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Abstract
Wepresent criteria to detect the depth of entanglement inmacroscopic ensembles of spin-j particles
using the variance and secondmoments of the collective spin components. The class of states detected
goes beyond traditional spin-squeezed states by includingDicke states and other unpolarized states.
The criteria derived are easy to evaluate numerically even for systems of verymany particles and
outperformpast approaches, especially in practical situationswhere noise is present.We also derive
analytic lower bounds based on the linearization of our criteria, whichmake it possible to define spin-
squeezing parameters forDicke states. In addition, we obtain spin squeezing parameters also from the
condition derived in (Sørensen andMølmer 2001Phys. Rev. Lett. 86 4431).We also extend our results
to systemswithfluctuating number of particles.

1. Introduction

With an interest towards fundamental questions in quantumphysics, as well as applications, larger and larger
entangled quantum systems have been realizedwith photons, trapped ions, and cold atoms [1–11].
Entanglement is needed for certain quantum information processing tasks [12, 13], and it is also necessary to
reach themaximum sensitivity in awide range of interferometric schemes in quantummetrology [14]. Hence,
the verification of the presence of entanglement is a crucial but exceedingly challenging task, especially in an
ensemble ofmany, say 103 or 1012 particles [5–11].Moreover, in such experiments it is not sufficient to claim
that ‘the state is entangled’, we need also to knowhow entangled the system is.Hence, quantifying entanglement
in large ensembles has recently been at the center of attention. In several experiments the entanglement depth
(i.e., theminimal number ofmutually entangled particles consistent with themeasurement data)was
determined, reaching to the thousands [7–11].

In themany-particle case, especially in large ensembles of cold atoms, it is typically very difficult or even
impossible to address the particles individually, whilemeasuring collective quantities is still feasible. In this
context, one of themost successful approaches to detect entanglement is based on the criterion [15]

≔ ( ) ( )x
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y z
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2

2
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whereN is the number of the spin-1/2 particles, ( )= å =J jl n
N

l
n

1 for =l x y z, , are the collective spin

components, and ( )j
l

n are single particle spin components acting on the nth particle. Everymultiqubit state that
violates (1)must be entangled [15]. The criterion(1) is best suited for states with a large collective spin in the
( ˆ ˆ)y z, -plane and a small variance ( )DJx

2 in the orthogonal direction. For such states the variance of a spin
component is reduced belowwhat can be achievedwith fully polarized spin-coherent states, hence they have
been called spin squeezed in the context ofmetrology [16, 17].

As a generalization of (1), a criterion has also been derived by Sørensen andMølmer [18] to detect the depth
of entanglement of spin-squeezed states in an ensemble of particles with a spin j. For the criterion, we have to
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consider a subgroup of k N particles and define its total spin as

( )=J kj. 2

Wealso need to define a function FJ via aminimization over quantum states of such a group as

( ) ≔ ( ) ( )
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min , 3J

J
L X

x
: 1
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z

where Ll are the spin components of the group. In practice, theminimumwill be the same if we carry out the
minimization over states of a single particle with a spin J [19]. Then, for all pure states with an entanglement
depth of atmost k

( ) ( )D
á ñ⎛
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⎞
⎠⎟J NjF

J

Nj
4x J

z2

holds. It is easy to see that (4) is valid even formixed states with an entanglement depth of atmost k since the
variance is concave in the state and FJ (X) is convex

5. Thus, every state that violates (4)must have a depth of
entanglement of ( )+k 1 or larger. It is important to stress that the criterion (4) provides a tight lower bound on
( )DJx

2 based on á ñJ .z Spin squeezing has been demonstrated inmany experiments, from cold atoms [7, 20–26] to
trapped ions [27], magnetic systems [28] and photons [29], and inmany of these experiments evenmultipartite
entanglement has been detected using the condition (4) [7, 23–26, 29].

Recently, the concept of spin squeezing has been extended to unpolarized states [30–34]. In particular, Dicke
states are attracting increasing attention, since theirmultipartite entanglement is robust against particle loss, and
they can be used for high precision quantummetrology [8]. Dicke states are produced in experiments with
photons [35, 36] andBose–Einstein condensates [8, 37, 38]. Suitable criteria to detect the depth of entanglement
ofDicke states have also been derived. However, either they are limited to spin-1/2 particles [8, 39] or they do
not give a tight lower bound on ( )DJx

2 based on the expectation valuemeasured for the criterion, concretely,
á + ñJ Jy z

2 2 [40].
In this paper, we present a general condition that: (i)provides a lower bound on the entanglement depth, (ii)

is applicable to spin-j systems, for any j, (iii)works both for spin-squeezed states andDicke states, and, (iv) is
close to provide a tight bound in the sensementioned above in the large particle number limit. Such a criterion
can be applied immediately, for instance, in experiments producingDicke states in spinor condensates [41].

We now summarize themain results of our paper.With amethod similar to the one used for obtaining
equation (4), we show that the condition
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holds for states with an entanglement depth of atmost k of an ensemble ofN spin-j particles, wherewe
introduced the notation

( ) ( )G X F X: , 6J J

with FJ (X) defined as in equation (3) and J= kj as in (2). Our approach ismotivated by the fact that equation (4)
fails to be a good criterion formixed states with a low polarization á ñ + á ñJ J N jy z

2 2 2 2. Thus, we consider the
secondmoments á + ñJ Jy z

2 2 instead, which are still large formany useful unpolarized quantum states, such as
Dicke states. Using the secondmoments is advantageous even for states with a large spin polarization since
criteria with secondmoments aremore robust to noise, whichwill be demonstrated later on concrete examples.
We also analyze the performance of our condition compared to other criteria in the literature.

In general, the functionGJ(X) appearing on the right-hand side of (5)has to be evaluated numerically.
However, due to its convexity properties we can bound it frombelowwith the two lowest non-trivial orders of its
Taylor expansion around =X 0, yielding a spin-squeezing parameter similar to the one defined in (1).While
states saturating (5) determine a curve in the ( ( ) )á + ñ DJ J J,y z x

2 2 2 -plane, such an analytic condition corresponds
to tangents to this curve. Hence, wewill refer to it as a linear criterion. Such a criterion for states with an
entanglement depth k or smaller is given by the inequality

≔ ( ) ( ) ( )
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( )x +
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wherewe require that kj is an integer. A similar condition can be obtained from the Sørensen–Mølmer criterion
(4) as

5
The convexity of FJ (X) is observed numerically [18]. In case the right-hand side of (3) results in a non-convex function in X , then the

convex hull of the right-hand side of (3)must be used in the place of FJ (X).

2
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again requiring that kj is integer. A direct comparison between x2 and xSM
2 shows that the former ismore suitable

for detecting the depth of entanglement of unpolarized states, such asDicke states. Note also the similarity
between (8) and the original criterion for spin-1/2 particles (1). All these criteria are also generalized to the case
when the particle number is notfixed, following[19].

Our paper is organized as follows. In section 2, we discuss how to evaluate our criteria numerically, while we
also discuss cases where analytical formulas can be used instead of numerics. In section 3, we derive our
nonlinear entanglement criterion. In section 4, we present linear criteria leading to new spin-squeezing
parameters. In section 5, we compare our entanglement conditions to other conditions existing in the literature.
Finally, in section 6, we discuss how to generalize ourmethods to the case of afluctuating number of particles.

2.Numerical computation ofGJ (X)

Before describing how to obtain FJ (X) andGJ (X)numerically, we define some notions necessary for our
discussion.We distinguish various levels ofmultipartite entanglement based on the following definitions. A
pure quantum state is k-producible if it can bewritten as

∣ ∣ ··· ∣ ( )( ) ( ) ( )y y yñ Ä ñ Ä Ä ñ, 9M1 2

where ∣ ( )y ñl are states of k kl particles, andM stands for the number of particle groups. Amixed quantum
state is k-producible, if it can bewritten as amixture of pure k-producible states. Clearly, 1-producible states are
separable states. A state that is not k-producible is called ( )+k 1 -entangled. The entanglement depth is +k 1
whenever the state is ( )+k 1 -producible but not k-producible [18, 42].

Next, wewill show a simplemethod to calculate FJ (X) and ( )G X .J Wewill discuss both numerical and
analytical approaches. Knowing the properties of these functions is necessary to prove later the relation (5). For
an integer J , the function FJ (X) given in (3) can be efficiently computed for some interval ofX as follows [18].
We just need to calculate the ground states ∣f ñl of theHamiltonian

( )l= -lH L L 10x z
2

for a sufficiently wide interval of l.Note that the ground states of (10) are the extreme spin-squeezed states
studied in [18]. Then, the points of the curve FJ (X) are obtained as = á ñflX L

J z
1 and ( ) = á ñflF X L .J J x

1 2 Note that

themethod takes into account that the stateminimizing ( )DJx
2 for a given á ñLz has á ñ =L 0,x which is a property

numerically observed to be true for integer J [18]. The algorithm can be extended to half-integer Jʼs by adding a
Lagrangemultiplier term l Lx2 that constraints á ñLx to some value, the details can be found in appendix A. In
practice, FJ (X) is computed typically for an integer J only, whichmakes it possible to detect ( )+k 1 -particle
entanglement for any k for an integer j and for an even k for a half-integer j. In the latter case, it is not a large
restriction to consider only even k, since the entanglement depth in cold atom experiments can be quite large
[7–9].

In a similar fashion, we can also obtain the curve forGJ(X) defined in (6). The points of the curve are given as
= á ñflX L

J z
1 2
2 and ( ) = á ñflG X L .J J x

1 2 Infigure 1, we drewGJ(X) for various values of J .Based on these, the

boundary for k-producible states in the ( ( ) )á + ñ DJ J J,y z x
2 2 2 -plane is given by
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J J
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1 ,
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y z z

x x

2 2
2

2 2
2

2 2

In the numerical calculations, Ll areHermitianmatrices of size ( ) ( )+ ´ +kj kj2 1 2 1 .Hence, it is possible to
draw the boundaries for various levels ofmultipartite entanglement for kj reaching up to the thousands, and for
an arbitrarily large N .

Wemention that for J=1we have ( ) ( )= - -G X X1 11
1

2
, i.e., the function on the right-hand side of

the criteria can be obtained analytically. Substituting ( ) ( )=F X G X1 1
2 into (5), we can obtain an analytic

2-producibility condition for qubits and an analytic separability condition for qutrits. Infigure 2, we plotted the
curves for k-producible states for some examples with spin- 1

2
and spin-1 particles. For higher J, the function

GJ(X) is not known analytically. Based on uncertainty relations of angularmomentumoperators, a lower bound
onGJ(X) for any J can be obtained as

3
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˜ ( ) [( ) ( ) ] ( )= + - - + - -G X J JX J JX X
1

2
1 1 , 12J

2

which is not tight for small J and smallX, but becomes tight for large J andX close to 1 [18].

3.Nonlinear criterion

In this section, we present ourfirstmain result.
Observation 1.The inequality in (5) holds for all k-producible states ofN spin-j particles. Thus, every state of

N spin-j particles that violates (5)must be ( )+k 1 -entangled. The condition (5) can be used if
( )á + ñ +J J Nj kj 1y z

2 2 , while otherwise there is a k-producible quantum state for which ( )D =J 0.x
2

Proof.The key argument of the proof is that for pure k-producible states ofN spin-j particles

( )
( )

( )
á ñ + á ñ á + ñ - +

-

J J

Nj

J J Nj kj

N N k j

1
13

y z y z
2 2 2 2

2

holds, which is proven in appendix B.1. Then, based on (13) and on themonotonicity of FJ (X) in X ,wehave for
pure k-producible states

Figure 1.The functionGJ(X) defined in (6) for (left to right) = ¼J 1, 3, 5, , 19.

Figure 2. 20-producibility criteria forN=200 qubits. (solid)The boundary given by (5). (dashed)Criterion (7), i.e., the tangent to the
curve given by (5). (dotted)Criterion (22) given in [39]. (inset)Curves for k-producibility forN=20 spin-1 particles, for (left to right)
=k 1, 5, 9, 13, 17.

4
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( ) ( ) ( )F Flhs rhs . 14J J

Here, we used the notation lhs and rhs for the left-hand side and right-hand side of the relation (13), respectively.
On the other hand, the Sørensen–Mølmer criterion (4) can be rewritten as

( ) ( ) ( )DJ NjF lhs . 15x J
2

From (14) and (15) follows that (5) holds for pure k-producible states.
Next, wewill considermixed states. In the formula (5) the argument ofG is linear in the state. Then, our

criterion (5) can be extended tomixed k-producible states via a convex hull ofGJ(X). However we can observe
numerically thatGJ(X) is convex already by itself. The tightness of (5) is discussed in appendix B.2, while the
convexity ofGJ(X) is considered in detail in appendix B.3. ,

The criterion (5) is especially suited to detect states for which á + ñJ Jy z
2 2 is large and ( )DJx

2 is small. A
paradigmatic example for such a state is the unpolarizedDicke state in the x-basis

∣ ∣ ( )r = = = ñá = =J Nj m J Nj m, 0 , 0 , 16x xDicke

that satisfies ( )D =J 0x
2 and ( )á + ñ = +J J Nj Nj 1y z

2 2 and is detected asN-entangled. In fact, substituting these
quantities in the criterion (5) the left-hand side is zero, while the right-hand side is positive for = -k N 1.Note
also that theDicke states violatemaximally even the relation (13) for pure k-producible states6.

4. Linear analytic criteria

In this section,wewill derive the spin-squeezing parameters (7) and (8). Complementary to the approximation (12),
our approach is basedon a lower boundonGJ(X) that is tighy for »X 0 and improves G̃J at smallXby a factorof2.
For our derivation,wewill compute thefirst termsof theTaylor expansionofGJ(X) aroundX= 0.Using the
convexity of ( )G X ,J wewill obtain the bound ( ) ( ( ) ( )) + ¢G X G XG0 0 ,J J J with ( ) =G 0 0.J Inotherwords,we
will compute the tangent to the k-producibility boundaries, near their intersectionpointwith the horizontal axis.

Inwhat follows, we present the details of the derivation. The expansion ofGJ(X) can be obtained by
employing the perturbation series forHλ in powers of the parameter l 1, taking advantage of the fact that
X=0 corresponds to l = 0. The ground state ofHλ is then given by ∣ ∣ ∣ ( )( ) ( )f f l f lñ = ñ + ñ +l O0 1 2 7, where

∣ ( )f ñ0 is the ground state of the unperturbedHamiltonian ( ) =H Lx
0 2, i.e., the eigenstate of Lxwith eigenvalue

zero. As in usual perturbation theory, the first order term is obtained by imposing ∣( ) ( )f fá ñ = 00 1 and results in

∣ ∣( ) ( )f ñ = å ñ¹ c Em m m
1

0
0 , where ∣ ∣ ( )( ) ( ) ( ) ( ) ( )= -á ñ -c E H E E Em m m

0 1
0

0 0
0

0 and ( )Em
0 are the energy levels of the

unperturbedHamiltonian. In our case, we obtain ∣ ∣( )f ñ = å ñ¹ c mm m x
1

0 with ∣ ∣= -á ñc m L m0 ,m x z x
2 where

∣ ñm x are the eigenstates of Lxwith eigenvalue m.The expansion of the ground state explicitly is as follows

∣ ∣
( )

(∣ ∣ ) ( ) ( )f l lñ = ñ -
+

ñ - - ñ +l
J J

O0 i
1

2
1 1 . 17x x x

2

Based on (17), we obtain for the dependence ofX andGJ(X) on l, respectively, ( ) ( )l l= á ñ » +flX L J 1
J z
1 2 2 2
2

and ( ( )) ( )l l= á ñ » +flG X L J 1 .J J x
1 2 1

2
2 Hence, we arrive at

( )
( )

( )
+

G X
X

J2 1
, 18J

by employing the chain rule for
( ( )) ( ( )) ( )=l l

l
l
l

G X

X

G X Xd

d

d

d

d

d
J J near l= =X 0.Based on this, we can derive an

analytic criterion that becomes tight close to the point ( )D =J 0x
2 . Note that we could also use ˜ ( )G XJ defined in

(12) instead ofGJ(X) for constructing our linear entanglement condition. However, taking the derivative of
˜ ( )G XJ one obtains ( ) ˜ ( ) ˜ ( )

( )
  ¢ =

+
G X G X XG 0J J J

X

J4 1
, which underestimates (18) by a factor of 2. Note that

we computed the leading terms for the Taylor expansion ofGJ(X) analytically, while the function itself is known
only numerically.

Observation 2.The criteria in (7) and (8) hold for all k-producible states ofN spin-j particles such that J
given in (2) is an integer number. Every state ofN spin-j particles that violates one of the criteriamust be
( )+k 1 -entangled, i.e., has an entanglement depth at least +k 1.

Proof. From (18)we can bound the criterion (5) frombelowwith (7) by substituting
[ ( )] [ ( ) ]= á + ñ - + -X J J Nj kj N N k j1y z

2 2 2 . Analogously, by rewriting (4) in terms ofGJ and using the

bound (18)with = á ñX J N jz
2 2 2 we obtain (8). ,

6
We stress that (13) is not an entanglement criterion, since it does not hold formixed k-producible states.

7
O(x) is the usual Landau symbol used to describe the asymptotic behavior of a quantity for small x.
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Infigure 2, we plot the criterion(7) as the tangent to the boundary of 20-producibility forN=200 particles
with spin =j 1

2
in the ( ( ) )á + ñ DJ J J,y z x

2 2 2 -plane.

5. Comparisonwith similar criteria

Next, we compare our criteria with other similar entanglement conditions. First let us consider the Sørensen–
Mølmer criterion (4).

Observation 3.Whenever the condition

( ) ( )
( )

D + D
> -

á ñ + á ñ
+

⎛
⎝⎜

⎞
⎠⎟

J J

Nj
kj

J J

N j
1 1 19

y z y z
2 2 2 2

2 2

holds then our criterion(5) is strictly stronger than the Sørensen–Mølmer criterion (4).

Proof. (a) Since FJ(X) is amonotonously increasing function of X , the inequality ( ) ( )F X F YJ J holds if
and only if X Y .Hence, for comparing (4) and (5) it suffices to compare the arguments of the function
F in the two conditions. It is then straightforward to prove that (5) implies (4)whenever (19) holds. Then,
let us now present a family of states that are detected by (5), but not detected by (4).We consider states of
the form

( )
( )

( )r r= - +
+


p p
j

1
2 1

, 20p NDicke, Dicke

where the unpolarizedDicke state is given in (16). From the linear criterion (7)we obtain that if
( )

( )( )( ) ( ) ( )
< -

+ + - - + + +
p

N k j

j j kj N k j Nj

3

2 1 1 2 1 3 1
then the state r pDicke, is detected by (5). On the other hand, r pDicke, is

not detected by the Sørensen–Mølmer criterion(4), since á ñ =J 0l for =l x y z, , for this state for all p. ,

Fromobservation 3, we can immediately see that our criterion (5) ismuch stronger than the original spin-
squeezing criterion (4) for states close toDicke states (16) since for such states ( ) ( ) D + DJ J Nkj .y z

2 2 2 Here,
we assumed that k ismuch smaller than N , which is consistent with experiments, where criterion (4) always
detects an entanglement depthmuch smaller thanN due to noise [7, 9].

Let us now study numerically howour criterionworks for a relevant class of states.We consider spin-
squeezed states of spin- 1

2
particles obtained from ground states of theHamiltonian

( )m= -mH J J , 21x z
2

for simplicity assuming an even particle number. TheDicke state (16) corresponds to m = 0, while the usual
spin-squeezed states with a large spin polarization correspond to a large m. For such states without noise, our
criterion (5) is not stronger than (4).

Simple calculations show that if some small noise is present in the system then (5) detect an entanglement
depth higher than the original criterion (4). First we consider spin-squeezed states forN=1000 spin- 1

2
particles, such that 10 particles are decohered into the fullymixed state. Such a noise is typical in cold atom
experiments [43]. The results can be seen infigure 3.Our criterion (5) and the Sørensen–Mølmer criterion (4)
detect the same entanglement depth for almost completely polarized spin-squeezed states. On the other hand, as
the squeezing increases, our criterion detects amonotonically increasing entanglement depth, while the other
criterion detects smaller and smallermultipartite entanglement.While we considered a noise affecting a few
particles, still the detected entanglement depth ismuch smaller than N .Other types of noise, such as particle
loss, small addedwhile noise, or noise effectsmodeled considering the thermal states of (21) lead to a similar
situation.

Next, we compare our criteria with another important condition that is designed to detect the depth of
entanglement near unpolarizedDicke states (16). It is a linear criterion derived byDuan in [39], stating that

( )( ) ( ) ( )+ D á + ñ - +N k J J J
N

k2
4

2 22x y z
2 2 2

holds for all k-producible states ofN spin- 1

2
particles. Any state that violates (22) is detected as

( )+k 1 -entangled. In this case, we can compare it with the linear criterion (7), specialized to qubit-systems, i.e.,
for =j 1

2

( ) ( )( ) ( ) ( )-
+ D á + ñ - +

N k
k J J J

N
k

2
2

4
2 . 23x y z

2 2 2
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It is easy to see that a violation of (22) implies a violation of (23). Thus, our condition detectsmore states, which
can be seen infigure 2.

Finally, we note that (5)with =j 1 2 is similar to the criterion for spin-1/2 particles used in the experiment
described in [8]. A key difference is that in (5), in the denominator of the fraction, the term

( ) ( )- = -N N k j N N k 42 appears, while in the formula of [8] there is the term N 4.2 The difference
between the two criteria is the largest whenwe examine highly entangledDicke states or spin-squeezed states,
and in the argument of FJ (X)wehave a value close toX= 1. In the vicinity of this point, the derivative of FJ (X) is
very large, hence some improvement in the argument of FJ (X)makes the bound on the right-hand side of (5)
significantly higher. As a consequence, the criterion (5) can be used to detect the noisyDicke states ofmany
particles even in ~k N case, while the criterion of [8] can be used onlywhen k N , and it does not detect the
Dicke state asN-entangled.

6. Extension tofluctuating number of particles

Formacroscopic ensembles of particles, e.g., for ~N 106, the total particle number is not under perfect control.
In this section, wewill generalize our entanglement criteria to such a situation. The quantum state of a large
particle ensemblewith a fluctuating particle number is given as

( )år r= Q , 24
N

N N

where rN are the densitymatrices corresponding to a subspacewith a particle numberN andQN are
probabilities.We also have to consider collective spin operators defined as = åJ Jl N l N, for =l x y z, , ,where
J ,l N, act on the subspacewithN particles. In principle, one could evaluate an entanglement condition, e.g., (4) for
one of thefixed-N subspaces. If rN has an entanglement depth k for some N , then the state ρ has also at least an
entanglement depth k.However, in practice, wewould not have sufficient statistics to evaluate our entanglement
criteria for some fixed N .This issue has been studied byHyllus et al [19], who generalized the definition of
entanglement depth to the case of afluctuating number of particles. They also showed how spin-squeezing
criteria can be used in this case such that all the collected statistics is used, not only data for a given particle
number N .For instance, (4) can be transformed to [19]

( ) ( )D á ñ
á ñ
á ñ

⎛
⎝⎜

⎞
⎠⎟J N jF

J

N j
. 25x J

z2

Here, (25) could be obtained from (4) simplywith the substitution  á ñN N .
Usingmethods similar to the ones in [19], wewill nowobtain the criterion (4) forfluctuating particle

numbers.
Observation 4.All k-producible states with afluctuating particle numbermust satisfy the following

inequality

Figure 3.Multiparticle entanglement for spin-squeezed states ofN=1000 spin- 1

2
particles, after 10 particles decohered into the

completelymixed state. (solid)Entanglement depth detected by our criterion (5) and (dashed) the Sørensen–Mølmer criterion (4).
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( ) ( )D á ñ
á ñ
á ñ

⎛
⎝⎜

⎞
⎠⎟J N jG

W

N j
, 26x J

2

wherewe define the operator

( ) [ ( ) ] ( )å= - + - +- W Nj kj J J Nj kj 1 , 27
N

y N z N N
1

,
2

,
2

á ñW 0 is required, and J is the total spin of a k-particle group given in (2).

Proof.Wehave to start from a state of the form (24). Due to the concavity of the variance, the variance of the
mixed state can be bounded frombelowwith the variances of N as ( ) ( )D å DJ Q J .k N N k N

2
,

2 Moreover, since
GJ(X) is convex in X , it has to satisfy Jensen’s inequality. Thus,

( ) ( )
å å

å
å

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Q N

Q NG X G
Q NX

Q N

1
28

N N N
N J N J

N N N

N N

with =
á ñrXN
W

N
N andá ñ = åN Q NN N must hold. Based on these, the statement of the observation

follows. ,

Note that the operatorW defined in (27) is simply a sumof +J Jy N z N,
2

,
2 over allfixed-N subspaces,

normalizedwith ( )-Nj kj . Thus, to apply our condition in experiments withfluctuating number of particles,
one needs tomeasure the spin operators and the particle number jointly at each shot, and then average over an
ensemble.

Finally, let us consider how to apply the ideas above for the spin-squeezing parameters defined in this paper.
The parameter (8) can be extended tofluctuating particle numbers simply by replacingNwith á ñN . Similarly, for

the parameter (7), we have to replace
( )

( )
á + ñ - +

-

J J Nj kj

N k j

1y z
2 2

by á ñW .

7. Conclusions

Wederived a set of criteria to determine the depth of entanglement of spin-squeezed states and unpolarized
Dicke states, extending and completing the results of [8, 18]. These generalized spin-squeezing conditions are
valid even for an ensemble of spin-j particles with >j ,1

2
which is very useful, sincemost experiments are carried

outwith particles with a higher spin, e.g., with spin-1 Rb87 atoms.
Since theory ismostly available for the spin- 1

2
case, pseudo spin- 1

2
particles are created artificially such that

only two of the levels are populated.While the spin-squeezing approach to entanglement detection is already
widely used in such systems [7, 8, 20–26, 33, 38], our criteriamake it possible to study spin-squeezing in
fundamentally new experiments. A clear advantage of using the physical spin is that it is typicallymuch easier to
manipulate than the pseudo spin- 1

2
particles [33]. In future, it would be interesting to clarify the relation

between generalized spin squeezing andmetrological usefulness [44–49], and also compare our results with the
complete set of spin-squeezing criteria of [50], which contain one additional collective observable, related to
single-spin average squeezing.
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AppendixA. Computing FJ (X) andGJ (X) for half-integer spin

For half-integer spins, we have to calculate FJ (X)numerically as follows.We consider theHamiltonian [18]

( )l l= - -l lH L L L , A.1x z x,
2

22
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and denote its ground state by fl l ., 2
Then, FJ (X) can be obtained as

( ) ( ) ( )= D
l l

y
á ñ= l l

F X Jmin , A.2J

J
L X

x
, : 1

2

z2
, 2

which is a two-parameter optimizationwith the constraint á ñ =L X.
J z
1

Appendix B.Details of the proof of observation 1

B.1. Proof of (13)
Toprove (13), let us consider the expression ( ) ( )D + DJ Jy z

2 2 on pure k-producible states (9). Due to the
additivity of the variance for tensor products

( ) ( ) [( ) ( ) ]

[ ( ) ( ) ] ( )

( ) ( )

( ) ( ) ( )

å

å

D + D = D + D

+ - á ñ - á ñ - á ñ

J J j j

k j k j j j j1 B.1

y z
l

y
l

z
l

l
l l x

l
y
l

z
l

2 2 2 2

2 2 2

holds, where the superscript ( )l indicates the lth group, that is composed of kl particles. The inequality (B.1) is
saturated by all quantum states for which ( ) ( ) ( )( ) ( ) ( )á + + ñj j j

x
l

y
l

z
l2 2 2 ismaximal, i.e., equal to ( )+k j k j 1l l , for

all l.
For simplifying our expression, we neglect the non-negative quantity

≔ ( ) ( )( ) åá ñj , B.2
l

x
l 2

and after some rearrangement of the terms in (B.1)we arrive at

( )
( )

( )
( ) ( )



å

á + ñ á ñ + á ñ

+ + -
á ñ + á ñ⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

J J J J

k j k j k j
j j

k j
1 . B.3

y z y z

l
l l l

y
l

z
l

l

2 2 2 2

2 2

2 2

From (B.3), we can obtain a simpler bound as

( )
( ) ( )



å

á + ñ á ñ + á ñ +

+ -
á ñ + á ñ⎡

⎣
⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦
⎥⎥

J J J J Nj

k j kj
j j

k j
1 , B.4

y z y z

l
l

y
l

z
l

l

2 2 2 2

2 2

2 2

due to the fact that  å =k k k N, ,l l l and that the expression inside the round brackets in (B.4) is positive.
Furthermore, using Jensen’s inequality in the form

( )å å å- - =
⎛
⎝⎜

⎞
⎠⎟k f

N
k f k N

1
, , B.5

l
l l

l
l l

l
l

2
2

with
( )

=
á ñ

fl
j

k
m

l

l
for =m x y z, , we obtain

( ) ( ) ( )á + ñ - + - á ñ + á ñ⎜ ⎟⎛
⎝

⎞
⎠J J Nj kj

k

N
J J1 1 . B.6y z y z

2 2 2 2

Hence, we proved (13).

B.2. Tightness of (13) and (5)
Wewill now examine, how the relation (13)would look for pure k-producible states (9)without neglecting
defined in (B.2). Simply, á + ñJ Jy z

2 2 would be substituted by á + ñ +J Jy z
2 2 .With a derivation similar to the one

in appendix B.1, it can be shown that such a conditionwould be saturated by all quantum states of the form
∣ ∣ ∣y y yñ Ä ñ Ä Ä ñ... , if ∣yñare k-qubit states and á + + ñyj j j

x y z
2 2 2 ismaximal, i.e., it is ( )+kj kj 1 . (Herewe

assumed that is defined such that all particle groups contain k particles, i.e, =k kl for all l.)
Let us now see how large is for relevant states. For the state fully polarized in the z-direction, we have

( ) ( )( ) å= D =j Nj 2, B.7
l

x
l 2 2

wherewe used the fact that ( )á ñ =j 0l for such a state. Let us consider now the ground states of theHamiltonian
(21) for a given parameter m. Such states include usual spin-squeezed states, as well asDicke states (16). For any
m,

9
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( ) < Nj 2 B.82

holds, since for such states the variance of the x-components of the collective angularmomentum is squeezed
below that of the completely polarized state for any particle group.Note that the upper bound in (B.8) does not
growwith k.

Let us now consider the other relevant quantity, á + ñJ J .y z
2 2 For the state fully polarized in the x-direction, we

have ( )á + ñ = +J J Nj Nj 1 2 .y z
2 2 For theDicke state (16), ( )á + ñ = +J J Nj Nj 1 .y z

2 2 For ground states of (21)
for m > á + ñJ J0, y z

2 2 is in between these two values. This can be seen noticing that

( )á + + ñ = +J J J Nj Nj 1x y z
2 2 2 for these states.

Based on the previous discusion, it is clear that  á + ñJ Jy z
2 2 holds for large N .Hence, in practical cases

the relation (13) is very close to being tight. Consequently, the criterion (5) also provides a tight bound on ( )DJx
2

based on á + ñJ Jy z
2 2 in the largeN limit.

B.3. Properties ofFJ andGJ

The functions FJ (X) can be obtained from the optimal states ρ for the problemdefined in (3), i.e., the states that
minimize ( )DLx

2 for a given á ñLz . As discussed in section 2, for an integer spin J, such states are the ground states
of (10), whereλ is a parameter. They have á ñ =L 0x [18]. Thus, FJ (X) yields theminimal á ñJx

2 for a given value of
á ñJz . Since the set of physical states is convex, the set of points in the ( )‐á ñ á ñJ J,z x

2 space corresponding to physical
states is also convex. Hence, FJ (X) is also a convex function and in particular its derivative ( )l X is
monotonously increasing withX. Note that in [18] a different proof was presented for this fact. In principle, the
derivative ( )¢F XJ can be computed by numerical derivation of ( )F X .J However, it ismuch simpler to obtain

( )¢F XJ for some range ofX by plotting ( )lá ñflL ,
J z
1 for some range ofλ [18]. In other words, for = á ñflX L

J z
1

the derivative is ( ) l¢ =F X .J

To show that alsoGJ(X) is convexwe observe that ( ) ( )¢ = ¢G X F XJ X J
1

2
is amonotonously increasing

function of X.Weevaluate numerically the derivative ( )¢G XJ by plotting( )lá ñf á ñl fl
L ,

J z
J

L

1 2
2 z

2 for awide range of

λ, seefigure B1, and see explicitly itsmonotonicity.
More generally, one can checkwhether or not ( )aF XJ

1
is convex for any exponentα. It can then be observed

numerically (not shown) that ( )aF XJ
1
is not convex for any a > 2.

So far we discussed the case of integer spin. For half-integer spin, the ideasmentioned before cannot be used.
Then, the derivative ofGJ can be obtained via the numerical derivation of ( )F X .J Based on numerics, we can

make the same statements about the convexity ofGJ(X) and ( )aF XJ
1
as for the case of an integer spin.
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