of      

5 Hz were used. The pumping light was focused on the sample using a lens of 

20 cm of focal length; this resulted in a spot size of 40 μm of diameter at the 

sample. The experimental setup is depicted in Fig. 1. 

The angle of incidence of the pumping light was of 450, and the light was 

circularly polarized with the handedness opposite to the CLC helix. All the 

measurements were made at room temperature. For the dynamical 

measurements the light emitted around the cell normal was collected using a 

lens of 50 mm of diameter that focused the light on a fast photodiode (rise and 

fall times of 1 ns). A filter centered at 633 nm with a narrow band pass (FWHM 

4 nm) was used to avoid the averaging effect of the lifetime in a wider 

wavelength range. As in section (2.5.1), it was checked that the emitted light 

was circularly polarized with the same handedness as that of the helix. The 

photodiode was connected to an oscilloscope. To eliminate artificial pulse 

broadening during pulse averaging (due to jitter effects) single shot data were 

taken. 

 

Fig. 1. Experimental setup: L1 and L2 are lens, 𝑆 is the sample, 𝜃 is the angle of incidence, F.PD 

is the abbreviation for fast photodiode. 
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Fig. 2. Normalized temporal profiles of laser emission pulses for different pumping energies. To 

facilitate a comparison we present the profile corresponding to pump in all graphs (green line).  

Fig. 2 shows some representative pulses for different pumping powers. Well 

below the threshold intensity, the laser pulse shows a temporal profile similar 

to that of the pumping laser. At the threshold, the narrowing of the pulse is 

limited by the detector time resolution (2 ns). When lasing starts, the pulse 

shape becomes more irregular, and the output consists of individual bursts of 

about 2 ns with a fluctuating pattern formation. As a consequence the width of 

the emitted pulses shows again a slight increasing trend. Figure 3 shows the 

pulse duration as a function of the pumping pulse energy.
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Fig. 3. Experimental duration of the light emission pulses as a function of the pumping pulse 

energy. The pumping energy is given in units of the laser threshold energy. The experimental 

threshold was 1.9 μJ per pulse. 

 

4.3 Numerical simulations and discussion 

Parameter Value 

𝑃 (μm) 0.367 

𝑛 1.6 

𝛼 0.125 

𝑃31 (s-1), 𝑃23 (s-1) 104, 5x107 

𝜏𝑓 (ns), 𝜏 𝑟(ns) 1.2, 2.4 

𝐾 10-7 

𝜎𝑒 (cm2), 𝜎𝑎 (cm2) 0.4x10-16, 0.4x10-16 

𝛽 (cm−1) 102 

𝑆 (μm2) 1.26x103 

𝐿(μm) 10 

𝑁 (cm-3) 2x1019 

Table 1. Parameters used for the simulations. The pumping and laser emission wavelengths 

were 532 and 634 nm respectively. 

In order to interpret our results we will come back to Shytkov and Palto’s 

model1. Remember that such equations were presented in chapter 2 and used in 
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chapter 3 (see Eqs. (2.56) or (3.16)). The parameters used in the simulation are 

given in Table 1, where it is kept the same notation for 𝜏𝑓 and 𝜏𝑟 as that of the 

chapter 3. Fig. 4 shows the pulse behavior of emitted light under different 

pumping regimes. Pulses in Fig. 4 are normalized. At low pumping, 

luminescence duration is close to that of the excitation source. As pumping 

increases the width of the fluorescence pulses decreases. At the threshold, the 

emission is extremely narrow, clearly below 1 ns. For powers above the 

threshold, relaxation oscillations (spiking) take place (Fig. 4), with an increasing 

number of spikes as the pumping level is raised. 
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Fig. 4. Calculated temporal profiles of laser emission pulses for different pumping energies. The 

intensities have been normalized.  

In chapter 3 it was shown that above the threshold, the inversion population, 

𝑛2
𝑡ℎ, is kept constant, even under high pumping regime. Strictly speaking this is 

not true. A large-scale plot of 𝑛2(𝑡) (see Fig. 5 (a)) shows that the excited singlet 

population describes a series of damped oscillations around 𝑛2
𝑡ℎ. Simulations 

show that the higher the pumping energy, the greater the number of damped 

oscillations but also the longer the time during which 𝑛2
𝑡ℎ is maintained. 
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Fig. 5. (a) Simulated temporal profile of 𝑛2 and (b) laser emission. The oscillations in 𝑛2(𝑡) are 

on the origin of the lasing spikes. 

Pulse profiles are related to the population of the excited singlet. Well under the 

threshold, 𝑛2(𝑡) is far away from its threshold value. Besides, 𝑛2(𝑡) exhibits a 

temporal profile similar to that of the pumping pulse since fluorescence time is 

clearly shorter than the pulse duration. Under such pumping regime, 

spontaneous emission is more important than stimulated emission. Due to this 

fact there is only fluorescence and this fluorescence exhibits a temporal profile 

similar to that of the pumping pulse. As the pumping power is raised, the 

stimulated emission increases importance and thus 𝑛2(𝑡) is de-excited quicker. 

This fact results in a narrowing of the emitted fluorescence pulses (see Fig. 4). 

At the threshold, 𝑛2
𝑡ℎ value is achieved (see Fig. 11 of chapter 3). At such point 

lasing occurs, thus the excited singlet is quickly de-excited through stimulated 

emission. Due to this fact, a minimum of less than 1 ns width is reached at the 

threshold. 

The spiking phenomenon above the threshold is well known in solid-state 

lasers7 and is related to the described temporal profile of 𝑛2(𝑡). Once 𝑛2
𝑡ℎ is 

reached, there is a short period of time characteristic of the stimulated emission 

(
ℎ𝜈𝑒

𝜎𝑒𝐼𝑒
, see section (2.7) of this dissertation), before any laser emission occurs, and 
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𝑛2(𝑡) continues growing. However, when lasing begins the emitted photons 

grow very quickly and as a consequence 𝑛2(𝑡) decreases even slightly below the 

threshold value. Therefore, stimulated emission is strongly decreased and the 

process starts again. This is the origin of the damped oscillations of 𝑛2(𝑡) and 

consequently of the intensity of laser emission known as spike. Despite that 

solutions of laser rate equations predict a train of spikes as those shown in Figs. 

4 and 5 (b), in practice, mechanical and thermal disturbances act to continually 

re-excite the spiking behavior, which often occurs in an unpredictable-fashion. 

In our experimental results, when the pumping energy is well above the 

threshold, we observe this phenomenon which gives rise to output fluctuations 

(see Fig. 2). 

In general, theoretical predictions are in good agreement with the experimental 

results, at least qualitatively (Fig. 2 and Fig. 3). In Fig. 6 we present the widths 

of the emitted pulses for both experimental and simulated results. 

 

Fig. 6. Experimental (black dots) and simulated (red dots) duration of the light emission pulses 

as a function of the pumping pulse energy. The pumping energy is given in units of the laser 

threshold energy (1.9 μJ per pulse). 
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4.4 Fluorescence lifetimes 

Now it is interesting to examine the issue of the fluoresce lifetime of a dye 

dissolved in a CLC. As we showed in chapter 2, the fluorescence spectrum of a 

dye inside a CLC is deeply modified with respect to the case of an isotropic 

solvent. However, as has been mentioned above, it has been experimentally 

shown6 that the fluorescence lifetime of the dye is essentially unaltered by the 

CLC photonic structure. The question that now arises is whether the theoretical 

frame of Eqs. (2.56) can properly account for these phenomena. 

First of all, let’s consider the first equation of system (2.53) where                   

𝑁1 = 𝑁 − 𝑁2 − 𝑁3 

𝑑𝑛2(𝑡)

𝑑𝑡
=

𝜎𝑎

ℎ𝜈𝑎𝐿
[∫ 𝑁1(𝑧, 𝑡)𝐼𝑎(𝑧, 𝑡)𝑑𝑧

𝐿

0

] − 𝑛2(𝑡) (
𝜎𝑒𝐼𝑒(𝑡)

ℎ𝜈𝑒
+

1

𝜏𝑓
+ 𝑃23) .     (4.3) 

Let us assume that the sample is illuminated with short pulses of low energy. 

Under these conditions, a small population 𝑛20 is generated in the sample. 

Because we are interested in the decay process, we must focus on the negative 

part of Eq. (4.3). So 

𝑑𝑛2(𝑡)

𝑑𝑡
= −𝑛2(𝑡) (

𝜎𝑒𝐼𝑒(𝑡)

ℎ𝜈𝑒
+

1

𝜏𝑓
+ 𝑃23) .                                (4.4) 

The first term in the right side of Eq. (4.4) can be neglected because in the case 

of fluorescence 𝐼𝑒(𝑡) is very small, and 𝑃23 can also be neglected with respect to 

1/𝜏𝑓 (see Table 1). So, Eq. (4.4) can be rewritten as 

𝑑𝑛2(𝑡)

𝑑𝑡
=

−𝑛2(𝑡)

𝜏𝑓
  ,                                                    (4.5) 

which results in a decay expression: 
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𝑛2(𝑡) = 𝑛20exp [
−𝑡

𝜏𝑓
] .                                                 (4.6) 

This de-excitation gives rise to light emission. For calculating its power we 

introduce this result in the third of Eqs. (2.56). Then 

𝑑𝑃𝑒(𝑡)

𝑑𝑡
=

𝑐

𝑛
(𝑘

ℎ𝜈𝑒𝑆

𝜏𝑟
) 𝑛20exp [

−𝑡

𝜏𝑓
] −

𝑃𝑒(𝑡)

𝜏𝑐
 .                             (4.7) 

Notice that for this result we have eliminated 𝑃𝑒(𝑡), inside the brackets (third 

equation of system (2.56)), because in the case of fluorescence, emission is very 

low. If for the initial time we take 𝑃𝑒(0) = 0, Eq. (4.7) has an analytical solution 

given by: 

𝑃𝑒(𝑡) =
ℎ𝜈𝑒𝑆𝑘𝑐

𝑛
𝑛20

𝜏𝑐

𝜏𝑓 − 𝜏𝑐

𝜏𝑓

𝜏𝑟
(exp [

−𝑡

𝜏𝑓
] − exp [

−𝑡

𝜏𝑐
]) .                   (4.8) 

Besides, if 𝜏𝑓 ≫ 𝜏𝑐, as is the case in practical situations, Eq. (4.8) simplifies to 

𝑃𝑒(𝑡) =
ℎ𝜈𝑒𝑆𝑘𝑐

𝑛
𝑛20

𝜏𝑐

𝜏𝑟
exp [

−𝑡

𝜏𝑓
] .                                       (4.9) 

Finally, using Eq. (3.19), the light power outside the cavity is 

𝑃𝑜𝑢𝑡(𝑡) = ℎ𝜈𝑒𝑆𝑘𝐿𝑛20

exp [
−𝑡
𝜏𝑓

]

𝜏𝑟
 .                                     (4.10) 

 

Thus, as expected, the fluorescence spectrum of the doped dye is significantly 

modified in the CLC sample because 𝑃𝑜𝑢𝑡 is proportional to 1/𝜏𝑟, i.e. according 

to Fermi's golden rule, to the 𝐷𝑂𝑆, which is highly modified in the photonic 

structure of the CLC. However, the time evolution of the detected light must be 

a simple exponential with characteristic fluorescence time 𝜏𝑓. Experimentally it 
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is found that 𝜏𝑓 is not substantially influenced by the CLC6. Therefore the sum 

of the radiative and nonradiative de-excitation rates (see Eqs. (4.1) and (4.2)) 

must remain unaltered. This is, according to Eq. (4.1): 

𝑘𝑟𝑎𝑑 + 𝑘𝑛𝑜𝑛𝑟𝑎𝑑 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 .                                         (4.11) 

In other words, if an excited molecule in a photonic material has an enhanced 

radiative de-excitation rate, it must show a reduced nonradiative de-excitation 

probability and vicejversa. 

It must be commented that although the photonic material can, in principle, 

influence the emission kinetics through 𝜏𝑐, (see Eq. (4.8)), deviations from the 

simple exponential law (Eq. (4.9)) are unlikely. This would require cavity 

lifetimes 𝜏𝑐 comparable to fluorescence lifetimes 𝜏𝑓. If we suppose 𝜏𝑓 = 1 ns, this 

condition implies a coefficient of distributed losses as small as 𝛽 ≈ 0.05 cm-1 

even if the CLC samples are extremely thick (see Eq. (2.50)). The light-scattering 

coefficient of a nematic is already orders of magnitude higher than this      

value8, 9, 10. 

 

4.5 Conclusions 

In summary, we have studied some kinetic aspects of light emission in dye-

doped CLC's by measuring the shape of the emitted pulses as a function of the 

pump energy. Well below the threshold the pulse’s width is similar to that of 

the pump source (14 ns). As the pumping level increases, the emitted pulses 

become narrower until a minimum is reached at the lasing threshold. In our 

case the minimum’s width was limited by ours photodiode time resolution. 

Above the threshold the temporal profiles suggest the appearance of relaxation 

oscillations as in the case of solid state lasers. The results can be accounted for 
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within the model of coupled rate equations shown in chapters 2 and 3, which 

incorporates the CLC peculiarities simply through the radiation dwelling time 

of the cavity 𝜏𝑐. Within this model, an alteration of the fluorescence spectrum of 

the dye is predicted if it is dissolved in a CLC structure. On the other hand, the 

fluorescence lifetime is still 𝜏𝑓 because usually 𝜏𝑓 ≫ 𝜏𝑐. According to the 

experiments of other authors, 𝜏𝑓 is not substantially altered by the CLC cavity, 

which implies that the corresponding modifications of the radiative and 

nonradiative de-excitation rates must be opposite to each other. 
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5.1 Introduction 

Part of the recent interest in CLC lasers originates from different promising 

technological features. For example, wavelength tunability, low threshold 

lasing, high efficiency of energy conversion and ease of construction.  

However, one of the technical problems with this type of lasers is that they 

degrade and stop lasing in relatively short periods of time. This fact seriously 

limits possible practical and commercial applications of CLC lasers. The main 

reason of this problem is the gradual degradation of the dye molecules and the 

structure deterioration, caused by a powerful optical pumping. On the one 

hand, such deterioration implies an effective reduction of the dye population. 

On the other hand, it increases the coefficient of distributed losses. 

The process by which the above mentioned deterioration occurs has given rise 

to various discussions; it has been attributed to dye bleaching, thermal or 

density effects1 and, to the director reorientation of the LC molecules due to a 

light-induced torque2. However, up to now, there is no consensus about what 

mechanism is responsible for this deterioration.  

In chapter 3 we studied the performance of the CLC lasers depending on 

different parameters. This is very interesting since a good performance of the 

CLC laser would allow us to optimize the fabrication of these devices. Inter alia, 

this would allow using simpler and less powerful pumping sources. However, 

it is clear that a detailed understanding of the origins of the CLC laser 

degradation is completely necessary to obtain commercially acceptable devices. 

This is why in this last section we will focus in this problem. In this sense, we 

will present some results about the dynamics of CLC laser deterioration with 

the aim of throwing some light on the mechanisms that produce such 

degradation. 
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5.2 Materials 

The materials used for the experiments in this chapter were the same as those of 

section (2.5.1). The proportions in the mixture were also the same. The sample 

cell was made of two glass plates separated a distance 𝐿 = 9.9 μm. The material 

was in the Cano geometry with the helix axis perpendicular to the substrates in 

the CLC phase and the band gap was between 559-634 nm. 

The pumping source and the experimental setup were also the same as those of 

section (2.5.1), see Fig. 1. In this case the pumping repetition rate was varied 

between 5 and 100 Hz.  

All the measurements were carried out at the temperature of 22 oC.  

 

Fig. 1. Experimental setup. L1 and L2 are lens 1 and 2 respectively, 𝑆 is the sample, 𝜃 is the 

angle of incidence, and O.F is the abbreviation for optical fiber. 

 

5.3 Laser degradation 

Fig. 2 shows the laser emission power versus pumping energy per pulse. For 

this measurement, L2 in Fig. 1 was removed so that most of the fluorescence 

was not detected. The data were obtained for a repetition rate of 5 Hz. Similar 

results took place for smaller repetition rates, but larger rates produce gradual 
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laser deterioration. The degradation was evident for frequencies above 25 Hz 

for pumping powers about twice that of the threshold. Neither appreciable 

spectral broadening of the laser line nor significant shift of the laser wavelength 

was observed during the whole process. As a representative example, Fig. 3 

shows the laser output power for pumping pulses of 9.5 μJ and a repetition rate 

of 100 Hz. The laser intensity decreases monotonically with time, and no 

equilibrium is reached until a complete disappearance of the laser light. This 

figure fits to a simple exponential, with a characteristic time of 2 minutes. Using 

higher pumping powers, analogue results were obtained, the only difference 

was the degradation time: the higher the pumping the quicker the degradation. 

 

Fig. 2. Laser output power as a function of the incident pumping energy per pulse for a 

repetition rate of 5 Hz.  

Interestingly, the damage is reversible if the pumping energy is not too high. 

However, in most cases, the time for recovery is relatively long. For example, 

after the decay process shown in Fig. 3, the material takes about 30 minutes in 

the darkness to recover its previous performance. Even longer times are needed 

if the CLC continues being excited for still longer periods after the lasing 

disappearance. The order of magnitude of these times excludes the optical 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9

Pulse energy ( mJ)

L
a

s
e

r 
e
m

is
s
io

n
 p

o
w

e
r 

(a
rb

it
ra

ry
 u

n
it
s
)



5.3 Laser degradation 

114 

torque on the CLC molecules as a factor responsible for the reduction of the 

emission efficiency. In that case, much shorter recovery times would be 

expected2. If even larger pumping energies are used, irreversible degradation of 

the material is produced, and the recovery is only partial even waiting for days. 

In extreme cases, an obvious burning can be provoked at the position of the 

light spot.  

 

Fig.3. Time evolution of the laser output power for incident pumping pulses of 9.5 μJ and a 

repetition rate of 100 Hz.  

Fig. 4 (a) shows the evolution of the emission spectrum while the material is 

subjected to pulses of 9.5 μJ of energy at 100 Hz. The emitted light was collected 

using the lens L2 (see Fig. 1). In this way, the fluorescence spectrum is clearly 

visible simultaneously with lasing. The line at 532 nm corresponds to the 

pumping laser. Fluorescence light inside the gap is essentially circularly 

polarized, with a handedness opposite to that of the laser light. On the contrary, 

fringes at the edges outside the gap (𝜆 < 559 or 𝜆 > 634 nm) are due to the 

additional contribution of fluorescence light with the same polarization as the 

laser emission; this has been previously justified in section (2.5.1) (see Figs. (14-

18). Together with the laser decay, a general decrease of the fluorescence 
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intensity is observed with time. The rate of decline is the same for both 

polarizations and for all wavelengths (with the exception of the laser light, 

which decays much faster). Fig. 4 (b) shows that the time dependence of the 

fluorescence intensity can be modeled by a simple exponential plus a constant, 

with a characteristic time that depends on the pumping intensity and pulse 

repetition rate; in this case the characteristic time is of 5.7 minutes. This 

decrease is due to the dye-bleaching phenomenon, which is well known in 

organic dyes, and can be reversible or irreversible depending on the magnitude 

and rate of the excitation. In last instance, bleaching is due to the so-called 

intersystem crossing between the excited singlet and ground triplet state of the 

molecule. This process removes molecules from the laser channel and 

transforms them into heat sources, which convert most of the absorbed light 

into thermal energy. Consequently, there is a high increase of the proportion of 

non-radiative de-excitation processes in the material and, in some cases; the 

molecules can even suffer an irreversible breakdown. 

  

Fig. 4. Time evolution of the emission spectrum (a) and of the fluorescence output power (b). 

Pumping pulses of 9.5 μJ and 100 Hz were used in both cases.  

A possible local temperature rise of the material, caused by the optical 

pumping, is not enough to explain the observations either, because temperature 

variations would imply a shift in the laser wavelength during the degradation 
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(due to the temperature dependence of the helical pitch) and much shorter 

recovery times. However, according to Fig. 4 (a), it is clear that neither 

appreciable spectral broadening of the laser line nor significant shift of the laser 

wavelength was observed during the whole process. 

A consequence of dye bleaching is that the effective dye concentration on the 

pumped volume decreases with time during laser operation. In optimized CLC 

lasers, a relatively small decrease of the dye concentration would affect in a 

limited extent to the laser performance. Therefore, the laser emission should 

only show a small reduction (similar to that displayed by the fluorescence) as a 

function of time. For not very thick samples, as is our case, the importance of 

this effect depends approximately on the value of the product 𝑁𝜎𝑒, being 𝑁 the 

number of dye molecules per unit volume and 𝜎𝑒 the cross section of stimulated 

emission per dye molecule. Such dependence can be seen by taking the first 

order expansion in the exponential term of the denominator of Eq. (3.32): 

𝐸𝑡ℎ = 2ℎ𝜈𝑎𝑆𝐿 (1 + 0.53𝛥𝜏𝑝(𝑃23 + 1/𝜏𝑓))
𝑛

𝑐𝜏𝑐𝜎𝑎𝐿

1

𝜎𝑒𝑛1
𝑡ℎ  ,                (5.1) 

where 𝑛1
𝑡ℎ = 𝑁 − 𝑛2

𝑡ℎ − 𝑛3
𝑡ℎ,  𝑛2

𝑡ℎ =
𝑛

𝑐𝜎𝑒𝜏𝑐
, 𝑛3

𝑡ℎ ≈ 0.53
𝑛

𝑐𝜎𝑒𝜏𝑐
𝑃23𝛥𝜏𝑝 and none of the 

other parameters depend on 𝑁. 

 

Fig. 5. Threshold energy per pulse of the pumping source vs. 𝑁𝜎𝑒.  
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Fig. 5 represents the threshold energy per pulse as a function of 𝑁𝜎𝑒. The results 

have been obtained by using Eq. (5.1). As can be seen, for high dye 

concentrations or high 𝜎𝑒 values, a moderate decrease of 𝑁 hardly affects the 

laser performance. However, for 𝑁𝜎𝑒 below ≈ 0.15 μ−1 a small diminution in 

this quantity affects dramatically to the laser performance. In our cases 𝑁𝜎𝑒 ≈

0.1 μ−1 and therefore our laser is very sensitive to a small reduction of 𝑁. In fact, 

the fall of the laser power, experimentally observed, can be compared to the 

values calculated by using the rate equations (3.16). Fig. 6 gathers the obtained 

results. As can be seen a good agreement for both experimental and calculated 

values of the laser power has been found. 

 

Fig. 6. Laser output power vs. 𝑁.  
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Fig. 1). The measurements were carried out by collecting the light emitted by 

the sample along the substrate normal with an optical fiber placed at about 6 cm 

from the sample. The light spectrum consists of two wavelengths, one at 634 nm 

(the CLC laser line) and a second one at 532 nm, which corresponds to the light 

scattered at the pumping wavelength. Starting from a fresh, previously 

unexposed area of the sample, an efficient laser emission is initially found 

together with a small amount of scattered light. Subsequently a prominent 

increase of the light at 532 nm occurs while the lasing decays (see Fig. 7). 

Typically, the increase in the amount of scattered radiation is about one order of 

magnitude during the time that the laser takes to wipe out completely. 

Qualitatively the same behavior is always repeated on moving the sample to a 

new previously unexposed area. 

 

Fig. 7. Time evolution of the light intensity scattered by the sample (a) and laser emission power 

(b) as the sample is subjected to 532 nm pump pulses of 9.5 μJ  at 100 Hz. In Fig. 7 (b), the curve 

corresponding to 10 minutes of exposure has been omitted due to the fact that after 10 minutes 

the signal was not appreciable. 

Scattering effects represent an increase of losses, which must contribute to 

enlarge the threshold power of the laser. In this regard, according to Refs. 3 and 

4, the threshold gain coefficient can be expressed as: 
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𝛾𝑡ℎ =
𝑛

𝑐𝜏𝑐
= 𝛽 +

4𝑃2

𝛼2𝐿3
 ,                                                 (5.2) 

where 𝑐 is the speed of light in vacuum, 𝑛 is the mean refractive index and 𝜏𝑐 is 

the radiation dwelling time of an emitted photon in the CLC layer. 𝛽 is the 

coefficient of distributed losses, which takes into account all losses of 

absorption and scattering of light by the CLC, 𝐿 is the thickness of the sample, 𝑃 

is the helical pitch and 𝛼 is the anisotropy parameter. 

The smallest value for the threshold gain coefficient results 

𝛾𝑡ℎ
𝑚𝑖𝑛 ≈

4𝑃2

𝛼2𝐿3
 ,                                                         (5.3) 

which is obtained by taking 𝛽 = 0 in Eq. (5.2). In the present sample,               

𝐿 = 9.9 μm, 𝑃 = 0.367 μm and 𝛼 = 0.125, so we get 𝛾𝑡ℎ
𝑚𝑖𝑛 ≈ 350 cm-1. On the 

other hand, the threshold power is proportional to the threshold gain 

coefficient3 (see Eq (3.13)). Therefore, in order to have a rise of the threshold 

power of the order of magnitude of the threshold power itself in a fresh sample, 

we should increase the distributed losses in an amount of the same order of 

magnitude, i.e.,         𝛽 ≈ 100 cm-1. 

We speculate that the scattering could also contribute to the laser deterioration 

due to small imperfections generated in the sample as a result of thermal 

processes mentioned above. Heating by the pump beam can decompose the dye 

molecules or induce changes in the structure of the CLC at the neighborhood of 

the dye molecules at the illuminated spot. The local heating could make the 

CLC reach the clearing point, produce its chemical decomposition or even 

destroy the dye molecule itself. Every dye molecule could give rise potentially 

to a scattering center. If the size of the scatterers is small compared to the 

wavelength of the scattered light, the Rayleigh approximation can be used. In 

this case the scattering cross section can be written as5 
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𝜎 =
8𝜋

3
(

2𝜋𝑛

𝜆
)

4

𝑎6 (
𝑚2 − 1

𝑚2 + 2
)

2

,                                         (5.4) 

 

where 𝑎 is the scatterer radius, and 𝑚 the ratio between the refractive index of 

the scatterer and the surrounding medium. The 𝛽 coefficient is simply 𝛽 = 𝑁𝑠𝜎, 

where 𝑁𝑠 is the number of scattering centers per unit volume. Taking             

𝑚 =  1.5/1.7 = 0.88 (the ratio between the ordinary and extraordinary refractive 

indices of the CLC), we obtain 𝜎 = 3.5 10-17 cm2 for 𝑎 = 10 nm. We assume 𝑁𝑠 

equal to the density of dye molecules, which are bleached by the pump beam. 

In the present case, due to the decay in fluorescence shown in Fig. 4, 𝑁𝑠 is about 

20% of the total number of dye molecules when the laser stops working. So, we 

obtain 𝑁𝑠 ≈ 4 1018 cm-3 and 𝛽 ≈ 140 cm-1. So, using the Rayleigh approximation 

and making some reasonable assumptions we see that a bleaching of about 20% 

of the molecules could result in a hypothetical increase in the laser threshold of 

about one order of magnitude. Therefore, an increase in 𝛽 due to light 

scattering should be taken into account since could also be in the origin of the 

deterioration of the laser performance. 

We finish this chapter with some words about the mechanisms for laser 

recovery when the sample is kept in the darkness. Depending on the optical 

damage received by the CLC, the laser recovery can be total or partial. In the 

best case, when the LC molecules affected by the local heating have just 

undergone a transition to the isotropic phase and there is no chemical 

decomposition, the thermal degradation is reversible, and the time for recovery 

should be fast. Evidently, if there are dye molecules (or LC molecules) that have 

decomposed, a total recuperation can only be reached through much slower 

processes involving molecular diffusion that replace the deteriorated molecules 

by new ones at the spot position. The larger the optical damage the more 

incomplete and the slower the laser recovery. If the pumping energies are even 



5.3 Laser degradation 

121 

higher, the degradation can be irreversible. All these regimes are 

experimentally observed. 
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5.4 Conclusion 

CLC lasers suffer an important drawback that limits in a serious manner their 

operation; this is laser degradation. The consequences of such degradation are 

on the one hand, that the effective dye concentration decreases. On the other 

hand, a clear increase of the scattered light by the CLC sample has been found. 

The scattering represents a growth of the coefficient of distributed losses. In our 

particular case we have shown that laser degradation is explained by a decrease 

in 𝑁. Nevertheless, for optimized lasers, a relatively high reduction of operative 

dye molecules, by itself, is still far from justifying an important laser decay. 

Since the origin of the problem of laser stability is the heating of the dye 

molecules, the performance of CLC lasers should highly improve with dyes 

showing low quantum yields to triplet states. In this respect, special fluorescent 

molecules with small triplet populations have recently permitted to achieve CW 

lasing with CLCs6, 7.  

Nevertheless, it is remarkable to say that at low pumping frequencies, for 

example about 5 Hz, and energies per pumping pulse of the same order of 

magnitude as the threshold, thermal degradation of the dye molecules is 

negligible. Actually, some of the samples used in this dissertation have lasted 

for months without showing a performance decrease. 
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6.1 Introduction 

Nonlinear optical (NLO) effects, mainly those of second and third-order, have 

found a wide range of applications in electro-optics, optoelectronics, photonics, 

and biomedical technologies as well. Today’s benchmark NLO materials are 

actually, inorganic crystals (e.g. Li Nb O3). However, organic NLO materials 

offer greater opportunities for developing potentially low-cost and high 

performance electronic and photonic devices because of their attractive features 

such as large and ultrafast responses, low drive voltages, facile fabrication and 

processability, and wide range of operating frequencies1, 2, 3, 4, 5, 6, 7, 8, 9.  

FLCs10, as a special type of organic NLO materials, will become a compelling 

alternative to inorganic crystals and electrically poled organic glasses if large 

NLO strength is achieved11, 12. Since FLCs possess thermodynamically stable 

polar order, they are suitable for second harmonic generation (SHG). In 

addition the polar direction can be electrically controlled by switching between 

two ferroelectric states, enabling fabrication of more complex NLO devices.  

In this chapter we are going to study ferroelectric LC compounds with interest 

for NLO applications. More specifically, we will focus on the characterization of 

the NLO properties of an azo-bridged trimer through second and third 

harmonic generation measurements (SHG and THG).  

Firstly, we will introduce some concepts about NLO properties in general and 

next we will focus on the SHG.  

Optical properties of materials are characterized by their dielectric 

susceptibility. When input-light intensities are low, the material response is 

dominated by linear effects and there exists a linear relation between the 

polarization (𝐏) and the electric field (𝐄). Nevertheless when impinging with 

intensities of the order of the fields binding electrons to nuclei (about              
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108-1010 V m-1) the response of the material is nonlinear. These intensities are 

typically achieved by laser beams13. Due to this fact, second order optical effects 

were not experimentally demonstrated until the development of lasers in the 

decade of the 60’s14. Under this high intensity condition, the polarization 

response can be expanded as follows: 

𝑃𝑖 = 𝜀0𝜒𝑖 𝑗𝐸𝑗 + 2𝑑𝑖 𝑗 𝑘𝐸𝑗𝐸𝑘 + 4𝜒𝑖 𝑗 𝑘 𝑙𝐸𝑗𝐸𝑘𝐸𝑙 +⋯,                         (6.1) 

where 𝑃𝑖 and 𝐸𝑖 denote the polarization and electric field components 

respectively. 𝜀0 is the electric permittivity of vacuum and 𝜒𝑖 𝑗, 𝑑𝑖 𝑗 𝑘 , 𝜒𝑖 𝑗 𝑘 𝑙 are 

the susceptibility tensors of first, second and third order respectively. Higher 

order terms have been suppressed in Eq. (6.1). Subscripts 𝑖, 𝑗, 𝑘 and 𝑙 denote the 

Cartesian coordinates and summation over repeated indices is assumed 

(Einstein’s notation). 

Susceptibility tensor Nonlinear phenomena 

𝑑(2)(𝜔1 ± 𝜔2;  𝜔1, ±𝜔2) Frequency sum or difference. 

𝑑(2)(2𝜔;  𝜔, 𝜔) Second harmonic generation (SHG). 

𝑑(2)(0;  𝜔,−𝜔) Optical rectification. 

𝑑(2)(𝜔;  0, 𝜔) Pockels effect. 

𝜒(3)(𝜔1 ± 𝜔2 ± 𝜔3;  𝜔1, ±𝜔2, ±𝜔3) Frequency mixing. 

𝜒(3)(3𝜔;  𝜔, 𝜔, 𝜔) Third harmonic generation (THG). 

𝜒(3)(𝜔;  𝜔, 𝜔, −𝜔) Optical Kerr effect. 

𝜒(3)(𝜔;  0, 0, 𝜔) Electrooptical Kerr effect. 

𝜒(3)(2𝜔;  0, 𝜔, 𝜔) SHG induced by an electric field. 

Table1. Several nonlinear optical effects. Order is indicated by susceptibilities superscripts. In 

the susceptibilities, the first frequency (separated by ;) corresponds to the output field and the 

other frequencies denote the incident fields. 
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The second and third terms of the right side of the Eq. (6.1) describe different 

nonlinear optical phenomena. These phenomena depend on the involved 

frequencies of the input and output electric fields15. Table 115 shows some 

examples of different second and third order optical effects and how their 

respective susceptibilities depend on the involved frequencies. Nevertheless, in 

this dissertation, we will be mainly concerned with SHG. 

Second order effects are driven by the third rank tensor 𝑑𝑖 𝑗 𝑘. Therefore, lack of 

inversion symmetry is a prerequisite for these phenomena to appear16. 

Evidently, polar structures fulfill this requirement. On the other hand, since 

third order effects are driven by the fourth rank tensor 𝜒𝑖 𝑗 𝑘 𝑙. Therefore, no 

symmetry prerequisites are required (see Eq. (6.1)). 

 

6.2 Second harmonic generation (SHG) 

Among second order nonlinear effects we will focus on SHG. This effect 

appears when the material combines two incident photons of frequency 𝜔 to 

give rise to one photon of frequency 2𝜔 (see Fig. 1). This phenomenon is 

completely characterized by the second order susceptibility tensor 𝑑𝑖 𝑗 𝑘 

corresponding to the frequencies involved in the process, i.e., 𝜔 and 2𝜔 

(𝐝 (2𝜔;𝜔,𝜔)). 

By using Eq. (6.1) (see Appendix), the time independent part of the second 

order polarization term can be written as follows16: 

𝑃𝑖
2𝜔 = 𝑑𝑖𝑗𝑘𝐸𝑗

𝜔𝐸𝑘
𝜔 ,                                                     (6.2) 

where the term 2𝜔 indicates the SH component, 𝜔 indicates the fundamental 

frequency and 𝐸𝑗
𝜔 is the amplitude in the 𝑗 direction of the fundamental beam 

and is time independent. 
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Fig. 1. Scheme of the SHG process. 

The point group of the material determines the symmetry restrictions of the 

tensor 𝐝16. In the case of SHG no physical significance can be attached to the 

interchange of the subscripts 𝑗 and 𝑘. Therefore, the 𝐝 tensor can be expressed 

in contracted notation by replacing the two last subscripts by the following 

indices: 

11 = 1, 22 = 2, 33 = 3, 

23 = 32 = 4, 13 = 31 = 5  and  12 = 21 = 6. 

So Eq. (6.2) can be rewritten as 

(

𝑃𝑥
2𝜔

𝑃𝑦
2𝜔

𝑃𝑧
2𝜔

) = (

𝑑11 𝑑12 𝑑13
𝑑21 𝑑22 𝑑23
𝑑31 𝑑32 𝑑33

    

𝑑14 𝑑15 𝑑16
𝑑24 𝑑25 𝑑26
𝑑34 𝑑35 𝑑36

)

(

 
 
 
 

𝐸𝑋
2

𝐸𝑌
2

𝐸𝑍
2

2𝐸𝑍𝐸𝑌
2𝐸𝑍𝐸𝑋
2𝐸𝑋𝐸𝑌)

 
 
 
 

 .               (6.3) 

It is worth mentioning that in the case of non-absorbing materials the 

susceptibility coefficients are also invariant under any permutation of their 

subscripts, the so-called Kleinman conditions17. 
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Let now focus our attention on a form of Maxwell’s equations which includes 

polarization, 𝐏, explicitly (we will assume no magnetization and no free 

charge): 

𝐃 = 𝜀𝑜𝐄 + 𝐏 ,                                                         (6.4) 

𝐁 = 𝜇𝑜𝐇 ,                                                             (6.5) 

𝛁X𝐇 = 𝐉 +
𝜕𝐃

𝜕𝑡
 ,                                                       (6.6) 

𝛁X𝐄 = −
𝜕𝐁

𝜕𝑡
 ,                                                         (6.7) 

𝛁.𝐃 = 0 ,                                                             (6.8) 

𝛁. 𝐁 = 0 ,                                                             (6.9) 

where 𝜇𝑜 is the magnetic permeability of vacuum. 

As we are interested in nonlinear optics, polarization will be explicitly 

expressed in terms of linear (𝐿) and nonlinear (𝑁𝐿) components, thus 

𝐏 = 𝐏𝐿 + 𝐏𝑁𝐿 = 𝜒𝐿𝜀𝑜𝐄 + 𝐏NL ,                                        (6.10) 

where 𝜒𝐿 is the linear susceptibility tensor. 

Introducing Eqs. (6.4) and (6.5) in Eqs. (6.6) and (6.7) and taking into account 

Eq. (6.10) we arrive to the following expression: 

∇2𝐄 = 𝜇𝑜𝜎
𝜕𝐄

𝜕𝑡
+ 𝜇𝑜𝜀

𝜕2𝐄

𝜕𝑡2
+ 𝜇𝑜

𝜕2𝐏𝑁𝐿
𝜕𝑡2

 ,                               (6.11) 

where 𝜀 = 𝜀0(1 + 𝜒𝐿) is the electric permittivity and 𝜎 is the conductivity. 

In order to solve Eq. (6.11) we will consider the particular case of three plane 

waves of frequencies 𝜔1, 𝜔2 and 𝜔3 respectively, propagating along the 𝑧 axis, 

given by 
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𝐸𝑖
𝜔1(𝑧, 𝑡) =

1

2
[𝐸1𝑖(𝑧)exp[𝑖(𝜔1𝑡 − 𝐾1𝑧)] + 𝑐. 𝑐] ,                       (6.12) 

𝐸𝑘
𝜔2(𝑧, 𝑡) =

1

2
[𝐸2𝑘(𝑧)exp[𝑖(𝜔2𝑡 − 𝐾2𝑧)] + 𝑐. 𝑐] ,                       (6.13) 

𝐸𝑗
𝜔3(𝑧, 𝑡) =

1

2
[𝐸3𝑗(𝑧)exp[𝑖(𝜔3𝑡 − 𝐾3𝑧)] + 𝑐. 𝑐] ,                       (6.14) 

where the subscripts 𝑖, 𝑗 and 𝑘 denote the Cartesian coordinates and the 

subscripts 1, 2 and 3 refer to the frequency of the respective waves (𝜔1, 𝜔2 or 

𝜔3). 𝐾𝑖 denotes the wave vector corresponding to each frequency, 𝑡 is the time 

and 𝑐. 𝑐 refers to the complex conjugate. In order to be the wave vectors well 

defined, Eqs. (6.12-14) must represent polarization eigenstates of the material. 

If we introduce such expressions in Eq. (6.11) and assume that the field 

amplitude variation in 𝑧 is small (
𝑑𝐸(𝑧)

𝑑𝑧
𝑘1 ≫

𝑑2𝐸(𝑧)

𝑑𝑧2
 ) and that 𝜕/𝜕𝑥 = 𝜕/𝜕𝑦 = 0, 

we arrive to the following set of differential equations: 

𝑑𝐸1𝑖(𝑧)

𝑑𝑧
= −

𝜎1
2
√
𝜇0
𝜀1
𝐸1𝑖(𝑧) −

𝜕2(𝑃𝑁𝐿
𝜔1)𝑖

𝜕𝑡2
𝜇0exp[−𝑖(𝜔1𝑡 − 𝐾1𝑧)]

1

𝑖𝐾1
 ,    (6.15) 

𝑑𝐸2𝑘(𝑧)

𝑑𝑧
= −

𝜎2
2
√
𝜇0
𝜀2
𝐸2𝑘(𝑧) −

𝜕2(𝑃𝑁𝐿
𝜔2)𝑘

𝜕𝑡2
𝜇0exp[−𝑖(𝜔2𝑡 − 𝐾2𝑧)]

1

𝑖𝐾2
 ,   (6.16) 

𝑑𝐸3𝑗(𝑧)

𝑑𝑧
= −

𝜎3
2
√
𝜇0
𝜀3
𝐸3𝑗(𝑧) −

𝜕2(𝑃𝑁𝐿
𝜔3)𝑗

𝜕𝑡2
𝜇0exp[−𝑖(𝜔3𝑡 − 𝐾3𝑧)]

1

𝑖𝐾3
 .   (6.17) 

 

Assuming that the medium is lossless at 𝜔3 (𝜎3 = 0), under the non depleted 

approximation (this means that the fundamental intensity keeps constant 

within the material) and recalling Eq. (6.2), we obtain that  

𝑑𝐸3𝑗(𝑧)

𝑑𝑧
= −𝑖𝜔√

𝜇0
𝜀3
𝑑𝑗𝑖𝑘𝐸1𝑖𝐸1𝑘exp[𝑖∆𝐾𝑧]  ,                           (6.18) 
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where 𝛥𝐾 = 𝐾3
𝑗
− 𝐾1

𝑖 − 𝐾1
𝑘 and the superscripts 𝑖, 𝑗 and 𝑘 indicate the 

polarization state of the beam.  

Integrating along the materials thickness (𝐿) and considering the boundary 

condition 𝐸3𝑗(0) = 0 we arrive to 

𝐸3𝑗
2𝜔 = −𝜔√

𝜇0
𝜀3
𝑑𝑗𝑖𝑘𝐸1𝑖

𝜔𝐸1𝑘
𝜔 (

exp[𝑖∆𝐾𝐿] − 1

∆𝐾
) .                        (6.19) 

We are interested in measuring the output power of that wave. Therefore,16 we 

arrive to the next result: 

𝑃𝑗
2𝜔 = 8(

𝜇0
𝜀0
)

3
2𝜔2(𝑑𝑗𝑖𝑘)

2
𝐿2

𝑛3
(𝑃1𝑖
𝜔)(𝑃1𝑘

𝜔 )
sin2 (

∆𝐾𝐿
2 )

(
∆𝐾𝐿
2 )

2 𝐴 ,                  (6.20) 

where 𝑛 is the mean refractive index of the material, 𝐴 is the impinging area 

and 𝑃𝑗
2𝜔 is the SH output power polarized along the 𝑗 direction. 

 

6.3 LCs for SHG 

SHG in FLCs is driven at a microscopic level by the molecular second order 

polarizability, known as hyperpolarizability tensor (𝛃). The second-order 

susceptibility tensor directly depends on the molecular hyperpolarizability. 

Second-order nonlinear effects occur when the electromagnetic field of the light, 

gives rise to asymmetric charge transference between the different regions of 

the molecules. To obtain an important response, the best solution is to insert 

electron donor (𝐷, high 𝑞+) and acceptor (𝐴, high 𝑞−) groups interconnected by 

a conjugated electronic bridges and aromatic rings (𝜋 orbitals) to facilitate the 

charge transference. In addition, the donor and acceptor groups (𝐷 − 𝐴) must be 

placed in such a way that the symmetry of the mesophase allows the SHG to 
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appear4. Frequency doubling mechanism is sketched in Fig. 2 where the 

asymmetric induced polarization by the electric field of the light is depicted. 

Some of the Fourier components of the polarization wave are represented. The 

more asymmetric the polarization response, the larger the second harmonic 

term responsible of the SHG. 

 

Fig. 2. Asymmetric polarization response to a sinusoidal intense electric field of frequency 𝜔. In 

the figure different Fourier contributions are depicted. As the polarization response becomes 

more asymmetric, the 2𝜔 Fourier component becomes more important (i.e more SHG 

component)13. 

In FLCs the electronic asymmetric response can only give rise to SHG light 

polarized along the 𝐶2 direction, i.e. the polar axis. Therefore, FLCs for NLO 

applications must incorporate strong chromophores with a large 

hyperpolarizability (𝛃) along the polar axis. However, realizing such a goal 

without killing the required mesogenic character is really challenging. In the 

case of a calamitic LC, the chromophore must be placed as depicted in Fig. 3 

and therefore the molecular aspect ratio is seriously altered, losing the 

elongated shape of the molecule required for LC phases. This drawback has 

resulted in very poor SHG efficiencies in standard calamitic LCs (see Table 2).                                                                                                                                                                                                                                                                                                                                                                                                 
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Fig. 3. Left: Calamitic molecule with a 𝐷 − 𝐴 group perpendicular to its long axis. The length of 

this 𝐷 − 𝐴 group enters in conflict with the compound mesogenicity. Right: Example of a 𝐷 − 𝐴 

group. 

Compound SHG coefficients (pmV-1) Main drawbacks 

The most efficient 

bent-core. 

𝑑 = 12.7518 

 

s 

Difficult alignment. No 

LC in pure state. 

Typical bent-core. 𝑑 ≈ 4.519 Difficult alignment. 

SmC* rod-like LC. 𝑑 = 0.320 Small coefficients. 

KDP 𝑑 = 0.5  

LiNBO3 𝑑 = 30  

Solid organic NLO 

materials.  

Mmaterials 

𝑑 = 29021  

Poled polymers. 𝑑 ≈ 6022 Thermodynamically 

unstable phase. 

Dimer. 𝑑 = 4.523  

Trimer. 𝑑 = 6.8  

Table 2. Most efficient SHG coefficients of different NLO materials.  

A different approach uses bent-core LCs. In bent-core mesophases, the 

molecules are packed as depicted in Fig. 4 (a). The bent shape of the molecular 
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cores hinders the free rotation of the molecules along the main director, which 

gives rise to the appearance of polarization along the 𝐏 direction. As a 

consequence, the molecular geometry allows the incorporation of 

chromophores along the lateral wings preserving the mesogenic character of the 

material24 and resulting in a strong 𝛃 along the molecular 𝐶2 axis (see Fig. 4 (b)). 

Remarkable SHG efficiencies have been obtained in this kind of LCs. Table 2 

presents some of the measured values in different liquid crystals. As can be 

seen bent-core compounds present the best results obtained up to now. 

 

Fig. 4. (a) Molecular packing in a typical bent-core Sm mesophase. (b). In bent-shape molecules 

(bananas), the 𝐷 − 𝐴 groups can be much larger, increasing the contribution of the SH signal 

along the polarization direction. 

 

A new approach based on FLCs with potentially large NLO coefficients was 

pioneered by the Walba group based on a novel laterally azo-bridged H-shaped 

molecule. The structure includes a disperse red 1 (DR-1) chromophore25, 26, 27. 

The molecule consists of two rod-shaped mesogens connected by the 

chromophore. This molecular geometry allows the incorporation of long 𝐷 − 𝐴 

groups without losing the mesogenic character of the material. Unfortunately, 

the material only presented a monotropic mesophase of limited stability and in 

this work no SHG measurements were carried out. Based on the same idea, 

Yang et al synthesized a new H-shaped dimer using also the NLO disperse red 
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DR-1 chromophore (𝐷 − 𝐴)24 as shown in Fig. 5(a). This new compound 

presents a stable enantiomeric SmC* phase. In this work SHG measurements 

were carried out and a maximum 𝑑 coefficient of 4.5 pm V—1 was reported24. 

This value was the highest ever reported for a calamitic LC hitherto and is 

comparable to those obtained in banana compounds. See Fig. 5. 

 

Fig 5. (a) Sketch of the H-shaped molecule of Ref. 25. (b) Molecular arrangement in the 

mesophase under electric field (𝐄). The molecular director (𝐧) is tilted an angle 𝜃 with respect to 

the layer normal (i. e the 𝑍 axis). (c) Two possible molecular orientations due to the head to tail 

invariance. 𝜑 is the angle between the long axis of the chromophore (𝛃) and the polar 𝐩 axis 

(i.e., currently the 𝑦 axis) in the local molecular 𝑥𝑦𝑧 reference frame. 

 

6.4 SHG in the trimer 

The promising results in the dimer compound pave the way for a new 

molecular shape approach; an azo-bridged trimer. Following the same idea as 

in the H-shaped molecules, the trimer studied in this work allows the 

incorporation of a longer chromophore (DNDPDA) along the FLCs polar axis. 

Fig. 6 shows the chemical composition of this new compound and its molecular 

sketch. It is particularly noteworthy that the trimer, incorporating three rod-

shaped units into such a big molecule, exhibits a thermodynamically stable 

enantiotropic ferroelectric phase (SmC*). The mesomorphic behavior and the 



6.4 SHG in the trimer 

 

138 

phase transition temperatures are also indicated in Fig. 6. It is rather remarkable 

the wide temperature range of the SmC* phase (103oC) that is even larger than 

the one of the dimer. 

 

Fig. 6. The trimer FLC molecule. The mesomorphic behavior of the compound is as follows: 

Heating: Cr1 84 Cr2 123 SmC* 135 N* 146 Iso. Cooling: Iso 145 N* 134 SmC* 31 gSmC*. 

Iso = the isotropic liquid; gSmC* = the glassy state of the SmC* phase; Cr = the crystalline state. 

A complete characterization of this compound is beyond the scope of this work 

and can be found elsewhere28. In Fig. 7 we reproduce the absorption spectrum 

of the chromophore29. Due to the strong absorption at 572 nm a Nd:YAG laser is 

unsuitable for SHG measurements. Previous to this work, our group performed 

SHG measurements using a fundamental beam of 1369 nm29, 30 where 

absorption of the SHG is lower. Results were outstanding since the so-called 

helicoidal phase matching (HPM)31, 32, 33 was observed. Under this condition, a 

novel approach for SHG data analysis, involving both absorption and HPM, 

was developed31. This procedure gave a remarkable 𝑑22 coefficient of 28 pm V-1. 

Nevertheless the result was resonantly enhanced due to the material 

absorption. Thus the actual SHG efficiency of the trimer for SHG applications 

was overestimated. 

The indubitable interest of our compound for NLO applications led us to 

characterize the 𝐝 tensor under no absorption conditions. This information is 

interesting to account for the transparency-efficiency trade-off in order to 

determine the most suitable wavelength for applications. For this purpose SHG 
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measurements under no absorption were carried out using light of 1560 nm. So, 

the wavelength of the second harmonic light (780 nm) is clearly above the 

region the absorption region (see Fig. 7). 

 

Fig. 7. Absorption spectrum of the chromophore30. 

6.4.1 Experimental setup 

Fig. 8 shows the schematic representation of the used samples. The 

fundamental beam impinges perpendicularly to the substrate. The material is 

sandwiched between two glass plates one of them coated with ITO electrodes 

separated by a gap of 100 μm. This geometry allows applying in-plane electric 

fields, which aligns the sample in homeotropic arrangement (smectic layers 

parallel to the substrate). Thus monodomain can be easily induced within the 

gap. The quality of the alignment was confirmed by polarization microscopy, 

see Fig. 9. The sample was placed in a heating stage set on a rotating platform 

that allows us to control the incident angle of the fundamental beam and the 

temperature of the sample. The experimental setup is sketched in Fig. 10. 

The fundamental beam is a Ti:sapphire oscillator-regenerative amplifier laser 

system that can provide a tunable output signal in the 300–2600 nm range. 

Measurements were carried out at 1560 nm wavelength. In order to account for 

laser fluctuations a reference branch is used after splitting the fundamental 
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beam. In this branch the SH signal generated by a BBO crystal plate is 

registered in a photodiode, as sketched in Fig. 10. 

 

Fig. 8. Schemes showing (a) the molecular arrangement of the molecules in FLC phase. 𝜃 is the 

tilt angle between the director (𝐧) and the layer normal (i.e. the 𝑍 axis) in the aligned zone in the 

𝑋𝑌𝑍 reference frame, and (b) Schematic representation of the trimer molecule with two possible 

orientations due to the head to tail invariance. 𝜑 is the angle between the chromophore long 

axis 𝛃 and the polar 𝐩 axis (i.e. currently the 𝑦 axis) in the local molecular 𝑥𝑦𝑧 reference frame. 

The angle 𝜑 is about 28°. 

 

Fig. 9. Texture of the aligned sample (3.75 μm thickness, 166 oC, DC voltage of 1000 V across the 

gap of 100μm). Left: Polarizers along the indicatrix axes, the gap is between two dashed lines 

and cannot be distinguished from other regions. Right: the cell rotated 45o showing a uniform 

single domain in the gap. The electric field E is sketched in both pictures. 
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Fig. 10.Experimental setup: PD: photodiode, WF: water filter, BBO crystal plate, 𝜆/2 WP: 𝜆/2 

wave plate, LP: longpass filter, G: slit, RS: rotating stage, D: diaphragm, P: Polarizer, BP: 

Bandpass filter, PM: photomultiplier. The sample is placed in the rotating stage.  

6.4.2 Experiments and results 

As previously mentioned, the SHG efficiency of a material is determined by the 

second order susceptibility tensor 𝐝. To obtain the corresponding components, 

Eq. (6.20) must be used. However, some of the parameters, as for example the 

fundamental beam power, are not easily accessible in the experiment. This 

drawback can be overcome by using a reference sample to calibrate the 

experimental setup. For this purpose we use a 𝑌-cut quartz sample             

(𝑑11 = 0.4 pm V-1). Considering the transmittance Fresnel coefficients that 

appear as a consequence of the air-sample interfaces, and replacing light 

powers by their corresponding intensities, from Eq. (6.20) we arrive to  

𝐼𝑗
2𝜔 = 8(

𝜇0
𝜀0
)

3
2𝜔2(𝑑𝑖𝑗𝑘)

2
𝐿2

𝑛3
(𝐼1𝑖
𝜔)(𝐼1𝑘

𝜔 )
sin2 (

∆𝐾𝐿
2 )

(
∆𝐾𝐿
2 )

2 𝑇𝐴 ,                 (6.21) 

where 𝐼𝑗
2𝜔 denotes the SHG intensity collected for light polarized along the 

direction 𝑗, 𝐴 the illuminated sample area and 𝑇 is the total Fresnel coefficient 

that must be considered. In our case, two fundamental photons enter the 



D



P BP



WF



PM



 /2WP



LP



G



RS



PD



WF



BBO



B1



B2

peOscillosco

R
ef

er
en

ce
 b

ra
n

ch
 



6.4 SHG in the trimer 

 

142 

material to give rise to one SH photon that exits the material. Thus, 𝑇 is given 

by: 

𝑇 = (𝑡𝜔)2𝑡2𝜔 ,                                                      (6.22) 

Our measurements are always carried out at normal incidence and, therefore, 

𝑡𝜔 =
4𝑛𝑖

𝜔𝑛𝑡
𝜔

(𝑛𝑖
𝜔 + 𝑛𝑡

𝜔)2
 ,                                                 (6.23) 

𝑡2𝜔 =
4𝑛𝑡

2𝜔𝑛𝑖
2𝜔

(𝑛𝑡
2𝜔 + 𝑛𝑖

2𝜔)2
 ,                                              (6.24) 

where 𝑛𝑖 and 𝑛𝑡 are the mean refractive indices of the air and the material 

respectively and 𝜔 and 2𝜔 denote the frequencies of the considered waves. 

Neglecting dispersion, these indexes are considered as 1 and 1.5 for air and for 

the material respectively for 𝜔 and 2𝜔. Then we have 

𝑡 =
4𝑛𝑖𝑛𝑡

(𝑛𝑖 + 𝑛𝑡)2
= 0.96 ,                                              (6.25)

 

𝑇 = (𝑡)3 = 0.88 ,                                                    (6.26) 

Observing Eq. (6.21) we can see that the dependence of 𝐼𝑗
2𝜔 versus phase 

mismatch 𝛥𝐾, gives rise to the so-called maker fringes34. 

Dividing the SH intensity of the sample by that of the reference quartz at the 

maximum of a maker fringe (sin2 (
∆𝐾𝑐𝐿𝑐

2
) = 1), we arrive to 

𝐼𝑀
2𝜔

𝐼𝐶
2𝜔 =

𝑑𝑀
2
sin 2 (

∆𝐾𝑀𝐿𝑀
2

)

∆𝐾𝑀
2 𝑇𝑀𝐴𝑀

𝑑𝐶
2 1
∆𝐾𝐶

2 𝑇𝐶𝐴𝐶

 ,                                     (6.27) 

where the subscripts 𝐶 and 𝑀 refer to the quartz and the sample respectively. 
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From Eq. (6.27) it is straightforward to obtain: 

𝑑𝑀 = √
𝐼𝑀
2𝜔𝐴𝐶(∆𝐾𝑀)2𝑇𝐶𝑑𝐶

2

𝐼𝐶
2𝜔𝐴𝑀(∆𝐾𝐶)2𝑇𝑀sin2 (

∆𝐾𝑀𝐿𝑀
2 )

 .                             (6.28) 

Under electric field, our material presents a 𝐶2 symmetry axis along the polar 

direction 𝑌 (Fig. 11). Therefore, the only nonzero components of the contracted 

susceptibility 𝐝 tensor in the 𝑋𝑌𝑍 reference system of Fig. 11 are 

(
0 0 0
𝑑21 𝑑22 𝑑23
0 0 0

    

𝑑14 0 𝑑16
0 𝑑25 0
𝑑34 0 𝑑36

) .                                (6.29) 

Thus we can rewrite Eq. (6.3) as  

(

𝑃𝑋
2𝜔

𝑃𝑌
2𝜔

𝑃𝑍
2𝜔

) = (
0 0 0
𝑑21 𝑑22 𝑑23
0 0 0

    

𝑑14 0 𝑑16
0 𝑑25 0
𝑑34 0 𝑑36

)

(

 
 
 
 

𝐸𝑋
2

𝐸𝑌
2

𝐸𝑍
2

2𝐸𝑍𝐸𝑌
2𝐸𝑍𝐸𝑋
2𝐸𝑋𝐸𝑌)

 
 
 
 

 .             (6.30) 

In our compound the donor-acceptor moiety is set roughly along the 𝑦-axis in 

Fig. 8 (b). Therefore the highest hyperpolarizability component is expected to be 

𝛽𝑦𝑦𝑦, in the 𝑥𝑦𝑧 reference frame of Fig. 8 (b). As a consequence, from a 

macroscopic point of view, the most important 𝐝 coefficient must be 𝑑22 (𝑑𝑌𝑌, in 

the 𝑋𝑌𝑍 reference frame of Figs. 8 (a) and 11). 

For the sake of completeness, we carried out SHG measurements with different 

polarization configurations for the fundamental and SH beams. We use four 

polarization combinations: 𝑝 − 𝑝 (to obtain 𝑑22), 𝑠 − 𝑝 (𝑑21), 𝑝 − 𝑠 (𝑑12 = 0) and 

𝑠 − 𝑠 (𝑑11 =0); where 𝑝 and 𝑠 denote parallel and perpendicular to the applied 

field direction. The last two components must be zero by symmetry and were 
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measured to check the reliability of the experiment. Fig. 11 shows these possible 

combinations. 

 

Fig 11. Scheme showing the geometry of FLC molecules of the trimer in the aligned zone and 

polarization of the input and output beams (i.e., 𝑝 − 𝑝, 𝑝 − 𝑠, 𝑠 − 𝑠 and 𝑠 − 𝑝) used in SHG 

experiments. 𝑋𝑌𝑍 is the reference frame. 

6.4.3 p-p polarization 

In order to determine the second order susceptibility coefficients, Eq. (6.27) 

must be used. However, 𝛥𝐾𝑀 is also unknown. Both parameters can be obtained 

by measuring several samples with different thickness (2 μm, 3.75 μm, 7 μm 

and 11 μm). Thus, by fitting 
𝐼𝑀
2𝜔

𝐼𝐶
2𝜔 to the sample thickness using Eq. (6.27) we find 

𝛥𝐾𝑀 and 𝑑22. See Fig. 12. 

Taking into account the quartz reference values: 𝛥𝐾𝐶 = 0.089 μm
−1,              

 𝑑𝐶 = 0.4 pm V
−1 and 

𝐴𝑀

𝐴𝐶
= 4.4, we fit the experimental points in Fig. 12 to Eq. 

(6.27) and we obtain 𝑑22 and 𝛥𝐾𝑀: 

𝛥𝐾𝑀 = 0.46 μm
−1  

and 
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𝑑22 = 6.8 pm V
−1 . 

Therefore, 𝛥𝑛 = 𝛥𝐾𝑀
𝑐

2𝜔
= 0.058. 

 

Fig 12. 
𝐼𝑀
2𝜔

𝐼𝐶
2𝜔 vs. the samples thickness. 

This remarkable result is the largest non-enhanced 𝑑 coefficient found for a FLC 

so far. Other reported values are shown in Table 2. Another important features 

are the broad temperature range of the SmC* phase, almost down to room 

temperature, and the good alignment easily achievable under the application of 

an electric field. All these features make of this material a very promising 

candidate for NLO applications. 

6.4.4 s-p polarization 

In this case, the plot of SHG intensity vs. sample thickness is shown in Fig. 13. 

Following the same procedure as in the 𝑝 − 𝑝 configuration we arrive to: 

𝛥𝐾𝑀 = 0.097 μm
−1  

and 

0

0,5

1

1,5

2

2,5

3

0 2 4 6 8 10 12

S
H

G
 I

n
te

n
s
it
y
 (

a
.u

)

Thickness (µm)



6.4 SHG in the trimer 

 

146 

𝑑21 = 1.8 pm V
−1 , 

Therefore, 𝛥𝑛 = 𝛥𝐾𝑀
𝑐

2𝜔
= 0.012. 

As expected, taking into account the molecular geometry, this coefficient is not 

as large as 𝑑22 but is remarkable for the FCLs standards. 

 

Fig 13. 
𝐼𝑀
2𝜔

𝐼𝐶
2𝜔 vs. the samples thickness. 

6.4.5 p-s and s-s polarizations 

Under these experimental configurations no SHG signal was detected. 

Therefore 𝑑12 = 𝑑11 = 0 as expected. 

6.4.6 Evaluation of macroscopic NLO data at a microscopic level 

In this section we are going to compare our experimental results with 

theoretical calculations obtained from molecular and structural parameters. It is 

well known that the second-order optical strength of a bulk organic material 

originates primarily from the hyperpolarizability of its molecular chromophore. 

Therefore, to link macroscopic and microscopic parameters we will use the 
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oriented gas model and assume that 𝛃 of the trimer is equal to that of its 

molecular chromophore. We will also assume that the chromophore 

hyperpolarizability has only one longitudinal component along the 

chormophore long axis; (𝛽𝑢𝑢𝑢 , being 𝐮 the unit vector along the long axis of the 

chromophore). 

Usually to obtain 𝛃 values the EFISH technique is used together with the 

Guggenheim method, which permits determining the dipolar moment 𝜇𝑔 of the 

molecule. Unfortunately no EFISH data have been reported for DNDPDA. 

Nevertheless, there exists one work that gives 𝜇𝑔𝛽𝑢𝑢𝑢 values for the DNDPDA 

from the solvatochromic shift35 of the absorption spectra of the chromophore in 

different solvents. In order to obtain the corresponding values at the 

wavelength used in our experiment (1560 nm.) we assumed a two level model 36 

𝛽𝑢𝑢𝑢𝜇𝑔 =
3𝑒2ℏ2

2𝑚
(𝑓∆𝜇𝜇𝑔)

𝑊

[𝑊2 − (2ℏ𝜔)2][𝑊2 − (ℏ𝜔)2]
 , 

where 𝑒 is the elementary charge,ℏ is Plank´s constant, 𝑚 is the electron 

mass, 𝑊 is the transition energy, 𝑓 is the oscillator strength, ∆𝜇 is the difference 

between the dipole moment at the excited and ground states and 𝜇𝑔 is the 

dipole moment at the ground state of the chromophore. The values of 𝑊, 𝑓 and 

∆𝜇𝜇𝑔 are taken from the literature36. Using such model, and assuming a value of 

𝜇𝑔 for DNDPDA similar to that of the well known DR-1 (7 D), it was found that 

𝛽𝑢𝑢𝑢 = 147 10
−30 esu (1 pm/V = 2.387 x 10-9 esu). 

Next we turn to discuss some structural aspects of the molecules in the 

mesophase. In our compound, the chromophore adopts a configuration with an 

angle 𝜑 = 28o with respect to the FLC’s polar axis. This means that the 𝛽𝑢𝑢𝑢 

component also makes the same angle 𝜑 with the polar axis (see Fig. 14). On the 

other hand, due to head-tail invariance, smectic layers consist in a 50:50 mixture 

of two possible molecular orientations (±𝜑). Hence, the only non-null 𝛃 tensor 
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components of the `averaged molecule’ in the 𝑥𝑦𝑧 reference frame (see Fig. 14) 

are 

𝛽𝑦𝑦𝑦 = 𝛽𝑢𝑢𝑢 cos
3(𝜑)                                               (6.31)  

and 

𝛽𝑦𝑧𝑧 = 𝛽𝑢𝑢𝑢 cos(𝜑) sin
2(𝜑) .                                        (6.32) 

To make our model more realistic we permit some disorder of the molecules in 

the material, with the possibility of molecular rotation around the 𝑧 axis (see 

Fig. 14). In an elementary approach, the disorder is simply characterized by a 

deviation of the molecular plane from its average position, with an angle 𝛹 

between the 𝑦 and 𝑌 axes (see Figs. 8 and 14). Then, in the 𝑥𝑦𝑧 reference frame, 

the tensor components of the `average molecule´ are 

𝛽𝑦𝑦𝑦
𝑑 = 𝛽𝑦𝑦𝑦〈cos

3(𝛹)〉 ,                                             (6.33) 

𝛽𝑦𝑥𝑥
𝑑 = 𝛽𝑦𝑦𝑦〈cos(𝛹) sin

2(𝛹)〉 ,                                       (6.34) 

and 

𝛽𝑦𝑧𝑧
𝑑 = 𝛽𝑦𝑧𝑧〈cos(𝛹)〉 ,                                               (6.35) 

with the symbol <> expressing thermal average. Finally, in the 𝑋𝑌𝑍 reference 

frame for SHG experiments (see Fig. 8) the 𝐝 tensor components in which we 

are interested can be expressed as  

𝑑22 = 𝑁𝑓
3𝛽𝑌𝑌𝑌

(𝑑) = 𝑁𝑓3𝛽𝑦𝑦𝑦 
(𝑑)  ,                                         (6.36) 

𝑑21 = 𝑁𝑓
3𝛽𝑌𝑋𝑋

𝑑 = 𝑁𝑓3(𝛽𝑦𝑥𝑥
(𝑑) cos2(𝜃) + 𝛽𝑦𝑧𝑧

(𝑑) sin2(𝜃)) ,                (6.37) 

𝑑23 = 𝑁𝑓
3𝛽𝑌𝑍𝑍

𝑑 = 𝑁𝑓3(𝛽𝑦𝑧𝑧
(𝑑) cos2(𝜃) + 𝛽𝑦𝑥𝑥

(𝑑) sin2(𝜃))                 (6.38) 

and 
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𝑑14 = 𝑁𝑓
3𝛽𝑋𝑌𝑍

𝑑 = 𝑁𝑓3(𝛽𝑦𝑥𝑥
(𝑑) sin(𝜃) cos(𝜃) − 𝛽𝑦𝑧𝑧

(𝑑) sin(𝜃) cos(𝜃)) ,     (6.39) 

where 𝑁, 𝜃 and 𝑓 are the number of FLC molecules per unit of volume, the 

molecular tilt angle and the local field factor. Where the local field-factors for 𝜔 

and 2𝜔 are assumed to be the same and the Lorentz formula has been used for 

them, 𝑓 =
(𝑛2+2)

3
, with an average refractive index 𝑛 =1.52. 

 

Fig. 15. Two possible molecular orientations with an angle ±φ between the 𝛃 vector component 

and the polar axis 𝐩 (i.e currently the 𝑦 axis) in the 𝑥𝑦𝑧 reference frame.

The term 〈cos(𝛹)〉 represents the degree of polar order of the material and links 

the spontaneous polarization 𝑃𝑠 with the molecular dipole moment 𝜇𝑃 along the 

polar axis through the expression 𝑃𝑆 = 𝑁𝜇𝑃〈cos(𝛹)〉. If the density of the 

compound is assumed to be 𝜌 = 1gcm−3 then 𝑁 = 3.27 10−26m−3. Taking 𝜇𝑝 =

1𝐷 along the polar axis (calculated using AM1 molecular model) and the 

experimental 𝑃𝑆 ≈ 27 nC cm
−2 28 at 120 oC we get 〈cos(𝛹)〉 = 0.23. 

Assuming a Gaussian distribution for the 𝛹 angles: 〈cos3(𝛹) ≈ 0.7 〈cos(𝛹)〉〉. 

And after careful numerical calculations we obtain: 𝑑22 = 6.02 and               

𝑑21 = 2.56 pm V-1. Given the roughness of this model and the amount of 

approximations, the agreement with the experimental results, 𝑑22 = 6.8 pm V-1 

and 𝑑21 =1.8 pm V-1, is rather remarkable. 
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6.5 THG in the trimer 

Besides a strong SHG response in the SmC* phase, the trimer was also found to 

exhibit a strong THG response. Contrary to SHG, THG occurs in 

centrosymmetric media. To characterize the THG of the material, 

measurements were carried out in the isotropic liquid (150 °C) only for 

simplicity since, in the isotropic state the effect is determined by a single third 

order susceptibility coefficient 𝜒3𝜔. 

The trimer is highly absorbing at 𝜆 = 520 nm (see Fig. 7). Unfortunately, to the 

best of our knowledge, it does not exist a theory of THG for absorbing 

materials. However, the main features of the THG intensity propagating in an 

absorbing medium can be deduced on the basic of a simple model. In our 

experiment the material is transparent for the fundamental wave and therefore 

we will only consider the TH wave absorption, with an absorption coefficient 𝛼 

(2.57 μm-1 from Fig. 7). The electric field of the fundamental wave propagating 

along the 𝑧 direction in the medium can be expressed as: 

𝐄𝜔(𝑧, 𝑡) = 𝐄0
𝜔exp[𝑖(𝑘𝜔𝑧 − 𝜔𝑡)]                                      (6.40) 

where 𝐄0
𝜔 is a constant vector if we assume that the fundamental wave is not 

depleted, 𝑘𝜔 =
2𝜋

𝜆
𝑛𝜔, 𝜆 being the fundamental wavelength and 𝑛𝜔 the 

corresponding refractive index. The third harmonic electric field generated in a 

sample slice of thickness 𝑑𝑧 as that shown in Fig. 16 is given by:  

𝑑𝐄3𝜔(𝑧) ∝ 𝜒3𝜔|𝐄0
𝜔|2exp[𝑖3𝑘𝜔𝑧]𝐄0

𝜔𝑑𝑧 .                              (6.41) 

Therefore the amplitude of the TH electric field emerging from the sample can 

be obtained by summing coherently the contribution of the slices of the whole 

sample, and is given by: 
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𝐄0
3𝜔(𝐿) ∝ ∫ 𝜒3𝜔|𝐄0

𝜔|2exp[𝑖3𝑘𝜔𝑧]𝐄0
𝜔exp [

−𝛼(𝐿 − 𝑧)

2
+ 𝑖𝑘3𝜔(𝐿 − 𝑧)] 𝑑𝑧

𝐿

0

, (6.42) 

where 𝑘3𝜔 =
6𝜋

𝜆
𝑛3𝜔, 𝑛3𝜔 being the refractive index corresponding to the TH 

electric field. Here the term exp [
−𝛼(𝐿−𝑧)

2
] takes into account the absorption of the 

TH signal along its path through the sample. Thus, the THG total intensity 

emerging from the sample can be expressed as: 

𝐼3𝜔 ∝ |𝐄0
3𝜔(𝐿)|

2
∝ [𝜒3𝜔]2𝐼𝜔

3𝐿2exp [
−𝛼𝐿

2
]
sin2 (

∆𝐾𝐿
2 ) + sinh2 (

𝛼𝐿
4 )

(
∆𝐾𝐿
2 )

2

+ (
𝛼𝐿
4 )

2  ,   (6.43) 

where ∆𝐾 =
6𝜋

𝜆
(𝑛3𝜔 − 𝑛𝜔).  

 

Fig. 16. Schematic representation of the third harmonic generated in a slice of an absorbing 

sample. 

For our measurements we used the same experimental setup and procedure as 

for SHG, the only difference was that we changed the band pass filter. Also the 

same samples where used. THG measurements were performed at normal 

incidence. In this case as a reference we used a 𝐵𝐾7 sample of 150 nm thickness, 
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𝜒3𝜔(𝐵𝐾7) = 4.4 10−14 esu and a coherence length of 𝑙𝑐 = 𝜋/∆𝐾𝐵𝐾7 =16.4 μm. 𝐵𝐾7 

is completely transparent at the TH wavelength of 520 nm. First, we checked 

that the TH signal had the same polarization as the fundamental beam, as 

expected. The THG data for five samples were compared with the THG at the 

maximum of the Maker fringe35 of the 𝐵𝐾7 under the same conditions of 

illumination. The dependence of THG intensity ratios on sample thicknesses is 

shown in Fig. 17. From Eq. (6.43), the ratio of both signals is given by 

𝐼𝑀
3𝜔

𝐼𝐵𝐾7
3𝜔 = (

∆𝐾𝐵𝐾7
2

)
2 |𝜒𝑀

3𝜔|2

|𝜒𝐵𝐾7
3𝜔 |2

𝐿𝑀
2 exp [

−𝛼𝐿𝑀
2

]
sin2 (

∆𝐾𝑀𝐿𝑀
2 ) + sinh2 (

𝛼𝐿𝑀
4 )

(
∆𝐾𝑀𝐿𝑀
2 )

2

+ (
𝛼𝐿𝑀
4 )

2 , (6.44) 

where the subscripts 𝐵𝐾7 and 𝑀 refer to the 𝐵𝐾7 and to the sample 

respectively. 

 

Fig. 17. THG signal intensity as a function of the cell thickness. 

Owing to the strong absorption at the third harmonic wavelength, the        

sinh − term is always much larger than the sin −term in Eq. (6.44). No 

oscillations are visible in the intensity ratio, as shown in Fig. 17, and we even 
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observed saturation for rather small thickness values. Based on the above 

argument, Eq. (6.44) can be simplified to 

𝐼𝑀
3𝜔

𝐼𝐵𝐾7
3𝜔 ≈ (

∆𝑘𝐵𝐾7
2

)
2 |𝜒𝑀

3𝜔|2

|𝜒𝐵𝐾7
3𝜔 |2

1

4

(1 − 2exp [
−𝛼𝐿𝑀
2 ] + exp[−𝛼𝐿𝑀])

(
∆𝑘𝑀
2 )

2

+ (
𝛼
4)

2
 ,       (6.45) 

Black line in Fig. 17 represents the fit of the measured values to Eq. (6.45). In Eq. 

(6.45), ∆𝐾𝐵𝐾7 and 𝜒𝐵𝐾7
3𝑤  are known, so there is only one relevant fit parameter. 

This parameter, 

(
∆𝐾𝐵𝐾7
4

)
2 |𝜒𝑀

3𝜔|2

|𝜒𝐵𝐾7
3𝜔 |2

1

(
∆𝐾𝑀
2 )

2

+ (
𝛼
4)

2
 ,                                  (6.46) 

plays the role of a scale factor, and admixes 𝜒𝑀
3𝜔 and ∆𝐾𝑀, so both quantities 

cannot be obtained separately. 

The numerical value of the parameter finally gives 

𝜒𝑀
3𝜔 = √1 + (

𝑛3𝜔 − 𝑛𝜔

0.106
)

2

 1.5 10−11esu .                            (6.47) 

 

If 𝑛3𝜔 − 𝑛𝜔 = 0 the lower limit for 𝜒𝑀
3𝜔 is 1.5 10 -11 esu. On the other hand, for a 

conservatively estimated dispersion parameter of 𝑛3𝜔 − 𝑛𝜔 = 0.18, a 𝜒3𝜔value 

of ~3 10 -11 esu is obtained at 𝜆 = 1.56 μm. This value is comparable to the 

largest value (4.8 10 −11 esu at 𝜆 = 1.5 μm) measured for a PMMA polymer 

attached with a DNDPDA dye pendant (44 wt% dye content)37. This result is 

consistent with our THG measurements for the trimer, in which DNDPDA dye 

density is ~ 22 wt%. As far as we know, the trimer not only exhibits the largest 

third-order susceptibility to date for low-molecular weight LCs38 but its 𝜒3𝜔 

value is much larger than 𝜒3𝜔 = 0.74 10 −11 esu at 𝜆 = 1.9 μm for the commonly 
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used NLO chromophore 4-diethylamino-4′- nitrostilbene (DEANS) in single 

crystals39 and the largest 𝜒3𝜔 value of 0.58 10 −11 esu at 𝜆 = 1.064 μm (0.056 10 −11 

esu at 𝜆 = 1.579 μm) for a series of nematic liquid crystalline polymers40. 

However, the obtained result is resonance enhanced. A characterization of the 

THG dispersion will be required in order to determine the transparency-

efficiency trade-off in this material. This task should be tackled in the future. 

 

6.6 Conclusions 

We report a laterally azo-bridged trimesogen which incorporates a strong 

chromophore along its FLC polar axis. It is remarkable that the compound, 

which links three rod-like units together via two azo groups, exhibits a SmC* 

phase with a broad phase temperature range of 103 K during cooling. It is 

worthy to note that, like rod-shaped liquid crystals for display applications, the 

trimer can be easily aligned in homeotropic configuration upon applying a 

relatively weak in-plane E-field. In addition the mesophase is 

thermodynamically stable. The main components of the second order 

susceptibility tensor 𝐝 have been determined by means of SHG measurements, 

using a fundamental wavelength fare away from absorption (1560 nm). It is 

remarkable the high performance exhibited by the material which is very 

outstanding among liquid crystals. The largest measured coefficient 𝑑22 is the 

optimal one from the viewpoint of molecular design. In addition, a theoretical 

estimation of the macroscopic NLO coefficients has been made in terms of the 

molecular and structural parameters. Good agreement is found between the 

estimated and the experimental 𝑑22 and 𝑑21 values. 

Besides a strong SHG response in the SmC* phase, the trimer was also found to 

exhibit a strong THG response. To the best of our knowledge, the measured 𝜒3 
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value is the highest one reported for a LC. Nevertheless, our measurements 

where made under high absorption and this result is resonantly enhanced. 
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Appendix 

In this appendix we want to show how the second component of Eq. (6.1), for 

the particular case of SHG, takes the form of Eq. (6.2). 

First of all, let us recall Eq. (6.1): 

𝑃𝑖 = 𝜀0𝜒𝑖 𝑗𝐸𝑗 + 2𝑑𝑖 𝑗 𝑘𝐸𝑗𝐸𝑘 + 4𝜒𝑖 𝑗 𝑘 𝑙𝐸𝑗𝐸𝑘𝐸𝑙 + ⋯,                        (6.1) 

where 𝑃𝑖 and 𝐸𝑖 denote the polarization and electric field components 

respectively and their dependence in 𝑡 and 𝑧 has been omitted for the sake of 

simplicity. 𝜀0 is the electric permittivity of vacuum and 𝜒𝑖 𝑗, 𝑑𝑖 𝑗 𝑘 , 𝜒𝑖 𝑗 𝑘 𝑙 are the 

susceptibility tensors of first, second and third order respectively. Higher order 

terms have been suppressed in Eq. (6.1). Subscripts 𝑖, 𝑗, 𝑘 and 𝑙 denote the 

Cartesian coordinates and summation over repeated indices is assumed 

(Einstein’s notation). 

Let’s consider the time dependent part of two electric fields with frequencies 𝜔1 

and 𝜔2: 

𝐸𝑗
𝜔1(𝑡) =

1

2
(𝐸𝑗

𝜔1exp[𝑖𝜔1𝑡] + 𝑐. 𝑐)                                         (𝐴𝐼. 1) 

and 

𝐸𝑘
𝜔2(𝑡) =

1

2
(𝐸𝑘

𝜔2exp[𝑖𝜔2𝑡] + 𝑐. 𝑐) ,                                        (𝐴𝐼. 2) 

where 𝐸𝑗
𝜔1 and 𝐸𝑘

𝜔2 are the time independent parts of the fields, the subscripts 𝑗, 

𝑘 and 𝑙 denote the Cartesian coordinates and 𝑐. 𝑐 refers to the complex 

conjugate.  

Focusing our attention on the second order term of Eq. (6.1) and, using Eqs. 

(AI.1) and (AI.2) we can obtain the polarization component of the frequency 

sum, i.e. at 𝜔3 = 𝜔1 + 𝜔2 as follows: 
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𝑃𝑖
𝜔1+𝜔2 (𝑡) = 2𝑑𝑖 𝑗 𝑘 (

1

2
𝐸𝑗

𝜔1exp[𝑖𝜔1𝑡] +
1

2
𝐸𝑗

𝜔2exp[𝑖𝜔2𝑡] + 𝑐. 𝑐) (
1

2
𝐸𝑘

𝜔1exp[𝑖𝜔1𝑡]

+
1

2
𝐸𝑘

𝜔2exp[𝑖𝜔2𝑡] + 𝑐. 𝑐) .                                                                     (𝐴𝐼. 3) 

Since we are concerned with SHG, we consider only the sum-frequency terms, 

so we have 

𝑃𝑖
𝜔1+𝜔2 (𝑡) =

1

2
(𝑑𝑖 𝑗 𝑘𝐸𝑗

𝜔1𝐸𝑘
𝜔2exp[𝑖(𝜔1 + 𝜔2)𝑡] + 𝑑𝑖 𝑘 𝑗𝐸𝑘

𝜔2𝐸𝑗
𝜔1exp[𝑖(𝜔1 + 𝜔2)𝑡]

+ 𝑐. 𝑐).                                                                                                           (𝐴𝐼. 4) 

In a non-absorbing media or in the particular case of SHG, 𝑑𝑖 𝑘 𝑗 = 𝑑𝑖 𝑗 𝑘, 

therefore 

𝑃𝑖
𝜔1+𝜔2(𝑡) =

1

2
𝑑𝑖 𝑗 𝑘(2𝐸𝑗

𝜔1𝐸𝑘
𝜔2exp[𝑖(𝜔1 + 𝜔2)𝑡] + 𝑐. 𝑐) .            (𝐴𝐼. 5) 

On the other hand, we can write the polarization as follows: 

𝑃𝑖
𝜔1+𝜔2(𝑡) =

1

2
(𝑃𝑖

𝜔1+𝜔2exp[𝑖(𝜔1 + 𝜔2)𝑡] + 𝑐. 𝑐) ,                    (𝐴𝐼. 6) 

where 𝑃𝑖
𝜔1+𝜔2 is the time independent part of the polarization. 

Therefore, we get: 

𝑃𝑖
𝜔1+𝜔2 = 2𝑑𝑖 𝑗 𝑘𝐸𝑗

𝜔1𝐸𝑘
𝜔2 .                                            (𝐴𝐼. 7) 

Note that for the particular case of SHG, since just one field is involved, from 

Eq. (AI.5) it can be deduced that: 

𝑃𝑖
2𝜔 = 𝑑𝑖 𝑗 𝑘𝐸𝑗

𝜔𝐸𝑘
𝜔 .                                                  (𝐴𝐼. 8) 
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General conclusions 

This dissertation deals with optical functionalities of LCs. The main part 

(chapters 2, 3, 4 and 5) is dedicated to CLCs and their ability for light 

amplification. On the other hand, chapter 6 is in some way independent of the 

previous chapters and deals with NLO. In this section we are going to expose 

briefly the main conclusions of this dissertation. 

CLCs are compelling materials for laser generation due to several features as 

ease of construction and wavelength tunability. In order to use simpler and 

more economic pumping sources their performance must be optimized. In this 

respect, we have studied the dependence of the lasing efficiency on the sample 

thickness. One of the main conclusions we have drawn is that the slope 

efficiency 𝜂(𝐿) presents a very pronounced variation with the sample thickness 

and therefore, contrary to the general belief, it is the parameter that must be 

optimized instead of the threshold energy 𝐸𝑡ℎ(𝐿). In addition, we have 

determined that there is minimum for 𝐸𝑡ℎ(𝐿) and a maximum for 𝜂(𝐿) at 

somewhat different thicknesses. The experimental results are in good 

agreement with numerical calculations based in previous theoretical models. As 

a further step, analytical expressions for 𝐸𝑡ℎ and 𝜂 have also been deduced. 

These expressions are in excellent agreement with previous numerical 

calculations and permit to analyze easily the influence of the dye and CLC 

parameters on the performance of the laser. So, they are a powerful and novel 

tool for laser optimization. Such expressions also show that the quantum yield 

to the triplet level and the width of the pumping pulse have a similar effect in 

the laser operating mechanism. The increase of both is detrimental to the laser. 

This explains, partially, the difficulty in the realization of CLC lasers pumped 

by CW light sources. On the basis of the same numerical models, we have also 

described in detail the kinetic behavior of these devices. In such respect, we 

have confirmed experimentally the predicted results, i.e. as the pumping energy 
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increases, duration of the fluorescence pulse decreases, reaching a minimum at 

the threshold energy. Above the threshold the temporal profiles are irregular 

and consist of a set of narrow pulses whose measured duration is limited by the 

detector risetime.  

Finally we have tackled the controversial problem of explaining the alteration 

of the fluorescence spectrum of the dye when it is dissolved in a CLC structure 

since, according to the experiments of other authors, the fluorescence time 𝜏𝑓 is 

not substantially altered by the CLC cavity. On the basis of the previous 

numerical model, we have shown that the fluorescent output power is 

proportional the inverse of the radiative time of the dye (∝ 1/𝜏𝑟) and the pulse 

duration is driven by 𝜏𝑓. Therefore, in order to conciliate both the results, the 

modifications of the radiative and nonradiative de-excitation rates in the CLC 

cavity must be opposite to each other. 

One of the main drawbacks of these devices is their degradation due to dye 

bleaching. Another indirect but important consequence of the dye degradation 

can also be the light scattering inside the cavity. We have shown that, in last 

instance, the origin of this problem is the heating of the dye molecules, the 

performance of CLC lasers should highly improve with dyes showing low 

quantum yields to triplet states. Nevertheless, it is remarkable to say that by 

optimizing the laser cavity parameters, low pumping energies can be used. In 

this way, thermal degradation of the dye molecules can be made negligible in 

many practical situations. Actually, some of the samples used in this 

dissertation have lasted for months without showing deterioration. 

Finally chapter 6 is dedicated to NLO. In this respect, we report a laterally azo-

bridged trimesogen, which incorporates a strong chromophore along its FLC 

polar axis. It is worth mentioning that the compound, which consist of three 

rod-like units linked by two azo groups, exhibits a SmC* phase with a broad 
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phase temperature range. It is remarkable the high performance exhibited by 

the material which is very outstanding among liquid crystals. In addition, a 

theoretical estimation of the macroscopic NLO coefficients has been made in 

terms of the molecular and structural parameters. Good agreement is found 

between the estimated and the experimental 𝑑22 and 𝑑21 values. 

Apart from a strong SHG response in the SmC* phase, the trimer also exhibited 

a strong THG response. Up to our knowledge, the measured 𝜒3 value is the 

highest one reported for a LC. However, our measurements where made under 

high absorption and presumably the results are resonantly enhanced. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

166 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of publications 

167 

List of publications 

“Role of the sample thickness on the performance of cholesteric liquid crystal 

lasers: Experimental, numerical, and analytical results” 

G. Sanz-Enguita, J. Ortega, C. L. Folcia, I. Aramburu, J. Etxebarria. 

Journal of Applied Physics. 

 

“Kinetic behavior of light emission in cholesteric liquid crystal lasers: An 

experimental study” 

J. Ortega, C. L. Folcia, G. Sanz-Enguita, I. Aramburu, J. Etxebarria. 

Optics Express. 

 

“Thermally induced light-scattering effects as responsible for the degradation of 

cholesteric liquid crystal lasers” 

J. Etxebarria, J. Ortega, C. L Folcia, G. Sanz-Enguita, I. Aramburu. 

Optics Letters. 

 

“An azo-bridged ferroelectric liquid crystal with highly enhanced second and 

third harmonic generation” 

Y. Zhang, J. Ortega, U. Baumeister, C. L. Folcia, G. Sanz-Enguita, C. Walker, S. 

Rodriguez-Conde, J. Etxebarria, M. J. O’Callaghan, and K. More. 

Journal of the American Chemical Society. 



 

168 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Agradecimientos 

169 

Agradecimientos 

Los resultados expuestos en esta tesis son el fruto de varios años de trabajo por parte 

de todo el grupo de investigación con el que he tenido el placer de colaborar. Sin los 

miembros de dicho grupo no habría sido posible esta tesis. Por ello, en primer lugar 

quiero dar las gracias a mis tutores Josu Ortega Aperribay y César Luis Folcia Basa. Así 

como a los profesores Jesús Etxebarria e Ibón Aramburu; gracias a todos. Sin olvidarme 

de la que durante varios años ha sido mi compañera de laboratorio y amiga Sofía 

Rodríguez Conde. Además, parte del trabajo llevado a cabo durante estos años habría 

sido imposible sin el grupo de Química Orgánica de la Universidad de Zaragoza y sin 

los distintos miembros que lo componen; especialmente, en el presente caso, sin Blanca 

ni Neli. 

Durante mi penúltimo año de doctorado he tenido la oportunidad de realizar una 

estancia de 3 meses en la Universidad de Calabria (Italia). Durante dicha estancia 

colaboré con el grupo de fotónica del departamento de Física. Por la experiencia y por 

todo lo aprendido estoy especialmente agradecido a Gabriella, Alfredo, Josue, Pascuali, 

Clementina, Gia y Daniele. 

En cuanto a mi vida en Bilbao, estos años no habrían sido lo mismo sin la distinta gente 

que ha pasado por el becádromo. Sin la gente del pintxo-pote de los jueves, 

especialmente Toni. Sin mis distintos compañeros de piso como Dani o Telmo, con 

quien además de compartir piso he compartido departamento. Y sin mis compañeros 

de monte Santi y Marcos. 

A su vez estoy especialmente agradecido a Anna por el apoyo que me ha prestado 

durante todos estos años y a toda mi familia en general, especialmente a mis padres y a 

mi chirmán. 

Por último agradecer a la UPV la beca de la que he disfrutado durante estos años. 



170 






