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This paper discusses the properties of convergence of sequences to limit cycles defined by best proximity points of adjacent subsets
for two kinds of weak contractive cyclic maps defined by composite maps built with decreasing functions with either the so-called
𝑟-weaker Meir-Keeler or (𝑟, 𝑟

0
)-stronger Meir-Keeler functions in generalized metric spaces. Particular results about existence and

uniqueness of fixed points are obtained for the case when the sets of the cyclic disposal have a nonempty intersection. Illustrative
examples are discussed.

1. Introduction

The background literature on best proximity points and
associated convergence properties in cyclic contractions and
proximal contractions in the framework of fixed point theory
is abundant. See, for instance, [1–21] and references therein.
The literature includes related studies on cyclic contractions
and cyclic weak contractions and proximal contractions [1–
14, 18–21] and proximal weak contractions [15–17]. See also
[22–25] for related results. On the other hand, fixed point
theory has a wide amount of applications, for instance, in
the study of stability of dynamic systems and differential
and difference equations. See, for instance, [21, 22, 26]. In
this context, the relevance of cyclic contractions and cyclic
nonexpansive mappings is also of interest when strips of the
solutions of dynamic systems or difference equations have
to lie in different time intervals or due to control actions or
external events in distinct defined sets.

The study of contractions in metric and quasi-metric
spaces and in generalized metric and quasi-metric spaces has
been focused on in a number of papers. See, for instance, [1–
4] and references therein. A group of the obtained results
are based on the existing background literature on Meir-
Keeler contractive-type results. See, for instance, [5, 6]. In

particular, the existence of periodic fixed point theorems
of weak contractions in the setting of generalized quasi-
metric spaces has been studied in [2], while the existence
of fixed points for weak contraction mappings in complete
generalized metric spaces has been investigated in [3]. The
paper has a section of preliminaries where the concepts of
Meir-Keeler functions, weaker Meir-Keeler functions, and
stronger Meir-Keeler functions are generalized “ad hoc” to
be used to define weak generalized contractive mappings
involving subsets of a generalized metric space which do
not intersect in general. In this context, appropriate non-
decreasing functions 𝜑 : [0,∞) → [0,∞), generalized
weaker Meir-Keeler functions 𝜙 : [𝐷,∞) → [𝐷,∞), and
stronger Meir-Keeler functions 𝜓 : [0,∞) → [0, 1) are
used to define the generalized (𝜙 − 𝜑)- and (𝜙 − 𝜓)-weak
𝑝-cyclic contraction mappings defined and studied in this
paper. Section 3 gives and proves a set of main results on (𝜙−

𝜑)-weak 𝑝-cyclic contraction mappings and on generalized
(𝜙 − 𝜓)-weak 𝑝-cyclic contraction mappings. Such results
are related to boundedness and to convergence properties of
generalized distances of sequences of points built through
generalized (𝜙 − 𝜑)-weak and through generalized (𝜙 − 𝜓)-
weak contractive cyclic maps, either in adjacent subsets or in
the same subset, and also on the convergences of sequences
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either to best proximity points or to fixed points in the
case when the subsets of the cyclic disposal intersect. Some
illustrative examples adapted to the stated and proved results
are also discussed.

2. Preliminaries

Let Z and R be the sets of integer numbers and real numbers,
respectively, and define their subsets: Z

0+
= Z
+
∪ {0}, Z

+
=

{𝑧 ∈ Z : 𝑧 > 0}, 𝑝 = {1, 2, . . . , 𝑝}, R
0+

= R
+
∪ {0}, and

R
+
= {𝑧 ∈ R : 𝑧 > 0}.

Definition 1. For some given 𝑟 ∈ R
0+
, amapping𝜙 : [𝑟,∞) →

[𝑟,∞) is said to be a 𝑟-weaker Meir-Keeler function if, for
each real number 𝜂(> 𝑟) ∈ R

+
, there exists a real number

𝛿 = 𝛿(𝜂) ∈ R
+
such that 𝜙𝑛0(𝑡) < 𝜂 for some 𝑛

0
= 𝑛
0
(𝜂) ∈ Z

+
,

∀𝑡 ∈ [𝜂, 𝜂 + 𝛿).

Definition 1 generalizes the two existing definitions below.

Definition 2 (see [1, 2]). A mapping 𝜙 : [0,∞) → [0,∞)

which is a 0-weaker Meir-Keeler function is said to be a
weaker Meir-Keeler function.

Definition 3 (see [1]). A mapping 𝜙 : [0,∞) → [0,∞) which
is a weaker Meir-Keeler function for 𝑛

0
= 1 is said to be a

Meir-Keeler function.

Definition 4. For some given 𝑟, 𝑟
0
(< 1) ∈ R

0+
, a mapping

𝜓 : [𝑟,∞) → [𝑟
0
, 1) is said to be a (𝑟, 𝑟

0
)-stronger Meir-

Keeler function if, for each real number 𝜂 ∈ R
+
, there exist

real numbers 𝛿 = 𝛿(𝜂) ∈ R
+
and 𝛾 = 𝛾(𝜂) ∈ [0, 1) such that

𝜓(𝑡) < 𝛾, ∀𝑡 ∈ [𝜂, 𝜂 + 𝛿).

Definition 4 generalizes the existing definition below.

Definition 5 (see [1, 2]). Amapping𝜑 : [0,∞) → [0, 1)which
is a 0-stronger Meir-Keeler function is said to be a stronger
Meir-Keeler function.

Through the paper, we will use the mappings 𝜙, 𝜑, and 𝜓

which belong to the sets of functions defined below.

Definition 6. For some given 𝑟 ∈ R
0+
, the classΦ

𝑟
is the set of

𝑟-weaker Meir-Keeler functions 𝜙 : [𝑟,∞) → [𝑟,∞) which
satisfy the following:

(𝜙
1
) 𝜙(𝑡) > 𝑟 for 𝑡 > 𝑟 and 𝜙(𝑟) = 𝑟.

(𝜙
2
) {𝜙
𝑛
(𝑡)} is decreasing for all 𝑡 ∈ [𝑟,∞).

(𝜙
3
) For {𝑡

𝑛
} ⊂ [𝑟,∞), one has

(𝜙
31
) lim sup

𝑛→∞
𝜙(𝑡
𝑛
) < 𝜃 if lim

𝑛→∞
𝑡
𝑛
= 𝜃 for any

given real number 𝜃 > 𝑟, and
(𝜙
32
) there exists lim

𝑛→∞
𝜙(𝑡
𝑛
) = 𝑟 if lim

𝑛→∞
𝑡
𝑛
= 𝑟.

Definition 7. Theclass Γ
𝑟
is the set of nondecreasing functions

𝜑 : [0,∞) → [0,∞) which satisfy the following:

(𝜑
1
) 𝜑(𝑡) > 𝑟 for 𝑡 > 𝑟 and 𝜑(𝑡) = 𝑡 for 𝑡 ∈ [0, 𝑟].

(𝜑
2
) 𝜑 is subadditive; that is, for every 𝛼

1
, 𝛼
2
∈ [𝑟,∞),

𝜑(𝛼
1
+ 𝛼
2
) ≤ 𝜑(𝛼

1
) + 𝜑(𝛼

2
).

(𝜑
3
) For all {𝑡

𝑛
} ⊂ [𝑟,∞), lim

𝑛→∞
𝑡
𝑛
= 𝑟 if and only if

lim
𝑛→∞

𝜙(𝑡
𝑛
) = 𝑟.

Definition 8. The class 𝜓 ∈ Ψ
𝑟
(𝑟
0
) is the set of (𝑟, 𝑟

0
)-stronger

Meir-Keeler functions 𝜓 : [𝑟,∞) → [𝑟
0
, 1) for some real

constant 𝑟
0
∈ (0, 1) which satisfy the following:

(𝜓
1
) 𝜓(𝑡) > 𝑟

0
for 𝑡 > 𝑟 and 𝜓(𝑟) = 𝑟

0
.

Definition 9 (see [2, 3]). Let 𝑋 be a nonempty set. A
generalized metric (g.m.) is a mapping 𝑑 : 𝑋×𝑋 → R which
satisfies

(1) 𝑑(𝑥, 𝑦) ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋, and 𝑑(𝑥, 𝑦) = 0 if and only if
𝑥 = 𝑦;

(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), ∀𝑥, 𝑦 ∈ 𝑋;
(3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑦, 𝜔) + 𝑑(𝜔, 𝑧) + 𝑑(𝑧, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋,

∀𝜔, 𝑧( ̸= 𝜔) ∈ 𝑋 − {𝑥, 𝑦}.

Definition 10 (see [2, 3]). Let𝑋 be a nonempty set and let 𝑑 :

𝑋 × 𝑋 → R
0+

be a g.m. on 𝑋. Then, (𝑋, 𝑑) is said to be a
generalized metric space (g.m.s.).

Some basic considerations and properties on a g.m.s.
(𝑋, 𝑑) are now quoted from [2] to be then invoked in the body
of this paper. Let (𝑋, 𝑑) be a g.m.s. Then, {𝑥

𝑛
} ⊂ 𝑋 is said

to be g.m.s. convergent to 𝑥 ∈ 𝑋 if, for each given 𝜀 ∈ R
+
,

∃𝑛
0
= 𝑛
0
(𝜀) ∈ Z

0+
such that 𝑑(𝑥

𝑛
, 𝑥) < 𝜀, ∀𝑛(> 𝑛

0
) ∈ Z
+
, and

this is denoted by lim
𝑛→∞

𝑥
𝑛
= 𝑥 or 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞.

If, for each given 𝜀 ∈ R
+
, ∃𝑛
0

= 𝑛
0
(𝜀) ∈ Z

0+
such that

𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑚

) < 𝜀, ∀𝑛(> 𝑛
0
) ∈ Z

+
, ∀𝑚 ∈ Z

0+
, then {𝑥

𝑛
} is

called a g.m.s. Cauchy sequence in 𝑋. If every g.m.s. Cauchy
sequence in𝑋 is g.m.s. convergent in 𝑋, then (𝑋, 𝑑) is called
a complete g.m.s.. It has been pointed out in [2] that a g.m.s.
Cauchy sequence is not necessarily a Cauchy sequence and
that a g.m.s. convergent sequence is not necessarily either
Cauchy or a convergent sequence.

Example 11 (see [2]). Consider the set 𝑋 = {𝑗𝑡 : 𝑗 ∈ 5} for
some given 𝑡 ∈ R

+
and define 𝑑 : 𝑋 ×𝑋 → R

0+
as follows for

some given 𝛾 ∈ R
+
:

𝑑 (𝑥, 𝑥) = 0, ∀𝑥 ∈ 𝑋

𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) , ∀𝑥, 𝑦 ∈ 𝑋

𝑑 (𝑡, 2𝑡) = 3𝛾;

𝑑 (𝑖𝑡, 3𝑡) = 𝛾, ∀𝑖 ∈ 2

𝑑 (𝑖𝑡, 4𝑡) = 2𝛾, ∀𝑖 ∈ 3;

𝑑 (𝑖𝑡, 5𝑡) = (

3

2

) 𝛾; ∀𝑖 ∈ 4.

(1)

Then, 𝑑 : 𝑋 × 𝑋 → R
0+

is a g.m. and then (𝑋, 𝑑) is a g.m.s..
However, 𝑑 : 𝑋 ×𝑋 → R

0+
is not a metric, and then (𝑋, 𝑑) is

not a g.m.s., since 𝑑(𝑡, 2𝑡) = 3𝛾 > 𝑑(𝑡, 3𝑡) + 𝑑(3𝑡, 2𝑡) = 2𝛾.
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3. Best Proximity Point and Fixed Point
Theorems

We now get some results on (𝜙 − 𝜑)-weak contraction
mappings and some results on related best proximity points.
Given a nonempty abstract set 𝑋 with 𝑝(≥ 2) nonempty
subsets 𝑋

𝑖
, ∀𝑖 ∈ 𝑝, we say that a self-mapping 𝑇 : ⋃

𝑖∈𝑝
𝑋
𝑖
→

⋃
𝑖∈𝑝

𝑋
𝑖
is a 𝑝-cyclic self-mapping if 𝑇(𝑋

𝑖
) ⊆ 𝑋

𝑖+1
, ∀𝑖 ∈ 𝑝,

with the notation convention that 𝑋
𝑖+𝑛𝑝

≡ 𝑋
𝑖
, ∀𝑖 ∈ 𝑝,

∀𝑛 ∈ Z
0+
.

In fact, if we extend the above definition to the case 𝑝 = 1,
we find trivially that 𝑇 : 𝑋 | 𝑋

1
→ 𝑋
1
can be considered as

an 1-cyclic mapping if⌀ ̸= 𝑇(𝑋
1
) ⊆ 𝑋

1
⊆ 𝑋.

Definition 12. Let (𝑋, 𝑑) be a g.m.s., let 𝑋
𝑖
be nonempty

subsets of𝑋, having a common distance in-between adjacent
subsets 𝑑(𝑋

𝑖
, 𝑋
𝑖+1

) = 𝐷, ∀𝑖 ∈ 𝑝, and let 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→

⋃
𝑖∈𝑝

𝑋
𝑖
be a 𝑝-cyclic self-mapping satisfying

𝜑 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜙 (𝜑 (𝑑 (𝑥, 𝑦))) ;

∀ (𝑥, 𝑦) ∈ 𝑋
𝑖
× 𝑋
𝑖+1

, ∀𝑖 ∈ 𝑝

(2)

for some 𝜑 ∈ Γ
𝐷
and some 𝜙 ∈ Φ

𝐷
. Then, 𝑇 is said to be a

generalized (𝜙 − 𝜑)-weak 𝑝-cyclic contraction mapping.

Theorem 13. Let (𝑋, 𝑑) be a g.m.s. and let 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→

⋃
𝑖∈𝑝

𝑋
𝑖
be a generalized (𝜙 − 𝜑)-weak 𝑝-cyclic contraction

mapping for some 𝜙 ∈ Φ
𝐷
and some 𝜑 ∈ Γ

𝐷
. Then, the

following properties hold:
(i)

lim
𝑛→∞

𝜙
𝑛𝑝+𝑗

(𝜑 (𝑑 (𝑥
0
, 𝑥
𝑚𝑝+1

))) = 𝐷;

∀𝑚 ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

lim
𝑚→∞

lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑚𝑝+𝑗

, 𝑥
(𝑚+𝑛)𝑝+𝑗+1

))

= lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

)) = 𝐷;

∀ℓ ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

lim
𝑛,𝑚→∞

𝑑 (𝑥
𝑚𝑝+𝑗

, 𝑥
(𝑚+𝑛)𝑝+𝑗+1

)

= lim
𝑛→∞

𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

) = 𝐷;

∀ℓ ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

(3)

for any sequence {𝑥
𝑛
} constructed from 𝑥

𝑛+1
= 𝑇𝑥
𝑛
, ∀𝑛 ∈ Z

0+

for some given initial point 𝑥
0
∈ ⋃
𝑖∈𝑝

𝑋
𝑖
.

(ii) Any sequence {𝑇𝑥
𝑛
} built from any given initial point

𝑥
0
∈ ⋃
𝑖∈𝑝

𝑋
𝑖
is bounded.

(iii) Assume, in addition, that (𝑋, 𝑑) is a complete g.m.s.
and that 𝑧

𝑖
∈ 𝑋
𝑖
has a best proximity point from 𝑋

𝑖
to 𝑋
𝑖+1

(i.e., 𝑑(𝑧
𝑖
, 𝑋
𝑖+1

) = 𝐷) for some given 𝑖 ∈ 𝑝 and that 𝑋
𝑖+1

is
approximatively compact with respect to𝑋

𝑖
. Then,

{𝑇
𝑛𝑝
𝑥
0
} → 𝑧

𝑖
,

{𝑇
𝑛𝑝
𝑥
1
} → 𝑧

𝑖
,

{𝑇
𝑛𝑝+1

𝑥
0
} → 𝑇𝑧

𝑖
,

{𝑇
𝑛𝑝+

𝑥
1
} → 𝑇𝑧

𝑖
,

lim
𝑛→∞

𝜑 (𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑚+𝑛)𝑝

𝑥
1
))

= lim
𝑛→∞

𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑚+𝑛)𝑝

𝑥
1
) = 𝐷,

lim
𝑛,ℓ→∞

𝜑 (𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑛+ℓ)𝑝

𝑥
1
))

= lim
𝑛,ℓ→∞

𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑛+ℓ)𝑝

𝑥
1
) = 𝐷,

lim
𝑛→∞

𝜑 (𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑚+𝑛)𝑝+1

𝑥
1
))

= lim
𝑛→∞

𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑚+𝑛)𝑝+1

𝑥
1
) = 𝐷,

lim
𝑛,𝑚→∞

𝜑 (𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
𝑚𝑝+1

𝑥
1
))

= lim
𝑛,ℓ→∞

𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
𝑚𝑝+1

𝑥
1
) = 𝐷,

lim
𝑛,𝑚→∞

𝜑 (𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
𝑚𝑝
𝑥
1
)) = lim
𝑛,𝑚→∞

𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
𝑚𝑝
𝑥
1
)

= 0,

(4)

∀𝑥
0
, 𝑥
1
∈ 𝑋
𝑗
, ∀𝑗 ∈ 𝑝, ∀𝑚 ∈ Z

0+
, and for any given 𝜀 ∈

R
+
, and there is 𝑁

1
= 𝑁
1
(𝜀) ∈ Z

+
such that, for any positive

integers 𝑚 > 𝑛 > 𝑁
1
, one has 𝑑(𝑇𝑛𝑝𝑥

0
, 𝑇
𝑚𝑝+1

𝑥
1
) < 𝐷 + 𝜀,

𝑑(𝑇
𝑛𝑝
𝑥
0
, 𝑇
𝑚𝑝
𝑥
1
) < 𝜀, 𝜑(𝑑(𝑇𝑛𝑝𝑥

0
, 𝑇
𝑚𝑝+1

𝑥
1
)) < 𝐷 + 𝜀, and

𝜑(𝑑(𝑇
𝑛𝑝
𝑥
0
, 𝑇
𝑚𝑝
𝑥
1
)) < 𝜀.

Also, all the best proximity points 𝑧
𝑖+1

= 𝑇𝑧
𝑖
= 𝑇
𝑗
𝑧
𝑖+1−𝑗

from𝑋
𝑖
to𝑋
𝑖+1

are each them unique in𝑋
𝑖+1

if one of them 𝑧
𝑗
,

for some 𝑗 ∈ 𝑝, is unique in 𝑋
𝑗
and 𝑋

𝑖
is closed, ∀𝑖 ∈ 𝑝. Also,

each best proximity point is also a fixed point of the respective
composite mapping 𝑇𝑝 : ⋃

𝑗∈𝑝
𝑋
𝑗
| 𝑋
𝑖
→ ⋃
𝑗∈𝑝

𝑋
𝑗
, ∀𝑖 ∈ 𝑝,

and then 𝑝-periodic fixed points of 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
.

Proof. Since 𝑥
0
∈ ⋃
𝑖∈𝑝

𝑋
𝑖
, we can consider equivalently 𝑥

0
to

be an arbitrary point of𝑋
𝑖
for some given arbitrary 𝑖 ∈ 𝑝 and

we can define the sequence {𝑥
𝑛
} inductively by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
,
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∀𝑛 ∈ Z
0+
. Since 𝑇 : ⋃

𝑖∈𝑝
𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
is a (𝜙 − 𝜑)-weak-

cyclic 𝑝 contraction mapping, one gets from (2) by induction
for each 𝑛,𝑚 ∈ Z

0+
that

𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

))

= 𝜑 (𝑑 (𝑇𝑥
𝑛𝑝+𝑗−1

, 𝑇𝑥
(𝑛+𝑚)𝑝+𝑗

))

≤ 𝜙 (𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗−1

, 𝑥
(𝑛+𝑚)𝑝+𝑗

)))

≤ 𝜙 (𝜙 (𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗−2

, 𝑥
(𝑛+𝑚)𝑝+𝑗−1

))))

= 𝜙
2
(𝜑 (𝑑 (𝑥

𝑛𝑝+𝑗−2
, 𝑥
(𝑛+𝑚)𝑝+𝑗−1

))) ⋅ ⋅ ⋅

≤ 𝜙
𝑛𝑝+𝑗

(𝜑 (𝑑 (𝑥
0
, 𝑥
𝑚𝑝+1

))) ;

∀𝑚, 𝑛 ∈ Z
0+
; ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

(5)

where 𝑥
𝑛𝑝
, 𝑥
(𝑛+𝑚)𝑝

∈ 𝑋
𝑖
, 𝑥
𝑚𝑝+1

∈ 𝑋
𝑖+1

, 𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗

∈

𝑋
𝑖+𝑗
, and 𝑥

𝑛𝑝−𝑗
∈ X
𝑖−𝑗+𝑝

, ∀𝑛,𝑚 ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}.

Since 𝜙 ∈ Φ
𝐷
, one has from property (𝜙

2
) that {𝜙𝑛(𝑡)} is

decreasing for all 𝑡 ∈ [𝐷,∞) so that {𝜙𝑛𝑝+𝑗(𝜑(𝑑(𝑥
0
, 𝑥
𝑚𝑝+1

)))}

is decreasing and converges to some limit 𝜂
0𝑗

∈ R
0+
, ∀𝑗 ∈

𝑝 − 1 ∪ {0}. It is now proved that all the limits 𝜂
0𝑗

= 𝐷, ∀𝑗 ∈

𝑝 − 1 ∪ {0}. Since 𝜙 ∈ Φ
𝐷
, it is also a 𝐷-weaker Meir-Keeler

function 𝜙 : [𝐷,∞) → [𝐷,∞) so that, for each real number
𝜂(> 𝐷) ∈ R

+
, there exists a real number 𝛿

𝑗
= 𝛿
𝑗
(𝜂) ∈ R

+
such

that 𝜙𝑛𝑝+𝑗(𝑡) < 𝜂, ∀𝑛(≥ 𝑛
0𝑗
) ∈ Z
+
for some 𝑛

0𝑗
= 𝑛
0𝑗
(𝜂) ∈ Z

+
,

for any given 𝑗 ∈ 𝑝 − 1 ∪ {0}, ∀𝑡 ∈ [𝜂, 𝜂 + 𝛿
𝑗
). Thus, 𝜂 = 𝐷 + 𝜀

for any given arbitrary 𝜂(> 𝐷) ∈ R
+
such that 𝜀 = 𝜂−𝐷(∈ R

+
)

is also arbitrary; one has for each given 𝑘 ∈ 𝑝 − 1 ∪ {0} that if
𝑥
𝑘
= 𝑇𝑥
𝑘−1

= 𝑇
𝑘
𝑥
0
, then

𝐷 ≤ 𝜙
𝑛𝑝+𝑗−𝑘

(𝜑 (𝑑 (𝑥
𝑘
, 𝑥
𝑚𝑝+𝑘+1

))) < 𝐷 + 𝜀;

∀𝑗, 𝑘 ∈ 𝑝 − 1 ∪ {0}

(6)

since 𝜑 : [0,∞) → [0,∞) is nondecreasing,
(𝑑(𝑥
𝑘
, 𝑥
𝑚𝑝+𝑘+1

)) ≥ 𝐷 and 𝜑(𝑡) ≥ 𝐷 for 𝑡 ≥ 𝐷 with
equality standing if and only if 𝑡 = 𝐷. Thus, there exist the 𝑝
identical limits lim

𝑛→∞
𝜙
𝑛𝑝+𝑗

(𝜑(𝑑(𝑥
𝑛𝑝+𝑘

, 𝑥
(𝑛+𝑚)𝑝+𝑘+1

))) = 𝐷,
∀𝑗, 𝑘 ∈ 𝑝 − 1∪{0}. Then, one gets from (5) and the constraint
(𝜙
32
) of the class Φ

𝐷
that

lim
𝑚→∞

lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑚𝑝+𝑗

, 𝑥
(𝑚+𝑛)𝑝+𝑗+1

))

= lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

)) = 𝐷;

∀ℓ ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(7)

This also implies from the constraint (𝜑
3
) of the

class Γ
𝐷

that lim
𝑛,𝑚→∞

𝑑(𝑥
𝑚𝑝+𝑗

, 𝑥
(𝑚+𝑛)𝑝+𝑗+1

) =

lim
𝑛→∞

𝑑(𝑥
𝑛𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

) = 𝐷, ∀ℓ ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}.

Property (i) has been proved.
To prove Property (ii), we use contradiction arguments

by assuming that some sequence {𝑇𝑝𝑛𝑥
0
}, generated by 𝑇 :

⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
from any 𝑥

0
∈ ⋃
𝑖∈𝑝

𝐴
𝑖
, is unbounded.

Thus, for any given real constant𝐴 ∈ R
+
, there is𝑁 = 𝑁(𝐴) ∈

Z
0+

such that, for any 𝑛(∈ Z
0+
) ≥ 𝑁, 𝑑(𝑥

0
, 𝑇
𝑝𝑛
𝑥
0
) > 𝐴.

There is also some 𝐵
0
= 𝐵
0
(𝑁,𝐴)(> 𝐴) ∈ R

+
such that,

for any 𝐵(> 𝐵
0
) ∈ R

+
, there is 𝑁

1
= 𝑁
1
(𝐴)(≥ 𝑁) ∈ Z

0+

such that 𝐵 ≥ 𝑑(𝑥
0
, 𝑇
𝑝𝑛
𝑥
0
) > 𝐴 for all 𝑛 ∈ [𝑁,𝑁

1
] ∩ Z
0+
.

This is trivial since, by defining 𝛼 = 𝑑(𝑥
0
, 𝑇
𝑝𝑁

𝑥
0
) − 𝐴, we

can choose any real constant 𝐵 ≥ 𝐵
0
= 𝐴 + 𝛼 such that,

for some nonempty interval of positive integers [𝑁,𝑁
1
], 𝐵 ≥

𝑑(𝑥
0
, 𝑇
𝑝𝑛
𝑥
0
) > 𝐴 since the inequality holds by construction

for the case𝑁 = 𝑁
1
. So if {𝑇𝑝𝑛𝑥

0
} is unbounded, then there

is some subsequence {𝑇
𝑝𝑛𝑘

𝑥
0
} which diverges so that there

are some strictly increasing sequence {𝑛
𝑘
} ⊆ Z

0+
and some

strictly increasing sequence {𝐴
𝑛𝑘
} ⊆ R

0+
such that 𝐴

𝑛𝑘+1
≥

𝑑(𝑥
0
, 𝑇
𝑝𝑛𝑘

𝑥
0
) > 𝐴

𝑛𝑘
and 𝑑(𝑥

0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
) > 𝐴

𝑛𝑘+1
. Then, there

is a strictly increasing sequence of natural numbers {𝑛
𝑘
} and

a strictly increasing sequence of positive real numbers {𝐴
𝑛𝑘
}

such that

𝑑 (𝑥
0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
) > 𝐴

𝑛𝑘+1
> 𝐴
𝑛𝑘
,

𝐴
𝑛𝑘+1

≥ 𝑑 (𝑥
0
, 𝑇
𝑝𝑛𝑘

𝑥
0
) > 𝐴

𝑛𝑘
;

∀𝑘 ∈ Z
0+

(8)

and then one gets

𝑑 (𝑥
0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
)

𝐴
𝑛𝑘

>

𝑑 (𝑥
0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
)

𝑑 (𝑥
0
, 𝑇
𝑝𝑛𝑘𝑥
0
)

>

𝐴
𝑛𝑘+1

𝑑 (𝑥
0
, 𝑇
𝑝𝑛𝑘𝑥
0
)

≥ 1; ∀𝑘 ∈ Z
0+
.

(9)

On the other hand, one has from the rectangular inequality
of the g.m.s. (𝑋, 𝑑)





𝑑 (𝑥
0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
) − 𝑑 (𝑥

0
, 𝑇
𝑝𝑛𝑘

𝑥
0
)





≤ 𝑑 (𝑇
𝑝𝑛𝑘+2

𝑥
0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
) + 𝑑 (𝑇

𝑝𝑛𝑘+2
𝑥
0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
) ,

(10)

∀𝑘 ∈ Z
0+

which leads to lim
𝑘→∞

|𝑑(𝑥
0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
) −

𝑑(𝑥
0
, 𝑇
𝑝𝑛𝑘

𝑥
0
)| = 0 from Property (i). Thus, either

{𝑑(𝑥
0
, 𝑇
𝑝𝑛𝑘

𝑥
0
)} → 0 or there is some positive real sequence

{𝜆
𝑛𝑘
} → 1 such that 𝑑(𝑥

0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
) = 𝜆

𝑛𝑘
𝑑(𝑥
0
, 𝑇
𝑝𝑛𝑘

𝑥
0
). If

{𝑑(𝑥
0
, 𝑇
𝑝𝑛𝑘

𝑥
0
)} → 0, then {𝑇𝑝𝑛𝑘𝑥

0
} is a bounded subsequence

of {𝑇𝑝𝑛𝑥
0
}, a contradiction to its claimed unboundedness.

Otherwise, if {𝑑(𝑥
0
, 𝑇
𝑝𝑛𝑘

𝑥
0
)} does not converge to zero while

{𝜆
𝑛𝑘
} → 1, with 𝜆

𝑛𝑘
= 𝑑(𝑥

0
, 𝑇
𝑝𝑛𝑘+1

𝑥
0
)/𝑑(𝑥
0
, 𝑇
𝑝𝑛𝑘

𝑥
0
), then

this contradicts (10). As a result, {𝑇𝑝𝑛𝑥
0
} for any 𝑥

0
∈ ⋃
𝑖∈𝑝

𝑋
𝑖

and Property (ii) has been proved.
It remains to prove Property (iii). Since 𝑋

𝑖+1
is approxi-

matively compact with respect to 𝑋
𝑖
if 𝑑(𝑥, 𝑦

𝑛
) → 𝑑(𝑥,𝑋

𝑖+1
)

as 𝑛 → ∞ for some 𝑥 ∈ 𝑋
𝑖
and {𝑦

𝑛
} ⊂ 𝑋

𝑖+1
, then {𝑦

𝑛
}

has a convergent subsequence {𝑦
𝑛𝑘
} ⊆ {𝑦

𝑛
} [6]. Since 𝑧

𝑖
∈

𝑋
𝑖
is a best proximity point from 𝑋

𝑖
to 𝑋
𝑖+1

, 𝑑(𝑧
𝑖
, 𝑇𝑧
𝑖
) =

𝑑(𝑧
𝑖
, 𝑋
𝑖+1

) = 𝐷. If 𝑧
𝑖
∈ 𝑋
𝑖
is the unique best proximity

point from 𝑋
𝑖
to 𝑋
𝑖+1

, then it is a 𝑝-periodic point of
𝑇 : ⋃

𝑗∈𝑝
𝑋
𝑗

→ ⋃
𝑗∈𝑝

𝑋
𝑗
and a fixed point of 𝑇

𝑝
:

⋃
𝑗∈𝑝

| 𝑋
𝑖
→ ⋃

𝑗∈𝑝
𝑋
𝑗
. This follows by reformulating (5)

with initial points 𝑇
𝑝
𝑧
𝑖

∈ 𝑋
𝑖
and 𝑇

𝑝+1
𝑧
𝑖

∈ 𝑋
𝑖+1

with
𝑧
𝑖
∈ 𝑋
𝑖
being the unique best proximity point from 𝑋

𝑖
to
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𝑋
𝑖+1

. One concludes from the properties of the classes Φ
𝐷

and Γ
𝐷
that 𝑑(𝑇𝑛𝑝𝑧

𝑖
, 𝑇
𝑛𝑝+1

𝑧
𝑖
) → 𝑑(𝑇

𝑝
𝑧
𝑖
, 𝑋
𝑖+1

) = 𝐷 and
𝑑(𝑇
𝑛𝑝
𝑧
𝑖
, 𝑇
𝑛𝑝+1

𝑧
𝑖
) → 𝑑(𝑧

𝑖
, 𝑋
𝑖+1

) = 𝐷. Since 𝑋
𝑖
has a unique

best proximity point to 𝑋
𝑖+1

, one concludes that 𝑇𝑝𝑧
𝑖
= 𝑧
𝑖
.

Next, we prove that 𝑑(𝑇𝑝𝑧
𝑖
, 𝑇
𝑝+1

𝑧
𝑖
) = 𝑑(𝑧

𝑖
, 𝑋
𝑖+1

) = 𝐷.
Assume that this property is not true. Thus, there is some
𝜀 = 𝜀(𝑛) ∈ R

+
for 𝑛 ∈ Z

0+
with 𝜀

0
= lim inf

𝑛→∞
𝜀(𝑛) > 0

such that one gets from (5) and the constraints (𝜙
2
) and (𝜙

32
)

for the classΦ
𝐷
and the constraint (𝜑

3
) for the class Γ

𝐷
that

𝜑 (𝑑 (𝑇
𝑛𝑝
𝑧
𝑖
, 𝑇
𝑛𝑝+1

𝑧
𝑖
))

≤ 𝜙
(𝑛−1)𝑝

(𝜑 (𝑑 (𝑇
𝑝
𝑧
𝑖
, 𝑇
𝑝+1

𝑧
𝑖
))) = 𝐷 + 𝜀 (𝑛)

≤ 𝜙
𝑛𝑝
(𝜑 (𝑑 (𝑧

𝑖
, 𝑇𝑧
𝑖
)))

(11)

which leads by taking limits as 𝑛 → ∞ to the contradiction
𝐷 + 𝜀

0
≤ 𝐷. Then, 𝑑(𝑇𝑛𝑝𝑧

𝑖
, 𝑇
𝑛𝑝+1

𝑧
𝑖
) = 𝑑(𝑇

𝑝
𝑧
𝑖
, 𝑇
𝑝+1

𝑧
𝑖
) = 𝐷,

∀𝑛 ∈ Z
0+
. We now use again (5) with 𝑥

0
= 𝑧
𝑖
= 𝑇
𝑝
𝑧
𝑖
=

𝑇
𝑛𝑝
𝑧
𝑖
∈ 𝑋
𝑖
, ∀𝑛 ∈ Z

0+
and an arbitrary 𝑥

1
∈ 𝑋
𝑖+1

to yield

𝜑 (𝑑 (𝑧
𝑖
, 𝑇
𝑛𝑝+1

𝑥
1
)) ≤ 𝜙 (𝜑 (𝑑 (𝑧

𝑖
, 𝑇
𝑛𝑝
𝑥
1
)))

= 𝜙
𝑝
(𝜑 (𝑑 (𝑧

𝑖
, 𝑇
(𝑛−1)𝑝

𝑥
1
))) ⋅ ⋅ ⋅

≤ 𝜙
𝑛𝑝
(𝜑 (𝑑 (𝑧

𝑖
, 𝑥
1
))) ;

∀𝑚, 𝑛 ∈ Z
0+

(12)

and one concludes that 𝜙
𝑛𝑝
(𝜑(𝑑(𝑧

𝑖
, 𝑥
1
))) → 𝐷,

lim sup
𝑛→∞

𝜑(𝑑(𝑧
𝑖
, 𝑇
𝑛𝑝+1

𝑥
1
)) ≤ 𝐷, and 𝐷 ≤

𝜑(𝑑(𝑧
𝑖
, 𝑇
𝑛𝑝+1

𝑥
1
)) ≤ lim sup

𝑛→∞
𝜑(𝑑(𝑧

𝑖
, 𝑇
𝑛𝑝+1

𝑥
1
)) ≤ 𝐷 since

𝑑(𝑧
𝑖
, 𝑇
𝑛𝑝+1

𝑥
1
) ≥ 𝐷, ∀𝑛 ∈ Z

0+
, and then 𝜑(𝑑(𝑧

𝑖
, 𝑇
𝑛𝑝+1

𝑥
1
)) →

𝐷 as 𝑛 → ∞ and 𝑑(𝑧
𝑖
, 𝑇
𝑛𝑝+1

𝑥
1
) → 𝑑(𝑧

𝑖
, 𝑋
𝑖+1

) = 𝐷 as 𝑛 → ∞

since 𝜙 ∈ Φ
𝐷
and 𝜑 ∈ Γ

𝐷
. Since 𝑋

𝑖+1
is approximatively

compactwith respect to𝑋
𝑖
, there is a convergent subsequence

{𝑇
𝑛𝑘𝑝+1

𝑥
1
}(→ 𝑧

𝑖+1
) ⊆ {𝑇

𝑛𝑝+1
𝑥
1
} ⊂ 𝑋

𝑖+1
for the arbitrary

given 𝑖 ∈ 𝑝.
It is now proved that {𝑇𝑛𝑝+1𝑥

1
} → 𝑧

𝑖+1
with 𝑧

𝑖+1
∈ 𝑋
𝑖+1

for any 𝑥
1

∈ 𝑋
𝑖
. Assume that this is not the case. Then,

there exists a sequence {𝑚
𝑘
} with 𝑚

𝑘
(∈ Z
0+
) > 𝑛

𝑘
≥ 𝑛
0𝑘

and some 𝑛
0𝑘

∈ Z
0+
such that the subsequence {𝑇𝑚𝑘𝑝+1𝑥

1
} ⊆

{𝑇
𝑛𝑝+1

𝑥
1
} ⊂ 𝑋

𝑖+1
does not converge to 𝑧

𝑖+1
. Since 𝑇 is single-

valued, if {𝑇𝑚𝑘𝑝+1𝑥
1
} does not converge to 𝑧

𝑖+1
, then it does

not converge. It cannot have either a convergent subsequence
{𝑇
𝑚𝑘𝑗
𝑝+1

𝑥
1
}(→ �̂�

𝑖+1
̸= 𝑧
𝑖+1

) ⊆ {𝑇
𝑚𝑘𝑝+1

𝑥
1
} ⊆ {𝑇

𝑛𝑝+1
𝑥
1
} ⊂

𝑋
𝑖+1

and since then 𝑧
𝑖
would have two distinct images in𝑋

𝑖+1

which is impossible.
Thus, one gets from (12) that

𝐷 + 𝜀 ≤ 𝜑 (𝑑 (𝑧
𝑖
, 𝑇
𝑚𝑘𝑝+1

𝑥
1
))

≤ 𝜙
𝑛𝑘𝑝

(𝜑 (𝑑 (𝑧
𝑖
, 𝑇
(𝑚𝑘−𝑛𝑘)𝑝+1

𝑥
1
))) ;

∀𝑚, 𝑛 ∈ Z
0+

(13)

for the given 𝑖 ∈ 𝑝 and some subsequences {𝑚
𝑘
}, {𝑛
𝑘
} in

Z
0+

with 𝑚
𝑘
> 𝑛
𝑘
> 𝑁
0
= 𝑁
0
(𝜀); since 𝜙 ∈ Φ

𝐷
is a 𝐷-

weaker Meir-Keeler function which satisfies (𝜙
2
) and (𝜙

32
),

𝜑 ∈ Γ
𝐷
is defined from [0,∞) to [0,∞), nondecreasing, and

satisfies (𝜑
1
) and (𝜑

3
). Thus, one gets from (13) the following

contradiction:

𝐷 + 𝜀 ≤ lim
𝑘→∞

𝜙
𝑛𝑘𝑝

(𝜑 (𝑑 (𝑧
𝑖
, 𝑇
(𝑚𝑘−𝑛𝑘)𝑝

𝑥
1
))) = 𝐷 (14)

so that {𝑇𝑚𝑘𝑝+1𝑥
1
} → 𝑧

𝑖+1
= 𝑇𝑧
𝑖
, irrespective of the initial

point 𝑥
1
∈ 𝑋
𝑖
, and 𝑧

𝑖+1
is unique if 𝑧

𝑖
is unique. Since the

same contradiction arguments can be used for any claimed
nonconvergent subsequence of {𝑇𝑛𝑝+1𝑥

1
}, one concludes that

any such a sequence as well as the whole sequence converges
{𝑇
𝑛𝑝+1

𝑥
1
} → 𝑧

𝑖+1
for the given 𝑖 ∈ 𝑝. The sequence is a

g.m.s. Cauchy sequence since it is convergent and (𝑋, 𝑑) is
a complete g.m.s.. Since 𝑋

𝑖+1
is closed, then 𝑧

𝑖+1
∈ 𝑋
𝑖+1

for
the given 𝑖 ∈ 𝑝 and it is unique if 𝑧

𝑖
is unique. Thus, the set

of best proximity points {𝑧
𝑖
∈ 𝑋
𝑖
: 𝑖 ∈ 𝑝} is unique if any of

them is unique.
It is now proved that lim

𝑛,𝑚→∞
𝜑(𝑑(𝑇

𝑛𝑝
𝑥
0
, 𝑇
𝑚𝑝
𝑥
1
)) = 𝐷,

∀𝑥
0
∈ 𝑋
𝑖
, ∀𝑥
1
∈ 𝑋
𝑖+1

, and ∀𝑖 ∈ 𝑝. Proceed by contradiction
by assuming that there is 𝜀 ∈ R

+
and some subsequences

of nonnegative integers {𝑚
𝑘
}, {𝑛
𝑘
}, and {ℓ

𝑘
} such that one

gets for any two distinct initial points 𝑥
0
, 𝑥
1
∈ 𝑋
𝑖
from the

subadditivity property (𝜑
2
) of the class Γ

𝐷
and the rectangular

inequality of the generalized metric

𝐷 + 𝜀 ≤ 𝜑 (𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
))

≤ 𝜑 (𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘)𝑝+1

𝑥
0
))

+ 𝜑 (𝑑 (𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘)𝑝+1

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘+1)𝑝+1

𝑥
1
))

+ 𝜑 (𝑑 (𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘+1)𝑝+1

𝑥
1
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
)) .

(15)

Note that 𝜑(𝑑(𝑇𝑛𝑘𝑝𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘)𝑝+1

𝑥
0
)) → 𝐷 as 𝑘 → ∞

from Property (i) and also

{𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
} → 𝑇𝑧

𝑖
,

{𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘)𝑝+1

𝑥
0
} → 𝑇𝑧

𝑖
,

{𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘+1)𝑝+1

𝑥
1
} → 𝑇𝑧

𝑖

as 𝑘 → ∞.

(16)

If the convergence of these subsequences fails, then the
conclusion got from (12) fails and then Property (i) is not
true. For instance, if {𝑇(𝑚𝑘+𝑛𝑘)𝑝+1𝑥

1
} → 𝑇𝑧

𝑖
is false, then

{𝑑(𝑧
𝑖
, 𝑇
(𝑛+𝑚)𝑝+1

𝑥
1
)} → 𝐷 as 𝑛 → ∞ fails. Then,

𝜑 (𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘)𝑝+1

𝑥
0
)) → 𝐷,

𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘)𝑝+1

𝑥
0
) → 𝐷

as 𝑘 → ∞,

𝜑 (𝑑 (𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘)𝑝+1

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘+1)𝑝+1

𝑥
1
)) → 0,

𝑑 (𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘)𝑝+1

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘+1)𝑝+1

𝑥
1
) → 0

(17)
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as 𝑘 → ∞ since 𝑧
𝑖+1

= 𝑇𝑧
𝑖
is the unique best proximity point

in𝑋
𝑖+1

(since 𝑧
𝑖
is the unique best proximity point in𝑋

𝑖
) and

it has been already proved that any sequence in each 𝑋
𝑖
has

to converge to its best proximity point if unique. Also

𝜑 (𝑑 (𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘+1)𝑝+1

𝑥
1
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
)) → 0,

𝑑 (𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘+1)𝑝+1

𝑥
1
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
) as 𝑘 → ∞.

(18)

Thus, the subsequent contradiction is got if
𝜑(𝑑(𝑇

𝑛𝑘𝑝
𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
)) → 𝐷 as 𝑘 → ∞ is not

true for any 𝑥
0
, 𝑥
1
( ̸= 𝑥
0
) ∈ 𝑋
𝑖
:

𝐷 + 𝜀 ≤ lim inf
𝑘→∞

𝜑 (𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
))

≤ lim sup
𝑘→∞

𝜑 (𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
0
))

+ lim
𝑘→∞

𝜑 (𝑑 (𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘)𝑝+1

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘+1)𝑝+1

𝑥
1
))

+ lim
𝑘→∞

𝜑 (𝑑 (𝑇
(𝑚𝑘+𝑛𝑘+ℓ𝑘+1)𝑝+1

𝑥
1
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
))

= lim sup
𝑘→∞

𝜑 (𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
)) = 𝐷.

(19)

Then, one gets

lim
𝑘→∞

𝜑 (𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
))

= lim
𝑘→∞

𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑚𝑘+𝑛𝑘)𝑝+1

𝑥
1
) = 𝐷

as 𝑘 → ∞

lim
𝑘→∞

𝜑 (𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑛𝑘+𝑛)𝑝+1

𝑥
1
))

= lim
𝑘→∞

𝑑 (𝑇
𝑛𝑘𝑝

𝑥
0
, 𝑇
(𝑛𝑘+𝑛)𝑝+1

𝑥
1
) = 𝐷,

∀𝑚 ∈ Z
+
as 𝑘 → ∞

(20)

and the convergence properties of all subsequences distances
and points also hold for the whole sequence so that

{𝑇
𝑛𝑝
𝑥
0
} → 𝑧

𝑖
{𝑇
(𝑛+𝑚)𝑝+1

𝑥
1
} → 𝑇𝑧

𝑖
,

{𝑇
(𝑛+𝑚+ℓ)𝑝+1

𝑥
0
} → 𝑇𝑧

𝑖
,

{𝑇
(𝑚+𝑛+ℓ+1)𝑝+1

𝑥
1
} → 𝑇𝑧

𝑖
;

∀𝑚, ℓ ∈ Z
0+

as 𝑛 → ∞,

lim
𝑛,𝑚→∞

𝜑 (𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑚+𝑛)𝑝+1

𝑥
1
))

= lim
𝑛,𝑚→∞

𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑚+𝑛)𝑝+1

𝑥
1
) = 𝐷,

lim
𝑛→∞

𝜑 (𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑚+𝑛)𝑝+1

𝑥
1
))

= lim
𝑛→∞

𝑑 (𝑇
𝑛𝑝
𝑥
0
, 𝑇
(𝑚+𝑛)𝑝+1

𝑥
1
) = 𝐷, ∀𝑚 ∈ Z

+
,

(21)

∀𝑥
0
, 𝑥
1
∈ 𝑋
𝑖
for 𝑖 ∈ 𝑝 such that 𝑋

𝑖
possesses a unique best

proximity point 𝑧
𝑖
∈ 𝑋
𝑖
.The two above second limit identities

follow since the sequences {𝑚
𝑘
} ⊂ Z

0+
and {ℓ

𝑘
} ⊂ Z

0+
may

be replaced by any positive integers without altering the got
final conclusion. Since 𝑇 : ⋃

𝑖∈𝑝
𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
is a (𝜙 − 𝜑)-

weak-cyclic𝑝 contraction single-valuedmapping, then 𝑧
𝑖+𝑗

=

𝑇
𝑗
𝑧
𝑖
∈ 𝑋
𝑖+𝑗

for 1 ≥ 𝑖+𝑗 ≤ 𝑝 are unique best proximity points,
so equivalently 𝑧

𝑖
∈ 𝑋
𝑖
, ∀𝑖 ∈ 𝑝, are all unique so that the

above limit properties can be extended for any sequenceswith
given initial points 𝑥

0
, 𝑥
1
∈ 𝑋
𝑗
, ∀𝑗 ∈ 𝑝. Since {𝑚

𝑘
} ⊂ Z

0+
,

{𝑛
𝑘
} ⊂ Z

0+
, and {ℓ

𝑘
} ⊂ Z

0+
are strictly increasing sequences

which can be chosen independently of each other, the above
conclusion is equivalently enounced as follows: for each given
𝜀 ∈ R
+
, there is some𝑁

1
= 𝑁
1
(𝜀) ∈ Z

0+
such that if 𝑛

𝑘
> 𝑚
𝑘
>

𝑁
1
, then 𝑑(𝑇

𝑛𝑘𝑝
𝑥
0
, 𝑇
𝑚𝑘𝑝+1

𝑥
1
) < 𝐷 + 𝜀.

It is now proved that 𝑑(𝑧
𝑖+1

, 𝑇𝑧
𝑖+1

) = 𝐷. Define 𝑥
𝑛𝑝+1

=

𝑇𝑥
𝑛𝑝
, ∀𝑛 ∈ Z

0+
with {𝑥

𝑝𝑛
} ⊂ 𝑋

𝑖+1
having a convergent

subsequence {𝑥
𝑝𝑛𝑘

} → 𝑧
𝑖+1

as it has been proved above and
pick up any arbitrary initial point 𝑥

0
∈ 𝑋
𝑖
such that 𝑇2𝑥

0
∈

𝑋
𝑖+2

for the given arbitrary 𝑖 ∈ 𝑝. Then, one gets by using the
rectangular inequality of the g.m.s. (𝑋, 𝑑) that

𝐷 ≤ 𝑑 (𝑇𝑧
𝑖+1

, 𝑥
𝑝𝑛𝑘

)

≤ 𝑑 (𝑇𝑧
𝑖+1

, 𝑥
𝑝𝑛𝑘+1

) + 𝑑 (𝑥
𝑝𝑛𝑘+ℓ+1

, 𝑥
𝑝𝑛𝑘+1

)

+ 𝑑 (𝑥
𝑝𝑛𝑘+ℓ+1

, 𝑥
𝑝𝑛𝑘

)

≤ 𝑑 (𝑧
𝑖+1

, 𝑥
𝑝𝑛𝑘

) + 𝑑 (𝑥
𝑝𝑛𝑘+ℓ+1

, 𝑥
𝑝𝑛𝑘+1

)

+ 𝑑 (𝑥
𝑝𝑛𝑘+ℓ+1

, 𝑥
𝑝𝑛𝑘

) ; ∀ℓ ∈ Z
0+
.

(22)

Since lim
𝑘→∞

𝑑(𝑥
𝑝𝑛𝑘+ℓ+1

, 𝑥
𝑝𝑛𝑘+1

) = lim
𝑘→∞

𝑑(𝑥
𝑝𝑛𝑘+ℓ

, 𝑥
𝑝𝑛𝑘

) =

0, it follows directly that

𝐷 = 𝑑 (𝑇𝑧
𝑖+1

, 𝑧
𝑖
) = lim
𝑘→∞

𝑑 (𝑇𝑧
𝑖+1

, 𝑥
𝑝𝑛𝑘

) (23)

and𝑇𝑧
𝑖+1

is unique since 𝑧
𝑖
∈ 𝑋
𝑖
is unique and𝑇 : ⋃

𝑖∈𝑝
𝑋
𝑖
→

⋃
𝑖∈𝑝

𝑋
𝑖
is single-valued with 𝑇𝑧

𝑖+1
∈ 𝑋
𝑖+1

since 𝑋
𝑖+1

is
closed. As a result, since 𝑖 ∈ 𝑝 is arbitrary, all the best
proximity points in-between adjacent subsets are unique if
any of them is unique and satisfy 𝑧

𝑖+𝑗
= 𝑇
𝑗
𝑧
𝑖
for any 𝑖, 𝑗 ∈ 𝑝.

It also turns out that 𝑇𝑝𝑧
𝑖
= 𝑧
𝑖
; then it is a fixed point of the

composite mapping 𝑇𝑝 : ⋃
𝑗∈𝑝

𝑋
𝑗
| 𝑋
𝑖
→ ⋃
𝑗∈𝑝

𝑋
𝑗
, ∀𝑖 ∈ 𝑝,

and then a 𝑝-periodic fixed point of 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
.

Property (iii) has been proved.

Note that the classesΦ
𝐷
andΨ

𝐷
(𝑟
0
) (Definitions 6 and 8)

can be redefined as sets of functions from [0,∞) to [0,∞)

which are identically zero in [0, 𝐷). This generalization is
irrelevant in practice since the domains of the functions of
the classesΦ

𝐷
andΨ

𝐷
(𝑟
0
) used to define the weak contractive

mappings involve distances of points in-between adjacent
subsets of the cyclic disposal, so distances are not smaller than
𝐷. Theorem 13 and also the relevant subsequent results of the
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paper can be also got with those extended definitions since
𝑑(𝑥, 𝑦) ≥ 𝐷, ∀(𝑥, 𝑦) ∈ 𝑋

𝑖
× 𝑋
𝑖+1

, ∀𝑖 ∈ 𝑝, implies that

𝜑 (𝑑 (𝑥, 𝑦)) ≥ 𝐷,

𝜙 (𝜑 (𝑑 (𝑥, 𝑦))) ≥ 𝐷;

∀ (𝑥, 𝑦) ∈ 𝑋
𝑖
× 𝑋
𝑖+1

, ∀𝑖 ∈ 𝑝,

min
(𝑥,𝑦)∈𝑋𝑖×𝑋𝑖+1

𝑑 (𝑥, 𝑦) = 𝐷.

(24)

In the case that the adjacent subsets 𝑋
𝑖
are nonempty,

closed, and intersecting, we can obtain the subsequent result
on the existence of a unique fixed point allocated in their
intersection.

Theorem 14. Let (𝑋, 𝑑) be a complete g.m.s. and let 𝑇 :

⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃

𝑖∈𝑝
𝑋
𝑖
be a generalized (𝜙 − 𝜑)-weak 𝑝-cyclic

contraction mapping such that that the sets 𝑋
𝑖
, ∀𝑖 ∈ 𝑝, are

closed and intersect for some 𝜙 ∈ Φ
0
and 𝜑 ∈ Γ

0
. Then, there is

a unique fixed point 𝑧 ∈ ⋂
𝑖∈𝑝

𝑋
𝑖
.

Proof. FromTheorem 13(i) for 𝐷 = 0, it follows for any 𝑥
0
∈

𝑋
𝑖
and any 𝑖 ∈ 𝑝 that

lim
𝑛,𝑚→∞

𝑑 (𝑥
𝑚𝑝+𝑗

, 𝑥
(𝑚+𝑛)𝑝+𝑗+1

)

= lim
𝑛→∞

𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

) = 0;

∀ℓ ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}

(25)

for any given 𝑥
0
∈ 𝑋
𝑖
and any given 𝑖 ∈ 𝑝. Thus, for any given

𝜀 ∈ R
+
, there is 𝑛

0
= 𝑛
0
(𝜀) ∈ Z

0+
such that 𝑑(𝑥

𝑛𝑝+𝑘
, 𝑥
𝑚𝑝+𝑘

) <

𝜀∀𝑛(≥ 𝑛
0
) ∈ Z
0+
, ∀𝑚(≥ 𝑛 + 1) ∈ Z

0+
, and ∀𝑘 ∈ Z

0+
and {𝑥

𝑛
}

is g.m.s. Cauchy sequence. Assume on the contrary that there
are subsequences {𝑥

𝑝𝑛𝑗+𝑘
} ⊆ {𝑥

𝑝𝑛
} and {𝑥

𝑝𝑚𝑗+𝑘
} ⊆ {𝑥

𝑝𝑚
} such

that 𝑑(𝑥
𝑝𝑛𝑗+𝑘

, 𝑥
𝑝𝑚𝑗+𝑘

) ≥ 𝜀. But this contradicts (25) so that
{𝑥
𝑝𝑛
} is g.m.s. Cauchy sequence for any given initial point

𝑥
0
∈ ⋃
𝑖∈𝑝

𝑋
𝑖
. Since (𝑋, 𝑑) is g.m.s. complete, any {𝑥

𝑝𝑛+𝑘
},

∀𝑘 ∈ Z
0+
, which is g.m.s. Cauchy sequence is convergent to

some 𝑧
𝑖+𝑘

∈ 𝑋
𝑖+𝑘

if 𝑥
0
∈ 𝑋
𝑖
for any given 𝑖 ∈ 𝑝, with 𝑘 ≤ 𝑝−𝑖.

It suffices to notice that 𝑋
𝑖+𝑘

= 𝑋
𝑛𝑖+𝑘

= 𝑋
𝑛𝑖+𝑘−𝑚𝑝

, ∀𝑖 ∈ 𝑝,
∀𝑘 ∈ 𝑝 − 1 ∪ {0}, and ∀𝑛,𝑚 ∈ Z

+
with 𝑚 satisfying the

constraint (𝑛𝑖 + 𝑘 − 𝑝)/𝑝 ≤ 𝑚 ≤ (𝑛𝑖 + 𝑘 − 1)/𝑝 (equivalently,
𝑝 ≥ 𝑛𝑖 + 𝑘 − 𝑚𝑝 ≥ 1). Since𝑋

𝑖
is closed, ∀𝑖 ∈ 𝑝⋂

𝑖∈𝑝
𝑋
𝑖

̸= ⌀,
{𝑥
𝑝𝑛+𝑘

}(⊆ ⋂
𝑖∈𝑝

𝑋
𝑖
) → 𝑧

𝑖+𝑘
, ∀𝑖 ∈ 𝑝, ∀𝑘 ∈ 𝑝 − 1 ∪ {0}, and it

follows that 𝑧
𝑗
∈ ⋂
𝑖∈𝑝

𝑋
𝑖
, ∀𝑗 ∈ 𝑝. Also 𝑧

𝑗
is a fixed point of

𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
, ∀𝑗 ∈ 𝑝. Otherwise, we would get the

contradiction 0 ← {𝑑(𝑥
𝑝𝑛+𝑗

, 𝑇𝑥
𝑝𝑛+𝑗

)} → 𝑑(𝑧
𝑖+𝑗
, 𝑇𝑧
𝑖+𝑗
) > 0.

Since 𝑧
𝑖
= 𝑇
𝑘+1

𝑧
𝑖
= 𝑇(𝑇

𝑘
𝑧
𝑖
), ∀𝑖 ∈ 𝑝, ∀𝑘 ∈ Z

0+
, and 𝑇 :

⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
is single-valued, then 𝑧

𝑗
= 𝑧 ∈ ⋂

𝑖∈𝑝
𝑋
𝑖
,

∀𝑗 ∈ 𝑝, for the given 𝑥
0
∈ 𝑋
𝑖
and 𝑖 ∈ 𝑝.

It remains to prove that the fixed point 𝑧 to which the
sequences converge is independent on the initial point 𝑥

0
∈

⋃
𝑖∈𝑝

𝑋
𝑖
so that it is unique. Assume that 𝑧 = 𝑇𝑧, �̂� = 𝑇�̂�( ̸=

𝑧) ∈ ⋂
𝑖∈𝑝

𝑋
𝑖
. We consider them to be initial conditions of

two distinct sequences in some pair of adjacent subsets 𝑋
𝑖

and 𝑋
𝑖+1

for some 𝑖 ∈ 𝑝 so as to use the generalized (𝜙 − 𝜑)-
weak contractive condition (2), and one gets

𝜑 (𝑑 (𝑇𝑧
𝑛𝑝+𝑗

, 𝑇�̂�
(𝑛+𝑚)𝑝+𝑗+1

))

≤ 𝜙
𝑛𝑝+𝑗

(𝜑 (𝑑 (𝑥
0
, 𝑥
𝑚𝑝+1

))) ;

∀𝑚, 𝑛 ∈ Z
0+
; ∀𝑗 ∈ 𝑝 − 1 ∪ {0}

(26)

which leads to

lim
𝑛→∞

𝜙
𝑛𝑝+𝑗

(𝜑 (𝑑 (𝑇𝑧
𝑛𝑝+𝑗

, 𝑇�̂�
(𝑛+𝑚)𝑝+𝑗+1

)))

= lim
𝑛→∞

𝜑 (𝑑 (𝑇𝑧
𝑛𝑝+𝑗

, 𝑇�̂�
(𝑛+𝑚)𝑝+𝑗+1

)) = 𝑑 (𝑧, �̂�)

= lim
𝑛→∞

(𝑑 (𝑇𝑧
𝑛𝑝+𝑗

, 𝑇�̂�
(𝑛+𝑚)𝑝+𝑗+1

)) = 0;

∀𝑗,𝑚 ∈ 𝑝 − 1 ∪ {0}

(27)

which contradicts 𝑧 ̸= �̂�.

Note thatTheorem 14 does not require the sets𝑋
𝑖
, ∀𝑖 ∈ 𝑝,

to be convex sets so as to prove the uniqueness of the fixed
point. Simply, the weak contractive condition (2) is used by
considering that two claimed distinct fixed points which are
in the nonempty intersection of 𝑋

𝑖
, ∀𝑖 ∈ 𝑝, belong in any

case to two adjacent subsets 𝑋
𝑖
, while the weak contractive

condition guarantees that they are identical. We can extend
easily Definition 12 and Theorem 13 to the case when the
distances in-between adjacent subsets are distinct as follows.
The existence and uniqueness of fixed points for generalized
(𝜙 − 𝜑)-weak (noncyclic) contraction mappings of the type
(2) on a g.m.s. (𝑋, 𝑑) have been proved in [3].

Sufficient conditions for the uniqueness of uniqueness of
the best proximity points in each of the subsets 𝑋

𝑖
⊆ 𝑋, ∀𝑖 ∈

𝑝, are discussed in the subsequent result which is related to
the consideration of a complex structure on the metric space.

Theorem 15. Let (𝑋, 𝑑) be a complete g.m.s. admitting mid-
points which has 𝑝 nonempty closed subsets 𝑋

𝑖
⊆ 𝑋, with

𝑑(𝑋
𝑗
, 𝑋
𝑗+1

) = 𝐷, ∀𝑗 ∈ 𝑝, where 𝑋 is an abstract set, with one
of the subsets 𝑋

𝑖
, for some 𝑖 ∈ 𝑝, being strictly convex. Assume

that there is some strictly increasing function 𝛿 : (0, 1] → [0, 2]

such that𝑋 has the following uniform convexity property for all
𝑥, 𝑦 ∈ 𝑋

𝑖
, 𝑝 ∈ 𝑋, 𝑅 ∈ R

+
, and 𝑟 ∈ [0, 2𝑅]:

([max (𝑑 (𝑥, 𝑝) , 𝑑 (𝑦, 𝑝)) ≤ 𝑅] ∧ [𝑑 (𝑥, 𝑦) ≥ 𝑟]) ⇒

(𝑑(

𝑥 + 𝑦

2

, 𝑝) ≤ (1 − 𝛿 (

𝑟

𝑅

))𝑅) .

(28)

Let 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
be a generalized (𝜙 − 𝜑)-weak 𝑝-

cyclic contraction mapping for some 𝜙 ∈ Φ
0
and some 𝜑 ∈ Γ

0
.

Then, 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃

𝑖∈𝑝
𝑋
𝑖
has a unique best proximity

point 𝑧
𝑗
∈ 𝑋
𝑗
, ∀𝑗 ∈ 𝑝, which is also a 𝑝-periodic point of

𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃

𝑖∈𝑝
𝑋
𝑖
and a fixed point of the composite

mapping 𝑇𝑝 : ⋃
𝑗∈𝑝

𝑋
𝑗
| 𝑋
𝑘
→ ⋃
𝑗∈𝑝

𝑋
𝑗
, ∀𝑘 ∈ 𝑝.

If ⋂
𝑖∈𝑝

𝑋
𝑖

̸= ⌀, then 𝑧
𝑘
= 𝑧 ∈ ⋂

𝑖∈𝑝
𝑋
𝑖
, ∀𝑘 ∈ 𝑝, is the

unique fixed point of 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
.
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Proof. Assume that 𝑋
𝑖
for some 𝑖 ∈ 𝑝 is a strictly convex set.

Since 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
is a generalized (𝜙 − 𝜑)-weak 𝑝-

cyclic contraction mapping, it follows from Theorem 13 that
𝑑(𝑇
𝑝𝑛+𝑗

𝑥, 𝑇
𝑝𝑛+𝑗+1

𝑥) → 𝐷 as 𝑛 → ∞, ∀𝑗 ∈ 𝑝, for any given
𝑥 ∈ ⋃

𝑗∈𝑝
𝑋
𝑗
. Note that there is some integer 𝑗

𝑖
= 𝑗(𝑖, 𝑥

0
) ∈

𝑝 − 1 ∪ {0} such that 𝑥 = 𝑥(𝑥
0
) = 𝑇

𝑗𝑖
𝑥
0
∈ 𝑋
𝑖
for any given

𝑥
0
∈ ⋃
𝑗∈𝑝

𝑋
𝑗
(i.e., 𝑥 = 𝑥(𝑥

0
) belongs to the strictly convex

subset 𝑋
𝑖
⊂ 𝑋) for the given initial point 𝑥

0
∈ ⋃
𝑗∈𝑝

𝑋
𝑗
and

𝑑(𝑇
𝑝𝑛
𝑥, 𝑇
𝑝𝑛+1

𝑥) = 𝑑(𝑇
𝑝𝑛+𝑗𝑖

𝑥
0
, 𝑇
𝑝𝑛+𝑗𝑖+1

𝑥
0
) → 𝐷 with 𝑥 ∈ 𝑋

𝑖
,

{𝑇
𝑝𝑛
𝑥} ⊂ 𝑋

𝑖
, {𝑇𝑝𝑛+1𝑥} ⊂ 𝑋

𝑖+1
, and some 𝑥 = 𝑥(𝑥

0
) for any

given 𝑥
0
∈ ⋃
𝑗∈𝑝

𝑋
𝑗
. We now take initial conditions 𝑥 ∈ 𝑋

𝑖

for sequences built 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
with 𝑥 = 𝑥(𝑥

0
) for

any given 𝑥
0
∈ ⋃
𝑗∈𝑝

𝑋
𝑗
such that 𝑥 = 𝑥(𝑥

0
) = 𝑇

𝑗𝑖
𝑥
0
∈ 𝑋
𝑖

and {𝑇
𝑝𝑛+𝑗𝑖

𝑥} ⊂ 𝑋
𝑖
for some 𝑗

𝑖
∈ 𝑝 − 1 ∪ {0}. Then, it follows

that

𝑑 (𝑇
𝑝𝑛+𝑗

𝑥, 𝑇
𝑝𝑛+𝑗+1

𝑥) → 𝐷 as 𝑛 → ∞,

𝑑 (𝑇
(𝑝+1)𝑛+𝑗

𝑥, 𝑇
𝑝𝑛+𝑗+1

𝑥) → 𝐷 as 𝑛 → ∞

(29)

with {𝑇
𝑝𝑛+𝑗

𝑥} ⊂ 𝑋
𝑖+𝑗
, 𝑇𝑗𝑥 ∈ 𝑋

𝑖+𝑗
, {𝑇𝑝𝑛+𝑗+1𝑥} ⊂ 𝑋

𝑖+𝑗
, and

𝑇
𝑗+1

𝑥 ∈ 𝑋
𝑖+𝑗
. Then, for every given 𝜀 ∈ R

+
, there exists an

integer𝑁
0
= 𝑁
0
(𝜀, 𝑥) such that 𝑑(𝑇𝑝𝑛+𝑗𝑥, 𝑇𝑝𝑛+𝑗+1𝑥) ≤ 𝐷 + 𝜀,

∀𝑛(≥ 𝑁
0
) ∈ Z
0+
.

One now firstly proves that 𝑑(𝑇
(𝑛+𝑚)𝑝+𝑗

𝑥, 𝑇
𝑝𝑛+𝑗

𝑧) →

0 as 𝑛 → ∞, ∀𝑚 ∈ Z
0+
, ∀𝑥, 𝑧 ∈ 𝑋

𝑖
; equivalently,

𝑑(𝑇
𝑝𝑛+𝑗

𝑥, 𝑇
𝑝𝑚+𝑗

𝑧) → 0 as 𝑛,𝑚 → ∞, so that, for every
𝜀 ∈ R

+
, there is 𝑁

1
= 𝑁
1
(𝜀, 𝑥, 𝑧) such that, for all integer

numbers 𝑚 > 𝑛 ≥ 𝑁
1
, 𝑑(𝑇𝑝𝑛+𝑗𝑥, 𝑇𝑝𝑚+𝑗𝑧) ≤ 𝜀, ∀𝑥, 𝑧 ∈

𝑋
𝑖
. Assume that the property 𝑑(𝑇

𝑝𝑛+𝑗
𝑥, 𝑇
𝑝𝑚+𝑗

𝑧) → 0 as
𝑛,𝑚 → ∞, ∀𝑥, 𝑦 ∈ 𝑋

𝑖
, does not hold. Thus, there exists

some 𝜀
0

∈ R
+
such that, for each 𝑘 ∈ Z

0+
, there exist

integers 𝑚
𝑘
> 𝑛
𝑘
≥ 𝑘 for which 𝑑(𝑇

𝑝𝑛𝑘+𝑗
𝑥, 𝑇
𝑝𝑚𝑘+𝑗

𝑧) ≥ 𝜀
0
.

Choose 𝛾 ∈ (0, 1) such that 𝜀
0
/𝛾 > 𝐷 and choose 𝜀 such

that 0 < 𝜀 < min(𝜀
0
/𝛾 − 𝐷, 𝛿(𝛾)𝐷/(1 − 𝛿(𝛾))). For such a

chosen arbitrary constant 𝜀 ∈ R
+
, there exists𝑁

0
= 𝑁
0
(𝜀, 𝑥) ∈

Z
0+

such that for all integer numbers 𝑚
𝑘

> 𝑛
𝑘

≥ 𝑁
0
,

𝑑(𝑇
𝑝𝑛𝑘+𝑗

𝑥, 𝑇
𝑝𝑚𝑘+𝑗+1

𝑥) ≤ 𝐷 + 𝜀 for all 𝑥 ∈ 𝑋
𝑖
, and also there

exists𝑁
2
= 𝑁
2
(𝜀, 𝑧) ∈ Z

0+
such that for𝑚

𝑘
> 𝑛
𝑘
≥ 𝑁
2
and all

𝑧 ∈ 𝑋
𝑖
, 𝑑(𝑇𝑝𝑛𝑘+𝑗𝑧, 𝑇𝑝𝑚𝑘+𝑗+1𝑧) ≤ 𝐷 + 𝜀, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, from

Theorem 13(i). Similar distance constraints also hold from
Theorem 13(i) for appropriate subsequences of nonnegative
integers {𝑚

𝑘
} and {𝑛

𝑘
} (with𝑚

𝑘
> 𝑛
𝑘
) exceeding certain finite

thresholds, dependent on 𝜀, for each initial conditions 𝑥, 𝑧 ∈

𝑋
𝑖
(𝑋
𝑖
being a strictly convex subset of 𝑋) and 𝑦 ∈ 𝑋

𝑖+1
;

that is, 𝑑(𝑇𝑝𝑛𝑘+𝑗𝑥, 𝑇𝑝𝑚𝑘+𝑗𝑦) ≤ 𝐷 + 𝜀 for all 𝑥 ∈ 𝑋
𝑖
, 𝑦 ∈ 𝑋

𝑖+1

for 𝑚
𝑘

> 𝑛
𝑘

≥ 𝑁
0
and some 𝑛

0
= 𝑛
0
(𝜀, 𝑥, 𝑦) ∈ Z

0+
,

∀𝑗 ∈ 𝑝 − 1 ∪ {0}, and 𝑑(𝑇
𝑝𝑛𝑘+𝑗

𝑧, 𝑇
𝑝𝑚𝑘+𝑗

𝑦) ≤ 𝐷 + 𝜀 for all
𝑧 ∈ 𝑋

𝑖
, some 𝑛

2
= 𝑛
2
(𝜀, 𝑧, 𝑦) ∈ Z

0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, and

all 𝑚
𝑘
> 𝑛
𝑘
≥ 𝑛
2
. Now, note that since the set 𝑋

𝑖
is strictly

convex, {𝑥
𝑚𝑘
} ⊂ 𝑋

𝑖
and {𝑧

𝑚𝑘
} ⊂ 𝑋

𝑖
, it follows that

{

𝑥
𝑚𝑘

+ 𝑧
𝑛𝑘

2

} ⊂ 𝑋
𝑖
,

𝑑 (

𝑥
𝑚𝑘

+ 𝑧
𝑛𝑘

2

,𝑋
𝑖+1

) ≥ 𝑑 (𝑋
𝑖
, 𝑋
𝑖+1

) ≥ 𝐷;

∀𝑘 ∈ Z
0+
.

(30)

Now, choose 𝑛
1
= max(𝑛

0
, 𝑛
2
) so that one gets from (28) for

all integers 𝑚
𝑘
> 𝑛
𝑘
≥ 𝑛
1
that the following contradiction

holds:

𝑑(

𝑥
𝑚𝑘

+ 𝑧
𝑛𝑘

2

, 𝑦
𝑛𝑘
) ≤ (1 − 𝛿(

𝜀
0

(𝐷 + 𝜀)

)) (𝐷 + 𝜀)

= 𝐷 + 𝜀 − (𝐷 + 𝜀) 𝛿 (

𝜀
0

(𝐷 + 𝜀)

)

< 𝐷.

(31)

Since 𝜀 is arbitrary, it can be chosen so that 𝛿(𝜀
0
/(𝐷 + 𝜀)) >

𝛿(𝛾𝐷/(𝐷 + 𝜀)) > 𝜀/(𝐷 + 𝜀) since 𝛿(𝜀) is strictly increasing
in (0, 1]. Then, for each given 𝜀 ∈ R

+
, there is some 𝑛

3
=

𝑛
3
(𝜀, 𝑥, 𝑧) such that, for all integer numbers 𝑚 > 𝑛 ≥ 𝑛

3
,

𝑑(𝑇
𝑝𝑛+𝑗

𝑥, 𝑇
𝑝𝑚+𝑗

𝑧) ≤ 𝜀, ∀𝑥, 𝑧 ∈ 𝑋
𝑖
, such that the set 𝑋

𝑖
is

strictly convex for some 𝑖 ∈ 𝑝, and then

lim
𝑛,ℓ→∞

𝑑 (𝑇
𝑝𝑛+𝑗

𝑥, 𝑇
𝑝ℓ+𝑗

𝑧)

= lim
𝑛→∞

𝑑 (𝑇
𝑝𝑛+𝑗

𝑥, 𝑇
𝑝(𝑚+𝑛)+𝑗+𝑘

𝑤) = 0,

(32)

∀𝑥, 𝑧 ∈ 𝑋
𝑖
, ∀𝑚 ∈ Z

0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, and 𝑤 ∈ 𝑋

𝑖−𝑘
for any

given 𝑘 ∈ 𝑝 − 1 ∪ {0} implying that {𝑇𝑝𝑛+𝑗𝑥}, {𝑇𝑝(𝑚+𝑛)+𝑗+𝑘𝑤}
are sequences in𝑋

𝑖+𝑗
. FromTheorem 13(i) (see (5)), it follows

that 𝑑(𝑇𝑝𝑛𝑥, 𝑇𝑝𝑛+1𝑧) → 𝐷 as 𝑛 → ∞, ∀𝑥, 𝑧 ∈ 𝑋
𝑖
. From

Theorem 13(ii), it follows that {𝑇𝑝𝑛𝑥}, {𝑇𝑝𝑛𝑧} are bounded
sequences in the strictly convex set 𝑋

𝑖
. From the above

discussion in this proof, it follows that 𝑑(𝑇𝑝𝑛𝑥, 𝑇𝑝𝑛1𝑧) →

0 as 𝑛 → ∞. Since 𝑑 is a generalized metric and (𝑋, 𝑑)

is a complete g.m.s., it follows that {𝑇𝑝𝑛𝑥} and {𝑇
𝑝𝑛
𝑧} are

bounded and g.m.s. convergent sequences in 𝑋
𝑖
to 𝑥
𝑖
∈ 𝑋
𝑖

and 𝑧
𝑖
∈ 𝑋
𝑖
, respectively, and then g.m.s. Cauchy sequences

and 𝑑(𝑥
𝑖
, 𝑋
𝑖+1

) = 𝑑(𝑧
𝑖
, 𝑋
𝑖+1

) = 𝐷. Finally, since 𝑋
𝑖
is strictly

convex, there cannot exit two distinct 𝑥
𝑖
, 𝑧
𝑖
∈ 𝑋
𝑖
with the

minimum distance 𝐷 to 𝑋
𝑖+1

, and thus 𝑥
𝑖
= 𝑧
𝑖
. As a result,

there exists a unique best proximity point 𝑧
𝑖
∈ 𝑋
𝑖
such that

𝑋
𝑖
is strictly convex and closed. Since 𝑇 : ⋃

𝑖∈𝑝
𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖

is single-valued, then 𝑇𝑗𝑧
𝑖
= 𝑧
𝑖+𝑗

is the unique best proximity
point in 𝑋

𝑖+𝑗
, ∀𝑗 ∈ 𝑝, which satisfies 𝑑(𝑇

𝑗
𝑧
𝑖
, 𝑇
𝑗+1

𝑧
𝑖
) =

𝑑(𝑋
𝑖+𝑗
, 𝑋
𝑖+𝑗+1

) = 𝐷, ∀𝑗 ∈ 𝑝. Then, 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖

has a unique best proximity point 𝑧
𝑘
∈ 𝑋
𝑘
, ∀𝑘 ∈ 𝑝 (since 𝑋

𝑘

is closed,∀𝑘 ∈ 𝑝), which is also, by construction, a𝑝-periodic
point of 𝑇 : ⋃

𝑖∈𝑝
𝑋
𝑖
→ ⋃

𝑖∈𝑝
𝑋
𝑖
and a fixed point of the

composite mapping𝑇𝑝 : ⋃
𝑗∈𝑝

𝑋
𝑗
| 𝑋
𝑘
→ ⋃
𝑗∈𝑝

𝑋
𝑗
, ∀𝑘 ∈ 𝑝. It

turns out that if ⋂
𝑖∈𝑝

𝑋
𝑖

̸= ⌀, then 𝑧
𝑘
= 𝑧 ∈ ⋂

𝑖∈𝑝
𝑋
𝑖
, ∀𝑘 ∈ 𝑝

is the unique fixed point of 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
.
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Remark 16. (1)Note that (𝑋, 𝑑) inTheorem 15 is a uniformly
convex metric space (not specifically a uniformly convex
Banach space) and 𝑋 might be an abstract set (nonneces-
sarily being a linear space). However, it is obvious that any
uniformly convex Banach space is also a uniformly convex
metric space. In this case, it is assumed that one of the subsets
of the cyclic disposal, for which the generalized (𝜙 − 𝜑)-weak
𝑝-cyclic contraction mapping is defined, is strictly convex
and subject to a uniform convexity-type condition (28) for
the elements of such a set with respect to the points of 𝑋.
That condition is related to the uniformly convex structure
of the metric space and, equivalently, to the existence of
midpoints in the sense that if (28) fails to hold, then the
metric space is not uniformly convex. Such a condition,
supported by the existence of midpoints, is close to the one
satisfied on uniformly convex Banach spaces (𝑋, 𝑑) [27] and
used in Lemmas 3.7-3.8 and Theorem 3.10 of [6] to prove
the existence and uniqueness of fixed points in a 2-cyclic
contractive condition on the union of two nonempty closed
and convex subsets of 𝑋. See also [23–25]. In particular, 𝑋
could be endowedwith a simpler structure than a linear space
as, for instance, a group endowed with a composition law,
provided that the subsets of the cyclic disposal are closed
while just one of them is strictly convex.

(2) Note also that 𝑋 could even be just an abstract set
with nonempty closed subsets with one of them being strictly
convex.

(3) Note that Theorem 15 is applicable to the case that
(𝑋, ‖ ‖) is a uniformly convex Banach space with a norm-
induced metric 𝑑 so that (𝑋, ‖ ‖) ≡ (𝑋, 𝑑) with nonempty
closed convex subsets 𝑋

𝑖
⊂ 𝑋, ∀𝑖 ∈ 𝑝. This is a direct

consequence of the fact that if (𝑋, ‖ ‖) ≡ (𝑋, 𝑑) is a
uniformly convex Banach space, then it is also complete
and the norm triangle inequality can be trivially upper-
bounded by quadrangular-type sum of norms. This allows
adding distances related to distinct subsequences converging
to zero to the usual triangle inequality leading to be able
to characterize the complete (𝑋, 𝑑) also as being a complete
g.m.s. [28].

(4) Finally, note that the assumption of the existence
of midpoints [27] can also be focused on under the
framework of convex structures perhaps at the expenses
of a more involved presentation. It is said that a mapping
𝑊(𝑋,𝑋, [0, 1]) → 𝑋 is a convex structure on 𝑋 if, for each
𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑑(𝑧,𝑊(𝑥, 𝑦, 𝜆)) ≤ 𝜆𝑑(𝑥, 𝑧) + (1 − 𝜆)𝑑(𝑦, 𝑧), ∀𝜆 ∈

[0, 1]. See, for instance, [29–33]. Note that 𝑥 = 𝑊(𝑥, 𝑥, 𝜆) for
any 𝜆 ∈ [0, 1] and 𝑑(𝑦,𝑊(𝑥, 𝑥, 𝜆)) = 𝑑(𝑥, 𝑦) for any 𝑥, 𝑦 ∈ 𝑋.
If 𝑧 = 𝑥 and 𝜆 = 1/2, then 𝑧

1
= 𝑊(𝑥, 𝑦, 1/2) satisfying

(1/2)𝑑(𝑥, 𝑦) = 𝑑(𝑥, 𝑧
1
) = 𝑑(𝑥,𝑊(𝑥, 𝑦, 1/2)) ≤ (1/2)𝑑(𝑥, 𝑦)

is the midpoint of the segment [𝑥, 𝑦]. The convex structure
allows characterizing uniformly convex metric spaces as
triples (𝑋, 𝑑,𝑊) associatedwithmetric spaces (𝑋, 𝑑) [32]. See
also [28, 34–36]. For a generalized metric and its associate
quadrangular constraint of distances, we can define in the

same way a generalized convex structure𝑊(𝑋,𝑋,𝑋, [0, 1] ×

[0, 1]) → 𝑋 such that, for 𝑤, 𝑥, 𝑦, 𝑧 ∈ 𝑍, one has

𝑑 (𝑤,𝑊 (𝑥, 𝑦, 𝑧, 𝜆
1
, 𝜆
2
))

≤ 𝜆
1
𝑑 (𝑤, 𝑥) + 𝜆

2
𝑑 (𝑤, 𝑦)

+ (1 − 𝜆
1
− 𝜆
2
) 𝑑 (𝑤, 𝑧) ; ∀𝜆

1
, 𝜆
2
∈ [0, 1]

(33)

and the choice 𝜆
1

= 𝜆
2

= 1/3, 𝑤 = 𝑥, and 𝜔 =

𝑊(𝑥, 𝑦, 𝑧, 1/3, 1/3) leads to

3𝑑 (𝑥, 𝜔)

= 3 [𝑑 (𝑥, 𝑥) + (

1

3

) 𝑑 (𝑥, 𝑦) + (

1

3

) 𝑑 (𝑥, 𝑧)]

= 𝑑 (𝑥, 𝑦) + 𝑑 (𝑥, 𝑧) .

(34)

Thus, if 𝑦 is the midpoint of [𝑥, 𝑧], then 𝜔 is located at 1/3
from 𝑥 and 2/3 from 𝑦 of the length [𝑥, 𝑧].

Example 17. Consider the set of real numbers 𝑋 = {𝑗𝑡 : ±𝑗 ∈

5} for some given 𝑡 ∈ R
+
and consider nonempty closed

subsets 𝑋
1
= {𝑗𝑡 : 𝑗 ∈ 5 ∪ {0}} and 𝑋

2
= −𝑋

1
\ {0} of 𝑋.

For some given real constants 𝛾 ∈ R
+
, 𝛾
1
∈ (0, (3/5)𝛾], and

𝛾
2
∈ [max(𝛾, 3𝛾 − 2𝛾

1
), 1), a g.m. 𝑑 : 𝑋 ×𝑋 → R is defined as

follows:

𝑑 (𝑥, 𝑥) = 0, ∀𝑥 ∈ 𝑋

𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥) , ∀𝑥, 𝑦 ∈ 𝑋

𝑑 (0, 𝑗𝑡) = 𝑑 (−𝑗𝑡, 0) = 𝑗𝛾
1
, 𝑗 ∈ 5

𝑑 (𝑡, 2𝑡) = 𝑑 (−𝑡, −2𝑡) = 3𝛾

𝑑 (𝑗𝑡, 3𝑡) = 𝑑 (−𝑗𝑡, −3𝑡) = 𝛾, 𝑗 ∈ 2

𝑑 (𝑗𝑡, 4𝑡) = 𝑑 (−𝑗𝑡, −4𝑡) = 2𝛾, 𝑗 ∈ 3

𝑑 (𝑗𝑡, 5𝑡) = 𝑑 (−𝑗𝑡, −5𝑡) = (

3

2

) 𝛾, 𝑗 ∈ 4

𝑑 (−𝑖𝑡, 𝑗𝑡) = 𝑑 (𝑖𝑡, −𝑗𝑡) = 𝛾
2
; 𝑖, 𝑗 ∈ 5.

(35)

Note that 𝑑(𝑋
1
, 𝑋
2
) = 𝛾
1
and that 𝑑 : 𝑋 × 𝑋 → R is not a

metric since 𝑑(±𝑡, ±2𝑡) = 3𝛾 > 𝑑(±𝑡, ±3𝑡) + 𝑑(±3𝑡, ±2𝑡) = 2𝛾,
and then (𝑋, 𝑑) is not a metric space, while it is a g.m.s. since

max
𝑥,𝑦∈𝑋

𝑑 (𝑥, 𝑦) = 3𝛾 = 𝑑 (𝑡, 2𝑡)

≤ 𝑑 (𝑡, 𝑥) + 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 2𝑡)

= 𝑑 (𝑡, 0) + 𝑑 (0, −𝑡) + 𝑑 (−𝑡, 2𝑡)

= 2𝛾
1
+ 𝛾
2
,

(36)

where 𝑥 ∈ 𝑋 − {𝑡, 2𝑡} is such that 𝑑(𝑡, 𝑥) = min(𝑑(𝑡, 𝑧) : 𝑧 ∈

𝑋− {𝑡, 2𝑡}). For instance, take 𝑥 = 0. 𝑦 ∈ 𝑋− {𝑡, 2𝑡, 𝑥}, for the
above 𝑥 ∈ 𝑋 − {𝑡, 2𝑡}, is such that 𝑑(𝑥, 𝑦) = min(𝑑(𝑥, 𝑧) : 𝑧 ∈

𝑋 − {𝑡, 2𝑡, 𝑥}).
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For instance, take 𝑥 = −𝑡. Define a 2-cyclic mapping 𝑇 :

𝑋
1
∪ 𝑋
2
→ 𝑋
1
∪ 𝑋
2
as follows:

𝑇 (±𝑖𝑡) = ∓ (𝑖 − 1) 𝑡 for 𝑖 (∈ 5) ≥ 2

𝑇 (−𝑡) = 0;

𝑇 (𝑡) = 𝑇 (0) = −𝑡

(37)

which is a generalized (𝜙 − 𝜑)-weak 𝑝-cyclic contraction for
some 𝜑 ∈ Γ

𝛾1
, for instance, it can be defined so as to satisfy

the constraints 𝜑(𝛾
1
) = 𝛾
1
and 𝜑(𝑥) + 𝜑(𝑦) ≥ 𝜑(𝑧) ≥ 𝑧 > 𝛾

1

for 𝑥, 𝑦𝑧 = 𝑥 + 𝑦 ∈ (𝛾
1
, 𝛾
2
], and some 𝜙 ∈ Φ

𝛾1
chosen to

satisfy 𝜙(𝛾
1
) = 𝛾
1
and 𝜙(𝑥) = 𝜌𝛾

2
for 𝑥 ∈ (𝛾

1
, 𝛾
2
] for some

𝜌(∈ R
+
) ≥ 1 so as to be nondecreasing and subadditive.Then,

𝑇 is a generalized (𝜙 − 𝜑)-weak 2-cyclic contraction which
converges to a limit cycle {−1, 0} with the two best proximity
points 0 ∈ 𝑋

1
and (−1) ∈ 𝑋

2
. Theorem 13 leads to the above

conclusion.
Note that a (𝜙 − 𝜑)-weak 1-cyclic contraction on 𝑋

1
is

defined by the sequence {𝑡, 2𝑡, 4𝑡, 5𝑡, 𝑡, 0}, with𝜑 ∈ Γ
𝛾1
and𝜙 ∈

Φ
𝛾1
defined under the same above constraints, leading to the

distances in-between adjacent subsets given by the sequence
{3𝛾, 2𝛾, (3/2)𝛾, (3/2)𝛾, 𝛾

1
}.

Example 18. Reconsider Example 17 with the same set𝑋 and
the same metric with 𝑋

1
= {𝑗𝑡 : 𝑗 ∈ 5 ∪ {0}} and 𝑋

2
= −𝑋

1
.

Then, 𝑋
1
∩ 𝑋
2
= {0} and 𝑑(𝑋

1
, 𝑋
2
) = 0. The map 𝑇 : 𝑋

1
∪

𝑋
2
→ 𝑋
1
∪ 𝑋
2
is defined by 𝑇(±𝑖𝑡) = ∓𝑖𝑡 for 𝑖(∈ 5) ≥ 2,

𝑇(𝑡) = 𝑇(−𝑡) = 0, and 𝑇(0) = 0. Then, 𝑇 is a generalized
2-cyclic contraction which converges to its fixed point 0 ∈

𝑋
1
∩ 𝑋
2
. Theorem 14 leads to that conclusion.

Example 19. How to combine Examples 17 and 18 with the
constraint (28) is now checked, assumed as hypothesis in
Theorem 15. Such a constraint is close to the property of
uniformly convexity of Banach spaces 8 (see also Remark 16).
Now, for all real constant 𝜀 ∈ (0, 2] such that𝑑(𝑥, 𝑦) ≥ 𝜀, there
is some real constant 𝛿 ∈ (0, 1) such that 𝑑(𝑥, −𝑦) ≤ 2(1 − 𝛿).
Several cases can occur:

(a) 2 ≥ 𝑗𝛾
1
= 𝑑(0, 𝑥) = 𝑑(0, −𝑥) ≤ 2(1 − 𝛿(𝑗)) for 𝑥 ∈

𝑋 − {0}, 𝑗 ∈ 5.

This is solved with strictly increasing 𝛿(𝑗) = 𝛿
𝑗
for

𝑗 ∈ 5 if 0 < 𝛿
𝑗
= 𝑗𝜎 ≤ 1 − 𝑗𝛾

1
/2; 𝑗 ∈ 5, that is, if

𝜎 ∈ (0, (2 − 5𝛾
1
)/10), 𝛾

1
∈ (0, 2/5) and 𝛿(𝑗) = 𝑗𝜎,

𝑗 ∈ 5.

(b) [2 ≥ 𝑑(𝑥, 𝑦) = 𝜆𝛾 ⇒ 𝑑(𝑥, −𝑦) = 𝛾
2
≤ 2(1 − 𝛿(𝜆𝛾))],

for 𝑥, 𝑦 ∈ 𝑋 − {0} and for 𝑥, 𝑦 ∈ 𝑋
2
with 𝛿(𝜆𝛾) =

𝜆𝛾 ≤ 1 − 𝛾
2
/2 for 𝜆 = 1, 2, 3, 3/2 which leads to 𝛾

2
≤

2(1 − 𝜆𝛾).

(c) [2 ≥ 𝑑(𝑥, −𝑦) = 𝛾
2
⇒ 𝑑(𝑥, 𝑦) = 𝜆𝛾 ≤ 2(1 − 𝛿(𝛾

2
))],

for 𝑥, 𝑦 ∈ 𝑋
1
− {0} (and, equivalently, for 𝑥, 𝑦 ∈ 𝑋

2
)

with𝛿(𝜆𝛾) = 𝜆𝛾 ≤ 1−𝛾
2
/2, with the strictly increasing

𝛿(𝛾
2
) = 𝜌𝛾

2
≤ 1 − 𝜆𝛾/2, for 𝜆 = 1, 2, 3, 3/2 and some

real constant 𝜌 > 0.

The various above parametrical constraints are compatible
with those in Example 17, and the constraint (28) of Theo-
rem 15 holds, if

𝜎 ∈ (1,

2 − 5𝛾
1

10

) ,

𝛾
1
∈ (0,max (2

5

, (

3

2

) 𝛾)) ,

𝜌 > 0,

𝛾
2
∈ [max (5𝜎, 𝛾, 3𝛾 − 2𝛾

1
) ,

min(2 − 6𝛾,

1

𝜌

(1 −

3

2

) 𝛾)) .

(38)

However, due to the discrete nature of the set 𝑋, the
assumption ofTheorem 15 on strict convexity of sets towards
the proof of existence of unique best proximity points is not
fulfilled by this example.

Definition 20. Let (𝑋, 𝑑) be a g.m.s., let 𝑋
𝑖
be a set of

nonempty 𝑝(≥ 2) subsets of𝑋 distances in-between adjacent
subsets 𝑑(𝑋

𝑖
, 𝑋
𝑖+1

) = 𝐷
𝑖
, ∀𝑖 ∈ 𝑝, and let 𝑇 : ⋃

𝑖∈𝑝
𝑋
𝑖
→

⋃
𝑖∈𝑝

𝑋
𝑖
be a 𝑝-cyclic self-mapping satisfying

𝜑
𝑖+1

(𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜙
𝑖
(𝜑
𝑖
(𝑑 (𝑥, 𝑦))) ;

∀ (𝑥, 𝑦) ∈ 𝑋
𝑖
× 𝑋
𝑖+1

, ∀𝑖 ∈ 𝑝

(39)

for some𝜑
𝑖
∈ Γ
𝐷𝑖
and some𝜙

𝑖
∈ Φ
𝐷𝑖
and each 𝑖 ∈ 𝑝, where the

classes Γ
𝐷𝑖

and Φ
𝐷𝑖

are defined with functions 𝜑
𝑖
: [0,∞) →

[0,∞) and 𝜙
𝑖
: [𝐷
𝑖
,∞) → [𝐷

𝑖
,∞), ∀𝑖 ∈ 𝑝.

Then, 𝑇 is said to be a generalized (𝜙 − 𝜑)-weak 𝑝-cyclic
contraction mapping.

Theorem 21. Let (𝑋, 𝑑) be a g.m.s. and let 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→

⋃
𝑖∈𝑝

𝑋
𝑖
be a generalized (𝜙 − 𝜑)-weak 𝑝-cyclic contraction

mapping. Then, the following properties hold:
(i)

lim
𝑛→∞

𝜙
𝑛
(𝑖, 𝑖 − 𝑝) (𝜑

𝑖−𝑝−1
(𝑑 (𝑥
0
, 𝑥
𝑚𝑝+1

))) = 𝐷
𝑖

lim
𝑚→∞

lim
𝑛→∞

𝜑
𝑖−𝑝−1

(𝑑 (𝑥
𝑚𝑝
, 𝑥
(𝑚+𝑛)𝑝+1

))

= lim
𝑛→∞

𝜑
𝑖−𝑝−1

(𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

)) = 𝐷
𝑖
,

(40)

∀ℓ,𝑚 ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, ∀𝑖 ∈ 𝑝, and for any given

𝑥
0
∈ 𝑋
𝑖
and any given arbitrary 𝑖 ∈ 𝑝, where 𝜙(𝑖, 𝑖 − 𝑝) =

𝜙
𝑖−𝑝

⋅ . . . ⋅ 𝜙
𝑖.−1

⋅ 𝜙
𝑖
is a composite mapping of the 𝑝 functions

𝜙
𝑖
∈ Φ
𝐷𝑖

for 𝑖 ∈ 𝑝.
(ii) Assume that (𝑋, 𝑑) is a complete g.m.s. and that 𝑧

𝑖
∈ 𝑋
𝑖

has a best proximity point from 𝑋
𝑖
to 𝑋
𝑖+1

(i.e., 𝑑(𝑧
𝑖
, 𝑋
𝑖+1

) =

𝐷
𝑖
) for some given 𝑖 ∈ 𝑝 and that 𝑋

𝑖+1
is approximatively

compact with respect to𝑋
𝑖
.Then, there is a best proximity point

𝑧
𝑖+1

= 𝑇𝑧
𝑖
from 𝑋

𝑖+1
to 𝑋
𝑖
which is unique and in 𝑋

𝑖+1
if 𝑧
𝑖
is

unique and 𝑋
𝑖+1

is closed.
Also, if all the subsets 𝑋

𝑖
⊆ 𝑋, ∀𝑖 ∈ 𝑝, are closed, then

there are 𝑝 best proximity points 𝑧
𝑖+𝑗

= 𝑇
𝑗
𝑧
𝑖
∈ 𝑋
𝑖+𝑗
, ∀𝑖, 𝑗 ∈ 𝑝,



Discrete Dynamics in Nature and Society 11

which are unique if anyone of them is unique. Each 𝑧
𝑖
∈ 𝑋
𝑖

is also a fixed point of the composite mapping 𝑇𝑝 : ⋃
𝑗∈𝑝

𝑋
𝑗
|

𝑋
𝑖
→ ⋃
𝑗∈𝑝

𝑋
𝑗
, ∀𝑖 ∈ 𝑝, and then a 𝑝-periodic fixed point of

𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
.

Proof. The proof is close to that of Theorem 13. Let 𝑥
0
be an

arbitrary point of𝑋
𝑖
for some given arbitrary 𝑖 ∈ 𝑝 and define

the sequence {𝑥
𝑛
} inductively by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
, ∀𝑛 ∈ Z

0+
. Since

𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
is a (𝜙 − 𝜑)-weak 𝑝-cyclic contraction

mapping, one gets from (39) by induction for each 𝑛,𝑚 ∈ Z
0+

that

𝜑
𝑖+1

(𝑑 (𝑥
𝑛𝑝
, 𝑥
(𝑛+𝑚)𝑝+1

))

= 𝜑
𝑖+1

(𝑑 (𝑇𝑥
𝑛𝑝−1

, 𝑇𝑥
(𝑛+𝑚)𝑝

))

≤ 𝜙
𝑖
(𝜑
𝑖
(𝑑 (𝑥
𝑛𝑝−1

, 𝑥
(𝑛+𝑚)𝑝+

)))

≤ 𝜙
𝑖−1

(𝜙
𝑖
(𝜑
𝑖−1

(𝑑 (𝑥
𝑛𝑝−2

, 𝑥
(𝑛+𝑚)𝑝−1

))))

= (𝜙
𝑖−1

𝜙
𝑖
) (𝜑
𝑖−1

(𝑑 (𝑥
𝑛𝑝−2

, 𝑥
(𝑛+𝑚)𝑝−1

))) ⋅ ⋅ ⋅

≤ 𝜙 (𝑖, 𝑖 − 𝑝) (𝜑
𝑖−𝑝

(𝑑 (𝑥
(𝑛−1)𝑝

, 𝑥
(𝑛+𝑚−1)𝑝−1

))) ⋅ ⋅ ⋅

≤ 𝜙
𝑛
(𝑖, 𝑖 − 𝑝) (𝜑

𝑖−𝑝
(𝑑 (𝑥
0
, 𝑥
𝑚𝑝+1

))) ;

= 𝜙
𝑛
(𝑖, 𝑖 − 𝑝) (𝜑

𝑖
(𝑑 (𝑥
0
, 𝑥
𝑚𝑝+1

))) ; ∀𝑚, 𝑛 ∈ Z
0+

(41)

since 𝜙
𝑖
≡ 𝜙
𝑖−𝑝

and 𝜑
𝑖
≡ 𝜑
𝑖−𝑝

, ∀𝑖 ∈ 𝑝, where 𝜙(𝑖, 𝑖 − 𝑝) =

𝜙
𝑖−𝑝

, . . . , 𝜙
𝑖.−1

⋅ 𝜙
𝑖
, ∀𝑖 ∈ 𝑝. Since 𝜙

𝑖
∈ Φ
𝐷𝑖
, ∀𝑖 ∈ 𝑝, one

has from property (𝜙
2
) and the composite mapping structure

that {𝜙𝑛(𝑖, 𝑖 − 𝑝)(𝑡)} is decreasing for all 𝑡 ∈ [𝐷
𝑖
,∞) so that

{𝜙
𝑛𝑝
(𝜑(𝑑(𝑥

0
, 𝑥
𝑚𝑝+1

)))} is decreasing and converges to some
limit 𝜂

0𝑖
∈ R
0+
. It is now proved that all the limits 𝜂

0𝑗
= 𝐷,

∀𝑗 ∈ 𝑝 − 1 ∪ {0}. Since 𝜙 ∈ Φ
𝐷
, it is also a 𝐷-weaker

Meir-Keeler function 𝜙 : [𝐷,∞) → [𝐷,∞) so that, for
each real number 𝜂(> 𝐷) ∈ R

+
, there exist a real number

𝛿
𝑗
= 𝛿
𝑗
(𝜂) ∈ R

+
such that 𝜙𝑛𝑝+𝑗(𝑡) < 𝜂, ∀𝑛(≥ 𝑛

0𝑗
) ∈ Z

+

for some 𝑛
0𝑗

= 𝑛
0𝑗
(𝜂) ∈ Z

+
, for any given 𝑗 ∈ 𝑝 − 1 ∪ {0},

∀𝑡 ∈ [𝜂, 𝜂 + 𝛿
𝑗
). Thus, 𝜂 = 𝐷 + 𝜀 for any given arbitrary

𝜂(> 𝐷) ∈ R
+
such that 𝜀 = 𝜂 − 𝐷(∈ R

+
) is also arbitrary; one

has for each given 𝑘 ∈ 𝑝 − 1 ∪ {0} that if 𝑥
𝑘
= 𝑇𝑥
𝑘−1

= 𝑇
𝑘
𝑥
0
,

then

((𝜙
𝑖−1

, . . . , 𝜙
𝑖−𝑗
) 𝜙
𝑛
(𝑖, 𝑖 − 𝑝))

⋅ (𝜑
𝑖−𝑗

(𝑑 (𝑥
𝑘
, 𝑥
𝑚𝑝+𝑘+1

))) < 𝐷
𝑖−𝑗

+ 𝜀,

(42)

∀𝑚 ∈ Z
0+
, ∀𝑗, 𝑘 ∈ 𝑝 − 1 ∪ {0}, and ∀𝑛(≥ 𝑛

0𝑗
) ∈

Z
+
, and then there exist the 𝑝 identical limits

lim
𝑛→∞

((𝜙
𝑖−1

, . . . , 𝜙
𝑖−𝑗
)𝜙
𝑛
(𝑖, 𝑖 − 𝑝))(𝜑

𝑖−𝑗
(𝑑(𝑥
𝑘
, 𝑥
𝑚𝑝+𝑘+1

))) =

𝐷
𝑖−𝑗
, ∀𝑚 ∈ Z

0+
, ∀𝑗, 𝑘 ∈ 𝑝 − 1∪ {0}. Then, one gets from (42)

that

lim
𝑚→∞

lim
𝑛→∞

𝜑
𝑖+𝑗

(𝑑 (𝑥
𝑚𝑝+𝑗

, 𝑥
(𝑚+𝑛)𝑝+𝑗+1

))

= lim
𝑛→∞

𝜑
𝑖+𝑗

(𝑑 (𝑥
ℓ𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

)) = 𝐷
𝑖+𝑗
;

∀ℓ ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(43)

The notion of (𝜓−𝜑)-weak 𝑝-cyclic contractionmapping
is given below.

Definition 22. Let (𝑋, 𝑑) be a g.m.s., let 𝑋
𝑖
be nonempty

subsets of𝑋, having a common distance in-between adjacent
subsets 𝑑(𝑋

𝑖
, 𝑋
𝑖+1

) = 𝐷, ∀𝑖 ∈ 𝑝, and let 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→

⋃
𝑖∈𝑝

𝑋
𝑖
be a 𝑝-cyclic self-mapping satisfying

𝜑 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ 𝜓 (𝜑 (𝑑 (𝑥, 𝑦))) 𝜑 (𝑑 (𝑥, 𝑦)) ;

∀ (𝑥, 𝑦) ∈ 𝑋
𝑖
× 𝑋
𝑖+1

, ∀𝑖 ∈ 𝑝

(44)

for some 𝜑 ∈ Γ
𝐷
and some 𝜓 ∈ Ψ

𝐷
(𝑟
0
). Then, 𝑇 is said to be a

generalized (𝜓 − 𝜑)-weak 𝑝-cyclic contraction mapping.

Theorem 23. Let (𝑋, 𝑑) be a g.m.s. and let 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→

⋃
𝑖∈𝑝

𝑋
𝑖
be a generalized (𝜓 − 𝜑)-weak 𝑝-cyclic contraction

mapping for some function 𝜓 ∈ Ψ
𝐷
(𝑟
0
), some 𝑟

0
∈ (0, 1), and

some 𝜑 ∈ Γ
𝐷
. Then, the following properties hold:

(i)

lim
𝑛→∞

𝜙
𝑛𝑝+𝑗

(𝜑 (𝑑 (𝑥
0
, 𝑥
𝑚𝑝+1

))) = 𝐷;

∀𝑚 ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

lim
𝑚→∞

lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑚𝑝+𝑗

, 𝑥
(𝑚+𝑛)𝑝+𝑗+1

))

= lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

)) = 𝐷;

∀ℓ ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0} ,

lim
𝑛,𝑚→∞

𝑑 (𝑥
𝑚𝑝+𝑗

, 𝑥
(𝑚+𝑛)𝑝+𝑗+1

)

= lim
𝑛→∞

𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

) = 𝐷;

∀ℓ ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}

(45)

for any sequence {𝑥
𝑛
} constructed from 𝑥

𝑛+1
= 𝑇𝑥
𝑛
, ∀𝑛 ∈ Z

0+

for any given initial point 𝑥
0
∈ ⋃
𝑖∈𝑝

𝑋
𝑖
.

(ii) Any sequence {𝑇𝑥
𝑛
} built from any given initial point

𝑥
0
∈ ⋃
𝑖∈𝑝

𝑋
𝑖
is bounded.

(iii) Assume, in addition, that (𝑋, 𝑑) is a complete g.m.s.
and that 𝑧

𝑖
∈ 𝑋
𝑖
has a best proximity point from 𝑋

𝑖
to 𝑋
𝑖+1

(i.e., 𝑑(𝑧
𝑖
, 𝑋
𝑖+1

) = 𝐷) for some given 𝑖 ∈ 𝑝 and that 𝑋
𝑖+1

is
approximatively compact with respect to 𝑋

𝑖
. Then, there is a

best proximity point 𝑧
𝑖+1

= 𝑇𝑧
𝑖
from𝑋

𝑖+1
to𝑋
𝑖
which is unique

in 𝑋
𝑖+1

if 𝑧
𝑖
is unique in𝑋

𝑖
which is closed for the given 𝑖 ∈ 𝑝.

Also, if all the subsets𝑋
𝑖
of𝑋; ∀𝑖 ∈ 𝑝 are closed, then there

are 𝑝 best proximity points 𝑧
𝑖+𝑗

= 𝑇
𝑗
𝑧
𝑖
∈ 𝑋
𝑖+𝑗
, ∀𝑖, 𝑗 ∈ 𝑝,

which are unique if one of them is unique, with each of them
being also a fixed point of the respective compositemapping𝑇𝑝 :
⋃
𝑗∈𝑝

𝑋
𝑗
| 𝑋
𝑖
→ ⋃
𝑗∈𝑝

𝑋
𝑗
, ∀𝑖 ∈ 𝑝, and then 𝑝-periodic fixed

points of 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
.

Proof. Since 𝑥
0
∈ ⋃
𝑖∈𝑝

𝑋
𝑖
, we can consider equivalently 𝑥

0
to

be an arbitrary point of𝑋
𝑖
for some given arbitrary 𝑖 ∈ 𝑝 and

we can define the sequence {𝑥
𝑛
} inductively by 𝑥

𝑛+1
= 𝑇𝑥
𝑛
,
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∀𝑛 ∈ Z
0+
. Since 𝑇 : ⋃

𝑖∈𝑝
𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
is a (𝜓 − 𝜑)-weak-

cyclic 𝑝 contraction mapping, one gets from (44) that

𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

))

= 𝜑 (𝑑 (𝑇𝑥
𝑛𝑝+𝑗−1

, 𝑇𝑥
(𝑛+𝑚)𝑝+𝑗

))

≤ 𝜓 (𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗−1

, 𝑥
(𝑛+𝑚)𝑝+𝑗

)))

⋅ 𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗−1

, 𝑥
(𝑛+𝑚)𝑝+𝑗

))

< 𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗−2

, 𝑥
(𝑛+𝑚)𝑝+𝑗−1

)) ,

(46)

∀𝑛,𝑚 ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, provided that

𝑑(𝑥
𝑛𝑝+𝑗−2

, 𝑥
(𝑛+𝑚)𝑝+𝑗−1

) > 𝐷, and then the sequences
{𝜑(𝑑(𝑥

𝑛𝑝+𝑗−2
, 𝑥
(𝑛+𝑚)𝑝+𝑗−1

))}, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, bounded from
below are strictly decreasing, so convergent to some 𝜂(∈

R
+
) ≥ 𝐷, since 𝜑 ∈ Γ

𝐷
, 1 > 𝜓(𝑡) > 𝑟

0
for 𝑡 > 𝐷 and

𝜓(𝐷) = 𝑟
0
< 1 since 𝜓 ∈ Ψ

𝐷
(𝑟
0
) and the property (𝜓

1
) of

the class Ψ
𝐷
(𝑟
0
). Note that 𝑥

𝑛𝑝
, 𝑥
(𝑛+𝑚)𝑝

∈ 𝑋
𝑖
, 𝑥
𝑚𝑝+1

∈ 𝑋
𝑖+1

,

𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗

∈ 𝑋
𝑖+𝑗
, and 𝑥

𝑛𝑝−𝑗
∈ 𝑋
𝑖−𝑗+𝑝

, ∀𝑛, ∀𝑚 ∈ Z
0+
. It

is be proved from (46), since 𝜑(𝐷) = 𝐷, that 𝜂 = 𝐷 so that

lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

))

= lim
𝑛→∞

𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

) = 𝐷;

∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(47)

Assume that this is not the case, so that 𝜂 > 𝐷, and proceed
by contradiction to conclude that 𝜂 = 𝐷. Suppose that
lim
𝑛→∞

𝜑(𝑑(𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

)) = 𝜂 > 𝐷 for some 𝑗 ∈

𝑝 − 1 ∪ {0}. Thus, for each 𝛿 ∈ R
+
, there is 𝑛

𝛿
= 𝑛
𝛿
(𝜂) ∈ Z

0+

and 𝛾
𝜂
= 𝛾
𝜂
(𝜂) ∈ [0, 1) such that for all 𝑛(∈ Z

0+
) ≥ 𝑛
𝛿

𝜂 ≤ 𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

)) < 𝜂 + 𝛿;

𝜓 (𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

))) < 𝛾
𝜂
.

(48)

∀𝑗 ∈ 𝑝 − 1 ∪ {0}, ∀𝑛 ∈ Z
0+

since {𝜑(𝑑(𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

))} →

𝜂 and since 𝜓 ∈ Ψ
𝐷
(𝑟
0
) is a stronger Meir-Keeler function.

Then, one gets from (46) since 𝑑(𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

) ≥ 𝐷 and
𝜑(𝑑(𝑥

𝑛𝑝+𝑗
, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

)) ≥ 𝜑(𝐷) ≥ 𝐷, ∀𝑗 ∈ 𝑝 − 1 ∪ {0},
∀𝑛,𝑚 ∈ Z

0+
, that

𝐷 < 𝜂 = lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

)) = 𝜑 (𝑑 (𝑇𝑥
𝑛𝑝+𝑗−1

, 𝑇𝑥
(𝑛+𝑚)𝑝+𝑗

))

≤ max [𝐷, lim sup
𝑛→∞

(𝜓 (𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗−1

, 𝑥
(𝑛+𝑚)𝑝+𝑗

))) ⋅ 𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗−1

, 𝑥
(𝑛+𝑚)𝑝+𝑗

)))]

≤ max [𝐷, lim sup
𝑛→∞

(𝛾
𝑛𝑝+𝑗

𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗−1

, 𝑥
(𝑛+𝑚)𝑝+𝑗

)))] ⋅ ⋅ ⋅ ≤ max [𝐷, lim sup
𝑛→∞

(𝛾
(𝑛−𝑛𝛿)𝑝+𝑗

𝜂
𝜑 (𝑑 (𝑥

𝑛𝛿𝑝
, 𝑥
(𝑛𝛿+𝑚)𝑝+1

)))] = 𝐷;

∀𝑗 ∈ 𝑝 − 1 ∪ {0} , ∀𝑚 ∈ Z
0+

(49)

since 𝛾
𝜂
< 1, a contradiction. Then, for any𝑚 ∈ Z

0+
,

lim
𝑛→∞

𝜑 (𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

))

= lim
𝑛→∞

𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(𝑛+𝑚)𝑝+𝑗+1

) = 𝐷;

∀𝑗 ∈ 𝑝 − 1 ∪ {0} .

(50)

Property (i) has been proved. Property (ii) is proved in the
same ways as its counterpart in Theorem 13 since it is based
onTheorem 13(i) which still holds for this theorem and from
the rectangular property of distances of the g.m.s. (𝑋, 𝑑).
Finally, Property (iii) follows from the given assumptions,
similar to those ofTheorem 13(ii) since (50) has been got from
(46) which is a similar property to that used in the proof of
Theorem 13(iii).

Based on (50) and (46) obtained for the proof of Theo-
rem 23, it is direct to prove in a similar way as it has been
done for Theorem 14, Theorem 15 (see also Remark 16), and
Theorem 21, the following results.

Theorem 24. Let (𝑋, 𝑑) be a complete g.m.s. and let 𝑇 :

⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃

𝑖∈𝑝
𝑋
𝑖
be a generalized (𝜓 − 𝜑)-weak 𝑝-cyclic

contraction mapping such that that the sets 𝑋
𝑖
; ∀𝑖 ∈ 𝑝 are

closed and intersect for some 𝜓 ∈ Ψ
0
(0) and 𝜑 ∈ Γ

0
. Then,

there is a unique fixed point 𝑧 ∈ ⋂
𝑖∈𝑝

𝑋
𝑖
.

Theorem 25. Let (𝑋, 𝑑) be a complete g.m.s. admitting mid-
points which has 𝑝 nonempty closed subsets 𝑋

𝑖
⊆ 𝑋, with

𝑑(𝑋
𝑗
, 𝑋
𝑗+1

) = 𝐷, ∀𝑗 ∈ 𝑝, where 𝑋 is an abstract set, with one
of the subsets 𝑋

𝑖
, for some 𝑖 ∈ 𝑝, being strictly convex. Assume

that there is some strictly increasing function 𝛿 : (0, 1] → [0, 2]

such that 𝑋 has the property (28) for all 𝑥, 𝑦 ∈ 𝑋
𝑖
, 𝑝 ∈ 𝑋,

and 𝑅 ∈ R
+
, 𝑟 ∈ [0, 2𝑅]. Let 𝑇 : ⋃

𝑖∈𝑝
𝑋
𝑖
→ ⋃

𝑖∈𝑝
𝑋
𝑖
be

a generalized (𝜓 − 𝜑)-weak 𝑝-cyclic contraction mapping for
some 𝜓 ∈ Ψ

𝐷
(𝑟
0
), some 𝑟

0
∈ (0, 1), and some 𝜑 ∈ Γ

𝐷
.

Then, 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃

𝑖∈𝑝
𝑋
𝑖
has a unique best proximity

point 𝑧
𝑗
∈ 𝑋
𝑗
, ∀𝑗 ∈ 𝑝, which is also a 𝑝-periodic point of

𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃

𝑖∈𝑝
𝑋
𝑖
and a fixed point of the composite

mapping 𝑇𝑝 : ⋃
𝑗∈𝑝

𝑋
𝑗
| 𝑋
𝑘
→ ⋃
𝑗∈𝑝

𝑋
𝑗
, ∀𝑘 ∈ 𝑝.
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If ⋂
𝑖∈𝑝

𝑋
𝑖

̸= ⌀, then 𝑧
𝑘
= 𝑧 ∈ ⋂

𝑖∈𝑝
𝑋
𝑖
, ∀𝑘 ∈ 𝑝, is the

unique fixed point of 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
.

Theorem 26. Let (𝑋, 𝑑) be a g.m.s. and let 𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→

⋃
𝑖∈𝑝

𝑋
𝑖
be a generalized (𝜓 − 𝜑)-weak 𝑝-cyclic contraction

mapping. Then, the following properties hold:
(i)

lim
𝑛→∞

𝜓
𝑛
(𝑖, 𝑖 − 𝑝) (𝜑

𝑖−𝑝−1
(𝑑 (𝑥
0
, 𝑥
𝑚𝑝+1

))) = 𝐷
𝑖

lim
𝑚→∞

lim
𝑛→∞

𝜑
𝑖−𝑝−1

(𝑑 (𝑥
𝑚𝑝
, 𝑥
(𝑚+𝑛)𝑝+1

))

= lim
𝑛→∞

𝜑
𝑖−𝑝−1

(𝑑 (𝑥
𝑛𝑝+𝑗

, 𝑥
(ℓ+𝑛)𝑝+𝑗+1

)) = 𝐷
𝑖
,

(51)

∀ℓ,𝑚 ∈ Z
0+
, ∀𝑗 ∈ 𝑝 − 1 ∪ {0}, ∀𝑖 ∈ 𝑝, and for any given

𝑥
0
∈ 𝑋
𝑖
and any given arbitrary 𝑖 ∈ 𝑝 for some set of functions

𝜓
𝑖
∈ Ψ
𝐷𝑖
(𝑟
0𝑖
), ∀𝑖 ∈ 𝑝, some real constants 𝑟

0𝑖
∈ (0, 1), ∀𝑖 ∈ 𝑝,

where 𝜓(𝑖, 𝑖 − 𝑝) = 𝜓
𝑖−𝑝

⋅ . . . ⋅ 𝜓
𝑖.−1

⋅ 𝜓
𝑖
is a composite mapping

of 𝑝 such functions.
(ii) Assume that (𝑋, 𝑑) is a complete g.m.s. and that 𝑧

𝑖
∈ 𝑋
𝑖

has a best proximity point from 𝑋
𝑖
to 𝑋
𝑖+1

(i.e., 𝑑(𝑧
𝑖
, 𝑋
𝑖+1

) =

𝐷
𝑖
) for some given 𝑖 ∈ 𝑝 and that 𝑋

𝑖+1
is approximatively

compact with respect to𝑋
𝑖
.Then, there is a best proximity point

𝑧
𝑖+1

= 𝑇𝑧
𝑖
from 𝑋

𝑖+1
to 𝑋
𝑖
which is unique and in 𝑋

𝑖+1
if 𝑧
𝑖
is

unique and 𝑋
𝑖+1

is closed.
Also, if all the subsets 𝑋

𝑖
⊆ 𝑋, ∀𝑖 ∈ 𝑝, are closed, then

there are 𝑝 best proximity points 𝑧
𝑖+𝑗

= 𝑇
𝑗
𝑧
𝑖
∈ 𝑋
𝑖+𝑗
, ∀𝑖, 𝑗 ∈ 𝑝,

which are unique if anyone of them is unique. Each 𝑧
𝑖
∈ 𝑋
𝑖

is also a fixed point of the composite mapping 𝑇𝑝 : ⋃
𝑗∈𝑝

𝑋
𝑗
|

𝑋
𝑖
→ ⋃
𝑗∈𝑝

𝑋
𝑗
, ∀𝑖 ∈ 𝑝, and then a 𝑝-periodic fixed point of

𝑇 : ⋃
𝑖∈𝑝

𝑋
𝑖
→ ⋃
𝑖∈𝑝

𝑋
𝑖
.

Example 27. Examples 17–19 can be reformulated for gener-
alized (𝜓 − 𝜑)-weak 𝑝-cyclic contraction mappings with the
replacement 𝜙 ∈ Φ

𝐷
→ 𝜓 ∈ Ψ

𝐷
(𝑟
0
) with some 𝑟

0
∈ (𝛾
2
, 1)

since 𝛾
2
∈ (0, 1) and𝐷 = 𝑑(𝑋

1
, 𝑋
2
) < 1.
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