
METAL POLLUTION IN ESTUARIES AND HIGH 

ALTITUDE MOUNTAINS: GEOGRAPHICAL 

DISTRIBUTION, EVOLUTION IN TIME AND 

TOXICOLOGICAL IMPLICATIONS 

AZIBAR RODRIGUEZ IRURETAGOIENA 

November 2015 



METAL POLLUTION IN 

ESTUARIES AND HIGH 

ALTITUDE MOUNTAINS: 

GEOGRAPHICAL DISTRIBUTION, 

EVOLUTION IN TIME AND 

TOXICOLOGICAL 

IMPLICATIONS 

This PhD Thesis has been developed in the Department of Analytical 

Chemistry from the University of the Basque Country (Faculty of Science 

and Technology, Leioa, Spain)

Azibar Rodriguez Iruretagoiena 

Leioa, NOVEMBER 2015 

(c)2015 AZIBAR RODRIGUEZ IRURETAGOIENA



ESKERRAK 

Lau urtetan zehar egindako lana laburbiltzen duen tesia entregatzeko ordu batzuk 

besterik ez dira falta. Nire kasuan, hilabete batzuk gehiago behar izan ditut tesi liburua 

amaitzeko, baina badirudi heldu dela azkenean eguna. Iritsi da, eta orain, ondo pentsatuta, atzera 

begiratu eta denbora zeinen azkar pasatzen den konturatzen zara. Lau urte luze hauetan 

denetarik gertatu dela esan dezaket eta orri apur hauek ez dira dena laburbiltzeko nahikoa 

izango. 

Gertatutakoak aparte utzita, (beste liburu bat idatzi beharko nukeelako pasatako 

momentuak kontatzeko) lau urte hauetan ia egunero ikusi ditudan lankideez arituko naiz. 

Ziurrenik baten bat ahaztuko dut, baina denok betirako gogoan izango zaituztedala jakin 

dezazuen nahi dut, nahiz eta lerro hauetan ez agertu. 

Lehenik ea behin nire tesi zuzendari izandakoekin hasiko naiz, Alberto eta Silviarekin 

hain zuzen. Silvia, egia esan beti izan ditugu gure hika mikak, askotan elkarrekin haserretzera 

eraman gaituztenak, biok nahiko burugogorrak baikara. Hika mika horietako batean, zure 

bulegoan inoiz ahaztuko ez dudan esaldia esan zenidan: “¡Parece que predico al desierto! ”. 

Bina zuk ondo dakizunez, oso momentu alaiak ere izan ditugu, bai laginketetan zein 

egunerokoan, oso pertsona zarelako eta hori nabaritzen zaizu. Alberto, zurekin ere denetarik 

pasa dut, baina egia esan, askoz ugariagoak izan dira momentu oso onak txarrak baino. Hori bai, 

momentu txarra, bakarra izan arren, betirako geratuko zait markatuta, jende askori kontatu izan 

diodan bezala. Mintegiko nominazioak zirela eta, hori gertatu eta pare bat egun beranduago zure 

bulegora deitu ninduzun. Zure aurrean jesarri nintzen eta begirada batez esan zenidan “hau ez 

dadila berriro gertatu, hurrengoan ni arduratuko naiz zutaz eta”. Nahikoa izan nuen horrekin. 

Baina elkarrekin pasatako egunak hortxe, nire oroitzapenean betirako egongo direla ziur nago. 

Asko eta asko dira momentu horiek: Pirinioetan Iratiko basoan eta lakuetan egindako 

laginketak, zenbait egun dutxatu gabe pasata autokarabanan lo egindako gauak, Aridaneren 

etxean ohe berean lo egin genuen gau hura, perretxikotan pasatako uneak edota jatetxe onetan 

afaltzen edo bazkaltzen janariaz disfrutatzen igarotakoak… esan bezala momentu eder asko 

zurekin Alberto. 

Leioako mintegira pasako naiz orain. Leioako mintegian pasatako eta inoiz ahaztuko 

ez dudan asteetako bat nominazio aste hura izan zen. Ez dut ondo gogoratzen noiz izan ziren, 

baina bai Josean eta biok mintegian bata bestearen aurrean jesarrita geundela. Jendeak ezin 

zuela lanik egin esan eta Luis Angelek mintegiko norbait botatzea proposatu zuen. Nominazio 

aste horren ondorioz, Sandra eta ni kanporatu gintuzten. Egia esan, horrek mintegiko egoera 

baretzeko balio izan zuen, nahiz eta aste pare batez tentsio handiko egunak pasatu genituen. 

Mintegiko jendearen txanda orain. Asko izan zarete lau urte hauetan egunero ikusi 

zaituztedanak. Bekili, Mireli, Arnatza eta Itsaski, zuekin egin dut barre gehien eta beti horrela 

izango dela ziur nago. Hala ez badirudi ere, oso garrantzitsuak izan zarete niretzako 

unibertsitatean, egunero bertara joatea eramangarriago egiten zenutelako, elkarrekin oso 

momentu onak pasa ditugulako. Ainara, zuk ere asko lagundu didazu urte hauetan eta elkarrekin 

denetarik pasa dugu: laginketa egunak, nire kotxean kantaldiak, askotan zirikatu izan zaitut baita 

ere, laborategiko elkarlana… eskerrik asko zuri ere hor egoteagatik. Julene eta Leticia, zuekin 

ere momentu oso on asko ditut, hirugarren mailako ingurumen zientziak ikasten elkartu 

ginenetik gainera, urte asko elkarrekin eta oraindik ere oso gustura zuekin beti. Nikole, Ane, 

Oscar, Leire Kortazar eta Mijangos, Haizea, Laura, Olaia, Nerea, Oier, Pati, Oihana, Naiara, 



Maitane, Ailette, Jone, Asier, Josu, Ibone, Nagore, Olivia, Maite eta Hector, zuei ere mila esker. 

Lau urte hauetako egun asko konpartitu ditugu eta momentu oso onak pasa ere. Esandakoa, 

norbait ez badut aipatu barkatu nazala, izena agian bai, baina berekin bizitakoa ez dut sekula 

ahaztuko. 

Eta orain los “VIP-s”!!! “toca callar un momento porque viene gorda”. Nos lo hemos 

pasado terrible no, lo siguiente!!! Me acuerdo que el primero que vino a hablarme uno de mis 

primeros día en el laboratorio fue Jousi. No hizo más que llegar, no nos conocíamos de nada y 

ya se lio ya, de risas desde el primer momento. Qué casualidad, que además salgo ese finde, le 

veo en el Galeón y se armó la que se armó que perdí hasta la txapela que me acuerdo que iba 

disfrazado de Olentzero, ahí ya se vio que íbamos a hacer gordas juntos Jous. No voy a dar la 

chapita aquí pero podemos escribir uno, dos o tres libros. Los otros dos, Arriskatu y Julianzas, 

grandes desde el primer momento aunque a ti Julianzas te costó bastante más, menos mal que 

empezamos a hacer woks rápido y se fue soltando la cosa. Con el paso de los días ibas a casa 

hasta a las 00:00 de la noche, el Julen que conocí empezó a cambiar y ya no cogía ni pronto el 

autobuya en Moyus. Arriskatu, un grande en toda regla con el que he hablado casi más de fútbol 

que con mi entrenador. El pesado que siempre tiene calor eso sí. Siempre en la calle y pasando 

frío por tu culpa y jodiendo los woks porque un día tuviste cagalerita. Momento para la historia 

el día de sin camisa en el bar de Manchester que ya no me acuerdo como se llama y que alguno 

de nosotros (no voy a decir quién pero creo que está bastante claro Josean) salió volando ayudado 

por el segurata. Hemos hecho grandes viajes juntos la verdad, que me encantaría que 

siguiéramos haciendo por lo menos una vez al año, porque está amistad que empezó en la 

Universidad no la vamos a perder nunca. También es verdad que hemos tenido momento malos 

en los que incluso no queríais aceptarme como VIP, pero al final el río siempre vuelve a su 

cauce y sé que nos quedan gordas juntos. 

Azkenik, eskerrik asko nire lagun asko eta askori eguna joan eta eguna etorri 

elkarrekin baikaude eta elkarrekin pasatako momentuak oso lagungarri dira baita lanerako ere. 

Askok ez duzue ideiarik ere lau urte hauetan zertan aritu naizen, baina beti esan izan duzue ez 

dudala ezer ere egiten eta denbora pasan nagoela unibertsitatean. Beti esan izan dizuedan bezala 

hitz egitea debalde da. Arduratu zaitezte zuen ingurua garbi edukitzeaz ;). 

Aita eta ama, zuek ere berdin. Ez dakizue zer egiten egon naizen lau urte hauetan, 

baina egia dena, biok asko maite zaituztedala da egunero elkarrekin gaudelako eta sarritan “a 

golpes” ibili arren, zuen laguntza eta konfiantza beti daukat hortxe. Momentu txar askotatik 

irteten laguntzen didazue eta beti bezala, oso momentu onak pasatzen ditugu elkarrekin. 

Eskerrik asko bihotzez!!! 
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PREFACE 

Environmental pollution is considered by the European Environment Agency, 

United States Environmental Protection Agency (US-EPA) and World Health Organization 

(WHO) one of the greatest problems that the world is facing nowadays. All the 

environmental compartments are more and more affected due to an endless increase in 

human activity. The life style that human beings are carrying out produces noise, light and 

chemical pollution that seriously threatens the quality of air, water and soil. 

The uncontrolled release of chemicals to the environment results in concentrations 

of those chemicals significantly higher than the background values considered as “natural”. 

Above certain threshold limits, the presence of those chemicals provokes toxic effects in the 

organisms living around. The term “contamination” is related to the presence of “high” 

(above the natural background values) concentrations of substances in the environment, 

whereas the term “pollution” refers to the introduction of harmful substances (with 

toxicological implications) into the environment. This differentiation is not of general use in 

the scientific community, but it is rather widely accepted. 

Amongst others, some metals and metalloids are chemicals able to cause serious 

problems to the environment. The anthropogenic inputs of metals and metalloids to the 

environment have grown constantly since the industrial revolution. Their most important 

features, and the main reason of being of high concern, are non-degradability and persistence 

in the environment. Furthermore, some metals and metalloids are highly toxic and their 

toxicity highly depends on their concentration and speciation in each specific compartment. 

In addition, the speciation of a metal or metalloid is influenced by the physical and chemical 

characteristics of the medium where it is present. 

Natural water bodies are one of the compartments more seriously affected by 

metal/metalloid contamination/pollution. In words of the World Health Organisation (WHO) 

“water is essential for life”. The amount of fresh water in earth is limited, and its quality is 

under constant pressure. Preserving the quality of fresh water is important for drinking-water 

supply, food production and recreational use. The quality of continental (lakes, rivers and  

underground water), oceanic and transitional waters is nowadays threatened by the direct or 

indirect release of chemicals like metals and metalloids all around the world. 
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Estuaries are important transitional water bodies that concentrate in their 

surroundings densely populated areas with important industrial, agricultural and urban 

activities. They constitute very productive areas which have been intensively exploited due 

to its high social and economic value. The ways that metals and metalloids of anthropogenic 

origin have to enter the estuary are multiples. Once in the estuary, they are subject of a wide 

variety of processes which extent depends on the highly changing characteristics of water. If 

they are not expelled to the ocean, metals and metalloids get stored in the bed sediments of 

the low part of the estuary in a more or less stable chemical form. Sediments have been 

frequently used to monitor the concentration of metals and metalloids in estuaries. 

At the same time, estuaries are extremely valuable from an ecological and 

biological point of view. They are necessary for the survival of many species of vegetation 

and animals like fishes, shellfishes and birds. The metal and metalloid content in organisms 

is proportional to the concentration levels in the water column. In addition, bioconcentration 

and biomagnification processes take place in the case of some hazardous materials like 

certain metals and metalloids. In fact, some organisms, such as molluscs and oysters, have 

been used as bioindicators of the metal content in water. 

Metals and metalloids are also widely emitted to the atmosphere from a variety of 

natural and anthropogenic sources. The WHO defines air pollution as the contamination of 

an indoor or outdoor environment by any chemical, physical or biological agent that 

modifies the natural characteristics of the atmosphere. Furthermore, the atmosphere is the 

layer which protects the earth and makes possible to humans and other organisms to live in 

it. Most of the metals and metalloids are emitted to the atmosphere as particles or attached to 

particles. Dry or wet deposition of these particles may occur in locations far away from their 

original source due to atmospheric transport by wind, for example, in high altitude remote 

mountains. High altitude mountain ecosystems have been consequently used to study the 

atmospheric contamination/pollution due to its high sensitivity to variations in atmospheric 

conditions. 

Forests are one of those ecosystems appropriate for environmental observations. 

Monitoring air quality in forests has been frequently attempted by sentinel organisms such as 

vascular and non-vascular plants. Plants spend their whole life cycle in a single place and are 

sensitive to contamination/pollution, reflecting the atmospheric characteristics of specific 

emplacements. Biomonitoring is the name given to this kind of studies, in which the quality 

biosphere is analysed using living organisms. 

High altitude remote lakes also constitute privilege environments to investigate the 

quality of air and, specifically, the amount and origin of metals and metalloids present in 

their waters and sediments. Since anthropogenic activities are scarce in their surroundings, 

the occurrence of chemicals above the natural values is assumed to arise from dry or wet 

deposition of those chemicals present in air which, in addition, may have been transported by 

the dominant winds from emission points situated at very long distances. Lakes are, 

consequently, very appropriate ecosystems to study long-distance transport processes in 

which chemicals like metals and metalloids are involved. 

Our research group has been investigating the occurrence of toxic chemicals in the 

environment for a long time. One of our most important research lines has focused in the 

study of metal and metalloid contamination/pollution in estuaries of the Basque Coast using 
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sediment samples. The situation about five years ago allowed our research group to expand 

its scope of action and start working, first, in estuaries of other world regions and, second, in 

mountain ecosystems like forests and high altitude lakes. This change was motivated by a 

number or research projects that were granted to the group and demanded to start working on 

these new scenarios. Part of these works and their results has crystallized in this PhD Thesis, 

whose general objectives can be listed as follows: 

1. To develop and apply new and already existing chemical and statistical tools to study the 

geographical distribution of metal and metalloid contamination/pollution in selected 

environments as well as its evolution in time. 

2. To investigate the toxicological implications that the presence of metals and metalloids in 

selected environments have on the organisms living in those environments. 

3. To discern between natural and anthropogenic origin of metals and metalloids in selected 

environments and to make hypothesis about their possible source. 

4. To compare the efficiency of different indicators to monitor metal and metalloid 

contamination/pollution in selected environments. 

5. To propose new analytical strategies for the analysis of emerging contaminants like 

nanoparticles in environmental samples. 

In order to achieve these objectives several specific works have been carried out. 

Both the methodologies used and the results obtained have been summarised in this 

dissertation. The document starts with a general introduction (Chapter 1) which refers to 

basic information on metals and metalloids and their behaviour in aquatic and atmospheric 

environments. It also reviews the most widely accepted methods to measure the 

concentration of metals and metalloids in environmental samples. The chapter finishes with a 

revision of the European Legislation in force that regulates the management of water bodies 

and air regarding chemical and biological pollution. A general chapter follows (Chapter 2) 

which precisely describes all the materials and methods used throughout the work. 

Afterwards, the dissertation is divided in two different sections; the first one is 

devoted to the study of atmospheric metal contamination/pollution in mountain ecosystems, 

and the second one summarises all the work carried out in estuaries. 

The first section starts with a short introduction (Chapter 3) that broadly describes 

the mountain range of the Pyrenees and some important points regarding the occurrence and 

chemistry of metals and metalloids in some of their high altitude lakes and forests, and 

consists of two chapters. The first one (Chapter 4) describes the work carried out in 18 high 

altitude lakes of the Pyrenees, all of them above 2000 m of altitude. Surface sediments and 

sediment cores from these lakes were used to investigate the geographical distribution of 

metals and metalloids along the Pyrenees and the historical records of pollution deduced 

from the depth profile of metals and metalloids in the cores. In the second one (Chapter 5), 

the efficiency of mosses, lichens and beech leaves as bioindicators of atmospheric metal 

contamination in the Irati Forest is compared and critically discussed. In addition, the 

geographical distribution of metals and metalloids in the forest and their possible origin is 

also studied. 
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The second section refers to metal and metalloid occurrence in estuaries. It starts 

with a general introduction (Chapter 6) about estuaries and the behaviour of metals and 

metalloids in them. In Chapter 7 the specific problematic of the estuary of the Tubarão River 

(Santa Catarina, Brazil), seriously affected by coal mining activities, after typical tropical 

strong rainfall events is investigated, in order to study the mobility of metals and metalloids 

along the water catchment, and between sediments and the water column. Chapter 8 

describes the geographical distribution of metals and metalloids in surface sediments of the 

Cávado estuary (Esposende, Portugal), a relatively clean area close to Porto in which only 

agricultural and recreational activities take place nowadays. In Chapter 9, the results 

obtained after four sampling campaigns in 2009, 2010, 2011 and 2014, in which surface 

sediments were collected at 50 points of the estuary of the Nerbioi-Ibaizabal River (Bay of 

Biscay, Basque Country), are summarised. The analysis of the samples to measure the 

concentration of metals and metalloids allowed us arriving to conclusions about their 

geographical distribution and the evolution in time within the estuary. A general survey on 

the occurrence of metals and metalloids in the estuary of the Oka River, located within the 

limits of the protected area of the Biosphere Reserve of Urdaibai (Bay of Biscay, Basque 

Country), and the toxicological implications in autochthonous oysters derived from their 

presence is presented in Chapter 10. In fact, cell and tissue level biomarkers measured in 

oysters are used as bioindicators of the overall health status of the estuary. To finish this 

section, in Chapter 11, surface sediments from the Hugli River, the major tributary of the 

Ganges River (India), were analysed to check the possible presence of silver nanoparticles in 

theirs sediments. The main part of this chapter is devoted to the development of a 

methodology to extract silver nanoparticles from sediments and to detect and characterise 

them using different analytical approaches, such as single particle Inductively Coupled 

Plasma Mass Spectrometry (spICP/MS). 

The final conclusions of the work have been finally summarised in Chapter 12. 

The next research projects have partially funded the work described in this 

document: 

- Oka ibaiaren itsasadarreko kutsadura metalikoaren azterketa biogeokimikoa (OKAMET, 

UNESCO 09/23). Funding organisation: Cátedra UNESCO de “Desarrollo sostenible y 

Educación ambiental” de la UPV/EHU. 

- Red de observaciones atmosféricas medioambientales del Pirineo (PYNATEO, CTP 

2010/P03). Funding organisation: Working community of the Pyrenees (CTP). 

- Impacto de la contaminación metálica difusa (atmosférica) y local (procedente de 

actividades mineras) sobre comunidades microbianas de lagos pirenaicos (METMIC, 

CTP 2012/P08). Funding organisation: Working community of the Pyrenees (CTP). 

- Global change and heritage (UFI 11/26). Funding organisation: Research and formation 

unit (UPV/EHU). 

- Investigación e innovación analítica (IBeA) en medio ambiente físico, urbano construido, 

recursos naturales y salud (grupo consolidado tipo A) (GIC12/151). Funding 

organisation: Basque Government. 
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- Observatoire de recherche sur la qualité de l´environnement du Grand Sud-Ouest 

Européen (ORQUE SUDOE, SOE3/P2/F591/5). Funding organisation: the European 

Commision (Interreg IV B Programme). 

-  Critical Evaluation of Available Toxicity due to Silver Nanoparticles (AgNP) in Indian 

Sundarban Mangrove Wetland, a UNESCO World Heritage Site. Funding organisation: 

UKIERI, UK-India Education and Research Iniciative. 

Most of the works of this PhD Thesis has been carried out in the Department of 

Analytical Chemistry of the Faculty of Science and Technology of the University of the 

Basque Country (UPV/EHU) in the framework of the Environmental Contamination and 

Toxicology Doctorate Programme (CTA). The stay to meet the requirements for the 

International PhD mention was carried out under the supervision of Helfrid Schulte-

Herbrüggen and Margaret Graham, at the Institute for Infrastructure and Environment, 

within the School of engineering at the University of Edinburgh. Thanks are due to all the 

people who provided us with samples or collaborated in their collection, and to those who 

helped in the interpretation and discussion of certain results, especially Dr. Tedy Stoichev 

and Dr. Paulo Morais, from the University of Porto (Portugal), Dr. Luis Felipe Oliveira 

Silva, from the Centro Universitário La Salle (Brasil), Dr. Santosh Kumar Sarkar, from the 

University of Calcutta (India), Dr. Jesus Miguel Santamaria and Dr. David Elustondo, from 

the University of Navarra (Basque Country), David Amouroux, from the Université de Pau 

et des Pays del’Adour (France), Dr. Luis Camarero, from the Consejo Superior de 

Investigaciones Científicas (Spain), Dr. Jean Christophe Auguet, from the Université de 

Montpellier (France), Dr. Aridane Gonzalez, nowadays in the Université de Brest (France), 

and Beñat Zaldibar and Ainara Gredilla, from the University of the Basque Country (Basque 

Country). The author wants finally to thank the University of the Basque Country 

(UPV/EHU) for his pre-doctoral fellowships. 
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CHAPTER 1 

GENERAL INTRODUCTION 

1. Metals, metalloids and heavy metals 

A metal is a chemical element which loses electrons easily, creating positive ions 

(cations) and in which there are metallic bonds between atoms. Metals are one of the four 

basic element groups, the other three being noble gases, metalloids and non-metals (Figure 

1). Metals' main characteristics include their hardness, shine, thermal conductivity and 

electrical conductivity. Metals' other characteristics include malleability, fusibility and 

considerable ductility (Prasad, 2001). 

 

Figure 1. Periodic table of elements. 

Most elements in nature are metals. Seven of the main elements found on the 

earth's surface are metals: aluminium, iron, calcium, sodium, potassium, magnesium and 

titanium (Giddings, 1973). There are also seven metalloids: boron, silicon, germanium, 

arsenic, antimony, tellurium and astatine. Metalloids are distinguished by having both metal 

and non-metal characteristics. They are semiconductors, very unstable in form and can be 

either shiny or opaque (Prasad, 2001). Heavy metals can also be distinguished between the 

metals. Most of them are highly toxic and can harm the environment considerably. Heavy 

metals' main distinguishing characteristic is their high density, above 6 g/cm
-3

. The metal Ti 

and the metalloid As are the only exceptions, being classified as heavy metals even though 

their densities are 4.5 g/cm
-3

 and 5.7 g/cm
-3

 respectively (Manahan, 2007). All transition 

metals can be classified as heavy metals. 

Metallic elements, in both biological and chemical terms, are no degradable and, 

consequently, are highly durable in the environment. This, along with their toxicity, can 
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cause serious problems. Metallic compounds, on the other hand, can be degraded, but the 

new metal-containing substances which are obtained through degradation are often even 

more toxic. Metals' toxicity varies depending on its concentration in each environment and 

its speciation. Each metal's own characteristics and physical-chemical conditions of the 

surroundings establish each metal's speciation. As an example, mercury speciation in a water 

system is shown in Figure 2 (Xavier Domènech, 2006). 

 

Figure 2. Hg speciation and biogeochemical cycle in a water system. 

2. Toxicity of heavy metals 

Several metals are necessary for animals' and plants' survival. These are called 

essential metals and are needed in precise quantities and must be present between their 

lowest and highest concentration levels (Sarkar, 2005; Yang et al., 2015). They include Mn, 

Mo, Cu, Co, Zn and V; Ni, Fe, Sn and Cr are essential metals just for animals. Fe, for 

example, is indispensable for humans for oxygen transport, any shortage in this metal leads 

to anaemia. Zn is present in more than 100 enzymatic reactions in the human body. Co is an 

essential metal which is present in vitamin molecule B12, which is why B12 is also called 

cobalamin and it is needed for the brain and nerve systems to operate properly. However, 

these elements too become toxic when they exceed a maximum level of concentration 

(Sarkar, 2005). 

Human bodies do not find it easy to metabolise heavy metals and sometimes are 

unable to. When heavy metals cannot be eliminated from the body, they concentrate in cells 

and tissues, preventing the cells' activity and harming DNA. Hg, Ni, Pb, As and Cd are the 

most toxic heavy metals, they play no role in the human body. Many research projects have 

proven that toxic metals have a harmful effect on all of the body's cells. As well as causing 

neurological, immunological and endocrine damage, they also harm the digestive and 

breathing apparatus (Lippmann, 2008). 
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In water systems metallic element toxicity for plants and microorganisms depends 

on the concentration, speciation and availability of each metal. Metal availability is limited 

when connected with sediments of small particles with many adsorption points. These 

sediments usually have large amounts of clay and organic matter. At the same time, in 

neutral or neutral alkaline pH waters, metal elements' precipitation is favoured, limiting its 

availability. The presence of anions created by insoluble salts in water also contributes to 

metal elements’ immobility and, consequently, their toxicity is reduced. The formation of 

metal oxide in oxygenated places is another factor which limits metal availability (Merian, 

1991). 

3. Ways in which metals reach the environment 

Metals' and metalloids' origin in the environment can be natural or anthropogenic. 

The substrate lithology is the most important natural source. The contribution of metals and 

metalloids as a result of rock erosion depends on each area's lithology composition. Al, Ba, 

Fe, Mn and V are the metals which reach surface and underground waters in the greatest 

quantities coming from the lithology (Garrett, 2000). Volcanic eruptions, too, are one of the 

most important natural sources of metallic elements, mostly affecting the atmosphere. 

Eruptions have considerable impact on the environment's metal and metalloid chemistry 

balance. As, Sb, Hg, Cu, Pb, Se and Zn are the metals emitted by volcanoes in the greatest 

quantities. Aerosols created by the sea are also natural sources of metals. Metals in aerosols 

can travel long distances due to the wind. Finally, particles of biological origin are another 

source of metals: for instance, pollen, bacteria and viruses from plants (Henley and Berger, 

2013). 

 

Figure 3. The main anthropogenic origins of metals affecting the environment. 
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The amount of metal and metalloids of anthropogenic origin in the environment 

has grown constantly since the industrial revolution. The ways of entry for metals of 

anthropogenic origin into the environment can be seen in Figure 3. Nowadays, the main 

anthropogenic sources are the followings (Xavier Domènech, 2006): 

- Mining: One of the main sources of metals, above all As, Cd, Cu, Ni, Pb and 

Zn. These metals can be found in mines themselves or in mining-related 

activities. 

- Mineral smelting: Many metals are emitted to the atmosphere during the 

process of extracting metal from minerals. During these processes metals such 

as As, Hg, Cd, Pb and Tl are emitted. 

- Metallurgy: Metal particles are emitted to the atmosphere during the thermal 

processes. In addition to this, the solid waste material which is produced 

includes many metals, mostly Cr, Cu, Mn, Pb, Sb and Zn. 

- Other industrial activity: Metal coating, chemical painting, plastic materials, 

catalysing, electronics and electrode industries also emit large quantities of 

metal, amongst others: Cu, Sn, Cr, Cd, Ni, Hg, Pt, As, Sb, Se, Mo and Zn. 

- Waste management: Metals such as Cr, Cu, Mn, Ni, Pb and Zn are emitted to 

the environment during solid waste combustion, waste disposal area leaching 

processes and waste water treatment at water treatment plants. 

- Corrosion of metal structures: Metals are also given off into the environment 

as a result of instability which unstable environmental conditions produce in 

materials. Fe, for instance, can be given off when construction materials 

corrode; Cu and Pb are given off by chimneys; Cr, Ni and Co by steel; Cd and 

Zn by steel materials coatings; Cr and Pb when paint degrades. 

- Farming and livestock farming: As, Cu and Zn are used extensively as 

animal feed additives and, consequently, are to be found in livestock farming 

waste. The fertilisers and pesticides used in agriculture also contain As, Cu, 

Mn, Pb, Zn and other such metals. 

- Forestry management, logging and timber industry: As, Cr and Cu are the 

main metals and metalloids emitted. They are used to protect wooden 

materials. 

- Fossil fuel combustion: Large quantities of metal are given off into the 

atmosphere during fuel combustion, mostly Cd, Zn, As, Sb, Se, Cu, Mn, Ni, Cr 

and V. 

Nowadays, large amounts of metal and metalloid of anthropogenic origin reach the 

environment due to contamination. Consequently, the metal concentrations which can be 

measured in environmental samples are considerably higher than those natural values 

(contamination). And sometimes the presence of metal in the environment can cause serious 

problems of toxicity for living organisms (pollution). 
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4. Metals and metalloids in the environment 

Water, atmospheric and earth systems are amongst the most important in the 

environment. The quality of these three systems has a direct effect on human survival and 

quality of life. On the one hand, we need uncontaminated land to be able to grow food for 

human consumption. On the other hand, we have to keep rivers, lakes and underground 

aquifers clean in order to satisfy our water needs. Finally, we need air of at least minimum 

quality in order to breathe. It is important to keep the water, land and atmosphere as 

uncontaminated as possible. Any one of these systems being harmed can have different 

impact on different ecosystems. Metal contamination is one of these problems. After 

reaching the environment, metals and metalloids can undergo different physical-chemical 

processes depending on their geographical distribution and speciation. In order to be able to 

quantify metal pollution in the water, in soil and in the atmosphere, measurements of 

different types of metal and metalloid are indispensable. Being aware of metal's natural 

cycles is also very important in order to foresee the damage they can cause and, as far as 

possible, try to prevent it from happening (Merian, 1991). In the following section we will 

summarise the main characteristics of metal and metalloid behaviour in aquatic systems and 

the atmosphere. 

4.1. Water systems 

Obtaining quality water is very important for human beings. Polluted drinking 

waters can produce many diseases and this has had a clear influence on the population of 

many parts of the world. At present, this problem has still not been solved in many countries. 

In advanced countries, however, the distribution of quality drinking water has been ensured. 

So maintaining the quality of the natural water supply, avoiding chemical contamination, is 

an important subject in today's society (Manahan, 2007). There are organic and inorganic 

chemical contaminating agents, and heavy metals are the most important in the latter group. 

As, Cd, Cu, Cr, Fe, Hg, Mn, Mo, Ni, Pb, Se and Zn are the most important metal and 

metalloids which appear as a result of contaminating natural water (Merian, 1991). 

The ways in which metal elements usually reach an aquatic system are the 

following: 

- Atmospheric deposition: Dry or wet deposition of metallic elements of 

natural or anthropogenic origin in the atmosphere. 

- Leeching in rocks, the earth and waste materials: Leeching of natural 

(depending on each place's lithology) or anthropogenic (mining, use of 

fertilisers, industrial activity, etc.) materials in the earth or on the earth's 

surface (Bradl, 2005). 

- Direct waste material spillage: Waste materials from urban areas, livestock 

farming, farming and industry which are spilled straight into different water 

systems. 

Metals and metalloids behave as ions dissolved in water, most of them bonding 

with other ions or molecules. Metals' stable state depends on the surrounding physical-

chemical conditions. In order to reach that situation, metals go through numerous reactions 

and processes. These reactions and processes include redox reactions, adsorption into other 
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water particles and desorption from particles, precipitation and dissolving processes (Benes 

and Steinnes, 1995). In each case, the series of processes and reactions which can take place 

depend on the metal's own characteristics and the physical-chemical properties of the 

surrounding mediums (Manahan, 2007; Xavier Domènech, 2006). In some water systems, 

particularly in estuaries, physical-chemical characteristics change considerably for short 

periods of time. Factors with the greatest influence include the total dissolved solids, salinity, 

temperature, pH, redox potential, the amount of suspended particles and dissolved oxygen 

(van Ryssen et al., 1999). 

Water pH is a very important characteristic in defining metal elements' speciation. 

In acid neutral water, metals can be present as hydrated metallic cations or complexed by 

other complexing agents in solution. Complexing agents may be organic or inorganic. 

Complexed metals can be more easily adsorbed onto suspended solid particles as these can 

be of different sizes and types (Censi et al., 2006). The adsorption of complexes, however, 

happens more easily with clay particles or humic acids (Menicagli et al., 1988). Physical 

interaction strength between metals and humic acids decreases in the following order (Xavier 

Domènech, 2006): 

Fe
2+

> Pb
2+

> Cr
3+

> Hg
2+ 

> Cd
2+

> Cu
2+

> Mn
2+

 

Depending on the size and density of the complexes formed by adsorption, metals 

can be dissolved or precipitate into the sediment due to flocculation process. In highly acidic 

water, metals can be replaced by H
+
 in adsorption sites limiting the metallic flocculation. If 

the system's pH is acidified, the metal may be redissolved, sediment becoming a secondary 

source of metals (Xavier Domènech, 2006). 

In water with higher pH, metallic cations tend to have higher precipitation as 

insoluble hydroxides. Many anions, carbonates, phosphates and sulphates, amongst others, 

encourage metal precipitation. In water with slightly higher pH than neutrality, the 

concentration of metal tends to be lower. Thus, the lowest Al concentration is around pH 6 

and for Fe, Pb, Ni and Cd are, respectively, around pH 8, 10, 10.5 and 11. In alkaline water, 

on the other hand, negatively charged hydroxy complexes are considerable and then metal 

concentration increases (Al-Wabel et al., 2002). 

Metal redox reactions are also significant in water systems. Several metals' 

mobility increases in anaerobic conditions. Fe and Mn, for instance, are present in the lowest 

oxidation states in reducing environments, forming dissolved metallic cations (Fe
2+

 and 

Mn
2+

). At the same time, in water with more oxygen and environments which favour metal 

oxidation, metals are present in the highest oxidation states, forming insoluble oxides (Fe2O3 

and MnO2). Zn, Cd, Pb and Ag, for instance, form insoluble sulfides in anaerobic conditions 

by reducing of sulphates. In these last conditions metals are easily trapped and remain in 

sediment or in soil (Menzies, 2007; Schlieker et al., 2001). 

Therefore, metals can be dissolved in the water system, they can be attached to 

particles in suspension or deep sediment depending on their own characteristics and 

environmental physical-chemical conditions. Deep sediments are important in aquatic 

systems (Ng et al., 1996). Transition metals such as Al, Mn, Fe, Cu, Zn and Ti, for instance, 

use to be present in sediments as oxides and aluminosilicates (Xavier Domènech, 2006). One 

of the main features of sediment is the distribution of the size of particles, in other words, 

texture. There is usually a greater concentration of metallic elements in the fine fraction of 
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the sediment (<63 µm) (Forstner, 1989). There are usually more places for interaction 

between sediment and cations in fine particles than in large particles. Water systems surface 

sediments, which are mostly made up of small particles, have often been used to measure the 

contamination level (Forstner, 2004). As explained above, metals which are accumulated in 

sediments can be redissolved in desorption processes if physical-chemical conditions change 

(He et al., 2006). Both biological and chemical mechanisms can be behind this process 

(Pagnanelli et al., 2004). Salinity is a parameter which has considerable influence on the 

desorption process. On the one hand, in water with high salinity Na
+
 and K

+
 cations can 

replace metal adsorption sites in sediments. On the other hand, Cl
-
 anions can create soluble 

complexes with several metallic elements (Comans and Van Dijk, 1988; Paalman et al., 

1994). Amongst other factors which favour the redissolution of metal from sediments are pH 

decreases, organic matter oxidation and the presence of complexing agents (Schlieker et al., 

2001). Due to these factors, the mobility of the sediments metals could be affected by 

biological activity, the metals own properties, interaction between liquids and solids and 

water's physical-chemical properties. 

4.2. The Atmosphere 

The atmosphere is another important part of the environment for human beings. It 

is the layer which protects the earth and makes it possible to live on the earth. It is the source 

of CO2, which plants need for photosynthesis, and of O2, which humans need for breathing. 

It is another important factor in water's hydrological cycle, which transports water from the 

oceans to the land. Unfortunately, the atmosphere is also harmed by several chemical 

contaminating agents (Manahan, 2007). The World Health Organization (WHO) has blamed 

indoor and outdoor air pollution for the death of more than 2 million people (Gordon et al., 

2004). The main contaminating agents which can be found in the atmosphere are particulate 

matter (PM), carbon monoxide, nitrogen and sulphur oxide, ozone and organic volatile 

compounds. Most deaths are caused by particulate matter which is smaller than 10 μm in 

diameter (Donaldson et al., 2000). 

When talking about atmospheric contamination, it is worth differentiating between 

emission and inmission. The concentration of chemical contaminating agents emitted into 

the atmosphere by a source of contamination is known as emission and is measured at the 

contaminating agent's point of outlet. On the other hand, inmission is the chemical 

concentration in a particular atmosphere. The concentration values given to these two terms 

are usually completely different. Inmission values are not only affected by emission values. 

They are also affected by all the physical-chemical processes which suffer the contaminating 

agents during atmospheric transport and by the climatologic conditions of the area (Orozco 

et al., 2003). Climatic factors are variable and, depending on them, the damage caused by 

pollution is less or more serious. Atmospheric chemical contaminating agents can be 

transformed by many processes and different species of higher or lower toxicity can be 

created (Junior et al., 2013). Furthermore, differences in inmision values can be identified 

even in two places located at the same distance from a source of contamination due to 

orographic differences (Bacardit and Camarero, 2010). With regards to the chemical 

reactions which a contaminating agent may undergo in the atmosphere, it must be taken into 

account that the atmosphere is an oxidant environment. Radiation from the sun is another 

important factor. There are many different types of chemical reaction mechanisms which 

take place in the atmosphere and, consequently, many new species of contaminating agents 

can be created too (Meraz et al., 2015). 
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Metals and metalloids mainly occur as particles or attached to particles in the 

atmosphere. Only a very few, mercury, for instance, are found in gaseous form. Particulate 

matter, mixed with small drops of liquid, make up atmospheric aerosol, which moves 

throughout the atmosphere. The symbol PM is used when talking about particulate matter. 

The numbers next to the PM symbol show particles' diameter (in µm). In general, fine 

particles (<PM2.5) and coarse particles (>PM2.5) are differentiated. PMT is used for the total 

amount of particles. First level particles are those which are emitted directly into the 

atmosphere while second level particles are those created as the result of reactions and 

processes during transport in the atmosphere (Orozco et al., 2003). 

The damage which metallic particles of the atmosphere can cause depends on the 

particles’ size and composition (Pirani et al., 2015). Metals in particles can be found in 

atoms, ions or molecules (salts or oxide). There are many metallic oxide particles (Elom et 

al., 2014; Liang et al., 2015). Most of them are the result of fossil fuel combustion. As an 

example, when pyrite (FeS2) containing coal is burned Fe3O4 is emitted to the atmosphere. 

Organic vanadium, which is used as a fuel supplement, becomes vanadium oxide (V2O5) 

during combustion processes. During the combustion of carbon and other fossil fuels, many 

Al, Si, Ca, Fe, Na, Mg and K elements oxide particles are created. Even smaller As, Sb, Se, 

Cd, Pb, Zn (in large quantities) and Ba, Be, Cr, Sn, Ni, Sr, U, V (in small quantities) 

element-rich particles (Coles et al., 1979). Hg is also emitted when carbon is burned, mostly 

as a gas. Pb, which is used in painting and as an antiknock agent in petrol, is also emitted 

into the atmosphere in particulate matter (Berg et al., 1995). As a last example, particles rich 

in Na are formed in sea aerosols (Schill et al., 2015). 

The size of particles, as mentioned above, is another important factor in addition to 

the particle chemical composition regarding the damages which particles can produce. Size 

also affects the time which particles remain in the atmosphere. Particles can have different 

geometrical shapes, but when we refer to size in this context, all particles are spherical. The 

size of particles varies from 10
-3

 to 10
3
 µm (Orozco et al., 2003) and can be classified in 

three groups: 

- Aitken particles or fine particles: 0.1 µm or smaller in diameter. 

- Medium particles: These exist in suspension in the atmosphere and their size 

is between 0.1 and 10 µm. 

- Large particles: Their diameter is greater than 10 µm. 

Fine particles move through the atmosphere randomly. They often collide and, 

consequently, clots are formed. Large particles, on the other hand, last for short periods in 

the atmosphere and often form clots (Ervens, 2015; Wallace et al., 2013). The particles 

which spend longest in the atmosphere are medium particles, between 0.1 and 10 µm. They 

are classified as PM2.5 and PM10. PM2.5 particles are more harmful due to their smaller size 

(Heo et al., 2015). 

Suspended particulate matter in the atmosphere, after longer or shorter periods, end 

up falling onto the earth or into the water system. Fine particles clot before falling and large 

particles fall directly. There are two types of particle deposition: 
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- Dry particle deposition: particles fall as a result of the earth's gravity, either 

directly or after hitting something in their path. 20% of particles in the 

atmosphere are eliminated due to this type of deposition (Sabin et al., 2006). 

- Wet deposition: helped by rain, hail or snow. This type of deposition is the 

most common (Injuk and Van Grieken, 1995). 

5. Analysis of metals and metalloids in environmental samples 

As stated above, it is important to monitor metallic contamination in different 

environmental compartments. In order to do so, and after designing an appropriate 

monitoring programme, samples must be collected and analysed. Collecting samples, too, 

must be done properly, making sure that representative samples are taken. Collecting 

samples, in fact, is one of the most important stages of the analytical process. Mistakes made 

in the sampling are reflected in the final results and, consequently, the diagnosis of the metal 

contamination under studied area may be wrong. After sampling all the samples must be 

carried to the laboratory and then analysed. Samples transport and storage must be correct, in 

order to avoid contamination, transformation or losing. As far as the treatment of samples in 

concerned, acidification, filtration, water elimination, the fractioning of different sizes and/or 

leaching with appropriate liquids must be carried out (Jones, 1995). Finally, analytical 

detection and quantification are usually carried out using an instrumental technique, the most 

frequently used techniques being voltammetry, atomic absorption/emission and mass 

spectrometry (Van Loon, 1985). The main analytical techniques used for metal analysis in 

aquatic systems and the atmosphere are explained in the following sections. 

5.1. Sampling and sample treatment 

5.1.1. Water systems: water and sediments 

Natural water forms highly dynamic systems. In addition to surface water, other 

types of water include rain, fresh water (in streams, lakes and rivers), salt water (in the sea) 

and transitional water (in estuaries). Both microorganisms and organic and inorganic 

materials can be found in solution and in suspension in water. All of these must be taken into 

account when designing an appropriate sampling process (EPA, 2007a). Throughout the 

process of sampling, and afterwards, there may be changes in the samples' composition 

and/or characteristics, thus losing their original representability. There may be losses of 

analytes due to precipitation, complexation and adsorption processes and they may also get 

adsorbed onto containers walls. Either single or composite samples can be collected. Passive 

sampling is another option (Jones, 1995). 

As mentioned above, samples may cease to be representative if they are 

contaminated. Positive contamination (when samples' concentration is increased), negative 

contamination (when the concentration decreases) and pseudo contamination (when other 

compound not being the analyte is added) can all take place (Gasparon, 1998; Van Loon, 

1985). Positive and negative contaminations are the most common risks. Positive 

contamination is the most frequent type. The organic matter present in water can also cause 

problems complexing or adsorbing the analyte. 

The characteristics of the containers used for water samples are also very 

important. For analysing metal elements in water the most appropriate containers are plastic, 
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and specially polytetrafluoroethylene (Teflon). Borosilicate containers can release Si and Na 

into samples. Metal can be adsorbed into these container's walls producing negative 

contamination. Polypropylene containers are cheaper than glass or Teflon ones, and glass 

containers are fragile (Gasparon, 1998). Teflon caps are also preferred. 

Cleaning of materials to be used during analysis should also be taken into account. 

Metal impurities can cause positive contamination in Teflon containers during their 

production and supplements used as stabilizers can also cause negative contamination or 

pseudo contamination. Because of this, plastic container, and, in general, any type of 

material or container, should be cleaned in acid baths (HNO3 1 M) before use (Martínez, 

2005). 

In order to maintain the speciation of the analytes in the sample and minimise 

negative contamination, acidifying samples using sub-boiled HNO3 (pH 1-2) is highly 

recommended. Precipitation of analytes and their adsorption to container walls is avoided in 

this way. Furthermore, in acidic conditions micro-organisms' biological activity is stopped 

too (Liess and Schulz, 2000). Before acidifying, the water sample is filtered through a 0.45 

µm diameter filter, which separates dissolved metal fraction and metal fractions in 

particulate matter (Gasparon, 1998). After collecting the sample and pretreating it, analysis 

of the metallic elements should be carried out as quickly as possible. The water sample is 

usually kept at 4ºC and in the dark until analysis (Martínez, 2005; Van Loon, 1985). 

Sediments have also often been used in order to study metallic contamination in 

aquatic systems (Gredilla et al., 2013; Venkatramanan et al., 2015). Surface sediments (up to 

4 cm) provide information about recent contamination. By analysing surface sediments in a 

particular geographical area, the spatial distribution of contamination in that area can be 

examined. At the same time, if the past register for the metallic element is to be studied, deep 

cores of sediments have to be taken. The concentrations from deeper samples of sediment 

cores provide reliable background values (Alemayehu et al., 2014; Camarero et al., 1998). 

When it is possible (when the sediment is exposed to the air and visible), samples can be 

collected by hand using appropriate gloves and plastic spatulas. When there is a layer of 

water over the sediment, dredges or similar equipment must be used, normally using a boat. 

There are many types of dredges, the most commonly used ones being Birge-Ekman, Ponar 

and Shipek (these are appropriate when there is not much current, above all in ports and 

lakes), and Van Veen (when there is a strong current) (Figure 4). To collect sediment 

columns, on the other hand, empty plastic tubes of different diameters and lengths are used. 

On its way down into the water it allows the water to go through the tube and they have a lid 

at the top, which is open. Once the tube is submerged in the sediment, the lid is closed and 

the tube, now full of sediment, is pulled up using a piece of string or rope. Amongst the tools 

used for collect sediment cores as samples, the most commonly used are manual tools, 

gravity tools, box-like tools, piston and vibration tools (Figure 5). Sediments in direct 

contact with sampling tools must not be taken in order to avoid contamination and sediment 

must be manipulated as little as possible. When more than one sample has to be taken, the 

tools to be used should be cleaned using the water in the surrounding area (Mudroch and 

Azcue, 1995). 
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Figure 4. a) Birge-Ekman dredge, b) Ponar dredge and c) Van Veen dredge. 

 

 

Figure 5. Tools for collecting sediment cores: a) hand tool, b) Kajak-Brinkhurst gravity tool, 

c) box-like tool, d) piston-type tools and e) vibration tool. 

Positive or negative contamination can take place while samples of sediment are 

being transported to the laboratory. The use of metal containers must be avoided. Teflon is 

recommended, but polypropylene, polyethylene and borosilicate containers can also be used. 

With sediments, cleaning the containers is not as important as it is when analysing water 

because the concentration of metal is far higher. Teflon material which is going to be in 

contact with sediments, for instance, must first be cleaned using water and no phosphates 

soap. After removing the remains of the soap with water, it is kept in an acid bath (HNO3 

6M) for 72 hours. Then it is cleaned using distilled water and, finally, dried in a particle-free 

atmosphere (Van Loon, 1985). 
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95% of the surface sediments is water. So the first thing to do in the laboratory is to 

dry the sediment's humidity off in a clean atmosphere, in an oven or by freeze-drying. The 

drying process in air is longer and there is greater risk of the sample being contaminated. But 

it is the simplest and cheapest method. Oven dried sediments are put in the oven at 100-

110ºC for the required time. If there are volatile metallic elements amongst the analytes, 

lower temperatures must be used to avoid losses (Tuncel et al., 2007). When freeze-drying is 

used, the sediments must first be frozen and then they are kept at between -40 and -50ºC and 

0.01 and 0.05 Torr for the time needed for the water to be eliminated by sublimation. 

Depending on the characteristics and quantity of the sample, freeze-drying may take between 

24 hours and 14 days. With freeze-drying, volatile metallic element loss is minimised as the 

process is carried out at a very low temperature. This also prevents aggregation between 

particles. The cost of freeze-drying, both in energy consumption and in the tools required, is 

greater than that of other methods used for drying samples (Mudroch and Azcue, 1995). 

Once the sediment has been dried, the sample can be divided into different 

fractions by sieving. Usually metals and metalloids are measured in fractions of less than 63 

µm. This fraction, with greater surface density, is made up mostly of mud and clay (Luoma 

et al., 1990). After homogenising the dry fraction to be analysed, it must be stored correctly 

way until analysis, trying to prevent transformations, oxidations and volatile elements losing 

due to micro-organisms activity.  Ideally, samples should be kept in completely closed 

containers to avoid contact with oxygen. The most important parameters for storing 

sediments are temperature and time. At low temperatures biodegradation and the loss of 

volatile elements are minimised. On the other hand, the sooner the analysis is carried out 

after the sampling, the more reliable the results obtained will be (McManus et al., 1985). 

With regards to sediments treatment, if the analytes' total concentration is to be 

measured, then the sample must be totally dissolved using hydrofluoric acid or fusion 

techniques. For samples fusion with lithium metaborate or alkaline metal hydroxides mixed 

with sodium peroxide are used (Mudroch and Azcue, 1995). This technique, however, is 

seldom used because solutions with a lot of mineral salt are obtained, which increases the 

possibility of interference in the detection process. The basic component of the sediment, 

silicate, can also be decomposed using hydrofluoric acid, making it possible to measure the 

total concentration of metal in the sample (Scancar et al., 2000). Sometimes mixtures of 

acids, which make it possible to oxidise the sulphides and organic matter present in the 

sample, are used to extract metals from sediments. These mixtures include nitric acid and 

perchloric acid (with hydrofluoric acid or without) and nitric acid/hydrofluoric acid. At the 

same time, when adsorbed metals, metals bonded to carbonates or sulphides and metals 

precipitated as oxides or hydroxides are to be analysed (acid fraction or pseudototal) 

mixtures of acids which allow sediment oxidation are used (Ongeri et al., 2014), mostly aqua 

regia, a mixture of hydrochloric acid and nitric acid (1:3). Nowadays the method most used 

to extract metals from sediments, EPA 3051 A, involve samples being heated in aqua regia 

in a microwave oven (EPA, 2007b). In this way the amount of metals and metalloids 

recovered is a higher fraction than that available for plants or microorganisms. Sequential 

extraction of sediments is also carried out. In order to perform sequential extractions, 

mixtures of weak acids, acetic acid and EDTA are used in subsequent extractions, which 

allow metal speciation analysis. The best known and most widely used methods are those 

proposed by the BCR and Tessier (Rauret et al., 1999; Tessier et al., 1979). 
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5.1.2. Biomonitoring metallic contamination in air 

Contamination in the atmosphere can be monitored in different ways, using 

passive, active, automatic or sensor samplers. In passive sampling, analytes are directly 

absorbed or adsorbed on solid supports. Sampling can last from few hours to several years 

(Tuduri et al., 2012). In active sampling, on the other hand, the atmospheric air to be 

analysed goes through a filter (to separate the particles in suspension) using electric energy 

and, then, through a solid support on a column (in order to attach the metals which may be 

present in the gaseous phase). With this method daily averages can be measured. Active 

sampling is appropriate for gases and particles (Mathe et al., 1998). Automatic sampling is 

the most expensive method, but it also provides the best results. Automatic sampling allows 

reliable analysis of many chemical contaminating agents in a short period of time. Sensor-

based sampling is based on spectrometer technique (Roeva et al., 2015). 

The most used method to study atmospheric contamination is the active sampling. 

Recently, passive sampling has also become more widely used, using artificial tools (dust 

fall filters (DFF) (Beamer et al., 2014), for instance) or sentinel organisms. Using sentinel 

organisms is cheap and reliable. Many types of vegetation have been used to investigate 

metallic element deposition, accumulation and distribution, amongst others lichens (Marques 

et al., 2004), moss (Fernandez et al., 2002) and bark and leaves of trees (Amores and 

Santamaria, 2003). Vegetation is affected by changes in environmental physical-chemical 

characteristics, including atmospheric characteristics and chemical composition. 

Biomonitoring is the name given to study biosphere contamination and quality 

using living organisms. There are several advantages of this technique: in most environments 

it is possible to find a biological organism which is in contact with its surroundings; in most 

cases it is easy to take these kinds of samples; and, compared with other techniques, 

biomonitoring is cheap (Wolterbeek, 2003). Biomonitoring can be direct or indirect. In the 

former, the concentration of contaminating agents accumulated on the organisms 

(bioaccumulator) is measured. In the latter, the changes in living organisms' state brought 

about by the presence of chemical contaminating agents are quantified (Markert et al., 1997). 

In direct biomonitoring, work can be carried out using bioaccumulators which grow in the 

study area or control organisms which have grown in a clean environment and are 

transplanted to the study area. For instance, uncontaminated moss or lichens can be 

transplanted to a contaminated area, controlling the time during which bioaccumulators are 

exposed (Ceburnis and Valiulis, 1999). 

The organisms most commonly used to study atmospheric contamination are plants 

(Balasooriya et al., 2009). Plants spend their whole vegetation cycle in a single place and, 

compared with some other organisms, and in general, they are more sensitive to 

contamination and reflect specific places' characteristics better (Nali and Lorenzini, 2007). 

Thus, vascular and non-vascular vegetation is most commonly used world-wide for 

biomonitoring atmospheric metallic contamination. Several factors can affect the metallic 

accumulation ability of the plants such as climate, availability of metals, the vegetation's 

own characteristics, state of health and type of reproduction, and the characteristics of the 

land on which the vegetation in question grows (Conti and Cecchetti, 2001). 
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5.1.2.1. Moss 

Moss has been used as sentinel organism to analyse air quality since 1960 

(Carlberg et al., 1983; Rühling and Tyler, 1968). Moss is a non-vascular plat classified in the 

land plant division Bryophyta. One of its main characteristics is the lack of a developed 

cuticle, in other words, there is no external wax tissue for protecting the plant's surface. In 

addition, it does not have a developed root system and takes the nutrition and minerals it 

needs from the atmosphere (Holoubek et al., 2000). Chemical atmospheric contaminants as 

metals which are in water solution, in gaseous phase or attached to particles can be 

accumulated in moss. The three most common accumulation mechanisms are: i) particles 

which accumulate on the surface of moss, ii) particles which go through moss wall cells due 

to ion exchange, and iii) contaminating agents which accumulate due to metabolically 

controlled mechanisms (Poikolainen, 2004). The ability of moss to accumulate metallic 

elements dropes in this order: Cu > Pb > Ni > Co > Cd > Zn, Mn (Rosman et al., 1998; 

Szczepaniak and Biziuk, 2003). The species of moss most used for biomonitoring in Europe 

are: Hypnum cupressiforme, Hylocomium splendens, and Pleurozium schreberi (Figure 6), 

and they are plentiful all over Europe (Onianwa, 2001). 

 

Figure 6. a) Hypnum cupressiforme, b) Hylocomium splendens and c) Pleurozium schreberi 

moss. 

In order to carry out properly the moss sampling, several general norms must be 

followed (UNECE, 2010). First of all, the moss must be 3 metres away from the leaves of 

surrounding foliage. In woods where this is not possible, moss must be collected as far as 

possible from the foliage’s' leaves. Moss must be far from urban areas and at least 300 

metres away from motorways, towns and industries and at least 100 metres away from any 
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roads with less traffic. For analysing metallic elements, collecting 5 sub-samples from 50 x 

50 m sample areas is recommended. Moss must be taken from dead tree stumps in order to 

avoid possible contamination from the particles of soil beneath it. Talcum-free latex gloves 

must be used. Samples must be collected in the shortest possible time in order to avoid 

changes in the amount of metallic elements which may be caused by climate changes. Moss 

must be transported to the laboratory in paper bags (UNECE, 2010). Once in the laboratory, 

samples must be cleaned as quickly as possible in order to eliminate any material and other 

dirt which may be on them. Nitrogen enriched air can be used for cleaning because distilled 

water or weak acid may influence the extraction of metallic elements accumulated in the 

moss (Gonzalez-Miqueo et al., 2010). Green parts of the moss must be taken to analyse the 

metallic elements of the last 2-3 years. After separating the moss's green parts and cleaning 

them, the samples must be dried in a constant temperature of 40ºC (Gonzalez-Miqueo et al., 

2009). Freeze-drying, too, is often used in general with vegetation. After drying, moss 

samples must be homogenised and kept in polypropylene containers until analysis. Moss can 

be sieved in order to obtain homogeneous samples and the contamination must be avoided. 

Because of that, moss samples are often ground without being sieved, aluminium oxide 

material being used for grinding (Van Loon, 1985). When the moss has been dried and 

homogenised, dry incineration, wet incineration or acid extraction can be used to extract the 

metals and metalloids in liquid samples. Dry combustion must be done at the lowest possible 

temperature. Usually this is between 450 and 500 Cº. But this method can lead to losses of 

As, Se and Hg (Lalor et al., 2003). The technique most used in wet combustion is acid 

digestion in a microwave oven, using mixtures of hydrochloric and nitric acid, sometimes 

with hydrogen peroxide (Fernandez et al., 2002; Gerdol et al., 2001; Gonzalez-Miqueo et al., 

2009; Gonzalez-Miqueo et al., 2010). 

5.1.2.2. Lichens 

Lichen is a symbiotic association between an alga (photobiont) and a fungus 

(mycobiont) (Augusto et al., 2010). Lichen does not have leaves, flowers or roots. Like 

moss, lichen takes its nutrients straight from the atmosphere. Lichen can be found in most 

ecosystems around the world and is able to withstand extreme climatic conditions, for 

instance long droughts. Due to its resistance and strength it can be found in many areas. 

Lichen is a long life organism and, being sensitive to chemical contaminants, has often been 

used as biomonitor (Conti and Cecchetti, 2001). The main ways in which chemical 

contaminating agents go into lichen are the same as those mentioned above for moss 

(Szczepaniak and Biziuk, 2003). The species most used in biomonitoring is leaf-appearance 

lichen (Parmelia sulcata, for example) and bush-form lichen (Usnea filipendula, for 

example) (Figure 7). 

 

Figure 7. a) Parmelia sulcata and b) Usnea filipendula lichen. 
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Lichen sampling as well, has some norms to be followed (Comisión Económica 

para Europa de Naciones Unidas, 2008). Lichens must be collected in areas which are at 

great distance away from urban areas and must be collected from tree trunks which are at 

least 100 metres away from any type of road. One hectare sampling area must be chosen as 

maximum and lichen samples must be taken from at least 5 different trees. The trees which 

the lichen is on also have to fulfil with certain criteria. Firstly, they have to be alive and in 

good condition. The tree trunks must have between 20 and 40 centimetres in diameter and 

between 60 and 120 centimetres in perimeter, in this way it is possible to check that the 

sampled lichens are of similar age. The inclination of the trees from which the lichen is taken 

must be 20º as maximum. Finally, lichen must be taken from a height of between 1 and 2 

metres. To collect lichen, a stainless steel scalpel must be used. Throughout the collection of 

samples talcum powder free latex gloves must be worn, in order to avoid contamination. The 

lichen must be transported to the laboratory in hermetically sealed polypropylene bags at a 

recommended temperature of -18ºC. Once in the laboratory, the lichen must be hand-cleaned 

as soon as possible in order to remove dead material and any other dirt. Freeze-drying is the 

technique most commonly used for drying lichen. Once dried, lichen has to be homogenized 

and kept in polypropylene containers. The dry sample can be ground in order to obtain 

homogeneous lichen, using aluminium oxide material for grinding. When the lichen is ready 

for analysis, it should be kept in polypropylene containers and at -18ºC until analysis. As 

with moss, dry or humid combustion can be used to extract metallic elements (Van Loon, 

1985). But the most used extraction method is the digestion with a microwave oven, using 

mixtures of nitric acid and hydrochloric acid and, sometimes, hydrogen peroxide (Adamo et 

al., 2002; Bajpai et al., 2010; Conti and Cecchetti, 2001; Klos et al., 2011; Poikolainen, 

2004). 

5.1.2.3. Tree leaves 

Since 1950 vascular plant leaves have been used as bioaccumulators. Leaves' most 

important characteristic in terms of biomonitoring metallic elements in the atmosphere is 

their morphology and size (Manes et al., 2002). In addition to leaves' characteristics, the 

solubility, size and linkage of the particles which have fallen onto the leaves are also 

important (Mankovska et al., 2004). Climatic characteristics can also have a direct effect on 

metallic elements' ability to accumulate on leaves (Harrision and Chirgawi, 1989). Pine 

leaves are suitable bioindicators of Fe, Al and Pb (Ataabadi et al., 2010; Oliva and 

Mingorance, 2006). Beech leaves, on the other hand, have also been used for monitoring 

heavy metals in the atmosphere (Amores and Santamaria, 2003). 

Various factors must be taken into account with regards to tree leaf sampling if 

they are to be representative and if metallic element concentration of different sample points 

is to be comparable (Martin and Coughtrey, 1982), including: 

- Species of trees and types of trees: It must be the same tree species at all 

sample points. There may be considerable differences between the amount of 

particles stuck to the leaves of different species of trees. Likewise, the trees to 

be sampled must have fully developed leaves. Trees which have illnesses or 

rotten branches must be avoided. Trees which are protected by other trees' 

foliage must also be avoided. 
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- Sampling season: Samples should be taken between mid-summer and 

February or March, those being the periods of the year in which trees are 

subject to greatest stress and metallic element nourishment is at its lowest 

concentration on leaves. 

- Types of leaves: The leaves to be sampled must be between 1.5 and 2.5 metres 

above from the ground and taken from leaves as far as possible from the tree 

trunks. If it is possible, leaves which are in contact with the air and solar 

radiation must be sampled. Leaves must be taken from at least two branches in 

difference positions. The leaves must be taken from their stems and must be 

healthy. Mature, fully-developed leaves must be taken. Taking leaves of 

different ages should be avoided. Each sample should have between 50 and 

100 leaves. 

To collect the leaves, talcum powder-free latex gloves should be worn and the 

leaves must be kept in paper bags. Leaves must be stored in a dry place as possible and 

transported in an uncontaminated refrigerator (Tyler and Olsson, 2006). Once the leaves are 

in the laboratory, external dirt must be cleaned off them using nitrogen enriched air or 

distilled water. The clean leaves must be dried in an oven at 40ºC for the time required or 

using freeze-drying (Machava and Barna, 2005). Dry samples may be ground using 

aluminium oxide materials in order to obtain homogeneous leaves (Van Loon, 1985). The 

samples should be kept in polypropylene containers until analysis. The most commonly used 

techniques for extracting metallic elements from leaves are the same for moss and lichen: 

dry incineration and wet combustion or acid digestion using a microwave oven (Amores and 

Santamaria, 2003; Mankovska, 1998). 

5.2. Detection and quantification of metals and metalloids in water samples 

and extracts of solid samples 

Water samples or extracts of solid samples are liquid mediums to be analysed. The 

concentrations of the metals in water samples or in environmental solid samples are usually 

be very low. The elements which show these low concentrations are called trace elements, 

concretely and following to the definition to those elements which show concentrations 

below 100 mg·Kg
-1

 (McNaught and Wilkinson, 1997). Therefore, those low concentrations 

have to be measured with highly sensitive techniques with the aim to detect and quantify 

them with a confidence level. 

The first optical technique used to measure metallic concentrations was the 

molecular spectrophotometry (Lobinski and Marczenko, 1992). However, due to the high 

detection limits of this technique, it cannot be used for trace elements analysis. 

Electrochemical techniques can be used as well for metal analysis. Potentiometric 

methods based on selective electrodes show high detection limits and therefore it is not an 

appropriate detection and quantification technique for trace elements analysis. Stripping 

voltammetry allows the analysis of the total and labile metallic concentration. One of the 

advantages of stripping voltammetry techniques is that it allows the preconcentration of the 

analytes. The metals accumulate in the electrode by means of a faraday or non-faraday 

process. Afterwards, the stripping process produce the analytical signal (Brainina et al., 

2000). A mercury electrode is used in the anodic stripping voltammetry (ASV) which shows 

high sensitivity for some metallic elements (Ag, Cd, Cu, Pb, Sb and Zn) (Kumar et al., 
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2006). Cathodic stripping voltammetry (CSV) allows the analysis of more metals (Al, Co, 

Cr, Fe, Ni and Se) at ppt (ng·Kg
-1

) levels (Shahbazi et al., 2015). 

On the other hand, the detection limits of atomic spectrometry techniques allow 

trace elements analysis. In these atomic techniques the sample is ionized or atomized at very 

high temperatures. In Atomic Absorption Spectroscopy (AAS), the ionized elements absorb 

the radiation at characteristic wavelengths for the elements and at proportional intensities to 

the concentration of the element. For the samples vaporization AAS techniques can use a 

flame (Flame Atomic Absorption Spectrometry (FAAS) (Ju et al., 2015)), a quartz furnace 

(quartz furnace Atomic Absorption Spectrometry (QFAAS) (Hranicek et al., 2010)), or a 

graphite furnace (graphite furnace Atomic Absorption Spectrometry (GFAAS) (Anal, 

2014)). 

Following with spectrometric techniques, Atomic Emission Spectrometry (AES) 

can be used for the analysis of metals. In AES high temperatures are used for the metallic 

atomization or ionization. When metal ions return to its origin energetic state, they emit 

photons at characteristic wavelengths for the elements and at proportional intensities to the 

concentration of the element (Lobinski and Marczenko, 1996). Atomic Emission 

Spectrometry techniques are classified depending the source used for the metallic ionization 

as flame (flame Atomic Emission Spectrometry (FAES) (Raposo et al., 2015)), or plasma. 

There are three ways to produce the plasma: Inductively Coupled Plasma Atomic Emission 

Spectrometry (ICP-AES) (Zhao et al., 2015), Direct Current Plasma Atomic Emission 

Spectrometry (DCP-AES) (Arnold et al., 2006) and Microwave Induced Plasma Atomic 

Emission Spectrometry (MIP-AES) (Matsumoto and Nakahara, 2004). Atomic Emission 

techniques allow simultaneous multielemental analysis. 

Fluorescence techniques are also used for the detection and quantification of metals 

which are in liquid mediums. The elements molecules or atoms absorb energy and after 

absorbing it, they return to its origin energy state emitting energy at the same wavelength 

(resonance fluorescence) or larger (Stokes fluorescence). The intensity of the emitted energy 

(fluorescence) is measured. The fluorescence intensity is proportional to the element 

concentration in the sample and to the radiation intensity used for the sample excitement 

(Lobinski and Marczenko, 1996). Fluorescence techniques are classified in three different 

techniques depending on if atoms or molecules are determined and depending on the spectral 

range used: molecular fluorescence spectrometry (Spectrofluorometry) (Luster et al., 1996), 

Atomic Fluorescence Spectrometry (AFS) (Frentiu et al., 2015) and X-ray Fluorescence 

spectrometry (XRF), used for solid samples analysis (McComb et al., 2014). 

Mass spectrometry techniques can be used as well in the analysis of metals. In 

these techniques ions produced at very high temperatures are measured or counted. Ions 

characteristic of each isotopes are identified by means of its mass-charge ratio. The ions 

quantity is proportional to the concentration of each isotope. Typical mass spectrometers 

have an ions source, a mass-charge ratio depending ion spreading mass analyser and a signal 

reader (Lobinski and Marczenko, 1996). Mass spectrometer techniques are classified 

according to the ions source: Inductively Coupled Plasma Mass Spectrometer (ICP-MS) (Ni 

et al., 2015), Thermal Ionization Mass Spectrometer (TIMS) (Li et al., 2015) and Microwave 

Induced Plasma Mass Spectrometer (MIP-MS) (Chatterjee et al., 2001). ICP-MS is the most 

used technique for environmental samples metallic analysis due to its very low detection 

limits and simultaneous multielemental analysis (Brown and Milton, 2005).  
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Activation Spectrometry can be used as well for the detection and quantification of 

metallic elements in solid samples. In this technique the radiation emitted by a stable analyte 

nuclide which receives a neutron or charged particle is measured. The energy of the emitted 

radiation is characteristic of the nuclide and the intensity is proportional to its concentration 

in the sample (Parry, 1993). The Activation Spectrometry most used is the Neutron 

Activation Analysis (NAA) (Aksoy et al., 1998). 

6. Monitoring metallic contamination in aquatic systems: European legislation 

The awareness of water protection, defend and management comes from the last 

XXth century decade. In 1998 in a Ministerial Seminar held in Frankfurt, the European 

Council asked the European Commission to draw up guidelines on improving the ecological 

quality of water bodies. There already existed 30 different pieces of legislation regarding 

water quality, but leading member states, aware of gaps and limited effectiveness of existing 

legislation, began to consider drawing up an unified directive that would integrate all these 

different bodies of legislation (Henocque and Andral, 2003). In 1995 the European 

Environmental Agency issued a report emphasising the need for the protection of 

Community waters in terms of quality and quantity. In 1999 all previous requests were set 

forth in the European Parliament and, finally, in 2000 the European Water Framework 

Directive (EWFD) was drawn up and adopted (WFD, 2000). 

In compliance with this legislation, all Member States of the European Union must 

implement the Directive and ensure the Good Ecological Status, GES, of their waters 

(including territorial waters, transitional waters, coastal and groundwaters) by the year 2015. 

A body of water achieves Good Ecological Status when the relevant parameters (physical 

and chemical, hydromorphological and biological) that ensure good biological quality of 

water show low levels of user induced alterations. That is, good ecological status is achieved 

when those values differ very little from those of water which has not suffered any kind of 

alteration. The Directive sets out another important objective which is the complete 

eradication or progressive reduction of hazardous substances, achieving concentrations near 

background values for naturally occurring substances but near zero values for man-made 

synthetic substances. Therefore, each mass body must be deeply analysed, researching its 

characteristics, assessing anthropogenic influences and making economic analysis. An 

important step to carry out this kind of analysis is the monitoring of water bodies quality. 

EFWD says that first of all the water body which is analysing has to be 

characterised, defining its physic-chemical, hydromorphologic and biological parameters 

(ICES, 2006). Afterwards a chemical analysis has to be carried out following an appropriate 

monitoring program. In order to specify the water body ecologic state, Ecological Quality 

Ratios (EQR) must be calculated. EQRs are achieved by dividing the observed parameter 

values for the body of water in question by the reference values (Environmental Quality 

Standards, EQS) for the zone (ECOTAST, 2003). 

The Directive says that a suitable monitoring programme would include the 

following three levels: i) surveillance monitoring, ii) operational monitoring, and iii) 

investigative monitoring (Ferreira et al., 2007). Each monitoring programme has its 

characteristics. Surveillance monitoring is to be carried out in order to assess long-term 

changes resulting from human activity. Operational monitoring shall be carried out when a 

body of water is identified as being at risk of failing to meet the objectives of the Directive. 
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Investigative monitoring is to be carried out only in special cases (to ascertain the impact of 

point source pollution and/or where the reasons for exceedances of environmental quality 

standards for a particular area are not known). The main aim of water bodies monitoring is to 

define the ecological state in the time and in an area. 

Priority substances are identified in the Directive regarding the chemical 

parameters monitoring. Apart of some organic compounds, some metals and its compounds 

are mentioned (Pb, Ni, Cd, Hg and Sn (tributyltin)). Furthermore, Cd, Hg and Sn are 

classified as hazardous substances in the Directive (UE, 2013). 

On the other hand, the Directive just refers very few times to sediments and biota 

compartments and they are so important in water bodies (Borja et al., 2004; Crane, 2003). 

EQS values just were developed for waters. The water ecological state identification needs 

the analysis of above mentioned sediments and biota compartments as well (Heiskanen et al., 

2004; Kimbrough et al., 2008). In fact, many times sediments and biota have been deeply 

analysed because they give relevant information about some specific contaminants (Balkis 

and Aksu, 2012; Bastami et al., 2015; Marengoni et al., 2013). Sediments are indicators of 

chemical pollution as they are able to accumulate organic and inorganic contaminants in long 

time. Sediments are more stable than waters and for this reason they give more reliable 

information in a monitoring program (Lasheen and Ammar, 2014; Namiesnik and 

Rabajczyk, 2010; Witters, 1998). Nevertheless, the EWFD does not define EQS values for 

sediments. As reference natural, background values are used. Based on those background 

values, a contamination level of an area can be estimated using the geoaccumulation indexes 

(Mueller, 1981). Sediment Quality Guidelines (SQG) reference values obtained from 

toxicological tests are also used to determine an area contamination level (Wenning and 

Batley, 2002). 

With the intention to fulfil the EWFD aims, in the Basque Country has been carried 

out some improving actions. Basque Country transitional waters can be affected by several 

factors and against the damaging effects of those factors, some effective actions have been 

carried out from the 1990s (Bald et al., 2005). It has to be highlighted the treatment of waste 

waters before being emitted to transitional and coastal water bodies. On the other hand, the 

closing of some industrial activities due to economic crisis contribute to the water bodies’ 

quality improvement. 

The rivers flowing from the Basque Country into the Atlantic Ocean have suffered 

alterations caused primarily by industrial activity, whereas those flowing into the 

Mediterranean have suffered pressures from agricultural activities. In 2008 , in order to 

manage the application of the WFD to all these altered water bodies, the Basque Water 

Agency was set up, which asked different groups to participate in the decision making 

process. In this manner, apart from the Basque Government and district councils, other kinds 

of groups, such as town councils and environmental organisations, would have a say in the 

measures to be taken. Although most research conducted to date concludes that the status of 

water bodies in the Basque Country has improved considerably, it also makes it clear that 

restoring water to its original condition is an impossible task (UNESCO, 2009). 

7. Monitoring metallic contamination in air: European legislation 

Several norms about protecting air quality have been established in Europe over 

recent years. These norms have been corrected and updated over time. The latest norms are 
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Directives 2004/107/CE (UE, 2004) and 2008/50/CE (UE, 2008).  Air quality and the 

conditions which air has to fulfil are established by these directives, in order to guarantee a 

minimum air quality. Amongst chemical contaminating agents, particles, ozone, nitrogen 

dioxide, sulphur dioxide, carbon monoxide, heavy metals, benzene and benzopyrene are 

mentioned, particles and ozone being the ones which cause living beings the greatest 

problems. Heavy metals are often stuck to particles. As, Cd, Pb, Hg and Ni are amongst the 

most common heavy metals emitted into the atmosphere as a result of human activity (EEA, 

2013). 

European Directives 2004/107/CE and 2008/50/CE distinguish between two values 

with regards to heavy metals. On the one hand, the European Union's objective values with 

regards to air quality, which, as far as possible, may not be exceeded. On the other hand, 

limit values, which are concentration values which must not be exceeded. As (6 ng/m
3
), Cd 

(5 ng/m
3
) and Ni (20 ng/m

3
) objective values (yearly averages) are set by the European 

directives. In the case of Pb the limit value is fixed (500 ng/m
3
). The directive for Hg does 

not set limits, only recommending that emissions be limited. 

As can cause skin and lung cancer. Cd, on the other hand, as well as harming 

kidneys and bones, can cause lung cancer. Pb increases artery pressure and can cause 

neurological problems. Hg is volatile and highly toxic. Ni is carcinogenic and can damage 

the endocrine system. These metals are durable and can travel over long distances in the 

atmosphere. Consequently, they can appear in remote and unexpected areas (WHO, 2007). 

Finally, we should mention that the European contamination and emissions sources 

inventory is being prepared at the moment. According to the European Pollutant Release and 

Transfer Register (E-PRTR), companies and public institutions which are involved in 

contaminating activities voluntarily can declare the quantity of contamination that they emit 

into the environment, including emissions into the atmosphere, natural water bodies and 

water treatment plants. This information is public and is stored in a database (E-PRTR, 

1995). 
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CHAPTER 2 

EXPERIMENTAL 

Some of the procedures, materials and reagents used in this work will be described in 

this section to avoid unnecessary repetitions along the text. 

1. Materials and reagents 

Dry solid samples were digested using mixtures of different reagents such as 

hydrochloric acid (Merck, HCl %37, Tracepur), nitric acid (Merck, HNO3 %69, Tracepur) 

and hydrogen peroxide (Fluka, H2O2 for trace analysis). Acidification of water samples and 

preparation of standard solutions for calibration was carried out with sub-boiled portions of 

the previously mentioned HNO3. Sample extracts were filtered through 0.45 μm Millipore 

filters (Milles-HV, Hydrophobic PVDF 0.45 µm) and Omnifix syringes (20 mL, Braun). Elix 

(Element A10, Millipore) quality water was used for cleaning purposes and Milli-Q 

(Element A10, Millipore) quality water for calibrant preparation and dilution of samples. 

Solid samples were freeze-dried in a Cryodos (Telstar) lyophilizer (Figure 1). 

Oysters were previously grinded and homogenized using a commercial blender. Dry 

sediments were sieved at different particle sizes by means of an Octagon sieve shaker 

(Endecotts) (Figure 1). Dry leaf, moss, lichen and below 2 mm soil samples were ground and 

homogenized in a planetary ball mill Pulverisette 6 (Fritsch, Germany) (Figure 1). Calibrants 

for ICP/MS analysis were prepared inside a 100 Class clean room using a XS205 analytical 

balance (±0.00001 g, Mettler Toledo). The rest of samples and reagents were accurately 

weighed in an AJ150L analytical balance (±0.0001 g, Metler Toledo). All the solutions and 

sample dilutions were prepared by weigh. 

 

Figure 1. a) Cryodos lyophilizer, b) Pulverisette planetary ball mill and c) Octagon sieve 

shaker. 

The digestion of solid samples was carried out either in a 3000S microwave-assisted 

oven (Anton Paar, Graz, Austria) with 100 ml PTFE extraction vessels or by a HD2070 

Sonopuls Ultrasonic Homogenizer (Bandelin) equipped with a 6 mm glass probe (Figure 2). 
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Some samples (lichens), however, were digested in a high pressure asher (HPA-S, Anton 

Paar). The concentration of different elements was simultaneously measured in liquid 

samples by ICP/MS (NexION 300, Perkin Elmer, Ontario, Canada) inside a 100 Class clean 

room. 

 

Figure 2. a) HD2070 Sonopuls Ultrasonic Homogenizer and b) 3000S microwave-assisted 

oven. 

2. Experimental procedure 

2.1. Cleaning procedure 

Glass and plastic material was first thoroughly cleaned with detergent and tap water, 

then left for 24 hours in a nitric acid bath (10%) and finally rinsed first with Ellix water and 

then with Milli-Q water. The clean plastic and glass (also PTFE) material was dried in an 

oven at, respectively, 50ºC and 120ºC. 

2.2. Sample pretreatment 

2.2.1. Sediments 

Estuarine sediments were frozen in the laboratory at −20ºC and further lyophilised in 

round-bottom glass flasks at 150 mTorr and -52ºC for 48 h. The dry samples were sieved to 

assure a maximum particle size of 75 µm and kept in the refrigerator at 4ºC until analysis. 

Lake sediments were dried in an oven at 50 ºC until constant weight (at least for 72 h) and 

stored in clean glass vials at 4ºC in dark until analysis. 

2.2.2. Oysters 

Oysters were dissected with a clean scalpel blade to separate the soft tissues from the 

shells and cleaned using Milli-Q water to remove the dirt. About twenty individuals per 

sampling site were frozen (-20ºC), homogenised with a blender and freeze-dried in round-

bottom glass flasks at 150 mTorr and -52ºC for 48 h. Afterwards, the dried sample was 

ground in a blender and kept in the refrigerator at 4ºC in dark until analysis. 
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2.2.3. Beech leaves 

Leaves were cleaned with water and then freeze-dried in round-bottom glass flasks 

at 150 mTorr and -52ºC at least for 48 h. Dried samples were ground in a planetary ball mill 

and stored in clean glass vials at 4ºC in dark until analysis. 

2.2.4. Moss 

Moss samples were oven-dried in the laboratory at 40ºC for 72 h until constant 

weight and the extreme apices of the shoots were milled after removing extraneous plant and 

dead material. The samples were not washed. Finally, moss samples were stored in clean 

glass vials at 4ºC in dark until analysis. 

2.2.5. Lichen 

Lichens were separated from the substrate by hand in the laboratory and freeze-dried 

under a pressure of 150 mTorr and -52ºC at least for 48 h. Samples were crushed and 

homogenized in a planetary ball mill and then stored at 4ºC in clean glass vials and dark until 

analysis. 

2.2.6. Soil 

Soils were frozen in the laboratory at −20ºC and further lyophilised in round-bottom 

glass flasks at 150 mTorr and -52ºC for 48 h. The dry samples were sieved to remove the 

fraction higher than 2 mm and different objects such as bones or stones. The <2 mm fraction 

was ground in a planetary ball mill and stored in clean glass vials at 4 °C in dark until 

analysis. 

2.2.7. Water 

Water samples were filtered through 0.45 μm filters and acidified to 1% HNO3. The 

acidified samples were stored in 10 mL polyethylene vials at 4 °C and protected from light 

until analysis. 

2.3. Sample treatment 

2.3.1. Lake sediments and soil 

About 0.5 g of sample were digested in a microwave oven using HCl:HNO3, 1:3 and 

following the US Environmental Pollution Agency EPA 3051A method (EPA, 2007). For 

quality assurance purposes, the BCR 701 (lake sediment) or SRM 2711 (Montana soil) 

certified reference materials were analyzed in each sample batch. Procedural blanks were 

also run every sample batch and eight blanks were prepared for estimation of the procedural 

detection limit. After cooling, the digests were filtered and quantitatively transferred to a 

polyethylene bottle. The extracts were conveniently diluted with water, their acidity adjusted 

to 1% HNO3 and finally stored at 4 °C in dark until ICP/MS analysis. 

2.3.2. Estuary sediments 

About 0.5 g of dry sediment was transferred to an extraction vessel with 4 mL 

HNO3, 6 mL HCl and 10 mL H2O. Ultrasound energy was applied to the suspension for 6 
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min, with 6 cycles and 35% of power. Experimental details can be found elsewhere (Fdez-

Ortiz de Vallejuelo et al., 2009). The accuracy and repeatability of the method was checked 

by repetitive analysis (n = 5) of the NIST 1646a certified reference material (estuary 

sediment, National Institute of Standards and Technology). Eight blanks were at least 

prepared and analysed in each sample batch for estimation of the procedural detection limit. 

The extracts were filtered, conveniently diluted with water, their acidity adjusted to 1% 

HNO3 and finally stored at 4 °C in dark until ICP/MS analysis. 

2.3.3. Oysters 

About 0.5 g of the dry oyster was accurately weighed and transferred to an extraction 

vessel together with 2 ml of HNO3, 2 mL of H202 and 2 mL of H2O. The extraction was 

carried out in a microwave oven for 18 min and 450 W. The NIST SRM 2976 (mussel tissue, 

National Institute of Standards and Technology) certified reference material was used to 

validate the analytical method, and at least eight blank samples were analysed per batch of 

samples to estimate the procedural detection limits. The digests were filtered, conveniently 

diluted with water, their acidity adjusted to 1% HNO3 and finally stored at 4 °C in dark until 

ICP/MS analysis. 

2.3.4. Beech leaves 

About 0.5 g of beech leaves were digested with 7 mL HNO3, 3 mL H2O2 and 6 mL 

H2O in a microwave oven. A ramp of 400 W was applied during 15 min. to reach 200ºC and 

then this temperature was maintained for 15 min. The SRM 1570a certified reference 

material (spinach leaf, National Institute of Standards and Technology) was used for quality 

assurance purposes. Eight blanks were at least prepared and analysed in each sample batch 

for estimation of the procedural detection limit. After cooling, the digests were filtered, 

conveniently diluted with water, their acidity adjusted to 1% HNO3 and finally stored at 4 °C 

in dark until ICP/MS analysis 

2.3.5. Moss 

About 0.25 g of sample was digested in a microwave oven using 9 mL of HNO3 at 

180°C for 18 min and following the US Environmental Pollution Agency EPA 3052 method 

(EPA, 1996). The quality control of the analytical procedure in the case of mosses was 

carried out by repetitive analysis of the certified reference material SRM 1575a (pine 

needles, National Institute of Standards and Technology). One blank was included every ten 

samples for the estimation of procedural detection limits. After cooling to room temperature, 

all samples were filtered, conveniently diluted with water, diluted to 1%HNO3 and stored at 

4°C in dark until ICP/MS analysis. 

2.3.6. Lichen 

About 1g of lichen was pre-digested in 5 mL of sub-boiled HNO3 for 18 hours in a 

clean glass vial. Then, the vials were sealed with a quartz caps and heated in a high pressure 

asher (HPA-S, Anton Paar) for 3 hours at 130 bars and 300°C. After cooling, each sample 

was filtered and quantitatively transferred to a glass vial. The samples were conveniently 

diluted with water, diluted to 1%HNO3 and stored at 4°C in dark until ICP/MS analysis. The 

quality control of the analytical procedure was carried out by repetitive analysis of the 
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certified reference material BCR 482 (lichen). For the detection limit calculations, one 

procedural blank was included every ten samples. 

2.3.7. Water 

Filtered and acidified water samples were directly analyzed by ICP/MS analysis. The 

quality control of the analytical procedure was carried out by repetitive analysis of the 

certified reference material NIST SRM 1640 (natural fresh water, National Institute of 

Standards and Technology) and eight independent water blanks were run for the estimation 

of procedural detection limits. 

2.4. ICP/MS analysis of water samples and extracts 

The NexION 300 ICP-MS was used for the analysis of water samples and extracts. 

The analysis was carried out inside a 100 Class clean room (Figure 3). The experimental 

conditions of the measurements are summarised in Table 1. The external calibration method 

with internal correction was used. Standard solutions of the analytes and the internal 

standards (
45

Sc,
 115

In, 
209

Bi, 
9
Be and 

74
Ge) were obtained from Alfa Aesar (SpecpureR, 

Plasma standard solution, Karlsruhe, Germany). The calibrants were prepared in 1% sub-

boiled HNO3 inside the clean room in a weight basis. 

 

 

Figure 3. NexION 300 ICP/MS inside the 100 Class clean room. 
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Table 1. Experimental conditions for the ICP/MS analysis. 

Sample flow 

Nebulizer gas flow 

0.4 mL/min 

0.90-1.00 L/min 

Plasma gas flow 16 L/min 

Auxiliar gas flow 1.2 L/min 

RF power 1600 W 

Cell gas flow (He) 4.0 mL/min 

Dwell time 50 ms 

Integration time 1000 ms 

Sweeps per reading 20 

Readings per replicate 

Replicates per sample 

1 

3 

 

2.5. Direct analysis of solid samples 

Some sediment samples were mineralogically characterised by X-ray diffraction 

spectrometry (XRD) and Raman Spectroscopy. 

In the case of XRD characterization, a portion of sediment sample was analysed by a 

powder diffractometer PANalytical Xpert PRO that incorporates a copper tube (λCuKαmedia= 

1.5418 Å, λCuKα1= 1.54060 Å, λCuKα2= 1.54439 Å), vertical goniometer (Bragg-Brentano 

geometry), programmable divergence aperture, automatic interchange of samples, secondary 

monochromator from graphite and PixCel detector.  

The measurement conditions were 40 kV of voltage and a current of 40 mA, with an 

angular range (2θ) scanned between 5 and 70°. The treatment of the diffractograms and the 

identification of the mineral phases was performed with the specific software X`pert 

HighScore (PANalytical) in combination with the specific powder diffraction file (PDF2) 

database (International Centre for Diffraction Data - ICDD, Pennsylvania, USA). 

 The Raman analysis of the sediments was carried out by means of a Renishaw RA 

100 Raman Spectrometer (Renishaw, UK) coupled to a fibre optic micro-probe (Oxford, 

UK) equipped with a 785 nm excitation diodo laser (Figure 4) and a CCD detector (Peltier 

cooled). The micro-probe mounted on a tripod was joined to different lenses (4×, 20× and 

50×) which allow focusing the laser beam between 5 μm and 100 μm at the sample. The 

nominal power of the excitation source is 150 mW. In order to avoid thermodecomposition 

of the samples, the laser power was modulated at 1 and 10%. The spectrometer was 

calibrated daily the Raman signal of Si at 520.5 cm
-1

 of a crystalline silicon chip. The time of 

integration was between 10 s and 15 s and the number of accumulations was varied in order 
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to achieve the best signal to noise ratio. Spectra were obtained in a spectral range of 200–

2000 cm
-1

 approximately with a spectral resolution of 2 cm
-1

. The Wire 3.2 software package 

(Renishaw, UK) was used for data acquisition and the analysis and treatment of spectra were 

carried out by means of the Omnic Nicolet software (Madison, Wisconsin, USA). 

Interpretation of the results was accomplished by comparison of experimentally obtained 

spectra with standard Raman spectra contained in the e-Visart and e-Visnich databases 

(Castro et al., 2005) and other spectra obtained from the on-line database RRUFF (RRuff, 

2015). 

 

 

Figure 4. Renishaw RA100 spectrometer with the 785 nm laser analyzing a sample. 
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CHAPTER 3 

HIGH ALTITUDE MOUNTAIN RANGES 

Climate change is the result of human activity and its effects can be noted on a 

global scale (North, 2013). The capacity of an ecosystem to adapt or adjust to new 

circumstances is often less than the speed at which changes take place. As a result, many 

ecosystems are altered and, sometimes, harmed (van het Bolcher et al., 2006). The effects of 

climate change are spread through the atmosphere very quickly on a global scale (Santer et 

al., 2013). Indeed, the most important reactions occur in the atmosphere, amongst others, the 

modification of the natural biogeochemical cycle of chemical elements. As examples, the 

build-up of carbon dioxide in the atmosphere, the thinning of the ozone layer and the 

increase of nitrogen and phosphorus in the biosphere (Barrett, 1975; Huang et al., 2015; 

Stolarski et al., 2015). Moreover, the quantities of toxic substances (metals, pharmaceuticals, 

chemical compounds that produce acid rain) in general have increased (Camarero, 2013). 

High mountain ecosystems are highly suitable to study the effects of climate 

change, due to they are highly sensitive to changes in conditions in their surroundings. On 

the one hand, climate features change with altitude in these areas. At lower altitudes the 

climate is more stable and milder. There is also year round snow in some high altitude 

mountain ranges. On the other hand, the impact of pollution sources on high mountains 

ecosystems is very limited. Moreover, the deposition rates of air borne particles are usually 

very high in mountains (Bacardit and Camarero, 2010b) and the drops in temperature that 

occur with changes in altitude, favour the condensation of volatile chemical pollutants 

(Bacardit and Camarero, 2010a). As a result of the above factors, ecosystems of high altitude 

mountain ranges enable the consequences of climate change to be studied to great effect 

(Camarero, 2013). 

1. The Pyrenees 

The Pyrenees are a range of mountains that extend from Cape Matxitxako (Basque 

Country) to Cape Creus (Catalonia) and reach their maximum height of 3404 metres on 

Aneto Peak. The range is 415 kms long and 150 kms wide at its mid-section. As a result of 

administrative and political boundaries, the Pyrenees straddle 2 countries. The regions of 

Aquitaine, Midi-Pyrénées and Languedoc-Rosellon are found on the north side and the 

Basque Country, Aragon and Catalonia are on the south side. The important cities in the area 

that may impact the quality of Pyrenean ecosystems are Bilbao, Bordeaux, Zaragoza, 

Toulouse and Barcelona (Figure 1).  
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Figure 1. Geographical location of the Pyrenees. 

The northern faces of the Pyrenees are much more rugged than the southern faces. 

This dissymmetry lessens towards the Cantabrian Sea, whereas it becomes more and more 

pronounced towards the Mediterranean Sea. Many different rock types can be seen 

throughout the Pyrenees including, amongst others, limestone, arsenopyrite and granite 

(Barnolas and Pujalte, 2004). The range of temperatures in the Pyrenees is from -10ºC in the 

winter to 20ºC in the summer and there is an average yearly rainfall of 2,000 mm (Barnolas 

and Pujalte, 2004). 

Pyrenean fauna comprises more than 200 different species. Notable, amongst 

others, is the presence of the brown bear. The Alpine chamois, deer and roe deer are the 

main mammals (Barnolas and Pujalte, 2004). 

25,900 km
2 

of the Pyrenees, of a total of 34,000 km
2
, are covered in forest. Scots 

pine (Pinus sylvestris) and beech (Fagus sylvatica) are very common. Altitude has a direct 

impact on the distribution of the species that make up high mountain forests. Above 2,200 – 

2,500 metres, the forests give way to grassy fields, as the conditions at these altitudes do not 

favour forest growth. At subalpine altitudes, between 1,200 and 2,400 metres, conifers 

predominate, especially black pine (Pinus uncinata). Fir trees (Abies alba) also grow in 

damp areas at these high altitudes. Below 1,200 metres, wild pine (Pinus sylvestris) and fir 
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trees (Abies alba) again are the most numerous. At these altitudes, forests of deciduous 

species begin to appear, especially beech groves. Beech trees need moisture and so tend to 

grow in the cooler, cloudy areas. Deciduous forests have great biodiversity, and beech trees, 

oak (Quercus), ash (Fraxinus), service trees (Sorbus domestica), Norway maple (Acer 

platanoides), white willow (Salix alba) and lime trees (Tilia) can often be found growing 

together. Apart from these kinds of trees, numerous types of shrubs can also be found in the 

forest: boxwood (Buxus sempervives), common hazel (Corylus Avellana) and holly (Ilex 

aquifolium) for example. As well as trees and shrubs, the deep damp of the forest provides 

the conditions necessary for organisms such as lichens and bryophytes to live on the smooth 

bark of the beech trees. There are more than 4,500 species of flora, of which 160 are 

endemic. 

In high altitude mountain ranges, it is common to find forests comprising vascular 

and non-vascular vegetation that has adapted to high altitudes. In fact, forests are one of the 

ecosystems that characterise high mountain ranges (Figure 2). Many studies on atmospheric 

pollution using the leaves of vascular vegetation from the forest can be found in the literature 

(Dogan et al., 2014; Madejon et al., 2006; Mankovska, 1998; Yildiz et al., 2010). Some other 

organs of vascular vegetation have also been used to measure the presence of metals in the 

air, amongst others, the bark of trees, for example (Lippo et al., 1995; Poikolainen, 1997). As 

well as vascular vegetation, non-vascular vegetation, such as lichens and mosses (Bajpai et 

al., 2010; Klos et al., 2011), has also been used to monitor atmospheric pollution. In the 

Pyrenees too, beech leaves (Amores and Santamaria, 2003), lichens (Achotegui-Castells et 

al., 2013; Barre et al., 2015; Veschambre et al., 2003) and mosses (Fernandez et al., 2002; 

Gonzalez-Miqueo et al., 2009; Gonzalez-Miqueo et al., 2010) have been used to study 

atmospheric pollution. 

  

Figure 2. Irati Forest and Pica Palomera Lake (2.250 m), both in the Pyrenees. 

High altitude lakes are a special and important kind of ecosystem in mountain 

ranges (Figure 2). High altitude lakes can be found in many areas, enabling a worldwide 

comparison of atmospheric pollution (Camarero, 2013). Lakes offer the possibility of 

studying the effects of long-range air pollution, with the impact of local activities. 

Consequently, the water and sediment of lakes have often been used to examine metal 

pollution (Ebrahimpour and Mushrifah, 2008; Magyari et al., 2009; Singare et al., 2013). 

In the Pyrenees too, lakes abound. About 1,250 lakes have been counted 

throughout the range, with 650 on the northern side and 600 on the southern side 

approximately. Lakes may be either endogenous or exogenous. Endogenous lakes are the 

result of internal forces and processes in the Earth itself, that is, the result of earthquakes or 

volcanic eruptions. In contrast, exogenous lakes are formed by forces or processes affecting 
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the Earth’s crust. The lakes in the Pyrenees are exogenous and may be further classified as 

glacial lakes. These lakes are the result of erosion of the Earth’s crust during glacial periods. 

Glacial lakes are usually circular and very deep. Lake Estany, for example, in the Pyrenean 

valley of Valle de Arán, is 880 m in diameter and 80 m deep. There are numerous works that 

study the presence of metals in Pyrenean lakes (Bacardit and Camarero, 2009; Bacardit and 

Camarero, 2010c; Bacardit et al., 2012; Camarero et al., 1998; Zaharescu et al., 2009). 

 This chapter presents the results of research projects carried out on several 

Pyrenean lakes and in the Irati Forest. The purpose of these works is to study the presence of 

metals in the Pyrenees, their geographical distribution and evolution over time. 
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CHAPTER 4 

SEDIMENTS OF HIGH-ALTITUDE PYRENEAN LAKES: 

INDICATORS OF POLLUTION IN THE AREA 

 

ABSTRACT 

High altitude lakes in the Pyrenees are very sensitive ecosystems to detect and 

quantify metal pollution. With this aim, sediment cores were collected at 18 high altitude 

Pyrenean lakes in summer 2013. After slicing the cores, the concentration of 24 elements 

was measured in all the samples. Statistic and chemometric analysis of the results were 

carried out. Five different lake clusters were identified according to their metal content in 

surface sediments. Significant correlations (at 95% confidence level) were detected for Zn-

Cd, Pb-Sb and Ni-Co pairs of elements. The deep sediment cores obtained in some lakes 

were used to identify historical records of metal pollution. 

Keywords: Pyrenees; Sediments; Metal pollution; High altitude lakes; Natural; 

Anthropogenic. 
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 1. INTRODUCTION 

The ecosystems that exist in high mountain ranges are highly sensitive to changes in 

environmental conditions. In the Pyrenees, we can find excellent examples of these types of 

ecosystems (Bacardit and Camarero, 2010a), such as the lakes that are at a height of over 

2000 m. The Pyrenees is a mountain range that extends from Matxitxako Cape (Basque 

Country) to Creus Cape (Catalonia), and its highest point reaches 3400 metres. Cities such as 

Bilbao, Bordeaux, Zaragoza, Toulouse and Barcelona can affect the quality of its 

ecosystems. In fact, human activity has had an irrefutable effect on the environment on a 

global scale. As a consequence of administrative and political borders, the Pyrenean area is 

divided into two countries, and that has limited significantly the amount of research that has 

been done about the area as a whole. 

In this work, lakes are the subject of investigation to study the contamination in the 

Pyrenean area. Due to their privileged location, high-altitud lakes are the best observatories 

to identify the effects of contamination on the environment (Camarero, 2003; Williamson 

Craig et al., 2009). High mountain lakes are very sensitive to changes in the environment, 

due to the fact that the presence of pollutants is usually insignificant. Among the pollutants 

that can be found, we could mention metals and metalloids. From the toxicological point of 

view, durability and accumulation capacity are the main characteristics of metals and 

metalloids. Besides, some metals and metalloids are toxic, being able to damage living 

organisms of different ecosystems. Cd, Hg, Ni, Pb and tributyltin oxide are part of the 

priority toxic substances list of The European Water Framework Directive, (EWFD) (WFD, 

2000). Many other metals, for example: As, Cr, Cu and Zn are regarded as toxic in some 

studies (Naimo, 1995). 

A recently published study shows clearly the increase in the concentrations of metals 

in waters and sediments of high mountain lakes in Europe over the few last decades 

(Camarero et al., 2009). The origins of these metals and metalloids in the waters and 

sediments of the Pyrenean lakes can have natural origins (geochemical compositions of the 

rocks in the area and/or volcanism) or anthropogenic origins (mining, industrial and urban 

waste that is transported through the atmosphere, combustion of fossil fuels, etc.) (Bacardit 

and Camarero, 2009). It should be taken into account that chemical pollutants can be 

tranported long distances in the atmosphere (Bacardit, 2011; Camarero, 2013). Take for 

example Redó Lake, where high concentrations of lead have been found in its core 

sediments: those in lower layers were caused by mining acitivities that were carried out long 

time ago, and those in upper layers, were mainly caused by combustion of fossil fuels 

(Camarero et al., 1998). Substances such as As, Ag, Cd, Cr, Cu, Hg, Ni, Pb and Zn can be 

found in complex mixtures of metallic pollutants produced by mining and industrial 

activities (Nriagu, 1996). Wind direction and wind intensity have a direct effect on the 

transportation through the atmosphere (Gioda et al., 2011; Groeneveld et al., 1993; Marques 

et al., 2004). Depending on the time of the year, the magnitude of atmospheric deposition 

can change: during hotter periods (June-November) it is higher than in cold periods 

(December -May) (Bacardit, 2011). In hot periods, the southern wind prevails and the 

quantity of metals and metalloids coming from the south of the Pyrenees is larger (Bacardit 

and Camarero, 2010b). Metals and metalloids can bond with soil and plants, which given 

proper conditions could become a significant source of contamination (Bacardit et al., 2012). 

Furthermore, the altitude at which the lake is situated can affect the metal and metalloids 

concentration: the higher the altitude of the lake, the fewer metals and metalloids can be 
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found in its waters. The cause of this phenomenon is in part due to orography, contaminants 

that reach these mountains through the atmosphere can settle in contact with the steep land. 

As a result, the air rises up the mountains free of pollution. Moreover, at higher altitudes the 

level of organic matter drops, as a result of decreased vegetation. Organic matter has an 

affinity for metals. Therefore, as the levels of organic matter that are dissolved in the waters 

at higher altitudes are lower, the levels of metals and metalloids present are also lower 

(Bacardit and Camarero, 2010b). 

The aim of this study is to analyse the concentrations of metals and metalloids in the 

sediments of different lakes of the Pyrenees, regarding both the geographical distribution and 

the historical record, to quantify the effect of human activity on those ecosystems. 

 2. MATERIAL AND METHODS 

 2.1. SAMPLING 

Sediment cores were taken in August and September 2013 from 18 lakes in the 

Pyrenees at altitudes higher than 2.000 m: Airoto (AIr), Aixeus (AIx), Anglas (AN), Aube 

(AU), Baiau Superior (BA), Bersau (BE), Compte (CO), Eriste (ER), Estelat (ES), Gran del 

Pesso (GR), Llosas (LL), Mariola (MA), Monges (MO), Montoliu (MT), Pica Palomera 

(PP), Plan (PL), Romero de Dalt (RO) and Siscar (SI) (Figure 1). The geographical location 

of the lakes can be seen in Table 1. The following are the depths in cm of the sediment cores 

taken from each lake: AIr: 5, AIx: 22.5, AN: 12, AU: 19, BA: 26, BE: 12, CO: 22.5, ER: 

26.5, ES: 36.5, GR: 5, LL: 5, MA: 26, MO: 5, MT: 5, PP: 22.5, PL: 30, RO: 36.5 and SI: 33. 

 A plastic inflatable boat was used to collect the sediment cores. They were taken 

from the deepest areas of the lakes with the help of a gravity core sampler. One sediment 

core was taken from each lake. The cores were divided in-situ into sub-samples depending 

on the depth. First of all, a 0-1.5 cm layer was separated (the surface layer). From that point 

on, they were separated into layers of 3.5 cm each. Samples were kept in a double ziploc 

bag. The surface layers were used to study the distribution of metals and metalloids 

throughout the Pyrenees in recent years, and the samples from the deeper layers, to examine 

the historical record of pollution. All the samples were transported downhill in refrigerated 

backpacks to the laboratory, where they were kept in the dark at a temperature of 4ºC until 

they were analysed. 
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Figure 1. Localization of the studied lakes in the Pyrenees:  Airoto (AIr), Aixeus (AIx), Anglas (AN), Aube (AU), Baiau 

Superior (BA), Bersau (BE), Compte (CO), Eriste (ER), Estelat (ES), Gran del Pesso (GR), Llosas (LL), Mariola (MA), 

Monges (MO), Montoliu (MT), Pica Palomera (PP), Plan (PL), Romero de Dalt (RO) and Siscar (SI). 

 

 2.2. ANALYTICAL PROCEDURE 

The pretreatment and analysis of the samples was carried out according to the 

procedures described in Chapter 2, experimental. The concentration of Ag, Al, As, Ba, Cd, 

Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, W and Zn was finally 

measured by ICP/MS in all the samples. 
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Table 1. The geographical location of each lake included in the study (UTM 31T). 

Lake X Y 

AIr 339405 4729463 

AIx 366449 4718687 

AN 722574 4753940 

AU 363971 4733677 

BA 371347 4716960 

BE 704135 4748827 

CO 401039 4720626 

ER 292437 4724450 

ES 435526 4721626 

GR 328762 4708588 

LL 307658 4720810 

MA 354601 4730744 

MO 325896 4720922 

MT 330366 4738774 

PP 325700 4739902 

PL 330298 4720754 

RO 362790 4729315 

SI 397224 4717099 

 

3. RESULTS AND DISCUSSION 

3.1. SURFACE SEDIMENTS: GEOGRAPHICAL DISTRIBUTION OF METALS 

ACCUMULATED IN SEDIMENTS OVER RECENT YEARS 

3.1.1. METAL CONCENTRATIONS AND COMPARISON WITH OTHER LAKES 

The element concentrations found in the surface sediments can be seen in Table 2. 

Extreme concentrations have been marked with an asterisk (c > Q3+(3*IQR), where Q3 is the  

%75th percentile and IQR is the interquartile range). After removing the extreme values, the 

within-lake concentrations of the elements have been summarised in Figure 2 in the form of 

Box-Whisker plots. 

Some elements showed extreme concentrations in some lakes. The appearance of an 

extreme value in a variable means that the metal concentration in that sample is significantly 

higher than in the rest of the samples. The lake that shows extreme concentrations is 

somehow out from the “normality” defined by the rest of the lakes. In the Lake Airoto (Air), 

extreme concentrations of As (1470 mg·kg
-1

) and W (4.96 mg·kg
-1

) were found. That area of 

the Pyrenees is very rich in arsenopyrites (Bacardit and Camarero, 2010b; Camarero, 2003; 

Camarero et al., 2009; Zaharescu et al., 2009), therefore, As and W have probably a 

lithogenic origin. It is known that mining activities, mostly to produce Pb and Zn, have been 

carried out since Roman times around lakes Anglas (AN), Montoliú (MT) and Pica Palomera 
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(PP) (Birch et al., 1996; Subias et al., 1999). Thus, it is not surprising to have found extreme 

concentrations of Cd, Mo, Pb, Sb and Zn in the sediments of these lakes. However, the origin 

of the extreme concentrations of Tl, Ag and Se in the lakes Monges (MO), Plan (PL) and 

Bersau (BE), respectively, is not clear. 

Table 3 shows the metal concentrations found in the surface sediments of the 18 lakes 

that were examined, compared to the concentrations measured in other lakes. In the case of 

Lake Respumoso which is situated in Huesca at an altitude of 2130 m, the concentrations in 

Table 3 correspond to the average concentrations measured in the surface sediments (0-5 cm) 

obtained from 30 different parts of the lake (Zaharescu et al., 2009). Lake Respumoso was 

formed after the last glacial period and its waters have been used for drinking and irrigating 

in the valleys below. The basin of the lake in mainly formed of limestone and detritus. Lake 

Legunabes is situated in the Ariège department (France). The lithology around the lake is 

granite, and it is part of what is called Bassiés batholith (Bacardit et al., 2012). Finally, Lake 

Vidals d'Amunt is situated in the Catalonian Pyrenees, in the Lleida province, at an altitude 

of 2684 m and it is part of the Maladeta batholith (Bacardit et al., 2012). In lakes Legunabes 

and Vidals the influence of human activity is low. The 5-7 sediment cores obtained from 

each of those two lakes were separated into layers, and the averages of the results obtained 

from the analysis of all the samples have been summarised in Table 3 (Bacardit et al., 2012). 

For most of the metals, no significant difference has been observed among lakes. 

Nevertheless, the Cd concentration in Lake Vidals d'Amunt is lower than in the rest of the 

lakes, and the Zn concentration is lower than that in Lake Lagunabes. The Pb concentration 

in Lake Lagunabes is, however, slightly higher than that in the sediments of Lake Vidals 

d'Amunt. 
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 Table 2. The concentration (in mg·kg-1) of Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, Tl, V, W and Zn measured in the surface sediments (0-1.5 cm) of 18 lakes, together with some related 
statistics. The table shows the detection limit (DM, µg·kg-1), recovery and reproduciviilty of the analytical method using BCR 701 reference material (n=8). Extreme high concentrations, defined as those concentrations over the 75th 

percentile of the data (Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

                         

 
 

Ag Al As Ba Cd Co Cr Cu Fe Hg Mg Mn Mo Ni Pb Sb Se Sn Sr Ti Tl V W Zn 

DL (µg·kg-1) 20 175 11 83 34 4 5 1 36 101 19 599 34 162 76 7 950 21 275 8 12 5 2 1 

RECOVERY (%)     97  76 71      70 89         86 

REPRODUCIBILITY (RSD) 6% 4% 6% 4% 3% 6% 2% 5% 5% 6% 4% 6% 2% 3% 3% 4% 6% 6% 2% 2% 4% 3% 6% 6% 

AIr 0.48 8260 1470* 17.6 1.50 3.30 12.1 42.5 7660 0.28 1720 112 0.50 5.45 74.7 0.87 1.51 4.35 5.13 118 0.22 13.0 4.96* 149 

AIx 0.35 29600 31.5 46.6 0.46 7.38 20.4 73.3 92700 <LOD 6230 196 0.82 27.0 40.4 0.55 <LOD 1.29 9.11 405 0.052 21.2 0.048 110 

AU 0.27 30100 14.4 81.3 1.66 5.54 25.5 16.2 17800 0.19 5810 152 0.89 11.0 135 1.22 1.65 9.21 14.6 830 0.38 35.1 0.27 272 

BA 1.13 41700 71.4 61.8 0.38 18.7 22.7 157 66400 0.12 4320 118 0.86 44.0 61.7 1.21 1.21 2.14 5.13 351 0.15 29.0 0.25 183 

CO 0.061 10500 7.06 41.4 1.01 2.39 12.2 6.19 7940 <LOD 2010 107 0.24 5.90 25.1 0.12 0.99 2.28 7.02 365 0.23 11.6 0.30 77.3 

ER 0.18 25300 181 80.9 0.64 9.38 33.6 19.7 34500 0.12 6300 258 2.42 15.0 100 0.85 0.99 2.86 9.42 644 0.40 43.2 2.60 105 

ES 0.23 13100 8.70 125 0.22 3.67 12.4 11.7 11300 <LOD 3600 144 0.081 5.95 26.3 0.20 <LOD 3.53 23.3 1070 0.13 32.1 0.45 63.5 

GR 0.082 20300 85.6 60.2 1.06 7.57 20.0 14.4 17400 <LOD 5130 198 1.94 9.49 55.5 0.42 <LOD 1.74 12.2 582 0.26 40.0 0.23 90.0 

LL 0.12 22500 59.9 98.0 1.78 7.74 24.2 15.1 22900 <LOD 6340 331 3.76 11.0 106 0.73 <LOD 6.30 11.0 1060 0.45 35.3 1.99 165 

MA 2.49 28700 8.78 99.9 1.01 12.0 33.0 46.1 25700 0.12 6750 232 0.57 27.9 199 1.58 1.68 5.92 11.5 274 0.27 38.8 0.34 188 

MO 0.51 34100 6.22 98.1 1.03 8.12 33.2 24.6 19600 0.57 6230 161 0.87 14.5 64.0 1.55 2.03 3.02 16.4 645 1.23* 44.6 1.15 138 

MT 0.47 18700 79.1 30.9 22.3* 7.12 24.8 88.9 80200 0.27 3100 142 17.7* 22.7 764* 9.86* 2.31 1.70 14.7 86.3 0.24 56.4 0.12 4320* 

PL 25.5* 20800 60.8 68.9 1.21 6.69 23.6 29.8 28600 0.38 4220 157 2.45 16.5 111 1.13 <LOD 3.44 15.8 413 0.28 37.5 0.51 199 

PP 1.50 22000 52.7 31.5 10.4* 2.42 25.8 253 75800 0.60 2450 71.3 26.3* 10.2 395 8.07* 4.80 1.85 39.2 65.4 0.37 72.7 0.10 2820* 

RO 0.32 31600 41.3 104 1.21 8.28 28.6 26.8 29600 0.29 4520 144 1.74 14.6 189 1.96 1.91 8.16 17.1 512 0.37 41.4 0.86 127 

SI 0.12 12000 5.90 38.7 0.53 2.86 12.9 8.21 9050 <LOD 2320 79.9 0.31 8.84 38.9 0.18 <LOD 2.79 7.51 333 0.13 14.0 0.05 48.1 

AN 0.15 23100 382 61.0 23.5* 15.3 36.9 21.9 39800 1.52 7240 463 0.95 34.4 209 1.21 5.18 3.13 30.5 726 0.15 41.7 0.36 4690* 

BE 0.63 36000 242 36.9 0.10 16.0 20.6 188 65500 0.22 4330 126 3.94 32.1 27.8 0.32 24.2* 0.53 18.4 260 0.14 24.5 0.54 150 

25th PERCENTIL (Q1)  0.14 17300 8.76 38.3 0.51 3.57 18.2 14.9 15900 0.14 2930 116 0.56 9.33 40.1 0.39 1.28 1.82 8.71 270 0.15 23.6 0.20 102 

75th PERCENTIL (Q3) 0.75 30500 109 98.0 1.69 10.0 29.7 77.2 65700 0.52 6250 206 2.78 27.2 191 1.56 4.18 4.74 17.4 666 0.37 42.1 0.93 217 

IQR (Q3-Q1) 0.61 13200 100 59.7 1.18 6.43 11.5 62.3 49800 0.38 3320 90.1 2.22 17.9 151 1.17 2.90 2.92 8.69 396 0.22 18.5 0.73 115 

Q3+(3*IQR) 2.58 70100 410 277 5.23 29.3 64.2 264 215000 1.66 16200 476 9.44 80.8 644 5.07 12.9 13.5 43.5 1850 1.03 97.6 3.12 562 

MEDIAN 0.33 22800 56.3 61.4 1.05 7.47 23.9 25.7 27100 0.28 4430 148 0.92 14.5 87.5 1.00 1.79 2.94 13.4 409 0.25 36.4 0.35 150 

AVERAGE 1.92 23800 156 65.7 3.89 8.03 23.5 57.9 36200 0.39 4590 177 3.68 17.6 146 1.78 4.04 3.57 14.9 485 0.30 35.1 0.84 772 

STANDARD DEVIATION  5.92 9270 342 30.7 7.28 4.78 7.78 70.5 27400 0.39 1770 95.9 6.92 11.2 180 2.68 6.49 2.38 8.86 301 0.26 15.3 1.24 1500 

MIN 0.06 8260 5.90 17.6 0.10 2.39 12.1 6.19 7660 <LOD 1720 71.3 0.081 5.45 25.1 0.12 <LOD 0.53 5.13 65.4 0.052 11.6 0.048 48.1 

MAX 25.5 41700 1470 125 23.5 18.7 36.9 253 92700 1.52 7237 463 26.3 44.0 764 9.86 24.2 9.21 39.2 1070 1.23 72.7 4.96 4690 
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Table 3. Concentrations measured in surface sediments obtained from several Pyrenean lakes (average, standard deviation, mg·kg-1). 

*Extreme cocnentrations are not included.1n=30; 2n=60;3n=48. 

Lake As Cd Co Cr Cu Mn Ni Pb Zn Ref. 

18 Pyrenean lakes * 79±101 0.90±0.52 8.1±4.8 23.5±7.8 58±70 177±96 18±11 109±95 133±59 This study 

RESPUMOSO1 49±42 1.93±0.62 14.5±7.4 31.5±9.6 13±11 1200±1300 23±11 36±29 82±35 
(Zaharescu 

et al., 
2009) 

LEGUNABES2  1.9±1.3   20.6±6.2  15.1±3.6 162±50 230±120 
(Bacardit 

et al., 
2012) 

VIDALS D´AMUNT3  0.37±0.28   13.0±2.8  15.9±2.0 81±46 89±18 
(Bacardit 

et al., 
2012) 

 

 

Figure 2.  Box-Whixker plots of the concentrations of elements (in mg·kg-1) measured in the surface sediments (0-1.5 cm) of 

18 Pyrenean lakes. Extreme values not included in the calculation. 

Correlation analysis of the surface sediment concentration data matrix was also carried 

out. With this aim, Pearson's coefficients were calculated to find out if the element 

concentrations are correlated each other. The highest correlation coefficients found were 

those between Zn and Cd (0.99), Pb and Sb (0.94) and Ni and Co (0.90), all of them 

significant at a 95% confidence level. Cd and Sb usually appear in nature as, respectively, Zn 

and Pb impurities, also in the Pyrenees. Therefore, the high and significant correlation found 

between those two elements is not surprising (Bacardit, 2011). Ni and Co also appears 

together frequently in nature (Hernandez et al., 2003). 
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3.1.2. PRINCIPAL COMPONENT ANALYSIS (PCA) 

The Principal Component Analysis (PCA) of the surface sediment concentration data 

matrix was carried out by means of The Unscrambler program (v. 9.2 Camo, Oslo, Norway), 

in order to identify lakes with similar characteristics (Jollifee, 2002). The data matrix 

consisted on 18 rows (one per lake examinated) and the 24 columns (one per element 

analysed) (Table 1). Concentrations below the detection limit were substituted by one half of 

the detection limit. The data matrix was centered and scaled before analysis. To explain 

variability in the data, a model with three principal components (PC) was chosen. The model 

managed to explain 63 % of the total variance (PC1: 31%; PC2: 19%; PC3: 13%). 

The scores and loadings plots over the first three Principal Components are shown in 

Figure 3. It can be seen that the studied lakes were separated into 5 different groups 

depending on the metallic concentrations in their sediments: i) Pica Palomera and Montoliu; 

ii) Baiau Superior, Aixeus and Bersau; iii) Siscar, Compte and Airoto; iv) Estelat, Gran del 

Pesso, Eriste, Llosás, Aube, Romero de Dalt, Mariola, Monges and Plan; and v) Anglas. 
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Figure 3.  Scores and loadings plots (PC1-PC2 and PC1-PC3) obtained after PCA of the studied dataset.
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Figure 4. Concentrations (in mg·Kg-1) of metals and metalloids measured in the surface sediments. Different colours have been 

used to differentiate the lake groups identified as a result of PCA. In axis X, from left to right: MT, PP, AN, AIr, CO, SI, AIx, 

BA, BE, ER, AU, ES, GR, LL, MA, MO, PL and RO. 

Looking at similarities between lakes of the same group, sediments of PP and MT 

have some of the highest concentration levels of Cd, Cu, Fe, Mo, Pb, Sb, V and Zn, as shown 

in Figure 4. In lakes BA, Aix and BE, however, A1, Co, Cu, Fe, Ni and Se concentrations 

are significantly higher than in the rest of lakes (Figure 4). In general, the lowest element 

concentrations were found in SI, CO and Air. The only exceptions are the levels of As and 

W found in Lake Airoto. As already stated, this lake is located in an area very rich in 

arsenopyrites. The group that is formed by ES, GR, ER, LL, AU, RO, MA, MO and PL 

shows high concentrations of Ti, Mg, Ba, Mn, Sn and Tl, and, finally, the sediments in lake 

AN are rich in Cd, Cr, Hg, Mn, Sr and Zn (Figure 4). 

3.2. SEDIMENT CORES: HISTORICAL RECORD OF METAL 

CONCENTRATIONS 

Sediment cores were used to study the historical record of pollution. The analysis was 

limited to 12 elements (Cu, Cr, Pb, Zn, As, Cd, Ni, Hg, Co, Mn, Sn and Sb) since, for the 

rest of the elements, the concentrations found below the detection limits were numerous. As 

it has already been said in the experimental Section, firstly surface sediments were separated 

from each core (0-1.5 cm) and from that point on, the sediment cores were divided into 3.5 

cm layers to obtain sediment samples. Information of a rather long period of time is stored in 

a 3.5 cm layer due to the slow sedimentation ratio in lakes. As a consequence, the resulting 

depth profiles could be so smoothed that historical information remains hidden in them 

(Camarero et al., 1998). This should be taken into account for a correct interpretation of the 

results. There are examples in literature, however, where 2.4 cm layers have been used to 

investigate historical records of pollution (Bacardit et al., 2012). It must also be taken into 

account that Ti concentration has been used to normalised data, since its origins has been 

reported to be natural in the Pyrenees (Camarero, 2003). The sediment cores used in this 

study were the ones which at least had 17 cm long, that is to say, those obtained from ER, 

PP, PL, MA, Aix, AU, RO, BA, SI, CO and ES. The vertical profile with depth of the 

normalised concentration of each metal can be seen in Figure 5. 
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As it can be seen in Figure 5, Cd, Pb, Sb and Sn have a similar tendency in all the 

lakes. After the first 5 cm from the surface, concentration levels diminish significantly. This 

tendency exists in 8 lakes out of the 11 that were studied, e.g., AIx, AU, BA, ER, ES, MA, 

PL and RO, with the following exceptions: Pb in AIx, and Pb and Sn in BA. In all these 

lakes, the concentrations of elements such as Cd, Pb, Sb and Sn have risen significantly in 

recent years. In fact, another study has estimated that the settling ratio in the first 30 mm of 

sediments in the Pyrenean Lake Redó is of 0.23 mm per year (Camarero et al., 1998). In 

other words, that means that the upper 5 cm layer in the lake has accumulated in the last 200-

300 years. According to this estimation, the rises in concentration levels of Cd, Pb, Sb and 

Sn in the lakes considered in this study started, approximately, with the industrial revolution 

(Bacardit et al., 2012; Camarero et al., 1998). 

The case of PL lake is worth mentioning, as it shows the same tendency in all the 

metals and metalloids that have been studied, except for Hg and Zn. The first 5 cm layer 

contains the highest concentrations of most of the elements and, as it could be expected, the 

concentration levels drop as we go deeper. However, the highest relative levels of Hg and Zn 

are found at a depth of 5-10 cm and 25-30 cm. In the sediment cores of PP lake, the highest 

concentrations of most elements were measured at a depth between 5 and 10 cm. Mining 

activities in this area could come from the Middle Ages, and this could explain the presence 

of these maximums of concentration. Lakes MA, AIx and CO show similar profiles. Apart 

from the general tendency that was observed for Cd, Pb, Sb and Sn, the highest 

concentration levels of the rest of the elements were found at a depth of around 15 cm; this 

may have been caused by a faster sedimentation ratio in these lakes. 

Most of the results obtained after the analysis (taking into account the limitations that 

having divided the columns into 3.5 cm causes) coincide with those in other studies where 

Pyrenean lakes have been examined. For example, Camarero et al. in 1998 registered high 

metal concentrations originating from anthropogenic inputs in Lake Redó, in the layers that 

correspond to the period between 500 AD, and 1000 AD (Camarero et al., 1998). Camarero's 

study suggests that the appearances of higher concentrations are the consequence of mining 

activities which were active at that time. Sedimentation ratio is, however, an important 

variable that must be taken into account when studying historical records. Depending on the 

location of the lake and the topography around it, the sedimentation ratio varies, and this 

may induce profound differences in the datation of the cores of each emplacement. 

A correlation analysis of the whole concentration data matrix (concentrations from all 

the lakes and all the depths all together) was carried out. The highest correlation coefficients 

were found between the same pairs of elements than in the analysis of surface sediments, 

that is, between Zn and Cd (0.94), Pb and Sb (0.85) and Ni and Co (0.94). They were all 

significant at a 95% confidence level. 
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Figure 5. Vertical concentration profiles of the elements measured in the sediment cores obtained from Pyrenean lakes. Depth in cm is plotted in axes Y. Concentrations normalised with Ti are plotted in axes 

X.
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3.3. ENRICHMENT FACTORS (EF): ANTHROPOGENIC INPUTS 

The enrichment factor (EFM) is an index used to determine if a pollutant has natural or 

anthropogenic origin. In this study concentrations have been normalised with Ti to calculate 

the EFM (Equation 1). 

00

TiM

TiM
M

CC

CC
EF    (Equation 1) 

M stands for the studied metal, C represents the metal concentration in the sediment 

sample, and C
0
 is the estimated background value for that metal in the area (Camarero et al., 

1998). According to other studies, the sediments that were at a depth of 17 cm could be 700-

900 years old. In this study, it has been assumed that the anthropogenic origin of metals in 

sediment layers deeper than 17 cm is negligible. Consequently, the average of concentrations 

deeper than 17 cm has been used to estimate the background values. EFs higher than 2, show 

non natural metallic input and indicate the presence of contamination (Camarero, 2003). 

Table 4.   EF values calculated from upper layers (0-1.5, 1.5-5.0, 5.0-8.5, 8.5-12.0, 12.0-15.5 cm) of the sediment cores in some 

Pyrenean lakes. The average, minimum and maximum values of the EFs calculated are provided. 

Lake As Ba Cd Co Cu Fe 

AIx 0.7 (0.2-1.3) 1.0 (0.9-1.0) - 0.9 (0.6-1.7) 0.7 (0.4-0.8) 0.7 (0.4-0.9) 

ER 0.7 (0.5-0.9) 1.1 (1.0-1.3) - 1.0 (0.9-1.1) 1.0 (0.9-1.1) 0.9 (0.8-1.1) 

AU 1.3 (0.8-2.4) 1.1 (1.0-1.2) 2.4 (<DM-6.2) 1.2 (0.8-1.8) 1.2 (0.9-1.3) 1.1 (0.8-1.4) 

BA 0.6 (0.1-1.2) 1.2 (0.9-2.2) 1.4 (0.3-3.1) 0.6 (0.2-0.9) 0.7 (0.1-1.3) 0.8 (0.2-1.7) 

CO 0.9 (0.6-1.2) 1.5 (1.0-2.2) 1.2 (<DM-2.2) 0.9 (0.5-1.1) 1.1 (0.9-1.3) 0.9 (0.8-1.1) 

ES 1.0 (0.4-1.4) 1.3 (0.9-1.8) - 1.0 (0.8-1.2) 2.2 (0.5-7.2) 1.0 (0.8-1.2) 

MA 0.9 (0.5-1.4) 1.2 (1.0-1.4) 2.4 (<DM-7.0) 0.9 (0.5-1.3) 0.8 (0.6-1.0) 0.8 (0.6-1.1) 

PL 1.3 (0.4-3.3) 1.1 (0.7-1.6) - 1.1 (<DM-2.5) 1.1 (0.6-2.0) 1.4 (0.4-2.8) 

PP 0.7 (0.4-1.1) 1.0 (0.8-1.2) 22.6 (8.2-34) 1.4 (0.7-2.3) 3.4 (1.3-5.2) 0.6 (0.4-1.1) 

RO 1.0 (0.6-1.3) 1.1 (0.9-1.5) - 1.1 (0.8-1.3) 1.0 (0.7-1.2) 1.1 (0.8-1.5) 

SI 1.1 (0.7-1.3) 1.3 (0.9-2.0) - 1.1 (1.0-1.3) 1.1 (0.9-1.2) 1.6 (0.3-1.7) 

 

Lake Mn Ni Pb Sb Sn Zn 

AIx 1.0 (0.9-1.2) 0.8 (0.6-0.9) 1.0 (0.8-1.3) 1.2 (0.9-1.6) 0.9 (0.8-1.1) 0.9 (0.6-1.2) 

ER 0.9 (0.8-1.0) 0.9 (0.8-1.0) 1.9 (1.0-2.8) 1.4 (<DM-3.0) 1.2 (0.4-1.8) 0.9 (0.9-1.1) 

AU 1.0 (0.7-1.3) 1.0 (0.8-1.3) 1.6 (1.3-1.8) 2.3 (1.1-4.3) 1.6 (1.1-2.8) 1.2 (1.1-1.3) 

BA 1.0 (0.6-1.9) 0.7 (0.2-1.0) 1.3 (0.6-2.5) 1.1 (0.5-1.8) 2.2 (1.0-5.8) 0.8 (0.6-1.0) 

CO 1.0 (0.8-1.1) 0.9 (0.7-1.1) 1.7 (1.1-2.0) - 1.4 (1.0-1.7) 1.0 (0.8-1.3) 

ES 1.0 (0.8-1.1) 0.8 (0.5-1.0) 2.4 (0.7-5.8) 4.3 (<DM-19) 1.7 (1.0-3.3) 1.2 (0.7-1.8) 

MA 0.8 (0.5-1.1) 0.7 (0.4-1.1) 1.7 (1.1-2.9) 2.1 (1.0-4.8) 2.8 (1.0-7.6) 0.8 (0.4-1.2) 

PL 1.3 (0.7-2.4) 1.7 (0.1-3.9) 5.0 (0.6-11.) 13.8 (<DM-44) 2.0 (0.8-3.7) 0.6 (0.4-1.1) 

PP 0.7 (0.5-1.1) 0.7 (0.4-1.0) 2.2 (1.4-2.8) 0.9 (0.6-1.8) 1.3 (0.7-1.8) 14 (4.7-27) 

RO 1.0 (0.8-1.2) 1.0 (0.8-1.3) 2.0 (0.9-4.6) 5.2 (0.8-20) 2.1 (0.9-6.5) 1.0 (0.8-1.3) 

SI 0.9 (0.7-1.0) 1.2 (1.0-1.6) 2.4 (0.9-4.0) - 1.3 (0.8-2.1) 1.2 (1.0-1.6) 
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The EFM values corresponding to the upper 5 layers (0-1.5, 1.5-5.0, 5.0-8.5, 8.5-12.0, 

12.0-15.5 cm) of each core were calculated, and the average, maximum and minimum values 

obtained in each case are shown in Table 4. If some elements do not appear in the table, it is 

due to the fact that all their EFM values were lower than 2. On the one hand, the case of PP 

lake is the most significant, as its average EFM values for Cd, Cu, Pb and Zn were far above 

2. Moreover, regarding Cd and Zn, the lowest EFM was above 2. The anthropogenic origin of 

these metals is, therefore, evident, and it is probably a consequence of the historic mining 

activities. Also in RO, three elements (Sb, Sn and Pb) show average EFM values above 2. 

The situation is very similar in lake MA: the EFM for Cd in this lake is also higher than 2. 

The average EFM values found in PL for Pb (5.0) was quite high and very high for Sb (13.8). 

On the other hand, in lakes AIx, ER and CO all the elements showed EFM values below 2. 

On the other hand, Cd, Pb, Sb and Sn are the elements which presented more average EFs 

above 2, (3, 5, 4 and 4 lakes respectively, out of 11 lakes), which showed that the 

anthropogenic input of those metals is important all over the Pyrenees. 

 The EFM of the surface sediments (0-1.5 cm) can be used to study the anthropogenic 

input over recent years (Figure 6). It can be estimated that this layer has been formed over 

the last 60-70 years (Camarero et al., 1998). Lake AIx did not show EFM above 2 in any of 

the studied elements, showing that the recent anthropogenic input of metals and metalloids in 

this area is negligible. However, in PL lake, an EFM above 2 has been obtained for elements 

such as As, Co, Cu, Fe, Mn, Ni, Pb, Sb and Sn. Furthermore, in the case of Sb, this lake has 

shown the highest EFM out of all the lakes (31.4). Cd, Cu, Pb, Sb and Sn are the elements 

that showed the highest EFM in surface sediments, and also the ones that have the widest 

geographical distribution (Figure 6). 
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    Figure 6. EFM values calculated for surface sediments in different Pyrenean lakes. 
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4. CONCLUSIONS 

Regarding metallic pollution in the Pyrenees, the results obtained after the analysis of 

lake sediments confirm that the influence of human activity is significant. The mining 

activities which started long time ago (probably in the Middle Age) and the combustion of 

fossil fuels over recent years have had a direct effect on the lake ecosystems. The metal 

emissions released into the atmosphere via industrial activities can reach the lakes, airborned 

long distances by the winds. 

Lithogenic composition should be taken into account to understand the accumulation 

of some elements (i.e. As and Ti) in the Pyrenees, as the presence of rocks rich in Ti and 

arsenopyrites is high. 

The lakes under study can be divided into 5 groups depending on the metallic 

composition of their sediments: i) Pica Palomera and Montoliu showed high concentrations 

of Cd, Cu, Fe, Mo, Pb, Sb, V and Zn; ii) Baiau Superior, Aixeus and Bersau showed high 

concentrations of Al, Co, Cu, Fe, Ni and Se; iii) Siscar, Compte and Airoto showed the 

lowest concentrations of metals in general; iv) Estelat, Gran del Pesso, Eriste, Llosás, Aube, 

Romero de Dalt, Mariola, Monges and Plan showed high concentrations of Ti, Mg, Ba, Mn, 

Sn and Tl, and finally, v) Anglas showed high concentrations of Cd, Cr, Hg, Mn, Sr and An. 

According to the EFM values calculated for the surface sediments, Cd, Cu, Sb, Sn, and 

particularly Pb, seem to be the elements with the highest anthropogenic impact in the 

Pyrenees. Tradicional mining activities and the massive use of fossil fuels over recent years 

could be important contributing factors. 
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MOSSES, LICHENS AND BEECH LEAVES AS 
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POLLUTION: A CASE STUDY, THE IRATI FOREST 

(WESTERN PYRENEES) 

 

 

ABSTRACT 

The Irati Forest, an area of about 17.000 ha in the Western Pyrenees, is one of the 

most important forests in Europe. Monitoring of air contamination with living organisms 

provides low-cost information on the nature and quantity of contaminants. In this study 

beech leaves, lichens and mosses collected at 26 sampling sites of the Irati Forest in 

November 2011 were used to i) compare the potential of these three organisms as 

biondicators of atmospheric metallic contamination, ii) provide a preliminary assessment of 

the distribution of metal contamination in the area and iii) study the possible origin of metals 

in the forest. The calculated enrichment factors (EFs) suggested that most of the metals 

considered in this study were of anthropogenic origin. Metal emissions from steelworks and 

road traffic, transported by the predominant winds from the West, could be partially 

responsible of the presence of metals in the Irati Forest. The geomorphology of the Irati 

River water catchment seems to affect deeply the geographical distribution of metals. All the 

organisms investigated showed a potential to be used as bioindicator of atmospheric metal 

contamination, but it must be taken into account that, due to their different longevity, they 

provide us with information characteristic of different periods of time. The results obtained 

suggested that the accumulation of certain metals in beech leaves highly depends on the 

mountainside orientation of the sampling site. 

Keywords: Beech leaf; Moss; Lichen; Bioindicators; Atmospheric metal 

contamination; Irati Forest. 

 

 

 

 

 

 

 

 



86 

 

1. INTRODUCTION 

There are many pristine forests around the world which allow the survival of 

different organisms. At the same time, these organisms contribute to maintain forest 

ecosystems close to their original conditions. Forest ecosystems are also important because 

they provide us with food, oxygen, different materials and leisure spaces. The number of Ha 

covered with forests, however, is decreasing constantly around the world due to 

deforestation, global climate change, contamination, diseases and pathogens. All of these 

threats are increasing in the last decades due to human activity (Amores and Santamaria, 

2003). 

Regarding contamination in forests, one of the most common and damaging 

pollution is that caused by heavy metals. Metal and metalloids can be transported in the 

atmosphere long distances (Gioda et al., 2011; Marques et al., 2004). They can reach, 

consequently, even unexpected areas like pristine mountain ecosystems such as forests. 

Biomonitoring is regarded as a means to assess metallic elements concentrations in aerosols 

and deposition. This implies that the monitor should concentrate the element of interest and 

quantitatively reflect its ambient conditions (Wolterbeek and Verburg, 2002). Furthermore, 

monitoring of air contamination with living organisms provides low-cost information on the 

nature and quantity of contaminants (Loppi and Bonini, 2000; Markert et al., 1997). 

 

Lichens have been recognized as sensitive indicators of atmospheric metallic 

contamination. Lichens have no roots or well-developed cuticle. In addition, the lichen 

longevity, stability, growth form, roughness and the direct dependence on atmosphere for 

nutrients facilitate the interception and retention of particles which emphasize the 

applicability of lichen for atmospheric monitoring purposes (Nayaka et al., 2003). Lichens 

have been used as active (transplantation) and passive (lichen living in situ) atmospheric 

metal biomonitors from a long time. The metallic accumulation of metals in lichens can take 

place in three different ways: i) bounding metal ions to the cell wall by an ion exchange 

mechanism, ii) by intercellular active accumulation and iii) by entrapment of particles which 

contain metals (Szczepaniak and Biziuk, 2003). 

 

Bryophytes and especially the carpet-forming species like mosses are considered 

suitable atmospheric biomonitors as well. Mosses show long-term airborne metals 

accumulation because they obtain most of their elemental supply from the atmosphere due to 

a lack of a root system. As lichens, they do not have a well-developed cuticle. Moreover, 

mosses high cationic exchange capacity and high surface-area-to-volume ratio favour the 

accumulation of atmospheric contaminants (Fernandez et al., 2002; Gerdol et al., 2001). 

Mosses widespread occurrence enables them to reflect the spatial and temporal variations of 

atmospheric metals through their accumulation (Faus-Kessler et al., 2000; Gerdol et al., 

2001). Furthermore, moss biomonitoring seems to be the most popular, because it causes 

fewer technical and analytical problems than lichens and trees (Szczepaniak and Biziuk, 

2003). 

 

The leaves of the trees are also very efficient for atmospheric particles biomonitoring 

(Tomasevic et al., 2011). The morphology of leaves is important for the atmospheric 

particles deposition ratios and absorption. Beech leaves have been used to biomonitor many 

atmospheric contaminants (Baker and Jickells, 2006; Fromm et al., 1987; Olszowski et al., 
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2012; Tomasevic et al., 2011; Tyler and Olsson, 2006). Besides, the contribution of metallic 

elements to leaves by deposition is higher than by roots uptake and the following 

transportation to leaves (Tyler and Olsson, 2006). The annual autumn leaves shedding is an 

important event in which concentrated metals can be excluded at regular intervals as 

detoxification mechanism (Fromm et al., 1987). 

 

These three indicators of atmospheric contamination retain atmospheric metallic 

elements of different contamination sources. One of those sources can be the lithology of the 

area itself, which produces mineral particles that can be windblown an incorporated to the 

atmosphere (Demirbas, 2005; Hubbard, 1995; Szczepaniak and Biziuk, 2003). Al and Fe are 

considered to be constituents of resuspended soil particles (Baker and Jickells, 2006). 

Anthropogenic emissions due to industrial activities (Olszowski et al., 2012), road traffic 

(Berg and Steinnes, 1998), fires (Demirbas, 2005; Hubbard, 1995; Sippula et al., 2009) and 

wood treatment industry (Stilwell and Gorny, 1997) are also important. In order to assess the 

anthropogenic or natural sources of metals and metalloids in biomonitoring works, the 

enrichment factor (EF) is usually calculated (Chiarenzelli et al., 2000). The EFs compares 

the relative concentration of an analyte in the organisms used for the biomonitoring to that in 

soil (Bergamaschi et al., 2005; Klos et al., 2011). While unit or near-unit EFs are taken as an 

indication of soil origin, substantial enrichment over the natural (crustal) background levels 

points to anthropogenic sources. The widely accepted threshold for such a distinction is EF > 

10 (do Carmo Freitas et al., 2007). 

 

The aims of this work are i) to compare the efficiency of mosses, lichens and beech 

leaves as bioindicators of atmospheric metallic contamination, ii) to investigate the 

geographical distribution of metals in the Irati Forest (Western Pyrenees) and iii) to study 

their origin and possible sources in the area. 

 

2. EXPERIMENTAL 

 

2.1. STUDY AREA AND SAMPLING 

 

The Irati Forest, one of the widest beech forests in Europe (17000 ha), is located in 

the Western Pyrenees (Figure 1). It is a vast territory between the Ortzanzurieta Hill in the 

West and the Orhi and Pikatua Mountains in the East. The Abodi mountain range constitutes 

the southern limit of the forest, while the ridgeline from Harsudurra to Errozate defines the 

northern limit. The upper part of the Irati River water catchment takes an important part of 

the forest. The river rises near the Orhi Mountain and flows first to the West and then turns 

quite sharply to the South in the surroundings of Orbaitzeta, forming a characteristic funnel-

like corridor which for sure influences the dominant wind currents in the area (Figure 1). 

 

Two local roads, one from Orbaitzeta (NA-2032) and another one from Otsagabia 

(NA-2012), drive a considerable amount of visitors, especially from late spring to early 

autumn, to the surroundings of the reservoir of Irabia, in the heart of the forest, where most 

of the leisure activities are concentrated. One main road (N-135) with heavy traffic all the 

year around crosses the western part of the forest from the South to the North. One 

secondary road, the NA-140/NA-2011 runs in parallel with the Southeast boundary of the 

forest. In the northern boundary, a 4X4 track is sporadically used by local cattle ranchers. In 
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addition, a relatively complex system of 4X4 tracks with traffic limitations is present in the 

forest. The nearest cities are Iruñea (55 km to the Southwest), Donostia-Biarritz (80 km to 

the Northwest) and Orthez-Pau (80 km to the Northeast), with a remarkable urban and 

industrial activity (Figure 1). Livestock and agricultural activities are still important in the 

surroundings of the forest, and even in a few punctual exploitations inside it. Controlled 

grass burning has also been reported in the area, especially in the north sector (Barre, 2013). 

 

The Irati Forest presents mountain climate characteristics, with subalpine rank. The 

average annual temperature is about 8ºC, with an annual precipitation of about 2.000 mm 

and predominant winds from the northwest (Acedo and Ganuza, 2007; Ezcurra et al., 2013; 

Gonzalez-Miqueo et al., 2009). It is considered to be a young forest (less than 12000 years 

old). Initially oak (Quercus petraea) was the most abundant tree but nowadays beech (Fagus 

sylvatica) is the most widespread species (Martínez et al., 1991). Other species can also be 

found, such as rowan (Sorbus domestica), maple (Acer platanoides), willow (Salix alba), 

linden (Tilia), mountain elm (Ulmus glabra), boxwood (Buxus sempervirens), hazel (Corylus 

avellana), holly (Ilex aquifolium), hawthorn (Crataegus monogynav), juniper (Juniperus 

communis) and blackthorn (Prunus spinosa). A large variety of mosses and lichens is also 

present. 

 

The area to be sampled was first divided in 26 quadrants. Once in the field, an area 

of about 50×50 m was selected as sampling site inside each quadrant, taking care that there 

was no main road closer than 300 m nor track or building closer than 100 m. Composite 

samples were collected within the 50×50 m area as representative of the quadrant. The 

sampling sites are shown in Figure 1, and their UTM coordinates, altitude and mountain side 

orientation are summarised in Table 1. 

 

Beech (Fagus sylvatica) leaves, lichens, mosses (Figure 2) and soil were collected in 

November 2011. Not all kind of samples were collected in all the sampling sites (Table 1). 

Healthy and mature leaves exposed to sun light were collected from different living trees at a 

height between 1.5 and 2.5 m and as far as possible from the trunk. Composite samples of at 

least 50 leaves were collected according to the procedure described elsewhere (Martin and 

Coughtrey, 1982). Regarding mosses (Hypnum cupressiforme), composite samples of five 

subsamples were collected from stumps using a scalpel and following the guidelines of the 

UNECE ICP-Vegetation (Harmens, 2010). Lichens (Parmelia sulcata) were collected from 

the trunks of different living beech trees at an approximate height of 1.5 m with a scalpel. 

Finally, surface soils (top 10 cm) were collected in the same area than leaves, mosses and 

lichens. The sampling was carried out using latex globs. Moss samples were put inside paper 

bags, while soil, lichen and leaves were placed in Ziploc plastic bags. The paper and plastic 

bags were labelled and transported to the laboratory inside mobile fridges at 4ºC. 
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Figure 1. a) Situation of the Irati forest in the Western Pyrenees. The sampling points, the most important roads (NA-135 in 

red, NA-140 in blues and NA-2011 in green) and the main towns are also shown in the map; b) the water catchment of the Irati 

River with its characteristic funnel-like form constitutes the heart of the Irati Forest. 
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          a)            b)                       c) 

 

Figure 2. Samples collected in the Irati Forest: a) moss (Hypnum cupressiforme), b) beech leaves (Fagus sylvatica) and c) 

lichen (Parmelia sulcata). 

 

Table 1. Sampling date, geographical coordinates (UTM 30T), altitude, mountainside orientation and the type of 

sample collected (+ collected, - not collected) for each sampling site. 

 

SAMPLING SITE SAMPLING DATE X COORDINATE Y COORDENATE ALTITUDE (m) ORIENTATION LEAVES LICHEN MOSS SOIL 

1 02/11/2011 636966 4765064 1030 W + + + + 

2 02/11/2011 634717 4762013 901 SE + + + - 

3 04/11/2011 634044 4758807 927 E + + + + 

4 02/11/2011 638736 4765086 1174 W - + + + 

5 02/11/2011 637427 4760143 965 SW + + + + 

6 02/11/2011 643481 4763701 903 S + + + + 

7 04/11/2011 640643 4758562 918 N + + + + 

8 02/11/2011 647461 4763827 962 SE + + + - 

9 03/11/2011 645956 4760126 1026 N + + + - 

10 03/11/2011 643357 4756580 851 N + + + + 

11 02/11/2011 649290 4762189 920 E + + + + 

12 03/11/2011 649917 4758109 1340 N + + + + 

13 03/11/2011 647916 4753916 1047 E - + + + 

14 03/11/2011 652768 4761366 994 W + + + + 

15 03/11/2011 652507 4759363 1130 NW + + + + 

16 04/11/2011 656078 4755008 925 W + + + + 

17 03/11/2011 654771 4761889 910 SW + + + + 

18 03/11/2011 655032 4756924 1288 SW + + + + 

19 04/11/2011 654858 4755095 927 NW + + + - 

20 03/11/2011 658975 4759752 1192 SE + + - + 

21 03/11/2011 659302 4758371 1248 NE + + + + 

22 03/11/2011 656628 4754332 893 W + + + + 

23 03/11/2011 662225 4759366 1340 N + + + + 

24 03/11/2011 663897 4754837 976 SW + + + + 

25 03/11/2011 661888 4754408 991 W + + + + 

26 04/11/2011 636293 4757459 993 NE + + + + 
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2.2. ANALYTICAL PROCEDURE 

 

The pretreatment and analysis of the samples was carried out according to the 

procedures described in Chapter 2, experimental. The concentration of 21 elements was 

finally measured by ICP/MS, but not all the elements were measured in all the samples. 

Statistical and chemometric analysis of data was performed by means of The Unscrambler 

(v. 9.2 Camo, Oslo, Norway). Contour maps were produced with the aid of the 3D Field 

programme (v. 3.8.8.0, by Vladimir Galouchko). 

 

3. RESULTS AND DISSCUSION 

 

3.1. SOIL 

 

The concentrations found in soil samples and some related statistics are given in 

Table 2. Extreme values, defined as those concentrations higher than the 75
th
 percentile plus 

three times the interquartile range (Otto, 2007), are marked with an asterisk in Table 2. The 

existence of extreme values in a variable indicates unexpected high concentrations of a given 

metal at specific sites in comparison with the rest of values which could be considered as 

“normal”. Most of the extreme values (for Cd, Cr, Fe, Mg, Mn, Sb, Sn, Ti, V and Zn) were 

found in sampling site 26, which also presented the highest concentrations of Ni, Pb and Tl 

within the studied soils. This fact may be due to a punctual contamination or to the presence 

of a livestock farm in the surroundings of this sampling site. Extreme concentrations of Ti 

and Sb were also found in sampling site 4, and of Mg in sampling sites 13 and 20. After 

removing extreme values, statistics of the variables were recalculated and plotted in Figure 3. 

The concentrations measured were in most of the cases below the estimated abundance of 

elements in Earth’s crust (Barbalace, 1995). The only exceptions were As, Cd, Pb, Sb and Tl 

(estimated abundance in mg·Kg
-1

, respectively, 1.5, 0.11, 14, 0.2 and 0.6). There are many 

studies which report high concentrations of As in soils and lake sediments of the Pyrenees 

due to a natural presence of arsenopirites (Bacardit and Camarero, 2010; Camarero, 2003; 

Camarero et al., 2009). Mining exploitation of Pb and Zn (with As, Cd, Sb and Tl as 

associated elements) has also been reported in different parts of the Pyrenees including their 

western end (Ansorena and Marino, 1990). It can be concluded consequently that the metals 

and metalloids contained in soils of the Irati Forest have basically a lithogenic natural origin. 

This is confirmed by comparison of the concentrations measured with the threshold values 

(EBA-A, EBA -B and EBA -C) defined in the Basque legislation on contaminated soils 

currently in force (Gobierno Vasco, 2005). Briefly, non-altered soils are characterised by 

concentrations below the EBA -B value, while soils with the concentration of any 

contaminant over the EBA-C value should be considered as contaminated. The As 

concentration exceeded the EBA -C value in all the sampling sites, while the EBA -B values 

was only exceeded for Zn in sampling site 26. The rest of elements presented concentrations 

below the EBA-B threshold in all the sampling sites. 
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Table 2. Element concentrations (mg·kg-1) found in soils from the Irati Forest, together with some related statistics,  the detection limits (LOD), accuracy (as recovery from the replicate analysis of the SRM 2711 reference material) and reproducibility (as relative standard 

deviation from the replicate analysis of the SRM 2711 reference material) of the analytical method. The threshold values EBA-A, EBA-B and EBA-C defined in the Basque legislation on contaminated soils (Gobierno Vasco, 2005) are also provided. L: clay content estimated for 

soils of the Irati Forest, 3.3% (Kapur S. et al., 2008); H: organic matter content estimated for soils of the Irati Forest, 10.2% (Kapur S. et al., 2008). Extreme concentrations (c>Q3+3IQR) are marked with an asterisk (*). 

 

 
Al As Ba Cd Co Cr Cu Fe Mg Mn Ni Pb Sb Sn Sr Ti Tl V Zn 

L.O.D (µg·kg-1) 195 21 102 41 141 182 86 182 194 891 241 980 81 24 611 911 112 504 286 

RECOVERY (%) 80% 103% 86% 98% 114% 78% 99% 70% 82% 70% 94% 80% 82%  79% 91% 68% 70% 100% 

REPROD. (RSD) 8% 8% 9% 4% 5% 10% 9% 2% 14% 12% 4% 5% 14% 16% 10% 8% 4% 2% 11% 

1 11600 123 75.1 0.22 2.63 10.9 8.15 15000 790 385 4.81 38.0 0.62 0.94 12.1 40.0* 1.47 12.3 43.5 

3 6920 106 17.5 0.051 2.29 10.2 5.83 10800 681 167 4.20 7.37 0.35 0.30 3.05 13.7 1.42 11.4 17.0 

4 8550 42.7 32.1 0.092 1.98 8.90 10.1 13000 926 207 5.10 37.7 1.27* 0.81 7.75 33.3* 1.40 11.1 36.4 

5 15900 79.1 64.3 0.12 4.33 17.6 6.78 13900 1910 371 9.28 15.7 0.36 0.89 9.15 12.1 1.62 22.9 52.9 

6 18800 94.7 22.8 0.098 1.26 19.2 7.86 21500 1090 134 7.58 37.1 0.38 1.14 12.0 10.3 1.53 19.4 40.7 

7 14800 105 45.7 0.12 5.38 15.8 6.39 15700 2360 388 11.04 13.7 0.38 0.68 4.71 9.68 1.41 19.5 44.3 

10 13800 154 37.3 0.11 3.69 15.0 5.56 13500 1770 130 8.92 13.6 0.27 0.89 5.85 8.73 1.54 17.1 43.8 

11 14500 106 43.0 0.081 5.31 16.6 6.40 15700 2290 256 10.17 14.6 0.33 0.88 4.63 11.2 1.60 20.3 45.5 

12 16700 19.0 48.2 0.13 4.04 18.5 6.98 18900 1930 333 8.47 30.2 0.47 1.93 5.02 8.13 1.58 25.5 64.8 

13 11300 112 40.8 0.099 4.67 13.1 7.10 12700 6690* 322 8.14 11.8 0.34 0.60 27.2 11.5 1.51 16.5 34.5 

14 13100 47.6 41.5 0.083 2.87 15.8 6.41 11900 1610 121 7.23 14.1 0.25 0.92 4.95 8.23 1.52 18.8 41.2 

15 12500 105 30.7 0.42 3.86 21.9 5.10 10300 2940 198 9.74 14.7 0.30 1.12 4.94 22.0 1.48 16.8 40.7 

16 10500 52.0 43.1 0.23 4.99 13.2 6.28 11900 1820 386 10.09 11.8 0.33 0.52 6.86 13.6 1.46 16.7 39.4 

17 11500 116 36.9 0.28 7.42 11.9 5.84 16900 1810 513 15.82 20.0 0.33 0.75 7.14 6.17 1.47 16.2 47.8 

18 12700 118 44.0 0.13 6.20 14.9 7.88 17200 2500 470 11.82 14.9 0.42 0.72 4.60 6.96 1.52 17.3 48.9 

20 11000 113 29.7 0.11 3.70 14.6 8.33 12700 8250* 254 8.50 13.1 0.24 0.68 32.9 5.07 1.44 15.5 39.8 

21 15500 102 59.7 0.14 6.09 18.6 8.00 19600 3330 425 14.38 18.8 0.42 0.70 6.84 6.65 1.61 21.2 63.5 

22 13200 112 57.0 0.097 4.77 14.6 5.39 12400 2040 346 9.32 15.4 0.33 0.76 5.02 10.7 1.50 19.1 39.7 

23 10600 101 45.5 0.25 5.32 16.2 7.59 14400 2260 478 12.49 28.3 0.26 1.63 6.57 4.71 1.38 16.2 75.5 

24 14800 116 61.0 0.17 4.78 19.4 6.37 15200 2630 315 13.36 14.7 0.24 0.98 12.1 7.57 1.52 21.6 48.7 

25 18600 111 22.8 0.098 1.22 18.9 7.66 21500 1080 131 7.29 37.4 0.38 1.12 12.2 9.94 1.52 19.1 41.7 

26 15200 35.4 58.9 0.66* 7.00 36.3* 6.50 41800* 6800* 1360* 18.78 50.0 2.59* 4.91* 9.38 76.2* 1.71 61.1* 153* 

25 PERCENTILE 11200 72.3 31.7 0.092 2.81 13.2 6.17 12600 1480 190 7.51 13.6 0.29 0.70 4.95 7.42 1.45 16.2 39.7 

75 PERCENTILE 15300 114 57.5 0.22 5.34 18.7 7.87 17600 2700 397 12.0 31.9 0.42 1.12 12.0 13.6 1.55 20.5 49.9 

IQR (Q3–Q1) 4100 41.7 25.8 0.13 2.53 5.50 1.70 5000 1220 207 4.49 18.3 0.13 0.42 7.05 6.22 0.10 4.30 10.2 

Q3+(3*IQR) 27500 239 135 0.62 12.9 35.2 13.0 32700 6370 1020 25.4 86.8 0.80 2.39 33.3 32.3 1.84 33.4 80.4 

MEDIAN 13200 105 43.0 0.12 4.50 15.8 6.64 14700 1990 327 9.30 15.2 0.35 0.88 6.85 10.1 1.52 18.0 43.7 

MEAN 13300 94.1 43.5 0.17 4.26 16.5 6.93 16200 2610 350 9.84 21.5 0.49 1.09 9.31 15.3 1.51 19.8 50.2 

DESVEST 2980 33.6 14.7 0.14 1.72 5.52 1.17 6550 2020 257 3.57 11.7 0.52 0.92 7.32 16.2 0.08 9.86 25.9 

MIN 6920 19.0 17.5 0.051 1.22 8.90 5.10 10300 681 121 4.20 7.37 0.24 0.30 3.05 4.71 1.38 11.1 17.0 

MAX 18800 154 75.1 0.66 7.42 36.3 10.1 41800 8250 1360 18.78 50.0 2.59 4.91 32.9 76.2 1.71 61.1 153 

EBA-A 
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Figure 3. Within sampling sites concentrations (mg kg−1) found in soils of the Irati Forest after removing extreme values. The 

box shows the 25th percentile and the 75th percentile, and the whiskers represent the smallest and largest concentrations, while 

the line inside the box is the median of the population. 

 

3.2. BEECH LEAVES (Fagus sylvatica) 

 

The element concentrations measured in beech leaves are shown in Table 3 together 

with some related statistics. Samples from sampling points 4 and 13 were accidentally lost. 

Extreme values, which are marked with an asterisk in Table 3, were identified for Al in 

sampling sites 3 and 10, for Ba in sampling site 22 and for Mg in sampling site 26. Figure 4 

summarises the results after removing the extreme values. 

Information in the Literature about the elemental composition of beech leaves in 

European forests is scarce. Amores and Santamaría reported, however, concentrations of 

several macro and micro elements in beech leaves collected in Pyrenean forests from the 
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North of Navarre, including the Irati Forest, in 1995 and 1997 (Amores and Santamaria, 

2003). The concentrations measured in our study are comparable to those of Amores and 

Santamaria in the case of Fe, Mg, Mn and Zn, and slightly lower in the case of Cu (3.5±1.3 

mg·Kg
-1

 vs. 6.1±1.4 mg·Kg
-1

). Data have also been published for some German (Zech et al., 

1990), Swedish (Tyler and Olsson, 2006) and Slovakian (Mankovska, 1998) forests. A 

comparison with the concentrations reported in those works and those measured in our study 

is provided in Table 3. 
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Table 3. Element concentrations (mg·kg-1) found in beach leaves from the Irati Forest, together with the detection limits (LOD), accuracy (as recovery from the replicate analysis of the SRM 2711 reference material) and reproducibility (as relative standard deviation from the 

replicate analysis of the SRM 2711 reference material) of the analytical method. Extreme concentrations (c>Q3+3IQR) are marked with an asterisk (*). Concentrations found in beech leaves from other locations are also provided for comparison. 

 
Ag Al As Ba Cd Co Cr Cu Fe Hg Mg Mn Ni Pb Sb Sn Sr Tl V Zn 

L.O.D. (mg·kg-1) 0.02 1.02 1.23 0.42 0.36 0.06 0.44 1.11 1.08 0.05 1.24 0.98 0.03 0.27 0.07 0.17 0.85 0.59 0.43 0.58 

RECOVERY (%)  92% 82%  96% 85%  98%  128%  97% 88% 84%   84%  82% 96% 

REPRODUCIBILITY (RSD) 8% 4% 12% 10% 3% 4% 8% 2% 9% 21% 4% 8% 2% 8% 14% 16% 9% 17% 8% 2% 

1 0.57 264 1.41 48.4 0.45 0.35 24.0 3.35 444 1.89 2000 931 11.1 2.75 0.10 0.23 51.0 <LOD 1.08 38.3 

2 <LOD 152 <LOD 48.7 <LOD 0.68 6.47 4.23 172 0.22 896 956 5.04 0.76 <LOD <LOD 22.9 0.62 0.44 25.7 

3 <LOD 485* <LOD 61.0 <LOD 0.85 19.5 5.05 534 0.24 1030 1440 10.1 1.20 <LOD <LOD 20.9 0.61 0.93 26.3 

5 <LOD 136 <LOD 50.4 <LOD 0.62 5.48 3.74 156 0.23 1100 693 5.01 0.66 <LOD <LOD 27.3 <LOD <LOD 27.9 

6 <LOD 153 <LOD 17.7 <LOD 0.10 3.95 5.75 172 0.10 1200 306 2.98 0.39 <LOD <LOD 25.0 <LOD <LOD 30.1 

7 0.041 221 <LOD 72.7 <LOD 0.72 7.75 3.50 216 0.24 1350 765 6.44 0.74 <LOD <LOD 27.0 0.63 0.58 26.3 

8 <LOD 156 <LOD 42.1 <LOD 0.78 16.0 5.37 232 0.29 1460 570 11.2 1.11 <LOD <LOD 23.9 0.70 <LOD 25.7 

9 <LOD 170 <LOD 25.6 <LOD 0.12 3.11 4.37 178 0.11 968 393 3.49 0.68 <LOD <LOD 49.2 <LOD <LOD 26.1 

10 <LOD 393* <LOD 32.7 <LOD 0.91 25.3 3.85 433 0.28 1120 410 13.3 0.93 <LOD <LOD 31.8 0.62 0.47 32.3 

11 0.61 120 1.35 29.8 0.43 0.29 11.8 2.31 176 2.01 1500 1220 5.97 1.31 0.09 0.23 29.5 0.61 0.99 26.5 

12 <LOD 218 <LOD 50.1 <LOD 0.73 7.98 5.51 246 0.28 1310 745 4.88 1.17 <LOD <LOD 26.1 0.65 0.57 34.9 

14 0.53 105 <LOD 64.3 0.46 0.21 6.40 2.13 172 1.81 1320 1190 3.82 0.90 0.08 <LOD 34.9 <LOD 1.09 27.6 

15 <LOD 96.6 <LOD 52.6 <LOD 0.08 1.55 4.29 134 0.10 1640 345 4.09 0.34 <LOD <LOD 31.9 <LOD <LOD 44.2 

16 0.56 166 <LOD 46.2 0.44 0.41 38.4 2.04 364 1.93 1230 894 18.3 0.73 0.09 0.18 26.2 0.59 0.58 29.7 

17 0.53 101 <LOD 26.7 0.51 0.27 21.8 2.20 267 1.81 1430 754 14.3 0.51 0.08 <LOD 41.2 <LOD 0.80 20.6 

18 0.58 120 <LOD 42.2 0.43 0.22 15.7 1.80 238 1.98 1390 650 8.69 0.54 0.08 <LOD 23.9 0.60 0.90 28.7 

19 0.52 138 <LOD 32.8 0.40 0.39 36.3 2.89 351 1.74 2080 162 16.8 0.67 0.08 0.20 54.8 <LOD 1.41 30.1 

20 <LOD 151 <LOD 47.8 <LOD 0.10 4.52 4.60 178 0.09 1270 442 6.01 0.54 <LOD <LOD 34.8 <LOD <LOD 38.5 

21 0.61 163 <LOD 41.8 0.55 0.29 19.7 3.22 293 2.07 948 296 13.5 1.22 0.10 0.20 40.3 0.63 1.15 32.5 

22 0.54 104 <LOD 141* 0.44 0.22 12.7 2.03 211 1.82 1790 1720 9.94 0.76 0.08 <LOD 46.7 <LOD 0.96 26.8 

23 <LOD 172 <LOD 64.6 <LOD 0.72 16.4 5.02 224 0.30 1430 194 17.6 1.70 <LOD <LOD 33.5 0.64 <LOD 30.4 

24 <LOD 111 <LOD 59.4 <LOD 0.09 2.80 4.12 152 0.051 1410 314 6.25 0.50 <LOD <LOD 52.8 <LOD <LOD 23.4 

25 0.57 144 <LOD 35.2 0.39 0.32 27.7 2.11 314 1.91 1430 601 14.6 1.20 0.09 0.19 37.1 <LOD 0.97 26.3 

26 0.56 114 <LOD 9.33 <LOD 0.18 13.2 1.63 241 1.81 2620* 374 4.97 0.89 0.09 0.18 7.60 <LOD 0.89 35.6 

25 PERCENTILE 0.53 115 
 

32.7 0.42 0.19 5.71 2.15 173 0.23 1140 352 4.98 0.57 0.08 0.18 25.3 0.61 0.58 26.3 

75 PERCENTILE 0.58 172 
 

57.7 0.47 0.71 21.2 4.54 309 1.87 1490 922 13.4 1.19 0.09 0.23 41.0 0.64 1.06 32.5 

IQR (Q3-Q1) 0.05 57  25 0.05 0.52 15.5 2.39 136 1.64 350 570 8.42 0.62 0.01 0.05 15.7 0.03 0.48 6.20 

Q3+(3*IQR) 0.72 341  133 0.63 2.27 67.8 11.7 716 6.81 2560 2630 38.8 3.05 0.10 0.37 88.2 0.73 2.50 51.2 

MEDIAN 0.56 151 
 

47.0 0.44 0.30 12.9 3.62 228 0.30 1370 625 7.57 0.76 0.09 0.20 31.8 0.62 0.92 28.3 

MEAN 0.52 173 
 

47.6 0.45 0.40 14.5 3.55 254 0.97 1410 683 9.11 0.93 0.09 0.20 33.3 0.63 0.86 29.8 

DESVEST 0.15 92.6 
 

25.1 0.05 0.27 10.4 1.30 104 0.87 395 407 4.88 0.51 0.01 0.02 11.6 0.03 0.27 5.39 

MIN 0.04 96.6 
 

9.33 0.39 0.08 1.55 1.63 134 0.051 896 162 2.98 0.34 0.08 0.18 7.60 0.59 0.44 20.6 

MAX 0.61 485 
 

141 0.55 0.91 38.4 5.75 534 2.07 2620 1720 18.3 2.75 0.10 0.23 54.8 0.70 1.41 44.2 

NORTH OF NAVARRE (Amores and Santamaria, 2003)        6.1±1.4 113±41  1.700±500 556±420        30±11 

SLOVAKIA (Mankovska, 1998) 
 

50-150 <0.2 <100 <0.5 <0.1 <0.1 6-14 200-2000 
 

1000-1500 <1000 1-2 2-6 
  

<10 
 

<1 20-80 

GERMANY (Zech et al., 1990) 
 

115±14 
     

7.8±2.4 130±10 
 

530±150 530±40 
       

25.3±9.4 

SWEDEN (Tyler and Olsson, 2006) 0.01 57 0.055 55 0.14 0.04 0.37 7.7 74 0.03 2100 2800 0.83 0.71 0.05 
 

40 0.005 0.20 24 
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Figure 4. Within sampling sites concentrations (mg kg−1) found in beech leaves of the Irati Forest after removing extreme 

values. The box shows the 25th percentile and the 75th percentile, and the whiskers represent the smallest and largest 

concentrations, while the line inside the box is the median of the population. 

 

The enrichment factors (EF) in beech leaves were calculated according to Eq. 1 

(Chiarenzelli et al., 2000) in order to assess the antropoghenic or natural origin of metals and 

metalloids. 

 

soil

Al

soil

M

AlM

M
CC

CC
EF     Eq. 1 

 

In Eq. 1, M is the element considered, and c and c
soil

 are the concentrations of the element in, 

respectively, the sample and the soil. As it can be observed, concentrations normalized with 

aluminium have been used in the calculation. While unit or near-unit EFs are taken as an 

indication of natural origin, substantial enrichment over the concentrations found in soil 

points to anthropogenic sources. The widely accepted threshold for such a distinction is EF > 



97 

 

10 (do Carmo Freitas et al., 2007). Within-sites average EFs for each element are shown in 

Figure 5. All the elements analysed exceeded the EF threshold of 10 except As, Fe, V, Pb 

and Co. An important input of metals of anthropogenic origin should be consequently 

concluded from the results of beech leaves for most of the elements investigated. 

 

 
 

Figure 5. Within-sites average enrichment factors (EF) calculated for the elements in beech leaves. The red line indicates the 

threshold value (EF = 10) above which anthropogenic origin should be concluded. 

 

Correlation analysis of data was carried out. Pearson correlation coefficients were 

calculated for all pairs of variables. No element showed a significant correlation between its 

concentrations in soil and in leaves. The concentrations of Cr and Ni in beech leaves, 

however, were highly correlated (0.89), indicating that this two elements may have a 

common origin in beech leaves of the Irati Forest. An study of the total diffuse emissions 

carried out in Sweden, showed that road traffic contributes in more than 99% to the total Cr 

and Ni of the atmosphere (Hjortenkrans et al., 2006). Moreover, it has also been reported that 

combustion of fossil fuels, especially diesel and biodiesel, releases an important amount of 

Cr and Ni to the atmosphere (Agarwal et al., 2011; de Miguel et al., 1997; Wang et al., 

2003). The presence of diesel motor fuel vehicles in the complex 4x4 track network of the 

Irati Forest is rather abundant and could be partially responsible of the Cr/Ni contamination 

(Figure 5) in the area. The most striking point in the case of leaves, however, is the marked 

negative correlation between the concentration of Cu and those of Ag, Cd, Sb, Hg and Sn. 

These five elements present, in addition, a high positive correlation among each other. 

Principal Component Analysis of the data set of beech leaves was also carried out. 

Principal Component Analysis (PCA) is a multivariate statistical technique capable of 

discerning patterns in large environmental datasets (Jolliffe, 2002). The dataset consisted on 

a matrix with the concentrations of the elements in columns (19, As was not considered 

because the concentrations measured in most of the sampling sites were below the detection 

limit) and the sampling sites in rows (26). Concentrations below the detection limit were 

substituted by the half of the detection limit. The dataset was centred and scaled before PCA 

analysis. A model with 3 PCs was finally selected to explain the variability of data. The first, 

second and third PCs explained, respectively, 38%, 19% and 11% of the total variance of the 

dataset. The corresponding scores and loadings plots are shown in Figure 6. As it can be 
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observed, sampling sites were separated in two different groups, the first one with negative 

scores on PC1 and characterized by relatively high concentrations of Cu, Co, Al, Tl, Ba and 

Zn (2, 3, 5, 6, 7, 8, 9, 10, 12, 15, 20, 23 and 24), and the second one with positive scores on 

PC1 and characterised by relatively high concentrations of Ag, Hg, Sb, Cd, Sn, V, Cr, Ni, 

Mg, Fe, Pb, Mn and Sr (1, 11, 14, 16, 17, 18, 19, 21, 22, 25 and 26). Interestingly, most of 

the sampling sites in the second group have a west (W, NW or SW) component in their 

mountainside orientation, while most of the sites with any other orientation (N, NE, E, SE or 

S) form the second group. In general terms, PC1 discerned between sites with high (positive 

scores) and low (negative scores) metal concentrations. West component winds are prevalent 

in the western Pyrenees and thus metallic contamination can be transported from highly 

industrialized areas and steelworks located in the Basque Coast from Bilbao to Baiona and in 

the surroundings of Iruñea (Gonzalez-Miqueo et al., 2009). Steelworks have a considerable 

impact on the atmospheric particle load and are characterized by fine metallic particles input 

containing Cr, Fe, Mn, Ni and Zn (Choel et al., 2010; Damek-Poprawa and Sawicka-

Kapusta, 2004; Vestergaard et al., 1986). After emission, these metals can be mixed with 

marine and continental compounds and windblown large distances from the source (Choel et 

al., 2010; Damek-Poprawa and Sawicka-Kapusta, 2004; Vestergaard et al., 1986). The N-

135 main road from Iruña to Donibane-Garazi, with considerable truck traffic, might be 

another important source of metals to the atmosphere that finally impacts in the Irati Forest. 

Another interesting observation that arises from the combination of the results from the PCA 

and the correlation analysis is that it seems that beech orientated to the West (W, NW or 

SW) are more likely to accumulate less Cu and proportionally more Ag, Cd, Sb, Hg and Sn 

than those orientated to any other cardinal point. 

 

In order to visualize the distribution of metals in beech leaves of the Irati Forest, the 

Normalised-and-Weighted Average Concentrations (NWACs) were finally calculated. The 

NWAC is a cumulative index, to sort samples according to their contaminant content. 

Samples are characterised by a single score in a scale from 0 to 10, the NWAC, which is 

calculated taking into account exclusively the concentration of contaminants freely selected 

by the user and present in the sample (Gredilla et al., 2014). The kriging interpolation of the 

obtained NWACs in a contour map allows us identifying, in a very simple and intuitive way, 

the points of higher concern in the area investigated, in this case, the Irati Forest. The results 

obtained using the concentrations of the 20 elements measured in the beech samples are 

shown in Figure 7. Two main hotspots of metallic contamination were identified. The first 

one in the North-West corner of the studied area, in the surroundings of sampling site 1, 

clearly influenced by the N-135 main road. The second one is at the closed end of the funnel-

like corridor that forms the water catchment of the Irati River, around the sampling site 21. 

 

 

 

 

 

 

 

 



99 

 

 
 

 

Figure 6. Scores and loadings plots (PC1-PC2 and PC1-PC3) obtained after PCA of the beech leaves dataset. In red: sampling sites with NW, W or SW orientation; in blue: sampling sites with N, NE, E, SE 

and S orientation.
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Figure 7. Hotspots of metal contamination in the Irati Forest according to the NWAC values calculated using the concentration 

of the 20 elements measured in beech leaves. 

3.3. LICHEN (Parmelia sulcata) 

 

The element concentrations measured in lichens are shown in Table 4 together with 

some related statistics. Extreme values, which are marked with an asterisk in Table 4, were 

identified for Cd (in sampling sites 14, 19 and 20), for Cr (in 4, 17 and 22), and for Ag (in 

16), Pb (in 22), Sb (in 22) and Sn (in 19). Figure 8 summarises the results after removing the 

extreme values. 

Lichens have been widely used to monitor metal pollution in mountain regions. As 

an example, the concentrations measured in this work have been compared with those 

obtained from the analysis of Parmelia sulcata lichens collected in the Aspe valley (Central 

Pyrenees) (Veschambre et al., 2003) and Xanthoria parietina lichens from the Prades 

Mountains (Tarragona, Catalonia)(Achotegui-Castells et al., 2013) (Table 4). The Aspe 

valley is a basically pristine area with the main road E-7 connecting Pau and Sabiñanigo as 

the most important potential source of pollution. Concerning the Prades Mountains, a 

remarkable industrial activity (petrochemical, paper and glass plants) takes part in their 

surroundings. Similar concentrations of Cu, Pb, Sb, V and Zn were observed in all the areas, 

while the concentrations of Cd, Mn and Rb were higher in the Irati Forest than in the Axpe 

Valley, and those of Cr and Ni lower in the Irati Forest than in the Prades Mountains.  

 

Since the Al concentration was not measured in lichens, the calculation of the 

corresponding EFs was not possible. 
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Table 4. Element concentrations (mg·kg
-1
) found in lichens from the Irati Forest, together with the detection limits (LOD), accuracy (as recovery from the replicate analysis of the BCR 482 reference material) and reproducibility (as relative standard 

deviation from the replicate analysis of the BCR 482 reference material) of the analytical method. Extreme concentrations (c>Q3+3IQR) are marked with an asterisk (*).Concentrations found in lichens from other locations are also provided for comparison.  

 
Ag Cd Cr Cu Hg Mn Ni Pb Rb Sb Sn Sr V Zn 

L.O.D. (µg·kg-1) 12.8 7.47 9.27 19.6 0.08 1610 6.62 9.78 6.83 9.90 10.0 137 10.0 8.10 

RECOVERY (%) 
 

86% 61% 100% 78% 69% 115% 80% 
 

70% 63% 78% 80% 93% 

REPRODUCIBILITY (RSD) 23% 1% 7% 7% 8% 6% 4% 2% 
 

12% 2% 6% 6% 8% 

1 0.043 0.20 2.50 19.9 0.14 302 6.15 9.91 17.6 0.041 0.26 19.9 2.33 55.9 
2 0.072 0.20 2.89 22.2 0.35 181 2.77 12.9 21.3 0.032 0.19 25.2 3.91 21.9 
3 0.058 0.20 2.18 16.7 0.69 454 2.85 18.2 13.8 0.048 0.19 15.5 4.46 35.8 
4 0.074 0.32 16.8* 17.1 0.23 278 3.38 22.6 7.52 0.068 0.25 10.1 5.99 41.7 
5 0.032 0.12 1.41 5.39 0.18 219 1.64 7.86 21.0 0.030 0.12 30.8 0.95 25.2 
6 0.045 0.20 6.58 10.9 0.17 232 2.68 38.3 17.8 0.031 0.20 26.2 3.91 27.3 
7 0.042 0.18 2.23 10.5 0.19 252 2.94 14.9 11.1 0.032 0.21 14.2 4.03 25.5 
8 0.057 0.18 0.90 12.6 0.16 129 1.34 8.17 27.6 0.048 0.20 31.7 0.82 30.7 
9 0.063 0.25 3.99 16.5 0.14 71.9 2.08 5.62 12.3 0.032 0.23 13.2 2.63 26.5 

10 0.077 0.24 2.72 12.6 0.18 176 2.25 6.93 12.0 0.033 0.16 13.5 3.43 33.3 
11 0.072 0.45 1.71 8.98 0.36 116 1.75 4.95 22.6 0.032 0.21 27.0 2.12 19.6 
12 0.072 0.28 3.40 13.9 0.22 313 3.10 22.3 14.7 0.055 0.21 19.4 6.26 37.9 
13 0.054 0.26 3.57 19.9 0.21 192 3.89 20.1 11.8 0.041 0.23 16.3 6.13 35.8 
14 0.048 1.28* 1.97 8.99 0.22 498 1.91 11.5 11.2 0.030 0.33 16.1 2.03 42.6 
15 0.048 0.26 3.83 9.71 0.17 333 4.00 14.8 12.4 0.032 0.25 17.9 5.47 36.6 
16 0.17* 0.21 2.95 8.76 0.15 124 2.61 15.5 6.07 0.036 0.19 10.7 4.68 23.6 
17 0.042 0.33 9.58* 6.60 0.17 201 3.87 19.1 9.16 0.022 0.18 16.3 5.51 41.2 
18 0.041 0.22 2.97 8.61 0.18 217 2.60 10.3 13.5 0.022 0.13 14.9 5.19 28.1 
19 0.062 0.72* 6.20 6.69 0.12 89.2 1.83 5.33 4.90 0.028 6.81* 8.7 2.20 24.6 
20 0.042 0.88* 3.96 15.4 0.36 249 2.51 9.38 13.7 0.036 0.25 16.0 4.57 45.6 
21 0.056 0.22 3.56 9.25 0.30 130 4.88 16.5 7.58 0.036 0.15 11.5 5.43 52.5 
22 0.049 0.30 12.9* 10.2 0.35 433 3.82 87.5* 9.79 0.21* 0.18 15.1 6.28 32.4 
23 0.031 0.16 3.44 7.13 0.26 103 2.92 9.84 5.72 0.025 0.15 9.08 3.61 13.2 
24 0.032 0.18 2.71 6.18 0.17 72.0 1.22 5.75 12.9 0.029 0.20 12.8 2.46 15.6 
25 0.031 0.09 1.83 5.53 0.20 74.8 1.12 2.21 8.68 0.013 0.12 8.05 1.74 11.6 
26 0.030 0.20 0.49 7.45 0.41 207 1.46 8.93 9.91 0.045 0.29 10.5 2.54 33.6 

25 PERCENTILE 0.038 0.19 2.12 7.37 0.17 122 1.81 7.62 9.04 0.029 0.17 11.3 2.29 24.3 

75 PERCENTILE 0.062 0.30 3.96 15.7 0.31 284 3.49 18.4 15.4 0.041 0.25 19.5 5.44 38.7 

IQR(Q3-Q1) 0.024 0.11 1.84 8.33 0.14 161 1.68 10.8 6.37 0.012 0.08 8.20 3.15 14.4 

Q3+(3*IQR) 0.134 0.62 9.48 40.7 0.73 769 8.53 50.8 34.5 0.077 0.47 44.1 14.9 81.9 

MEDIAN 0.047 0.22 2.96 9.93 0.19 204 2.64 10.9 12.1 0.032 0.20 15.3 3.91 31.5 

MEAN 0.053 0.31 4.13 11.5 0.24 217 2.75 15.7 13.0 0.041 0.46 16.6 3.80 31.5 

DESVEST 0.026 0.26 3.72 4.85 0.12 118 1.19 16.5 5.57 0.035 1.30 6.64 1.69 11.2 

MIN 0.031 0.09 0.49 5.39 0.12 71.9 1.12 2.21 4.90 0.013 0.12 8.05 0.82 11.6 

MAX 0.17 1.28 16.8 22.2 0.69 498 6.15 87.5 27.6 0.21 6.81 31.7 6.28 55.9 

ASPE VALLEY (Veschambre et al., 2003)  0.05 2.93 10.5  34.2  11.1 3.47    3.88 52.4 

PRADES MOUNTAINS (Achotegui-Castells et al., 2013)  0.113-0.121 14.1-24.8 5.39-7.36   7.74-13.2 1.52-3.52  0.035- 0.057   1.91-3.08 26.8-38.1 



102 

 

 
 

Figure 8.  Within sampling sites concentrations (mg kg−1) found in lichens of the Irati Forest after removing extreme values. 

The box shows the 25th percentile and the 75th percentile, and the whiskers represent the smallest and largest concentrations, 

while the line inside the box is the median of the population. 

 

Correlation analysis of data revealed a significant correlation between the 

concentrations of Rb and Sr (0.93) in lichen. These pairs of metals probably have a common 

origin in the Irati lichens. No element showed a significant correlation between its 

concentrations in soil and in lichen. 

The dataset of lichens, consisting on a matrix with 14 columns (concentrations of the 

elements measured in lichens) and 26 rows (the sampling sites), was also subjected to 

Principal Component Analysis. Concentrations below the detection limit were substituted by 

the half of the detection limit. The dataset was centred and scaled before PCA analysis. A 

model with 3 PCs was finally selected to explain the variability of data. The first, second and 

third PCs explained, respectively, 28%, 18% and 12% of the total variance of the dataset. 

The corresponding scores and loadings plots are shown in Figure 9. Clustering is not evident, 
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but sampling sites 4 and 22 clearly differ from the rest, with high positive scores on PC1 and 

high concentrations of elements like Cr, V, Ni, Pb, Sb, Mn and Zn. Sampling sites 1, 3, 12, 

13, 15, 17 and 21 seem to form another cluster characterised by high concentrations of Cd, 

Cu, Hg and Ag. Sampling sites 2, 5, 8 and 11 presented high concentrations of Rb and Sr as 

common characteristic. No evident relationship between clustering and altitude or 

mountainside orientation could be identified. 
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Figure 9. Scores and loadings plots (PC1-PC2 and PC1-PC3) obtained after PCA of the lichens dataset. In red: sampling sites with NW, W or SW orientation; in blue: sampling sites with N, NE, E, SE and S 

orientation.
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The concentrations of the 14 elements measured in lichens were used to calculate the 

NWACs and plot them in a contour map following the same methodology than for leaves 

(Section 3.2) (Figure 10). A very marked hotspot of metal contamination can be identified in 

sampling site 22, not far from that identified in the case of leaves (sampling point 21). Other 

points of concern are around sampling points 4, on the one hand, and 14, on the other, both 

of them with West orientation. Again, the predominant winds from the West might be 

partially responsible of this situation. 

 

 
 

Figure 10. Hotspots of metal contamination in the Irati Forest according to the NWAC values calculated using the 

concentration of the 14 elements measured in lichens. 

 

3.4. MOSS (Hypnum cupressiforme) 

 

The element concentrations measured in mosses are shown in Table 5 together with 

some related statistics. Samples from the sampling point 20 were accidentally lost. Extreme 

values, which are marked with an asterisk in Table 5, were identified in sampling sites 21 

(for Al, Ba, Ni and Zn), 24 (for Al and V), 25 (for Cr), 18 (for Al), 16 (for V) and 8 (for Zn). 

The sampling point 21 presented, in addition, the maximum concentrations of Fe and Ni. 

Figure 11 summarises the results after removing the extreme values. 

Mosses have also been largely used to monitor atmospheric pollution. The 

concentrations measured in mosses from the Irati Forest have been compared with those 

measured in mosses collected in other mountain regions, such as the Prades Mountains 

(Achotegui-Castells et al., 2013) and several forested areas of the north of Navarra 

(Gonzalez-Miqueo et al., 2009) (Table 5). In all the cases, Hypnum cupressiforme has been 

the moss species considered. Similar concentrations of Cd, Cr, Mn, Pb, V and Zn were 

observed in all the cases. While the concentrations of Al, and As were slightly lower in the 

Irati Forest than in the other two areas, considerably higher concentrations of Ni, and 

especially Cu and Hg, were found in mosses from the Irati Forest. 
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Table 5. Element concentrations (mg·kg-1) found in mosses from the Irati Forest, together with the detection limits (LOD), accuracy (as recovery from the replicate analysis of the SRM 1575a reference material) and reproducibility (as 

relative standard deviation from the replicate analysis of the SRM 1575a reference material) of the analytical method. Extreme concentrations (c>Q3+3IQR) are marked with an asterisk (*).Concentrations found in mosses from other 

locations are also provided for comparison. 

 

 
Al As Ba Cd Cr Cu Fe Hg Mn Ni Pb Sr V Zn 

L.O.D. (mg·kg
-1

) 5.05 0.01 0.02 0.002 0.01 0.05 4.5 0.4 3.4 0.05 0.02 0.004 0.001 0.2 

RECOVERY (%) 88% 72% 98% 91% 
 

94% 96% 68% 78% 91% 83% 
  

98% 

REPRODUCIBILITY (RSD) 9% 8% 6% 9% 
 

3% 12% 12% 6% 4% 8% 
  

4% 

1 311 0.15 60.2 0.14 0.15 4.98 125 54.2 338 1.83 5.59 27.1 1.48 22.6 
2 336 0.12 21.8 0.1 0.54 3.58 402 24.4 254 0.96 1.59 15.7 1.02 13.6 
3 272 0.10 31.7 0.16 17.7 151 391 39.3 328 16 2.03 16.3 0.75 14.6 
4 645 0.34 25.7 0.18 0.20 5.51 128 48.2 357 1.48 6.18 19.7 1.57 25.8 
5 489 0.16 35.8 0.33 1.40 6.65 355 47.3 167 1.83 2.88 33.5 1.24 26.3 
6 522 0.21 17.4 0.15 9.87 364 700 46.9 211 5.36 3.37 19.4 1.14 21.9 
7 547 0.31 46.8 0.34 8.38 731 1694 47.5 231 6.84 2.98 28.3 1.76 37.4 
8 445 0.10 44.7 0.19 4.01 22.6 300 24.2 126 29.1 3.29 29.4 1.17 81.0* 
9 655 0.17 16.1 0.28 1.36 125 730 29.6 106 5.01 2.97 27.7 0.66 17.4 

10 517 0.12 32.5 0.26 1.10 7.80 328 45.9 133 1.2 2.11 26.0 0.50 20.4 
11 204 0.34 34.7 0.13 0.33 1430 2610 39.2 195 13.3 1.82 20.8 0.041 22.3 
12 584 1.01 60.4 0.43 0.75 1360 6840 34.4 200 51.6 4.05 27.3 2.44 27.8 
13 619 0.21 71.0 0.26 1.57 6.65 558 64.0 200 2.53 2.94 26.8 1.77 29.7 
14 358 0.70 16.6 0.12 0.62 1810 5440 23.3 331 14.6 2.16 13.7 0.31 16.6 
15 474 0.11 22.1 0.22 1.24 27.39 66.1 30.6 154 21.4 2.77 20.8 5.69 36.5 
16 264 0.53 39.8 0.17 0.86 1360 4930 37.4 85.6 16.5 1.75 30.9 17.5* 23.7 
17 1800 0.48 29.0 0.30 4.31 6.05 1560 50.8 190 4.11 3.87 22.9 0.99 21.9 
18 3370* 0.77 47.5 0.12 6.11 47.7 3280 37.4 242 40.9 4.64 16.4 2.83 34.8 
19 780 0.13 32.3 0.25 1.59 5.48 653 44.5 140 1.33 1.96 25.5 0.93 18.0 
21 3830* 0.93 137* 0.24 3.86 699 7120 42.2 201 170* 6.58 37.0 3.65 281* 
22 408 0.48 40.6 0.55 1.22 516 1490 32.4 261 16.0 3.10 25.7 5.51 21.1 
23 2210 0.42 58.0 0.40 4.16 128 1980 47.4 112 5.94 1.90 28.5 4.84 21.3 
24 5550* 0.84 54.7 0.19 9.95 8.60 4240 45.8 127 7.07 4.25 41.3 13.1* 24.8 
25 895 0.46 31.7 0.20 66.9* 949 3590 28.5 125 39.8 2.25 28.8 1.16 21.3 
26 332 0.26 12.5 0.14 26.0 299 890 47.6 149 17.8 2.89 9.91 1.02 18.6 

25 PERCENTILE 347 0.14 23.9 0.15 0.81 6.65 373 31.5 130 2.18 2.07 19.6 0.96 19.5 

75 PERCENTILE 838 0.51 51.1 0.29 7.25 715 3440 47.5 248 19.6 3.96 28.7 3.24 28.8 

IQR(Q3-Q1) 491 0.37 27.2 0.15 6.44 708 3060 16.0 118 17.4 1.89 9.10 2.28 9.25 

Q3+(3*IQR) 2310 1.60 133 0.73 26.6 2840 12600 95.3 602 71.9 9.63 56.0 10.1 56.5 

MEDIAN 522 0.31 34.7 0.20 1.57 125.0 890 42.2 195 7.07 2.94 26.0 1.24 22.3 

MEAN 1060 0.38 40.8 0.23 6.97 403 2020 40.5 199 19.7 3.20 24.8 2.92 36.0 

DESVEST 1330 0.28 25.4 0.11 13.9 556 2170 10.3 78.2 34.2 1.37 7.32 4.08 52.7 

MIN 204 0.10 12.5 0.10 0.15 3.58 66.1 23.3 85.6 0.96 1.59 9.91 0.041 13.6 

MAX 5550 1.01 137 0.55 66.9 1810 7120 64.0 357 170 6.58 41.3 17.5 281 

NORTH OF NAVARRA (Gonzalez-Miqueo et al., 2009)   1.005  0.214 5.84 7.55  0.121 155 3.67 9.19  4.01 31.7 

PRADES MOUNTAINS (Achotegui-Castells et al., 2013) 3100-6594 0.42-0.74  0.09-0.25 9.07-24.3 6.03-7.80    6.66-13.4 1.89-3.93  2.41-3.97 28.1-29.9 



107 

 

 
 

Figure 11.  Within sampling sites concentrations (mg kg−1) found in mosses of the Irati Forest after removing extreme values. 

The box shows the 25th percentile and the 75th percentile, and the whiskers represent the smallest and largest concentrations, 

while the line inside the box is the median of the population. 

 

 

The EFs in mosses were also calculated like in Section 3.2. Within-sites average EFs 

for each element are shown in Figure 12. All the metals considered exceeded the EF 

threshold of 10 except As, Fe, Pb and V. The concentrations of As and Fe were, in addition, 

highly correlated in mosses (0.92), suggesting their common and natural lithogenic origin. 

These results confirm, however, the existence of an important input of other metals of 

anthropogenic origin in the Irati Forest.  
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Figure 12. Within-sites average enrichment factors (EF) calculated for the elements in mosses. The red line indicates the 

threshold value (EF = 10) above which anthropogenic origin should be concluded. 

 

 

The dataset of mosses was a matrix with 14 columns (concentrations of the elements 

measured in mosses) and 25 rows (the sampling sites). Concentrations below the detection 

limit were substituted by the half of the detection limit and the resulting dataset was centred 

and scaled before PCA analysis. A model with 3 PCs was finally selected to explain the 

variability of data. The first, second and third PCs explained, respectively, 35%, 16% and 

14% of the total variance of the dataset. The corresponding scores and loadings plots are 

shown in Figure 13. Like in the case of lichens, the clustering model is not evident, but 

sampling sites 12, 16, 18, 21 and 24 form a separated group in the positive part of PC1. 

These sites are characterised by relatively high concentrations of Fe, As, Ni, Pb, Sr, Al, Zn 

and Ba. The rest of sampling sites present lower scores on PC1 and, in general, lower metal 

concentrations. No evident relationship between clustering and altitude or mountainside 

orientation could be identified. 
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Figure 13. Scores and loadings plots (PC1-PC2 and PC1-PC3) obtained after PCA of the mosses dataset. In red: sampling sites with NW, W or SW orientation; in blue: sampling sites with N, NE, E, SE and S 

orientation.
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The concentrations of the 14 elements measured in mosses were used to calculate the 

NWACs and produce the corresponding contour map (Figure 14). In good agreement with 

the PCA results, the hotspot of metal contamination identified in the sampling site 21 

prolongs throughout the water catchment of the Irati River and takes all the final part of the 

characteristic funnel-like corridor (sampling sites 12, 18, 16 and 24). Winds from the SW 

could be consequently partially responsible of the metal content measured in moss of the 

Irati Forest. 

 

 

Figure 14. Hotspots of metal contamination in the Irati Forest according to the NWAC values calculated using the 

concentration of the 14 elements measured in mosses. 

4. DISCUSSION: COMPARISON AMONG BEECH LEAVES, 

LICHENS AND MOSSES AS BIOINDICATORS OF ATMOSPHERIC 

METAL CONTAMINATION 

 

A normally distributed variable does not include outlier or extreme values, so that it 

can be conveniently described by the mean and standard deviation of randomly distributed 

values. Extreme values clearly lay out the normality described by the rest of the values and 

may appear in a variable due to a wide variety of reasons. In environmental monitoring data, 

like those we are managing in this work, extreme concentrations indicate the existence of 

sampling points with a significant higher concentration of a given metal in comparison with 

the rest of sampling sites, that is, the existence of hotspots of that metal within sampling 

sites. 10 extreme values were identified in the datasets of lichens and mosses and only four 

in that of beech leaves. It seems that lichens and mosses are more sensitive than leaves to the 

existence of metallic local contaminations. After removing extreme values a close-to-normal 

distributions were obtained for most of the elements in the three bioindicators considered 

(Figures 4, 8 and 11). Looking at the corresponding means and standard deviations (Figure 

15) the elements can be divided in four different groups according to their accumulation 

rates in leaves, lichen and moss: i) the accumulation of Cr, Mn, and probably Ag, Sb and As, 

is significantly higher in leaves than in lichen and moss, ii) mosses accumulate Cu, Hg, and 
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probably Al and Fe, in a higher extent than leaves and lichens do, iii) Pb and V accumulate 

more efficiently in lichen than in moss, and in moss more efficiently than in leaves, iv) 

finally, leaves, lichen and moss present similar accumulation rates for Cd, Ni, Zn, Sr, and 

probably Sn and Ba. It is not possible to arrive to any definitive conclusion in the case of Co, 

Mg, Tl and Rb because their concentration was measured in a single matrix, leaf, lichen or 

moss. 
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Figure 15. Means and standard deviations of the element concentrations (mg·kg-1) found in beech leaves (LE), lichens(LI) and 

mosses (M) from the Irati Forest. 
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The enrichment factors calculated for both beech leaves and mosses suggest an 

anthropogenic origin of certain toxic metals such as Cu, Sr, Ni, Mn, Ba, Zn, Cd and Cr, most 

of them closely related to steelwork emissions and diesel exhausts, in the Irati Forest. It is 

also important to highlight that while the concentrations of metals in lichen and moss are not 

influenced by variables like altitude or mountainside orientation (Figures 9, 13), those in 

leaves are strongly affected by orientation (Figure 6). 

 

The NWAC, on the other hand, is a cumulative index that integrates the 

concentrations of all the elements measured in each matrix. The contour maps produced 

using the NWAC values obtained for leaf, lichen and moss (Figures 7, 10 and 14) can be 

used to investigate the distribution of atmospheric metal contamination. In general terms, the 

distributions suggested by each bioindicator are rather similar, and identify a hotspot of 

contamination at the end of the funnel-like corridor formed by the water catchment of the 

Irati River (around sampling points 21 and 22), and another one in the W-NW sector of the 

studied area (in the surroundings of the N-135 main road). This last hotspot, however, is not 

evident in the distribution obtained using moss as bioindicator. Looking at the contour maps 

produced specifically for each element in each bioindicator (Figure 16), however, it becomes 

evident that the distribution is element-and bioindicator-dependent, although, with the help 

of the results from the correlation analysis, several similarities can be listed. The 

distributions of Cr and Ni, on the one hand, and Ag, Cd, Sb, Hg and Sn, on the other, in 

beech leaves are rather similar, while that of Cu is inversely proportional to those of the last 

five elements. Concerning lichens, Rb and Sr follow a similar distribution pattern in the 

studied area. The same can be concluded for As and Fe in mosses. In all these cases, the 

corresponding correlation coefficients are over 0.7 (or below -0.7 in the case of Cu with 

Ag/Cd/Sb/Hg/Sn). In addition, and as an exception, the concentrations of Mn in leaves, 

lichen and moss are highly correlated (Beech Leaves-Lichens: 0.64; Beech Leaves-Mosses: 

0.65; Lichens-Mosses: 0.75). It is the only element whose distributions are rather similar in 

the three matrices investigated (Figure 16). The fact that no other element presents a similar 

behaviour can be explained by the different longevity of the species considered as 

bioindicators. The longevity of beech leaves is about 6 months, from early spring to late 

summer, while mosses build carpets during a period of 3-5 years, and their metal content is 

generally considered to reflect the atmospheric deposition during that period (Wolterbeek, 

2003). Finally, even if lifespan is difficult to measure in a lichen because the definition of 

what constitutes the same individual is not precise, lichens are considered to be among the 

oldest living organisms (Conti and Cecchetti, 2001). These differences in longevity certainly 

affects the amount of contaminant accumulated in the bioindicator and might partially 

explain the differences observed in metal distribution when estimated using leaves, lichen or 

moss. 
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Figure 16. Geographical distribution of several elements in beech leaves, lichens and mosses from the Irati Forest. 
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Figure 16 (Cont.). Geographical distribution of several elements in beech leaves, lichens and mosses from the Irati Forest. 
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Figure 16 (Cont.). Geographical distribution of several elements in beech leaves, lichens and mosses from the Irati Forest.. 
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5. CONCLUSIONS 

Elements like Cu, Sr, Ni, Mn, Ba, Zn, Cd and Cr probably have an anthopogenic 

origin in the atmosphere of the Irati Forest. Hotspots of metal atmospheric contamination 

concentrate in the upper part of the water catchment of the Irati River and in the NW sector 

of the studied area. The three bioindicators investigated, beech leaves, lichens and mosses, 

lead, in general terms, to this conclusion. Diesel exhaust and emissions from steelworks 

located in the industrialized areas of the Basque Coast and Iruñea (transported by the 

dominant NW-W-SW winds towards the Irati Forest) might be responsible of this 

geographical distribution of pollution. 

 

The accumulation rate of Cr and Mn is higher in beech leaves than in the other two 

matrices, while those of Cu and Hg are higher in moss than in leaves and lichen. Lichens are 

more efficient than moss and leaves to accumulate elements like Pb and V. The 

accumulation of Cd, Ni, Zn and Sr is rather similar in the three bioindicators. It is to be 

highlighted that the accumulation of metals in beech leaves is highly influenced by 

mountainside orientation. 

 

Although the three organisms investigated have demonstrated ability to accumulate 

metals in their tissues and, consequently, their potential to be used as indicators of 

atmospheric metal contamination, the combined use of beech leaves, lichens and mosses in 

monitoring exercises must be handled with care because, due to their different longevity, 

they provide us with information that is not representative of the same period of time. 
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CHAPTER 6 

ESTUARY SISTEMS 

1. Estuaries: description, classification and main features 

Estuary is the name given to the widest part of a river that flows into the sea and is 

affected by the tides. Consequently, an estuary is the meeting point between a river and the 

sea, where salt water and fresh water mix. Estuaries may be divided into three parts: a sea 

section, closest to and directly linked to the sea; a mid-section, where salt water from the sea 

mixes with fresh water from the river; and lastly, a river section, consisting mainly of fresh 

water but, depending on the tides, it may also be affected by salt water. 

A wide variety of shapes and sizes of estuary can be found all over the world. Most 

often, the form of an estuary is determined by natural barriers in the form of corals, land, 

sand or mud, that offer protection from the harsh conditions created by the sea (waves, 

strong winds, storms). The different shapes and sizes of estuaries may be determined by the 

sea conditions, different features of the river and climate factors. Estuaries constitute a 

diverse range of ecosystems rich in biodiversity. 

Estuaries are classified according to geological origin and the mix of salt water and 

fresh water. Taking into account its geological features, an estuary can be classified into four 

categories (Pritchard, 1955; Pritchard, 1967): 

- Coastal plain: Estuaries formed at the end of the Ice Age, when ice that had 

piled up over the years melted and the sea swallowed up the lowest part of the 

river valley. This kind of estuary is mostly found in mild latitudes: the 

Thames, in the United Kingdom (Figure 1); Chesapeake Bay, in the United 

States; Si-King, in Hong Kong, amongst others. 

 

- Tectonic: Estuaries formed as a result of tectonic plate movements, where land 

closest to the sea sinks and the resulting basin is filled by the sea. San 

Francisco Bay, for example (Figure 1) 

 

- Delta: Estuaries formed by the sea depositing large quantities of sand and silt 

close to the sea. They are usually shallow and can change depending on the 

transportation and movement of sand and silt, which can result in the position 

of estuary mouth changing. These estuaries form deltas. Most estuaries in 

Colombia are delta estuaries (Figure 1). 

 

- Fjords: Estuaries formed by glaciation and seawater filling very steep sided 

valleys. In this kind of estuary there is little mixing of deep water and seawater. 

The best examples of this kind of estuary can be found in Canada, Chile, 

Greenland, Alaska, Norway (Figure 1) and Siberia. 

 

Some estuaries have mixed features and, consequently, cannot be classified into 

one of the preceding four categories.  
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Figure 1. a) Thames Estuary (UK); b) San Francisco Bay (USA); c) Buenaventura Estuary 

(Colombia); d) A Norwegian fjord. 

Depending on tidal action, an estuary may be microtidal (tidal range is smaller 

than 2 m), mesotidal (tidal range is between 2 and 4 m) or macrotidal (tidal range is greater 

than 4 m). 

Regarding hydrological features, a clear classification of estuaries is not easy 

(Bowden, 1967). The salinity of estuary water ranges from 0-1‰ to 35‰ and with many 

factors coming into play, salinity in an estuary may change over time and in space. However, 

the following general classification can be made: 

- Salt-wedge: in these estuaries the flow of fresh water from the river is greater 

than the flow of salt water from the sea. The less dense fresh water floats above 

the salt water, creating two sharply defined masses of water. The two strata 

create a pronounced vertical salinity gradient known as a halocline. In these 

estuaries the quantity of salt water that enters the estuary depends on the flow 

of the river. Salt-wedges are common in microtidal estuaries 

 

- Highly stratified: This kind of estuary is commonly found in fjords, where 

there is a strong flow of river water. The boundary between salt water and fresh 

water is sharply defined in this kind of estuary, which is usually very deep and 

has salt water right at the bottom. 

 

- Slightly mixed: As a result of strong tides, salt water and fresh water mix to a 

large extent. Water reflux generates near-bed currents, which can have a 

marked impact on sediment transport processes. Slight mixing is commonly 

found in mesotidal estuaries.  

 

a) b) 

c) d) 
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- Vertically mixed: In this kind of estuary salt water and fresh water mix 

completely and, as a result, salinity does not vary with depth (isohaline), as it 

does in highly stratified and salt-wedge estuaries. These estuaries are usually 

shallow and have a large tidal range. 

 

- Reverse flow: In this rare kind of estuary, the evaporation of surface water is 

greater than the influx of water. In consequence, surface waters have greater 

salinity than deeper salt water (hiperhaline). Density increases, causing the 

water on the surface to sink. Seawater, as a result, flows to the edges to a large 

extent. 

 

As well as the geomorphological and hydrological features mentioned above, 

sedimentation processes also play an important role in estuaries and, moreover, are 

determined by geomorphological and hydrological features. Sediment can reach an estuary 

via the sea or the river. Sediment coming from the sea includes sediment previously 

transported into the sea by the river and other floating particles suspended in the sea itself 

(Guilcher, 1967). Suspended particles brought by the river and the sea and suspended matter 

from resettlement of sediments in the estuary itself, deposit in different quantities and in 

different places along the estuary. Deposition depends on the geomorphological and 

hydrological characteristics of the estuary. Where the estuary current is weaker and the river 

current becomes one with the sea current, most depositing particles are clay particles (< 1 

µm) and dirt particles (<20 µm). In contrast, in areas affected by sea currents, the depositing 

particles are sandier. The settling rate of clay particles is 10
-5

 cm/s, whilst that of dirt 

particles is 0.04 cm/s. 

Solid particles in the estuary may be made up of both agglomerate and aggregate 

particles and flocculation processes can occur (Taghon et al., 1984; Turner, 2002). 

Agglomerate particles are formed in reversible processes, whereas the processes by which 

aggregates are formed are irreversible (Aleman et al., 2007). Flocculation is the term for the 

process whereby aggregate particles are created from isolated suspended particles (Postma, 

1967). Flocculation has a direct effect on particle settling rate. Flocculation arises from Van 

der Waals forces between molecules. Flocculation does not occur in fresh water as clay 

particles usually have negative electrostatic charges and the forces of repulsion between 

them are considerable. By contrast, in salt water, concentrations of cations are high, 

neutralising the clay particles’ negative charges. In this manner, if close enough to each 

other, clay particles can form aggregates through the action of Van der Waals forces. 

Salinity, therefore, has a direct effect on flocculation processes. 

Estuaries constitute ecosystems that are necessary for the survival of many species 

and are usually areas abundant in nutrients, as much for birds as for mammals, fish and many 

other life forms. Many migrating birds use estuaries on their migrations to feed and rest. Fish 

and shellfish that fetch high prices use estuaries for biological processes that occur at some 

point in their life. In addition, the vegetation that grows on the flats of estuaries is also very 

important. The vegetation limits flooding resulting from tidal action, protecting species that 

live there and diminishing the movement of land and sediment. 
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Estuaries and coastal waters are very productive water bodies. As such they have 

always been intensively exploited. They have been, and still are, the most important socio-

economic resources, because of the industrial and urban centres that have developed around 

them. Furthermore, activities such as mining, forestry, agriculture and fish farming are often 

carried out close to estuaries, often resulting in serious ecological damage to their water 

quality, such as increases in organic matter and drops in oxygen levels, for example (Uriarte 

and Borja, 2009). Estuaries have often been used for transporting both goods and people. 

Waste matter generated by activities in the area has often been discharged into them and, as a 

result, a large number of estuaries have become a storehouse of pollutants. Both organic and 

inorganic pollutants from the sea, from streams, from the atmosphere or from water 

treatment plants on the very banks of the estuary, easily accumulate in the estuary, especially 

in the sediment. At the same time, estuaries are extremely valuable from an ecological, 

biological, social and economic point of view (Bierman et al., 2011). 

2. Metals and metalloids in estuaries 

The metals and metalloids that reach an estuary have either a natural or an 

anthropogenic source (Figure 2). Rock leaching and volcanic eruptions are the most 

important natural sources (11). Amongst others, metals reach estuaries from urban areas and 

as a result of activities such as agriculture, industry, animal farming and mining (12-15). 

Metallic waste discharge can also occur directly. Another path metals have into estuaries is 

atmospheric deposition, be it wet or dry deposition.  

 

Figure 2. metals in estuaries: sources and natural processes 
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Metals dissolved in water tend to react with different particles in the water, through 

ion exchange, adsorption, chelation or other chemical processes (Dekov et al., 1998). These 

particles may be later deposited in sediment (Reboreda et al., 2008). 

Metal elements can also react directly with particles in sediment, with sediment 

texture and composition having a direct impact on metal reactions (Abrahim et al., 2007; 

Szava-Kovats, 2008). Humic substances in the estuary, for example, form stable complexes 

with metals (Takahashi et al., 2002). 

Metals present in sediment can be dissolved into the water (He et al., 2006). The 

factors that most cause the mobility of metals are the characteristics of the sediment (pH, 

redox potential, quantity and nature of organic matter), the characteristics of the metal itself 

and the physical and chemical properties of the water in the area (pH, redox potential, 

salinity...) (van Ryssen et al., 1999). Consequently, it may be said that the water itself may 

become a source of pollution, if the right conditions occur. 

The mass of chemical pollutants dissolved in water is very small compared to that 

found in sediment (Izquierdo et al., 1997; Salomons, 1998). The concentration of metals in 

surface sediments can give important information as to water quality in the estuary and can 

often be easily obtained (Spencer et al., 2003), which has given rise to their frequent use in 

determining metal pollution in estuaries. Both in Europe and around the world works on 

monitoring metal elements in estuarine sediments abound. Table. 1 shows an example of 

results obtained in numerous such studies. 

So, bearing in mind the importance of estuarine ecosystems for a large number of 

life forms, the harm caused by the industrial and urban activities that have developed along 

them and the fact that these are areas of great value from an ecological, biological, social and 

economic point of view, in the following chapters of this study the results of monitoring 

work carried out in the Nerbioi-Ibaizabal and Urdaibai estuary, both in the Basque Country, 

the Tubarão estuary in Brazil, the Cávado estuary in Portugal and the estuary of the Hugli 

River in India will be presented, showing the geographical distribution of metal pollution 

and examining its evolution over time. 
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Table 1: Concentrations of various metals measured in sediments from various estuaries around the world (in mg·kg
-1

). 

 

Estuary Ag As Ba Cd Co Cr Cu Fe Mn Mo Ni Pb Sb Sn V Zn Ref 

Tamar (England) - - - 0.4-0-5 - - 129-161 30500-36500 348-390 - 25.0-28.0 139-165 - - - 246-282 
(Singh and 

Turner, 2008) 

Restronguet (England) 1.2 - - - - - 2890 - - - - 168 - - - 2200 
(Rainbow et al., 

2011) 

Odiel (Spain) - 330 - 14.4 - - 2109 - - - - 590 - - - 1154 
(Vicente-

Martorell et al., 
2009) 

Tinto (Spain) - 339 - 8.4 - - 1897 - - - - 496 - - - 1115 
(Vicente-

Martorell et al., 
2009) 

Canal de Santo Padre (Spain) - 384 - 7.1 - - 2215 - - - - 630 - - - 1431 
(Vicente-

Martorell et al., 
2009) 

Sado (Portugal) - - - 0.3-0.4 - - 59.0-136 34000-45000 - - - 55.7-77.0 - - - 370-391 
(Almeida et al., 

2008) 

Minho (Portugal) - - - 0.02-0.3 - - 2.8-22.4 14000-39000 - - - 4.8-15.9 - - - 37.7-91.6 
(Almeida et al., 

2008) 

Douro (Portugal) - - - 0.1-0.3 - - 1.0-229 2700-30000 - - - 0.25-192 - - - 6.2-457 
(Almeida et al., 

2008) 

Tagus (Portugal) - - - 0.9-11.0 - - 9.7-214 31000-50000 - - - 11.8-350 - - - 88.2-1086 
(Almeida et al., 

2008) 

Cavado (Portugal)  6.1-11.7 - 0.13-0.37 3.9-5.8 20.2-34.7 54.9-113 8600-10400 75-449 - 9.4-16.4 30.3-40.9 - 2.9-4.7 10.1-12.8 94-170 
(Gredilla et al., 

2015) 

Patras estuary (Greece) 3.3 8.8 385 0.5 17.0 202 82.5 35000 1015 1.7 110 49.5 1.6 - - 120 
(Papaefthymiou 

et al., 2010) 

Girondi (France) - 18.7 - 0.50 - 78.4 24.5 - - - 32.0 46.8 - - - 168 
(Larrose et al., 

2010) 

Drin (Albania) - - - 0.10-0.13 - - 12.0-13.0 725-749 289-299 - - 0.40-0.50 - - - 6.9-7.1 
(Ianni et al., 

2010) 

Macaé (Brazil) - - 89-234 - - 44-94 31-52 35000-62000 147-950 - 17-32 38-52 - - - 105-150 
(Molisani et al., 

2015) 

Tirumalairajan (India) - - - - - - 20 2053 19.7 - - 5.2 - - - 29 
(Venkatramanan 

et al., 2014) 
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CHAPTER 7 

EFFECTS OF A TROPICAL STORM IN A POLLUTED 

ESTUARY: TUBARÃO RIVER AS A CASE OF STUDY 

 

 

ABSTRACT 

Tropical storm can produced unprecedented changes in the metal distribution of 

water and sediments in a polluted estuarine area. Tubarão River (Santa Catarina, Brazil) 

estuary is affected by metal and metalloid pollution from exploitation and processing of coal 

mining, agricultural activities, urban discharges, industrial and leisure zones, etc. In order to 

study the distribution, sources and risk assessment of metal contamination in a polluted 

estuary after a tropical storm, waters and surface sediments were collected from 15 selected 

sampling sites along Tubarão River four days after the strong storm (January 2013). The 

concentration of 24 elements (Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, 

Sb, Se, Sn, Sr, Ti, Tl, V, W and Zn) were measured by Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) and the mineralogical composition of the sediments by Raman 

spectroscopy and X-ray diffraction (XRD). The metal concentrations in waters and in bed 

sediment showed wide spatial variation due to the variability in water discharges after a 

storm and variations of anthropogenic inputs along the estuary. In general, high metal 

concentration in water samples and low in the sediments were found in upstream sites of the 

estuary (near of coal mining areas). The sampling sites next to the sea and in Oratorio River 

(one of the seven tributaries of the estuary) showed the highest values in the sediment 

samples. Normalized and Weighed Average Concentrations (NWAC) were calculated for the 

identification of hotspots. The results of this study were compared with a previous study in 

the same area during dry season at 2012 by Principal Component Analysis (PCA), showing 

changes in the sediments metallic pollution after a strong storm event. 

Keywords: Water; Sediment; Metal and metalloids; Physic-chemical parameters; 

Tropical estuary, Tubarão River; Storm. 
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1. INTRODUCTION 

Estuarine waters receive contaminants such as metals and metalloids via 

anthropogenic activities and/or through riverine inputs. The distribution of soluble and 

particulate trace metals are controlled by physical-chemical processes (Windom et al., 1988), 

daily tidal currents and regimes of alluvial loading. This last factor can be environmentally 

relevant in the case of tropical estuaries (Balachandran et al., 2005). Strong tropical storm 

events can resuspend superficial sediments with different particle size, dispersed and 

accumulated across different sedimentary environments (Guillen et al., 2006). Furthermore, 

contributions of soil water to the stream from the adjacent soils increase during storm events 

(Zimmer and Lautz, 2014). Fine-grained sediments tend to accumulate metal and metalloids 

due to their sorptive nature, and thus can act as an important reservoir of contaminants with 

risk of mobilization (Eggleton and Thomas, 2004; Towler and Smith, 2000). The increase on 

the solubility of the mentioned metals from sediment could carry out an increasing of the 

total concentration of metals in the estuarine water and can affect the bioavailability and 

toxicity of metal ions in the aquatic ecosystem (Sparks, 2005). 

Tubarão River (Santa Catarina, Brazil) has been affected by coal mining activities 

for over 50 years (Kagey and Wixson, 1983; Sekine et al., 2008; SIECESC, 2008; Zheng et 

al., 2007). Nowadays, most of the mines in the Santa Catarina region are disabled, but as this 

region is highly drained by streams, trenches and water channels among others, the waters 

and sediments of the river have the undesirable effects of these activities, e.g., piles of waste, 

acid drainages, abandoned mines, and the acidification of water bodies, remain in full view 

(Prefeitura de Lauro Muller, 2014). The estuary has other sources of contamination such as 

coal-combustion power plant, traffic road, agricultural and industrial zones, and industry and 

wastewater effluents (Prefeitura de Lauro Muller, 2014). In addition, the rapid population 

growth of the area together with the lack of efficient urban planning and economic 

development has brought about serious problems of environmental degradation (Henrique et 

al., 2013).   

Tubarão estuary is affected regularly by strong storms, which could change or affect 

the biogeochemistry of the area. The environmental effect of these strong rainfall events on a 

polluted aquatic system is not usually studied (Birch and Taylor, 1999). No known studies 

have been focused on differences in metal concentration of water and sediment samples after 

one of these extreme storm events in a polluted tropical estuarine. Therefore, the aims of the 

present work were: i) determine the spatial variability and the tendencies of metal pollution 

along the estuary, ii) identify the potential contamination sources, and iii) estimate the effect 

of a storm event in the mobility of the sediments metallic content in a polluted tropical 

estuary. 

2. MATERIALS AND METHODS 

2.1. STUDY AREA AND SAMPLING PROCEDURES 

Tubarão estuary (Santa Catarina, Brazil) is a 120 km long, with a water flow that 

increases toward the estuary and a drainage area of 4,728 km
2
. It has seven principal 

freshwater inputs: Bonito, Rocinha, Orotoria, Capivaras, Braco do Norte, Palmeiras  and 

Capivari River (Silva et al., 2012; Prefeitura de Lauro Muller, 2014). 
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Waters and sediments samples were collected at 15 sampling sites (BO, RO, TBLM, 

OR, ORTB, LA, TBLA, PL, PLTB, BN, PD, NCTB, CA, FITB, and ES) along Tubarão 

River in January of 2013 (Figure 1). The sampling was carried out after four days of rainy 

season with strong storms; the storms caused the increases of the water fluxes in the estuary 

and floods in many places. 

Superficial sediments (0–2 cm) were collected at each sampling sites in the centre of 

the riverbed by hand using latex gloves or by means of Ponar dredge depending on the depth 

and the flow). Superficial water (top 10 cm) was also collected with a 50 mL HNO3 pre-

cleaned polypropylene bottle. The first water sample was used to homogenise the bottle and 

then to fill it to the top. At the same time pH, electrical conductivity and redox potential were 

measured in situ in the water samples. The sediment samples were stored in 500 mL 

polyethylene bottles and water bottles protected against light using aluminium foil were 

transported to the laboratory at 4ºC in a cool box. Blank samples (pre-cleaned bottles filled 

with Milli-Q quality water at the beginning of the sampling day) were handled in a similar 

way. 
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Figure 1. Geographical location of the Santa Catarina State (Southern Brazil), annual precipitations, temperature and orography 

of the studied area, and images and location of the sampling sites in Tubarão estuary. Black circle: coal mines; black star: pig 

farm and black triangle: thermoelectric plant. 
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2.2. ANALYTICAL PROCEDURE 

The pretreatment and analysis of the samples was carried out according to the 

procedures described in Chapter 2, experimental. The concentration of 24 elements was 

finally measured by ICP/MS. All the sediments samples were mineralogically characterised 

as well by powder X-ray diffraction (XRD) of dust and Raman Spectroscopy (RS) as 

described in Chapter 2, experimental. Statistical and chemometric analysis of data was 

performed by means of The Unscrambler (v. 9.2 Camo, Oslo, Norway). Contour maps were 

produced with the aid of the 3D Field programme (v. 3.8.8.0, by Vladimir Galouchko). The 

detection limits, accuracy and reproducibility of the analytical methods are summarised in 

Table 1. 

Table 1. Detection limits (LOD, in g·kg-1 for water samples and mg·kg-1 for sediment samples), accuracy (as percent of 

recovery) and reproducibility (as relative standard deviation, RSD) of the waters analytical method. 

 WATER SEDIMENT 

 LOD (µg·kg-1) Recovery (%) RSD (%) LOD (mg·kg-1) Recovery (%) RSD (%) 

Ag 0.16 95 7 0.06 82 9 

Al 1.29 103 12 1.8 78 8 

As 0.59 90 3 0.34 89 4 

Ba 16.3 93 7 0.88 81 8 

Cd 0.39 93 10 0.14 69 12 

Co 0.3 94 6 0.28 78 6 

Cr 0.64 95 3 0.81 89 2 

Cu 4.16 106 2 0.69 92 2 

Fe 5.99 85 4 1.4 78 5 

Hg 53.5 52 16 0.244 61 18 

Mg 2.49 78 11 0.82 81 6 

Mn 1.97 101 4 0.74 88 7 

Mo 0.31 80 8 0.203 81 11 

Ni 2.62 98 1 0.38 91 6 

Pb 0.026 92 8 0.40 92 5 

Sb 0.33 94 13 0.008 78 14 

Se 0.51 92 2 0.344 79 11 

Sn 9.99 72 6 0.08 88 9 

Sr 4.99 94 5 0.202 92 4 

Ti 0.37 89 8 0.069 88 6 

Tl 2.03 97 11 0.005 89 8 

V 0.43 94 4 0.23 81 6 

W 13.6 72 16 0.31 84 7 

Zn 0.81 95 8 1.2 98 4 

 

3. RESULTS AND DISSCUSION 

3.1. ELEMENT CONCENTRATIONS AND SPATIAL DISTRIBUTION IN THE 

WATER SAMPLES 

The representation of the concentrations found for each metal and metalloids at each 

sampling site can be seen in Figure 2 and Table 2. Extreme Fe concentrations were identified 

in RO and TBLM sampling sites, while Pb showed an extreme concentration in PL. 
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Al, Fe, Mg, Zn and Mn were major elements, with concentration values between 

8390 and 36.5 g·kg
-1

. Ba, Ni and Sr would be in a second position, and their concentration 

varied between 48.7 and 4.91 g·kg-1. As, Cd, Co, Cr, Cu, Pb, Se, Ti and V were the trace 

elements with the lowest concentrations. Ag, Hg, Mo, Sb, Sn and W concentrations were in 

all the cases below the detection limit. 

Although the spatial distribution is specific for each analysed element, some general 

trends can be listed. For Al, As, Cr, Se, V and Zn the concentrations found were higher in the 

upstream sampling sites, while the behaviour of Mg and Pb (except PL) was the opposite, 

with higher concentrations in downstream sampling sites. The sampling sites in PL and RO 

presented high concentration of As, Co, Cr, Mg, Mn, Ni, Pb, Se, Sr, Ti and Zn which could 

be affected by the coal mining wastes still located Near Palmeiras and Rocinha Rivers (Silva 

et al., 2011). In the case of rainfall events, the disturbed lands near the mine are susceptive to 

erosion and can finish at the bank of these rivers, and thus increase the amount of suspended 

particulate matters and soluble metal load in the river waters. 

Higher conductivity and lower redox values were found at the mouth of the estuary. 

pH varied from 3.5 to 7.0, being minimal in Palmeiras, Oratorios, Bonito and Rocinha Rivers 

(Table 2). The acid pH values (3.5-4.5) could be due to pyritic containing wastes from the 

abandoned coal mines near of these effluents rivers. The pHs of the water could influence on 

the concentrations of metals dissolved in the water and the concentrations in bed sediments 

of the upper part of Tubarão River. 
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Figure 2. Water metal concentration (g·kg-1) of the Tubarão estuary in the next order from the left side of the X axis, which is 

the inner side of the estuary to the right side of the X axis, which is the outer part of the estuary and nearest to the sea: BO, RO, 

TBLM, OR, ORTB, LA, TBLA, PL, PLTB, BN, PD, NCTB, CA, FITB and ES.
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Table 2. Water metal concentration (g·kg-1), pH, Eh (mV) and conductivity (µS cm-1) of Tubarão estuary together with some related statistics. Extreme high concentrations, defined 

as those concentrations over the 75th percentile of the data (Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 Al As Ba Cd Co Cr Cu Fe Mg Mn Ni Pb Se Sr Ti V Zn pH Eh Cond 

BO 2700 <LOD 46.4 <LOD 8.44 5.86 8.36 8360 5830 502 20.1 1.24 2.01 108 1.41 1.25 405 4.70 126 115 

RO S 2.49 28.7 1.06 46.0 14.6 14.3 65500* 11700 2210 89.9 2.11 10.8 280 1.70 4.21 973 4.06 163 314 

TBLM 8390 1.44 35.0 0.50 27.1 4.21 10.7 33900* 8500 1360 41.6 1.74 6.47 192 1.78 2.47 507 4.46 144 265 

OR 379 <LOD 34.2 <LOD 2.03 12.8 4.69 702 2890 167 42.1 0.91 0.69 50.5 0.67 0.73 241 6.31 39 70 

ORTB 2780 0.38 31.7 <LOD 9.36 3.75 4.98 5930 4010 495 15.5 1.07 2.07 88.8 0.58 0.59 273 4.15 156 190 

LA 125 <LOD 29.6 <LOD 0.69 8.92 <LOD 406 3420 81.9 19.7 0.63 0.46 49.0 0.89 1.62 294 6.55 8 45 

TBLA 1020 <LOD 37.3 <LOD 5.17 4.72 4.92 1960 4980 330 11.0 1.05 1.18 79.1 1.05 1.36 291 5.70 25 80 

PL S 1.38 47.1 3.00 48.4 12.1 36.2 5490 8380 2760 104 12.8* 8.01 109 1.19 <LOD 532 3.46 201 355 

PLTB 3310 0.65 34.0 0.43 19.2 2.68 11.1 1950 5320 1190 25.8 2.27 2.43 65.8 0.61 0.65 249 3.86 174 162 

BN 340 <LOD 48.7 <LOD 1.56 6.83 4.44 1430 2600 207 9.33 1.19 <LOD 42.3 0.39 1.93 128 6.60 22 38 

PD 47.7 <LOD 23.8 <LOD <LOD 1.04 <LOD 179 1600 36.5 <LOD 1.07 <LOD 22.5 <LOD <LOD 157 6.98 37 58 

NCTB 720 <LOD 42.1 <LOD 2.49 4.83 4.39 1320 2240 211 6.55 1.93 0.82 44.6 0.87 1.38 116 6.32 27 55 

CA 164 <LOD 42.3 <LOD 0.90 2.09 14.8 755 5490 152 7.10 3.14 <LOD 65.2 1.69 1.06 156 6.27 32 304 

FITB 208 <LOD 35.1 <LOD 1.99 1.42 1.84 237 18200 217 4.91 1.36 0.59 155 0.43 0.56 123 6.16 40 1172 

ES 135 <LOD 37.0 <LOD 3.29 1.63 1.76 1730 14900 651 6.17 5.54 0.59 208 0.81 <LOD 155 5.60 51 677 

25 PERCENTILE 149 0.51 31.7 0.45 1.88 2.09 4.41 702 2890 167 6.97 1.07 0.62 49.0 0.61 0.67 155 4.15 27 58 

75 PERCENTILE 2740 1.96 42.3 2.52 21.1 8.92 12.7 5930 8500 1190 41.7 2.27 5.46 155 1.48 1.85 405 6.32 156 314 

IQR(Q3-Q1) 2591 1.45 10.6 2.07 19.2 6.83 8.29 5228 5610 1023 34.7 1.20 4.84 106 0.87 1.18 250 - - - 

Q3+(3*IQR) 10513 6.31 74.1 8.73 78.8 29.4 37.6 21614 25330 4259 146 5.87 19.9 473 4.09 5.39 1155 - - - 

MEDIAN 379 1.38 35.1 0.78 4.23 4.72 4.98 1730 5320 330 17.6 1.36 1.60 79.1 0.88 1.31 249 5.70 40 162 

MEAN 1560 1.27 36.9 1.25 12.6 5.83 9.42 8650 6670 704 28.9 2.54 3.01 104 1.00 1.48 307 5.41 83 260 

DESVEST 2350 0.82 7.23 1.20 16.5 4.38 9.15 17900 4870 825 31.4 3.09 3.46 73.5 0.48 1.04 227 1.17 68 305 

MIN 47.7 0.38 23.8 0.43 0.69 1.04 1.76 179 1600 36.5 4.91 0.63 0.46 22.5 0.39 0.56 116 3.46 8 38 

MAX 8390 2.49 48.7 3.00 48.4 14.6 36.2 65500 18200 2760 104 12.8 10.8 280 1.78 4.21 973 6.98 201 1172 
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3.2. ELEMENT CONCENTRATIONS AND SPATIAL DISTRIBUTION IN THE 

SEDIMENT SAMPLES 

The representation of the concentrations found for each metal and metalloids at each 

sampling site in sediment samples from Tubarão estuary can be seen in Figure 3 and Table 3. 

Mn showed an extreme concentration in PD sampling site and Cu in OR sampling site. 

Al, Fe, and Mg were major elements, with concentration values between 112.000 

and 334 mg·kg
-1

. Ba, Mn, Ti, V and Zn had an intermediate concentration, and their 

concentration varied between 1800 and 8.01 mg·kg
-1

. As, Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, Sn, 

Sr and Tl were as trace elements, and Ag was found to be next or below detection limit. Cd, 

Hg and W were in all the cases below the detection limit. 

High elemental concentration (Al, Ba, Co, Cr, Cu, Mg, Mn, Ni, Se, Sn, Sr, Ti, V, and 

Zn) was found in OR sampling site. With the runoff after rain, disturbed suspended 

particulate near the mines from upper Bonito, Rocinnha and Oratorio Rivers could get 

deposited at the confluence of these rivers, where is located OR sampling site, affecting to 

the metallic concentrations of its sediments. 

In the middle part of the estuary (PD, NCTB and CA) were found quite high 

concentrations of Al (only NCTB), Ba, Co, Cr, Mn (only PD), Ni, Pb (PD and CA), Se, Sn, 

Tl (only PD) and Zn (only NCTB). PD, NCTB and CA sampling sites are close to 

agricultural areas (including rice crops and husbandry areas) and close to the biggest cities of 

the studied area, which are Tubarão and Capivari de Baixo cities with 97.300 and 21.000 

inhabitants respectively. The storm events could affect to the runoffs of this areas finishing 

in the estuarine sediments. This area also suffer the effects of a thermoelectric plant 

(“Complexo Termoelétrico Jorge Lacerda”), which could emit some of the studied elements 

and volatile trace compounds, finally reaching the Tubarão River stream by the wind masses 

(northeast predominantly) or transported through the terrain orography after being deposited 

in the soil (Possamai et al., 2010). 

Finally, three general trends can be listed: i) Cr and Ni with higher concentrations in 

the upper part of the river, ii) Mg, Se, Ti and Zn with higher concentrations in the mouth of 

the river, and iii) As and Cu with lower concentration in the middle of the estuary. 
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Figure 3. Sediment metal concentration (mg·kg-1) of the estuary in the next order from the left side of the X axis, which is the 

inner side of the estuary to the right side of the X axis, which is the outer part of the estuary and nearest to the sea: BO, RO, 

TBLM, OR, ORTB, LA, TBLA, PL, PLTB, BN, PD, NCTB, CA, FITB and ES.
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Table 3. Sediment metal concentration (mg·kg-1) of the Tubarão estuary together with some related statistics. Extreme high concentrations, defined as those concentrations over the 75th percentile of the data 

(Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 Ag Al As Ba Co Cr Cu Fe Mg Mn Mo Ni Pb Sb Se Sn Sr Ti Tl V Zn 

BO <LOD 4920 6.67 73.6 2.49 5.43 14.2 27600 661 96.7 0.73 3.26 16.3 0.15 5.84 0.55 7.72 155 0.34 16.1 23.1 
RO <LOD 2500 11.2 82.4 1.60 33.2 11.0 47700 334 61.7 1.87 26.8 14.0 0.10 3.72 0.79 9.21 109 0.29 13.4 30.4 

TBLM <LOD 3570 11.7 94.9 1.74 37.4 15.9 88800 347 61.7 1.88 28.7 23.1 0.17 2.70 1.05 11.0 115 0.56 15.3 42.0 
OR 0.06 7870 2.10 289 24.6 31.8 34.3* 21900 2620 1580 1.19 26.7 6.81 0.07 4.87 0.88 43.0 711 0.04 48.1 83.9 

ORTB <LOD 4750 9.34 143 2.95 18.1 15.1 112000 681 173 1.17 11.1 20.5 0.14 3.01 0.52 17.7 185 0.42 23.8 31.0 
LA <LOD 4740 2.32 119 7.48 34.8 14.3 11700 1790 488 0.77 38.5 14.1 0.10 5.59 1.18 20.2 328 0.06 16.8 66.7 

TBLA <LOD 6300 5.03 132 6.59 12.6 20.1 55200 994 301 0.77 8.23 12.7 0.10 4.93 0.49 16.5 233 0.19 24.0 46.0 
PL <LOD 3930 2.90 30.0 2.47 34.8 15.8 67400 344 78.1 1.53 23.2 13.2 0.39 4.28 0.84 5.15 130 0.07 15.8 52.1 

PLTB 0.06 6950 2.90 65.1 6.34 7.82 17.6 32700 1020 210 0.68 6.20 8.38 0.14 4.22 0.46 13.0 257 0.01 20.5 56.9 
BN <LOD 2370 1.88 105 5.64 22.8 8.83 7550 757 609 0.81 16.8 9.06 0.02 5.39 1.29 12.9 153 0.04 11.4 38.5 
PD <LOD 2530 3.67 129 5.22 30.6 8.62 12800 878 1800* 1.26 34.9 19.2 0.05 7.01 1.57 11.2 63.9 0.55 8.01 53.9 

NCTB <LOD 6060 2.35 153 14.1 21.0 19.8 14700 1590 437 0.62 17.8 7.84 0.04 6.17 0.61 20.1 360 0.02 24.1 103 
CA <LOD 3910 4.69 114 6.87 14.1 16.4 18900 1340 485 0.62 13.1 15.9 0.06 7.07 0.97 16.7 236 0.14 21.0 62.0 

FITB 0.17 7050 4.57 92.3 11.6 8.50 16.6 19400 2610 120 0.71 10.0 12.2 0.23 7.50 0.73 24.4 211 0.22 21.5 115 
ES <LOD 9420 8.91 35.0 2.78 15.6 15.8 102000 701 61.4 2.24 8.21 15.7 0.14 5.80 1.09 14.3 289 0.15 35.2 42.2 

25 PERCENTILE - 3570 2.35 73.6 2.49 12.6 14.2 14700 661 78.1 0.71 8.23 9.06 0.06 4.22 0.55 11.0 130 0.04 15.3 38.5 

75 PERCENTILE - 6950 8.91 132 7.48 33.2 17.6 67400 1590 488 1.53 26.8 16.3 0.15 6.17 1.09 20.1 289 0.34 24.0 66.7 

IQR(Q3-Q1) - 3380 6.56 58.4 4.99 20.6 3.4 52700 929 409 0.82 18.6 7.24 0.09 1.95 0.54 9.10 159 0.30 8.70 28.2 

Q3+(3*IQR) - 17090 28.6 307 22.5 95.0 27.8 225500 4377 1717 3.99 82.5 38.0 0.42 12.0 2.71 47.4 766 1.24 50.1 151 

MEDIAN - 4750 4.57 105 5.64 21.0 15.8 27600 878 210 0.81 16.8 14.0 0.10 5.39 0.84 14.3 211 0.15 20.5 52.1 

MEAN - 5120 5.35 110 6.83 21.9 16.3 42600 1110 437 1.12 18.2 13.9 0.13 5.21 0.87 16.2 236 0.21 21.0 56.5 

DESVEST - 2110 3.40 61.3 6.09 11.1 6.02 34700 747 541 0.53 11.0 4.75 0.09 1.45 0.32 9.01 156 0.19 9.93 26.5 

MIN - 2370 1.88 30.0 1.60 5.43 8.62 7550 334 61.4 0.62 3.26 6.81 0.02 2.70 0.46 5.15 63.9 0.01 8.01 23.1 

MAX - 9420 11.7 289 24.6 37.4 34.3 112000 2620 1800 2.24 38.5 23.1 0.39 7.50 1.57 43.0 711 0.56 48.1 115 
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3.3. MINERALOGICAL CHARACTERIZATION 

Table 4 shows the mineralogical composition of the sediment samples identified by 

XRD and Raman Spectroscopy. The most common minerals found were quartz, albite and 

amazonite (Figure 4). Sediment enriched in quartz tends to have lower levels of trace 

element than aluminosilicates (as amazonite, anorthoclase, orthoclase, and anorthite) for its 

lower cation exchange capacity (Harland, 1994). Quartz and silicates are natural compounds 

that by erosion of metamorphic and sedimentary rocks of the zone can be incorporated into 

the estuarine waters and thus finish in the sediments. Hematite, goethite, birnessite, rutile and 

anatase were also identified along the estuary. Muscovite and halite has been only identified 

by XRD in ES and FITB sampling site respectively. 

Table 4. Identification of different mineral phases present in sediments of each sampling sites in 

Tubarão River. 

  BO RO TBLM OR ORTB LA PL PLTB BN PD NCTB CA FITB ES 

Quartz SiO2 X X X X X X X X X X X X X  

Albite NaAlSi3O8 X X X X  X X X  X X X X  

Amazonite KAlSi3O8       X X X X X X X  

Anorthoclase Na,K)AlSi3O8 X              

Orthoclase KAlSi3O8  X             

Diopside MgCaSi2O6   X X X X         

Anorthite CaAl2Si2O8   X  X          

Hematite Fe2O3  X X X X X X  X   X   

Goethite Fe(OH)3 X  X            

Gypsum CaSO4•2H2O     X X   X    X X 

Litharge PbO   X            

Birnessite 
(Na,Ca,K)0.6 

(Mn4+,Mn3+)2O4 ·1.5 H2O 
    X      X X  X 

Muscovite KAl2(AlSi3O10)(F,OH)2              X 

Coal C  X   X X         

Anatase TiO2  X    X   X X   X X 

Rutile TiO2           X    

Halite NaCl             X  

 

Gypsum is the unique sulphate phase identified in LA, ORTB, BN, FITB and ES 

sampling sites. Gypsum can be considered secondary mineral formed after the oxidation of 

the pyrite (FeS2), mineral present in acid drainages of coal mines. Its presence in downstream 

sampling sites near the mouth of the estuary could be explained by the high particulate loads 

due to the strong storms, which contribute to the transport of minerals from upstream sites 

close to the coal mining wates to downstream ones. Other sulphate mineral which could be 

formed after pyrite oxidation is jarosite (KFe3(SO4)2(OH)6). In a previous study (Silva et al., 

2013), jarosite was identified in sediments of rivers near of the coal mines. In contrast, it was 

not identified in the present study, possibility due to terrestrial matter from the surrounding 

lands that has been deposited on the bed sediments by storm-driven freshwater pulses. 
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Figure 4. Raman spectra (785 nm laser) of the quartz (a), albite (b), hematite (d) and amazonite (d) found in sediment samples 

from the Tubarão River. 

3.4. SEDIMENT-WATER PARTITIONING COEFFICIENTS 

Partitioning coefficients (Kd) were also calculated: i) to describe the distribution of 

metals and metalloids between analysed sediments and waters samples, and ii) to know the 

tendencies of the metal and metalloids fate in Tubarão estuary system (Kucuksezgin et al., 

2008). Kd values are affected by the water physic-chemical properties and sediments or 

solids surface properties. Therefore, they can change depending on the studied geographic 

area and even in the same area in the different locations and changing properties. The 

equation for partitioning coefficient is expressed as follows (Equation 1): 

Kd = Cs / Cw  Equation 1 

where Cs is the sediments metal concentration (mg·kg
-1

) and Cw is the metal concentration 

in water (mg·L
-1

). Thus, high Kd values indicate that the metal has been preferentially 

retained by the sediment, and low values suggest remains in the water (Anderson and 

Christensen, 1988). 

The Kd values varied between 53·10
3
 for Al (PD) to 69 for Sr (FITB). Figure 5.a 

shows the average values of the Log Kd which decrease in the following order: Ti > V > Al > 

Fe > Pb > As > Cr > Se > Ba > Cu > Co > Ni > Mn > Zn > Sr > Mg. The higher values of Kd 

found for Ti, V and Al indicate preferential association with sediment and low mobility of 

these elements to the water. Mg, Sr, Zn, Mn, Ni, Co and Cu showed the lowest partition 

coefficients of Tubarão River, being the metals that seem to have more tendencies to be 

dissolved after high precipitation days. Our results is in concordance with a previous study of 

Silva et al. 2011(Silva et al., 2011), in the mentioned study, Cd, Co, Cu, Mn, Ni, and Zn 



152 

 

appear as metals of high mobility and Fe and Pb with practically null mobility in 

geochemical modelling simulating of the compounds from Santa Catarina coal mining areas. 

It was also observed that in general the partition coefficients for Al, Co (except OR 

and LA), Cu, Fe, Mg (except OR), Ni (except LA), Se, S (except OR) and Zn increased in 

downstream sampling sites (near of the sea) indicating higher adsorption capacity of the 

sediment. Finally, the results indicated that Kd for Al, Co, Cu, Fe, Mg, Mn, Ni and Se 

increased while the water pH increases (Figure 5.b).  
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Figure 5. a) Average values of partition coefficients between sediment and water (Kd) calculated for the studied elements, and 

b) Log Kd versus pH relationships for Al, Co, Ni and Se in Tubarão Estuary. 

3.5. NORMALIZED-AND-WEIGHTED AVERAGE CONCENTRATIONS 

(NWACS) 

Normalised-and-Weighted Average Concentration (NWAC) is a cumulative index to 

sort samples (in our case, water or sediment) according to their content of selected elements. 

Samples are characterised by a single score in a relative scale from 0 to 10, the NWAC 

value. More information about the NWACs and the methodology for their calculation can be 

found elsewhere (Gredilla et al., 2014). The calculation of the NWACs and their 

representation on a map according to a colour based code allow us identifying, in a very 

simple and intuitive way, the sampling sites of higher concern in the studied area. The 

concentrations of the elements measured (with concentration > LOD) in the samples were 
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used to calculate the corresponding NWACs separately for waters and sediments (Figure 

6.a).  

Regarding the NWAC values calculated using 17 metal concentrations of the waters 

samples, two effluents, Rocinha and Palmeira Rivers were considered as sites of major 

concern regarding all studied elements. In contrast, the NWACs calculated with 21 metal 

concentrations of the sediment samples, showed that the highest values were obtained in 

Oratorio River and in the mouth of Tubarão estuary. The opposite behavior showed by the 

water and sediment calculated NWACs could be explained as a consequence of the previous 

day’s strong rainfalls, affecting to the transport of suspended sediments, surroundings soil 

particles and mining waste leachings by water to the downstream sampling sites, finally 

being deposited in its bed sediments, thus increasing the NWAC of the downstream sediment 

samples. Trying to confirm this hypothesis new NWAC values were calculated taking into 

account metals typical leached from the Santa Catarina mining wastes, such as Al, Cu, Fe, 

Mn, Ni, Zn and Pb (Silva et al., 2013). In the case of water samples, with the new calculated 

NWAC values (Figure 6.b), the area upper the river continue as the site of major concern 

regarding the elements with mining wastes origin, and in sediment, the NWAC values were 

higher in a punctual site of confluence of tributaries (Oratorio, Rocinha and Bonito) and in 

the middle of the Tubarão estuary. These results confirmed that other metal sources such as 

the same Tubarão River upstream sediments, Tubarão and Capivari City´s direct urban 

discharges, thermoelectric plant emissions, farming and livestock of the surroundings area 

could affect as well to Tubarão River metallic contamination. 

 

Figure 6. Colour based on the visualization of the Normalized-and-Weighted Average Concentration (NWAC) values: a) 

calculated with studied elements concentrations of water and sediment samples and b) calculated with Al, Cu, Fe, Mn, Ni, Zn 

and Pb concentration of water and sediment samples from Tubarão estuary. NWAC values are classified as follows: 

0<NWAC<2: very low concern, 2<NWAC<4 low concern, 4<NWAC<6 medium concern, 6<NWAC<8 high concern and 

8<NWAC<10 very high concern. 

3.6. CHEMOMETRIC ANALYSIS 

Principal component analysis (PCA) is a multivariate statistical technique capable of 

discerning patterns in large environmental datasets. PCA transforms a two dimensions 

multivariate data array into a new data set, so that some of the new variables (principal 

components, PCs) are linear combinations of the original variables and can explain most of 

the variability of the original data (Jolliffe, 2002). The first component represents the 
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maximum variation of the data set and corresponds to the direction explaining the maximum 

variance; the second PC corresponds to the direction orthogonal to the first PC, explaining 

the maximum variance not explained by the first PC, and so on.  

PCA was carried out in the case of the sediments data matrix. Variables (Ag, Cd, Hg 

and W) with values below of the detection limits were removed from the dataset. The data 

set (15 sampling sites x 20 variables) was centred and scaled before carrying out the PCA 

analysis. The model with three components, explaining more than the 71% of the variance 

(PC1: 41%; PC2: 18%; PC3: 16%) was chosen to explain the variability of data. OR 

sampling site showed extreme PC1 values and the scores and loadings (PC1-PC2) without 

the mentioned sample can be seen in Figure 7.a. Sediments from the estuarine channel and 

near of the mouth are on the left side of the scores plot and are related to Al, Ba, Co, Cu, Mg, 

Se, Sr, V and Zn. As it has been mentioned, some sources of these elements are the coal 

mining, urban, farming activities and the thermoelectric plant (Gobeil et al., 2005; Horowitz 

et al., 2012). Sediments from sampling sites near of the Braco do Norte River (BN and PD) 

are located in the positive side of PC1 and PC2, and are characterized by Mn, Sn, Ni and Cr. 

Finally, with negative values of PC2 were sediments of the sampling sites near the coal 

mining areas, and basically characterized by Fe, Sb, As, Mo and Pb. 

 

Figure 7. Scores and loadings plots (PC1-PC2) obtained after PCA of: a) sediment dataset of 2013 (the colours correspond to 

the situation of each sampling sites; green: estuarine channel, red: Braco do Norte River and blue: tributaries near coal mines), 

and b) sediment samples of two samplings: 2012 (green) vs 2013 (blue) in Tubarão estuary. 

To identify possible changes in the sediment concentration of the estuary by strong 

storms, the results of this study were compared with a previous study in the same area during 

dry season at 2012 (Silva et al., 2013). PCA was realized with a new sediment dataset 

including the results of 2012 sampling to our data matrix. The data set (26 sampling sites x 

18 variables) was centred and scaled before carrying out the PCA analysis. The model with 

the three first principal components (37%, 14%, and 12% of explained variance, 
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respectively) was selected. Figure 7.b shows the distribution of the scores and loadings, 

which reveals the existence of two different groups of sediment samples with specific 

pollution profiles and date of sampling. The first one includes all the sediments collected at 

2012 (positive PC1 values) with higher concentrations of Al, As, Fe, Mo, Pb, and Sn, and the 

second group of sediments collected in the present study with higher concentrations of Ba, 

Co, Cr, Cu, Mg, Mn, Ni, Sr, Se, Ti, V and Zn. This result showed significant changes in 

metal and metalloid concentrations of the sediments at Tubarão estuary after a strong storm 

event. 

4. CONCLUSIONS 

In general, the water metal concentrations were higher in upstream sampling sites of 

Tubarão River, especially at two estuarine tributaries, Rocinha and Palmeira Rivers, both 

localized in a coal mining area. The mine water after a storm often contains high level of 

metals and could have negative effects on estuarine water quality. On the other hand, higher 

metallic concentrations were identified in the sediment samples of the middle or downstream 

sampling sites. 

The metallic geographical distribution variation could be attributed to: i) 

anthropogenic inputs such as mining, industrial/domestic discharges, etc. ii) a difference in 

hydrodynamic conditions regulated by freshwater flow after the storms, and iii) a dispersal 

of sediments into the estuary after the strong storms. 

The mobility of the metals and metalloids express as partitioning coefficients (Kd) 

decrease in the order: Ti > V > Fe > Al > Pb > As > Cr > Se > Ba > Cu > Co > Ni > Mn > 

Zn > Sr > Mg. These results suggest that the metals with lower Kd could be mobilized during 

storm flow. Kd was related with the water pH in the case Al, Co, Cu, Fe, Mg, Mn, Ni and Se. 

Comparing sediment metal concentrations of the present study with a previous study 

in the same area after dry season, higher values were found for  Ba, Co, Cr, Cu, Mg, Mn, Ni, 

Sr, Se, Ti, V and Zn and lower for Al, As, Fe, Mo, Pb and Sn. 
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CHAPTER 8 

 

SPATIAL DISTRIBUTION OF SOME TRACE AND MAJOR 

ELEMENTS IN SEDIMENTS OF THE CÁVADO ESTUARY 

(ESPOSENDE, PORTUGAL) 

 

 

ABSTRACT 

 

For the first time, the occurrence and spatial distribution of several elements, 

including some toxic metals, have been investigated in sediments of the estuary of the 

Cávado River (Esposende, Portugal). The pseudo total concentrations of Al, As, Cd, Co, Cr, 

Cu, Fe, Mg, Mn, Ni, Pb, Sn, V and Zn in sediments collected at 24 sites covering the tidal 

part of the estuary were determined. According to the concentrations measured, the Cávado 

estuary can be considered as non-contaminated. For most of the elements, the concentrations 

tended to be higher upstream. Only a moderate enrichment in Cr and Ni was detected in a 

few sites. An important decrease in concentration was observed for the most toxic metals 

compared to historical data reported in the literature. Several hotspots were identified, but 

even in those cases the amount of metals stored in the sediments does not represent a 

toxicological threat to living organisms. 

 

Keywords: Trace elements; Major elements; Sediments; Estuaries; Pollution 

monitoring; Cávado estuary. 
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1. INTRODUCCION 

Coastal areas are fragile environments usually subjected to important 

anthropogenic pressures. Specifically, estuaries are scenarios of global concern. They are 

areas of high biological production but, unfortunately, a wide range of potentially polluting 

activities are usually carried out in their surroundings affecting the ecosystem services 

(Holder, 2002). 

In this paper, the geographical distribution of metal and metalloid elements in 

surface sediments of the Cávado estuary was studied. The Cávado estuary is located on the 

Atlantic coast near Esposende, in North-Western Portugal (41.5 N; 8.70 W) (Figure 1). The 

river has two principal tributaries, the Homem River and the Rabagão River, with drainage 

areas of 246 km
2
 and 257 km

2
, respectively (Almeida et al., 2008; Vieira et al., 1998). The 

estuarine part of the Cávado River covers an area of 2.56 km
2
 (Machado et al., 2012). It 

retains its natural banks, with the exception of the downstream northern bank which is 

artificial. The average population density around the estuary is 200 inhabitants/km
2
, living 

mainly in the communities of Fão and Esposende. 

 

Currently, Cávado estuary encloses a fishing harbour and two marinas (Ramos et 

al., 2012). Additionally, there are four other municipalities upstream which have 

considerable influence on the estuary: Amares, Vila Verde, Braga and Barcelos. Agriculture 

is the main activity in the area but recreational uses of the estuary, including fishing and 

yachting, are also important, especially during summer time. Small shipyards are also 

present. Previously an important mining activity existed upstream, in the headwater region of 

the Rabagão and Homem rivers. The principal ore minerals mined include wolframite 

(FeWO4), chalcopyrite (CuFeS2), pyrite (FeS2) and blende (ZnS) (Gonçalves et al., 1994). 

This activity ceased several decades ago but drainage waters from inactive mines may still 

affect the quality of the sediments downstream. Other industrial activities in the entire water 

catchment area include textile and ceramic manufacture, electroplating, paperboard mills and 

slaughter-houses. 

 

Few articles have been published regarding metal pollution in the Cávado estuary. 

Reis et al. (2014) used the macroalga Fucus spiralis to investigate Cd, Cr, Cu, Fe, Mn and 

Zn contamination in water. With regards to sediments, the influence of salt marsh plants on 

the concentrations and potential mobility of metals (Almeida et al., 2008; Machado et al., 

2012; Reis et al., 2014) has been studied. These two investigations used pseudo total metal 

concentration (Cd, Cr, Cu, Fe, Pb, Mn, Ni, Zn) data obtained from the analysis of bulk 

surface sediment samples (5-20 cm) collected at salt marshes of the Cávado estuary in the 

summer and winter of 2006, with emphasis on the influence of salt marsh plants and 

microbial communities. A single study has been found which specifically investigates 

pseudo total metal content (Cd, Cr, Cu, Ni, Pb, Zn) in the surface sediments fraction of less 

than 63 µm (Gonçalves et al., 1994). Gonçalves’ group collected samples in 1988 and 1989 

at 21 different sampling points covering the whole water catchment of the Cávado River, 

from the headwater regions to, approximately, the upper limit of the tide, thus excluding the 

estuarine area of about 9 km in length. These 9 km are in fact the area covered in our study, 

in such a way that only one of Gonçalves’s sampling points (the most downstream) lies in 

the area investigated in our work, near our most upstream sampling point. Gonçalves et al. 
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(1994) also estimated background concentrations for several metals in the catchment area. 

The results of these works will be commented in more detail later. 

 

2. MATERIAL AND METHODS 

 

2.1. STUDY AREA AND SAMPLING 

 

In our study, sediment samples, labelled as A-X, were collected at 24 sites in the 

estuary in June 2012 (Figue 1). When accessible, both sides of the river banks were covered, 

representing the whole estuarine part of the Cávado River. Some sites are situated in 

urbanised areas of Esposende (A, B, C, D, E) and Fão (L). Other sites are in a salt marsh 

close to the mouth of the estuary (F, G, H, J). The remaining sites correspond to agricultural 

or forested areas (I, K, M-X). The sampling points K, L and M are relatively close (50-100 m) 

to a road bridge joining the villages of Esposende and Fão. The sampling points O and P are 

close to a motorway bridge (A28 from Porto to Viana do Castelo), and separated by an 

artificial dike: P is on the outer side of the dike in the main channel of the river and fully 

affected by the off-stream of a small municipal waste water treatment plant (WWTP), while 

O is on the inner side of the dike. 

 

 
 

Figure 1. Location of the sampling sites in the Cávado estuary (Esposende, Portugal). 
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Surface sediments (0-5 cm) were collected by hand (using plastic gloves) at low 

tide from the river banks in muddy areas. About 500 g of sediment from each sampling point 

were collected, preserved in double zip-lock bags and transported to the laboratory at 4 ºC in 

a cool box. 

 

2.2. ANALYTICAL PROCEDURE 

 

The pretreatment and analysis of the sediment samples were carried out according 

to the procedures described in the Chapter 2, experimental. The pseudo total concentrations 

of a wide range of elements (Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V and Zn) 

were simultaneously determined by ICP/MS. The reproducibility of the method, as relative 

standard deviation (RSD), was calculated after triplicate analysis of the marine sediment 

CRM PACS-2, and the detection limits were estimated from 8 replicates of procedural 

blanks (Table 1). 

Table 1. Detection limits (mg·Kg-1), calculated after replicate analysis of procedural blanks) and reproducibilities (expressed 

as relative standard deviation, %, and calculated after triplicate analysis of the CRM PACS-2) of the analytical method. 
Comparison between our data and those obtained by Gonçalves et al. (1994) in 1988-89 and (Machado et al., 2012) in 2006. All 

concentrations in mg·Kg-1. 

 

Detection 

limit 

(mg·Kg
-1

) 

Reproducibility 

(RSD, %) 

Background 

(mg·Kg
-1

) 
1
 

(Goncalves 

et al., 

1994) 
2 

Our 

data 
3
 

(Machado 

et al., 

2012) 
4
 

Our 

data 
5
 

Al 4.4 3 - - 13300 - 7400 

As 2.3 5 - - 11.7 - 6.1 

Cd 0.13 4 0.33 1.67 0.37 0.10 0.13 

Co 0.23 2 - - 5.8 - 3.95 

Cr 1.3 2 17 45.6 34.7 34.5 20.2 

Cu 1.1 1 94 220 113 63.8 54.9 

Fe 2.7 4 - - 10400 2700 8600 

Mg 2.3 0.5 - - 2000 - 4100 

Mn 1.5 2 - - 449 162 75 

Ni 0.44 2 8.5 22.0 16.4 16.8 9.4 

Pb 0.52 2 30 65.1 40.9 49.8 30.3 

Sn 0.070 5 - - 4.7 - 2.9 

V 1.3 2 - - 10.1 - 12.8 

Zn 2.2 2 102 199 170 118 94 
1 Background concentrations estimated by Gonçalves et al. (1994) 

2 Concentrations in sediments collected in the most downstream sampling point, CV01 (average of two campaigns, 1988-1989) 

3 Concentrations measured in the most upstream sampling point, X (June 2012) 

4 Average concentrations in sediments collected in a salt marsh (colonized and non-colonized by Halimione portulacoides) in 

summer and winter of 2006 

5 Average concentrations measured in sediments from F, G, H and J (June 2012) 

 

3. RESULTS AND DISCUSSION 

 

3.1 ELEMENT CONCENTRATIONS IN SEDIMENTS: GEOGRAPHICAL  

DISTRIBUTION AND TRENDS IN TIME. 

 

The concentrations found were compared with those reported in the literature for 

the same area (Gonçalves et al., 1994; Machado et al., 2012). As above-mentioned, the work 

of Gonçalves et al. (1994) included data corresponding to two sampling campaigns in 1988 
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and 1989. Since it did not cover the estuarine area, only the metal concentration found at X 

sampling point (Figure 1) could be used for comparison. Although Gonçalves et al. (1994) 

concluded that the area close to X was unpolluted, even lower concentrations of most of the 

metals were detected in 2012 (Table 1). This difference was clearer for Cd, for which 4.5 

times lower concentrations were found in 2012 (sample X) than in 1988-89 (Gonçalves et al., 

1994). 

 

The publication of Machado et al. (2012) included data compiled after two 

sampling campaigns carried out in a salt marsh area close to the river mouth, near F, H, G 

and J sampling points (Figure 1). The sediments collected in Cávado estuary were 

characterized by a high content of organic matter, and in general, low metal concentration. 

The concentrations observed in 2012 (F, H, G and J sampling points) are compared with 

those found in 2006 in Table 1. Lower concentrations (1.6-2.2 times) of Cr, Mn, Ni and Pb 

were measured in 2012. Unexpectedly Fe, concentration was about 3-fold higher in 2012. It 

is worth to note again that Machado et al. (2012) studied bulk sediment samples which could 

be one explanation for these discrepancies (De Gregori et al., 1996). Since metals are 

primarily retained in the fine fraction, the lower concentration of metal measured in the 

present work compared with those found by Machado et al. (2012) would be even a stronger 

indication of decreased anthropogenic pressure in the last years. It is to be highlighted that 

the metal concentrations measured in 2012 (5
th
 and 7

th
 columns of Table 1, respectively) 

were close or even below the background values estimated for the area (Gonçalves et al., 

1994), except in the case of Cr, Ni, Pb and Zn at the most upstream point (X). 

The concentrations found for each metal at each sampling point are shown in 

Figure 2. The sampling points are ordered from left to right according to increasing distance 

from the mouth of the estuary. Although the spatial distribution is element-specific, some 

general trends can be listed. For most of the elements (Al, Cd, Co, Cu, Mn, Pb, Sn and Zn) 

the concentrations found in sediments from the upper part of the estuary are higher than 

those measured in sediments from the lower part. Mg presented an opposite behaviour since 

higher Mg concentration values were found in sites near the river mouth. The presence of 

Mg is usually higher in sediments from marine zones than in those from fresh water 

environments, due to its fixation by clay minerals or calcite (Libes, 2009). 
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Figure 2. Metal concentrations (mg·kg-1) found in sediment samples collected at each sampling site. Discontinuous lines 

indicate concentrations normalised to aluminium (multiplied by 1000 for better visualization). 

 

There were some specific sampling sites with different behaviour. This was the 

case of G and L, in the middle part of the estuary, with quite high concentrations of Cd, Co, 

Cu (only L), Mg (only G), Mn (only L), Pb and Sn (only L). The sampling site G is located in 

the most inner part of a natural marsh with a comparatively higher water residence time due 

to its semi-closed nature, which implies an easier accumulation of contaminants at this 

station. Conversely, L is located under a bridge with traffic, a fact that certainly influences 

the metal content in its sediments (Hjortenkrans et al., 2006). The sampling point affected by 

the effluent of the WWTP (P) presented concentrations only slightly higher than those of the 
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site protected by the dike (O), but comparable to those of the remaining sampling locations. 

Remarkably high concentrations of both Ni and Cr were found at P and W sampling sites. In 

the case of W, which can considered an agricultural site, the accumulation of Ni and Cr 

might be the consequence of the use of phosphate fertilizers (Whitby et al., 1978). The high 

amount of Cr and Ni found at P has probably the same origin, but the effect is multiplied due 

to the presence of a dike close to this site. The concentrations of As, Fe and V did not show 

any clear geographical distribution throughout the estuary. Arsenic concentration varied 

from not detectable at A, B and W sampling sites to 12 mg·kg
-1

 at X. The concentrations of V 

were slightly higher at F, G, H and J.  

 

The possible existence of correlations between pairs of variables (metal 

concentrations) was studied by correlation analysis of the dataset (Unscrambler 7.5, Camo 

Asa, Trondheim, Norway). A Pearson coefficient (in absolute terms) higher than 0.62 

indicates a correlation significantly different from zero at a confidence level of 99.9% 

(N=24, tcrit=3.745) (Miller and Miller, 2005). The correlation analysis is highly influenced by 

the spatial distribution of the elements, as high correlations were found between the elements 

with similar spatial partitioning. The element that presented the highest correlations, Al, was 

positively and highly correlated with Co (0.78), Cu (0.85), Fe (0.78), Mn (0.70), Pb (0.76), 

Sn (0.84), Zn (0.72) and Cd (0.61). Other elements that were not significantly correlated with 

Al when all data were considered, such as Cr (0.33) and Ni (0.27), showed significant 

positive correlations with Al (0.88 for Cr, 0.80 for Ni), when data from samples A, P and W 

were not considered in the calculation. Therefore, significant correlations of the most of the 

studied elements with Al suggest their very probable lithogenic origin due to a close 

association to aluminosilicates (Summer et al., 1996). A negative correlation with Al was 

found only for Mg (-0.54). In the case of V no significant correlation was observed with the 

rest of the elements considered in this study. The correlation between Ni and Cr was 

extremely high (0.99), which corroborates their common origin. Similarly, high correlation 

was also found between the concentrations of Zn and Cd (0.76), probably due to the 

existence of Cd impurities in Zn ores (Chrastný et al., 2015). 

 

The estimation of the anthropogenic input of pollutants is most usually attempted 

by comparison of the actual concentrations measured in the samples with background values. 

The enrichment factors (EFs) are also based on this approach and, additionally, use 

concentrations normalised to Al to account for the heterogeneity of the samples due to 

differences in texture and organic content (Loring and Rantala, 1992). In general, an EF 

lower than 1-1.5 denotes no significant enrichment, from 1.5 to 3 indicates a moderate 

enrichment and between 3-5, a moderate to severe anthropogenic pollutant enrichment. 

Similar qualitative information was obtained by the observation of both normalised 

concentrations and EFs. The concentrations of elements, normalised to Al, are shown in 

Figure 2 and were used to calculate the corresponding EFs for Cd, Cr, Cu, Ni, Pb and Zn. 

The background values (Table 1) used in the calculation (only reported for those six 

elements) were those estimated by Gonçalves et al. (1994). As the authors did not make an 

estimation in the case of Al, we used the lowest Al concentration measured in our sediments 

as Al background concentration (3020 mg·Kg
-1

 in site A). All the EFs calculated were lower 

than 1 for Cd (0.06-0.43), Cu (0.15-0.59), Pb (0.31-0.95) and Zn (0.24-0.80). Compared with 

the remaining sampling sites, however, relatively higher values were found for Cd at G, for 

Cu at sites I and D, for Pb at D and for Zn at sites D and A. For both Cr and Ni slightly 
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higher values of EFs were found at P (1.2 for both metals), A (1.51 and 1.66, respectively) 

and W (2.42 and 2.88, respectively) sampling sites. It should be noted, however, that these 

EF values might be slightly underestimated due to the use of overestimated background 

levels. Concerning the normalised concentrations (Figure 2), the distribution of As and Co 

was found to be homogeneous throughout the estuary. The normalized concentrations of 

several elements were found to be higher at specific sampling sites, e.g., Mn at S, L, Q, U, R, 

V and X; Cr and Ni at A, P and W; Cu at D and I; Zn at A and D; Pb at D, and Sn at V and D. 

For Mg, Fe and V a clear increase in normalised concentration was observed downstream, 

highlighting the importance of the estuarine mixing on the enrichment of sediments with 

these metals. 

 

3.2 NORMALIZED AND WEIGHTED AVERAGE CONCENTRATIONS 

(NWAC) 

 

The Normalised-and-Weighted Average Concentrations (NWACs) were also 

calculated to identify areas of major concern regarding metallic contamination in the surface 

sediments of the Cávado estuary. The NWAC methodology has recently been proposed 

(Gredilla et al., 2014) providing each sediment with a single score from zero (minimum 

concern) to ten (maximum concern) according to the concentration of selected contaminants. 

The NWACs obtained for the sediments from the Cávado estuary, simultaneously taking into 

account the concentrations of the most toxic elements (As, Cd, Cr, Cu, Ni, Pb and Zn), are 

shown in Table 2. The NWACs have also been used to produce a contour map (Figure 3) 

after kriging interpolation by means of the 3DField software (version 3.8.8.0, by Vladimir 

Galouchko, http://3dfmaps.com). Kriging produces a smoother surface over the area of 

interest and facilitates an easier visual identification of the areas of higher concern within the 

estuary, interpolating information from discrete stations to cover the entire study area 

(Leecaster, 2003). As can be appreciated, one of the areas most affected by the above 

mentioned elements was the salt marsh close to the mouth of the estuary. Specifically, the G 

sampling point is of concern with a NWAC of 5.2. The longer residence time of water in the 

marsh compared to the rest of the estuary may explain the high NWAC value found. It is 

surprising, however, that the other points from the salt marsh (F, H, J) presented NWAC 

values below 1. The most upstream area investigated in this study was also affected (W was 

the sampling site with the highest value of NWAC). Sediments farther from the ocean (U-X) 

are probably more influenced than others by drainage water from the upstream mines. 

Sampling points L, P and R are of medium concern with NWAC scores between 3 and 4. All 

these sites are located in agricultural areas, affected by urban and agricultural wastewaters 

(Rocha et al., 2012).  

 

http://3dfmaps.com/
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Figure 3. Kriging interpolation obtained from the NWAC values calculated for the 24 sediments collected in the Cávado 

estuary. 

 

3.3 MEAN EFFECTS RANGE-MEDIAN QUOTIENTS: ESTIMATION OF 

TOXICITY 

 

Finally, the mean effects range medium quotients (mERMq) were calculated in 

order to have a rough estimation of the probability of sediments from the Cávado estuary to 

be toxic. Briefly, mERMqs were calculated by dividing each pollutant concentration 

measured in the sediment by its respective ERM (effects range median) to obtain the 

corresponding sediment quality guideline quotient (ERMq) (Long, 2006). Following this, 

mERMqs for each sample were obtained as the average of ERMqs previously calculated. 

ERMs indicates the pollutant concentration above which effects are expected to be frequent 

and have been only defined for very toxic elements such as As (70 mg∙Kg
-1

), Cd (9.6 mg∙Kg
-

1
), Cr (370 mg∙Kg

-1
), Cu (270 mg∙Kg

-1
), Ni (51.6 mg∙Kg

-1
), Pb (218 mg∙Kg

-1
) and Zn 410 

(mg∙Kg
-1

) (Long, 2006).  

 

Consequently, only these elements were considered in our calculation. Values of 

mERMq in the ranges of 0-0.1, 0.1-0.5, 0.5-1.5, and >1.5 correspond to the probabilities of 

toxicity: 9% (non-toxic), 21% (slightly toxic), 49% (moderately toxic) and 76% (highly 

toxic), respectively. The mERMq values obtained for the sediments collected in the Cávado 

estuary varied from 0.07 to 0.33 (Table 2), which means that the sediments are unlikely to be 

more than just slightly toxic. Therefore, the sites previously defined as of higher concern, 

according to their NWAC scores, do not imply a potential toxicity risk. In any case, as 

expected, the sites of higher concern coincide with those of higher toxicity risk. 
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Table 2. NWAC and mERMq values calculated for the sediments collected in the Cávado estuary, using the concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn. 

 

Site A B C D E F G H I J K L M N O P Q R S T U V W X 

NWAC 1.1 0.0 0.24 0.41 0.93 0.89 5.2 0.49 0.31 0.75 0.29 3.0 0.40 0.25 0.22 3.6 0.75 3.4 1.1 0.68 3.14 5.0 10 7.3 

mERMq 0.10 0.0 0.08 0.12 0.12 0.12 0.14 0.12 0.13 0.14 0.10 0.17 0.11 0.10 0.10 0.20 0.14 0.19 0.15 0.12 0.17 0.23 0.33 0.23 
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4. CONCLUSIONS 

 

In summary, data for Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V and Zn in 

surface sediments collected in the Cávado estuary have been reported. The elements´ 

distribution along the estuary is element-specific but, in general, we have measured higher 

concentrations of toxic metals, such as Co, Cu, Sn and Zn, in the upper part of the estuary 

than in the lower part. However, we have identified only two sites with a concentration of Ni 

and Cr significantly higher than the background values estimated for the area, but even in 

these two sites, the concentrations measured in sediments do not represent a toxicological 

threat to the environment. Decreased anthropogenic pressure in the last decades has led to 

lower concentrations of some metal pollutants like Cd, in the surface sediments. To our 

knowledge, this is the first time that the occurrence and spatial distribution of several 

elements, including some toxic heavy metals, in sediments of the estuary of the Cávado 

River have been systematically investigated. The baseline provided in this study is expected 

to serve as a useful guide for a correct management of the basin concerning potentially 

polluting activities such as dredging, recreational activities or fishing/agriculture.  

 



172 
 

REFERENCES 

Almeida, C.M.R., Mucha, A.P., Bordalo, A.A., Vasconcelos, M.T.S.D., 2008. Influence of a 

salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of 

metals in sediments. Sci. Total Environ., 403: 188-195. 

Arujo, M., Fatima, D., Bernard, P.C., Van Grieben, R.E., 1988. Heavy metal contamination 

in sediments from the Belgian Coast and Schildt estuary. Mar. Pollut. Bull., 19: 269-273. 

Chrastný, V., Čadková, E., Vaněk, A., Teper, L., Cabala, J., Komárek, M., 2015. Cadmium 

isotope fractionation within the soil profile complicates source identification in relation to 

Pb-Zn mining and smelting processes. Chem. Geol., 405: 1-9. 

De Gregori, I., Pinochet, H., Arancibia, M., Vidal, A., 1996. Grain size effect on trace metals 

distribution in sediments from two coastal areas of Chile. Bull. Environ Contam. Toxicol., 

57: 163-170. 

Fdez-Ortiz De Vallejuelo, S., Barrena, A., Arana, G., de Diego, A., Madariaga, J.M., 2009. 

Ultrasound energy focused in a glass probe: An approach to the simultaneous and fast 

extraction of trace elements from sediments. Talanta, 80: 434-439. 

Gonçalves, E.P.R., Soares, H.M.V.M., Boaventura, R.A.R., Machado, A.A.S.C., Esteves Da 

Silva, J.C.G., 1994. Seasonal variations of heavy metals in sediments and aquatic mosses 

from the Cavado river basin (Portugal). Sci. Total Environ., 142: 143-156. 

Gredilla, A., Fdez-Ortiz De Vallejuelo, S., de Diego, A., Arana, G., Madariaga, J.M., 2014. 

A new index to sort estuarine sediments according to their contaminant content. Ecol. Ind., 

45: 364-370. 

Hjortenkrans, D., Bergbäck, B., Häggerud, A., 2006. New Metal Emission Patterns in Road 

Traffic Environments. Environ. Monit. Assess., 117: 85-98. 

Holder, J.V., 2002. Chemistry and the environment. Handbook of Green Chemistry and 

Technology 3. Willey, Oxford. 

Leecaster, M., 2003. Spatial analysis of grain size in Santa Monica Bay. Mar. Environ. Res., 

56: 67-78. 

Libes, S., 2009. Introduction to Marine Biogeochemistry. Second edition. Elsevier, 

Amsterdam. 

Long, E.R., 2006. Calculation and Uses of Mean Sediment Quality Guideline Quotients: A 

Critical Review. Environ. Sci. Technol., 40: 1726-1736. 

Loring, D.H., Rantala, R.T.T., 1992. Manual for the geochemical analyses of marine 

sediments and suspended particulate matter. Earth-Sci. Rev., 32: 235-283. 

Machado, A., Magalhaes, C., Mucha, A.P., Almeida, C.M.R., Bordalo, A.A., 2012. 

Microbial communities within saltmarsh sediments: Composition, abundance and pollution 

constraints. Estuar. Coast. Shelf Sci., 99: 145-152. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Bergb%C3%A4ck%20B%5BAuthor%5D&cauthor=true&cauthor_uid=16917700
http://www.ncbi.nlm.nih.gov/pubmed?term=H%C3%A4ggerud%20A%5BAuthor%5D&cauthor=true&cauthor_uid=16917700


173 
 

Miller, J.N., Miller, J.C, 2005. Statistics and chemometrics for analytical Chemistry, 5th 

Edition. Pearson, Essex. 

Ramos, S., Amorim, E., Elliott, M., Cabral, H., Bordalo, A.A., 2012. Early life stages of 

fishes as indicators of estuarine ecosystem health. Ecol. Ind., 19: 172-183. 

Reis, P.A., Cassiano, J., Puri Veiga, Rubal, M., Sousa-Pinto, I., 2014. Fucus spiralis as 

monitoring tool of metal contamination in the northwest coast of Portugal under the 

European Water Framework Directives. Environ. Monit. Assess., 186: 5447-5463. 

Rocha, S., Domingues, V., Pinho, C., Fernandes, V., Delerue-Matos, C., Gameiro, P., 

Mansilha, C., 2012. Occurrence of Bisphenol A, Estrone, 17β-Estradiol and 17α-

Ethinylestradiol in Portuguese Rivers. B. Environ. Contam. Tox., 90: 73-78. 

Summer, J.K., Wade, T.L., Engle, V.D., Malaeb, Z.A., 1996. Normalization of Metal 

Concentrations in Estuarine Sediments From the Gulf of Mexico. Estuaries, 19, 581-594. 

Vieira, J.M.P., Pinho, J.L.S., Duarte, A.N.A.L.S., 1998. Eutrophication vulnerability 

analysis: A case study. Water Sci. Technol., 37: 121-128. 

Whitby, L.M., Maclean, A.J., Schnitzer, M., Gaynor, J.D., 1978. Sources, storage and 

transport of heavy metals in agricultural watersheds. Pollution from Land Use Activities 

Reference Group, International Joint Commission, Ontario. 

(http://agrienvarchive.ca/download/PLUARG_heavy_metals_watshed.pdf; last accessed 

May 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



174 
 

 



Chapter 9 
 

OCCURRENCE AND GEOGRAPHICAL DISTRIBUTION OF 

METALS AND METALLOIDS IN SEDIMENTS OF THE NERBIOI-

IBAIZABAL ESTUARY (BILBAO, BASQUE COUNTRY) 





177 

 

CHAPTER 9 

OCCURRENCE AND GEOGRAPHICAL DISTRIBUTION OF 

METALS AND METALLOIDS IN SEDIMENTS OF THE 

NERBIOI-IBAIZABAL ESTUARY (BILBAO, BASQUE 

COUNTRY) 

 

ABSTRACT 

Pollution in estuaries is an issue of high concern for scientists, local stakeholders 

and authorities. Sediments have been frequently used as sentinels of chemical pollution, 

including metals and metalloids. The estuary of the Nerbioi-Ibaizabal River was subjected to 

an important input of metals since the late XIXth century until about 1975. Afterwards, a 

significant decrease in chemical pollution has occurred due to a progressive closure of the 

most polluting activities and the pre-treatment of waste waters. However, an important 

actuation, including a large movement of highly polluted sediments, has recently started in 

order to reduce the effects of floods and improve the urban image of the city. It is therefore 

of interest to have a precise description of the situation in terms of chemical pollution, in 

order to make feasible a future quantification of the effects derived from the above-

mentioned actuation. With this aim, we collected sediments at about 50 sites in the inter-tidal 

part of the estuary in January 2009, 2010, 2011 and 2014, and the concentration of fourteen 

elements (Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sn, V and Zn) in the acidic extract of 

the samples was simultaneously measured by ICP/MS. Geoaccumulation indexes to estimate 

the metal fraction of anthropogenic origin, Normalized and Weighed Average 

Concentrations (NWAC’s) to identify areas of higher concern and mean Effect-Range-

Median quotients (mERMq’s) to estimate the toxicity associated to the samples were 

computed. The results show that i) the geographical distribution of metals is rather 

heterogeneous within the estuary and changes from sampling campaign to sampling 

campaign, ii) hotspots of metal pollution are concentrated in a few points (the surroundings 

of the Gobela and Galindo tributary rivers and the closed dock of Deusto in 2009, 2010 and 

2011, and the Abra Bay, the dock of Portu and the point where the effluent of the biggest 

waste water treatment plant of the area is released into the river in 2014), and iii) most of the 

sediments collected in those hotspots of pollution are highly toxic, mainly due to the 

presence of Pb, Cd, Zn, Cu, As, and probably Sn, V and Mn, of anthropogenic origin. 

Keywords: Sediments; Metals; Estuary; Hotspot. 
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1. INTRODUCTION 

Estuaries are very sensitive areas susceptible to be affected by contamination 

inputs of different origin, such as industry, domestic sources, agriculture, traffic road run-

offs, shipping and atmospheric deposition (Spencer, 2002). Pollutants can enter the estuary 

from tributary rivers and direct discharges. The impact of anthropogenic perturbation is more 

important in estuaries which drain densely populated and industrialized areas. 

Trace elements are important pollutants that threaten the equilibrium of estuaries 

due to their toxicity, long persistence and bioaccumulation (Chon et al., 2010; Kumar et al., 

2008). In extreme situations, they may represent a serious risk for living organisms and even 

for human health (Farias et al., 2007). In fact, trace metals are included in the indicative list 

of the main pollutants of the Water Framework Directive (2000/60/EC, WFD) of the 

European Union; furthermore, Cd, Hg, Pb and Ni are classified as priority substances. 

The fate of metal and metalloids in estuaries depends on the pH, salinity, redox 

potential, dissolved oxygen and the concentration of organic chelators in the water column 

(Ahdy and Khaled, 2009; DelValls et al., 2004). Furthermore, estuaries are very dynamic 

systems in which different biogeochemical processes can affect the fate and bioavailability 

of metals and metalloids. In water, they are frequently associated to organic matter and/or 

suspended particles (Alomary and Belhadj, 2007; Filgueiras et al., 2004; Moor et al., 2001). 

In sediments, they can be stabilized as silicates (lower mobility) or get associated to 

aluminium silicates, iron or manganese hydroxides and carbonates (higher mobility) (Caccia 

Valentina et al., 2003). Under certain physico-chemical conditions sediments may act as a 

secondary source of contamination to the estuary (Kennish, 1998). 

Sediment is more conservative than water and most of the metals and metalloids 

are finally stored in the sediments. Consequently, sediments accumulate historical data on 

processes within water bodies and the effect of anthropogenic factors on these processes 

(Birch et al., 2001; Christophoridis et al., 2009). They have been used as environmental 

indicators and their ability to trace and monitor contamination sources is largely recognised 

(Lipnick et al., 2002). Sediments are not specifically mentioned in the WFD but, as they also 

play an important role in the chemical and ecological state of the water due to the 

interactions between both mediums (Borja and Heinrich, 2005), the directive stablishes an 

objective for sediments, which is just to avoid an increase in pollutant concentrations with 

time.  

The estuary of the Nerbioi-Ibaizabal River (Bilbao, Basque Country) was strongly 

impacted by industrial activities, such as iron and steel production and transformation, 

untreated domestic sewages and mining activities since the late 19
th
 century (Garcia-Barcina 

Jose et al., 2006; Jesus Belzunce et al., 2001). The gradual implementation of a system to 

collect and treat most of the sewage waters of industrial and urban origin, together with the 

closure of the most polluting companies, have resulted in an evident improvement of the 

environmental quality of the estuary (Garcia-Barcina et al., 2006). In fact the image of the 

city in the surroundings of the estuary has been completely renewed in a process that 

continues nowadays. One of the actuations that have recently started (beginning of 2015) 

consists on the transformation of an isthmus in an island in the area of Zorrozaurre, with an 

important movement of highly polluted sediments. This actuation represents an evident 
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threat due to a possible mobilisation of pollutants to the water layer that may affect the 

ecological and chemical status of the estuary. 

The aim of this work was to characterise the estuary of the Nerbioi-Ibaizabal River 

in terms of metal pollution, in order to make feasible a future quantification of the effects 

derived from the Zorrozaurre island actuation. To this end, four sampling campaigns were 

conducted in 2009, 2010, 2011 and 2014 to collect surface sediments in about 50 points 

throughout the tidal part of the estuary. The concentration of fourteen metals and metalloids 

was measured in all the samples and the results were statistically investigated to i) define the 

geographical distribution of the analytes in the estuary, ii) identify hotspots of 

contamination, iii) estimate the toxicity associated to the sediments and iv) check if there is 

any significant change in metal and metalloid concentration with time. 

2. MATERIALS AND METHODS 

2.1. STUDY AREA AND SAMPLING PROCEDURES 

The estuary of the Nerbioi–Ibaizabal River is located in the continental shelf of the 

Cantabrian coastline in the northern coast of the Iberian Peninsula (Figure 1). It crosses the 

city of Bilbao, one of the most important urban areas in the Cantabrian coast. The main fresh 

water input comes from the Nerbioi and Ibaizabal rivers (68%), while the rest comes from 

the smaller tributaries Kadagua (27%), Galindo (4%), Asua (0.7%) and Gobela (0.3%) 

(Landajo et al., 2004). 

At the end of the XIX
th
 century, Bilbao city experienced a dramatic increase in 

population due to the exploitation of the local iron and the beginning of an incipient 

industrial activity (manufacture of steel, electroplating, ship construction,…). All the 

wastewaters from urban and industrial origin were directly dumped into the estuary in that 

period, which led to an environmental collapse of the Nerbioi-Ibaizabal estuary by the 

middle of the XXth century (Cearreta et al., 2002; Jesus Belzunce et al., 2001; Saiz-Salinas, 

1997). However, the situation of the estuary improved significantly at the end of the XXth 

century due to the closure of the most polluting industries and mine activities, and to the 

implementation of the so-called “strategy for the integral recovery of the estuary of Bilbao” 

(Garcia-Barcina et al., 2006). The estuary still suffers nowadays, however, the pressure 

coming from a million people living around it (Leorri et al., 2008). Several works have 

investigated the occurrence and distribution of metals and metalloids in the estuary with 

different objectives and using a variety of approaches (Bartolome et al., 2006; Fdez-Ortiz de 

Vallejuelo et al., 2010; Fdez-Ortiz de Vallejuelo et al., 2014; Gredilla et al., 2014; Leorri et 

al., 2008; Sanz Landaluze et al., 2004). 
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Figure 1. Location of the study area and sampling points in the Nerbioi-Ibaizabal estuary 

Forty nine sites were strategically selected in order to carry out a representative 

sampling in the Nerbioi-Ibaizabal estuary (Figure 1). The samples were collected in January 

2009, January 2010, January 2011 and January of 2014. Surface sediments (0–2 cm) were 

collected by hand using latex gloves from the river bank at low tide. In the sampling points 1 

to 11 sediments were collected from a boat using a VanVeen type grab (capacity: 2L; 

sampling surface: 260 cm
2
; weight: 10.42 kg: dimensions: 55 cm × 30 cm × 15 cm). In all 

the cases, samples were transported to the laboratory in cleaned plastic bags at 4ºC. 

2.2. SAMPLE PREPARATION AND ANALYSIS 

The pretreatment and analysis of the samples were carried out according to the 

procedures described in the Chapter 2, experimental. The concentration of 14 elements was 

finally measured by ICP/MS. The detection limits (LOD) were estimated by replicate 

analysis of procedural blanks (n=8). The certified reference material NIST 1646a (estuary 
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sediment, National Institute of Standards and Technology) was used to check the accuracy 

and repeatability of the method (n = 5). The results expressed as LOD (in mg·kg
-1

), percent 

of recovery (accuracy) and relative standard deviation (RSD, reproducibility) are 

summarised in Table 1. 

Table 1. Detection limits (LOD, in mg·Kg-1), accuracy (as percent of recovery) and reproducibility (as relative standard 

deviation, RSD) of the analytical method. 

 Al As Cd Co Cr Cu Fe 

LOD (mg·kg
-1

) 0.48 0.15 0.043 0.003 0.001 0.004 0.015 

Recovery (%) 68 84 74 88 74 98 64 

RSD (%) 10 8 8 7 8 4 9 

 Mg Mn Ni Pb Sn V Zn 

LOD (mg·kg
-1

) 0.54 0.002 0.003 0.086 0.002 0.001 0.34 

Recovery (%) 70 80 78 94 81 92 96 

RSD (%) 8 12 6 4 5 6 2 

 

3. RESULTS AND DISCUSSION 

3.1 ELEMENT CONCENTRATIONS IN SEDIMENTS: GEOGRAPHICAL 

DISTRIBUTION AND TRENDS IN TIME 

The concentrations found in the sediment samples are shown in Tables 3, 4, 5 and 

6. Samples from BE2 and BEK (in 2010) and 5 and BE2 (in 2011) were accidentally lost. 

The extreme concentrations found in each variable (element concentration) and sampling 

campaign, defined as those concentrations higher than the 75
th
 interquartile plus three times 

the interquartile range (Otto, 2007), are marked with an asterisk in Tables 3-6, and have been 

summarised in Table 2. The existence of extreme values in a variable indicates unexpected 

high concentrations of a given metal at specific sites in comparison with the rest of values 

which could be considered as “normal”. According to the occurrence and distribution of 

extreme concentrations, the estuary can be divided in different sectors: i) the mouth of the 

estuary, downstream the BI1 sampling point, ii) the surroundings of the Gobela River, in the 

right bank of the estuary, including the docks of Lamiako, Udondo and Axpe, iii) the area of 

influence of the Galindo River, were the effluent of the WWTP is located, and the dock of 

Portu, iv) the closed channel of Deusto and v) the main channel of the estuary from the RO 

sampling point upstream, including the Asua and Kadagua tributaries. 
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Table 2. Sampling campaigns and sampling sites at which sediments with extreme concentrations of metals were found. 

  Al As Cd Co Cr Cu Fe Mg Mn Ni Pb Sn V Zn 

2           2014   2014           2014 

9         2014             2014     

BI1   2014     2014           2014   2014   

LA 
 

2009 
            

    2010                         

GO           2009                 

GO1 
  

2010 
           

      2014                       

GO2 
  

2009 
     

2009 
     

   
2010 

     
2010 

     

 
2011 2011 2011 

  
2011 

  
2011 

 
2011 

   
                2014             

UD 
 

2009 
            

    2014                         

AX1       2010 2010 2010 2010     2010 2010 2010   2010 

AX2 
     

2009 
    

2009 2009 
 

2009 

    
2010 

 
2010 2010 2010 

   
2010 

 
2010 

              2011         2011     

GA 
         

2009 
    

          
2010 

    

       
2011 

      
2011 

    2014                 2014     2014 

BA 
        

2009 
    

2009 

   
2010 

     
2010 

    
2010 

         
2011 

 
2011 

   
                  2014   2014     2014 

PO 
        

2009 
     

    2014 2014 2014     2014       2014     2014 

SG 
              

                      2011       

DE3 
 

2009 
 

2009 
  

2009 
       

       
2010 

 
2010 

    
2010 

                          2011   

 

For the 2009 and 2010 sampling campaigns, most of the extreme values were 

found in the sector of the estuary between the docks of Lamiako (LA) and Axpe (AX1-

AX2), including most of the sampling points located influence area of the Gobela River 

(GO/GO1/GO2/UD). Elements like As, Cd, Cu, Mn, Pb, Sn and Zn presented extremely high 

concentrations at these sites. The most inner part of the channel of Deusto (DE3) also 

presented a large amount of extreme concentrations (As, Co, Fe, Mg and Zn) in 2009 and 

2010. Concerning the 2011 campaign, most of the extreme concentrations (for Al, As, Cd, 

Cu, Mn and Pb) were identified in the site located most upstream in the Gobela River (GO2), 
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with a few isolated cases in the Galindo/Ballonti system (GA and BA) and, again, the inner 

part of the channel of Deusto (DE3). The situation substantially changed in 2014. Extreme 

concentrations appeared in three of the sampling sites located in the mouth of the estuary 

(points 2, 9 and BI1), in the dock of Portu (PO), and in the BA sampling site. Finally, it is to 

be highlighted that in three sites extreme concentrations of several metals were found in at 

least three of the sampling campaigns (Mn and Zn in BA; Cd and Mn in GO2; and Sn in 

AX2), suggesting a chronic contamination with those elements at those points. BA is directly 

affected by the effluent of the biggest WWTP of the area, while shipyard activities have been 

carried out for decades close to the dock of Axpe (AX2). The surroundings of the Gobela 

tributary were one of the last ones to be connected to the sewage water collector system of 

the WWTP. 

The concentrations of each metal within sampling sites for each sampling 

campaign have been plotted in the form of Box plots after removing the extreme values 

(Figure 3). These plots can be used to investigate the change in the overall metal 

concentration in the estuary with time during the period investigated (2009-2014). For most 

of the elements (Al, As, Cd, Cu, Pb, Sn and V), the 2011 sampling campaign presented the 

lowest metal concentrations. The concentrations of Cr, Ni and Zn remained rather constant 

within the period investigated, while a slight but constant decrease from 2009 to 2014 was 

observed in the case of Co and Mn. The overall concentration of Fe in the estuary was 

significantly lower in 2010 and 2011 than in 2009 and 2014. Finally, an increase in Mg 

concentration was also detected from 2009 to 2014. The precipitations (in L/m
2
) 

accumulated in the 15 days previous to each sampling campaign were 30.7 (2009), 36.2 

(2010), 79.5 (2011) and 37.7 (2014) (Meteorología). The heaviest precipitations registered in 

2011 may explain the lower overall concentrations found in that sampling campaign, due to a 

higher input of fresh particulate matter which resulted in an important dilution effect and a 

lower dispersion of the concentration values (metals more homogeneously distributed within 

the estuary). It might be assumed that metals not affected by this dilution effect, especially 

Co, Cr, Ni and Zn have a natural origin in the estuary. In fact, high Pearson correlation 

coefficients (between 0.53 and 0.73) were found between pairs of these elements when data 

from the four sampling campaigns were simultaneously considered. Similarly, the observed 

behaviour would suggest the existence of important anthropogenic point sources of Al, As, 

Cd, Cu, Pb, Sn and V in the estuary. The Pearson correlation coefficients between As and V 

(0.88), and Cu and Sn (0.87) were also extremely high. The magnitude of the anthropogenic 

origin of metals in the estuary of the Nerbioi-Ibaizabal River will be further discussed in 

following sections. 

The concentrations found for each metal at each sampling site are shown in Figure 

2 for the sampling campaigns carried out in 2009, 2010, 2011 and 2014, in order to 

investigate their geographical distribution within the estuary. The general conclusions drawn 

from the occurrence and distribution of extreme values are confirmed after observation of 

Figure 2. In general, higher concentrations were registered in the middle part of the estuary 

and the closed chanel of Deusto in 2009, 2010 and 2011, while in 2014 the situation reversed 

with higher metal concentrations in the Abra Bay and the dock of Portu. In 2009 and 2010, 

Sediments from AX1 and AX2 are especially rich in Al, As, Co, Cr, Cu, Fe, Ni, Pb, Sn and 

Zn. Those from the Gobela River (GO, GO1 and GO2) are rich in Cd and, to a lesser extent, 

in Cu and Mn. In the surroundings of the effluent of the WWTP, high concentrations of Ni, 
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Cd, Mn, Pb and Zn were found. The sediments from the most inner part of the closed 

channel Deusto (DE3) were specially rich in Al, As, Cd, Co, Cu, Fe, Pb, Sn, V and Zn. 

Concerning the situation in 2014, comparatively higher concentrations of Cd, Cr, Cu, Fe, Sn 

and Zn were found in the Abra Bay (sampling sites 2, 9 and BI1), and As, Cd, Co, Cu and V 

in the dock of Portu (PO). The high metal concentrations found in 2014 in the Abra Bay in 

comparison with those encountered in previous sampling campaigns may be due to the 

construction of a new terminal for long tourist cruises in the area. The works started in 

November 2012 and finished in February 2014, just one month after our sampling campaign 

in January 2014 (Izagirre, 2012). 
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Table 3. Element concentrations found in the sediments collected in January 2009 together with some related statistics. Extreme high concentrations, defined as those concentrations over the 75th percentile of the data 

(Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 
Al As Cd Co Cr Cu Fe Mg Mn Ni Pb Sn V Zn 

1 2150 13.4 1.45 5.81 29.5 52.9 15400 2590 289 17.1 238 13.4 5.86 297 

2 1770 16.7 1.45 4.15 27.6 59.5 15400 2960 283 12.2 286 12.0 10.8 321 

3 2100 16.4 1.46 4.43 29.4 53.4 16500 3500 266 14.3 286 10.1 10.9 297 

4 2160 18.2 1.30 4.32 33.0 54.7 17600 4020 338 15.0 305 10.0 15.1 357 

5 1840 29.4 1.59 4.51 28.8 64.8 16000 2770 284 13.1 377 10.6 13.4 332 

6 2330 36.0 1.75 4.11 40.0 112 20800 3480 324 11.1 565 23.3 21.6 413 

7 2250 29.0 1.78 4.18 37.5 88.7 18300 3510 290 12.5 451 18.1 18.4 377 

8 2150 29.1 3.51 3.84 33.6 105 18000 3450 292 12.0 416 13.3 15.5 344 

9 1960 17.7 1.48 3.90 30.1 64.7 15600 3180 267 13.3 316 11.4 13.0 279 

10 1340 5.18 0.57 6.46 19.2 26.3 12800 624 483 14.1 144 14.6 1.18 161 

11 1660 11.8 1.28 5.36 23.6 42.8 13800 1530 376 15.3 244 10.1 3.14 269 

AR 3910 14.5 5.92 5.34 20.3 109 11500 3170 404 12.5 251 8.83 8.48 394 

BI1 2220 10.4 2.62 7.49 25.9 42.7 15700 1550 434 18.2 219 18.6 2.86 226 

BE1 1960 12.1 2.33 5.44 26.8 38.1 15100 1590 455 15.3 259 14.3 4.06 317 

BE2 2420 18.3 2.85 4.98 34.8 88.9 14800 2520 261 27.6 327 10.8 12.7 374 

BEK 1390 8.68 0.96 5.54 23.6 35.3 13700 638 402 14.9 186 12.1 1.62 199 

LA 1630 114* 4.04 2.95 38.9 103 14900 1020 207 11.0 751 18.8 24.9 528 

GO 2850 51.0 5.47 6.81 32.1 375* 18800 2650 684 19.9 751 24.5 15.8 935 

GO1 3990 14.9 5.47 8.12 24.4 148 19400 2830 630 21.4 327 9.46 21.9 453 

GO2 3070 30.3 17.9* 7.37 24.4 235 13400 1190 1630* 17.9 666 11.0 6.38 478 

EX 2780 49.9 1.46 5.47 31.2 118 16500 1770 314 23.4 548 12.9 13.5 435 

UD 2640 116* 5.62 7.27 52.6 198 19300 1690 200 29.1 890 29.3 21.4 830 

AX1 2630 15.0 1.25 8.42 28.0 55.0 16900 1140 484 20.4 324 18.4 3.58 336 

AX2 4280 53.1 3.48 12.2 56.7 332* 34200 3100 560 38.7 2040* 64.6* 14.1 1260* 

GA 3200 16.8 3.46 9.07 40.5 98.8 21900 1800 519 64.6* 439 15.9 5.80 684 

CA 1410 4.36 0.38 4.24 10.0 27.2 10700 431 448 8.50 108 3.07 1.00 122 

BA 3660 7.60 8.52 8.56 42.6 103 24700 2680 2980* 28.7 1070 9.69 12.5 1900* 

ER 2230 9.45 0.86 7.78 20.6 32.4 18500 713 498 16.3 189 15.4 1.74 193 

PO 4090 11.6 0.81 5.56 9.51 49.1 20700 4940 1090* 13.8 250 4.74 13.7 196 

RO 1190 9.40 0.78 5.05 17.2 29.2 11800 609 376 13.4 279 4.21 < LOD 141 

AS 1850 12.4 1.64 5.41 15.5 40.1 10300 957 235 12.6 314 3.10 2.06 255 

AS2 1390 35.7 3.29 5.80 26.3 64.8 9510 183 387 19.5 999 4.65 3.25 324 

SG 1080 22.1 1.73 5.48 38.3 33.2 8340 505 412 21.3 731 2.59 3.65 122 
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Table 3 (Cont.). Element concentrations found in the sediments collected in January 2009 together with some related statistics. Extreme high concentrations, defined as those concentrations over the 75th percentile of 

the data (Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 

 
Al As Cd Co Cr Cu Fe Mg Mn Ni Pb Sn V Zn 

LU 1120 3.61 0.53 5.42 21.8 24.7 11300 513 360 15.7 118 10.6 < LOD 141 

KA 1150 2.03 0.23 4.13 6.35 12.6 10600 1140 415 7.39 71.1 2.01 0.66 78.6 

KA1 800 0.95 0.15 3.10 3.97 7.78 9630 623 319 4.73 78.7 < LOD < LOD 39.0 

EL 1230 4.06 0.42 5.83 15.6 20.9 14300 698 508 13.0 121 10.3 < LOD 134 

DE1 1220 4.03 0.43 5.75 19.9 22.2 11700 516 419 16.0 100 9.85 0.95 131 

DE2 1370 19.2 0.39 11.3 11.3 20.3 25300 588 206 18.8 126 3.80 11.17 111 

DE3 1860 117* 3.16 15.9* 20.6 206 39900* 657 211 26.3 1270 24.2 16.3 521 

ZO 1470 5.05 0.66 4.88 34.8 38.6 13400 1120 256 23.2 165 6.15 0.69 213 

ZO2 1130 2.66 0.36 4.99 19.6 19.9 13200 608 458 15.2 106 4.65 0.52 116 

EU 727 1.19 0.23 4.30 10.8 10.3 9330 366 336 9.18 68.5 2.46 < LOD 81.6 

SL 816 2.58 0.29 4.61 14.1 17.4 11000 266 364 12.1 93.8 3.77 < LOD 102 

KT 690 2.01 0.24 3.72 17.8 17.1 10200 413 318 12.8 104 2.98 < LOD 82.7 

AZ 1110 2.22 0.31 5.07 30.6 23.0 11100 448 465 23.3 73.5 3.46 < LOD 187 

PE1 760 2.10 0.26 4.46 19.2 18.3 10100 390 391 14.1 96.6 3.90 < LOD 90.6 

PE2 990 3.63 0.32 5.52 34.9 29.9 13600 976 521 25.5 130 4.72 < LOD 108 

PE3 1000 5.27 0.43 7.52 61.4 73.7 22900 750 916 38.8 271 17.4 < LOD 172 

25th PERCENTILE (Q1) 1170 4.21 0.43 4.37 19.2 25.5 11400 608 290 12.7 124 4.65 2.66 133 

75th PERCENTILE (Q3) 2370 25.6 3.01 7.04 34.2 101 18400 2720 483 21.4 445 15.2 14.4 385 

IQR (Q3-Q1) 1200 21.4 2.58 2.67 14.9 75.3 7010 2120 194 8.64 322 10.5 11.7 253 

Q3+(3*IQR) 5960 89.7 10.7 15.0 79.0 327 39500 9070 1070 47.3 1410 46.8 49.5 1140 

MEDIAN 1840 12.4 1.45 5.42 26.3 49.1 15000 1140 387 15.3 271 10.4 9.62 269 

AVERAGE 1940 21.2 2.18 5.96 26.8 74.4 15900 1620 481 18.3 379 12.0 9.32 336 

DESVEST 947 27.7 2.94 2.40 12.2 77.7 6080 1230 438 9.78 373 10.2 7.18 327 

MIN 690 0.95 0.15 2.95 3.97 7.78 8340 180 200 4.73 68.5 2.01 0.52 39.0 

MAX 4280 117 17.9 15.9 61.4 375 39900 4940 2980 64.6 2040 64.6 24.9 1900 
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Table 4. Element concentrations found in the sediments collected in January 2010 together with some related statistics. Extreme high concentrations, defined as those concentrations over the 75th percentile of the data 

(Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 
Al As Cd Co Cr Cu Fe Mg Mn Ni Pb Sn V Zn 

1 4650 17.5 0.05 5.42 35.1 102 11500 2130 195 14.7 122 19.1 12.0 492 

2 4160 16.6 < LOD 5.52 27.5 83.1 8780 1920 200 14.5 105 15.5 10.7 434 

3 4500 15.4 1.55 1.83 23.4 50.0 10800 2100 225 9.95 93.8 11.7 15.6 237 

4 4280 21.0 < LOD 4.98 25.0 58.1 11200 2280 305 14.2 94.2 11.2 16.8 299 

5 4300 15.9 < LOD 5.09 25.5 60.6 8460 1690 207 15.0 89.7 11.8 9.88 314 

6 4980 34.2 < LOD 4.89 35.3 111 12400 2290 244 14.9 140 16.7 16.9 380 

7 4750 22.1 1.18 5.16 33.3 120 10900 2230 208 14.8 122 16.2 15.3 391 

8 4940 30.2 1.16 5.29 34.6 140 11000 2480 229 15.1 155 16.3 17.4 473 

9 4450 26.4 0.55 4.70 33.8 104 10500 1990 221 12.4 128 19.1 16.8 387 

10 4320 13.0 < LOD 6.40 24.9 67.5 8030 1440 191 18.1 82.4 9.92 4.61 353 

11 3810 9.85 1.44 1.67 21.9 33.2 7890 2160 135 13.2 74.7 6.77 4.37 214 

AR 7410 27.6 0.33 7.16 29.4 100 9830 2720 484 15.0 126 16.5 14.5 527 

BI1 1790 32.4 2.77 4.80 37.3 110 14400 3380 290 22.3 168 18.3 17.3 556 

BE1 5070 18.3 0.56 5.02 38.3 90.5 9930 1590 357 17.9 131 17.7 8.38 520 

LA 4040 119* 1.54 4.05 46.4 124 10800 662 175 17.1 211 23.4 25.6 600 

GO 5340 53.3 2.24 7.27 33.4 769* 13300 1580 432 22.9 250 58.6 13.5 867 

GO1 5440 52.7 11.2* 8.43 39.7 382 8430 1030 642 29.6 163 21.5 10.7 845 

GO2 5160 44.1 17.3* 8.44 26.7 265 7490 410 1615* 20.0 195 13.2 5.18 590 

EX 4930 61.5 < LOD 7.52 31.8 141 10800 1190 410 24.8 191 17.9 15.3 579 

UD 4310 97.4 3.86 6.45 52.9 213 10300 1010 153 25.2 237 33.7 20.2 900 

AX1 6390 94.6 3.59 28.0* 107* 954* 29500* 2330 856 101* 1380* 150* 13.1 3320* 

AX2 7010 110 5.31 16.8* 66.1 461* 29000* 6010* 541 39.6 474 56.0* 39.3 1900* 

GA 1790 105 6.07 10.6 60.3 207 18000 1960 577 66.3* 488 29.9 18.3 1390 

CA 1820 10.2 2.38 4.62 32.9 131 12400 2330 691 24.2 76.4 15.6 10.9 447 

BA 3470 11.2 10.2* 6.67 43.5 134 15300 2680 1660* 31.1 469 17.3 16.8 2180* 

ER 1500 18.1 1.86 3.38 27.5 65.3 12200 2480 219 21.6 133 11.9 7.47 420 

PO 2320 11.8 0.76 4.24 6.25 34.7 16000 4680 400 15.1 55.1 3.38 9.82 147 

RO 1570 17.2 1.60 4.73 24.0 82.2 11800 2180 230 17.3 479 11.1 5.55 372 

AS 1150 23.5 2.74 3.76 21.4 74.3 6560 1540 115 15.1 192 6.86 6.28 357 

AS2 1170 10.9 2.02 3.39 15.7 38.2 5960 1460 154 14.0 189 4.47 4.48 258 

SG 239 10.8 1.06 3.09 25.1 22.0 3990 732 301 14.5 116 1.96 1.47 140 

LU 926 12.2 1.85 2.72 28.2 72.2 9550 2360 200 17.7 113 12.5 9.59 333 

KA 541 0.55 0.62 3.37 5.46 31.6 11300 2170 401 8.60 40.5 3.15 3.29 146 
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Table 4 (Cont.). Element concentrations found in the sediments collected in January 2010 together with some related statistics. Extreme high concentrations, defined as those concentrations over the 75th percentile of 

the data (Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 

 
Al As Cd Co Cr Cu Fe Mg Mn Ni Pb Sn V Zn 

KA1 334 1.88 0.56 1.45 3.04 14.6 7130 1800 293 7.03 30.4 1.79 2.11 91.0 

EL 401 4.04 0.64 4.20 14.3 18.0 7040 1060 339 14.7 34.0 4.8 1.97 127 

DE1 1250 7.20 1.21 5.91 31.1 40.7 10100 2100 338 24.8 60.5 12.9 5.53 260 

DE2 214 15.9 0.53 5.66 6.92 11.4 14200 1260 225 10.6 28.8 1.43 13.0 86.7 

DE3 3010 69.9 7.18 10.1 61.3 185 26500* 4160 1150* 35.3 593 41.1 20.9 1740* 

ZO 1110 3.56 1.15 3.40 32.1 42.2 9930 1780 197 19.8 57.9 11.9 3.65 209 

ZO2 1080 3.76 0.66 4.17 25.2 27.8 9360 1290 361 21.0 36.6 5.37 3.19 164 

EU 9.01 1.40 0.66 3.29 15.5 14.6 6400 1020 306 14.0 34.8 3.12 1.22 113.5 

SL 916 3.43 0.78 5.49 33.6 30.9 8680 1290 422 24.4 45.0 6.13 3.79 188 

KT 362 0.08 0.68 3.90 24.1 24.2 7470 1270 295 16.5 30.6 4.57 2.59 145.8 

AZ 725 2.35 0.80 4.39 30.4 36.6 8780 1460 299 20.3 40.0 6.36 1.89 192 

PE1 9.10 0.45 0.68 2.73 26.3 29.3 6780 1170 296 17.6 33.8 8.33 2.92 132.0 

PE2 9.04 2.42 0.77 2.69 49.7 39.2 7550 1340 348 35.3 48.3 6.69 1.83 163 

PE3 475 1.67 0.85 5.39 44.1 40.5 12300 1560 386 29.5 50.1 6.72 3.72 189 

25th PERCENTILE (Q1) 916 4.04 0.67 3.40 24.1 34.7 8020 1290 208 14.7 50.0 6.36 3.72 188 

75th PERCENTILE (Q3) 4640 32.4 2.56 6.40 37.3 131 12300 2290 410 24.4 191 17.9 15.6 556 

IQR (Q3-Q1) 3730 28.4 1.89 3.00 13.1 96.4 4310 1000 202 9.70 140 11.5 11.9 368 

Q3+(3*IQR) 15800 117 8.2 15.4 76.7 420 25200 5290 1010 53.5 612 52.3 51.2 1660 

MEDIAN 2320 15.9 1.18 4.89 30.4 72.2 10300 1800 299 17.6 116 11.9 9.82 357 

AVERAGE 2820 27.3 2.51 5.71 32.3 127 11300 1950 394 21.9 175 17.5 10.3 536 

DESVEST 2150 31.8 3.44 4.23 17.6 181 5310 1010 328 15.4 226 23.3 7.70 622 

MIN 9 0.08 0.05 1.45 3.04 11.4 3990 410 115 7.03 28.8 1.43 1.22 85.7 

MAX 7410 119 17.3 28.0 107 954 29500 6010 1660 101 1380 150 39.3 3320 
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Table 5. Element concentrations found in the sediments collected in January 2011 together with some related statistics. Extreme high concentrations, defined as those concentrations over the 75th percentile of the data 

(Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 
Al As Cd Co Cr Cu Fe Mg Mn Ni Pb Sn V Zn 

1 1320 21.3 0.72 3.73 20.8 38.0 14900 1680 226 7.01 69.1 6.71 0.48 368 

2 1140 17.8 0.39 2.96 17.0 26.5 12800 1540 223 9.72 53.4 5.32 0.25 275 

3 1140 11.7 0.31 1.82 13.8 19.7 11300 1620 250 12.0 48.2 5.48 1.31 201 

4 1110 5.36 0.25 1.73 15.0 15.8 10500 1600 252 11.3 41.1 4.85 3.42 162 

6 1310 7.32 0.31 1.72 19.6 33.4 12700 1580 208 9.92 62.3 5.73 4.53 199 

7 1160 4.70 0.60 1.61 20.0 32.4 10300 1420 183 9.78 55.9 5.74 5.24 191 

8 1140 10.4 0.98 1.52 22.5 39.2 12400 1480 197 9.44 67.9 6.14 5.03 248 

9 925 12.6 0.38 1.39 18.8 24.4 10000 1250 188 9.15 59.7 5.22 5.31 171 

10 2830 9.10 0.57 6.43 22.1 46.9 10400 1030 337 16.14 113 12.3 2.89 257 

11 2730 10.8 1.36 3.52 22.8 38.0 10800 1840 255 14.32 159 8.41 3.75 242 

AR 1050 6.81 0.50 2.76 20.0 33.8 9380 1160 149 8.24 57.1 5.24 4.96 262 

BI1 1270 6.02 0.48 3.12 21.2 20.8 9780 1140 139 8.53 48.3 4.90 5.68 184 

BE1 1580 6.91 0.51 2.25 26.2 24.8 13500 1420 350 8.74 60.2 5.39 6.53 295 

BEK 1270 6.83 0.44 3.15 22.5 22.4 10600 1340 218 8.11 51.2 4.41 5.68 264 

LA 1040 20.2 0.68 1.16 26.0 34.6 12300 889 179 7.32 92.2 6.20 6.40 297 

GO 1510 11.7 1.07 4.53 29.0 89.1 10500 1570 406 8.19 61.1 6.21 5.59 393 

GO1 1570 9.21 1.09 4.51 28.8 86.4 10100 1550 398 7.28 61.8 5.98 6.02 392 

GO2 4120* 37.2* 17.6* 7.91 25.5 250* 10400 800 1620* 19.0 431* 12.1 5.78 534 

EX 1500 17.9 0.51 2.87 24.7 47.1 15800 1540 198 7.28 120 6.62 5.85 322 

UD 1800 21.1 0.69 6.77 24.7 55.2 19400 2040 576 6.48 140 7.33 7.46 628 

AX1 1050 2.72 0.47 2.77 20.9 34.4 9230 1170 147 7.34 56.4 5.02 5.27 256 

AX2 1620 9.64 0.51 9.34 42.0 93.8 29800* 1950 282 5.63 163 21.8* 6.76 767 

GA 1440 14.6 1.68 5.82 26.0 50.9 22100* 1220 562 6.22 151 9.32 6.08 901* 

CA 1290 0.48 0.71 3.23 30.6 55.4 12600 671 707 5.59 41.1 8.64 6.31 287 

BA 2250 7.40 2.57 9.40 29.3 56.2 18300 1800 2580* 28.0 223* 5.92 1.11 382 

ER 652 12.5 0.42 4.31 12.5 15.6 8590 907 183 13.0 64.2 4.12 0.27 111 

PO 2520 12.7 0.27 5.60 8.46 16.9 13800 1720 894 16.1 45.5 8.38 1.18 110 

RO 1020 17.4 0.79 6.59 22.5 36.2 12800 1170 240 26.0 134 16.2 0.43 206 

AS 947 15.9 0.77 6.36 12.7 20.9 9190 1070 207 15.1 81.8 9.02 0.34 177 

AS2 1590 11.5 1.11 6.05 29.7 48.0 6350 1480 146 18.6 91.2 7.82 3.32 431 

SG 1110 29.5 2.39 7.49 33.4 46.8 4730 661 293 21.6 225* 4.93 3.46 285 

LU 1570 7.08 0.93 4.56 29.9 42.2 9730 1810 195 16.0 70.1 11.6 4.80 253 
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Table 5 (Cont.). Element concentrations found in the sediments collected in January 2011 together with some related statistics. Extreme high concentrations, defined as those concentrations over the 75th percentile of 

the data (Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 
Al As Cd Co Cr Cu Fe Mg Mn Ni Pb Sn V Zn 

KA 1210 5.10 0.22 4.53 10.1 20.4 6870 1760 317 7.68 49.8 3.84 2.68 114 

KA1 1370 3.71 0.21 5.23 8.06 21.3 7690 1730 337 7.85 43.0 2.56 2.57 88.2 

EL 1450 12.6 0.81 5.66 31.1 45.8 9760 1840 208 16.7 84.8 15.4 4.17 326 

DE1 1570 10.4 0.54 8.09 25.0 32.9 11400 1810 212 18.0 50.6 11.8 3.16 176 

DE2 700 11.0 0.05 1.81 7.21 9.26 16700 1050 160 2.79 43.6 1.22 9.71 21.1 

DE3 983 8.21 0.46 5.74 5.86 12.2 4960 1750 122 9.72 39.5 2.10 19.6* 163 

ZO 2120 16.5 0.63 7.49 33.4 47.1 15300 2800 245 24.9 65.4 8.08 8.57 243 

ZO2 1100 3.21 0.51 4.58 22.4 23.8 11300 949 410 18.1 71.1 5.01 1.85 140 

EU 1630 7.44 0.49 5.94 28.2 32.5 10300 2550 250 22.5 45.7 6.44 4.64 195 

SL 1710 8.48 0.35 8.12 25.5 30.4 10300 2060 228 23.8 37.3 5.02 2.76 165 

KT 1210 5.00 0.37 5.91 21.1 21.3 8480 1870 239 17.9 31.3 3.56 2.62 136 

AZ 1150 5.53 0.31 6.47 20.5 24.5 8760 1460 385 19.4 35.7 4.45 1.71 140 

PE1 912 11.0 0.24 7.20 30.5 45.4 11200 1670 341 28.4 41.8 6.20 1.19 158 

PE2 987 6.57 0.25 6.33 30.1 48.4 10400 1600 472 22.8 49.2 6.31 1.50 138 

PE3 1550 7.03 0.36 7.25 35.6 61.9 10000 1320 585 23.5 66.1 20.2 3.26 217 

25th PERCENTILE 1100 6.76 0.36 2.87 19.6 22.4 9740 1170 197 7.91 48.1 4.96 1.85 163 

75th PERCENTILE 1580 12.7 0.79 6.47 29.0 47.1 12800 1760 385 18.6 91.4 8.41 5.8 297 

IQR (Q3-Q1) 484 6.0 0.43 3.60 9.4 24.6 3080 597 188 10.8 43.0 3.51 3.9 134 

Q3+(3*IQR) 3030 30.7 2.1 17.3 57.1 121 22000 3550 948 50.9 221 18.9 17.6 698 

MEDIAN 1290 9.6 0.51 4.58 22.5 33.6 10500 1540 245 11.3 61.1 6.10 4.17 242 

AVERAGE 1450 11.0 1.02 4.84 22.8 41.9 11700 1500 372 13.6 84.2 7.36 4.28 265 

DESVEST 616 6.9 2.52 2.28 7.9 36.3 4330 439 413 6.89 69.1 4.28 3.25 167 

MIN 652 0.48 0.05 1.16 5.86 9.26 4730 661 122 2.79 31.3 1.22 0.25 21.1 

MAX 4120 37.2 17.6 9.40 42.0 250 29800 2800 2580 28.4 431 21.8 19.6 901 
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Table 6. Element concentrations found in the sediments collected in January 2014 together with some related statistics. Extreme high concentrations, defined as those concentrations over the 75th percentile of the data 

(Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 

 
Al As Cd Co Cr Cu Fe Mg Mn Ni Pb Sn V Zn 

1 2500 18.9 1.71 5.78 25.1 59.7 15200 2830 166 13.1 72.0 12.1 14.4 311 

2 5530 51.9 4.76 8.82 50.6 373* 27900 13300* 571 17.1 315 40.8 30.1 2010* 

3 3090 28.9 1.10 3.79 26.6 78.8 17900 4320 297 11.1 145 11.4 27.1 545 

4 2880 22.4 1.40 5.15 21.1 44.3 17600 4140 277 10.9 80.2 9.81 22.8 315 

5 2270 47.3 2.00 5.28 22.6 52.9 16100 3840 303 10.0 98.8 13.2 20.0 309 

6 3960 29.6 0.49 3.56 32.4 107 17500 3480 219 10.6 144 14.5 25.1 372 

7 3370 30.2 1.69 5.63 28.6 85.9 18000 3800 235 11.7 98.9 15.6 20.5 317 

8 3480 33.5 2.29 3.33 33.6 124 16800 3230 214 11.2 139 15.3 22.6 444 

9 3230 79.0 5.20 5.89 72.9* 206 25000 3730 233 12.6 280 49.5* 37.4 877 

10 2250 18.3 0.67 3.88 25.3 51.8 13700 2630 160 14.6 79.1 7.01 11.5 280 

11 2090 14.8 0.70 3.42 19.1 49.6 11100 2250 146 12.4 69.1 6.32 8.44 262 

AR 4360 27.8 1.40 4.91 29.2 95.1 15000 4160 334 16.5 132 16.3 20.8 480 

BI1 2890 418* 6.03 4.71 106* 272 35900 3450 239 19.3 566* 38.1 151* 920 

BE1 2380 14.5 0.38 4.49 20.2 47.4 13400 4100 173 15.8 60.2 6.52 8.18 262 

BE2 1740 3.91 < LOD 3.38 31.0 20.6 6880 593 456 24.2 16.1 1.22 5.61 63.1 

BEK 2250 30.7 1.74 4.20 42.9 76.4 14600 2640 216 13.2 132 24.3 11.1 445 

LA 1980 9.11 0.92 3.20 29.4 78.3 28300 2210 734 18.1 62.6 7.91 5.86 351 

GO 2930 45.6 3.64 4.98 30.8 257 17500 3220 424 17.9 159 18.4 17.4 685 

GO1 3280 30.5 6.47* 5.69 32.2 200 13700 3450 411 22.3 84.4 14.1 14.8 541 

GO2 5280 13.2 0.5 2.41 25.7 28.8 9370 12000* 438 10.5 63.7 2.12 27.0 238 

EX 3150 74.5 1.05 4.86 32.5 140 14900 2890 240 20.8 194 14.2 20.3 565 

UD 2470 89.2* 1.88 4.80 35.6 136 16200 2330 251 17.5 196 15.7 19.7 560 

AX1 2440 20.3 2.32 4.93 30.6 75.1 12700 2430 196 17.4 95.9 13.6 10.0 350 

AX2 2430 13.5 0.93 5.82 14.7 64.9 12500 3050 97.1 14.9 83.8 5.88 13.8 393 

GA 3020 81.7* 3.84 4.81 36.4 180 23600 2150 557 34.5 521* 31.0 12.9 1590* 

CA 1980 9.25 0.92 3.20 29.4 77.7 28300 2210 734 18.1 62.3 7.93 5.80 351 

BA 6080 14.3 5.69 6.91 65.7 226 22700 3400 3900* 27.7 656* 21.9 22.7 4410* 

ER 2010 12.6 0.79 3.29 24.3 47.2 9520 1450 123 15.2 86.2 7.29 7.04 253 

PO 3360 172* 13.0* 13.7* 76.0 345 37200* 3140 341 25.2 520* 34.2 46.3 1280* 

RO 1920 16.7 1.08 3.21 18.6 50.3 9610 2230 113 11.8 90.0 6.06 8.30 303 

AS 1570 9.14 0.31 4.94 9.71 25.3 6090 663 396 7.81 49.1 2.09 4.62 165 

AS2 2040 14.0 1.52 5.15 16.0 40.4 7500 1120 104 12.7 91.8 3.24 6.25 253 

SG 1400 19.0 0.50 4.67 14.5 26.1 5150 353 261 9.64 136 1.45 4.26 149 
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Table 6 (Cont). Element concentrations found in the sediments collected in January 2014 together with some related statistics. Extreme high concentrations, defined as those concentrations over the 75th percentile of 

the data (Q3) plus three times the interquartile range (IQR), are marked with an asterisk (*). 

 

 
Al As Cd Co Cr Cu Fe Mg Mn Ni Pb Sn V Zn 

LU 1860 21.5 1.19 3.02 23.0 58.8 12600 2740 150 12.1 83.6 7.61 9.83 327 

KA 1300 4.77 < LOD 1.73 4.70 13.8 6580 957 221 3.97 40.3 3.55 3.41 98.7 

KA1 1180 3.91 < LOD 1.17 2.95 9.02 5450 1120 164 2.36 24.8 1.58 2.55 51.2 

EL 2090 21.0 0.50 3.57 15.0 62.2 14400 2450 219 11.6 83.4 6.14 10.5 264 

DE1 2580 18.5 0.69 3.90 22.9 52.1 16000 3300 155 15.2 68.6 8.07 11.7 319 

DE2 2290 18.8 0.99 4.62 28.9 67.3 14900 2650 241 18.5 82.1 9.86 8.94 322 

DE3 3030 20.2 1.50 3.91 29.4 84.1 17500 4140 156 16.6 120 11.5 14.2 451 

ZO 1520 11.7 0.32 5.75 17.8 69.8 12200 1100 335 17.7 140 3.61 4.42 219 

ZO2 2400 20.2 1.42 5.82 42.0 81.0 15200 2020 154 27.7 105 19.6 7.93 385 

EU 2500 13.9 0.51 4.53 26.8 56.3 15100 2780 131 21.6 65.5 7.64 11.3 272 

SL 1950 9.02 < LOD 5.46 18.4 27.2 13600 2630 162 20.0 32.3 2.86 6.04 194 

KT 2000 8.25 < LOD 5.52 22.9 28.3 13600 2350 131 23.2 33.2 3.61 5.22 198 

AZ 1560 16.9 0.29 6.61 26.9 120 13900 999 365 24.5 223 4.09 4.78 261 

PE1 1340 13.3 0.08 5.38 21.9 122 12900 1120 391 18.2 257 4.65 4.54 246 

PE2 1300 11.5 0.11 4.80 19.0 111 12400 762 353 17.0 210 5.33 4.12 216 

PE3 1380 14.4 0.77 6.55 30.4 145 16200 813 437 22.5 379 8.68 5.11 243 

25th PERCENTILE 1930 13.3 0.57 3.57 19.6 48.5 12400 1730 161 11.7 68.4 4.99 5.80 250 

75th PERCENTILE 3060 30.3 1.97 5.57 32.3 123 17500 3450 378 19.6 176 15.4 20.4 465 

IQR (Q3-Q1) 1120 17.1 1.40 2.01 12.7 74.5 5100 1710 217 7.93 108 10.5 14.6 216 

Q3+(3*IQR) 6450 81.5 6.21 11.6 70.4 347 32800 8610 1030 43.4 500 46.8 64.2 1110 

MEDIAN 2380 18.8 1.09 4.80 26.8 75.1 14900 2640 239 16.5 95.2 8.14 11.1 317 

AVERAGE 2570 35.5 1.94 4.80 29.8 98.9 15700 2910 354 16.3 153 12.2 16.3 505 

DESVEST 1070 62.9 2.37 1.87 18.1 82.2 6960 2310 539 6.15 146 10.8 21.8 676 

MIN 1180 3.91 0.08 1.17 2.95 9.02 5150 353 97.1 2.36 16.1 1.22 2.55 51.2 

MAX 6080 418 13.0 13.7 106 373 37200 13300 3900 34.5 656 49.5 151 4410 
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Figure 2. Element concentrations found in the sediments collected in 2009 (striped bar), 2010 (black bar), 2011(grey bar) and 

2014 (white bar) sampling campaigns. 
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Figure 3. Element concentrations within sampling sites for each sampling campaign after removing the extreme 

values. 
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3.2. PRINCIPAL COMPONENT ANALYSIS: PATTERN RECOGNITION 

Principal Component Analysis (PCA) of the datasets was separately performed for 

each sampling campaign by means of The Unscrambler Program (v. 9.2 Camo, Oslo, 

Norway). Each dataset consisted on a matrix with n rows (n: number of sampling sites) and 

m columns (m: number of elements for which concentration was measured in each sample) 

which was centred and scaled before PCA. Concentrations below the detection limit were 

replaced by half of the detection limit estimated for the element. PCA is a multivariate 

statistical technique able to discern patterns in large environmental datasets. PCA transforms 

the two dimension multivariate data array into a new data set, so that some of the new 

variables (principal components, PCs) are linear combinations of the original variables and 

explain most of the information contained in the original data (Jolliffe, 2002). The first 

component represents the maximum variation of the data set and corresponds to the direction 

explaining the maximum variance; the second PC corresponds to the direction, orthogonal to 

the first PC, explaining the maximum variance not explained by the first PC, and so on. 

Models with 3 PCs were finally selected to explain the variability of the four datasets 

considered. For the 2009, 2010, 2011 and 2014 sampling campaigns, the models explained, 

respectively, 73, 82, 67 and 79% of the total variance of data. The scores and loading plots 

obtained in each case are shown in Figures 4-7. In general, PC1 discerned between sites with 

low and high metal concentrations, while PC2 and PC3 made a more qualitative difference 

among clusters according to the most influencing elements in each one. The results 

confirmed the general conclusions drawn from the direct observation of row data (Section 

3.1). Very similar patterns were obtained for the 2009, 2010 and 2011 sampling campaigns, 

with high scores on PC1 for sites located in the area of influence of the Gobela and Galindo 

Rivers (GO, GO1, GO2, UD, AX1, AX2, GA, BA), and the channel of Deusto (DE3). The 

sediments from these sites are associated to high concentrations of elements such as As, Cd, 

Cu, Pb, Sn and Zn (with high loadings on PC1). In 2014, however, the sites with the highest 

scores on PC1 were 2, 9 and BI1 (in the Abra Bay), BA and GA (close to the effluent of the 

WWTP) and PO (dock of Portu). The metals with the highest loadings on PC1 this time were 

Pb, Cd, Sn, Cu, Cr, Fe, As, V and Zn. 
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Figure 4. Scores and loadings plots (PC1-PC2 and PC1-PC3) obtained after PCA of the dataset corresponding to the 2009 sampling campaign. 
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Figure 5. Scores and loadings plots (PC1-PC2 and PC1-PC3) obtained after PCA of the dataset corresponding to the 2010 sampling campaign.
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Figure 6. Scores and loadings plots (PC1-PC2 and PC1-PC3) obtained after PCA of the dataset corresponding to the 2011 sampling campaign.
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Figure 7. Scores and loadings plots (PC1-PC2 and PC1-PC3) obtained after PCA of the dataset corresponding to the 2014 sampling campaign.
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3.3. GEOACCUMULATION INDEXES: ANTHROPOGENIC INPUT 

Geoaccumulation indexes (Igeo) were also calculated according to Eq. 1 (Mueller, 

1981) in order to estimate the contamination level of the sediments collected at each 

sampling site and each sampling campaign for each individual element, 

bg

2geo
c5.1

c
logI   (Eq. 1) 

where c is the actual concentration of a given contaminant in the sediment, and cbg is the 

background concentration estimated for that contaminant in the studied area. The Igeo can be 

used to estimate the magnitude of the anthropogenic impact in the area to be investigated. 

According to the scale established by Müller (Mueller, 1981), a sediment can be classified as 

non-contaminated (Igeo < 1), very slightly contaminated (1 < Igeo<2), slightly contaminated (2 

< Igeo<3), moderately contaminated (3 < Igeo<4), highly contaminated (4 < Igeo<5), and very 

highly contaminated (Igeo > 5). The background values used in this study were estimated by 

Cearreta et al. (Cearreta et al., 2000), except for Cd which was estimated by Rodriguez et al. 

(Rodriguez et al., 2006). It is worth noting that the use of poorly estimated background 

concentrations in the calculation may lead to non-reliable conclusions. The values of Igeo 

obtained in this studied are summarised in Figure 8. The Igeo calculated for Cr and Fe were 

not plotted because negative values of Igeo were obtained in all the cases. This suggests that, 

regarding their relatively high concentrations in sediments, the origin of Cr and Fe in the 

estuary is mainly natural. The situation for Ni is very similar, with only one sediment 

collected at AX1 in 2010 with a Igeo value slightly higher than 1. The highest values of Igeo 

were obtained for Pb, Cd and Zn (with some Igeo > 5), Cu (with several Igeo between 3 and 5) 

and As (with several Igeo between 1 and 3, and one Igeo over 4 (BI1, 2014)). Only a few sites 

(GO2, BA and DE3) present sediments slightly contaminated with Mn. 
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Figure 8. Geoaccumulation Indexes (Igeo) obtained for the sediments collected at different sampling sites in 2009 (striped bar), 

2010 (black bar), 2011(grey bar) and 2014 (white bar). Igeo < 1: non-contaminated; 1 < Igeo < 2: very slightly contaminated; 2 < 

Igeo < 3: slightly contaminated; 3 < Igeo < 4: moderately contaminated; 4 < Igeo < 5: highly contaminated; 5 < Igeo: very highly 

contaminated. 

3.4 NORMALIZED AND WEIGHTED AVERAGE CONCENTRATIONS: 

IDENTIFICATION OF HOTSPOTS OF CONTAMINATION 

The Normalised-and-Weighted Average Concentration (NWAC) is a cumulative 

index to sort samples (in this case, sediments) according to their content of selected 

contaminants. Samples are characterised by a single score in a relative scale from 0 to 10, the 

NWAC, which is calculated taking into account exclusively the concentration of 

contaminants freely selected by the user and present in the sample. More information about 

the NWACs and the methodology for their calculation can be found elsewhere (Gredilla et 

al., 2014). The calculation of the NWACs and their representation on a map according to a 

colour based code allow us identifying, in a very simple and intuitive way, the sampling sites 

of higher concern (hotspots of contamination) in the studied area. 
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The concentrations of the 14 elements measured in the samples were used to 

calculate the corresponding NWACs separately for each sampling campaign. A colour based 

map was produced by the Kriging interpolation method feeding the 3D Field Programme (v. 

3.8.8.0, by Vladimir Galouchko) with the NAWC values obtained in each case (Figures 9-

12). The difference between the geographical distribution of metals in 2014 and that in the 

rest of campaigns (2009, 2010 and 2011), already discussed in previous sections, becomes 

evident in Figures 9-12. Furthermore, the amount of hotspots substantially decreases from 

2009 to 2011, with concomitant homogenisation of metal contamination within the estuary. 

Two hotspots of contamination remain in 2011, one upstream the Gobela River (GO2) and 

another one in the surroundings of the effluent of the WWTP (BA). In Figure 12, 

corresponding to 2014 campaign, the hotspot in Gobela has disappeared but, in turn, new 

hotspots of contamination have appeared in the Abra Bay (2, 9 and BI1) and the dock of 

Portu. 

 

 

Figure 9. Hotspots of metal contamination in the estuary of the Nerbioi-Ibaizabal River  according to the NWAC values 

calculated for the sediments collected in January 2009. The concentration of all the elements considered in this work were used 

in the calculation of the NWACs. 

 

 

Figure 10. Hotspots of metal contamination in the estuary of the Nerbioi-Ibaizabal River  according to the NWAC values 

calculated for the sediments collected in January 2010. The concentration of all the elements considered in this work were used 

in the calculation of the NWACs. 
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Figure 11. Hotspots of metal contamination in the estuary of the Nerbioi-Ibaizabal River  according to the NWAC values 

calculated for the sediments collected in January 2011. The concentration of all the elements considered in this work were used 

in the calculation of the NWACs. 

 

 

Figure 12. Hotspots of metal contamination in the estuary of the Nerbioi-Ibaizabal River  according to the NWAC values 

calculated for the sediments collected in January 2014. The concentration of all the elements considered in this work were used 

in the calculation of the NWACs. 

3.5 MEAN EFFECTS RANGE-MEDIAN QUOTIENTS: ESTIMATION OF 

TOXICITY 

The mean Effects Range-Median quotients (mERMq) were also calculated 

according to Eq. 2 (Long et al., 2006) to estimate the toxicity associated to each individual 

sediment sample, 


N

i i

i

ERM

c

N
mERMq

1
 (Eq. 2) 

where N is the amount of pollutants considered in the calculation, ci is the actual 

concentration of the i pollutant in the sample and ERMi is the concentration estimated for the 

i pollutant above which toxic effects are expected. The mERMq is a cumulative index that 

takes into account not only the concentration of selected pollutants in the sample, but also 

toxicological data obtained in the laboratory using model organisms under controlled 
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conditions. For metals, values of ERMi are only available in the literature for As, Cd, Cr, Cu, 

Pb, Ni, Hg and Zn. Other elements are considered to be non-toxic, or toxic only at extremely 

high concentrations. mERMq values in the range 0-0.1, 0.1-0.5, 0.5-1.5 and >1.5 indicate a 

probability of being toxic of 9% (non-toxic), 21% (slightly toxic), 49% (moderately toxic) 

and 76% (highly toxic), respectively (Rodriguez et al., 2006). 

The mERMq values corresponding to the sediments collected in this work were 

calculated using the concentrations of As, Cd, Cr, Cu, Pb, Ni, and Zn measured in the 

samples. The results are shown in Figure 13. mERMqs higher than 1.5 (highly toxic 

sediments) were only found in the dock of Axpe (AX1, AX2) and close to the effluent of the 

WWTP (BA) in 2009 and 2010, as well as in BI1 (Abra Bay), BA and the dock of Portu 

(PO) in 2014. Sediments from the closed dock of Deusto (DE3) also showed mERMq values 

close to 1.5 in 2009 and 2010. All the sediments collected in 2011, except those from GO2 

and GA, were slightly toxic or non-toxic. 

 

Figure 13. mean Effects Range-Median quotient (mERMq) values obtained for the sediments collected at different sampling 

sites in 2009 (striped bar), 2010 (black bar), 2011 (grey bar) and 2014 (white bar): 0-0.1 (non-toxic), 0.1-0.5 (slightly toxic), 

0.5-1.5 (moderately toxic) and >1.5 (highly toxic). 

4. CONCLUSIONS 

The distribution of metals and metalloids in the sediments of the estuary of the 

Nerbioi-Ibaizabal estuary has substantially changed from 2009-2011 to 2014. The hotspots 

of metal pollution identified in 2009, 2010 and 2011 disappeared in 2014 and, in turn, new 

hotspots popped up close to the mouth of the estuary and in the dock of Portu. The works to 

construct in the Abra Bay a new place to dock for long tourist cruise liners may be partially 

responsible of this substantial change in the distribution of metals within the estuary. The 

surroundings of the effluent of the biggest waste water treatment plant operating in the area 

remains as a point of concern in 2014, probably due to punctual failures in the normal 

operation of the plant that result in direct release of substantial amounts of different metals to 

the river. The lowest metal concentrations were measured in sediments collected in 2011, 

probably as a result of a dilution effect caused by an increasing amount of fresh particulate 

matter that resulted from the heavy rains registered a few days before sampling. The origin 

of metals like Pb, Cd, Zn, Cu, As, Sn, V and Mn in the estuary is mainly anthropogenic, 
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while Al, Co, Ni, Cr, Mg and Fe are probably natural. The presence of metals of 

anthropogenic origin results in moderately to highly toxic sediments in the hotspots of 

pollution. In January 2014, just a few months before the official beginning of the works to 

open the close channel of Deusto, the sediments upstream the point in which the Asua 

tributary joins with the main channel of the estuary presented low concentrations of all the 

elements considered, no important anthropogenic input of toxic metals and, consequently, a 

very slight possibility of being toxic. 
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HISTOPATHOLOGICAL ALTERATIONS IN 

AUTOCHTHONOUS OYSTERS DERIVED FROM THE 

OCCURRENCE OF METALS IN THE ESTUARY OF THE OKA 

RIVER (URDAIBAI, BASQUE COUNTRY) 

 

 

 

ABSTRACT 

 

Oysters have been frequently used as indicators of chemical pollution, specifically 

metal pollution, in estuaries. However, the question, to which extent oysters are affected at 

histopathological levels by the presence of metals and metalloids in the surrounding 

environment?, remains nowadays open to discussion. The estuary of the Oka River 

(Urdaibai, Basque Country) was selected in this work to investigate the possible correlation 

between the presence of metals in the estuary with the health status of autochthonous oysters. 

All the tidal part of the Oka River is included in the Reserve of the Biosphere of Urdaibai, 

so-declared by the UNESCO in 1984. Some polluting activities, however, are still operative 

in the area, resulting in considerable inputs of anthropogenic pollution to the estuary. 

Sediments and oysters were collected at seven different points of the estuary every three 

months from March 2010 to December 2011. The concentrations of Al, As, Cd, Co, Cr, Cu, 

Fe, Mg, Mn, Ni, Pb, Sn, V and Zn were determined in all the samples. The results allowed us 

to draw conclusions on the geographical distribution of pollution in the estuary, and its 

evolution in time. In general, when high concentrations were obtained in sediments, low 

concentrations were obtained in oyster and viceversa. In addition, the gamete development, 

the presence of parasites and non-specific inflammations, the mean luminal radius to mean 

epithelial thickness (MLR/MET), the metallothionein content and the intralysosomal 

accumulation of metals (by autometallography) were also measured in oysters. In general, 

low to moderate concentrations of metals were found both in sediments and oysters. 

Accordingly, all the sediments were non-toxic or only slightly toxic, and the alterations 

observed in oysters at histological levels were not severe. 

 

Keywords: Estuary; Oyster; Sediment; Metals; Urdaibai; Oka. 
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1. INTRODUCTION 

 

Estuaries are areas of high concern due to their high biological productivity. At the 

same time, they use to be densely populated areas subjected to a great amount of potentially 

polluting activities like aquiculture, shipyard, industry and intensive agriculture and mining. 

Many pollutants of different origin and nature may consequently enter the estuary as a result 

of anthropogenic activity (Abrahim et al., 2007; Reboreda et al., 2008; Szava-Kovats, 2008). 

Metals and metalloids have been largely recognised as very toxic contaminants and their fate 

in estuaries has been investigated for decades (Pereira et al., 2015; Venkatramanan et al., 

2014). The fate and reactivity of metals in estuaries highly depends on the physico-chemical 

conditions of the system. Metals can be stored in sediments, remobilised to the water 

column, adsorbed onto suspended particulates, associated to fulvic and humic acids or 

accumulated by living organisms in their tissues (Dekov et al., 1998; Franco et al., 2002). 

The extent of these processes is governed by a wide number of environmental variables. As 

estuaries are highly dynamic systems with a remarkable variability in time and space of 

parameters such as salinity, pH, dissolved oxygen, redox potential, amount of suspended 

particulate matter and organic carbon, the partition of metals within different compartments 

is also complex and difficult to predict (van Ryssen et al., 1999). 

 

Sediments, water and molluscs like oysters are highly connected actors in estuaries. 

As oysters live in close contact with sediments and obtain food by filtering water, it becomes 

evident that the metal content in these three compartments must be highly interconnected. In 

fact, sediments and oysters have been frequently used to monitor metal pollution in estuarine 

waters (Fdez-Ortiz de Vallejuelo et al., 2014; Gredilla et al., 2015; Raposo et al., 2009). Both 

sediments and oysters show a high capacity to accumulate the low concentrations of trace 

elements usually found in water. Sediment is more conservative than water, as it accumulates 

historical data on processes within water bodies and the effect of anthropogenic factors on 

these processes. On the other hand, bioaccumulation and biomagnification processes may 

lead to extremely high concentrations of metals in oyster tissues. 

 

The presence of metals in oyster tissues may result in histopathological alterations, 

metallothionein induction and accumulation in specific parts of the cell. The digestive gland 

of molluscs is a key organ in relation with accumulation, detoxification and elimination of 

xenobiotics including metals (Moore and Icarus Allen, 2002), and is the most studied organ 

in pollution monitoring programmes. Histopathological alterations are effect biomarkers that 

allow identifying pathological lesions in tissues induced by environmental contamination 

and disease (Aarab et al., 2011). The use of histopathological examination techniques in wild 

molluscs provides sensitive and useful indications of the overall health status of bivalves and 

can be used for the assessing of historical exposure, or effect, of a contaminant (Izagirre et 

al., 2014). Metallothioneins (MT) are cysteine-rich metal binding proteins and have been 

widely used as markers of metal contamination (Aldo Viarengo Bruno Burlando Francesco 

Dondero Anna Marro Rita, 1999) since they are involved in the detoxification of heavy 

metals, free radical scavenging, and in inflammatory responses (Gueguen et al., 2003). 

Changes in MT levels have been described after cadmium, copper, zinc, mercury or lead 

exposure in a great variety of aquatic organisms (Sheehan and Power, 1999). The presence 

of metals in selected cell-types can be visualized with the aid of histochemical techniques 

such as autometallography (AMG). This technique allows the localization of metal ions (as 

black silver deposits, BSD) in biological tissues and has been used to determine metal levels 
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in aquatic molluscs (Soto et al., 2002). The use of cell and tissue level biomarkers can be 

influenced by the season and related changes such as gamete development, food availability, 

or general metabolic activity (Bocchetti and Regoli, 2006). Therefore, the understanding of 

natural variability of biomarkers is necessary in order to make correct interpretations of the 

obtained results. 

 

In this work we have measured the concentration of selected metals and metalloids 

in sediments and oysters collected at different sites of the estuary of the Oka River (Urdaibai 

Reserve of the Biosphere, Basque Country) with the aim i) to investigate the occurrence and 

geographical distribution of metal pollution within the estuary, ii) to determine the overall 

health status of the estuary based on cell and tissue level biomarkers measured in oysters, iii) 

to check if the concentration of metals in sediments and oysters is correlated or not, and iv) 

to study if the existence of alterations in oysters depends or not on the presence of specific 

metals in their tissues or in sediments. 

 

2. MATERIALS AND METHODS 

 

2.1 STUDY AREA, SAMPLING AND SAMPLE TREATMENT 

 

The area of Urdaibai (Bizkaia, Basque Country), including the estuary of the Oka 

River, was declared Reserve of the Biosphere by the UNESCO in 1984 (Fig.1). The estuary 

is generally accepted as a clean area and major pollution inputs have been related with urban 

discharges and dredging due to the presence of a shipyard since 1943 in Murueta (Bartolome 

et al., 2006). A remarkable industrial activity remains nowadays, however, in the 

surroundings of Gernika-Lumo (~17000 inhabitants), the most important town in the area. 

Leisure activities, including recreational boats and sport fishing, are also important. During 

summer time, traffic exhaust considerably increases due to the massive affluence of visitants 

to the beaches around. The presence of two marinas (in Sukarrieta and Laida) and a little port 

with a few middle-size fishing boats in Mundaka (~2000 inhabitants, located in the left bank 

close to the mouth of the estuary) also contribute as potential sources of contaminants. The 

concentrations of chemicals in sediments, fishes and molluscs from the estuary have been 

measured (Bustamante et al., 2012; Puy-Azurmendi et al., 2010; Zabaljauregui et al., 2007) 

and the existence of harmful effects on organisms derived from the presence of these 

chemicals have also been investigated (Orbea et al., 2002; Puy-Azurmendi et al., 2013; 

Uriarte and Villate, 2004). In general low metal pollution levels have been detected in 

oysters inhabiting the estuary and their overall health state has been described as fairly good. 

 

Sediments and oysters were sampled at 7 sampling sites (Mundaka MK, Laida LA, 

Sukarrieta SU, Axpe AX, Kanala KA, Murueta MU and Arteaga AR) of the tidal part of the 

Oka River at low tide every three months from March 2010 to December 2011. Oysters from 

the December 2011 campaign were accidentally lost. The pH, temperature, electrical 

conductivity, redox potential and dissolved oxygen of water were measured in situ by means 

of a precalibrated YSI 556 multiparametric probe (YSI Environmental, Yellow Springs, 

Ohio). Salinity and total dissolved solids (TDS) were further estimated from electrical 

conductivity. The geographical location of the sampling sites together with their most 

outstanding features are summarised in table 1. 
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Figure 1. Sampling sites in the estuary of the Oka River (Urdaibai Reserve of the Biosphere): 

Mundaka MK, Laida LA, Sukarrieta SU, Axpe AX, Kanala KA, Murueta MU and Arteaga AR. 

 

Table 1. Geographical location (Universal Transversal Mercator x and y coordinates, UTM 30T) and 

basic description of the sampling sites. 

 

Identification Code X coordinate Y coordinate Characteristics 

Mundaka MU 524449 4806206 
Inside a little port with fishing and 

recreational activity 

Sukarrieta SU 524784 4804410 Close to a marina 

Axpe AX 525127 4803205 
Where a little tributary joins the 

main channel 

Murueta MU 525591 4801170 Close to a shipyard 

Laida LA 525878 4804747 Close to a marina 

Kanala KA 526065 4803243 No remarkable activity 

Arteaga AR 527238 4800249 No remarkable activity 

 

About 250 g of surface sediment (upper 2-3 cm) were collected by hand at each site 

using latex gloves. Regarding oysters, 40 individuals (Crassostrea gigas, 8±2 cm 

longitudinal axe) were randomly collected by hand at each site in a ~10×10 m area. 

Sediment and oyster samples were transported to the laboratory in zip plastic bags inside a 

cool box. Twenty oysters were reserved for chemical analysis. The pretreatment and 

chemical analyses of the samples were carried out according to the procedures described in 
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the Chapter 2, experimental. The concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, 

Pb, Sn, V and Zn were measured in the sediment and oyster extracts by ICP/MS.  

 

The NIST 1646a (estuary sediment) and SRM 2976 (mussel tissue) certified 

reference materials, all from the National Institute of Standards and Technology, were used 

for QC/QA purposes. Recoveries between 80% and 120% and repeatabilities below 5% in 

RSD were obtained in all the cases. The detection limits (LOD) estimated as the average plus 

three times the standard deviation obtained from the repetitive analysis of 8 independent 

procedural blanks were as follows for sediments and oyster, respectively: Al (LODsed: 0.76, 

LODoys: 0.23), As (LODsed: 0.36, LODoys: 0.12), Cd (LODsed: 0.11, LODoys: 0.063), Co 

(LODsed: 0.14, LODoys: 0.008), Cr (LODsed: 0.70, LODoys: 0.002), Cu (LODsed: 0.08, LODoys: 

0.001), Fe (LODsed: 0.23, LODoys: 0.008), Mg (LODsed: 0.91, LODoys: 0.29), Mn (LODsed: 

0.61, LODoys: 0.003), Ni (LODsed: 0.30, LODoys: 0.004), Pb (LODsed: 0.21, LODoys: 0.021), 

Sn (LODsed: 0.06, LODoys: 0.001), V (LODsed: 0.14, LODoys: 0.002) and Zn (LODsed: 1.1, 

LODoys: 0.18). 

 

The other twenty oysters were used for biological measurements. A portion of the 

digestive gland/gonad complex of each oyster was dissected and fixed in formalin, 

dehydrated in a series of ethanol baths, paraffin embedded and sectioned at 3-5 µm thickness 

for histopathological examination and autometallography. Another portion of the digestive 

gland was dissected and frozen in liquid nitrogen for biochemical determination of MTs. 

 

2.2. HISTOPATHOLOGICAL MEASUREMENTS 

 

Oyster tissues were examined for health parameters related with reproductive and 

physiological conditions, inflammatory and non-specific pathologies and those associated 

with pathogen and parasite infections. The gamete developmental stage was determined 

according to Kim et al., 2006 (Kim et al., 2006). The presence of parasites and non-specific 

inflammation were scored as absent (0) or present (1) and then data was transformed into 

percentages. 10 individuals were examined from each site and season. 

 

2.3. PLANIMETRICAL ANALYSES OF THE EPITHELIAL THICKNESS 

 

In order to quantify the structure of the digestive tubules, a planimetric procedure 

was applied on hematoxilyn/eosin stained sections of digestive gland tissue. A total of 10 

tubule profiles per individual were recorded in an image analysis system (Visilog 5.4 Noesis) 

attached to an Olympus BX50 light-microscope. Finally, the MLR (mean luminal radius) to 

MET (mean epithelial thickness) (MLR/MET) ratio was calculated (Cajaraville et al., 1992). 

 

2.4. AUTOMETALLOGRAPHY 

 

Intralysosomal accumulation of metals was determined in paraffin embedded 

sections following the autometallographical procedure (Danscher, 1984)  modified by Soto, 

et al. (Soto et al., 1998). Paraffin sections were covered with a photographic emulsion (Ilford 

Nuclear Emulsion L4, Ilford, Mobberley, England) under safety light conditions. After 

drying for 45 min in total darkness, sections were rinsed in a developer bath (1:5, b/w 

Ultrathin Tetenal. Thetenal AG & Co, Norderstedt, Germany) for 15 min, rinsed in a stop 

bath (1% acetic acid) for 1 min, and finally rinsed in a fixative bath (1:10, b/w Agefix Agfa. 
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Agfa-Gevaert N.V., Mortsel, Belgium) for 10 min. Sections were mounted in Kaiser’s 

glycerol gelatine (Merck). Metals were developed as black silver deposits (BSD) and the 

previously scheduled quantification could not be performed due to the special metal 

distribution in the digestive gland tissue. 

 

2.5. METALLOTHIONEIN CONTENT 

 

Metallothionein content was measured according to Viarengo et al. (Viarengo et al., 

1997) and UNEP/RAMOGE (1999) in digestive gland of oysters stored at -80 °C. Reduced 

glutathione (GSH) was used as reference standard to estimate MT concentrations the results 

are expressed as μg MT/g tissue ww. 

 

2.6. STATISTICS 

 

Statistical analysis of the biological data was carried out by SPSS/PC+ statistical 

package (SPSS Inc., Microsoft Co.). For each variable studied, one-way ANOVA and 

subsequent Duncan’s test for multiple comparisons between pairs of mean values were 

applied to detect significant (p<0.05) differences between experimental groups. Principal 

Component Analysis (PCA) of chemical data was performed by means of The Unscrambler 

Program (v. 9.2 Camo, Oslo, Norway). Concentrations below the detection limit were 

substituted by half of the detection limit. The dataset under study was centred and scaled 

before PCA. 

 

3. RESULTS 

 

3.1. PHYSICAL-CHEMICAL PARAMETERS IN WATER 

 

The average pH, electric conductivity, redox potential and amount of dissolved 

oxygen (%) measured in water in 2010 and 2011 were, respectively, 7.61±0.27-7.53±0.31, 

18.26±17.71-40.66±10.15 mS/cm, 291±58-300±98 mV and 79±21-79±6 %. All these values 

are typical from clean estuaries and indicate well oxygenated waters. They did not change 

drastically from 2010 to 2011, except in the case of electrical conductivity. Salinity of water 

at the time of sampling was consequently higher in 2011 than in 2010. 

 

3.2. CONCENTRATION OF METALS AND METALLOIDS IN SEDIMENTS 

 

The concentrations found in sediments are summarised in Fig. 2. The concentration 

of Cd was below the detection limit in all the samples. Looking in detail at the results five 

different groups of elements with similar characteristics can be differentiated. The 

concentration of Mg in the sediments of Urdaibai is clearly influenced by the proximity to 

the ocean, with no clear seasonal trend and similar values in 2010 and 2011. Ni and Cr show 

a distinctive behaviour, with higher concentrations (especially Cr) in the most upstream part 

of the estuary (AR and MU), probably due to the industrial activity in the surroundings of 

Gernika and the shipyard in Murueta. The concentrations of these elements in sediments 

show no clear seasonal trend and they are rather similar in 2010 and 2011. As, Co and Fe 

present similar concentrations within sites without a clear seasonal trend, but with higher 

values in 2010 than in 2011 (very clear for Co and Fe, not so clear for As). Finally, the 
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concentrations Al, Mn, Cu, Pb, Sn, V and Zn are systematically higher in sediments from 

MK and SU (very marked for Zn, Sn, and especially Cu, in MK) than from the rest of sites, 

and they are clearly higher in 2010 than in 2011. Higher concentration of these metals could 

be explained by the fishing activities in the port of Mundaka and the recreational uses of the 

marina in Sukarrieta. Al and Mn, however, do not show a clear seasonal trend while Cu, Pb, 

Sn, V and Zn systematically present higher concentrations in summer (March and June) than 

in winter (December and March). The concentrations of these last 5 elements are highly 

correlated (ccorr > 0.6) in sediments. It is to be highlighted that, except in the case of As 

(2011>2010) and Mg (2010~2011), the concentrations measured were higher in 2010 than in 

2011. 
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Figure 2. Metal concentrations (mg·kg
-1

) measured in sediments collected at different sites and 

sampling campaigns in the estuary of the Oka River (Urdaibai Reserve of the Biosphere, Basque 

Country). 

 

Principal Component Analysis (PCA) of the concentration data matrix of the 

sediments (56 rows, one per sampling site and sampling campaign; and 13 columns, one per 

element measured) was also carried out. Cd was removed from the data matrix because its 

concentration was below the detection limit in all the sites and campaigns. The data matrix 

was centred and scaled before analysis. The model finally selected explained 71% of the 

total variance using three PCs (PC1: 41%; PC2: 17%; PC3: 13%). The scores and loadings 

plots over the PC1-PC2 and PC1-PC3 can be seen in Fig. 3. The result highlights the clear 

difference between the concentrations measured in 2010 and 2011, and the distinctive 

behaviour of MK and SU sampling sites compared to the rest. 
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Figure 3. Scores and loadings plots obtained after PCA of the data matrix of the sediments. Samples from 2010 sampling campaigns are in blue, and those from 2011 

campaigns are in red. MK: Mundaka, LA: Laida, SU: Sukarrieta, AX: Axpe, KA: Kanala, MU: Murueta, AR: Arteaga.
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The mean Effects Range-Median quotients (mERMq) were also calculated 

according to Eq. 1 (Long et al., 2006) in order to estimate the toxicity associated to each 

individual sediment sample. 


N

i i

i

ERM

c

N
mERMq

1
 (Eq. 1) 

where N is the amount of pollutants considered in the calculation, ci is the actual 

concentration of the i pollutant and ERMi is the concentration estimated for the i pollutant 

above which toxic effects are expected. The concentrations of As, Cd, Cr, Cu, Pb, Ni and Zn 

were considered in the calculation. The other elements are considered to be non-toxic, or 

toxic only at extremely high concentrations. mERMq values in the range 0-0.1, 0.1-0.5, 0.5-

1.5, and >1.5 indicate a probability of being toxic of, 9% (non-toxic), 21% (slightly toxic), 

49% (moderately toxic) and 76% (highly toxic), respectively. As it can be seen in Figure 4, 

all the sediments considered are non-toxic or slightly toxic. Sediments collected in 2010 are 

more toxic than those collected in 2011. The most toxic ones correspond to those sampled in 

MK. In general, higher toxicity was recorded in summer than in winter. 

 

 
 

Figure 4. Toxicity (expressed as mERMq) of the sediments collected in the estuary of the Oka River 

at different sites and sampling campaigns. mERMq: 0-0.1: non-toxic; 0.1-0.5: slightly toxic; 0.5-1.5: 

moderately toxic; >1.5: highly toxic. 

 

3.3. OYSTERS 

 

3.3.1. CONCENTRATION OF METALS AND METALLOIDS IN OYSTERS 

 

The metal concentrations found in oysters are summarised in Figure 5. Similar 

concentrations were found in oysters collected in the estuary in the 1990-2000 period 

(Franco et al., 2002) (except for As, 2.5 in (Franco et al., 2002) and 17.0 mg·Kg
-1

 in this 



228 

 

work) and in 2002-2004 (Raposo et al., 2009). When differences between years (2010 vs. 

2011) were found in metal concentrations (As, Cd, Co, Mn, Ni, Pb, Sn and Zn), those 

measured in samples from 2011 were always higher than those measured in oysters from 

2010. The existence of seasonal trends in metals concentrations was not clear, but when 

detected (Cd, Cu, Fe, Mn, Ni, Pb and Zn), lower values were observed in summer than in 

winter, except for Mn. It is worth to remember that, for these two observations, the opposite 

behaviour was detected in the case of sediments. Concerning the spatial distribution of 

metals in oysters, Al, Co, Fe, Cr, and Mn, showed rather constant concentrations within 

sampling sites, only with slightly higher values in KA (Al, Co, Fe) and KA and MU (Cr, 

Mn). The concentrations of Cd and Ni were significantly higher in the upper part of the 

estuary (AR and MU), and those of As and Mg decreased with the distance to the ocean. 

Finally, Zn and Cu presented concentrations markedly higher in MK than in the rest of sites, 

and Pb, V and Sn both in Mk and KA. Specifically, it is to be highlighted the extremely high 

concentrations of Al, Co, Fe, Pb and V found in oysters collected at KA in September 2010. 

The concentrations of these elements (ccorr: 0.74-0.97), and those of Cu and Zn (ccorr: 0.92) 

were highly correlated. 
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Figure 5. Metal concentrations (mg·kg
-1

) measured in oysters collected at different sites and sampling 

campaigns in the estuary of the Oka River (Urdaibai Reserve of the Biosphere, Basque Country). 

 

The data matrix of the oysters (49 rows, one per sampling site and sampling 

campaign; 14 columns, one per element considered) was subjected to Principal Component 

Analysis (PCA). The data matrix was centred and scaled before PCA. A final model with 3 

PCs was finally selected to explain the variability of data. The model explained 70% of the 

total variance (PC1, 37%; PC2, 23%; PC3, 10%). The scores and loadings obtained are 

shown in Figure 6. Most of the samples are grouped together except those from the MK 

sampling site, which are characterised by high concentrations of As, Cu and Zn, and that 

collected at KA in September 2010, which presents high concentrations of Al, Cu, Fe, Pb 

and V. This is in good agreement with the information obtained after direct observation of 

data (Figure 5). 
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Figure 6. Scores and loadings plots obtained after PCA of the data matrix of the oysters. Samples from 2010 sampling campaigns are in blue, and those from 2011 

campaigns are in red. MK: Mundaka, LA: Laida, SU: Sukarrieta, AX: Axpe, KA: Kanala, MU: Murueta, AR: Arteaga.
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3.3.2. BIOLOGICAL MEASUREMENTS IN OYSTERS 

 

3.3.2.1. GAMETE DEVELOPMENTAL STAGE 

 

Gonad index values indicated clear seasonal variation in oysters with lower values in 

March and increasing values in June and September, with gonads in post-spawning stage in 

November. In general, few differences were recorded between sites  

 

3.3.2.2. HISTOPATHOLOGICAL ALTERATIONS 

 

Regarding inflammatory responses such as haemocytic infiltrations, inflammations 

and granulocytomes more differences were observed between the different seasons than 

between different sites (Figure 7). According to the results, oysters collected in March 

presented the highest prevalence of inflammatory responses with high prevalence of 

haemocytic infiltrations and inflammation and in the year 2011 also higher levels of 

granulocytomes were recorded. In the remaining sampling times lower levels of 

inflammatory responses were observed in oysters but a decrease (except in March) of these 

lesions are observed from the year 2010 to the year 2011. When different sites are compared, 

in general Axpe presented the highest levels of inflammatory responses both in 2010 and 

2011. On the other hand, Mundaka presented very low prevalence in 2010. 

 

Histopathological analyses also revealed the presence of some parasites within the 

digestive gland and gonad of oysters. In general gregarines such Nematopsis, some 

mitcrosporidian and digenean metacercariae and the copepod Mytilicola intestinalis were 

observed. However, measured prevalences and intensities were in general low (below 20% 

prevalence except for Nematopsis) and no clear seasonal trend was observed. Only in 

Sukarrieta metacercariare was regularly observed and slightly higher metacercarian presence 

was detected in March and June 2011. 
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Figure 7. Prevalence of inflammatory responses (Granulocytomes, inflammations and heamocytic 

infiltrations) in the digestive gland/gonad of oysters collected in March (A), June (C), September (E) 

and December (G) 2010 and  March (B), June (D), September (F) and December (H) 2011. 

 

3.3.2.3. TISSUE LEVEL BIOMARKERS 

 

Quantitative changes in the morphology of the digestive alveoli epithelium were 

determined after the MLR/MET measurement (Figure 8). In general few differences between 

sites are observed with only some significant differences recorded in March and June. On the 

other hand, more relevant differences are observed when comparing 2010 and 2011 years. In 

March very few differences are observed but in June, September and December, higher 

values (and also higher variability) are recorded in 2011 when comparing to 2010 with 

significant differences between the same site in different years. In general all values are 

under 2,0 indicating some affection but no strong levels of stress. 
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Figure 8. Mean luminal radius to Mean epithelial thickness ratio (MLR/MET) in oysters collected in 

March (A), June (B), September (C) and December (D) 2010 and 2011. Asterisks indicate differences 

between sites at p<0,05 level.# indicates differences between the same site at different season at 

p<0,05 level. 

 

3.3.2.4. AUTOMETALLOGRAPHY 

 

Autometallography revealed the presence of metals as black silver deposits (BSD) 

that are mainly accumulated in the haemocytes of the gills and the connective tissue 

surrounding the digestive gland and also in the basal layer of the digestive alveoli (Figure 9). 

Some metal accumulation was also observed in the apical part of the gills and within the 

digestive gland lysosomes. In order to quantify BSD extent values by means of image 

analysis, in general digestive cell lysosomes are selected for bivalves (Soto and Marigomez, 

1997), but in the present work BSD in the digestive cells were only found in some sites and 

not in all the sampling campaigns the previously scheduled measurement was not performed. 

However, in general, oysters from Sukarrieta presented high amounts and staining intensity 

of BSD when comparing to the other sites. On the other hand, no clear pattern was observed 

regarding season of the year. 
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Figure 9. Paraffin sections of the digestive gland stained with hematoxilyn-eosin (A-D) and 

autometallography (E-F). A: oyster collected in Mundaka in September 2011. B: oyster collected in 

Kanala in December2011. Note the difference in the height of the epithelium. C: Metacercariae 

surrounded by haemocytes in Axpe in March 2011. D: Granulocytoma in oyster from Axpe in 

September 2011. E: Gills of oyster from Sukarrieta collected in March 2011. Note the heavy staining 

in the haemocytes and abfrontal zone of the gill epithelium. F: Digestive gland of oyster collected in 

March 2011 in Laida. Note the almost exclusive staining in the basal layer of the digestive gland. 

Scale bars: A and B= 100 µm. C-F=200 µm. 

 

3.3.2.5. METALLOTHIONEIN INDUCTION 

 

Metallothionein levels detected in Kanala and in some cases in Axpe were in general 

higher than in the other sampling sites although also high levels were detected in Laida (June 

2010), Arteaga (June 2011) and Murueta (December 2011) (Figure 10). In general Mundaka 

is the station that presented lowest MT induction. Regarding season, similar levels were 

recorded in all seasons but values were lower in September. Finally, when comparing years 
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2010 and 2011 in March and June very few differences are observed between years; 

however, in September and December values observed in 2011 are significantly higher than 

values of 2010. 

 

 
 

Figure 10. Metallothionein levels in oysters collected in March (A), June (B), September (C) and 

December (D) 2010 and 2011. Asterisks indicate differences between sites at p<0,05 level.# indicates 

differences between the same site at different season at p<0,05 level. 

 

4. DISCUSSION 

 

No clear correlation (ccorr > 0.6 or ccorr < -0.6) was identified between metal 

concentration in sediments, metal concentration in oysters and biological parameters 

measured in oysters. The low toxicity estimated for the sediments, however, is in good 

agreement with the low biological affection observed in oysters. The metal concentrations 

recorded in oysters were in general low to moderate (Kimbrough et al., 2008) and therefore 

the alteration observed at histological levels were not very severe with only some 

inflammatory responses and few increase in the metallothionein levels. 

 

Interestingly, concerning metal concentrations opposite behaviours were observed in 

sediments and oysters, e. g., i) in general, the concentrations in oysters were higher in 2011 

than in 2010, and those of sediments higher in 2010 than in 2011; ii) when seasonal trends 

were observed, maximum values in summer and minimum values in winter were measured 

in sediments, while oysters presented minimum values in summer and maximum values in 

winter. Similar seasonal trends in oysters from the estuary of the Oka River have already 

been observed in a previous work (Franco et al., 2002). This opposite behaviour indicates, as 

expected, a close relation between pollutant concentrations in sediments, oysters and the 

compartment in contact with both of them, water. Physicochemical characteristics of water 

(pH, redox potential, salinity, dissolved organic matter,…), which clearly depend on 
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seasonal changes, highly affect the water-sediment interactions. Salinity, for example, 

influences directly the reactivity of trace elements in estuarine system, inducing desorption 

from sediments or from suspended matter to the water column (Fernández et al., 2008; 

Millward and Liu, 2003). As oysters feed by filtering water, when metal concentration is 

high in water (and consequently low in sediment), high metal concentration should be 

expected in oyster tissue. 

 

The presence of inflammatory lesions such as haemocytic infiltrations has been 

related with different environmental stresses such as the presence of heavy metals 

(Rasmussen, 1986) and organic pollutants (Bignell et al., 2011). Presently, haemocytic 

infiltrations have been recorded all along the year in oysters from Urdaibai with higher 

prevalence observed in 2010 compared to 2011. However, the recorded haemocytic 

infiltration prevalences are lower than the ones measured in previous works in the area 

(Díez, 1996) and may be indicative of a general improvement of the environmental status of 

Urdaibai. It is also noticeable that the high haemocytic infiltration prevalence detected in 

general in Mundaka could be related with the higher As, Cu, Pb, Sn and Zn concentrations 

measured in oysters from this site and the response could be indicative of the stress that 

oysters of Mundaka are suffering due to the presence of As, Cu, Pb, Sn and Zn. Previous 

works in mussels have indicated augmented haemocytic infiltrations after 1 day of exposure 

to Cu (Katsumiti et al., 2013). Moreover other authors have linked the presence of high 

levels of haemocytic infiltrations with the presence of lipofuscin-like pigments in molluscs 

(Carballal et al., 1997) that could be produced due to oxidative stress produced by the higher 

concentrations of Cu and As measured in oysters from Mundaka. In this sense, the relatively 

high correlation coefficient (ccorr = 0.40) observed in other inflammatory lesion such as 

granulocytomes with the Cr concentration measured in oysters could be in relation with 

higher oxidative stress condition in oysters. The presence of granulocytomes has been 

reported in bivalves exposed to pollutants including heavy metals (Svardh and Johannesson, 

2002). Presently, granulocytome prevalences are low except in March in most sites in 2011 

and in Murueta in December 2010. No clear seasonal pattern has been described for 

granulocytomes (Bignell et al., 2008; Garmendia et al., 2011), however, is some cases these 

types of inflammatory responses have been linked with the presence of digenean 

metacercariae that also has been reported in March 2011. In any case,the levels of 

granulocytome prevalence detected in the Urdaibai estuary in oysters is similar to those 

detected in Mundaka in mussels from 2003 to 2006 (Garmendia et al., 2011) and could be 

considered as background levels of these inflammatory lesions in the area. The presence of 

pathogens has been very scarce in all the studied oysters and in general similar to that 

detected in oysters (Díez, 1996) and mussels (Garmendia et al., 2011) from the estuary of the 

Oka River in previous works. 

 

Among the histopathological changes observed in molluscs the thinning or the 

presence of atrophic digestive epithelium has been linked with general stress situations 

including exposure to pollutants such as heavy metals and PAHs, or starvation (Couch, 1984; 

Garmendia et al., 2011; Rasmussen et al., 1983). Values of the MLR/MET ratio were in 

general higher in 2011 than in 2010 indicating some type of stress in oysters from 2011. This 

is in good agreement with chemical data, metal concentrations in oysters were also higher in 

2011 than in 2010. It is noteworthy the close relationship between the MLR/MET index and 

the As concentration measured in oysters. Arsenic has been described as toxic metal that 

induces cell death by enhanced apoptosis or by increased levels of reactive oxygen species 
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(Boelsterli, 2007). Therefore a general stress response like the loss of digestive epithelial 

cells and the concomitant increase of the MLR/MET ratio could not be discarded since these 

type of responses have also been observed in mussels collected in the area (Cuevas et al., 

2015). However, recorded values although higher than those recorded in previous works 

(Díez, 1996) are in general below or around 1,6 that has been considered as threshold levels 

in mussels from the area (Garmendia et al., 2011). Regarding epithelial thickness, some kind 

of seasonal trend was observed with lower values in March and September and higher in 

June and November (mainly in 2011). Note that similar seasonal trends were found in the 

concentration of several metals (Cd, Cu, Fe, Ni, Pb, V and Zn) in oysters. A similar trend has 

been observed in mussels from the Bay of Biscay after the Prestige oil spill and this 

seasonality has been linked with the recovery of the normal annual behaviour (Garmendia et 

al., 2011). 

 

Autometallographical detection of metals presented some unexpected results. In 

general, the organs and cells most closely related with the metal distribution in molluscan 

tissues are the gills, the haemocytes and the digestive gland (Marigomez et al., 2002). In the 

present work, metals were localized in the glycocalix of the gills, haemocytes and basal layer 

of the digestive epithelium. In mussels, heavy metals have been localized in the mentioned 

areas but also in the abfrontal zone of the gills and within the lysosomes of the digestive cells 

(Soto et al., 1996). The different localization of metals made impossible to apply 

measurements of black silver deposits within the digestive cells as previously scheduled. 

However, this differential metal distribution within the tissues in oysters has been reported 

both in oysters exposed to silver (Martoja et al., 1988) and field experiments (present work). 

Unfortunately, Ag was not considered in this work. 

 

Metallothioneins (MT) are low molecular weight and metal binding proteins that 

have been described in several marine organisms (Langston et al., 1998). Since MT have 

affinity to bind class metal ions such as Ag, Cd, Cu, Hg or Zn they have been widely used as 

metal exposure biomarkers (Roesijadi, 1992). Few differences have been observed in the 

present work among stations. Only in June some differences have been observed with higher 

values in Laida, Axpe and Kanala and lower in Murueta and Sukarrieta. It these two 

sampling sites, higher values were recorded in 2011 compared to 2010. The higher MT 

levels measured in Kanala could be related with the high Al, Co, Cr, and Fe concentrations 

measured in oysters. After this increase, MT levels seem to return to lower values in 

September. On the other hand, in general, higher MT values were recorded in 2011 than in 

2010 indicating that the overall health status of oysters is better in 2010 than in 2011. This is 

again in good agreement with chemical data. Seasonal variation of MT levels in bivalves due 

to environmental conditions has been observed in previous works (Ivankovic et al., 2005; 

Riba et al., 2003). Other authors, however, have not detected seasonal trends in MT levels 

working specifically with oysters (Trombini et al., 2010), which is in good agreement with 

the results obtained in this work. 
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CHAPTER 11 

DEVELOPMENT OF AN EXTRACTION METHOD FOR THE 

ANALYSIS OF SILVER NANOPARTICLES IN SEDIMENTS 

 

ABSTRACT 

Concern regarding the use and release of potentially toxic nanoparticles into the 

natural environment is increasing, at the same time as the analytical tools and methods are 

lacking which allow detection and identification of e.g. silver nanoparticles (AgNPs) in 

complex media, such as sediments. The aim of this research was therefore to develop  a 

method to be applied to real sediment samples where AgNPs were suspected. Firstly, four 

AgNPs synthesis methods were evaluated, with regards to AgNPs stability, using UV-vis, 

particles size analysis and TEM analysis. The AgNPs synthesised by chemical reduction 

using NaBH4 (0.002 M) and sodium dodecyl sulfate proved suitable. Secondly, ten potential 

extraction solutions were investigated, again investigating the effect of these solutions on 

AgNPs stability. The results proved NaOH (0.01 M) to be appropriate; having an average 

extraction efficiency of about 6% total Ag, and with minimal effect on AgNPs shape, size or 

stability. The method was applied on natural Hugli River sediment samples, using 

ultrafiltration to separate the dissolved from the non-dissolved fraction. Although large 

portions of Ag were retained by the ultrafilters, Single Particle Inductively Coupled Plasma 

Mass Spectrometry (spICP-MS) analysis showed that these were not present as NPs, but 

rather complexed with natural organic matter. However, the result is an important first step 

to developing a reliable method to determine AgNPs in environmental samples. 

Keywords: Silver nanoparticles; Sediments; Stability; Extraction. 
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1. INTRODUCTION 

Nanoparticles (NPs) are emerging contaminants and are defined as falling within a 

size range of 1-100 nm (Laborda et al., 2013). These materials have unique properties due to 

their high reactive surface area (compared to bulk material) and differ in behaviour and 

potential toxicity compared to dissolved ions of the same material (Luyts et al., 2013; 

Peretyazhko et al., 2014; Yu et al., 2013). Nanotechnology is attracting significant interest 

and investment from government, industry and academia  and global production of NPs is 

estimated to thousands of tons annually (Karn et al., 2011). Consequently, the likelihood of 

environmental exposure to engineered NPs is increasing (Nowack and Bucheli, 2007). 

Silver nanoparticles (AgNPs) are one of the most commonly produced NPs (Benn 

and Westerhoff, 2008). Due to their antimicrobial properties, AgNPs (Yu et al., 2013) are 

increasingly used in a variety of personal care products, sun screens, medical creams, textiles  

(especially sport wear), food storage containers as well as for water and waste water 

treatment (Fabrega et al., 2011; Liu et al., 2012; Nowack et al., 2009; Prathna et al., 2011). 

Consequently, AgNPs are directly released into the wider environment during product use 

and disposal and are also flushed into waste water, ultimately ending up in waste water 

treatment sludge or, if waste treatment is minimal or not effective, being released into rivers 

and finishing deposited on river sediments (Dobias and Bernier-Latmani, 2013; Kiser et al., 

2010; Limbach et al., 2008). 

There are concerns that the anti-microbial properties of AgNPs can negatively 

impact on human and ecosystem health (Wiesner et al., 2006). Currently, AgNPs toxicity, 

transport and fate in aquatic and terrestrial environments are poorly understood, which 

makes regulation of such materials extremely difficult (Aschberger et al., 2011; Baun et al., 

2009). 

Transport, fate, bioavailability and toxicity of AgNPs, is affected by a variety of 

factors, including NP size, shape, aggregation state, surface charge, surface area and 

concentration (Mitrano et al., 2012a; Mitrano et al., 2012b). The antimicrobial efficiency and 

consequent toxicity of AgNPs increase with decreasing nanoparticle and aggregate size 

(Morones et al., 2005; Song et al., 2009). The AgNPs synthesis method used also affects NP 

features, especially in regards to their stability (Tolaymat et al., 2010; Wojtysiak and 

Kudelski, 2012). Synthesis methods include chemical reduction (Solomon et al., 2007), 

radiolytic process (Shin et al., 2004), electrochemical method (Pal et al., 2007) and thermal 

decomposition (Maillard et al., 2002). However, the most widely used method is chemical 

reduction in which a metal precursor (ionic salt, i.e. AgNO3) in an appropriate medium is 

reduced and stabilized by a surfactant which protects the particles from aggregation 

(Zambare et al., 2014). In formation of AgNPs by chemical reduction, the particle size, 

aggregation state and shape of the AgNPs are controlled by the initial AgNO3 concentrations, 

reducing agent/AgNO3 molar ratios and surfactant concentrations (Pillai and Kamat, 2004). 

The surrounding aquatic and terrestrial environment also affects the stability, transport and 

fate of AgNPs (Mackay Christopher et al., 2006; Wiesner et al., 2009), which are influenced 

by e.g. photodegradation, chemical oxidation, sulfidation (Lowry et al., 2012), dissolved 

oxygen, pH, ionic strength, electrolyte composition and the presence of natural organic 

matter (Peretyazhko et al., 2014; Yu et al., 2013). Whereas dissolved organic matter (DOM) 

generally stabilises NPs against aggregation and sedimentation (Hyung et al., 2007; Quik et 

al., 2010; von der Kammer et al., 2010), NPs in water with high ionic strength have showed 
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faster sedimentation due to increased aggregation (Limbach et al., 2008). The presence of 

natural colloids also provide a surface area for potential deposition of NPs (Keller et al., 

2010), while waste water biomass has been shown to greatly increase settling of AgNPs in 

sediments (Kiser et al., 2010). 

A major technical challenge in environmental NP research is the low concentrations 

at which NPs are likely to be present in the environment. Moreover, NP size and number 

concentration information are required, parameters that are extremely challenging to 

determine in natural matrices. Most available methods, e.g. Scanning Electron Microscope 

(SEM), Transmission Electron Microscopy (TEM), Brunauer–Emmett–Teller (BET), 

Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM), are usually used to 

characterise synthesised NP material in relatively high concentrations and/or as a liquid. 

However, the relatively high detection limits of these techniques is a disadvantages regarding 

environmentally relevant analysis of NP concentration and size. Single-Particle Inductively 

Coupled Plasma Mass Spectrometry (spICP-MS) is able to determine both size and number 

concentration of NPs (Cornelis and Hasselloev, 2014; Laborda et al., 2014; Pace et al., 

2011), at least down to Ag particle sizes of about 18 nm, with the assumption of spherical 

particles (Laborda et al., 2011). During spICP-MS, the dwell times are short enough to detect 

the short but strong ion bursts caused by ion clouds produced from NPs ionized in the 

plasma, provided that these bursts are somewhat more intense than the more continuous 

signal coming from dissolved ions from the same element (Laborda et al., 2013). 

Alternatively, the dissolved element mass concentration can also be distinguished from the 

fraction occurring as NPs or complexes using the ultrafiltration method, which is a single 

pass procedure to size select and to concentrate a target species using a series of membrane 

modules with pores ranging from 1 nm to 100 µm (Trefry et al., 2010). Both these methods 

will be used in the research presented in this paper. 

The tendency of NPs to sediment presents additional analytical challenges, since the 

methods used for detecting elements in solid matrices (e.g. X-ray Diffraction or X-ray 

Fluorescence) do not have low enough spatial resolution to identify individual NPs and are 

not sensitive enough to detect the low concentrations that are likely to occur in environment 

samples. Typical methods used to extract trace metals from soils or sediments involve semi-

total digestion using nitric or hydrochloric acid or total digestion with hydrofluoric acid, 

which would entirely dissolve any NPs present and make them indistinguishable from 

dissolved metals of the same element (Prathna et al., 2011; Yu et al., 2013). Therefore this 

study also drew from standard methods for “sequential extractions” of soils in order to 

quantify elements present in exchangeable fraction, organic phase, metals associated with 

iron and manganese oxides and finally in the mineral fraction. These use extraction media of 

increasing strength i.e. acetic acid, hydroxylammonium chloride, hydrogen peroxide with 

ammonium acetate and finally aqua regia or concentrated nitric acid (Rauret et al., 1999). 

However, these methods are only concerned with quantifying metal concentrations found in 

different phases, not with quantifying or identifying of particles associated with those 

phases. A standard method to extract NPs without dissolving or transforming the particles, 

does not currently exist, making both qualitative and quantitative analysis of NPs difficult in 

sediments (Lowry et al., 2012). The development of reliable extraction methods of AgNPs 

from complex media, such as sediment, is crucial in order to quantify and understand the 

transport and fate of AgNPs and to determine potential effects of AgNPs on the environment 

(Baalousha et al., 2013). 
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Therefore the aim of this study was to develop a reliable extraction method for 

AgNPs from sediment, followed by quantification using two complementary methods. The 

method was finally tested on natural Hugli River sediment samples and the extracts were 

analysed using spICP-MS for AgNPs. 

2. MATERIALS AND METHODS 

The following steps were performed: a) four AgNPs synthesis methods were 

evaluated to determine which one produced the most stable AgNPs b) the AgNPs produced 

were used to investigate the effect of ten different extraction solutions on AgNPs shape and 

size, c) the chosen extraction solution was applied on a real sediment sample to determine 

the extraction efficiency of the solution compared to total Ag concentration present. Then the 

extract was finally filtered and analysed for AgNPs by spICP-MS. 

2.1. SYNTHESIS METHODS 

Four synthesis methods of AgNPs were tested, all using silver nitrate (AgNO3) 

0.001 M (Fischer) as a precursor. An overview of the synthesis methods are given in Table 1. 

In Method 1, 30 mL of 0.002 M NaBH4 (sodium borohydride) (Acros Organics) was cooled 

to 0°C in an ice bath under continuous stirring with a magnetic stirrer. 10 mL of AgNO3 was 

added drop-wise, under continuous stirring. The solution was then removed from the stirrer 

to avoid aggregation of the AgNPs. In Method 2, NaBH4 and sodium dodecyl sulfate (SDS, 

Acros Organics) (SDS: AgNO3 weight ratio = 10) were mixed and stirred for 30 minutes. 

Again, 10 mL of AgNO3 was added drop-wise while stirring continuously, this time without 

cooling. Once all the AgNO3 had been added, the solution was stirred for a further hour. In 

Method 3, 50 mL NaBH4 and SDS (SDS: AgNO3 ratio = 10, w/w) were mixed and stirred for 

30 minutes. 50 mL AgNO3 was added drop-wise under continuous stirring. Once all AgNO3 

was added, the solution was stirred for a further hour. Finally, in Method 4, 50 mL AgNO3 

was heated to boiling, under continuous stirring. Trisodium citrate (Na3C6H5O7, 5 mL, 1%, 

Sigma Aldrich) was then added drop-wise. Once the solution turned yellow, it was removed 

and left to cool at room temperature. 

Table 1. Overview of synthesis methods used, all using AgNO3 as a precursor. 

 

Reducing agent 
Concentration, 

volume 
Stabilising agent Concentration 

1. NaBH4 

 
0.002 M, 30 mL - - 

2. NaBH4 

 
0.002 M, 30 mL SDS 0.0019 M 

3. NaBH4 

 
0.004 M, 50 mL SDS 0.017 M 

4. Trisodium citrate 1%, 5 mL - - 

 

The stability of synthesised AgNPs was recorded using UV-Vis and particle size 

analysis (as described in section b) for 10 days after the synthesis: i) on the day of synthesis 

after 30 minutes, ii) after 2 days and iii) after 10 days. The NaBH4 and Na3C6H5O7 were used 

as blank. 
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2.2. STABILITY TEST OF SYNTHESISED AgNPs OVER TIME 

The stability with respect to time of the synthesised AgNPs was investigated using 

UV-Vis (Varian Cary 100 UV-Visible spectrophotometer), placing the AgNPs solution in a 

10 mm quartz cuvette of Perkin Elmer. The Surface Plasmon Resonance (SPR) peak was 

monitored by scanning the UV-Vis spectra of the synthesised solutions from 200 to 600 nm. 

A Particle Size Analyser (Brookhaven 90 Plus/BI-MAS Multi Angle Particle Sizing) was 

used to measure the hydrodynamic diameter and polydispersity. 

2.3. STABILITY TEST OF THE SYNTHESISED AgNPs IN DIFFERENT 

MEDIA 

Ten different extraction solutions were selected with the aim to investigate the 

effect on AgNPs stability (i.e. size and shape). Ten mL of AgNPs solution (synthesised using 

Method 2) was diluted in 100 mL of extraction solution. 

The following extraction solutions were selected for the experiments: de-ionised 

water (MilliQ, Millipore), dilute nitric acid (HNO3) at pH 2 (Fisher Scientific), dilute 

hydrochloric acid  (HCl) at pH 2 (Fisher Scientific), dilute sodium hydroxide (NaOH) at pH 

12 (Fisher Scientific), sodium chloride (NaCl) solution 3.5% and 1.75% by weight (Fisher 

Scientific), magnesium chloride (MgCl2) 1 M (Acros Organics), acetic acid (CH3COOH) 

0.11 M (Acros Organics), ammonium nitrate (NH4(NO3)) 1 M (Fisher Scientific) and finally 

ammonium hydroxide (NH4(OH)) 25% in MilliQ water (Fisher Scientific). 

AgNPs stability was investigated using UV-vis, particle size analysis and 

Transmission Electron Microscopy TEM (Philips CM120) over a period of 10 days: i) on the 

day of synthesis and addition of extraction solution, ii) after 2 days and iii) after 10 days. 

To confirm the stability of AgNPs in the selected extraction media, a commercially 

available AgNPs standard solution (40 nm, BBI Solutions) was added to the extraction 

solution and analysed using a Dynamic Light Scattering DLS (Malvern Zetasizer). 

2.4. STUDY AREA AND SEDIMENT SAMPLING 

Sediment samples for the study were provided by Dr. Sarkar, the University of 

Calcutta, India, and were collected along the banks of the Hugli River, a major tributary of 

the Ganges River. The river is subject to a variety of anthropogenic contamination including 

municipal waste, untreated industrial effluents and boating activities as was described 

extensively by Sarkar et al., in (Sarkar et al., 2002; Sarkar et al., 2012) and concerns have 

been raised that e.g. the textile industries located along the river may be a source of AgNPs, 

with the potential environmental impact on the rich biodiversity in the Sundarban delta. 

There is indeed a lack of research on NPs in the Indian environment (Kumar et al., 2012), 

where this study provides a first attempt to detect and quantify AgNPs in estuarine sediment 

from India. 

Eight surface sediment samples (0–2 cm), S1-S8 were collected from the river bank 

at low tide in July 2014 (Figure 1). Samples were transported to the laboratory in sterile 

plastic bags at 4ºC and oven dried at 48
 o

C for at least 48 hours. Samples were pulverized 

using an agate mortar and pestle, sieved through 63 µm metallic mesh and kept in the 

refrigerator at 4ºC in dark until analyses. 
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Figure 1. The Sundarban wetland in the Bengal region (India) and the sampling points. S1: Tribeni, S2: Barrackpore, S3: 

Babughat, S4: Budge Budge, S5: Nurpur, S6: Diamond Harbour, S7: Lot 8 and S8: Gangasagar. Courtesy of Dr. Sarkar, 

Calcutta University. 

2.5. Ag EXTRACTION EFFICIENCY OF NaOH AND DISSOLVED OR 

PARTICULATE Ag DETERMINATION IN INDIAN SEDIMENTS. 

The aims of these experiments were: i) to determine the Ag extraction efficiency of 

NaOH from sediment and ii) to determine presence and concentration of AgNPs 

concentration in the sediment samples from the Hugli River. 

Firstly, the total Ag concentration in the sediment samples was determined. 

Triplicate samples (0.25 g) of sediment samples as well as a peat reference material 

(NIMT/UOE/FM/001) (Yafa et al., 2004) were oven dried (105°C), ashed (450°C) and 

digested using a microwave (CEM Mars 5) with concentrated HNO3 (Aristar, VWR) 

(adapted US-EPA method 3051) (Yafa and Farmer, 2006). Following digestion the samples 

were gently evaporated to near-dryness (~ 1 cm
3
) on a hot plate, added to a 25 mL 

volumetric flask (with three beaker washes) and diluted with nitric acid (2% v/v, VWR, 

Aristar). The diluted extracts were filtered through 11 μm filters (AshlessWhatman 45) into a 

polypropylene centrifuge tube (Fisher) and stored at 4°C prior to analysis with Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS, Agilent 7500ce). The ICP-MS instrument 

was prepared by flushing it, using an alkaline wash solution (10 mg/L EDTA (as acid), 0.8 

mg/L Triton X-100, 60 mg/L HN4OH and 80 mg/L H2O2) to reduce Ag background levels 

(monitored using 
107

Ag), which are likely to be high, due to the “stickiness” of Ag within the 
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instrument. Moreover the concentrations of Ag in the sediments were very low, thereby 

requiring low Ag background. An added 30s wash with the alkaline solution was also 

inserted prior to the nitric acid rinse (2%, 30 s), between samples. Blank samples (2 % dilute 

nitric acid) were inserted every third sample, and a certified reference water (SRM 1640a or 

SRM 1643e, NIST) was analysed for a quality control. 

Following the stability tests (section 2.3.), NaOH was selected for further 

experiments. To determine the NaOH extraction efficiency, 20 mL of NaOH 0.01 M was 

added to 2 g of sediment and this suspension was stirred for 24 h. The NaOH extracts were 

then filtered through 0.45 µm cellulose filters (treated with CuNO3 0.1 M to avoid Ag losses) 

(Cornelis et al., 2010). For the total Ag after NaOH extraction, 0.5 mL of filtered extract was 

digested using aqua regia (HCl/HNO3, 3:1 volume ratio) in a microwave oven (Milestone 

Ethos 1600) and Ag after NaOH extraction was analysed by ICP-MS (Finnigan 

ELEMENT2). 

Finally, the <1kDa fraction of the NaOH extracted samples was determined as a 

proxy for the dissolved (non-particulate) Ag concentration after ultrafiltration. The 

ultrafiltration filters (Vivaspin 20) were similarly treated with CuNO3 0.1 M dissolution. 

Then, 2 mL of the NaOH extract were ultra-filtrated and the filtered fraction was analysed in 

the ICPMS (Finnigan
TM

 ELEMENT2). 

2.6. spICPMS ANALYSIS AFTER NaOH EXTRACTION 

All NaOH extracts and filtered samples, standards and blanks were prepared in 0.1 

% thiourea to minimize carry-over and minimize wash-out times (Chen et al., 2000). Five 

blanks (0.1% Thiourea and 0.01 M NaOH), six Ag and Au standards (1, 5, 10, 30, 100 and 

1000 ng·L
-1

) for the Ag and Au calibration, Au 60 nm NIST reference material (10
4
, 10

5
 and 

10
6
 times diluted) for the nebulisation efficiency (Pace Heather et al., 2011) and finally 

NaOH extracted Indian sediments samples (100 times diluted) were measured in the ICP-MS 

(Finnigan
TM

 ELEMENT2) with 5 ms dwell-time. The signal deconvolution method was used 

to distinguish AgNPs from dissolved Ag
+
 present in the sediment extracts (Cornelis and 

Hasselloev, 2014). 

3. RESULTS AND DISSCUSION 

3.1. EVALUATION OF AgNPs SYNTHESIS METHOD 

As it has been mentioned, the stability of AgNPs produced using four different 

synthesis methods (Table 1) was investigated using UV-Vis and particle size analysis. The 

results from the UV-Vis are presented in Figure 2. The width of the UV-Vis peak around 400 

nm is related to the particle size distribution, and the peak wavelength can be used to 

determine particle size (Bonsak, 2010). The SPR peak of the synthesised AgNPs is around 

400 nm (Figure 2), which corresponds to AgNPs of around 12 nm (Solomon et al., 2007). 

The SPR peak of the AgNPs synthesised using Method 2 had a peak width at half the 

absorption maximum (PWHM) of about 60 nm. The AgNPs synthesised using Method 1, 3 

and 4 had higher PWHM (Figure 2), suggesting a wider particle size distribution than those 

synthesised using Method 2 (Bonsak, 2010). 
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Figure 2. UV-Vis spectra of the AgNPs synthesised using methods: 1) SDS, NaBH4 0.002M, 2) SDS, NaBH4 0.002M SDS, 3) 

SDS, NaBH4 0.002M and 4) Na3C6H5O7. 

The hydrodynamic diameters of the AgNPs synthesised using Methods 1-4, were 

26.3, 24.0, 24.7 and 30.9 nm, respectively, showing that all methods used produced AgNPs 

of similar size on the day of synthesis. However, the polydispersity indices were 0.309, 

0.204, 0.311 and 0.357 respectively, showing that the AgNPs synthesised with Method 2 

were more monodisperse than the AgNPs produced using Methods 1, 3 and 4 as also 

suggested by the SPR peak values of the UV-Vis (Peretyazhko et al., 2014; Prathna et al., 

2011). 

The Z-average hydrodynamic diameter and the UV-VIS spectrum of AgNPs 

synthesised using Method 2 were measured daily for 10 days to confirm their stability over 

time (Table 2 and Table 3). The results, showing only a small increase in size as well as 

similar wavelength, indicated that the AgNPs were kinetically stable for at least 10 days. The 

stability of the AgNPs was confirmed by visual analysis using TEM (Figure 6.a), which 

suggest that the AgNPs synthesised were of about 10-20 nm diameter in core size. 

Table 2. UV-Vis measurements for AgNPs synthesised using Method 2. 

DAY 1 DAY 5 DAY 10 

W (nm) I W (nm) I W (nm) I 

399 2.926 398 2.904 395 2.833 
        *W: SPR wavelength; I: SPR intensity. 

Table 3. Particles Size Analysis results using Method 2. 

1 DAY 5 DAY 10 DAY 

D (nm) P D (nm) P D (nm) P 

24.0 0.204 26.6 0.278 27.0 0.285 
       *D: hydrodynamic diameter; P: polidispersity 

 

Trisodium citrate 

NaBH4 0.004 M + SDS 

NaBH4 0.002 M + SDS 

NaBH4 0.002 M 
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3.2. EFFECT OF THE SOLUTION ON AgNPs SIZE AND STABILITY 

The stability of AgNPs produced in the ten different potential extraction solutions 

was investigated using UV-Vis, particle size analysis and TEM in order to determine a 

suitable extraction solution for AgNPs from sediments.  

The first step was to determine the effect of the extraction solution on AgNPs 

stability, measured primarily through hydrodynamic size and solubility (UV-Vis and particle 

size analysis). The UV-Vis results are displayed in Figure 3. 

Untreated AgNPs show a SPR at 391 nm wavelength over the 10 days (Figure 3). 

The SPR intensities of the synthesised AgNP, were 3.241 on the first day, 3.254 on the 

second day and 3.257 on the tenth day (Figure 4), showing the kinetic stability of synthesised 

AgNPs over a 10-day period. 

When mixed with HNO3, NaCl 3.5% or 1.75% or in NH4(OH) (Figure 3), the 

AgNPs did not give rise to a SPR peak, which suggests that the AgNPs were dissolved or 

aggregated, resulting in a wide particle size distribution. 

When mixed with  MgCl2 medium, the AgNPs aggregated showing a SPR at 407 

nm relative to the 391 nm SPR wavelength of the synthesised (non-aggregated) AgNPs 

(Baalousha et al., 2013). 

The AgNPs were not kinetically stable beyond the first day of mixing with HCl or 

NH4 (NO3) media, as demonstrated by the increase of wavelengths from 391 to 399 and 402 

nm, respectively, on the second day. Furthermore the SPR intensities decreased to 0.019 and 

0.068. The AgNPs remaining in dissolution increased in size because of Ostwald Ripening, 

increasing the particle size distribution. In fact, no SPR was recorded for the AgNPs 

solutions in HCl and NH4(NO3), on the tenth day (Peretyazhko et al., 2014). 

The SPR values indicate that the AgNPs in deionized water and in NaOH remain 

kinetically stable from the first day to the second day (Figure 3). AgNPs in acetic acid 

showed an increase in SPR wavelength from 387 nm on day 1 to 389 nm on day 2 (Figure 

3). The intensity of the SPR in the case of acetic acid for the first day was 0.117, compared 

to 0.287 and 0.288 in the cases of deionized water and NaOH respectively (Figure 4), 

showing that the synthesised AgNPs were kinetically more stable in deionized water and 

NaOH media than in acetic acid. 

Since only the AgNPs that were left untreated or the ones that were treated with 

deionised water, acetic acid or NaOH remained reasonably stable, these were monitored for 

10 days using UV-vis, particle size analysis and by visual inspection using TEM. After 10 

days of mixing the AgNPs remained kinetically stable when mixed with deionized water and 

NaOH. For AgNPs in deionised water the SPR increased from 394 nm on the day of 

synthesis to 397 nm on the tenth day, while for the AgNPs in NaOH, the SPR wavelength 

remained at 395 nm over the 10 day period (Figure 3). However, for AgNPs in deionized 

water the intensity of the SPR decreased from 0.287 to 0.181, indicating dissolution of the 

AgNPs (Figure 4). For AgNPs in NaOH, the SPR intensity varied slightly from 0.288 to 

0.284, demonstrating that the AgNPs were kinetically stable in NaOH. When mixing AgNPs 

with acetic acid, the AgNPs did not give rise to a SPR peak after 10 days, indicating that 

most of the AgNPs were dissolved. 
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Figure 3. UV-Vis SPR wavelength AgNPs in different media, over time (1, 2 and 10 days). 

 

Figure 4. UV-Vis SPR intensities for the stability test of the AgNPs in different mediums and over time (1, 2 and 10 days). 

The results from the particles size analysis for untreated AgNPs and AgNPs treated 

with NaOH, acetic acid and deionised water are displayed in Figure 5. The results showed 

that the Z-average hydrodynamic diameter (d) of the untreated AgNPs was 35.1 nm the first 

day, 36.6 nm on the second day and 36.9 nm the tenth day (Figure 5). AgNPs in acetic acid, 

however, showed a large increase in d from the first day to the second, namely from 33.3 to 

40 nm (Figure 5). While after 10 days the d value of the AgNPs in acetic acid increased to 



257 
 

103 nm. For AgNPs in deionized water, the d increased from 41.7 nm of the first day to 53.6 

nm in the tenth day and in the case of AgNPs in NaOH, d decreased from 47.8 to 44.8 nm, 

remaining kinetically more stable in NaOH media than in deionized water. These results 

were confirmed by the TEM images, which after 10 days showed that the AgNPs in NaOH 

retained their shape and size (Figure 6.b), while the AgNPs in acetic acid lost the spherical 

shape already on the first day after mixing, (Figure 6.c). After 10 days in acetic acid, the 

AgNPs had aggregated. The TEM images of AgNPs in deionised water confirmed that 

AgNPs dissolved within 10 days in deionized water as was indicated by the UV-Vis results. 

 

Figure 5. Particles size analysis of the AgNPs in different mediums over 10 days. 

To confirm the stability of AgNPs in NaOH solutions, standard AgNPs from BBI 

solutions (40 nm) were added to NaOH and measured using DLS. According to the DLS 

results, the AgNPs remain kinetically stable in size in deionized water and in NaOH. The 

hydrodynamic diameter of the 40 nm AgNPs in the BBI standard were determined to 50.64 

nm. After 2 days of mixing of the 40 nm AgNPs BBI standard in deionized water and in 

NaOH, the hydrodynamic diameters were 55.35 nm and 52.91 nm respectively, showing that 

the AgNPs size remained stable in both solutions. 
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Figure 6. TEM images of the AgNPs 1 day and 10 days after mixing the AgNPs in the following mediums: a) untreated, b) 

NaOH 001 M and c) acetic acid 0.11M. 

3.3. NaOH Ag EXTRACTION EFFICIENCY FOR REAL SEDIMENT 

SAMPLES 

Sediment samples were processed and analysed for total Ag (determined by acid 

digestion) as well as Ag extracted using NaOH. The results are displayed in Table 4, together 

with the calculated Ag extraction efficiency using NaOH. The average NaOH Ag extraction 

efficiency was 6.78 ± 3.85 %. S4 seems to be the sampling point with the highest total Ag 

concentration and total Ag after NaOH extraction, although the extraction efficiency for this 

sample was the lowest. NaOH showed lower extraction efficiencies in upstream sampling 

sites than in downstream ones. 

As seen in Table 4, upstream sampling sites had somewhat higher total Ag 

concentrations than downstream sampling sites. This could be due to close proximity to 

sources of Ag, but also to the lower water salinities of the upstream sampling sites than 

downstream ones, since downstream sampling sites are closer to coastal waters. Salinity 

could affect in the sediments metals desorption processes, dissolving metals from the 

sediments to the water mediums and contributing to decrease the metals concentrations in the 

sediments (He et al., 2006). Cations, e.g. Na
+
 and K

+
 present in saline water, can exchange 

metallic elements placed in sediments metal adsorption sites and Cl
-
 anions can create metals 
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dissolved complexes (Comans and Van Dijk, 1988; Paalman et al., 1994), contributing to 

decrease the metal concentration found in the sediments. 

Table 4. Sampling site water salinity (g·L-1), sediments organic carbon (%), total Ag (µg·kg-1), Ag in NaOH extraction (µg·kg-

1) and Ag extraction efficiency (%) of the NaOH (n=3). 

Samples 
Salinity 
(g·L

-1
) 

Organic 
carbon 

(%) 
TOTAL Ag (µg·kg

-1
) Ag (NaOH 0.01M) (µg·kg

-1
) Extraction efficiency (%) 

S1 0.146 0.68 140 ± 10 8.58 ± 0.56 6.13 

S2 0.211 0.71 100 ± 20 3.99 ± 0.38 3.99 

S3 1.824 0.62 60 ± 10 2.11 ± 0.35 3.52 

S4 4.011 0.91 870 ± 140 8.54 ± 2.15 0.98 

S5 3.957 0.70 70 ± 4 7.90 ± 1.02 11.29 

S6 7.827 0.56 50 ± 10 5.91 ± 1.23 11.82 

S7 12.24 0.47 66 ± 29 5.97 ± 0.85 9.05 

S8 12.88 0.52 41 ± 16 3.07 ± 0.20 7.49 

Average - - - - 6.78 ± 3.85 
 

To separate the dissolved Ag fraction from particulate or complexed material, the 

NaOH extracts were filtered with a 1 kDa ultra-filter, and the resulting Ag concentration in 

filtrate and retentate for each sediment sample are displayed in Figure 7. The retentate Ag in 

the >1kDa ultrafiltration was likely to be present as NPs or as complexed Ag. The retentates 

of S4 and S1 sediment extracts contained the highest Ag concentrations compared to the 

other samples (Figure 7). The difference between total Ag extracted by NaOH and dissolved 

Ag in S4 was the highest, (7.36 µg·L
-1

), followed by S1 (6.54 µg·L
-1

). This shows that S4 

and S1 were the sampling points with the highest concentrations of easily available 

particulate or complexed Ag. In order to determine whether the Ag was present as NPs or 

rather as complexed Ag, spICP-MS was performed of the solutions, as described in the 

following section. 

 

Figure 7. Dissolved (filtrate) and particulate or complexed (retentate) Ag results after NaOH extraction and ultrafiltration 

(1kDa) (n=3). 
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3.4. spICPMS ANALYSIS OF NaOH  EXTRACTION SOLUTION 

The processed particle size distribution results of the spICP-MS are displayed in 

Table 5. A correlation analysis between the total AgNPs mass concentration of the spICP-

MS and total mass of retentate Ag after NaOH extraction and filtration (retentate Figure 7) 

was carried out in order to determine whether there is a correlation between both variables, 

which would indicate the presence of NPs. However, no significant correlation (95% 

confidence level) was found. Instead, a much better correlation with a Pearson coefficient of 

0.89 (95% confidence level) between the dissolved Ag after NaOH extraction (Figure 7) and 

the spICP-MS total AgNPs mass concentration (Table 5) was found, suggesting that the 

spICP-MS was only picking up false positives of the dissolved Ag and that the retentate Ag 

was not in the form of AgNPs. However, the results from the ultrafiltration suggest that the 

Ag was present in a form that allows retention by the ultra-filters, e.g. as elemental Ag bound 

in complexes. 

Table 5. Ag particle size distribution in sediments measured by spICP-MS. 

 Samples AgNPs number concentration Nº·L
-1

 AgNPs mass concentration ng·L
-1

 

S1 793 0.05 

S2 1386 0.05 

S3 1351 0.04 

S4 1457 0.02 

S5 2682 0.21 

S6 1734 0.13 

S7 848 0.06 

S8 980 0.03 

 

It is known that Ag easily forms complexes with dissolved organic matter and thiol 

groups (Hedberg et al., 2015; Ho et al., 2010; Liu and Hurt, 2010). In fact, the NaOH used in 

this study for the Ag extraction, is also used in e.g. soil studies to extract organic matter from 

inorganic fractions (Chang et al., 2014; Yang et al., 2013). In general, ultrafiltration can 

retain at least 20-30% of dissolved organic matter (Guo and Santschi, 2007; Quik, 2013), 

which, if the Ag is complexed with the organic matter, could explain the Ag retention by the 

ultra-filters. Furthermore, the correlation analysis between the organic carbon contents of the 

sediment samples (Table 4) and particulate or complexed Ag fraction of the ultrafiltration 

experiment (Figure 7) shows a 0.66 Pearson coefficient, indicating that the Ag retained in the 

ultra-filters is not likely to be AgNPs as spICPMS analysis results indicate, but rather Ag 

complexed with dissolved organic matter. That is why downstream sampling sites which 

were the sampling sites with lower organic carbon contents, showed higher dissolved Ag 

fraction than upstream sampling sites (Figure 7). 

4. CONCLUSIONS 

The most kinetically stable AgNPs were synthesised using NaBH4 (0.002 M) and 

sodium dodecyl sulfate as stabilizer. The experiments suggested NaOH as a suitable 

extraction solution for AgNPs, since AgNPs shape and size remained intact even after a 

period of 10 days in NaOH. Comparing to total Ag present in sediment, NaOH extracted an 

average of 6.78 ± 3.85 % and up to 11 % of the Ag present. Out of the sediment samples 
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analysed, S1 (Tribeni) and S4 (Budge Budge) contained the highest total Ag concentration. 

However, even though spICP-MS is currently the most sensitive method available to analyse 

NPs in aqueous samples, it was not able to detect any AgNPs in extracts from Hugli River 

sediments, despite the likely presence in these. Experiments using ultrafiltration and spICP-

MS showed that the Ag was not present as NP but rather complexed with dissolved organic 

matter. 

The NP extraction methods will be evaluated further using natural sediment 

samples, while methods using spICP-MS will be developed further to analyse NP at 

concentrations likely to be present in the natural environment. 

The research and method development addresses a crucial gap in water and 

environmental analysis of NPs, where fundamental methods and data for the understanding 

of the consequences of nanoparticle pollutions is urgently needed in order to understand the 

transport, fate and toxicology of NPs in the natural water environment. This information is 

needed to inform policy makers for setting of guidelines and regulations regarding NP 

pollution. 
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CHAPTER 12 

GENERAL CONCLUSIONS 

 

In the last decades, environmental pollution has been considered and still is being 

considered one of the greatest problems that the world and human beings are facing. This 

problem is constantly increasing due to the life style that human beings are carrying out and 

several environmental compartments are being directly or indirectly affected by pollution. 

Two of the main compartments affected are water and atmosphere. Our research group has 

been investigating the occurrence of toxic chemicals, and particularly, metal and metalloids 

in Basque estuaries for a long time using sediments samples. About five years ago we started 

also working in estuaries of other world regions and other environments like forests and high 

altitude lakes. Therefore, and taking into account the importance that any kind of 

environmental issue has nowadays in our Society, and the threatens of the uncontrolled 

increase of pollution, the main objectives of this Thesis were to study the geographical 

distribution of metal and metalloid contamination in selected estuarine and high altitude 

mountain environments and its evolution in time, to make hypothesis about their possible 

source, to compare the efficiency of different indicators to monitor metal and metalloid 

contamination in these environments, and to study the toxicological implications that the 

presence of metals and metalloids in the selected environments has on the organisms living 

in those environments. 

Concerning high altitude mountain ranges, it can be concluded that even in remote 

areas as the Pyrenees, significant effects of the human activities can be observed and 

demonstrated using lake sediments and bioindicators as sentinels of pollution. Pollutants can 

reach these areas transported by the wind, which can airborne metallic contamination to long 

distances far from the contamination source. The highly industrialized areas of the Basque 

Coast and Iruñea, the mining activities carried out long time ago in the area, the combustion 

of fossil fuel over recent years and finally the road traffic in and in the surroundings of the 

Pyrenees can be mentioned among the possible contamination sources in the Irati Forest. 

Furthermore, lake sediments core analysis demonstrated that problems concerning metallic 

pollution started long time ago. On the other hand, beech leaves, lichens and mosses have 

shown their ability to be used in a complementary way as indicators of atmospheric metal 

contamination in monitoring exercises, but it should be taken into account that they provide 

information not representative of the same period of time due to their different longevities. 

Regarding estuarine compartments, the analysis of water and sediments from the 

Tubarão River (Santa Catarina, Brazil), which is located in an area seriously affected by coal 

mining activities, urban discharges, thermoelectric plant, farming and livestock activities, 

showed that after typical tropical strong rainfall events, the mobility and distribution of metal 

and metalloids in the water column and sediments can be modified due to the changes in the 

hydrodynamic conditions of the estuary. Thus, remobilisation of sediments and the 

consequent transport downstream of those sediments was demonstrated. 

For the Cávado estuary (Esposende, Portugal), which is located in a relative clean 

area with just agricultural and recreational activities, the highest concentrations of toxic 

metals were identified in the upstream sampling sites of the estuary but, in all the cases, with 
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concentrations similar to those of the background values. Two sampling sites constitute the 

exception for Ni and Cr. However, the concentrations measured in those sediments did not 

represent a toxicological threat for the living organisms of the estuary. Furthermore, 

comparison with previous works carried out in surface sediments of the same area 

demonstrated that metallic contamination in the Cávado estuary is decreasing with time. 

When it comes to the estuary of the Nerbioi-Ibaizabal River, similar metallic 

geographical distribution were detected in 2009, 2010 and 2011 sampling campaigns, but the 

situation changes drastically in 2014. New hotspots were identified close to the mouth of the 

estuary and in the dock of Portu, probably due to the construction in the Abra Bay of a new 

place to dock for long tourist cruise liners. The surroundings of the biggest waste water 

treatment plant operating in the area remains as a point of high concern in all the sampling 

campaigns. The origin of metals like Pb, Cd, Zn, Cu, As, Sn, V and Mn in the estuary is 

mainly anthropogenic, while Al, Co, Ni, Cr, Mg and Fe are probably natural. Finally, the 

occurrence of metals of anthropogenic origin results in moderately to highly toxic sediments 

in the hotspots of pollution. It has also to be mentioned, that one of the aims of this work was 

to characterise the estuary of the Nerbioi-Ibaizabal River in terms of metal pollution, in order 

to make feasible a future quantification of the effects derived from the Zorrozaurre island 

actuation, which is being carried out nowadays, with tones of sediments mobilised in the 

surroundings of the channel of Deusto. 

For the estuary of the Oka River, it was concluded that the low toxicity estimated 

for the sediments was in good agreement with the low biological affections observed in 

oysters. Just some inflammatory responses as haemocytic infiltrations and few increases in 

the metallothionein levels were observed in autochthonous oysters of the estuary. 

Furthermore, the metal concentrations recorded in oysters were from low to moderate and, 

accordingly, the recorded haemocytic infiltration prevalences were lower than those 

measured in previous works. The values of the MLR/MET ratio were in general higher in 

2011 than in 2010 indicating some type of stress in oysters from 2011, which was in good 

agreement with the observed higher metal concentrations in oysters of 2011 than in oysters 

of 2010. The results suggest a general improvement of the environmental status of the 

estuary of Urdaibai with time. 

Finally, it was concluded that NaOH solutions are suitable for the extraction of 

silver nanoparticles (AgNPs) from sediments, provided this reagent did not affect the 

stability of the nanoparticles. However, even though spICP-MS is currently the most 

sensitive method available to analyse NPs in aqueous samples, it was not able to detect any 

AgNPs in NaOH extracts of sediments from the Hugli River. Experiments using 

ultrafiltration and spICP-MS showed that Ag was not present as NP but rather complexed 

with dissolved organic matter. Something to be done in the future is to analyse sediments 

which have been previously spiked with AgNP. A confirmation of the presence of 

nanoparticles in the extract would confirm that NaOH is actually able to extract 

nanoparticles from sediments and allow their analysis by spICP-MS. 
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Environmental pollution is considered one of the greatest problems that the 

world is facing nowadays. Amongst others, some metals and metalloids are 

chemicals able to cause serious problems to the environment. The anthropogenic 

inputs of metals and metalloids to the environment have grown constantly since 

the industrial revolution. Metals and metalloids are no degradable substances and 

consequently highly durable in the environment. Their toxicity highly depends on 

their concentration and speciation in each specific environment. 

          In this dissertation, the occurrence, geographical distribution and evolution 

in time of metals and metalloids was investigated in selected environments. On 

the one hand, atmospheric metal contamination was studied in different Pyrenean 

ecosystems, namely lakes and forests. Surface sediments and sediment cores of 

several high altitude remote lakes were collected and analysed to, respectively, 

describe the geographical distribution and track the historical records of metallic 

pollution in the Pyrenees. In addition, the efficiency of bioindicators such as 

beech leaves, lichens and mosses to monitor atmospheric metal pollution in the 

Irati Forest was checked. On the other hand, some characteristic estuaries located 

in different parts of the world were also investigated. The estuaries selected were 

those of the Tubarão River (Santa Catarina Region, Brazil), the Cávado River 

(Esposende, Portugal), the Nerbioi-Ibaizabal and the Oka Rivers (both in the 

Basque Country) and finally the Hugli River, one of the main tributaries of 

Ganges River (West Bengal, India). Sediments from those estuaries were analysed 

to describe the geographical distribution and evolution in time of metallic 

contamination in each studied area. In some cases, water samples and 

autochthonous oysters were also analysed in order to carry out a more complete 

assessment of the toxicity associated to the presence of toxic elements. In the case 

of the estuary of the Hugli River, in addition, a new analytical strategy for the 

analysis of emerging contaminants like silver nanoparticles in sediments was 

developed. 


