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“Daily work— my hands’ employment, 

To complete is pure enjoyment! 

Let, oh, let me never falter! 

No! There is no empty dreaming: 

Lo! These trees, but bare poles seeming, 

Yet will yield both food and shelter” 
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1. INTRODUCTION 

 Background 

In the last decade, electric vehicles have become a sustainable alternative to current vehicles 

based on internal combustion engines. Governments of industrialized countries are taking 

measures to push the development and marketing of electric vehicles in order to face global 

warming and air pollution of cities. Between these measures, financial incentives, tax 

exemptions and tax deductions are the most common. Furthermore, several countries have 

stablished emission standards, which are designed to limit the pollutant emissions of new 

light vehicles sold in these countries. 

Moreover, better and more affordable batteries have reduced noticeably the overall cost of 

the electric vehicles. Although, electric vehicles have a small market niche, it is expected 

that sales will continue to grow due to two main reasons: the economy of scale and new 

battery developments. Regarding to economy of scale, some companies are building battery 

factories to reduce their costs. Additionally, it must be pointed out that batteries are widely 

used in others growing sectors such as distributed energy storage and unmanned vehicles. 

Most of the electric vehicles are charged through a wire connection between the vehicle 

and the LV distribution network. This type of electric vehicle, which has the possibility to 

be connected to the grid, is known as plug-in electric vehicle (PEV). Nowadays, PEVs are 

charged immediately after they are plugged into the electrical power supply. This action 

usually happens when PEV users arrive home and it usually matches with the higher 

residential power demand. Therefore, the uncontrolled charging of a significant amount of 

PEVs will result in a greater energy demand, which can lead to several problems such as: 

increase of energy losses, peak power, voltage deviations, overload issues, reduction of 

distribution transformer lifetime, etc. 

In this aspect, some countries are encouraging the charging of PEVs at night by using time 

of use (TOU) tariffs. This way, the energy demand of PEVs is delayed in order to avoid an 

increase of peak power. However, this strategy could not be good enough to deal with the 

charge of an important number of PEVs. In addition, TOU tariffs can produce avalanche 

effects, that is, a large number of PEVs starting their charging process at the same time.  

Regarding to the mentioned LV distribution network problems, they depend on several 

factors such as: number of PEVs, their energy demand, charging power, charger efficiency, 

connection and disconnection time, etc. Some of the mentioned factors depend on driving 

and charging behavior of PEV users. Thus, it is necessary to develop a model in order to 

know and compare the impacts produced by the application of different charging strategies 

at different penetration rates of PEVs. 

Also, it is necessary to develop new charging methods or strategies in order to reduce as 

much as possible the impacts on LV distribution networks. Furthermore, these new 

charging strategies should be beneficial to all stakeholders (PEV users, utilities and network 

operators) in order to avoid conflict of interests. This is especially important because PEV 

users will not allow any control of their PEVs if they are not rewarded. Considering these 

aspects, research community has proposed a wide range of solutions to improve the 

integration of PEVs into electric networks. However, most of them are partial solutions or 
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important aspects have been ignored. Thus, there is still a considerable room for 

improvement. 

 Aims of the thesis 

Electromobility could be the new paradigm in the private transport sector. The integration 

of PEVs into electric networks and the implementation of them with smart grid 

technologies could bring benefits to all stakeholders. In this context, this thesis has the main 

objective of developing a new smart charging algorithm, with the following characteristics: 

 Reducing the charging cost for the PEV users. In a free electricity market, where 
electricity prices vary each hour in function of the demand level and the mix of 

generation, PEVs should be charged at hours with the lowest electricity cost whenever 

it is possible. 

 Improving the load factor of the electric network. That is, reducing the difference 

between peak and off-peak power demand. This is particularly interesting for electric 

utilities because it will increase the economic efficiency of electric infrastructure. 

Furthermore, increasing the load factor will delay or reduce the possible grid 

reinforcement needs. 

 Reducing the expected impacts of massive integration of PEVs into LV distribution 
networks, allowing a greater PEVs penetration level without compromising the 

distribution network reliability. 

Apart from the mentioned characteristics, the proposed algorithm should be reliable and 

not dependent of the number of controlled PEVs. In addition, users’ privacy should be kept 

as much as possible. 

The proposed methodology has been tested through simulations, using real data of a LV 

distribution network located in Borup (Denmark). Additionally, a new driving and charging 

behavior model has been developed, as a necessary previous step to test the viability of the 

proposed smart charging algorithm. 

 Structure of the doctoral thesis 

This thesis is structured in 6 chapters. This first chapter contains the background and aims 
of the thesis as well as the structure of the document. 

The second chapter is focused on describing the role of electric vehicles and their current 

status and perspectives in the transport sector. Also, the main drivetrain topologies and the 

most important components of this type of vehicles are presented. 

In the third chapter, different aspects related to PEVs and electric distribution networks are 

introduced. These aspects include charging methods, charging strategies, impacts on LV 

distribution networks due to the charging of PEVs and opportunities to be exploited in the 

integration of PEVs and electric networks. 

Before the new methodology is presented, the fourth chapter includes a state-of-art of the 

already proposed smart charging algorithms. In addition, theory of mathematical 

programming is introduced due to its importance as a mathematical tool to solve 

optimization problems. 
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After that, the proposed methodology is explained in chapter five. In the first part of this 

chapter, the simulation setup used in this thesis has been explained. Then, the grid topology 

and the model of PEVs have been introduced. The distribution network used in this thesis 

is based on a real one located in Denmark. Additionally, real consumption data of 

households have been used. Then, a new driving and charging behavior model has been 

developed based on 2009 NHTS, which database is freely available. After that, several 

smart charging algorithms, which are part of the proposed methodology, are tested. 

Following, the new proposed smart charging algorithm is presented and their characteristics 

analyzed using the driving and charging model proposed in this thesis and the LV 

distribution network of Borup. Two different versions have been developed, depending on 

whether load forecasting is used. Additionally, an improvement to reduce voltage 

unbalances, named as VUR, has been proposed. To end this chapter, a comparative analysis 

has been carried out and a possible system architecture is proposed.  

Finally, the sixth chapter gathers the conclusions drawn from the research work developed 

in this thesis and proposes future areas that could be explored to continue the research 

initiated in this thesis. 

The thesis is completed with a list of references of previous works as well as four annexes 

containing additional data and figures from the study cases analyzed in this thesis. 
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2. LAND TRANSPORT: TOWARDS ELECTRIC MOBILITY 

 Introduction 

Currently, land transport sector is facing important challenges regarding the energetic 

model based on oil products such as gasoline and gasoil. The use of these fuels in internal 

combustion engine vehicles (ICEVs) is the main cause of pollution in cities, which can 

affects the habitants’ health. Indeed, air pollution not only causes respiratory problems to 

adults and children but also may cause heart attacks, strokes, messes with the metabolic 

system and has links to diabetes. Therefore, policymakers are giving more importance to 

this issue and have begun to promote projects of low emission vehicles. 

Additionally, the combustion of these types of fuels produces greenhouse gases (GHG) 

such as CO2, which is one of the gases responsible of the global warming. The earliest 

impacts of climate change are starting to be noticed in many parts of the world.  

Apart from environmental aspects, economic and politic aspects must be also taken into 

account. Nowadays, the production capacity of petrol and natural gas has increased because 

of the use of hydraulic fracturing technique and, as consequence, oil prices have fallen. 

However, developed countries continue promoting the alternative energies for road 

transport, in order to reduce as much as possible the oil dependency. Furthermore, the 

dependence and excessive use of oil entails geopolitical problems because of the instability 

of some producing countries and the use of oil as economic weapon. 

In this context, the society has begun to understand that ICEVs should not be the future of 

mobility. Thus, alternative vehicles are being developed during last decades. Among them, 

electric vehicles (EVs) are one of the most outstanding solution. 

This chapter presents the challenges, opportunities and current state of electric vehicles in 

land transport sector. In addition, an overview on main drivetrain topologies and 

components of electric vehicles is provided. 

 Electric vehicles in land transport sector. Challenges and opportunities 

Land transport sector depends largely on oil products. In fact, 71% of the petroleum 

consumed in the world in 2011 was due to the transport sector. In addition, the 93% of the 

energy consumed by the transport sector depends on petroleum [1]. Several actions have 

been taken in order to reduce this dependency. On the one hand, public transport has been 

developed, especially electric trains (high speed trains, trams and subways). On the other 

hand, efficiency in private transport has been improved, by reducing the weight of vehicles 

and using more efficient ICEs. However, the improvements made on the ICEs are not 

enough to drastically reduce oil consumption. In this context, carmakers and researchers 

have proposed several options to overcome this problem. 

The solutions proposed include vehicles powered by biodiesel, ethanol, compressed natural 

gas (CNG), liquefied natural gas (LNG), hydrogen, compressed air, electric vehicles, etc. 

In the last decade, it seems that electric vehicles are leading the way in terms of efficiency 

and sustainability. Compared with conventional vehicles, EVs present various advantages 

listed as follows: 
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 Reduces consumption of oil and decreases energy dependency from oil producing 

countries. Decreasing oil imports will improve the balance of payments of no producing 

countries.  

 Reduces GHG emissions in function of electricity generation mix [2], [3]. 

 Improves air quality in cities and, as a consequence, public health of citizens. 

 Increases transport sector efficiency, while the cost per kilometer is significantly lower 
than with internal combustion engine vehicles [2]. 

 Can be charged from a wide range of different primary energy sources, adapting to the 

locally available energy sources. 

 Could bring another set of advantages, due to the interaction between EVs and the 
electric grid, such as: integration of more intermittent renewable energy sources (RES), 

improvement of the electric grid efficiency and reliability and decrease of GHG intensity 

of the grid.  

Taking into account these advantages, governments of different countries are encouraging 

the purchase of electric vehicles by subsidizing or financing them and implementing other 

actions, such as: tax exemption, tax deductions, transit and parking facilities, etc. 

Furthermore, some countries have established, or are in the process of establishing, limits 

on pollutant emissions for light vehicles. These countries are, mainly, Australia, Canada, 

China, European Union, Japan, South Korea and the United States [4], [5]. To adapt their 

vehicles to these new regulations, automobile manufacturers have reduced emissions of 

ICEVs and are developing new electric drive vehicles. Thus, a strong annual sales growth 

of EVs is expected over the coming years/decades, being possible to reach a million of units 

sold globally in 2017 [6]. 

Additionally, in recent years a new technology is being developed, the autonomous car, 

self-driving car or driverless car. This technology consists in reducing as much as possible 

the intervention of drivers in the driving process. This way, traffic accidents will be 

probably reduced and drivers’ comfort will be improved. This type of technology is 

strongly associated with electric vehicles as they are better suited to host this new 

technology. 

 Current state of electric vehicles around the world 

Electric vehicles technology is not new. In fact, electric vehicles were very popular at the 

end of 19th Century and the early 20th because they provided a level of comfort and ease of 

use not reachable by gasoline cars of the time. During that period, autonomy limit of electric 

vehicles was not such a problem because road infrastructure was incipient.  

However, a set of events contributed to the decline of the electric vehicles of that period. 

These events were: the discovery of large petroleum reserves, the improvement of road 

transport infrastructures, the invention of electric starter and muffler for gasoline engines 

(which increased the comfort level of ICEVs) and, finally, the introduction of mass 

production of ICE cars by Henry Ford. At the end of this period, an electric car cost almost 

twice than an ICEV. In addition, EVs had by far less autonomy and speed. 

After a period in which EVs technology usage was marginal, the interest on EVs has 

increased during the last decades. In fact, new carmakers have appeared to satisfy this new 

market, such as Tesla Motors. Currently, most of carmakers are developing new electric 

cars. So, it is expected that this trend will continue in the future. 
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Figure 2.1 shows the evolution of worldwide PEV sales. In spite of the fall of oil prices in 

the last year, PEV sales are still growing strongly. Currently, the top five markets for PEVs 

are: the United States, China, UK, Norway and Japan, in that order. The main characteristics 

are the following: 

 

Figure 2.1. Worldwide sales of plug-in electric vehicles 

 The United States is currently the biggest market for plug-in electric vehicles, where 

55,357 PHEVs and 63,416 BEVs were sold in 2014. The market share for PEVs was 

0.72%. In the same year, 451,702 hybrid electric vehicles (HEVs) were sold. 

 

 Regarding to Chinese market, it has the largest increase in PEV sales by far. In fact, the 

PEV sales in 2014 has tripled compared to 2013. PEVs market share has increased 

0.09% in 2013 to 0.25% in 2014. This trend is continuing in 2015, achieving the 0.8% 

of market share. Thus, above 24,000 PEVs were sold only in October, close to the 

number of PEVs sold in the United States and Europe in September. Additionally, 

current PEV sales in China do not depend only on a few PEV models, as in the past 

years. Currently, there are several car models pulling the market up, in a sustained way, 

confirming what many analysts have forecasted for years: the EV revolution will start 

in China. 

 

 In UK, PEV sales have also increased noticeably in the last years. Around 4,000 PEVs 
were sold in 2013. However, in 2014 PEV sales achieved 14,000 units which is an 

increase of 350%. This trend continues in 2015, when 13,000 units were sold only in the 

first half of the year, reaching the 1% of car market share. 

 

 With regard to Norway, this country has implemented multiple incentives to encourage 
buying electric vehicles. These incentives include: no purchase taxes (25% of value-

added tax), no recurring taxes, free public parking, exempt in toll payments and the 

permission of driving in bus lanes. Incentives have been set to achieve a target of 50,000 

electric cars (2% of Norway’s vehicle fleet) by 2018, but this target has been surpassed 

in April of 2015, two years earlier. Currently, the government of Norway has to decide 

what to do with these incentives. 
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 In contrast, PEV sales in Japan have stagnated in 2014 and 2015, mainly due to the lack 

of new models of PEVs made by Japanese carmakers. Toyota and Honda still do not 

have a battery electric vehicle model, because they have decided to develop the fuel cell 

vehicle based on hydrogen. Note that Toyota has put up for sale the Toyota Mirai, a fuel 

cell vehicle which has a Chademo connection. This way, the vehicle can be used to 

power houses in emergency situations. 

 

Following, the most outstanding drivetrain topologies of electric vehicles and their 

advantages and drawbacks are presented. 

 Plug-in electric vehicle drivetrain topologies 

In this thesis, an electric vehicle is defined as a vehicle which uses at least one electric 

motor for traction purposes. Thus, plug-in electric vehicles can be considered as a 

subcategory of electric vehicles. There is no an international definition for plug-in electric 

vehicle but according to the U.S. Department of Energy, a PEV can be defined as a light 

vehicle which draws electricity from a battery with a capacity of at least 4kWh and is 

capable of being charged from an external source [7]. Within this definition several types 

of PEVs can be distinguished, mainly plug-in hybrid electric vehicles (PHEV), battery 

electric vehicles (BEV) and fuel cell plug-in hybrid electric vehicles (FC-PHEV). In 

contrast, vehicles such as hybrid electric vehicles (HEV) are not considered as PEVs. The 

batteries of these types of vehicles are charged with electricity generated internally by using 

an internal combustion engine and they cannot be charged with electricity drawn from the 

electric grid. 

 Plug-in hybrid vehicles (PHEV) 

Plug-in hybrid electric vehicles are powered by an electric motor and an internal 

combustion engine and they can be plugged into the electric grid in order to charge their 

batteries. An ICE and a battery are used to provide energy to the vehicle. This way, the 

advantages of both types of technologies are obtained. That is, the ICE provides better 

autonomy and refueling times while the electric engine reduces pollutant emissions and 

increases overall efficiency. Additionally, batteries of PHEVs can be partly charged by 

using a regenerative braking system, so an additional efficiency improvement is achieved 

compared to conventional cars. 

Internal combustion engines have poor efficiency at low or partial load. In fact, urban 

driving is the most energy demanding condition for ICEVs. With the use of an electric 

motor, the efficiency at partial load is noticeably improved. Furthermore, electric motors 

almost do not require energy when they are not used (i.e. when the car is stopped in a traffic 

light). In this context, there are several developments to shut down ICE when the vehicle is 

stopped or idle, to save fuel. These developments are known as start/stop systems. 

In general, PHEVs have two modes of operation: charge depleting mode and charge 

sustaining mode. In charge depleting mode, the vehicle is only powered by the on-board 

battery until a predetermined state of charge (SOC) of the battery is reached. This mode is 

used at low speed, i.e. in urban areas or in traffic jams.  In contrast, in charge sustaining 

mode, the SOC of the battery is kept within a predetermined range. The objective of this 

mode is to operate the two power sources as efficiently as possible. This mode is also used 

when batteries are depleted, after having driven in charge depleting mode. 
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PHEVs are more complex than ICEVs and BEVs, because of the use of two different 

engines. Besides, there are three different architectures to integrate an ICE and an electric 

motor in a vehicle, classified in: series hybrid, parallel hybrid and series-parallel hybrid. 

2.4.1.1 Series hybrid powertrain 

In the series hybrid topology (S-PHEV), the traction is only electric and the electric energy 

to feed it can be drawn either from the on-board battery or the ICE through an electric 

generator, as shown in Figure 2.2. Apart from batteries, super-capacitors can be also used 

as energy storage. Being the traction electric, there is no need of a multiple-speed 

transmission or gearbox and, as a consequence, vehicle’s weight and simplicity is 

improved.  

 

Figure 2.2. Series hybrid power train configuration 

Additionally, the ICE power generation is decoupled from the power demanded by the 

driver. Due to this feature, two advantages are obtained. On the one hand, the ICE can run 

at its maximum efficiency point, even if the vehicle changes its speed, while the battery 

provides the rest of the power demand, acting as energy buffer. On the other hand, the 

PHEV design is easier because the ICE-generator set is not coupled with the wheels.  

However, this topology has an important drawback related to the number of energy 

conversions needed. That is, mechanical power of the ICE must be converted into electric 

power and then again in mechanical power. So, there is a relevant loss of efficiency, 

especially at high speeds. For that reason, this topology is more convenient for low speeds. 

Furthermore, the traction device must be designed to meet the maximum sustained power 

demand and, as a consequence, electric motor and battery are quite large, raising the cost 

of this configuration. 

Usually, this type of configuration is also called as extended-range electric vehicle (EREV), 

where a little ICE is included in the electric vehicle, in order to provide backup power in 

the event that batteries are depleted. 

2.4.1.2 Parallel hybrid powertrain 

Parallel hybrid topology (P-PHEV) is the most common of hybrid architectures and the 

least expensive. In this topology (Figure 2.3), the traction can be provided by both engines. 

So, mechanical transmission is more complex than in the series hybrid one but, in turn, 

electric generator is removed. 
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The ICE must be designed to provide the maximum sustained power demand as the electric 

motor only works if the battery is not depleted. This way, the ICE in parallel hybrid 

architecture is larger than in the series hybrid one but electric motor and batteries are 

smaller. As a consequence, this topology is more suited for high speeds. Nevertheless, it is 

less efficient at low speeds or in traffic jams because of its reduced battery capacity and 

electric motor power. 

 

Figure 2.3. Parallel hybrid drivetrain architecture 

An alternative parallel hybridization consists of an ICE providing torque to one of the axles 

of the vehicle, while an electric motor does the same with the other axle. This way, 

mechanical system is simplified and four-wheel traction can be provided. In this 

configuration, electric engine not only provides power but also can act as regenerative 

braking, charging the battery when driver brakes or when battery is depleted. This type of 

parallel hybridization is called as “through the road” (TTR hybrid). This powertrain 

configuration is used in the BMW i8 and the Volvo V60 PHEV. 

2.4.1.3 Series-parallel hybrid powertrain 

In series-parallel configuration (SP-PHEV), the ICE can deliver mechanical torque directly 

as well as electric power through a generator, as shown in Figure 2.4. In order to do so, it 

incorporates a so called power-split device, which allows the transmission of the ICE torque 

either to the wheels or the generator. In this topology, a control system determines the best 

balance between both traction devices to achieve better efficiency and performance. 

 

Figure 2.4. Scheme of a series-parallel hybrid powertrain 

However, the system is mechanically more complex and it needs a generator such as in the 

series hybrid configuration. As a consequence, the cost is relatively higher compared to 

series and parallel drivetrain topologies. 
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 Battery electric vehicles (BEV) 

Also named as full electric vehicle or all-electric vehicle, battery electric vehicles are only 

powered by electricity obtained from a battery and, optionally, from ultracapacitors. These 

batteries are charged from the electric grid. Also, a regenerative braking system can be used 

to charge the batteries when the vehicle is decelerating. The architecture of BEVs is less 

complex than in PHEVs, as shown in Figure 2.5. Their main components are: 

 Electric battery, which provides power to all loads of the BEV. 

 Battery management system (BMS), which monitors and manages the battery overall 
status in order to avoid premature battery degradation and safety problems. 

 Electric charger, which extracts energy from the electric network to charge the batteries 
according to BMS. 

 Inverter or motor drive, which transforms direct current into alternating current. It 
provides power to electric traction motor of the vehicle. 

 Electric motor, which gives the mechanical torque needed by the vehicle. 

 

Figure 2.5. Battery electric vehicle basic architecture 

However, this type of PEV needs heavy batteries to achieve enough autonomy for daily 

use. As a consequence, initial cost is higher, although it is expected that the price of kWh 

of battery will continue falling in the future, making this type of PEV economically 

competitive. Also, it must be taken into account that the cost per kilometer of a BEV is 3-

4 times less than a conventional car. Nevertheless, BEVs have several drawbacks related 

to battery technology such as: slow charging times and limited autonomy. Due to these two 

problems a new term known as “range anxiety” has been coined. This term is defined as 

the fear of being run out of energy when driving an electric vehicle. 

 Fuel cell plug-in hybrid electric vehicle 

A fuel cell device converts hydrogen and oxygen (obtained from the air) in electricity, heat 

and water, without emitting any pollutants. This type of electric vehicle can be classified 

as series hybrid EV but, in this case, a fuel cell powered by hydrogen is used instead of an 

ICE (Figure 2.6). Thus, overall efficiency is improved because fuel cell efficiency can reach 

40-50% in comparison with 35% of a diesel ICE [8]. Additionally, unlike in ICEs, fuel cells 

efficiency remains high at partial loads. The operation of the system is quite similar as in 

an S-PHEV: the fuel cell is running often at its maximum efficiency point while the battery 

supplies or absorbs the lack or excess of energy. Furthermore, this type of configuration 

permits the reduction of the fuel cell size and cost, compared to pure fuel cell electric 

vehicles [9]. 
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Figure 2.6. Scheme of fuel cell plug-in electric vehicle 

Although hydrogen can be produced by the clean process of electrolysis, currently 

hydrogen is usually generated using steam reforming of methane or natural gas. Then, 

hydrogen can be stored in compressed tanks inside of the FC-PHEV. Recharging time for 

this type of PEV is very fast (about 5 minutes) compared to charging a battery from the 

grid. However, hydrogen stations are expensive (about €3 million) [10]. 

 Comparative between analyzed powertrains 

In Table 2.1 a comparison between the different characteristics of powertrains used for 

plug-in electric vehicles is presented. Currently, most of commercially available PEVs are 

parallel PHEVs and BEVs. 

Table 2.1. Characteristics of different plug-in electric vehicles 

 S-PHEV P-PHEV SP-PHEV BEV FC-PHEV 

Traction type Electric 

 

Electric 

ICE 

Electric 

ICE 

Electric Electric 

Energy 

Storage 

Battery 

Gasoline/diesel 

Battery 

Gasoline/diesel 

Battery 

Gasoline/diesel 

Battery Battery 

Hydrogen 

Charging  

infrastructure 

Electric grid 

Gas stations 

Electric grid 

Gas stations 

Electric grid 

Gas stations 

Electric grid 

 

Electric grid 

H2 stations 

Autonomy Regular Very good Very good Bad Regular 

Refueling time Very fast (gas) 

Very slow 

(battery) 

Very fast (gas) 

Very slow (battery) 

Very fast (gas) 

Very slow (battery) 

Very slow Very fast 

Initial cost High Regular High Very high Very high 

Refueling cost Regular (gas) 

Very low (battery) 

Regular (gas) 

Very low (battery) 

Regular (gas) 

Very low (battery) 

Very low High 

Other  

characteristics 

- Big battery and 

electric motor 

- Need a generator 

- No gearbox 

- Limited electric range 

- Reduced battery and no 

need of a generator 

- Need a generator 

- Need a power-split   

device 

- Very high 

efficiency 

- Zero emissions 

- Low 

maintenance 

- High 

efficiency 

- Zero emissions 

Drawbacks - Less efficient at 

high speeds 

- Less efficient at low 

speeds 

- Complex 

mechanical 

architecture 

- Battery cost 

and lifetime 

- Fuel cell cost 

- Lack of 

infrastructure 

Market 

examples 

Chevrolet Volt 

Fisker Karma 

Cadillac ELR 

BMW i3* 

Honda Insight 

Honda Accord plug-in 

Volvo V60 plug-in 

BMW i8 

Peugeot 3008 Hybrid4 

Audi A3 e-tron 

Mercedes C350 plug-in 

Toyota Prius plug-in Nissan Leaf 

Tesla Model S 

Fiat 500e 

VW e-Up! 

VW e-Golf 

Renault Zoe 

BMW i3* 

Toyota Mirai 

* BMW i3 has an option to include a little ICE in the vehicle for backup power purposes 
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 Main components of plug-in electric vehicles 

In this subsection, the common components of PEVs are described. These components are 

the battery, the battery management system, the charger, electric motors and motor drives. 

 Batteries 

Batteries are used for store energy when the EV is plugged into the electrical power supply 

or when there is an excess of energy in the system, i.e. during regenerative braking. This 

stored energy is injected to the traction system when it is required by the control unit of the 

PEV. Also, batteries supply energy to auxiliary elements of the vehicle such as cooling 

system, lights, etc. 

Battery cost is the responsible of 20-40% of the PEV price. However, in the last years, 

average energy density of batteries has improved from 60Wh/L to 150Wh/L, while cost per 

kWh has fallen from 800€ to approximately 200€, as can be seen in Figure 2.7. In the short-

medium term, it is expected that battery cost will continue falling due to technology 

improvements and economic scale. 

 

Figure 2.7. Evolution of energy density and battery cost for PEVs [11] 

Additionally, battery lifetime is limited. A battery reaches its end of life (EOL) when its 

capacity is 80% or less of the original capacity at the beginning of life (BOL). In this 

context, state of health (SOH) of a battery is an indicator of the battery health. A SOH of 

100% indicates that the battery is new and it does not suffer any degradation. In contrast, if 

the battery SOH is 80%, it is said that the battery has reached its EOL. Determining the 

SOH of a battery is important to know whether a PEV could achieve a determined range or 

not. 

Battery degradation has to be taken into account when it is used not only for travel purposes 

but also for delivering energy to provide others services. Two types of aging process can 

be distinguished: aging during cycling and calendar aging. Furthermore, there is a cross-

dependency between this two aging mechanism [12]. On the one hand, the calendar life is 

the loss of capacity due to the pass of time although no use of the battery is made. The 

calendar life is influenced by temperature and state of charge (SOC) level. On the other 

hand, the cycle aging refers to the loss of capacity produced by the repetitive process of 

charging and discharging and depends on the number of cycles, deep of discharge level 

(DoD), temperature and charging/discharging rate (C-rate). 
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As can be seen in Figure 2.8, DoD has a great influence in battery degradation. Thus, 

delivering energy from PEV batteries makes only sense if DoD is limited to small values. 

 

Figure 2.8. Cycle aging in function of DoD for Li-Ion batteries 

Four main types of batteries have been used for powering electric cars: lead acid batteries, 

ZEBRA batteries, nickel–metal hydride batteries (NiMH) and Lithium-Ion batteries. 

2.5.1.1 Lead acid batteries 

Lead acid battery was invented in 1859 and since then it has been used in multiple 

applications, even in electric vehicles. This technology is the most mature and the cheapest 

amongst the different types of batteries. In fact, most of the electric vehicles were powered 

by these batteries until the development of NiMH and Li-Ion batteries.  

However, this type of battery has several drawbacks, which makes it inadequate for 

mobility applications: the low power and energy density, the limitation of DoD (it is not 

recommended to discharge the battery below 50% of the SOC), the short lifetime and the 

relatively high self-discharge. 

Currently, lead acid batteries are used in conventional vehicles to start the ICE, for little 

electric vehicles such as forklifts, golf carts, etc. and static applications such as energy 

storage for photovoltaic systems. 

2.5.1.2 ZEBRA batteries 

Zebra batteries were developed by Zeolite Battery Research Africa Project in 1985 and, 

among other applications, are also used for powering electric vehicles [13]. This type of 

battery works at high temperature (270-350ºC) and provides a very good energy density (3-

4 times higher than lead acid). Additionally, it presents free maintenance, zero self-

discharge, unaffected by external temperature and easy estimation of SOC level. 

Furthermore, it has a good cycle life of more than 1,000 cycles and an excellent calendar 

life up to 12 years.  

However, it uses about 14% of the energy stored per day to maintain its temperature when 

it is not in use. Otherwise, a preheated cycle, which may last 12 hours, is needed. Zebra 

batteries are under research in order to reduce its operational temperature. 
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2.5.1.3 Nickel–metal hydride batteries 

NiMH batteries are used in some PHEVs because of its good reliability properties. That is, 

NiMH batteries can last over 3,000 cycles (10 years) and the operating temperature range 

has been extended over 100ºC (from -30 to 75ºC). Furthermore, the chemical components 

used in this battery are more stable than in the Li-Ion batteries and, therefore, they are safer 

in case of incorrect use.  

Although, NiMH batteries are comparable, in cost per kWh, to Li-Ion ones, however they 

have twice the weight. Additionally, NiMH batteries have several shortcomings such as: 

self-discharge issues, memory effects problems and they can deteriorate after a long period 

of storage. So, taken into account the falling prices of Li-Ion batteries [11], it is expected 

that NiMH technology will become obsolete in the coming years, unless more 

improvements will be made in this technology. 

2.5.1.4 Lithium-Ion batteries 

Present and near future battery technology for electric vehicles is based on lithium-ion. 

Lithium is the lightest and one of the most reactive metals. These characteristics give 

lithium the ability to achieve very high energy and power densities in applications such as 

automotive and static storage. 

Research about lithium battery began in 1912 but there was not a commercial available 

battery until 1970s, which was non-rechargeable. The initial use of lithium metal in these 

batteries avoided the possibility of recharging them because of lithium unstable behavior, 

especially when they are charged. Furthermore, lithium metal reacts violently when it is 

exposed to air and water. Under these circumstances, lithium metal can ignite and even 

explode. In order to overcome these safety and technical concerns, lithium is combined 

with other elements. This type of rechargeable batteries are called as lithium-ion batteries. 

From this point of view, several types of Li-Ion batteries have been developed. Anode is 

usually made of graphite (carbon) but other components such as lithium titanate can be 

used. This last option provides a better battery life and operating properties, such as wider 

temperature operation and faster charging and discharging process, but it has less energy 

density. For cathodes, there are more chemistry alternatives which provide different 

characteristics, as can be seen in Table 2.2. Finally, the electrolyte is mostly based on a 

lithium salt in an organic solution. 

Table 2.2. Characteristics of different Li-Ion batteries 

 
Cell V. 

(V) 

Specific energy 

(Wh/kg) 

Energy density 

(Wh/L) 
Cycle life* Safety Cost 

Cobalt Oxide (LCO) 3.9 150-200 560 500-1000 Poor Good 

Nickel Cobalt Aluminium Oxide (NCA) 3.8 200-260 600 500 Regular Regular 

Nickel Manganese Cobalt Oxide (NMC) 3.8 150-220 580 1000-2000 Good Good 

Manganese Oxide (LMO) 4.1 100-150 420 300-700 Good Good 

Iron Phosphate (LFP) 3.45 90-120 330 1000-2000 Excellent Good 

Lithium Titanate (LTO)** 2.4 70-80 130 3000-7000 Excellent Poor 

* Depends on DoD and temperature **For anode 

Li-Ion battery cell provide a good level of voltage which can allow battery packs with only 

one cell, as happens in mobile phones. Obviously, for more demanding applications, such 
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as automotive, more than one battery cell is used. There are three main types of cell 

depending on the encapsulation, as can be seen in Figure 2.9. 

 

                        (a)                 (b)       (c) 

Figure 2.9. Different types of encapsulated cells: (a) pouch (b) prismatic and (c) cylinder 

Battery cells are grouped in modules and several modules comprise a battery pack. Each 

carmaker has used different type of cells and configurations. For example, Nissan Leaf 

PEV uses 48 modules with 4 pouch cells per module, making a total number of 192 cells. 

However, Tesla uses smaller cells, specifically the Panasonic 18650 size cylinder cells (also 

used in common laptops). The 85kWh battery version of Tesla S is composed by 7,104 

battery cells divided in 16 modules. Although being more complex, this configuration 

provides several advantages such as: more space between cells (better cooling and 

therefore, better lifetime) and improved economic scale. Table 2.3 shows battery cells used 

in several PEVs. 

Table 2.3. Li-Ion battery cells characteristics used in different PEV models 

Cell 

Maker 

Chemistry 

Anode/Cathode 

Capacity 

(Ah) 
Encap. 

Voltage 

(V) 

Weight 

(Kg) 

Volume 

(L) 
Wh/L Wh/kg Used in 

AESC        G/LMO-NCA 33 Pouch 3.75 0.80 0.40 309 155 Nissan Leaf 

LG Chem G/NMC-LMO 36 Pouch 3.75 0.86 0.49 275 157 Renault Zoe 

Li-Tec G/NMC 52 Pouch 3.65 1.25 0.60 316 152 Daimler Smart 

Li Energy G/LMO-NMC 50 Prismatic 3.7 1.70 0.85 218 109 M. i-MiEV 

Samsung G/NMC-LMO 64 Prismatic 3.7 1.80 0.97 243 132 Fiat 500 

Lishen T. G/LFP 16 Prismatic 3.25 0.45 0.23 226 116 Coda EV 

Toshiba LTO/NMC 20 Prismatic 2.3 0.52 0.23 200 89 Honda Fit 

Panasonic G/NCA 3.1 Cylindrical 3.6 0.048 0.018 630 233 Tesla Model S 

Although different studies have been carried out in order to develop the next generation of 

batteries, Li-Ion remains the most feasible solution. Furthermore, some aspects of Li-Ion 

technology are still not well understood such as battery degradation process and safety 

issues. Therefore, Li-Ion battery has still room to be improved. 

2.5.1.5 Future technology in batteries 

Different approaches have been proposed as alternative to current Li-Ion batteries in the 

medium-long term. Lithium Sulphur (Li-S) with a specific energy of about 500Wh/kg is 

one of them but battery life is still limited. In this context, graphene is proposed to solve 

this problem [14], [15].  
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Another promising and cheap technology for the long term is Lithium-air batteries which 

can achieve 1,500 Wh/L of volumetric energy density, but it is necessary further research 

in order to address several technical challenges [16]. 

 Battery Management Systems (BMS) 

Although Li-ion batteries are designed to be reliable and safe, they still have security 

concerns, especially when they are over-charged or operated at low or very high 

temperature. Additionally, battery lifetime could be reduced if battery is over-discharged. 

Therefore, batteries of PEVs must be monitored and controlled in order to improve battery 

lifetime, reduce potential safety risks and provide reliable readings of the SOC, among 

other functions. In addition, BMS in electric vehicles must be in communication with other 

parts of the electric vehicle such as the on-board charger, the external charger (in case of 

fast charging), the cooling system, the system control unit and even the user through a user 

interface.  

Thus, battery management systems have the following functions: 

 Acquire data from battery sensors and other devices. 

 Manage thermal and overall battery status to ensure a safe operation. 

 Determine the SOC and the SOH of the battery. 

 Monitor and control the battery charging and discharging. 

 Perform cell balancing when it is necessary. 

 Improve battery lifetime. 

 Establish communication with other elements of the system such as the cooling system, 
charger, etc. 

 Identify and authenticate the battery to prevent non authorized changes on the battery. 

 Detect ground faults and current leakages. 

 Isolate battery in case of emergency. 

 Store historical data to analyze them in case of failure. 

Every cell of the battery must be monitored and controlled by the BMS. Thus, three 

topologies can be distinguished in function of the BMS implementation:  

 In the centralized topology, only one BMS unit exists and, therefore, each cell is 

connected to this control unit through a lot of wires. This solution is the least 

expensive but the most complex.  

 In the distributed BMS, a control unit is attached for each cell and, as a consequence, 
only a communication wire is used between cells and a central controller. However, 

this approach is more expensive.  

 In the modular BMS, each control unit manages a set of cells. This solution achieves a 
compromise between cost and complexity. 

As mentioned before, PEV batteries are composed by a large number of cells connected 

both in parallel and series. These cells have to be charged equally but manufacturing 

deviations can lead that some cells are charged more quickly than other cells. Thus, in the 

charging process it may occur that some cells are overcharged, deteriorating their lifetime 

or damaging irreversibly the cells. This problem is even more noticeable when cells are 

connected in series, because in parallel connection all the cells hold the same voltage. 
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However, in the parallel connection scheme another problem can appear if one of the cells 

is short-circuited, because the rest of cell will be discharged through this damaged cell 

compromising the overall battery safety. 

In order to avoid cell overcharging, the BMS has to perform a cell balancing which can be 

classified in two methods: passive and active cell balancing. On the one hand, passive cell 

balancing is based on removing the excess of energy on cells with higher SOC. But, this 

energy is dissipated in internal resistors, so charging efficiency is impacted. On the other 

hand, active cell balancing searches transfer energy from the most charged cells to the least 

charged ones, improving overall charging efficiency and reducing charging times. 

Nevertheless, this last option is more expensive and complex. 

In conclusion, the BMS has to cope with current Li-Ion battery problems, such as cell 

balancing, battery safety, SOC and SOH calculation, etc. These tasks become more and 

more complex as the number of cells of the battery increases. Thus, the BMS must be 

designed for each type of battery and plays a key role in the power management and 

performance of PEVs. In fact, several BMS functions still need to be enhanced. 

 On-board chargers 

On-board chargers convert energy received from the electric grid, the on-board generator 

(PHEV case) or the regenerative braking system into DC to charge the battery. This device 

must be communicated with the BMS in order to avoid damaging the battery because of 

overcharging. Additionally, other security systems can be present such as temperature 

sensors operating a switching relay. This way, charger can be disconnected when a high 

temperature is detected somewhere in the battery.  

Lithium-Ion batteries are typically charged using constant-current constant-voltage 

(CC/CV) charging scheme (Figure 2.10). Li-Ion batteries can be damaged if upper voltage 

limit is surpassed. So, in this scheme, a constant charge current, which is limited by 

maximum charging current, is injected to the battery.  

 

Figure 2.10. Constant current – constant voltage (CC-CV) method for a Li-Ion cell 
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When upper voltage limit of the battery is reached, charger switches to constant voltage 

method. This point is named as CC/CV transition point and usually takes place at about 

70% of the SOC. During CV period, battery voltage is maintained while charge current 

decreases, until a predetermined minimum current injection is reached. At this point, it is 

considered that the battery is fully charged.  

 Electric motors and drives 

Electric vehicle’s traction system is composed by one or more electric motors, depending 

on powertrain and traction configuration selected. Three main types of electric motors have 

been considered for electric vehicles, induction motor, permanent magnet (PM) motor and 

switched reluctance motor (SRM):  

 Induction motors are a mature technology, which has several advantages such as light 
weight, robustness, free maintenance, high power density and efficiency and low cost. 

For automotive applications, squirrel-cage version of induction motors is preferred. 

Induction motors are typically controlled using constant V/f control but this approach 

has poor response to fast changes of speed. In order to overcome this issue, field oriented 

control is used. Even though its good characteristics, induction motor is less efficient 

than PM motors because of the rotor losses. 

 

 PM motor is considered one of the most attractive solution for automotive applications. 

Unlike induction motor, there is no current circulation in the rotor, so efficiency is better. 

Additionally, it has the following advantages: high torque, compactness, low 

maintenance, very good lifetime, ease of control and silent operation. Nevertheless, PM 

motors are expensive because rotor is partly made by using rare-earth materials.  In 

addition, they have a limited constant power range which is important to achieve high 

speeds and they can be demagnetized at high temperatures, so cooling system must be 

well designed. 

 

 SRM is proven as a very reliable, low cost and simple motor to traction applications. 
SRM does not use any winding or expensive magnetic material in the rotor. In fact, the 

rotor is a solid salient-pole with soft magnetic material (laminated steel). The power 

control is simple, rotor poles tend to align with the nearest stator pole. By switching 

on/off the successive stator poles, rotation of the rotor is maintained. Due to its robust 

rotor construction, SRM can achieve very high speeds withstanding better the high 

centrifugal forces than PM and induction motors. However, two main drawbacks have 

been found in this type of motor. First, the torque during operation has a high ripple 

because its discrete nature of operation and, second, operating noise level is also 

relatively higher. 

 Conclusions 

Road transport sector is currently in the initial stage to change its energetic model, from 

using petroleum products to electric mobility. Clearly, current energetic model is not 

sustainable for long term. Air pollution of some cities is becoming an extremely serious 

problem. Furthermore, the intensive use of ICEVs is one of the most important factors that 

contribute to the global warming. 

In this context, governments, carmakers and users are beginning to become aware of the 

abusive use of ICEVs. Thus, electric vehicles have emerged as an eco-friendly alternative 
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for ICEVs. Within electric vehicles, plug-in electric vehicles are one of the most 

outstanding technologies. However, as any technology transition, this has to be done 

smoothly. Under this premise, plug-in hybrid electric vehicles provide an intermediate step 

until battery or fuel cell technology is fully developed. 

In this chapter, different PHEVs powertrains have been analyzed. Series powertrain is 

relatively easy to implement but it is expensive because it requires a big battery and electric 

motor. In contrast, parallel powertrain reduces hardware requirements (a generator is not 

necessary) and purchase cost as well as provides good efficiency at high speed. However, 

it is mechanically more complex (gearbox is needed). In this regard, TTR configuration 

reduces mechanical complexity. Finally, series-parallel powertrain stands between both 

solutions but it also has a complex mechanical system. 

Battery electric vehicles remove almost all mechanical devices but their performance is 

limited by the battery, which also makes them more expensive. Furthermore, charging time 

of a BEV is very long. Nevertheless, BEV sales are consistently growing in the last years. 

Finally, plug-in fuel cell electric vehicles could be the perfect combination between 

efficiency and performance. But currently, the available fuel cell vehicles are being 

produced in small series. 

Regarding to battery technology, currently it is based on Li-Ion batteries. But, even though 

Li-Ion technology provides a reasonable energy density, it still needs further research to be 

competitive with conventional ICE technology in terms of cost and performance. 

Furthermore, there are other issues that have to be solved related to safety and battery 

lifetime. Thus, a device such as the BMS is needed to closely monitor and control the 

battery status. 
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3. PEVS IN ELECTRIC DISTRIBUTION NETWORKS 

 Introduction 

The arrival of plug-in electric vehicles is a great challenge to electric distribution networks. 

The charge of a large amount of PEVs represents a significant new load demand which 

should be satisfied. Thus, it is necessary to develop new charging methods, infrastructures 

and strategies in order to integrate efficiently PEVs into distribution networks. 

In this context, there are three different methods for charging PEVs, which are presented in 

section 3.2. The simplest and most used method is the conductive charging, in which 

electric energy is delivered from the grid to the PEV battery by using wires. In contrast, 

inductive charging method does not use wires, in turn, energy is transferred via magnetic 

fields. Charging time of both methods depends on the charging power used. Thus, two 

categories are used to define how fast the charging process is. On the one hand, slow 

charging which is appropriate for charging the PEV at home or workplace. On the other 

hand, fast charging which is mostly used to charge the battery in the middle of a long trip. 

Finally, the battery swapping method is based on replacing the depleted battery of a BEV 

with other battery already charged. 

The charging of PEVs can be harmful to electric grids depending on several factors such as 

PEVs penetration level, the driving and charging behavior of PEV users, etc. On the one 

hand, impacts of PEVs in electric distribution networks are reviewed in section 3.3. On the 

other hand, the influence driving and charging behavior of PEV users are analyzed in 

section 3.4.  

Several strategies have been proposed in order to reduce these possible impacts. A 

classification of the PEV charging strategies is provided in section 3.5. One of the simplest 

techniques is delaying the charging of PEVs from peak hours to off-peak hours. Incentive 

prices are used to encourage PEV users to charge their vehicles in low energy demand 

periods. However, it can be interesting to implement coordinated charging control methods, 

as PEV market penetration increases, in order to improve the integration of PEVs. 

Additionally, there are opportunities to be explored such as the integration with renewable 

energies and the provision of ancillary services, as described in section 3.6. Finally, 

conclusions of this chapter are summarized in section 3.7. 

 Charging methods 

Charging methods are being currently developed in order to overcome limited electric range 

and slow charging rates of PEVs. Among them, conductive charging is the most common 

but inductive charging could have great potential due to ease of use and improved safety. 

Finally, battery swapping offers the fastest method in terms of charging time but it can be 

complex to implement it at large-scale. Following the most relevant characteristics of these 

charging methods are presented. 

 Conductive charging 

Conductive charging method uses physical direct contact between the PEV connector and 

the electric vehicle supply equipment (EVSE) or charging point (CP) by using a wire. PEV 

user must insert a plug into a receptacle on the vehicle in order to charge the battery. 

Conductive charging technology is efficient, well developed and tested, but users may 
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prefer not having to plug and unplug their vehicle. Furthermore, conductive charging 

method can be dangerous if no safety measures are taken, especially in wet conditions. In 

this context, there are proposals from Volkswagen and Tesla to use robots to connect 

automatically the vehicle to the charging point without user intervention. 

Several standards have been released related to PEV charging equipment. Among them, 

SAE J1772 and IEC 61851 are the most important. 

3.2.1.1 SAE J1772 Standard 

Society of Automotive Engineers (SAE) standard J1772 is the reference document for the 

United States about conductive charging of EVs and PHEVs. This standard establishes the 

requirements for EVSE and defines four different levels (Table 3.1): AC level 1, AC level 

2, DC level 1 and DC level 2. 

Table 3.1. Charging levels defined in SAE J1772 

 Charger Location Power supply Setting Connectors 

AC Level 1 On-board Residential 

Parking lot 

120Vac/16A 

 

1.7kW NEMA 5-15 

SAE J1772 

AC Level 2 On-board Residential 

Commercial 

208V-240Vac/16A 

208V-240Vac/80A 

3.4kW 

19.2kW 

SAE J1772 

DC Level 1  Off-board Charging stations 208-480Vac (3-phase) Up to 500Vdc @ 80A SAE J1772 Combo 

DC level 2 Off-board Charging stations 208-480Vac (3-phase) Up to 500Vdc @ 200A  SAE J1772 Combo 

 

 AC Level 1 EVSE (often referred as Level 1) provides charging through a 120V AC 
plug. Most PEVs come with an AC Level 1 EVSE cord set, so that no additional charging 

equipment is required. On one end of the cord there is a standard NEMA 5-15 connector. 

On the other end there is a J1772 standard connector, which plugs into the vehicle. This 

charging method is designed to be used when PEV user does not have a Level 2 EVSE 

available, e. g. when the user goes to a family member’s home. For this reason, it is 

usually called as occasional charging. Even though Level 1 is the slowest charging 

method, it can cover driver's needs. For example, 8 hours of charging can replenish more 

than 40 kilometers of electric range, which is equal or more than the average daily 

driving distance. 

 

 AC Level 2 EVSE is the most preferred charging method and offers charging through 

208V (typical in commercial applications) or 240V (residential applications) electrical 

supply. It requires installation of home or public charging equipment and a dedicated 

circuit and measurement device, depending on the EVSE requirements. Additionally, 

charging power is noticeably higher than in Level 1 case, operating up to 19.2kW. Level 

2 EVSE can be located either in homes or public places, such as public parking lots and 

shopping centers. 

 

 DC level 1 and 2 EVSEs provide a very high charging power, through external DC 
chargers. These types of EVSEs are usually located along heavy traffic routes and at 

public stations. This option lets users to charging as fast as possible their PEVs during a 

long trip. A new version of SAE 1772, for including AC level 3 and DC level 3 is 

currently under study. In this new version, DC level 3 charge current could reach up to 

400A.  
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3.2.1.2 IEC 61851 Standard 

The International Electrotechnical Commission (IEC) promotes the IEC 61851 standard 

related to electrical connectors and charging modes for electric vehicles. This standard is 

based partly in the SAE J1772 standard. According to the standard IEC 61851-1 “Electric 

vehicle conductive charging system” there are four different operation modes for charging, 

as shown in Figure 3.1. 

 Mode 1: the EV is connected to the AC power supply network not exceeding 16A and 

250Vac single-phase or 480Vac three-phase, using standardized socket-outlets and the 

power and protective earth conductors.  

 Mode 2: the EV is connected to the AC power supply network, not exceeding 32A and 

250Vac single-phase or 480Vac three-phase, using standardized socket-outlets and 

power and protective earth conductors, together with a control pilot function. Protective 

devices are usually integrated in the cable, which is provided by the carmaker. 

 Mode 3: the EV is connected to the AC power supply network, using dedicated EV 
supply equipment (EVSE) which has a pilot function (conductor).  

 Mode 4: the EV is connected to the AC power supply network through an off-board 
charger that delivers direct current (DC). This off-board charger is part of an EVSE, 

which has a pilot function. 

     
                (a)                        (b) 

     
                (c)                        (d) 

Figure 3.1. Different charging modes according to the IEC 61851-1 standard. (a) Mode 1 

(b) Mode 2 (c) Mode 3 and (d) Mode 4 

Safety in Mode 1 depends on the external installation of a residual current detector (RCD) 

and the earth conductor. Without these devices, safety concerns may happen in case of a 

fault happens. Some countries allow Mode 1, leaving the responsibility of installing the 

required safety devices to the user. However, other countries do not allow Mode 1, such as 

the United States, where there are still many installations without RCD devices.  

In this context, the inclusion of control and proximity pilot conductor improves overall 

security of the system. These conductors have to provide the following functions: 

 The system should be able to determine that the connector is properly inserted in the 

vehicle inlet and properly connected to the charging station. 

 Vehicle movement by its own propulsion system shall be impossible as long as the 
vehicle is physically connected. 
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 Continuous protective earth conductor continuity checking. Earth continuity between 

the charging station and the vehicle should be continuously verified. 

 Energization of the system should not be performed until the pilot function between the 
charging station and the electric vehicle has been established correctly. 

 If the pilot function is interrupted, the power supply to the cable assembly should be 
interrupted but the control circuit may remain energized. 

Additionally, control conductors should also provide other functions:  

 Selection of charging rate: an automatism should be provided to ensure that the charging 
rate does not exceed the rated capacity of the AC power supply network (mains), vehicle 

or battery capabilities. 

 Determination of cooling requirements of the charging area: if additional cooling is 

required during charging process, it should only be allowed if such cooling is provided. 

 Detection/adjustment in real time of available load current of the supply equipment: a 
control circuit must be provided to ensure that the charging rate shall not exceed the real 

time available load current of the charging station and its power supply. 

 Retaining/releasing of the coupling: a mechanical automatism shall be provided to 
retain/release the coupler. 

 Control of bi-directional power flow if it is available. 

3.2.1.3 Charging connectors types 

Several dedicated charging systems and plugs have been proposed until now. The standard 

IEC 62196-2 reflects the following plugs types: 

 Type 1: single phase vehicle coupler. Also known as “Yazaki”, this type almost 
corresponds to the SAE J1772-2009, which is the North American standard. The plug is 

composed by five pins: line 1, line 2, ground, pilot and proximity. 

 Type 2: single and three phase vehicle coupler. Also known as “Mennekes”, this type 
reflects the VDE-AR-E 2623-2-2 standard, which is considered to be the European 

standard. The plug is composed by seven pins: line 1, line 2, line 3, neutral, ground, pilot 

and proximity. 

 Type 3: single and three phase vehicle coupler with shutters. This type of connector has 
been pushed by the EV Plug Alliance to include shutters to protect electrical pins, as an 

additional safety measure. However, this solution has lost relevance in favor of Type 2 

solution. Furthermore, Mennekes also offers a plug with shutters. 

Direct current fast charging plug (Mode 4) is not considered in the IEC 62196-2. 

CHAdeMO Japanese standard is the most extended DC charging system but is not 

compatible with Type 1 and Type 2 connectors. IEC 62196-3 and SAE J1772 promote 

Combined Charging Systems (CCS), which consists in adding DC pins to Type 1 and Type 

2 connectors (Figure 3.2). This way, only one receptacle is necessary in the PEV. 

There are other standard plugs, such as GB standard for China. Also, Tesla carmaker has 

developed his own charging system and plugs, within the supercharger network that Tesla 

is currently building. Only Tesla vehicles can be charged in this network but Tesla vehicles 

can be also charged in other EVSEs by using adapters. Table 3.2 shows the charging options 

available for four different PEVs. 
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Figure 3.2. CCS Type 1 and CCS Type 2 combo receptacles 

Table 3.2. Charging options of several PEVs 

 Battery (kWh) Vehicle receptacle Max. Power (kW) Mode 

Chevrolet Volt 16 SAE J1772 (Type 1) 
1.4 2 

3.3 3 

BMW i3 22 CCS (Type 2) 

2.4 2 

7.4 3 

50 4 

Nissan Leaf 24 
SAE J1772 (Type 1) 

CHAdeMO 

1.4 2 

3.3/6.6 3 

60 4 

Tesla Model S 60/85 Proprietary 

10 2 

10/20 3 

120 4 

 Inductive charging 

Inductive charging eliminates the necessity of plugging any wire into the vehicle. This way, 

safety is considerable improved as no active part of the system is physically accessible.  In 

this system, energy is transmitted electromagnetically through the coupling of two coils, 

one in the ground (transmitter pad) and the other one inside the vehicle (receiver pad). It 

works similar to the transformer principle. 

Inductive charging presents several disadvantages such as its relatively low efficiency, 

limited charging power, high complexity and cost. Magnetic coupling is done through an 

air gap between transmitter pad and vehicle pad. Furthermore, in order to achieve good 

efficiency and power transfer, both pads must be aligned. In fact, charging process does not 

start until this misalignment is less than a predetermined distance (100 to 250mm). 

Currently, a SAE standard for wireless charging is being developed (SAE J2954) by 

carmakers, suppliers, industry experts and government representatives. Although this 

standard is still not published, there is a commercially available product on the market, 

named Plugless Power [17]. This level 2 EVSE provides 3.3kW of charging power. The 

system includes an automatic alignment guidance in order to help the driver to align easily 

the charging pads. System efficiency depends on the air gap, the offset alignment and the 

charging power but can reach 90% [18]. As a drawback, no PEVs have charging pads pre-

installed. 

Finally, Korea Advanced Institute of Science and Technology (KAIST) has developed the 

Online Electric Vehicle (OLEV) technology [19]. This option consists in providing energy 

to electric vehicles wirelessly, while the vehicle is moving. Power is transmitted 

electromagnetically from electric cables, which are buried under the surface of the road, to 

the receiver pad installed on the underbody of the vehicle. Only 5 to 15% of the length of 

the road has to be modified to integrate this technology. Additionally, battery capacity of 
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the vehicle can be cut down to the third to fifth part, reducing initial cost of the electric 

vehicle. This technology is especially suited for electric buses, which routes are fixed. 

 Battery swapping 

Battery swapping method is considered as an alternative to quickly replenish energy of 

BEVs. It consists in replacing physically a depleted battery for another already charged 

battery. This process saves time as it may last less than five minutes. In fact, this method is 

extensively and successfully used in electric forklifts. 

Battery swapping is carried out in battery swapping stations (BSS) where replaced batteries 

are also charged. This way, batteries are charged in a centralized way and the supply 

network of this type of infrastructure can be specifically designed. However, battery 

swapping process could not be as easy as it seems because BEV batteries are heavyweight 

(200kg or more). Furthermore, batteries are usually protected with metal shields to improve 

safety against underbody impacts which makes the swapping process more difficult. 

In addition, a large deployment of BSSs may require the use of standard batteries and 

almost two or three of them per vehicle (one in the vehicle, one charged and one in charging 

process). This will increase the cost of BSSs.  

 Impact of PEVs in electric distribution networks 

PEVs represent a new load that must be satisfied at any moment. Many researchers have 

analyzed the possible impacts that a large deployment of PEVs can have on electric grids. 

The most mentioned issues are: 

 Changes in load demand curve. 

 Changes of generation portfolio. 

 Increase of voltage deviations and unbalances. 

 Congestion of lines and distribution transformers. 

 Increase of energy losses. 

 Increase of GHG emissions per kWh of electricity generated. 

 Decrease of distribution transformer lifetime. 

 Increase of energy cost. 

 Increase of harmonic distortion. 

Impacts on electricity demand profile depend on charging and driving behavior. Zahra 

Darabi et al. have developed a stochastic model based on 2001 U.S. NHTS, in order to 

estimate the impacts on electricity load curve [20]. Results show that peak power demand 

of PHEVs is produced between 20:30 and 22:00, depending on PHEV battery capacity. 

Higher charging levels lead to short charging times and therefore, peak power will be higher 

and earlier than in low charging level approaches. 

Long term impacts in residential distribution networks were analyzed in [21]. Researchers 

use The 2009 U.S. NHTS to model driving and charging behavior while the IEEE 34 Node 

Test feeder was used as the reference distribution network. They select three years (2020, 

2023 and 2026) to analyze the impact of charging PHEVs taking into account the growth 

of house loads in load curve. In addition, summer and winter scenarios were analyzed. 

According to the authors, the main problems of uncontrolled charging of PHEVs are: the 

increase of peak power to average ratio (load factor) and energy losses, in addition to 
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congestion problems. Voltage deviations were also analyzed but there is no mention about 

voltage unbalances.  

It is expected that with the massive introduction of PEVs, generation portfolio will change. 

Regarding to this problem, A. Foley et al. have analyzed the possible consequences in 

electricity market operations, specifically in the Ireland case [22]. Two scenarios have been 

analyzed, peak and off-peak charging. Both will increase system marginal price which is 

determined by the most expensive power plant needed to meet the demand during a period 

of time. Off-peak scenario leads to better system efficiency as it increases the base-load 

power demand and improves wind energy integration. GHG emissions of electric system 

will be increased in both scenarios but taking into account GHG emissions avoided by clean 

operation of PEVs, net emissions will be smaller. 

Clement-Nyns et al. have carried out a study about PHEV impacts on residential 

distribution networks in [23]. A downscaled version of the IEEE 34 Node test feeder was 

used as network reference, while maximum charging power was set to 4kW (standard outlet 

maximum power). According to the authors, uncoordinated charging will increase voltage 

deviations and power losses. Additionally, higher power losses lead to higher electricity 

cost. 

Also, charging of electric vehicles in LV distribution networks will impact on distribution 

transformer lifetime [24], [25]. One of the main common failures of transformers is the 

degradation of the insulation, which depends on temperature operation. Charging PEVs 

will increase the average power demand at transformer level and, therefore, temperature 

operation of the transformer will be higher. Additionally, gas formation may happen due to 

loss of insulation. However, load-levelling carried out by coordinated charging of PEVs 

could reduce the daily expansion/contraction of the transformer. This way, wear of 

transformer bushing will be reduced. Because of bushing is the main entry point of oxygen, 

water and other pollutants, load-levelling could improve transformer life expectancy. 

Additionally, PEVs are charged through power electronics converters, which produce 

harmonic distortion in the distribution systems. Harmonic distortion can increase energy 

losses at transformer level because of the induced eddy or Foucault currents and increased 

skin effect. This can lead to a loss of life of the transformer [26]. In addition, if a large 

amount of PEVs are charged at the same time (i.e. night charging), the overall harmonic 

distortion could be very high. In contrast, reduced ambient temperature registered at nights 

could help to cooling down the distribution transformer. 

 Influence of driving and charging behavior 

Driving and charging behavior are key factors to evaluate the impacts on the electric grids. 

Questions such as how many kilometers per day are done, how many times per day the 

PEVs are plugged and where and when users plug or unplug their PEVs have to be 

analyzed. Furthermore, the answer to these questions depend on the type of area (rural or 

urban), region or country, type of day (weekday or weekend day) and other random factors 

such as weather, sport events, etc. As a consequence, it is difficult to obtain an accurate 

model of driving and charging behavior. However, an approximate model can be very 

useful for utilities to determine where and when users are willing to charge their PEVs. 

Thus, utilities may properly schedule their electricity generation and address any local 

problems of stability and reliability. Additionally, parking time has special importance for 
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V2G concept. Ideally, V2G requires that PEVs are parked and connected as long as 

possible. 

Fortunately, several studies have been carried out in order to know the driving and charging 

behavior of PEV users. Among them, Green eMotion, which has been carried out in Europe, 

and the EV Project carried out in the United States are the most important ones. 

Green eMotion project has been carried out during four years in different cities of Europe, 

finishing the project activities at the beginning of 2015. One of the objectives of the project 

has been to analyze the driving and charging behavior. Within this project, 503 PEVs and 

1,501 EVSEs were monitored during three years. More than 94,000 trips and 77,000 

charging events were recorded. 37% of PEVs were owned by public entities, 39% by 

companies and the rest (24%) were owned by private users. Results obtained in this project 

can be found in [27].  

The EV Project was initiated in 2010 to demonstrate the feasibility of EV technology. This 

project was funded by the DOE (U.S. Department of Energy) and has collected data of 

PEVs running in 18 American cities. Data obtained in this project has been classified in 

two parts: BEVs and PHEVs. On the one hand, 2,903 Nissan Leaf were monitored during 

one year. The total number of trips and charging events were 1,454,220 and 347,222 

respectively [28]. On the other hand, data about 923 Chevrolet Volt were collected, making 

a total of 579,828 trips and 170,311 charging events [29]. All vehicles in this project were 

privately owned and operated for personal use. 

Additionally, a large number of travel surveys have been done in several countries. These 

travel surveys present the advantage of giving more accurate data about driving patterns 

because the very high number of participants. Although these travel surveys have not been 

specifically developed to analyze the usage of electric vehicles, it is expected that the 

introduction of PEVs will not affect significantly the travel patterns of users. Among them, 

The 2009 U.S. National Household Travel Survey is the most important travel survey 

developed [30]. A total amount of 537,022 car trips were recorded. An advantage of this 

survey is the free access of raw data, allowing researchers to obtain their own travel 

behavior models. In fact, this survey has been widely used by researchers [21], [31]–[34]. 

Other similar researches have been carried out with smaller samples, obtained from EV 

pilot projects. A.P. Robinson et al. have analyzed the charging behavior and evaluated the 

impact on that charging behavior if a TOU tariffs is implemented [35]. The study comprised 

31,765 PEV trips and 7,704 charging events from SwitchEV trial in England. 

3.4.1.1 Driving behavior 

Driving habits refers to the use given to the PEV, how many kilometers are made daily, 

how many trips per day and, finally, the energy consumed per kilometer.  

A. Average distance travelled per day and trip 

Distance travelled per day and fuel economy will define the energy consumed by a PEV 

per day. This energy must be produced and transmitted through the electric network to the 

PEV. Moreover, distance travelled per day will define the minimum autonomy that a PEV 

must have to satisfy the user needs. 
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According to 2009 NHTS, people who live in urban areas drive approximately 37.2 km. In 

contrast, people who live in rural areas travel 55 km on average. Green eMotion has 

concluded that, on average, private PEV users drive 34.3 km per day [36]. The EV project 

stated that BEVs users drive 48.7 km per day [28] while PHEVs users drive 65.5 km per 

day [29].  

Nowadays, PEVs can cover most of travel needs of the drivers. As an example, almost 98% 

of Irish drivers travel less than 100 km, which is achievable by the average autonomy of 

PEVs (Figure 3.3).  

 

Figure 3.3. Daily distance travelled for the Ireland demo region of Green eMotion  [37] 

With regard to trip distance, most of the trips were less than 10 km in the Ireland demo 

region and only 5% of them were more than 25 km, as can be seen in Figure 3.4. Data 

obtained from “The EV Project” shows an average displacement of 11.1km [28]. 

 

Figure 3.4. Trip distance distribution for the Ireland demo region of Green eMotion [37] 

B. Energy consumption per km 

The energy consumed per kilometer depends on multiple factors, such as: battery type, 

vehicle model, trip length, climatic condition, type of road, etc. Climatic conditions have 
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special impact in energy consumption per kilometer not only because battery efficiency is 

affected but also due to the intensive use of comfort and auxiliary systems such as lights, 

heater or air conditioning. This fact is more noticeably in cold climates where energy 

consumption in winter can be the double of spring season [36]. Figure 3.5 shows the 

average energy consumption in Northern demo region (Copenhagen, Malmö and 

Bornholm). 

 

Figure 3.5. Energy consumption per km in Northern demo region [36] 

In general, short trips are more energy demanding than long trips. Green eMotion project 

pointed out that for trips up to 5 km, the energy consumption was 0.22 kWh/km on average 

while for long trips (40 km or more) the energy consumption was 0.17 kWh/km on average. 

Furthermore, zebra batteries use more energy in short trips (0.29 kWh/km) than Li-ion 

batteries (0.22 kWh/km) but for long distances, both have similar energy consumption. 

Road type has also an important impact on energy consumption. Dynamometer Drive 

Schedules or Drive Cycles are standardized test to calculate the energy consumption per 

kilometer of a vehicle. These drive cycles vary depending on the type of route to be 

simulated. In the United States, the regulator of these drive cycles is the Environmental 

Protection Agency (EPA), being the most representative: 

 Urban Dynamometer Driving Schedule (UDDS): Represents city driving conditions. 

 Highway Fuel Economy Driving Schedule (HFEDS): Represents highway driving 

conditions under 96 km/h. 

 US06: Represent a high acceleration aggressive driving schedule. 

Standard SAE J1634 defines procedures to test BEV in order to estimate the energy 

consumption and range for light-duty vehicles (LDV). As an example, the Nissan Leaf BEV 

has an energy consumption of 0.194, 0.228 and 0.334 kWh/km for UDDS, HFEDS and 

US06 respectively (charging efficiency is excluded) [38]. Drive cycles are effective tools 

to compare which vehicles are the most efficient but may fail to determine the overall 

energy consumption in real conditions. 
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3.4.1.2 Charging behavior 

Charging behavior term refers to the interaction between the user of a PEV and the EVSE. 

Location, charging frequency, initial time, charging duration, connection time and initial 

and final SOC are the most important parameters which comprise charging behavior. 

A. Charging location 

In contrast to ICEV, PEV users have the opportunity to charge their vehicles in their own 

homes, because the installation of a charging point requires a small space. PEV users 

usually prefer home charging, in fact 82% of “The EV Project” charging events were made 

at home and the rest outside [28]. However, there is an increase of charging events outside 

home as the charging points increase in other locations [39]. 

B. Charging frequency 

The charging frequency has also influence in economic, social and environmental 

development of PEVs. A higher charging frequency may allow a reduction of PEV battery 

size and weight. But such high charging frequency is only possible with a larger number of 

charging points and bigger investments in infrastructure. 

The daily average charge events recorded in The EV project was 1.05. Figure 3.6 shows 

the distribution of the charging events per day, where a wide variation between 0.15 and 

3.2 charging events per day can be seen. This is due to the different users’ behaviors: from 

users that only charge their BEVs when it is absolutely necessary, through users who charge 

their BEVs every night, to users that charge their BEVs whenever they can, motivated by 

the thought of charging their BEVs "just in case". Finally, there is another group of users 

who charge their BEVs more than once a day due to travel requirements, as they cover 

more kilometers than the autonomy provided by the Nissan Leaf. 

 

Figure 3.6. Distribution of number of charge events per day for BEVs [28] 

In the case of the Chevrolet Volt PHEV [29], charging events are distributed according to 

Figure 3.7. The daily charging events range from 0 to 2.5, taking an average charge 

frequency of 1.5 for weekdays and 0.7 for weekends. A decrease in the charging frequency 
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during weekends can be observed compared to weekdays, mainly because users change 

their routine. During weekends, PHEVs are generally parked more time away from home 

and in places where there are no charging points. Undoubtedly, these values could be higher 

depending on the charging opportunities outside home. 

 

Figure 3.7. Average daily charging frequency for PHEVs [15] 

During weekdays, users who regularly connect more than once usually have charging 

points in their workplaces or they charge at home several times, depending on their 

employment status. It is important to point out that most of the users, who charge PHEVs 

less than once a day, often are unaware of the PHEVs operation and the importance of 

charging them for increasing the efficiency of operation.  

With regard to Green eMotion project, it has recorded approximately 0.64 charge events 

per day. This value increases to 1.56 if days with at least one charge event are taken into 

account. This project has also stated that charge events are less frequent at weekends. Most 

of them (around 76%) were carried out during weekdays. 

C. Energy consumption per charge event 

Location of the EVSE and type of day (weekday or weekend day) have a great influence in 

PEVs energy demand profile. In this context, Green eMotion project has analyzed energy 

demand per charge event, for different EVSE or CP locations. Four locations were 

analyzed: household, office, public parking and street. 

Figure 3.8 shows the average energy demand per charge event for different locations. The 

highest demand of energy for household charging is between 18:00 to 20:00h, while the 

lowest demand happens between 3:00 to 7:00h. With regard to charging at office, users 

charge their vehicles more frequency between 21:00 to 22:00h. In contrast, no night 

charging is produced in this location. Public access parking chargers has the peak power 

demand from 18:00 to 21:00h. Energy demand in this type of location is more distributed 

compared to previous locations. Finally, street located EVSEs have more energy demand 

during mornings (peak at 8:00h) and steadily decrease during the day.  
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Except for public access parking case, almost no night charging is used and, as a 

consequence, grid impacts can be higher. Furthermore, household charging, which is the 

preferred option by users, can produce an important increase of energy demand at peak 

hours. 

 

(a) (b) 

 

(c) (d) 

Figure 3.8. Energy per charge event for different EVSE locations: (a) household (b) office 

(c) public parking and (d) street 

Related to home charging, Figure 3.9 shows the PEVs energy demand difference between 

weekdays and weekend days. Both load curves present similar shape but during weekdays, 

peak power demand is relatively higher. 

Similar behavior has been detected in Nashville, which is part of the demo cities of The EV 

Project. Peak demand happens around 21:00h, as can be seen in Figure 3.10. In this city, 

users do not schedule their PEVs to begin charging process at any specific time. Instead, 

users charge their PEVs as they arrive home and connect them to the grid. This way, the 

charging demand curve increases gradually.  

Additionally, The EV Project has also analyzed the influence of establishing a two-period 

TOU tariff, in this case in the city of San Francisco. Peak demand is delayed around 4 hours 

respect to no TOU tariff case of Nashville. Users in San Francisco program their PEVs to 

begin the charging process between 00:00 and 1:00 hours, which causes a sharp increase in 

charging demand. This rise triples the charging demand in less than an hour, as can be seen 

in Figure 3.11. Furthermore, the peak power demand in San Francisco is relatively higher 

than the Nashville one. At weekdays, the off-peak period is set between midnight and 7:00 

hours while at weekends this period begins at 21:00 hours. 
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Figure 3.9. Energy demand per charge event at household location (Green eMotion) 

 

Figure 3.10. Energy demand per charge event in Nashville (The EV project) 

 

Figure 3.11. Energy demand per charge event in San Francisco (The EV project) 
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D. Initial and final SOC of charge events 

It is interesting to know the battery initial and final SOC, in order to understand the behavior 

of the charging process. The initial SOC of the PEV is an indicator of how far users are 

unloading their PEVs. Furthermore, the final SOC of a charging event indicates when a 

user interrupts the charging process of the PEV. It is also useful to know that type of 

behavior, depending on whether the charge is done at home, or during weekdays or 

weekends. 

According to “The EV Project”, most of BEVs begin the charge process with a SOC level 

between 20 and 80% (Figure 3.12). BEV users tend to be more conservative when they 

charge their vehicles away from home.  

 

Figure 3.12. Distribution of initial SOC in The EV Project 

Furthermore, most charges end with a SOC close to 100% (Figure 3.13). It can be observed 

the existing peak in the 70-80% SOC range, possibly because the Nissan Leaf offers the 

possibility of ending the charge process at 80% of SOC, in order to increase the battery life. 

However, charges made at home usually end up with a higher SOC. Thus, 60% of the 

charges made at home were full charges while only 40% of charging events done away 

reached 100% of SOC. 

 

Figure 3.13. Distribution of final SOC in The EV Project 
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3.4.1.3 The role of smart meters in the integration of PEVs 

Currently, smart grid concept is limited to some areas of electric grids, such as high and 

medium voltage distribution network, large electricity generating plants and some 

consumers. However, the fast growth of world population is increasing the electricity 

demand. At the same time, environmental regulation and social aspects are limiting the 

expansion of transmission networks and generation plants. In this context, where electric 

grids are near of its maximum capacity, severe energy shortages can happen more 

frequently. So, it is necessary to take actions in favor of electric grids reliability. 

One way to address this problem is improving measurement devices in order to predict 

more accurately consumers’ behavior. Smart meter technology is the key element in this 

new scenario. Smart meters provide information on real time about electric energy 

consumption not only to utilities but also to customers. This way, they can become aware 

of how much electricity they are consuming, how much it cost and what the emissions 

produced are. In the near future, smart meters will also be able to provide data about gas 

and water consumption. 

In this context, several pilot projects for smart metering have been developed and regulatory 

effort and investment are currently underway around the world, to implement smart meters 

as well as increase network communications, remote and automated management of 

network elements. This way, distributed generation and electric vehicles will be fully 

integrated and supported. As a first step, combining data obtained from smart meters and 

PEVs pilot projects can predict distribution network impacts [40]. 

The predictable large deployment of PEVs can bring technical and economical revenues, if 

the electric system is properly equipped with communicating devices and the ability to 

perform some centralized or decentralized levels of control. Smart meters are well-

positioned to provide the necessary communication path between PEVs and high-level 

control devices, as well as perform local management [41], [42]. 

 Classification of PEVs charging strategies 

Most of the times, PEVs are charged in residential EVSEs while fast charging EVSEs are 

reserved for sporadic charging. Furthermore, electric supply of fast chargers is designed 

specifically to cope with high power densities. However, current LV distribution networks 

are not suited to charge a large number of PEVs. In order to overcome this problem several 

charging approaches have been proposed, which can be classified according to Figure 3.14. 

These approaches present the following characteristics: 

A. By energy flow: There are two modes of operation between the PEV and the grid 

regarding energy flow direction. In charging mode, this direction is from the grid to 

vehicle (G2V) also known as unidirectional. Bi-directional is possible when power 

flow can also go from vehicle to grid (V2G), also referred as discharging mode. Three 

elements are required for V2G operation: a bi-directional charger which allows 

energy flow from and to the battery, a bi-directional smart meter to measure 

accurately energy and services exchanges and a control system able to exploit the 

possibilities of the V2G concept, both technically and economically. 
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Figure 3.14. Classification of PEVs integration methods 

B. By approach: These smart charging strategies can be carried out using two different 

approaches, direct approach or market based approach. In the first one, the smart 

control is applied directly to set the charging profile of PEVs. In the second one, a 

smart algorithm is applied to modify market prices to change indirectly the charging 

profile of PEVs. One example of this last approach is usually called “dynamic 

pricing”, which consists in modifying electricity cost depending on one or more 

factors, i.e., congestion level [43]. 

 

C. By strategy used: Currently, most of the charging events are uncontrolled due to the 

very low PEVs penetration rate. Some countries have introduced TOU tariffs to 

encourage users to charge their PEVs at night. A further step is implementing smart 

charging strategies, in order to exploit distribution networks capacity. The main 

characteristics of these three options are: 

 

1) Uncontrolled charging: Also known as dumb charging, PEVs are charged at 

maximum allowed power until their batteries are totally charged. So, no action 

is done in order to reduce or minimize impacts on distribution networks. PEV 

users tend to charge their vehicles when they arrived home, that is, at late 

afternoon, which coincides with peak hours, so impacts on distribution networks 

are larger. In addition, there is no possibility to provide additional services such 

as demand response, ancillary services or V2G. 

2) TOU tariffs: Time of use tariffs is a pricing strategy in which electricity prices 

depend on the period of the day. Usually, the day is divided in two or three 

periods. This strategy is based on establishing regulated tariffs in which 

electricity is cheaper during off-peak hours. In contrast, charging at peak hours 

is penalized. This way, PEVs load demand is shifted from peak hours to off-peak 

hours. Figure 3.15 shows different TOU tariffs in Spain. The use of this strategy 
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improves PEVs integration respect to dumb charging and it is easy to implement. 

A simple time switcher can be used to accomplish this task. However, the 

charging of a large amount of PEVs at almost the same time can produce 

significant problems to distribution networks. Furthermore, deficit tariffs may 

arise if regulated tariffs prices are set below of the real electricity cost. 

                

                      Figure 3.15. Example of different TOU tariffs in Spain 

3) Smart Charging: Active charging management of PEVs can provide further 

advantages compared to uncontrolled and TOU approaches. Smart charging of 

PEVs allows customers and network operators to schedule PEVs charging 

profiles, in order to get technical and economic benefits, being considered a 

specific demand side management (DSM) of PEVs. That is, smart charging seeks 

active control of loads and it can be programmed with optimized or heuristic 

algorithms to achieve certain objectives. V2G concept can be considered as an 

extension of smart charging, allowing PEVs to be able to inject energy into the 

grid, acting as distributed generators or storage systems [44].  

 

From this point of view, PEVs can be integrated with smart grids to sell demand 

response services such as reducing their charging rate or delivering energy into 

the grid. As market penetration of PEVs increases, it will be necessary to develop 

an active strategy or smart charging, which manages the charging of PEVs in an 

efficient way, and prevent or delay investments in reinforcing the grid. Besides, 

it can allow other objectives such as minimizing transmission losses and 

improving the integration of RES [45]. According to these strategies, and from 

the point of view of the network, a PEV can be considered as: a simple electrical 

load (uncontrolled and off-peak charging cases); a flexible electrical load (smart 

charging valley-filling case) or a distributed and mobile storage element (smart 

charging saving-peak case). Figure 3.16 shows the advantages and drawbacks of 

each strategy. 

 

D. By control architecture: Two different control schemes can be used to manage 

actively the charging of PEVs. On the one hand, centralized control consists in setting 

the charging profile of each PEV using an external entity. This entity has received 
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several names, such as aggregator, electric vehicles manager, electric vehicles fleet 

operator, etc. On the other hand, in decentralized or distributed control, charging 

decision is taken by each PEV, taking into account external information. Both 

architectures have advantages and disadvantages explained more in detail in section 

4.3.3. 
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Figure 3.16. Advantages and drawbacks of different strategies for PEVs integration 

 

E. By mathematical solver: Intelligent integration of PEVs into distribution networks 

can become a very complex task from a mathematical point of view, especially when 

optimized algorithms and complex objective functions are involved. Three main 

approaches can be distinguished: heuristic, optimized and a mix of both. 

 

1) Heuristic method is a technique to solving problems by using practical 

methodologies. Solutions provided by heuristic methods are not perfect but good 

enough for the problem presented. 
2) Optimized methods consist in mathematical tools to obtain optimum solutions to 

problems which are defined with an objective function and a set of constraints. 

On the one hand, the objective function is a mathematical equation to be 

optimized (minimized or maximized) and expresses the relationship between a 

design vector “x” to be calculated and a criterion to be optimized, for example 

charging cost. On the other hand, constraints are technical or user requirements 

which should be met by the optimization method. 
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3) Mixed methods: Heuristic and optimized methods can be used at the same time 

with different purposes. Optimized methods are more used to improve well-

defined parameters such as charging cost, while heuristic methods are more 

suited to keep distribution network within its operational limits. 

 

F. By objective: PEV charging methods can be classified by objectives. Researchers 

have proposed different objectives such as: reduce charging cost, electricity cost, 

GHG emissions, energy losses, voltage unbalances, improve load factor, renewable 

energy integration, limit distribution network impacts (voltage deviations, overloads, 

transformer lifetime degradation, etc.), increase profits for current or new business 

entities, supply ancillary services and others. Additionally, it is possible to improve 

more than one objective as some of them are interrelated or because a multi-objective 

control is used. 

 Opportunities in the integration of PEVs 

Although integration of PEVs can lead problems to distribution networks, there are several 

opportunities to explore, such as: 

 Increase of utility profits and CO2 emission credits. 

 Increase of load factor. 

 Increase of renewable energy integration. 

 Provision of demand response and ancillary services. 

 Development of the vehicle to grid concept. 

Charging a considerable amount of PEVs will lead an increase of energy consumption and, 

therefore, utilities will increase their profits. Considering a Nissan Leaf with a fuel 

economy of 0.212 kWh/km, an average daily distance travelled of 34.3 km [36] and an 

average energy cost of 0.208 €/kWh (average electricity cost in second semester of 2014 in 

Europe), the annual income per PEV will be approximately about 550€. Furthermore, in 

some countries electricity providers will receive Low Carbon Fuel Standard (LCFS) credits 

for refuel PEVs with electricity. Then, these credits can be sold in the LCFS credit market 

to high emissions companies which have to meet their carbon intensity reduction targets. 

Therefore, providing electric energy to PEVs can generate another source of income to 

electricity providers [46]. 

Current load factor is poor due to low energy demand at night and high energy demand at 

late afternoon. This fact will be worse as residential electricity demand grows. One of the 

most important characteristics of PEVs is that they are deferrable loads. This means that 

PEVs charging demand can be scheduled at low demand hours achieving the valley filling 

effect. Thus, load factor or utilization factor is increased and, as a consequence, base-load 

power plants can run during more time, reducing their operating costs.  

Similarly happens with renewable energies such as wind and solar energy. On the one hand, 

wind energy is inherently intermittent, little unpredictable and does not match with load 

demand. On the other hand, solar energy is more predictable and better matched with load 

demand but does not provide energy at night. PEVs can absorb these generation 

intermittences by shifting their charging demand to periods of strong wind and solar energy 

production. 
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In this context, there are two mechanisms in order to cope with demand-generation 

deviations: demand side management and ancillary services. The first one is based on 

modifying the load demand so that it meets with generation while the second one is based 

on modifying supply side. Currently, ancillary services are widely used over DSM 

alternative. As commented before, PEVs are deferrable loads and they can perform DSM 

easily without affecting user comfort. DSM driven by PEVs is already working in the pilot 

project BMWi ChargeForward [47]. This project consists in sending load drop request (up 

to 100kW) from the utility (PG&E) to the BMWi server, which selects vehicles for delayed 

charging according to owners departure time. User can set its departure time by using a 

mobile phone app. BMWi server notifies to PEV owners if they want to participate or not 

in the load drop request. Users who participate in the load drop request are economically 

compensated. 

Additionally, plug-in electric vehicles can provide ancillary services (Table 3.3), such as 

spinning reserve and frequency and voltage regulation, adding value to the PEV itself. 

Global ancillary services market involves approximately 33GW, with a total value 

estimated between 18,000M€ and 50,000M€ [48]. It is expected that this market will grow 

due to several reasons, being the increase of renewable energy generation one of the main 

reasons. PEVs are able to respond almost instantaneously to network changes, allowing 

them to participate in all types of ancillary services. Furthermore, they do not need external 

energy to be operative, so they have also black start capacity. In order to be able to 

participate in ancillary services market, PEVs should be integrated in coordination entities 

such as aggregators or PEVs fleet operators. 

Table 3.3. Ancillary services description which can be provided by PEVs 

Ancillary service Description 

Frequency control Maintaining the frequency within the given margins by continuous modulation 

of active power 

Voltage control Maintaining voltage through injecting or absorbing reactive power by means of 

synchronous or static compensation 

Spinning reserve Increase or decrease in generation or reduction in consumption that can be 

provided at short notice, carried out by partially loaded generating units and 

interruptible customers 

Standing reserve Increase in generation or reduction in consumption that can be provided by those 

generating units that are not synchronously on-line, or by interruptible loads 

Black start capability The capability of a generating unit to start up without an external power supply, 

usually after a major failure on all or part of the network 

Finally, V2G concept allows PEVs to work as distributed generation or distributed storage 

when they are connected to the grid. This way, PEV owners can obtain additional profits 

for trading energy (buy at low prices and sell it at high prices) within a dynamic electricity 

pricing market. Another possibility is storing energy from non-dispatchable energy sources 

such as wind energy and injecting it back when it is needed. However, this concept requires 

more reliable battery technology, bi-directional converters, smart meters and the support of 

smart grids technology. Current battery technology has a limited number of cycles before 

its EOL, so using PEV batteries for other applications, different from transport purposes, 

could have no sense from an economic point of view. As commented in subsection 2.5.1, 

battery cycle life depends on DoD value, among other parameters such as operating 

temperature. In order to limit battery degradation, V2G usage should be limited to a short 

amount of energy per PEV. Additionally, economic incentive for utilities is still not clear 

as they have to spend money on adapting their metering and distribution systems in order 
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to make V2G technically feasible. The only cost avoidance for utilities is the possibility of 

reducing the number of peak power plants, taking into account that utilities usually receive 

economic compensations to run and maintain these facilities. 

 Conclusions 

Plug-in electric vehicles use electric grids to obtain the required energy to operate. This 

energy can be transferred using wires or through magnetic fields. Another possibility, but 

less feasible, is battery swapping. Among these three options, conductive charging is the 

most preferred one as it provides a very high efficiency at low cost. Several standards have 

been developed to define conductive charging systems and connectors, while inductive 

charging still has not a published one. 

Even at low PEV penetration rate, it is expected that multiple issues will arise in electric 

distribution networks. These problems have been analyzed by several researchers. Most of 

them conclude that it is necessary to take actions towards an intelligent management of 

PEVs energy demand. In fact, several authors have analyzed impacts and proposed methods 

or techniques to avoid or reduce them. These impacts include: changes in load demand 

curve and generation portfolio, increase of voltage deviations and unbalances, congestion 

of lines and distribution transformers, increase of energy losses, GHG emissions, energy 

cost and harmonic distortion and decrease of distribution transformer lifetime. 

One of the key points of PEVs integration is the influence of driving and charging behavior. 

Both factors, with PEV penetration rate and network characteristics, will determine the 

impact that PEVs will have on electric distribution networks. Thus, it is very important to 

have an approximated model of driving and charging behavior in order to schedule the 

operation of the network. Such type of driving and charging model depends on a quite large 

number of factors such as: country, type of area, climate and weather, type of day, type of 

vehicle, etc. 

Moreover, smart metering has a critical role in the integration of electric vehicles. The 

deployment of smart meters allows utilities and grid operators to know the real time load 

consumption. Additionally, data obtained from smart meters will improve load demand 

forecast models, which are important to coordinate generation profile, demand side 

management and ancillary services. Finally, smart meters could provide a communication 

interface between distribution network operators and plug-in electric vehicles allowing the 

implementation of smart charging techniques. 

A classification of charging approaches has been presented. Inside this classification, two 

concepts have particular relevance: smart charging and V2G. Smart charging deals with 

how to manage effectively a large amount of PEVs improving one or more objectives, while 

distribution network technical limits are not surpassed. V2G allows bi-directional flow of 

energy. This way, PEVs can act as distributed storage devices, improving electric grid 

efficiency. However, V2G concept has a number of problems to be addressed such as: 

battery degradation, lack of regulations, need of a bi-directional charger and smart meter, 

etc. 

To conclude, opportunities that PEVs could bring to electric system have been explained. 

On the one hand, it is expected that utilities will increase their profits due to the growth of 

load demand and procurement of CO2 emission credits. Additionally, utilities could 

introduce more renewable generation in their generation mix, further reducing GHG 
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emissions and improving their social and environmental image. On the other hand, PEV 

users could provide a set of services such as: demand response, ancillary and V2G services. 

PEVs are very suitable for performing these types of services due to several reasons: very 

fast response, relatively high room for manoeuvre, distributed location which allows local 

or global actions and high efficiency. 
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4. ACTIVE INTEGRATION OF PEVS IN ELECTRIC 

DISTRIBUTION NETWORKS 

 Introduction 

From the point of view of electric grids, PEVs are currently considered as simple loads due 

to their low market penetration. However, as the PEVs fleet grows, implementation of an 

intelligent management system will be necessary. This management system will avoid large 

capital expenditures in network reinforcements and negative effects on electric distribution 

networks, such as: voltage deviations, degradation of quality of supply, increase of power 

losses, overload of transformers and lines and increase of harmonics and fault currents [22], 

[49], [50]. It is estimated that the energy demand of 30 million PEVs may require about 

100 TWh per day and an additional power of 35 GW [51]. Therefore, the smart integration 

of PEVs into the electric grids, together with the development of better and more efficient 

batteries, is one of the biggest challenges of electric mobility technology.  

Additionally, PEVs will have to share space with the distributed generation in low voltage 

distribution networks, causing impacts on the grid [52], [53]. However, this pairing can 

produce some synergies, which might be developed in order to improve the competitiveness 

of both technologies. 

Currently, due to the poor market penetration level of PEVs, no integration strategy is 

performed (dumb or uncontrolled charging) or a passive strategy is implemented. Among 

passive strategies, the most widely used is the off-peak charging, using TOU tariffs, which 

encourages the charging of PEVs during night. However, this solution has the drawback of 

producing sudden power demand increases because all PEVs charging processes would 

begin almost simultaneously [54].  

Thus, researching how PEVs should be controlled, in a smart way, can be a very complex 

task considering the large number of variables that come into play. One of the most used 

methods to address this problem is mathematical optimization or programming. 

In this chapter, after the basic mathematical background is explained (section 4.2), smart 

charging approaches are reviewed in section 4.3, distinguishing between centralized and 

decentralized control architectures. Then, a comparison between them is presented. In 

section 4.4, some solutions where PEVs are part of virtual power plants and microgrids are 

described. Following, the most important projects developed around the world concerning 

to PEVs and electric grids are presented in section 4.5. Finally, conclusions of this chapter 

are summarized in section 4.6. 

 Mathematical programming 

Mathematical programming or mathematical optimization is a technique used to find the 

best solution from a set of possible solutions or alternatives. This mathematical method is 

widely used in economics, manufacturing and engineering. Considering electrical 

engineering, mathematical optimization is used in applications such as: power system 

planning, economic dispatch, unit commitment, network reconfiguration for losses 

reduction, etc. [55].  

In general, a mathematical optimization process seeks to find the maximum or minimum 

of an objective function, also known as cost function, taking into account several 
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constraints which delimit the number of possible solutions. Mathematical programing 

problems can be classified attending to the characteristics of the objective function itself 

and its variables and constraints. A mathematical problem can be defined as: 

 Binary integer linear programming (BILP): Linear problems with binary variables. 

 Integer linear programming (ILP): Linear problems with integer variables. 

 Linear programming (LP): Linear problems with continuous variables. 

 Mixed integer programming (MILP): Linear problems with integer and continuous 
variables. 

 Quadratic programming (QP): Quadratic problems with continuous variables. 

 Quadratic programming (QCP): Quadratically constrained problems with continuous 
variables. 

 Mixed integer quadratic programming (MIQP): Quadratic problems with integer and 
continuous variables. 

 Non-linear programming (NLP). 

 Others… 

Moreover, inside mathematical programming, convex optimization is defined as a problem 

where all the constraints and the objective function are convex functions. These types of 

problems can be solved using specific algorithms which find the global optimum. For 

example, a LP problem can be solved by using the simplex algorithm or the interior point 

method.  

Furthermore, meta-heuristic techniques can be also used to find the solution of an 

optimization problem. On the one hand, specific algorithms give the exact result but they 

are not suited to problems with a large number of variables. On the other hand, meta-

heuristic techniques can solve very complex optimization problems, such as those that are 

non-convex problems, but achieving the optimal solution is not guaranteed. Examples of 

meta-heuristic solvers are: evolutionary algorithms, simulated annealing, particle swarm, 

tabu search, ant colony, etc. Additionally, optimization problems can be classified in two 

different groups, depending on the number of objective functions to be optimized. 

 Single objective optimization (SOO) 

Optimization of a single-objective, such as cost minimization, is relatively common in 

engineering. It is used to find the best solution to a variable which correspond to the 

minimum or maximum value of a single objective function. Examples of this type of 

optimization are: minimization of cost, maximization of profits, minimization of fuel used, 

etc. A mathematical optimization problem can be stated as follows: 

 Find a design vector: 

𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) (4-1) 

 which minimize or maximize the objective function: 

𝑓(𝑥) (4-2) 

 subject to a number m of inequality constraints: 

𝑔𝑗(𝑥) ≤ 0    j ∈ {1,… ,m} (4-3) 
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 and p equality constraints: 

𝑙𝑗(𝑥) = 0     j ∈ {1,… , p} (4-4) 

Additionally, the design variable x can be limited to lower and upper bounds: 

𝑥𝑖
(𝑙)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑢)

   ∀𝑖 ∈ {1,… , 𝑛} (4-5) 

In practice, the set of constraints is usually called as S. Thus, it is said that a solution x 

meets the constraints if x∈S. For a minimization problem, the design vector (4-1) gives a 

global minimum if there is no another design vector y∈S such: 

𝑓(𝑦) ≤ 𝑓(𝑥)    𝑥, 𝑦 ∈ 𝑆  (4-6) 

In contrast, for a maximization problem, the design vector x∈S defines a global maximum 

if there is no another design vector y∈S such: 

𝑓(𝑦) ≥ 𝑓(𝑥)    𝑥, 𝑦 ∈ 𝑆 (4-7) 

Additionally, a simple optimization problem can be graphically solved. Thus, Figure 4.1 

shows a problem composed by a design vector of two variables and six constraints. The 

point is the optimal solution while the dotted arrows represent the direction of the 

optimization. In this type of problem, solutions are usually located in one of the extreme 

points of the feasible region. 

 

Figure 4.1. Optimization of a linear problem with two variables and six constraints 

 Multi-objective optimization 

In the previous section, the problem was composed by one single objective function. 

However, in real world it is necessary to optimize more than one parameter, which requires 

a number of objective functions. In general, it is not possible to optimize all objectives at 

once. That is, an improvement of one of the objectives can be also a worsening of the others. 

This leads to make a trade-off between the different objectives. 

The process of optimizing a set of objective functions is called multi-objective optimization 

(MOO) or vector optimization. A MOO problem can be stated as finding a design vector x 

which minimize or maximize J, as shown in equation (4-8). 

𝐽(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥)]    𝑥 ∈ 𝑆 (4-8) 
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A feasible solution x∈S is called as Pareto optimal (PO) if there is no another solution y∈S 

such [56]: 

𝐽(𝑦) ≤ 𝐽(𝑥)  and    (4-9) 

 

𝑓𝑖(𝑦) < 𝑓𝑖(𝑥)   for at least one i ∈ {1, … , 𝑘}    (4-10) 

In contrast to single objective optimization, there is no a single solution in MOOs. In fact, 

a set of PO solutions can be achieved, often called as Pareto frontier, Pareto front or Pareto 

set (Figure 4.2). This Pareto frontier is bounded by a so-called Pareto boundary and it is 

contained in the objective space, which is divided by feasible and infeasible regions defined 

by the problem constraints. 

 

Figure 4.2. Pareto frontier of a bi-objective optimization 

MOO optimization cannot be solved unless the different objective functions are combined 

in a single objective optimization. There are several approaches to carry out this 

transformation. Between them, the weighted sum method and the ε-constraint method are 

the most used ones. The weighted sum method is based on making an addition of objective 

functions multiplied by weights, as shown in equation (4-11) [57]. This way, SOO solving 

techniques can be used. 

𝐽(𝑥) = ∑𝑤𝑖 · 𝑓𝑖(𝑥)   𝑥 ∈ 𝑆

𝑘

𝑖=1

 (4-11) 

where: 

 𝐽(𝑥):  total objective function to minimize/maximize 

 𝑓𝑖(𝑥):  objective function i 

 𝑤𝑖:  weight for objective function 𝑓𝑖(𝑥) 
 k:   number of objective functions 

 

Weights must be always positive or zero, as shown in equation (4-12). Using negative 

values will become the optimization problem unfeasible. In addition, it is usual to define 

the weight in function of the equation (4-13) but it is not compulsory. 

 

𝑤𝑖 ≥ 0            ∀𝑖 ∈ {1, . . , 𝑘} (4-12) 
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∑𝑤𝑖 = 1          𝑖 ∈ {1, . . , 𝑘}

𝑘

𝑖=1

 (4-13) 

However, this type of optimization presents some drawbacks. On the one hand, each weight 

has to be defined by the user or decision maker (DM), so the results can be quite subjective. 

On the other hand, the objective functions usually have different dimensions, i.e. cost in 

euros and energy losses in kWh. Thus, it is necessary to normalize each objective function 

to convert it into a non-dimensional system. The most robust approach to normalize 

objective functions is given in equation (4-14) [56]. 

𝜃𝑖 =
1

𝑍𝑖
𝑁 − 𝑍𝑖

𝑈 (4-14) 

where: 

 i:   index of the objective function 

 𝜃𝑖:   normalization parameter for objective function i 

 𝑍𝑖
𝑁:  nadir point of objective function i 

 𝑍𝑖
𝑈:  utopia point of objective function i 

Utopia and nadir points represent the ideal and anti-ideal points of the objective space of a 

MOO problem respectively. That is, utopia point is the optimal value obtained when each 

objective function of the MOO optimization is optimized individually, within the feasible 

region. In contrast, nadir point is the worst solution, that is, the maximization of a 

minimization problem or the minimization of a maximization problem. The normalization 

of a weighted sum objective function is important to reduce as much as possible the 

numerical deviation between the different objective functions. This way, if there is a change 

of one of the objective functions such as different electricity prices or different number of 

PEVs, the weighted sum objective function will be less affected.  

An alternative to weighted sum method is the ε-constraint method. This approach is also 

called as bounded objective function method or hierarchical method. It is based on 

minimizing the most important objective function while all other objective functions are 

ranked and used as additional constraints. The general formulation is presented in equation 

(4-15). 

min
𝑥

𝑓1(𝑥)    𝑠. 𝑡.     𝑓2(𝑥) ≤  ε2 

                                𝑓3(𝑥) ≤  ε3 

                                     … 

                                𝑓𝑘(𝑥) ≤  ε𝑘 

(4-15) 

However, one of the drawbacks of this method is how to select the right values of the 

different ε parameters, especially when parameters of the objective functions are changed. 

In addition, this approach could be less intuitive than the weighted sum method. But, the 

normalization problem of weighted sum method is avoided. 

Finally, there is a great number of alternatives to the two mentioned ones such as 

lexicographic method, weighted min-max method, exponential weighted criterion, 
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weighted product method and even, hybrid ones which combine weighted sum method with 

ε-constraint method, etc. [56].  

In general, most of the proposed smart charging solutions for PEVs are based on 

mathematical programming technique. So, those smart charging algorithms, which can be 

found in the literature, are reviewed in the following sections. 

 Smart Charging 

Smart charging of PEVs allows customers and distribution network operators to schedule 

PEVs charging profiles, in order to get technical and economic benefits. It can be 

considered as a specific demand side management (DSM) of PEVs. That is, smart charging 

seeks active control of loads and it can be programmed with optimized or heuristic 

algorithms to achieve certain objectives. This is possible because it is estimated that PEVs 

are parked 96% of the time [58].  

Through V2G, PEVs can provide ancillary services (frequency control, load balance and 

spinning reserve services) [59], [60]. It is believed that the use of such a system could be 

used for "valley filling" (timing devices to draw power at times of low grid demand) and 

"peak shaving" (reducing the peak energy demand on the grid). Moreover, both smart 

charging and V2G can be an excellent tool to compensate for deviations caused by 

intermittent RES, such as wind power and solar photovoltaic [45], [61], [62].  

Also, this concept could be competitive in the provision of ancillary services. Considering 

the long term, V2G may play a more important role as mass storage system, depending on 

the penetration of intermittent RES [58]. But, it is necessary to adapt the electronic devices 

that act as interface between the PEV and the EVSE to make the V2G concept possible. 

Additionally, the use of V2G will increase the battery degradation of PEVs and the energy 

losses [63]. 

Moreover, in order to make feasible the technical and economic management or the 

coordination of PEVs charge, a new entity may be required. In many papers this entity is 

known as aggregator [64]–[67]. Other names are EV fleet operator and EVs Management 

System. The aggregator function is to bind a significant amount of PEVs within a region 

and work as an interface between the different entities of the electrical system. The main 

objective is to give visibility to PEVs, both for technical management and for integration 

of these devices into the electricity market. 

The control capacity of the aggregator will depend on the number of controllable PEVs 

connected and the flexibility provided by the users of those PEVs, which depends on their 

preferences. These aspects will be defined by the initial charge level, the connection time 

and the desired final charge level. As the number of PEVs increases, more flexibility can 

be available for the aggregator in order to achieve its goals and improve the economic 

benefits. 

Another source of income for the aggregator is the provision of ancillary services, such as 

primary and secondary frequency regulation, given the capacity of batteries of 

reducing/increasing electricity demand almost instantaneously [68]. As an example, it is 

estimated that the annual market of ancillary services in the United States is 6.5 GW, with 

an estimated value in the range from 3 to 10 thousand million dollars [48]. 
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Finally, the smart charging of PEVs can be implemented in two different control 

architectures, centralized and decentralized. The aggregator functions will vary according 

to the type of architecture. For example, in decentralized architectures the aggregator will 

have an auxiliary role while, in centralized solutions, the aggregator will be in charge of 

directly managing the charging of all PEVs. In both architectures, the functions of the 

aggregator could be assumed by the electricity supplier or utility. 

In the following sections, centralized and decentralized controls are introduced. 

Additionally, a literature review of each approach is presented. The same nomenclature that 

appears in the papers has been used. 

 Centralized control architecture 

Also known as direct control, the aggregator is responsible for managing directly the charge 

of all PEVs under its control. Furthermore, the aggregator can also control other external 

entities, such as an EVSE manager (EVSEM), which controls a group of EVSEs of a 

specific location such as a car park. 

A possible market and technical operation of this centralized control architecture has been 

described in [65] and [69]. The aggregator, in addition to the technical management, is also 

responsible for PEVs participation in the electricity market. Thus, it must perform daily 

demand forecasts based on historical data, user’s preferences, etc. Once the demand profile 

forecast of the whole controlled PEVs is obtained by the aggregator, this profile has to be 

communicated to the Distribution System Operator (DSO) for prior approval. The DSO 

will check whether the power demand profile compromises the safe operation of the 

distribution network. After receiving the approval of the DSO, the aggregator has to 

perform the power purchase bids directly in the day-ahead market or through a utility. After 

market negotiation, the Transmission System Operator (TSO) will evaluate and require 

changes in the demand profile, in case that any problem could arise in the transmission 

network. If this technical assessment is positive, the aggregator will provide the charging 

set-points to each connected PEV in real time, in order to meet the commitments made in 

the electricity market. Figure 4.3 shows the general scheme of a centralized control 

architecture. 

In addition to the day-ahead and intraday markets, the aggregator can also participate in the 

ancillary services market. The aggregator will estimate the ability to offer these additional 

services, such as frequency regulation. In case of being accepted, the aggregator will 

provide these services when the TSO demands them. 

If abnormal operation of the distribution system occurs, the aggregator, at the request of the 

DSO, will interrupt the operation of the system as scheduled by the market, and will 

perform the necessary corrective actions to return to safe operation of the distribution 

network. In this case, the aggregator will receive the compensations stipulated by providing 

these services. 
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Figure 4.3. Centralized control architecture [65], [69] 

In real-time operation, the aggregator must collect data from the PEVs that are connected 

to the grid, such as PEV identification (ID), EVSE or EVSEM identification, state of charge 

of the batteries (SOC) and user’s preferences. With this PEV ID, the aggregator may access 

relevant data using databases (Figure 4.4). Likewise, the EVSE ID provides extra data such 

as the location and the power limits of the EVSE. 

 

Figure 4.4. Information required for the aggregator operation in a centralized architecture 

With this information, the aggregator will apply the necessary algorithms to achieve the 

proposed objectives, while meets the needs of the PEV owners. In order to do so, all set-

points will be sent to the PEVs through the EVSEs. Within each PEV, the control unit will 

receive the set-point and act on the charger/inverter to set the required charging/discharging 

power (Figure 4.5). 
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Figure 4.5. Interactions between different elements in the centralized control 

In the literature, a wide range of algorithms to achieve certain objectives can be found. 

Focusing in the participation of the aggregator in the market, it is important to minimize 

deviations between the energy bought in the market and the real-time power demand from 

PEVs, which are divided in flexible PEVs and inflexible PEVs (not controlled). F.J. Soares 

et al. have proposed a linear programming technique [70], which is suitable for quasi-real 

time application due to the low computation time required. A heuristic method is also 

proposed based on power flow calculations in order to identify problematic feeders and 

buses. In this way, voltage and lines overloading problems could be solved. Although 

authors point out that there is no necessity of load demand forecasting for the optimization 

algorithm, in fact, it is necessary to know beforehand the PEVs load demand. This way, it 

is possible to minimize deviations between the energy bought in the market and the real-

time power demand. However, this heuristic method could be problematic because it is 

necessary to know the load demand at every node, as well as the distribution network 

model. Furthermore, all PEVs are modelled as three-phase loads even though level 1 

chargers are used. Thus, voltage unbalances are not considered in this paper. 

In [71] a centralized multi-objective scheduling strategy is formulated for a MV/LV 

distribution networks. In this paper, two different objective functions are presented: total 

operational cost of a distribution network and CO2 emissions. On the one hand, operational 

cost takes into account the electricity cost from main grid, cost of producing electric energy 

using distributed generators and cost of discharging from PEVs, as shown in equation 

(4-16). Thus, using V2G the overall cost of the distribution network could be reduced.  

𝐹𝑐𝑜𝑠𝑡 = ∑[𝑃𝑔𝑟𝑖𝑑(𝑡) · Ω𝑡 + ∑(𝐶𝐷𝐺(𝑖, 𝑡) + 𝑆𝑈(𝑖, 𝑡)) + ∑(𝑃𝐸𝑉
𝐷𝑐ℎ(𝑣, 𝑡) · 𝐶𝐷𝑐ℎ

𝑣,𝑡 )

𝑁𝑣

𝑣=1

𝐼

𝑖=1

 ]  

𝑇

𝑡=1

 (4-16) 

where: 

 T:   total number of time slots 

 I:   total number of DGs 

 𝑁𝑣:  total number of PEVs 

 𝑃𝑔𝑟𝑖𝑑(𝑡):  scheduled purchased power from the grid at time slot t 

 Ω𝑡:  electricity cost from the grid at time slot t 
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 𝐶𝐷𝐺(𝑖, 𝑡):  operation cost function of the i-th DG at time slot t 

 𝑆𝑈(𝑖, 𝑡):  startup cost of the i-th DG at time slot t 

 𝑃𝐸𝑉
𝐷𝑐ℎ(𝑣, 𝑡): discharging power rate of the v-th PEV at time slot t 

 𝐶𝐷𝑐ℎ
𝑣,𝑡

:  cost of discharging for the v-th PEV in time slot t 

On the other hand, the CO2 emissions of the main grid and the DGs are considered, as 

shown in equation (4-17). The ϵ-constrained method is used to combine both objective 

functions in a single function, to be optimized. 

𝐹𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = ∑∑(𝐸𝐶𝑂2

𝐷𝐺,𝑖 · 𝑃𝐷𝐺(𝑖, 𝑡))

𝐼

𝑖=1

𝑇

𝑡=1

+ ∑(𝐸𝐶𝑂2

𝑔𝑟𝑖𝑑,𝑡 · 𝑃𝑔𝑟𝑖𝑑(𝑡))

𝑇

𝑡=1

 (4-17) 

where: 

 𝐸𝐶𝑂2

𝐷𝐺,𝑖
:  emissions of the i-th DG at time slot t 

 𝑃𝐷𝐺(𝑖, 𝑡):  active power output of the i-th DG at time slot t 

 𝐸𝐶𝑂2
𝑔𝑟𝑖𝑑,𝑡

:  average emission rate of the grid at time slot t 

 𝑃𝑔𝑟𝑖𝑑(𝑡):  active power consumed from the grid at time slot t 

A number of constraints are implemented in order to satisfy some technical limits, such as 

energy balancing, PEV energy needs, SOC limits of PEV batteries, DG capacity limits and 

voltage constraints. A Benders decomposition (convex optimization) is used to solve this 

large-scale problem. Then, a fuzzy solution is proposed to achieve the best compromise 

between the two objective functions. This way, both objectives can be enhanced. However, 

this proposed solution can present several problems for a real implementation. For example, 

this optimization is done with a day-ahead time horizon. That is, the central controller has 

to know the demand of the PEVs in a day-ahead time horizon. This implies that the PEV 

users must submit their expected trip distance and park time (arrive and departure time), 

something that can be difficult from the point of view of user willingness and privacy. Any 

deviation from expected trip distance or park time from the real ones will have an impact 

on the results. Moreover, in order to not violate distribution network technical constraints, 

such as voltage levels and capacity of lines, it is necessary to know beforehand the active 

and reactive power injected at each node as well as the admittance matrix of the distribution 

network. That is, load demand forecast per node and network characteristics must be 

known. 

Charging a large number of PEVs may produce overloads of transformers and lines, power 

losses and voltage deviations. Therefore, this aspect is widely analyzed in the literature. In 

[65] a heuristic method is proposed to avoid overloads of lines and transformers, and 

improve voltage profiles, using an intelligent charging algorithm. This algorithm is 

executed by the DSO prior market negotiations. In a one hour basis, this algorithm 

calculates a power flow and analyses whether the operating conditions are suitable. 

Otherwise, algorithm recognizes whether the problem is due to a voltage deviation in a 

node or to an overload of some element and proceeds to stop charging a percentage of 

PEVs, adding them to a waiting list. When the electrical network conditions allow it, the 

charge of the affected PEVs will be restarted. After achieving a successful solution, DSO 

will communicate the amount of PEV load that should be shifted in order to guarantee a 

safe operation of the distribution network. In order to bring this solution to the real world, 

it is necessary to forecast not only conventional loads demand but also PEVs power 
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demand. Forecasting PEVs power demand can be even more difficult than conventional 

loads one. 

Other authors have used Artificial Immune Systems algorithms (AIS) with a heuristic 

method [72]. In this paper, the IEEE 34 node test feeder is used to perform all simulations. 

Using AIS, authors seek the minimization of power losses while a heuristic method is 

implemented to avoid overloads and voltage limits violations. The heuristic method 

performs power flows in order to detect voltage or capacity limit violations in a real-time 

basis. This real-time operation requires a complex communication infrastructure to know 

the active and reactive power of residential loads and electric vehicles of each node as well 

as data about their SOC. Furthermore, PEVs are distributed in a balanced way between the 

three phases, so voltage unbalances due to PEVs charging is not analyzed. Moreover, 

although it is a real-time solution, authors do not mention the absolute computation time 

required. They only stated that computation time will be higher in wider distribution 

networks. 

In a similar way, a real-time smart load management (RT-SLM) algorithm to coordinate 

the charging of  PEVs is presented in [73]. This heuristic algorithm tries to reduce the 

charging cost and power losses. The proposed RT-SLM algorithm is based on sorting in a 

queue/list the PEVs in function of the priority levels and their impact on power losses 

(calculated previously through power flows). Then, PEVs are allowed to be charged in 

function of these factors as long as technical constraints are met, which are verified making 

power flows. Similar than in previous cases, using power flows as a part of the algorithm 

requires information of active and reactive power flows at each node, as well as distribution 

network data (lines, distances, etc.). Additionally, the proposed heuristic algorithm based 

on reducing charging cost will generate high variations in PEVs power load demand, only 

limited by voltage and capacity constraints. 

Minimizing power losses is also the aim of [74]. In this case, three optimal charging 

algorithms are compared to know the relationship between them. First algorithm is 

designed to minimize power losses (4-18), second for minimizing load variance (4-19) and 

third for maximizing load factor (4-20). These three algorithms achieve a reduction of 

power losses in the network, but load variance minimization and load factor maximization 

are considered better solutions because they do not depend on the network topology. 

However, taking into account computation time, maximizing load factor is the best solution 

since it only requires half of the time that load variance algorithm. This is due to load 

variance algorithm is a quadratic function while load factor is a linear one. It should be 

pointed out that computation time is a key factor to achieve real-time solutions. Although 

this is true, it also should be pointed out that in decentralized architectures computation 

time do not depend on the number of PEVs. Thus, this fact is important only in centralized 

solutions. 

minimize
𝐼

∑ ∑ (𝑅𝑙 · 𝐼𝑙,𝑡
2 )

𝑙𝑖𝑛𝑒𝑠

𝑙=1

𝑇

𝑡=1

 (4-18) 

where: 

 T:   total number of time slots 

 lines:  total number of lines in the distribution networks 

 𝑅𝑙:  resistance of the line l 

 𝐼𝑙,𝑡:  current through line l at time slot t 
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minimize
𝑆

∑(
1

𝑇
( ∑ (𝑆𝑚,𝑡 · 𝜇𝐷)

𝑛𝑜𝑑𝑒𝑠

𝑚=1

)

2

)

𝑇

𝑡=1

 (4-19) 

where: 

 𝑛𝑜𝑑𝑒𝑠:  total number of nodes 

 𝑆𝑚,𝑡:  load of m-th node at time slot t 

 𝜇𝐷:  average distribution system load during T 

maximize
𝑆

max (∑ 𝑆𝑚,𝑡
𝑛𝑜𝑑𝑒𝑠
𝑚=1 )

𝜇𝐷
 (4-20) 

In a similar way, uncontrolled charging, minimization of charging cost (uncoordinated 

control), minimization of power losses and maximization of load factor are compared in 
[75]. The last two ones are coordinated controls. Three scenarios were analyzed: 10, 25 and 

50% of PEV-PR. Authors also analyzed the voltage deviations produced by each algorithm. 

According to the authors, both coordinated algorithms provide similar results in terms of 

load factor and energy losses. Regarding to voltage deviations, coordinated methods 

improve voltage levels. However, nothing is mentioned about voltage unbalances as they 

have not been taken into account in this analysis.  

L. Jian et al. have presented a centralized solution for optimizing load variance in [76]. This 

solution uses V2G and load forecasting in order to flatten the load profile of a distribution 

network. Researchers achieve good results in load variance reduction but some aspects of 

the proposed framework can be problematic. First, the centralized nature forces to PEV 

users to send information about the actual SOC, departure time and the amount of energy 

required for the next trips. This last information can be difficult to know beforehand for 

PEV users. Second, V2G operation is not limited, so involved PEVs could suffer high DoD 

and battery degradation would be higher. Third, there is no incentive for PEV users to 

participate in the proposed solution. Fourth, as number of PEVs increases, the optimization 

problem will be more and more complex to solve, due to centralized nature. Authors use a 

15 minutes resolution time for scheduling the charging of PEVs. This way, they reduce the 

computational effort but, in turn, they lose accuracy as load demand can change 

substantially in 15 minutes. Finally, voltage issues are not mentioned in this paper. 

A solution to reduce computational complexity is also proposed in [77] by L. Jian et al. 

They expose that with high number of PEVs the computational complexity will be very 

high. In order to handle this problem, a double layer optimal charging strategy which 

minimize the load variance is proposed. In this solution, a central control center (CCC) 

calculates the optimal power schedule for each charging station under its governance. The 

objective of the CCC is to minimize the overall load variance. Then, each charging station 

makes the dispatching of each charging post in order to meet the instructions of the CCC. 

In a similar way than before, authors use a 15 minutes resolution time. Adding control 

layers to reduce complexity in a centralized scheme is not new and does not solve the 

inherent problems of centralized solutions such as privacy and reliability. Additionally, this 

double layer framework, which minimizes the variance at high level, can cause problems 

in the elements located in the low layer such as LV distribution transformers. This is due 

to minimizing the load variance in the highest layer does not imply that load variance is 

optimized in LV distribution transformers of the lower layers.  
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Authors of [23] have used the quadratic (QP) and dynamic (DP) programming  in order to 

minimize power losses and reduce voltage deviations. The IEEE 34 node distribution test 

feeder is used for the analysis. Authors perform a sequential series of optimizations and 

power flow calculations until the convergence of the algorithm is achieved. The QP and 

DP results have been compared, showing that they provide rather similar results but DP is 

slower and requires more data storage capacity. In order to minimize power losses and 

perform power flow calculations, the distribution network topology and the load forecast 

of the different nodes must be known. In this last aspect, authors are right when they 

introduce an error in load forecasting by using a stochastic approach to forecast load 

demand. Authors have pointed out that quality of the results obtained depends on the 

accuracy in forecasting the residential demand profile but they claim that the loss of 

efficiency is rather small. 

In several papers, only heuristic methods are used. Thus, authors of [78] have compared 

three real-time control strategies based on queues: earliest deadline first (EDF), least laxity 

first (LLF) and receding horizon control (RHC). The main objective of the researchers is 

to reduce the reserve capacity needed in electric networks with high penetration of 

renewable energies. Using electric vehicles or deferrable loads, authors pursue to dispatch 

them when an excess of renewable energy generation happens.  EDF is based on charging 

the PEVs which have the most imminent deadline or departure time. However, EDF does 

not take into account the energy requirement of the resources. In contrast, LLF consists in 

charging the PEVs which have the least flexibility factor between them. Finally, a RHC 

approach is analyzed. RHC is also known as model predictive control (MPC), which is 

based on making an optimization in each time step t, but only implementing the result of 

the current time step. This way, the optimization of current time step is made while the 

future states are taking into account. However, one of the main problems of this approach 

is that at each time step an optimization must be carried out, so computation time could be 

very high taking into account that it is a real-time control. Furthermore, if number of PEVs 

increases, computation time will increase accordingly due to the centralized nature. After 

analyzing the three options, authors consider that the control strategies RHC and EDF 

reduce the need for reserve capacity to cover non-dispatchable RES. 

In [79] a heuristic real-time control with V2G is formulated. A priority of charging is 

assigned to each PEV according to EDF policy, but taking into account the energy 

requirements. Authors compare this real-time solution with an optimized method based on 

minimizing the deviation between PEVs power demand and a predefined day-ahead power 

demand reference, which is designed to achieve a valley-filling effect. Authors state that in 

a timing limitation context (less time available than required for charging the PEVs) EDF 

algorithm provides better results in number of missing deadlines (PEVs not totally 

charged). This is because the proposed EDF algorithm includes information about departure 

time of PEVs, while in the optimized version, time constraints have not been included. 

Thus, this comparison is not fair at all. 

Authors of [68] have proposed a dynamic programming algorithm to achieve an optimized 

frequency regulation with V2G. In this case, the aggregator seeks maximizing its revenues 

by making frequency regulation and, at the same time, minimizing the charging cost. 

Authors have shown that charging rate should be 0 or 1 to achieve the optimal solution in 

terms of revenues. This aspect causes that the charging process of PEVs will be stopped 

when frequency regulation is well paid. Conversely, at low electricity prices, all PEVs will 

tend to charge. This behavior will lead to a sudden increase or decrease of energy demand 
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of PEVs (avalanche effects), which will have harmful effects in voltage levels at 

distribution networks. 

Additionally, considering that low voltage distribution networks have low X/R ratio, the 

reactive power control is not so efficient to address voltage disturbances. Therefore, it is 

necessary to control the active power consumed by PEVs, in order to efficiently manage 

the voltage in such networks. This coordinated voltage control is complex when user’s 

preferences are taken into account, since the coordinated control of voltage may cause 

delays in the charging process of PEVs. One solution to this problem is proposed in [80] 

using two control layers based on fuzzy logic. This scheme is designed to control the energy 

flow between the grid and PEVs, being possible the use of V2G. According to the authors, 

voltage stability of the distribution network is improved and it can be easily implemented 

in a real-time scenario. However, fuzzy logic control is rather a heuristic solution. Thus, 

optimal solution cannot be achieved using only fuzzy logic control. In addition, authors do 

not show results of a full day operation time, which is important to know the impact on the 

peak and off-peak periods. Furthermore, V2G operation is not limited which can lead to an 

increase of battery degradation. Finally, economic aspects are not taken into account. 

With regard to this last point, aggregator can play an important role in reducing charging 

costs. In fact, aggregator can provide ancillary services such as downward reserve capacity. 

In [81] an objective function to minimize those charging costs as well as providing 

secondary reserve capacity is presented. This function is divided in three parts: cost of 

purchasing electricity in spot market, cost of charging with downward reserve and positive 

income for having reserve capacity available. Authors have made several simulations for 

two years (2009 and 2010). A thousand of PEVs were involved in this approach. According 

to the authors, an aggregator agent with an optimized bidding can reduce the charging costs 

in comparison with the dumb charging solution. In addition, participation in secondary 

downward reserve could be economically attractive for an aggregator. However, forecast 

of PEVs driving and charging behavior is needed, which can be difficult. Regarding to this 

point, authors have included forecasting errors. Taking into account these errors, results are 

worse but still provide significant benefit to the aggregator. This way, the aggregator could 

offer cheap charging cost to its customers. However, authors do not provide any 

information about the impacts of implementing this business case, in terms of voltage 

deviations and network congestions. Using only economic aspects, avalanche effects may 

happen in real operation conditions, unless additional actions are taken.  

With the same idea, authors of [82] have presented two algorithms to be used by an 

aggregator. Both are designed to know how much energy should be bought in the day-ahead 

market. The first one is a typical charging cost minimization, taking into account hourly 

market prices. The second one is a modification based on increasing electricity cost as 

power demand increases. This way, the charging process of PEVs will be more distributed. 

However, this type of solutions could generate sudden power demand variations of PEVs, 

especially at hours with the lowest electricity prices. Moreover, authors point out that 

aggregators do not have any incentive to smooth PEVs power demand. Therefore, it is 

necessary to design new incentives, which is not addressed in this paper. In addition, 

possible voltage deviations and congestion problems are not analyzed. 

Authors of [83] have developed an interesting approach for minimizing charging cost, 

while a power reference is tracked. In this case, they use MPC to achieve valid solutions in 

compliance with IEC 61851, which defines that the charging power of a PEV has to be 

semi-continuous. That is, charging power can be either zero or it can range from a minimum 
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positive value to a maximum positive value. The proposed MPC optimization consists of 

two weighted sum objective functions, as shown in equation (4-21), being 𝜇 the weight 

parameter. 

𝐽 = 𝐽𝑐𝑜𝑠𝑡 + 𝜇 · 𝐽𝑟𝑒𝑔 (4-21) 

The first objective function is related to charging cost minimization and it considers not 

only the electricity prices but also a coefficient to model the battery degradation, as shown 

is equation (4-22). 

𝐽𝑐𝑜𝑠𝑡 = ∑ ∑Δ𝑃𝑚𝑇{𝐶𝑘𝑈𝑚𝑘 + 𝐶𝑚
𝑑𝑒𝑝|𝑈𝑚𝑘|}

𝐸𝑚

𝑘=𝐼𝑚𝜖𝑀

 (4-22) 

where: 

 𝑀:   total number of PEVs 

 𝐼:   current time interval 

 𝐸𝑚:  departure time of m-th PEV 

 𝑈𝑚𝑘:  controlled power flow for the m-th PEV 

 𝐶𝑘:  electricity price during k-th time interval 

 𝐶𝑚
𝑑𝑒𝑝:  cost coefficient of battery degradation for m-th PEV 

 Δ𝑃𝑚:  maximum power flow of m-th PEV 

 𝑇:   discretization step of the optimal control problem 

The battery degradation coefficient is a constant and it is multiply by the amount of energy 

flow from/to the battery. However, this approach to model the battery degradation is not 

accurate because battery degradation depends largely in DoD which is not linear, as shown 

in Figure 2.8. V2G is also included but buy/sell prices are considered to be the same. 

Equation (4-23) defines the second objective function, which is the error between PEVs 

power demand and a previously defined power reference. This way, DSO or other entity 

can manage the charging power of PEVs. A diagonal matrix has been introduced by the 

authors which gives different weights to the tracking error along the time horizon. That is, 

short-term tracking errors are more penalized than long-term ones. 

𝐽𝑟𝑒𝑔 = ‖Λ(𝑃 − 𝑃𝑟𝑒𝑓)‖
∞

 (4-23) 

where: 

 𝑃:   controlled aggregated power flow 

 𝑃𝑟𝑒𝑓:  reference power flow 
 𝛬:   diagonal matrix 

Because of the use of two different objective functions, a trade-off must be achieved 

between charging cost and tracking error. Thus, weight value should be selected carefully. 

In this context, authors have performed a sensitivity analysis to know the control answer to 

different weight values. However, this sensitivity analysis is only valid to a specific case 

because authors use the weighted sum method but they have not done the normalization of 

the objective function. Therefore, changes in prices or in power reference can change the 

obtained results, even if the same weights are used. In addition, the option of setting a power 

reference can be tricky and surely it will need forecasting the PEVs power demand. Finally, 

no considerations about voltage deviations have been made.  
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A summary of the analyzed centralized smart charging solutions can be found in Table 4.1. 

Table 4.1. Characteristics analyzed in centralized control solutions 

Papers’ main objectives 
References 

No V2G V2G 

Frequency regulation [78], [81] [68] 

Voltage regulation  [80] 

Minimize generation cost  [71] 

Minimize charging cost  [73], [81], [82] [75], [83] 

Maximize aggregator profits [70], [82]  

Minimize power losses [23], [72], [73], [74] [75] 

Maximize load factor [74] [75], [79], [83] 

Minimize load variance [74] [76], [77] 

Avoid network issues  [23], [65], [70], [72], [73]  

Minimize CO2 emissions  [71] 

Solver/tools used 
References 

No V2G V2G 

Convex optimization [23], [70], [74], [81], [82] [71], [75], [76], [77], [83] 

Dynamic programming [23] [68] 

Heuristic method [65], [73], [78] [79] 

Meta-heuristic method [72]  

Fuzzy logic  [71], [80] 

Power flow [23],[65],[70],[72],[73]  

It is clear that PEVs can be used to improve several aspects of electric power systems and 

researchers have proposed a great number of solutions to integrate those PEVs. Most of 

them are partial solutions due to the high complexity of the problem. In this context, 

mathematical programming is the most preferred method to achieve a certain objective or 

objectives but other approaches can be valid. However, few of them have addressed or 

analyzed voltage deviations problems and almost none of them have considered voltage 

unbalances. 

To conclude this subsection, it should be noted that centralized control system presents 

several problems, due to the centralized nature of data management. The first one is due to 

the importance of the aggregator for the system to work properly. Therefore, it is necessary 

to have a backup system to minimize the risk of a possible system failure. The second one 

is due to the amount of data that must be handled by the aggregator. As the number of PEVs 

increases, the amount of information that have to be transmitted and processed by the 

aggregator can be significant, making difficult to manage it and needing an expensive 

communication system. Finally, in this type of centralized control privacy issues can arise, 

because the aggregator will access to data from PEVs and, consequently, to transport habits 

of users. Considering these aspects, it can be desirable to implement a decentralized control. 

 Decentralized control architecture 

Also known as indirect, distributed or local control, the decision-making resides in each 

PEV, i.e. in each owner, rather than in an external entity. This aspect implies that each PEV 

must have some intelligence implemented. Although the decision of “when and how much 

should be charged” is taken by the PEV/owner itself, there are ways to influence these 

decisions. One of these ways is known as price signals which consist in dynamically modify 

electricity prices in function of some parameters such as energy demand level. The market 
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operation of a decentralized control architecture based on price signals has been described 

in [69]. Figure 4.6 shows the possible operation scheme of this system. 

 

Figure 4.6. Decentralized control architecture using price signals [69] 

Apart from price signals, other basic way to modify locally the charging power of a PEV is 

by measuring the local voltage and frequency at the connection node. Depending on these 

values, active and/or reactive power of PEVs can be modulated in order to control the local 

voltage or provide primary frequency regulation. This technique is known as droop control 

and it can work without any communication infrastructure. 

Normally, PEVs are individually connected to low voltage networks, where R/X ratio is 

higher than in MV and HV electric networks. Therefore, it is more efficient to apply an 

active power control by reducing the power demand of PEVs and even injecting power into 

the grid, in case the V2G option is available [84], [85]. In addition, the primary frequency 

control is also possible by using the mentioned droop control, which consists in adjusting 

the power demand of the PEV, according to equation (4-24). In a similar way, local voltage 

control can be performed by using equation (4-25). 

𝑃 = 𝑃0 + (𝑓 − 𝑓0) 𝑘𝑝⁄  (4-24) 

𝑄 = 𝑄0 + (𝑉 − 𝑉0) 𝑘𝑞⁄  (4-25) 

where: 

 𝑃,𝑄:  active and reactive power output 

 𝑓 − 𝑓0:  frequency deviation 

 𝑉 − 𝑉0:  voltage deviation 

 𝑘𝑝, 𝑘𝑞:  active and reactive power droop control characteristics (slope) 

 𝑃0, 𝑄0:  active and reactive power offset 

In this droop control, a dead zone should be added, where PEVs do not respond to changes 

in frequency to ensure the longevity of batteries. This dead zone and the slope of the droop 

control should be defined according to the characteristics of the distribution network where 

PEVs are connected. Additionally, the willingness of users to participate in system 

frequency regulation should be taken into account. Furthermore, both charging and 

discharging power (only with V2G) should be limited by the battery and the charger 



68  CHAPTER 4 

characteristics. Finally, there must be an offset that represents the rated power consumption 

of PEVs when the system is operating without frequency deviations. Thus, for frequency 

deviations greater than the dead zone, PEVs’ batteries will respond as it has been defined 

in the droop control. If frequency decreases, the battery consumption will be reduced in the 

first instance. If still this action is not enough, the battery will start to inject power into the 

grid. Conversely, if frequency increases, the battery consumption will increase, in an 

attempt to drain the power excess in the system. A droop frequency characteristic including 

the mentioned improvements can be seen in Figure 4.7 [45]. 

 

Figure 4.7. Frequency droop control with V2G [45] 

Batteries of PEVs are very suitable to perform primary frequency and voltage control, due 

to their fast response and ramp up/down characteristics. To implement the primary 

frequency control in a market environment, users must notify to the utility their intention 

to participate as a primary reserve. After communication has been established, the PEV will 

be designated as primary reserve supplier and the local control will be activated. When the 

provision of this service is finished, the PEV will send a signal to the utility and will be 

compensated based on the time that it has been available as primary reserve.  

Many authors have used this classical technique of control. In [86] the droop control method 

is used to achieve suppression of frequency and voltage fluctuation, without using any type 

of communication. The system includes not only electric vehicles but also electric water 

heaters. Possibilities of droop control to maximizes intermittent RES integration, using 

PEVs and V2G in islanded grids, is researched in [45]. The droop control of Figure 4.7 is 

used to define the active power output of an inverter. Several simulations have been carried 

out in Matlab/Simulink to know the response of such control when a sudden wind speed 

drop happens. 

Also, in [87] V2G is used to provide frequency regulation in an islanded power system, 

with high penetration of wind power sources. Two droop methods were tested, one based 

on a proportional controller and the second one based on a PI controller with a high pass 

filter. The last one provides better results. According to the authors, 80% of frequency 

regulation reserves could be covered by PEVs with V2G, on average. Simulations were 

performed in the DIgSILENT PowerFactory software. 

Katarina et al. [88] have implemented a reactive power control (RPC) based on droop 

control method. The LV distribution network used is based on a real distribution network 

located in Borup (Denmark). The data of this network has also been used in the 

methodology developed in this thesis. RPC is implemented not only in the electric vehicles 
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but also in the photovoltaic (PV) installations of the network. Six different scenarios were 

analyzed depending on the chosen season (winter or spring) and the possible combinations 

of control (no RPC, RPC in PVs and RPC in PVs and PEVs). Results obtained show that 

the RPC method improves voltages profile while energy losses do not vary significantly.  

Frederik Geth et al. [89] have proposed an unidirectional droop method in order to limit 

under-voltage problems that can arise in residential distribution networks. A 400/230V 

network with 62 household was used. Four different cases were considered: no droop 

control and three different droop control characteristics. Unbalanced simulations were 

performed with Matlab. Authors suggest that droop control method can have an impact in 

the charging rate of PEVs, about 15% in the worst case, which is manageable. In contrast, 

voltage deviations can be significantly improved by approximately 46%. According to the 

authors, controllability of the voltage in the three phases is not equal due to unbalances 

generated by household loads.  

A similar network to the previous paper is used in [90]. In this case, authors have added a 

coordinated charging to the droop control. This coordinated charging is based on charging 

at the minimum charging power to meet the user requirements, regarding to departure time.  

However, a minimum charging power to avoid low efficiency in chargers is taken into 

account. This minimum charging power was set to 25% of nominal charging power. Four 

cases were analyzed: uncoordinated charging, uncoordinated charging with droop control, 

coordinated charging and coordinated charging with droop control. As expected, the 

coordinated charging significantly reduces peak power compared to the uncoordinated 

cases. Droop control provides better values in terms of voltages. Also, voltage unbalances 

have decreased, especially in coordinated charging. The reason is that coordinated charging 

naturally synchronizes the charging of PEVs between all phases. However, this coordinated 

control increases charging time in more than three times. In addition, the proposed 

coordinated charging is not optimal. Therefore, some smart charging algorithms (such as 

losses or variance minimization or load factor maximization) can provide significant 

improvements. 

Adaptive droop control method can offer interesting solutions. In [91] primary frequency 

control (PFC) is performed, while required charging level of customers is fulfilled. 

However, droop based PFC presents the drawback that charging power depends on the 

frequency level. That is, if the PEV is providing PFC and frequency is low during a long 

period of time, the PEV battery could not have enough stored energy for the next trip of the 

user. The authors of this paper address this problem proposing a decentralized V2G control 

(DVC), which consists in two different smart charging approaches. The first one, called 

battery SOC holder (BSH), consists in maintaining a minimum SOC, preselected by the 

user, during the PFC. The second one, called charging with frequency regulation (CFR), is 

used to charge the PEV without stopping the frequency regulation. The main idea of these 

control methods is to introduce two variables in the droop control method to define the 

slopes for charging and discharging, depending on the current SOC of the PEV and the 

minimum SOC required by the user. According to the authors, DVC can provide primary 

frequency regulation while charging demand of the PEV users is satisfied. 

However, a drawback of the droop methods is that the effective gain of the control is 

affected by the number of connected PEVs. Therefore, it is necessary to update the gain of 

the droop control of each PEV, which participates on the primary frequency/voltage 

regulation, to achieve a constant effective gain and avoid fluctuations. In addition, the droop 

control method alone do not provide some important advantages given by the optimized 
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methods, such as load levelling, peak shaving, congestion management and charging cost 

reduction.  

Some optimized and decentralized solutions can be considered as market based solutions, 

especially when price signals are part of the algorithm. In this case, the aggregator or utility 

iteratively update electricity prices (price signals) in order to modify the charging profile 

of PEVs. Thus, charging cost will depend on these price signals. One typical application is 

to relate the charging cost with power demand in order to avoid grid congestions. Thus, if 

power demand increases at certain time, electric prices for that time will increase, 

encouraging to recently connected PEVs to be charged in another period of time. 

A large amount of papers that analyze decentralized control methods put the focus on 

achieving a valley-filling effect. Z. Ma et al. [92] have developed an algorithm based on a 

finite-horizon non-cooperative dynamic game. First, they define the electricity cost which 

depends on base load and load demanded by PEVs, divided by the network capacity, as 

shown in equation (4-26). 

𝑟𝑡 = (
𝑑𝑡 + 𝑎𝑣𝑔(𝑢𝑡)

𝐶
) (4-26) 

where: 

 𝑟𝑡:   ratio of aggregated load demand and the generation capacity 
 𝑑𝑡:   forecasted base load at time slot t 
 𝑢𝑡:   charging power of PEVs at time slot t 

 C:   generation capacity 

This electricity cost is broadcasted to all PEV agents. Then, each PEV agent tries to 

minimize its charging cost and the cost incurred in deviating from the average behavior of 

the PEV population (4-27). 

𝐽𝑛(𝑢) ≜ ∑ {𝑝(𝑟𝑡) · 𝑢𝑡
𝑛 + 𝛿(𝑢𝑡

𝑛 − 𝑎𝑣𝑔(𝑢𝑡))
2
}

𝑇−1

𝑡=0

 (4-27) 

where: 

 𝑝(𝑟𝑡):   electricity retail price which depends on (4-26) 
 𝑢𝑡

𝑛:  charging power of n-th PEV at time interval t 

 𝛿:    tracking parameter 
 T:   number of time periods 

After optimal charging strategy has been calculated, it is sent to the utility which update the 

aggregated PEVs power demand of (4-26) and send it back to all PEVs, repeating the 

process until the algorithm achieves the convergence. In this context, the tracking parameter 

of (4-27) has a relevant importance on the convergence of the algorithm. But, convergence 

is not assured if the tracking parameter is not well selected. This algorithm was tested for 

homogeneous and heterogeneous driving and charging behavior. In the homogeneous case, 

all PEVs have the same characteristics, energy requirements and arrive and departure time. 

According to the authors, algorithm converges in a few iterations for this homogeneous 

case. However, for the heterogeneous case, which is the realistic one, the algorithm does 

not achieve optimal solutions.  
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In a similar way, Lingwen Gan et al. [93] have proposed an iterative algorithm that tries to 

fill the off-peak hours optimally. The valley-filling effect is achieved by an iterative 

optimization. First, the utility will broadcast a control signal. This control signal is 

calculated from equation (4-28), as the sum of the forecasted base load and the PEVs power 

demand.  

𝑝𝑘(𝑡) ∶= 𝛾𝑈′ (𝐷(𝑡) + ∑ 𝑟𝑛
𝑘(𝑡)

𝑛𝜖𝒩

) , 𝑡𝜖𝒯 (4-28) 

where: 

 𝑝𝑘(𝑡):  control signal of iteration k at time slot t 

 𝛾:   parameter to modulate the control signal value 

 𝑈′:  Lipschitz function 

 𝐷(𝑡):  forecasted base load at time slot t 

 𝑟𝑛
𝑘(𝑡):  charging rate of the n-th PEV at time slot t and iteration k 

 𝒯:   scheduling time horizon 

Taking into account this control signal and a penalty term, each PEV will minimize its cost 

function (4-29). The penalty term will penalize changes in the charging profile of the PEV 

between two consecutive iterations. 

𝑚𝑖𝑛〈𝑝𝑘, 𝑟𝑛〉 +
1

2
‖𝑟𝑛 − 𝑟𝑛

𝑘‖2   𝑠. 𝑡.  𝑟𝑛 ∈ ℱ𝑛 (4-29) 

where: 

 ℱ𝑛:  feasible space of the n-th PEV 

After the optimization is performed, the charging profile will be sent to the utility which 

will update the control signal. This process continues until the convergence is achieved 

with the help of the penalty term. This optimization takes into account the user preferences 

in terms of energy charged and departure time. Authors also present a similar algorithm 

with the objective of tracking a predefined load curve in real-time operation. Additionally, 

they have compared their algorithm with the solution developed in [92], showing that their 

algorithm cope with the non-homogeneous driving and charging behavior better than the 

solution of [92]. However, authors do not provide any analysis about the impact of voltage 

levels. 

In the same manner, but focusing in buildings [94], a decentralized control algorithm which 

tries to minimize costs for users as well as increase load factor, using a non-cooperative 

game approach for a building. In this solution, each PEV i receives data of the total load of 

the building, from a building controller. Then, PEV i finds the best optimized load profile, 

by minimizing equation (4-30), in order to pay as less as possible.  

min
𝑥𝑖∈𝒳𝑖

𝑘𝑖 · ∑𝛿 (𝑙𝑡 + ∑(𝑥𝑗
𝑡)

𝑁

𝑗≠𝑖

+ 𝑥𝑖
𝑡)

2
𝑇

𝑡=1

 (4-30) 

where: 

 𝑘𝑖:   energy demand of i-th PEV and total energy demand ratio 

 𝛿:   cost coefficient (€/kWh2) 

 𝑙𝑡:   forecasted base load demand at time slot t 
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 𝑥𝑗
𝑡:  charging power of j-th PEV at time slot t 

 𝑥𝑖
𝑡:  charging power of i-th PEV at time slot t 

This profile is sent to the building controller which updates the total building load profile 

and sends it to another user. This procedure is done in rounds and repeated until 

convergence is reached. Authors of this paper define that the charging cost is directly 

related with the total energy demand in the building, as shown in equation (4-30). This way, 

a smooth energy demand of the building is achieved. However, they do not include any real 

factor of electricity cost from the grid. Thus, PEVs could be charged at high electricity 

market prices. 

Similarly, in [95] an algorithm is formulated to minimize the overall charging cost of all 

PEVs using a game theoretic approach and focusing in distribution networks. In this case, 

a complex cost function is developed including the generation capacity, as shown in 

equation (4-31). 

𝑐𝑜𝑠𝑡𝑖 = ∫ 𝑟𝑖(𝑡)
𝑏

𝑎

· 𝛾𝑏𝑡 · (
∑ 𝑟𝑗(𝑡)𝑗∈𝑉 + 𝐿𝑏𝑎𝑠𝑒(𝑡)

𝐺(𝑡)
)

𝛼

𝑑𝑡 (4-31) 

where: 

 𝑟𝑖(𝑡):  charging rate of i-th PEV in time t (to be calculated) 

 𝑟𝑗(𝑡):  charging rate of j-th PEV in time t  

 𝑉:   set of already connected PEVs 

 𝑎, 𝑏:  connection time interval 

 𝛾𝑏𝑡:  energy cost ($/kWh) 

 𝐿𝑏𝑎𝑠𝑒(𝑡):  forecasted base load demand in time t 

 𝐺(𝑡):  generation capacity in time t 

 𝛼:   nonlinear cost coefficient between load and prices 

In addition, authors have taken into account the PEV owners’ driving patterns, which have 

been obtained from statistical data of 2009 NHTS [30]. Three different scenarios were 

simulated: 2, 15 and 70% of PEV-PR for a distribution network composed by 1,000 houses. 

They have assumed one PEV for household at maximum. According to the simulation 

performed, the proposed algorithm reduces peak load compared to uncontrolled scenario 

and improves load factor. As previous analyzed papers, authors do not analyze the impact 

of load forecasting errors on the results. In addition, possible voltage deviations are not 

analyzed. 

Implementation and organization of a decentralized control architecture, where intelligence 

is distributed in each PEV, can be performed using a tool known as multi-agent system 

(MAS) [96]. A multi-agent system is a set of two or more intelligent entities, named agents, 

which interact in an environment. The purpose of this tool is to reduce the complexity of a 

problem, by dividing it into sub-problems. According to Wooldridge [97], an agent is a 

virtual or physical entity located in an environment that is able to react autonomously to 

changes in that environment. The basic functions that define an agent are: 

 Autonomy. Ability to meet designated targets without the constant guidance of a user. 

 Sensitivity. Ability to perceive the environment and respond to changes. 

 Social ability. Ability to interact with other virtual or physical agents. 
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 Activeness. Ability to take decisions and start their own actions to meet designated 

goals. 

Agents can cooperate and communicate with each other, so that an agent may influence 

another agent's decisions and the state of its environment, in order to meet its needs and 

those of the system. Each PEV will have its own agent, which will act in order to meet 

certain objectives, according to its status and environment. For instance, an agent can have 

the objective of charging with the minimum cost possible, while another agent may be 

programmed to have a minimum of SOC available, even whether it is penalized financially. 

Other types of agents can exist, like transformer agent which may be responsible for 
preventing overloads. 

Karfopoulos et al. [98] have designed and modeled a MAS method for charging PEVs. The 

scheme is similar than those of previous analyzed papers, in which price signals are used. 

This scheme works as follows. Each PEV agent tries to minimize its charging cost, which 

depends on pricing policy. A regional aggregation unit (RAU) agent updates the pricing 

policy, according to equation (4-32), in order to reflect the load level of the distribution 

transformer. The higher the transformer load level is, the higher the electricity prices will 

be. This way, overloads can be avoided.  

𝑝(𝑡) = 𝑓 (
𝐷(𝑡) + ∑ 𝑃𝑖(𝑡)

𝑁
𝑖=1

𝑃𝑡𝑟𝑎𝑛𝑠
) (4-32) 

where: 

 𝑃𝑖(𝑡):  optimal charging power of i-th at time t 

 𝐷(𝑡):  forecasted base load at time t 

 𝑃𝑡𝑟𝑎𝑛𝑠:  transformer load capacity 

 𝑝(𝑡):  RAU pricing policy at time t 

Two different objective functions to be minimized by the PEV agent have been used. The 

first one, called uncoupled, is based on minimizing the charging cost, using equation (4-33). 

The second one, called weakly-coupled, is based on equation (4-27) of reference [92]. 

Charging optimization of PEVs is solved by using a hybrid PSO technique, while overall 

system is solved using a non-cooperative dynamic game. Authors suggest that with this 

solution an effective valley filling is achieved, reducing energy losses.  

𝑚𝑖𝑛 𝐹 = ∫ 𝑝(𝑡)𝑃(𝑡)𝑑𝑡
𝑡0+𝑇

𝑡0

 (4-33) 

where: 

 𝑃(𝑡):  charging power at time t 

 𝑡0:   starting time of charging 

 𝑇:   charging period 

According to the authors, the uncoupled version does not achieve the convergence, while 

the weakly-coupled converges in a few iterations. This last version is compared with a 

centralized solution, based on load variance minimization. As commented before, the 

centralized version achieves an optimal solution in only one iteration, but as number of 

PEVs increases, the computation time will be higher. The same conclusions are commented 

in this paper. Obviously, this is because the centralized nature of the algorithm. In addition, 
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load forecast errors are not taken into account. In this type of solutions, this error in load 

forecasting will have an important impact on charging cost of PEV users. 

Hu et al. have proposed a MAS based on price signals [99]. This MAS is composed by four 

different agents: the DSO agent, the market operator agent (CMO), the fleet operator agent 

(FO) and the EV agent. The proposed solution works as follows: each PEV generates the 

charging schedule by minimizing equation (4-34) and taking into account the user 

requirements. 

𝑀𝑖𝑛 ∑(𝜙𝑗,𝑖 + 휀𝑖 · Λ(i)) 𝑃𝑗,𝑖𝑡

𝑁𝑇

𝑖=1

 (4-34) 

where: 

 𝑁𝑇:  total number of time slots 

 𝜙𝑗,𝑖:  predicted day-ahead electricity market price vector 

 휀𝑖:   weighting factor of the shadow prices 

 Λ(i):  shadow price 

 𝑃𝑗,𝑖:  charging power of j-th PEV at time slot i 

 𝑡:   length of each time slot 

The obtained charging schedule is sent to the FO, which aggregates all charging schedules 

under its governance. The aggregated charging schedules of the different FOs are submitted 

to the DSO, which runs a power flow to check if any distribution network constraints are 

exceeded. If there is no problem, FOs could bid the energy scheduled for the next operation 

day. However, if the power flow reveals any congestion problem, the FOs will submit their 

aggregated charging schedules to the CMO agent. An iterative procedure between the CMO 

and the FOs is carried out in order to avoid those congestion problems. This procedure 

consists in calculating iteratively the power demand profile of each FO (equation (4-35)) 

and the necessary shadow prices (equation (4-36)) to avoid congestion problems and taking 

into account the maximum network capacity. 

𝐿 = ∑ ∑𝐶𝑘,𝑖(�̃�𝑘,𝑖 − 𝑃𝐸
𝑘,𝑖)

2

𝑁𝑇

𝑖=1

𝑁𝐵

𝑘=1

+ ∑ Λ(i) (∑ �̃�𝑘,𝑖

𝑁𝐵

𝑘=1

− 𝑃𝐶𝑎𝑝(𝑖))

𝑁𝑇

𝑖=1

 (4-35) 

where: 

 𝑁𝐵:  number of FOs 

 𝐶𝑘,𝑖:  weighting factor associated with power difference 

 �̃�𝑘,𝑖:  power demand of FO k at time slot i to be calculated 

 𝑃𝐸
𝑘,𝑖:  accumulated charging profile of k-th FO at time slot i 

 𝑃𝐶𝑎𝑝(𝑖):  power capacity at time slot i 

Λ(i)𝜔+1 = Λ(i)𝜔 + 𝛼𝜔 ∑(𝑃𝑘,𝑖
∗ (Λ∗) − 𝑃𝐶𝑎𝑝(𝑖))

𝑁𝐵

𝑘=1

 (4-36) 

where: 

 Λ(i)𝜔+1:  shadow price to be calculated at time slot i 

 Λ(i)𝜔:  shadow price of previous iteration 𝜔 at time slot i 

 𝛼𝜔:  step size 

 𝑃𝑘,𝑖
∗ (Λ∗):  optimal solution achieved using equation (4-35) 
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After convergence is achieved, each PEV performs the optimization of equation (4-34) 

taking into account the calculated shadow prices. This way, congestion management of 

distribution networks with high PEV-PRs can be performed. 

A real-time multi-agent system based on price signals is carried out and tested 

experimentally at laboratory scale in [100]. As in the previous paper, four different agents 

are defined: DSO agent, coordinator agent, local area agent and PEV agent. The PEV agent 

sends PEV owner’s preferences and receives charging set-points from the local area agent 

that had been previously calculated by minimizing a cost function. The coordinator agent 

aggregates the demand of the local area agents and sends it to the DSO agent which is 

responsible for the safe operation of the distribution network. The DSO will perform a 

power flow in order to know whether there is any congestion. If yes, a virtual price is added 

to the hours when congestions happen. The tests carried out by authors show that MAS can 

manage PEVs charging tasks avoiding overloads in distribution networks. This solution is 

slightly different because cost optimization is performed in the local area agent, instead on 

the PEV agent. Thus, PEVs agent must sent more information to local agent such as actual 

SOC, required final SOC, connection time, charging power, charger efficiency and battery 

efficiency. Furthermore, this type of solution can increase peak power and power losses as 

no optimal dispatch is used. As most of the papers, voltage problems have not been 

addressed. 

An approach, based on congestion pricing of Internet traffic control, is proposed in [101] 

to develop a distributed demand response algorithm with PEVs in a residential scenario. 

Price of energy in a certain period of time depends on the aggregated demand. Moreover, 

each user agent declares a price per time slot that he is willing to pay (WTP). Thereby, 

users who pay more receive a better quality of service, i.e. they will charge their PEVs in 

less time. The formulated cost function is composed by two terms. The first one is referred 

as utility (user’s quality of service) function which depends on the WTP parameter. The 

second one, called as cost function, is a price function which depends on aggregated 

demand. That is, the higher the overall demand, the more expensive the electricity will be. 

Hence, the objective of a user i is to maximize equation (4-37). 

𝑤𝑖 · log(𝑥𝑖(𝑛)) − 𝑥𝑖(𝑛) · 𝑎 (
∑ 𝑥𝑖(𝑛)𝑁

𝑖=1

𝐶
)

𝑘

 (4-37) 

where: 

 𝑛:   current time slot 

 𝑁:   total number of PEVs 

 𝑥𝑖(𝑛):  charging power at time slot n 

 𝑤𝑖:  WTP at time slot i 

 𝑎, 𝑘:  shape parameters 

 𝐶:   market capacity 

As a consequence of different WTPs between users, load levelling and peak saving can be 

achieved. Although it is an interesting approach, it can be complex to develop in real world. 

Users will have to define the WTP for each time period, which can be difficult to 

understand, especially because results do not depend only on the WTP scheme selected, 

but also on the aggregated PEVs power demand and other parameters defined by an external 

entity, such as a, k and C. 
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Another interesting approach to avoid network congestions, as well as voltage drops 

problems, is presented in [102]. Authors present a random access framework to schedule 

the PEVs charging. A network control center monitors load and voltage parameters of the 

different buses. When a PEV is plugged into a specific bus, a smart agent which makes 

decisions for the PEV will request data from that control center. The smart agent will 

schedule the PEV charging in function of two stochastic probabilities: access and suspend 

probability. The first one is designed to prevent the access to the network or resume the 

charging process, and the second one to suspend the charging process if any problem exists 

in the network. Both probabilities are divided in two parts, one designed to avoid load 

congestion and the other one developed to avoid voltage violations. Only the worst case 

between both probabilities is used. Equation (4-38) shows the access probability equation 

used by authors. A mechanism is also added to assure that PEV will reach the expected 

charging level before departure time is reached.  

𝑝1(𝛾𝑐) = {
𝑘1𝑒

−𝛼𝑐(𝛾𝑐−𝑣𝑐1)+𝛽𝑐·𝜔/𝜔𝑚 + 𝛿1,   𝑖𝑓 𝜔 < 𝜔𝑚

1,                                                    𝑖𝑓 𝜔 = 𝜔𝑚
 (4-38) 

where: 

 𝑝1(𝛾𝑐):  charging probability 

 𝑘1:  global parameter to modulate the probability to start charging 

 𝛾𝑐:   loading ratio 

 𝛼𝑐:  parameter to define how fast 𝑝1(𝛾𝑐) changes when 𝛾𝑐 → 𝑣𝑐2 

 𝑣𝑐1:  value of threshold one for bus congestion (warning level) 

 𝑣𝑐2:  value of threshold two for bus congestion (emergency level) 

 𝛿1:  user preference parameter 

 𝜔:   current waited time 

 𝜔𝑚:  maximum tolerable waited time 

 𝛽𝑐:  weight factor of waiting time 

According to the authors, this approach maximizes the number of PEVs that can be 

integrated in a distribution network. This can be true, but the proposed approach does not 

have an optimal behavior with lower PEV-PRs. That is, it is designed to avoid load 

congestions and voltage violations but cannot reduce energy losses or peak power. In fact, 

in low loaded networks, it will tend to increase peak power until load congestions or voltage 

violations happen. Thus, energy losses will be higher compared with other optimal 

solutions already analyzed. Furthermore, these authors do not take into account economic 

aspects. 

In [103] a stochastic process is also used. Authors design a Markov chain to model the user 

driving patterns. The probability of the vehicle of being used is considered in the decision 

process that determines when a PEV has to be charged, in order to minimize charging costs. 

A penalty term is introduced to model the flexibility level of the PEV user. That is, the less 

flexible the user is, the higher the penalty term will be. Therefore, the charging process of 

the PEV will be faster. Besides, two versions are analyzed: unidirectional and bidirectional 

(V2G). A stochastic dynamic programming is used to determine the optimal charging 

profile. According to the authors, it could achieve daily savings of approx. 19-47% in the 

G2V version, respect to dumb charging. This approach only addresses economic aspects 

and therefore, a real implementation can lead to avalanche effects as all PEVs will tend to 

be charged at hours with low prices. 
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Decentralized voltage control is introduced in [104], using an iterative algorithm called best 

response dynamics (BRD), based on non-cooperative game theory. Authors use a 

sensitivity matrix to evaluate deviations in voltages of pilot nodes, induced by changes in 

active and reactive power injections. The solution procedure works as follows: all PEVs 

send their charging profiles to an aggregator which calculates the voltage level on all the 

pilot nodes and sends this data back to each PEV. After that, each PEV updates its charging 

profile to minimize an objective function. Authors propose two objective functions. On the 

one hand, the minimization of voltage deviations for all pilot nodes (global approach), 

which objective function is presented in equation (4-39). On the other hand, the 

minimization of voltage deviations for only neighborhood pilot nodes (local approach), 

which objective function is presented in equation (4-40). 

𝑓𝑔𝑙𝑜𝑏𝑎𝑙(∆𝑃𝑖, ∆𝑃−𝑖) = ∑ 𝑓𝑉 (𝑉𝑝 − 𝑉𝑟𝑒𝑓 + ∑𝑆𝑉𝑝,𝑃𝑐
· ∆𝑃𝑐

𝑐

)

𝑁𝑝

𝑝=1

 (4-39) 

where: 

 ∆𝑃𝑖:  change in active power injection at instant i 

 ∆𝑃−𝑖:  change in active power injection at any instant (except i) 

 𝑁𝑝:  total number of pilot nodes 

 𝑝:   pilot node 

 𝑐:   controlled node 

 𝑓𝑉(𝑉𝑝):  performance function 

 𝑉𝑝:  voltage measured at pilot node p 

 𝑉𝑟𝑒𝑓:  voltage reference 

 𝑆𝑉𝑝,𝑃𝑐
:  value of the sensitivity matrix V-P for pilot node p 

 ∆𝑃𝑐:  variation of power at c-th controlled node 

𝑓𝑖
𝑙𝑜𝑐𝑎𝑙(∆𝑃𝑖, ∆𝑃−𝑖) = ∑ 𝑓𝑉 (𝑉𝑝 − 𝑉𝑟𝑒𝑓 + ∑𝑆𝑉𝑝,𝑃 · ∆𝑃

𝑐

)

𝑝∈𝒱𝑖

 (4-40) 

where: 

 𝒱𝑖:  local pilot nodes for i-th PEV 

 ∆𝑃:  change in PEV active power injection 

Simulations have been performed in the IEEE 34 distribution network model and results 

show that there is a significant improvement compared to the uncontrolled case. 

Furthermore, the proposed algorithms provide also better results than the droop method, 

which is also applied to the problem in order to compare with the two optimized methods. 

In general, local and global approaches give similar results. Obviously, the optimized 

methods need more information exchange than the voltage droop control approach. The 

proposed methods only act when a voltage value, at any pilot node, is out of 0.9-1.1 p.u. 

range. This is because 𝑓𝑉(𝑉𝑝) is equal to zero, when pilot node voltages are in their standard 

limits (0.9-1.1 p.u.). It could be more interesting if these controls would start to work 

gradually, before any pilot node surpasses the voltage limits. Moreover, distribution 

network topology, i.e. the admittance matrix, must be known in order to calculate the 

sensitivity matrix. Additionally, voltage unbalances problem is not analyzed in this paper. 
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All decentralized systems analyzed until now require that the intelligence should go 

installed onboard of the PEV, which means that there must be a dedicated hardware to 

process the data. The additional cost of this hardware can be avoided by using mobile agents 

concept. In the V2G concept, PEVs can be considered as distributed generation and 

distributed storage. But PEVs are also mobile devices. Therefore, the distribution network 

where the PEV is connected will demand nomadic computing capacity. This means that the 

PEV which is moving from an area to another one must be able to connect to different 

EVSEs and continue to experience the same level of service quality, concept known as 

roaming. This concept requires that the PEV must have the know-how of bidirectional 

power exchange with the network, the intelligence to take decisions based on the 

environment (SOC, market prices, system status, etc.) and an adequate computing power 

to run the required tasks. In other words, knowledge, intelligence and computing power 

must be on-board of the PEV. 

This option requires the existence of an embedded system that allows the different charging 

strategies and market participation to be integrated. But embedded systems usually have a 

limited computing power. In order to adapt this limited potential to V2G concept, 

embedded system should be improved, which will increase the cost of PEVs. That cost 

increase can be avoided by transferring the computing capacity to an external system using 

the mobile agents concept [105], as shown in Figure 4.8. 

Thus, locally, there is an agent which is part of the residential energy management. This 

agent contains all the information and intelligence needed for the charging/discharging 

control of the PEV batteries, at local level. Once the PEV leaves the residential zone, the 

battery will discharge depending on the distance travelled, traffic and driving behavior. In 

case that the battery SOC is greater than the travel needs of the user, and taking into account 

the possible degradation of the battery, the excess energy could be injected into the grid. 

To achieve a proper operation of the V2G concept, intelligence and data of the stationary 

agent, located in the residential EVSE, is required. Therefore, a migration of information 

and intelligence to the new EVSE is needed. The mobile agent technology allows this 

migration. 

 

Figure 4.8. Application of mobile agent concept for PEVs 
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When the PEV is connected to a new EVSE, an identification message is sent to the 

aggregator. This message contains the identity of the PEV and the location of the EVSE. 

After receiving this information, the aggregator sends the location of the EVSE to the 

stationary agent, which is cloned and migrated to the new EVSE. When this process is 

complete, the agent returns from the new EVSE to the residential EVSE and updates the 

data of the stationary agent. This system is only feasible if there is some kind of 

communication infrastructure that can be installed on each EVSE. Additionally, privacy 

concerns may arise because private information is transmitted through an external entity 

(aggregator). Finally, it is expected that, in general, vehicles will have more computing 

power installed, due to the development of connected, intelligent and autonomous vehicles. 

Note that onboard CPUs will be free to execute smart charging algorithms because the 

vehicles are parked and most of these new services, such as autonomous drive, are not 

necessary. 

In contrast to droop control methods, most of reviewed optimized algorithms are not 

focused on voltage and frequency regulation. Thus, some of the proposed algorithms will 

probably have an impact on voltage and congestion levels. In this context, it is necessary 

to analyze these aspects, something that several papers do not address. 

Thus, it is necessary to implement optimized algorithms with some type of voltage control 

such as the droop control already proposed. However, mixing both controls, i.e. droop 

methods and optimized methods, could not be easy unless they focus in different variable 

controls such as active power for optimized algorithms and reactive power for droop control 

methods.  

To finish this subsection, a summary of the analyzed decentralized smart charging solutions 

is presented in Table 4.2. 

Table 4.2. Characteristics analyzed in the decentralized control solutions 

Papers’ main objectives 
References 

No V2G V2G 

Frequency regulation  [45], [86], [87], [91] 

Voltage regulation [89], [90], [104] [86], [88] 

Minimize charging cost  [95] [103] 

Load levelling (price signals) [92], [93], [95], [98], [100], [101]  

Minimize load variance  [94] 

Avoid network issues [99], [100], [102]  

Solver/tools used 
References 

No V2G V2G 

Convex optimization [92], [93], [99], [100], [104] [94] 

Dynamic optimization  [103] 

Droop method [89], [90] [45], [86], [87], [88], [91] 

Meta-heuristic [98]  

Power flow [99], [100]  

Stochastic algorithm [102]  
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 Comparison between centralized and decentralized control approaches 

This subsection compares the intrinsic characteristics of the two control architectures 

presented. In this aspect, some authors have published papers using and comparing these 

two approaches.  

In [106], linear programming optimization is used in both architectures in order to charge 

PEVs within network constrains limits. The decentralized smart charging algorithm is 

based on maximizing the charging power without exceeding the local voltage and single-

phase line loading limits, which are programmed as constraints. In the centralized case, the 

optimization objective is also to maximize the charging power without surpassing the 

observed node voltages and loading level of distribution transformer. Additionally, the 

objective function prioritizes the charging of PEVs with less SOC. Authors use Matlab to 

solve the optimization problem and PowerFactory to test and compare the obtained 

solutions. The main conclusions obtained in the simulations are that the centralized control 

approach makes a better use of the network capacity and achieves a better control of 

voltage, due to all network information is known by the central controller. However, this 

centralized control approach needs a more complex communication infrastructure. 

Authors of [107] have developed and compared three different control systems: centralized 

control, decentralized with system-wide price signals and decentralized with nodal price 

signals. These control approaches are designed to optimize generating costs in a large-scale 

network. Low voltage network constraints are not considered. In the decentralized cases, 

PEV users seek to minimize their charging cost. Thus, the TOU tariffs which minimize 

generation cost are calculated. Simulation results show that the best solution, in terms of 

generation cost, is achieved with centralized control approach. However, the decentralized 

control with nodal prices obtains similar results. Therefore, the authors prefer the 

decentralized control approach, taking into account that it presents better consumer 

acceptance and requires a smaller communication infrastructure. 

Thus, considering all the aspects analyzed in section 4.3, a comparison of these two control 

schemes and a set of advantages and drawbacks of each approach are presented (Table 4.3): 

Table 4.3. Advantages and drawbacks of centralized and decentralized architecture 

controls 

 Advantages Drawbacks 

Centralized 

control 

 Well-known architecture 

 Better utilization of network 

capacity 

 Better ancillary services 

provision 

 A complex and expensive communication 

infrastructure is required 

 A central controller and a backup system is 

necessary 

 Complexity increases with the number of 

PEVs 

 Large amount of data to process 

 Privacy issues 

Decentralized 

control 

 Scalable 

 Improved fault tolerance 

 Less communications 

infrastructure required 

 Charge control remain in the 

user 

 Higher consumer acceptance 

 Uncertainty in the final result 

 Limited ancillary services provision  

 Necessity of predicting or forecasting the 

reaction of consumers 

 Avalanche effects or simultaneous reactions 

may happen 
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 Optimization. In centralized control, application of optimization algorithms for PEVs 

charging is easier, since all system information is available at the same point. This aspect 

facilitates the management of the distribution network, maximizing the network capacity 

and the provision of ancillary services. However, it requires a large amount of data such 

as: desired final level of SOC, charging time available, battery capacity, etc. to reach the 

optimal solution. In practice, some of these data will be difficult to know in advance, 

therefore, the final solution will be affected.  

 

In the decentralized option, the global optimization is achieved through the influence of 
price or control signals over the PEVs. However, the final decision is taken by each 

PEV, which implies some uncertainty in the final result. Also, avalanche effects may 

occur, that is, a huge number of PEVs can change their charging power rate at the same 

time, in response to a fall/rise of electricity prices. This effect is more likely to occur if 

only economic aspects are taken into account. 

 

 Information, communication and processing. In the centralized architecture the 

information is received and processed at a central control. This situation will be 

computationally-intensive, depending on the number of PEVs and the optimization 

algorithm applied. In contrast, in the distributed architecture, the information is 

processed in a distributed way. Thus, communication infrastructure and data processing 

requirements are lower. However, an on-board control unit is required in each PEV. 

 

 Privacy. In the centralized control, privacy problems may exist because a third party will 
hold data about the PEV users’ behavior. This problem does not occur in decentralized 

control because the information is locally processed. 

 

 Modularity. In centralized control, connection of new PEVs in the system may require 
small adjustments in the control program of the aggregator. In the decentralized case, no 

changes are expected. In addition, computation effort do not vary as number of PEVs 

increases because the calculation process is made in a distributed way. 

 

 Fault tolerance. The centralized control architecture is more sensitive to errors, 

especially when these errors occur in the central management entity; therefore, a backup 

system is necessary. In contrast, decentralized control can run autonomously because 

every PEV has an on-board controller. 

 Distributed generation and plug-in electric vehicles 

In the last decade, the growth of distributed generation and renewable energy resources 

connected in low voltage networks has been remarkable, mainly due to environmental, 

commercial and regulatory aspects [108]. As example, the European Union countries have 

set a target of 20% of RES by 2020 [109]. Therefore, these technologies are expected to 

become more profitable. However, as PEVs, DG units do not have the minimum size to 

compete in the electricity market under the same conditions than conventional generation. 

One solution may be to group PEVs and DGs, giving the visibility needed for controlling 

them in a smart way. Currently, there are two solutions to integrate actively DG and PEVs, 

within the electrical system: virtual power plants (VPPs) and microgrids (MGs) [110]. 
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 Virtual power plants (VPP) 

VPPs can be defined as a clustering model that tries to manage electrical generation and 

demand devices, geographically dispersed, as if they were a single entity for the system 

operator (Figure 4.9) [110]–[112]. Thus, a VPP has the advantage of reducing the financial 

risk regarding the individual participation of each distributed generator. In the future, it is 

expected that the VPP concept will maximize the benefits for owners of distributed 

generators and the system operator. 

Within a VPP, PEVs may be considered as mobile distributed energy sources that have the 

potential to provide advantages in the power system. The main advantages are the absence 

of “on and off” costs, very fast response time, low cost in standby and high availability 

factors [68], [113]. Furthermore, the combination of VPP, RES and PEVs offers significant 

synergies that can allow an important reduction of CO2 emissions [114], [115]. 

 

Figure 4.9. Technologies that can be integrated into a VPP 

VPPs with PEVs appear shortly in the literature, but it should be taken into account that the 

aggregator concept can be considered as a specific VPP for PEVs. Thus, F. Raab et al. 

present a possible control architecture for VPPs with PEVs [116]. Authors classify control 

systems into three types: direct, hierarchical and distributed control. They also note that in 

a VPP, mixed control modules or specific modules can exist for each DG technology. In 

the latter case, there is a specific module for PEVs group control, associated with that VPP, 

which authors refer to as EV management module. Besides, the control of a significant 

amount of PEVs and geographically distributed DGs can be expensive and complex. In 

[117], the architecture and communications system necessary for a centralized hierarchical 

control of a VPP with PEVs is discussed.  

Authors of [118] have developed an agent-based VPP, composed of wind generation and 

PEVs in order to address the intermittent character of wind power generation. According 

to these authors, wind generators may use the available capacity of the PEV batteries to 

store energy when the electricity price is low and sell part of this energy when the price is 

high. In the authors’ approach, payment for PEVs storage service is provided in the form 

of charging entitlements rather than money, to take advantage of the price differential 

between wholesale market and retail market. Two optimization problems are presented: 

day-ahead optimization with the objective of maximizing VPP profits in the day-ahead 

electricity market and receding horizon control to cope with changes in scheduled wind 

power generation during the day of operation. The objective of this last control is to avoid 
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economic penalties due to deviations in power dispatching. According to the authors, it is 

economically profitable for wind farms and PEV users to be integrated in a VPP as the 

proposed one.  

Skarvelis-Kazakos et al. propose  a centralized optimization method to minimize CO2 gas 

emissions of a VPP [115]. The main idea is to apply an environmental dispatch instead of 

a typical economic dispatch. Thus, partial load CO2 emission curves of generators are used. 

In this context, electric vehicles give the flexibility necessary to prioritize the production 

of electricity from less contaminant generation technologies. Several types of generators 

have been taken into account, such as wind turbines, PVs, fuel cells, micro-CHPs and even 

the electric grid. Equation (4-41) presents the objective function to be minimized. Authors 

use Lagrange multipliers (𝜆), which are used to incorporate the constraints (𝐶) into the 

objective function. 

𝐿 = ∑(∑ 𝐹𝑖,𝑡(𝑃𝑖,𝑡)

𝑁

𝑖=1

)

𝑇

𝑡=1

+ 𝜆 · 𝐶 (4-41) 

where: 

 𝑇:   total number of time slots 

 𝑁:   number of generators 

 𝐹𝑖,𝑡:  CO2 emissions function of i-th generator 

 𝑃𝑖,𝑡:  active power of i-th generator at time slot t 

This optimized algorithm has been applied to a VPP with different distributed generation 

penetration levels. Authors claim that using this algorithm, a reduction up to 44% of CO2 

emissions can be achieved. However, in order to implement this optimized algorithm, it is 

necessary to forecast non-PEV load demand and PEVs power demand. The last one can be 

especially difficult to determine accurately. 

 Electric microgrids (MG) 

The microgrid concept was first introduced in 1998 as a set of micro-generators and 

electrical storage devices that are able to work isolated from the grid [119]. Subsequently, 

the Consortium for Electric Reliability Technology Solutions (CERTS) defines a microgrid 

as a set of loads and micro-generators operating as a single system, which provides both 

electrical and heat energy [120].  

In the European Union, the microgrid concept was developed in the project 

"MICROGRIDS - Large Scale Integration of Micro-Generation to Low Voltage Grids". In 

this project, MGs are defined as a low-voltage (LV) distribution system, on a modular basis, 

where small power generators with electric loads are associated. In addition, electrical MGs 

may also contain electric storage devices, controllable loads, communication and 

management devices and cogeneration plants (CHP) [121]. 

Unlike VPPs, devices that compose an electrical MG are geographically close to each other 

and can be operated isolated from the rest of the grid. In this way, the security of supply of 

loads integrated within the MG is increased. 

Several authors have analyzed how to integrate PEVs within a MG. In [65] and [102] an 

architecture for the management of PEVs in a microgrid is described (Figure 4.10). In this 



84  CHAPTER 4 

case, the element called microgrid central controller (MGCC) is responsible for the market 

participation of the microgrid, through the market operator (MO), to operate the microgrid 

in an optimal way. The vehicle controller (VC), the micro-source controller (MC) and the 

load controller (LC) are located at the field level. As in the VPP, the control system may 

be centralized or decentralized. 

 

Figure 4.10. Architecture of a microgrid with PEVs 

In [122] a centralized control architecture is used to integrate PEVs in MGs. Authors have 

designed an algorithm, called optimal power set-points calculator (OPSC), to minimize 

active power variance through the MV/LV substation. The OPSC calculates optimal load 

profiles for each PEV by using evolutionary particle swarm optimization tool, based on 

data such as battery technology, behavior of PEV owners, mobility patterns, etc. Equation 

(4-42) is used as objective function. 

𝑚𝑖𝑛 (∑
(𝑃ℎ − ∑ (𝑃ℎ)/2424

ℎ=1 )2

24

24

ℎ=1

) (4-42) 

where: 

  𝑃ℎ:  power generated by DG units and demanded by loads and PEVs 

The performance of the proposed algorithm was tested in a 24 node LV distribution 

network. A small number of PEVs (8 vehicles) were integrated in the network. Six of them 

were charged through a single-phase EVSE, while three-phase chargers were used in the 

other two PEVs. According to the authors, the load curve was flattened from uncontrolled 

charging. No analysis was done about voltage levels in the network. Implementing this 

algorithm to calculate the set-point of PEVs, with a time horizon of 24 hours, will require 

to forecast PEVs power demand, micro-generators power production and non-controlled 

load demand. Thus, load forecasting error will be very significant, especially when the 

aggregation level is so low. In addition, a resolution time of one hour could be very large. 

Two different control approaches have been developed in [123]: a local control approach 

based on droop control without any communication system and a centralized control to 

reduce voltage unbalances in the microgrid. Both controls have been developed to work in 

an islanded microgrid. In addition, V2G is available. In the local control, the measurement 

of frequency and voltage at PEVs connection points are carried out to define two droop 

controls. The objective is to reduce frequency and voltage deviations. As commented 

before, R/X ratio in low voltage networks is high and, therefore, controlling reactive power 
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supply of PEVs could not be effective enough to limit voltage deviations. Thus, injecting 

or absorbing active power is more efficient to reduce those voltage deviations. Therefore, 

authors use both droop controls to define the active power of the corresponding PEV. The 

priority between the two droop control methods is given to frequency regulation, which is 

more important to maintain microgrid stability, especially when it works in islanded mode. 

Moreover, the centralized control, housed in the MGCC, which reduce the voltage 

unbalances is based on measuring the active power demand of the three phases. Taking into 

account this data, MGCC calculates in real-time the power set-points of each PEV 

connected in different phases, in order to reduce phase unbalances of the MG. Both control 

approaches have proven to be effective to tackle frequency deviations (local control) and 

voltage unbalances (centralized control). However, these types of control methods should 

be used only in emergency cases because they will impact on the charging process duration. 

Decentralized MAS is also used in [124] to find optimal active power set-points for PEVs, 

distributed energy resources and loads. In the proposed system, the PEV agent transmits 

the EVSE capacity, the connection time, the initial and the final SOC to an external agent 

(called as optimizing agent) which is in charge of minimizing the objective function of 

equation (4-43). This objective function is partly based on equation (4-42), but adding a 

new term in order to model the operating cost of distributed generators.  

𝑚𝑖𝑛 (∑
(𝑃ℎ − ∑ (𝑃ℎ)/2424

ℎ=1 )2

24

24

ℎ=1

) + ∑𝐶𝑗

𝑁

𝑗=1

 (4-43) 

where: 

 𝑃ℎ:  sum of DGs, loads and PEVs power demanded/produced 

 𝑁:   total number of generators 

 𝐶𝑗:   operating cost for the j-th DG 

Authors use a meta-heuristic algorithm (AIS) to solve the optimization problem. Once 

calculation is finished, the optimizing agent sends the optimum set-points to each 

distributed energy resource, load and PEV. Although authors have described it as a 

decentralized method, using a single optimization agent converts it to a centralized control 

architecture more than a decentralized one. That is, all information is sent to the 

optimization agent, which calculates and returns the set-point of all controllable elements 

of the MG. 

Authors of [125] present a strategy for congestion management in MGs with PEVs. This 

methodology is based on decentralized MAS architecture. Each agent solves an 

optimization problem to obtain the power dispatch needed to maximize its profits. After an 

auction, a power flow and an optimal power flow are carried out to check whether the final 

situation is technically feasible, regarding to overloaded lines. If not, the demand of the 

specified nodes will be reduced iteratively for each overloaded line, through changes in 

PEVs set-points, until congestion problem is cleared. In this case, PEVs are not optimally 

charged, that is, they are only managed when any line congestion happens.  

 PEVs integration projects over the world 

Several projects have been developed for the integration of electric vehicles into electrical 

grids (Table 4.4). These projects focus on three main aspects: the impact on the grid, the 
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driving and charging behavior of users, and the technical and economic integration of 

PEVs. Following the most relevant projects are summarized: 

 Grids for Vehicles (G4V). Formed by a consortium of 12 European entities, among 

which there were utilities (RWE, ENEL, EDF, etc.) and research institutions. The 

consortium aimed to explore the technical problems, the necessary regulation, business 

models and socio-environmental aspects, to make a set of recommendations for the 

implementation of PEVs in 2030 [126]. 

 

 Mobile Energy Resources in Grids of Electricity (MERGE). European project focused 
in the management and control concepts, to facilitate the massive integration of PEVs in 

the electrical grid. The project also explored the possibilities of integrating PEVs in MGs 

and VPPs and the possible synergies with the smart metering systems [127]. 

 

 EDISON Project. Funded by the Danish TSO and focused on integrating PEVs and RES 
technologies using open standards of Information and Communication Technologies 

(ICT). The aim of the project was to develop infrastructure that enables PEVs to 

intelligently communicate with the grid, to determine when charging and discharging 

can take place. Also, aimed to create a platform for testing and demonstration in the 

island of Bornholm [87], [128]. 

 

 SmartV2G project. European project that aims connecting the electric vehicle to the grid, 
by enabling controlled flow of energy and power through safe, secure, energy efficient 

and convenient transfer of electricity and data. Smart charging strategy is accomplished 

by a control system based on MPC theory, which optimally re-computes charge profiles 

for all the managed charging post, each time a new recharge starts. It takes into account 

the current state of the grid, possible demand side management orders received in the 

charging post central controller by external agents (DSO or TSO) and the PEV users 

preferences (final cost, charging time) [129]. 

 

 Green eMotion. International project to coordinate different ongoing regional and 

national electromobility initiatives, leveraging on the results and comparing the different 

technology approaches to promote the best solutions for the European market. It is 

composed by forty-three partners from industry, universities, research institutions, 

power supply companies and municipalities that have come together for the purpose of 

identifying the challenges of Europe-wide emissions-free transportation [27].  

 

 Mobincity (Smart mobility in smart city). Related to integrate PEVs in smart cities, this 
project searches to define efficient and optimum charging strategies adapted to user and 

PEV needs and grid conditions [130]. 

 

 EV Project. Launched in 2009 as the biggest initiative to introduce PEVs and EVSEs in 
the United States. This project was funded by the U.S. Department of Energy and several 

partners, such as Nissan and Chevrolet. The project has recorded a lot of data to 

characterize the use of PEVs in different regions and climates. The effectiveness of 

charging infrastructure and possible business models have been evaluated for the 

implementation of public and commercial EVSEs. Until October 2012, the project had 

collected driving data corresponding to more than 64 million kilometers and logged 

more than one million charge events [131]. 

 



ACTIVE INTEGRATION OF PEVS IN DISTRIBUTION NETWORKS 87 

 Vehicle-to-grid demonstration project. This project aimed to demonstrate the feasibility 

and practicality of PEVs based grid regulation, and to assess the economic value based 

on real operating data and real market prices for the service being provided [59]. 

 

 NIKOLA project. The aim of this demonstration project is to investigate about the 
synergies between the electric vehicle and the power system. Using the appropriate 

control and communication technologies, it is possible to manage the power exchange 

between the PEV and the electric grid. This way, PEV can provide valuable services to 

the power system, the PEV owner and the society in general. Nikola project seeks to 

investigate about these services and the technologies needed to implement them. 

Table 4.4. Integration projects of PEVs 

Country/Region Project Name Project Manager Duration State 

European Union:  G4V RWE German utility 18 months Finished 

 MERGE PCC Greek utility 24 months Finished 

 SmartV2G ITE Spain R&D center 36 months Finished 

 Mobincity ITE Spain R&D center 36 months Finished 

 Green eMotion Siemens 48 months Finished 

Denmark: EDISON Danish Energy Association 24 months Finished 

 Nikola project Technical University of Denmark (DTU) 36 months Ongoing 

United States: EV project ECOtality 48 months Finished 

 V2G Demonstration University of Delaware Unknown Finished 

 Conclusions 

This chapter has presented a review of the current literature about the active integration of 

PEVs into distribution networks. In general, smart charging algorithms are designed to 

accomplish two main tasks. On the one hand, smart charging algorithms should reduce 

system costs or improve system load factor. On the other hand, these smart charging 

algorithms must keep the distribution network within its operational limits. That is, 

transformers and lines thermal limits and voltage deviation limits must not be surpassed. 

Two main methods are used by researchers to implement a smart charging algorithm: 

heuristic techniques and mathematical programming. Between heuristic methods, droop 

control is one of the most used. However, droop control methods do not provide optimal 

results. Thus, most of the proposed smart charging solutions use mathematical 

programming.  

Mathematical programming can be classified as single objective or multi-objective 

optimization. Single objective optimization only cope with optimizing one variable of the 

system while multi-objective optimization is used to achieve a trade-off between two or 

more variables of the system. Thus, in multi-objective optimization, a decision maker entity 

is necessary to select intelligently which variables are more important. 

In order to implement a smart charging method, two types of control architectures can be 

used: centralized and decentralized. Currently, most of the electric systems are controlled 

by using a centralized architecture, which is a robust and well-known approach. In this type 

of architecture, a central controller or aggregator will decide the charging set-point of each 

PEV under its governance. However, this approach has several drawbacks, such as its poor 

scalability, privacy issues, complex communication system, etc. An important number of 

proposed centralized solutions are based on achieving a valley filling effect by minimizing 

power losses or load variance, but they usually do not deal with economic aspects. It is not 
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clear what the economic incentives to PEV users will be. Additionally, it is expected that 

PEV users will not give up the charging control of their vehicles. 

Thus, a decentralized architecture control could be more adequate to manage a large 

number of PEVs. In this approach, users will keep the charging control of their PEVs. 

However, there are methods to influence indirectly the charging process of the PEVs. One 

of the most used methods is price signals. In general, PEV users seek to charge their 

vehicles at less cost as possible. Thus, modifying electricity prices will lead to a 

modification of the charging profile of the PEVs. Usually, researchers who use signal prices 

link electricity prices with total energy demand. By minimizing the charging cost of each 

PEV, a valley filling effect can be achieved while avalanche effect is avoided. But, although 

it is an interesting approach, linking electricity prices with the energy demand volume or 

network capacity could lead to significant impact on electricity price formation. 

Additionally, this operation scheme may lead to electricity price unbalances between 

different regions of the same electricity market.  

Most of the proposed optimized solutions do not address the problem of voltage deviations. 

Some of them use the power flow tool to know whether there is any voltage violation or 

congestion issue. But using power flow may not be realistic at LV distribution network 

level because the lack of information about energy demand at each node and the network 

model. In this aspect, droop control methods are proposed to reduce voltage deviations and 

provide primary frequency regulation. However, this control is not optimal and a valley 

filling effect cannot be achieved using only this method. In addition, some type of 

coordination or adaptive control is needed to avoid fluctuations due to simultaneous control 

actions. Furthermore, voltage unbalances generated by the charging of a significant number 

of PEVs in LV distribution networks is almost not addressed. 

Integration of PEVs in MGs or VPPs has been less analyzed in the literature. Many papers 

about intelligent management of PEVs have been presented but only few of them have 

considered the integration of PEVs in MGs. Some of them take advantages of PEV battery 

characteristics to reduce generation costs of distributed generators. Integrating wind energy 

generation and PEVs in a VPP could be a very interesting option in order to cope with wind 

energy intermittency. Another possibility is to use PEVs to improve MGs stability, when it 

is islanded, by using droop control methods. 

Finally, active integration of PEVs can be a very complex task. In fact, many of the 

analyzed papers give solutions to technical or economic problems, omitting other important 

issues such as voltage deviations, lines and transformers overloading, etc. or vice versa. 

Thus, it is necessary to address this problem from an overall point of view and generate 

benefits to all stakeholders. That is, it is desirable to achieve a valley filling effect to reduce 

energy losses and improve load factor, which is the main interest of utilities and system 

operators, without forgetting the electricity cost in order to reduce charging cost for PEV 

users. In addition, the proposed solution must also analyze and address voltage issues to be 

a more realistic solution. 
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5. PROPOSED METHODOLOGY 

 Introduction 

In chapter 3, the relevance of integrating PEVs adequately in low voltage distribution 

networks has been discussed. Hence, researchers have been looking for a solution in order 

to address this complex problem. Throughout chapter 4, the existing solutions have been 

reviewed. In this context, a new decentralized multi-objective optimization methodology 

for integration of PEVs in electric distribution networks is presented in this thesis. This 

methodology has been verified through simulations.  

This chapter is organized as follows. In section 5.2 the simulation setup is introduced. 

Simulations have been carried out using the software DIgSILENT PowerFactory. Control 

algorithms have been programmed in C++ using Microsoft Visual Basic software and 

Matlab. Also, IBM ILOG CPLEX Optimization Studio for Matlab has been used to solve 

the optimization problems. Unbalanced RMS simulations have been performed in 

PowerFactory while optimization problems have been solved in Matlab, at the same time 

as simulation is running in PowerFactory. This way, the control system can detect and 

respond to voltage deviations and re-scheduling the charge of PEVs when it is necessary 

and without interrupting the simulation process. 

The distribution network model is introduced in section 5.3. This model is based on a real 

LV distribution network of Denmark. Additionally, real consumption data is used. 

Moreover, as mentioned in chapter 3, the impact that PEVs can have on low voltage electric 

grids is widely influenced by charging and driving patterns of PEV users. Thus, a new 

model has been also developed in this thesis (section 5.4) in order to test optimized control 

algorithms in different scenarios. Real data collected in 2009 NHTS in the United States of 

America are used to develop this model. Aspects such as type of day, season and type of 

area are taken into account. 

Before introducing smart charging approaches, the consequences of using an uncontrolled 

charging strategy in the LV distribution network is analyzed in section 5.5. Six different 

PEVs penetration rates or levels have been considered. The results of the uncontrolled 

charging have been used as a reference case to know the advantages of the proposed smart 

charging algorithm. This new smart charging methodology has been designed starting from 

two already proposed methods, in particular the optimization of charging cost and variance. 

Thus, these control methods are analyzed more deeply in section 5.6 in order to achieve a 

better comprehension of the proposed algorithm and its advantages. The achieved solution 

could be defined as a trade-off between these two control methods. Additionally, the new 

proposed algorithm is ready for use V2G concept. 

The proposed algorithm, which is presented in section 5.7, comprises two versions: one 

which uses load demand forecasting (MOO-WF) and the other one without using load 

demand forecasting (MOO-NF). Load forecasting is a powerful tool to improve not only 

PEVs but also intermittent renewable energy sources integration. However, load 

forecasting is not a trivial problem and its accuracy is not guaranteed. For this reason, a 

version of the proposed algorithm without load forecasting is also developed in this thesis. 

Additionally, a sensitive analysis is also carried out to know the influence of load 

forecasting error in the MOO-WF algorithm. 
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Charging PEVs can lead to problems in low voltage distribution networks. Among them, 

voltage deviations and unbalances are the most likely, so it is necessary to develop a 

mechanism in order to minimize these voltage deviations. Both approaches reduce voltage 

deviations indirectly by reducing overall load variance. However, a specific control method 

(VUR) to reduce voltage unbalances has also been proposed and integrated to MOO-WF 

and MOO-NF algorithms. Figure 5.1 shows the smart charging approaches and their 

different versions developed within this thesis. Between parentheses, the section number of 

each smart charging algorithm is indicated. 

 

Figure 5.1. Smart charging approaches analyzed and proposed in this thesis 

After obtaining all results, a comparative analysis is presented in section 5.8, showing the 

advantages of the new proposed methodology. Finally, a possible system architecture for 

implementing the proposed methodology is presented in section 5.9.  

 Simulation setup 

The DIgSILENT PowerFactory is a powerful tool to simulate and analyze applications in 

generation, transmission, distribution and industrial systems. Furthermore, this software 

has the possibility of building new dynamic models through DIgSILENT Simulation 

Language (DSL) and programing of new scenarios with DIgSILENT Programming 

Language (DPL). The last one is especially useful to generate, place and model the charging 

and driving behavior of the PEVs under study. 

Although DSL is a good tool to model new controllers and systems, it is very limited when 

data processing is needed. Fortunately, PowerFactory can work with C++ language, so 

users can program their own DSL functions in C++. In order to do so, digexfun.dll file has 

to be modified by the user. This way, data about each PEV can be processed in the C++ 

program. Additionally, other programs can be executed such as Matlab.  

In this thesis, the following method is used. First of all, a DPL script is executed in order 

to create, place and assign main characteristics of the PEVs, such as: type of PEV, battery 

capacity, power of the charger, initial SOC, arrive and departure time, final SOC, EVSE 

power, phase, etc. This script contains the new driving and charging model developed in 

section 5.4. Second, an unbalanced RMS simulation of 24 hours is performed. In each 

simulation step, a C++ function is called by every PEV in the grid. This C++ script executes 

the control algorithm and return the charging set-point to the PEV. This set-point varies 

from -1 (discharging at full power) to 1 (charging at full power). If set-point is 0, no 

charging or discharging action will be required to the PEV. C++ program calls to Matlab 
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API (Application Programming Interface) for solving the mathematical functions (linear, 

quadratic programming, fuzzy control, etc.) or plotting the final results when it is required. 

The set-point calculated for each PEV in every time slot is applied to the unbalanced RMS 

simulation. A scheme of the used simulation setup is shown in Figure 5.2. 

 

Figure 5.2. Simulation setup 

Although Matlab has several tools for solving optimization functions, in this thesis IBM 

ILOG CPLEX under Matlab API environment has been used, because it provides better 

results in terms of convergence and calculation time. Finally, results are obtained not only 

from PowerFactory software but also from the Matlab API. 

As mentioned above, simulation time covers 24 hours (starting from 12:00h), in order to 

represent one full charge event in the grid. For optimized algorithms, PEV set-points 

resolution time is set to 5 minutes, to limit the computation time of the algorithms. 

 Grid topology and PEVs modelling 

Algorithms proposed and analyzed in this thesis have been applied to a real Danish low 

voltage distribution network located in the city of Borup, in the Zealand Island. The 

distribution network comprises 14 distribution nodes (301 and 601 to 613) and 43 houses. 

The single phase configuration of the low voltage network is given in Figure 5.3. Part A 

represents 17 houses located in Hørmarken Street while part B represents 26 households 

located in Græsmarken Street. There are also street lights connected to the grid in 

Græsmarken Street at node 608. 

 

Figure 5.3 Single phase diagram of the modelled distribution network 
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The 43 households can be divided in two categories due to their different characteristics: 

(A) residential houses in Hørmarken Street, and (B) residential houses in Græsmarken 

Street. The first group has lower consumption profile during the winter season as a result 

of implemented district heating. Furthermore, none of the houses of this group have a PV 

installation. The second group covers households with PV installations, as well as with heat 

pumps and consequently it presents higher consumption during winter season. A detailed 

map of the distribution network location is presented in Figure 5.4 while an aerial view of 

the zone is presented in Figure 5.5. 

 

Figure 5.4 GIS map of the part of Borup distribution network used in this thesis 

 

Figure 5.5 Satellite overview of the part of Borup town, where the distribution network 

used in this thesis is located 
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The distribution network is fed by an Alstom DCU 3631 H distribution transformer which 

characteristics are the following: 0.4MVA of nominal power, 10.5/0.42kV of nominal 

voltage, 50Hz and Dyn11 connection group. The secondary star point winding of the 

transformer has been directly connected to the ground. Short circuit power of external grid 

is 10MVA and the voltage set-point of the grid is 1 p.u.  

The low voltage feeder bifurcates into three feeders, matching with physical streets where 

the households are located, and it runs in radial configuration. The line consists of 14 nodes 

and 13 line segments, with a total length of 681 meters. All segments between the 

distribution nodes are the same type of 4x150mm2 aluminium PEX conductor, with 

R=0.207 Ω/km and X=0.073 Ω/km. The lengths of the lines and loads distribution are 

shown in Table 5.1. 

Table 5.1. Distance between distribution nodes and loads distribution 

From  To Length (m)  Node Loads 

301 601 112  301 Rest of houses 

601 602 49  602 Hørmarken 01 to 05 

601 605 80  603 Hørmarken 06 to 09 

602 603 64  604 Hørmarken 10 to 17 

603 604 87  605 Empty 

605 606 25  606 Empty 

606 607 46  607 Græsmarken 17, 19, 21, 22 and 24 

606 609 40  608 Græsmarken 23, 26, 28 and street lights 

607 608 37  609 Græsmarken 01, 02 and 04 

609 610 35  610 Græsmarken 03, 05 and 08 

610 611 36  611 Græsmarken 07, 10 and 12 

611 612 35  612 Græsmarken 09, 11, 14 and 16 

612 613 35  613 Græsmarken 13, 15, 18 and 20 

Additionally, there are other three feeders with the rest of houses (~130) under the same 

distribution transformer. However, only aggregated data for these feeders are available. 

Thus, they have not been considered to hold electric vehicles.  

PV installations are mostly located in Græsmarken (only one located in Hørmarken) and 

all of them are connected through single-phase inverters. The modelled network contains 

27 PV installations: 24 installations with a peak power of 2.96 kWp and 3 upgraded 

installations with a peak power of 4.07 kWp, which are connected through 3.6 kWp and 

5.4 kWp inverters, respectively. The number of PVs connected to a particular phase is not 

known, so the installations have been connected randomly taking into consideration that 

the overall production on each phase should be approximately the same. The PV production 

has been measured separately for every house on an hourly basis along with the 

consumption data.  

The node 613 is located at the furthest point from distribution transformer (398 meters) 

and, normally, it has the lowest voltage of the network. So, this node 613 has been selected 

as the worst case node in order to know the impact that the charging algorithms will have 

on voltage deviations in the grid. 

Consumption profiles are based on real metering data read on hourly basis through a period 

of one year (from March 2012 until March 2013). However, measured power flows 

correspond to all phases. That is, there is no disaggregated information of individual phase 

consumption. Therefore, it is assumed that the household loads are equally distributed and 
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symmetrically balanced between the phases. Additionally, the lack of unbalances generated 

by the household loads will ease the analysis of unbalances produced by PEVs. With regard 

to reactive power, there is no data available for the reactive power component, so the 

minimum required power factor has been taken as the reference value for all households 

(cos φ = 0.95). 

A typical winter day has been selected, with high energy consumption and almost no PV 

production. As commented before, simulations have been carried out from 12:00h to 12:00h 

of the next day. Thus, partial data of two days are necessary. In this case, the days 14th and 

15th of January were selected (Monday and Tuesday). Figure 5.6 shows the load demand at 

the transformer level and the voltage profile at node 613, for the observed period. The 

maximum peak power during this period is 206kW while total energy demand of 

households is 3.04MWh. Line-neutral voltages at node 613 reaches a minimum value of 

0.946 p.u. 

 

(a) (b) 

Figure 5.6. No PEVs case: (a) Distribution transformer load and (b) line-neutral voltages 

at node 613 

Finally, PEVs are modelled in PowerFactory as static generators (ElmGenstat), working as 

current sources (Figure 5.7). The power set-point is controlled by the d-axis and q-axis 

current reference, being both in p.u. Li-ion batteries are charged using a CC/CV profile. 

However, in this thesis, this charging profile is not considered because power demand of a 

battery pack not only depends on the battery characteristics and CC/CV profile but also on 

temperature, battery degradation, balancing processes, etc. Rather than modelling this 

complex process, the worst case scenario for LV distribution networks is used. Thus, 

electric vehicles have been considered as constant power loads which is considered the 

worst case scenario [132]. Constant power loads have specific consequences for 

distribution networks. When voltage decreases, demanded current of constant loads 

increases, to maintain the power demand constant, leading an additional voltage drop. Thus, 

constant power loads have more harmful effects, in terms of voltage drops, than any other 

load model. Moreover, the SOC of PEV batteries is calculated using the integral of the 

absorbed energy. Efficiency of the charging process is also taken into account. Besides, this 

efficiency has been considered constant in all power range of the charger. 

As mentioned in subsection 4.3.2, reactive power control can be used for reducing voltage 

deviations but, in low voltage networks, the X/R ratio is low. Thus, voltage drops mainly 

depend on active power flow [84]. In contrast to active power control, reactive power 

control could not be efficient enough to deal with voltage drops. Furthermore, reactive 

power control can increase power losses. Taking into account this aspect, in this thesis, 
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reactive power control of PEVs has not been considered. That is, q axis reference has been 

set to 0 in all study cases. However, it should be pointed out that implementing a reactive 

power control to complement an active power control might be interesting. 

 

Figure 5.7. Model of the current source for PEV characterization 

With regard to PEV models, the most three sold PEVs have been considered in this thesis: 

Chevrolet Volt, Nissan Leaf and Tesla S. Table 5.2 provides the main characteristics of 

these PEVs and the probability of occurrence in the model, which has been calculated taken 

into account market sales of each PEV [133]. Charger efficiency has been set according to 

report [134]. Similar efficiency values are obtained in [135]. 

Table 5.2. Characteristics of used PEVs 

 Type Battery 

Cap. (kWh) 

Range 

(km) 

Fuel Economy 

(Wh/km) 

Charger 

Efficiency (%) 

Charge P. 

(kW) 

Probability 

(%) 

Nissan Leaf BEV 24 121 212 86.4 3.7 (1 phase) 53 

Chevrolet Volt PHEV 10.3* 610** 239*** 83.7 3.7 (1 phase) 27 

Tesla S BEV 60 335 237 86.4 11 (3 phase) 20 

* Usable battery capacity ** Total extended range   *** Electric consumption in extended mode 

 Model of driving and charging behavior 

Social patterns have a significant influence when a smart charging algorithm is tested in a 

specific distribution grid. Thus, some aspects have to be modelled in order to reduce errors 

as much as possible. Modelling social patterns of drivers can be a difficult task, especially 

if few data are available. The report 2009 NHTS from the U.S. Department of 

Transportation provides a huge amount of data about social patterns of ICEV drivers, which 

can be accessed publicly. However, no data are included about PEVs. So, some 

assumptions have to be made until specific data about PEV drivers are available. 

Raw data provided by 2009 NHTS is divided in four Excel files: HHV2PUB.xls contains 

information on households; PERV2PUB.xls provides data on people; VEHV2PUB.xls 

contains information on household’ vehicles and, finally, DAYV2PUB.xls provides 

information on trips done. Table 5.3 shows the main characteristics of these files. 
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Table 5.3. Data provided in the 2009 NHTS 

Document Number of items Number of variables 

HHV2PUB.xls 150,147 houses 42 

PERV2PUB.xls 308,901 people 116 

VEHV2PUB.xls 309,163 vehicles 61 

DAYV2PUB.xls 1,048,572 trips 112 

The amount of data has been reduced by eliminating those that do not have interest for this 

analysis, as trips made by public transport or other means of transport. This way, only trips 

done by private cars have been taken into account. In order to do so, variable TRPTRANS 

has to be 1. Thus, trip data have been reduced to 537,022. Table 5.4 shows the list of 

variables used in this analysis. 

Table 5.4. Description of variables used 

Variable Description 

DWELTIME Calculated time at destination 

ENDTIME End time of the trip 

HHVEHCNT Count of household vehicles 

STRTTIME Start time of the trip 

TDWKND Trip on weekend 

TDAYDATE Date of travel day 

TDTRPNUM Travel day trip number 

TRPMILES Calculated trip distance in miles 

TRPTRANS Transportation mode used on trip 

TRVLCMIN Calculated travel time 

URBRUR Household is in rural or urban area 

VEHID Vehicle number used for trip 

Starting from a specific grid with a number of households, the number of vehicles per house 

has to be determined. Two categories are distinguished, rural and urban households. This 

information is obtained through two columns in the HHV2PUB.xls file (HHVEHCNT and 

URBRUR). Distributions obtained are shown in Figure 5.8. 

 

Figure 5.8. Distribution of number of vehicles per house 
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In the urban case, there is an average of 1.93 vehicles per household with a variance of 

1.22. In contrast, in rural areas there is an average of 2.35 vehicles per household with a 

variance of 1.55.  

Departure and arrive time are analyzed for eight cases, depending on time of year and the 

type of day, i.e. weekday or weekend day. In this case, data of the DAYV2PUB.xls file are 

analyzed and specifically STRTTIME, ENDTIME, TDWKND, TDAYDATE and 

TDTRPNUM variables are used. For departure time distributions, only first trip of day has 

been taken into account while for arrive time only last trip of day. 

In Figure 5.9 to Figure 5.12 the departure and arrive time distributions are represented. All 

these distributions are fitted to Generalized Extreme Value (GEV) distributions because of 

their good fit with analyzed data. Table 5.5 shows the main parameters of these 

distributions.  

 

Figure 5.9. Distribution of departure time in weekdays 

 

Figure 5.10. Distribution of departure time in weekend days 
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Figure 5.11. Distribution of arrive time in weekdays 

 

Figure 5.12. Distribution of arrive time in weekend days 

Table 5.5. Departure and arrive time distributions (in minutes) 

 Departure time Arrive time 

 Weekday Weekend day Weekday Weekend day 

1st Trimester 
µ = 481.66 

σ = 126.83 

ξ = 0.07216 

µ = 586.9 

σ = 153.93 

ξ = -0.06192 

µ = 953.88 

σ = 240.14 

ξ = -0.4962 

µ = 989.48 

σ = 282.96 

ξ = -0.6292 

2nd Trimester µ = 485.34 

σ = 131.46 

ξ = 0.045 

µ = 576.03 

σ = 156.24 

ξ = -0.05644 

µ = 953.72 

σ = 251.07 

ξ = -0.5163 

µ = 995.59 

σ = 284.93 

ξ = -0.6414 

3rd Trimester µ = 489.61 

σ = 136.82 

ξ = 0.05572 

µ = 583.88 

σ = 161.67 

ξ = -0.05694 

µ = 947.14 

σ = 258.64 

ξ = -0.5246 

µ = 997.77 

σ = 288 

ξ = -0.6524 

4th Trimester µ = 483.66 

σ = 132.1 

ξ = 0.04543 

µ = 574.65 

σ = 153.76 

ξ = -0.05118 

µ = 945.78 

σ = 252.78 

ξ = -0.5106 

µ = 988.83 

σ = 285.3 

ξ =-0.6347 

These distributions refer on how many kilometers are done when travel duration is known. 

In order to do so, all day trips of one vehicle have to be combined in a single day trip. 

Additionally to previous variables, four new variables are used: VEHID, DWELTIME, 
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TRPMILES and TRVLCMIN. Duration of travel does not only refer to driving time but 

also to time at destination (working, shopping, etc.). Figure 5.13 and Figure 5.14 show the 

distribution of distance travelled in function of travel duration for weekdays and weekend 

days. 

 

Figure 5.13. Distribution of distance travelled in function of travel time for weekdays 

  

Figure 5.14. Distribution of distance travelled in function of travel time for weekend days  

 Proposed algorithm to model driving and charging behavior 

In order to develop an algorithm to define driving and charging patterns, some assumptions 

have to be done due to lack of data. First of them, driving behavior of PEV owners has been 

considered similar to ICEV owners. That is, daily travel patterns will not change with the 

use of PEVs. Surely, this aspect will not be totally true because of the PEV autonomy limits. 

It is expected that for short daily distances, model error will be negligible. Instead, error 

may be larger for long daily distances. In fact, calculated daily distance can be larger than 

its respective PEV autonomy. In these cases, daily distance has to be recalculated. Respect 

to departure and arrive time, it is expected that there will be no difference between ICEV 

and PEV drivers. 
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Second assumption is that all vehicles are connected to the grid when users arrive at home 

and disconnected only when the first trip of day starts. This assumption is considered 

because no data about when drivers charge their PEVs are available. The last assumption 

is that PEVs will be charged once per day (after last trip of day). Again, this last assumption 

is taken because of lack of data. However, the study developed in [136] indicates that, on 

average, PEV drivers will charge their vehicles once per day. 

The algorithm proposed in Figure 5.15 works as follow: from grid data, the number of 

houses in the grid is known and also the type of area (rural or urban). Number of vehicles 

is obtained according to distribution in Figure 5.8. Then, penetration rate of PEVs in the 

grid and time data (time of year and type of day) have to be provided. These data can be 

considered as variables, in order to know smart charging algorithm ability to control PEVs 

under different scenarios. With the PEVs penetration rate value, the number of PEVs is 

obtained (variable N).  

 

Figure 5.15. Flow chart of the proposed algorithm 

Once the number of PEVs is calculated, departure time (dT) and arrive time (aT) are 

generated for each PEV. One technique to generate random numbers, according to a given 

distribution, is using the inverse of cumulative distribution function (CDF) or quantile 

function. 

Quantile function is calculated inverting the CDF function. Then, probability y has to be 

generated randomly, according to the uniform distribution. Finally, value x is computed 

using the calculated distribution parameters and the generated probability value. As 

mentioned previously, departure and arrive time have been fitted to GEV distributions, 

 

Grid data 
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% of PEV penetration data 

No. of PEVs in the grid (N) 

Time data 

NO 

NO 

Start 

i=N 
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which inverse CDF is presented in equation (5-1). GEV distributions parameters can be 

found in Table 5.5. 

𝑥 = 𝑓(𝑦|𝜇, 𝜎, 𝜉) = 𝜇 + 𝜎 · {
[−𝑙𝑛(𝑦)]−𝜉 − 1

𝜉
}  {

𝑦 𝜖 [0,1]
𝜇 𝜖 ℝ
𝜎 > 0
𝜉 𝜖 ℝ

   (5-1) 

where: 

 µ:  location of the GEV distribution function 

 σ:  scale of the GEV distribution function 

 ξ:  shape of the GEV distribution function 

 y:  probability 

Inverse CDF of GEV distribution and departure time data in weekdays, for the first 

trimester, are presented in Figure 5.16, showing a very good fit. 

 

Figure 5.16. Inverse CDF of GEV distribution fitted to departure time data 

If generated departure time is less than arrive time, then travel duration is calculated (aT-

dT). If not, arrive time is re-calculated until the above condition is fulfilled. Knowing travel 

duration, distance travelled during the day (distDay) is generated in a similar way than 

departure and arrive time. In this case, inverse CDF of Weibull distribution is used, as 

shown in equation (5-2).  

𝑥 = 𝑓(𝑦|𝑘, 𝜆) = 𝜆 · √−𝑙𝑛(1 − 𝑦)𝑘
  {

𝑦 𝜖 [0,1]

𝑘 > 0
𝜆 > 0

 (5-2) 

where: 

 λ:  scale of the Weibull distribution function 

 k:  shape of the Weibull distribution function 

Weibull distributions parameters have been obtained from Inverse CDF of Weibull 

distribution. Figure 5.17 shows the distribution of distance travelled of trips which duration 

is less than an hour. 
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Figure 5.17. Inverse CDF of Weibull distribution fitted to trip distance data 

After distance travelled is generated, PEV data have to be added, especially charging 

power, charger efficiency, energy consumption per kilometer and battery capacity. With 

distance travelled and PEV data, the initial SOC of the battery is calculated. If this initial 

SOC is less than zero, in other words, if distance travelled is greater than PEV autonomy, 

“distDay” parameter has to be recalculated until the initial SOC value is greater than zero. 

Finally, the last step of the algorithm is to check whether all PEVs have been modelled 

(i=N). 

 Simulation results 

The algorithm proposed has been implemented in DIgSILENT PowerFactory software in 

order to validate its adequacy. This algorithm has been applied to the distribution network 

and PEV models presented in section 5.3. 

In order to validate the proposed driving and charging model, unbalanced RMS simulations 

have been carried out for 24 hours, starting from 12:00h to 12:00h of the next day. This 

period of time has been selected because, in general, home charging will be carried out 

mostly at night. Following, the results obtained for 4 different cases are presented. 

Case 1: Comparing different PEV penetration rates 

In this first case, different PEV penetration rates are compared (10, 30, 50, 70, 90 and 

100%). Simulation is performed as a rural distribution grid, while a workday of the first 

trimester is selected as day type. 

Mean results obtained from the simulations are presented in Table 5.6. Maximum charge 

demand usually occurs around 21:00h. PEVs power demand along simulation time for 10, 

30, 50 and 70% of PEV-PRs are presented in Figure 5.18. 
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Figure 5.18. PEVs power demand for 10, 30, 50 and 70% 

Table 5.6. Mean results obtained from case 1 

PEV-PR No. PEVs km/PEV Connection time Max. demand Energy demand Time at Max. Demand 

10% 10 45.3 12.5 h 40 kW 0.138 MWh 20:00 h 

30% 29 43.3 12.13 h 66 kW 0.337 MWh 20:00 h 

50% 53 42 12.88 h 111 kW 0.584 MWh 21:00 h 

70% 72 41.4 12.83 h 126 kW 0.788 MWh 21:00 h 

90% 93 40.7 12.59 h 182 kW 1.01 MWh 21:00 h 

100% 97 41.1 12.54 h 190 kW 1.06 MWh 21:00 h 

Case 2: Comparing rural or urban grids 

In general, there are more vehicles in rural houses compared to urban ones. This is due to 

the greater availability of public transport facilities in cities and, therefore, private cars are 

less necessary. The simulation results show this difference, considering the same level of 

PEV-PR (50%). Specifically, there are 13 more PEVs in the rural case than in the urban 

case (Table 5.7). As a consequence, energy demand of PEVs will be greater in rural areas 

than in urban areas. PEVs power demand profile obtained from the simulation is presented 

in Figure 5.19. 

 

Figure 5.19. PEVs power demand profile in case 2 
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Table 5.7. Mean results obtained from simulation case 2 

 No. PEVs km/PEV Connection time Max. demand Energy demand Time at Max. Demand 

Rural area 53 42 12.88 h 111 kW 0.584 MWh 21:00 h 

Urban area 40 42 12.27 h 78 kW 0.454 MWh 21:00 h 

Case 3: Comparing weekdays and weekend days 

In weekdays PEVs tend to be charged at mid of the afternoon, while in weekend days this 

happens later because the mean value of departure and arrive times are higher, as shown in 

Table 5.5. Moreover, mean distance travelled in weekdays is less than in weekend days. As 

a consequence, PEVs energy demand is often greater at weekend days. In this case, PEV-

PR has been set to 50% in a rural grid. Results of case 3 are presented in Figure 5.20  and 

Table 5.8. 

 

Figure 5.20. PEVs power demand in case 3 

Table 5.8. Mean results obtained from simulation case 3 

 No. PEVs km/PEV Connection time Max. demand Energy demand Time at Max. Demand 

Weekday 53 42 12.88 h 111 kW 0.584 MWh 21:00 h 

Weekend day 53 53.6 12.7 h 126 kW 0.725 MWh 22:00 h 

Case 4: Comparing different time of year 

In this case, the effect of different season of year in PEVs power demand is analyzed. As 

in the previous case, penetration rate has been set to 50% in a rural grid. Also, type of day 

has been set as weekday. 

Few variations can be observed in Figure 5.21, between the different seasons, in agreement 

with the calculated parameters of distributions (Table 5.5). According to this analysis, 

season of year has little effect on driving behavior. Only in the summer season, an increase 

of standard deviation can be observed. However, it must be pointed out that in winter or 

cold weather, electric vehicles tend to spend more energy because of the use of heater and 

other auxiliary equipment. This effect has not been taken into account in this algorithm as 
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no data is available. Table 5.9 presents the mean results collected from the performed 

simulations. 

 

Figure 5.21. PEVs power demand profile in case 4 

Table 5.9. Mean results obtained from simulation case 4 

 No. PEVs km/PEV Connetion time Max. demand Energy demand Time at Max. Demand 

1st Trimester 53 42 12.88 h 111 kW 0.584 MWh 21:00 h 

2nd Trimester 53 43.7 12.4 h 107 kW 0.625 MWh 19:00 h 

3rd Trimester 53 47 12.8 h 129 kW 0.668 MWh 21:00 h 

4th Trimester 53 43.8 12.9 h 115 kW 0.613 MWh 21:00 h 

Once driving and charging patterns are modelled, in the following subsections uncontrolled 

and smart charging approaches are presented. 

 Uncontrolled charging 

Grid architecture and driving and charging patterns have been introduced in previous 

sections. Before introducing smart charging approaches, uncontrolled charging is analyzed 

so as to take it as the reference case. This way, improvements achieved with the different 

smart charging approaches can be quantified. In an uncontrolled charging scenario, PEVs 

will be charged as soon as they arrive home from the last trip of the day. Charging power 

is set to the maximum allowed by the specified PEV (3.7kW for Leaf and Volt and 11kW 

for Tesla S). 

PEVs have been randomly distributed along the nodes and phases and they are charged 

until one of these conditions become true: final SOC is fulfilled or departure time is 

reached. In this research work, final SOC is set to 1, i.e. 100%. Because of this random 

distribution and taking into account that most of PEVs are charged using a single-phase 

charger, different energy demand per phase and voltage unbalances will be generated. Table 

5.10 shows the number, model distribution and the energy demand per phase for the 

different PEV-PR cases. As mentioned before, PEVs load demand per phase is randomly 

distributed, giving different unbalance levels.  
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Table 5.10. Data about the different PEV-PR cases and energy demand of PEVs 

PEV-PR Number of PEVs 
Model 

distribution 

PEVs energy 

demand 

(MWh) 

Energy demand 

per phase (kWh) 

Load per phase 

(%) 

10% 11 

Leaf: 5 

Volt: 3 

Tesla: 3 

0.138 

Phase A: 37 

Phase B: 67 

Phase C: 34 

Phase A: 27 

Phase B: 49 

Phase C: 24 

30% 29 

Leaf: 14 

Volt: 11 

Tesla: 4 

0.337 

Phase A: 109 

Phase B: 148 

Phase C: 80 

Phase A: 32 

Phase B: 44 

Phase C: 24 

50% 52 

Leaf: 25 

Volt: 21 

Tesla:6 

0.584 

Phase A: 250 

Phase B: 202 

Phase C: 132 

Phase A: 45 

Phase B: 35 

Phase C: 23 

70% 72 

Leaf: 43 

Volt: 16 

Tesla: 13 

0.788 

Phase A: 204 

Phase B: 285 

Phase C: 300 

Phase A: 26 

Phase B: 36 

Phase C: 38 

90% 93 

Leaf: 48 

Volt: 33 

Tesla: 12 

1.01 

Phase A: 356 

Phase B: 335 

Phase C: 318 

Phase A: 35 

Phase B: 33 

Phase C: 31 

100% 97 

Leaf: 50 

Volt: 34 

Tesla: 13 

1.06 

Phase A: 397 

Phase B: 342 

Phase C: 322 

Phase A: 37 

Phase B: 32 

Phase C: 30 

Some aspects must be taken into account before presenting simulation results of the 

different approaches: 

 European Standard EN50160 has been taken as a reference to define the acceptable 

range of RMS of the supply voltage. The standard indicates that line to neutral or line to 

line voltage should be within ±10% of nominal voltage for 95% of time of a week. As 

simulations are performed for 24h, line-neutral RMS voltage should not be out of the 

±10% of the nominal voltage for more than 72 minutes. 

 

 Charging and discharging efficiency of the charger is considered to be equal and 
constant along all power range of the charger. Additionally, the charger of the PEVs 

must allow different charging rates and V2G, if this concept is used. 

 

 The IEC 61851 which defines that the charging rate must be semi-continuous, that is, 
the charging rate can be either zero or within a range defined by a minimum (different 

from zero) and a maximum charging power. This statement has not been considered for 

simplification purposes. This assumption will not have noticeably impact on the overall 

results. The analyzed algorithms will schedule PEVs in such a way that final results will 

not be affected. This fact is especially true as the number of PEVs connected to the 

network increases. 

 

 Driving and charging patterns have been set to workday, winter and rural area, in order 

to facilitate the comparison between the different solutions. Only PEV-PR is modified. 

Simulations have been performed for six different PEV-PR (10, 30, 50, 70, 90 and 

100%), which have been already presented in case 1 of section 5.4.2. In Annex 1, more 

information about each PEV-PR case can be found. 

 

 Simulations have been carried out using real consumption data of Borup grid, for 14th 
and 15th of January of 2013. Simulations start at midday of 14th to midday of 15th, for a 

total of 24 hours simulation time. In these days there is almost no PV production. 
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Uncontrolled charging usually adds power demand at peak hours (Figure 5.22-a), leading 

a decrease of system load factor and increasing energy losses. For 30% of PEV-PR, peak 

load is increased from 206kW to 253kW. Furthermore, voltage levels at peak hours are 

affected by the extra load and the unbalance between phases generated by the charging of 

PEVs, as can be seen in Figure 5.22-b. 

 

(a) (b) 

Figure 5.22. Uncontrolled charging for 30% of PEV-PR. (a) Total load of distribution 

transformer and (b) line-neutral voltages at node 613 

In Figure 5.23-a, the PEVs power demand and the electricity cost are shown. PEVs are 

partly charged when electricity cost is high, increasing unnecessarily the total charging cost. 

PEVs are charged from initial SOC to final SOC, in this case 1 p.u., i.e. 100% (Figure 5.23-

b). The evolution of the SOC of all PEVs indicates that they are charged without any type 

of coordination. Furthermore, their charging rates do not vary during the charging process. 

 

(a) (b) 

Figure 5.23. Uncontrolled charging for 30% of PEV-PR. (a) PEVs power demand 

compared to electricity cost and (b) evolution of SOC of each PEV 

Uncontrolled charging has negative impact on charging cost, peak power, load variance 

and voltages. However, the distribution network analyzed can withstand this situation with 

a limited quantity of PEVs. From 30% of PEV-PR onwards, voltage violations may occur 

as can be seen in Table 5.11. Values in bold indicate that a limit has been surpassed. On the 

one hand, a peak power limit of 400kW has been set according to distribution transformer 

nominal power. On the other hand, line-neutral voltages must not be out of the ±10% of 

nominal voltage during more than 72 minutes (95% of the time within ±10%). 
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Energy losses produced in the lines and the distribution transformer have been calculated. 

Without any PEV in the LV distribution network, the energy losses were 56kWh. However, 

in the case of 100% of PEV-PR, these energy losses have a value more than double 

(137kWh). 

Table 5.11. Uncontrolled charging results for the analyzed PEV-PRs 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 56 0.9468 0 

Uncontrolled (10%) 7.39 1599 81 227 40 63 0.92 0 

Uncontrolled (30%) 16.53 2266 327 253 66 74 0.9016 0 

Uncontrolled (50%) 28.75 3340 839 290 111 85 0.8816 102 

Uncontrolled (70%) 38.97 5244 1870 320 126 106 0.8537 132 

Uncontrolled (90%) 47.46 6409 2770 367 182 132 0.8106 247 

Uncontrolled (100%) 49.85 6842 3063 375 189 137 0.8125 262 

Thus, analyzing the results obtained from uncontrolled charging, it is necessary to develop 

new smart charging approaches to improve PEVs integration in LV distribution networks. 

 Smart charging approaches 

In this section, the smart charging approaches that have led to the algorithm proposed in 

this thesis are presented. The new algorithm proposed is composed by two different smart 

charging methods: charging cost minimization and variance minimization. So, it is 

interesting to analyze the behavior of each algorithm in different study cases, in order to 

know the characteristics, advantages and drawbacks of each algorithm. 

All smart charging algorithms developed in this thesis have a resolution time of 5 minutes. 

That is, charging set-point of PEVs are defined in a 5 minutes time basis. Thus, the 24 hours 

of the simulation time is discretized in 288 time slots or intervals. Let 𝑡 ∈ ℕ denote the 

discretization step of the time of day and let 𝑇 ∈ 𝑡 be the total number of time slots, as can 
be seen in equation (5-3).  

𝑡 ={1,2,3, … ,287, 𝑇} (5-3) 

In addition, let 𝑛 ∈ ℕ be the number of a PEV connected to the distribution network, being 

𝑁 ∈ 𝑛 the total number of PEVs currently connected to the distribution network, as shown 
in equation (5-4).  

𝑛 ={1,2,3, … , 𝑁} (5-4) 

Let 𝑎𝑇, 𝑑𝑇 ∈ 𝑡 denote the time slot when the PEV is connected to the network (arrive time) 

and the time slot when PEV is disconnected (departure time), respectively. Then, let 𝑐𝑇 ∈
ℕ be the number of time slots in which the PEV remains connected to the network 

(connection time), as defined in equation (5-5).  

𝑐𝑇 =𝑑𝑇 − 𝑎𝑇 (5-5) 

Two important definitions must be introduced before starting to describe the smart charging 

methods used in this thesis. The first one is the vehicle charging profile (VCP), which is 
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the charging set-point vector along the connection time (cT) of the n-th PEV, as it is defined 

in equation (5-6). 

𝑉𝐶𝑃𝑛 ={𝑥𝑛,𝑎𝑇, 𝑥𝑛,𝑎𝑇+1, 𝑥𝑛,𝑎𝑇+2, … , 𝑥𝑛,𝑑𝑇}     𝑎𝑇, 𝑑𝑇 ∈ 𝑡 (5-6) 

where: 

 𝑉𝐶𝑃𝑛:  vehicle charging profile of n-th PEV 

 𝑎𝑇:  arrive time of n-th PEV 

 𝑑𝑇:  departure time of n-th PEV 

 𝑥𝑛,𝑡:  power set-point of the n-th PEV at time slot t 

The second one is the accumulated charging profile (ACP) which is the total power demand 

of PEVs during the all day, as shown in equation (5-7). 

𝐴𝐶𝑃 = {∑ 𝑥𝑛,1,

𝑁

𝑛=1

∑ 𝑥𝑛,2, … , ∑ 𝑥𝑛,𝑇−1, ∑ 𝑥𝑛,𝑇

𝑁

𝑛=1

𝑁

𝑛=1

𝑁

𝑛=1

} (5-7) 

Following, charging cost and variance optimization algorithms are explained. Within the 

variance optimization algorithm, two different alternatives can be distinguished: the 

minimization of PEVs load variance and the minimization of overall load of the network. 

In the first one, the VCP of each PEV is calculated knowing the ACP of the other PEVs 

that are already connected to the grid. In the second one, the VCP is calculated knowing 

not only the ACP but also the load forecasting of the distribution network. This load 

forecasting can include estimation of distributed generation production. Both alternatives 

require a coordination system to work properly through the use of ACP. In contrast, cost 

optimization algorithm does not require of any coordination system. Furthermore, V2G 

concept can be implemented in each algorithm. So, the effect of these aspects in the PEVs 

integration has been analyzed.  

 Optimization of charging cost 

Cost optimization is one of the simplest decentralized smart controls that can be used to 

charge PEVs. This optimization is based on the minimization of the cost of charging, 

especially in hourly discrimination tariffs. This way, PEVs only draw energy from the grid 

when prices are low. V2G capabilities enhance charging cost by selling part of the energy 

stored when prices are higher. This option is particularly advantageous when there is a large 

difference between prices at peak and off-peak hours. However, it should be taken into 

account other aspects, like taxes and battery degradation. With regard to the last one, the 

algorithm developed in this thesis can limit the energy injected back to the grid. 

The objective function, presented in equation (5-8), for this smart charging is the product 

of energy consumed/injected by the PEV and the electricity prices in that period of time. 

The objective function is minimized in order to reduce the charging costs. 

𝐽 = ∑ (𝐶𝑡
𝑐ℎ · 𝑥𝑛,𝑡

𝑐ℎ − 𝐶𝑡
𝑑𝑐ℎ · 𝑥𝑛,𝑡

𝑑𝑐ℎ) · 𝑃𝑛

𝑑𝑇

𝑡=𝑎𝑇

 (5-8) 
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where: 

 n:   the n-th PEV to be optimized 

 𝑥𝑛,𝑡
𝑐ℎ :  charging set-point at time slot t of the n-th PEV 

 𝑥𝑛,𝑡
𝑑𝑐ℎ:  discharging set-point at time slot t of the n-th PEV 

 𝐶𝑡
𝑐ℎ:  purchase prices of electricity at time slot t 

 𝐶𝑡
𝑑𝑐ℎ:  sell prices of electricity at time slot t 

 𝑃𝑛:  maximum energy absorbed by the n-th PEV for a time slot 

Two set-point variables are considered: 𝑥𝑛,𝑡
𝑐ℎ  for charging and 𝑥𝑛,𝑡

𝑑𝑐ℎ for discharging. After 

the optimization process is done, these two variables are subtracted to determine the final 

set-point for the corresponding PEV, as shown in equation (5-9). This optimization problem 

is solved using a linear programming technique and its results are the set-point of the PEV 

charger at each time period t, being -1 discharging at maximum power, 0 no power transfer 

and 1 charging at maximum power.  

𝑥𝑛,𝑡 = 𝑥𝑛,𝑡
𝑐ℎ − 𝑥𝑛,𝑡

𝑑𝑐ℎ (5-9) 

The optimization process is done for every n-th PEV when it is connected to the distribution 

network. Hence, there is no need for an aggregator entity. Only information about 

electricity prices is required. For the approach developed in this thesis, Nord Pool spot 

prices have been taking as reference, specifically in the DK2 region where Borup is located. 

The prices correspond with the real data of load demand (14th and 15th of January of 2013). 

No taxes have been considered and purchase prices (𝐶𝑡
𝑐ℎ) and sell prices (𝐶𝑡

𝑑𝑐ℎ) are 
considered equal. 

The objective function of equation (5-8) is subject to different constraints in order to satisfy 

user preferences and technical limits, such as final SOC required. These constraints can be 

expressed in two forms: as equality or as inequality constraint. When an objective function 

is minimized, inequality constraints must be defined as less or equal form instead of higher 

or equal form. Following, the linear constraints used in this approach are described: 

 SOC must be less or equal than 1 (equivalent to 100% of SOC) at any time slot, as 
shown in equation (5-10). This way, over-charge of PEV batteries is avoided. Other 

maximum SOC value can be selected to reduce battery degradation. 

∑ (𝑃𝑛 · 𝜂𝑛 · 𝑥𝑛,𝑡
𝑐ℎ −

𝑃𝑛 · 𝑥𝑛,𝑡
𝑑𝑐ℎ

𝜂𝑛
)

𝑑𝑇

𝑡=𝑎𝑇

≤ (𝑄𝑛 − 𝑞𝑛) · 𝐵𝐶𝑛      ∀𝑡 (5-10) 

 SOC must be higher or equal than zero at any time slot, as shown in equation (5-11). 
This constraint is necessary in order to avoid over-discharge when PEV is injecting 

energy back to the network (V2G). Other higher minimum SOC value can be selected 

in function of battery characteristics. 

∑ (
𝑃𝑛 · 𝑥𝑛,𝑡

𝑑𝑐ℎ

𝜂𝑛
− 𝑃𝑛 · 𝜂𝑛 · 𝑥𝑛,𝑡

𝑐ℎ)

𝑑𝑇

𝑡=𝑎𝑇

≤ 𝑞𝑛 · 𝐵𝐶𝑛       ∀𝑡 (5-11) 

 SOC must be equal to final SOC at final charging time dT, as shown in equation (5-12). 

It defines the final SOC requested by the user. In this approach, this final SOC is set to 
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1 for all PEVs, but lower values can be selected in order to reduce battery degradation. 

In contrast, the total autonomy of the PEV will be reduced. 

∑ (𝑃𝑛 · 𝜂𝑛 · 𝑥𝑛,𝑡
𝑐ℎ −

𝑃𝑛 · 𝑥𝑛,𝑡
𝑑𝑐ℎ

𝜂𝑛
)

𝑑𝑇

𝑡=𝑎𝑇

= (𝑄𝑛 − 𝑞𝑛) · 𝐵𝐶𝑛 (5-12) 

 Variables 𝑥𝑛,𝑡
𝑐ℎ  and 𝑥𝑛,𝑡

𝑑𝑐ℎ must be between 0 and 1, as shown in equation (5-13). 

 0 ≤ 𝑥𝑛,𝑡
𝑐ℎ ≤ 1       0 ≤ 𝑥𝑛,𝑡

𝑑𝑐ℎ ≤ 1             ∀𝑡 (5-13) 

 Energy injected back to the grid must be less than the maximum allowed by the user, 
which is set through Z value, as shown in equation (5-14). The value of Z limits the 

battery capacity portion destined to V2G, being Z=0 no V2G allowed and Z=1 the 

100% of battery capacity can be used to provide V2G. 

∑
𝑃𝑛 · 𝑥𝑛,𝑡

𝑑𝑐ℎ

𝜂𝑛

𝑑𝑇

𝑡=𝑎𝑇

≤ 𝑍𝑛 · 𝐵𝐶𝑛 (5-14) 

where: 

 𝜂𝑛: charging/discharging efficiency of the n-th PEV 

 𝐵𝐶𝑛: battery capacity of the n-th PEV 

 𝑄𝑛: final SOC required for the n-th PEV 

 𝑞𝑛: initial SOC for the n-th PEV 

 𝑍𝑛: portion of battery capacity reserved for V2G operation of n-th PEV 

PEV user can limit V2G provision through changing variable Z. This option does not 

necessary imply that the mentioned percentage of battery capacity will be delivered but it 

is the maximum one allowed by the user. For example, if Z is set to 0.1, V2G provision is 

limited to 10% of the battery capacity. Obviously, PEVs can deliver energy only when SOC 

is above 0% due to constraint (5-11).  

Cost optimization is a linear programming problem. In this case, the objective function is 

minimized using the simplex method in CPLEX software for Matlab. Linear programming 

problems can be expressed by equation (5-15). 

min
𝑥

𝐶′𝑥     𝑠. 𝑡.   {

𝐴𝑖𝑛𝑒𝑞 · 𝑥 ≤ 𝑏𝑖𝑛𝑒𝑞

𝐴𝑒𝑞 · 𝑥 = 𝑏𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 (5-15) 

where: 

 x:  vector of variables to be determined 

 C:  vector of coefficients of x 

 𝐴𝑖𝑛𝑒𝑞: matrix with the coefficients of the inequality constraints 

 𝐴𝑒𝑞: matrix with the coefficients of the equality constraints 

 𝑏𝑖𝑛𝑒𝑞: vector with the independent variables of the inequality constraints 

 𝑏𝑒𝑞:  vector with the independent variables of the equality constraints 

 𝑙𝑏:  vector with the lower bounds of x 

 𝑢𝑏:  vector with the upper bounds of x 
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Table 5.12 shows simulation results of different PEV-PR cases. At low PEV-PR, cost 

optimization algorithm provides better results in terms of cost and overall load variance but 

from PEV-PR of 50% both solutions are not feasible due to voltage limits violations. With 

regard to energy losses, only in the 10% of PEV-PR case the energy losses are reduced but 

only in 1kWh. For the rest of cases, energy losses increase compared to uncontrolled case, 

especially at high PEV-PR cases.  

Table 5.12. Uncontrolled charging and cost optimization results without using V2G 

Case of study       

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 56 0.9468 0 

Uncontrolled (10%) 7.39 1599 81 227 40 63 0.92 0 

Cost opt. (10%) 5.08 896 187 206 63 62 0.9264 0 

Uncontrolled (30%) 16.53 2266 327 253 66 74 0.9016 0 

Cost opt. (30%) 12.51 1261 985 236 137 75 0.9107 0 

Uncontrolled (50%) 28.75 3340 839 290 111 85 0.8816 102 

Cost opt. (50%) 21.82 2921 2992 345 234 95 0.7965 155 

Uncontrolled (70%) 38.97 5244 1870 320 126 106 0.8537 132 

Cost opt. (70%) 29.21 6067 6001 475 344 132 0.7499 145 

Uncontrolled (90%) 47.46 6409 2770 367 182 132 0.8106 247 

Cost opt. (90%) 37.54 10420 9419 576 413 191 0.6094 190 

Uncontrolled (100%) 49.85 6842 3063 375 189 137 0.8125 262 

Cost opt. (100%) 39.53 11675 10307 610 434 203 0.4493 200 

Following, some figures obtained in different simulation cases are presented. In the first 

case V2G is not allowed, so variable Z has been set to 0. In Figure 5.24-a, the total load of 

distribution transformer for base case (no PEVs) and 30% of PEV-PR case are presented. 

A peak demand of 236kW is produced by the charging of PEVs. In Figure 5.24-b, the line-

neutral voltages at node 613 are shown. As can be seen in this figure, unbalances between 

phases are only induced by the charging of PEVs. In general, this type of optimization tends 

to concentrate the charge of all PEVs in a short period. In fact, this linear decentralized 

optimization generates avalanche effects as all PEVs are induced to be charged at the same 

time when prices are the lowest ones. 

 

(a) (b) 

Figure 5.24. Optimization of charging cost (no V2G case) for 30% of PEV-PR. (a) Load 

in the distribution transformer and (b) line-neutral voltages at node 613 
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PEV charging profile and electricity prices are presented in Figure 5.25-a, showing clearly 

that this algorithm tends to accumulate the charge of all PEVs at hours of lower electricity 

prices. Electricity cost is higher between 00:00 to 01:00h compared to 23:00 to 00:00h. 

That is why almost no PEVs are charged between 00:00 to 01:00h. In this case, the 

maximum charging power of PEVs reaches 137kW.  

Figure 5.25-b shows the evolution of the SOC of all PEVs, during the charging process. 

This evolution indicates that they are charged almost at the same time (from 01:00 to 

04:00h) as well as their charging power do not vary during the charging process. The slope 

of the SOC curve indicates the charging rate of the battery. The greater the slope, the higher 

the charging power is, while no slope means no charging. 

 

(a) (b) 

Figure 5.25. Optimization of charging cost (no V2G case) for 30% of PEV-PR. (a) PEVs 

load compared to electricity cost and (b) evolution of SOC of each PEV 

Introducing V2G concept reduces overall charging cost, i.e. from 12.51 to 11.36€ for 30% 

of PEV-PR. However, it is less efficient and grid impacts are usually higher than the cost 

optimization algorithm without using V2G. In addition, energy losses are always greater 

using V2G concept due to the increase of energy flows. Anyway, both approaches do not 

give valid solutions for high PEV-PRs, as can be seen in Table 5.13. 

Table 5.13. Results of no V2G and V2G cases, for the cost optimization algorithm 

Case of study        

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 56 0.9468 0 

Cost opt. (10%) 5.08 896 187 206 63 62 0.9264 0 

Cost opt. V2G (10%) 4.45 711 371 198 63 63 0.9281 0 

Cost opt. (30%) 12.51 1261 985 236 137 75 0.9107 0 

Cost opt. V2G (30%) 11.36 1275 1642 236 137 80 0.9122 0 

Cost opt. (50%) 21.82 2921 2992 345 234 95 0.7965 155 

Cost opt. V2G (50%) 19.89 3954 5031 349 238 109 0.7965 195 

Cost opt. (70%) 29.21 6067 6001 475 344 132 0.7499 145 

Cost opt. V2G (70%) 26.04 9277 10372 489 355 164 0.7407 200 

Cost opt. (90%) 37.54 10420 9419 576 413 191 0.6094 190 

Cost opt. V2G (90%) 34.87 14798 14439 591 423 238 0.6438 250 

Cost opt. (100%) 39.53 11675 10307 610 434 203 0.4493 200 

Cost opt. V2G (100%) 36.67 16762 15973 622 446 255 0.5804 240 
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Using V2G, the PEV users can act as energy traders, selling energy when it is expensive 

and buying it when it is cheap. In this context, Figure 5.26 and Figure 5.27 show the results 

obtained for minimizing charging cost when V2G provision is allowed. In this case, all 

PEVs are limited to provide less or equal than 20% of the battery capacity (Z=0.2).  

Selling electricity prices have been set equal to buying electricity prices, so there is no 

additional incentive to sell energy, except for the obtained by trading. Obviously, the 

existence of other economic incentive must be taken into account in the objective function. 

This energy trading through V2G produces a sharp and short decrease of load in the 

distribution transformer, as shown in Figure 5.26-a. In addition, PEVs energy demand is 

higher than in previous case where V2G was not allowed (332 to 373kWh), because of the 

energy losses produced by the use of V2G. Voltages are increased at node 613 (in an 

unbalanced way) when energy is injected back to the network, as shown in Figure 5.26-b. 

 

(a) (b) 

Figure 5.26. Optimization of charging cost (V2G case) for 30% of PEV-PR. (a) Load in 

the distribution transformer and (b) voltages at node 613 

This minimization algorithm searches for the most expensive hours to sell energy and the 

cheapest hours to buy it, while the user requirements are accomplished (Figure 5.27-a). The 

SOC of PEVs (Figure 5.27-b) shows also the initial decrease of the SOC (negative slope) 

because of the injection of energy from PEV batteries to the distribution network, at around 

18:00-20:00h and a later increase to satisfy the final SOC constraint. 

 

(a) (b) 

Figure 5.27. Optimization of charging cost (V2G case) for 30% of PEV-PR. (a) PEVs 

load compared to electricity cost and (b) evolution of SOC of each PEV 
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As mentioned before, PEV customers can set the percentage of battery capacity limit (Z) 

for V2G provision, according to their preferences. As Z value increases, more energy is 

available to be injected back to the network, but energy only will be injected back if it 

reduces the charging cost of the PEV. Figure 5.28 shows the PEVs power demand for 30% 

of PEV-PR at different Z values. As can be seen in this figure, there is almost no difference 

between Z=0.6 and Z=0.4 options. 

 

Figure 5.28. PEVs power demand at different Z values for PEV-PR of 30% 

With regard to charging cost, a significantly improvement is made from uncontrolled 

strategy (16.53€) to cost optimization algorithm (12.51€). Furthermore, increasing Z value 

reduces also charging cost. But, this reduction has a limit because of the charger efficiency 

and the electricity prices. So, only discharging at specific hours can decrease charging cost 

and increasing value of Z does not have any extra effect, as shown in Figure 5.29. 

 

Figure 5.29. Overall PEVs charging cost at different Z values for PEV-PR of 30% 

As a conclusion, this algorithm provides a useful tool to reduce PEVs charging cost but it 

has the drawback that affects largely the distribution network reliability due to the 

avalanche effect, even at low penetration rates of PEVs. The use of V2G concept decreases 

more the charging cost but it also has more impacts on the network. There are several 
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solutions to address avalanche effects, most of them are based on applying a coordinated 

control system. In this thesis, a solution for this problem is introduced in the proposed smart 

charging algorithm. Additionally, other types of algorithms can be used in order to reduce 

grid impacts. One of them is the minimization of PEVs load variance, which is presented 

in the next subsection. 

 Optimization of PEVs load variance 

The variance is an indicator of the spread out of a set of data. So, if variance is minimized, 

the fluctuation of the set of data will be reduced. This technique can be useful to smooth 

the overall load demand or the power demand of a set of PEVs in a distribution network. 

Furthermore, minimizing load variance is equivalent to reduce power losses of the 

distribution network, as well as increase the load factor. The equation (5-16) is used to 

calculate the variance of a set of values x. 

𝑠2 = 
1

𝑁
[∑(𝑥𝑛)2

𝑁

𝑛=1

] − [
1

𝑛
∑𝑥𝑛

𝑛

𝑖=1

]

2

 (5-16) 

where: 

 s2:   the variance 

 N:   the total number of samples 

 𝑥𝑛:  the n-th sample 

Researchers usually tend to use this optimization technique to minimize the overall load 

variance, neglecting the possibility of using it only for smoothing the power demand of 

PEVs. The objective function to minimize is presented in equation (5-17). This function 

has a quadratic form and, therefore, linear programming cannot be used. Constraints remain 

the same as previous case. 

𝐽 =
1

𝑐𝑇
∑ [𝑃𝑛 · (𝑥𝑛,𝑡

𝑐ℎ − 𝑥𝑛,𝑡
𝑑𝑐ℎ) + 𝐴𝐶𝑃𝑡]

2
𝑑𝑇

𝑡=𝑎𝑇

−𝜇2 

 

(5-17) 

in which: 

𝜇 =
1

𝑐𝑇
∑ [𝑃𝑛 · (𝑥𝑛,𝑡

𝑐ℎ − 𝑥𝑛,𝑡
𝑑𝑐ℎ) + 𝐴𝐶𝑃𝑡]

𝑑𝑇

𝑡=𝑎𝑇

 (5-18) 

where: 

 cT:  total number of time slots during the connection time 

 𝑃𝑛:  maximum energy absorbed by the n-th PEV in a time slot 

 𝑥𝑛,𝑡
𝑐ℎ :  charging set-point of the n-th PEV at time slot t 

 𝑥𝑛,𝑡
𝑑𝑐ℎ:  discharging set-point of the n-th PEV at time slot t 

 𝐴𝐶𝑃𝑡:  accumulated PEVs charging demand at time slot t 

The objective function of equation (5-17) is subject to constraints shown in equations 

(5-10), (5-11), (5-12), (5-13) and (5-14). Quadratic programming is used to solve this 

optimization problem, which equation is presented in (5-19). 
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min
𝑥

1

2
𝑥′𝐻𝑥 + 𝑓′𝑥       𝑠. 𝑡.    {

𝐴𝑖𝑛𝑒𝑞 · 𝑥 ≤ 𝑏𝑖𝑛𝑒𝑞

𝐴𝑒𝑞 · 𝑥 = 𝑏𝑒𝑞

𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 (5-19) 

where: 

 𝑥:   variables to be calculated 

 H:   symmetric matrix with quadratic coefficients of x 

 𝑓:   vector with coefficients of x 

This optimization process requires of a coordination system. In this case, each PEV has to 

upload their VCP to an aggregator entity. This way, the ACP of the PEVs can be calculated. 

When a new PEV is connected, this overall ACP will be downloaded from the aggregator, 

in order to be used in the optimization algorithm. After the algorithm is executed, the 

calculated VCP is sent to the aggregator and the ACP is updated. 

In contrast to uncontrolled and cost optimization approaches, PEVs load demand variance 

optimization allows that 70% of PEV-PR case do not surpassing any voltage limit. In 

addition, this algorithm reduces peak power and charging cost and improves overall load 

variance when it is compared with uncontrolled charging approach. However, charging cost 

savings are not so noticeably compared to using a cost optimization algorithm. For PEV-

PR of 90 and 100%, this algorithm cannot give valid solutions. Furthermore, this algorithm 

tends to increase peak power. For example, peak power grows from 206kW to 225kW for 

100% of PEV-PR case. 

PEVs load demand variance minimization algorithm reduces also energy losses compared 

to uncontrolled charging in all cases. This reduction can achieve a 17% (from 137 to 

114kWh) in the 100% of PEV-PR case. Table 5.14 shows the results obtained from 

applying the optimization of PEVs load demand variance for the six different PEV-PR 

cases. 

Table 5.14. Uncontrolled charging and PEVs power demand variance optimization 

results, without V2G 

Case of study            

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 56 0.9468 0 

Uncontrolled (10%) 7.39 1599 81 227 40 63 0.92 0 

PEVs var. opt. (10%) 6.04 1044 17 210 10 62 0.9426 0 

Uncontrolled (30%) 16.53 2266 327 253 66 74 0.9016 0 

PEVs var. opt. (30%) 15.17 1057 89 212 24 70 0.9204 0 

Uncontrolled (50%) 28.75 3340 839 290 111 85 0.8816 102 

PEVs var. opt. (50%) 26.74 1158 254 218 40 78 0.9299 0 

Uncontrolled (70%) 38.97 5244 1870 320 126 106 0.8537 132 

PEVs var. opt. (70%) 36.48 1335 433 225 51 92 0.8942 20 

Uncontrolled (90%) 47.46 6408 2770 366 182 132 0.8106 247 

PEVs var. opt. (90%) 45.86 1529 816 222 70 111 0.8724 85 

Uncontrolled (100%) 49.85 6842 3063 375 189 137 0.8125 262 

PEVs var. opt. (100%) 48.17 1613 909 225 74 114 0.8701 85 
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From the point of view of the LV distribution network reliability, there is an important 

improvement in this type of optimization process. The charging of PEVs is distributed as 

much as possible over time, while users’ requirements are met. However, a little increase 

of peak power is produced, as can be seen in Figure 5.30-a. Also, voltages in the network 

are slightly affected, as shown in Figure 5.30-b. In these figures, the PEV-PR of 30% has 

been used. 

 

(a) (b) 

Figure 5.30. Optimization of PEVs load variance (no V2G case) for 30% of PEV-PR. (a) 

Load in the distribution transformer and (b) line-neutral voltages at node 613 

The most important characteristic of this type of control is that maximum PEVs power 

demand is widely decreased, reaching only 24kW (Figure 5.31-a). In contrast, this value 

reaches 66kW for uncontrolled charging strategy and 137kW for optimization of charging 

cost. In addition, this algorithm starts the charging process of the PEVs when electricity is 

expensive due to electricity cost is not considered in the algorithm. The evolution of the 

SOC demonstrates that every PEV is charged at different power rates, in order to minimize 

PEVs power demand variance, as shown in Figure 5.31-b. All of them reach the final SOC 

required at departure time, which is set by the user. This type of optimization reduces also 

battery degradation because the charging process is done at lower charging rates than 

uncontrolled and cost optimization strategies. 

 

(a) (b) 

Figure 5.31. Optimization of PEVs load variance (no V2G case) for 30% of PEV-PR. (a) 

PEVs power demand versus electricity cost and (b) evolution of the SOC of each PEV 

In this variance optimization algorithm, V2G concept is also introduced in order to 

determine the possibilities of V2G in this type of algorithm. In Table 5.15, no V2G and 

V2G options of PEVs power demand variance minimization are presented. Both solutions 
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provide similar results. This is due to the fact that the use of V2G tends to increase the PEV 

load variance value. That is, using V2G requires more energy from the network because 

there are more energy losses induced mainly by the limited efficiency of the charger. 

Table 5.15. Comparing no V2G and V2G approaches of PEVs power demand variance 

optimization 

Case of study                  

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 56 0.9468 0 

PEVs var. opt. (10%) 6.04 1044 17 210 10 62 0.9426 0 

PEVs var. opt.  V2G (10%) 6.56 1045 12 210 10 62 0.9416 0 

PEVs var. opt. (30%) 15.17 1057 89 212 24 70 0.9204 0 

PEVs var. opt.  V2G (30%) 16.25 1056 84 212 23 71 0.926 0 

PEVs var. opt. (50%) 26.74 1158 254 218 40 78 0.9299 0 

PEVs var. opt.  V2G (50%) 27.10 1159 258 218 40 79 0.9234 0 

PEVs var. opt. (70%) 36.48 1335 433 225 51 92 0.8942 20 

PEVs var. opt.  V2G (70%) 37.35 1321 430 225 52 93 0.8849 50 

PEVs var. opt. (90%) 45.86 1529 816 222 70 111 0.8724 85 

PEVs var. opt.  V2G (90%) 46.76 1539 831 222 71 112 0.8842 85 

PEVs var. opt. (100%) 48.17 1613 909 225 74 114 0.8701 85 

PEVs var. opt.  V2G (100%) 49.30 1630 927 225 74 115 0.879 80 

Thus, using V2G has little effect on the optimization of PEVs power demand variance 

(Figure 5.32). In this simulation case, Z has been set to 0.2 and the 30% of PEV-PR case 

has been used.  

 

(a) (b) 

Figure 5.32. Optimization of PEVs load variance (V2G) for 30% of PEV-PR. (a) Load in 

the distribution transformer and (b) line-neutral voltages at node 613 

Few PEVs inject energy back to the grid, as shown in Figure 5.33-b. Additionally, charging 

cost is increased when V2G is used (from 15.17 to 16.25€) while there are not any 

improvement in terms of overall load variance. Thus, using V2G has no practical value in 

this optimization algorithm. 



122  CHAPTER 5 

 

(a) (b) 

Figure 5.33. Optimization of PEVs load variance (V2G case) for 30% of PEV-PR. (a) 

PEVs power demand versus electricity cost and (b) evolution of the SOC of each PEV 

Summarizing, minimization of PEVs power demand variance is a good solution to reduce 

impacts on the distribution network, but this technique has also some drawbacks such as: it 

could increase power demand at peak hours, V2G concept is useless and it does not take 

into account electricity prices. The first two drawbacks may be fixed through the use of an 

algorithm to minimize overall load variance, as it is explained in the following subsection. 

 Optimization of overall load variance 

As mentioned above, the optimization of PEVs load variance presented in the previous 

subsection has the unintended consequence that it can increase the overall peak power. In 

order to avoid this problem, it is interesting to minimize the overall load of the system. A 

method to achieve this objective is to use load demand forecasting. This way, PEVs tend 

to charge when distribution network load is low, producing the called valley filling effect.  

The hourly load demand forecast (LF) used in this case is obtained directly from the 

transformer load, without PEVs. Thus, it can be considered as an ideal forecast. This 

simplification is done in order to remove the influence of load demand forecasting errors 

from the results, thereby facilitating the comparison between the different algorithms. 

Anyway, influence of load forecasting errors is analyzed in subsection 5.7.7. 

In this case, the objective function to minimize shown in equation (5-20) is similar to the 

previous case, but a variable 𝐿𝐹𝑡 is added, which represents the LF values at each time slot 
t. Constraints remain the same as in the previous cases. 

𝐽 =
1

𝑐𝑇
∑ [𝑃𝑛(𝑥𝑛,𝑡

𝑐ℎ − 𝑥𝑛,𝑡
𝑑𝑐ℎ) + 𝐴𝐶𝑃𝑡 + 𝐿𝐹𝑡]

2
−𝜇2

𝑑𝑇

𝑡=𝑎𝑇

 (5-20) 

in which: 

𝜇 =
1

𝑐𝑇
∑ 𝑃𝑛(𝑥𝑛,𝑡

𝑐ℎ − 𝑥𝑛,𝑡
𝑑𝑐ℎ) + 𝐴𝐶𝑃𝑡 + 𝐿𝐹𝑡

𝑑𝑇

𝑡=𝑎𝑇

 (5-21) 

Using load forecasting avoid increasing the peak power, improves load factor and reduces 

energy losses. Additionally, as can be seen in Table 5.16, peak power is 206kW for all 

PEV-PRs when load variance optimization is used. Furthermore, overall load variance is 

widely improved, being at least half of the uncontrolled case and reaching more than four 

time less in 100% PEV-PR case. Charging cost is also improved, giving better results than 
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PEVs power demand variance optimization. Additionally, analyzed algorithm improves 

voltage results for 70% of PEV-PR, being phase-neutral RMS values above 0.9 p.u. at any 

time. However, at higher PEV-PRs (90 and 100% cases), voltages exceed the low limits. 

Table 5.16. Uncontrolled charging and load variance optimization algorithm results 

Case of study            

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 56 0.9468 0 

Uncontrolled (10%) 7.39 1599 81 227 40 63 0.92 0 

Load var. opt. (10%) 5.17 774 97 206 27 62 0.9434 0 

Uncontrolled (30%) 16.53 2266 327 253 66 74 0.9016 0 

Load var. opt. (30%) 13.31 652 366 206 50 71 0.9386 0 

Uncontrolled (50%) 28.75 3340 839 290 111 85 0.8816 102 

Load var. opt. (50%) 24.07 759 787 206 73 80 0.9161 0 

Uncontrolled (70%) 38.97 5244 1870 320 126 106 0.8537 132 

Load var. opt. (70%) 33.56 904 1093 206 85 94 0.9088 0 

Uncontrolled (90%) 47.46 6409 2770 367 182 132 0.8106 247 

Load var. opt. (90%) 42.96 1328 1728 206 105 115 0.8888 230 

Uncontrolled (100%) 49.85 6842 3063 375 189 137 0.8125 262 

Load var. opt. (100%) 45.24 1437 1870 206 109 118 0.8824 250 

Valley filling effect is clearly achieved through this control algorithm, as can be seen in 

Figure 5.34-a. However, phase-neutral voltages at node 613 are affected (Figure 5.34-b), 

mainly due to unbalances produced by the charging processes of PEVs. Although load level 

is noticeably lower at off-peak hours, the voltage level at phase b is lower than at peak 

hours. These results illustrate that voltage unbalances produced by PEVs are a very 

important factor to take into account. 

 

(a) (b) 

Figure 5.34. Optimization of overall load variance (no V2G case). (a) Load in the 

distribution transformer and (b) voltages at node 613 

Almost all PEVs are charged at off-peak hours, which is indicated by LF, in order to reduce 

overall load variance, as can be seen in Figure 5.35-a and Figure 5.35-b. The maximum 

power demand of PEVs reaches 50kW which is considerable higher than the value reached 

in PEVs load variance optimization algorithm (24kW). 
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(a) (b) 

Figure 5.35. Optimization of overall load variance (no V2G case). (a) PEVs power 

demand versus load forecast and (b) evolution of the SOC of each PEV 

In the PEVs power demand variance optimization, V2G does not offer any improvement. 

In order to achieve a better use of the V2G concept, load forecasting should be done. So, in 

the following case the use of LF and V2G is analyzed. In this case, Z variable has been set 

to 0.2. 

Introducing V2G in the overall load variance minimization algorithm provides a reduction 

of load variance at low PEV-PRs, but an increase at high PEV-PRs. For example, load 

variance is reduced from 652 to 423kW2 for 30% of PEV-PR but, in contrast, load variance 

grows from 1438 to 1738kW2 for 100% of PEV-PR, as can be seen in Table 5.17. This 

effect is because the optimization algorithm is executed once per PEV. As a consequence, 

first PEVs connected to the network use V2G to reduce peak power, as well as to increase 

energy demand at off-peak hours. This situation is correct when there are not too many 

PEVs connected to the network. However, when the number of PEVs to be charged is high 

enough, injecting energy by using V2G may be counterproductive because energy demand 

at off-peak hours could be higher than typical peak power demand. 

Table 5.17. Overall load variance optimization results for no V2G and V2G cases 

Case of study                

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 56 0.9468 0 

Load var. opt. (10%) 5.17 774 97 206 27 62 0.9434 0 

Load var. opt. V2G (10%) 5.04 483 274 186 38 63 0.9412 0 

Load var. opt. (30%) 13.31 652 366 206 50 71 0.9386 0 

Load var. opt. V2G (30%) 14.23 432 790 183 62 75 0.9269 0 

Load var. opt. (50%) 24.07 759 787 206 73 80 0.9161 0 

Load var. opt. V2G (50%) 24.64 743 1412 176 84 85 0.9089 0 

Load var. opt. (70%) 33.56 904 1093 206 85 94 0.9088 0 

Load var. opt. V2G (70%) 34.39 976 1778 188 95 100 0.9188 0 

Load var. opt. (90%) 42.96 1328 1728 206 105 115 0.8888 230 

Load var. opt. V2G (90%) 43.99 1593 2515 209 115 124 0.8727 315 

Load var. opt. (100%) 45.24 1437 1870 206 109 118 0.8824 250 

Load var. opt. V2G (100%) 46.52 1733 2665 213 119 127 0.8696 340 
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This problem can be solved by performing more than one algorithm execution per PEV. 

This way, the earliest PEVs connected to the grid will have better information of the 

distribution network status, through updated ACP. Such improvement can be easily 

introduced by sending new ACPs to the connected PEVs, every predefined period of time 

or when a predefined condition is met. This solution could be defined as iterative approach 

and it is especially useful when dealing with the V2G concept. In this thesis, this solution 

has not been implemented. 

The application of V2G reduces peak power and increase the charge demand of PEVs in 

off-peak hours, as can be seen in Figure 5.36-a. Voltages profile at node 613 (Figure 5.36-

b) are improved at peak hours (from 18:00 to 22:00h). As in the no V2G case, there is no 

valid solution for 90 and 100% of PEV-PRs, mainly due to voltage unbalances generated 

by the charging of PEVs. 

 

(a) (b) 

Figure 5.36. Optimization of overall load variance (V2G case). (a) Load in the 

distribution transformer and (b) voltages at node 613 

Figure 5.37-a shows the LF and PEVs power demand. PEVs deliver energy back to the grid 

when load demand is high at peak hours. Thus, peak power is reduced from 206kW to 

183kW, for 30% of PEV-PR. Evolution of the SOC for each PEV (Figure 5.37-b) also 

shows this behavior, with a first part where PEVs are injecting energy to the network and 

a second part where PEVs are being charged. All PEVs take part in reducing the overall 

load variance. 

 

(a) (b) 

Figure 5.37. Optimization of overall load variance (V2G case). (a) PEVs power demand 

versus load forecast and (b) evolution of the SOC of each PEV 
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It is interesting to know the effect of varying the Z value in charging cost and overall load 

variance. Thus, several simulations have been carried out using the 30% of PEV-PR. As 

expected, when Z value increases, the overall load variance decreases. However, this 

variance reduction is more noticeable at low Z values (between 0.1 and 0.3). In contrast, 

the overall cost of charge of PEVs increases almost linearly, from 13.31 to 15.09€ (Figure 

5.38). So, in this case, increasing Z beyond 0.2 is not profitable in terms of overall load 

variance.  

 

Figure 5.38. Overall load variance and total charging cost, at different Z values 

Figure 5.39 shows PEVs power demand at different Z values. Note that there is no huge 

differences between PEVs power demand for Z equal to 0.2 and 0.3. 

 

Figure 5.39. PEVs power demand at different Z values 

Although there is no important improvement in overall load variance when Z reaches values 

higher than 0.2, observing the peak power value, there is a decrease as Z increases until 0.7. 

This way, peak power is reduced from 206kW to 165kW, as can be seen in Table 5.18. 
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Table 5.18. Simulation results obtained from varying Z value, in overall load variance 

optimization 

Case of study              

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

V2G 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

Load var. opt. (Z=0.0) 13.31 652 366 206 50 - 0.9386 0 

Load var. opt. (Z=0.1) 13.62 488 577 190 56 -22 0.9319 0 

Load var. opt. (Z=0.2) 14.25 423 828 183 62 -36 0.9269 0 

Load var. opt. (Z=0.3) 14.27 415 931 179 64 -40 0.9294 0 

Load var. opt. (Z=0.4) 14.47 411 1010 175 65 -45 0.9361 0 

Load var. opt. (Z=0.5) 14.71 413 1056 171 66 -50 0.9323 0 

Load var. opt. (Z=0.6) 14.84 419 1088 169 66 -53 0.9294 0 

Load var. opt. (Z=0.7) 14.97 423 1105 166 67 -55 0.926 0 

Load var. opt. (Z=0.8) 14.96 423 1119 165 67 -55 0.9265 0 

Load var. opt. (Z=0.9) 15 426 1127 165 68 -55 0.9258 0 

Load var. opt. (Z=1) 15.09 426 1129 165 68 -55 0.9263 0 

Summarizing, overall load variance minimization improves load factor as well as system 

efficiency. Furthermore, if V2G concept is implemented better results could be achieved, 

especially for low values of Z. In contrast, charging cost of PEVs will be increased and load 

demand forecasting is needed. Load demand forecasting at small-scale can be complex 

because LV distribution networks are characterized by having higher variability than MV 

distribution networks. Electricity demand not only depends on number of customers, 

region, type of day, etc. but also depends on the behavior of individual customers and the 

influence of local phenomena, i.e., weather, special events, etc. So, errors in load 

forecasting can result in unwanted behavior in PEVs charging process that may impact the 

quality of supply. However, the introduction of smart meters is allowing the analysis of 

energy consumption at household level. In recent years, new techniques for load demand 

forecasting are being introduced. For example, support vector regression technique (SVR) 

has become an effective tool for load demand forecasting [137], [138]. This technique is 

based on support vector machine (SVM), which is a set of learning algorithms to solve 

classification and regression problems.  

 New proposed smart charging methodology 

Two main objective functions have been considered in the previous section, cost 

minimization and variance minimization. Both have several advantages and drawbacks. On 

the one hand, cost optimization is best suited to reduce charging cost, which is the main 

interest of PEV users, but it has a very poor integration on LV distribution networks. Even 

at low PEV-PRs, cost optimization tends to concentrate in small period of time the charging 

of all PEVs. As a consequence, it produces sharp increase of PEVs power demand at off-

peak hours that can be worse than typical peak power demand of homes. Voltages are also 

widely affected and it is usual that 0.9 p.u. voltage limit is surpassed at furthest nodes. Use 

of V2G can reduce the charging cost but, conversely, it produces a sharp fall of power 

demand at hours with the highest electricity prices that normally coincides with peak hours. 

This problem is due to the optimal behavior of PEVs and the lack of coordination between 

them (avalanche effect). In order to reduce this problem, two new constraints have been 
added to limit the rate of change of PEVs power demand. 
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On the other hand, variance minimization algorithm tends to disperse as much as possible 

the charging of PEVs. This way, the impact on the LV distribution network is decreased 

allowing the integration of a higher amount of PEVs than the cost minimization algorithm. 

However, it has the following drawbacks: the charging of PEVs slightly increases the peak 

power of the distribution network, valley filling is not completely achieved and cost of 

electricity is not taken into account. The first two problems can be cleared up by using load 

forecasting. The use of V2G can bring further improvements in peak power saving and 

valley filling but it is only feasible when load forecasting is taken into account in the 

algorithm. 

As a conclusion, these two objective functions behave differently. One of them tends to 

concentrate the charging of PEVs and is focused in reducing charging cost for customers. 

The other one tends to disperse the charging of PEVs and is focused on reducing 

distribution network impacts. In addition, both approaches have voltage problems at high 

PEV-PRs. In this context, it is necessary to develop a new smart charging algorithm in order 

to address these problems as well as reducing as much as possible the complexity and 

requirements of the system and the charging costs and improve LV distribution network 

reliability. Following, a new decentralized multi-objective algorithm is presented. 

 Algorithm methodology 

Taking into account the aspects commented before, a MOO algorithm has been developed 

in this thesis to efficiently integrate PEVs in LV distribution networks, reducing as much 

as possible the system requirements as well as improving the network reliability. This 

algorithm is a combination of the previously presented cost and variance optimization, 

through the use of weighted sum of objective functions. 

As mentioned in section 4.2.2, an objective function based on weighted sum method must 

be normalized in order to make it dimensionless. In addition, a weight value must be added 

so as to give more relevance to one or another objective, i.e. to minimization of charging 

cost or to minimization of load variance. Variables 𝑤1 and 𝑤2 of equation (5-22) include 
not only the weights established by the DM (variable u) but also the normalization 

parameters (θ1 and θ2) of equation (4-14). The weight u can only take values from 0 to 1. 

Through varying weight variable u, DM can give more importance to cost minimization or 

to variance minimization objective. 

𝑤1 = θ1 · 𝑢 =
𝑢

𝑍1
𝑁 − 𝑍1

𝑈            𝑤2 = θ1 · (1 − 𝑢) =
1 − 𝑢

𝑍2
𝑁 − 𝑍2

𝑈 (5-22) 

Apart from normalizing, two new constraints are defined to limit the rate of change of PEVs 

power demand, based on the derivative of the ACP. One of the constraints is used for 

limiting upward gradient, and the other one the downward gradient. Upward/downward 

gradient limitation parameter (GL) is set to 20kW. This way, the number of PEVs that can 

start or stop their charging process in the same time slot is limited. The value of GL has 

been selected to be high enough to allow the starting or stopping the charging process of at 

least one PEV but low enough to avoid avalanche effects. It should be taken into account 

that the maximum charging power is 11kW for Tesla Model S. 

These new constrains may be in conflict with constraints shown in equations (5-10) and 

(5-11), which limit the SOC value during the charging process, in function of the initial 

SOC value. In this case, optimization problem will be unfeasible. In order to make it 



PROPOSED METHODOLOGY  129 

feasible, a relax factor (RF) is introduced in the constraints, shown in equations (5-23) and 

(5-24). This factor takes a value equal to 0 in the initial conditions but if the optimization 

is unfeasible, RF will be increased by 0.2, every time, until optimization problem became 

feasible. Thus, final rate of change will depend on several factors such as: GL parameter, 

charging power and relax factor value. 

𝑃𝑛 · (𝑥𝑛,𝑡
𝑐ℎ − 𝑥𝑛,𝑡

𝑑𝑐ℎ) ≤ 𝐺𝐿 − (𝐴𝐶𝑃𝑡 − 𝐴𝐶𝑃𝑡−1) + 𝑅𝐹 · 𝑃𝑛      ∀𝑡   (5-23) 

𝑃𝑛 · (𝑥𝑛,𝑡
𝑐ℎ − 𝑥𝑛,𝑡

𝑑𝑐ℎ) ≤ 𝐺𝐿 + (𝐴𝐶𝑃𝑡 − 𝐴𝐶𝑃𝑡−1) + 𝑅𝐹 · 𝑃𝑛     ∀𝑡   (5-24) 

Where: 

 t:   current time slot 

 GL:  gradient limitation parameter in kW 

 𝐴𝐶𝑃𝑡:  accumulated charging profile at time slot t 

 RF:  relax factor 

In general, constraints of equations (5-23) and (5-24) will only affect to algorithms heavily 

dependent on cost minimization, which has avalanche effect problems. The final objective 

function, including both load variance and cost minimization with normalization 

parameters, is presented in equation (5-25). 

𝐽 =𝑤1 · 𝐽𝑣𝑎𝑟 + 𝑤2 · 𝐽𝑐𝑜𝑠𝑡 (5-25) 

in which: 

𝐽𝑣𝑎𝑟 =
1

𝑐𝑇
∑ (𝑃𝑛(𝑥𝑛,𝑡

𝑐ℎ − 𝑥𝑛,𝑡
𝑑𝑐ℎ) + 𝐴𝐶𝑃𝑡 + 𝐿𝐹𝑡)

2
− [

1

𝑐𝑇
∑ (𝑃𝑛(𝑥𝑛,𝑡

𝑐ℎ − 𝑥𝑛,𝑡
𝑑𝑐ℎ) + 𝐴𝐶𝑃𝑡 + 𝐿𝐹𝑡)

𝑑𝑇

𝑡=𝑎𝑇

]

2𝑑𝑇

𝑡=𝑎𝑇

  (5-26) 

 

𝐽𝑐𝑜𝑠𝑡 = ∑ (𝐶𝑡
𝑐ℎ · 𝑥𝑛,𝑡

𝑐ℎ − 𝐶𝑡
𝑑𝑐ℎ · 𝑥𝑛,𝑡

𝑑𝑐ℎ)

𝑑𝑇

𝑡=𝑎𝑇

𝑃𝑛 

 

(5-27) 

The objective function of equation (5-25) is subject to the constraints of equations (5-10), 

(5-11), (5-12), (5-13), (5-14), (5-23) and (5-24). Before the optimization of equation (5-25) 

is carried out, utopia and nadir points must be calculated. So, the process has two sequential 

phases:  

 Firstly, u is set to 0 and minimization of (5-25) is carried out. Evaluating the vector of 
results obtained in equation (5-26), the utopia point of cost optimization is calculated. 

Also, evaluating the vector of results in equation (5-27), an approximation of nadir point 

of the variance is obtained.  

 

 Secondly, u is set to 1 and minimization of (5-25) is carried out. Evaluating the vector 

of results obtained in equation (5-26), the nadir point of cost optimization is calculated 

and evaluating the vector of results in equation (5-27), the utopia point of the variance 

is obtained. 

Once the objective function has been totally defined, a mathematical development is carried 

out in order to obtain the different vectors and matrixes that are necessary to apply the 

quadratic programming technique of equation (5-19). Following, the vectors and matrixes 

calculated not only for the objective function but also for the constraints are presented: 
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 Vector X: The design vector to be determined, that is, the set-point of PEVs. It contains 

pairs of 𝑥𝑐ℎ and 𝑥𝑑𝑐ℎ set-points for each time slot. As commented, 𝑥𝑐ℎ variable is the 

charging set-point while 𝑥𝑑𝑐ℎ is the discharging set-point for V2G implementation. 

𝑋′ = [𝑥𝑎𝑇
𝑐ℎ 𝑥𝑎𝑇

𝑑𝑐ℎ 𝑥𝑎𝑇+1
𝑐ℎ 𝑥𝑎𝑇+1

𝑑𝑐ℎ … … 𝑥𝑑𝑇
𝑐ℎ 𝑥𝑑𝑇

𝑑𝑐ℎ] (5-28) 

 Matrix H: Symmetric matrix with the quadratic coefficients of  𝑥𝑐ℎ and 𝑥𝑑𝑐ℎ. Indexes 
of the matrix are defined as i for rows and j for columns. Four different terms can be 

distinguished: 

 

o 𝑥𝑖
𝑐ℎ · 𝑥𝑗

𝑐ℎ or 𝑥𝑖
𝑑𝑐ℎ · 𝑥𝑗

𝑑𝑐ℎ, being i=j: 

𝐴 =
2 · 𝑤1 · (𝑐𝑇 − 1)

𝑐𝑇2
 (5-29) 

o 𝑥𝑖
𝑐ℎ · 𝑥𝑗

𝑑𝑐ℎ, being i=j: 

𝐵 =
2 · 𝑤1 · (1 − 𝑐𝑇)

𝑐𝑇2
 (5-30) 

o 𝑥𝑖
𝑐ℎ · 𝑥𝑗

𝑐ℎ or 𝑥𝑖
𝑑𝑐ℎ · 𝑥𝑗

𝑑𝑐ℎ, being i≠j: 

𝐶 =
−2 · 𝑤1

𝑐𝑇2
 (5-31) 

o 𝑥𝑖
𝑐ℎ · 𝑥𝑗

𝑑𝑐ℎ, being i≠j: 

𝐷 =
2 · 𝑤1

𝑐𝑇2
 (5-32) 

Equation (5-33) shows the symmetric matrix H, which size depends on the total number 

of variables. In this case, two variables (𝑥𝑐ℎ and 𝑥𝑑𝑐ℎ) are calculated per time slot. The 

total number of time slots depends on the connection time of the PEV (cT). Thus, it 

should be pointed out that dimension of all matrixes and vectors will change from PEV 

to PEV, depending on the connection time into the distribution network. For example, 

taking into account that, on average, PEVs will be connected for approximately 13 hours 

(as shown in subsection 5.4.2) and one hour has 12 periods of 5 minutes length 

(calculation period), cT will be 156 and the dimension of the H matrix will be 312x312.  

𝐻 =

[
 
 
 
 
 
 
𝐴 𝐵 𝐶 𝐷 … 𝐶 𝐷
𝐵 𝐴 𝐷 𝐶 … 𝐷 𝐶
𝐶 𝐷 𝐴 𝐵 … 𝐶 𝐷
𝐷 𝐶 𝐵 𝐴 … 𝐷 𝐶
… … … … … … …
𝐶 𝐷 𝐶 𝐷 … 𝐴 𝐵
𝐷 𝐶 𝐷 𝐶 … 𝐵 𝐴]

 
 
 
 
 
 

 (5-33) 

 Vector 𝑓: It contains the linear coefficients of 𝑥𝑐ℎ and 𝑥𝑑𝑐ℎ and its size must be in line 

with matrix H. In order to simplify the representation of this vector, parameter 𝑘𝑡 is 

defined as the sum of the accumulated charging profile (𝐴𝐶𝑃𝑡) and the load forecast 

(𝐿𝐹𝑡). 
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𝑓 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2𝑤1[𝑘𝑎𝑇(𝑐𝑇 − 1) − ∑ (𝑘𝑡)
𝑑𝑇
𝑡=𝑎𝑇 − 𝑘𝑎𝑇] + 𝑤2 · 𝑐𝑇2 · 𝐶𝑛,𝑎𝑇

𝑐ℎ

𝑐𝑇2

2𝑤1[𝑘𝑎𝑇(1 − 𝑐𝑇) + ∑ (𝑘𝑡)
𝑑𝑇
𝑡=𝑎𝑇 − 𝑘𝑎𝑇] − 𝑤2 · 𝑐𝑇2 · 𝐶𝑛,𝑎𝑇

𝑑𝑐ℎ

𝑐𝑇2

2𝑤1[𝑘𝑎𝑇+1(𝑐𝑇 − 1) − ∑ (𝑘𝑡)
𝑑𝑇
𝑡=𝑎𝑇 − 𝑘𝑎𝑇+1] + 𝑤2 · 𝑐𝑇2 · 𝐶𝑛,𝑎𝑇+1

𝑐ℎ

𝑐𝑇2

2𝑤1[𝑘𝑎𝑇+1(1 − 𝑐𝑇) + ∑ (𝑘𝑡)
𝑑𝑇
𝑡=𝑎𝑇 − 𝑘𝑎𝑇+1] − 𝑤2 · 𝑐𝑇2 · 𝐶𝑛,𝑎𝑇+1

𝑑𝑐ℎ

𝑐𝑇2
…
…
…

2𝑤1[𝑘𝑑𝑇(𝑐𝑇 − 1) − ∑ (𝑘𝑡)
𝑑𝑇
𝑡=𝑎𝑇 − 𝑘𝑑𝑇] + 𝑤2 · 𝑐𝑇2 · 𝐶𝑛,𝑑𝑇

𝑐ℎ

𝑐𝑇2

2𝑤1[𝑘𝑑𝑇(1 − 𝑐𝑇) + ∑ (𝑘𝑡)
𝑑𝑇
𝑡=𝑎𝑇 − 𝑘𝑑𝑇] − 𝑤2 · 𝑐𝑇2 · 𝐶𝑛,𝑑𝑇

𝑑𝑐ℎ

𝑐𝑇2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (5-34) 

 Matrix 𝐴𝑒𝑞 (5-35) and vector 𝑏𝑒𝑞 (5-36) represent the equality constraint of equation. 

Their sizes depend on the number of variables and equality constraints. In this case, only 

the equality constraint of equation (5-12) has been used. 

𝐴𝑒𝑞 = [𝑃𝑛𝐶𝑛,𝑎𝑇
𝑐ℎ 𝜂𝑛 −

𝑃𝑛𝐶𝑛,𝑎𝑇
𝑑𝑐ℎ

𝜂𝑛

… … 𝑃𝑛𝐶𝑛,𝑑𝑇
𝑐ℎ 𝜂𝑛 −

𝑃𝑛𝐶𝑛,𝑑𝑇
𝑑𝑐ℎ

𝜂𝑛

] (5-35) 

𝑏𝑒𝑞 = [(𝑄𝑛 − 𝑞𝑛) · 𝐵𝐶𝑛] (5-36) 

 Matrix 𝐴𝑖𝑛𝑒𝑞 (5-37) and vector 𝑏𝑖𝑛𝑒𝑞 (5-38) represent the inequality constraints of 

equations (5-10), (5-11), (5-14), (5-23) and (5-24). Except for constraint of equation 

(5-14), the other constraints are defined as a set of equations. This is due to these 

constraints must be accomplished at each time slot t. However, constraint of equation 

(5-14) only has to be met at departure time. 

𝐴𝑖𝑛𝑒𝑞 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛 0 0 … 0 0 0 0
𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛 𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛 … 0 0 0 0
… … … … … … … … …

𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛 𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛 … 𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛 0 0
𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛 𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛 … 𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛 𝑃𝑛𝜂𝑛 −𝑃𝑛/𝜂𝑛

−𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛 0 0 … 0 0 0 0
−𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛 −𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛 … 0 0 0 0

… … … … … … … … …
−𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛 −𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛 … −𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛 0 0
−𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛 −𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛 … −𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛 −𝑃𝑛𝜂𝑛 𝑃𝑛/𝜂𝑛

𝑃𝑛 −𝑃𝑛 0 0 … 0 0 0 0
0 0 𝑃𝑛 −𝑃𝑛 … 0 0 0 0
… … … … … … … … …
0 0 0 0 … 𝑃𝑛 −𝑃𝑛 0 0
0 0 0 0 … 0 0 𝑃𝑛 −𝑃𝑛

−𝑃𝑛 𝑃𝑛 0 0 … 0 0 0 0
0 0 −𝑃𝑛 𝑃𝑛 … 0 0 0 0
… … … … … … … … …
0 0 0 0 … −𝑃𝑛 𝑃𝑛 0 0
0 0 0 0 … 0 0 −𝑃𝑛 𝑃𝑛

0 𝑃𝑛/𝜂𝑛 0 𝑃𝑛/𝜂𝑛 … 0 𝑃𝑛/𝜂𝑛 0 𝑃𝑛/𝜂𝑛 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (5-37) 
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𝑏𝑖𝑛𝑒𝑞 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(𝑄𝑛 − 𝑞𝑛) · 𝐵𝐶𝑛

(𝑄𝑛 − 𝑞𝑛) · 𝐵𝐶𝑛

…
(𝑄𝑛 − 𝑞𝑛) · 𝐵𝐶𝑛

(𝑄𝑛 − 𝑞𝑛) · 𝐵𝐶𝑛

𝑞𝑛 · 𝐵𝐶𝑛

𝑞𝑛 · 𝐵𝐶𝑛

…
𝑞𝑛 · 𝐵𝐶𝑛

𝑞𝑛 · 𝐵𝐶𝑛

𝐺𝐿 − (𝐴𝐶𝑃𝑎𝑇+1 − 𝐴𝐶𝑃𝑎𝑇) + 𝑅𝐹 · 𝑃𝑛

𝐺𝐿 − (𝐴𝐶𝑃𝑎𝑇+2 − 𝐴𝐶𝑃𝑎𝑇+1) + 𝑅𝐹 · 𝑃𝑛

…
𝐺𝐿 − (𝐴𝐶𝑃𝑑𝑇−1 − 𝐴𝐶𝑃𝑑𝑇−2) + 𝑅𝐹 · 𝑃𝑛

𝐺𝐿 − (𝐴𝐶𝑃𝑑𝑇 − 𝐴𝐶𝑃𝑑𝑇−1) + 𝑅𝐹 · 𝑃𝑛

𝐺𝐿 + (𝐴𝐶𝑃𝑎𝑇+1 − 𝐴𝐶𝑃𝑎𝑇) + 𝑅𝐹 · 𝑃𝑛

𝐺𝐿 + (𝐴𝐶𝑃𝑎𝑇+2 − 𝐴𝐶𝑃𝑎𝑇+1) + 𝑅𝐹 · 𝑃𝑛

…
𝐺𝐿 + (𝐴𝐶𝑃𝑑𝑇−1 − 𝐴𝐶𝑃𝑑𝑇−2) + 𝑅𝐹 · 𝑃𝑛

𝐺𝐿 + (𝐴𝐶𝑃𝑑𝑇 − 𝐴𝐶𝑃𝑑𝑇−1) + 𝑅𝐹 · 𝑃𝑛

𝑍𝑛 · 𝐵𝐶𝑛 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    (5-38) 

 Vectors 𝑙𝑏 and 𝑢𝑏 (5-39) represent the bounds of result values (𝑥𝑐ℎ and 𝑥𝑑𝑐ℎ), from 0 

(no charging) to 1 (charging/discharging at nominal power). Dimension must be in line 

with the vector of variables to be determined. 

𝑙𝑏 = [

0
0
…
0

] ;   𝑢𝑏 = [

1
1
…
1

] (5-39) 

The variable u is the key factor to balance the response of this optimization algorithm. A 

low value of u implies a predominance of cost optimization part over variance optimization 

part. As value of weight u increases, the variance optimization part will have more influence 

in the control response. In fact, if u=0 the same results as cost optimization algorithm will 

be obtained. In contrast, if u=1 results of variance minimization algorithm will be obtained. 

In this new MOO algorithm two approaches have been analyzed. In the first one no load 

forecasting is considered (MOO-NF) while in the second one load forecasting is used 

(MOO-WF). 

 Static weight  

In this subsection, MOO algorithms have been tested in order to know how they behave at 

different PEV-PRs, using static values of weight u. That is, the weight u does not change 

during the charging process and is the same for all PEVs connected to the distribution 

network. Firstly, the MOO-NF algorithm which does not use load forecasting is analyzed. 

5.7.2.1 MOO-NF 

No load forecasting is used in this solution and, therefore, parameter LF of equation (5-25) 

is set to zero. A set of simulations has been carried out in order to determine the behavior 

of MOO-NF when the u value is modified, from 0 to 1 in steps of 0.1.  
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From Table 5.19 to Table 5.24 results obtained from the simulation of the MOO-NF smart 

charging algorithm, for 10, 30, 50, 70, 90 and 100% of PEV-PR, are presented. These tables 

show the values obtained for the different parameters of interest such as charging cost, 

overall load variance, peak power, etc. With regard to charging cost, it should be pointed 

out that only spot market prices are taken into account. If taxes are added, the charging cost 

will be significantly higher. In addition, the minimum line-neutral voltage achieved in any 

of the three phases of the node 613 is also presented. Finally, the time in minutes during 

which this voltage is below to 0.9 p.u. is also included in the last column of the tables. 

Table 5.19 shows the values obtained for 10% of PEV-PR (11 PEVs). As value of u 

increases, overall charging cost increases and PEVs power demand variance is reduced, as 

expected. All values of u outperforms the uncontrolled case. For example, charging cost is 

reduced at least 18% while overall load variance is reduced by 35%. In addition, peak power 

is also reduced from 227kW to at least 210kW. With regard to line-neutral voltages at the 

furthest node, they are increased to similar values than the case where no PEVs are charged 

in the distribution network. 

Table 5.19. MOO-NF: comparative analysis of results obtained with 10% of PEV-PR  

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 7.39 1599 81 227 40 0.92 0 

MOO-NF u=0 5.08 890 181 206 62 0.927 0 

MOO-NF u=0.1 5.08 882 167 206 50 0.9309 0 

MOO-NF u=0.2 5.11 832 101 206 37 0.9409 0 

MOO-NF u=0.3 5.17 848 68 206 27 0.9468 0 

MOO-NF u=0.4 5.21 871 55 206 23 0.9447 0 

MOO-NF u=0.5 5.24 888 47 206 21 0.9416 0 

MOO-NF u=0.6 5.3 911 42 206 19 0.9409 0 

MOO-NF u=0.7 5.38 935 37 206 16 0.9398 0 

MOO-NF u=0.8 5.55 970 30 208 13 0.941 0 

MOO-NF u=0.9 5.76 1001 24 209 12 0.9379 0 

MOO-NF u=1 6.04 1045 17 210 10 0.9426 0 

Table 5.20 presents the results of 30% of PEV-PR (29 PEVs). All solutions are feasible 

because they do not exceed maximum power supply of the distribution transformer neither 

the minimum voltage at furthest node. Best solution is achieved when u takes a value of 

0.2, being peak power equal than no PEV case (206kW), while minimum voltage at node 

613 is approximately 0.93 p.u. Charging cost is also reduced around 22% and overall load 

variance in approximately 75%, respect to the uncontrolled case. It can be pointed out the 

increase of peak power in the case of u equal to zero, due to the influence of charging cost 

optimization part of the objective function. 
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Table 5.20. MOO-NF: comparative analysis of results obtained with 30% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 16.53 2266 327 253 66 0.9016 0 

MOO-NF u=0 12.53 1193 921 220 122 0.9105 0 

MOO-NF u=0.1 12.59 972 644 206 101 0.9181 0 

MOO-NF u=0.2 12.92 807 295 206 52 0.931 0 

MOO-NF u=0.3 13.43 871 217 206 40 0.9318 0 

MOO-NF u=0.4 13.79 915 179 206 34 0.9308 0 

MOO-NF u=0.5 14.15 919 148 207 32 0.9276 0 

MOO-NF u=0.6 14.34 952 134 209 30 0.9268 0 

MOO-NF u=0.7 14.68 986 115 211 28 0.9257 0 

MOO-NF u=0.8 14.85 1008 107 211 27 0.9278 0 

MOO-NF u=0.9 14.99 1036 100 212 25 0.9237 0 

MOO-NF u=1 15.17 1056 89 212 24 0.9204 0 

At 50% of PEV penetration (Table 5.21), 23 PEVs more have been added from previous 

case, making a total of 52 PEVs. The value of weight u of 0.2 is also the better solution in 

terms of overall load variance (978kW2). Using this value, charging cost is reduced nearly 

19% and overall load variance more than 70%, respect to uncontrolled case. Weight values 

below 0.2 do not provide valid solutions due to low voltages achieved at node 613. 

Table 5.21. MOO-NF: comparative analysis of results obtained with 50% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 28.75 3340 839 290 111 0.8816 102 

MOO-NF u=0 21.88 2439 2579 315 209 0.8006 160 

MOO-NF u=0.1 21.97 1724 1898 278 176 0.8385 90 

MOO-NF u=0.2 23.36 978 721 206 91 0.8786 10 

MOO-NF u=0.3 24.1 1016 516 207 65 0.9103 0 

MOO-NF u=0.4 24.79 1056 416 210 55 0.9176 0 

MOO-NF u=0.5 25.48 1078 351 212 51 0.9174 0 

MOO-NF u=0.6 25.86 1105 322 214 47 0.9229 0 

MOO-NF u=0.7 26.2 1128 295 215 43 0.9253 0 

MOO-NF u=0.8 26.42 1141 280 216 42 0.9285 0 

MOO-NF u=0.9 26.59 1147 268 217 41 0.9266 0 

MOO-NF u=1 26.74 1158 254 218 40 0.9299 0 

At 70% of PEV-PR (72 PEVs), valid solutions have been achieved for values of weight u 

between 0.2 and 1, as can be seen in Table 5.22. In this case, best result in terms of overall 

load variance is obtained when u is 0.3 (1259kW2). A saving of almost 16% (from 38.97 to 

32.89€) of charging cost can be achieved while a reduction of approximately 76% of load 

variance is obtained. Only u values from 0.3 to 0.7 maintain the minimum line-neutral 

voltages, at node 613, above 0.9 p.u. 
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Table 5.22. MOO-NF: comparative analysis of results obtained with 70% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 38.97 5244 1870 320 126 0.8537 132 

MOO-NF u=0 29.32 4542 4828 412 292 0.8045 140 

MOO-NF u=0.1 29.73 2589 3013 334 226 0.8478 150 

MOO-NF u=0.2 30.86 1422 1409 230 132 0.8712 30 

MOO-NF u=0.3 32.89 1259 869 216 97 0.9037 0 

MOO-NF u=0.4 33.46 1261 756 216 90 0.9084 0 

MOO-NF u=0.5 34.47 1265 630 216 81 0.9163 0 

MOO-NF u=0.6 35 1282 578 216 75 0.907 0 

MOO-NF u=0.7 35.49 1314 537 217 70 0.9038 0 

MOO-NF u=0.8 35.90 1319 494 219 63 0.896 20 

MOO-NF u=0.9 36.34 1319 448 222 54 0.8915 50 

MOO-NF u=1 36.48 1335 433 225 51 0.8942 20 

When PEV-PR is increased to 90% (93 PEVs), valid solutions are reduced to 0.4, 0.5, 0.6 

and 0.7 values of weight u. Best value in this case is achieved when u is 0.5, in terms of 

overall load variance, providing an improvement in overall load variance of 77% and a 

reduction of 7% in charging cost. Peak power value achieves 224kW which is totally 

manageable for the distribution transformer, currently installed in the network. It should be 

pointed out that high values of u start to give not valid results due to low voltages achieved 

at 613 node, as shown in Table 5.23. 

Table 5.23. MOO-NF: comparative analysis of results obtained with 90% of PEV-PR  

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 47.46 6408 2770 366 182 0.8106 247 

MOO-NF u=0 37.69 7382 7393 499 357 0.6982 350 

MOO-NF u=0.1 38.09 4426 5048 398 277 0.7663 460 

MOO-NF u=0.2 41.21 1742 1803 247 146 0.8513 280 

MOO-NF u=0.3 41.20 1713 1610 223 114 0.8951 100 

MOO-NF u=0.4 42.96 1527 1205 224 100 0.9006 0 

MOO-NF u=0.5 44.15 1484 1021 224 86 0.8771 40 

MOO-NF u=0.6 44.55 1495 966 223 80 0.8741 20 

MOO-NF u=0.7 45.04 1489 905 222 76 0.878 65 

MOO-NF u=0.8 45.36 1500 872 221 74 0.8786 100 

MOO-NF u=0.9 45.55 1506 847 221 72 0.8859 87 

MOO-NF u=1 45.86 1528 817 222 70 0.8724 85 

Finally, for 100% of PEV-PR, which implies the charging of 97 PEVs, values for weight u 

of 0.3 to 0.6 and 0.9 provide valid solutions of voltages at node 613 (Table 5.24). Among 

them, weight value of 0.5 is the best in terms of overall load variance. In this case, load 
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variance is reduced from 6842kW2 of uncontrolled case to 1579kW2, achieving a reduction 

of 77% while charging cost is reduced around 7%. 

Table 5.24. MOO-NF: comparative analysis of results obtained with 100% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 49.85 6842 3063 374 189 0.8125 262 

MOO-NF u=0 39.67 7987 7980 501 362 0.6881 380 

MOO-NF u=0.1 39.95 4840 5522 402 282 0.7701 480 

MOO-NF u=0.2 42.63 1961 2114 250 149 0.8535 360 

MOO-NF u=0.3 43.66 1809 1695 228 122 0.8954 5 

MOO-NF u=0.4 45.71 1596 1250 228 101 0.8989 5 

MOO-NF u=0.5 46.28 1579 1148 228 91 0.884 5 

MOO-NF u=0.6 46.81 1581 1070 227 84 0.8949 5 

MOO-NF u=0.7 47.32 1577 1005 226 80 0.8702 85 

MOO-NF u=0.8 47.67 1587 969 225 77 0.7829 185 

MOO-NF u=0.9 47.85 1591 943 225 76 0.8789 70 

MOO-NF u=1 48.17 1612 909 225 74 0.8701 85 

From the results presented in Table 5.20 and Table 5.24, the relationship between charging 

cost and PEVs power variance can be determined (Figure 5.40) for 30 and 100% of PEV-

PR respectively. As can be observed, this curve is not constant and will vary from case to 

case, because it depends on parameters such as: number of PEVs connected to the network, 

charging and driving behavior, electricity prices, etc.  

 

(a) (b) 

Figure 5.40. Evolution of charging cost and PEVs power demand variance in function of 

weight u for the MOO-NF algorithm: (a) 30% of PEV-PR and (b) 100% of PEV-PR 

Additionally, apart from charging cost and PEVs power demand variance, it is important 

to know the behavior of overall load variance, because it is an indicator of how good the 

solution is for distribution system operation. Figure 5.41 shows the overall load variance 

for 30 and 100% of PEV-PR, using different values of weight u. For the 30% PEV-PR case, 

overall load variance decreases with high values of u until approximately 0.2, where a 

minimum is achieved. After this point, overall load variance increases again, as can be seen 

in Figure 5.41-a. In contrast, for 100% of PEV-PR (Figure 5.41-b), u values from 0.4 to 1 

provide similar results in terms of overall load variance. 
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(a) (b) 

Figure 5.41. Evolution of overall load variance for the MOO-NF algorithm: (a) 30% of 

PEV-PR and (b) 100% of PEV-PR 

Figure 5.42 and Figure 5.43 show the results obtained when applying a value of u equal to 

0.2, while in Figure 5.44 and Figure 5.45 results are presented for u equal to 0.8. In these 

figures, the PEV-PR case of 30% has been used. When u is equal to 0.2, no increase of peak 

power is produced while valley filling is achieved, as can be seen in Figure 5.42-a. Also, 

an increase of PEVs power demand is noticeable when electricity prices are low. With 

regard to voltages at node 613 (Figure 5.42-b), the charge of the PEVs does not get worse 

the voltage profile at night time compared to cost optimization algorithm, where voltages 

reaches values below 0.92 p.u. (see Figure 5.24-b). However, there is an important voltage 

unbalance because of the charging process of PEVs. 

 

(a) (b) 

Figure 5.42. MOO-NF case with u=0.2: (a) Load in the distribution transformer and (b) 

line-neutral voltages at node 613 

PEVs peak power reaches about 52kW when electricity prices are the lowest of the day. 

Then, sharps reductions of PEVs power demand appear at 06:00 and 07:00h, as can be seen 

in Figure 5.43-a. In addition, it is noticeable that PEVs are charged during hours of lower 

electricity prices. Evolution of the SOC of each PEV shows that every PEV is charged as 

expected and, unlike in cost optimization algorithm (Figure 5.25-b), the charge of PEVs is 

more distributed along the time, as can be seen in Figure 5.43-b. 
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(a) (b) 

Figure 5.43. MOO-NF case with u=0.2: (a) PEVs power demand and electricity cost and 

(b) evolution of SOC of each PEV 

Increasing the value of u to 0.8 provides a wider distribution of the charge of PEVs, at the 

expense of slightly increasing overall peak power (Figure 5.44-a). As a consequence, a 

worsening of voltage profile at node 613 happens at peak hours (Figure 5.44-b). 

 

(a) (b) 

Figure 5.44. MOO-NF case with u=0.8: (a) Load in the distribution transformer and (b) 

line-neutral voltages at node 613 

The maximum PEVs power demand is reduced from 52kW to 30kW (Figure 5.45-a). With 

regard to the SOC evolution of PEVs (Figure 5.45-b), it is more distributed than in the 

previous case (Figure 5.43-b), showing that a higher value of u reduces the load variance. 

 

(a) (b) 

Figure 5.45. MOO-NF case with u=0.8: (a) PEVs power demand and electricity cost and 

(b) evolution of SOC of each PEV 
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Figure 5.46 shows the PEVs power demand for values of u of 0, 0.2, 0.6 and 1. As expected, 

PEV peak power demand is reduced when u tends to 1. However, increasing the value of 

weight u can overlap PEVs power demand with households load demand, increasing this 

way the peak power. In contrast, when using low values of weight u, the peak power is 

produced by cost optimization part of MOO-NF algorithm at off-peak hours and it can be 

greater than household load demand peak power, depending on the PEV-PR. Thus, a trade-

off between charging too many PEVs at off-peak hours or partly increase the peak power 

must be considered.  

 
Figure 5.46. MOO-NF case. PEVs power demand for different values of u, with 30% of 

PEVs penetration rate 

The main limiting factors for the safe integration of PEVs in LV distribution networks are 

the voltage drops and the unbalances that they produce. With regard to the last one, Figure 

5.47 shows the different power demand of PEVs per phase, for two different cases. It can 

be seen that PEV charging process will produce voltage unbalances. 

 

(a) (b) 

Figure 5.47. PEV power demand per phase using the MOO-NF algorithm with a PEV-PR 

of 30%: (a) Weight u equal to 0.2 and (b) weight u equal to 0.8 

As a conclusion, the proposed MOO-NF algorithm has proven its ability to manage the 

multiple charging of PEVs. Additionally, no load forecast is used while charging cost and 
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overall load variance is improved respect to uncontrolled case. However, when PEV-PR 

increases, it is necessary to select adequately the numerical value of variable u. With regard 

to this aspect, u values from the range between 0.2 and 0.5 provide feasible solutions in 

terms of overall load variance, peak power and voltage at furthest node. Additionally, this 

short range of only 0.3 indicates that normalization of the objective function has been 

carried out correctly. 

5.7.2.2 MOO-WF 

In contrast to the MOO-NF algorithm, the MOO-WF algorithm uses load forecasting. Thus 

LF vector of the objective function shown in equation (5-25) is not zero. Including load 

forecasting may improve significantly load variance and reduce power losses. From Table 

5.25 to Table 5.30 results from the simulation of the MOO-WF smart charging algorithm, 

for 10, 30. 50, 70, 90 and 100% of PEV-PR, are presented. 

Table 5.25 shows the results obtained from a PEV-PR of 10%. Due to the low penetration 

rate, all values of the weight u provide valid solutions. As expected, best value in terms of 

overall load variance is achieved when u is one. This fact is kept throughout all PEV-PRs 

due to the usage of load forecasting. However, charging cost is the highest between all 

possible u values (5.17€). Anyway, a charging cost reduction of 30% and an overall load 

variance reduction around 52% is achieved, when value of weight u takes one, respect to 

the uncontrolled case. In all u values, overall peak power demand remains the same that the 

case where no PEVs are charged. With regard to line-neutral voltages at node 613, best 

values are achieved when u is 0.8 or more. 

Table 5.25. MOO-WF: comparative analysis of results obtained with 10% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 7.39 1599 81 227 40 0.92 0 

MOO-WF u=0 5.08 891 181 206 62 0.927 0 

MOO-WF u=0.1 5.08 887 179 206 50 0.9296 0 

MOO-WF u=0.2 5.08 882 175 206 50 0.9309 0 

MOO-WF u=0.3 5.08 878 172 206 50 0.9309 0 

MOO-WF u=0.4 5.08 871 167 206 50 0.9309 0 

MOO-WF u=0.5 5.08 858 159 206 50 0.9309 0 

MOO-WF u=0.6 5.09 841 145 206 47 0.9309 0 

MOO-WF u=0.7 5.11 814 119 206 39 0.9272 0 

MOO-WF u=0.8 5.12 791 106 206 35 0.9399 0 

MOO-WF u=0.9 5.15 780 93 206 27 0.9415 0 

MOO-WF u=1 5.17 774 97 206 27 0.9434 0 

Also, all weight values give valid solutions when PEV-PR is 30%, as can be seen in Table 

5.26. However, low u values increase overall peak power (220kW for u=0). It can be seen 

that reducing value of weight u leads to an increase of PEVs peak power demand. For 

example, for u equal to zero, the PEVs peak power demand reaches 122kW, 72kW more 

than the other extreme case, that is, when u value takes one. In this last case, a decrease of 

71% of overall load variance and 20% of charging cost is achieved when is compared with 

the uncontrolled case. 
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Table 5.26. MOO-WF: comparative analysis of results obtained with 30% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 16.53 2266 327 253 66 0.9016 0 

MOO-WF u=0 12.53 1193 921 220 122 0.9105 0 

MOO-WF u=0.1 12.56 1088 812 208 111 0.9022 0 

MOO-WF u=0.2 12.6 1000 739 206 107 0.9012 0 

MOO-WF u=0.3 12.6 894 650 206 100 0.9172 0 

MOO-WF u=0.4 12.63 820 576 206 87 0.9125 0 

MOO-WF u=0.5 12.7 732 493 206 70 0.9121 0 

MOO-WF u=0.6 12.74 706 471 206 65 0.9132 0 

MOO-WF u=0.7 12.88 679 428 206 55 0.9143 0 

MOO-WF u=0.8 13.01 666 406 206 52 0.9222 0 

MOO-WF u=0.9 13.14 660 386 206 51 0.9241 0 

MOO-WF u=1 13.31 652 366 206 50 0.9386 0 

In the case of 50% of PEV-PR (Table 5.27), values of u from 0.4 to 1 provide feasible 

solutions in terms of maximum peak power and minimum voltages at node 613. First valid 

solution (u=0.4) provides a cost reduction of 22% and an overall load variance reduction 

of 68% respect to uncontrolled case. In contrast, when value of weight u takes one, it 

provides a charging cost reduction of 16% and an overall load variance reduction of 77%. 

Table 5.27. MOO-WF: comparative analysis of results obtained with 50% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 28.75 3340 839 290 111 0.8816 102 

MOO-WF u=0 21.88 2439 2578 315 209 0.8006 160 

MOO-WF u=0.1 21.96 1755 1964 275 172 0.8312 145 

MOO-WF u=0.2 22.13 1447 1699 261 159 0.8453 150 

MOO-WF u=0.3 22.23 1265 1521 247 147 0.8615 130 

MOO-WF u=0.4 22.37 1048 220 220 122 0.8792 50 

MOO-WF u=0.5 22.94 891 1056 206 101 0.8691 10 

MOO-WF u=0.6 23.37 813 929 206 83 0.8956 5 

MOO-WF u=0.7 23.82 776 832 206 74 0.9078 0 

MOO-WF u=0.8 23.87 774 822 206 74 0.9061 0 

MOO-WF u=0.9 23.92 772 812 206 73 0.9086 0 

MOO-WF u=1 24.07 759 787 206 73 0.9161 0 

With regard to 70% of PEV-PR (Table 5.28), valid solutions are 0.2, 0.4 and 0.6 to 1 of 

weight u values. On the one hand, when weight u is equal to 0.2, a reduction of charging 

cost about 24% and a reduction of 61% in terms of overall load variance is achieved. On 

the other hand, when u takes a value of 1, the solution provides a reduction around 14% of 

charging cost and 82% of overall load variance. Voltages at node 613 are improved as u 
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value get close to one. Regarding to peak power, solutions with 0.6 to 1 do not add extra 

power demand. 

Table 5.28. MOO-WF: comparative analysis of results obtained with 70% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 38.97 5244 1870 320 126 0.8537 132 

MOO-WF u=0 29.32 4541 4827 412 292 0.7928 160 

MOO-WF u=0.1 29.42 3207 3726 358 246 0.8324 80 

MOO-WF u=0.2 29.71 2022 2626 299 195 0.8567 40 

MOO-WF u=0.3 30.48 1538 2048 262 161 0.8833 80 

MOO-WF u=0.4 31.72 1163 1545 224 126 0.8922 70 

MOO-WF u=0.5 31.71 1147 1498 216 118 0.8862 80 

MOO-WF u=0.6 32.19 1070 1378 210 113 0.8762 65 

MOO-WF u=0.7 32.77 998 1258 206 103 0.8891 20 

MOO-WF u=0.8 33.18 956 1179 206 93 0.9055 0 

MOO-WF u=0.9 33.30 926 1137 206 87 0.9025 0 

MOO-WF u=1 33.56 905 1093 206 85 0.9088 0 

Finally, Table 5.29 and Table 5.30 show the results for 90 and 100% of PEV-PR, 

respectively. In both cases, no feasible solution can be achieved because of the low voltages 

reached at node 613. Taking into account this situation, for high values of weight u (from 

0.7 to 1), the overall load variance is relatively low and the peak power is the same than in 

the no PEVs case. Therefore, it is necessary to introduce a mechanism to improve the 

voltage profile of the distribution network. 

Table 5.29. MOO-WF: comparative analysis of results obtained with 90% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 47.46 6408 2770 366 182 0.8106 247 

MOO-WF u=0 37.69 7382 7393 499 357 0.6982 180 

MOO-WF u=0.1 37.97 4740 5357 408 285 0.6956 190 

MOO-WF u=0.2 38.55 3169 3964 344 230 0.7204 185 

MOO-WF u=0.3 39.43 2211 2970 284 180 0.8364 185 

MOO-WF u=0.4 40.71 1726 2380 239 139 0.8262 147 

MOO-WF u=0.5 41.27 1558 2137 223 123 0.8306 180 

MOO-WF u=0.6 41.68 1473 2008 213 115 0.8634 180 

MOO-WF u=0.7 42.23 1399 1873 206 109 0.8702 105 

MOO-WF u=0.8 42.47 1379 1824 206 108 0.8753 180 

MOO-WF u=0.9 42.66 1355 1784 206 107 0.8814 125 

MOO-WF u=1 42.99 1329 1730 206 105 0.8888 230 
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Table 5.30. MOO-WF: comparative analysis of results obtained with 100% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 - 0.9468 0 

Uncontrolled 49.85 6842 3063 374 189 0.8125 262 

MOO-WF u=0 39.67 7988 7980 501 361 0.6881 205 

MOO-WF u=0.1 39.9 5397 5991 428 302 0.6756 215 

MOO-WF u=0.2 40.6 3217 4093 338 227 0.7485 180 

MOO-WF u=0.3 41.8 2271 3056 285 180 0.8184 185 

MOO-WF u=0.4 42.92 1829 2512 241 141 0.8381 140 

MOO-WF u=0.5 43.64 1658 2264 224 124 0.8266 175 

MOO-WF u=0.6 43.89 1599 2172 218 119 0.8627 180 

MOO-WF u=0.7 44.39 1523 2044 211 113 0.8751 180 

MOO-WF u=0.8 44.73 1497 1978 207 112 0.8665 212 

MOO-WF u=0.9 44.92 1467 1932 206 111 0.8769 190 

MOO-WF u=1 45.24 1437 1870 206 109 0.8824 250 

Figure 5.48 presents the charging cost and the overall load variance for 30 and 100% of 

PEV-PR, using different values of u. Both figures present similar shapes. However, for 

30% of PEV-PR (Figure 5.48-a) has a better distribution of solution points than for 100% 

of PEV-PR. In the last case, solution points are concentrated near to the left side of the 

Figure 5.48-b (high cost and low variance). The reason is that as PEV-PR grows, low values 

of u increase exponentially the value of overall load variance. Thus, u values below 0.5 

should not be considered for a real implementation, especially at high PEV-PRs. 

 

(a) (b) 

Figure 5.48. Evolution of charging cost and overall load variance in function of weight u 

for the MOO-WF algorithm (a) 30% of PEV-PR and (b) 100% of PEV-PR 

Following, two specific cases of 30% PEV-PR are presented, specifically for weight u equal 

to 0.2 and 0.8. For the 0.2 case a noticeable increase of PEVs power demand happens 

because of the influence of cost optimization algorithm (Figure 5.49-a). This peak power is 

almost as high as household peak and reaches a value of 204kW. As a consequence, line-

neutral voltage of phase A at node 613 are also reduced to 0.9 p.u. approximately, as can 

be seen in Figure 5.49-b. In addition, the effect of slope limit constraints is also noticed as 

PEVs power increase and decrease are not done instantaneously. 
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(a) (b) 

Figure 5.49. MOO-WF case with u=0.2. (a) Load in the distribution transformer and (b) 

line-neutral voltages at node 613 

Similar conclusions can be obtained from Figure 5.50-a and Figure 5.50-b. Most of the 

PEVs are charged between 01:00 and 05:00h when the hourly electricity prices are the 

lowest ones. PEVs peak power reaches a value of 107kW between 02:00 and 03:00h. Two 

hours later, at 05:00h, almost all PEVs are totally charged, as shown in Figure 5.50-b, 

resulting in an important fall of PEVs power demand. The minimum power demand of 

PEVs is around 100kW during the nighttime. Almost all PEVs are charged at maximum 

charging power to take advantage of low electricity prices. As results have shown, a u value 

of 0.2 has harmful effects on the distribution network due to the concentration of PEVs 

power demand.  

 

(a) (b) 

Figure 5.50. MOO-WF case with u=0.2. (a) PEVs power demand and electricity cost and 

(b) evolution of the SOC of each PEV 

Increasing the weight u to 0.8 gives more relevance to overall load variance minimization 

part of the algorithm. Thus, night peak is reduced from previous 207kW to 144kW as well 

as minimum load demand is established at about 130kW during nighttime (Figure 5.51-a), 

allowing a better integration of renewable energies. Line-neutral voltages at node 613 

remain above 0.92 p.u. during all simulation time (Figure 5.51-b). As in the previous cases, 

voltage unbalances appear during PEVs charging time. 
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(a) (b) 

Figure 5.51. MOO-WF case with u=0.8. (a) Load of distribution transformer and (b) line-

neutral voltages at node 613 

Additionally, in contrast to the previous case, a significant number of PEVs start their 

charging process between 23:00 and 01:00h, as shown in Figure 5.52-a. Also, PEVs peak 

power is reduced from previous 107kW to 51kW. The evolution of the SOC of each PEV 

during the simulation verifies that all PEVs are charged in a more distributed way, as can 

be seen in Figure 5.52-b. 

 

(a) (b) 

Figure 5.52. MOO-WF case with u=0.8. (a) PEVs power demand and electricity cost and 

(b) evolution of the SOC of each PEV 

Figure 5.53 shows the PEVs power demand for u values of 0, 0.2, 0.6 and 1. As expected, 

PEVs peak power is reduced when u tends to 1. Because of load forecasting is used, 

increasing u to 1 does not increase the power demand at peak hours as it happens in the 

MOO-NF algorithm.  

Thus, the best solution in terms of network reliability is achieved when u is 1. Note that in 

all cases, the PEVs charging process start almost at the same time (23:00h), while in the 

MOO-NF solution, it depends largely on the weight u value and ranges between 16:00 to 

23:00h, as shown in Figure 5.46. 
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Figure 5.53. MOO-WF case. PEVs power demand for different u values, with 30% of 

PEV-PR 

Therefore, including load forecasting to load variance minimization algorithm avoid adding 

more power demand at typical peak hours and achieves better results to carry out a valley 

filling effect. However, load forecasting is needed and the lack of accuracy on this forecast 

may affect to final results. Additionally, although the charging of PEVs are optimally 

dispatched, there are problems due to voltage unbalances generated by the charging of 

PEVs. Finally, a mechanism to select the value of weight u must be designed. In this 

context, fuzzy control technique can be used. 

 Dynamic weight selection 

A set of different optimized results can be obtained when variable u is modified. So, it is 

necessary to design an automated weight control which can modify that weight u in function 

of several parameters. In this thesis, two different control strategies based on fuzzy control 

are presented, one for the MOO-NF algorithm and the other one for the MOO-WF 

algorithm. 

5.7.3.1 MOO-NF 

A control strategy for the MOO-NF algorithm, in function on voltage level at PEV 

connection point and electricity prices, has been developed. Electricity prices can be used 

as an indicator of how much loaded is the network, i.e. the highest hourly prices usually 

correspond with peak hours. Moreover, voltage level can be measured easily at the 

connection point of the PEV. Depending of electricity price and voltage level values, four 

cases can be distinguished: 

1. Low voltage at high price hours: It is the most common case. This situation indicates 

that distribution network is high loaded at peak hours. So, in order to delay the charging 

of the PEVs, weight u must be low. This way, price optimization cost is more relevant 

in the MOO, which has the effect of delaying the charging of the PEVs to off-peak hours. 

 

2. Low voltage at low price hours: It is the contrary case of the previous one. This situation 

indicates that there is too much connected load at low prices because of excessive 
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charging of PEVs at off-peak hours. The variable u should be increased in order to 

smooth the charging profile of the PEVs 

 

3. High voltage at high price hours: This situation indicates excessive generation at peak 

hours. It can be caused by the use of distributed generation or the use of V2G for trading 

energy. This is the less common case. The variable u should be increased in order to add 

charging power demand of PEVs at peak hours. 

 

4. High voltage at low price hours: As previous case, an excessive generation of distributed 

generators, such as wind generators, can produce an increase of voltage at off-peak 

hours. In this case, the variable u should be decreased in order to give more importance 

to minimization of charging cost. This way, voltage will be reduced due to the increase 

of PEVs charging demand at off-peak hours. 

So, taken into account these four cases, a DM has been developed based on the fuzzy 

control method. This control is performed continuously, that is, every change in electricity 

prices or in the node voltage may lead the execution of the MOO-NF algorithm. This way, 

each PEV will execute the optimization algorithm more than once. However, the execution 

of this method must be limited in order to reduce the fluctuations. Hence, in the following 

cases, the MOO-NF algorithm will not be executed: 

 If departure time happens in less than an hour. 

 If the difference between the new calculated values of weight u is less than 0.05, 

compared to the last value of u used.  

 If an execution of the MOO-NF algorithm has been already done in that time slot. 

As commented before, the fuzzy control output depends on the node voltage in which each 

PEV is connected to and the electricity cost. Voltage limits have been selected in line with 

EN50160 European Standard. Moreover, limits values of weight u (0.1 to 0.6) have been 

set taking into account the results obtained in section 5.7.2.1. Best results for fixed weight 

values were achieved when the weight u was between 0.2 and 0.5. An additional margin of 

0.1 has been added to those limits. Figure 5.54 shows the fuzzy control surface which 

defines the value of the weight u. Electricity cost is limited between minimum value of the 

day (0.03692€/kWh) and maximum value of the day (0.0721€/kWh). 

Table 5.31 shows the results achieved from simulating the dynamic value selection of 

weight u for the four PEV-PR cases, compared to best achieved results using static values 

of weight u. With some exceptions, charging cost is higher using the automatic weight 

selection. With regard to overall load variance, automatic weight selection does not 

improve it in all cases. Furthermore, voltages at node 613 are worse than in the fixed cases, 

especially at high PEV-PRs. The reason is that voltage unbalances are bigger when several 

algorithm executions are made per PEV, as shown in Table 5.31.  

It is noticeably that in the only case where voltage of dynamic weight selection is better 

than with static weight selection (PEV-PR of 50%), the voltage unbalance factor (VUF) is 

also better. For PEV-PR of 70, 90 and 100%, VUF is relatively higher and voltages at node 

613 are lower than the limit established by EN50160, taking into account only a period of 

24h instead of the whole week. Later, an improvement in this aspect will be presented. 
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Figure 5.54. Fuzzy control surface for the MOO-NF algorithm 

Table 5.31. Results obtained from automatic weight control for MOO-NF algorithm 

Case of study            

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

PEVs 

power 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF 

(%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 - 206 56 0.011 0.9468 0 

MOO-NF u=0.2 (10%) 5.11 832 37 206 62 0.348 0.9409 0 

MOO-NF auto (10%) 5.16 844 70 206 62 0.366 0.9398 0 

MOO-NF u=0.2 (30%) 12.92 807 295 206 71 0.596 0.931 0 

MOO-NF auto (30%) 13.66 900 206 192 71 0.665 0.9269 0 

MOO-NF. u=0.2 (50%) 23.36 978 721 206 80 1.182 0.8786 10 

MOO-NF auto (50%) 25.13 1031 417 209 79 0.839 0.9098 0 

MOO-NF u=0.4 (70%) 32.89 1259 869 216 97 0.873 0.9037 0 

MOO-NF auto (70%) 34.31 1159 659 214 93 1.387 0.8699 75 

MOO-NF u=0.5 (90%) 44.15 1484 1021 224 112 1.165 0.8771 40 

MOO-NF auto (90%) 43.82 1557 1119 230 113 1.483 0.8636 105 

MOO-NF u=0.5 (100%) 46.28 1579 1148 228 115 1.021 0.884 5 

MOO-NF auto (100%) 46.49 1705 1220 238 116 2.372 0.8306 72 

Figure 5.55 shows the load of the distribution transformer for 10, 30, 50, 70, 90 and 100% 

of PEV-PR cases, respectively. For PEV-PRs lower than 70%, there is not an increase of 

peak power. However, at higher PEV-PRs, peak power is increased to almost 230kW. 

Nonetheless, the MOO-NF algorithm provides feasible solutions except for 90 and 100% 

of PEV-PR cases. As an example, at 70% of PEV-PR, the MOO-NF reduces charging cost 

by approximately 14%, overall load variance by 76% and overall peak power by 32%, 

respect to the uncontrolled case. 
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(a) (b) 

   
(c) (d) 

   
(e) (f) 

Figure 5.55. Distribution transformer load for different PEV-PR using MOO-NF 

algorithm: (a) 10%, (b) 30%, (c) 50%, (d) 70%, (e) 90% and (f) 100% 

Thus, the MOO-NF algorithm has proven to be an effective one for reducing impacts at 

low penetration rates, without using load forecasting. However, at high penetration rates it 

tends to increase voltage unbalances and overall peak power. Thus, it is necessary to reduce 

the voltage unbalances. Furthermore, it is not easy to predict what the charging profile of 

all PEVs connected to the distribution network will be. Thus, it is necessary to introduce 

load forecasting in order to improve these aspects. In the following subsection the analysis 

of the MOO with load forecasting is presented. 

5.7.3.2 MOO-WF 

In this case, load forecasting has been included. Additionally, fuzzy control system has 

been modified to improve the algorithm results. Fuzzy control has been defined based on 

the local calculation of average power and load variance from the ACP and LF data, which 

is sent to each PEV. This way, the PEV controller can obtain an overall status of the 

distribution network and schedule its charging profile, in order to improve load variance 
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and charging cost. In contrast to the MOO-NF solution, this optimization algorithm is only 

executed once per PEV, when it is connected to the distribution network. This way, it is 

easier to an external entity, such as a DSO, to know beforehand the power demand of PEVs. 

In addition, the amount of data interchanged between the PEVs and the aggregator is 

reduced. 

Fuzzy control has been designed to reduce overall load variance when its value is high or 

the distribution network is highly loaded. Thus, weight u takes high values for these two 

cases. In contrast, charging cost is improved only if both load variance and average load 

level are low, as can be seen in Figure 5.56. In this case, weight u has been limited from 

0.5 to 1, taking into account the results obtained in subsection 5.7.2.2.  

 

 

Figure 5.56. Fuzzy control surface for the MOO-WF algorithm 

Table 5.32 shows the results achieved from simulating the automatic weight selection for 

the four cases of PEV-PRs. In all cases, charging cost is reduced compared to static weight 

u solutions but, in turn, overall load variance is slightly increased. For the analyzed cases, 

charging cost is reduced about 2% compared to static weight solution. 

Table 5.32. Results obtained from automatic weight control for the MOO-WF algorithm 

Case of study                

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF 

(%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 206 - 56 0.011 0.9468 0 

MOO-WF u=1 (10%) 5.17 774 206 27 61 0.396 0.9434 0 

MOO-WF auto (10%) 5.11 816 206 39 62 0.611 0.9272 0 

MOO-WF u=1 (30%) 13.31 652 206 50 71 0.48 0.9386 0 

MOO-WF auto (30%) 12.97 671 206 53 71 0.802 0.9186 0 

MOO-WF. u=1 (50%) 24.07 759 206 73 80 0.729 0.9161 0 

MOO-WF auto (50%) 23.86 775 206 74 80 0.89 0.9066 0 

MOO-WF u=1 (70%) 33.56 905 206 85 94 0.745 0.9088 0 

MOO-WF auto (70%) 33.13 958 206 97 95 1.032 0.8885 80 

MOO-WF u=1 (90%) 42.99 1329 206 105 115 0.949 0.8888 230 

MOO-WF auto (90%) 42.43 1384 206 108 116 1.517 0.8684 180 

MOO-WF u=1 (100%) 45.24 1437 206 109 118 1.141 0.8824 250 

MOO-WF auto (100%) 44.66 1502 207 112 120 1.43 0.8643 215 
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In terms of overall peak power, both solutions give the same value (206kW). Thus, there is 

no increase of peak power in all cases, providing better results than the MOO-NF algorithm. 

Regarding to node 613 line-neutral voltages, only PEV-PRs of 90 and 100% are out of the 

boundaries established in this thesis. In this aspect, both the MOO-NF and the MOO-WF 

algorithms do not give valid solutions. 

Finally, Figure 5.57 presents the load in the distribution transformer for the different 

analyzed cases. It is noticeably the influence of the charging cost part of the MOO-WF 

algorithm, especially at low PEV-PRs.  

   

(a) (b) 

   

(c) (d) 

   

(e) (f) 

Figure 5.57. Distribution transformer load for different PEV-PR using the MOO-WF 

algorithm: (a) 10%, (b) 30%, (c) 50%, (d) 70%, (e) 90% and (f) 100% 

However, as PEV-PR increases the charging cost part of the algorithm is less important. 

This way, impacts generated by PEVs charging process are reduced and the ability of the 

designed fuzzy controller to cope with different number of PEVs has been proven. As 
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expected, voltages at node 613 are lower in the MOO-WF case, compared to fixed or static 

weight solution. The reason is that voltage unbalances are increased when dynamic weight 

selection is used because the different values used of weight u between the PEVs. 

To conclude, a fuzzy controller as a DM has proven to be a feasible method to control the 

charging process of multiple PEVs. However, there are voltage values under the limit 

established in the EN50160 standard. One option to reduce these voltages deviations is to 

implement a mechanism to minimize load unbalances between the three phases. 

 Voltage unbalance reduction (VUR) 

Voltage unbalances induced by the charging of a significant number of PEVs can produce 

several problems, such as power losses in lines and increase of core losses in induction 

motors and power transformers [139], [140]. Voltage unbalances are measured using the 

Voltage Unbalance Factor (VUF), which is the percentage of the negative sequence voltage 

(𝑉2) divided by the positive sequence voltage (𝑉1), as can be seen in equation (5-40). 

According to the EN50160 standard, this value should be below 2%, for 95% of the time 

of a week. 

𝑉𝑈𝐹(%) =
𝑉2

𝑉1
· 100 (5-40) 

Two types of voltages unbalances generated by PEVs can be distinguished: one generated 

by the random distribution of PEVs along the three phases (different energy demand per 

phase) and the other one due to different charging scheduling between phases (lack of 

coordination). This last one can be reduced by coordinating the PEVs charging processes 

at the same time, as cost and variance optimization is carried out. This way, voltage 

unbalances will be reduced and voltage profile of the distribution network will be improved. 

The new factor introduced to achieve the mentioned control is based on splitting the ACP 

in four parts, one per phase and other one which is the sum of the other three. When a three 

phase charger is used, the overall ACP data will be used for the optimization algorithm. 

However, for single-phase charger the corresponding ACP, according to the phase, will be 

used. This way, overall variance is not only improved but also the variance of each phase. 

Furthermore, PEVs charging power at each phase will be equitably distributed and voltage 

unbalances and deviations will be limited. 

Additionally, in low voltage distribution networks with high natural unbalances, different 

load forecasting per phase can be used. Thus, voltage unbalances produced by household 

or other loads could be reduced. In this case, household loads have been considered 

balanced. This assumption has been made to analyze the unbalanced induced by the 

charging of PEVs. In case of unbalanced household loads, the results will be different, 

better or worse, depending on the unbalances produced by the combination of PEVs and 

household loads. 

5.7.4.1 MOO-NF 

The VUR method has been applied to the MOO-NF and the MOO-WF algorithms. Table 

5.33 shows the results obtained for the MOO-NF algorithm. In all PEV-PRs, voltages at 

node 613 are improved, especially at high PEV-PRs. In fact, after applying this method, all 

cases have met the EN50160 regulation. 
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The proposed VUR method achieves an important reduction of negative sequence 

component and voltage unbalance factor. In addition, a noticeably improvement in charging 

cost is also obtained in all cases. Overall peak power is also reduced, especially at high 

PEV-PRs. Regarding to energy losses, VUR algorithm version gives similar values than no 

VUR version. 

Table 5.33. Summary of results using VUR method for the MOO-NF algorithm 

Case of study          

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. neg. 

sequence 

voltage node 

613 (p.u.) 

Max. 

VUF 

(%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

MOO-NF (10%) 5.16 844 206 62 0.0035 0.366 0.9398 0 

MOO-NF (10%) VUR 5.11 835 206 62 0.0028 0.292 0.9456 0 

MOO-NF (30%) 13.66 900 206 71 0.0063 0.665 0.9269 0 

MOO-NF (30%) VUR 12.99 809 206 71 0.004 0.423 0.9342 0 

MOO-NF (50%) 25.13 1031 209 79 0.008 0.839 0.9098 0 

MOO-NF (50%) VUR 24.32 950 206 79 0.0051 0.532 0.9281 0 

MOO-NF (70%) 34.31 1158 214 93 0.013 1.387 0.8699 75 

MOO-NF (70%) VUR 32.44 1181 212 94 0.0089 0.945 0.8965 10 

MOO-NF (90%) 43.82 1557 230 113 0.0139 1.483 0.8636 105 

MOO-NF (90%) VUR 42.78 1502 220 113 0.0059 0.636 0.9093 0 

MOO-NF (100%) 46.49 1705 238 116 0.0219 2.372 0.8306 72 

MOO-NF (100%) VUR 44.74 1651 224 117 0.0089 0.965 0.8981 5 

Figure 5.58 and Figure 5.59 present the line-neutral voltages at node 613 and the PEVs 

power demand per phase, for no VUR and VUR algorithms respectively. Results 

correspond to a PEV-PR of 30%. The minimum voltage achieved for no VUR case is 

0.9267 p.u. in phase b, while for VUR case, this minimum is 0.9344 in phase a. With regard 

to VUF, it is reduced from 0.665 to 0.423. Note that PEVs load demand is more 

concentrated and balanced for VUR case than for no VUR case. In both cases, the energy 

demanded per phase of PEVs is the same. 

   
(a) (b) 

Figure 5.58. MOO-NF without VUR, for 30% of PEV-PR: (a) Line-neutral voltages of 

node 613 and (b) PEV power demand per phase 
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(a) (b) 

Figure 5.59. MOO-NF with VUR, for 30% of PEV-PR: (a) Line-neutral voltages of node 

613 and (b) PEV power demand per phase 

Figure 5.60 and Figure 5.61 present similar results, but for 100% of PEV-PR. In this case, 

voltage improvement is more noticeably. Minimum voltage is enhanced from 0.8369 p.u. 

of no VUR to 0.889 p.u. of VUR case, both for phase b. In Annex B, more results of all 

PEV-PR cases can be found. 

  

(a) (b) 

Figure 5.60. MOO-NF without VUR, for 100% of PEV-PR: (a) Line-neutral voltages of 

node 613 and (b) PEV power demand per phase 

 

(a) (b) 

Figure 5.61. MOO-NF with VUR, for 100% of PEV-PR: (a) Line-neutral voltages of 

node 613 and (b) PEV power demand per phase 
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5.7.4.2 MOO-WF 

In a similar way, VUR is also applied to the MOO-WF algorithm. Table 5.34 shows the 

obtained results. A reduction of negative sequence component has been achieved for all 

cases, without any exception. PEV-PRs of 90 and 100% deserve a special mention. An 

important reduction of negative sequence voltage has been achieved, which has led an 

increase of the minimum voltage at node 613. In addition, a little improvement in total 

charging cost is achieved in all cases, except for 10% of PEV-PR, while overall load 

variance and energy losses are almost not affected. 

Table 5.34. Summary of results using VUR method for the MOO-WF algorithm 

Case of study            

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. neg. 

sequence 

voltage node 

613 (p.u.) 

Max. 

VUF 

(%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

MOO-WF (10%) 5.11 816 206 62 0.0058 0.611 0.9272 0 

MOO-WF (10%) VUR 5.12 802 206 62 0.003 0.316 0.9462 0 

MOO-WF (30%) 12.97 671 206 71 0.0076 0.802 0.9186 0 

MOO-WF (30%) VUR 12.78 688 206 71 0.0038 0.397 0.9292 0 

MOO-WF (50%) 23.86 775 206 80 0.0084 0.89 0.9066 0 

MOO-WF (50%) VUR 23.62 788 206 80 0.0053 0.563 0.9205 0 

MOO-WF (70%) 33.13 958 206 95 0.0098 1.032 0.8885 80 

MOO-WF (70%) VUR 32.56 978 206 95 0.0051 0.533 0.9238 0 

MOO-WF (90%) 42.43 1384 206 116 0.0141 1.518 0.8684 180 

MOO-WF (90%) VUR 42.04 1409 206 116 0.0064 0.691 0.9051 0 

MOO-WF (100%) 44.66 1502 207 120 0.0133 1.43 0.8643 215 

MOO-WF (100%) VUR 44.35 1522 210 119 0.0067 0.726 0.9052 0 

On the one hand, Figure 5.62 and Figure 5.63 show the line-neutral voltages at node 613 

and the PEVs power demand per phase for no VUR and VUR versions of the MOO-WF 

algorithm respectively. Results correspond to the PEV-PR of 30%. The minimum voltage 

achieved for no VUR case is 0.9186 p.u. while for VUR case is 0.9292 p.u., both in phase 

a. On the other hand, Figure 5.64 and Figure 5.65 present the results for 100% of PEV-PR. 

In this case, an important increase of minimum voltage is achieved (from 0.8642 to 0.9052 

p.u.). In Annex C, more results of all PEV-PR cases can be found. 

 

(a) (b) 

Figure 5.62. MOO-WF without VUR, for 30% of PEV-PR: (a) Line-neutral voltages of 

node 613 and (b) PEV power demand per phase 
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(a) (b) 

Figure 5.63. MOO-WF with VUR, for 30% of PEV-PR: (a) Line-neutral voltages of node 

613 and (b) PEV power demand per phase 

 

 (a) (b) 

Figure 5.64. MOO-WF without VUR, for 100% of PEV-PR: (a) Line-neutral voltages of 

node 613 and (b) PEV power demand per phase 

 

(a) (b) 

Figure 5.65. MOO-WF with VUR, for 100% of PEV-PR: (a) Line-neutral voltages of 

node 613 and (b) PEV power demand per phase 

To conclude, voltage unbalance reduction method has proven to be an excellent approach 

to reduce VUF in both algorithms (MOO-NF and MOO-WF) and at different PEV-PR rates. 

It can reduce VUF without modifying the energy demand per phase and only coordinating 

the PEVs power demand between the three phases. Furthermore, a slightly improvement in 

charging cost is also achieved, without worsening overall load variance results.  
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 Vehicle to Grid 

V2G concept could bring extra enhancements for PEVs integration in distribution 

networks. V2G can reduce charging cost and overall load variance in function of the type 

of algorithm applied, as shown in sections 5.6.1 and 5.6.3. Additionally, V2G could bring 

further advantages such as providing backup power and ancillary services. At household 

level, users may be interested in backup power in order to avoid getting without electric 

power when an unexpected electric outage happens. Also, V2G can be used for saving peak 

power. However, V2G operation increases power losses at local level, mainly due to the 

inherent charger and battery efficiency. Furthermore, long-term battery degradation must 

be taken into account. 

Both algorithms presented in this thesis can limit the V2G operation by setting a parameter 

called Z. After some simulations performed and results presented in sections 5.6.1 and 5.6.3  

(see Figure 5.29 and Figure 5.38), it was determined that a Z value of 0.2, i.e. 20% of battery 

capacity, is enough to obtain noticeably improvements, while battery degradation is limited. 

In addition, these algorithms permit setting a minimum SOC to be met at any time. In this 

context, both MOO algorithms have been tested in order to know the influence of V2G in 

each one using different PEV-PRs. 

5.7.5.1 MOO-NF 

Using V2G in the MOO-NF algorithm improves total charging cost at any PEV-PR. 

Regarding to overall load variance, positive effects are achieved at low PEV-PR (10 and 

30%) but at high PEV-PR, overall variance increases, as shown in Table 5.35. For the last 

case (100% of PEV-PR), V2G application causes a voltage deviation higher than permitted. 

Figure 5.66 and Figure 5.67 present two cases, PEV-PR of 30% and 100% respectively. 

VUR concept is used in all simulations performed in this section. 

Table 5.35. Comparative between using Z=0 and Z=0.2 (V2G) in the MOO-NF algorithm 

Case of study          

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

V2G 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF (%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

MOO-NF (10%) 5.11 835 206 - 62 0.292 0.9456 0 

MOO-NF (10%) V2G 4.68 690 198 -17 62 0.262 0.9405 0 

MOO-NF (30%) 12.99 809 206 - 71 0.423 0.9342 0 

MOO-NF (30%) V2G 12.95 693 198 -37 73 0.518 0.9383 0 

MOO-NF (50%) 24.32 950 206 - 79 0.532 0.9281 0 

MOO-NF (50%) V2G 23.83 982 217 -44 83 1.062 0.9145 0 

MOO-NF (70%) 32.44 1181 212 - 94 0.945 0.8965 10 

MOO-NF (70%) V2G 31.09 1697 228 -106 104 1.088 0.8847 55 

MOO-NF (90%) 42.78 1502 220 - 113 0.636 0.9093 0 

MOO-NF (90%) V2G 42.58 1819 234 -38 121 0.909 0.8911 35 

MOO-NF (100%) 44.74 1651 224 - 117 0.965 0.8981 5 

MOO-NF (100%) V2G 44.15 2078 244 -50 125 1.202 0.8737 80 
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(a) (b) 

Figure 5.66. MOO-NF and V2G (Z=0.2) with 30% of PEV-PR: (a) distribution 

transformer load and (b) voltage at node 613 

 

(a) (b) 

Figure 5.67. MOO-NF and V2G (Z=0.2) with 100% of PEV-PR: (a) distribution 

transformer load and (b) voltage at node 613  

5.7.5.2 MOO-WF 

Table 5.36 shows the results from the simulation of the six different PEV-PRs, using the 

MOO-WF algorithm with VUR and V2G. At 10 and 30% of PEV-PR, charging cost, peak 

power and load variance are improved respect to the no V2G case. However, at higher 

PEV-PR, V2G provides worse results than the no V2G case, in terms of total charging cost 

and overall load variance. Peak power demand is better in V2G cases until 90% of PEV-

PR.  

This behavior is due to two reasons: on the one hand, the high ratio level between the PEVs 

energy demand (1.06MWh for the 100% PEV-PR case) and the households load demand 

(3.04MWh) and, on the other hand, the decentralized nature of the system control. That is, 

the earliest PEVs connected to the network use V2G to reduce charging cost and overall 

variance which, in turn, produces an increase of the energy demand at off-peak hours. In 

principle, this increase is beneficial to improve both objective functions, as can be seen in 

10 and 30% PEV-PR cases. However, when the ratio between PEVs load demand and 

household load demand is high enough, the extra energy required for V2G operation adds 

load demand to the already overloaded off-peak hours, worsening overall results. 
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Table 5.36. Comparative between using Z=0 and Z=0.2 (V2G) in MOO-WF algorithm 

Case of study         

(PEV-PR) 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

(kW2) 

Overall 

peak 

power 

(kW) 

V2G 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF 

(%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

MOO-WF (10%) 5.12 802 206 - 62 0.316 0.9462 0 

MOO-WF (10%) V2G 4.62 546 190 -26 62 0.319 0.9401 0 

MOO-WF (30%) 12.78 688 206 - 71 0.397 0.9292 0 

MOO-WF (30%) V2G 11.97 515 179 -43 75 0.535 0.9342 0 

MOO-WF (50%) 23.62 788 206 - 80 0.563 0.9205 0 

MOO-WF (50%) V2G 23.61 791 181 -55 86 0.504 0.9206 0 

MOO-WF (70%) 32.56 978 206 - 95 0.533 0.9238 0 

MOO-WF (70%) V2G 33.42 1116 200 -58 102 0.638 0.9146 0 

MOO-WF (90%) 42.04 1409 206 - 116 0.691 0.9051 0 

MOO-WF (90%) V2G 43.41 1713 214 -54 126 0.829 0.891 60 

MOO-WF (100%) 44.35 1522 210 - 119 0.726 0.9052 0 

MOO-WF (100%) V2G 45.77 1865 218 -57 129 0.927 0.8889 100 

The decentralized control system cannot cope with this effect because it is impossible for 

the already connected PEVs knowing beforehand how many PEVs will be connected in the 

following hours into the network. A possible solution for this problem is to re-compute the 

MOO-WF algorithm, in all PEVs, when a new PEV is connected to the network. The 

aggregator can update and send new ACPs to the connected PEVs. This way, each PEV 

will schedule its charging profile knowing the current state of the network and not only the 

state of the network when it was connected.  

Other similar possibility is re-computing the MOO-WF algorithm from time to time. Figure 

5.68 and Figure 5.69 show the simulation results for 30 and 100% of PEV-PRs. As can be 

seen, the MOO-WF algorithm with V2G injects energy back to the distribution network 

when electricity prices are the highest ones in order to reduce as much as possible charging 

cost. Then, this energy, plus energy losses due to V2G operation, is recovered during off-

peak hours.  

 

(a) (b) 

Figure 5.68. MOO-WF and V2G (Z=0.2) with 30% of PEV-PR: (a) distribution 

transformer load and (b) voltage at node 613 
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(a) (b) 

Figure 5.69. MOO-WF and V2G (Z=0.2) with 100% of PEV-PR: (a) distribution 

transformer load and (b) voltage at node 613  

 DSM services provision 

Demand-side management is becoming a powerful tool in order to cope with renewable 

energy intermittency and other unexpected events, such as loss of electric generation or 

sudden increase of load demand. The proposed algorithm allows this management through 

modifying the ACP stored in the aggregator. This way, DSM can be done easily without 

directly managing the charging process of each PEV. 

The operation of such a system has to be coordinated by the DSO, which will demand DSM 

services. Two types of orders can be distinguished: regulation up or down. In regulation up 

frequency is increased, so load must be reduced. This can be made in two different ways, 

reducing charging power of PEVs or using V2G concept. In contrast, regulation down is 

only achieved increasing charging power of PEVs.  

The process begins with a petition from the DSO to the aggregator to modify the ACP. 

Once the ACP has been updated, the aggregator send it to each PEV connected to the 

distribution network. Then, each PEV executes the MOO algorithm, taking into account 

the new received ACP. After this process, a new VCP is obtained in each PEV, which is 

sent back to the aggregator in order to update the ACP.  

Figure 5.70-a shows the result of a DSM petition at 01:00h, which consists in a load 

increase of 30kW between 01:00 and 02:30h. PEVs power demand is increased about 33kW 

at 01:00h and decreased approximately 30kW at 02:30h, respect to no DSM case. In 

contrast, in Figure 5.70-b the DSM petition is a reduction of 30kW between 01:30 and 

02:30h. In this case, PEVs power demand only drops approximately 15kW at 01:30h, then 

it is increased about 30kW at 02:30h. Both simulations have been performed for 50% of 

PEV-PR and the MOO-WF algorithm. 

The accuracy of the response to DSM petitions depends on several factors such as: the 

fuzzy control response, the PEVs capacity to increase or reduce their charging power and 

the availability of V2G. However, this configuration has the advantage that the DSO can 

monitor the accumulated charging profiles (through ACP), so the DSO can determine 

beforehand what the results obtained from the DSM petition are going to be. 
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(a) (b) 

Figure 5.70. PEVs power demand under DSM petitions: (a) regulation up of 30kW and 

(b) regulation down of 30kW 

 Load forecast sensitivity analysis 

The MOO-WF algorithm uses load forecasting, which mostly is not perfect. Load 

forecasting error may worsen the results obtained by the application of the MOO-WF 

algorithm. Accuracy in load forecasting depends on several factors such as: type of 

algorithm used to calculate it, time horizon (for few hours to a week ahead), aggregation 

level (at MV/LV, local LV feeder and end-user), etc. Error in load forecasting can be 

measured using the mean absolute percentage error (MAPE), defined by equation (5-41). 

A perfect forecast is defined by a 0% of MAPE error.  

𝑀𝐴𝑃𝐸(%) =
1

𝑇
∑|

𝑅𝑡 − 𝐹𝑡

𝑅𝑡
|

𝑇

𝑡=1

· 100 (5-41) 

where: 

 𝑅𝑡:  the real load demand 

 𝐹𝑡:   the forecasted load demand 

 𝑇:   total number of forecasted periods 

In this case, T is 25 for the 24h load forecasting. Authors of [141] use smart meter data 

from 1,600 Danish customers, for making a day-ahead load forecasting. According to the 

authors, MAPE can be in the range of 4-5% for MV/LV level (few hundred of customers) 

or 9-10% for LV feeder level (few tens of customers). Authors also use data of 6,500 Irish 

customers showing worse results in terms of MAPE (8-9% for MV/LV level and 15-16% 

at LV feeder).  

Taking into account this data and knowing that the analyzed distribution network is 

composed by 170 households, ten different erroneous load forecasts have been tested for 

the MOO-WF algorithm. The MAPE of these load forecasts are between 10 to 12.6%. 

These erroneous load forecasts have been applied to the 100% of PEV-PR case. VUR has 

been also applied. Results obtained using these erroneous load forecast data are shown in 

Table 5.37, while Figure 5.71 shows the analyzed erroneous load forecasts.  
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Table 5.37. Results from using erroneous load forecast data for the 100% of PEV-PR case 

Case of 

study 

MAPE 

(%) 

Overall 

charging 

cost (€) 

Overall load 

variance 

(kW2) 

Overall 

load peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF 

(%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

Case 0 0 44.35 1522 210 114 119 0.7256 0.9052 0 

Case 1 10.6 45.59 1658 229 135 120 0.8072 0.8995 10 

Case 2 11.3 44.95 1669 223 129 121 1.0615 0.8946 50 

Case 3 11.06 44.97 1607 225 121 120 0.8701 0.8948 5 

Case 4 12.56 44.95 1473 221 116 117 0.6867 0.9033 0 

Case 5 10.58 45.19 1568 216 116 120 1.022 0.8961 5 

Case 6 10.03 44.7 1649 225 131 121 0.7803 0.8965 12 

Case 7 10.29 45.45 1674 231 126 121 0.9516 0.8961 5 

Case 8 11.39 44.84 1662 236 123 121 0.9247 0.8904 70 

Case 9 11.04 45.79 1547 233 113 119 0.8226 0.9030 0 

Case 10 10.67 45.62 1477 223 99 117 0.7705 0.8974 15 

Average 10.95 45.2 1598 226 121 120 0.8697 0.8971 17 

 

Figure 5.71. Perfect load forecast and erroneous load forecasts 

As expected, load forecasting errors have a relative impact on results. In all cases, cost of 

charging is increased (2% on average), while overall load variance is also increased (5% 

on average). Peak power is more affected, reaching about a 7.5% higher value than applying 

a perfect load forecast. Obviously, voltages and VUF are also affected negatively but they 

still are within the EN50160 standard limits. In addition, a higher MAPE does not always 

imply worse results because it also depends on the shape of the erroneous load forecast, as 

can be seen in Figure 5.72 which presents two different cases. In the Annex D, more figures 

can be found with regard to this sensitivity analysis. 
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(a) (b) 

Figure 5.72. Two examples of load forecasting errors and their influence in the 

distribution transformer load. (a) Case 4 and (b) Case 8 

Finally, MAPE depends on time horizon. Thus, using a shorter time horizon forecast will 

lead in better MAPEs and better algorithm results. A time horizon of 12h (average 

connection time) can be enough. In addition, the aggregator could provide frequent updated 

LF and requests re-computing of smart charging algorithm of each PEV connected to the 

distribution network. This way, load forecasting errors will be reduced and overall results 

will be improved. 

 Comparative analysis 

In this section, the analyzed smart charging algorithms are compared, in terms of cost and 

network impacts. Load forecasting errors have not been taken into account except for 100% 

of PEV-PR and only for the MOO-WF algorithm. Table 5.38 shows the numeric results 

obtained for the different simulations performed with 10% of PEV-PR (11 PEVs). 

Table 5.38. Comparative analysis of results obtained for 10% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

Load 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF (%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 206 - 56 0.011 0.9468 0 

Uncontrolled 7.39 1599 227 40 63 0.404 0.92 0 

Cost opt. 5.08 896 206 63 62 0.605 0.9264 0 

Cost opt. V2G 4.45 711 198 63 63 0.603 0.9281 0 

PEVs var. opt. 6.04 1044 210 10 62 0.302 0.9426 0 

PEVs var. opt. V2G 6.56 1045 210 10 62 0.163 0.9416 0 

Load var. opt. 5.17 774 206 27 63 0.397 0.9434 0 

Load var. opt. V2G 5.04 483 186 38 63 0.403 0.9412 0 

MOO-NF 5.16 844 206 29 62 0.366 0.9398 0 

MOO-NF VUR 5.11 835 206 39 62 0.292 0.9456 0 

MOO-NF VUR/V2G 4.68 690 198 33 62 0.262 0.9405 0 

MOO-WF 5.11 816 206 39 62 0.611 0.9272 0 

MOO-WF VUR 5.12 802 206 35 62 0.316 0.9462 0 

MOO-WF VUR/V2G 4.62 546 190 42 62 0.319 0.9401 0 



164  CHAPTER 5 

As commented before, charging cost optimization provides an important reduction of costs 

respect to the uncontrolled case (-31%). Furthermore, if V2G concept is used this saving 

could reach almost 43%. Additionally, overall load variance is reduced almost to a half of 

the uncontrolled case (-44%), outperforming the overall load variance obtained when PEVs 

power variance optimization algorithm is used. 

Moreover, overall load variance optimization improves not only load variance (-52%) but 

also total charging cost (-30%). Regarding to energy losses, they are similar in all cases. 

Additionally, if V2G is available further improvements could be achieved in overall load 

variance and charging cost (5.17 to 5.04€). 

With regard to the MOO-NF algorithm with automatic weight selection, it also provides 

good results, -30% of charging cost and -48% of overall load variance, respect to the 

uncontrolled case, without using load forecasting. However, the best overall results are 

obtained by using the MOO-WF algorithm with V2G. It has one of the lowest charging cost 

(4.62€) while peak power is reduced to 190kW and load variance to 546kW2.  

In the case of 30% of PEV-PR (Table 5.39), PEVs variance optimization outperforms the 

value of load variance achieved with charging cost minimization. This trend continues 

along the rest of PEV-PR cases. Furthermore, charging cost minimization algorithm starts 

to increase peak power due to the high concentration of PEVs charging demand. 

Table 5.39. Comparative analysis of results obtained for 30% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

Load 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF (%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 206 - 56 0.011 0.9468 0 

Uncontrolled 16.53 2266 253 66 74 0.905 0.9016 0 

Cost opt. 12.51 1261 236 137 75 0.849 0.9107 0 

Cost opt. V2G 11.36 1275 236 137 80 0.79 0.9122 0 

PEVs var. opt. 15.17 1057 212 24 70 0.633 0.9204 0 

PEVs var. opt. V2G 16.25 1056 212 23 71 0.539 0.926 0 

Load var. opt. 13.31 652 206 50 71 0.481 0.9386 0 

Load var. opt. V2G 14.23 432 183 62 75 0.575 0.9269 0 

MOO-NF 13.66 900 206 40 71 0.665 0.9269 0 

MOO-NF VUR 12.99 809 206 55 71 0.423 0.9342 0 

MOO-NF VUR/V2G 12.95 693 198 52 73 0.518 0.9383 0 

MOO-WF 12.97 671 206 53 71 0.802 0.9186 0 

MOO-WF VUR 12.78 688 206 59 71 0.397 0.9292 0 

MOO-WF VUR/V2G 11.97 515 179 68 75 0.535 0.9342 0 

As expected, load variance optimization is a good solution to reduce load variance but it is 

noticeably that V2G option increases charging cost (from 13.31 to 14.23€), which does not 

occur in the MOO-NF (13.66 to 12.95€) and the MOO-WF algorithms (12.97 to 11.97€). 

In a similar way than before, the MOO-WF with VUR/V2G can be considered as the best 

solution because of its balanced results in all aspects. Anyway, at this PEV-PR, all 

algorithms are valid from the point of view of voltage limits. 

Table 5.40 presents a summary of results for 50% of PEV-PR. At this level (52 PEVs), 

uncontrolled and cost minimization algorithms do not provide valid solutions. PEVs power 
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demand variance algorithm leads to an increase of peak power (206 to 218kW) and a 

relatively high charging cost (26.74€). 

Table 5.40. Comparative analysis of results obtained for 50% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

Load 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF (%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 206 - 56 0.011 0.9468 0 

Uncontrolled 28.75 3340 290 111 85 1.203 0.8816 102 

Cost opt. 21.82 2921 345 234 95 2.511 0.7965 155 

Cost opt. V2G 19.89 3954 349 238 109 2.511 0.7965 195 

PEVs var. opt. 26.74 1158 218 40 78 0.6 0.9299 0 

PEVs var. opt. V2G 27.10 1159 218 40 79 0.711 0.9234 0 

Load var. opt. 24.07 759 206 73 80 0.729 0.9161 0 

Load var. opt. V2G 24.64 743 176 84 85 0.764 0.9089 0 

MOO-NF 25.13 1031 209 58 79 0.839 0.9098 0 

MOO-NF VUR 24.32 950 206 73 79 0.532 0.9281 0 

MOO-NF VUR/V2G 23.83 982 217 69 83 1.062 0.9145 0 

MOO-WF 23.86 775 206 74 80 0.89 0.9066 0 

MOO-WF VUR 23.62 788 206 76 80 0.563 0.9205 0 

MOO-WF VUR/V2G 23.61 791 181 88 86 0.504 0.9206 0 

Results of the MOO-NF algorithm are between the charging cost and the PEVs power 

demand variance optimization algorithms but it adds an additional improvement in overall 

load variance. Specifically, a reduction of 18% is achieved when the proposed MOO-NF 

algorithm is compared to the PEVs power demand variance optimization algorithm (from 

1158 to 950kW2). Even if it is compared with load variance optimization, which uses load 

forecasting, the MOO-NF with VUR performs slightly worse in terms of charging cost 

(24.07 to 24.32€) but gives similar results in energy losses. Taking into account that no load 

forecasting is used in the MOO-NF algorithm, it can be considered that it provides relatively 

good results. Regarding to the MOO-WF algorithm, it provides good results even if V2G 

is used. The MOO-WF with VUR/V2G has the lowest peak power of all algorithms 

(181kW). No difference has been found in charging cost and load variance between the 

MOO-WF with VUR and MOO-WF with VUR/V2G options. However, VUR/V2G version 

increases energy losses in 6kWh.  

Increasing the PEV-PR to 70% (72 PEVs) starts to have harmful effects on voltages of the 

furthest node of the distribution network, as shown in Table 5.41. Almost all algorithms 

reach line-neutral voltage values below to 0.9 p.u. except for overall load variance 

optimization and VUR versions of the MOO-WF. Furthermore, at this PEV-PR, V2G get 

worse results than no V2G versions, increasing distribution network impacts. The MOO-

WF algorithm provides a reduction of 15% in charging cost, 81% in overall load variance 

and 23% in energy losses, compared to the uncontrolled charging case. When the MOO-

WF is compared to the MOO-NF (both with VUR), the last one achieves better results on 

charging cost (32.56 to 32.44€), but overall load variance get worse (978 to 1181kW2). 

However, energy losses are similar in both cases. MOO-NF algorithm increases the peak 

power in 6kW compared to MOO-WF algorithm. 
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Table 5.41. Comparative analysis of results obtained for 70% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

Load 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF (%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 206 - 56 0.011 0.9468 0 

Uncontrolled 38.97 5244 320 126 106 1.466 0.8537 132 

Cost opt. 29.21 6067 475 344 132 2.311 0.7499 145 

Cost opt. V2G 26.04 9277 489 355 164 2.527 0.7407 200 

PEVs var. opt. 36.48 1335 225 51 92 0.976 0.8942 20 

PEVs var. opt. V2G 37.35 1321 225 52 93 1.173 0.8849 50 

Load var. opt. 33.56 904 206 85 94 0.745 0.9088 0 

Load var. opt. V2G 34.39 976 188 95 100 0.768 0.9188 0 

MOO-NF 34.31 1158 214 87 93 1.387 0.8699 75 

MOO-NF VUR 32.44 1181 212 74 94 0.945 0.8965 10 

MOO-NF VUR/V2G 31.09 1697 228 104 104 1.088 0.8847 55 

MOO-WF 33.13 958 206 97 95 1.032 0.8885 80 

MOO-WF VUR 32.56 978 206 97 95 0.533 0.9238 0 

MOO-WF VUR/V2G 33.42 1116 200 103 102 0.638 0.9146 0 

Benefits of VUR implementation are obvious for 90% of PEV-PR, as show in Table 5.42. 

Only solutions where VUR is applied are able to achieve valid solutions at this high 

penetration level. In fact, the MOO-WF with VUR improves minimum line-neutral voltage 

level from 0.8636 to 0.9093 p.u. while VUF is reduced from 1.48 to 0.63%. Additionally, 

the MOO-WF VUR provides very good results in terms of charging cost and load variance 

(42.04€ and 1409kW2), achieving a reduction of 11 and 12% in charging cost and energy 

losses. Regarding to overall peak power, the MOO-WF VUR algorithm keeps the peak 

power at 206kW. In contrast, the MOO-NF VUR increases it to 220kW. 

Table 5.42. Comparative analysis of results obtained for 90% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

Load 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF (%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 206 - 56 0.011 0.9468 0 

Uncontrolled 47.46 6409 367 182 132 1.683 0.8106 247 

Cost opt. 37.54 10420 576 413 191 5.636 0.6094 190 

Cost opt. V2G 34.87 14798 591 423 238 4.761 0.6438 250 

PEVs var. opt. 45.86 1529 222 70 111 1.214 0.8724 85 

PEVs var. opt. V2G 46.76 1539 222 71 112 1.045 0.8842 85 

Load var. opt. 42.96 1328 206 105 115 0.95 0.8888 230 

Load var. opt. V2G 43.99 1593 209 115 124 1.203 0.8727 315 

MOO-NF 43.82 1557 230 99 113 1.483 0.8636 105 

MOO-NF VUR 42.78 1502 220 111 113 0.636 0.9093 0 

MOO-NF VUR/V2G 42.58 1819 234 121 121 0.909 0.8911 35 

MOO-WF 42.43 1384 206 108 116 1.517 0.8684 180 

MOO-WF VUR 42.04 1409 206 110 116 0.691 0.9051 0 

MOO-WF VUR/V2G 43.41 1713 214 120 129 0.829 0.891 60 
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Results for 100% of PEV-PR are presented in Table 5.43. In this case, only VUR solutions 

are within voltage limits. None of the V2G cases are valid. If the MOO-NF and the MOO-

WF are compared, the last one is slightly better in total charging cost (44.74 to 44.35€), 

load variance (1651 to 1522kW2) and peak power (224 to 210kW). However, if load 

forecasting error is added to the MOO-WF algorithm, charging cost is increased to 45.2€, 

load variance to 1598kW2 and load peak power to 226kW. Energy losses in both cases are 

similar (117kWh for MOO-NF and 120kWh for MOO-WF). Taking into account these 

results, it can be said that the MOO-NF algorithm provides similar results in this case. In 

addition, voltages at node 613 are in the same range. 

Table 5.43. Comparative analysis of results obtained for 100% of PEV-PR 

Case of study 

Overall 

charging 

cost (€) 

Overall 

load 

variance 

Load 

peak 

power 

(kW) 

PEVs 

peak 

power 

(kW) 

Energy 

losses 

(kWh) 

Max. 

VUF 

(%) 

Min. 613 

node 

voltage 

(p.u.) 

Time 

below 

0.9p.u. 

(min) 

No PEVs - 1039 206 - 56 0.0114 0.9468 0 

Uncontrolled 49.85 6842 375 189 137 1.899 0.8125 262 

Cost opt. 39.53 11675 610 434 203 9.8974 0.4493 200 

Cost opt. V2G 36.67 16762 622 446 255 6.5689 0.5804 240 

PEVs var. opt. 48.17 1613 225 74 114 1.2077 0.8701 85 

PEVs var. opt. V2G 49.30 1630 225 74 115 1.0671 0.879 80 

Load var. opt. 45.24 1437 206 109 118 1.1397 0.8824 250 

Load var. opt. V2G 46.52 1733 213 119 127 1.2599 0.8696 340 

MOO-NF 46.49 1705 238 102 116 2.372 0.8306 72 

MOO-NF VUR 44.74 1651 224 115 117 0.965 0.8981 5 

MOO-NF VUR/V2G 44.15 2078 244 118 125 1.202 0.8737 80 

MOO-WF 44.66 1502 207 112 120 1.43 0.8643 215 

MOO-WF VUR 44.35 1522 210 114 119 0.726 0.9052 0 

MOO-WF VUR (LF error) 45.2 1598 226 121 120 0.8697 0.8971 17 

MOO-WF VUR/V2G 45.77 1865 218 124 129 0.927 0.8889 100 

Finally, the computation time of each optimized algorithm is presented in Table 5.44. The 

optimization problems have been solved using a 3.40GHz Intel i7-2600 CPU with 8GB of 

RAM. All algorithms have been executed in a very short period of time. In a real 

implementation, slower and cheaper CPUs can accomplish the optimization tasks without 

any problem. 

Table 5.44. Computational time of the different algorithms presented in this thesis 

Case of study Average execution time (s) Maximum execution time (s) 

Cost opt. 0.14 0.21 

PEVs var. opt. 0.19 0.24 

Load var. opt. 0.19 0.23 

MOO-NF 0.56 0.74 

MOO-NF VUR 0.59 0.75 

MOO-WF 0.61 0.74 

MOO-WF VUR 0.62 0.8 
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 System architecture 

In this section, the implementation of the proposed smart charging architecture is presented 

(Figure 5.73). Being a decentralized architecture, most of the requirements have to be 

located in the PEV itself. These requirements are listed below: 

 PEVs must support charging at different rates. This aspect depends mainly on battery 
charger and Battery Management System (BMS). V2G support is optional. However, 

the proposed algorithms can be also implemented in chargers with a limited range of 

charging power. That is, chargers that have a minimum charging/discharging power, 

apart from the standby status. 

 

 PEVs have to execute the proposed smart charging algorithm internally, so they must 

have a processor unit on-board. 

 

 PEVs must have a communication system in order to receive the corresponding ACP, 
the LF (MOO-WF case) and the electricity prices of the day. After optimization is 

carried out, each PEV must send its VCP and the charging post identifier to the 

aggregator. This VCP calculated in the vehicle has to take into account the estimated 

efficiency of the charger. 

 

 PEVs need to measure the voltage at the connection point to use it in the dynamic u 
variable selection (only in MOO-NF version). 

The other main component of the proposed system is the aggregator, which will manage 

one or more ACPs. The aggregator must have a database of charging post identifiers in 

order to know which phase and therefore, which ACP correspond for each PEV. This 

aggregator can be managed by a utility or DSO directly, which manages the distribution 

network. This way, the DSO or the utility can monitor the PEVs power demand. So, they 

can take further actions if it is necessary, in order to ensure the correct operation of the 

distribution network. Among these actions, managing available on-load tap changers 

(OLTC) and/or making DSM petitions can be found. 

 

Figure 5.73. Proposed decentralized architecture 
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The normal operation of this system, based on the proposed methodology is as follows:  

1. User sets the expected departure time for the next trip before connecting the PEV into 

the electric network. Additionally, user can define the percentage of battery capacity 

reserved to V2G and the final SOC required if it is different to 100%. 

2. When the PEV is plugged into the network, its EVSE identifier (ID) will be sent to the 

aggregator.  

3. From the EVSE identifier, the aggregator will know the location of the EVSE and the 

phase where the EVSE is connected (needed to implement the VUR enhancement). As 

answer, the aggregator will send the corresponding ACP and LF to the PEV.  

4. Then, the PEV processor unit will execute the MOO-WF algorithm taking into account 

the user requirements, the ACP, the LF (MOO-WF only), the electricity prices and the 

voltage value at the connection point (MOO-NF only). 

5. When optimization is finished, the PEV will send its VCP to the aggregator, which will 

update the corresponding ACP and wait to other PEVs. 

The initial calculated VCP can be altered under the following four circumstances: 

 An anticipated disconnection of the PEV, which will be communicated to the aggregator 
including the EVSE ID. 

 A change in the VCP because of an automatic adjustment of the u value (MOO-NF). 

 A modification of user’s parameters, such as departure time or final SOC. 

 A DSM petition from the DSO. 

In these four cases, the aggregator must delete the old VCP of the PEV and update the 

corresponding ACP. Figure 5.74 shows the operation process for the MOO-WF algorithm 

with an unexpected disconnection event. With regard to DSM operation, it is quite similar 

but a re-computing request must be sent from the aggregator to each PEV (with the updated 

ACP and LF).  

 

Figure 5.74. Operation scheme of the MOO-WF algorithm with an anticipated 

disconnection event 
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With regard to system reliability, PEVs will continue charging even though the aggregator 

is offline. Two cases can be distinguished: if the PEV is already connected to the network 

or not. In the first case, the PEV will be charged with the last valid ACP sent by the 

aggregator. In the second case, the PEV will be charged without using the ACP (because it 

has no received any ACP from the aggregator). That is, the PEV will perform the same 

MOO algorithm but it will not have any information of the ACP, so its own power demand 

variance and its charging cost will be minimized. In this case, impacts on the distribution 

network may be larger but at least PEV users will continue getting service to charge their 

PEVs. The application of the proposed algorithm gives economic advantages to PEV users. 

However, a mechanism to compensate the provision of DSM services has to be considered 

to encourage wider participation in the DSM services provision. 

Regarding to communication system, it is expected that in short-medium term internet will 

be available for most of the vehicles, as it will provide a lot of services to drivers such as: 

navigation systems maps, automatic emergency calls, vehicle’s firmware updates, remote 

control using smartphone apps, vehicle’s status checking, etc. This type of services on 

vehicles is called as “connected car” and PEVs are particularly appropriate for it. But, in 

order to improve security of the communication system, it is recommended to use an end-

to-end encryption (aggregator to PEV). This way, the data transmitted across the 

communication system will be encrypted and only the aggregator and the corresponding 

PEV will be able to decoding the communication messages.  

Finally, a summary of hardware requirements and actions performed by each entity, 

involved in the proposed methodology, is presented in Table 5.45. 

Table 5.45. Hardware requirements and actions performed by each entity 

ENTITY HARDWARE REQUIREMENTS ACTIONS PERFORMED 

DSO  Communication system 

 

 ACP monitoring 

 Request DSM services 

 Provide load forecasting (MOO-WF) 

 Take further actions if necessary 

AGGREGATOR  Database 

 Communication system 

 Processor unit 

 

 Send ACP to new connected PEVs 

 Send LF to new connected PEVs 

 Calculate and update ACP 

 Delete old VCP 

 Update ACP with DSM petitions and send it to 

PEVs 

PEV  Voltage meter (MOO-NF only) 

 Communication system 

 Processor unit 

 On-board charger with control of 

charging rate 

 User interface 

 Bi-directional charger for V2G 
(optional) 

 Measure voltage (MOO-NF only) 

 Receive ACP 

 Receive electricity prices 

 Calculate average power and variance (MOO-

WF) 

 Execute MOO algorithm 

 Send new VCP 

 Execute DSM petitions 

 Send interruption petitions 

 Send updated VCP if user modify some 

parameter 

USER   Define departure time 

 Define final SOC required (optional) 

 Define battery capacity available for V2G 

(optional) 
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 Conclusions 

In this chapter, a new methodology for integrating PEVs into the distribution network has 

been proposed, which covers different relevant aspects.  

Driving and charging behavior have a great influence on the impacts that the charge of 

PEVs can have on LV distribution networks. Thus, a new “social” model, obtained from 

data of 2009 NHTS, is proposed. This model takes into account not only the difference 

between a workday and a weekend day but also the type of region (rural or urban) and the 

trimester of the year.  

After driving and charging behavior is modelled, charging cost optimization and PEVs 

power demand variance optimization algorithms have been analyzed. Charging cost 

optimization algorithm provides a huge reduction on charging cost to PEV users but 

impacts of distribution network are larger. In contrast, PEVs power demand variance 

optimization reduces these impacts but it may increase peak power. Moreover, load 

variance minimization can be done by using load forecasting. This optimization reduces 

grid impacts but it does not take into account the electricity prices. 

Following, two new smart algorithms that combine cost and variance minimization have 

been presented. The first one, called MOO-NF, does not need load forecasting and uses 

very little data such as voltage at the connection point, electricity prices and the ACP 

provided by the aggregator. This entity has an important role, although it does not control 

directly the charging of the PEVs. But, it provides a mechanism to influence in the charging 

decision process of each PEV through changing the ACP (DSM services). A fuzzy control 

has been designed to define the weigh variable, which determines the importance between 

optimizing the charging cost or the load variance. This optimization runs continuously in 

each PEV, in order to reduce grid impacts. 

The second one, named as MOO-WF, uses load forecasting to improve overall load 

variance. In this case, the designed fuzzy control takes into account the average and the 

variance of the sum of the load forecast and the ACP. This way, it is possible to determine 

how much the distribution network is loaded and if there is high difference between 

maximum and minimum power demand. Taking into account this data, fuzzy control 

provides the value of weight which will be used in the optimization process. Results 

obtained with this algorithm are more predictable than MOO-NF algorithm but error in load 

forecasting may affect the results. However, it is expected that with the intensive use of 

smart meters and shorter time horizons in load forecasting, load forecasting errors will be 

limited to acceptable values. 

Also, voltage unbalances have been identified to be one of the biggest issues when a 

significant number of PEVs are charged through single-phase chargers. In this context, a 

voltage unbalance reduction improvement has been proposed (VUR). This mechanism 

helps to the MOO algorithms to coordinate the charging of PEVs along the three phases, 

reducing voltage unbalances and improving voltage profiles. This method has given very 

good results in both MOO algorithms and at any PEV-PR. 

Additionally, the proposed algorithms are able to use V2G concept and V2G provision can 

be limited by the user by setting the maximum battery capacity percentage available for 

V2G. This way, battery degradation could be reduced if a low battery capacity value is 

selected by the user (around 10-20%). Furthermore, it has been proven that higher battery 
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capacity reserved to V2G does not provide significant improvements in terms of charging 

cost and overall load variance. In addition, at medium-high PEV-PRs, V2G does not 

provide any improvement and could even provide worse overall results. 

The proposed methodology also allows the use of DSM services. An entity such as the DSO 

could modify easily the ACP in order to reduce or increase the PEVs power demand. This 

way, demand side management could be provided by PEVs. Additionally, the DSO can 

monitor ACPs which are accumulated charging profiles, so as to decide if there is necessity 

to take further actions to ensure the distribution network reliability. 

As a decentralized methodology, it presents other advantages. For example, PEV user’s 

privacy is not compromised because only charging profile and location of each PEV is sent 

to the aggregator. Reliability is improved even if the aggregator is offline or not accessible. 

PEVs will continue executing the MOO algorithm and they will charge as usual, avoiding 

lack of charging.  However, impacts on the LV network will be higher. Additionally, 

computation time will not depend on the number of PEVs. 

From the simulation data obtained, the proposed methodology has proven its adequacy in 

terms of charging cost, load variance optimization and voltage levels, comparing to 

uncontrolled charging and the rest of smart charging algorithms presented. Furthermore, 

the proposed algorithms do not use PEVs power demand forecasting, as some centralized 

solutions use or dynamic pricing signals that may distort the electricity cost for users.  

Finally, the proposed algorithms have demonstrated that they can improve load factor 

allowing the integration of more renewable energy, reducing energy losses and avoiding or 

delaying grid reinforcement needs. All these aspects lead to conclude that the proposed 

algorithms in this thesis improve PEVs integration on LV distribution networks, while 

simplicity of operation and user’s privacy is kept as much as possible. 
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6. CONCLUSIONS 

 Conclusions of the thesis 

Global warming and air pollution of urban areas are pushing the marketing of new 

generation of vehicles. Between them, electric vehicles are the most popular. In general, 

electric mobility is considered as another step towards energy sustainability in modern 

society. However, there are several challenges to be addressed as those ones related to the 

battery technology and the deployment and efficient operation of the charging 

infrastructure. In this context, integration of PEVs in electrical distribution networks should 

be beneficial to all stakeholders, improving the efficiency of the system both technically 

and economically. Smart charging concept is the key to achieve this ambitious objective. 

The integration of electric vehicles in electric networks will lead an increase of overall 

energy demand and, as a consequence, higher profits for electric utilities. In addition, if a 

smart charging algorithm such as the one proposed in this thesis is implemented, the load 

factor of the network could be higher. This way, more renewable energy sources and/or 

base load generation could be integrated, reducing operational costs. Others possible 

benefits to be considered are the ancillary services provision and the incentives related to 

CO2 emission credits.  

Currently, PEVs are considered as uncontrolled electric loads due to their low market 

penetration level. However, it is expected that, in the medium-long term, PEVs will have a 

significant penetration level in the market of light-duty vehicles. The charge of a large 

amount of PEVs will lead to non-negligible impacts on electric distribution networks, such 

as increase of energy losses and peak power, overload of lines and transformers, voltage 

drops, voltage unbalances, reduction of distribution transformer lifetime, reduction of load 

factor, etc. These impacts depend significantly on the driving and charging behavior of 

PEV users. Thus, it is necessary to model these aspects prior developing smart charging 

algorithms. In this regard, a new driving and charging behavior model has been developed 

within this thesis, which takes into account aspects such as type of day, type of location 

(rural or urban) and season of the year. 

The mentioned driving and charging behavior model has been applied to know what the 

uncontrolled charging impacts will be in a real distribution network. Results show that 

uncontrolled charging will increase energy losses, peak power and voltage deviations and 

unbalances. In this context, two alternatives can be considered to accommodate the increase 

of load due to the charge of PEVs: increase the network capacity or the implementation of 

a smart charging control. The first approach can be difficult to carry out due to economic, 

environmental and technical reasons. In contrast, the second approach could avoid or delay 

grid reinforcements as well as providing several opportunities to be exploited. 

Thus, researchers have proposed smart charging algorithms in order to achieve some certain 

objectives related to PEVs integration. Most of them are focused on solving partial 

problems, but neglecting the impact that these solutions will have in other important aspects 

such as voltage levels, voltage unbalances, energy losses, charging costs or PEV users’ 

privacy. In addition, very few proposed solutions have been simulated in real LV 

distribution networks with real load demand data. 
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Considering these aspects, this thesis has proposed a new smart charging algorithm to be 

applied at LV distribution network level. A real distribution network located in Borup 

(Denmark) has been used as model to test the effectiveness of the proposed algorithm. The 

main objectives of this algorithm are to reduce energy losses, voltage drops and unbalances 

and charging costs, while increasing peak power is avoided. Two different versions of a 

MOO algorithm have been proposed. The first one is based on using the electricity prices 

as an indicator of how much loaded the distribution network is, while the second one uses 

load forecasting directly. Both methods do not cope with voltage unbalances generated by 

PEVs. Regarding to this problem, an improvement has been proposed to coordinate the 

charging of multiple PEVs along the three phases. The results obtained in the simulations 

have proven that this enhancement reduce noticeably the voltage unbalances as well as 

increase the minimum voltage values. In addition, a sensitivity analysis has been carried 

out in order to know the influence of load forecasting errors. 

Furthermore, the proposed solution has been implemented in a decentralized architecture 

which provides several advantages. Aspects such as users’ privacy, reliability and 

scalability are improved compared to centralized control architectures. 

Finally, it can be highlighted that some of the results obtained during the development of 

this thesis have been published in the following conferences and journals: 

 “Co-simulation with DIgSILENT PowerFactory and Matlab: Optimal integration of 
plug-in electric vehicles in distribution networks” Book Chapter. Advanced Smart Grid 

Functionalities based on Power Factory, Springer. (Accepted). 

 “Decentralized Multi-objective Optimization Control of Plug-in Electric Vehicles in 

LV Distribution Networks” (Under review. Applied Energy). 

 “Vehicle to home: Integration of micro-RES and EV” (Under review. Journal of 
Modern Power Systems and Clean Energy). 

 “Decentralized Control Techniques for Plug-in Electric Vehicles in MV/LV 
distribution networks”, International Conference of Renewable Energies and Power 

Quality (ICREPQ’16), Madrid (Spain), 2016. 

 “Integración de Generación Distribuida Intermitente y Vehículos Eléctricos 

Enchufables”, XVI Encuentro Regional Iberoamericano de Cigré (ERIAC), Puerto 

Iguazú (Argentina), 2015. 

 “Delivering Energy from PEV batteries: V2G, V2B and V2H approaches”, 
International Conference of Renewable Energies and Power Quality (ICREPQ’15), La 

Coruña (Spain), 2015. 

 “Modelling Social Patterns of Plug-in Electric Vehicles Drivers for Dynamic 
Simulations”, IEEE International Electric Vehicle Conference (IEVC), Firenze (Italy), 

2014. 

 “Plug-in Electric Vehicles in Electric Distribution Networks: A Review of Smart 
Charging Approaches”, Renewable & Sustainable Energy Reviews, Vol. 38, pp.717-

731, 2014. 

 “Influence of Social Behaviour in the Future Trend of EVs”, Book chapter. 

Autonomous Hybrid Vehicles: Intelligent Transport Systems and Automotive 

Technologies, University of Pitesti (Romania), pp. 117-143, 2013, ISBN 978-606-560-

327-1. 
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 Future work 

Regarding to the future work that can be developed in this research field, several ideas have 

arisen: 

 Individual control of each phase in three-phased EVSEs. This type of control could 
reduce the energy demand unbalances between the phases, whenever is possible. This 

way, voltage unbalances will be reduced as well as energy losses. In addition, the 

proposed algorithm can be easily adapted to provide this new service. 

 

 Within the previous idea, V2G could provide a balancing path, transferring energy 

from one phase to another phase. This enhancement should be limited to certain cases 

to avoid premature battery degradation and energy losses. 

 

 Reactive power control. The proposed algorithm can be extended to control the 
reactive power in order to improve voltage levels. Two different approaches can be 

developed: a coordinated droop control, taking advantage of the already control 

architecture, and an optimized reactive power control, which remains almost 

unexplored in the current literature. 

 

 Application of a model predictive control in order to reduce load forecasting errors and 
improve V2G concept implementation at medium/high PEV-PRs. 

 

 Other objective functions which can take into account intermittent distributed 
generation such as wind generation, in order to improve their grid integration. 
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ANNEX A – ADDITIONAL DATA OF PEV-PR CASES 

This annex contains additional information of each PEV-PR case regarding to parameters 

such as: arrive and departure time, initial SOC of PEVs and even where they have been 

connected. Regarding to this last point, PEVs are connected in two different streets: 

Hørmarken and Græsmarken. Hørmarken street is composed by 17 houses (H1-H17) while 

Græsmarken by 26 (G1-G26). Data are presented in form of histograms and have been 

grouped according to the PEV-PR case. In addition, Table A.1 presents a summary of each 

PEV-PR case and average values of arrive time, departure time and initial SOC. 

Table A.1. Summary data of the different PEV-PR cases 

PEV-

PR 

(%) 

Number 

of PEVs 
Volt Leaf Tesla 

Average 

arrive 

time 

Average 

departure 

time 

Average 

initial 

SOC 

 (%) 

Total 

energy 

demand 

(MWh) 

Energy 

demand 

phase A 

(kWh) 

Energy 

demand 

phase B 

(kWh) 

Energy 

demand 

phase C 

(kWh) 

10 11 3 5 3 18:30 07:00 66 0.138 37 67 34 

30 29 11 14 4 19:05 07:15 60 0.337 109 148 80 

50 52 21 25 6 18:55 07:45 59 0.584 250 202 132 

70 72 16 43 13 19:05 07:55 65 0.788 204 285 300 

90 93 33 48 12 19:20 07:55 61 1.01 356 335 318 

100 97 34 50 13 19:20 07:55 59 1.06 397 342 322 

From Figure A.1 to Figure A.6, histograms of the different PEV-PR cases are presented. In 

some cases, a high number of PEVs has an initial SOC of 30-40%. This is due to Chevrolet 

Volt PEV has its minimum SOC limited to 35% in order to maximize the life of the battery 

pack. 

 
    (a)                             (b) 

 
(c)                             (d) 

Figure A.1. Histograms of 10% PEV-PR case: (a) departure and arrive time,                     

(b) initial SOC, (c) bus number and (d) connection phase 
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      (a)                             (b) 

 
(c)                             (d) 

Figure A.2.  Histograms of 30% PEV-PR case: (a) departure and arrive time,              

(b) initial SOC, (c) bus number and (d) connection phase 

 
  (a)                             (b) 

 
       (c)                             (d) 

Figure A.3.  Histograms of 50% PEV-PR case: (a) departure and arrive time,             

(b) initial SOC, (c) bus number and (d) connection phase 
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     (a)                           (b) 

 
(c)                             (d) 

Figure A.4.  Histograms of 70% PEV-PR case: (a) departure and arrive time,             

(b) initial SOC, (c) bus number and (d) connection phase 

 
(a)                           (b) 

 
(c)                              (d) 

Figure A.5.  Histograms of 90% PEV-PR case: (a) departure and arrive time,              

(b) initial SOC, (c) bus number and (d) connection phase 
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      (a)                             (b) 

 
     (c)                             (d) 

Figure A.6.  Histograms of 100% PEV-PR case: (a) departure and arrive time,            

(b) initial SOC, (c) bus number and (d) connection phase 
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ANNEX B – FIGURES OF MOO-NF ALGORITHM 

Annex B presents the results obtained by applying the MOO-NF algorithm, with VUR, to 

the different PEV-PR cases. The figures show in detail the evolution of the distribution 

transformer load, the line-neutral voltages at node 613, the power demand of PEVs for each 

phase and the overall power demand compared to electricity cost. 

In general, the MOO-NF algorithm induces the charge of PEVs at off-peak hours, achieving 

a valley-filling effect. Line-neutral voltages at node 613 remain above 0.9 p.u. except for 

very short periods of time in the 70 and 100% PEV-PR cases. In addition, PEVs power 

demand for the three phases have a similar shape due to the application of VUR 

enhancement. This way, voltage unbalances generated by the charging of PEVs are reduced 

while overall voltage level is slightly increased. Furthermore, the MOO-NF algorithm 

programs the charging of PEVs at hours where electricity prices are the lowest ones, 

allowing a reduction of charging cost for PEV users. 

 
     (a)                               (b) 

 
     (c)                             (d) 

Figure B.1. 10% PEV-PR case: (a) transformer load, (b) line-neutral voltages               

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 
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    (a)                            (b) 

 
    (c)                           (d) 

Figure B.2. 30% PEV-PR case: (a) transformer load, (b) line-neutral voltages               

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 

 
   (a)                             (b) 

 
  (c)                            (d) 

Figure B.3. 50% PEV-PR case: (a) transformer load, (b) line-neutral voltages               

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 
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     (a)                               (b) 

 
    (c)                              (d) 

Figure B.4. 70% PEV-PR case: (a) transformer load, (b) line-neutral voltages               

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 

 
     (a)                               (b) 

 
    (c)                             (d) 

Figure B.5. 90% PEV-PR case: (a) transformer load, (b) line-neutral voltages               

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 
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       (a)                               (b) 

 
      (c)                             (d) 

Figure B.6. 100% PEV-PR case: (a) transformer load, (b) line-neutral voltages               

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 
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ANNEX C – FIGURES OF MOO-WF ALGORITHM 

This Annex C presents the results obtained by applying the MOO-WF algorithm with VUR, 

to the different PEV-PR cases. The different figures show in detail the evolution of the 

distribution transformer load, the line-neutral voltages at node 613, the power demand of 

PEVs for each phase and the overall power demand compared to electricity cost. 

The application of the MOO-WF algorithm causes the charging of PEVs at off-peak hours. 

In contrast to the MOO-NF algorithm, this algorithm performs a better valley-filling effect. 

However, it should be taken into account the possible deviations due to load forecasting 

errors. Regarding to voltages at furthest node, these voltages remain above 0.9 p.u. in all 

cases. Thanks to the application of VUR enhancement, PEVs power demand per phase 

shows a similar evolution reducing the voltage unbalances, as it happens in the MOO-NF 

algorithm. Finally, the MOO-WF algorithm also takes into account the charging cost, 

programming the charge of PEVs at hours where electricity prices are the lowest ones 

whenever it is possible. 

 
     (a)                             (b) 

 
     (c)                             (d) 

Figure C.1. 10% PEV-PR case: (a) transformer load, (b) line-neutral voltages              

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 
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       (a)                              (b) 

 
      (c)                             (d) 

Figure C.2.  30% PEV-PR case: (a) transformer load, (b) line-neutral voltages              

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 

 
       (a)                               (b) 

 
      (c)                              (d) 

Figure C.3. 50% PEV-PR case: (a) transformer load, (b) line-neutral voltages              

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 
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      (a)                               (b) 

 
     (c)                              (d) 

Figure C.4. 70% PEV-PR case: (a) transformer load, (b) line-neutral voltages              

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 

 
      (a)                              (b) 

 
     (c)                              (d) 

Figure C.5. 90% PEV-PR case: (a) transformer load, (b) line-neutral voltages              

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 
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      (a)                              (b) 

 
      (c)                              (d) 

Figure C.6. 100% PEV-PR case: (a) transformer load, (b) line-neutral voltages            

at node 613, (c) PEVs power demand power phase and (d) PEVs power demand and 

electricity cost 
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ANNEX D – FIGURES OF LOAD FORECASTING ERROR 

In this Annex D, additional information of the sensitivity analysis carried out in section 

5.7.7 can be found. The mentioned sensitivity analysis is composed by 10 different cases, 

as shown in Table 5.37. As a result of load forecasting errors, peak power at distribution 

transformer level is increased in all cases. In addition, line-neutral voltages at node 613 are 

worse than in the optimal case. However, these voltage deviations are within EN50160 

standard. 

 
(a) (b) 

Figure D.1. Case 1: (a) transformer load and (b) line-neutral voltages at node 613 

 
(a) (b) 

Figure D.2. Case 2: (a) transformer load and (b) line-neutral voltages at node 613 

 
(a) (b) 

Figure D.3. Case 3: (a) transformer load and (b) line-neutral voltages at node 613 
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(a) (b) 

Figure D.4. Case 4: (a) transformer load and (b) line-neutral voltages at node 613 

 
(a) (b) 

Figure D.5. Case 5: (a) transformer load and (b) line-neutral voltages at node 613 

 
(a) (b) 

Figure D.6. Case 6: (a) transformer load and (b) line-neutral voltages at node 613 

 
(a) (b) 

Figure D.7. Case 7: (a) transformer load and (b) line-neutral voltages at node 613 
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(a) (b) 

Figure D.8. Case 8: (a) transformer load and (b) line-neutral voltages at node 613 

 

 
(a) (b) 

Figure D.9. Case 9: (a) transformer load and (b) line-neutral voltages at node 613 

 

 
(a) (b) 

Figure D.10. Case 10: (a) transformer load and (b) line-neutral voltages at node 613 

 


