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Ph. D. Thesis

Advisor: Luis Escauriaza Zubiria

UPV/EHU
Leioa, 2016

(cc)2016 SANTIAGO MONTANER GARCIA (cc by-nc-sa 4.0)





Quantitative estimates of analyticity, applications

and elliptic regularity end-points

Santiago Montaner Garćıa
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Some notations and definitions

In this thesis we will follow the following conventions. We will denote BR(x0) =
{x ∈ Rn : |x− x0| ≤ R}, sometimes we will simply write BR = BR(x0) provided
that there is no confusion. In Chapter 2 we will consider half-balls B+

R = BR(0) ∩
{x ∈ Rn : xn > 0}.

We will employ the multi-index notation: if α = (α1, . . . , αn) ∈ Nn, we set

|α| = α1 + · · ·+ αn, α! = α1! · · ·αn!.

The following partial order is defined for multi-indices α, β ∈ Nn:

α ≤ β if and only if αi ≤ βi for any i = 1, . . . , n;

accordingly, α < β means that α ≤ β but α 6= β. At some point we will need the
binomial coefficients (

α

β

)
=

α!

(α− β)!β!
,

where α, β ∈ Nn with β ≤ α. For a function u defined in an open set in Rn and
α ∈ Nn we will use the following notation:

∂αxu =
∂|α|u

∂x1
α1 · · · ∂xnαn

, |Dku|2 =
∑
|α|=k

|∂αxu|2.

Since we are going to study the real-analyticity of solutions to boundary-value
problems, we will need to assume some analytic regularity on the boundary of the
considered domain. To describe the analyticity of a piece of boundary BR(q0) ∩ ∂Ω
with q0 in ∂Ω, we assume that for each q in BR(q0) ∩ ∂Ω we can find, after a
translation and rotation, a new coordinate system (in which q = 0) and an analytic
function

ϕ : B′% = {x′ ∈ Rn−1, |x′| < %} ⊂ Rn−1 → R
verifying ϕ(0) = 0 and

|∂αx′ϕ(x′)| ≤ |α|! %−|α|−1 , when x′ ∈ B′%, α ∈ Nn−1, (0.1)

v
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and
B% ∩ Ω = B% ∩ {(x′, xn) : x′ ∈ B′%, xn > ϕ(x′)},
B% ∩ ∂Ω = B% ∩ {(x′, xn) : x′ ∈ B′%, xn = ϕ(x′)}.

We will say that Ω is a real-analytic domain —or simply analytic— if for each
q0 ∈ ∂Ω there exists R > 0 such that BR(q0) ∩ ∂Ω can be described in this way.

Similarly Ω is said to be a Ck,1 domain if ϕ ∈ Ck,1(B%) and instead of (0.1), ϕ
satisfies:

|∂αxϕ(x′)− ∂αxϕ(y′)| ≤ %−1|x′ − y′| , when x′, y′ ∈ B′% for any α ∈ Nn−1 with |α| = k.

A C0,1 domain is called a Lipschitz domain.

Regarding the functional spaces that we will make use of, we recall the reader the
following standard notation for Sobolev spaces of functions having weak derivatives:
given an open set Ω ⊆ Rn, k ∈ N and 1 ≤ p ≤ +∞, we denote

‖u‖Wk,p(Ω) =
k∑
j=0

‖Dju‖Lp(Ω), W k,p(Ω) =
{
u ∈ Lp(Ω) : ‖u‖Wk,p(Ω) < +∞

}
,

W k,p
loc (Ω) =

{
u ∈ W k,p(K) : for any compact K ⊆ Ω

}
,

W k,p
0 (Ω) = closure of C∞0 (Ω) with respect to the norm of W k,p(Ω),

where C∞0 (Ω) is the space of smooth functions compactly supported on Ω. For p = 2
we denote Hk(Ω) = W k,2(Ω) and Hk

0 (Ω) = W k,2
0 (Ω). When dealing with parabolic

evolutions of order 2m, if C∞0 (Ω × (0, T )) denotes the set of smooth functions on
Ω× (0, T ) vanishing on ∂Ω× [0, T ], then L2((0, T );Hm

0 (Ω)) is the closure of C∞0 (Ω×
(0, T )) with respect to the norm

‖u‖L2((0,T );Hm(Ω)) =

(ˆ T

0

‖u(t)‖2
Hm(Ω) dt

) 1
2

.

We denote C([0, T ];L2(Ω)) the space of functions u : Ω× (0, T )→ R such that

sup
0≤t≤T

‖u(t)‖L2(Ω) < +∞

and ‖u(t)‖L2(Ω) depends continuously on t for 0 ≤ t ≤ T .
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Chapter 1

Introduction

This thesis is mainly devoted to the study of null-controllability properties from
interior and boundary measurable subsets for linear parabolic equations whose co-
efficients have some real-analytic regularity. We achieve these results by means of
duality arguments which rely on the so-called observability inequalities. The method
we employ is based on the natural unique continuation associated to real-analytic
functions; hence, the main difficulty here is proving adequate quantitative estimates
of real-analyticity for solutions to parabolic equations.

Apart from these control-theoretical results, we deal with some issues related to
Lp regularity of second derivatives of solutions to non-divergence uniformly elliptic
equations with continuous coefficients. More precisely, we focus on the end-point
cases of the Lp scale, proving an affirmative result in the L1 case and providing
counterexamples in both the L1 and BMO cases.

Some of the results contained in this thesis have been already published in [24].
In [24] we prove some real-analyticity estimates like (1.17) for time independent
parabolic equations and its applications to Control Theory. In the subsequent
work [25] we extended the analyticity results to time dependent parabolic equa-
tions; consequently, we extend to more general parabolic equations many of the
control-theoretic results proved in [24]. Finally, the results on regularity of solutions
to non-divergence elliptic equations are contained in [23].

1.1 Control Theory and time irreversibility

One natural question that arises when studying the evolution of a dynamical
system is the possibility of acting on it by means of some control, that is, we may
be interested in controlling the trajectory of a system by modifying some adjustable
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Chapter 1. Introduction

parameter. For instance, we can ask ourselves whether it is possible to drive a
system from a given state to another prescribed state. The theoretical framework
that studies this and other related questions is known as Control Theory.

Even though there exists a literature dealing with some control-theoretical topics
from a somewhat abstract viewpoint, in general, the knowledge of the specific char-
acteristics of a given system yields better results. In the case of dynamical systems
governed by partial differential equations, controllability problems have motivated a
great amount of research and literature; the book [14] gathers many relevant results
and methods on this vast field.

Here, we focus on the controllability of parabolic evolutions, which are modeled
after the heat equation and under appropriate assumptions enjoy many of the same
properties, among which the time irreversibility arises as an essential feature with
consequences on the kind of controllability results that can be expected to hold.

An important instance of time-irreversible behaviour shown by the heat equation
is the smoothing or regularizing effect, which means that the heat equation can
instantaneously smooth out very rough initial data satisfying mild assumptions; we
now make more precise this fact. It is well known that the fundamental solution of
the heat equation in Rn × (0,+∞) is given by the Gaussian or heat kernel

G(x, t) = (4πt)−
n
2 e−

|x|2
4t for (x, t) ∈ Rn × (0,+∞), (1.1)

and allows to write down the solution of the problem{
∂tu−∆u = 0, in Rn × (0,+∞),

u(x, 0) = u0(x), in Rn,
(1.2)

as

u(x, t) =

ˆ
Rn
G(x− y, t)u0(y) dy, for (x, t) ∈ Rn × (0,+∞). (1.3)

For our current explanatory purposes we assume that u0 is a measurable function
and there exist positive constants a,M such that

|u0(x)| ≤Me
|x|2
4T in Rn. (1.4)

Under these assumptions it can be seen [45, p. 213, (1.25)] that the solution u given
by (1.3) extends in both spatial and time variables to a function in the complex
variables z = x + iy, x, y ∈ Rn, and w = t + iσ, t, σ ∈ R, which is analytic in
z and w for all complex z, w such that t2+σ2

t
< T . In particular, if the evolution

governed by the heat equation departs from a rough initial data satisfying (1.4), the
solution instantaneously becomes a complex entire function in the spatial variables

2



1.2. Null-controllability and observability inequalities over measurable sets

for each t ∈ (0, T ). This example makes clear the strong regularizing effect of the
heat equation, which is also extensible to more general parabolic equations.

This smoothing effect has important consequences on the controllability prop-
erties of the heat equation: since this evolution tends to regularize the solution,
we cannot expect to be able to drive an arbitrary initial data towards a rough final
state. On the contrary, the adequate notion of controllability for parabolic equations
is null-controllability.

1.2 Null-controllability and observability inequal-

ities over measurable sets

We now introduce the notions of interior and boundary null-controllability for
the heat equation. In what follows Ω ⊆ Rn denotes an open bounded domain whose
boundary is assumed to have some regularity and T > 0 is a future fixed time. In
addition, we will consider subsets ω ⊂ Ω and γ ⊂ ∂Ω. Then, we deal with the
following two problems:

• Interior controllability: given a subset D ⊆ Ω × (0, T ), does there exist a
constant N = N(Ω,D, T ) such that for any u0 ∈ L2(Ω) we can find a function
f ∈ L2(Ω× (0, T )) supported on D, satisfying

‖f‖L2(D) ≤ N‖u0‖L2(Ω), (1.5)

and such that the solution to
∂tu−∆u = fχD, in Ω× (0, T ],

u = 0, on ∂Ω× (0, T ],

u(x, 0) = u0(x), in Ω,

(1.6)

satisfies u(T ) = 0? If so, f is called an interior or distributed control.

• Boundary controllability: given a subset J ⊆ ∂Ω × (0, T ), does there
exist a constant N = N(Ω,J , T ) such that for any u0 ∈ L2(Ω) we can find a
function g ∈ L2(∂Ω× (0, T )) supported on J , satisfying

‖g‖L2(J ) ≤ N‖u0‖L2(Ω), (1.7)

and such that the solution to
∂tu−∆u = 0, in Ω× (0, T ],

u = gχJ , on ∂Ω× (0, T ],

u(x, 0) = u0(x), in Ω,

(1.8)
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Chapter 1. Introduction

satisfies u(T ) = 0? If so, g is called a boundary control.

As far as we know, the first affirmative answer to this kind of questions was given
by H. O. Fattorini and D. L. Russell [29] when n = 1 (See also [79]). For the case
n ≥ 2, G. Lebeau and L. Robbiano [54] devised the so-called Lebeau-Robbiano control
strategy, which gives an explicit construction of the control when D = ω×(0, T ) and
J = γ × (0, T ) with ω and γ open subsets. This strategy is based on an inequality
for the eigenfunctions of the Laplace operator, which is proved using local Carleman
estimates and also works for uniformly parabolic equations with time-independent
coefficients having a self-adjoint structure and some regularity. At the same time,
O. Imanuvilov [42] proved analogous results for semilinear parabolic equations with
variable coefficients also depending on time. In [42] the null-controllability results
are proved using observability inequalities, which in turn are proved by means of
global Carleman estimates.

The nowadays standard techniques used to prove null-controllability properties
for parabolic equations rely on observability inequalities. These inequalities may
take the form

‖ϕ(0)‖L2(Ω) ≤ N(D,Ω, T )‖ϕ‖L2(D), (1.9)

‖ϕ(0)‖L2(Ω) ≤ N(J ,Ω, T )‖∂ϕ
∂ν
‖L2(J ), (1.10)

for solutions to the adjoint problem
∂tϕ+ ∆ϕ = 0, in Ω× [0, T ),

ϕ = 0, on ∂Ω× [0, T ),

ϕ(x, T ) = ϕT (x), in Ω.

(1.11)

If (1.9) or (1.10) holds, then we say that (1.11) is observable over D or observable
over J . It is well known that the fact of having estimates like (1.9) and (1.10) for
solutions to (1.11) is equivalent to the existence of interior and boundary controls
satisfying (1.5),(1.6) and (1.7),(1.8) respectively [15, 60]. This duality principle
between observability and controllability also works for general parabolic equations;
see [14, 30] for more related results and references.

We remark that the control regions considered in the observability estimates
proved in the literature are cylindrical subdomains D = ω×(0, T ) and J = γ×(0, T )
with ω and γ open subdomains. However, to prove the most general results, one
should have the greatest possible latitude when choosing the different parameters in
the control system. In this thesis we are interested in obtaining controllability results
for general parabolic equations when the control regions D and J are measurable
sets with positive Lebesgue —or surface— measure contained in Ω × (0, T ) and
∂Ω× (0, T ) respectively.
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1.2. Null-controllability and observability inequalities over measurable sets

It is not clear whether the Carleman methods in [42] can be applied to prove
observability inequalities over measurable sets, for the Carleman method strongly
relies on the following fact [42] (See also [14, Lemma 2.68]): if ω is an open subset
of Ω, then there exists a function ψ ∈ C2(Ω) satisfying

ψ > 0 in Ω, ψ = 0 on ∂Ω and |∇ψ(x)| > 0 in Ω \ ω.

The existence of such a function ψ is not known when ω is merely a Lebesgue
measurable set with positive measure. Besides, the Lebeau-Robbiano strategy [54]
only works for parabolic equations with time-independent coefficients and relies
on establishing quantitative estimates of unique continuation from open sets for
solutions of elliptic equations —three spheres inequalities. Nevertheless, it seems
to be a hard problem to obtain the analogous quantitative estimates of unique
continuation from Lebesgue measurable sets with positive measure using Carleman
estimates or frequency functions. See [63, 73, 88] for some partial results, which
are not good enough for the application to null-controllability from measurable sets.
For instance, in [63, Theorem 1] the following fact is proved:

Theorem 1.1. Let u ∈ H1
loc(B3) be a weak solution to div(A∇u) = 0 in B3, where

A is a symmetric matrix such that for some λ > 0

A(x)ξ · ξ ≥ λ|ξ|2 in B3 for any ξ ∈ Rn,

and
|A(x)− A(y)| ≤ λ−1|x− y|.

Let E ⊆ B1 be a Lebesgue measurable set with positive measure, then

ffl
B1
u2 dxffl

B2
u2 dx

≤ ϕ

( ffl
E
u2 dxffl

B2
u2 dx

)
, (1.12)

where ϕ(t) = N | log t|−θ and N ≥ 1, θ ∈ (0, 1) are constants only depending on λ, n

and |B2|
|E| .

For our purposes, the rate of vanishing of ϕ in (1.12) as t tends to zero is
not enough. On the other hand, the well-known unique continuation property for
analytic functions [45, Chapter 3, §3(b)] and its quantitative counterparts, such as
the Hadarmard three-circle Theorem [13, Chapter VI, §3], can be exploited in order
to obtain an estimate of propagation of smallness from measurable sets better than
(1.12) when u is a real-analytic function. This was done by S. Vessella in [87] to
prove an estimate like (1.12) with ϕ(t) = Ctα, α ∈ (0, 1), when the matrix A in
Theorem 1.1 is constant. The method in [87] strongly depends on the analyticity

5



Chapter 1. Introduction

of harmonic functions, but also works for general elliptic equations with analytic
coefficients and, in fact, this result is a consequence of a more general result for
real-analytic functions —not necessarily solutions of elliptic equations— which was
proved in [87], too. Therefore, we will be also able to use this propagation of
smallnes from measurable sets in contexts more general than elliptic equations, such
as parabolic evolutions. We state these results in Lemma 3.1 and Corollary 3.2 at
the beginning of Chapter 3.

We now give a brief report of the progresses made on the null-controllability
and observability of parabolic evolutions over measurable sets. In what follows E
denotes a subset of (0, T ) with positive Lebesgue measure: except for the 1997
work [68] —where the authors proved the one-sided boundary observability of the
heat equation in one space dimension over measurable sets— up to 2008 the control
regions considered in the literature were always of the type ω× (0, T ) or γ × (0, T ),
with ω and γ open.

Then, G. Wang showed in [90] that the heat equation is controllable from mea-
surable sets ω × E, with ω open and E measurable with positive measure, in all
dimensions. A remarkable characteristic of this result is that, if u is the solution to
the control system (1.6), then the obtained control f is supported in ω×E, belongs
to L∞(E;L2(ω)) and satisfies

‖f‖L∞(E;L2(ω)) ≤ N(E,ω,Ω, T )‖u0‖L2(Ω),

therefore, by duality the following observability inequality holds

‖ϕ(0)‖L2(Ω) ≤ N(E,ω,Ω, T )

ˆ
E

‖ϕ(t)‖L2(ω) dt, (1.13)

for solutions to (1.11).

In [3] J. Apraiz and L. Escauriaza showed that second order parabolic equa-
tions with time-independent Lipschitz coefficients associated to self-adjoint elliptic
operators with local analytic coefficients in a neighborhood of a measurable set ω is
controllable from ω× (0, T ). In [3] the same result is proved in one space dimension
when the coefficients are merely measurable. Both [90] and [3] relied basically on
the Lebeau-Robbiano strategy [54] for the construction of control functions.

C. Zhang [92] combined the reasonings of [90] and [3] to obtain the observability
of the heat equation over arbitrary cartesian products of measurable sets ω × E of
positive measure. The observability inequality proved in [92] takes the form

‖ϕ(0)‖L2(Ω) ≤ N(E,ω,Ω, T )‖ϕ‖L1(ω×E), (1.14)

for solutions to (1.11). According to the duality between observability and control-
lability, the control obtained in [92] is supported on ω × E and is bounded.
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1.2. Null-controllability and observability inequalities over measurable sets

We also mention the works [75] and [76], which showed the observability of
∂t − ∆ + c(x, t), with c a bounded function, over sets ω × E with ω open and
E measurable. These two works used Poon’s parabolic frequency function [78], its
further developments in [22] and the telescoping series method [67]. We remark that
only [75] and [76] have dealt with some operators with time-dependent coefficients
and measurable control regions but only for the special case of ∂t−∆ + c(x, t), with
c bounded in Rn+1 and for control regions of the form ω × E, with ω ⊂ Ω an open
set and E ⊂ [0, T ] a measurable set.

Finally, [4] established the interior and boundary observability of the heat equa-
tion over general measurable sets D ⊂ Ω × (0, T ) and J ⊂ ∂Ω × (0, T ) and found
for both cases bounded controls.

In this thesis we extend some of the controllability results in [4] to higher order
parabolic equations with time dependent real-analytic coefficients with a possible
non self-adjoint structure. Some of these results have been already published in [24],
where real-analyticity estimates like (1.17) were proved for solutions to parabolic
equations with time independent coefficients with a possible non self-adjoint struc-
ture, as well as its applications to Control Theory. In the subsequent work [25] we
extended the analyticity results to higher order parabolic equations with time de-
pendent coefficients; consequently, we extend many of the control-theoretic results
proved in [24].

The reasonings in [3, 4, 75, 90, 92] made it clear that in order to prove the
observability estimates over measurable sets we need to put together:

i) suitable quantitative estimates of analyticity for solutions to parabolic equa-
tions,

ii) Vessella’s estimate of propagation of smallness from measurable sets,

iii) the telescoping series method.

We now sketch how we can put these three ingredients together to prove the ob-
servability inequality for (1.11) over a product D = ω × E of two measurable sets
ω ⊆ Ω, E ⊆ (0, T ) of positive measure. We first notice that proving (1.14) for the
system (1.11) is equivalent to proving

‖u(T )‖L2(Ω) ≤ N(E,ω,Ω, T )‖u‖L1(ω×E), (1.15)

for solutions to 
∂tu−∆u = 0, in Ω× (0, T ],

u = 0, on ∂Ω× (0, T ],

u(x, 0) = u0(x), in Ω,

(1.16)
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Chapter 1. Introduction

for any u0 ∈ L2(Ω). Following the results in [3, 4, 24, 25], if the boundary of
∂Ω is real-analytic (See (0.1)), then the solutions to (1.15) satisfy the following
quantitative estimate of real-analyticity in the time and spatial variables:

There is ρ = ρ(n, %,Ω), 0 < ρ ≤ 1, such that for any α ∈ Nn, p ≥ 0, we have

|∂αx∂
p
t u(x, t)| ≤ e1/ρtρ−|α|−p p! |α|! ‖u0‖L2(Ω) in Ω× (0, T ). (1.17)

Putting together (1.17), the estimate of propagation of smallness from measurable

sets (Lemma 3.1 and Corollary 3.2 in Chapter 3) and the energy inequality (See
(2.7) in Chapter 2), it can be seen that there exist constants N = N(Ω, |ω|, ρ),
θ = θ(Ω, |ω|, ρ), θ ∈ (0, 1) such that

‖u(T2)‖L2(Ω) ≤
(
Ne

N
T2−T1

ˆ
E∩(T1,T2)

‖u(t)‖L1(ω) dt

)θ
‖u(T1)‖1−θ

L2(Ω) (1.18)

for any two times T1 and T2 such that 0 < T1 < T2 ≤ T ≤ 1. Given a density point
l ∈ E and a number z > 1 we can find (See Lemma 3.3 in Chapter 3) a monotone
decreasing sequence l < . . . < lk+1 < lk < . . . < l1 ≤ T such that

lk − lk+1 = z(lk+1 − lk+2), |E ∩ (lk+1, lk)| ≥
1

3
(lk − lk+1).

Setting T2 = lk and T1 = lk+1 in (1.18) yields

‖u(lk)‖L2(Ω) ≤

(
Ne

N
lk−lk+1

ˆ
E∩(lk+1,lk)

‖u(t)‖L1(ω) dt

)θ

‖u(lk+1)‖1−θ
L2(Ω).

We write the previous inequality as

Ak ≤ e
N

lk−lk+1Bθ
kA

1−θ
k+1,

where

Ak = ‖u(lk)‖L2(Ω), Bk =

ˆ
E∩(lk+1,lk)

‖u(t)‖L1(ω) dt,

and using Cauchy inequality we obtain

Ak ≤ e
N

lk−lk+1Bkε
−θ + ε1−θAk+1,

for any ε > 0. Taking into account that lk − lk+1 = z(lk+1 − lk+2), we arrive to

εθAke
− N
lk−lk+1 − εAk+1e

− N
z(lk+1−lk+2) ≤ Bk.

8



1.2. Null-controllability and observability inequalities over measurable sets

The choice z = N+1
N+θ

and ε = e
− 1
lk−lk+1 yields a telescoping series :

e
− N+θ
l1−l2A1 =

+∞∑
k=1

e
− N+θ
lk−lk+1Ak − e

− N+θ
lk+1−lk+2Ak+1

≤
+∞∑
k=1

Bk =

ˆ
E∩(l,l1)

ˆ
ω

|u(x, t)| dx dt. (1.19)

Finally, (1.19) and the energy inequality (2.7) gives

‖u(T )‖L2(Ω) ≤ ‖u(l1)‖L2(Ω) ≤ e
N+θ
l1−l2 ‖u‖L1(ω×E) ≤ N‖u‖L1(ω×E),

which is the observability estimate (1.15).

We remark that in the derivation of (1.15), once that the real-analyticity estimate
for solutions to (1.16) has been established, the proof of (1.15) is independent of
the considered parabolic system except for the energy estimate (2.7). As the expert
reader shall see, this is a great advantage in comparison with the methods relying
on Carleman estimates: while the proof of quantitative estimates of real-analyticity
is readily generalized for higher order parabolic equations or systems, it seems to
be a hard problem to obtain Carleman estimates for higher order problems. For
instance, only recently the null-controllability property has been obtained for fourth
order parabolic equations —with time-independent coefficients— by means of a
Lebeau-Robbiano strategy and local Carleman estimates [55]. On the other hand,
the methods based on real-analyticity estimates for solutions to parabolic equations
require real-analytic regularity on the coefficients and the boundary, which are very
strong assumptions; tipically much less regularity on the data is enough.

So far we have only discussed the interplay between real-analyticity, observability
and null-controllability; but once that the null-controllability of a parabolic system
has been established, some further questions regarding the properties of the control
arise. Here we consider the existence of time minimal and norm minimal controls ;
for now we only mention the interior case. If we denote u(t;u0, f) the solution to
the controlled problem

∂tu−∆u = fχD, in Ω× (0, T ],

u = 0, on ∂Ω× (0, T ],

u(x, 0) = u0(x), in Ω,

and we set

UM = {f : Ω× (0, T )→ R measurable : |f(x, t)| ≤M, a.e. in Ω× (0, T )} ,

9



Chapter 1. Introduction

then, for each u0 ∈ L2(Ω) \ {0} we deal with the time minimal control problem

(TP )Mω : TMω , inf
f∈UM

{t > 0 : u(t;u0, f) = 0} .

and the norm minimal control problem

(NP )Tω : MT
ω , min

{
‖f‖L∞(Ω×(0,T )) : f ∈ L∞(Ω× (0, T )), u(T ;u0, f) = 0

}
.

In [4] it is proved the existence of bounded time minimal controls supported on mea-
surable sets D = ω × (0, T ) with ω ⊆ Ω a measurable subset of positive measure; it
is also proved the existence of norm minimal controls supported on general measur-
able subsets D with positive measure. Besides, in [4] these time and norm optimal
controls are shown to satisfy the bang-bang property, i.e., |f(x, t)| = M a.e. in D
for some constant M , and consequently, they are unique (See also [75, 76, 77, 90]).
In Section 3.3 we state results regarding the bang-bang property for some controls:
when we consider parabolic equations with time independent coefficients we have the
bang-bang property for time minimal controls supported on subsets D = ω× (0, T )
with ω measurable; on the other hand, when considering parabolic equations with
time dependent variable coefficients we get the bang-bang property for norm minimal
controls supported on general measurable subsets D. These results are straightfor-
ward consequences of the observability inequalities in Chapter 3.

1.3 Analyticity of parabolic evolutions

According to the discussion in the previous Section, obtaining suitable analyticity
estimates for solutions to parabolic problems is a key point in the derivation of
observability inequalities over measurable sets; consequently a major part of this
thesis is devoted to the study of space-time analyticity of solutions to parabolic
problems of the form

∂tu+ (−1)mLu = 0, in Ω× (0, T ],

u = Du = . . . = Dm−1u = 0, in ∂Ω× (0, T ],

u(0) = u0, in Ω,

(1.20)

with L defined by

L =
∑
|α|≤2m

aα(x, t)∂αx .

The parabolicity of L is understood in the following sense:∑
|β|=2m

aβ(x, t)ξβ ≥ %|ξ|2m, for ξ ∈ Rn, (x, t) ∈ Ω× [0, T ].

10



1.3. Analyticity of parabolic evolutions

The coefficients are real-analytic, i.e., they are assumed to satisfy for some 0 < % ≤ 1
bounds like

|∂αx∂
p
t aβ(x, t)| ≤ %−1−|α|−p (|α|+ p)!, for all (x, t) ∈ Ω× [0, T ], α ∈ Nn and p ∈ N,

and we also assume that the boundary of Ω is real-analytic (See (0.1)).

As far as we understand, the best quantitative bounds that we can infer or derive
for solutions to (1.20) from the reasonings in [33, 34, 35, 85, 49, 51, 83, 84] are the
following:

There is 0 < ρ ≤ 1, ρ = ρ(%,m, n, ∂Ω) such that for (x, t) in Ω× (0, 1], α ∈ Nn
and p ∈ N,

|∂αx∂
p
t u(x, t)| ≤ ρ−1− |α|

2m
−p (|α|+ p)! t−

|α|
2m
−p− n

4m‖u0‖L2(Ω), in Ω× (0, 1), (1.21)

where 2m is the order of the evolution and |α| = α1 + · · ·+ αn.

A first observation regarding (1.21) is that it blows up as t tends to zero, some-
thing unavoidable since it holds for arbitrary L2(Ω) initial data; however, (1.21)
provides a lower bound 2m

√
ρt for the radius of convergence of the Taylor series in

the spatial variables around any point in Ω of the solution u(·, t) at times 0 < t ≤ 1.
This lower bound shrinks to zero as t tends to zero and does not reflect the infinite
speed of propagation of parabolic evolutions. Thus, it would be desirable to prove
a quantitative estimate of space-time analyticity which provides a positive lower
bound of the spatial radius of convergence for small values of t.

Concerning this and keeping in mind the above-mentioned observability inequal-
ities over measurable sets, in [3, 4] the following quantitative estimates on the
space-time analyticity of the solutions of such parabolic evolutions were obtained for
parabolic evolutions having a self-adjoint structure and time-independent analytic
coefficients: there is 0 < ρ ≤ 1 such that for (x, t) in Ω× (0, 1], α ∈ Nn and p ∈ N,

|∂αx∂
p
t u(x, t)| ≤ e1/ρt1/(2m−1)

ρ−|α|−pt−p (|α|+ p)!‖u0‖L2(Ω). (1.22)

This was done by quantifying each step in a reasoning developed in [53], which
reduces the study of the strong unique continuation property within characteris-
tic hyperplanes for solutions of time-independent parabolic evolutions to its elliptic
counterpart. The bound (1.22) shows that the space-time Taylor series expansion of
solutions converges absolutely over Bρ(x)× ((1− ρ)t, (1 + ρ)t), for some 0 < ρ ≤ 1,
when (x, t) is in Ω × (0, 1]. The later is an essential feature for its applications to
the null-controllability of parabolic evolutions over measurable sets, while (1.21) is
not appropriate for such purpose [3, 4, 75, 90, 92].

In [24] we extended the analyticity estimates in [3, 4] to higher order equations
and systems with a possible non self-adjoint structure, yet having time-independent

11



Chapter 1. Introduction

coefficients; these results are contained in Section 2.1 of Chapter 2. Nevertheless,
the reasonings leading to an estimate like (1.22) in [24] cannot be extended to time-
dependent parabolic evolutions.

Also, in order to obtain space-time analyticity estimates for solutions to{
∂tu+ (−∆)mu = 0, in Rn × (0,+∞),

u(0) = u0, in Rn,
(1.23)

one can either use upper bounds of the holomorphic extension to Cn of the funda-
mental solution of higher order parabolic equations or systems with constant coef-
ficients [18, p. 15 (15); pp. 47-48 Theorem 1.1 (3)] and Cauchy’s theorem for the
representation of derivatives of holomorphic functions as path integrals, or proceed
directly with the formula

G(x, t) =

ˆ
Rn
e−2πix·ξe−t(4π

2|ξ|2)mdξ, x ∈ Rn, t > 0,

for the fundamental solution of ∂tu + (−∆)mu. The later approach requires the
following fact [40, (2.12)]: there exists a ρ = ρ(m,n), ρ ∈ (0, 1), such that for any
α ∈ Nn we have

|∂αxG(x, t)| ≤ ρ−1− |α|
2m |α|!

1
2m t−

|α|
2m
− n

2m e
−ρ
(
|x|2m
t

) 1
2m−1

, x ∈ Rn, t > 0.

Then, differentiating the representation formula for the solution of (1.23)

u(x, t) =

ˆ
Rn
G(x− y, t)u0(y) dy, x ∈ Rn, t > 0,

and applying Cauchy’s inequality, we obtain that there is ρ = ρ(n,m), 0 < ρ ≤ 1,
such that the solution to (1.23) satisfies

|∂αxu(x, t)| ≤ ρ−1− |α|
2m |α|!

1
2m t−

|α|
2m
− n

4m‖u0‖L2(Rn),

when α ∈ Nn. Finally, using the equation satisfied by u we can obtain a space-time
real-analyticity estimate: there is ρ = ρ(n,m), 0 < ρ ≤ 1 such that

|∂αx∂
p
t u(x, t)| ≤ ρ−1− |α|

2m
−p|α|!

1
2m p! t−

|α|
2m
−p− n

4m‖u0‖L2(Rn), in Rn × (0,+∞), (1.24)

when α ∈ Nn, p ∈ N and u solves (1.23). Thus, the radius of convergence of the
Taylor series expansion of u(·, t) around points in Rn is +∞ at all times t > 0.
The same holds when (−∆)m is replaced by other elliptic operators or systems of

12



1.3. Analyticity of parabolic evolutions

order 2m with constant coefficients. Also, observe that (1.22) is somehow in between
(1.21) and (1.24), since

t−
|α|
2m . |α|!1−

1
2m e1/ρt1/(2m−1)

, for α ∈ Nn, t > 0.

With the purpose to extend the estimates of the form (1.22) to time-dependent
parabolic evolutions and to apply them to its null-controllability over measurable
sets, we studied the works in the literature related to analyticity properties of so-
lutions to parabolic equations and found the following: most of the works [33, 34,
85, 35, 18, 49, 51, 83, 84] make no precise claims about lower bounds for the radius
of convergence of the spatial Taylor series of the solutions for small values of the
time-variable; the authors were likely more interested in the qualitative behavior for
fixed values of the time-variable.

If one digs into the proofs, one finds the following: [33] considers local in space
interior analytic estimates for linear parabolic equations and finds a lower bound
comparable to t. [34] is a continuation of [33] for quasi-linear parabolic equations
and contains claims but no proofs. The results are based on [33]. Of course, one can
after the rescaling of the local results in [33] for the growth of the spatial-derivatives
over B1 × [1

2
, 1] for solutions living in B2 × (0, 1], to derive the bound (1.21) for the

spatial directions. [85] finds a lower bound comparable to t.

In [35, Ch. 3], Lemma 3.2 gets close to make a claim like (1.22) but the proof
and claim in the cited Lemma are not correct, as the inequalities (3.5), (3.6) in
the Lemma and the last paragraph in [35, Ch. 3, §3] show when comparing them

with the following fact: an exponential factor of the form e1/ρt1/(2m−1)
in the right

hand side of (1.22) is necessary and should also appear in the right hand side of the
inequality (3.6) of the Lemma, for the Gaussian kernel, G(x, t + ε), t ≥ 0, satisfies

G(iy, 2ε) = (2ε)−
n
2 ey

2/8ε and (3.5) in the Lemma independently of ε > 0, but the
conclusion (3.6) in the Lemma would bound G(iy, 2ε), for y small and independently
of ε > 0, by a fixed negative power of ε, which is impossible. The approach in [35,
Ch. 3, Lemma 3.2], which only uses the existence of the solution over the time
interval [t/2, t] to bound all the derivatives at time t, cannot see the exponential
factor and find a lower bound for the spatial radius of convergence independent of t.
On the contrary, the methods in [35, Ch. 3] are easily seen to imply (1.21). [49] and
[51] deal with non-linear parabolic second order evolutions and find a lower bound
comparable to t.

The works [83, 84] consider linear problems and find a lower bound comparable to

t
1

2m
+ε, for all ε > 0. Finally, [18, p. 178, Th. 8.1 (15)] builds a holomorphic extension

in the space-variables of the fundamental solution for high-order parabolic equations
or systems. This holomorphic extension is built upon the assumptions of analyticity
of the coefficients in the spatial-variables and continuity in the time-variable. This

13



Chapter 1. Introduction

allows us to provide an alternative proof of (1.22) with p = 0 at points in the interior
of Ω. See also [83, §6] and [84, §9] for a historical discussion.

Here, we adapt the methods in [35, Ch. 3] to derive a formal proof of (1.22) valid
for all parabolic operators. To do it we use the the full time interval of existence of
the solution before time t, the W 2m,1

2 Schauder estimate (2.9) and the comparison
of each derivative ∂αx∂

p
t of a solution to (1.20) with the “test functions”

tpe−θt
−σ
, with 0 < θ ≤ 1 and σ = 1

2m−1
,

over the interval [0, 1] and the inequalities

t−αe−θt
−β ≤ e−

α
β θ−

α
β

(
α

β

)α
β

, when α, β, θ and t > 0.

Thus, avoiding the standard truncations in [35, Ch. 3], which only lead to (1.21).

In order to clarify the method used in this thesis to prove (1.22), we give below a
proof of the interior analyticity in the spatial variables for a solution to (1.2) using a
technique which is basically the same that we apply to general parabolic equations
with real-analytic variable coefficients. Let 0 ≤ R ≤ 1 and u be a C∞(BR(0)×(0, 1))
solution to

∂tu−∆u = 0, in BR × (0, 1). (1.25)

We are going to prove by induction on the number |γ| that there exist positive
constants M,ρ, 0 < ρ ≤ 1, depending on n such that for any multi-index γ ∈ Nn,
0 ≤ r ≤ R ≤ 1, θ ∈ (0, 1), we have

‖e−
θ
t ∂γxu‖r ≤M

[
ρθ

1
2 (R− r)

]−|γ|
|γ|!‖u‖R, (1.26)

where we denote ‖ · ‖r = ‖ · ‖L2(Br×(0,1)). In the remaining of this Section, N will
denote a universal constant only depending on the dimension n. The case |γ| = 0
in the induction is trivial; therefore, given k ≥ 0 we only need to prove that (1.26)
holds for any γ ∈ Nn with |γ| = k + 1 provided that (1.26) holds for any γ ∈ Nn
with |γ| = k.

Since u ∈ C∞(BR×(0, 1)), we can differentiate in (1.25) to check that ∂γxu solves

∂t(∂
γ
xu)−∆(∂γxu) = 0, in BR × (0, 1). (1.27)

Let η ∈ C∞0 (BR) be a non-negative function such that η = 1 in Br, η = 0 in Bc
r+δ

with 0 ≤ δ ≤ R − r and such that |∇η| ≤ Nδ−1 in Br+δ \ Br. We multiply (1.27)

by η2e−
2θ
t ∂γxu and integrate the resulting expression in BR × (0, 1) to obtain

0 =

ˆ
BR×(0,1)

η2e−
2θ
t ∂γxu(∂t∂

γ
xu−∆∂γxu) dx dt

=

ˆ 1

0

ˆ
BR

η2e−
2θ
t

(
1

2
∂t(∂

γ
xu)2 − div(∂γxu∇∂γxu) + |∇∂γxu|2

)
dx dt,

14



1.3. Analyticity of parabolic evolutions

then, integration by parts yields

0 =
1

2

ˆ
BR

η2e−2θ|∂γxu(x, 1)|2 dx−
ˆ 1

0

ˆ
BR

η2θt−2e−
2θ
t |∂γxu|2 dx dt

+

ˆ 1

0

ˆ
BR

e−
2θ
t

[
2η∂γxu∇η · ∇∂γxu+ η2|∇∂γxu|2

]
dx dt.

(1.28)

Using Cauchy inequality, the support properties of η and the estimate |∇η| ≤ Nδ−1

in Br+δ \Br, from (1.28) we arrive to

‖e−
θ
t∇∂γxu‖r ≤ N

[
θ

1
2‖t−1e−

θ
t ∂γxu‖r+δ + δ−1‖e−

θ
t ∂γxu‖r+δ

]
. (1.29)

Taking into account the estimate

t−αe−
θ
t ≤ e−αθ−ααα, when α, θ and t > 0,

we get

t−1e−
θ
t = t−1e−

1
k+2

θ
t e−

k+1
k+2

θ
t ≤ N(k + 1)θ−1e−

k+1
k+2

θ
t ,

which together with (1.29) yield

‖e−
θ
t∇∂γxu‖r ≤ N

[
(k + 1)θ−

1
2 + δ−1

]
‖e−

k+1
k+2

θ
t ∂γxu‖r+δ. (1.30)

Now we apply the induction hypothesis (1.26) with |γ| = k to get

‖e−
|γ|+1
|γ|+2

θ
t ∂γxu‖r+δ ≤M

[
ρ

(
|γ|+ 1

|γ|+ 2
θ

) 1
2

(R− r − δ)

]−|γ|
|γ|!‖u‖R. (1.31)

If we set δ = R−r
|γ|+2

in (1.31), then

‖e−
|γ|+1
|γ|+2

θ
t ∂γxu‖r+δ ≤M

[
ρθ

1
2 (R− r)

]−|γ|
|γ|!‖u‖R

(
|γ|+ 2

|γ|+ 1

) 3|γ|
2

,

and using that (
|γ|+ 2

|γ|+ 1

) 3|γ|
2

≤ N,

we arrive to

‖e−
|γ|+1
|γ|+2

θ
t ∂γxu‖r+δ ≤M

[
ρθ

1
2 (R− r)

]−|γ|
|γ|!‖u‖RN. (1.32)
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Taking into account that 0 ≤ R− r, θ ≤ 1, we have

(|γ|+ 1)θ−
1
2 +
|γ|+ 2

R− r
≤ Nθ−

1
2 (R− r)−1(|γ|+ 1),

therefore (1.30) together with (1.32) imply

‖e−
θ
t∇∂γxu‖r ≤ N

[
(|γ|+ 1)θ−

1
2 +
|γ|+ 2

R− r

]
×M

[
ρθ

1
2 (R− r)

]−|γ|
|γ|!‖u‖R

≤ Nθ−
1
2 (R− r)−1(|γ|+ 1)M

[
ρθ

1
2 (R− r)

]−|γ|
|γ|!‖u‖R

= NρM
[
ρθ

1
2 (R− r)

]−|γ|−1

(|γ|+ 1)!‖u‖R

≤M
[
ρθ

1
2 (R− r)

]−|γ|−1

(|γ|+ 1)!‖u‖R

provided that ρ = ρ(n) is a small positive constant such that Nρ ≤ 1. If γ ∈ Nn
with |γ| = k + 1, we can write γ = α+ ei for some i = 1, . . . , n; where α ∈ Nn with
|α| = k and ei is the i-th vector in the canonical basis of Rn, therefore

‖e−
θ
t ∂γxu‖r ≤ ‖e−

θ
t∇∂αxu‖r ≤M

[
ρθ

1
2 (R− r)

]−|α|−1

(|α|+ 1)!‖u‖R

= M
[
ρθ

1
2 (R− r)

]−|γ|
|γ|!‖u‖R,

which is the desired estimate (1.26). In turn, (1.26) implies

‖∂γxu‖L2(Br×(t,2t)) ≤Me
θ
2t

[
ρθ

1
2 (R− r)

]−|γ|
|γ|!‖u‖R, (1.33)

for t ∈ (0, 1
2
) and 0 < r < R ≤ 1. In order to get a pointwise estimate we only need

to use the embedding inequality (Theorem 2.6):

‖ϕ‖L∞(Rn+1) ≤ Cn
∑

|α|+p≤
[
n+1

2

]
+1

‖∂αx∂
p
t ϕ‖L2(Rn+1), (1.34)

for ϕ ∈ C∞0 (Rn+1). Hence, as a consequence of (1.33) and (1.34) we prove that there
exists a small positive constant ρ = ρ(n) such that for any γ ∈ Nn the following
estimate

|∂γxu(x, t)| ≤ e
1
ρt (Rρ)−|γ||γ|!‖u‖R,

holds for (x, t) ∈ BR
2

× (0, 1) when u solves (1.25).
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Some remarks regarding this proof of the interior space analyticity of solutions
to (1.25) are in order. The first one is that we have used energy methods to obtain
bounds of higher order derivatives of the solution in terms of lower order derivatives;
in Chapter 2 we will instead use L2-Schauder estimates, but apart from that, most
of the computations are essentially the same, at least for the simple case of the
heat equation. Secondly, since the heat equation is a constant coefficients equation,
differentiating in it we readily see that ∂γxu also satisfies the heat equation, (1.27);
however, if we were dealing with variable coefficients, we would have to differentiate
them and therefore ∂γxu would be a solution of a different equation. For instance, if
u is a solution to

∂tu−∆u+ c(x, t)u = 0,

then ∂γxu solves

∂t(∂
γ
xu)−∆(∂γxu) + c(x, t)∂γxu = −

∑
0≤β<γ

(
β

γ

)
∂γ−βx c ∂βxu , Fγ.

In this situation, in order to obtain the estimate (1.26) we can proceed in a similar
way as we have handled (1.27). Now we would consider ∂γxu as a solution to the
heat equation with a source term Fγ in the right hand side. But we notice that the
derivatives of u contained in Fγ are of order strictly lower than γ; hence, a suitably
modified induction procedure yields (1.26). Besides, a similar —but slightly more
complicated— induction argument allows us to prove the real-analyticity in both
spatial and time variables up to the boundary of the domain.

1.4 Elliptic regularity

Apart from the previous control-theoretic questions, we devote a Chapter of this
thesis to some regularity issues on linear elliptic equations. We will assume that
A(x) = (aij(x)) is a real symmetric matrix such that there is a λ > 0 verifying

λ|ξ|2 ≤ A(x)ξ · ξ ≤ λ−1 |ξ|2 , for any ξ ∈ Rn, x ∈ Ω,

where Ω ⊆ Rn is a bounded domain. We will deal with solutions of operators of the
form

Lu = tr
(
AD2u

)
=

n∑
i,j=1

aij(x)∂iju, (1.35)

where the entries of the matrix A are continuous functions in Ω.

We recall the reader the following regularity fact [38, Lemma 9.16]:
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Lemma 1.2. Let p, q be such that 1 < p < q < ∞ and f be in Lq(Ω). If u in
W 2,p
loc (Ω) verifies Lu = f in Ω, then u ∈ W 2,q

loc (Ω).

The previous result does not cover the case p = 1 and, as far as we know, this
case was not considered in the literature prior to our work [23]. It is our purpose
here to deal with it. We remark that Lemma 1.2 is true under the mere assumption
of the continuity of the coefficients. However, as we shall see, this mild assumption
is not enough in order to improve the integrability of the second derivatives of W 2,1

loc

solutions. On the contrary, a Dini-type condition on the coefficients is sufficient for
this purpose, this will be proved in Theorem 4.2 in Chapter 4. The kind of Dini
continuity condition which is assumed for the coefficient matrix A has the following
form:

|A(x)− A(y)| ≤ θ(|x− y|),

where θ : [0, 1]→ [0, 1] is a non-decreasing function satisfying

ˆ 1

0

θ(t)

t
dt < +∞. (1.36)

We notice that our result has been improved recently; in [17] a L1−mean Dini
condition is considered instead of the pointwise Dini condition (1.36). There, the
authors define

ϕ(r) = sup
x∈B3

 
Br(x)

|A(y)− ABr(x)| dy, ABr(x) =

 
Br(x)

A(y) dy, 0 < r < 1,

and assume that ˆ 1

0

ϕ(r)

r
dr < +∞. (1.37)

The following example [17] shows that condition (1.37) is less restrictive than (1.36):
if we let

A(x) = I(1 + (− ln |x|)−γ), 0 < γ <
1

2
,

with A(0) = I and I being the n× n identity matrix, then it turns out that A does
not satisfy condition (1.36), but (1.37) holds.

18



Chapter 2

Analytic regularity of linear
parabolic evolutions

In this chapter we give an account of the analyticity in space and time variables
of solutions to boundary value parabolic problems with L2 initial data. Throughout
this chapter L denotes the operator defined by

L =
∑
|α|≤2m

aα(x, t)∂αx , (2.1)

where the coefficients of L are bounded and satisfy a uniform parabolicity condition,
i.e., there is % > 0 such that∑

|α|=2m

aα(x, t)ξα ≥ %|ξ|2m, for ξ ∈ Rn, (x, t) ∈ Ω× [0, T ],

∑
|α|≤2m

‖aα‖L∞(Ω×[0,T ]) ≤ %−1.
(2.2)

If Ω ⊂ Rn is a bounded domain, we consider the problem
∂tu+ (−1)mLu = 0, in Ω× (0, T ],

u = Du = . . . = Dm−1u = 0, in ∂Ω× (0, T ],

u(0) = u0, in Ω,

(2.3)

with u0 in L2(Ω). We assume that globally aα lies in C |α|−m,0(Ω × [0, T ]), when
|α| > m; for in that case we can write∑

|α|≤2m

aα(x, t)∂αx =
∑

|α|,|β|≤m

∂αx
(
Aαβ(x, t)∂βx

)
, (2.4)
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Chapter 2. Analytic regularity of linear parabolic evolutions

with ∑
|α|=|β|=m

Aαβ(x, t)ξαξβ ≥ %|ξ|2m, for ξ ∈ Rn, (x, t) ∈ Ω× [0, T ],

∑
|α|,|β|≤m

‖Aαβ‖L∞(Ω×[0,T ]) ≤ %−1,
(2.5)

for some possibly smaller % > 0. Under these assumptions, let T > 0, if u0 ∈ L2(Ω)
and f ∈ L∞(Ω × (0, T )) we say that u ∈ C([0, T ];L2(Ω)) ∩ L2((0, T );Hm

0 (Ω)) is a
weak solution to (2.3) if

0 =

ˆ
Ω×(0,T )

u∂tϕ−
∑

|α|,|β|≤m

Aαβ∂
α
xϕ∂

β
xu dx dt+

ˆ
Ω

u0ϕ(0) dx+

ˆ
Ω×(0,T )

fϕ dx dt (2.6)

for any ϕ ∈ C∞(Ω × [0, T ]) such that ϕ(·, t) ∈ C∞0 (Ω) for any t ∈ [0, T ] and
ϕ(x, T ) = 0 for x ∈ Ω.

We now recall the basic result on existence and uniqueness of weak solutions
that we need:

Theorem 2.1. Let Ω be a bounded domain and assume (2.2), (2.4), (2.5), then for
each u0 ∈ L2(Ω) and f ∈ L2(Ω× (0, T )) there exists a unique u ∈ C([0, T ];L2(Ω))∩
L2((0, T );Hm

0 (Ω)) satisfying (2.6). Moreover, there is a constant C = C(n, %,Ω, T )
such that the following energy estimate

sup
0≤t≤T

‖u(t)‖L2(Ω) +
∑
|α|≤m

‖∂αxu‖L2(Ω×(0,T )) ≤ C
[
‖u0‖L2(Ω) + ‖f‖L2(Ω×(0,T ))

]
(2.7)

holds.

Proof. This Theorem is proved in [52, Chapter 3, Theorems 2.1, 4.1, 4.2] or in [26,
Chapter §7.1.2 ] when m = 1 and for parabolic operators with bounded measurable
coefficients. For the case m ≥ 2 and when the principal coefficients in (2.5) are
bounded measurable in t ∈ (0, T ) but uniformly continuous in Ω with a modulus
of continuity in the x-variable which is uniform in t, we notice that there exists
a constant C = C(n, %,Ω) such that the following coercive estimate [35, Theorem
12.1] holds∑
|α|,|β|≤m

ˆ
Ω

Aαβ(x, t)∂αxϕ(x, t)∂βxϕ(x, t) dx ≥ 1

C
‖ϕ(·, t)‖2

Hm(Ω)−C‖ϕ(·, t)‖2
L2(Ω) (2.8)

a.e. t ∈ (0, T ) for any ϕ ∈ L2((0, T );Hm
0 (Ω)). The methods in [52, Chapter 3] or in

[26, §7.1.2] together with (2.8) yield the result.
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In what follows we will assume that 0 < T ≤ 1 since for large times T > 1 we
already have estimate (1.21).

The above assumptions on the coefficients of L allows us to employ theW 2m,1
2 (Ω×

[0, 1]) Schauder estimates when Ω is a C2m−1,1 domain [16, Theorem 6]; i.e., there
is K = K(Ω, %,m, n) > 0 such that

‖∂tu‖L2(Ω×(0,1)) +
∑
|α|≤2m

‖∂αxu‖L2(Ω×(0,1)) ≤ K
[
‖F‖L2(Ω×(0,1)) + ‖u‖L2(Ω×(0,1))

]
, (2.9)

when u satisfies 
∂tu+ (−1)mLu = F, in Ω× (0, 1],

u = Du = . . . = Dm−1u = 0, in ∂Ω× (0, 1],

u(0) = 0, in Ω.

Regarding the analytic regularity of the coefficients, we consider the following con-
ditions: Let x0 in Ω, there is % > 0 such that for any α ∈ Nn and p ∈ N,

|∂γx∂
p
t aα(x, t)| ≤ %−1−|γ|−p|γ|!p!, in Ω ∩BR(x0)× [0, 1], (2.10)

|∂pt aα(x, t)| ≤ %−1−pp!, in Ω× [0, 1]. (2.11)

The main result in this Chapter is the next one:

Theorem 2.2. Let x0 be in Ω, 0 < R ≤ 1. Assume that L satisfies (2.2), (2.4),
(2.5), (2.10), (2.11) and ∂Ω∩BR(x0) is analytic when it is non-empty. Then, there
is ρ = ρ(%,m, n), 0 < ρ ≤ 1, such that the inequality

|∂αx∂
p
t u(x, t)| ≤ e1/ρt1/(2m−1)

ρ−1−|α|−pR−|α|t−p (|α|+ p)! ‖u0‖L2(Ω), (2.12)

holds for all α ∈ Nn, p ∈ N and (x, t) ∈ Ω ∩BR/2(x0)× (0, 1], when u solves (2.3).

Remark 2.1. If we only assume that the coefficients of L are measurable in the
time variable and satisfy (2.10) for p = 0 and BR(x0) ⊂ Ω, then (2.12) holds in
BR/2(x0)× (0, 1] with p = 0. This follows from Remark 2.7.

If we only assume (2.10), so that some of the coefficients of L may not be globally
analytic in the time-variable over Ω, the solutions of (2.3) are still analytic in the
spatial variable over BR(x0)× [0, 1] with a lower bound on the radius of analyticity
independent of time but only Gevrey of class 2m in the time-variable; i.e.,

|∂αx∂
p
t u(x, t)| ≤ e1/ρt1/(2m−1)

ρ−1−|α|−pR−|α| (|α|+ 2mp)! ‖u0‖L2(Ω).

when (x, t) ∈ Ω∩BR/2(x0)× (0, 1], α ∈ Nn and p ∈ N. It follows from Lemma 2.19.
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Chapter 2. Analytic regularity of linear parabolic evolutions

In Section 2.3 we give a counterexample showing that solutions can fail to be
time-analytic at all points of the hyperplane Ω× {t0} when some of the coefficients
are not time-analytic in a proper subdomain Ω′×{t0} ⊂ Ω×{t0}. Thus, the lack of
time-analyticity of the coefficients in a subset of a characteristic hyperplane t = t0
can propagate to the whole hyperplane t = t0.

This Chapter is organized as follows: in Section 2.1 we prove a result which is a
particular case of Theorem 2.2 for 2m-th order equations and second order systems
with time-independent coefficients ; in this case the proofs are based on a spectral
decomposition of the solution in terms of eigenfunctions of elliptic operators, thus
we can take advantage of the spatial analyticity of solutions to elliptic problems and
the proofs are quite simpler in comparison with the proof of Theorem 2.2 in its full
generality. In Section 2.2 we prove Theorem 2.2 and the claims in Remark 2.1; the
proofs are independent of the results and proofs contained in Section 2.1, but are
more involved. In Section 2.3 we explain the counterexample mentioned in Remark
2.1 and in Section 2.4 we discuss on the relation between the results in Theorem 2.2
and those by Eidelman in [18].

2.1 Time-independent coefficients

We first prove an analyticity result for solutions to the following particular prob-
lem: 

∂tu+ (−1)m∆mu = 0, in Ω× (0, T ),

u = ∇u = · · · = ∇m−1u = 0, on ∂Ω× (0, T ),

u(0) = u0, in Ω.

(2.13)

Although the proof presented here cannot be generalized to time-dependent coef-
ficients, it yields a short way to prove analyticity of solutions to simple initial-
boundary value parabolic problems. It relies on the spectral representation of the
Dirichlet Laplacian and the well-known analyticity estimates for solutions of elliptic
equations.

Theorem 2.3. Let u solve (2.13), then there is a constant ρ = ρ(%,m, n, ∂Ω) such
that for (x, t) ∈ Ω× [0, T ] the following estimate holds

|∂αx∂
p
t u(x, t)| ≤ e1/ρt1/(2m−1)

ρ−|α|−p|α|! p! t−p‖u0‖L2(Ω),

for any α ∈ Nn and p ∈ N.
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2.1. Time-independent coefficients

Proof. Let {ej}j≥1 and {w2m
j }j≥1 be respectively the sets of L2(Ω)-normalized eigen-

functions and eigenvalues for (−∆)m with zero lateral Dirichlet boundary conditions;
i.e., {

(−1)m∆mej − w2m
j ej = 0, in Ω,

ej = ∇ej = · · · = ∇m−1ej = 0, on ∂Ω.

Take u0 =
∑

j≥1 ajej, with
∑

j≥1 a
2
j < +∞ and define

u(x, y, t) =
∑
j≥1

aje
−tw2m

j ej(x)Xj(y), for x ∈ Ω, y ∈ R and t > 0,

with

Xj(y) =

{
ewjy, when m is odd,

ewjye
πi
2m , when m is even,

(2.14)

where i =
√
−1. Then, u(x, t) = u(x, 0, t), solves (2.13) with initial datum u0 and

∂pt u(x, y, t) =
∑
j≥1

(−1)p aj w
2mp
j e−tw

2m
j ej(x)Xj(y), x ∈ Ω, y ∈ R. (2.15)

Moreover,{
(∂2m
y + ∆m

x )(∂pt u(·, ·, t)) = 0, in Ω× R,
∂pt u(·, ·, t) = ∇(∂pt u(·, ·, t)) = · · · = ∇m−1(∂pt u(·, ·, t)) = 0, on ∂Ω× R.

Because ∂Ω is analytic, the quantitative estimates on the analyticity up to the
boundary for solutions to elliptic equations with analytic coefficients and null-
Dirichlet data over nearby analytic boundaries (See [69, Ch. 5] or [46, Ch. 3]),
show that there is ρ = ρ(Ω), 0 < ρ ≤ 1, such that for x0 in Ω and 0 < R ≤ 1

‖∂αx∂
p
t u(·, ·, t)‖L∞(BR/2(x0,0)∩Ω×R)

≤ |α|! ρ−1−|α|R−|α|
(

—

ˆ
BR(x0,0)∩Ω×R

|∂pt u(x, y, t)|2 dxdy
) 1

2

. (2.16)

Because

ˆ
BR(x0,0)∩Ω×R

|∂pt u(x, y, t)|2 dxdy ≤
ˆ R

−R

ˆ
Ω

|∂pt u(x, y, t)|2 dxdy, (2.17)
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Chapter 2. Analytic regularity of linear parabolic evolutions

we have from (2.14), (2.15) and the orthogonality of {ej}j≥1 in L2(Ω) that

ˆ
Ω

|∂pt u(x, y, t)|2 dx =

ˆ
Ω

∣∣∣∑
j≥1

(−1)p aj w
2mp
j e−tw

2m
j ej(x)Xj(y)

∣∣∣2 dx
=
∑
j≥1

a2
j w

4mp
j e−2tw2m

j |Xj(y)|2 ≤
∑
j≥1

a2
j w

4mp
j e−2tw2m

j e2wj |y|

≤ max
j≥1

{
w4mp
j e−tw

2m
j
}

max
j≥1

{
e−tw

2m
j +2wj |y|

}∑
j≥1

a2
j .

Next, from Stirling’s formula

max
x≥0

x2pe−xt = t−2p (2p)2p e−2p .

(
2

t

)2p

p!2, when t > 0 and p ≥ 0,

and the fact that

max
x≥0

e−tx
2m+2x|y| = e(2− 1

m)( |y|mt)
1

2m−1

, when t > 0, m ≥ 1,

we get that ˆ
Ω

|∂pt u(x, y, t)|2 dx .

(
2

t

)2p

p!2e2|y|( |y|mt)
1

2m−1 ∑
j≥1

a2
j .

This, along with (2.16), (2.17) and the choice of R = 1 show that

‖∂αx∂
p
t u(·, ·, t)‖L∞(B1/2(x0,0)∩Ω×R) ≤ N |α|! p! ρ−|α|

(
2

t

)p
eNt

− 1
2m−1

(∑
j≥1

a2
j

)1/2

.

In particular,

|∂αx∂
p
t u(x, t)| ≤ e1/ρt1/(2m−1)

ρ−|α|−p|α|! p! t−p‖u0‖L2(Ω).

Remark 2.2. The last proof extends to the case m ≥ 2 its analog for m = 1 in
[4, Lemma 6]. There the authors used that the Green’s function over Ω for ∆ − ∂t
with zero lateral Dirichlet conditions has Gaussian upper bounds. The later shows
that one can derive [4, Lemma 6] without knowledge of upper bounds for the Green’s
function with lateral Dirichlet conditions of the parabolic evolution. Other time-
independent parabolic evolutions associated to self-adjoint elliptic scalar operators
or systems with analytic coefficients are treated similarly.
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2.1. Time-independent coefficients

We now consider the evolutions associated with strongly coupled second order
time-independent parabolic systems with coefficients which are analytic in the spatial
variables and with a possible non self-adjoint structure, as the second order system

∂tu− Lu = 0, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(0) = u0, in Ω,

with L = (L1, . . . ,L`), (2.18)

with
Lξu = ∂xi(a

ξη
ij (x)∂xju

η) + bξηj (x)∂xju
η + cξη(x)uη, ξ = 1, . . . , `,

and u0 in L2(Ω)`. Here, u denotes the vector-valued function (u1, . . . , u`) and the
summation convention of repeated indices is understood. We assume that aξηij , bξηj
and cξη are analytic functions over Ω, i.e., there is % > 0 such that

|∂γxa
ξη
ij (x)|+ |∂γxb

ξη
j (x)|+ |∂γxcξη(x)| ≤ %−|γ|−1|γ|!, for all γ ∈ Nn and x ∈ Ω, (2.19)

and require that the higher order terms of the system (2.18) have a self-adjoint
structure; i.e.

aξηij (x) = aηξji (x), for all x ∈ Ω, ξ, η = 1, . . . , `, i, j = 1, . . . , n, (2.20)

together with the strong ellipticity condition∑
ξ,η,i,j

aξηij (x)ζξi ζ
η
j ≥ %

∑
i,ξ

|ζξi |2, for all ζ = (ζξi ) in Rn` and x ∈ Ω. (2.21)

The results described below also hold when the higher order coefficients of the system
verify (2.20) and the weaker Legendre-Hadamard condition [37, p. 76],∑

i,j,ξ,η

aξηij (x)ςiςjϑ
ξϑη ≥ %|ς|2|ϑ|2, when ς ∈ Rn, ϑ ∈ R`, x ∈ Rn, (2.22)

in place of (2.21). Recall that the Lamé system of elasticity

∇ ·
(
µ(x)

(
∇u +∇ut

))
+∇ (λ(x)∇ · u) ,

with µ ≥ %, µ+ λ ≥ 0 in Rn, ` = n and

aξηij (x) = µ(x)(%ξη%ij + %iη%jξ) + λ(x)%jη%ξi,

are examples of systems verifying (2.22).

We now give a proof of Theorem 2.2 for solutions to the systems (2.18). Other
time-independent parabolic evolutions associated to possibly non self-adjoint elliptic
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Chapter 2. Analytic regularity of linear parabolic evolutions

scalar equations with analytic coefficients over Ω are treated similarly. The reasoning
requires first global bounds on the time-analyticity of the solutions, Lemma 2.4
below. Of course, there is plenty of literature on the time-analyticity of solutions to
abstract evolutions [48, 50, 64, 86] but we give here a proof of Lemma 2.4 because
it serves better our purpose.

Lemma 2.4. There is ρ = ρ(%), 0 < ρ ≤ 1, such that

tp‖∂pt u(t)‖L2(Ω) + tp+
1
2‖∇∂pt u(t)‖L2(Ω) ≤ ρ−1−pp! ‖u0‖L2(Ω),

when p ≥ 0, 0 < t ≤ 2 and u verifies (2.18).

Proof of Lemma 2.4. Let u solve (2.18). When u0 is in C∞0 (Ω), the solution u to
(2.18) is in C∞(Ω× [0,+∞)) [35]. By the local energy inequality for (2.18) there is
ρ = ρ(%) > 0 such that

sup
0≤t≤2

‖u(t)‖L2(Ω) ≤ ρ−1‖u0‖L2(Ω).

Multiply first the equation satisfied by ∂pt u,{
∂p+1
t u− L∂pt u = 0, in Ω× (0,+∞),

∂pt u = 0, in ∂Ω× (0,+∞),
(2.23)

by t2p+2∂p+1
t u, after by t2p+1∂pt u and integrate by parts over ΩT = Ω × (0, T ),

0 < T ≤ 2, the two resulting identities. These, standard energy methods, Hölder’s
inequality together with (2.19) (2.20) and (2.21) imply that

T p+1‖∇∂pt u(T )‖L2(Ω) + ‖tp+1∂p+1
t u‖L2(ΩT )

. ‖tp∂pt u‖L2(ΩT ) + (p+ 1)
1
2 ‖tp+

1
2∂pt∇u‖L2(ΩT ), (2.24)

T p+
1
2‖∂pt u(T )‖L2(Ω) + ‖tp+

1
2∂pt∇u‖L2(ΩT ) . (p+ 1)

1
2 ‖tp∂pt u‖L2(ΩT ). (2.25)

Thus,

‖tp+1∂p+1
t u‖L2(ΩT ) ≤ ρ−1 (p+ 1) ‖tp∂pt u‖L2(ΩT ), for p ≥ 0 (2.26)

and the iteration of (2.26) and the local energy inequality show that

‖tp∂pt u(t)‖L2(ΩT ) ≤ ρ−1−pp!
√
T ‖u0‖L2(Ω), for p ≥ 0.

This combined with (2.24) and (2.25) implies Lemma 2.4.
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2.1. Time-independent coefficients

Theorem 2.5. Let u solve (2.18), then there exists a constant ρ = ρ(n,m, %,Ω)
such that for any (x, t) ∈ Ω× (0, T ) the following estimate holds

|∂αx∂
p
t u(x, t)| ≤ e1/ρtρ−|α|−p|α|! p! t−p‖u0‖L2(Ω),

for any α ∈ Nn and p ∈ N.

Proof. The first step is to show that we can realize u(x, t) and all its partial deriva-
tives with respect to time as functions with one more space variable, say xn+1,
which satisfy in the (X, t) = (x, xn+1, t) coordinates a time-independent parabolic
evolution associated to a self-adjoint elliptic system with analytic coefficients over
Ω× (−1, 1)× (0,+∞) and with zero boundary values over ∂Ω× (−1, 1)× (0,+∞).
To accomplish it, consider the system S =

(
S1, . . . , S`

)
, which acts on functions w

in C∞(Ω× R,R`), w =
(
w1, . . . , w`

)
, as

Sξw =
n+1∑
i,j=1

∑̀
η=1

∂xi

(
ãξηij (X)∂xjw

η
)

+
∑̀
η=1

[
∂xn+1

(
xn+1c

ξη(x)wη
)
− xn+1c

ηξ(x)∂xn+1w
η
]
,

for ξ = 1, . . . , `, where for ξ, η = 1, . . . , `,

ãξηij (X) =


aξηij (x), for i, j = 1, . . . , n,

xn+1b
ξη
j (x), for i = n+ 1, j = 1, . . . , n

xn+1b
ηξ
i (x), for i = 1, . . . , n, j = n+ 1,

M%ξη, for i = j = n+ 1.

Set QR = Ω × (−R,R) and ∂lQR = ∂Ω × (−R,R), the “lateral”boundary of QR.
From (2.20), S is a self-adjoint system and for large M = M(%), the matrices of
coefficients ãξηij verify one the ellipticity conditions (2.21) or (2.22) with % replaced

by %
2

over Q1 when the original coefficients aξηij verify respectively (2.21) or (2.22).
Choosing M larger if it is necessary, we may assume that

%
2
‖∇Xϕ‖2

L2(Q1) ≤ −
ˆ
Q1

Sϕ ·ϕ dX ≤ 2
%
‖∇Xϕ‖2

L2(Q1), (2.27)

when ϕ is in W 1,2
0 (Q1) and∇X =

(
∇x, ∂xn+1

)
. Also, Sϕ(X) = Lv(x), when ϕ(X) =

v(x) and for w(X, t) = ∂pt u(x, t), p ≥ 0, we have{
∂tw − Sw = 0, in Q1 × (0,+∞),

w = 0, in ∂lQ1 × (0,+∞).
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Chapter 2. Analytic regularity of linear parabolic evolutions

The symmetry, coerciveness and compactness of the operator mapping functions f
in L2(Q1)m into the unique solution ϕ in W 1,2

0 (Q1)m to{
Sϕ = f , in Q1,

ϕ = 0, in ∂Q1

[37, Prop. 2.1] gives the existence of a complete orthogonal system {ek} in L2(Q1)m

of eigenfunctions, ek = (e1
k, . . . , e

m
k ), satisfying{

Sek + ω2
k ek = 0, in Q1,

ek = 0, in ∂Q1,

with eigenvalues 0 < ω2
1 ≤ . . . ω2

k ≤ . . . . Fix 0 < T ≤ 1 and for (X, t) in Q1 ×
(T

2
,+∞) consider

w1(X, t) =
∑
j≥1

aje
−w2

j (t−T/2)ej(X),

with

aj =

ˆ
Q1

∂pt u(x, T
2
)ej(X) dX. (2.28)

Clearly, w1(X, T
2
) = ∂pt u(x, T

2
) in Q1 and by the multiplications of the equation

verified by w1, first by w1, after by ∂tw1 and the integration by parts of the resulting
identities over Q1 × (T

2
, τ), for T

2
< τ ≤ 2T , we get

‖w1‖L∞(T
2
,2T ;L2(Q1)) +

√
T ‖∇Xw1‖L∞(T

2
,2T ;L2(Q1))

. ‖∂pt u(T
2
)‖L2(Ω) +

√
T ‖∇∂pt u(T

2
)‖L2(Ω).

From Lemma 2.4

‖w1‖L∞(T
2
,2T ;L2(Q1)) +

√
T ‖∇Xw1‖L∞(T

2
,2T ;L2(Q1)) ≤

√
T H(p, T, ρ), (2.29)

with
H(p, T, ρ) = ρ−1−pp!T−p−

1
2‖u0‖L2(Ω), 0 < ρ ≤ 1, ρ = ρ(%). (2.30)

Let w2 be the solution to
∂tw2 − Sw2 = 0, in Q1 × (T

2
,+∞),

w2 = η(t) (∂pt u−w1) , on ∂Q1 × (T
2
,+∞),

w2(0) = 0, in Q1,

where 0 ≤ η ≤ 1 verifies η = 1, for −∞ < t ≤ T , η = 0, for 3T
2
≤ t < +∞ and

|∂tη| ≤ 1
T

. Observe that because ∂pt u = 0 on ∂Ω× (0,+∞), ∂lQ1 ⊂ ∂Q1 and w1 = 0
on ∂Q1, then w2 = 0 on ∂lQ1.
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The auxiliary function, v = w2 − η(t)(∂pt u−w1) satisfies
∂tv − Sv = −(∂pt u−w1)∂tη in Q1 × (T/2,+∞),

v = 0 on ∂Q1 × (T/2,+∞),

v(T/2) = 0 in Q1

and clearly v ≡ 0 in Q1 × [T
2
, T ]. In particular,

∂pt u(x, T ) = w1(X,T ) + w2(X,T ), for X in Q1. (2.31)

By the parabolic regularity

‖v‖L∞(T/2,2T ;L2(Q1)) + ‖∇Xv‖L∞(T/2,2T ;L2(Q1)) . ‖(∂pt u−w1)∂tη‖L2(T
2
,2T ;L2(Q1))

and from Lemma 2.4 and (2.29)

‖v‖L∞(T/2,2T ;L2(Q1)) + ‖∇Xv‖L∞(T/2,2T ;L2(Q1)) . H(p, T, ρ).

Because w2 = v + η(t) (∂pt u−w1), we get from the latter, Lemma 2.4 and (2.29)

‖w2‖L∞(T
2
,2T ;L2(Q1)) + ‖∇Xw2‖L∞(T

2
,2T ;L2(Q1)) . H(p, T, ρ). (2.32)

By separation of variables,

w2(X, t) =
+∞∑
j=1

cje
−ω2

j (t−2T )ej(X), with cj =

ˆ
Q1

w2(X, 2T )ej(X) dX,

for t ≥ 2T . From (2.27), ω2
1 ≥

%
2

and

‖w2(t)‖L2(Q1) ≤ e−
%
2

(t−2T )‖w2(2T )‖L2(Q1), when t ≥ 2T. (2.33)

Also,

−
ˆ
Q1

Sw2(t) ·w2(t) dX = −
ˆ
Q1

∂tw2(t) ·w2(t) dX =
+∞∑
j=1

c2
jω

2
j e
−2ω2

j (t−2T ),

for t ≥ 2T and the last identity and (2.27) imply that

‖∇Xw2(t)‖L2(Q1) ≤ e−
%
2

(t−2T )‖∇Xw2(2T )‖L2(Q1), when t ≥ 2T.

From (2.32), (2.33) and the last inequality

‖w2(t)‖L2(Q1) + ‖∇Xw2(t)‖L2(Q1) . e−
%
2

(t−2T )+

H(p, T, ρ) (2.34)
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and we may extend w2 as zero for t ≤ T
2
. Set

ŵ2(X,µ) =
1√
2π

ˆ +∞

T
2

e−iµtw2(X, t) dt =
1√
2π

ˆ +∞

−∞
e−iµtw2(X, t) dt,

for X in Q1 and µ in R. From (2.34)

‖ŵ2(µ)‖L2(Q1) + ‖∇Xŵ2(µ)‖L2(Q1) . H(p, T, ρ), for all µ ∈ R. (2.35)

Moreover, {
Sŵ2(X,µ)− iµŵ2(X,µ) = 0, in Q1,

ŵ2(X,µ) = 0, in ∂lQ1,
for each µ ∈ R.

For µ 6= 0, define

v2(X, ζ, µ) = eiζ
√
|µ|ŵ2(X,µ), ζ ∈ R. (2.36)

Then, {
Sv2(X, ζ, µ) + i sgn (µ) ∂2

ζv2(X, ζ, µ) = 0, in Q1 × R,
v2(X, ζ, µ) = 0, in ∂lQ1 × R.

As for the equation verified by v2, it is elliptic with complex coefficients and its
coefficients are independent of the ζ-variable. These and the fact that ∂kζv2 = 0 on
∂lQ1 ×R imply by energy methods [70] (k times localized Cacciopoli’s inequalities)
that

‖∂j+1
ζ v2‖L2(Q

1− j+1
2k
×(−1+ j+1

2k
,1− j+1

2k
)) ≤

k
ρ
‖∂jζv2‖L2(Q

1− j
2k
×(−1+ j

2k
,1− j

2k
)),

for j = 0, . . . , k − 1, k ≥ 1, and for some 0 < ρ ≤ 1, ρ = ρ(%). Its iteration gives

‖∂kζv2‖L2(Q 1
2
×(− 1

2
, 1
2

)) ≤ k! ρ−k‖v2‖L2(Q1×(−1,1)), for k ≥ 1,

and from (2.35) and (2.36)

‖∂kζv2‖L2(Q 1
2
×(− 1

2
, 1
2

)) . k! ρ−kH(p, T, ρ), for k ≥ 1. (2.37)

For ψ in L2(Q 1
2
), set γ(ζ) =

´
Q 1

2

v2(X, ζ, µ)ψ(X) dX. Then, from (2.35), (2.36) and

(2.37)
‖γ(k)‖L∞(− 1

2
, 1
2

) . ρ−kk!H(p, T, ρ) ‖ψ‖L2(Q 1
2

), for k ≥ 0.

Thus, γ(− iρ
2

) can be calculated via the Taylor series expansion of γ around ζ = 0
and after adding a geometric series

|γ(− iρ
2

)| =
∣∣∣ ˆ

Q 1
2

eρ
√
|µ|/2ŵ2(X,µ)ψ(X) dX

∣∣∣ . ‖ψ‖L2(Q 1
2

)H(p, T, ρ).
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2.1. Time-independent coefficients

All together,

‖ŵ2(·, µ)‖L2(Q 1
2

) . e−ρ
√
|µ|/2H(p, T, ρ), when µ ∈ R. (2.38)

Define then,

U2(X, y) =
1√
2π

ˆ
R
eiµT ŵ2(X,µ) cosh

(
y
√
−iµ

)
dµ,

for (X, y) in Q 1
2
× R, with

√
−iµ =

√
|µ| e− iπ4 sgnµ. From (2.38),

‖U2(·, y)‖L2(Q 1
2

) . H(p, T, ρ), for |y| ≤ ρ

4
. (2.39)

Observe that U2 is in C∞(Q 1
2
× [−ρ

4
, ρ

4
]) and that one may derive similar bounds for

higher derivatives of U2. Also,{
SU2 + ∂2

yU2 = 0, in Q 1
2
× (−ρ

4
, ρ

4
),

U2 = 0, in ∂lQ 1
2
× (−ρ

4
, ρ

4
)

(2.40)

and

U2(X, 0) =
1√
2π

ˆ
R
eiµT ŵ2(X,µ) dµ = w2(X,T ), in Q 1

2
. (2.41)

Next,

U1(X, y) =
+∞∑
j=1

e−ω
2
jT/2ajej(X) cosh (ωjy),

with aj as in (2.28) satisfies

U1(X, 0) = w1(X,T ), in Q1,

{
SU1 + ∂2

yU1 = 0, in Q1 × R,
U1 = 0, in ∂Q1 × R,

(2.42)

and

sup
|y|≤1

‖U1(·, y)‖L2(Q1) . e1/T‖∂pt u(T
2
)‖L2(Ω) . e1/TH(p, T, ρ). (2.43)

Set then, U = U1 + U2. From (2.40), (2.41), (2.42) and (2.31) we have
SU + ∂2

yU = 0, in Q 1
2
× (−ρ

4
, ρ

4
),

U = 0, in ∂lQ 1
2
× (−ρ

4
, ρ

4
),

U(X, 0) = ∂pt u(x, T ), in Q 1
2
,
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while (2.39) and (2.43) show that

sup
|y|≤ ρ

4

‖U(·, y)‖L2(Q 1
2

) . e1/TH(p, T, ρ), with ρ = ρ(%), 0 < ρ ≤ 1. (2.44)

Now, S + ∂2
y is an elliptic system with analytic coefficients. This, (2.44), the fact

that U(X, y) = 0, for (X, y) = (x, xn+1, y) in ∂Ω× (−1
2
, 1

2
)× (−ρ

4
, ρ

4
) and that ∂Ω is

analytic imply that there is ρ = ρ(%), 0 < ρ ≤ 1 (See [70] or [37, Ch. II]) such that

‖∂γX∂
q
yU(X, y)‖L∞(Q 1

4
×(− ρ

4
, ρ
4

)) ≤ ρ−|γ|−q|γ|! q! e1/TH(p, T, ρ), for γ ∈ Nn+1, q ∈ N.

Finally, U(X, 0) = ∂pt u(x, T ) in Ω and Theorem 2.5 follows from the latter and
(2.30).

Remark 2.3. Observe that we did not use quantitatively the smoothness of ∂Ω in
the proof of Lemma 2.4 and that to get the quantitative estimate of Theorem 2.2
over only B %

2
(x0) ∩ Ω × (0, T ], with x0 in Ω and % as in (0.1), it suffices to know

that either B%(x0) ⊂ Ω or that ∂Ω ∩B%(x0) is real-analytic.

2.2 Time-dependent coefficients

Throughout this Section N denotes a constant depending on %, n, m and R. We
also denote by

‖ · ‖ = ‖ · ‖L2(Ω×(0,1)), σ = 1/(2m− 1) and b = (2m− 1)/2m.

When dealing with local estimates in the interior of a domain we use the norm

‖ · ‖r = ‖ · ‖L2(Br×(0,1)).

Since there is no confusion, we use the same notation ‖ · ‖r = ‖ · ‖L2(B+
r ×(0,1)) when

we prove local estimates near the boundary. In the later case we use multi-indices
of the form (γ1, . . . , γn−1, 0) ∈ Nn and we will write ∂γx′ instead of ∂γx to emphasize
that ∂γx′ does not involve derivatives with respect to the variable xn.

In this Section we prove Theorem 2.2 in its full generality. We recall that in
(1.26), rather than directly proving pointwise estimates for the successive derivatives
of a solution, we derived estimates for the weighted L2−norms

‖e−
θ
t ∂γxu‖L2(Br×(0,1)), with γ ∈ Nn.

Here we are going to proceed similarly; in order to obtain the necessary pointwise
space-time estimates up to the boundary of the domain, we first establish estimates
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2.2. Time-dependent coefficients

for suitable weighted L2-norms of the spatial and time derivatives of a solution to
(2.3). Under suitable analyticity assumptions on the coefficients such as (2.10) or
(2.11) we prove these in several steps adapting the scheme devised in [35, Ch. 3,
§3]:

1. Global weighted estimate of analyticity in the time variable: in Lemma 2.14
we prove an estimate of the form

‖tp+1e−t
−σ
∂p+1
t u‖+

2m∑
l=0

‖tp+
l

2m e−θt
−σ
Dl∂pt u‖ ≤ ρ−p−1(p+ 1)!‖u‖, (2.45)

for any p ≥ 0 when u solves (2.3). We remark that this estimate holds for
global solutions to (2.3), i.e., solutions satisfying boundary conditions on the
whole boundary of the domain.

2. Local weighted estimate of analyticity near the boundary in the tangential vari-
ables : in Lemma 2.15 we prove a local weighted estimate of real-analyticity in
the variables tangential to the boundary of a flat domain. We prove that if u
solves (2.3) with Ω = B+

R and satisfies the boundary conditions over {xn = 0},
then there is a constant ρ = ρ(%,m, n), 0 < ρ < 1, such that for 0 ≤ R ≤ 1

2
,

γ ∈ Nn and p ≥ 0 the following estimate

‖e−t−σ∂γx′u‖R ≤ ρ−|γ|−1R−|γ||γ|!‖u‖2R, (2.46)

holds. In Lemma 2.16 we state a similar estimate in the interior of a general
domain when the spatial derivatives are taken in an arbitrary direction.

3. Local weighted estimate of analyticity near the boundary in the tangential and
time variables : in Lemma 2.17 we employ (2.45) to improve (2.46), obtaining
the estimate

‖tpe−t−σ∂pt ∂
γ
x′u‖R ≤ ρ−p−1 (ρR)−|γ| (p+ |γ|)!‖u‖2R, (2.47)

for any γ ∈ Nn and p ≥ 0. A similar estimate holds in the interior of a domain
with spatial derivatives in any direction.

4. Analyticity up to the boundary in the spatial and time variables : in Lemma
2.18 we use the equation in (2.3) solved by u together with estimate (2.47) to
obtain an estimate like (2.47), but including derivatives in the normal direction
to {xn = 0}:

‖tp+1e−t
−σ
∂pt ∂

l
n∂

γ
x′u‖R ≤ ρ−p−l−1(ρR)−l−|γ|(p+ l + |γ|)!‖u‖2R,

for any γ ∈ Nn, p, l ≥ 0.
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Once that these estimates have been established, the pointwise estimate in Theorem
2.2 readily follows from the following Sobolev estimate [32, Ch. 6, (6.5)].

Lemma 2.6. Let k = [n
2
] + 1. Then W k,2(Rn) ⊂ L∞(Rn) and there is a constant

N = N(n) such that

‖f‖L∞(Rn) ≤
∑

|α|≤[n
2

]+1

‖∂αf‖L2(Rn).

Finally, in Section 2.2.6 we prove the claims in Remark 2.1 regarding the fact
that local solutions to (2.3) are analytic in the spatial variables and Gevrey of class
2m in the time variable with a radius of space-analyticity greater than some %,
0 < % ≤ 1, independent of time.

2.2.1 Some technical lemmas

Here we prove some weighted W 2m,1
2 regularity estimates we need in Sections

2.2.2-2.2.6. Although these estimates are elementary consequences of the standard
W 2m,1

2 Schauder estimates for parabolic equations, the choice of the weights tpe−θt
−σ

and the explicit statement of the dependence of the constants with respect to some
of the parameters is fundamental in the induction procedure that we carry out in
Sections 2.2.2-2.2.6.

Lemma 2.7. Let 0 < θ ≤ 1 and Ω be a Lipschitz domain. Then, there is N =
N(m,n,Ω) such that

‖tp+
k

2m e−θt
−σ
Dku‖L2(Ω×(0,1))

≤ N
[
‖tpe−θt−σu‖

2m−k
2m

L2(Ω×(0,1))‖t
p+1e−θt

−σ
D2mu‖

k
2m

L2(Ω×(0,1))

+‖tpe−θt−σu‖L2(Ω×(0,1))

]
(2.48)

holds for all k = 1, . . . , 2m− 1, p ≥ 0 and u in C∞(Ω× [0, 1]).

Remark 2.4. When Ω is either BR or B+
R , R > 0, then

‖tp+
k

2m e−θt
−σ
Dku‖L2(Ω×(0,1))

≤ N
[
‖tpe−θt−σu‖

2m−k
2m

L2(Ω×(0,1))‖t
p+1e−θt

−σ
D2mu‖

k
2m

L2(Ω×(0,1))

+R−k‖tpe−θt−σu‖L2(Ω×(0,1))

]
, (2.49)

with N = N(m,n).
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Proof. By the interpolation inequality [1, Theorems 4.14, 4.15], there is N depending
on m and Ω such that

‖Dku(t)‖L2(Ω) ≤ N
[
‖u(t)‖

2m−k
2m

L2(Ω)‖D
2mu(t)‖

k
2m

L2(Ω) + ‖u(t)‖L2(Ω)

]
, (2.50)

when 1 ≤ k < 2m. Now, multiply (2.50) by tp+
k

2m e−θt
−σ

and Hölder’s inequality
over [0, 1] yields (2.48).

Lemma 2.8. Let u in C∞(Ω× [0, 1]) satisfy{
∂tu+ (−1)mLu = F, in Ω× (0, 1],

u = Du = . . . = Dm−1u = 0, in ∂Ω× (0, 1].

Then, there is N = N(Ω, n, %,m) such that

‖tp+1e−θt
−σ
∂tu‖+

2m∑
l=0

‖tp+
l

2m e−θt
−σ
D2mu‖

≤ N
[
(p+ k + 1)‖tpe−

k−1
k
θt−σu‖+ ‖tp+1e−θt

−σ
F‖
]
, (2.51)

holds for any θ > 0, p ≥ 0 and k ≥ 2.

Proof. Define v = tp+1e−θt
−σ
u, then v satisfies ∂tv+(−1)mLv = G in Ω×(0, 1], with

G = tp+1e−θt
−σ
F +

[
(p+ 1)tpe−θt

−σ
+ σθtp−σe−θt

−σ
]
u. (2.52)

For t > 0 and k ≥ 2,

θtp−σe−θt
−σ

= θ
k
t−σe−

θ
k
t−σke−θ

k−1
k
t−σ ≤ ke−θ

k−1
k
t−σ . (2.53)

By the W 2m,1
2 Schauder estimate (2.9),

‖∂tv‖+ ‖D2mv‖ ≤ N [‖v‖+ ‖G‖] , (2.54)

with N = N(Ω, n, %,m) and (2.51) follows from (2.54), (2.53), (2.52) and Lemma
2.7.

Lemma 2.9 is a well-known estimate near the boundary. It can be found in [58,
Theorem 7.22] for m = 1. We prove it here for completeness.
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Lemma 2.9. Let u in C∞(B+
R × [0, 1]) verify

∂tu+ (−1)mLu = F, in B+
R × (0, 1],

u = Du = . . . = Dm−1u = 0, in {xn = 0} ∩ ∂B+
R × (0, 1],

u(0) = 0, in B+
R .

and 0 < r < r + δ < R ≤ 1. Then, there is N = N(n, %,m) such that

‖∂tu‖r + ‖D2mu‖r ≤ N
[
δ−2m‖u‖r+δ + ‖F‖r+δ

]
. (2.55)

Proof. Let η in C∞0 (BR) be such that for 0 < λ < 1

η(x) =

{
1, in Br+λδ,

0, in Bc
r+ 1+λ

2
δ
,

and |Dkη| ≤ Cm [(1− λ)δ]−k, for k = 0, . . . , 2m. Define v = uη, then

∂tv + (−1)mLv = ηF + (−1)m
∑
|α|≤2m

aα
∑
γ<α

(
α

γ

)
∂α−γx η∂γxu.

By the W 2m,1
2 Schauder estimate over B+

R × (0, T ] applied to v [16, Theorem 4]

‖∂tu‖r + ‖D2mu‖r+λδ

≤ N

[
‖F‖r+ 1+λ

2
δ +

2m−1∑
k=0

[(1− λ)δ]k−2m ‖Dku‖r+ 1+λ
2
δ

]
. (2.56)

Define the seminorms

|u|k,δ = sup
µ∈(0,1)

[(1− µ)δ]k ‖Dku‖r+µδ, k = 0, . . . , 2m.

Estimate (2.56) can be rewritten in terms of these seminorms as follows

δ2m‖∂tu‖r + |u|2m,δ ≤ N

[
2m−1∑
k=0

|u|k,δ + δ2m‖F‖r+δ

]
. (2.57)

To eliminate the terms |u|k,δ from the right hand side of (2.57), recall that the
seminorms interpolate (See [1, Theorem 4.14] and [38, p. 237]); i.e., there is c =
c(n,m) such that

|u|k,δ ≤ ε|u|2m,δ + cε−
k

2m−k ‖u‖r+δ,
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for any ε ∈ (0, 1), so

2m−1∑
k=0

|u|k,δ ≤ 2mε|u|2m,δ + c

2m−1∑
k=0

ε−
k

2m−k ‖u‖r+δ.

Choose then ε ≤ 1
4mN

and from (2.57)

δ2m‖∂tu‖r + |u|2m,δ ≤ N
[
‖u‖r+δ + δ2m‖F‖r+δ

]
,

which yields (2.55).

Lemma 2.10 is the interior analogue of Lemma 2.9 but now using [16, Theorem
2].

Lemma 2.10. Let u in C∞(BR × [0, 1]) verify{
∂tu+ (−1)mLu = F, in BR × (0, 1],

u(0) = 0, in BR,

and 0 < r < r + δ < R ≤ 1. Then, there is N = N(n, %,m) such that

‖∂tu‖r + ‖D2mu‖r ≤ N
[
δ−2m‖u‖r+δ + ‖F‖r+δ

]
.

Lemmas 2.9 and 2.8 imply Lemma 2.11.

Lemma 2.11. Let u in C∞(B+
R × [0, 1]) satisfy{

∂tu+ (−1)mLu = F, in B+
R × (0, 1],

u = Du = . . . = Dm−1u = 0, in {xn = 0} ∩ ∂B+
R × (0, 1]

and 0 < r < r + δ < R ≤ 1. Then, there is N = N(n, %,m) such that

‖tp+1e−θt
−σ
∂tu‖r + ‖tp+1e−θt

−σ
D2mu‖r

≤ N
[
(p+ k)‖tpe−

k−1
k
θt−σu‖r+δ

+δ−2m‖tp+1e−θt
−σ
u‖r+δ + ‖tp+1e−θt

−σ
F‖r+δ

]
,

for 0 < θ ≤ 1, p ≥ 0 and k ≥ 2.

Similarly, Lemmas 2.8 and 2.10 imply Lemma 2.12.
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Lemma 2.12. Let u in C∞(BR × [0, 1]) satisfy

∂tu+ (−1)mLu = F in BR × (0, 1]

and 0 < r < r + δ < R ≤ 1. Then there is N = N(n, %,m) such that

‖tp+1e−θt
−σ
∂tu‖r + ‖tp+1e−θt

−σ
D2mu‖r

≤ N
[
(p+ k)‖tpe−

k−1
k
θt−σu‖r+δ

+δ−2m‖tp+1e−θt
−σ
u‖r+δ + ‖tp+1e−θt

−σ
F‖r+δ

]
,

holds for 0 < θ ≤ 1, p ≥ 0 and k ≥ 2.

Lemma 2.13. If γ ∈ Nn, 0 < t < s,∑
β<γ

(
γ

β

)
|γ − β|!|β|!s−|γ|+|β|t−|β| ≤ |γ|! t

1−|γ|

s− t
.

Proof. Let f(x) = ϕ(u), with u = (x1 + · · · + xn) and ϕ(u) = (1 − u)−1. Then,
∂γ

∂xγ
f(x) = ϕ|γ|(u) = |γ|!u−|γ|−1. Now let, ft(x) = f(x

t
), ∂γ

∂xγ
ft(x) = t−|γ| ∂

γ

∂xγ
f(x

t
), and

taking x = 0, we have ∂γ

∂xγ
ft(0) = |γ|!t−|γ|. Now, set g(x) = fs(x)ft(x) = ψ(u), with

ψ(u) =
1

(1− u
s
)(1− u

t
)
.

Let |u| < t, then

ψ(u) =
+∞∑
i=0

(u/s)i
+∞∑
j=0

(u/t)j =
+∞∑
i,j=0

ui+j

sitj
=

+∞∑
k=0

uk
∑
i+j=k

1

sitj

and

ψ(k)(0) = k! t−k
k∑
i=0

(t/s)i , for k ≥ 0.

Thus,

∂γg

∂xγ
(0) = ψ(|γ|)(0) = |γ|! t−|γ|

|γ|∑
i=0

(t/s)i , for γ ∈ Nn.

From Leibniz’s rule

∂γg

∂xγ
(0) =

∑
β≤γ

(
γ

β

)
∂γ−βfs(0)∂βft(0)

=
∑
β≤γ

(
γ

β

)
|γ − β|! |β|! s−|γ|+|β|t−|β|.
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It implies that

∑
β≤γ

(
γ

β

)
|γ − β|!|β|!s−|γ|+|β|t−|β| = |γ|! t−|γ|

|γ|∑
i=0

(
t

s

)i
,

where dropping the term corresponding to β = γ,

∑
β<γ

(
γ

β

)
|γ − β|! |β|! s−|γ|+|β|t−|β| = |γ|! t−|γ|

 |γ|∑
i=0

(
t

s

)i− |γ|! t−|γ|
= |γ|! t−|γ|

|γ|∑
i=1

(
t

s

)i
≤ |γ|! t−|γ|

+∞∑
i=1

(
t

s

)i
= |γ|! t

1−|γ|

s− t
,

if 0 < t < s.

2.2.2 Weighted global estimate of analyticity in the time
variable

We first prove an estimate related to the time-analyticity of global solutions,
which generalizes Lemma 2.4.

Lemma 2.14. Assume that L satisfies (2.2), (2.11), the coefficients of L are con-
tinuous on Ω × [0, 1] and ∂Ω is C2m−1,1. Then, there are M = M(%, n,m) and
ρ = ρ(%, n,m), 0 < ρ ≤ 1, such that

‖tp+1e−θt
−σ
∂p+1
t u‖+

2m∑
l=0

‖tp+
l

2m e−θt
−σ
Dl∂pt u‖ ≤Mρ−p(p+ 1)!‖u‖, (2.58)

holds for p ∈ N, 0 ≤ θ ≤ 1 and all solutions u to (2.3).

Proof. We prove (2.58) by induction on p. For the case p = 0 of (2.58), apply
Lemma 2.8 with k = 2 and F = 0. It suffices to choose M ≥ 3N . By differentiating
(2.3), we find that ∂pt u, p ≥ 1, satisfies{

∂p+1
t u+ (−1)mL∂pt u = Fp, in Ω× (0, 1],

∂pt u = D∂pt u = · · · = Dm−1∂pt u = 0, on ∂Ω× (0, 1],

with

Fp = (−1)m+1
∑
|α|≤2m

p−1∑
q=0

(
p

q

)
∂p−qt aα∂

q
t ∂

α
xu.
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Chapter 2. Analytic regularity of linear parabolic evolutions

Assume that (2.58) holds up to p − 1 for some p ≥ 1 and apply Lemma 2.8 with
k = p+ 1 to ∂pt u to obtain

‖tp+1e−θt
−σ
∂p+1
t u‖+

2m∑
l=0

‖tp+
l

2m e−θt
−σ
Dl∂pt u‖

≤ N
[
2(p+ 1)‖tpe−θ

p
p+1

t−σ∂pt u‖+ ‖tp+1e−θt
−σ
Fp‖
]
, I1 + I2.

By the induction,

‖tpe−θ
p
p+1

t−σ∂pt u‖ ≤Mρ−p+1p!‖u‖ .

From (2.11) and induction

‖tp+1e−θt
−σ
Fp‖ ≤

∑
|α|≤2m

∑
q<p

(
p

q

)
%−1−p+q(p− q)!‖tq+

|α|
2m e−θt

−σ
∂qt ∂

α
xu‖

≤
∑
|α|≤2m

∑
q<p

(
p

q

)
%−1−p+q(p− q)!Mρ−q(q + 1)!‖u‖

≤ NMp
∑
q<p

(
p

q

)
(p− q)!q!%−p+qρ−q‖u‖

≤Mρ−p(p+ 1)!‖u‖ Nρ
%− ρ

,

where the last inequality follows from Lemma 2.13. Adding I1 and I2, we get

I1 + I2 ≤Mρ−p(p+ 1)!‖u‖N
(
ρ+

ρ

%− ρ

)
and the induction for p follows after choosing ρ = ρ(%, n,m) small.

Remark 2.5. Observe that the exponential factor e−θt
−σ

can be dropped in (2.58)
because there is no θ on its right hand side.

2.2.3 Local weighted estimate of analyticity near the bound-
ary in the tangential variables

Next we prove spatial analyticity in directions which are locally tangent to the
boundary of Ω. For this purpose we flatten locally ∂Ω ∩ BR(q0), with q0 ∈ ∂Ω, by
means of the analytic change of variables

yn = xn − ϕ(x′), yj = xj, j = 1 . . . , n− 1,
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2.2. Time-dependent coefficients

where ϕ is the analytic function introduced in (0.1). The local change of variables
does not modify the local conditions satisfied by L and without loss of generality
we may assume that a solution to (2.3) also verifies{

∂tu+ (−1)mLu = 0, in B+
R × (0, 1],

u = Du = . . . = Dm−1u = 0, in {xn = 0} ∩ ∂B+
R × (0, 1],

(2.59)

with u in C∞(B+
R × [0, 1]) and 0 < R ≤ 1.

Lemma 2.15. Let 0 < θ ≤ 1, 0 < R
2
< r < R ≤ 1 and assume that L satisfies (2.10)

for p = 0 over B+
R × [0, 1]. Then, there are M = M(%, n,m) and ρ = ρ(%, n,m),

0 < ρ ≤ 1, such that for all γ ∈ Nn with γn = 0, the inequality

(R− r)2m‖te−θt−σ∂t∂γx′u‖r +
2m∑
k=0

(R− r)k‖t
k

2m e−θt
−σ
Dk∂γx′u‖r

≤M
[
ρθb(R− r)

]−|γ| |γ|!‖u‖R, (2.60)

holds when u in C∞(B+
R × [0, 1]) satisfies (2.59).

Proof. We prove (2.60) by induction on |γ|. When |γ| = 0, by Lemma 2.11 with
k = 2, p = 0, δ = R−r

2
and F = 0, we have

‖te−θt−σ∂tu‖r + ‖t
l

2m e−θt
−σ
Dlu‖r

≤ N
[
(R− r)−2m‖te−θt−σu‖r+δ + ‖e−

θ
2
t−σu‖r+δ

]
≤ N(R− r)−2m‖u‖R ≤M(R− r)−2m‖u‖R,

for any M ≥ N . Now, Lemma 2.7 implies

(R− r)2m‖te−θt−σ∂tu‖r +
2m∑
l=0

(R− r)l‖t
l

2m e−θt
−σ
Dlu‖r ≤M‖u‖R, (2.61)

when M ≥ N .

Next, assume that (2.60) holds for multi-indices γ, with γn = 0 and |γ| ≤ l, l ≥ 0
and we show that (2.60) holds for any multi-index of the same form with |γ| = l+1.
Differentiating (2.59) in the tangential variables x′ we find that ∂γx′u satisfies{

∂t∂
γ
x′u+ (−1)mL∂γx′u = Fγ, in B+

R × (0, 1],

∂γx′u = D∂γx′u = . . . = Dm−1∂γx′u = 0, in {xn = 0} ∩ ∂B+
R × (0, 1],
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Chapter 2. Analytic regularity of linear parabolic evolutions

with

Fγ = (−1)m+1
∑
|α|≤2m

∑
β<γ

(
γ

β

)
∂γ−βx′ aα∂

β
x′∂

α
xu. (2.62)

Applying Lemma 2.11 to ∂γx′u with p = 0, we get

‖te−θt−σ∂t∂γx′u‖r + ‖te−θt−σD2m∂γx′u‖r
≤ N

[
k‖e−

k−1
k
θt−σ∂γx′u‖r+δ + δ−2m‖te−θt−σ∂γx′u‖r+δ

+‖te−θt−σFγ‖r+δ
]
, I1 + I2 + I3. (2.63)

Estimate for I1: when 1 ≤ |γ| ≤ 2m, choose k = 2 and δ = (R − r)/2 in (2.63).
Also observe the bound

t−αe−θt
−β ≤ e−

α
β θ−

α
β

(
α

β

)α
β

, when α, β, θ and t > 0, (2.64)

which yields

t−
|γ|
2m e−

θ
4
t−σ ≤ Nθ−b|γ|, when |γ| ≤ 2m and t > 0.

Thus, we get

‖e−
θ
2
t−σ∂γx′u‖r+δ = ‖t−

|γ|
2m e−

θ
4
t−σt

|γ|
2m e−

θ
4
t−σ∂γx′u‖r+δ

≤ Nθ−b|γ|‖t
|γ|
2m e−

θ
4
t−σD|γ|u‖r+δ,

(2.65)

when |γ| ≤ 2m. From (2.61)

‖t
|γ|
2m e−

θ
4
t−σD|γ|u‖r+δ ≤M(R− r)−|γ|‖u‖R,

this, together with (2.65) shows that

‖e−
θ
2
t−σ∂γx′u‖r+δ ≤ NM

[
θb(R− r)

]−|γ| ‖u‖R ≤M
[
ρθb(R− r)

]−|γ| ‖u‖RNρ.
If |γ| > 2m, choose k = |γ|, δ = (R − r)/|γ| in (2.63) and observe that there is

a multi-index ξ, with ξn = 0, 2m + |ξ| = |γ| and |∂γx′u| ≤ |D2m∂ξx′u|. Hence, from
(2.64)

‖e−
|γ|−1
|γ| θt

−σ
∂γx′u‖r+δ = ‖t−1e

− |γ|−1

|γ|2
θt−σ

te−(1− 1
|γ|)

2
θt−σ∂γx′u‖r+δ

≤ Nθ−(2m−1)|γ|2m−1‖te−(1− 1
|γ|)

2
θt−σD2m∂ξx′u‖r+δ. (2.66)
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2.2. Time-dependent coefficients

By induction and because R− r − δ = |γ|−1
|γ| (R− r),

(R− r)2m‖te−(1− 1
|γ|)

2
θt−σD2m∂ξx′u‖r+δ

≤M

[
ρ

(
1− 1

|γ|

)2b

θb (R− r − δ)

]−|γ|+2m

× (|γ| − 2m)!‖u‖

= M

(
1− 1

|γ|

)−(2b+1)(|γ|−2m) [
ρθb(R− r)

]−|γ|+2m

× (|γ| − 2m)!‖u‖R
≤MN

[
ρθb(R− r)

]−|γ|+2m
(|γ| − 2m)!‖u‖R,

(2.67)

where the last inequality is a consequence of the estimate(
1− 1

|γ|

)−(2b+1)(|γ|−2m)

≤ N, for all γ ∈ Nn. (2.68)

Plugging (2.67) into (2.66) and using that |γ|2m(|γ| − 2m)! ≤ N |γ|!, we get

I1 ≤ N |γ|‖e−
|γ|−1
|γ| θt

−σ
∂γx′u‖r+δ

≤M
[
ρθb(R− r)

]−|γ| |γ|2m(|γ| − 2m)!‖u‖RNρ2m

≤M
[
ρθb(R− r)

]−|γ| |γ|!‖u‖R(R− r)−2mNρ.

Estimate for I2: when |γ| ≤ 2m, the term can be handled like the term I1 in the
case |γ| ≤ 2m, but now one does not need to push inside I1 the factor t|γ|/2m as we
did in (2.65). Here, from (2.61) we get

I2 ≤M
[
ρθb(R− r)

]−|γ| ‖u‖R(R− r)−2mNρ.

When |γ| > 2m, again |∂γx′u| ≤ |D2m∂ξx′u|, for some ξ such that 2m + |ξ| = |γ| and
ξn = 0. By induction (recall that δ = (R−r)/|γ| was already chosen in the estimate
for I1, when |γ| > 2m) we get

I2 ≤ N(R− r)−2m|γ|2m‖te−θt−σ∂γx′u‖r+δ
≤ N(R− r)−2m|γ|2m‖te−θt−σD2m∂ξx′u‖r+δ
≤ NM

[
ρθb(R− r)

]−|γ|+2m |γ|2m(|γ| − 2m)!‖u‖R(R− r)−4m

≤M
[
ρθb(R− r)

]−|γ| |γ|!‖u‖R(R− r)−2mNρ.
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Estimate for I3: by the induction hypothesis and Lemma 2.13

‖te−θt−σFγ‖r+δ ≤ N
∑
|α|≤2m

∑
β<γ

(
γ

β

)
%−|γ−β||γ − β|!‖t

|α|
2m e−θt

−σ
D|α|∂βx′u‖r+δ

≤ NM
∑
β<γ

(
γ

β

)
%−1−|γ−β||γ − β|!

[
ρθb(R− r)

]−|β| |β|!‖u‖R(R− r)−2m

≤ NM
[
θb(R− r)

]−|γ| ‖u‖R(R− r)−2m
∑
β<γ

(
γ

β

)
|γ − β|!|β|!%−|γ−β|ρ−|β|

≤M
[
ρθb(R− r)

]−|γ| |γ|!‖u‖R(R− r)−2m Nρ

%− ρ
.

The bounds for I1, I2 and I3 imply that

I1 + I2 + I3 ≤M
[
ρθb(R− r)

]−|γ| |γ|!‖u‖R(R− r)−2mNρ

(
1 +

1

%− ρ

)
. (2.69)

We can write, γ = ξ + ei, for some ξ ∈ Nm and i = 1, . . . , n− 1, with ξn = 0 and
from the induction and (2.64)

‖e−θt−σ∂γx′u‖r ≤ Nθ−b‖t
1

2m e−
|γ|
|γ|+1

θt−σD∂γ−eix′ u‖r
≤M

[
ρθb(R− r)

]−|γ| |γ|!‖u‖RNρ. (2.70)

Finally, Lemma 2.7, (2.63), (2.69) and (2.70) imply the desired result when ρ =
ρ(%, n,m) is small.

Remark 2.6. Lemma 2.15 also holds when the coefficients of L are measurable in
the time variable and satisfy (2.10) for p = 0 over B+

R×[0, 1]. It follows from Lemma
2.11 and [16, Theorem 4].

Lemma 2.16 yields an interior estimate of spatial analyticity. It is proved as
Lemma 2.15 but instead of using Lemma 2.11 one uses Lemma 2.12. We omit the
proof.

Lemma 2.16. Let 0 < θ ≤ 1, 0 < R
2
< r < R ≤ 1, BR ⊂ Ω and L satisfy (2.10)

for p = 0 over BR × [0, 1]. Then, there are M = M(%, n,m) and ρ = ρ(%, n,m),
0 < ρ ≤ 1, such that for all γ ∈ Nn, the inequality

(R− r)2m‖te−θt−σ∂t∂γxu‖r +
2m∑
k=0

(R− r)k‖t
k

2m e−θt
−σ
Dk∂γxu‖r

≤M
[
ρθb(R− r)

]−|γ| |γ|!‖u‖R
holds when u in C∞(BR × [0, 1]) satisfies ∂tu+ (−1)m Lu = 0 in BR × [0, 1].
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2.2. Time-dependent coefficients

Remark 2.7. Lemma 2.16 also holds when the coefficients of L are measurable in
the time variable and satisfy (2.10) for p = 0 over BR× [0, 1]. This follows from the
interior W 2m,1

2 Schauder estimate in [16, Theorem 2] and Lemma 2.12.

2.2.4 Local weighted estimate of analyticity near the bound-
ary in the tangential and time variables

Next, combining Lemmas 2.14 and 2.15 one can prove the following.

Lemma 2.17. Let 0 < θ ≤ 1, 0 < R
2
< r < R ≤ 1 and assume that L satisfies

(2.10) and (2.11). Then there are M = M(%, n,m) and ρ = ρ(%, n,m), 0 < ρ ≤ 1,
such that for all γ ∈ Nn, γn = 0, and p ∈ N, the inequality

(R− r)2m‖tp+1e−θt
−σ
∂p+1
t ∂γx′u‖r +

2m∑
k=0

(R− r)k‖tp+
k

2m e−θt
−σ
Dk∂pt ∂

γ
x′u‖r

≤Mρ−p
[
ρθb(R− r)

]−|γ|
(p+ |γ|+ 1)!‖u‖

holds when u is a solution to (2.3) and (2.59).

Proof. We proceed by induction on p and within each p-case we proceed by induction
on |γ|. The case p = 0 and γ ∈ Nn with γn = 0 follows from Lemma 2.15, whereas
the case |γ| = 0 with arbitrary p ≥ 0 follows from Lemma 2.14. Thus, we may
in what follows assume always that |γ| ≥ 1. By differentiation of (2.59), ∂pt ∂

γ
x′u

satisfies{
∂p+1
t ∂γx′u+ (−1)mL∂pt ∂

γ
x′u = F(γ,p), in B+

R × (0, T ],

∂pt ∂
γ
x′u = D∂pt ∂

γ
x′u = . . . = Dm−1∂pt ∂

γ
x′u = 0, on {xn = 0} ∩ ∂B+

R × (0, T ],

with

F(γ,p) = (−1)m+1
∑
|α|≤2m

∑
(q,β)
<(p,γ)

(
p

q

)(
γ

β

)
∂p−qt ∂γ−βx′ aα∂

q
t ∂

β
x′∂

α
xu. (2.71)

By Lemma 2.11 applied to ∂pt ∂
γ
x′u,

‖tp+1e−θt
−σ
∂p+1
t ∂γx′u‖r + ‖tp+1e−θt

−σ
D2m∂pt ∂

γ
x′u‖r

≤ N
[
(p+ k)‖tpe−θ

k−1
k
t−σ∂pt ∂

γ
x′u‖r+δ + δ−2m‖tp+1e−θt

−σ
∂pt ∂

γ
x′u‖r+δ

+‖tp+1e−θt
−σ
F(γ,p)‖r+δ

]
, I1 + I2 + I3. (2.72)
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Estimate for I1: if |γ| ≤ 2m, take k = 2 and δ = (R − r)/2 in (2.72). Taking into
account that (p+ 1)! ≤ N(p+ |γ|)!, (2.64) and Lemma 2.14, we obtain

I1 ≤ N(p+ 2)‖tpe−
θ
2
t−σ∂pt ∂

γ
x′u‖r+δ

≤ N(p+ 2)θ−b|γ|‖tp+
|γ|
2m e−

θ
4
t−σD|γ|∂pt u‖r+δ

≤Mρ−p
[
ρθb(R− r)

]−|γ|
(p+ |γ|)!‖u‖Nρ(R− r)−2m.

In the previous chain of inequalities we used that

‖tp+
|γ|
2m e−

θ
4
t−σD|γ|∂pt u‖r+δ ≤M‖tp+

|γ|
2m e−

θ
4
t−σD|γ|∂pt u‖

and applied Lemma 2.14. Here, recall the definition for ‖ · ‖ given before Lemma
2.14.

If |γ| > 2m, choose k = |γ| and δ = (R − r)/|γ| in (2.72). As in Lemma
2.15, there is a multi-index ξ ∈ Nn with ξn = 0 such that 2m + |ξ| = |γ| and
|∂pt ∂

γ
x′u| ≤ |D2m∂pt ∂

ξ
x′u| and from (2.64)

I1 ≤ N(p+ |γ|)‖tpe−θ
|γ|−1
|γ| t

−σ
∂pt ∂

γ
x′u‖r+δ

= N(p+ |γ|)‖t−1e
−θ |γ|−1

|γ|2
t−σ
tp+1e−θ(1− 1

|γ|)
2
t−σ∂pt ∂

γ
x′u‖r+δ

≤ N(p+ |γ|)|γ|2m−1θ−(2m−1)‖tp+1e−θ(1− 1
|γ|)

2
t−σD2m∂pt ∂

ξ
x′u‖r+δ.

(2.73)

We apply the induction hypothesis and proceed as in (2.67) using (2.68) to get that

‖tp+1e−θ(1− 1
|γ|)

2
t−σD2m∂pt ∂

ξ
x′u‖r+δ

≤ NMρ−p
[
ρθb (R− r)

]−|γ|+2m
(p+ |γ| − 2m+ 1)!‖u‖(R− r)−2m. (2.74)

From
|γ|2m−1(p+ |γ| − 2m+ 1)!(p+ |γ|) ≤ N(p+ |γ|+ 1)!,

(2.73) and (2.74)

I1 ≤Mρ−p
[
ρθb(R− r)

]−|γ|
(p+ |γ|+ 1)!‖u‖Nρ(R− r)−2m.

Estimate for I2: For |γ| ≤ 2m, we set δ = (R − r)/2 and because θ and R ≤ 1,
Lemma 2.14 shows that

I2 ≤ N(R− r)−2m‖tp+
|γ|
2m e−θt

−σ
D|γ|∂pt u‖r+δ

≤ N(R− r)−2mMρ−p(p+ 1)!‖u‖

≤M
[
ρθb(R− r)

]−|γ|
ρ−p(|γ|+ p+ 1)!‖u‖Nρ(R− r)−2m.
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If |γ| > 2m, we have already chosen δ = (R − r)/|γ| and there is ξ ∈ Nn, with
ξn = 0, 2m+ |ξ| = |γ| and |∂pt ∂

γ
x′u| ≤ |D2m∂pt ∂

ξ
x′u|. By the induction hypothesis and

taking into account that

|γ|2m(p+ |γ| − 2m+ 1)! ≤ N(p+ |γ|+ 1)!,

we get

I2 ≤ N(R− r)−2m|γ|2m‖tp+1e−θt
−σ
D2m∂ξx′∂

p
t u‖r+δ

≤ N(R− r)−2m|γ|2mMρ−p
[
θbρ(R− r)

]−(|γ|−2m)
(p+ |γ| − 2m+ 1)!‖u‖

≤Mρ−p
[
ρθb(R− r)

]−|γ|
(p+ |γ|+ 1)!‖u‖Nρ(R− r)−2m.

Estimate for I3: by the induction hypothesis on multi-indices (q, β) < (p, γ) and
Lemma 2.13 for Nn+1,

I3 = ‖tp+1e−θt
−σ
F(γ,p)‖r+δ

≤ N
∑
|α|≤2m

∑
(q,β)
<(p,γ)

(
p

q

)(
γ

β

)
%−p+q−|γ|+|β|(p− q + |γ| − |β|)!

× ‖tp+
|α|
2m e−θt

−σ
D|α|∂qt ∂

β
x′u‖r+δ

≤ NM
[
θb(R− r)

]−|γ|
(p+ |γ|)‖u‖(R− r)−2m

×
∑
(q,β)
<(p,γ)

(
p

q

)(
γ

β

)
(p− q + |γ − β|)!(q + |β|)!%−p+q−|γ−β|ρ−q−|β|

≤Mρ−p
[
ρθb(R− r)

]−|γ|
(p+ |γ|+ 1)!‖u‖(R− r)−2m Nρ

%− ρ
.

Thus,

I1 + I2 + I3 ≤Mρ−p
[
ρθb(R− r)

]−|γ|
(p+ |γ|)!‖u‖Nρ(R− r)−2m, (2.75)

and Lemma 2.17 follows from (2.72), (2.75), Lemma 2.7 and the induction hypothesis
for (p− 1, γ), when ρ = ρ(%, n,m) is small.

2.2.5 Analyticity up to the boundary in the spatial and time
variables

Finally, Theorem 2.2 follows from the embedding [35]

‖ϕ‖L∞(Ω) ≤ C(n)
∑

|α|≤[n2 ]+1

‖D|α|ϕ‖L2(Ω), for ϕ ∈ C∞(Ω),
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the inequality

‖f‖L∞(I) ≤ |I|
1
2‖f ′‖L2(I) + |I|−

1
2‖f‖L2(I), for f ∈ C1(I),

with I an interval in R and Lemma 2.18.

Lemma 2.18. Let 0 < θ ≤ 1, 0 < R
2
< r < R ≤ 1 and L satisfy (2.10) and (2.11).

Then, there are M = M(%, n,m) and ρ = ρ(%, n,m), 0 < ρ ≤ 1, such that

‖tpe−θt−σ∂pt ∂ln∂
γ
x′u‖r ≤ Mρ−p−l

[
ρ θb(R− r)

]−l−|γ|
(p + l + |γ| + 1)! ‖u‖ (2.76)

holds when u is a solution to (2.3) and (2.59). Here, ∂n denotes differentiation with
respect to the variable xn.

Proof. A solution to (2.59) satisfies

∂p+1
t ∂ln∂

γ
x′u+ L∂pt ∂ln∂

γ
x′u = F(p,l,γ), in B+

R × (0, 1], (2.77)

with

F(p,l,γ) = (−1)m+1
∑
|α|≤2m

∑
(q,j,β)
<(p,l,γ)

(
p

q

)(
l

j

)(
γ

β

)
∂p−qt ∂l−jn ∂γ−βx′ aα∂

q
t ∂

j
n∂

β
x′∂

α
xu.

Because of (2.2), a2men ≥ % > 0 in Ω× [0, 1], and one can solve for ∂pt ∂
l+2m
n ∂γx′u

in (2.77). Substituting into that formula l by l − 2m+ 1, when l ≥ 2m, we have

|∂pt ∂l+1
n ∂γx′u| ≤

1

|a2men|
[
|∂p+1
t ∂l−2m+1

n ∂γx′u|+ |F(p,l−2m+1,γ)|
]

+
1

|a2men|
∑
|α|≤2m

αn≤2m−1

‖aα‖L∞(Ω×(0,1)) |∂
p
t ∂

l−2m+1
n ∂γx′∂

α
xu|. (2.78)

We prove (2.76) by induction on the quantity 2mp+l+|γ| with M the same constant
as in Lemma 2.17. If 2mp+ l + |γ| ≤ 2m, then l ≤ 2m and (2.64) and Lemma 2.17
show that

‖tpe−θt−σ∂pt ∂ln∂
γ
x′u‖

′
r ≤ ‖t−

l
2m e−

θ
1+|γ| t

−σ
tp+

l
2m e−

θ|γ|
1+|γ| t

−σ
Dl∂pt ∂

γ
x′u‖r

≤ Nθ−lb (1 + |γ|)
(2m−1)l

2m ‖tp+
l

2m e−
θ|γ|

1+|γ| t
−σ
Dl∂pt ∂

γ
x′u‖r

≤ Nθ−lb (1 + |γ|)l (R− r)−lMρ−p
[
ρθb(R− r)

]−|γ|
(p+ |γ|+ 1)! ‖u‖

≤Mρ−p−l
[
ρθb(R− r)

]−l−|γ|
(p+ l + |γ|+ 1)! ‖u‖Nρ2l,
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2.2. Time-dependent coefficients

where the last inequality holds because

(1 + |γ|)l (p+ |γ|+ 1)! ≤ N (p+ l + |γ|+ 1)! .

Also, (2.76) holds when l = 0 from Lemma 2.17. Thus, (2.76) holds, when 2mp +
l + |γ| ≤ 2m and l ≤ 2m, provided that ρ is small.

Assume now that (2.76) holds when 2mp + l + |γ| ≤ k, for some fixed k ≥ 2m
and we shall prove it holds for 2mp+ l + |γ| = k + 1.

In the same way as for the case k = 2m, Lemma 2.17 shows that (2.76) holds,
when 2mp + l + |γ| = k + 1 and l ≤ 2m, provided that ρ is small. So, let us now
assume that (2.76) holds for 2mp+ j+ |γ| = k+ 1 and j = 0, . . . , l, for some l ≥ 2m
and prove that it holds for 2mp+ j + |γ| = k + 1 with j = l + 1. Let then γ and p
be such that 2mp + (l + 1) + |γ| = k + 1. From (2.78) and because a2men ≥ %, we
obtain

‖tpe−θt−σ∂pt ∂l+1
n ∂γx′u‖r

≤ %−1
[
‖tpe−θt−σ∂p+1

t ∂l−2m+1
n ∂γx′u‖r + ‖tpe−θt−σF(p,l−2m+1,γ)‖r

]
+ %−1

∑
|α|≤2m

αn≤2m−1

‖aα‖L∞(Q) ‖t
pe−θt

−σ
∂pt ∂

l−2m+1
n ∂γx′∂

α
xu‖r

, H1 +H2 +H3.

Estimate for H1: the multi-indices involved in this term satisfy

2m(p+ 1) + l − 2m+ 1 + |γ| = k + 1

and the total number of xn derivatives involved is less or equal than l. From the
induction hypothesis and (2.64), we can estimate H1 as follows

‖tpe−θt−σ∂p+1
t ∂l−2m+1

n ∂γx′u‖r

= ‖t−1e−
θ

l+|γ| t
−σ
tp+1e−θ

l+|γ|−1
l+|γ| t

−σ
∂p+1
t ∂l−2m+1

n ∂γx′u‖r

≤ Nθ−(2m−1)(l + |γ|)2m−1‖tp+1e−θ
l+|γ|−1
l+|γ| t

−σ
∂p+1
t ∂l−2m+1

n ∂γx′u‖r
≤ Nθ−(2m−1)(l + |γ|)2m−1Mρ−p−1−(l−2m+1)

[
ρθb(R− r)

]−(l−2m+1)−|γ|

× (p+ l − 2m+ |γ|+ 3)! ‖u‖

≤Mρ−p−(l+1)
[
ρθb(R− r)

]−(l+1)−|γ|

× (p+ l + |γ|+ 2)! ‖u‖Nρ4m−1,

where the last inequality holds because

(l + |γ|)2m−1 (p+ l − 2m+ |γ|+ 3)! ≤ N (p+ l + |γ|+ 2)! ,
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when p+ l + |γ|+ 2 ≥ 2m. Thus,

H1 ≤Mρ−p−(l+1)
[
ρθb(R− r)

]−(l+1)−|γ|

× (p+ (l + 1) + |γ|+ 1)! ‖u‖Nρ4m−1. (2.79)

Estimate for H2: we expand this term and obtain

H2 ≤ N
∑
|α|≤2m

∑
(q,j,β)

<(p,l−2m+1,γ)

(
p

q

)(
l − 2m+ 1

j

)(
γ

β

)

× %−1−(p−q)−(l−2m+1−j)−|γ−β|(p− q + l − 2m+ 1− j + |γ − β|)!
× ‖tqe−θt−σ∂qt ∂jn∂

β
x′∂

α
xu‖r.

(2.80)

The multi-indices involved in the derivatives of u that appear in (2.80) satisfy 2mq+
j + |α|+ |β| < 2mp+ l+ 1 + |γ| = k + 1 and we already know how to control these
derivatives by the first induction hypothesis. In fact, if we write α = (α′, αn) and
because αn is related to normal derivatives, we get

‖tqe−θt−σ∂qt ∂jn∂
β
x′∂

α
xu‖r

≤Mρ−q−j−αn
[
ρθb(R− r)

]−j−|β|−|α|
(q + j + |β|+ |α|+ 1)! ‖u‖. (2.81)

The sum in (2.80) runs over {(q, j, β) < (p, l − 2m + 1, γ)} and |α| ≤ 2m and
inside the sum (2.80), j + αn + |α| ≤ l + 2m + 1, j + |β| + |α| ≤ l + 1 + |γ| and
q + j + |β| ≤ p+ l − 2m+ |γ|. Also,

(q + j + |β|+ |α|+ 1)!

(q + j + |β|)!
≤ (p+ l + |γ|+ 1)!

(p+ l − 2m+ |γ|)!
.

These and (2.81) show that for all such (q, j, β) and α

‖tqe−θt−σ∂qt ∂jn∂
β
x′∂

α
xu‖r ≤Mρ−l−2m−1

[
θb(R− r)

]−l−1−|γ|
ρ−q−j−|β|

× (p+ l + |γ|+ 1)!

(p+ l − 2m+ |γ|)!
(q + j + |β|)! ‖u‖. (2.82)

Plugging (2.82) into (2.80) yields

H2 ≤ NMρ−l−2m−1
[
θb(R− r)

]−l−1−|γ| (p+ l + |γ|+ 1)!

(p+ l − 2m+ |γ|)!
‖u‖

×
∑

(q,j,β)
<(p,l−2m+1,γ)

(
p

q

)(
l − 2m+ 1

j

)(
γ

β

)

× (p− q + l − 2m+ 1− j + |γ − β|)!(q + j + |β|)!
× %−(p−q)−(l−2m+1−j)−|γ−β|ρ−q−j−|β|

(2.83)
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2.2. Time-dependent coefficients

and Lemma 2.13 shows that the above sum is bounded by

ρ−p−l+2m−1−|γ|(p+ l − 2m+ 1 + |γ|)! ρ

%− ρ
.

The later and (2.83) imply

H2 ≤ Mρ−p−(l+1)
[
ρθb(R− r)

]−(l+1)−|γ|
(p + (l + 1) + |γ| + 1)! ‖u‖ Nρ

%− ρ
. (2.84)

Estimate for H3: the multi-indices involved in the sum run over

{α : |α| ≤ 2m : αn ≤ 2m− 1},

the multi-indices involved in the derivatives of u which appear in H3 satisfy

2mp+ (l − 2m+ 1 + αn) + |γ|+ |α′| ≤ k + 1,

with a total number of xn derivatives equal to αn + l− 2m+ 1 ≤ l, so we are within
previous steps of the induction process and 0 < ρ < 1. Accordingly, applying the
second induction hypothesis one gets

H3 ≤Mρ−p−(l+1)
[
θbρ(R− r)

]−(l+1)−|γ| × (p+ (l + 1) + |γ|+ 1)! ‖u‖Nρ. (2.85)

Now, (2.76) when 2mp+ (l + 1) + |γ| = k+ 1, follows from (2.79), (2.84) and (2.85),
when ρ = ρ(%, n,m) is chosen small.

Remark 2.8. Choosing θ = tσ in Lemma 2.18, one recovers (1.21).

2.2.6 Analyticity in the spatial variables and Gevrey regu-
larity in the time variable of local solutions

Next we give a proof of the claim in the second paragraph in Remark 2.1. We do
it only in the interior case. Lemma 2.19 holds near the boundary when the boundary
is flat as in (2.59) and γ ∈ Nn with γn = 0. Then, as in Lemma 2.18, one can extend
the result to all the derivatives by showing that there are M = M(%, n,m) and
ρ = ρ(%, n,m), 0 < ρ ≤ 1, such that

‖te−θt−σ∂pt ∂ln∂
γ
x′u‖r ≤Mρ−l

[
ρθb(R− r)

]−2mp−|γ|−l
(2mp+ |γ|+ l)!‖u‖R

when u satisfies (2.59).

Similarly to what we have done in the previous sections, in order to prove that
local solutions are analytic in the spatial variables and Gevrey of class 2m in the
time variable, we first prove the following weighted estimate.
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Lemma 2.19. Let 0 < θ ≤ 1, 0 < R
2
< r < R ≤ 1 and L satisfy (2.10). Then there

are M = M(%, n,m) and ρ = ρ(%, n,m), 0 < ρ ≤ 1, such that for any γ ∈ Nn and
p ∈ N,

(R− r)2m‖te−θt−σ∂p+1
t ∂γxu‖r +

2m∑
k=0

(R− r)k‖t
k

2m e−θt
−σ
Dk∂pt ∂

γ
xu‖r

≤M
[
ρθb(R− r)

]−2mp−|γ|
(2mp+ |γ|)!‖u‖R (2.86)

holds when u in C∞(BR × [0, 1]) satisfies ∂tu+ (−1)mLu = 0 in BR × [0, 1].

Proof. We prove (2.86) by induction on p and then by induction on |γ|. When p = 0,
(2.86) is the estimate in Lemma 2.16. Assume (2.86) holds up to p − 1 for some
p ≥ 1. Then,

∂p+1
t ∂γxu+ (−1)mL∂pt ∂γxu = Fγ,p, in BR × (0, 1],

with

Fγ,p = (−1)m+1
∑
|α|≤2m

∑
(q,β)
<(p,γ)

(
p

q

)(
γ

β

)
∂p−qt ∂γ−βx aα∂

q
t ∂

β
x∂

α
xu.

Apply Lemma 2.12 with p = 0, k = p + |γ| + 1 and δ = (R − r)/(p + |γ| + 1) to
∂pt ∂

γ
xu. It gives,

‖te−θt−σ∂p+1
t ∂γxu‖r + ‖te−θt−σD2m∂pt ∂

γ
xu‖r ≤

N

[
(|γ|+ p)‖e−θ

|γ|+p
|γ|+p+1

t−σ∂pt ∂
γ
xu‖r+δ +

(|γ|+ p+ 1)2m

(R− r)2m
‖te−θt−σ∂pt ∂γxu‖r+δ

+‖te−θt−σFγ,p‖r+δ
]
, I1 + I2 + I3.

Estimate for I1: by induction hypothesis for p− 1 and (2.64)

‖e−θ
|γ|+p
|γ|+p+1

t−σ∂pt ∂
γ
xu‖r+δ = ‖t−1e

−θ |γ|+p
(|γ|+p+1)2

t−σ
te−θ(

|γ|+p
|γ|+p+1)

2
t−σ∂pt ∂

γ
xu‖r+δ

≤ Nθ−2mb(|γ|+ p)2m−1‖te−θ(
|γ|+p
|γ|+p+1)

2
t−σ∂pt ∂

γ
xu‖r+δ

≤ Nθ−2mb(|γ|+ p)2m−1M
[
ρθb(R− r)

]−2m(p−1)−|γ|
(2m(p− 1) + |γ|)!

×
(

1 +
1

|γ|+ p

)(6m−2)(p+|γ|)

‖u‖R(R− r)−2m

≤M
[
ρθb(R− r)

]−2mp−|γ|
(|γ|+ p)2m−1(2m(p− 1) + |γ|)!‖u‖RNρ.

This and (|γ|+ p)2m(2m(p− 1) + |γ|)! ≤ N(2mp+ |γ|)!, give

I1 ≤M
[
ρθb(R− r)

]−2mp−|γ|
(2mp+ |γ|)!‖u‖RNρ(R− r)−2m.
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Estimate for I2: by induction hypothesis for p− 1

‖te−θt−σ∂pt ∂γxu‖r+δ ≤M
[
ρθb(R− r)

]−2mp−|γ|
(2m(p− 1) + |γ|)!‖u‖RNρ

and
I2 ≤M

[
ρθb(R− r)

]−2mp−|γ|
(2mp+ |γ|)!‖u‖RNρ(R− r)−2m.

Estimate for I3: by induction on (q, β) < (p, γ) and Lemma 2.13 for Nn+1

‖te−θt−σFγ,p‖r+δ

≤ N
∑
|α|≤2m

∑
(q,β)
<(p,γ)

(
p

q

)(
γ

β

)
%−p+q−|γ−β|(p− q + |γ| − |β|)!

× ‖t|α|2me−θt−σD|α|∂qt ∂βxu‖r+δ

≤ NM
[
θb(R− r)

]−2mp−|γ| (2mp+ |γ|)!
(p+ |γ|)!

ρ−(2m−1)p‖u‖R(R− r)−2m

×
∑
(q,β)
<(p,γ)

(
p

q

)(
γ

β

)
(p− q + |γ| − |β|)!(q + |β|)!%−p+q−|γ|+|β|ρ−q−|β|

≤M [ρθb(R− r)]−2mp−|γ|(2mp+ |γ|)!‖u‖R(R− r)−2m Nρ

%− ρ
.

Hence

I1 + I2 + I3 ≤M [ρθb(R− r)]−2mp−|γ|(2mp+ |γ|)!‖u‖R(R− r)−2m Nρ

%− ρ
. (2.87)

Lemma 2.7, the induction hypothesis and (2.87) finish the proof.

2.3 A counterexample

Here we describe a counterexample showing that solutions can fail to be time-
analytic at all points of the hyperplane Ω × {t0} when some of the coefficients are
not time-analytic in a proper subdomain ω × {t0} ⊂ Ω× {t0}.

Let ω ⊂ Ω be an open set and ϕ ∈ C∞0 (ω), 0 ≤ ϕ ≤ 1, with ϕ ≡ 1 somewhere in
ω. Define

V (x, t) =

{
ϕ(x)e−

1
2t−1 , t > 1

2
,

0, t ≤ 1
2
,

which is a smooth function in Ω× [0, 1], identically zero outside ω for all times and
not time-analytic inside ω × {1

2
}.
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Let u be the solution to
∂tu−∆u+ V (x, t)u = 0, in Ω× (0, 1],

u = 0, on ∂Ω× (0, 1],

u(0) = u0, in Ω,

with u0 in C∞0 (Ω), u0 	 0 in Ω. The strong maximum principle [58] shows that
u > 0 in Ω × (0, 1] and et∆u0 coincides with u over Ω × [0, 1

2
]. If u was analytic in

the t variable at some point (x0,
1
2
) with x0 in Ω, because all the time derivatives

of u and et∆u0 coincide at (x0,
1
2
), one gets et∆u0(x0, t) = u(x0, t) in [0, 1]. But

v = u− et∆u0 satisfies 
∂tv −∆v ≤ 0, in Ω× (1

2
, 1],

v = 0, on ∂Ω× (0, 1],

v(0) = 0, in Ω,

and the weak maximum principle implies, v ≤ 0 in Ω × [1
2
, 1]. Because v attains

its maximum inside Ω × (1
2
, 1], the strong maximum principle gives, u = et∆u0 in

Ω× [0, 1], which is a contradiction. Thus, u fails to be analytic in the time variable
at all points in Ω× {1

2
}.

2.4 An alternative approach

In addition to the approach in Section 2.2, based on L2-Schauder estimates, there
is an alternative method to derive the estimates of interior analyticity in the spatial
variables proved in Theorem 2.2 based on suitable estimates for the holomorphic
extension of the fundamental solution. To simplify we consider the case n = 1 and
assume that (−1, 1) ⊂ Ω.

Let P be the parabolic operator

Pu = ∂tu− a(x, t)∂2
xu− b(x, t)∂xu− c(x, t)u, for (x, t) ∈ R× (0,+∞),

where <a(x, t) ≥ %, a(·, t), b(·, t) and c(·, t) are bounded. We recall the reader that
K(x, t;w, s) is a fundamental solution for P if

ϕ(x, t) =

ˆ t

0

ˆ
R
K(x, t;w, s)Pϕ(w, s) dwds for any ϕ ∈ C∞c (R× (0,+∞)).

We show that the results in [18, p. 178 Th. 8.1 (15)] imply Theorem 2.2 for the
interior case and the spatial directions. Following [18], when

Pu = ∂tu− a(x, t)∂2
xu− b(x, t)∂xu− c(x, t)u,
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and Hölder continuous over R with exponent δ, for some 0 < δ < 1, a(·, t), b(·, t)
and c(·, t) have bounded holomorphic extensions to

V% ≡ {z ∈ C : <z ∈ [−1, 1], =z ∈ (−%, %)} ,

and <a(z, t) ≥ % in V%× [0, 1], for all 0 ≤ t ≤ 1, P has a global fundamental solution
K(x, t; y, s), which has holomorphic extensions in the x and y variables to Vρ with
ρ = ρ(%) and

|K(z, t;w, s)| ≤ N(t− s)−
1
2 e−

|<(z−w)|2
N(t−s) +

N|=(z−w)|2
t−s , (2.88)

when z, w ∈ Vδ and 0 ≤ s < t ≤ 1. [18] contructs and proves the analyticity of the
global fundamental solution with the parametrix method (of E. E. Levi) [56]. Let
now u be the solution to 

Pu = 0, in Ω× (0, 1],

u = 0, on ∂Ω× (0, 1],

u(0) = u0, in Ω,

with u0 in L2(Ω). Let η ∈ C∞0 (−1, 1) with 0 ≤ η ≤ 1 and η = 1 in (−3
4
, 3

4
) and set

v = uη. Then, {
Pv = F, in R× (0, 1],

v(0) = ηu0, in R,

with

F = −
(
a∂2

xη + b∂xη
)
u− 2a∂xu∂xη

and

v(x, t) =

ˆ
R
K(x, t; y, 0)η(y)u0(y) dy +

ˆ t

0

ˆ
R
K(x, t; y, s)F (y, s) dyds.

From Cauchy’s integral formula and (2.88)

|∂jxK(x, t; y, s)| ≤ Nj!

ρj+1

ˆ
∂Bρ(x)

(t− s)−1/2e−
|<z−y|2
N(t−s) +

N|=z|2
t−s |dz|, (2.89)

when −1
2
≤ x ≤ 1

2
, y ∈ R and 0 ≤ s < t ≤ 1. The inner integral in the second

integral is taken over 3
4
≤ |y| ≤ 1 and for x ∈ (−1

2
, 1

2
), z ∈ ∂Bρ(x) and 3

4
≤ |y| ≤ 1,

|<z − y| ≥ 1
2
− ρ, |=z| ≤ ρ and

− |<z − y|
2

N(t− s)
+
N |=z|2

t− s
≤ − 1

8N(t− s)
, (2.90)
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Chapter 2. Analytic regularity of linear parabolic evolutions

when ρ is small. Also, (2.89) shows that

|∂jxK(x, t; y, 0)| ≤ Nj!ρ−je
N
t , (2.91)

when −1
2
≤ x ≤ 1

2
, y ∈ R and 0 < t ≤ 1. From (2.89), (2.90), (2.91) and the energy

inequality, we get that for (x, t) in (−1
2
, 1

2
)× (0, 1]

|∂jxu(x, t)| ≤ Ne
N
t j!ρ−j‖u0‖L2(Ω).
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Chapter 3

Observability inequalities

In this Chapter we prove observability inequalities for some systems whose ana-
lyticity properties have been studied in Chapter 2. In Section 3.1 we prove interior
observability inequalities for higher order parabolic equations and second order sys-
tems and in Section 3.2 we prove boundary observability inequalities for the same
parabolic problems. We state the observability inequalities for the forward problem
rather than the adjoint backward problem since it is equivalent for the problems
considered here.

3.1 Interior observability

Together with the analyticity estimates proved in Chapter 2, the main tool used
here to prove observability inequalities is the estimate of propagation of smallness
from measurable sets.

Lemma 3.1. Assume that f : B2R ⊆ Rn → R is a real-analytic function verifying

|∂αx f(x)| ≤ M |α|!
(ρR)|α|

, for x ∈ B2R, α ∈ Nn,

for some M > 0, 0 < ρ < 1 and ω ⊆ BR
2

is a Lebesgue measurable set with

positive Lebesgue measure. Then, there are positive constants N = N(ρ, |ω||Br|) and

θ = θ(ρ, |ω|
BR

), 0 < θ < 1 such that

‖f‖L∞(BR) ≤ NM1−θ
(

—

ˆ
ω

|f | dx
)θ
.
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Chapter 3. Observability inequalities

Lemma 3.1 was first derived in [87]. See also [71] and [72] for close results. The
reader can find a simpler proof of Lemma 3.1 in [3, §3]. The proof there is built
with ideas from [62], [71] and [87]. We also have a global estimate of propagation of
smallness from measurable sets.

Corollary 3.2. Let Ω ⊆ Rn be a bounded domain in Rn and ω be a measurable set
of positive measure. Let f be an analytic analytic function in Ω satisfying

|∂αx f(x)| ≤M |α|!ρ−|α|, for x ∈ Ω, α ∈ Nn,

for some M > 0, ρ > 0. Then, there are positive constants N = N(Ω, ρ, |ω|) and
θ = θ(Ω, ρ, |ω|), 0 < θ < 1 such that

‖f‖L∞(Ω) ≤ NM1−θ
(

—

ˆ
ω

|f | dx
)θ
.

In order to be able to consider control regions which are space-time measurable
sets we also need the following Lemma (See [75, Proposition 2.1] and [59, pp. 256-
257]).

Lemma 3.3. Let E ⊆ (0, T ) be a Lebesgue measurable set with positive Lebesgue
measure. Let l be a density point for E ⊆ (0, T ). Then for each q ∈ (0, 1), there
exists a l1 ∈ (l, T ) such that the monotonically decreasing sequence given by

lm+1 = l + qm(l1 − l), m ∈ N,

satisfies

|E ∩ (lm+1, lm)| ≥ 1

3
(lm − lm+1).

3.1.1 Higher order parabolic equations

Regarding the control-theoretic results which are consequence of the analytic-
ity estimates proved in Theorem 2.2, the main contribution here is the following
observability inequality.

Theorem 3.4. Let 0 < T ≤ 1, Ω ⊂ Rn be a bounded domain with analytic boundary,
D ⊂ Ω × (0, T ) be a measurable set with positive measure and L be the operator
(2.1) satisfying (2.10) over Ω × [0, 1]. Then, there is N = N(Ω, T,D, %) such that
the inequality

‖u(T )‖L2(Ω) ≤ N‖u‖L1(D)
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3.1. Interior observability

holds for any u satisfying
∂tu+ (−1)mLu = 0, in Ω× (0, T ],

u = Du = . . . = Dm−1u = 0, in ∂Ω× (0, T ],

u(0) = u0, in Ω,

(3.1)

with u0 in L2(Ω).

Remark 3.1. When D = ω × (0, T ), the constant in Theorem 3.4 is of the form

eN/T
1/(2m−1)

, with N = N(Ω, |ω|, %).

Proof. 2.2 there exists a constant ρ = ρ(%,m, n) such that

|∂αxu(x, L)| ≤ e1/ρL1/(2m−1)|α|! ρ−|α|‖u(0)‖L2(Ω), for x ∈ Ω and 0 < L ≤ T

and from Lemma 3.2 there are N = N(Ω, |ω|, ρ) and θ = θ(Ω, |ω|, ρ), θ ∈ (0, 1), such
that

‖u(L)‖L2(Ω) ≤ N‖u(L)‖θL1(ω)M
1−θ, with M = NeN/L

1
2m−1 ‖u(0)‖L2(Ω), (3.2)

when ω ⊂ Ω is a measurable set with positive measure. Set for each t ∈ (0, T ),

Dt = {x ∈ Ω : (x, t) ∈ D} and E = {t ∈ (0, T ) : |Dt| ≥ |D|/(2T )}.

By Fubini’s theorem, Dt is measurable for a.e. t ∈ (0, T ), E is measurable in (0, T )
and χE(t)χDt(x) ≤ χD(x, t) over Ω× (0, T ). Besides,

|D| =
ˆ T

0

|Dt|dt =

ˆ
E

|Dt| dt+

ˆ
[0,T ]\E

|Dt| dt ≤ |Ω||E|+
|D|
2
,

hence

|E| ≥ |D|/(2|Ω|).

Next, let q ∈ (0, 1) be a constant to be determined later and l be a Lebesgue point
of E. Then, from Lemma 3.3 there is a monotone decreasing sequence {lk}k≥1

satisfying limk→∞ lk = l, l < l1 ≤ T ,

lk+1 − lk+2 = q(lk − lk+1) and |(lk+1, lk) ∩ E| ≥
lk − lk+1

3
, k ∈ N. (3.3)

Define

τk = lk+1 + (lk − lk+1)/6, k ∈ N.
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Chapter 3. Observability inequalities

From (3.2) there are N = N(Ω, |D|, T, ρ) and θ = θ(Ω, |D|, T, ρ), 0 < θ < 1, such
that

‖u(t)‖L2(Ω) ≤
(
Ne

N

(lk−lk+1)1/(2m−1) ‖u(t)‖L1(Dt)

)θ
‖u(lk+1)‖1−θ

L2(Ω), (3.4)

when t ∈ [τk, lk]∩E. Integrating the above inequality over (τk, lk)∩E, from Young’s
inequality and the energy estimate (2.7) for the solutions to (3.1), we have that for
each ε > 0,

‖u(lk)‖L2(Ω) ≤ ε‖u(lk+1)‖L2(Ω)

+ ε−
1−θ
θ Ne

N

(lk−lk+1)1/(2m−1)

ˆ lk

lk+1

χE‖u(t)‖L1(Dt) dt.

Multiplying the above inequality by ε
1−θ
θ e
− N

(lk−lk+1)1/(2m−1)
, replacing ε by εθ and

finally choosing ε = e
− 1

(lk−lk+1)1/(2m−1)
in the resulting inequality, we obtain that

e
− N+1−θ

(lk−lk+1)1/(2m−1) ‖u(lk)‖L2(Ω) − e
− N+1

(lk−lk+1)1/(2m−1) ‖u(lk+1)‖L2(Ω)

≤ N

ˆ lk

lk+1

χE‖u(t)‖L1(Dt)dt.

Therefore, fixing q in (3.3) as q =
(
N+1−θ
N+1

)2m−1

, we have

e
− N+1−θ

(lk−lk+1)1/(2m−1) ‖u(lk)‖L2(Ω) − e
− N+1−θ

(lk+1−lk+2)1/(2m−1) ‖u(lk+1)‖L2(Ω)

≤ N

ˆ lk

lk+1

χE‖u(t)‖L1(Dt)dt.
(3.5)

Summing (3.5) from k = 1 to +∞ completes the proof (the telescoping series
method).

3.1.2 Second order parabolic equations

For second order parabolic equations a version of Theorem 3.4 holds with less
global regularity assumptions on the coefficients and the boundary of Ω. In partic-
ular, we consider time-dependent second order parabolic equations of the form

∂t −∇ · (A(x, t)∇ ) + b1(x, t) · ∇+∇ · (b2(x, t) ) + c(x, t),

satisfying

%I ≤ A ≤ %−1I, in Ω× [0, 1],

‖∇x,tA‖L∞(Ω×[0,1]) + max
i=1,2
‖bi‖L∞(Ω×[0,1]) + ‖c‖L∞(Ω×[0,1]) ≤ %−1, (3.6)
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3.1. Interior observability

for some % > 0. From [36, 43] and (3.6), the observability inequality

‖u(T )‖L2(Ω) ≤ NeN/(1−ε)T‖u‖L2(BR(x0)×(εT,T )), (3.7)

holds for solutions to
∂tu−∇ · (A∇u) + b1 · ∇u+∇ · (b2u) + cu = 0, in Ω× (0, T ],

u = 0, on ∂Ω× (0, T ],

u(0) = u0, in Ω,

(3.8)

with u0 in L2(Ω), 0 ≤ ε < 1, B2R(x0) ⊂ Ω and N = N(Ω, R, %), when ∂Ω is C1,1.
Then, from Theorem 2.2, (3.7) and the telescoping series method we can prove the
following result.

Theorem 3.5. Let 0 < T ≤ 1, D ⊂ BR(x0) × (0, T ) be a measurable set with
positive measure, Ω be a bounded C1,1 domain, B2R(x0) ⊂ Ω, A, bi, i = 1, 2 and c
also satisfy (2.10) over B2R(x0)×[0, 1] and (2.11). Then, there is N = N(Ω, T,D, %)
such that the inequality

‖u(T )‖L2(Ω) ≤ N‖u‖L1(D),

holds for all ϕ satisfying
∂tu−∇ · (A∇u)−∇ · (b1u)− b2∇ · u+ cu = 0, in Ω× (0, T ],

u = 0, in ∂Ω× (0, T ],

u(0) = u0, in Ω,

for some u0 in L2(Ω).

Proof. We may assume that D satisfies |D| ≥ %|BR(x0)|T and define

Dt = {x ∈ Ω : (x, t) ∈ D} and E = {t ∈ (0, T ) : |Dt| ≥ |D|/ (2T )}.

By Fubini’s theorem, Dt is measurable for a.e. 0 < t < T , E is measurable in (0, T )
with |E| ≥ %T/2. Next, let q ∈ (0, 1) to be determined later and 0 < l < T be a
Lebesgue point of E. From [4, Lemma 2], there is a monotone decreasing sequence
{lk}k≥1, l < · · · < lk+1 < lk < · · · < l1 ≤ T , such that

lk+1 − lk+2 = q (lk − lk+1) and |E ∩ (lk+1, lk)| ≥ 1
3

(lk − lk+1) , for k ≥ 1. (3.9)

Define τk = lk+1 + 1
6

(lk − lk+1). From (3.7),

‖u(lk)‖L2(Ω) ≤ NeN/(lk−lk+1)‖u‖L2(BR(x0)×(τk,lk)), (3.10)
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Chapter 3. Observability inequalities

Theorem 2.2 shows that the solution u to (3.8) verifies

|∂αx∂
p
t u(x, t)| ≤ eN/(lk−lk+1)ρ−1−|α|−pR−|α| (lk − lk+1)−p |α|!p! ‖u(lk+1)‖L2(Ω), (3.11)

for α ∈ Nn, p ∈ N, x in BR(x0) and τk ≤ t ≤ lk. Then, from (3.10), (3.11) and two
consecutive applications of Lemma 3.1, the first with respect to the time-variable
and the second with respect to the space-variables, show that

‖u(lk)‖L2(Ω) ≤

(
NeN/(lk−lk+1)

ˆ
E∩(lk+1,lk)

‖u(t)‖L1(Dt) dt

)θ

‖u(lk+1)‖1−θ
L2(Ω),

holds for any choice of q ∈ (0, 1) and k ≥ 1, with N = N(Ω, R, %), 0 < θ < 1 and
θ = θ(%). Proceeding with the telescoping series method, the later implies

ε1−θe−N/(lk−lk+1)‖u(lk)‖L2(Ω) − ε e−N/(lk−lk+1)‖u(lk+1)‖L2(Ω)

≤ N

ˆ
E∩(lk+1,lk)

‖u(t)‖L1(Dt) dt, when ε > 0.

Choosing ε = e−1/(lk−lk+1) and (3.9) yield

e
− N+1−θ
lk−lk+1 ‖u(lk)‖L2(Ω) − e

− N+1−θ
lk+1−lk+2 ‖u(lk+1)‖L2(Ω)

≤ N

ˆ
E∩(lk+1,lk)

‖u(t)‖L1(Dt) dt, when z = N+1
N+1−θ .

The addition of the above telescoping series and the local energy inequality for
solutions to (3.8) leads to

‖u(T )‖L2(Ω) ≤ N‖u‖L1(D),

with N = N(Ω, T,D, %).

3.1.3 Second order parabolic systems

Concerning second order parabolic systems we prove an interior observability
inequality with possibly different measurable interior observation regions for each
component of the system but with the same projection over the time t-axis.

Theorem 3.6. Under the assumptions considered in Theorem 2.5, let E ⊂ (0, T )
be a measurable, |E| > 0 and ωη ⊂ Ω, η = 1, . . . , `, be measurable with |ωη| ≥ ω0,
η = 1, . . . , `, for some ω0 > 0. Then, there is N = N(Ω, T, E, ω0, %) such that the
inequality

‖u(T )‖L2(Ω)` ≤ N

ˆ
E

∑̀
η=1

‖uη(t)‖L1(ωη) dt

holds for all solutions u to (2.18).
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3.1. Interior observability

Remark 3.2. We do not know if the sets ωη × E, η = 1, . . . , `, can be replaced by
different and more general measurable sets Dη ⊂ Ω× (0, T ).

Proof. From Theorem 2.5 there is a constant ρ = ρ(%,m, n)

|∂αxu(x, L)| ≤ e1/ρL|α|! ρ−|α|‖u(0)‖L2(Ω)` , for all x ∈ Ω, α ∈ Nn.

Hence, for each η = 1, . . . , `, it holds that

|∂αxuη(x, L)| ≤M |α|! ρ−|α|, for all α ∈ Nn, x ∈ Ω, with M = e1/ρL‖u(0)‖L2(Ω)` .

From the propagation of smallness for real-analytic functions from measurable sets
(cf. Corollary 3.2), we get that for each η = 1, . . . , `, there are Nη = Nη(Ω, ω0, %)
and θη = θη(Ω, ω0, %), 0 < θη < 1, such that

‖uη(L)‖L2(Ω) ≤ Nη‖uη(L)‖θηL1(ωη)M
1−θη .

Let N = max1≤η≤`{Nη} and θ = min1≤η≤`{θη}. Then, we get the following interpo-
lation inequality with ` different observations:

‖u(L)‖L2(Ω)` ≤ N
(∑̀
η=1

‖uη(L)‖θL1(ωη)

)
M1−θ

≤ N
(∑̀
η=1

‖uη(L)‖L1(ωη)

)θ (
NeN/L‖u(0)‖L2(Ω)`

)1−θ
.

(3.12)

Next, let q ∈ (0, 1) be a constant to be determined later and l be a Lebesgue
point of E. Then, by Lemma 3.3 there is a decreasing sequence {lm}m≥1 satisfying
limm→∞ lm = l, l < l1 ≤ T and (3.3). Define as before for each m ∈ N,

τm = lm+1 + (lm − lm+1)/6.

Then, by the energy estimate for solutions u to (2.18),

‖u(lm)‖L2(Ω)` ≤ N‖u(t)‖L2(Ω)` , for all t ∈ (τm, lm), (3.13)

where N = N(%). Moreover, it follows from (3.12) that

‖u(t)‖L2(Ω)` ≤
(
Ne

N
lm−lm+1

∑̀
η=1

‖uη(t)‖L1(ωη)

)θ
‖u(lm+1)‖1−θ

L2(Ω)`
, for τm ≤ t < lm.

Applying the Young inequality, we get that for each ε > 0,

‖u(t)‖L2(Ω)` ≤ ε‖u(lm+1)‖L2(Ω)` + ε−
1−θ
θ Ne

N
lm−lm+1

∑̀
η=1

‖uη(t)‖L1(ωη),
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for τm ≤ t < lm. Integrating the above inequality over (τm, lm) ∩ E, we have by
(3.13) that for each ε > 0,

‖u(lm)‖L2(Ω)` ≤ ε‖u(lm+1)‖L2(Ω)`

+ ε−
1−θ
θ Ne

N
lm−lm+1

ˆ lm

lm+1

χE
∑̀
η=1

‖uη(t)‖L1(ωη) dt.

Multiplying the above inequality by ε
1−θ
θ e
− N
lm−lm+1 and replacing ε by εθ, we get

ε1−θe
− N
lm−lm+1 ‖u(lm)‖L2(Ω)` ≤ εe

− N
lm−lm+1 ‖u(lm+1)‖L2(Ω)`

+N

ˆ lm

lm+1

χE
∑̀
η=1

‖uη(t)‖L1(ωη)dt.

Choosse then ε = e
− 1
lm−lm+1 to obtain that

e
− N+1−θ
lm−lm+1 ‖u(lm)‖L2(Ω)` − e

− N+1
lm−lm+1 ‖u(lm+1)‖L2(Ω)`

≤ N

ˆ lm

lm+1

χE
∑̀
η=1

‖uη(t)‖L1(ωη)dt, when m ≥ 0.
(3.14)

Finally, we take q = N+1−θ
N+1

. Clearly, 0 < q < 1 and from (3.14) and (3.3)

e
− N+1−θ
lm−lm+1 ‖u(lm)‖L2(Ω)` − e

− N+1−θ
lm+1−lm+2 ‖u(lm+1)‖L2(Ω)`

≤ N

ˆ lm

lm+1

χE
∑̀
η=1

‖uη(t)‖L1(ωη)dt .
(3.15)

Summing (3.15) from m = 1 to +∞ completes the proof.

With the same methods as for Theorem 3.4 one can also get an observability
inequality for (2.18) with observations over general measurable sets.

Theorem 3.7. Under the same assumptions in Theorem 3.6 , let D ⊂ Ω× (0, T ) be
a measurable set with positive measure. Then there is N = N(Ω, T,D, %) ≥ 1 such
that the inequality

‖u(T )‖L2(Ω)` ≤ N

ˆ
D
|u(x, t)| dxdt,

holds for all solutions u to (2.18).

Remark 3.3. The constant in Theorem 3.7 is of the form eN/T with N = N(Ω, ω, %),
when D = ω × (0, T ), 0 < T ≤ 1 and ω ⊂ Ω.
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3.1. Interior observability

3.1.4 Second order weakly coupled systems

We now deal with the interior observation of only one component of two coupled
parabolic equations over a measurable set (See [91] for the case of open sets). In
particular, we consider the time-independent not completely uncoupled parabolic
system 

∂tu−∆u+ a(x)u+ b(x)v = 0, in Ω× (0, T ),

∂tv −∆v + c(x)u+ d(x)v = 0, in Ω× (0, T ),

u = 0, v = 0, on ∂Ω× (0, T ),

u(0) = u0, v(0) = v0, in Ω,

(3.16)

with a, b, c and d analytic in Ω, b(·) 6= 0, somewhere in Ω and with

|∂γxa(x)|+ |∂γxb(x)|+ |∂γxc(x)|+ |∂γxd(x)| ≤ %−|γ|−1|γ|!, for all γ ∈ Nn and x ∈ Ω,

for some % > 0. Then, we get the following bound.

Theorem 3.8. Let D ⊂ Ω× (0, T ) be a measurable set with positive measure. Then
there is N = N(Ω,D, T, %) such that the inequality

‖u(T )‖L2(Ω) + ‖v(T )‖L2(Ω) ≤ N

ˆ
D
|u(x, t)| dxdt,

holds for all solutions (u, v) to (3.16).

Remark 3.4. Theorem 3.8 is still valid when the Laplace operator ∆ in (3.16) is
replaced by two second elliptic operators ∇ · (Ai(x)∇·), i = 1, 2, with matrices Ai

real-analytic, symmetric and positive-definite over Ω. Here, we must make sure that
the higher order terms of the system remain uncoupled: a diagonal principal part.
Otherwise, we do not know if such kind of observability estimates are possible. We
believe that generally they are not.

To prove Theorem 3.8 we need first to prove the following Lemma.

Lemma 3.9. Let Ω be a bounded domain in Rn and ω ⊂ Ω be a measurable set with
positive Lebesgue measure. Let f be an analytic function in Ω satisfying

|∂αx f(x)| ≤M |α|! ρ−|α|, for α ∈ Nn and x ∈ Ω,

for some M > 0 and 0 < ρ ≤ 1. Then, there are constants N = N(Ω, ρ, |ω|, n) and
θ = θ(Ω, ρ, |ω|), 0 < θ < 1, such that

‖∂αx f‖L∞(Ω) ≤ |α|! (ρ/N)−|α|−1M
1− θ

2|α|
(

—

ˆ
ω

|f | dx
) θ

2|α| , when α ∈ Nn.
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With this purpose, we begin with the following lemma.

Lemma 3.10. Let f : [0, 1]→ R be an analytic function verifying

‖f (m)‖L∞(0,1) ≤Mρ−mm!, when m ≥ 0, (3.17)

for some M > 0 and 0 < ρ ≤ 1/2. Then

‖f (j)‖L∞(0,1) ≤
(
8M(j + 1)!ρ−j−1

)1− 1

2j ‖f‖
1

2j

L∞(0,1) , when j ≥ 0. (3.18)

Proof. We prove it by induction and we assume that (3.18) holds for (k − 1), i.e.,

‖f (k−1)‖L∞(0,1) ≤ (8Mk!ρ−k)1− 1

2k−1 ‖f‖
1

2k−1

L∞(0,1) (3.19)

and we show that it is valid for k. Let then x ∈ [0, 1]. For 0 < ε ≤ 1/2 take either
I = [x, x+ ε] or [x− ε, x], so that always I ⊂ [0, 1]. Then,

f (k)(x) = f (k)(y) +

ˆ x

y

f (k+1)(s) ds, for all y ∈ I.

Integrating the above identity with respect to y over the interval I, by (3.17) and
the arbitrariness of x in [0, 1], we obtain that

‖f (k)‖L∞(0,1) ≤ εM(k + 1)!ρ−k−1 +
2

ε
‖f (k−1)‖L∞(0,1), (3.20)

when k ≥ 1 and 0 < ε ≤ 1/2. Choose now

ε =
( 2‖f (k−1)‖L∞(0,1)

M(k + 1)!ρ−k−1

)1/2

.

It can be checked by (3.17) that ε ≤ 1/2. Hence, it follows from (3.20) that

‖f (k)‖L∞(0,1) ≤
(
8M(k + 1)!ρ−k−1

)1/2‖f (k−1)‖1/2
L∞(0,1).

This, together with (3.19), leads to (3.18) and completes the proof.

The rescaled and translated version of Lemma 3.10, together with Lemma 3.1
(in one dimension), imply the following.

Lemma 3.11. Let f be real-analytic in [a, a+L] with a in R, L > 0 and E ⊂ [a, a+L]
be a measurable set with positive measure. Assume there are constants M > 0 and
0 < ρ ≤ 1/2 such that

|f (m)(x)| ≤M(2ρL)−mm!, for m ≥ 0 and a ≤ x ≤ a+ L.

Then, there are N = N(ρ, |E|/L) and θ = θ(ρ, |E|/L) with 0 < θ < 1, such that

‖f (k)‖L∞(a,a+L) ≤ N
(
8(k + 1)!(ρL)−(k+1)

)
M1− θ

2k

(
—

ˆ
E

|f | dx
) θ

2k

, when k ≥ 0.
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Next, we derive the multi-dimensional analogs of Lemmas 3.10 and 3.11.

Lemma 3.12. Let n ≥ 1 and f : Q ⊂ Rn → R, with Q = [0, 1] × · · · × [0, 1], be a
real-analytic function verifying

‖∂β1
x1
· · · ∂βnxnf‖L∞(Q) ≤Mρ−|β|β1! · · · βn!, ∀β = (β1, . . . , βn) ∈ Nn, (3.21)

for some M > 0 and 0 < ρ ≤ 1/2. Then,

‖∂α1
x1
· · · ∂αnxn f‖L∞(Q) ≤

(
8Mρ−|α|−1

n∏
i=1

(αi + 1)!
)1− 1

2|α| ‖f‖
1

2|α|
L∞(Q). (3.22)

holds for each α = (α1, . . . , αn) ∈ Nn.

Proof. First, notice that Lemma 3.10 corresponds to Lemma 3.12, when n = 1. Let
now n ≥ 2 and α = (α1, . . . , αn) be in Nn. For (x1, . . . , xn−1) in [0, 1]× · · · × [0, 1],
define the function gn : [0, 1]→ R by

gn(xn) , ∂α1
x1
· · · ∂αn−1

xn−1
f(x1, · · · , xn−1, xn).

It follows from (3.21) that

‖∂βnxngn‖L∞([0,1]) ≤
(
Mα1! · · ·αn−1!ρ−

∑n−1
j=1 αj

)
βn!ρ−βn , for all βn ≥ 0,

and Lemma 3.10 yields that

‖∂α1
x1
· · · ∂αnxn f‖L∞(Q)

≤
(

8Mα1! · · ·αn−1!ρ−
∑n−1
j=1 αj(αn + 1)!ρ−αn−1

)1− 1
2αn ‖∂α1

x1
· · · ∂αn−1

xn−1
f‖

1
2αn

L∞(Q).

Similarly, we can show that ‖∂α1
x1
· · · ∂αn−1

xn−1
f‖L∞(Q) is less or equal than(

8Mα1! · · ·αn−2!ρ−
∑n−2
j=1 αj(αn−1 + 1)!ρ−αn−1−1

)1− 1

2
αn−1 ‖∂α1

x1
· · · ∂αn−2

xn−2
f‖

1

2
αn−1

L∞(Q).

The iteration of the above arguments n times leads to the desired estimates in
(3.22).

The rescaled and translated versions of Lemma 3.12 and of Lemma 3.1 (when
Ω is the unit ball or cube in Rn) and the fact that a ball in Rn contains a cube of
comparable diameter and vice versa are seen to imply Lemma 3.9 .

Finally, we give the proof of Theorem 3.8, where we use Lemma 3.11 with k = 1
and Lemma 3.9 with |α| ≤ 2.
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Proof of Theorem 3.8. Since b(·) 6≡ 0 in Ω and b is real-analytic in Ω, we may
assume without loss of generality, that |b(x)| ≥ 1 over some ball BR(x0) ⊂ Ω and
that D ⊂ BR(x0)× (0, T ). By Theorem 2.5, for x in Ω and 0 ≤ s < t,

|∂αx∂
p
t u(x, t)|+ |∂αx∂

p
t v(x, t)|

≤ e1/ρ(t−s)|α|! p! ρ−|α|−p (t− s)−p
[
‖u(s)‖L2(Ω) + ‖v(s)‖L2(Ω)

]
, (3.23)

for all α ∈ Nn and p ∈ N, with ρ = ρ(δ), 0 < ρ ≤ 1. Hence, we can get from (3.12)
that

‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω) ≤( ˆ
BR(x0)

|u(x, t)|+ |v(x, t)| dx
)θ(

NeN/(t−s)
(
‖u(s)‖L2(Ω) + ‖v(s)‖L2(Ω)

))1−θ
,

with N = N(Ω, ρ, R) and θ = θ(Ω, ρ, R), 0 < θ < 1. This, together with the fact
that |b(x)| ≥ 1 over BR(x0) and the first equation in (3.16), yield that

‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω)

≤
( ˆ

BR(x0)

|u(x, t)|+ |∂tu(x, t)|+ |∆u(x, t)| dx
)θ

×
(
NeN/(t−s)

(
‖u(s)‖L2(Ω) + ‖v(s)‖L2(Ω)

))1−θ
,

(3.24)

when 0 ≤ s < t.

Next, let η ∈ (0, 1) and 0 ≤ t1 < t2. Also, assume that E ⊂ (0, T ) is a measurable
set with |E ∩ (t1, t2)| ≥ η(t2 − t1), for some η ∈ (0, 1), and that for each t ∈ E,
|Dt| , |{x ∈ Ω : (x, t) ∈ D}| ≥ γ|D|, for some γ > 0. Set then

τ = t1 +
η

10
(t2 − t1) and F = [τ, t2] ∩ E.

Clearly, |F | ≥ η
2

(t2− t1). Hence, it follows from (3.23) that when t ∈ [τ, t2] and x is
in Ω

|∂pt u(x, t)| ≤ p!NeN/η(t2−t1)

(η(t2 − t1)/20)p
(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

)
, for all p ∈ N,

with N = N(Ω, ρ). By Lemma 3.11, we have that for each x in Ω

‖∂tu(x, ·)‖L∞([τ,t2]) ≤( ˆ
F

|u(x, s)| ds
)θ(

NeN/(t2−t1)
(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ
,
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with N = N(Ω, ρ, η) and θ = θ(Ω, ρ, η), 0 < θ < 1. Hence, by Hölder’s inequality

ˆ
BR(x0)

|∂tu(x, t)| dx ≤(
NeN/(t2−t1)

(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ( ˆ
F

ˆ
BR(x0)

|u(x, s)| dxds
)θ

(3.25)

when τ ≤ t ≤ t2. It also follows from (3.23) that when τ ≤ t ≤ t2 and x is in Ω, we
have

|∂αxu(x, t)| ≤ |α|!ρ−|α|NeN/(t2−t1)
(
‖u(s)‖L2(Ω) + ‖v(s)‖L2(Ω)

)
, for all α ∈ Nn,

with N = N(Ω, ρ, η). Now, it holds that for each t ∈ F , |Dt| ≥ γ|D|, and it follows
from Lemma 3.9 that
ˆ
BR(x0)

|u(x, t)| dx ≤(ˆ
Dt
|u(x, t)| dx

)θ(
NeN/(t2−t1)

(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ
(3.26)

and
ˆ
BR(x0)

|∆u(x, t)| dx ≤( ˆ
Dt
|u(x, t)| dx

)θ(
NeN/(t2−t1)

(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ
. (3.27)

with N = N(Ω, |D|, R, ρ, η) and θ = θ(Ω, |D|, R, ρ, η), 0 < θ < 1. Hence, (3.25) and
(3.26), as well as Hölder’s inequality imply that

ˆ
BR(x0)

|∂tu(x, t)| dx ≤(ˆ t2

t1

χE(s)‖u(s)‖L1(Ds) ds
)θ(

NeN/(t2−t1)
(
‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

))1−θ
,

when t ∈ F . This, together with the inequalities (3.24), (3.26), (3.27) and Hölder’s
inequality, yield that the inequality

‖u(t)‖L2(Ω) + ‖v(t)‖L2(Ω) ≤
( ˆ t2

t1

χE(s)‖u(s)‖L1(Ds) ds+

ˆ
Dt
|u(x, t)| dx

)θ
×
(
NeN/(t2−t1)‖u(t1)‖L2(Ω) + ‖v(t1)‖L2(Ω)

)1−θ
,
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holds for t ∈ F . Integrating the above inequality with respect to time over the set
F , recalling that |F | ≥ η

2
(t2 − t1), using the energy estimate for solutions to the

equations (3.16) and Hölder’s inequality, we find that

‖u(t2)‖L2(Ω) + ‖v(t2))‖L2(Ω) ≤( ˆ t2

t1

χE(t)‖u(t)‖L1(Dt) dt
)θ(

NeN/(t2−t1)
(
‖u(t1)‖L2(Ω) + ‖v(t1))‖L2(Ω)

))1−θ
,

with N = N(Ω, |D|, R, ρ, η) and θ = θ(Ω, |D|, R, ρ, η), 0 < θ < 1.

Finally, by Fubini’s theorem and using the telescoping series method we can also
derive the desired observability estimate in Theorem 3.8 in the same way as we have
obtained (3.5) from (3.4).

3.2 Boundary observability

3.2.1 Fourth order parabolic equations

For the case of boundary control of higher order parabolic evolutions we obtain
two observability estimates for a fourth order problem with variable coefficients. We
assume that a(x, t) verify % ≤ a(x, t) ≤ %−1 and (2.10) in Ω× [0, T ], 0 < T ≤ 1, and
we consider the following problem:

∂tu+ ∆ (a(x, t)∆u) = 0, in Ω× (0, T ],

u = ∇u = 0, in ∂Ω× (0, T ],

u(0) = u0, in Ω,

(3.28)

with u0 in L2(Ω). For this control system we get the following boundary observability
results.

Theorem 3.13. Let Ω be a bounded domain with analytic boundary, 0 < T ≤ 1,
J ⊂ ∂Ω × (0, T ) be a measurable set with positive measure. Then, there is N =
N(Ω, T,J , %) such that the inequality

‖u(T )‖L2(Ω) ≤ N
[
‖∂(a∆u)

∂ν
‖L1(J ) + ‖a∆u‖L1(J )

]
, (3.29)

holds for all solutions u to (3.28).

Remark 3.5. When J = γ × (0, T ), the constant in Theorem 3.13 is of the form

eN/T
1/3

with N = N(Ω, |γ|, %).
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Theorem 3.14. Under the conditions of Theorem 3.13 assume that E ⊂ (0, T ) is
a measurable set with positive measure and that Γi ⊂ ∂Ω, i = 1, 2, are measurable
sets with positive surface measure. Then, there is N = N(Ω, |Γ1|, |Γ2|, E, %) such
that the inequality

‖u(T )‖L2(Ω) ≤ N

ˆ
E

‖∂(a∆u)
∂ν

(t)‖L1(Γ1) + ‖a∆u(t)‖L1(Γ2) dt, (3.30)

holds for all solutions u to (3.28).

Remark 3.6. We do not know if the sets Γ1 × E and Γ2 × E can be replaced by
general measurable sets Ji ⊂ ∂Ω× (0, T ), i = 1, 2.

To deal with the boundary observability inequalities (3.29) and (3.30) for the
fourth order parabolic evolution (3.28), let Ωδ = {x ∈ Rn : d(x,Ω) < δ}, with δ > 0
sufficiently small. By the inverse function theorem for analytic functions, Ωδ is a
domain with analytic boundary [3, p. 249] and by standard extension arguments
(cf. [36, Chapter I, Theorem 2.3]), the interior null controllability of the system

∂tu+ ∆(a∆u) = χ
Ωδ\Ω

f, in Ωδ × (0, T ],

u = ∇u = 0, on ∂Ωδ × (0, T ],

u(0) = u0, in Ωδ,

with initial datum u0 in L2(Ω) is a consequence of Theorem 3.4 (See also Remark 3.1)
by standard duality arguments. The later implies that there are controls g1 and g2

in L2(∂Ω× (0, T )) with

‖gk‖L2(∂Ω×(0,T )) ≤ Ne
N

T1/3 ‖u0‖L2(Ω), k = 1, 2,

such that the solution u to
∂tu+ ∆(a∆u) = 0, in Ω× (0, T ],

u = g1,
∂u
∂ν

= g2, on ∂Ω× (0, T ],

u(0) = u0, in Ω,

verifies u(T ) ≡ 0. By a standard duality argument, this full boundary null control-
lability in turn implies the observability inequality

‖ϕ(0)‖L2(Ω) ≤ eN/T
1/3
[
‖∂(a∆ϕ)

∂ν
‖L2(∂Ω×(0,T )) + ‖a∆ϕ‖L2(∂Ω×(0,T ))

]
,

for solutions ϕ to the dual equation{
−∂tϕ+ ∆(a∆ϕ) = 0, in Ω× (0, T ],

ϕ = ∂ϕ
∂ν

= 0, on ∂Ω× (0, T ],

with initial datum ϕ(T ) = ϕT in L2(Ω). Thus, we can derive from the above lines
and from the decay of the energy the following result.
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Lemma 3.15. There is N = N(Ω, %) such that the interpolation inequality

‖u(T )‖L2(Ω)

≤
(
eN/[(ε2−ε1)T

1
3 ]
[
‖∂(a∆u)

∂ν
‖L2(∂Ω×[ε1T,ε2T ]) + ‖a∆u‖L2(∂Ω×[ε1T,ε2T ])

])1/2

‖u0‖1/2

L2(Ω),

holds for all solutions u to (3.28) and 0 ≤ ε1 < ε2 ≤ 1.

Theorem 2.2 and Lemma 3.15 imply in a similar way to the reasonings in [4,
Theorem 11] the following result.

Lemma 3.16. Assume that E ⊂ (0, T ) is a measurable set of positive measure and
that Γi ⊂ ∂Ω, i = 1, 2, are measurable subsets with |Γ1|, |Γ2| ≥ γ0 > 0. Then, for
each η ∈ (0, 1) there are N = N(Ω, η, γ0, %) ≥ 1 and θ = θ(Ω, η, γ0, %), 0 < θ < 1,
such that the inequality

‖u(t2)‖L2(Ω) ≤(
eN/(t2−t1)1/3

ˆ t2

t1

χE(t)
[
‖∂(a∆u(t))

∂ν
‖L1(Γ1) + ‖a∆u(t)‖L1(Γ2)

]
dt

)θ
‖u(t1)‖1−θ

L2(Ω),

(3.31)

holds for all solutions u to (3.28), when 0 ≤ t1 < t2 ≤ T and |(t1, t2)∩E| ≥ η(t2−t1).
Moreover,

e
− N+1−θ

(t2−t1)1/3 ‖u(t2)‖L2(Ω) − e
− N+1−θ

(q(t2−t1))1/3 ‖u(t1)‖L2(Ω)

≤ N

ˆ t2

t1

χE(t)
[
‖∂(a(t)∆u(t))

∂ν
‖L1(Γ1) + ‖a(t)∆u(t)‖L1(Γ2)

]
dt, when q ≥

(
N+1−θ
N+1

)3

.

Proof. Suppose that 0 < η < 1 satisfies |(t1, t2) ∩ E| ≥ η(t2 − t1). Set

τ = t1 +
η

20
(t2 − t1), t̃1 = t1 +

η

8
(t2 − t1),

t̃2 = t2 −
η

8
(t2 − t1), τ̃ = t2 −

η

20
(t2 − t1).

Then, t1 < τ < t̃1 < t̃2 < τ̃ < t2 and |E ∩ (t̃1, t̃2)| ≥ 3η
4

(t2 − t1) and it follows from
Lemma 3.15 that there is N = N(Ω, η, %) such that

‖u(t2)‖L2(Ω) ≤ eN/(t2−t1)1/3[
‖∂(a∆u)

∂ν
‖L2(∂Ω×(τ,τ̃)) + ‖a∆u‖L2(∂Ω×(τ,τ̃))

]1/2‖u(t1)‖1/2

L2(Ω).

Next, the inequality

‖∂(a∆u)
∂ν
‖L2(∂Ω×(τ,τ̃)) ≤ ‖∂(a∆u)

∂ν
‖1/2

L1(∂Ω×(τ,τ̃))‖
∂(a∆u)
∂ν
‖1/2
L∞(∂Ω×(τ,τ̃))
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and Theorem 2.2 shows that

‖∂(a∆u)
∂ν
‖L2(∂Ω×(τ,τ̃)) ≤ Ne

N

(t2−t1)1/3 ‖u(t1)‖1/2

L2(Ω)‖
∂(a∆u)
∂ν
‖1/2

L1(∂Ω×(τ,τ̃)). (3.32)

Set v(x, t) = ∂(a∆u)
∂ν

(x, t), for x in ∂Ω and t > 0. Then,

‖v‖L1(∂Ω×(τ,τ̃)) ≤ (τ̃ − τ)

ˆ
∂Ω

‖v(x, ·)‖L∞(τ,τ̃) dσ . (3.33)

Denote the interval [τ, τ̃ ] as [a, a+L], with a = τ and L = τ̃ − τ = (1− η
10

)(t2− t1).
Then, Theorem 2.2 shows that there is N = N(Ω, η, %) such that for each fixed x in
∂Ω, τ ≤ t ≤ τ̃ and p ≥ 0,

|∂pt v(x, t)| ≤ eN/(t2−t1)1/3

p!

(η(t2 − t1)/40)p
‖u(t1)‖L2(Ω) ,

Mp!

(2ρL)p
, (3.34)

with
M = eN/(t2−t1)1/3

‖u(t1)‖L2(Ω) and ρ =
η

8 (10− η)
.

Hence it follows from (3.34) and Lemma 3.11 (with k = 0) that

‖v(x, ·)‖L∞(τ,τ̃) ≤
(

—

ˆ
E∩(t̃1,t̃2)

|v(x, t)| dt
)γ (

NeN/(t2−t1)1/3

‖u(t1)‖L2(Ω)

)1−γ
,

for all x in ∂Ω, with N = N(Ω, η, %) and γ = γ(η) in (0, 1). This, along with (3.33)
and Hölder’s inequality leads to

‖v‖L1(∂Ω×(τ,τ̃)) ≤ e
N

(t2−t1)1/3

(ˆ
E∩(t̃1,t̃2)

ˆ
∂Ω

|v(x, t)| dσdt
)γ
‖u(t1)‖1−γ

L2(Ω), (3.35)

with some new N and γ as above. Because, t − t1 ≥ t̃1 − t1 = η
8

(t2 − t1), when
t ∈ (t̃1, t̃2), we get from Theorem 2.2 that

‖∂αx′v(t)‖L∞(∂Ω) ≤
eN/(t2−t1)1/3|α|!

ρ|α|
‖u(t1)‖L2(Ω), for α ∈ Nn−1

and for some new constants N = N(Ω, η, %) and ρ = ρ(Ω, %). By the obvious gen-
eralization of Lemma 3.1 to the case of real-analytic functions defined over analytic
hypersurfaces in Rn, there are N = N (Ω, η, |Γ1|, %) and ϑ = ϑ (Ω, |Γ1|, %), 0 < ϑ < 1,
such that

ˆ
∂Ω

|v(x, t)| dσ ≤
(ˆ

Γ1

|v(x, t)| dσ
)ϑ (

eN/(t2−t1)1/3

‖u(t1)‖L2(Ω)

)1−ϑ
, (3.36)
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when t ∈ E ∩ (t̃1, t̃2), and it follows from (3.35), (3.36) as well as Hölder’s inequality
that

‖v‖L1(∂Ω×(τ,τ̃)) ≤
(
eN/(t2−t1)1/3

ˆ
E∩(t̃1,t̃2)

ˆ
Γ1

|v(x, t)| dσdt
)ϑγ
‖u(t1)‖1−ϑγ

L2(Ω).

This, together with (3.32) and the definition of v leads to

‖∂(a∆u)
∂ν
‖L2(∂Ω×(τ,τ̃)) ≤

(
e

N

(t2−t1)1/3

ˆ
E∩(t̃1,t̃2)

ˆ
Γ1

|∂(a∆u)
∂ν

(x, t)| dσdt
)θ1
‖u(t1)‖1−θ1

L2(Ω).

Similarly, we can get that

‖a∆u‖L2(∂Ω×(τ,τ̃)) ≤
(
e

N

(t2−t1)1/3

ˆ
E∩(t̃1,t̃2)

ˆ
Γ2

∣∣a∆u(x, t)
∣∣ dσdt)θ2‖u(t1)‖1−θ2

L2(Ω).

These last two inequalities, as well as the fact that

aθ + bθ

2
≤
(a+ b

2

)θ
, when a, b > 0, 0 < θ < 1,

lead to the first desired estimate (3.31). Next, applying Young’s inequality to (3.31),
we obtain that for each ε > 0,

‖u(t2)‖L2(Ω) ≤ ε‖u(t1)‖L2(Ω)

+ ε−
1−θ
θ Ne

N

(t2−t1)1/3

ˆ t2

t1

χE(t)
[
‖∂(a∆u)

∂ν
(t)‖L1(Γ1) + ‖a∆u(t)‖L1(Γ2)

]
dt.

Hence, after some computations, we may get that

ε1−θe
− N

(t2−t1)1/3 ‖u(t2)‖L2(Ω) − εe
− N

(t2−t1)1/3 ‖u(t1)‖L2(Ω)

≤
ˆ t2

t1

χE(t)
[
‖∂(a∆u)

∂ν
(t)‖L1(Γ1) + ‖a∆u(t)‖L1(Γ2)

]
dt, for all ε > 0.

Choosing now ε = e
− 1

(t2−t1)1/3 implies the second estimate in the Lemma.

We now complete the proof of Theorems 3.13 and 3.14.

Proof of Theorems 3.13 and 3.14. Set for each t ∈ (0, T )

Jt = {x ∈ ∂Ω : (x, t) ∈ J } and E = {t ∈ (0, T ) : |Jt| ≥ |J |/(2T )}.

By Fubini’s theorem, Jt is measurable for a.e. t ∈ (0, T ), E is measurable in (0, T )
with |E| ≥ |J |/(2|∂Ω|) and χE(t)χJt(x) ≤ χJ (x, t) over ∂Ω × (0, T ). Then, with
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similar arguments as the ones in the proof of Lemma 3.16, we can get that for each
0 < η < 1, there are N = N(Ω, η, |J |, T, %) and θ = θ(Ω, η, |J |, T, %) with 0 < θ < 1,
such that

‖u(t2)‖L2(Ω) ≤(
NeN/(t2−t1)1/3

ˆ t2

t1

χE(t)
[
‖∂(a(t)∆u)

∂ν
(t)‖L1(Jt) + ‖a(t)∆u(t)‖L1(Jt)

]
dt

)θ
‖u(t1)‖1−θ

L2(Ω),

holds for all solutions u to (3.28), when 0 ≤ t1 < t2 ≤ T and |(t1, t2)∩E| ≥ η(t2−t1).
Moreover,

e
− N+1−θ

(t2−t1)1/3 ‖u(t2)‖L2(Ω) − e
− N+1−θ

(q(t2−t1))1/3 ‖u(t1)‖L2(Ω)

≤ N

ˆ t2

t1

χE(t)
[
‖∂(a(t)∆u)

∂ν
(t)‖L1(Jt) + ‖a(t)∆u(t)‖L1(Jt)

]
dt,

(3.37)

when q ≥
(
N+1−θ
N+1

)3

.

Now, let η = 1/3 and q = (N +1−θ)3/(N +1)3 with N and θ as above. Assume
that l is a Lebesgue point of E. By [4, Lemma 2], there is a monotone decreasing
sequence {lk}k≥1 in (0, T ) satisfying limk→∞ lk = l, l < l1 ≤ T and (3.3). These,
together with (3.37), imply that

e
− N+1−θ

(lk−lk+1)1/3 ‖u(lk)‖L2(Ω) − e
− N+1−θ

(lk+1−lk+2)1/3 ‖u(lk+1)‖L2(Ω)

≤ N

ˆ lk

lk+1

χE(t)
[
‖∂(a(t)∆u)

∂ν
(t)‖L1(Jt) + ‖a(t)∆u(t)‖L1(Jt)

]
dt, k ∈ N.

(3.38)

Finally, adding up (3.38) from k = 1 to +∞ (the telescoping series) we get that

‖u(l1)‖L2(Ω) ≤ Ne
N+1−θ

(l1−l2)1/3

ˆ l1

l

χE(t)
[
‖∂(a(t)∆u)

∂ν
(t)‖L1(Jt) + ‖a(t)∆u(t)‖L1(Jt)

]
dt

≤ N

ˆ
J
|∂(a∆u)

∂ν
(x, t)|+ |a∆u(x, t)| dσdt,

which completes the proof of Theorem 3.13.

The previous reasonings show that Lemma 3.16, as well as [4, Lemma 2] and
the telescoping series method imply the observability inequality from two possibly
distinct measurable subsets of ∂Ω× (0, T ) in Theorem 3.14.
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3.2.2 Second order parabolic equations

For second order parabolic equations the observability estimates in [36, 43] also
allow us to prove a boundary observability estimate over measurable sets under
somehow less restrictive assumptions on the coefficients of the operator.

Theorem 3.17. Let Ω and T be as above and 4R(q0) = BR(q0) ∩ ∂Ω be analytic.
Let J ⊂ 4R(q0)× (0, T ) be a measurable set with positive measure, q0 ∈ ∂Ω, A, bi,
i = 1, 2 and c also satisfy (2.10) over B2R(q0) ∩ Ω × [0, 1] and (2.11). Then, there
is N = N(Ω, T,J , %) such that the inequality

‖u(T )‖L2(Ω) ≤ N‖A∇u · ν‖L1(J ),

holds for all ϕ satisfying
∂tu−∇ · (A∇u)−∇ · (b1u)− b2∇ · u+ cu = 0, in Ω× (0, T ],

u = 0, in ∂Ω× (0, T ],

u(0) = u0, in Ω,

for some u0 in L2(Ω).

Proof. This Theorem is proved similarly to Theorem 3.5, so we only point out the
main changes. From [36, 43] and (3.6), the observability inequality

‖u(T )‖L2(Ω) ≤ NeN/(1−ε)T‖A∇u · ν‖L2(4R(q0)×(εT,T )), (3.39)

for solutions to
∂tu−∇ · (A∇u) + b1 · ∇u+∇ · (b2u) + cu = 0, in Ω× (0, T ],

u = 0, in ∂Ω× [0, T ],

u(0) = u0, in Ω,

(3.40)

with u0 in L2(Ω), 0 ≤ ε < 1, B2R(x0) ⊂ Ω, q0 in ∂Ω and N = N(Ω, R, %), hold when
∂Ω is C1,1 .

We may assume that |J | ≥ %|4R(q0)|T and setting

Jt = {q ∈ ∂Ω : (q, t) ∈ J } and E = {t ∈ (0, T ) : |Jt| ≥ |J |/ (2T )},

we get from (3.39), Theorem 2.2 with x0 = q0 and the obvious generalization of
Lemma 3.1 for the case of analytic functions defined over analytic hypersurfaces in
Rn that

‖u(lk)‖L2(Ω) ≤

(
NeN/(lk−lk+1)

ˆ
E∩(lk+1,lk)

‖A∇u(t) · ν‖L1(Jt) dt

)θ

‖u(lk+1)‖1−θ
L2(Ω)

76



3.3. Applications to Control Theory

for all k ≥ 0, z > 1, with N = N(Ω, R, %), 0 < θ < 1 and θ = θ(%). Again, after
choosing z > 1, the telescoping series method implies

‖u(T )‖L2(Ω) ≤ N‖A∇u · ν‖L1(J ),

with N = N(Ω, T,J , %).

3.3 Applications to Control Theory

In this Section we state some standard consequences of the observability inequal-
ities proved in Sections 3.1 and 3.2.

3.3.1 Interior controllability

The first result we state is the interior null controllability of higher order parabolic
problems with controls acting on general Lebesgue measurable sets.

Theorem 3.18. Let T > 0 and Ω be a bounded domain in Rn with analytic bound-
ary, D ⊂ Ω× (0, T ) be a measurable set with positive measure and L be the operator
(2.1) satisfying (2.10) over Ω × [0, T ]. If D ⊆ Ω × (0, T ) is a measurable set with
positive measure, then for each u0 in L2(Ω), there is f in L∞(D) with

‖f‖L∞(D) ≤ N(D, T,Ω, %)‖u0‖L2(Ω),

such that the solution to
∂tu+ (−1)mLu = fχD, in Ω× (0, T ],

u = Du = . . . = Dm−1u = 0, on ∂Ω× (0, T ],

u(0) = u0, in Ω,

(3.41)

satisfies u(T ) ≡ 0. Also, the control f with minimal L∞(D)-norm is unique and has
the bang-bang property; i.e., |f(x, t)| = M for a.e. (x, t) in D and for some constant
M .

Remark 3.7. If D = ω × (0, T ) and 0 < T ≤ 1, then the constant in Theorem 3.4

is of the form eN/T
1/(2m−1)

with N = N(Ω, |ω|, %).

We now consider the time minimal control problem, if u(t;u0, f) denotes the
solution to (3.41) with D = ω × (0, T ), then the time minimal control problem
consists in finding a control f ∈ UM1 , where

UM1 = {f : Ω× (0, T )→ R measurable : |f(x, t)| ≤M, a.e. in Ω× (0, T )} ,
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and such that u(TM1 ;u0, f) = 0, with

(TP )M1 : TM1 , inf
f∈UM1

{t > 0 : u(t;u0, f) = 0} .

Regarding this problem, the method introduced in [90] allows us to state the follow-
ing Corollary of Theorem 3.18:

Corollary 3.19. Problem (TP )M1 satisfies the bang-bang property, i.e., any time
optimal control f ∈ L∞(ω× (0, T )) satifies |f(x, t)| = M for a.e. (x, t) in ω× (0, T )
and for some constant M . Consequently, the time minimal control is unique.

Of course, problem (TP )M1 may not have a solution, nevertheless under suitable
conditions we can prove its solvability:

Lemma 3.20. Under the same conditions in Theorem 3.18, assume that L is an
operator with time independent coefficients of the form

Lu =
∑

|α|,|β|≤m

∂αx (Aαβ(x)∂βxu) + (−1)mV (x)u.

Then there exists a constant λ = λ(n, %,Ω) > 0 such that if

V (x) ≥ λ in Ω, (3.42)

then, for any M > 0 problem (TP )M1 has a solution.

Proof. Condition (3.42) ensures that a solution u to
∂tu+ (−1)mLu = 0, in Ω× (0, T ],

u = Du = . . . = Dm−1u = 0, on ∂Ω× (0, T ],

u(0) = u0, in Ω,

(3.43)

satisfies the energy decay property:

‖u(T )‖L2(Ω) ≤ ‖u(0)‖L2(Ω).

In fact, if we multiply the equation in (3.43) by u, integrate by parts on Ω× (0, T )
and employ the coercive estimate (2.8), then we get that there exists a positive
constant C(n, %,Ω) such that u satisfies

1

2
‖u(T )‖2

L2(Ω) −
1

2
‖u(0)‖2

L2(Ω) +
1

C

ˆ T

0

‖u(t)‖2
Hm(Ω) dt+

ˆ T

0

ˆ
Ω

V u2 dx dt

≤ C

ˆ T

0

ˆ
Ω

u2 dx dt,
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hence,

1

2
‖u(T )‖2

L2(Ω) −
1

2
‖u(0)‖2

L2(Ω) +
1

C

ˆ T

0

‖u(t)‖2
Hm(Ω) dt+ (λ− C)

ˆ T

0

ˆ
Ω

u2 dx dt ≤ 0,

which implies the energy decay property provided that λ ≥ C. Since the operator
L is invariant by time translations, we have that the observability estimate

‖u(j)‖L2(Ω) ≤ C‖u‖L1(ω×(j−1,j))

holds for any j = 1, . . . , N , where C is independent of j and N is the greatest
natural number such that N ≤ T if T > 1 and N = 1 if 0 < T < 1. Hence, using
the energy decay of u we get

‖u(T )‖L2(Ω) ≤ ‖u(j)‖L2(Ω) ≤ C‖u‖L1(ω×(j−1,j)),

for any j = 1, . . . , N ; and summing in j we arrive to

‖u(T )‖ =
1

N

N∑
j=1

‖u(T )‖L2(Ω) ≤
C

T
‖u‖L1(ω×(0,T )). (3.44)

By duality, (3.44) shows that any bounded control f ∈ L∞(Ω × (0, T )) supported
on ω× (0, T ) satisfies ‖f‖L∞(Ω×(0,T )) ≤ C

T
‖u0‖L2(Ω), therefore, for any M > 0 the set{

t > 0 : u(t;u0, f) = 0, f ∈ UM1
}

is not empty and the infimum TM1 exists. Then, a standard weak-compactness
argument (See [4, §5]) allows us to assert that u(TM1 ;u0, f) = 0 for some f ∈
L∞(Ω× (0, T )).

For second order equations the observability inequality in Theorem 3.21 implies:

Theorem 3.21. Under the assumptions in Theorem 3.5, if D ⊂ BR(x0) × (0, T )
is a measurable set with positive measure, then for each u0 in L2(Ω), there is f in
L∞(D) with

‖f‖L∞(D) ≤ N‖u0‖L2(Ω),

such that the solution to
∂tu−∇ · (A∇u) + b1 · ∇u+∇ · (b2u) + cu = fχD, in Ω× (0, T ],

u = 0, in ∂Ω× (0, T ],

u(0) = u0, in Ω,

satisfies u(T ) ≡ 0. Also, the control f with minimal L∞(D)-norm is unique and has
the bang-bang property; i.e., |f(x, t)| = const. for a.e. (x, t) in D.
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Theorem 3.6 implies the null controllability of the system (2.18) with controls
restricted over ` different non-empty open sets (or measurable sets of positive mea-
sure): assume that ωj ⊂ Ω, j = 1, . . . , `, are non-empty open sets verifying,
ωj ∩ ωk = ∅, for 1 ≤ j 6= k ≤ `.

Theorem 3.22. Under the assumptions in Theorem 3.6, let E ⊆ (0, T ) be a mea-
surable set, |E| > 0, and ωη ⊆ Ω, η = 1, . . . , ` be measurable sets with |ωη| ≥ ω0, η =
1, . . . , `, for some ω0 > 0. Then for each u0 in L2(Ω)`, there is f = (f1χω1 , . . . , f`χω`)
in L∞(D)` with

‖f‖L∞(D) ≤ N‖u0‖L2(Ω),

such that the solution to
∂tu− Lu = f , in Ω× (0, T ],

u = 0, on ∂Ω× [0, T ],

u(0) = u0, in Ω,

satisfies u(T ) = 0.

We can also apply Theorem 3.7 to obtain the null-controllability of second order
systems acting on interior general measurable sets.

Theorem 3.23. Under the assumptions in Theorem 3.7, let D ⊂ Ω × (0, T ) be
a measurable set with positive measure, then for each u0 in L2(Ω)`, there is f =
(f1, . . . , f`) in L∞(D)` with

‖f‖L∞(D) ≤ N‖u0‖L2(Ω),

such that the solution to
∂tu− Lu = fχD, in Ω× (0, T ],

u = 0, in ∂Ω× [0, T ],

u(0) = u0, in Ω,

satisfies u(T ) = 0.

Theorem 3.24. Under the assumptions in Theorem 3.8, let ω ⊆ Ω be a measurable
set with positive measure. Then, for each (u0, v0) ∈ L2(Ω)2 there is f ∈ L∞(Ω ×
(0, T )) with

‖f‖L∞(ω×(0,T )) ≤ N
(
‖u0‖L2(Ω) + ‖v0‖L2(Ω)

)
,

such that a solution (u, v) to
∂tu−∆u+ a(x)u+ b(x)v = 0, in Ω× (0, T ),

∂tv −∆v + c(x)u+ d(x)v = χωf, in Ω× (0, T ),

u = 0, v = 0, on ∂Ω× (0, T ),

u(0) = u0, v(0) = v0, in Ω,

(3.45)
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satisfies u(T ) = v(T ) = 0.

If f is a control force taken in the constraint set

UM2 ,
{
f : Ω× R+ → R measurable : |f(x, t)| ≤M, a.e. in Ω× R+

}
,

with M > 0. For each (u0, v0) in L2(Ω)×L2(Ω)\{(0, 0)}, we study the time optimal
control problem

(TP )M2 : TM2 , inf
UM2

{
t > 0;

(
u(t;u0, v0, f), v(t;u0, v0, f)

)
= (0, 0)

}
,

where
(
u(· ;u0, v0, f), v( ; , u0, v0, f)

)
is the solution to (3.45) corresponding to the

control f and the initial datum (u0, v0). Then, the methods in [4, §5] and Theorem
3.8 give the following consequence.

Corollary 3.25. The problem (TP )M2 has the bang-bang property: any time optimal
control f satisfies, |f(x, t)| = M for a.e. (x, t) in ω×(0, TM2 ). Moreover, it is unique.

3.3.2 Boundary controllability

Regarding the boundary controllability of higher order parabolic evolutions, we
state the following result for fourth order problems, which is a consequence of The-
orem 3.13.

Theorem 3.26. Under the assumptions of Theorem 3.13, if J ⊆ ∂Ω × (0, T ) is
a measurable set with positive measure, then for each u0 in L2(Ω), there are gi in
L∞(J ) with

‖gi‖L∞(J ) ≤ N‖u0‖L2(Ω), i = 1, 2

such that the solution to
∂tu+ ∆ (a(x, t)∆u) = 0, in Ω× (0, T ],

u = g1χJ ,
∂u
∂ν

= g2χJ , in ∂Ω× [0, T ],

u(0) = u0, in Ω,

(3.46)

satisfies u(T ) ≡ 0. If for a pair of boundary controls (g1, g2), we define

‖(g1, g2)‖L∞(J ) = ‖|g1|+ |g2|‖L∞(J )

then, any optimal norm control pair for the system (3.46) has a weak bang-bang
property; i.e., |g1(x, t)|+ |g2(x, t)| = const. for a.e. (x, t) in J .
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Remark 3.8. When J = γ × (0, T ), the constant in Theorem 3.26 is of the form

eN/T
1/3

with N = N(Ω, |γ|, %).

Analogously to Theorem 3.21, for second order parabolic evolutions we have the
following standard application of Theorem 3.17.

Theorem 3.27. Under the assumptions in Theorem 3.17, let J ⊂ 4R(q0)× (0, T )
be a measurable set with positive measure, then for each u0 in L2(Ω), there is g in
L∞(J ) with

‖g‖L∞(J ) ≤ N‖u0‖L2(Ω),

such that the solution to
∂tu−∇ · (A∇u) + b1 · ∇u+∇ · (b2u) + cu = 0, in Ω× (0, T ],

u = gχJ , in ∂Ω× (0, T ],

u(0) = u0, in Ω,

satisfies u(T ) ≡ 0. Also, the control g with minimal L∞(J )-norm is unique and has
the bang-bang property; i.e., |g(q, t)| = const. for a.e. (q, t) in J .
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Chapter 4

Regularity of solutions to
non-divergence elliptic equations
and the Dini condition

Along this Chapter we will consider the following Dini condition:

Definition 4.1. A function f : Ω ⊂ Rn → R is Dini continuous in Ω if there is a
continuous non-decreasing function θ : [0,+∞)→ [0,+∞) verifying

|f(x)− f(y)| ≤ θ(|x− y|), for any x, y ∈ Ω

and such that ˆ 1

0

θ(t)

t
dt < +∞ (4.1)

and
θ(2t) ≤ 2θ(t), for t ∈ (0, 1

2
). (4.2)

We will say that θ is the Dini modulus of continuity of f .

Condition (4.2) is not restrictive. In fact, as we learnt from [5, Remark 1], any
modulus of continuity satisfying (4.1) can be dominated by

θ̃(t) = t sup
τ∈[t,1]

θ(τ)

τ
,

which is again a Dini modulus of continuity such that θ̃(t)/t is non-increasing. The
later implies (4.2) for θ̃.

Before stating our results we first briefly review the case of elliptic equations in
divergence form. In this situation, motivated by a question raised in [80] and the
results in [39], H. Brezis proved the following [7, Theorems 1 and 2].
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Theorem 4.1. Let A be a uniformly elliptic matrix such that A is Dini continuous
in Ω. Let u in W 1,1(Ω) solve

ˆ
Ω

A∇u · ∇ϕdx = 0, for any ϕ in C∞0 (Ω).

Then, for any 1 < p <∞, u is in W 1,p
loc (Ω) and

‖u‖W 1,p(K) ≤ C‖u‖W 1,1(Ω) (4.3)

for any compact subset K ⊂ Ω, where C depends on n, p, K, the ellipticity constant,
Ω and the uniform modulus of continuity of the coefficients, but not on the Dini
modulus of continuity.

The independence of the constant in (4.3) with respect to the Dini modulus of
continuity by no means implies that this result is true when the coefficients are
merely continuous in Ω: a counterexample to such assertion is given in [44].

In the context of non-divergence form elliptic equations, the main result proved
here is the following.

Theorem 4.2. Assume that the coefficients of L are Dini continuous in Ω and let
u in W 2,1(Ω) satisfy Lu = f , a.e. in Ω with f in Lp(Ω), for some 1 < p <∞. Then
u is in W 2,p

loc (Ω) and

‖u‖W 2,p(K) ≤ C
[
‖u‖W 2,1(Ω) + ‖f‖Lp(Ω)

]
,

for any compact subset K ⊂ Ω, where C depends on n, p, K, λ, Ω and the uniform
modulus of continuity of the coefficients, but not on the Dini modulus of continuity.

Similarly to the case of divergence form elliptic equations, the Dini condition on
A is the optimal to derive such a result. Here we give a counterexample inspired by
[19, Section 3], showing that Theorem 4.2 is false when the coefficients of L are not
Dini continuous.

Theorem 4.3. There is an operator L with continuous coefficients in B1, which are
not Dini continuous at x = 0, and a solution u in W 2,1(B1) ∩W 1,1

0 (B1) of Lu = 0
such that u is not in W 2,p(B 1

2
), for any p > 1.

Concerning the other end-point in the scale of Lp spaces, we recall that the
singular integrals theory [82, Chapter IV] allows to prove that weak solutions [38,
Chapter 8] to ∆u = f in B2 have generalized second order derivatives in BMO(B1)
when f ∈ L∞(B2). Moreover, the Laplace operator can be perturbed in order to
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obtain similar results for elliptic operators (1.35) with Dini continuous coefficients
[12] or with A verifying

|A(x)− A(y)| ≤ C/[1 + | log |x− y||], (4.4)

for some C > 0 sufficiently small [10, Theorem A, ii and Corollary 4.1].

As far as we know, there are no counterexamples in the literature showing that
mere continuity of the coefficients is not enough to prove that the second deriva-
tives of solutions of elliptic equations do not belong to BMO in general. The next
counterexample, which is a modification of [44, Proposition 1.6], fills this gap.

Theorem 4.4. There exists an operator L with continuous coefficients in B1, which
are not Dini continuous at x = 0, and a solution u in W 2,p(B1)∩W 1,p

0 (B1) of Lu = 0,
1 < p <∞, such that D2u is not in BMO(B 1

2
).

The counterexample in Theorem 4.4 is sharp because its coefficient matrix A
verifies (4.4) for x, y in B1, for some fixed C > 0.

The main ingredients in the proof of Theorem 4.2 are the Sobolev inequality and
the boundedness of solutions to equations involving the formal adjoint operator L∗
given by

L∗v =
n∑

i,j=1

∂ij(a
ijv).

In order to make sense of the solutions associated to the operator L∗ when the coef-
ficients of L are only continuous we must consider distributional or weak solutions
to the adjoint equation. For our purposes, we need to deal with boundary value
problems of the form {

L∗w = div2Φ + η, in Ω,

w = ψ + Φν·ν
Aν·ν , on ∂Ω,

(4.5)

where Φ = (ϕkl)nk,l=1, div2Φ =
∑

k,l=1 ∂klϕ
kl, with

Φ in Lp(Ω), η in Lp(Ω), ψ in Lp(∂Ω, dσ), 1 < p <∞. (4.6)

Definition 4.2. Let Ω ⊂ Rn be a bounded C1,1 domain with unit exterior normal
vector ν = (ν1, . . . , νn), Φ, ψ and η verify (4.6), let L be as in (1.35), 1 < p < ∞
and 1

p
+ 1

p′
= 1. We say that w in Lp(Ω) is an adjoint solution of (4.5) if w satisfies

ˆ
Ω

wLu dy =

ˆ
Ω

tr(ΦD2u) dy +

ˆ
Ω

ηu dy +

ˆ
∂Ω

ψA∇u · ν dσ(y), (4.7)

for any u in W 2,p′(Ω) ∩W 1,p′

0 (Ω).
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Later we shall explain why this definition makes sense. At first, the boundary
conditions in (4.5) may look strange. However, if we formally multiply (4.5) by a test
function u in C∞(Ω) with u = 0 on ∂Ω, assume that w is in C∞(Ω) and integrate
by parts, taking into account that ∇u = (∇u · ν)ν on ∂Ω, we arrive at (4.7).

We will also consider local adjoint solutions of

L∗w = div2Φ + η in Ω,

i.e., solutions which do not satisfy any specified boundary condition. Such local
solutions are those in Lploc (Ω) that verify (4.7), when u is in W 2,p′

0 (Ω); thus, the
boundary integrals in (4.7) are omitted.

This kind of adjoint solutions have been already studied in the literature. For
instance, in [81, 6, 28, 27, 20, 66] solutions of (4.5) with Φ = 0 are studied under
low regularity assumptions on either the coefficients of L or the boundary of the
domain. Moreover, when the data and the boundary of the domain involved in
(4.5) are smooth, the weak formulation (4.7) can be recasted in such a way that the
regularity theory in [61] or [74] can be used to prove that w is smooth and solves
(4.5) in a classical sense.

For our purposes we need to prove the existence and uniqueness of such adjoint
solutions.

Lemma 4.5. Let 1 < p < ∞ and assume that (4.6) holds. Then, there exists a
unique adjoint solution w in Lp(Ω) of (4.5). Moreover, the following estimate holds

‖w‖Lp(Ω) ≤ C
[
‖Φ‖Lp(Ω) + ‖η‖Lp(Ω) + ‖ψ‖Lp(∂Ω)

]
, (4.8)

where C depends on Ω, p, n, λ and the continuity of A.

This result follows from the so-called transposition or duality method [61, 74],

which relies on the existence and uniqueness of W 2,p′∩W 1,p′

0 (Ω) solutions to Lu = f .

Finally, the proof of Theorem 4.2 requires the boundedness of certain adjoint
solutions to problems of the form (4.5) with Φ = 0. It is at this point where the
Dini continuity of the coefficients plays a role. However, and similarly to what it
was done in [7], we only employ the boundedness of these adjoint solutions in a
qualitative form, that is, we do not need an specific estimate of the boundedness of
those adjoint solutions.

In order to prove the boundedness of the specific adjoint solutions, we employ
a perturbative technique based on ideas first stablished in [9, 11] and used in [57]
to prove the continuity of the gradient of solutions to divergence-form second order
elliptic systems with Dini continuous coefficients. Accordingly, we do not only prove
that those adjoint solutions are bounded but also their continuity.
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Lemma 4.6. Let ζ ∈ C∞0 (B3), 1 < p <∞ and assume that the elliptic operator L
has Dini continuous coefficients in B4. Then, if v in Lp(B4) satisfiesˆ

B4

vLu dx =

ˆ
B4

ζu dx, for any u ∈ W 2,p′(B4) ∩W 1,p′

0 (B4),

v is continuous in B3.

The remaining of this Chapter is organized as follows: in Section 4.1 we give the
counterexamples stated in Theorems 4.3 and 4.4; in Section 4.2 we prove Lemma
4.5 using the duality method; in Section 4.3 we prove that certain adjoint solutions
are continuous and in Section 4.4 we prove Theorem 4.2.

4.1 Counterexamples

In this section we give two counterexamples. Both of them arise as solutions of
uniformly elliptic operators of the form

Lαu = tr
[(
I + α(r)

x

r
⊗ x

r

)
D2u

]
, (4.9)

where (x ⊗ x)ij = xixj, r = |x|, with α is a continuous radial function in B1,
α(0) = 0.

Proof of Theorem 4.3. If we look for a radial solution u of (4.9), we find that u must
satisfy

Lαu = (α(r) + 1)u′′ +
n− 1

r
u′ = 0. (4.10)

We choose

u(r) =

ˆ 1

r

t1−n
(

log
R

t

)−γ
dt, γ > 1,

with R > 1 to be chosen. Then

u′(r) = −r1−n
(

log
R

r

)−γ
u′′(r) = r−n

(
log

R

r

)−γ [
n− 1− γ

(
log

R

r

)−1
]
.

Hence, u ∈ W 2,1(B1) ∩W 1,1
0 (B1) but D2u /∈ Lp(B1) for any p > 1, when γ > 1 and

R > 1. Solving (4.10) for α we obtain

α(r) =
γ

(n− 1) log R
r
− γ

,
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which ensures the uniform ellipticity and the continuity of the coefficients of Lα over
B1, when R is sufficiently large. However, α is not Dini continuous at x = 0.

Proof of Theorem 4.4. Let ϕ ∈ C2((0, 1]), α ∈ C([0, 1]) and define

u(x) = x1x2ϕ(r).

A computation shows that

Lαu =
x1x2

r2

[
(n+ 3)rϕ′ + r2ϕ′′ + α(2ϕ+ 4rϕ′ + r2ϕ′′)

]
.

Choosing ϕ(r) =
(
log R

r

)2
for some R > 1 yields

Lαu =
x1x2

r2

[
1 + α− (2 + n+ 3α) log

R

r
+ α

(
log

R

r

)2
]
,

which is identically zero in B1(0) provided that

α(r) =
(2 + n) log R

r
− 1(

log R
r

)2 − 3 log R
r

+ 1
,

and R > 1 is taken large enough in order to ensure the uniform ellipticity and the
continuity of the coefficients of Lα in B1. A computation shows that

∂12u ≥
1

2

(
log

R

r

)2

on B1,

when R > 1 is large enough. Moreover, for any c ∈ R there is ε = ε(c) such that(
log R

r

)2 ≥ 4|c| in Bε. Thus

ˆ
B 1

2

eN |∂12u−c| dx ≥
ˆ
Bε

e
N
4

(log R
r

)2

dx = +∞, for any N > 0, c ∈ R.

By the John-Nirenberg inequality [47], ∂12u cannot belong to BMO(B1).

4.2 Existence of adjoint solutions

We recall the following well known existence result for the Dirichlet problem for
non-divergence form elliptic equations [38, Theorem 9.15, Lemma 9.17].
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Lemma 4.7. Let Ω ⊂ Rn be a C1,1 domain, f be in Lp(Ω) and 1 < p <∞. Then,
there exists a unique u ∈ W 2,p(Ω)∩W 1,p

0 (Ω) such that Lu = f a.e. in Ω. Moreover,
there is a constant C > 0 depending on Ω, p, n, λ and the modulus of continuity of
A such that

‖u‖W 2,p(Ω) ≤ C‖f‖Lp(Ω). (4.11)

An easy consequence of Lemma 4.7 is the existence and uniqueness of adjoint
solutions to (4.5) stated in Lemma 4.5.

Proof of Lemma 4.5. We construct the solution by means of tranposition. If p′ is
the conjugate exponent of p, we define the functional T : Lp

′
(Ω)→ R by

T (f) =

ˆ
Ω

tr
(
ΦD2u

)
dx+

ˆ
Ω

ηu dx+

ˆ
∂Ω

ψA∇u · ν dσ, (4.12)

where u inW 2,p′(Ω)∩W 1,p′

0 (Ω) verifies Lu = f , a.e. in Ω. Combining (4.11), the trace
inequality [26, §5.5, Theorem 1], (4.12) and Hölder’s inequality, it is straightforward
to check that

|T (f)| ≤ C‖f‖Lp′ (Ω)

[
‖Φ‖Lp(Ω) + ‖η‖Lp(Ω) + ‖ψ‖Lp(∂Ω)

]
,

where C = C(A,Ω, p, n). Hence T is a bounded functional on Lp
′
(Ω) and by the

Riesz representation Theorem, there is a unique w in Lp(Ω) such that

T (f) =

ˆ
Ω

wf dx, for any f ∈ Lp′(Ω). (4.13)

Moreover,
‖w‖Lp(Ω) ≤ C

[
‖Φ‖Lp(Ω) + ‖η‖Lp(Ω) + ‖ψ‖Lp(∂Ω)

]
.

Now, combining (4.12) and (4.13), it is clear that w is the unique adjoint solution
to (4.5).

4.3 Proof of Lemma 4.6

For the proof of Lemma 4.6 we need first the following Lemma.

Lemma 4.8. Let Φ ∈ Lp(B1), η ∈ L∞(B1), w ∈ Lp(B1), 1 < p < ∞ and L be an
operator like (1.35) with continuous coefficients and A(0) = I, the identity matrix.
Then, if

L∗w = div2Φ + η, in B1,
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Chapter 4. Regularity of solutions to non-divergence elliptic equations...

there exists a harmonic function h in B 3
4

such that

‖h‖Lp(B 3
4

) ≤M‖w‖Lp(B1),

‖w − h‖Lp(B 3
4

) ≤M
[
‖Φ‖Lp(B1) + ‖A− I‖L∞(B1)‖w‖Lp(B1) + ‖η‖L∞(B1)

]
,

(4.14)

where M depends on p, n, λ and the modulus of continuity of A.

Proof of Lemma 4.8. We first prove Lemma 4.8 assuming that the coefficients of
L and data are smooth in B1. However, the constants in the estimate will only
depend on p, λ, n and the modulus of continuity of A. Under these assumptions,
the regularity theory [74, 61], implies that w is smooth in B1. By Fubini’s theorem,
there is 3

4
≤ t ≤ 1 such that

‖w‖Lp(∂Bt) ≤ 4−
1
p‖w‖Lp(B1). (4.15)

Using Lemma 4.5 we can find a function h such that{
∆∗h = 0, in Bt,

h = w, on ∂Bt,

in the sense of (4.5). Of course, h is harmonic in the interior of Bt. Moreover, the
estimate provided by Lemma 4.5 together with (4.15) imply

‖h‖Lp(Bt) ≤M‖w‖Lp(∂Bt) ≤M4−
1
p‖w‖Lp(B1), (4.16)

with M = M(p, n). Then w − h satisfiesˆ
Bt

(w − h)Ludx =

ˆ
Bt

tr
[
h(I − A)D2u

]
dx+

ˆ
Bt

tr
[
ΦD2u

]
dx

+

ˆ
Bt

ηudx+

ˆ
∂Bt

w (A− I)∇u · νdσ

=

ˆ
Bt

tr
[
h(I − A)D2u

]
dx+

ˆ
Bt

tr
[
ΦD2u

]
dx

+

ˆ
Bt

ηudx+

ˆ
∂Bt

w
(A− I) ν · ν

Aν · ν
A∇u · νdσ

(4.17)

for any u ∈ W 2,p′(Bt) ∩ W 1,p′

0 (Bt). Therefore, w − h is an adjoint solution to a
problem which falls into the conditions of Lemma 4.5 and we can apply (4.8) to the
equation (4.17) to get that

‖w − h‖Lp(Bt) ≤M
[
‖A− I‖L∞(Bt)‖h‖Lp(Bt)

+‖Φ‖Lp(Bt) + ‖A− I‖L∞(Bt)‖w‖Lp(∂Bt) + ‖η‖Lp(Bt)

]
,
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4.3. Proof of Lemma 4.6

which together with (4.16) imply the desired estimate. Finally, an approximation
argument allows us to derive the same estimate under the more general conditions
mentioned above.

The perturbative technique used in the proof of Lemma 4.6 is based on the local
smallness of certain quantities. We may assume that A(0) = I and that θ is a Dini
modulus of continuity for A on B4. For this reason, if v and ζ verify the conditions
in Lemma 4.6, it is handy to define for 0 < t, δ ≤ 1,

ω(t) = t2 + θ(t), δ = M−1δ
n
p

ω(δ)

1 + ‖v‖Lp(B1) + ‖ζ‖L∞(B1)

,

where M is the constant in (4.14), and to consider the rescaled functions

vδ(x) = δv(δx), ζδ(x) = δδ2ζ(δx). (4.18)

From (4.2)
ω(4t) ≤ 16ω(t), for t ≤ 1/4 (4.19)

and the dilation and rescaling yield

‖vδ‖Lp(B1) ≤M−1ω(δ), ‖ζδ‖L∞(B1) ≤M−1δ2ω(δ). (4.20)

Also,
L∗δvδ = ζδ, in B1, with Lδu = tr

(
A(δx)D2u

)
. (4.21)

Next, we show by induction that there are C > 0, 0 < δ ≤ 1 and harmonic functions
hk in 4−kB 3

4
, k ≥ 0, such that

C−1‖hk‖Lp(4−kB 3
4

) + ‖v −
k∑
j=0

hj‖Lp(4−kB 1
4

) ≤ 4−k
n
pω(4−kδ),

‖hk‖L∞(4−kB 1
2

) + 4−k‖∇hk‖L∞(4−kB 1
2

) ≤ Cω(4−kδ),

(4.22)

where C depends on n, p, λ and the modulus of continuity of A.

When k = 0, (4.20), (4.21) and Lemma 4.8 applied to vδ show that there is a
harmonic function h0 in B 3

4
such that

‖h0‖Lp(B 3
4

) ≤M‖vδ‖Lp(B1) ≤ ω(δ),

‖vδ − h0‖Lp(B 3
4

) ≤M
[
θ(δ)‖vδ‖Lp(B1) + ‖ζδ‖L∞(B1)

]
≤ ω(δ)2.

By regularity of harmonic functions [26, §2.2.3c]

‖h0‖L∞(B 1
2

) + ‖∇h0‖L∞(B 1
2

) ≤ C(n, p)‖h0‖Lp(B 3
4

) ≤ C(n, p)ω(δ).
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Thus, (4.22) holds for k = 0, when C and δ satisfy

C−1 + ω(δ) ≤ 1 and C ≥ C(n, p). (4.23)

Now, assume that (4.22) holds up to some k ≥ 0 and define

Ak+1(x) = A(4−k−1δx), Lk+1u = tr(Ak+1(x)D2u)

Gk+1(x) = (I − Ak+1(x))
k∑
j=0

hj(4
−k−1x).

Then, Wk+1(x) = vδ(4
−k−1x)−

∑k
j=0 hj(4

−k−1x) solves

L∗k+1Wk+1(x) = div2Gk+1 + 4−2k−2ζδ(4
−k−1x), in B1. (4.24)

Using the induction hypothesis (4.22) and (4.19) , one finds that Gk+1 satisfies

‖Gk+1‖Lp(B1) ≤ |B1|
1
p θ(4−k−1δ)

k∑
j=0

‖hj(4−k−1·)‖L∞(B1)

≤
[
32C|B1|

1
p

ˆ δ

0

ω(t)

t
dt

]
θ(4−k−1δ).

(4.25)

Besides, the inequality in the first line of (4.22) gives

‖Wk+1‖Lp(B1) ≤ 4
n
pω(4−kδ). (4.26)

From (4.19), (4.24), (4.25) and (4.26), apply Lemma 4.8 to Wk+1 to find that with
the same M , there is a harmonic function h̃k+1 in B 3

4
such that

‖h̃k+1‖Lp(B 3
4

) ≤ 42+n
pMω(4−k−1δ). (4.27)

and

‖Wk+1 − h̃k+1‖Lp(B 3
4

) ≤M

[
32 |B1|

1
pC

ˆ δ

0

ω(t)

t
dt+ ω(δ)

]
ω(4−k−1δ).

From standard interior estimates for harmonic functions and (4.27)

‖h̃k+1‖L∞(B 1
2

) + ‖∇h̃k+1‖L∞(B 1
2

) ≤ C(n, p)42+n
pMω(4−k−1δ).

Setting, hk+1(x) = h̃k+1(4k+1x), the last three formulae and (3.6) show that the

induction hypothesis holds when C = 2C(n, p)
[
42+n

pM + 1
]

and δ is determined

by the condition

2M

[
32 |B1|

1
pC

ˆ δ

0

ω(t)

t
dt+ ω(δ)

]
≤ 1.
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On the other hand, for |x| ≤ 4−k−1

|
k∑
j=0

hj(x)−
∞∑
j=0

hj(0)| ≤
∞∑

j=k+1

|hj(0)|+ 4−k−1

k∑
j=0

‖∇hj‖L∞(4−kB 1
4

)

≤ 16C

(ˆ 4−kδ

0

ω(t)

t
dt+ 4−k−1δ

ˆ δ

4−k−1δ

ω(t)

t2
dt

) (4.28)

Therefore, (4.22) together with (4.28) and (4.19) imply

—

ˆ
4−k−1B1

|vδ(x)−
∞∑
j=0

hj(0)| dx ≤

≤ 44C

[ˆ 4−k−1δ

0

ω(t)

t
dt+ 4−k−1δ

ˆ δ

4−k−1δ

ω(t)

t2
dt+ ω(4−k−1δ)

]
, (4.29)

when k ≥ 0. Using Fubini’s theorem it is easy to check that t
´ 1

t
ω(s)
s2

ds is a Dini
modulus of continuity, one can verify that

σ(t) =

ˆ t

0

ω(s)

s
ds+ t

ˆ 1

t

ω(s)

s2
ds+ ω(t)

is non-decreasing and derive that limt→0+ σ(t)→ 0. Hence, from (4.29) and (4.18),
we have proved that there are C > 0, depending on λ, n and the Dini modulus of
continuity of A, and a number a(0) such that

—

ˆ
Br

|v(x)− a(0)|dx ≤ Cσ(r)
[
‖v‖Lp(B1) + ‖ζ‖L∞(B1)

]
, when 0 < r ≤ 1. (4.30)

Since v ∈ Lp(B4) is an adjoint solution in B4, we can repeat the proof of (4.30) in
balls of radius 1 centered at any point x in B3. We note that the constant C and
the modulus of continuity σ in (4.29) do not depend on the center of the ball, hence,
for each x in B3, we find a number a(x) such that

—

ˆ
Br(x)

|v(x)− a(x)|dx ≤ Cσ(r)
[
‖v‖Lp(B4) + ‖ζ‖L∞(B4)

]
, when 0 < r ≤ 1.

By Lebesgue’s differentiation theorem, u and a are equal a.e. in B3. Now, if x and
y are in B3 and r

2
≤ |x− y| ≤ r, we have

|u(x)− u(y)| ≤—

ˆ
Br(x)

|u(x)− u(x)|dx+ —

ˆ
Br(x)

|u(x)− u(y)|dx

. —

ˆ
Br(x)

|u(x)− u(x)|dx+ —

ˆ
Br(y)

|u(x)− u(y)|dx

. σ(2r)
[
‖v‖Lp(B4) + ‖ζ‖L∞(B4)

]
, when 0 < r ≤ 1/2.

which proves Lemma 4.6.
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4.4 Proof of Theorem 4.2

It suffices to show that if u in W 2,1(B4) verifies Lu = f , with f in Lp(B4),
1 < p <∞, then u ∈ W 2,q(B1), for some q > 1. Let then η be a function in C∞0 (B2)
with η = 1 in B1 and 0 ≤ η ≤ 1. Set q = min

{
n
n−1

, p
}

and let ϕ be in C∞0 (B3) with
‖ϕ‖Lq′ (B3) ≤ 1. We shall show that∣∣∣∣ˆ

B4

∂kl(uη)ϕdx

∣∣∣∣ ≤ C
[
‖f‖Lp(B4) + ‖u‖W 2,1(B4)

]
, (4.31)

where C only depends on q, p, λ, n and the uniform modulus of continuity of the
coefficients A, but not on the Dini modulus of continuity of A.

Let uε in C∞(B4) be a sequence of functions converging to u in W 2,1
loc (B4) as

ε→ 0, then for any ϕ in C∞0 (B3) we have
ˆ
B4

∂kl(uη)ϕdx = lim
ε→0

ˆ
B4

∂kl(uεη)ϕdx.

By Lemma 4.5 with Ω = B4 and p = q′, for k, l ∈ {1, . . . , n}, there is a unique
weak adjoint solution v in Lq

′
(B4) to{
L∗v = ∂klϕ, on B4,

v = 0, on ∂B4.

That is, a function v in Lq
′
(B4) such that
ˆ
B4

vLw dy =

ˆ
B4

ϕ∂klw dy,

for any w in W 2,q(B4) ∩W 1,q
0 (B4) and

‖v‖Lq′ (B4) ≤ C‖ϕ‖Lq′ (B3) ≤ C. (4.32)

Observe that uεη is in W 2,q(B4) ∩W 1,q
0 (B4), for any ε > 0. Thus,

ˆ
B4

∂kl(uεη)ϕdx =

ˆ
B4

vL(uεη) dx. (4.33)

Now, we want to take limits in (4.33) as ε → 0. A priori, we only know that
∂klu is in L1(B4), so we can just assert that L(uεη) → L(uη) in L1(B4) as ε → 0.
However, in order to take the limit as ε→ 0 inside of the integral in the right-hand
side of (4.33) and because of the support properties of the functions involved, we

94



4.4. Proof of Theorem 4.2

only need to know that v is bounded in B3, which indeed is the case because of
Lemma 4.6, with ζ = ∂klϕ. Hence, we obtain

ˆ
B4

∂kl(uη)ϕdx =

ˆ
B4

vL(uη) dx =

ˆ
B4

vηLu dx+

ˆ
B4

vuLη dx

+ 2

ˆ
B4

vA∇u · ∇η dx , J1 + J2 + J3.

Now, Hölder’s inequality, Sobolev’s inequality and (4.32) yield

|J1| ≤ ‖v‖Lq′ (B4)‖Lu‖Lq(B4) ≤ C‖f‖Lp(B4),

|J2| ≤M‖v‖Lq′ (B4)‖u‖Lq(B4) ≤ C‖u‖W 1,1(B4),

|J3| ≤M‖v‖Lq′ (B4)‖∇u‖Lq(B4) ≤ C‖u‖W 2,1(B4),

which implies (4.31), and by density and duality

‖∂kl(uη)‖Lq(B3) ≤ C
[
‖f‖Lp(B4) + ‖u‖W 2,1(B4)

]
.

Therefore, u is in W 2,q(B1) and

‖u‖W 2,q(B1) ≤ C
[
‖f‖Lp(B4) + ‖u‖W 2,1(B4)

]
,

which is the desired estimate.
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Appendix A

Resumen

En esta tesis se tratan cuestiones acerca de la analiticidad de soluciones de
ecuaciones parabólicas, sus aplicaciones en Teoŕıa de Control y algunas propiedades
de regularidad de soluciones de ecuaciones eĺıpticas no variacionales. Los resultados
aqúı expuestos han sido publicados en [23, 24, 25].

A.1 Acotaciones de analiticidad para soluciones

de ecuaciones parabólicas

El objetivo principal de esta tesis es obtener acotaciones de analiticidad para
soluciones de ecuaciones parabólicas de la forma

∂tu+ (−1)mLu = 0, en Ω× (0, T ],

u = Du = . . . = Dm−1u = 0, en ∂Ω× (0, T ],

u(0) = u0, en Ω,

(A.1)

con u0 ∈ L2(Ω) y L un operador definido por

L =
∑
|α|≤2m

aα(x, t)∂αx .

El operador L es parabólico en el sentido de que existe % > 0 tal que∑
|β|=2m

aβ(x, t)ξβ ≥ %|ξ|2m, para ξ ∈ Rn, (x, t) ∈ Ω× [0, T ]. (A.2)
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Appendix A. Resumen

Con respecto a la regularidad de los coeficientes de L, como queremeos tratar con
problemas con valores iniciales en L2(Ω), asumimos que los coeficientes de L verifican
aα ∈ C |α|−m,0(Ω× [0, T ]), cuando |α| > m; puesto que en este caso podemos escribir∑

|α|≤2m

aα(x, t)∂αx =
∑

|α|,|β|≤m

∂αx
(
Aαβ(x, t)∂βx

)
, (A.3)

con ∑
|α|=|β|=m

Aαβ(x, t)ξαξβ ≥ %|ξ|2m, para ξ ∈ Rn, (x, t) ∈ Ω× [0, T ],

∑
|α|,|β|≤m

‖Aαβ‖L∞(Ω×[0,T ]) ≤ %−1,

para algún % > 0.

De esta forma se puede asegurar la existencia de soluciones débiles en la clase
C([0, T ];L2(Ω)) ∩ L2((0, T );Hm

0 (Ω)) (ver Theorem 2.1) para el problema (A.1) y
con dato inicial u0 en L2(Ω). Además, la hipótesis principal que asumimos sobre los
coeficientes es la analiticidad; lo que significa que para algún % > 0, las derivadas
de los coeficientes satisfacen estimaciones de la siguiente forma:

|∂γx∂
p
t aα(x, t)| ≤ %−1−|γ|−p|γ|!p!, en Ω ∩BR(x0)× [0, 1], con R > 0, (A.4)

|∂pt aα(x, t)| ≤ %−1−pp!, en Ω× [0, 1], (A.5)

para cualquier α ∈ Nn, p ∈ N y cuando x0 es un punto de Ω.

Supondremos también que la frontera del dominio Ω es anaĺıtica. Para describir
el carácter anaĺıtico de un trozo de la frontera BR(q0) ∩ ∂Ω con q0 en ∂Ω y R > 0,
asumimos que para cada q en BR(q0) ∩ ∂Ω podemos encontrar, después de una
traslación y una rotación, un nuevo sistema de coordenadas (en el cual q = 0) y una
función anaĺıtica

ϕ : B′% = {x′ ∈ Rn−1, |x′| < %} ⊂ Rn−1 → R

verificando ϕ(0) = 0 y

|∂αx′ϕ(x′)| ≤ |α|! %−|α|−1 , cuando x′ ∈ B′%, α ∈ Nn−1, (A.6)

B% ∩ Ω = B% ∩ {(x′, xn) : x′ ∈ B′%, xn > ϕ(x′)},
B% ∩ ∂Ω = B% ∩ {(x′, xn) : x′ ∈ B′%, xn = ϕ(x′)}.

Diremos que Ω es un dominio anaĺıtico si para cada q0 ∈ ∂Ω existe R > 0 tal que
BR(q0) ∩ ∂Ω puede describirse de esta forma.
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A.1. Acotaciones de analiticidad para soluciones de ecuaciones parabólicas

Bajo estas condiciones, las mejores acotaciones cuantitativas de analiticidad para
soluciones de (A.1) que hemos encontrado en la literatura [33, 34, 35, 85, 49, 51, 83,
84] son las siguientes:

Existe 0 < ρ ≤ 1, ρ = ρ(%,m, n, ∂Ω) tal que para (x, t) en Ω × (0, 1], α ∈ Nn y
p ∈ N,

|∂αx∂
p
t u(x, t)| ≤ ρ−1− |α|

2m
−p (|α|+ p)! t−

|α|
2m
−p− n

4m‖u0‖L2(Ω), in Ω× (0, 1), (A.7)

donde |α| = α1 + · · ·+ αn.

La acotación (A.7) da una cota inferior comparable a t
1

2m para el radio de con-
vergencia de la serie de Taylor en las variables espaciales de una solución de (A.1).
Esta cota inferior tiende a 0 cuando t se acerca a 0; sin embargo, la velocidad in-
finita de propagación propia de las ecuaciones parabólicas hace que sea razonable
esperar que el radio de convergencia en las variables espaciales sea mayor que una
cierta constante positiva que no depende del tiempo. En el Caṕıtulo 2 probamos el
siguiente resultado (ver Theorem 2.2).

Teorema A.1. Sea x0 un punto de Ω y 0 < R ≤ 1. Supongamos que L satisface
(A.2), (A.4), (A.5) y ∂Ω ∩ BR(x0) es anaĺıtico (si no es vaćıo). Entonces, cuando
u es una solución de (A.1) existe ρ = ρ(%,m, n), 0 < ρ ≤ 1, tal que se tiene la
siguiente desigualdad

|∂αx∂
p
t u(x, t)| ≤ e1/ρt1/(2m−1)

ρ−1−|α|−pR−|α|t−p (|α|+ p)! ‖u0‖L2(Ω), (A.8)

para cualquier α ∈ Nn, p ∈ N y (x, t) ∈ Ω ∩BR/2(x0)× (0, 1].

La principal novedad de la acotación (A.8) es que provee una cota inferior in-
dependiente del tiempo para el radio de convergencia de la serie de Taylor en las
variables espaciales de las soluciones de (A.1).

En la Sección 2.1 probamos la estimación (A.8) para soluciones del problema
parabólico asociado a L cuando L es un operador de orden 2 —que no es necesari-
amente simétrico— y los coeficientes de L no dependen de la variable temporal, o
cuando L es un operador de orden 2m, m ≥ 1, con coeficientes constantes; para ello
cuantificamos todos los pasos en el razonamiento que Landis y Oleinik desarrollaron
en [53] para probar propiedades de continuación única para ecuaciones parabólicas
a partir de los resultados análogos para ecuaciones eĺıpticas. Esta demostración ha
sido publicada en el trabajo [24], donde además damos aplicaciones a la Teoŕıa de
Control de ecuaciones parabólicas. En [4, Lemma 6] se emplea un razonamiento
similar para probar (A.8) cuando u es una solución de la ecuación del calor; sin em-
bargo, en la demostración de [4, Lemma 6] se utilizan estimaciones gaussianas para
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Appendix A. Resumen

la función de Green, mientras que en las demostraciones que se dan en la Sección
2.1 no son necesarias las estimaciones puntuales para la función de Green.

En la Sección 2.2 probamos (A.8) bajo las condiciones más generales que in-
dicamos en el Teorema A.1. Debido a que el método de Landis y Oleinik [53] está
basado en una descomposición de la solución en términos de las autofunciones del
operador eĺıptico que genera la evolución parabólica, el método no sirve para estudiar
la analiticidad de soluciones de ecuaciones parabólicas cuyos coeficientes dependen
del tiempo. En este caso, para demostrar (A.8), modificamos el método que se em-
plea en [35, Ch. 3] para deducir (A.7). Con este objetivo primero demostramos
desigualdades para las normas L2 (con ciertos pesos) de las derivadas sucesivas de
las soluciones de (A.1).

Por ejemplo, bajo las condiciones del Teorema A.1, en la Sección 2.2 probamos
que si u es solución de (A.1), entonces existen constantes M , ρ, 0 < ρ ≤ 1, que
dependen de n,m y % y tales que para cualquier multi-́ındice γ ∈ Nn, 0 ≤ r ≤ R ≤ 1
y θ ∈ (0, 1), tenemos

‖e−θ/t1/(2m−1)

∂γxu‖L2(Br(x0)×(0,1)) ≤M
[
ρθ

1
2m (R− r)

]−|γ|
|γ|!‖u‖L2(BR(x0)×(0,1)) (A.9)

cuando BR(x0) ⊆ Ω.

Para probar (A.9) necesitamos la siguiente acotación de Schauder de tipo L2

[16]: existe una constante K = K(Ω, %,m, n) > 0 tal que

‖∂tv‖L2(Ω×(0,1)) +
∑
|α|≤2m

‖∂αx v‖L2(Ω×(0,1)) ≤ K
[
‖F‖L2(Ω×(0,1)) + ‖v‖L2(Ω×(0,1))

]
,

(A.10)
cuando v satisface

∂tv + (−1)mLv = F, in Ω× (0, 1],

v = Dv = . . . = Dm−1v = 0, in ∂Ω× (0, 1],

v(0) = 0, in Ω.

Una vez que conocemos (A.10), como sabemos que los coeficientes de L son C∞(Ω×
(0, 1)) podemos derivar en la ecuación que satisface u y obtener que ∂γxu es solución
de

∂t(∂
γ
xu) + (−1)mL(∂γxu) = Fγ, in BR(x0)× (0, 1],

donde

Fγ = (−1)m+1
∑
|α|≤2m

∑
β<γ

(
γ

β

)
∂γ−βx aα∂

β
x∂

α
xu,

que contiene derivadas de u de orden estrictamente inferior a |γ| + 2m, luego

poniendo v = e−θ/t
1/(2m−1)

∂γxu en (A.10), podemos controlar la norma L2 —con
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el peso e−θ/t
1/(2m−1)

— de las derivadas de u de orden |γ| + 2m por derivadas de or-
den estrictamente inferior; ésto nos permite obtener (A.9) mediante un proceso de
inducción sobre |γ|.

En el proceso de inducción que permite probar (A.9), el motivo fundamental por

qu hay que elegir un peso de la forma e−θ/t
1/(2m−1)

es que la siguiente desigualdad es
cierta:

t−αe−θt
−β ≤ e−

α
β θ−

α
β

(
α

β

)α
β

cuando α, β, θ y t > 0.

Como consecuencia de (A.9) obtenemos que, para las mismas constantes M y ρ
que en (A.9), la siguiente desigualdad es cierta

‖∂γxu‖L2(Br(x0)×(t,2t)) ≤Meθ/t
1/(2m−1)

[
ρθ

1
2m (R− r)

]−|γ|
|γ|!‖u‖L2(BR(x0)×(0,1)),

para todo γ ∈ Nn, 0 ≤ r ≤ R ≤ 1, θ ∈ (0, 1) y cuando 0 < t ≤ 1
2
. Finalmente, la

siguiente desigualdad de Sobolev [32, Ch. 6, (6.5)]:

‖ϕ‖L∞(Rn+1) ≤ Cn
∑

|α|+p≤
[
n+1

2

]
+1

‖∂αx∂
p
t ϕ‖L2(Rn+1) para toda ϕ ∈ C∞0 (Rn+1),

nos permite deducir la estimación puntual (A.8) para el caso p = 0 cuando BR(x0) ⊆
Ω.

Para obtener la acotación (A.8) en toda su generalidad hay que proceder en varios
pasos: primero hay que obtener acotaciones de analiticidad para soluciones globales
—es decir, soluciones que satisfacen condiciones de contorno nulas de tipo Dirichlet
en todo el borde del dominio—; después hay que obtener acotaciones de analiticidad
en las variables temporal y tangenciales al dominio y finalmente hay que emplear
un proceso de inducción algo más complicado para obtener la acotación (A.8) en la
variable temporal y en todas las variables espaciales. La demostración del Teorema
A.1 que hay en la Sección 2.2 ha sido publicada en [25].

A.2 Aplicaciones en Teoŕıa de Control

La motivación para obtener las estimaciones de analiticidad en el Teorema A.1
está en la aplicación para la controlabilidad a cero desde conjuntos medibles de solu-
ciones de ecuaciones parabólicas. Los métodos empleados en [3, 4, 92, 75, 76, 90]
ponen de manifiesto que las acotaciones de analiticidad del tipo (A.8) permiten
probar desigualdades de observabilidad desde conjuntos medibles. Usando métodos
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estándar basados en dualidad y el Teorema de Hahn-Banach, podemos probar re-
sultados de controlabilidad a cero a partir de las desigualdades de observabilidad
mencionadas. En relación con ésto, en el Caṕıtulo 3 probamos desigualdades de ob-
servabilidad para algunos de los problemas cuyas propiedades de analiticidad hemos
estudiado en el Caṕıtulo 2. Uno de los principales resultados en Teoŕıa de Control
que obtenemos en esta tesis, y que es consecuencia de la acotación de analiticidad
(A.8), es el siguiente.

Teorema A.2. Sea 0 < T ≤ 1, Ω un dominio acotado en Rn con frontera anaĺıtica
y sea D ⊂ Ω× (0, T ) un conjunto medible con medida de Lebesgue positiva. Supong-
amos que los coeficientes de L satisfacen (A.4) en Ω × [0, 1]. Entonces existe una
constante N = N(Ω, T,D, %) tal que la desigualdad

‖u(T )‖L2(Ω) ≤ N‖u‖L1(D)

es cierta para cualquier solución u del problema
∂tu+ (−1)mLu = 0, in Ω× [0, T ),

u = Du = . . . = Dm−1u = 0, in ∂Ω× [0, T ),

u(0) = u0, in Ω,

con u0 en L2(Ω). Además, para cada u0 en L2(Ω), existe f en L∞(D) verificando

‖f‖L∞(D) ≤ N‖u0‖L2(Ω),

y tal que la solución de
∂tu+ (−1)mLu = fχD, in Ω× (0, T ],

u = Du = . . . = Dm−1u = 0, in ∂Ω× (0, T ],

u(0) = u0, in Ω,

satisface u(T ) ≡ 0. Más aún, el control f con norma L∞(D) mı́nima es único y
tiene la propiedad bang-bang; es decir, |f(x, t)| es igual a una constante en casi todo
punto (x, t) de D.

Los resultados de observabilidad y controlabilidad del Caṕıtulo 3 se encuentran
publicados en [24, 25].

A.3 Regularidad para ecuaciones eĺıpticas no varia-

cionales

El Caṕıtulo 4 de esta tesis lo dedicamos a estudiar algunos problemas de reg-
ularidad de soluciones de ecuaciones eĺıpticas no variacionales. Supongamos que
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A(x) = (aij(x)) es una matriz real simétrica tal que existe un λ > 0 verificando

λ|ξ|2 ≤ A(x)ξ · ξ ≤ λ−1 |ξ|2 , para todo ξ ∈ Rn, x ∈ Ω,

donde Ω ⊆ Rn es un dominio acotado. Consideraremos soluciones de operadores de
la forma

Lu = tr
(
AD2u

)
=

n∑
i,j=1

aij(x)∂iju, (A.11)

donde los elementos de la matriz A son funciones continuas en Ω. Le recordamos al
lector la siguiente propiedad de regularidad [38, Lemma 9.16]:

Lemma A.1. Sean p, q tales que 1 < p < q <∞ y sea f ∈ Lq(Ω). Si u ∈ W 2,p
loc (Ω)

es solución de Lu = f en Ω, entonces u ∈ W 2,q
loc (Ω).

El anterior resultado no considera el caso p = 1, que no parece haber sido tratado
en la literatura previamente y que es el objeto de estudio del Caṕıtulo 4 en esta tesis.
Remarcamos el hecho de que Lemma A.1 es cierto bajo la mera suposición de que
los coeficientes son continuos en Ω. En cambio, tal como veremos, esta condición
no es suficiente para mejorar la integrabilidad —en el sentido de que pertezcan a
un espacio Lploc(Ω) con p > 1— de las derivadas segundas de las soluciones cuando
asumimos que las derivadas segundas son solamente localmente integrables. Sin
embargo, para este propósito es suficiente suponer que los coeficientes tienen un
módulo de continuidad que satisface una condición de tipo Dini, lo cual es probado
en Theorem 4.2. El tipo de continuidad Dini que asumimos aqúı para la matriz de
coeficientes A tiene la siguiente forma:

|A(x)− A(y)| ≤ θ(|x− y|),

donde θ : [0, 1]→ [0, 1] es una función no decreciente que satisface

ˆ 1

0

θ(t)

t
dt < +∞. (A.12)

Aparte de este resultado positivo, en la Sección 4.1 construimos un contraejemplo
que muestran que nuestro resultado es casi óptimo. También damos un contraejem-
plo en el otro extremo de la escala de espacios Lp: construimos un operador L con
coeficientes continuos B1 pero que no tienen módulo de continuidad Dini en x = 0,
y tal que la solución de Lu = 0 está en W 2,p(B1)∩W 1,p

0 (B1) para todo p ∈ (1,+∞)
pero D2u no pertenece a BMO(B 1

2
). Estos resultados están publicados en [23].

Finalmente, informamos al lector que el resultado Theorem 4.2 del Caṕıtulo 4
ha sido mejorado recientemente: en el trabajo [17] se considera una condición de
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tipo Dini en medias L1 en lugar de la condición de continuidad de tipo Dini (A.12).
En [17] los autores definen

ϕ(r) = sup
x∈B3

 
Br(x)

|A(y)− ABr(x)| dy, ABr(x) =

 
Br(x)

A(y) dy, 0 < r < 1,

y suponen que ˆ 1

0

ϕ(r)

r
dr < +∞. (A.13)

El siguiente ejemplo [17] muestra que la condición (A.13) es menos restrictiva que
(A.12): si definimos

A(x) = I(1 + (− ln |x|)−γ), 0 < γ <
1

2
,

con A(0) = I, siendo I la matriz identidad n × n, entonces A no satisface (A.12),
pero śı satisface (A.13).
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