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Chapter 1: Introduction 

Ander Arriandiaga Laresgoiti   1 

1 INTRODUCTION 

Abrasive material removal processes are nowadays key technologies in modern 

manufacturing. Amongst them, grinding has become critical despite of the advances in 

performance and accuracy of other manufacturing processes, such as turning or milling. 

It is due to its capacity for producing parts of high precision and high surface quality in 

difficult-to-machine materials that grinding is widely used in motor industry, aerospace 

and precision cutting tool manufacturers (Malkin & Guo, 2008), amongst others. The 

application in those high-added value sectors easily explains why grinding has been the 

object of extensive research during the past 40 years and it is still nowadays. 

Ground components are characterized by their extremely tight dimensional tolerances and 

very low surface finish. Grinding is, therefore, a high-accuracy technology in which 

process set-up, control and monitoring are of primary importance if the strict customer 

requirements are to be economically met.  

Setting-up of the grinding process involves time and cost-consuming operations. 

Theoretical models have been developed, but industrial application is not an easy task 

yet. Theoretical models require calibration before they can be used in practical grinding 

operations. Examples of such models can be found in (Marinescu, et al., 2006). All these 

facts have led many researchers to use intelligent techniques in order to model the 

grinding process. 

However, almost all the research works that use intelligent techniques found in the 

scientific literature provide particular solutions for a given wheel-workpiece pair. 

Actually, results cannot be generalized, in no case, to other types of grinding wheels not 

used during the design of the models. This is one of the reasons why industrial application 

of intelligent techniques in grinding has been very limited so far. Besides, in most cases, 

the output of the model is the value related to the current state of wear of the grinding 

wheel. However, the wheel loses its cutting ability over time. 

Therefore, the objective of this work is to model the specific grinding energy, wheel wear 

and surface roughness with artificial neural networks due to their characteristics that made 

them suitable for modelling highly no-linear systems like grinding process. But unlike 

the works found in scientific literature, in this work the wheel wear, the surface roughness 

and the specific grinding energy are considered as dynamic evolutions with an initial point 



Recurrent neural Network Based Approach for Estimating The Dynamic Evolution of Grinding Process 

Variables 

2  Ander Arriandiaga Laresgoiti 

(the wheel is sharp) and final point (the wheel is dull) i.e. taking into account the current 

state of wear of the grinding wheel. Besides, it would be necessary to generalize to new 

grinding wheels and grinding conditions in order to break the wheel-workpiece pair and 

develop models suitable for industrial applications. 

Likewise, it is not the objective of this work to develop new artificial neural network 

architectures or training algorithms. Moreover, one of the objectives of this work is to use 

well-known artificial neural network architectures and training algorithms available in 

commercial software and analyse their limitations for modelling the complex relationship 

between the grinding wheel characteristics and operating conditions, and the grinding 

variables such as wheel wear, surface roughness or specific grinding energy. 

The layout of the work is as follows. In Section 2 brief introduction of the grinding 

process is addressed in order to describe the basic aspects. Likewise, a description about 

different approaches found in literature for modelling the grinding process using 

analytical models and intelligent techniques is presented. Section 3 presents the artificial 

neural networks foundations.  Subsequently, a review of the state of the art related to the 

dynamic evolutions modelling with artificial neural networks is made. The Section 4 is 

the main section of the work presented here. In this section the general strategy for 

estimating grinding dynamic evolution variables is presented. Thus, first, the artificial 

neural network configuration is presented. Then, the training strategy in order to find the 

best possible network is described.  

Following the general strategy described in Section 4, in Section 5 smart sensors are 

developed for estimating on-line the wheel wear and the surface roughness. Besides the 

general description of the smart sensors, the achieved results are shown. Likewise, in 

Section 6, the prediction of the dynamic evolution of the specific grinding energy using 

the general strategy is described. As in the previous case, the results are showed.  

After the conclusion addressed in Section 5 and Section 6, the first steps of a new line of 

investigation are described in order to overcome the limitations showed in previous 

Sections. Finally, in Section 8 the conclusions are drawn and in Section 9 the main 

highlighted lines for future investigation are described. 
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2 GRINDING PROCESS MODELLING  

Grinding process has become key in manufacturing due to its capacity for 

producing parts of high precision and high surface quality in difficult-to-

machine materials. In the grinding process the cutting tool is the grinding 

wheel. With the use, the grinding wheels wear and lose the cutting ability. 

Industrial application of the analytical models is not an easy task yet because 

of the lack of information about the composition of the wheels due to the semi-

handmade production of them. Using intelligent techniques for estimation 

and/or prediction of outputs of the grinding process is a well-known 

approach. However, almost all the research works that use intelligent 

techniques found in the scientific literature provide particular solutions for a 

given wheel-workpiece pair. Besides, results cannot be generalized, in no 

case, to other types of grinding wheels not used during the design of the 

models. Finally, the output of the model is the value related to the current 

state of wear of the grinding wheel. 

2.1 Grinding process 

Machining tool processes are nowadays key technologies in a competitive global 

manufacturing marketplace (Kline, 2015). Although in 2015 the forecasting world 

machine tool consumption would fall slightly, it would still supposed to be of $75.0 

billion (Kline, 2015). Thus, these can help to understand the importance of the machining 

tool processes. 

Despite of the advances in the performance and accuracy of other machining tool 

processes for manufacturing, such as turning or milling, grinding process has become key 

in manufacturing. Actually, due to its capacity for producing parts of high precision and 

high surface quality in difficult-to-machine materials, grinding is widely used in high-

added value sectors such as motor, aerospace industries or precision cutting tool 

manufacturing (Malkin & Guo, 2008).  

For example, in Figure 1, a grinding machine for precision grinding of engine turbine 

blades is shown. In these extreme cases, where the clearance between the rotor blade tips 
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and the outer housing is critical on the performance of the engines, these machines held 

diametric tolerances of 0.025mm (DANOBAT, s.f.). 

 

Figure 1 DANOBAT mBTG and DANTIP aerospace grinding machine series 

(http://www.danobatgroup.com/) 

In the case of automotive industry, grinding process is used to produce steering 

components (wheel hub, tulip, tripod…), engine components (camshaft, crankshaft…) or 

gearbox (Doimak, s.f.) (Figure 2). For example, in China, the biggest machining tool 

producer and consumer (Kline, 2015), according to the statistics, more than 38% of the 

grinding process applications are for the automotive industry (Mao, 2014).  

A) 
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B) 

 

Figure 2 Automotive parts ground A) engine components B) Gearbox (Doimak, 

s.f.) 

On the other hand, although grinding has been usually considered as a finishing process, 

it is also useful in some application fields as a material removal process. Actually, in 

aerospace, parts such as turbine blades (Figure 3), fuel injector needles or turbo charger 

shafts are examples that go directly from an investment casting to a finished product only 

using grinding (Tunstall, 2009).  

 

Figure 3 Turbine blades machined with the grinding process (http://www.haas-

schleifmaschinen.de/) 
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In the grinding process the cutting tool is the grinding wheel. It is composed by tiny 

abrasive grits bonded by some agent. The grinding wheel rotates at a constant speed and, 

thus, spin material is removed when it comes in contact with the part. The production of 

the grinding wheels is in a semi-handmade process. Therefore, it is very difficult to know 

a priori how the wheel will perform exactly during the grinding.  

 

Figure 4 Abrasive grinding Wheel (http://www.abtec4abrasives.com/) 

Grinding wheels main characteristics are (Rowe, 2009):  

 Abrasive: The material used for generating the tiny particles to remove the spin 

material.  

 Grit size: It makes reference to the size of individual abrasive grains. Thus, big 

grit size wheels are used for aggressive stock removal, while small grit size is used 

for less removal but better surface quality.  

 Hardness: A bond material is used to hold together the abrasive grains. Thus, a 

strong bond is preferred for grinding softer material, while weak bond is preferred 

for harder material (Georgia Grinding Wheel Company, Inc., 2008). The grinding 

wheel hardness is rated from ‘A’ to ‘Z’, being ‘A’ the weakest bond and ‘Z’ the 

strongest. 

 Structure: The structure refers to the density of abrasive grains in the grinding 

wheel. Wheel with less dense structure allows better swarf removal and gives 

better grinding fluid access (Rowe, 2009). 

 Bond type: Is the material used to hold the abrasive grains. Bond type affects the 

finish. For example, Vitrified bond is suitable for precision grinding while resin 



Chapter 2: Grinding process modelling 

Ander Arriandiaga Laresgoiti   7 

bonded wheels are used for rough grinding applications (Kure Grinding Wheel, 

2016). 

With the use, the grinding wheels wear and lose the cutting ability. In fact, the wheel 

surface becomes flat and does not remove material. This phenomenon is known as wheel 

wear. The wheel wear leads to changes in grinding conditions and loss of surface quality 

of the workpiece. Thus, with the loss of the cutting ability of the wheel, grinding forces 

and, consequently, the power consumption in the grinding head increase. Therefore, when 

the wheel is worn it is necessary to "bring to light" the abrasive grains and provide to the 

grinding wheel, again, its cutting ability. For this purpose, a dresser is used. 

The wheel wear is usually represented by a curve with three distinct stages (Figure 5). 

Thus, in the initial part, the effect of dresser is very important (Chen, et al., 1998). The 

next stage is lineal and slightly incremental, and in this stage the effect of the dresser 

disappears. Therefore, in this area, only the wheel and the grinding conditions have 

influence over the wheel wear. This stage is usually used to characterize the wheel wear 

(Malkin & Guo, 2008). Finally, in the last stage the wheel wear increases exponentially. 

Thus, it is recommended to not enter in this zone when grinding and dress the wheel at 

the end of the second stage.  

 

Figure 5 Grinding wheel wear typical curve (Linke, 2015) 

When the wheel wear increases, as said before, the cutting capability of the wheel 

decreases and the surface roughness increases. The surface roughness refers to the surface 

finish quality of the workpiece. Typically, to measure the surface roughness of a workpice 

the following are used (Marinescu, et al., 2006): 
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 Rt: Is the SI parameter for maximum surface roughness. It measures the maximum 

difference between peak and valley distance within the sampling length. 

 Ra: Is the arithmetic average height of roughness-component irregularities (peak, 

heights and valleys) from the mean line within a sampling length after filtering 

out form deviations. 

 Rz: Is the arithmetic average of maximum vertical distance from the peak height 

to valley depth over five adjacent individual samplings lengths. 

Besides the wheel wear and surface roughness, another key variable in grinding process 

is the specific grinding energy. It measures the amount of energy required to remove the 

unit volume of part material. Thus, it is significant because it gives information about 

mechanism and degree of contact between the abrasive and the workpiece. Besides, the 

specific grinding energy is also useful for estimating the power requirement of the 

grinding machine (Malkin & Guo, 2008). 

2.2 Modelling the process 

In 2009 the European Research area of the European Commission published a document 

about the strategy for a sustainable European machine tools industry (European 

Commission, 2009). In that document the research in the machine tools industry is divided 

into five sub-projects. One of them is “The Manufacturing Breakthrough” and it is said 

that “In this case four demonstrators are envisaged, illustrating self-calibration, predictive 

maintenance, versatile configuration, and improved control of accuracy and acceleration 

at high operating speeds.” 

Besides, by the time a part reaches a grinding machine, mostly, that part has undertaken 

significant machining already. Thus, if something should happen during the grinding, 

then all of that previous machining investment is lost. Therefore, it is highly important in 

grinding to safeguard the value that has already been added to the part (Zelinski, 2013). 

Besides, it must be taken into account that in the past decade, about 20%–25% of the total 

cost of all machining processes was due to grinding (Malkin & Guo, 2008).  

Therefore, in grinding process monitoring and control are of primary importance in order 

to improve the accuracy and save time investment. However, in order to control a process 

like the grinding process, reliable and accurate models are needed. Therefore, one of the 
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main tasks before controlling the grinding process is to generate accurate models of the 

process.   

For modelling the grinding process, two research lines can be highlighted, the classic 

approach, aimed at the scientific knowledge of the process; and the approach based on 

intelligent systems, capable of combining previous experience and knowledge based 

advanced models. 

2.2.1 Theoretical models 

The classical approach is based on analytical models. These models are mathematical 

expressions for predicting one or various process outputs from the different process 

variables. Thus, Marinescu et al. (Marinescu, et al., 2006) collected a number of different 

models for the different outputs of the grinding process. Among them, Equations (1) and 

(2) allow relating specific grinding energy (ec), surface roughness (R) and grinding wheel 

wear (Vs): 

ec ≈ k ∙ √
Vs

Vw
∙ C ∙ r ∙ √

de

ae
         (1) 

R ≈ (
Vs

Vw
∙

1

C∙r∙√de
)

2
3⁄

 (2) 

Equations (1) and (2) show the non-linear dependency of specific grinding energy and 

surface roughness with grinding process parameters such as speed ratio, depth of cut, 

wheel diameter, and with the wheel wear, expressed through the product C∙r, where C is 

grain density and r is the so-called grit shape factor. Commonly, C∙r can be considered 

as a single factor related to the surface topography and surface wear of the grinding wheel.  

However, industrial application of the analytical models is not an easy task yet. The 

reasons for the limitations of theoretical explicit models for grinding wheel wear, 

workpiece surface roughness and specific grinding energy are the following: First, the 

lack of precise information about the composition and performance of the wheel itself 

due to the semi-handmade production of the grinding wheels. Then, as shown before, the 

relations between the different process variables and process outputs are highly non-

linear. Finally, must also be taken into account the accuracy required in the final results. 

Besides, theoretical models need calibration before using them in practical grinding 

operations. All these facts have led many researchers to use intelligent techniques in order 

to model the grinding process. 
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2.2.2 Modelling using Artificial Intelligence  

Using intelligent techniques for the estimation and/or prediction of outputs of the grinding 

process is a well-known approach. In most of the cases the output variable is surface 

roughness, although there are a number of research works in which wheel wear was 

studied. However, little effort has been dedicated to the prediction of specific grinding 

energy even though it is a fundamental grinding variable.  

Research work Grinding 

wheels 

Signals (Inputs) Grinding 

conditions 

Prediction 

algorithm 

(Nandi & Pratihar, 

2004) 

D126K5V No input 

signals 

34 different 

grinding 

conditions 

FLC+GA 

(Sedighi & Afshari, 

2010) 

Aluminium 

oxide 

No input 

signals 

16 different 

grinding 

conditions 

ANN+GA 

(Yang & Jin, 2010) Not mentioned Vibrations + 

Temperature 

Fixed ANN+GA 

(Li & Liu, 2011) GB70RAP No input 

signals 

18 different 

grinding 

conditions 

ANN+GA 

(Aguiar, et al., 2008) 38A80PVH Electric Power 

+ Acoustic 

emission (AE) 

15 different 

depth of cuts 

ANN 

(Prabhu, et al., 

2015) 

10µm grit size 

vitrified 

alumina 

No input 

signals 

8 different 

grinding 

conditions 

ANN and 

Fuzzy Logic 

(Chandrasekaran & 

Devarasiddappa, 

2014) 

White 

aluminium 

oxide 

No input 

signals 

25 different 

grinding 

conditions 

ANN 

Table 1 Summary of previous research on surface roughness modelling on 

grinding 

In Table 1 the summary of the previous research works that tried to model the surface 

roughness are shown. A Fuzzy Logic controller (FLC) was designed in (Nandi & Pratihar, 

2004) for predicting the final surface finish and the required spindle power in the grinding 

of steel using a grinding wheel as given by the standard specification D126K5V. Thus, 

the Fuzzy Logic controller had four cutting parameters as inputs in order to predict both 

variables. First, Genetic Algorithms (GA) were used to optimize the membership function 

distributions of the variables and as well as rule base. At the end, the system was able to 

predict a unique surface roughness and power for the given inputs. 

For another specific type of grinding operation, the so-called creep-feed grinding, ANNs 

were used for the prediction of surface finish and maximizing the material removal rate 
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(Sedighi & Afshari, 2010). First, the ANN was used for predicting the surface roughness 

with alumina grinding wheel. The network inputs were four grinding cutting condition 

parameters. Then, once surface finish is known. Genetic Algorithms optimization 

techniques were used for the maximization of material removal rate and the minimization 

of surface roughness.  

Genetic Algorithm techniques were also used for training an ANN for modelling surface 

roughness, precisely, for predicting the peak to valley value in surface grinding (Yang & 

Jin, 2010). The network inputs were the workpiece and wheel temperature on one hand, 

and the vibration of the spindle wheel and workpiece on the other. Thus, an infrared image 

camera and a vibration sensor were used to collect temperature and vibration signals, 

respectively. No mention was made about the grinding wheel used to carry out the 

experiments. 

In a more recent work, a similar approach was presented (Li & Liu, 2011) for modelling 

the surface finish in cylindrical grinding of steel parts using a GB70RAP400 grinding 

wheel based on a Malkin surface roughness model. In this case, four inputs such as 

workpiece speed and traverse speed were used to characterize the grinding operation. It 

is important to note that a reference was done about the on-line measurement of some 

variables such as displacement and speed of the worktable. However, during the training 

only three discrete values are used for each network input. Besides, the network was 

trained using Genetic Algorithms optimization method. 

Also ANNs were used in (Aguiar, et al., 2008) for modelling the surface roughness for 

different depth cut for steel parts grinding with 38A80PVH grinding wheel. In this work, 

a Hall-effect transducer was used to measure the electrical power consumed from the 

three-phase induction motor that drives the wheel wear.  Besides, an Acoustic Emissions 

(AE) sensor was also used close to the workpiece. However, no reference was made about 

the reason of placing the AE sensor close to the workpiece which was it duty. Then, 

different ANN configurations were tested with different inputs related with AE signal, 

power signal and grinding conditions. 

In the following works ANNs were also used for predicting the surface roughness for 

plane grinding with 10m grit size alumina grinding wheel (Prabhu, et al., 2015). Thus, 

three machining parameters were used as inputs of the net. Besides, the capability of 

prediction of the surface roughness by ANNs was compared with a fuzzy logic based 

solution. The results show that the performance of the ANN was slightly better. 
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Again an ANN was used in cylindrical grinding for modelling the surface roughness using 

white aluminium oxide grinding wheel (Chandrasekaran & Devarasiddappa, 2014). Four 

input machining parameters at three different levels were considered for experimentation. 

Thus, combining these inputs and levels 20 training experiments and 5 testing 

experiments were generated. The network was able to predict the surface roughness. 

Research work Grinding wheels Signals 

(Inputs) 

Prediction 

algorithm 

Output 

(Lezanski, 2001) 38A80KVBE AE + 

Vibrations 

ANN+Fuzzy sharp or 

dull 

wheel 

(Liao, Hua, Qu & 

Blau, 2007) 

SD220R75B56-

1/8 and 

SD220R100B99-

1/8 

AE Hidden 

Model of 

Markov 

good or 

bad 

condition 

(Liao, Hua, Qu & 

Blau, 2008) 

SD220R75B56-

1/8 and 

SD220R100B99-

1/8 

AE AdaBoost 

and A-Boost 

sharp or 

dull 

wheel 

(Yang & Yu, 

2012) 

WA60LmV AE Support 

Vector 

Machines 

sharp or 

dull 

wheel 

(Hosokawa, et 

al., 2004) 

CBNC140N75B Sound ANN 4 wheel 

conditions 

(Maksoud & 

Atia, 2003) 

4 grinding 

wheels 

Piezoelectric 

+ high 

response 

pressure 

transducer 

ANN  sharp or 

dull 

wheel 

Table 2 Summary of previous research on Wheel wear modelling on grinding 

On the other hand, when it comes modelling the wheel wear, nearly all research works 

that use Intelligent Techniques are devoted to distinguish between a sharp and a dull 

wheel (Table 2). In (Lezanski, 2001) a neuro-fuzzy system for cylindrical grinding for a 

38A80KVBE grinding wheel is described. The ANN was used for reducing the number 

of inputs to the system. The selected inputs were machining parameters and parameters 

extracted from AE and vibration signals. Then, the fuzzy system was applied to decide 

whether the wheel was in sharp or in dull (worn) condition.  

In (Liao, et al., 2007) Hidden Model of Markov (HMM) was used to predict the state of 

SD220R75B56-1/8 and SD220R100B99-1/8 diamond grinding wheels during creep-feed 
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grinding. In this work also AE signal was used for clustering the grinding wheel state 

between good or poor condition. 

In a later work (Liao, et al., 2008), the research was completed by using automatic boosted 

classifier, AdaBoost and A-Boost precisely, to detect online a dull wheel based on AE 

signals. The same SD220R75B56-1/8 and SD220R100B99-1/8 diamond grinding wheels 

were also used in this work. 

In another work, Support Vector Machines (SVM) were proposed as classification 

method between dull and sharp for white fused alumina WA60LmV wheel (Yang & Yu, 

2012). Also AE signal is used in this work. After, signal pre-processing and future 

extraction SVM was used to classify between sharp and worn state. Besides, genetic 

algorithms (GA) were introduced to select the optimal parameters automatically. Finally, 

comparison between SVM-GA system and ANN was done for wheel state classification. 

The results show that the classification accuracy of SVM-GA system was higher. 

In (Hosokawa, et al., 2004) ANNs were used for modelling the status of the A60K7V and 

CBNC140N75B grinding wheels. The main objective was to analyse the effect of the 

dressing over the wheel wear. Unlike in other works, in this case grinding sound emitted 

from wheel surface was used. The proposed ANN had four outputs, thus, using the signal 

sound, the network was capable to classify between different grinding wheel conditions 

instead of only worn or dull. 

In (Maksoud & Atia, 2003), a methodology for implementing a grinding process 

controller for surface grinding based on neural networks was presented. The controller 

was capable to decide when to dress the grinding wheel before exceeding the surface 

roughness limit. Firstly, one network was developed for designing a grinding process 

based on the grinding wheel, workpiece and desired surface roughness. Actually, this 

network predicted the machining parameters to achieve the desired surface roughness. 

Secondly, using some sensors for measuring the grinding forces (Piezoelectric 

transducer) and wheel topography (high response pressure transducer), a second network 

was designed and used for controlling the process and deciding when to dress the wheel. 

Four different grinding wheels were used. However, the wheels used for training and 

testing were the same ones, so as only the machining conditions changed.  
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2.3 Conclusions 

Machining tool processes are nowadays key technologies in a competitive global 

manufacturing marketplace. Despite of the advances in the performance and accuracy of 

other machining tool processes for manufacturing, such as turning or milling, grinding 

process has become key in manufacturing. Actually, due to its capacity for producing 

parts of high precision and high surface quality in difficult-to-machine materials, grinding 

is widely used in high-added value sectors such as motor, aerospace industries or 

precision cutting tool manufacturing. 

In grinding process control and monitoring are of primary importance in order to improve 

the accuracy and save time investment. However, in order to control a process like the 

grinding process, reliable and accurate models are needed. Therefore, one of the main 

tasks before controlling the grinding process is to generate accurate models of the process. 

For modelling the grinding process, two main research lines can be highlighted, the 

theoretical models approach, aimed at the scientific knowledge of the process; and the 

approach based on intelligent systems, capable of combining previous experience and 

knowledge based advanced models. 

However, industrial application of the theoretical models is not an easy task yet. The 

reasons for the limitations of theoretical explicit models are the lack of precise 

information about the composition and performance of the wheel itself due to the semi-

handmade production of the grinding wheels, and the relations between the different 

process variables and process outputs are highly non-linear. Besides, theoretical models 

need calibration before using them in practical grinding operations. Therefore, many 

researchers use intelligent techniques in order to model the grinding process. 

Almost all the research works that use intelligent techniques found in the scientific 

literature provide particular solutions for a given wheel-workpiece pair. In few cases more 

than one grinding wheel or workpiece are used. Results cannot be generalized, in no case, 

to other types of grinding wheels not used during the design of the models. In fact, in 

some of the cases, they cannot even be generalized to new grinding conditions that have 

not been used during the training of the model. This is one of the reasons why industrial 

application of intelligent techniques in grinding has been very limited so far. Besides, in 

the cases of prediction of surface roughness, the output of the model is the value related 

to the current state of wear of the grinding wheel being this value considered unique for 
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the whole grinding process. However, as said in Section 2.1 the surface roughness of the 

ground components changes over time as the wheel loses its cutting ability.  

Likewise, all the works that model the wheel wear use signals like Acoustic Emissions 

(AE), vibration signals or audio signals. However, accessibility of the machining area is 

limited due to the very aggressive conditions and low accessibility to it. Actually, the high 

rotational speed of the grinding wheel (common values are around 45 m/s, but with 

industrial examples with values up to 200 m/s), the generation of abrasive swarf or the 

presence of large quantities of coolant limits the possibility of using industrial sensors 

during the process in the machining area. Besides, in most of the cases, the given solution 

is binary, the dull or sharp condition of the wheel. Thus, the solutions do not give the 

actual status of the grinding wheel. In fact, the designer decides when the grinding wheel 

is dull or sharp before developing the intelligent model. 

Finally, as said in 2.2.2, little effort has been dedicated to the modelling of the specific 

grinding energy with intelligent techniques. However, it is a fundamental variable in order 

to know the performance of the grinding process and it is also useful for estimating the 

power requirement of the grinding machine. 
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3 MODELLING DYNAMIC EVOLUTIONS 

WITH ANN 

Unlike the works found in scientific literature, in this work the wheel wear, 

the surface roughness and the specific grinding energy are considered as 

dynamic evolutions. Likewise, it would be necessary to generalize to new 

grinding wheels and grinding conditions in order to break the wheel-

workpiece pair. ANNs characteristics made them suitable for modelling 

highly no-linear systems like grinding process. ANNs refer to computing 

systems whose central theme is borrowed from the analogy of biological 

neural networks. Artificial Neural Networks are well known for dynamic 

evolutions modelling due to their capability to learn the relationship between 

the inputs and outputs of the system. In most of the cases ANNs are used for 

modelling dynamic systems called time series, based on the historical data. 

However, in some cases the past or historical data is not available because 

measuring real values is time and resource consuming. In those cases, the 

aim is to predict a complete dynamic evolution but without initial or real 

values. Therefore, in order to model the specific grinding energy, wheel wear 

and surface roughness, it is crucial to predict a complete dynamic evolution 

without measuring any initial real value. Besides, it is reasonable to think 

that one ANN will not be capable to model all the grinding wheels and 

grinding conditions. Thus, a methodology for generating new ANNs for 

different application fields should be developed with generalization 

capabilities concerning new grinding wheels and new grinding conditions. 

Although intelligent models are also far from being used in industrial environments, the 

literature review reveals that Intelligent Techniques and, more precisely, ANNs 

constitute, in fact, an effective approach for modelling the grinding process. The 

following ANNs characteristics make them suitable for modelling highly no-linear 

systems like grinding process (Isasi & Galván, 2004): 
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 Model highly no-linear and stochastic systems. 

 ANNs can learn from examples. Thus, for developing ANN-based models real 

experiments are used. 

 High generalization capability. 

Besides, artificial neural networks also provide one important advantage: 

 For the construction of ANN-based models analytical expressions of underlying 

physical phenomena are not necessary. Actually, the neural network models are 

built automatically through a training procedure based on data from experiments 

(Haykin, 1998). 

Therefore, the objective of this work is to model the specific grinding energy, wheel wear 

and surface roughness with ANNs. But unlike the works found in scientific literature, in 

this work the wheel wear, the surface roughness and the specific grinding energy are 

considered as dynamic evolutions with an initial point (the wheel is sharp) and final point 

(the wheel is dull). Besides, it would be necessary to generalize to new grinding wheels 

and grinding conditions in order to break the wheel-workpiece pair and develop models 

suitable for industrial applications. 

Thus, this chapter deals with the description of the basic theory of the artificial neural 

networks and how have been used for modelling dynamic evolutions. Thus, in the first 

section, a basic theory about artificial neural networks, artificial neural network 

architectures, activation functions and learning is presented. The aim of this chapter it is 

not to give a deep description of all the aspects involved. Actually, the objective is to 

introduce the reader into ANNs. In fact, if the reader wants to deepen more into artificial 

neural networks theory, it would be recommended reading references provided. 

On the other hand, after the ANNs basic theory description, the use of neural networks 

for modelling dynamic systems is shown. Briefly, the ANNs are mostly used to model 

dynamic evolutions based on historical values. However, in some cases the dynamic 

evolutions are modelled using initial real values or another dynamic evolution. A 

extended analysis is provided in Section 3.2. 

3.1 Artificial neural networks 

The Encyclopædia Britannica defines the human intelligence as ‘the mental quality that 

consists of the abilities to learn from experience, adapt to new situations, understand and 
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handle abstract concepts, and use knowledge to manipulate one’s environment’. For a 

long time ago, one of the major objectives of the science has been giving the human 

intelligence to the machines. Thus, this has led to the study and simulation of human 

neural networks i.e. the brain. 

3.1.1 Biological neuron 

The human brain consists of a large number of interconnected neurons. Each of these 

neurons consists of dendrites, the cell body and the axon (Figure 6). The dendrites receive 

and carry the electricity signals into the cell body. Furthermore, the axon carries the signal 

from the cell body out to other neurons (Hagan, et al., 2014). The contact-point between 

an axon, which end extends in a tree, of one cell and a dendrite of another cell is called a 

synapse, across which information is propagated.  

 

Figure 6 Graphical representation of a biological neuron 

(https://commons.wikimedia.org) 

The magnitude of the signal received by a neuron from another one depends on the 

strength of the connection between the neurons, i.e. the strength of the synapsis. The cell 

membrane becomes electrically active when it is sufficiently excited by the neurons 

making synapses onto this neuron. A neuron will send an output impulse if sufficient 

signals from other neurons fall upon its dendrites in a short period of time. The neuron 

fires if its net excitation exceeds its inhibition threshold. Firing is followed by a brief 

refractory period during which the neuron is inactive (Mehrotra, et al., 1997).  

Biological neurons are very slow when compared to electrical circuits (Hagan, et al., 

2014). However, biological neural networks are much more complex than Artificial 



Recurrent neural Network Based Approach for Estimating The Dynamic Evolution of Grinding Process 

Variables 

20  Ander Arriandiaga Laresgoiti 

Neural Networks (ANNs). Actually, it is estimated that each neuron is connected with 

other 10000 neurons, creating a huge network working in parallel, operating at the same 

time. Therefore, even each neuron has low processing capacity, a large number of them 

interconnected and working in parallel can perform any task much faster than any modern 

computer. 

3.1.2 Artificial neuron 

ANNs refer to computing systems whose central theme is borrowed from the analogy of 

biological neural networks (Mehrotra, et al., 1997). Thus, as in the human brain, the ANN 

is a highly parallel distributed network of neurons. The neuron is the basic processing 

unit of the neural network. In Figure 7 it is shown the block diagram of a neuron. The 

basics of the neuron are as follows (Haykin, 1998): 

 Weights: Represent the synaptic strengths of the neuron. Thereby, an input xj of 

weight j connected to neuron k is multiplied by the weight wkj. Unlike the synapses 

of the human brain, the weights of ANNs have negative or positive values.  

 Adder: A linear combiner of the weighted inputs. 

 Activation function: For limiting the amplitude of the output of a neuron. 

Normally, this amplitude within the normalized ranges of [0, 1] or [-1, 1].  

 Bias: It increases or decreases the input to the activation function, depending on 

the positive or negative sign of the bias (bk). 

 

 

Figure 7 The block diagram of a nonlinear model of a neuron 
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The block diagram of a neuron represented in Figure 7 can be expressed mathematically 

with the following two equations: 

𝑢𝑘 =  ∑ (𝑤𝑘𝑗𝑥𝑗)𝑛
𝑗=1 + 𝑏𝑘 (3) 

𝑦𝑘 = 𝜑(𝑢𝑘) (4) 

where x1, x2, x3, …, xn are the inputs to a neuron; wk1, wk2, wk3, …, wkn are the weights of 

a neuron; uk is the linear combination of the weighted inputs; bk is the bias of a neuron; 

𝜑() is the activation function; and yk is the output of the neuron. 

3.1.3 ANNs architectures 

Rarely one neuron is sufficient to model the complex relationship between the inputs and 

the outputs of the neuron (Hagan, et al., 2014). Thus, usually more than one neuron 

working in parallel is needed. These neurons working in parallel constitute a ‘layer’. 

Thus, combining neurons in one or more layers’ new network architectures can be 

designed to solve a specification problem.  

3.1.3.1 Single-neuron neural networks 

This is the simplest architecture of layered neural networks. It only has one computation 

layer, the output one. Actually, the input layer is not considered because no computation 

is done there. It only consists of source nodes that project onto the output layer. It is 

important to appoint that the data evolve in one direction, from inputs to outputs. Actually, 

these networks are usually called single-neuron feedforward neural networks. An 

illustration can be seen in Figure 8. 

 

Figure 8 Single-layer neural network 
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3.1.3.2 Feedforward Neural networks 

To model more complex relationships one or more hidden layers are introduced between 

the input and output layer. The computation nodes of these layers are called hidden units 

or neurons. Thus, the inputs project onto the first hidden layer, then, the output of this 

layer are used as inputs of the second hidden layer and so on for the rest of the layers. In 

the same way as the single layer neural networks, the data goes in one way, from the input 

to the output layer passing through the hidden layers. 

In Figure 9 a one hidden layer neural network is shown. The network has 3 inputs, 5 

neurons in the hidden layer and 2 output neurons (one for each output signal). Thus, for 

simplicity, this network is referred to as 3-5-2 network. Besides, the network in Figure 9 

is said that it is fully connected because every node in each layer is connected to every 

node in the adjacent layer (Haykin, 1998). 

 

Figure 9 Three-layer neural network 

The most common neural networks are the Multi-Layer Perceptron (MLP). The MLP is 

a generalization of the single-layer neural network considered in Section 3.1.3.1. Multi-

layer perceptron neural networks are more powerful than single-layer ones. Actually, a 

trained one hidden layer network having sigmoid activation function in the hidden layer 

and linear activation in the output layer can approximate most functions (Hagan, et al., 

2014). In fact, the hidden layers neurons with sigmoid or hyperbolic tangent functions 

adds a smooth nonlinearity to the network (Haykin, 1998). 

It is noteworthy to appoint that is possible to model dynamic evolutions with feedforward 

neural networks. In fact, they are widely used. For that, usually in the input of the network 
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lagged inputs are used. Thus, the network is able to model the dynamic behaviour of the 

evolution (see Section 3.2.1).   

3.1.3.3 Recurrent Neural Networks 

In recurrent neural networks the data do not go only feedforward, from the input layer to 

the output layer. At least, it has one feedback loop. These feedback loops have delay units 

(Figure 10). Thus, the feedback loops have a high impact on the training and performance 

of the neural network (Haykin, 1998). Depending on the source and direction of the 

feedback loop different recurrent neural network topologies can be developed.  

For instance, talking about the classical recurrent neural networks, in the well-known 

Elman neural networks (Elman, 1990) the feedback loop goes from the output of the 

hidden layer to the input of the hidden layer. In another widely used recurrent network 

proposed by Jordan, the feedback loop goes from the output of the net to the input of the 

hidden layer (Jordan, 1990). In the case of the Nonlinear AutoregRessive eXogenous 

model (NARX) it has a feedback from the output of the network to the input, like the 

Jordan network, but it also has delayed inputs. Besides classical recurrent neural 

networks, other networks can be found in the literature such as Echo State Networks 

(ESN) (Mass, et al., 2002) based on reservoir computing or Long Short-Term Memory 

(LSTM) networks for learning long-term dependencies and to avoid the gradient descent 

vanish (Hochreiter & Schmidhuber, 1997). 

 

Figure 10 Recurrent neural network: an example 
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3.1.4 Activation function  

The activation function defines the output of a neuron in terms of the induced local field 

(Haykin, 1998). Normally, a particular transfer function is chosen by the designer to solve 

a specification problem (Hagan, et al., 2014). The most used activation functions are the 

following: 

1. Threshold function: The threshold function is defined by the following 

mathematical expression: 

𝜑(𝑥) = {
  1      𝑖𝑓  𝑥 ≥ 0 
 0      𝑖𝑓  𝑥 < 0

 (5) 

In this model the output of the neuron is 1 if the the linear combiner of the weighted 

inputs is nonnegative. Thus, the output value of the neuron is 0 or 1. 

2. Linear function: For the linear function: 

𝜑(𝑥) = 𝑥 (6) 

In the linear function the output value takes the same value of the induced local field. 

It is normally used in output neurons of artificial neural networks. 

3. Sigmoid function: For this type of functions we have: 

      𝜑(𝑥) =
1

1+𝑒−𝑥 (7) 

One of the most used activation functions in artificial neural networks. It is an increasing 

function that exhibits the goodness of the linear and nonlinear behaviour (Haykin, 1998). 

The output of the net yields within the range [0, 1] and, hence, only takes positive values. 

4. Hyperbolic tangent function: The hyperbolic tangent function is defined by the 

following mathematical expression: 

     𝜑(𝑥) =
1−𝑒−𝑥

1+𝑒−𝑥 (8) 

It is similar to the sigmoid function and its graph is also a shaped S. However, with 

hyperbolic tangent function the output of the neuron can take positive or negative values 

and the output value range is [-1, 1]. This activation function is, also, one of the most used 

in the construction of an ANN. 

3.1.5 Learning 

One of the main characteristics of the artificial neural networks is their capacity to learn 

from examples. Actually, the ANN improves its performance thanks to the learning. 

During the learning phase of the net the weights and biases are adjusted in an iterative 
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process, also, called training phase. The learning or training process implies the following 

sequence of events (Haykin, 1998): 

 The ANN is stimulated by the environment. 

 As the stimulation of the environment ANN parameters (weights and biases) are 

changed. 

 Due to changes in the neural network, it responds in a new way to the 

environment.  

3.1.5.1 Learning paradigm 

In the learning process of the ANNs three basic learning paradigms can be found: 

supervised, reinforcement and unsupervised learning (Haykin, 1998). 

In the supervised learning the desired output values are shown to the network during the 

training. Actually, it can be said that a “teacher” provides “examples” of inputs and 

corresponding output(s) (Dreyfus, 2005). Thus, the training algorithm adjusts the net 

weights and biases to reduce the error between the desired and predicted outputs. 

The reinforcement learning is quite similar to the supervised learning (Hagan, et al., 

2014). However, instead of showing the corresponding output(s), the “teacher” gives a 

grade (or score) of the performance of the net for the provided “examples” of inputs. 

On the other hand, unlike in supervised learning, in unsupervised learning there is not a 

“teacher” to guide the learning process. Thus, during the training process the net should 

find the similarities between the elements of the inputs and, thus, translate these 

similarities into neighbourhoods in the new data representation (Dreyfus, 2005). 

Therefore, this learning method is usually applied to data clustering or image recognition. 

3.1.5.2 Training algorithm  

As commented above, during the learning phase of the net the weights and biases are 

adjusted in an iterative process, also, called training phase.  

Thus, a set of rules that follow these events are called training algorithm or learning 

algorithm. There are several training algorithms that differ from each other in how they 

interconnect with the examples or how they adjust the net parameters. 

The most common training algorithm for multi-layer perceptron neural networks is the 

backpropagation (BP) training algorithm under supervised paradigm. In fact, sometimes 

MLP networks are denoted as backpropagation neural networks. This training algorithm 

works under the supervised learning paradigm. The backpropagation is divided in two 
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phases: forward and backward phase (Haykin, 1998). In the forward phase the input 

“examples” propagate from the input layer though layer by layer to the output, producing 

a response. The produced response is compared with the target or desired output response. 

Then, the resulting error comparing the output and desired responses is propagated 

backward from the output trough layer by layer to the input. In this backward phase, the 

network weights and biases are adjusted to minimize the sum of squared errors. In fact, 

the BP is a gradient descent algorithm where the gradients are propagated backward.  

3.1.5.3 Batch Vs. Incremental 

As said before, the main objective of the learning phase is to update de weights and biases 

in order to learn the relationship between the inputs and the outputs of the network. 

However, for updating these weights under supervised learning two approaches can be 

found related to when to update the weights: batch and incremental. In batch training the 

weights and biases are updated only after all training samples are presented to the 

network. In incremental training, the weights and biases are updated after every sample 

presentation (Mehrotra, et al., 1997). 

3.1.5.4 Generalization  

In ANNs generalization refers to the capacity of the networks to map the input-output 

relationship for new data not used during the training process of the network. 

Generalization is the opposite to the overfitting of the net that occurs when the network 

learns from the training examples but it is not capable to generalize to new examples. An 

ANN that is designed with capabilities to generalize can map the input-output relationship 

of examples slightly different of the examples used to train the network (Haykin, 1998). 

Therefore, to avoid the overfitting and improve the generalization of the net different 

strategies have been addressed such as early-stopping, cross validation or regularization. 

3.2 Modelling dynamic evolutions with ANN 

On the real world most of the systems have a dynamic behaviour, where actual states 

depend on past events or actions. Thus, modelling dynamic systems is a challenging task 

for predicting future events by analysing the past in a wide range of fields, such as 

weather, finance, earthquakes or machining tools wear. These systems can be represented 

as dynamic evolutions of collected observations. These observations might be continuous 
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or in discrete intervals, fixed or not. The most common dynamic evolutions have fixed 

discrete intervals.  

One of the most common dynamic evolutions are the time series. In time series, the fixed 

discrete intervals are related with time such as hour, days, months or years. However, 

some dynamic evolutions are not measured in time, in fact, it could be said that they are 

pseudo-time series. Thus, in this kind of dynamic evolutions the data evolve based on 

parameters not related with time. For example, in machining, tools wear or live-cycle are 

measures related to the use.  

Artificial Neural Networks are well known for dynamic evolutions modelling due to their 

capability to learn the relationship between the inputs and outputs of the system 

(Štěpnička, et al., 2013), learning by examples (Cukrowska, et al., 2001) and model non-

linear systems. ANNs used for modelling dynamic evolutions can be classified into two 

main categories: feedforward neural networks like multilayer perceptron (MLP) or radial 

basis function (RBFN) networks, where all data go forward from de input to the output; 

and recurrent neural networks (RNN) like Elman or Jordan networks, where there is data 

feedback. 

At this point, it would be important to explain two concepts that are used in dynamic 

evolutions modelling with ANN. These concepts are one-step ahead and multi-step ahead. 

In Figure 11 a chart of both strategies are shown. In the chart the dashed signal represents 

the target signal, the signal to predict. On the other hand, the arrows represent the 

predictions (On), and the dotted lines indicate the prediction error (en). Thus, it can be 

seen that in one-step ahead the prediction always starts from the real value i.e. the t+1 

value is predicted using at least t real values. On the other hand, in multi-step ahead the 

prediction horizon increases. Thus, t+2 value prediction is based not only on the t real 

value, but also on t+1 predicted value. 
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Figure 11 One-step ahead Vs. Multi-step ahead prediction (Bakker, Schouten, 

Giles, Takens, & van den Bleek, 2000) 

Therefore, the multi-step ahead prediction is more changeling because the prediction error 

increases at each prediction step. However, the multi-step ahead prediction has more 

potential because, as said before, the prediction horizon increases. Thus, it is possible to 

predict more time-steps ahead. For example, in weather forecasting, with one-step 

strategy, tomorrow’s weather is predicted. However, with multi-step ahead it is possible 

to predict day the after tomorrow's weather or all week’s weather.  

3.2.1 Modelling dynamic evolutions using feedforward neural networks 

Feedforward neural network does not take into account the past values of the dynamic 

evolutions, however, some feedforward architectures use lagged inputs (N-1, N-2…, I-1, 

I-2…) in the input layer of the ANN for predicting future values, and/or a moving buffer 

where the predicted value becomes the input in the next step. 

Thus, in (Claveira & Torra, 2014) the authors use the well-known MLP in order to 

forecast the tourism demand in Catalonia. To model the dynamic evolution of tourism the 

used net had three layers trained with the Levenberg-Marquardt backpropagation 

algorithm. In the article the authors do not specify the number of the neurons in the hidden 

layer. However, they compare the ANN forecasting performance for 1, 2, 3, 6 and 12 

months ahead to AutoRegressive Integrated Moving Average (ARIMA) and Self-

Exciting Threshold AutoRegressive (SETAR) models.  
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Monthly data of tourist arrivals and overnight stays from foreign countries over the time 

period from 2001 to 2009 was used in the comparative study. The ARIMA and SETAR 

models were estimated using the data from January 2001 to January 2008. Thus, the 

values from January 2009 to December 2009 were used to compute the forecast errors in 

a recursive way for the different forecast horizons. 

On the other hand, the data was divided into three different datasets (training, validation 

and test) in order to avoid overfitting. Instead of using all data available, they use four-

year period data divided into first fifty observations for training, the next twenty-one for 

validation and the rest 10% for testing the trained net. 

The results showed that the ARIMA model outperforms the SETAR and ANN models, 

especially for shorter time horizons. Thus, the authors concluded that it would be 

necessary to pre-process the data because the seasonality can affect the prediction 

performance of the net. Besides, the authors appoint that the ANN could improve by 

adding input lags or memory values. 

In another work the backpropagation neural network was also used in order to predict 

infectious diarrhea using meteorological factors (Wang, et al., 2015). The three layer 

network has nine inputs and one output (Table 3) while the neurons in the hidden layer 

were selected iteratively. Besides, the Levenberg-Marquardt was used as a training 

algorithm because, as the authors said, it had been used successfully to model many 

engineering applications.  

For training the network 209 weeks data pair from 3 January 2005 to 4 January 2009 were 

used. This data was divided into two different datasets: the 80% was used to achieve the 

best network and the rest 20% to test the net. In this case, neither early-stopping neither 

Bayesian regularization were used, actually, the 5-fold cross validation was selected to 

avoid the overfitting.  
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Input (independent 

variables) 

Parameters (Unit) Symbol 

Meteorological factors Weekly average maximum 

temperature (ºC) 

Tmax 

 Weekly average minimum 

temperature (ºC) 

Tmin 

 Weekly average 

temperature (ºC) 

Tavg 

 Weekly average minimum 

relative humidity (%) 

RHmin 

 Weekly average relative 

humidity (%) 

RHavg 

 Weekly average 

atmospheric pressure (hPa) 

APavg 

 Weekly average sunshine 

duration (h) 

SD 

 Weekly average wind 

speed (m/h) 

WSavg 

 Weekly average rainfall 

(mm) 

Ravg 

Output (dependent 

variables) 

Parameters (Unit) Symbol 

Infectious diarrhea Weekly number of 

infectious diarrhea (case) 

WNID 

Table 3 Description of input and output parameters for constructing the prediction 

models (Wang, et al., 2015) 

In order to decide the best network configuration a comparative study of the number of 

neurons in the hidden layer was carried out. For this, first, several heuristic approaches 

were used. However, the obtained results vary from 2 to 19 neurons in the hidden layer. 

Thus, the network was trained twenty times for each number of neurons. The results 

showed that the lowest validation RMSE was achieved with 4 neurons. Besides, the 

comparison between different activation functions (linear, sigmoid and hyperbolic 

tangent functions) with different normalization ranges (0-1, 0.1-0.9, 0.05-0.95 and 0.05-

1) was made. The comparison results showed that the best results were yielded with a 

sigmoid activation functions in the hidden layer, linear function in the output layer and 

0.05-0.95 normalization. However, it is important to notice that they did not use negative-

positive range such as -1-1 or -0.95-0.95 with the hyperbolic tangent function. Finally, a 
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comparison study was made for different learning rates in order to analyse the influence 

over the weight and biases adjustment. The study determined that the learning rate value 

of 0.3 was the best one. 

Using the best network configuration, it was trained 20 times and the yielded results were 

40.367 root-mean-square error (RMSE) and 0.2556 mean absolute percentage error 

(MAPE). The performance of the net support vector regression (SVR), random forest 

regression (RFR) and multivariate linear regression (MLR) was also compared. The 

results clearly showed that their solution outperforms the other modelling approaches. 

In another work (Ticknor, 2013), a three layered feedforward network was used for stock 

market forecasting. The network inputs were the daily stock data (low price, high price 

and opening data) and other six financial indicators that were not indicated in the paper. 

Thus, nine inputs, without lagged data, were used to predict the next day closing price of 

the chosen stock. Besides, the Levenberg-Marquardt backpropagation algorithm for 

training and the Bayesian regularization to improve the generalization of the network to 

new data were selected. 

In this case, two stock during 734 trading days were collected, from 4 January 2010 to 31 

December 2012. Thus, each sample consisted of daily low price, high price, opening 

price, close price and trading volume. The data was divided into two sets: 80% for training 

the net and the rest 20% for testing. It is important to highlight that for Bayesian 

regularization it is not necessary to have the validation dataset. Firstly, the net was trained 

to determine the number of hidden neurons in the hidden layer. Thus, the number of 

neurons was adjusted, at each iteration, until a constant number of effective parameters 

were found (Table 4). The network provides on average more than 98% fit to one-day 

ahead for both stocks. 

Stocks Neurons Layers Effective number of parameters 

Microsoft (MSFT) 5 3 20.0 

Goldman Sachs (GS) 5 3 20.2 

Table 4 ANN parameters for stocks in initial experiment (Ticknor, 2013) 

Besides, in the work the ANN performance was compared to Fusion model with weighted 

average (Hassan, et al., 2007) and ARIMA model. For the comparison study, other stock 

market values (Apple and IBM) from 10 February 2003 to 21 January 2003 were used. 

This dataset was divided as follows: from 10 February 2003 to 10 September 2004 for 

training, and from 13 September 2004 to 21 January 2005 for testing. The proposed ANN 
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with Bayesian regularization performance was as good as the other models. The authors’ 

conclusion was that the addition or substitution of other technical indicators could 

improve the quality of the ANN model. 

Likewise, for forecasting stock price, an ANN was used (Laboissiere, et al., 2015). 

However, in this case the objective was to predict the maximum and minimum stock 

prices of three Brazilian power distribution companies. One multi-layer perceptron neural 

network was used for each stock value maximum and minimum, six in total. The 

historical data considered begins in January 2008 and ends in September 2013. Before 

training the data, it was pre-processed in order to filter possible fluctuations and, thus, 

evidence trends. To do this, the Weighted Moving Average (WMA) was calculated for a 

window of 30 days. 

From a bunch of 40 possible inputs, based on a correlation analysis between a possible 

network input and the output, those that had the highest correlation were selected. It is 

important to underline that they considered the previous days values up to five in some 

of the inputs. Thus, in some cases only the previous value was enough to predict the next 

day price. Nevertheless, in order cases, five days delayed inputs yielded the highest 

correlation value. Once the inputs were selected one and two hidden layers networks were 

considered. For one hidden layer 5, 10, 15, 20, 25 and 30 neurons were tested. For the 

case of two hidden layers 5, 10, 15, 20 and 25 neurons in the first hidden layer and 10, 

15, 20, 25 and 30 neurons in the second hidden layer were assumed. The networks were 

trained using Levenberg-Marquardt training algorithm and the sigmoid function as the 

activation function. In the paper it is not mentioned how many times each configuration 

is trained. 

The results showed that in all the cases the best results were achieved using only one 

hidden layer with 5 neurons. The forecast results for maximum day stock prices were 

lower than 0.9 (MAPE value) and lower than 2.1 (MAPE value) for minimum day stock 

prices. Besides, the results indicated that except in one case, in all the cases the results 

were better using the selection-based inputs instead of all of them. 

In (Chae, et al., 2016) an ANN was used for forecasting sub-hourly electricity usage in 

commercial buildings. Initially, nine potential inputs were considered. In order to measure 

the importance of each input over the output, the random forest algorithm was used. The 

results revealed that the inputs related with time (day type and time interval stamp) and 

the operation condition had the strongest influence. From the rest of the inputs, outdoor 
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air temperature and relative humidity contributed primarily to energy usage. In fact, the 

other weather variables were negligible. 

For training the net the Levenberg-Marquardt algorithm with the Bayesian regularization 

was employed. Besides, in each neuron of the hidden layer the logistic sigmoid activation 

function was selected. To generate the database, every 15 minutes data values were 

collected from 1 to 31 of July of 2012, weekdays and weekend. However, they had to 

remove one day data due to the sensor malfunction. Hence, the database was composed 

of 2880 points. For training, the dataset was divided randomly, while new dataset (August 

1-3 of 2012) was collected to evaluate the network. 

 

Figure 12 Average MSE in the evaluation with neurons numbers and time delays 

(Chae, et al., 2016) 

To select the network parameters such as neurons in the hidden layer and time-delayed 

inputs, a comparative study was accomplished. The total number of neurons in the hidden 

layer varied from 10 to 90, while the delays tested were 1, 2, 4, 6 and 8 (up to 2 hours). 

Each network configuration was trained 50 times to evaluate the stability and robustness 

of the model. As the evaluation test shown (Figure 12), the addition of neurons in the 

hidden layer and time delays could improve the performance and generalization of the 

net. However, considering the complexity and computation time of the model, the author 

thought that was reasonable to have 50 neurons in the hidden layer and t-6 time delay for 

input-feedback for the network in their study. For this configuration, the MSE ranges 

from 0.0071 to 0.0096. It is important to note that in the evaluation procedure the 
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calculated electricity usage is used as input-feedback instead of the actual ones used in 

training. Besides, they also studied the influence of the size of training dataset over the 

network performance. They compared 1, 2, 3 and 4 weeks dataset. The results clearly 

shown that the best results were achieved with the largest dataset (4 weeks), being the 

RMSE value 7.3%. 

Therefore, it can be seen that feedforward neural networks are widely used for modelling 

dynamic evolutions. Sometimes they are used for forecasting one-step ahead using as 

input one time delayed real output instead the predicted output. However, in other cases 

they are used with predicted outputs as delayed inputs for multi-step ahead prediction. In 

fact, for multi-step ahead prediction, the predicted output in time t-1 has to be the input 

of the net in the next time-step. Nevertheless, the designer has to manage the input buffer; 

in other words, the network is not capable to do this and, consequently, it has to be 

managed externally. It is because of this that some researchers use the recurrent neural 

networks since it is not necessary to deal externally with the delayed data (i.e. this is done 

internally). 

3.2.2 Modelling dynamic evolutions using recurrent neural networks 

Unlike the case of feedforward neural networks, in order to model dynamic evolutions 

with Recurrent Neural Networks three different approaches can be found (Figure 13). 

Thus, in most of the cases the aim is to forecast future values (one step ahead or multi 

step ahead) using for training the net a dataset compound of historical past values (Figure 

13 approach 1). Actually, there is available a huge continuous historical data. In this case, 

the user hast to select the time range (minutes, days, months or years) to train and validate 

the model. For example, stock exchange, weather, unemployment rate or floods 

forecasting can be solved with this approach. The next approach is quite similar, however, 

the training dataset is compound of initial real values instead of historical past values 

(Figure 13 approach 2). In fact, in this application field, there are not historical values 

because the dynamic evolutions have an initial point (and not a continuous historical time) 

such as gear life-cycle where the gear at the beginning is new and with the time degrades.  

Finally, the third approach is based on the prediction of a complete dynamic evolution 

without measuring any past or initial value (approach 3). Mostly, the historical or initial 

values are not available because it is difficult to measure them. Additionally, in other 

cases the aim is to generalize to new conditions without measuring any data. Thus, 
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another dynamic evolution is used to train the net and then, the net is able to predict a 

new complete one without measuring any initial data. 

 

Figure 13 Three different approaches for modelling dynamic evolutions with 

recurrent neural networks 

3.2.2.1 Modelling based on historical data 

It can be noticed that most of the application fields analysed in this section make use of 

historical continuous data, data that do not have a fixed initial point neither a fixed final 

point. Further, this data is defined by an absolute time, being this seconds, minutes, hours, 

days, months or years.  

In (Liu, et al., 2015) the Elman recurrent neural network was used for predicting the 

dynamic evolution of the wind speed because, as the author said, due to the local 

feedback, the network has excellent nonlinear processing capacity. 

In this work five wind speed time-series of 800 samples were used.  However, before 

training the network, in the proposed approach, the collected data was pre-processed. 

First, the original wind speed time series is decomposed into two components (the 
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appropriate components and the detailed components) using the Wavelet Packet 

Decomposition (WPD) mathematical algorithm. The detailed components are further 

decompose into Intrinsic Mode Functions (IFMs) time series adopting the Fast Ensemble 

Empirical Mode Decomposition (FEEMD) to decrease more the non-stationary 

components. 

Once the data is pre-processed, only one time-series is used to configure the Elman 

network: the training algorithm and the number of neurons. Thus, the wind speed time 

series chosen was divided into two datasets, the first 600 points were used to build the 

prediction model, and the samples from 601 to 800 were used to verify the model. 

However, in the paper it is not mentioned if the training dataset is divided into training 

and validation or not, not even what strategy is used to improve the generalization. First, 

a comparison of different training algorithms was carried out. The results showed that the 

algorithm that yielded the lowest mean absolute error (MAE), mean absolute percentage 

error (MAPE) and root-mean-square error (RMSE) was the Levenberg-Marquardt 

algorithm. However, it is not clear the configuration used to compare the different training 

algorithms. Based on the figure showed in their work, one could think that 24 neurons in 

the hidden layer and 1 delay unit in the feedback were used. However, in the paper it is 

not clear. After selecting the training algorithm, a time series theory based approach was 

used to select the best number of neurons for the network. Thus, after several 

computational steps, the best time series was decided as ARIMA (5, 1, 0). Therefore, 

based on the ARIMA equation, the number of neurons in the input (six) and output layer 

(one) for the Elman network were selected. 

With the network configured, the approach with a WPD-Elman model (with and without 

the FEEMD pre-processing), Elman, MLP and ARIMA model were compared, with the 

raw data for the Elman, MLP and ARIMA approaches (for the WPD-Elman de raw data 

is pre-processed) for one, two and three steps ahead. The results showed that for all the 

cases the WPD-FEEMD-Elman solution outperforms the other ones. 

The Nonlinear Autoregressive with eXogenus inputs (NARX) neural network was used 

in another work for modelling the photovoltaic (PV) system power production (Vaz, et 

al., 2016). It is important to highlight that the NARX has a feedback from the output layer 

to the input, like the Jordan network and, also, tapped-delay inputs (Figure 14). 
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Figure 14 Nonlinear Autoregressive with eXogenus inputs (NARX) neural network 

(Vaz, et al., 2016) 

The inputs selected to model the PV dynamic evolution were time series of 

meteorological data (solar radiation and ambient temperature) and five geographically 

separated households PV systems data. These data was collected from 1 August 2012 to 

31 July 2013. The observation between 21:00 to 6:30 were removed. Finally, to complete 

the data pre-processing, all time series were normalized between 0 and 1.  Besides, the 

dataset was divided into two different subsets for different seasons (“winter” and 

“summer”). In “winter”, the data from August 2012 to December 2012 were used to train 

the net, and the data from January 2013 for forecasting. Similarly, the “summer” dataset 

was generated using records from February 2013 to June 2013 for training, and records 

of July 2013 for prediction. 

Once the data is pre-processed, it is time to configure the artificial neural network, the 

NARX network in this case. The authors selected the MatlabTM Neural Network 

Toolbox’s default value, 10 neurons in the hidden layer, because, as they stated, after 

testing a different number of neurons in the hidden layer the final results were negligible. 

In the same way, the variation of the number of delays in the tapped-delay-lines (TDLs) 

in the final results was irrelevant, thus, two delays were used. However, in the paper is 

not specified if the two delays correspond to the input delays and/or the feedback delays. 
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Besides, the hyperbolic tangent was selected as the activation function of the neurons in 

the hidden layer and the linear function for the output neuron. Therefore, due to the 

hyperbolic tangent activation the data had to be normalized, again, to the [-1, 1] range. 

Thus, the data was two times normalized. However, no claim was made about the 

improvements of this decision. 

To train the net the Levenberg-Marquardt algorithm was selected and the early stopping 

method was used to avoid the overfitting and improve the generalization. The training 

dataset was divided as follows: 70% for training, 15% for validation and 15% for testing. 

To select the best network, the authors designed five different scenarios to analyse the 

impact of using variations of the exogenous inputs:  

1. Four PV system data as inputs 

2. Two PV system data as inputs 

3. Meteorological data as inputs 

4. Four PV system and Meteorological data as inputs 

5. Multistep ahead forecasting 

In the first four scenarios, the results shown that the best performance was obtained by 

combining all the available inputs (4th case). Besides, “winter” forecasts showed lower 

normalized root mean square error (nRMSE) than “summer” ones. The authors suggest 

that it might be a consequence of the low variability depicted in overcast days. On the 

other hand, the difference between one step ahead and multistep ahead prediction was 

very significant. Indeed, as the authors said, their NARX model appears to be more 

suitable for short-time prediction horizons. 

Also the NARX network was used for predicting oil price movements (Godarzi, et al., 

2014). For modelling the dynamic evolution of the oil price eight demand-side factors 

with potential impacts on oil price movements were analysed. To perform this analysis, 

first, a time series model was developed. Then, this model was optimized identifying and 

excluding the negligible inputs using a step-by-step t-statistic analysis. Finally, using 

Interdependent Variable Lags (IVL) the most important variable lags over the output were 

identified. Thus, for some inputs the actual value was selected while in other inputs the 

value t-1 or t-2 were chosen. 

Once the time series model was defined, the NARX model inputs and lags were chosen 

based on the time series model. The data from 1974 to 2004 were used to train the net, 
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and the data from 2005 to 2009 were used to test the NARX model. Besides, the input 

and output data were normalized within the range [-10, 10] and [-1, 1], respectively, in 

order to obtain more precise results while reducing the required computing as authors 

alleged. On the other hand, the optimum number of neurons in the hidden layer was found 

using by trial and error, being this number 25.  

The results exposed that the prediction of the net was accurate (Figure 15). Besides, they 

compared the performance of the NARX net with a feedforward neural network and the 

time series model. The mean absolute error (MAE) shown that the NARX model (4.96%) 

accuracy was clearly higher than the time series model (6.47%) and the feedforward 

neural network (8%). 

 

Figure 15 Comparison of the NARX model predicted oil price versus the real one 

(Godarzi, et al., 2014) 

In another work, a recurrent neural network was used for predicting the urban stormwater 

runoff (Zhang, 2011). The input data used were precipitations and discharges from 31 

July to 20 November 2010. The raw data were randomly divided into 34721 time steps. 

Thus, 70% of the data were used to train the network, 15% for validation, and the rest 

15% for testing the network. 

The RNN architecture with lagged inputs and feedback from the output layer to the input 

layer was selected. Besides, the activation function of the neurons in the hidden layer was 

the sigmoid one, while for the output neurons the linear activation function was chosen. 

The network was trained using the Levenberg-Marquardt backpropagation algorithm. In 
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addition, the early stopping was used to avoid the overfitting of the net during the train 

and improve the generalization of the net. It is significant to remark that the training of 

the net was performed in open loop. Open loop training allows to train the net using the 

real past values to predict the correct ones. After training, the net may be converted to 

close loop.  

Finally, the number of neurons in the hidden layer and the number of delays were selected 

by trial and error after training the net plenty of times. The best number of neurons was 

50, and the best number of delays in the tapped delay was 11. These numbers were the 

maximum affordable not to be out of memory. In the paper it was not said if the delays 

correspond to the input layer, feedback or both. With this configuration the correlation 

between the output and the target felt approximately the 95% confidence. Thus, the 

conclusion was that the model was adequate for modelling the urban storm runoff. 

Also, another Elman modification known as the Layer-Recurrent Neural Network 

(LRNN) was used for 5-day wind and power forecasting. This network, as the Elman, has 

a feedback from the output of the hidden layer to the input. However, the LRNN provides 

more flexibility because it is possible to have more than one hidden layer and different 

transfer functions in each layer (Beale, et al., 2012).  

In this particular case the objective was a bit different from the previous works. In fact, it 

could be said that it is a bridge between modelling dynamic evolutions using historical 

values and modelling evolutions using initial real (measured) values. In particular, one-

month time series data of six parameters sampled with 5 and 10 minutes time steps were 

obtained from two different wind stations A and B, respectively. Therefore, in each 

station 22.320 points were collected. However, the difference is that the data were used 

as follows: the first day of the month was used for training the net, and the next 5 days 

were predicted by the net. Then, the first 6 days real data were used for training and the 

rest 5 days were predicted and so on.  Thus, the training was done using the real data 

instead of the predicted one. 

Therefore, two independent networks were used for modelling the dynamic evolution of 

wind speed and wind power. Each net had five inputs and one output. Besides, only one 

feedback delay was selected without carrying out any analysis. However, for the neurons 

in the hidden layer a comparison was done for three different numbers of neurons: 5, 15 

and 24. The Levenberg-Marquardt algorithm and early stopping were selected for training 

and avoid overfitting, respectively. Besides, for the hidden layer neurons the hyperbolic 
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tangent transfer function was used while in the output neurons the linear activation 

function was used. However, it is not mentioned in the paper if the data were normalized 

or not, neither how many times each network configuration was trained. 

The results shown that the LRNN with five neurons in the hidden layer was almost 

useless. However, in the station A the best results were yielded with 24 neurons in the 

hidden layer whereas in the station B the lowest errors were produced with 15 neurons in 

the hidden layer. Besides, new data was selected and a comparison was made between 

the results achieved with the station A (with 24 neurons in the hidden layer) and data 

collected from a new station, not used in the previous analysis. In both cases the results 

were quiet similar. At station A an overall root symmetric mean absolute percentage error 

(sMAPE) value of 0.003%, mean absolute scaled error (MASE) value of 0.46%, and 

standard error of 0.968% were yielded, while in the new station the error values were 

sMAPE of 0.003%, MASE of 0.676%, and standard error of 1.129%. However, it must 

be noted that for the new data the network was retrained, i.e. it is not used the network 

trained with the data obtained from station A. 

3.2.2.2 Modelling a complete dynamic evolution with initial measured values 

This strategy is quiet similar to modelling dynamic evolutions using historical real values, 

mostly one-step ahead prediction is used for modelling the dynamic evolution. Unlike 

modelling with historical values, the prediction window is bounded, i.e. it has an initial 

point and an end point, hence, there is not an historical continuous past data available. 

In order to model the dynamic evolution of the health condition of gears a modified RNN 

was used (Tian & Zuo, 2010). In particular, the modified RNN had a feedback from the 

output layer to the input (Jordan network) and another feedback from the output of the 

hidden layer to the input (Elman network). However, there was a slight difference. In the 

Jordan context layer (feedback layer) one neuron obtains the predicted output one-time 

delayed whilst another neuron obtains the error between the real and predicted output 

one-time delayed, thus, both the one-step delayed output and the error are feedbacked to 

the input of the network. Therefore, this network architecture only can be used for one-

step forecasting because the real output value at t-1 is necessary. Besides, two neurons in 

the input layer were used because, as the authors stated, every data point in a time-series 

is only strongly dependant on the previous two values. Finally, the number of neurons in 

the Elman context layer was equal to that in the hidden layer. However, no mention was 

made about the feedback delay or self feedback weight. 
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The total duration of the data used was 18.8 hours and 141 vibration data points. In fact, 

at the end of the 18.8 hours a gearbox failure occurred. However, not all the data were 

used because up to 110 data points the RMS value was rather flat. Thus, only data points 

from 90 to 141 were used because the objective was to predict the health condition of the 

gearbox when it starts to deteriorate. Actually, data points from 90 to 135 were used to 

train the net and the point number 136 was predicted. Then, the network was trained using 

data points 90 to 136 and the point number 137 was predicted and so on. 

For training the net, the exact gradient based training algorithm was selected. Besides, 

two neurons in the hidden layer were chosen based on the size of the problem, as it was 

said in the article. In the neurons of the hidden layer the sigmoid function was used and 

the linear one in the output neuron. However, no reference is done about the data 

normalization. Finally, the training and prediction process was conducted ten times, and 

the average of the normalized mean squared error (NMSE) was used to compare the 

prediction performance. 

The average NMSE for training and prediction were 0.0012 and 0.1183, respectively 

(Figure 16). Besides, a comparative study was carried out to compare the results of the 

proposed RNN architecture and another RNN architecture, the fully connected recurrent 

neural network (FCRNN). Furthermore, for each architecture two different configurations 

were used: for the ERNN networks, one and two neurons in the hidden layer were used, 

respectively, while for the FCRNN two and three were selected, respectively. The 

comparison results showed that the ERNN outperforms the FCRNN network in both 

cases, i.e. one and two neurons in the hidden layer. Besides, the ERNN network with two 

neurons in the hidden layer yielded lower NMSE error than the network with one neuron 

in the hidden layer. 

It can be noticed that the strategy is quiet similar to modelling dynamic evolutions using 

historical real values, and mostly one-step ahead prediction is used for modelling the 

dynamic evolution. Unlike modelling with historical values, the prediction window is 

bounded, i.e. it has an initial point and an end point. However, as described in the next 

section, other works have tried to predict the complete dynamic evolution bounded in 

time, without using any initial value for training the net. Moreover, other dynamic 

evolutions are used for predicting new ones. 
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Figure 16 The prediction results. (o) represents the real value and the (*) the 

predicted value (Tian & Zuo, 2010) 

3.2.2.3 Modelling based on another complete dynamic evolution 

When it is not possible to measure the historical or initial data, a new and complete 

dynamic evolution has to be predicted. For that, the net is trained using a complete 

dynamic evolution and, after, the net is capable to predict a new one. 

In (Teufel, et al., 2003), the objective was to model the glucose metabolism using the 

Elman network. Thus, the model was able to predict the glucose for three days without 

measuring the glucose of previous days neither at the beginning of the first day. However, 

as suitable patient data were not available, an analytical glucose model was used to 

generate a training and validating dataset. Thus, the train and validation dataset was 

generated for three days with a temporal resolution of one minute. 

The network inputs were the ingested carbohydrates and the injected insulin. Actually, 

these inputs were the same inputs as the ones considered in the analytical glucose model. 

Both inputs were events that occurred only a few times a day. Besides, only one output 

neuron with linear activation function was used for blood glucose concentration.  On the 

other hand, for the neurons in the hidden layer the hyperbolic tangent function was 

selected. These parameters were fixed before the training process. However, the neurons 

in the hidden layer varied from one to ten. Besides, during the training the weights 

including the self feedback weights, which make reference to the data to remember in the 

feedback, were adjusted. 
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Figure 17 Training results of the second day (Teufel, et al., 2003) 

The training results showed that the ten-neuron net yielded the best results for the training 

data (Figure 17). Nonetheless, no reference was done to the best self feedback weight. 

For testing the generalization capabilities of the trained net, the amounts and times of 

meals and insulin injections were varied. The results clearly indicated that the net with 

more neurons in the hidden layer modelled better the glucose metabolism (Figure 18).  

 

Figure 18 Generalization test of the second day (Teufel, et al., 2003) 
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3.3 Conclusions 

In real life, most of the systems have a dynamic behaviour and actual events that depend 

on past events. When dealing with this type of systems, ANNs have shown that are 

suitable and widely used for modelling those dynamic evolutions. In order to obtain the 

best reliable models, the data selection and pre-processing are vital to achieve the best 

prediction performance. In some cases, it is possible to select the best inputs using 

different types of analysis such as regression or ARIMA, whereas in other cases the 

knowledge of the experts in the topic to model is crucial.  

The review of the state-of-the-art shows that in most of the cases the prediction of 

dynamic evolutions is based on the past or historical events. Thus, the ANN is trained 

with past historical data for predicting future events. Mostly, these predictions are one-

step ahead, ergo, for predicting t+1 event, t real (measured) values are used. For the one-

step prediction, feedforward neural networks or recurrent neural networks are used. In 

fact, although the RNN are more powerful, in one-step forecasting the feedforward neural 

networks have shown great performance. This is because in one-step forecasting the past 

real values lagged inputs are highly important and the feedforward neural networks can 

use them with few external manage by the designer.  

However, for multi-step ahead the problem is more complex. In this case, for predicting 

future events the network is not fed with real (measured) past values (Section 3.2). 

Actually, in t+1 the output is usually predicted using the t, t-1, … t-n output predicted 

values depending of the prediction horizon i.e. usually, if the aim is to predict three-step 

ahead, t and t-1 are predicted values and t-2 is a real value. It is true that it can be 

accomplished with feedforward neural networks. However, the designer has to develop 

an external program to convert the predicted outputs into network inputs for the next time 

step. For recurrent neural networks this explicit management is not necessary because the 

net performs the data transfer by itself through its feedbacks. Thus, it is said that the RNNs 

have “memory” thanks to the feedbacks. The review of the state-of-the-art shows that 

three main RNN topologies are used for modelling dynamic evolutions using historical 

values: the Elman network, the Jordan network and the NARX. However, it is possible 

to develop a new and more specific RNN using new or combining different feedbacks. 

Aside from modelling dynamic evolutions using historical past values, in other cases, the 

objective is to predict the future events using for training initial values. The training 

strategy is almost the same. Moreover, in this application field also one-step or multi-step 
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ahead strategies can be used. Thus, the only difference is based on the application field. 

Actually, in these cases the prediction window is fixed. It has an initial start point and an 

end point.  

However, some application fields require a third approach that is totally different. In this 

approach, historical or initial data are not available, often because measuring real values 

is time and resource consuming. In those cases, the aim is to predict a complete dynamic 

evolution but without initial or real values. Thus, the training strategy is completely 

different. First, the inputs are different from the output of the network. Second, the 

prediction cannot describe neither one-step ahead neither multi-step ahead because a new 

complete dynamic evolution is predicted. Finally, it makes no sense to use feedforward 

neural networks because the network should have as many inputs as time-steps the 

complete dynamic evolution has. Therefore, it is highly recommended, if not mandatory, 

to use recurrent neural networks. 

Another important aspect to highlight is the generalization: given the nature of the 

undertaken applications, the scope of generalization in the literature review is limited to 

the target dynamic evolution, i.e. usually only one dynamic evolution is used for training 

the net and another one is predicted. 

Therefore, in order to model the specific grinding energy, wheel wear and surface 

roughness, it is crucial to predict a complete dynamic evolution without measuring any 

initial real value. Besides, as said in section 2.3, it is crucial to break with the wheel-

workpiece pair in order to develop more industrial useful models. Thus, a variant of the 

third dynamic evolution modelling approach is proposed with a higher generalization 

capability. 

Besides, it is reasonable to think that one ANN will not be capable to model all the 

grinding wheel and grinding conditions. Thus, under the selected application field, a 

methodology for generating new ANNs for different application fields should be 

developed with generalization capabilities concerning new grinding wheels and new 

grinding conditions. 
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4 ANN BASED STRATEGY FOR 

ESTIMATING GRINDING DYNAMIC 

EVOLUTION VARIABLES 

The ANN strategy for estimating grinding dynamic variables can be divided 

into two main sections. On one hand, the first section is the configuration 

founded on the knowledge of the process. Hence, the ANN input/output and 

architecture are decisions taken through the analytical models and 

application objectives. However, other decisions like the training algorithm 

or the generalization method are taken after studying the state of the art. The 

ANN inputs are selected based on the analytical models and the Layer-

Recurrent Neural network is chosen since it is more powerful for modelling 

dynamic evolutions and because it has a feedback from the output of the 

hidden layer to the input of the hidden layer, thus, it functions without any 

initial output value. As to the ANN training configuration, the Levenberg-

Marquardt training algorithm is selected due to the fast convergence. 

Besides, for improving generalization, the Bayesian regularization is used. 

Finally, in order to select the best network, a two-phase methodology is 

presented. First, the phase called “coarse tuning” is done. During this phase 

the aim is to obtain the network structure around which the lowest MSE test 

errors are yielded. Given the best structures inferred in the coarse tuning, the 

so called “fine tuning” is carried out in neurons in the hidden layer-delays 

structure taken one by one within the specified range. During the fine tuning, 

the MAME metric is used instead of the widely used for evolution analysis 

Mean Absolute Percentage Error (MAPE) because from the grinding process 

point of view is easier to measure the error using absolute errors instead of 

percentage ones.   

In order to model the dynamic evolution of the grinding main variables such as wheel 

wear, surface roughness and specific grinding energy a general methodology is described 

in this chapter. This methodology is based on the knowledge of the grinding process. 
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Thus, first, the general strategy is described. This strategy is based on the analytical 

models that link different grinding variables. Second, based on the general strategy, the 

ANN based methodology is described. This description is based on selections such as the 

ANN inputs and outputs or architecture. In fact, these decisions are based on the 

knowledge of the process extracted from the analytical models.  

4.1 General strategy 

The objective is to model the complete dynamic evolution of the surface roughness, the 

wheel wear and the specific grinding energy. Thus, the equations 1 and 2 (Section 2.2.1) 

show that the surface roughness and the specific grinding energy are closely related with 

the wheel wear. Besides, these variables are also related with the wheel characteristics 

and cutting conditions. However, this relationship is highly non-linear. Therefore, the aim 

is to model this non-linear relationship using artificial neural networks.  

As said before, the surface roughness and the specific grinding energy are related with 

the wheel wear, expressed through the product C∙r, where C is grain density and r is the 

grit shape factor. Commonly, C∙r can be considered as a single factor related to the surface 

topography and surface wear of the grinding wheel. Therefore, the surface roughness and 

the specific grinding energy are dependent on the state of the wheel wear. Actually, these 

two variables are not static values and change while more parts are machined (see Figure 

5 of Section 2.1). Thus, for a more reliable model of the surface roughness, the wheel 

wear and the specific grinding energy, it is highly important to model the dynamic 

evolution of them while the state of the wheel is changing. In addition, the models have 

to show the relationship between the wheel characteristics and the cutting conditions. 

Thus, in order to show this relationship, the inputs of the model have to represent both 

the wheel characteristics and cutting conditions.  

On the other hand, as show in Section 3, the ANNs are suitable for modelling highly 

nonlinear systems like those represented by the equations 1 and 2 of Section 2.2.1. 

Besides, artificial neural networks are excellent solution for modelling dynamic 

evolutions (Section 3.2). Actually, one usual application of ANNs is modelling dynamic 

evolutions where the future events are predicted based on past or previous events. 

However, in this case there are not data available because the aim is to model the grinding 

variables without measuring or even carrying out the operation. Thus, the strategy for 
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ANN modelling of the dynamic evolution of grinding variables is focused on giving 

(predicting) the real value of the complete dynamic without initial real values with the 

capability to generalize to new grinding wheels and grinding conditions not used during 

the training of the net.  
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Figure 19 Diagram of the ANN based strategy for estimating grinding dynamic 

evolution signals 



Recurrent neural Network Based Approach for Estimating The Dynamic Evolution of Grinding Process 

Variables 

50  Ander Arriandiaga Laresgoiti 

Therefore, as can be seen in Figure 19, the ANN strategy for estimating grinding dynamic 

variables can be divided into two main sections. On one hand, the first section is the 

configuration founded on the knowledge of the process. Hence, the ANN input/output 

and architecture are decisions taken through the analytical models and application 

objectives, as well as restrictions such as generalization to new grinding wheels or 

predicting complete dynamic evolutions without initial real values. However, other 

decisions like the training algorithm or the regularization method are taken after studying 

the state of the art.  

On the other hand, the second section refers to decisions based on the results of a 

comparative study. For example, the network is trained with different number of neurons 

in the hidden layer and comparing the training results the appropriate number of neurons 

in the hidden layer is chosen. In fact, in most of the works related to Artificial Neural 

Networks, parameters such as the number of neurons in the hidden layer are selected with 

a trial-and-error approach.  

Finally, it is noteworthy that the initial aim of this work is not to create new architectures, 

training algorithms or new generalization techniques. Moreover, one of the pillars of the 

work is to use existing architectures, training algorithms and generalization techniques 

that can be found in commercial software packages. For this work, the Neural Network 

Toolbox provided by MatlabTM has been used. 

4.2 ANN configuration 

When addressing the use of ANNs, some considerations must be taken related with the 

inputs and outputs of the network and the network architecture. 

Besides, it seems unlikely that one unique ANN could be enough for modelling the whole 

problem space since all the grinding wheels commercially available and grinding 

operations cover an extremely large number of components and requirements. Since one 

of the objectives of this work is to show the potential of the methodology for modelling 

the dynamic evolution of the specific grinding energy with RNNs, an average area of 

application related to the grinding of steel parts with non-extremely demanding surface 

finish has been selected. 
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4.2.1 ANN input/output selection 

Selecting the inputs and outputs of the Artificial Neural Network is vital because the 

performance of the final network is heavily dependent on the input variables used for 

developing the ANN. Thus, in this work the inputs selection criteria are based on the 

analytical model available and the knowledge of the researchers in the field of grinding 

process.  

Besides, based on the mathematical expressions of equation 1 and 2 (Section 2.2.1), 

grinding wheel characteristics and grinding conditions are used as inputs of the network. 

On one hand, for the application field selected, the grinding wheel is characterized by the 

grit size and the wheel hardness. These inputs are correlated with the product C∙r. In 

Section 2.1 a brief description of these inputs is done. On the other hand, for 

characterizing the grinding process, the specific material removal rate (Q’) and the speed 

ratio (qs) are used. The specific material removal rate (Q’) is defined as the material 

removal rate of the workpiece per unit width of wheel contact while the speed ratio (qs) 

is the ratio of the wheel speed over the workpiece speed (Marinescu, et al., 2004). 

Actually, these inputs describe the operation carried out and are previously adjusted in 

the machine Computer Numerical Control (CNC). 

4.2.2 ANN architecture 

The architecture refers to how the artificial neurons are connected between them. As 

explained in Section 3.1.3, one artificial neuron is not enough to model the complex 

relationship between the inputs and the outputs of the system, then, frequently more than 

one neuron have to be used, i.e., more than one artificial neuron working in parallel are 

needed. Each of this parallel working neurons set is denoted as a ‘layer’. Therefore, 

combining one or more layers’ new network architectures are designed to solve a specific 

problem. As shown in Section 3.2, the researchers have made used of feedforward or 

recurrent neural networks for modelling dynamic evolutions. Multilayer perceptron 

neural networks with lagged inputs have shown good performance for modelling dynamic 

evolutions one-step ahead (t+1). Moreover, with out-network manage it is possible to use 

feedforward networks for multi-step ahead prediction.  

However, in the most restrictive case (the estimation of the specific grinding energy) 

where all the network inputs (wheel characteristics and grinding conditions) are constant 

values it is impossible to use feedfordward networks because for each “time-step” of one 
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complete evolution the inputs have the same value. However, RNNs have a feedback of 

the output of the network and/or the hidden layer and this feedback gives information 

about the previous states. Thus, the network has a “new input” about the previous states 

of the output of the network and/or the hidden layer. Besides, the RNN have shown better 

performance dealing with dynamic evolutions due to the feedbacks of their network 

structure. In fact, it is said that these feedbacks give to the network “memory” capacity.  

Amongst the recurrent neural networks used for modelling dynamic evolutions, the 

Jordan network, the Elman network and the Nonlinear AutoRegressive network with 

eXogenous inputs (NARX) are the most used ones. When using the RNN for multi-step 

prediction, the use of recurrent neural networks with output feedback (Jordan and NARX) 

and hidden layer output feedback (Elman) used to be quite different, though. 

In the case of Jordan and NARX networks, mostly, the network is used with real output 

values, and the real output values of the feedback are gradually replaced by the predicted 

ones. Hence, at the first steps the network is used with the real values and when the 

prediction is going forward the real values are replaced with the predicted outputs. Thus, 

after that point the network works feed backing only predicted output values. 

However, with the Elman network is not possible to work like with Jordan or NARX 

networks because the output values of the output layer are not available. Therefore, the 

network handles to fill the feedback and provide feedback inputs to the net. Besides, the 

literature review has shown that the unique case where the aim was to predict the complete 

dynamic evolution without any initial or past value the Elman network was used with 

great results. 

Therefore, in this work the Elman based Layer-Recurrent Neural Network (LRNN) 

provided by the Neural Network Toolbox (MatlabTM) is used to model the dynamic 

evolution of the wheel wear and surface roughness in order to develop a reliable smart 

sensor as well as an estimator of specific grinding energy. The LRNN has a feedback 

from the output of the hidden layer to the input of the hidden layer, thus, it functions 

without any initial output value. However, unlike the Elman network, with the LRNN it 

is possible to have more than one hidden layer and different transfer functions in each 

layer.  
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Therefore, the selected network architecture has at least one hidden layer and a feedback 

from the output of the hidden layer to the input of the hidden layer. However, in this work 

only one hidden layer is used because a single hidden layer with enough sigmoid neurons 

and linear output neurons can approximate any continuous function (Cybenko, 1989). 

Thus, the selected network is similar to the network in Figure 10.  

4.2.3 Experimental database 

Under supervised learning, two factors have direct influence on the performance of the 

neural network: First, the ANN architecture and structure, and second, the 

representational accuracy of the training dataset (Philip, 2009). Thus, in order to get a 

suitable training and testing dataset, it is crucial to design a proper methodology of 

experiments that adequately cover the problem to be solved, as well as to configure the 

required acquisition system, together with the proper measuring devices and procedures, 

so as to acquire and store the experimental database. 

4.2.3.1 Experimental set-up 

As stated before, an average area of application related to the grinding of steel parts with 

non-extremely demanding surface finish has been selected as application field to 

demonstrate the potential of the presented methodology. Therefore, for this application 

field, the right grinding wheels and grinding conditions must be selected. The experiments 

carried out with these grinding wheels and grinding conditions will be used to generate 

the training dataset. 

In particular, the following grinding wheels are used to carry out the experimental tests 

that compose the training dataset:  

- 82AA36K6VW  

- 82AA70G6VW  

- 82AA100G6VW  

- 82AA100J6VW 

- 82AA701J6VW  

- 82AA36G6VW 

In the notation of the grinding wheels (see Figure 20) the first number and letters (4 in 

total) make reference to the abrasive type (see Section 2.1). In this case, all the grinding 

wheels use the same alumina abrasive type (82AA). Then, the next two numbers denote 
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the grit size of the wheel. In particular, the wheels with 36, 70, 100 and 701 grit sizes are 

used. The next letter makes reference to the hardness, K, G and J in this case. The next 

number is the reference number of the wheel structure. It can be noticed that in this work 

all the grinding wheels have the same structure number (6). Finally, the last two letters 

designate the bond material of the grinding wheel and, again, all the wheels have the same 

vitrified bond (VW). Thus, only the grit size and the hardness are used as network inputs.  

 

Figure 20 Scheme of the grinding wheels nomenclature used in this work 

On the other hand, as said in Section 4.2.1, the specific material removal rate (Q’) and the 

speed ratio (qs) are used for describing the grinding operations. In the experiments, the 

following values are used: 

- Material removal rate (Q’) (mm3/mm·s): 1, 2.5 and 4 

- Speed ratio (qs): 60, 80 and 100 

The grinding wheels and operation conditions of the experiments are summarized in 

Figure 21. 

Each experiment involves grinding a total amount of workpiece material up to 40,000 

mm3 because it is dependent on the wear of each wheel. Usually, grinding variables are 

referred to the unit wheel width (Marinescu, et al., 2004). In this case, since wheel width 

is 20 mm, the total specific volume of part material removed (V’w) in each experiment is, 
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therefore, up to 2000 mm3/mm. For an industrial example, in which competition 

motorcycle components are ground to the final shape, this value of V’w corresponds to an 

approximate number of 1300 machined parts. Actually, performing these experiments is 

a highly cost and time consuming task. 

 

Figure 21  Grinding wheels and grinding conditions used to carry out the 

experiments to generate the training database 

4.2.3.2 Acquisition system and measuring devices 

In order to train an ANN a database has to be generated. Thus, in order to create this 

database, experiments are carried out using the grinding wheels and cutting parameters 

shown in Figure 21.  

On one hand, during each experiment, values of surface finish and wheel wear are 

periodically measured, at different values of part material removed (V’w). Wheel wear can 

be calculated by periodically machining an aluminium plate and comparing the difference 

in wheel diameter. This is a common technique at lab scale (Marinescu, et al., 2004). 

Likewise, the actual roughness of the machined part is known by using a profilometer. In 

fact, four times is measured the surface roughness with the profilometer and, then, the 

mean is calculated. The measured values of both wheel wear and roughness are manually 

stored in software files known as experiment files so as they can be employed in the 

further training process. 
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On the other hand, for collecting the specific grinding energy, this can be easily calculated 

measuring the power consumption at the wheel spindle (see Figure 22). Thus, first the 

power consumption of the grinding machining is transformed into voltage signal using 

the Hall-effect based transducer UPC-FR provided by Load Controls. Then, this analog 

signal is transformed into digital signal using the A/D converter NI USB-6251 of National 

Instruments. This signal is stored at a sample and storage rate of 100 Hz in a PC. Finally, 

the acquired power consumption is transformed into specific grinding energy using the 

following equation:  

𝑒𝑐 =
𝑃

𝑄𝑤
                                                                                                                           (9) 

where P is the power consumption at the wheel spindle and Qw is the material removal 

rate of the operation. 

 

Figure 22 Acquisition system for collecting power samples 

4.3 ANN training strategy 

One of the main characteristics of the ANNs is their capability to learn from examples. 

Thus, the network is trained in order to learn the non-linear relationships between the 

inputs and output of the net. In fact, some network parameters are adjusted with real 

measured values during the training process. In this case, the parameters to adjust are the 

network weights, the biases, the number of hidden neurons (HN) and the number of delays 

(D) of the feedback. For that purpose, the network is trained with real experimental tests 

available in the previously defined database. Thus, first the training of the network has to 

be configured and then the training dataset. 

Danobat FG-600-S
UPC-FR 

(Load Controls)
NI USB-6251

Laptop 

(Windows 7)
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4.3.1 ANN training configuration 

As said in Section 3, one of the main characteristics of the ANNs is their capability to 

learn patterns through examples. All the approaches analysed in Section 3.2, use the 

supervised learning paradigm. Thus, to the given network inputs the desired outputs are 

showed during the training phase. Since in this case the desired outputs are available, in 

this work also the supervised learning is used. 

4.3.1.1 Training algorithm 

Concerning the training algorithm, different approaches can be found. The most common 

is to use a backpropagation (BP) based training algorithm to minimize the output error 

and update the network weights and biases. In some cases optimization methods not based 

on backpropagation such as genetic algorithms or Particle Swarm Optimization (PSO) 

can be used in order to minimize the output error and found the global minimum for a 

giving weights and biases. However, when the network size is big (considerable number 

of weights and biases) the optimization methods not based on backpropagation are slow. 

Furthermore, with the LRNN the number of weights increases significantly due to the 

neurons in the context layer due to the feedbacks. Thus, in this work a backpropagation 

based learning algorithm is used.  

Among different backpropagation based training algorithms, one of the most used is the 

Levenberg-Marquardt optimization algorithm due to its fast convergence and efficiency 

(Hagan & Menhaj, 1994).  While backpropagation is a steepest descent algorithm, the 

Levenberg-Marquardt algorithm is an approximation to Newton's method. The 

Levenberg-Marquardt modification to the Gauss-Newton method is:   

∆𝑥 = [𝐽𝑇(𝑥)𝐽(𝑥) + 𝜇𝐼]−1𝐽𝑇(𝑥)𝑒(𝑥)                                                                           (10) 

where J(x) is the Jacobian matrix with the first derivatives of the network errors respect 

to the network weights and biases, e is the network errors vector and 𝜇 is a parameter that 

when is large the algorithm become steepest descent and when is small the algorithm 

becomes Gauss-Newton. 

Likewise, back-propagation through time (BPTT) is applied instead of the usual 

backpropagation (Werbos, 1990). BPTT is an adaptation of the BP training algorithm for 

RNNs that is a very powerful tool for dynamic modeling, among others. In fact, it tends 

to accelerate the training of Recurrent Neural Networks. As explained in Section 3.1.3, 
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unlike the feedforward neural network, the RNNs have at least one feedback connection. 

Therefore, the basic idea behind the BPTT is “unfolding” the RNN in order to convert it 

into a feedforward neural network and, thus, apply the backpropagation training 

algorithm (see Figure 23). 

 

Figure 23 Unfolded RNN (http://www.wildml.com/) 

4.3.1.2 Generalization 

On the other hand, to improve the generalization capabilities of the network the Bayesian 

regularization is used. The Bayesian Regularization gives better generalization 

capabilities compared to early stopping (Dan Foresse & Hagan, 1997). Besides, the 

Bayesian regularization does not require the use of validation data and, consequently, 

more data can be used to train the net. As said before, the training objective is to reduce 

the sum squared error (ED) of the difference between the target value and the predicted 

value. Bayesian Regularization adds the sum squared of the network weights (EW) to the 

equation (MacKay, 1992): 

𝐹 = 𝛽𝐸𝐷 + 𝛼𝐸𝑊   (11) 

where F is the objective function and α and β are the objective function parameters. The 

main problem of the above equation is to find the correct values for α and β. To solve this 

problem the Bayesian framework was proposed (MacKay, 1992), where the network 

weights are considered random variables: 

 

𝑃(𝐰|𝐷, 𝛼, 𝛽, 𝑀) =
𝑃(𝐷|𝛼,𝛽,𝑀)𝑃(𝐰|𝛼,𝑀)

𝑃(𝐷|𝛼,𝛽,𝑀)
   (12) 

where D represents de data set, M represents the neural network model and w is the 

network weights vector. It is assumed that the noise in the training data set is Gaussian 

http://www.wildml.com/
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and that the prior distribution for the weights is Gaussian. The optimization of the 

parameters α and β require solving the Hessian matrix of F(w) at the minimum point, 

which is possible with the Levenberg–Marquardt training algorithm. 

4.3.1.3 Activation function 

Another important point in the configuration of the network before training it is the 

activation functions of the neurons in both the hidden and output layers. In this case, for 

the neurons in the hidden layer the hyperbolic tangent function is used because it provides 

better results when the Bayesian regularization is used (Dan Foresse & Hagan, 1997). On 

the other hand, for the neuron in the output layer the linear activation function is used 

because, as said in Section 4.2.2, a network with a hidden layer with sigmoid (or 

hyperbolic tangent) neurons and an output neurons with linear activation function can 

approximate any continuous function. The hyperbolic tangent activation function is 

limited within the range [-1, 1]. Thus, usually, the training data is normalized in the same 

range. In neural networks training, the normalization of the data is an important task. For 

example, without normalized data, some inputs can have much higher values than others 

and, consequently, the higher the value of the input, the higher the effect over the training 

of the network. However, it is not strictly necessary for a good performance of the net 

(Wu & and Lo, 2010). 

4.3.1.4 Weight and biases initialization 

Besides, in order to yield better performance of the net is usually recommended to train 

the network several times changing the initial weights and biases so as to avoid local 

minimum. In this work, instead of applying random initialization of the initial weights 

and biases, the Nguyen-Widrow initialization method is used (Nguyen & Widrow, 1990). 

The main idea behind this initialization is choosing the weights so as the hidden units are 

scattered in the input space X. Thus, doing this the learning speed of the network with 

multiple inputs improves (Nguyen & Widrow, 1990). 

4.3.2 Training and testing dataset configuration 

This subsection explains the procedure followed to prepare the training and testing 

database. First, the different implications of the pre-processing of the experimental 

database are described and argued. Second, the selection and generation of specific 

training and testing examples is also explained. 
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4.3.2.1 Training dataset pre-processing 

Another important step before training the network is the pre-processing of the data in 

order to extract the most representational accuracy from the experiments.  

Thus, in order to obtain periodic dynamic evolutions, in each experiment interpolation 

techniques have been applied to the sequence of measurements of the specific grinding 

energy. In particular, the smoothing spline with a smoothing parameter value equal to 

1.91 is applied so as to avoid excessive oscillations. However, not all the dynamic 

evolutions have the same number of points (time-steps) because some wheels are softer 

and, thus, they wear faster. Therefore, those examples with less points (time-steps) are 

filled with a NaN value provided by MatlabTM. Thus, all the examples have the same 

number of points but during the training of the net the software does not take into account 

these NaN values.  

Alphabetical letter Number Alphabetical letter Number 

A 0 N 0,52 

B 0,04 O 0,56 

C 0,08 P 0,6 

D 0,12 Q 0,64 

E 0,16 R 0,68 

F 0,2 S 0,72 

G 0,24 T 0,76 

H 0,28 U 0,8 

I 0,32 V 0,84 

J 0,36 W 0,88 

K 0,4 X 0,92 

L 0,44 Y 0,96 

M 0,48 Z 1 

Table 5 Transformation of grit size letters into numbers 

Finally, the grit size is denoted using alphabetic letters (Section 2.1). However, in this 

case in order to have a numerical representation required to train RNN, these alphabetic 

letters are transformed into numbers. Thus, the letters from ‘A’ to ‘Z’ are converted into 

numbers from 0 to 1 (Table 5). 
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4.3.2.2 Selection of the training and testing examples 

In this work each experiment constitutes one training sample i.e. each complete dynamic 

evolution is one training sample. Thus, there are 46 samples (Figure 21). Since the 

Bayesian regularization is used, in this case it is not necessary to use validation data. 

Therefore, the data can be divided into training and testing dataset. This is very useful 

when there is a lack of experiments for training the net. The training and testing data are 

shown in Figure 24. 

As said before, one of the objectives of the presented methodology is to generalize to new 

grinding wheels. Thus, one of the wheels cannot be used for training the net. In particular, 

the two experiments carried out with the 82AA36G6VW grinding wheel are used to test 

the generalization capability of the net to new grinding wheels not used during the training 

phase of the RNN. On the other hand, it is also analysed the generalization capability for 

new cutting conditions for a specific wheel not used during the training (note that these 

cutting conditions are used for other wheels in the training database). In total, 42 examples 

are used for training and 4 for testing (Table 6).  

 

Figure 24 Training (orange) and testing (green) data 

 

 

 
Training data Test data 
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 Grit 

size 

Hardness qs Q’(mm3/mm·s) 

Test experiment 1 36 K 100 2.5 

Test experiment 2 70 G 60 1 

Test experiment 3 36 G 60 2.5 

Test experiment 4 36 G 60 4 

Table 6 Test experiments used for testing the generalization capabilities of the net 

Due to the lack of samples to train the network, virtual experiments are generated. In this 

case, 10 experiments are generated from each of the 42 training experiments. Thus, the 

data for training are 420 dynamic evolutions. However, the data for testing are still four, 

because there is no point in generating virtual data for testing. For generating these virtual 

experiments, the approach is based on the variability of the measuring process in the real 

world of the wheel wear, surface roughness and specific grinding energy for generating 

the training database. This is mainly caused by its stochastic nature due to aspects such 

as the hand-made production of the wheels or the system stiffness.  

Thus, the virtual experiments are generated within the ±10% range for the specific 

grinding energy. However, for the wheel wear and the surface roughness the virtual 

experiments are generated within the ±5% because the variability in these cases is lower 

than for the specific grinding energy. The decision of these percentages is based on the 

experience of the potential users of the sensors. Thus, in Figure 25 the 10 virtual 

experiments of specific grinding energy generated from a real one are shown. 

 

Figure 25 Virtual specific grinding energy signals versus specific volume of 

material removed 
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Finally, the inputs of the net such as wheel characteristics and grinding conditions are 

constant values. However, in each time-step all the inputs of the network need to have 

data. Thus, it is necessary to convert these constant values into constant evolutions with 

as many points as the dynamic evolution signal has (Figure 26).  

 

Figure 26 The constant inputs are converted into constant evolutions (hardness, qs, 

Q’ and grit size) to cover all the prediction horizon of the specific grinding energy 

(Ec) 

First, it is necessary to convert the static training inputs (the grit size G, the hardness H, 

the speed ratio S and material removal rate Q) into constant evolutions. Therefore, vectors 

with static values are generated for each training input (representing different wheel 

characteristics and cutting conditions): 

𝑮 = [𝐺(1) 𝐺(2) … 𝐺(𝑘 − 1) 𝐺(𝑘)]                                                  

𝑯 = [𝐻(1) 𝐻(2) … 𝐻(𝑘 − 1) 𝐻(𝑘)]                                                  

𝑺 = [𝑆(1) 𝑆(2) … 𝑆(𝑘 − 1) 𝑆(𝑘)]                                                       

𝑸 = [𝑄(1) 𝑄(2) … 𝑄(𝑘 − 1) 𝑄(𝑘)]                                                   

where k is the number of points in the time series.  

From G, H, S and Q vectors, a submatrix is generated per training sample (1): 

𝑖𝑗(𝑝) = [𝐺(𝑝) 𝐻(𝑝) 𝑆(𝑝) 𝑄(𝑝)]𝑇 (x) 
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where j is the specific train sample (j ∈ [1-n]), n is the number of training samples and p 

is the specific point in the constant evolution (p ∈ [1-k]). Thus, the training input matrix 

(I) is as follows: 

i1(1) i1(2) … i1(k-1) i1(k) 

i2(1) i2(2) … i2(k-1) i2(k) 

… … … … … 

in-1(1) in-1(2) … in-1(k-1) in-1(k) 

in(1) in(2) … in(k-1) in(k) 

 

Each training output sample is a unique dynamic evolution of k points representing the 

target signal generated with different grinding wheels under different cutting conditions. 

Thus, the training output array (O) is as follows: 

 

o1(1) o1(2) … o1(k-1) o1(k) 

o2(1) o2(2) … o2(k-1) o2(k) 

… … … … … 

on-1(1) on-1(2) … on-1(k-1) on-1(k) 

on(1) on(2) … on(k-1) on(k) 

 

where n is the number of training samples and k is the number of points in dynamic 

evolution.  

As mentioned above, supervised learning is used to train the RNN. In fact, for each 

training input sample (ij) the desired output (oj) values are presented. Thus, as batch 

training is used, only after all the inputs (I) and targets (O) samples are presented, the 

weights and biases of the net are updated. 
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4.3.3 The best network selection 

After configuring the network and the training process, the next step is the selection of 

the best network i.e. the network that best models the non-linear relationship between the 

inputs and the output of the ANN. To do this, the best network structure must be selected. 

These structures differ from the number of neurons (HN) in the hidden layer and number 

of delays (D) in the feedback.  

If the configuration of the network and the training process is based on the knowledge of 

the process extracted from the analytical models, the selection of the best network 

structure is based on a comparative study of different HN-D combinations. 

4.3.3.1 Two-phases methodology 

Thus, the best structure selection is carried out varying the number of neurons in the 

hidden layer (HN) and delays in the feedback and comparing the results with the trial-

and-error approach to select the net with the lowest error.  The selection of the network 

is divided into two phases: 

1. Coarse tuning: during this phase the aim is to obtain the network structure (HN-

D) around which the lowest test errors are yielded.  

2. Fine tuning: the fine tuning of the training process is to be performed in the range 

given by the best structures inferred in the coarse tuning. Considering the fine 

nature of this phase, the values of HN and D of the new configurations to be 

trained are taken one by one within the specified range. 

Each training of the RNN with a particular network structure is carried out m times to 

avoid a local minimum. As said in Section 4.3.1.4 for the initialization of the weights, the 

Nguyen-Widrow algorithm is applied. 

4.3.3.2 Indicators 

As said in Section 4.3.2.2, the accuracy of a trained network structure is computed on 

another subset of grinding experiments, the so-called test experiments, through the 

following indicators that provide measurements of the deviation between the real value 

of the wheel wear and the value provided by the ANN-based model (see Figure 27): 

1. The mean square error MSE: it is provided by the MatlabTM training tool and, 

therefore, its value is given within the normalization range. 
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2. The Mean Absolute Maximum Error (MAME): It is calculated in units of process 

(micrometers—µm) as: 

            𝑀𝐴𝑀𝐸 =
1

𝑛
∑ |max (𝑇𝑥 − 𝑃𝑥)|𝑛

𝑥=1                                              (13) 

where T is the target of the model, P is the predicted value and n is the number of test 

examples. 

Since these indicators are computed for the testing dataset, they allow to quantify the 

generalization capability of the RNN. 

 

Figure 27 The absolute maximum error for one test. After, the mean of all test 

experiments is computed with the MAME indicator 

This MAME metric is used instead of the widely used for evolution analysis Mean 

Absolute Percentage Error (MAPE) because from the grinding process point of view it is 

easier to measure the error using absolute errors instead of percentage ones. In fact, in 

advanced manufacturing processes, the surface roughness error, for example, is usually 

given in absolute error. Therefore, in this work this point of view has been followed.  

4.4 Conclusions 

This chapter deals with the general methodology for modelling dynamic evolutions of 

grinding signals. In this case, this approach is focused on modelling the dynamic 

evolution of the wheel wear, the surface roughness and the specific grinding energy. This 
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methodology is based on the knowledge about the grinding process extracted from 

analytical models widely recognized. 

These analytical models relate the specific grinding energy, the wheel wear and the 

surface roughness between them and with the wheel characteristics and cutting 

conditions. Thus, the main conclusion extracted from this relationship is that the specific 

grinding energy and the surface roughness are dependent on the state of the wheel. 

Therefore, the behavior of the specific grinding energy and the surface roughness signals 

change while more parts are machined. 

As a result of the analysis of the analytical models, the inputs of the ANN model are 

selected. These have to represent the wheel characteristics and the grinding conditions. 

Therefore, based on the application field selected, grit size and wheel hardness are chosen 

to characterize the grinding wheel while specific material removal rate (Q’) and speed 

ratio (qs) are used to characterize the grinding process.  

Concerning the selection of the ANN architecture, the feedforward ANN architecture is 

discarded because it is not possible to model the dynamic evolution with static inputs with 

feedforward neural networks, as it is the case of the most restrictive case of the application 

field of this work, i.e. the estimation of the specific grinding energy. Therefore, among 

the classical architectures, the only way of modelling the dynamic evolution with static 

inputs is using Recurrent Neural Networks. Among different RNNs the Elman based 

LRNN is selected because it functions without any initial output values, highly important 

based on the conclusions of the Chapters 2 and 3.  

Besides, other decisions such as training algorithm, generalization strategy, activation 

function or weights and biases initialization are decided based on the state of the art. As 

a training algorithm the well-known Levenberg-Marquardt training algorithm is selected 

for its fast convergence. Then, it is highly important to select how to improve the 

generalization capabilities of the net. For the present work, the Bayesian regularization is 

selected for its good generalization capabilities and because there is no need to divide the 

database into three different datasets (training, validation and testing). Thus, more data 

can be used for training if there is lack of samples. Finally, the hyperbolic tangent 

activation is chosen as activation function of the hidden neurons and Nguyen-Widrow 

approach for initialization of the network weights and biases to improve the learning 

speed. 
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Once the network architecture is selected and configured, the next key point is the training 

and testing database configuration. First, the data is pre-processed in order to obtain 

periodic dynamic evolutions with smoothing spline interpolation, adding NaN value 

provided by MatlabTM at the end of the examples with less points. Thus, all the examples 

have the same number of points. Then, the training and testing datasets are selected. From 

the 46 experiments available, 4 are selected for testing the generalization capabilities of 

the trained network. Among all the experiments, two to test the generalization to new 

grinding conditions and other two to test the generalization to new wheel characteristics 

are selected. Finally, due to the lack of samples to train the network, virtual experiments 

are generated. In this case, 10 experiments are generated from each of the 42 training 

experiments. 

The last part of the presented methodology is how to select the best network, the network 

that more precisely predicts the dynamic evolution for the test experiments. Thus, in this 

work a two-phase methodology is proposed. First, the phase called “coarse tuning” is 

done. During this phase the aim is to obtain the network structure (HN-D) around which 

the lowest MSE test errors are yielded. Given the best structures inferred in the coarse 

tuning, the so called “fine tuning” is carried out in HN-D structure taken one by one within 

the specified range. During the fine tuning, the MAME metric is used instead of the 

widely used for evolution analysis Mean Absolute Percentage Error (MAPE) because 

from the grinding process point of view is easier to measure the error using absolute errors 

instead of percentage ones. 
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5 SMART SENSORS FOR GRINDING 

PROCESS USING RNN 

In grinding monitoring grinding wheel wear and the workpiece surface 

roughness is essential nowadays in order to improve the performance of the 

machines. Being really difficult to measure on-line the wheel wear and the 

surface roughness, another strategy to measure these grinding variables is 

the no-direct method. Therefore, the aim is to develop two different soft 

sensors for measuring wheel wear and surface roughness, respectively, 

without introducing any sensor in the machining area. To do so, the ANN 

based strategy described in Chapter 4 is used. The measurable signal used is 

the specific grinding energy. This signal is an easily measurable variable 

without introducing any sensor in the machining area. New indicator is 

introduced because it is not possible to select the best network only with MSE 

and MAME. Thus, the coefficient of variance is proposed to analyse not 

desirable phenomenon observed in the last part of the predictions. The 

proposed methodology has shown the potential for modelling the dynamic 

evolution of the wheel wear and surface roughness without measuring initial 

real values in a prediction horizon up to 2000 mm2 of specific volume of part 

material removed. In fact, the MAME error for wheel wear is 32 µm, and 0.26 

µm for surface roughness. 

Monitoring industrial manufacturing processes is essential nowadays in order to improve 

the performance of the machines. Thus, in grinding two of the most important variables 

to be monitored are the grinding wheel wear and the workpiece surface roughness. As 

said in Section 2.1, knowing these variables is extremely important because they provide 

information about the cutting ability of the wheel and the surface quality of the part. 

Actually, monitoring on-line (during the operation) the wheel wear can lead to extend the 

lifecycle of the wheel before dressing it to recover its cutting ability with the advantage 

of not only increasing the production, but also avoiding workpiece burnings, one of the 

most common thermal damage (Malkin & Guo, 2008).  Regarding the surface roughness 

of the machined parts, it can only be measured once the machining process is finished. 

Thus, the measurement of the surface finish cannot be accomplished on-line, i.e. during 
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the machining process. Besides, as said in Section 1, monitoring the wheel wear and the 

surface roughness is harshly limited by the low accessibility of the machining area. In 

fact, the high rotational speed of the grinding wheel (common values are around 45 m/s, 

but there are industrial examples of as much as 200 m/s), the generation of abrasive swarf, 

the presence of large quantities of coolant at high pressures, etc. all combine to limit the 

possibility of using industrial sensors during the process.  

Being really difficult to measure on-line the wheel wear and the surface roughness, 

another strategy to measure these grinding variables is the no-direct method. Actually, 

using soft sensors with inputs that are easily measurable output-related grinding variables 

together with properly applied intelligent techniques allow to infer the desired measurable 

variables. Therefore, the aim is to develop two different soft sensors for measuring wheel 

wear and surface roughness, respectively, without introducing any sensor in the 

machining area. To do so, the ANN based strategy described in Chapter 4 is used. 

Hence, the Chapter’s layout is as follows. First, the inputs and the outputs of the smart 

sensors are described. Second, the specifically required pre-processing of the training data 

is explained. Third, the comparative study and results of both sensors (wheel wear and 

surface roughness) are shown. Finally, the conclusions are addressed. 

5.1 Inputs and outputs of the smart sensors 

As said in Section 1, the aim of developing soft sensors is to measure on-line a variable 

not easy to measure directly. In fact, another easy measurable variable is used and then 

the target variable is inferred using the ANN strategy. Therefore, guided by the analytical 

models used for developing the ANN based strategy (Chapter 3), it can be noticed that 

the surface roughness and the wheel wear are closely linked with the specific grinding 

energy. Besides, as said in Section 4.2.3.2, the specific grinding energy is an easily 

measurable variable. 

Hence, for developing the two soft sensors, besides the ANN inputs described in Section 

4.2.1, the specific grinding energy is used as input. Consequently, the ANNs for soft 

sensor have 5 inputs.  

5.1.1 Training and testing dataset configuration 

Usually, before using any sensor some parameters of the sensor must be adjusted. This 

phase is usually named as the calibration of the sensor. In the same way, the calibration 
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of the ANN-based smart sensor is analogous to the training of the network in order to find 

the best possible network parameters such as the number of neurons in the hidden layer 

and the number of delays in the feedback.  

Thus, this subsection explains the procedure followed to prepare the training and testing 

database for the calibration of the soft sensor. First, the different implications of the pre-

processing of the experimental database are described and argued. Second, the selection 

and generation of specific training and testing examples is also explained. 

5.1.1.1 Pre-processing 

As stated before, an important step before training the network is the pre-processing of 

the data in order to extract the most representational accuracy from the experiments.  

As explained in the ANN based strategy in Section 4.3.2.1, in order to obtain periodic 

dynamic evolutions, in each experiment the smoothing spline interpolation has been 

applied to the sequence of measurements of surface finish and wheel wear. However, 

during the design of the soft sensor, one important characteristic is the sampling 

frequency i.e. how often a measured value is provided. In this case, the criterion is to yield 

one value every specific material removal (V’w) equal to 10 mm3/mm, because in grinding 

the phenomena are progressive and, thus, there is no need to use high frequency sensors. 

On the other hand, from the process point of view it is not recommendable to develop a 

sensor with very slow frequency because relevant information is lost. Besides, the same 

interpolation method and criteria is used for the specific grinding energy because the 

number of points of the input data and output desired data must be the same. 

Finally, another important aspect to analyse is the existence of considerable differences 

between the values of a specific input/output in the experimental training set. In this work, 

this is the case of the wheel wear experimental tests, as shown in Figure 28(a). It can be 

noticed that one of the experiments yields very high values compared to the rest of the 

experimental tests. The use of these data just normalized to the range of the activation 

function can affect negatively to the results of the training process due to the great 

difference of magnitude between one experiment and the others (Chandana Prasad & Beg, 

2009). Actually, it can make difficult to learn the cases with similar magnitudes due to 

the decrease in the resolution that suffer most of the experimental data as a consequence 

of including the experiment with a much higher wheel wear. In order to avoid this effect, 

a natural logarithmic processing of the wheel wear data is applied to decrease such great 

differences, as shown in Figure 28(b). 
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Figure 28 (a) Original wheel wear data. (b) Wheel wear data after logarithmic 

processing 

This way, the data after the logarithmic transformation is closer and the difference 

between high and low data values is narrower. Of course, one important point to take into 

account is that the logarithmic value of zero is not defined. In order to deal with this 

matter, the initial zero value has been replaced by a very low value close to zero. 

However, it only affects the initial point as Figure 28(b) shows. 

Logarithmic processing

(a)

(b)
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5.2 Comparative study and results 

As said before, two different soft sensors are developed in this work. One for measuring 

the wheel wear and another one for measuring the surface roughness. Therefore, the 

calibration (selection of the best possible number of neurons in the hidden layer and 

number of delays) of both sensors has to be done separately. Thus, first, the soft sensor 

that measures the wheel wear during the process is calibrated and, second, the calibration 

is applied on the sensor for the surface roughness. 

5.2.1 Wheel wear 

As aforementioned, the aim is to develop a soft sensor capable to provide during the 

process the wheel wear, ergo, the state of the wheel. Thus, in this Section, the results 

achieved and a discussion about those results are presented. First, a comparison analysis 

related to the network structure is presented. These structures differ from the number of 

neurons (HN) in the hidden layer and the number of delays (D) in the feedback. Second, 

the results related to the soft sensor and its capability to model the dynamic evolution of 

the wheel wear are shown. Finally, the ANN that better represents the wheel wear is 

presented. 

5.2.1.1 Analysis of Results 

As stated in Chapter 3, firstly, coarse and fine tunings are performed with both training 

and testing datasets (Section 4.3.3.1). The coarse tuning aims at defining the dimension 

and the dynamic behaviour of the ANN. The aim is to obtain the structure (HN-D) around 

which the lowest test errors are yielded.  

Regarding the results, the lowest test MSE values yielded by the ANNs trained with 

different combinations of hidden neurons in the hidden layer (HN) and delay units in the 

feedback (D) are presented in Figure 29. When the delay value is 5 the lowest MSE values 

are within the range 5‒8 HN but, nevertheless, for a delay equal to 10, the range shifts to 

7‒10 neurons in the hidden layer. Finally, although the HN5D15 network configuration 

yields a very low MSE value, from 7 HN the MSE error increases significantly (actually, 

it can be noticed that the error increases linearly, i.e. faster than in the other cases). Thus, 

it is concluded that within the ranges [5, 10] neurons in the hidden layer and [5, 10] delay 

units are to be found the proper configuration to model the wheel wear behaviour. 

Actually, increasing the number of hidden neurons and/or delay units provides higher test 
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errors that can be associated to the overfitting of those ANNs. Moreover, the additional 

disadvantage is requiring much longer training times. 

 

Figure 29 Summary of the results of coarse tuning 

Then, the fine tuning of the training process is performed between 5 and 10 hidden 

neurons in the hidden layer and 5 and 10 delay units. As a summary of the fine tuning 

results, the ANNs that provide the average of the three lowest error predictions for the 

testing dataset obtained in the fine tuning phase are presented in Table 7. Given MSE 

values of the same order of magnitude, more than one ANN are preselected so as to 

analyse the behaviour of the best neural structures from the grinding process perspective. 

Likewise, it can be noticed that all the test MSE values are lower than the best one 

obtained in the preliminary analysis. The more trainings performed around the proper 

dimension and timing parameters HN and D, the more probability to reach lower MSE 

values. However, the best ANN from the grinding process perspective is not the one with 

the lowest MSE, i.e. the network net3 with structure with 10 neurons in the hidden layer 

and 10 delay units (10HN10D) provides the lowest values of MAME.  

Hidden Neurons 

(HN)  
Delays (D) net MSE 

MAME 

(µm) 

9 8 Net3 0.00177 43 

10 10 Net3 2.34e-04 32 

5 5 Net2 2.17e-04 53 

Table 7 Summary of the results of fine tuning 
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In order to illustrate the results of the Table 7, Figure 30 to Figure 33 show the behaviour 

of the preselected ANNs for the four test experiments of the testing dataset, as well as the 

target or real wheel wear values. Figure 30 shows the evolution of the estimation of wheel 

wear for the three preselected ANNs in the test experiment 1 82AA36K6VW qs = 100; 

Q' = 2.5 (the prediction for grinding conditions for known grinding characteristics). In 

this case, similar good performance is achieved by the three ANNs; actually, MAME is 

13, 9 and 8 µm for 9HN8D net3, 10HN10D net3 and 5HN5D net2, respectively, which 

are considered very good estimations from the grinding process perspective. On the 

contrary, in the rest of the test experiments the differences of performance of the 

preselected ANNs are more evident.  

 

Figure 30 Wheel wear generalization capability of the three preselected structures. 

Test experiment 1: 82AA36K6VW qs = 100; Q' = 2.5 
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Figure 31 Wheel wear generalization capability of the three preselected structures. 

Test experiment 2: 82AA70G6VW qs = 60; Q' = 1 

In the case of the second test experiment (the prediction for grinding conditions for known 

grinding characteristics), Figure 31 shows that the best behaviour is provided by 

10HN10D net3. Actually, 9HN8D net3 and 5HN5D net2 provide an oscillatory behaviour 

of the output with an AME value of 6 µm in both cases, while in the case 10HN10D net3 

is 3 µm. Although from the grinding process perspective an error of 6 µm is considered 

very low in terms of estimation, the oscillatory behaviour of the estimations can indicate 

a lower generalization capability of the ANNs. Actually, the behaviour of the estimations 

of the wheel wear remains constant at the end in 9HN8D and 5HN5D for the third (Figure 

32) and fourth (Figure 33) test experiments (82AA36G6VW qs = 60, Q' = 2.5, and 

82AA36G6VW qs = 60, Q' = 4), while in the case of 10HN10D there is not any kind of 

constant behaviour. Moreover, 10HN10D network structure provides the lowest MAME 

value for the third and fourth test experiments, which are 49 µm and 67 µm, respectively. 
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Figure 32 Wheel wear generalization capability of the three preselected structures. 

Test experiment 3: 82AA36G6VW qs = 60; Q' = 2.5 

 

Figure 33 Wheel wear generalization capability of the three preselected structures. 

Test experiment 4: 82AA36G6VW qs = 60; Q' = 4 

Thus, it can be concluded that the RNN 10HN10D net3 provides the most balanced 

performance, which agrees with the corresponding values of MAME provided in the 

results of Table 1. Thus, among the three preselected neural structures shown in Table 1, 

the network 10HN10D net3 has been selected, i.e., an ANN based on the Layer-Recurrent 

Neural Network architecture with one hidden layer consisted of 10 hidden units and with 

a memory equivalent to 10 delays.  
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From the previous analysis it has been observed that in some cases the predicted signals 

remain constant in the final part of the prediction. This is a non-desirable phenomenon 

because the aim is to predict the real wheel wear signal tendency as close as possible for 

the complete dynamic evolution of the wheel wear. Therefore, a new metric is used to 

analyse the precision in the final stages of the dynamic evolution, where this phenomenon 

is observed. In fact, the coefficient of variation (CV) (Equation 13) in the last 4/5 part of 

the signal is calculated to measure this phenomenon.  

𝐶𝑉 =
𝜎

𝜇
                                                                                                                            (14) 

where σ is the standard deviation and 𝜇 is the mean. This metric allows to observe the 

phenomenon in a relative manner allowing for comparisons. 

This metric is used in the final stage of the analysis of the results, when the best networks 

are selected using the MSE and the MAME. 

 Test 9HN8D 

net3 

10HN10D 

net3 

5HN5D 

net2 

Coefficient of 

Variation 

(CV) 

Test experiment 1 0.0691 0.0512 0.0749 

Test experiment 2 0.0529 0.0527 0.0640 

Test experiment 3 0.0093 0.0779 0.0035 

Test experiment 4 0.0071 0.0755 0.0032 

Table 8 Results of the coefficient of variation analysis for the 4/5 of the prediction 

horizon of wheel wear 

In Table 8 the coefficient of variation results for the last 4/5 part of the signal are shown. 

The results show that high and similar CV values are yielded for all the nets for the test 

experiments 1 and 2. However, for the test experiments 3 and 4 there are differences for 

on one hand 10HN10D net3 and on the other hand 9HN8D net3 and 5HN5D net2 

network. Actually, the CV results yielded for the 10HN10D net3 are higher, similar to 

those yielded for the test experiments 1 and 2. This is consistent with the results shown 

in Figure 30-33. In particular, it is noteworthy to examine the case of the test experiment 

3. In this case, the CV value is low, except for the 10HN10D net3 network. Actually, in 

Figure 32 it can be observed that the signal of the 10HN10D net3 is the only one that does 

not remain constant at the end. Besides, for the test experiment 4, it has, also, the highest 

CV value. Regarding the 5HN5D net2 network, it shows the lowest coefficient of 

variation value for the test experiments 3 and 4. Actually, the Figure 32 and Figure 33 

show that the signals at the end of the prediction horizon are practically constant. Finally, 

the network 9HN8D net3 shows, also, close to constant behaviour for the test experiments 
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3 and 4 with a low CV value, very low value compared to the values yielded by the 

10HN10D net3 network.  

Therefore, the CV analysis also confirms that the network with a better behaviour is the 

10HN10D net3 network. Besides, the coefficient of variation analysis can be useful to 

detect the constant behaviour of the signal at the end of the prediction horizon.  

On the other hand, from a quantitative point of view, the results show that the initially 

proposed time horizon (equivalent to 2000 mm3/min) is very ambitious. Thus, it is 

necessary to delimit a time horizon in which the ANN-based sensors behave reliably. 

Concerning the ANN-based sensor for the estimation of wheel wear, MAME ranges in 

the whole prediction horizon from 3 to 67 µm, while for a prediction horizon equivalent 

to 600 mm3/min this range reduces drastically to 3–12 µm, which is very accurate from 

the grinding process perspective. Also notice that during the prediction horizon equivalent 

to 600 mm3/min, 390 parts are machined, which is a significant quantity. Nevertheless, 

from a qualitative point of view the output of the ANN-based sensor tracks the trend of 

the actual values during the whole prediction horizon. Concerning the constancy 

phenomenon, notice that the selected network for the estimation of wheel wear (structure 

10HN10D: 10 hidden neurons in the hidden layer, 10 delay units) does not exhibit that 

phenomenon in any of the test experiments (i.e., experiments with characteristics not 

considered during the training process). 

Additionally, the results show that better performance is achieved when the virtual sensor 

estimates the behaviour of a wheel employed during the training process, but under new 

cutting conditions (see Figure 30 and Figure 31). Actually, the performance of the virtual 

sensor decreases when predicting the behaviour of a new wheel (a wheel not used during 

the training process), but under known cutting conditions (see Figure 32 and Figure 33). 

This means that the characteristics of the wheel have a higher influence on the wear 

behaviour than the cutting parameters.  

A final remark can be done from the point of view of industrial application. For many 

users and also for many grinding wheel manufacturers, a single numerical indicator is 

used to analyse the performance of the wheel from the point of view of wear over time. 

This is known as the grinding ratio (G), which is defined in Equation 14: 

𝐺 =  
∆𝑉𝑤

∆𝑉𝑠
                                                                                                                        (15) 
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This parameter can be additionally used for assessing the quality of the tuning process of 

the new sensor. When looking at wear patterns along time, an initial short stage during 

which the wear rate is very fast can be observed. Afterwards, it is accepted (Marinescu, 

et al., 2004) that a linear behaviour prevails, and it is during this stage that G is measured. 

Therefore, grinding ratio values obtained from actual wear measurement during 

experimental tests and those produced by the virtual sensor have been calculated and 

compared. Results have been collected in Table 9. 

Test experiments Experimental Sensed 

Test experiment 1 16 14 

Test experiment 2 100 110 

Test experiment 3 10 8 

Test experiment 4 6 8 

Table 9 Summary of grinding ratio (G) results of the test experiments 

Table 9 shows the grinding ratio (G) results of the four test experiments. The results are 

consistent with the wheel wear results and show that the best ones are achieved with the 

wheels used during training but under new cutting conditions. For the first and second 

test experiments the errors are 2 and 10, respectively. These errors are very satisfactory 

from an expert on grinding point of view showing the potential of the presented sensor. 

In the case of a new wheel (third and fourth test experiments), the error is 2 for both test 

experiments. The absolute errors are considered low for the grinding process perspective 

in all the cases, but the relative ones are a bit higher for the third and fourth test 

experiments. Therefore, as mentioned above, it can be clearly seen that the characteristics 

of the wheels have higher influence on the wheel wear prediction and, consequently, on 

the generalization capabilities of the ANN-based sensor. 

Finally, at the sight of the results it is clear that the best network is the one with 10 neurons 

in the hidden layer and 10 delay units. It has 5 inputs, 10 neurons in the hidden layer, 10 

delay units in the feedback from the output of the hidden layer to the inputs of the hidden 

layer, and, finally, one output. 

5.2.2 Surface Roughness 

In this case, the aim is to develop a soft sensor capable to provide measurements of the 

surface roughness under the influence of the wheel wear. Thus, similar to the previous 

Section, the results achieved and a discussion about those results are presented. First, a 

discussion about the implications regarding the structure is provided. Second, the 

comparison analysis related to the network structure is presented. Third, the results related 
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to the soft sensor and its capability to model the dynamic evolution of the surface 

roughness are shown. Finally, the ANN that better represents the surface roughness is 

presented. 

It should be recalled that, in order to develop the ANN-based sensor for measuring the 

surface roughness, the followed steps are the same that for developing the sensor for 

wheel wear. Thus, the network structure is selected with the same ad-hoc metrics used 

for the wheel wear modelling.  

Another important point related with the surface roughness is that there is no need to use 

the natural logarithmic pre-processing for the surface roughness data because the 

differences in the experimental values are not significant in this case. 

5.2.2.1 Structure 

Based on the analytical models of Section (2.2.1) one could think that the network 

structure that best models the system will be close to the ones for modelling the dynamic 

evolution of the wheel wear. In fact, the network inputs and the size of the training dataset 

are the same. Therefore, based on the previous work (Section 5.2.1) and in order to 

demonstrate the power of the proposed methodology, in this case only three network 

structures are analysed. Actually, the network structures used for modelling the surface 

roughness are 5HN5D, 8HN8D and 10HN10D. Thus, the range of neurons in the hidden 

layer and delay units obtained after the coarse tuning for wheel wear (Section 5.2.1.1) is 

covered. 

5.2.2.2 Analysis of Results 

The MSE of each of the six trained nets for each net structure (HN-D) are shown in Table 

10. The upper row (net1, net2 … net6) represents the trained network that corresponds to 

each initialization of the weights using the Widrow-Nguyen proposal as explained in 

Section 4.3.1.4. On the other hand, in the left column the network structures analysed are 

represented, i.e., the corresponding neurons in the hidden layer (HN) and delay units (D). 

It can be seen that the best (lowest) MSE results are yielded by the structure 8HN8D 

(0.0022 and 0.0036), coming up next 10HN10D structure (0.0037 and 0.0041). Finally, 

the worst results are achieved with the structure with less neurons in the hidden layer and 

less delays in the feedback (0.0040 and 0.0046). Moreover, analysing the results of the 

8HN8D network structure, it can be observed that the errors yielded are quiet low (except 

the net3) compared to the other structures. Therefore, the best two nets correspond to the 
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structure 8HN8D followed by the 10HN10D. Finally, the 5HN5D structure nets have, 

overall, the highest MSE error. 

 net1 net2 net3 net4 net5 net6 

5HN5D 0.0111 0.0277 0.0040 0.0046 0.0859 0.0094 

8HN8D 0.0022 0.0036 0.1457 0.0180 0.0057 0.0104 

10HN10D 0.0203 0.0134 0.0041 0.0056 0.0037 0.1077 

Table 10 Summary of the MSE results of the six trained nets for each ANN structure  

In Table 11 the MAME (see Section 4.3.3.2) results for the best nets are summarized. It 

can be seen that the nets with the lowest MAME in units of process (µm) are the same 

that those with the lowest MSE. Thus, it can be concluded that the 8HN8D structure is 

the most suitable one to model the relationship between the specific grinding energy, 

wheel characteristics, operation characteristics and the surface roughness. However, 

although the selected networks have the lowest MSE and MAME, it is important to note 

that in the case of the net4 with structure 5HD5D, it has the highest MSE of the selected 

ones (Table 10) but the third lowest MAME. In fact, as in the case of the modelling of the 

wheel wear, it be can concluded that MSE is not enough to select the proper net.  

 

 8HN8D 

net1 

8HN8D 

net2 

10HN10D 

net5 

5HN5D 

net3 

10HN10D 

net3 

5HN5D 

net4 

MSE 0.0022 0.0036 0.0037 0.0040 0.0041 0.0046 

MAME 0.26 0.32 0.43 0.35 0.44 0.33 

Table 11 Summary of the MAME errors of the best nets 

Unlike for the tuning of the ANN-based sensor for wheel wear measuring, here only the 

two best networks are compared due to the less number of structures used.  

In Figure 34 and Figure 35, the prediction for new grinding conditions for known grinding 

characteristics is shown. For the test experiment 1 (Figure 34) the behaviour of the two 

nets is quite similar. Both of them start at the same point and follow a similar tendency. 

However, around 480 mm3/mm, the predicted signal of the network 8HN8D net2 

increases while the target signal decreases. Thus, in the case of 8HN8D net2 the error is 

a bit higher. Regardless the initial error, the maximum error is 0.32µm. In the case of test 

experiment 2 (Figure 35), the behaviour of both nets is quite different. The worst 

performance corresponds to the 8HN8D net2. The maximum error for the 8HN8D net2 

is 0.24µm, without taking into account the initial errors, while the error for the 8HN8D 

net1 is around 0.1µm. However, it can be seen that for the 8HN8D net1 after around the 

prediction point number 1600 mm3/mm the error starts to increase while for the 8HN8D 



Chapter 5: Smart sensors for grinding process using RNN 

Ander Arriandiaga Laresgoiti   83 

net2, after around point 1400 mm3/mm the error decreases, being the end close to zero. 

Furthermore, after 600 mm3/mm the signal of the network 8HN8D net1 remains almost 

constant, i.e. it shows the same phenomenon observed in the case of wheel wear.  In any 

case, it can be said that the errors in both cases, even for the 8HN8D net2, are low from 

the point of view of the grinding process.  

 

Figure 34 Surface roughness generalization capability of the two preselected 

networks. Test experiment 1: 82AA36K6VW qs = 100; Q' = 2.5 

 

Figure 35 Surface roughness generalization capability of the two preselected 

networks. Test experiment 2: 82AA70G6VW qs = 60; Q' = 1 
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It can be seen that for test experiment 3 and 4 (new wheel characteristics not used during 

the training process), the two nets predict quite well. In the case of test experiment 3 

(Figure 36), it can be said that the net that more precisely predicts the surface roughness 

is the network 8HN8D net2, being the error in almost the complete dynamic evolution 

lower than 0.15µm, indeed, the highest error is around 0.16µm. Thus, the 8HN8D net2 

trained ANN predicts up to 1800 mm3/mm of the dynamic evolution of surface roughness 

with high accuracy. In the other net (8HN8D net1) it can be observed that the error is a 

bit higher but lower than 0.30µm. However, from 500mm3/mm the signal remains 

constant. For the test experiment 4 (Figure 37), the results are a bit worst. At the 

beginning, both nets predict well but after 600 mm3/mm, the error increases and the signal 

remains almost constant. In the case of the 8HN8D net 2 the prediction oscillates around 

one point, thus, it can be said that there is a quite similar phenomenon in both predictions. 

Likewise, it can be said that the error in both cases is quite similar, being a bit higher for 

the 8HN8D net2 (0.36µm). 

 

Figure 36 Surface roughness generalization capability of the two preselected 

networks. Test experiment 3: 82AA36G6VW qs = 60; Q' = 2.5 
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Figure 37 Surface roughness generalization capability of the two preselected 

networks. Test experiment 4: 82AA36G6VW qs = 60; Q' = 4 

Since the same phenomenon observed for wheel wear is repeated in the estimation of the 

surface roughness, it is appropriate to analyse how the nets predict the surface roughness 

in the final stage of the evolution. To that goal, the results of the CV of the final stage of 

the evolutions are shown in Table 12. It can be seen that for the net1 with 8 neurons in 

the hidden layer and 8 delay units (8HN 8D) the values of coefficient of variation are very 

low, especially for the test 2, test 3 and test 4. In the case of the 8HN 8D net2, the 

coefficient of variation is higher and, thus, the prediction does not remain constant after 

one point. At the sight of the results it can be said that for the second net with 8 neurons 

in the hidden layer and 8 delays in the feedback the constancy phenomenon is avoided, if 

not completely, at least it is to a high extent. To check this, in the next paragraphs the 

values of the coefficient of variation and the prediction performance are compared. 

 Test 8HN8D net1 8HN8D net2 

Coefficient of 

Variation 

(CV) 

Test experiment 1 0.0133 0.0350 

Test experiment 2 0.0082 0.0299 

Test experiment 3 0.0029 0.0269 

Test experiment 4 0.0039 0.0726 

Table 12 Results of the coefficient of variation analysis for the of the prediction 

horizon of surface roughness 

In Figure 34 (test experiment 1) none of the two prediction signals remain constant after 

one point. However, the 8HN8D net1 prediction is barely an incrementally linear and this 

is the reason of the lower CV value, similar to the wheel wear case. The results about the 
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analysis of the coefficient of variation show that for the 8HN8D net1 in the test 

experiment 2, test experiment 3 and test experiment 4, at the end of the prediction horizon, 

the dynamic evolution remains almost constant. It clearly can be seen that the results of 

the Table 12 are coherent with Figure 35-10. As said before, the Figure 35 shows how the 

signal of the 8HN8D net1 remains constant after 600 mm3/mm, as the coefficient of 

variation metric shows with a value lower than 0.01. In the case of the 8HN8D net2, the 

CV value is higher than for the 8HN8D net1 and, thus, it can be checked (see Figure 36) 

that the signal is not constant at the end. In the same way, the results of CV for the test 

experiment 4 show clearly that the output for the 8HN8D net1 is almost constant (see 

Figure 37).  

In the view of the results, in this particular case (the prediction of the dynamic evolution 

of the surface roughness) where the prediction signals are not very oscillatory, the value 

of CV higher than 0.01 show that the prediction does not remain constant at the end. Thus, 

the networks that have yielded the lowest MAME with a coefficient of variation higher 

than 0.01 are considered the best networks for modelling the grinding surface roughness.  

Moreover, it can be concluded that the coefficient of variation analysis is highly 

dependent on the application and modelling signal. Thus, the reference values to discern 

if a signal remains constant or not depends on the application and modelling signal and, 

consequently it is not possible to define a common reference CV value for all the cases. 

However, checking the results yielded for the wheel wear and surface roughness one 

could think that CV values lower than 0.01 are a good indicator of the presence of the 

constancy phenomenon.  

To sum up, after examining the MSE, the MAME and the CV of the final part of the 

network output, the net that best models the dynamic evolution of the surface roughness 

avoiding the constancy of the signal is the 8HN8D net2. Although this net does not yield 

the lowest MSE and MAME error, it achieves the second lowest errors and in any of the 

test cases at the end of the signals the output does remain constant. Thus, the best net has 

5 inputs, 8 neurons in the hidden layer, 8 delay units in the feedback and one output 

neuron. 
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5.3 Conclusions 

In this Section a solution based on RNN to develop soft sensors to measure the wheel 

wear and surface roughness during the process with the ability to generalize to new wheel 

characteristics and grinding conditions has been presented.  

The selected recurrent neural architecture, Layer-Recurrent Neural Network, has shown 

the potential for modelling the dynamic evolution of the wheel wear and surface 

roughness without measuring initial real values in a prediction horizon up to 2000 mm2 

of specific volume of part material removed. This is a remarkable task because it means 

that the proposed methodology is capable of predicting up to 200 points of a complete 

dynamic evolution without initial real values. In fact, the MAME error for wheel wear is 

32 µm, and 0.26 µm for surface roughness. 

The calibration process of the sensor involves establishing the best possible ANN 

structure (neurons in the hidden layer and delay units in the feedback) that can model with 

good accuracy the dynamic evolution of wheel wear or surface roughness. This is carried 

out in a two-stage process, which involves coarse and fine tuning of the sensor. In the 

coarse tuning the Mean Square Error (MSE) is used to select the best hidden neurons 

(HN) and delay units (D) range. Then, based on the range obtained from a coarse tuning, 

the fine tuning aims to obtain the best possible network structure. 

However, it is not possible to select the best ANN structure only by comparing MSE 

values of the test dataset. Actually, the HU5D5 ANN structure for modelling wheel wear 

has achieved the lowest MSE value but it does not provide the best behaviour for 

modelling the dynamic evolution of wheel wear. Thus, two new ad-hoc indicators are 

proposed: the MAME value and the CV of the final stage of the prediction horizon. Those 

indicators help to select the best structure in a fine tuning calibration stage. However, the 

CV analysis is highly dependent on the application and modelling signal and, 

consequently, the reference values to discern if a signal remains constant or not depends 

on those characteristics. 

The lowest errors (and therefore, the best performance of the sensor) are achieved with a 

neural configuration centred in 10 HN and 10 D for the wheel wear, and 8 HN and 8 D 

for the surface roughness. In other words, these network configurations satisfactorily 

represent the wheel wear and surface roughness. Thus, this result confirms that for 

modelling the dynamic evolutions of both wheel wear and surface roughness, the quantity 
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of hidden neurons and delay units is quite similar. Therefore, this confirms the initial 

hypothesis accepted by literature and expressed in Equations (1) and (2).  

Finally, regarding the estimation of the evolution of wheel wear one might think that the 

characteristics of the wheel have a higher influence on the wear behaviour than the cutting 

parameters. In fact, the highest maximum error for wheels used and not used during the 

training process are 9 µm and 67 µm, respectively. Regarding the estimation of the surface 

finish, the wheel characteristics do not have such an influence on the surface finish 

behaviour. Actually, the selected net generalizes with good results to new wheels (not 

used during the grinding process), 0.36µm maximum error, and new grinding conditions, 

0.32µm maximum error. 
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6 SPECIFIC GRINDING ENERGY 

MODELLING   

Specific grinding energy is a fundamental variable in order to know the 

performance of the grinding process and it is also useful for estimating the 

power requirement of the grinding machine. Therefore, knowing beforehand 

the specific grinding energy from wheel characteristics and cutting 

conditions can help to know the performance of a grinding wheel in advance. 

The prediction of the specific grinding energy is done off-line, thus, before 

finding the best possible network, it is highly important to study the 

characteristics of the dynamic evolutions in order to select the most suitable 

ones for modelling the specific grinding energy. In the view of the results, 200 

points are in this case enough to achieve satisfactory results. Thus, given a 

time horizon of 2000 mm3/mm, the time step is set to 10 mm3/mm. Considering 

the conclusions about the characteristics of the time series and the neural 

configuration, the new aim is to find an effective net configuration for 

predicting the specific grinding energy. The yielded MAME and relative 

errors are lower than 33.60 J/mm3 and 23.65%, respectively. Although the 

proposed solution is able to predict specific grinding energy quite good, one 

unique RNN it is not able to predict the specific grinding energy for all the 

wheels commercially available. Thus, a neuro-fuzzy approach is proposed to 

generate custom networks for specific grinding wheels and grinding 

conditions using available experiments. Besides, the inputs of the fuzzy system 

are weighted with information extracted from a trained network in order “to 

help” the clustering. Under custom training datasets (weighted and non-

weighted) and non-custom (all the experiments available), the custom 

networks obtained with the weighted approach yields slightly better results. 

Likewise, the results achieved with all the experiments and with custom 

datasets are similar. Finally, using custom training experimental time and 

money, and also, RNNs training time is saved. 
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As said in 2.2.2, little effort has been dedicated to the modelling of the dynamic evolution 

of the specific grinding energy with ANNs. However, it is a fundamental variable in order 

to know the performance of the grinding process and it is also useful for estimating the 

power requirement of the grinding machine.  

Grinding wheels are produced in a semi-handmade process. Thus, it is not possible to 

know a priori relevant data about the performance of the wheel.  Besides, production and 

delivery times are very long. Therefore, it is necessary to develop models to know 

precisely the behaviour of the wheel from its characteristics. The advantages of this 

approach are: avoiding bad buying decisions, avoiding very time-consuming 

experiments, and avoiding wasting of time due to the long delivery times. Thus, knowing 

beforehand the specific grinding energy from wheel characteristics and cutting conditions 

can help to know the performance of a grinding wheel in advance. 

Therefore, to achieve the goal of modelling the dynamic behaviour of the specific 

grinding energy, the modelling of the complete dynamic evolution of the specific grinding 

energy is presented here. The developed model has to be capable to generalize for new 

wheels (not used during the training process) and grinding characteristics (not used for a 

specific wheel). 

It is noteworthy that for modelling the specific grinding energy it is not necessary to 

introduce other inputs and, thus, the methodology explained in Chapter 4 is used. Given 

this methodology, this chapter contains the comparative study and the results.  

6.1 Comparative study and results 

In this work, the aim is to model the complete dynamic evolution of the specific grinding 

energy bounded in a specific prediction horizon, i.e. a finite quantity of points must be 

predicted. Thus, there are two characteristics that must be taken into account: time-step 

and prediction horizon. Time-step is defined as the gap between two consecutive points 

of the dynamic evolution (Figure 38a). On the other hand, prediction horizon is referred 

to the length of the complete dynamic evolution to be predicted (Figure 38b). These two 

characteristics define the quantity of points in the dynamic evolution.  

In the case of the design of the soft sensors, the time-step is mostly given by the 

application requirements and the characteristics of the signal to be measured. However, 

the prediction of the specific grinding energy is made off-line or in advance, without 
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machining any part. Hence, before finding the best possible network, it is highly 

important to study the characteristics of the dynamic evolutions in order to select the most 

suitable ones for modelling the specific grinding energy.   

 

Figure 38 a) Time step. b) Prediction Horizon 

On the other hand, as said before, the aim of the training process is to find the best possible 

number of neurons in the hidden layer (HN) and feedback units (D) for modelling the 

specific grinding energy. Therefore, in order to find the most suitable network structure 

for modelling the specific grinding energy, the trail-and-error approach is used as follows: 

first, coarse finding of the best HN and D range is carried out and, second, the fine finding 

is done in that HN-D range. 

6.1.1 Dynamic evolution time characteristics vs. number of points 

The influence of these two parameters (time step and prediction horizon) and the number 

of points is to be discussed in order to conclude their influence on the generalization 

capabilities of the ANN. In fact, the methodology of this study can be applied on further 

analysis on applications with similar characteristics. It should be noted that, in this work, 

the RNN acts as a model to be used off-line that provides a complete dynamic evolution 

in a specific and previously bounded time interval. Thus, certain flexibility can be 

afforded concerning the sizes of the time step and the prediction horizon as long as the 

generalization capability of the ANN is improved. Nevertheless, note that the length of 

the prediction horizon is dependent on the specific application and thus a significant 

reduction of the prediction horizon would decrease significantly the utility of the 

proposed RNN application. 
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The training process for this analysis is carried out varying the time step and the prediction 

horizon considering that the prediction horizon is to be slightly changed due to the 

application requirement. Thus, for analysing the influence of the time characteristics and 

the number of points three different net configurations (HN-D) have been selected (5HN 

10D, 12HN 10D and 15HN 10D) due to the complexity of the task and experience gained 

developing the soft sensors (Chapter 4). In the selection process of the best network for 

the wheel wear and surface roughness the best results were yielded around 10 delays in 

the feedback. Besides, one could think that only with static inputs the net needs “more 

dynamic”, which can obviously be addressed by adding feedback. These ANN 

configurations are trained ten times with time steps set to 5mm3/mm (dataset 1, see Table 

13) 10mm3/mm (dataset 2, see Table 13) and 15mm3/mm (dataset 3, see Table 13).  Note 

that when the time step changes but the prediction horizon remains constant the number 

of points in the dynamic evolution also changes. 

Besides, for analyzing the influence of the prediction horizon another training has been 

carried out with the reduction of the prediction horizon to the 2/3 while time step is set to 

10mm3/mm (dataset 4, see Table 13). The reduction ratio has been selected to ensure that 

the dynamic evolutions with this reduction have the same amount of points in each 

dynamic evolution as those with time step 15mm3/mm and the prediction horizon 2000 

mm3/mm (dataset 3, see Table 13). The reduction has been done from each dynamic 

evolution and not from the global value (2000mm3/mm) because some are shorter than 

others (see Section 4.3.2.1). Thus, it is possible to observe the influence of time step, 

prediction horizon and the number of points independently. In fact, one of the goals of 

this analysis is to compare the influence of the dynamic evolution characteristics (time 

step and prediction horizon) and the number of points on the generalization capabilities 

of the ANN. In Table 13 are collected the different datasets generated combining different 

time steps and prediction horizons. Thus, the characteristics of the dynamic evolutions 

that most influence on the prediction of the specific grinding energy are to be inferred as 

a conclusion of the analysis.  

Datasets Time step Maximum 

Prediction 

horizon 

Number of 

points 

Dataset 1 5 2000 400 

Dataset 2 10 2000 200 

Dataset 3 15 2000 150 

Dataset 4 10 1500 150 

Table 13 Different combinations of time step and prediction horizon carried out 
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6.1.2 Network structure 

After selecting the best time step and the maximum prediction horizon, in order to obtain 

the optimal number of hidden units in the hidden layer (HN) and delay units (D) for 

modelling the relationship between the network inputs and outputs, the training is divided 

in two phases, as explained in the general methodology: 

1. Coarse tuning: Given the coarse nature of this phase and the complexity of the 

system, the configurations given by the combination of hidden neurons (HN) ∈ 

{5, 10, 15, 20} and delay units (D) ∈ {5, 10, 15, 20} are trained.  

2. Fine tuning: the fine tuning of the training process is to be performed in the range 

given by the best structures inferred in the coarse tuning. 

Each training of the RNN with a particular network structure is carried out ten times. For 

the initialization of the weights, the Nguyen-Widrow algorithm is applied.  

6.1.3 Analysis of Results 

First, the results of the analysis of the time characteristics are discussed and the best time 

step and prediction horizon are chosen. Finally, based on the previous analysis, the best 

network structure (neurons in the hidden layer and delays) for modelling the non-linear 

relationship between the wheel characteristics, grinding conditions and specific grinding 

energy is selected. 

6.1.3.1 Time characteristics vs. number of points analysis 

The aim of the following analysis is to provide clues about the influence of the dynamic 

evolution characteristics and ANN configurations on the generalization capabilities in the 

application scope previously defined. 
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Figure 39 Analysis of the number of points of the dynamic evolution with constant 

time horizon (2000mm3/mm) 

Figure 39 shows the best MAME results yielded with the dynamic evolution with 

different number of points generated through changing time step (Dataset 1, Dataset 2 

and Dataset 3) and different ANN topologies. The minimum MAME results are yielded 

for dynamic evolutions with more than 200 points (Dataset 1 and 2). Moreover, 15HN 

10D configuration yields unsatisfactory results independently of the number of points. 

Thus, it is considered that this configuration is not suitable for modelling the application 

process and that is why it is discarded. Therefore, with the exception of 15HN 10D 

configuration, it can be noticed that from 200 points lower errors are obtained and, 

compared with the results obtained with 200 points, no significant improvement is shown 

with 400 points. Furthermore, comparing the Dataset 2 and the Dataset 4 (Figure 40), this 

latter generated with the same time step of 10mm3/mm but with less points (a shorter time 

horizon), it can be observed that the best results are obtained when using more points. 

Thus, with the available results it can be concluded that, in this kind of ANN applications, 

nets trained with dynamic evolutions with more points generalize better. 
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Figure 40 Dataset 2 and Dataset 4 analysis with constant time step (10mm3/mm) 

However, not only the number of points in the dynamic evolution can affect the 

generalization capabilities of the net. It can be observed (Figure 39) that the results with 

Dataset 2 (200 points) are slightly better than the achieved for the Dataset 3 (400 points). 

It might be due to the excessive resolution of the dynamic evolution with the time step of 

5. Thus, in dynamic evolutions a too short time step might increase the prediction error 

with the additional disadvantage of also increasing the training time. This means that nets 

trained with evolutions with lower time step do not ensure better generalization. To 

reinforce the previous conclusions, Figure 41 shows that the net trained with evolutions 

with wider time step (Dataset 3) yields similar results, 47.04 J/mm3, than the net trained 

with the same number of points but narrow time step (Dataset 4), 48.54 J/mm3.  
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Figure 41 Time step and time horizon analysis with constant number of points 

In summary, it can be concluded that when the dynamic evolutions database for the ANN 

training is generated, the critical point to be considered is the number of points. 

Depending on the task to solve with the ANN, an analysis of the time step of the dynamic 

evolution has to be done to improve the generalization capabilities of the net. In this 

particular case, 200 points are enough to achieve satisfactory results. Given a time horizon 

of 2000mm3/mm, the time step is set to 10mm3/mm. On the other hand, the analysis of 

the influence of the time characteristics and the number of points shows that the best 

results are yielded within the range from 5 to 12 hidden units (HN). In fact, the net 

performs better with less than 12 neurons in the hidden layer. 

6.1.3.2 Best network structure selection 

Considering the conclusions of the previous section about the characteristics of the time 

series and the neural configuration, the new aim is to find an effective net configuration 

for predicting the specific grinding energy. Thus, the following ANN training process is 

carried out with time series with up to 200 points.  

Figure 42 gathers the best ten nets (the ten nets with the lowest MSE error) and the 

corresponding neurons in the hidden layer and feedback delays (HN-D) configuration 

showing how the performance (MSE) varies for different HN-D configurations. It can be 
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observed that the brown point corresponding to the 5HN15D configuration yields the 

highest error. Moreover, from all the trained nets only one of the best ten nets has 5 

neurons in the hidden layer. In addition, 4 of the ten nets correspond to 7 neurons in the 

hidden layer. One of these, the light-blue one with 14 delays, yields good results, an MSE 

error below 0.0030. However, 5 of the best ones have 10 neurons in the hidden layer. Two 

of them (green and blue) yield the same lowest MSE error with 12 delays and 5 delays, 

respectively, and the one represented with the dark-blue colour provides an MSE error 

slightly higher than 0.0030. It can be observed that the results of the net varies for 

different neurons in the hidden layer and delays of the feedback. In view of the results 

obtained in Figure 9, it can concluded that better results are achieved with more neurons 

in the hidden layer (note that from 10 neurons onwards higher MSE values are yielded 

due to overfitting). Moreover, as said in the Section 4.2.1 with a large quantity of neurons 

in the hidden layer the training time consumption increases considerably. Likewise, it can 

be noticed that the more neurons in the hidden layer, the lower the number of delays in 

the best nets. Actually, for 5HN the only best net has 15 delays. For 7HN, the number of 

delays of the best nets ranges from 14 to 18 delays and, finally, all the best nets obtained 

with 10HN have less than 13 delays in the feedback. 

 

Figure 42 MSE results for different HN-D configurations (200 points) 
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On the other hand, Table 14 shows the numerical data of the ten nets represented in Figure 

42. The number added to the word ‘net’ on Table 14 denotes the network number among 

the ten trained for each HN-D configuration. It can be observed that the best results have 

been yielded with more than seven neurons in the hidden layer. Besides, except two cases, 

the best results correspond to nets with a feedback delay around 13. However, it should 

be noted that there are excellent results with one network with 5 delays in the feedback. 

From the results shown in Table 14 it can be concluded that most of the best MSE results 

are yielded around within the range 7-10 neurons in the hidden layer and 13 delays. 

However, as explained in Chapter 3, the MSE results are not enough to select the best 

network from the application point of view and, consequently, a further study has to be 

conducted. Thus, the MAME error is calculated for the nets with the lowest MSE error 

(in bold). 

Hidden Units (HN) Delays (D) Net MSE 

7 14 Net3 0.0029 

7 16 Net6 0.0049 

7 17 Net9 0.0047 

7 18 Net8 0.0044 

10 5 Net8 0.0024 

10 12 Net5 0.0024 

10 12 Net6 0.0031 

10 12 Net10 0.0046 

10 13 Net6 0.0055 

5 15 Net1 0.0057 

Table 14 MSE results of the best nets (200 points) 

In Table 15 MAME error results for the nets with the lowest MSE error are shown. It can 

be observed that the best results are yielded with 10 neurons in the hidden layer and 12 

delays in the feedback with a MAME error of 16.91 J/mm3. This network configuration 

(10HN 12D) has a high repeatability because two nets have MAME errors lower than 20 

and three networks with this configuration can be found in Table 14 with MSE errors 

lower than 0.0046. Besides, the nets with the lowest MAME error have around 13 delays 

in the feedback. Actually, the worst results is yielded with 10 neurons in the hidden layer 

and 5 delays despite of having the lowest MSE error.  

 7HN14D 

net3 

7HN18D 

net8 

10HN5D 

net8 

10HN12D 

net5 

10HN12D 

net6 

MSE 0.0029 0.0044 0.0024 0.0024 0.0031 

MAME (J/mm3)  17.77 22.89 26.98 16.91 19.43 

Table 15 Best nets with the MAME result (200 points) 
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The predictions for new grinding conditions for known grinding characteristics are shown 

in Figure 43 and Figure 44. For the test experiment 1 (Figure 43) the behaviour of the two 

nets is different. Both of them start at the same point and follow a similar tendency. 

However, around 500 mm3/mm, the predicted signal of the network 7HN14D net3 starts 

to fluctuate. On the other hand, in the case of 10HN12D net5, after 300 mm3/mm start 

linearly increasing to a maximum error of 33.60 J/mm3 at the end of the signal. In the 

case of the second test experiment (Figure 44), the behaviour of both nets is almost the 

same. However, at the end, the 10HN12D net5 prediction increases slightly and so as the 

maximum error. Nevertheless, the maximum errors are similar, 28.60 J/mm3 for the 

10HN12D net5, and 23.07 J/mm3 for the 7HN14D net3. Although the maximum error of 

both nets is higher than the 10% limits, before 1200 mm3/mm both predictions follows 

closely the target signal. 

 

Figure 43 Specific grinding energy generalization capability of the two preselected 

networks. Test experiment 1: 82AA36K6VW qs = 100; Q' = 2.5 
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Figure 44 Specific grinding energy generalization capability of the two preselected 

networks. Test experiment 2: 82AA70G6VW qs = 60; Q' = 1 

Similar to the test experiment 2, test experiment 3 and 4 (new wheel characteristics not 

used during the training process), the two nets predict quite similarly. In the case of test 

experiment 3 (Figure 45), it can be said that the net that better predicts the specific 

grinding energy is the network 10HN12D net5, being the error in the complete dynamic 

evolution lower than around 10 J/mm3. Besides, the prediction remains most of the time 

within the ±10% range. Nevertheless, the 7HN14D net3 trained ANN maximum error is 

a bit higher (15.94 J/mm3) and from around 300 mm3/mm to 780 mm3/mm the prediction 

specific grinding energy is out of the ±10% limits. For the test experiment 4 (Figure 46), 

the results are similar. Although the maximum error of the 10HN12D net5 is higher 

(13.73 J/mm3) than of the 7HN14D net3 (11.35 J/mm3), this occurs at the end of the 

prediction. However, analysing the whole prediction horizon, it can be seen that the 

prediction of the 10HN12D net5 keeps within the ±10% range during more time. At any 

rate, both nets predictions are quite accurate for test experiments 3 and 4, with maximum 

errors lower than 16 J/mm3. Likewise, the error is almost during all the prediction window 

lower than 10%, being slightly higher only at the end. 
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Figure 45 Specific grinding energy generalization capability of the two preselected 

networks. Test experiment 3: 82AA36G6VW qs = 60; Q' = 2.5 

 

Figure 46 Specific grinding energy generalization capability of the two preselected 

networks. Test experiment 4: 82AA36G6VW qs = 60; Q' = 4 

Regarding the constancy phenomenon observed in the virtual sensors, in this case it is not 

so evident. In principle, for the same test experiment the training process has not yielded 

“good nets” some of them leading to constancy and others not leading to constancy. 

However, the behaviour of the best nets for test experiments number 3 and 4 could be 
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associated to the constancy phenomenon, and actually, compared to the virtual sensors, 

given the more complex nature of this estimation paradigm (with all the inputs static), 

one could think that the same phenomenon observed for wheel wear and surface 

roughness is repeated in the estimation of the specific grinding energy. Therefore, it is 

appropriate to analyse how the nets predict the specific grinding energy in the final stage 

of the dynamic evolution. To that goal, the coefficient of variation CV of the final stage 

of the evolutions is shown in Table 12. It can be seen that for test experiments 3 and 4 the 

CV is very low and, thus, the predictions remain constant after one point. On the other 

hand, for test experiments 1 and 2 the CV values are higher and the prediction does not 

remain constant at the final stage of the prediction. To check this, in the next paragraphs 

the values of the coefficient of variation and the prediction performance are compared. 

 Test 7HN14D net3 10HN12D net5 

Coefficient of 

Variation 

(CV) 

Test experiment 1 0.0841 0.0260 

Test experiment 2 0.0213 0.0351 

Test experiment 3 6.47e-05 3.45e-05 

Test experiment 4 9.86e-05 3.16e-04 

Table 16 Results of the coefficient of variation analysis for the of the prediction 

horizon of specific grinding energy 

In Figure 43 (test experiment 1) none of the two prediction signals remain constant after 

one point. However, the 10HN12D net5 prediction is barely an incrementally linear while 

the 7HN14D net3 prediction is oscillatory. This is the reason of the lower CV value for 

10HN12D net5. In the case of test experiment 2, the CV values are quite similar. The 

bigger CV of the 10HN12D net5 is because at the end the prediction increases slightly. 

For the third test experiment and fourth test experiment, at the end of the prediction 

horizon, the dynamic evolution remains almost constant for both nets. It clearly can be 

seen that the results of the Table 12 are coherent with Figure 43-46. As said before, the 

Figure 45 shows how the signal of both nets remains constant after 600 mm2, as the 

coefficient of variation metric shows with a value lower than 0.01. Likewise, for test 

experiments 4, both predictions remain constant after 800 mm3/mm. 

In the view of the results, in this particular case (the prediction of the dynamic evolution 

of the specific grinding energy) the value of CV higher than 0.01 shows that the prediction 

does not remain constant at the end, as for the surface roughness, indeed. 

In conclusion, after examining the MSE, the MAME and the CV, the net that best predicts 

the dynamic evolution of the specific grinding energy is the 10HN12D net5. In fact, this 
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net yields the lowest MSE and MAME error. Thus, the best net has 4 inputs, 10 neurons 

in the hidden layer, 12 delays in the feedback and one output neuron. 

6.2 Developing custom networks with a neuro-fuzzy approach 

It is evident that one unique RNN cannot predict the specific grinding energy for all the 

wheels commercially available. Furthermore, this statement can be applied to many 

application problems, obviously including the virtual sensors addressed in this work. 

Thus, this section deals with the proposal and methodology for generation of custom 

networks for specific grinding wheels and grinding conditions using available 

experiments. In particular, this section focuses on developing custom networks for the 

estimation of the specific grinding energy so as in future the methodology proposed by 

this work can be applied to the estimation of other grinding variables. 

Two factors have direct influence on the performance of the network under supervised 

learning. First, the ANN structure and complexity. Second, the representational accuracy 

of the data used to train the net (Philip, 2009). The ANN structure and complexity were 

solved with the general methodology presented in Chapter 4. Therefore, the methodology 

for representational accuracy of the dataset used to train custom nets is presented in this 

Section. 

Actually, selecting the proper training data has a great influence on the performance of 

the net. Besides, in grinding, performing grinding experiments is a highly time and 

resource consuming task. Therefore, cutting down on the number of experiments and 

selecting the custom training dataset is highly recommended and a desirable step forward 

in order to generate custom models for grinding process variables. However, downsizing 

too much the database may bring the reduction of the accuracy of the ANN. Some related 

works have analysed the effect of the training datasets over the network performance 

(Zhou & Wu, 2011) (Anjos, et al., 2015). These works showed that the training datasets 

have direct and decisive influence over the supervised learning of artificial neural 

networks. Thus, it is highly important to process training datasets for the improvement of 

the training performance. Other works have used different techniques in order to select 

custom training datasets. In (Ren, et al., 2014), it was proposed and compared the lateral 

data selection and longitudinal data selection for time series prediction. The results 

showed that by selecting specific training datasets from the whole available database the 

results improved. However, that selection looks more likely for forecasting in order to 
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select the best time windows for predicting future events. Furthermore, the k-means have 

also been used to downsize the dataset (Faraoun & Boukelif, 2007) (Young II, et al., 

2008) (Zhuo, et al., 2014). In other cases, the selection is performed by fuzzy c-means 

(He, et al., 2005). Fuzzy c-means and k-means are quite similar. However, k-means is 

hard clustering. In hard clustering the data is divided into distinct groups, ergo, each 

datum only belongs to one cluster, which can be a rigid approach for those application 

fields without clear boundaries between categories, as is the case of grinding. Conversely, 

in fuzzy clustering, each datum can belong to more than one cluster with a membership 

level (Hicham, et al., 2012). 

Consequently, in this work, the fuzzy clustering is used for selecting the custom training 

dataset. Within different fuzzy clustering, in this case, fuzzy c-means (FCM) are used 

because, compared to the other traditional clustering methods, fuzzy c-means are able to 

deal with the ambiguity and uncertainty of nature more closely (Zhou, et al., 2013). 

Besides, an advantage over other clustering methods is that it may be used in applications 

where the groups are overlapping (Pimentel & de Souza, 2013). FCM are a popular and 

widely used clustering technique. In  (Khalid, et al., 2014) fuzzy c-means are used for 

segmenting the optic cup and optic disc for the CDR. They have been also used for 

clustering of coal seams based on their tendency to spontaneous combustion (Shau, et al., 

2012). In (Nanda, et al., 2010) the FCM are used to group Indian stock market into 

clusters. Fuzzy methods have been also used in grinding for surface roughness prediction 

of ground components (Ali & Zhang, 1999 ), as well as for predicting surface finish and 

power requirement as part of a genetic-fuzzy system (Nandi & Pratihar, 2004). 

However, none of the works found in the literature review have proposed any strategy for 

custom modelling of grinding process variables by means of a reduced and explicitly 

delimited dataset. Since grinding operations cover a very large number of components 

and requirements, one unique trained neural network would not be able to model all these 

operations. Actually, a new strategy must be developed to generate custom ANNs using 

the existing database or generating a new one at the lowest resources and time cost. 

Besides, downsizing the dataset means reducing the time and costs that involve carrying 

out the experiments to generate the database. 

Therefore, in the methodology presented in this Section, a neuro-fuzzy system is proposed 

for predicting the dynamic evolution of the specific grinding energy for custom grinding 

wheels and grinding conditions. Actually, the fuzzy c-means are used to generate ad hoc 



Chapter 6: Specific grinding energy modelling 

Ander Arriandiaga Laresgoiti   105 

networks for specific grinding operations, involving, also, the reduction of the ANN 

training database and therefore, the amount of grinding experiments to carry out.  

By means of FCM clustering, it is not possible to know in advance which grinding 

conditions and wheels fit better each other. However, it is possible to extract from 

previously trained networks (see Section 6.1.3.2) the network inputs that have bigger 

influence over the estimation of the specific grinding energy. Therefore, unlike other 

approaches for reducing the dataset using fuzzy c-means, in this work the inputs are 

weighted in order to “help” the FCM by extracting knowledge from the weights of 

previously trained ANNs, and thus  “illuminating” the black box. 

6.2.1 Neuro-fuzzy approach 

In order to achieve the objectives a neuro-fuzzy system is proposed. To that end, first, the 

fuzzy part is used to downsize and select the custom training database and, second, the 

neuro part is used to model the specific grinding energy using the previously downsized 

training database as explained in Chapter 4 (Figure 47).  

 

 

Figure 47 Neuro-fuzzy system block diagram 
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6.2.2 Original experimental database 

The original database used in the neuro-fuzzy approach is the same as the one used to 

develop ANNs for predicting the specific grinding energy as described in Chapter 4. 

Likewise, the database has four features: grit size, hardness, Material removal rate (Q’) 

and Speed ratio (qs). Based on these inputs, in Table 17 the original database is shown. 

Exp. 
Grit 

size 
Hardness qs Q’ Exp. 

Grit 

size 
Hardness qs Q’ 

1 36 0,24 60 1 25 100 0,24 60 4 

2 36 0,24 60 2,5 26 100 0,24 80 1 

3 36 0,24 60 4 27 100 0,24 80 2,5 

4 36 0,24 80 1 28 100 0,24 80 4 

5 36 0,4 60 1 29 100 0,24 100 1 

6 36 0,4 60 2,5 30 100 0,24 100 2,5 

7 36 0,4 60 4 31 100 0,36 60 1 

8 36 0,4 80 1 32 100 0,36 60 2,5 

9 36 0,4 80 2,5 33 100 0,36 60 4 

10 36 0,4 80 4 34 100 0,36 80 1 

11 36 0,4 100 1 35 100 0,36 80 2,5 

12 36 0,4 100 2,5 36 100 0,36 80 4 

13 36 0,4 100 4 37 100 0,36 100 1 

14 70 0,24 60 1 38 100 0,36 100 2,5 

15 70 0,24 60 2,5 39 100 0,36 100 4 

16 70 0,24 60 4 40 70 0,36 60 1 

17 70 0,24 80 1 41 70 0,36 60 2,5 

18 70 0,24 80 2,5 42 70 0,36 60 4 

19 70 0,24 80 4 43 70 0,36 80 1 

20 70 0,24 100 1 44 70 0,36 80 2,5 

21 70 0,24 100 2,5 45 70 0,36 80 4 

22 70 0,24 100 4 46 70 0,36 100 1 

23 100 0,24 60 1 47 70 0,36 100 2,5 

24 100 0,24 60 2,5 48 70 0,36 100 4 

Table 17 Original experimental database 

Therefore, the aim of the fuzzy phase is to select experiments using fuzzy clustering from 

the original database in order to generate custom networks for specific grinding wheel 

and grinding conditions. 

6.2.3 Fuzzy clustering to select the custom database 

Clustering is related to the partitioning of a dataset into subsets or clusters. Thus, the data 

in each cluster shares some common features (Bataineh, et al., 2011). Within different 

clustering methods Fuzzy c-means (FCM) is the most used one. FCM is an unsupervised 

clustering algorithm proposed firstly by Dunn (Dunn, 1973) and later improved by 

Bezdek (Bezdek, 1981). The FCM try to find the most characteristic point of each cluster 
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and the grade of membership of each datum to the clusters (Wang & Zhang, 2007). For 

this, the objective cost function is minimized: 

𝐽𝑚(𝑈, 𝑉, 𝑋) = ∑ ∑ 𝑢𝑖𝑗
𝑚‖𝑥𝑗 − 𝑣𝑖‖2𝑐

𝑖=1
𝑛
𝑗=1                                                                 (16) 

where n is the number of patterns of the dataset; c is the number of clusters; 𝑈 = [𝑢𝑖𝑗]𝑐𝑥𝑛 

is a fuzzy partition matrix; 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∁ 𝑅𝑠 is a vector of feature data; 𝑉 =

{𝑣1, 𝑣2, … , 𝑣𝑐} ∁ 𝑅𝑠 is the vector of cluster centres and ‖𝑥𝑗 − 𝑣𝑖‖ is the Euclidean norm 

between 𝑥𝑗 and 𝑣𝑖. m is the parameter that fixes the fuzziness of the resultant clusters.  

The necessary conditions for minimizing the objective cost equation are: 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑗−𝑣𝑖‖

2

‖𝑥𝑗−𝑣𝑘‖
2)

1
(𝑚−1)

𝑐
𝑘=1

 1 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑛      (17) 

 

𝑣𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

 1 ≤ 𝑖 ≤ 𝑐         (18) 

The number of clusters c, the fuzziness exponent m, the tolerance , and, of course, the 

vector of features have to be introduced before carrying out the FCM algorithm. Thus, it 

is important to highlight that the number of clusters have to be introduced before using 

the FCM algorithm. Usually, FCM algorithm is used with different numbers of clusters, 

and once the procedure is finished the best suited cluster number is selected by validity 

indices.  

The feature matrix is usually normalized within the range [0, 1]. However, one could 

think that the knowledge about the process can be used to weight the inputs in order to 

obtain more realistic clustering. Therefore, in this work the knowledge about the grinding 

process deduced from the best ANN in Section 6.1.3.2 is ‘illuminated’. Actually, this 

trained ANN, which is able to predict the specific grinding energy with high accuracy but 

with a “big database”, provides important information about the influence of the inputs 

on specific grinding energy that can be helpful to cluster that big database.   

Actually, it is said that the ANNs are ‘‘black box’s’’. Indeed, this is a major weakness 

compared to traditional analytical approaches that can easily quantify the influence of 

each independent variable on the modelling process (Olden & Jackson, 2002). However, 

some works have tried to determine the importance of the inputs parameters over the 

outputs of the ANN (Paliwal & Kumar, 2011) (Kemp, et al., 2007). In this case, the 
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connection weight method proposed by Olden and Jackson is one of the well-recognized 

(Olden & Jackson, 2002). The connection weight method sums the product of the weights 

from the input neurons to the hidden neurons with the weights from the hidden neurons 

to the output neurons for each input parameter. The larger the sum of weights, the greater 

the importance of the evaluated input parameter. Thus, the relative importance of each 

input parameter is determined by the following equation: 

𝐼𝑚𝑝(𝑖) = ∑ (𝐶𝑊𝑖ℎ(𝑥)𝐶𝑊ℎ𝑜(𝑥))𝑛
𝑥=1                                                                            (19) 

where Imp(i) is the relative importance of the input parameter i; n the total number of 

hidden neurons in the hidden layer; x the index number of the hidden neuron; 𝐶𝑊𝑖ℎ(𝑥) the 

weight between the input parameter i and the hidden neuron x; and 𝐶𝑊ℎ𝑜(𝑥) the weight 

between the hidden neuron x and the output neuron.  

As said before, once the FCM algorithm is used, some kind of validation indices are 

needed in order to select the best number of clusters. When the data is two-dimensional 

is easy to visualize the solution and verify the best number of clusters. However, for more 

than two dimensions the visual verification is not possible, thus, new validation indices 

are required. Wang and Zhang studied the number of fuzzy cluster validity indices in the 

literature and concluded that none of these indices correctly recognizes the optimal cluster 

number (Wang & Zhang, 2007). Therefore, in most of the cases the optimal number of 

clusters are decided by applying more than one index. The common indices used to select 

the most suitable number of clusters are the following ones (Balasko, et al., 2005):  

 Partition Coefficient (PC): it measures the amount of "overlapping" between 

clusters (Bezdek, 1981). 

 Classification Entropy (CE): measures the fuzzyness of the cluster partition only. 

It is quite similar to the Partition Coefficient index. 

 Partition Index (SC): it measures the ratio of the sum of compactness and 

separation of the clusters (Zahid, et al., 1999). 

 Separation Index (S): in contrast to partition index (SC), the separation index uses 

a minimum-distance separation. 

 Xie and Beni index (XB): it quantifies the ratio of the total variation within 

clusters and the separation of clusters. 

 Dunn's Index (DI): this index identifies "compact and well separated clusters".  

 Alternative Dunn Index (ADI): it is a modification of the original Dunn's for 

simpler calculation. 
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However, although Partition Coefficient (PC) can be used as a validity index, they are 

irrelevant to the problem of cluster validity (Trauwaert, 1988). Likewise, Classification 

Entropy index and the PC are quite similar. On the other hand, the Dunn's Index (DI) is 

high resource consuming. Besides, the DI index and Alternative Dunn Index (ADI) 

indices are not very reliable for fuzzy clustering because of re-partitioning the results with 

the hard partition method (Balasko, et al., 2005). Therefore, in this work the Partition 

Index (SC), the Separation Index (S) and the Xie and Beni index (XB) are used to select 

the optimal number of clusters. 

 

Figure 48 Fuzzy part flowchart 
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The block diagram of the fuzzy part of the Neuro-Fuzzy system is shown in Figure 48. 

First, from a trained and good ANN model, the relative importance of each input over the 

prediction is extracted. Second, the inputs of the fuzzy c-mean are normalized using the 

relative importance of each input. Third, the FCM algorithm is used for clustering the 

dataset. Using the FCM validate indices is shown if the number of clusters are 

satisfactory. It is noteworthy that in this work the aim is to achieve the lowest possible 

number of clusters but with good performance. Therefore, the indices are analysed in 

order to achieve the best solution without increasing too much the number of clusters. 

Thus, the solution for different clusters are compared to decide the best number of 

clusters. 

6.2.4 Training database selection from the downsized database 

As said before, the main difference between hard and fuzzy clustering is that in fuzzy 

clustering, besides clusters, the membership to each cluster is provided. Thus, instead of 

using all data from each cluster, it is possible to select the experiments based on the 

membership. 

Regarding this latter, it is proposed to design a set of rules in order to select the 

experiments from the clusters to train the ANN that predicts the specific grinding energy. 

To that end, the worst case is taken as baseline. In particular, the worst case is that the 

specific grinding wheel and grinding operation to predict has equal membership in all the 

clusters. Actually, the minimum value of membership of a cluster is the unity divided by 

the number of clusters. 

𝑁𝑚𝑖𝑛 =  
1

𝑐
                                  (20) 

where c is the number of clusters. 

Once the worst case is identified, in order to select the custom training dataset to train the 

net, the following rules are proposed. The aim is to select specific experiments to generate 

the training database based on the membership: 
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IF uij > n x Nmin THEN 
    IF more than two data of the cluster have higher than n x Nmin THEN 
        Use these to generate training data 
        IF r<e THEN 
            Use data with uij > m x Nmin 
        ELSE IF uij > m x Nmin THEN 
            Use data with uij > m x Nmin  to generate training data 
            IF r<e THEN 
                Use data with uij > Nmin 
            ELSE IF uij > m x Nmin  and uik > Nmin THEN 
  Use data with uij > m x Nmin  and uik > Nmin to generate training data 
  IF r<e THEN  
                     Use data with uij > Nmin and uik > Nmin  
                ELSE IF uij > Nmin and uik > Nmin THEN 
                    Use data with uij > Nmin  and uik > Nmin to generate training data  
                    IF r<e THEN 
                        Use data with uij > Nmin  and uik > Nmin 

                               ELSE IF uij >Nmin  , uik > Nmin  and uil > Nmin    THEN 
         Use data with uij > Nmin, uik > Nmin and uil > Nmin to generate training data  
 

where uij is the membership of experiment xi into cluster j, uik is the membership of 

experiment xi into cluster k and uil is the membership of experiment xi into cluster l. 

Likewise, m and n are adjustable parameters to select wider or narrower membership 

ranges. Finally, r refers to the prediction error of the best network after training it and e 

is the worst acceptable error.  

As stated before, unlike with k-mean, in c-means each data (experiments in this case) has 

a membership for each cluster. Thus, selecting experiments based on the membership 

range it is possible to select more or less experiments for the custom training dataset. 

Following this idea, the rules above are proposed with the aim of downsizing as much 

possible the custom training database, starting from a small dataset (with higher 

membership) to bigger datasets composed with almost all experiments under higher 

membership than Nmin.  

6.2.5 ANN for predicting the specific grinding energy 

The methodology followed for predicting the dynamic evolution of specific grinding 

energy is the same described in Chapter 4. Thus, the network used is the Layer-Recurrent 

Neural Network with the Levenberg-Marquardt training algorithm. To improve the 

generalization capabilities of the net the Bayesian regularization is used and to avoid the 

local minima the weights and biases are updated with the Nguyen-Widrow approach.  

However, in order to save training time and based on previous knowledge (see Chapter 4 

and Section 6.1.3.2), instead of the two-phase methodology (see Section 4.3.3.1), the 

following neurons in the hidden layer (HN) and delays in the feedback (D) are used to 

show the efficiency of the Neuro-Fuzzy approach:  
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 HN ∈ {5, 7, 10}  

 D ∈ {5, 7, 10} 

Actually, it might think that with less training examples, the network complexity should 

be lower. In fact, this HN and D selection can help to analyse the relationship between 

the number of experiments and the complexity of the network. 

Besides, it is remarkable to say that unlike in previous Section, where the aim was to 

generalize to new grinding wheels and grinding characteristics, in this case the aim is to 

estimate ec for a specific grinding wheel and grinding characteristics. Thus, instead of 

using the MAME metric the maximum error of the predicted signal is used along with the 

MSE because there is no need of calculating the mean because only one signal is predicted 

with one network. 

6.2.6 Discussion of the results 

In order to analyse and compare the performance of the neuro-fuzzy based results, 

consistent indicators are necessary. Then, first of all, the results from the analysis of the 

fuzzy system are presented. Finally, the results for the prediction of the specific grinding 

energy from the downsized dataset with recurrent neural networks are discussed. 

6.2.6.1 Downsizing the database using fuzzy c-means 

This work has been carried out using the Fuzzy Clustering and Data Analysis Toolbox of 

MatlabTM (Balasko, et al., 2005). In particular, it has been used for the fuzzy c-means 

clustering and, also, to select the best number of clusters using the provided indices. 

6.2.6.1.1 Input weighting using the relative importance of the inputs  

As shown in Figure 48, first, from a good ANN model the relative importance of each 

input over the prediction of the specific grinding energy has to be extracted. Thus, the 

best network yielded in Section 6.1.3.2 is used. This network had four inputs: two 

characterizing the grinding wheel (grit size and the hardness) and other two describing 

the grinding operation (speed ratio and material removal rate).  

Therefore, using the equation 18 the importance of each input over the prediction of the 

dynamic evolution of specific grinding energy is calculated. After, the relative importance 

of each input is computed (Table 18). 
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Input Relative 

importance (%) 

Grit size 0.42 

Hardness 0.20 

Speed ratio (qs) 0.04 

Material removal rate (Q’) (mm3/mm∙s) 0.34 

Table 18 The relative importance of each model input over the dynamic evolution 

of the specific grinding energy 

Thus, it can be observed (Table 18) that the inputs with the highest relative importance 

are the grit size of the grinding wheel and the material removal rate. Likewise, it can be 

noticed that the effect of the wheel hardness is almost residual. 

Once the relative importance of the inputs is computed, the inputs of the fuzzy clustering 

system are weighted accordingly before running the clustering. As stated above, 

traditionally, the inputs for fuzzy clustering are normalized within the range [0, 1]; 

however, in this case, the inputs are normalized using the relative importance. Since the 

criteria needed to deal with this normalization have not been found in the literature, the 

simplest way has been chosen. In fact, the normalization range of each input is easily 

obtained by multiplying the typical range [0 - 1] by the corresponding relative importance 

(Table 19): 

Input Normalization range 

Grit size 0 - 0.42 

Hardness 0 - 0.20 

Speed ratio (qs) 0 - 0.04 

Material removal rate (Q’) (mm3/mm∙s) 0 - 0.34 

Table 19 FCM inputs weighted normalization ranges 

6.2.6.1.2 Fuzzy clustering of the original database 

In order to select the optimum number of clusters, the FCM algorithm is launched for 

different number of clusters. In particular, the number of clusters within the range 2 to 15 

has been compared. Besides, the default fuzzy c-means algorithm parameters proposed 

by the toolbox developers are used i.e. weighting exponent = 2 and termination tolerance 

= 1e-3. Mostly, in clustering, solutions with less clusters are better. Thus, as explained in 

Section 6.2, using the membership it is possible to select the most suitable experiments 

to train custom networks. 

Besides, to compare the fuzzy clustering for weighted and non-weighted inputs, the FCM 

algorithm is launched for both cases. In fact, first the results for the weighted inputs are 

shown, and second for non-weighted inputs. 
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Figure 49 Values of Partition Index (SC), Separation Index (S) and Xi and Beni 

(XB) index for number of clusters (c) from 2 to 15 (weighted inputs)  

Figure 49 and Table 20 show that for SC and S indices the results converge after c=7. 

However, after c=5 hardly decreases and, thus, it can be seen as the starting point of the 

convergence.  In the case of the XB index, it reaches this local minimum at c = 3. 

However, after c=5, it start to increase. Considering SC, S and XB indices the optimum 

solutions are c=5 and c=7. However, as said before, partitions with less clusters are better, 

therefore, the optimal number of clusters is 5. 

Clusters (c) SC S XB 

2 5.554 0.116 1.126 

3 3.245 0.080 0.907 

4 2.955 0.075 1.054 

5 2.328 0.060 0.969 

6 1.871 0.065 1.001 

7 1.473 0.039 1.126 

8 1.426 0.053 1.558 

9 1.502 0.052 1.636 

10 1.320 0.048 1.866 

11 1.076 0.039 3.260 

12 0.959 0.035 2.725 

13 0.909 0.032 3.641 

14 0.653 0.024 4.742 

15 0.612 0.021 8.207 

Table 20 Numerical value of Partition Index (SC), Separation Index (S) and Xi and 

Beni (XB) index for number of clusters (c) from 2 to 15 (weighted inputs) 

In the case of the non-weighted inputs, the results are quite similar. Figure 50 and Table 

21 show that after c=5 SC and S decrease slightly but after c=6 it converge. Besides, 
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analyzing the XB index, it reaches this local minimum at c = 6. However, from c=5 to 

c=7 the XB is quite similar. Therefore, in this case, although one might think that the best 

solution is to choose 6 cluster partitions, its results are very close to those obtained with 

5 cluster partitions and thus, this latter is selected in order to have less clusters. 

 

Figure 50 Values of Partition Index (SC), Separation Index (S) and Xi and Beni 

(XB) index for clusters from 2 to 15 (non-weighted inputs) 

Clusters SC S XB 

2 5.719 0.119 2.830 

3 3.839 0.103 1.102 

4 2.297 0.063 0.820 

5 1.815 0.051 0.750 

6 1.451 0.038 0.684 

7 1.238 0.032 0.706 

8 1.192 0.034 0.813 

9 1.141 0.031 1.001 

10 1.076 0.036 1.225 

11 0.864 0.028 1.187 

12 0.772 0.027 1.045 

13 0.681 0.023 1.103 

14 0.710 0.024 1.296 

15 0.691 0.023 1.721 

Table 21 Numerical value of Partition Index (SC), Separation Index (S) and Xi and 

Beni (XB) index for clusters from 2 to 15 (non-weighted inputs) 

Regarding the number of clusters, the obtained results do not yield significant differences 

concerning the optimum number of clusters when using or not using weighted inputs. 

However, respect to the results obtained with weighted clustering, the best number of 

clusters is 5. Meanwhile, non-weighted inputs clustering shows that with a slightly similar 
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number of clusters, in particular 6 clusters, the solution is similar. The reason why this 

happen could be that the original database is compound by experiments from a specific 

application field of grinding of steel parts with non-extremely demanding surface finish. 

Actually, only three different values are used for each input i.e. 36, 70 and 100 for the 

grit seize (see Section 4.2.3). 

Once clusters are generated, the next step is to select the experiments to train the custom 

network. For the rest of the work, 5 clusters will be used for both cases i.e. weighted 

inputs and non-weighted inputs. Therefore, based on the equation 19 the Nmin parameter 

for 5 clusters is 0.20. Actually, this is the worst case, when an experiment has the same 

membership for all the clusters. As described in Section 6.2.4, the next step is to select 

the m and n parameters of the set of rules. In this case, in view of the results yielded with 

5 clusters, m=2 and n=3 are selected. In orange, the membership greater than 0.2 and 

lower than 0.4 is represented. Likewise, in blue the membership greater than 0.4 and 

lower than 0.6 is represented. Finally, in green, the membership greater than 0.6 is 

represented. The results show that the membership of the inputs are scattered and few of 

them have a membership greater than 0.8 for one cluster.  

However, analysing both results (for weighted and non-weighted inputs), it can be 

observed that while for the weighted inputs there are more experiments with high 

membership (in green), for non-weighted inputs there are less experiments with high 

membership. Actually, the results for weighted inputs seem to be more “compact”, i.e. 

the groups of experiments can be clearly distinguished. However, for non-weighted 

inputs, there are more than one experiment with more than two clusters with higher 

membership than 0.2 i.e. the results appear to be more scattered, less discriminatory after 

all. Therefore, the results confirm the conclusions obtained from the analysis of the 

clustering indices, which claimed that for weighted inputs 5 clusters are better than for 

non-weighted inputs. Actually, it seems that the groups are clearer.  
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Table 22 Membership range representation by colour for the 48 inputs (weighted). 

In orange, the membership greater than 0.2 and lower than 0.4 is represented. 

Likewise, in blue the membership greater than 0.4 and lower than 0.6 is 

represented. Finally, in green, the membership greater than 0.6 is represented 

. 

 

Experiment 1 2 3 4 5

1 0,11 0,31 0,13 0,39 0,07

2 0,07 0,43 0,21 0,22 0,07 Value > 0,2

3 0,07 0,30 0,38 0,14 0,11

4 0,11 0,31 0,13 0,39 0,07 Value > 0,4

5 0,08 0,52 0,09 0,25 0,06

6 0,00 0,97 0,01 0,01 0,00 Value > 0,6

7 0,06 0,49 0,26 0,10 0,09

8 0,08 0,53 0,09 0,25 0,06

9 0,00 0,98 0,01 0,01 0,00

10 0,06 0,49 0,26 0,10 0,09

11 0,08 0,52 0,09 0,25 0,06

12 0,01 0,96 0,01 0,01 0,01

13 0,06 0,49 0,26 0,10 0,09

14 0,12 0,05 0,05 0,74 0,04

15 0,14 0,10 0,32 0,31 0,13

16 0,04 0,05 0,75 0,05 0,11

17 0,12 0,05 0,05 0,75 0,04

18 0,13 0,10 0,32 0,31 0,13

19 0,04 0,05 0,76 0,05 0,11

20 0,13 0,05 0,05 0,74 0,04

21 0,14 0,10 0,32 0,31 0,13

22 0,04 0,05 0,75 0,05 0,11

23 0,79 0,02 0,04 0,10 0,05

24 0,37 0,04 0,13 0,12 0,34

25 0,09 0,04 0,17 0,06 0,65

26 0,80 0,02 0,03 0,09 0,05

27 0,37 0,04 0,13 0,12 0,34

28 0,09 0,04 0,17 0,06 0,66

29 0,79 0,02 0,04 0,10 0,05

30 0,37 0,04 0,13 0,12 0,34

31 0,75 0,03 0,04 0,11 0,07

32 0,30 0,05 0,11 0,11 0,43

33 0,04 0,02 0,08 0,03 0,83

34 0,76 0,03 0,04 0,10 0,07

35 0,30 0,05 0,11 0,10 0,43

36 0,04 0,02 0,08 0,03 0,84

37 0,75 0,03 0,04 0,11 0,07

38 0,30 0,05 0,11 0,11 0,43

39 0,04 0,02 0,08 0,03 0,83

40 0,14 0,08 0,06 0,68 0,05

41 0,13 0,16 0,29 0,28 0,15

42 0,04 0,07 0,69 0,05 0,15

43 0,14 0,08 0,06 0,68 0,05

44 0,13 0,16 0,29 0,28 0,15

45 0,04 0,07 0,70 0,05 0,14

46 0,14 0,08 0,06 0,67 0,05

47 0,13 0,16 0,29 0,28 0,15

48 0,04 0,07 0,69 0,05 0,15

Weighted
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Table 23 Membership range representation by colour for the 48 inputs (non-

weighted). In orange, the membership greater than 0.2 and lower than 0.4 is 

represented. Likewise, in blue the membership greater than 0.4 and lower than 0.6 

is represented. Finally, in green, the membership greater than 0.6 is represented 

Besides, comparing the wheel characteristics and the grinding conditions of each 

experiment (see Table 17), as expected, experiments with the same grit size share, mostly, 

the same clusters in the case of weighted inputs. In fact, experiments with grit size = 100 

Experiment 1 2 3 4 5

1 0,21 0,12 0,21 0,16 0,30

2 0,15 0,12 0,16 0,15 0,43 Value > 0,2

3 0,13 0,17 0,14 0,16 0,40

4 0,20 0,12 0,28 0,17 0,22 Value > 0,4

5 0,25 0,13 0,11 0,38 0,13

6 0,17 0,14 0,08 0,50 0,12 Value > 0,6

7 0,16 0,21 0,09 0,39 0,15

8 0,22 0,11 0,10 0,49 0,08

9 0,03 0,03 0,01 0,91 0,02

10 0,12 0,21 0,08 0,49 0,10

11 0,22 0,15 0,14 0,40 0,09

12 0,15 0,17 0,10 0,51 0,08

13 0,14 0,25 0,11 0,39 0,10

14 0,21 0,10 0,24 0,09 0,35

15 0,06 0,04 0,07 0,03 0,80

16 0,10 0,14 0,12 0,08 0,56

17 0,17 0,08 0,51 0,07 0,17

18 0,10 0,09 0,41 0,05 0,35

19 0,11 0,23 0,19 0,09 0,38

20 0,16 0,11 0,53 0,09 0,12

21 0,12 0,15 0,50 0,08 0,14

22 0,13 0,27 0,27 0,12 0,20

23 0,23 0,12 0,28 0,08 0,30

24 0,15 0,12 0,19 0,06 0,48

25 0,13 0,19 0,16 0,08 0,43

26 0,18 0,09 0,51 0,06 0,16

27 0,13 0,13 0,46 0,05 0,24

28 0,13 0,25 0,23 0,08 0,30

29 0,16 0,12 0,52 0,07 0,12

30 0,13 0,16 0,50 0,07 0,14

31 0,42 0,15 0,16 0,12 0,16

32 0,32 0,24 0,13 0,12 0,20

33 0,19 0,35 0,12 0,13 0,21

34 0,49 0,14 0,18 0,10 0,10

35 0,32 0,36 0,13 0,09 0,10

36 0,13 0,57 0,10 0,09 0,11

37 0,32 0,19 0,26 0,13 0,10

38 0,23 0,34 0,21 0,12 0,10

39 0,15 0,47 0,15 0,12 0,11

40 0,45 0,12 0,12 0,16 0,14

41 0,33 0,20 0,09 0,19 0,19

42 0,17 0,32 0,10 0,19 0,22

43 0,62 0,09 0,10 0,13 0,06

44 0,36 0,32 0,07 0,18 0,07

45 0,09 0,65 0,06 0,12 0,08

46 0,32 0,17 0,22 0,20 0,09

47 0,22 0,32 0,16 0,21 0,08

48 0,13 0,47 0,12 0,18 0,10

Non-Weighted
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(experiments from 23 to 39) have all of them a membership greater than 0.2 in clusters 1 

and/or 5. Likewise, experiments with grit size = 36 (experiments from 1 to 13) have all 

of them a membership greater than 0.2 in clusters 2, 3 and/or 4. Finally, experiments with 

grit size = 70 (experiments from 14 to 22 and from 40 to 48) have all of them a 

membership greater than 0.2 in clusters 3 and/or 4. However, for the case of non-weighted 

inputs, the results are different. In fact, the groups are not clear. For example, the 

experiments 36 and 48 have a membership higher than 0.4 in the same cluster (cluster 

number 2), and if one looks at Table 17 the wheel characteristics and grinding conditions 

of both experiments, they only share the hardness and material removal rate.  

6.2.6.2 Generation of custom ANNs for the prediction of specific grinding energy  

As described before, 5, 7 and 10 neurons in the hidden layer (HN); and 5, 7 and 10 delays 

in the feedback (D) are used in order to find the best network structure for predicting the 

specific grinding energy. Following the strategy used in Section 6.1.2, each network 

structure is trained with a custom training database obtained using the FCM, initializing 

the weights and biases 10 times by the Nguyen-Widrow approach. Thus, now the goal of 

this section is to find the net that best predicts the complete dynamic evolution of specific 

grinding energy for specific grinding wheel and grinding operation characteristics.  

In Figure 51 the lowest MSE are shown for five experiments, chosen from the original 

dataset, and the three types of training datasets to show the performance of the presented 

neuro-fuzzy approach: first, custom training dataset generated using the weighted inputs 

FCM results (); second, custom training datasets generated using the non-weighted 

inputs FCM results (); third, all the experiments available (). It is noteworthy that, of 

course, in the latter the only experiment not used is the one to be predicted. 
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Figure 51 Summary of the lowest MSE yielded for different experiments 

The results correspond to the lowest MSE in the prediction of the experiments 4, 11, 21, 

30 and 48 (see Figure 51). The results clearly show that MSE values for the three training 

datasets are quite similar in most of the cases. However, there are some differences. For 

example, in the case of the prediction of the 11th experiment, the MSE results yielded 

with the training dataset generated with the weighted inputs are much better. Likewise, in 

the prediction of dynamic evolution of specific grinding energy of experiment number 

48, the results yielded with the training dataset generated after FCM without weighted 

inputs, are far worst. Only in one case the result yielded with the training dataset generated 

under FCM without weighted inputs is the best one. However, although it is better, it is 

really close to the results yielded with all training data and weighted inputs. To sum up, 

in two cases the best results are achieved with the so called “weighted”, other two with 

all the training data available and, finally, one with the dataset generated with the non-

weighted inputs. 
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Figure 52 Summary of the lowest maximum error yielded for different 

experiments 

However, as concluded in Section 5.3, MSE is not enough to select the best network. 

Therefore, in Figure 52, the lowest maximum error results are showed. It is important to 

recall that the network that achieves the lowest MSE is not necessarily the net that 

achieves the lowest maximum error. Hence, observing the results, it can be noticed that 

in three cases (prediction of experiments 11, 21 and 30) the best results are yielded with 

the custom training dataset generated with FCM and weighted inputs (). In the 

remaining two cases, the lowest maximum error are for nets trained with all the training 

data available. Besides, the results of Figure 52 also confirm that, as said before, the MSE 

is not enough to select the best RNN. In fact, in the case of the prediction of the dynamic 

evolution of the experiment 30, the lowest MSE is yielded with the dataset generated with 

non-weighted inputs. Nevertheless, the lowest maximum error is yielded by a net trained 

with the training dataset generated with weighted inputs.  

Although in some cases the best results are achieved with the training dataset composed 

by all training data available (except the one to be predicted), the training dataset used for 

training is much bigger. For example, for the prediction of the experiment 4 (see Table 

24), only 4 experiments are used under the FCM weighted approach. It is noteworthy to 

remember that as explained in the general methodology (see Chapter 4), 10 virtual 

experiments are generated from the real measurements. Actually, overall, with 40 

experiments a maximum error of 30.72 J/mm3 is yielded. Using all the experiments 
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available (470 experiments) the maximum error reduces to 26.28 J/mm3. In fact, the 

results show that it is not worth including all the experiments in the training dataset for 

such a small improvement. 

Experiment Grit size Hardness qs Q’ 

1 36 0,24 60 1 

4 36 0,24 80 1 

5 36 0,4 60 1 

8 36 0,4 80 1 

11 36 0,4 100 1 

Table 24 Training dataset generated using FCM with weighted inputs and the 

decision proposed for the experiment 4 (in green) 

Moreover, for the prediction of the experiment 11, in Table 25 the custom training dataset 

can be seen. Only three experiments are chosen using the FCM results with weighted 

inputs and the decision tree proposed. Therefore, only 30 (3x10 virtual generated) are 

enough to yielded the best results. Likewise, using the FCM results with non-weighted 

inputs and the decision tree proposed, the custom training dataset is also compounded by 

30 training experiments (see Table 26). In both cases, the best network outperforms the 

net trained with all the experiments available (470). 

Experiment Grit size Hardness qs Q’ 

2 36 0,24 60 2,5 

5 36 0,4 60 1 

8 36 0,4 80 1 

11 36 0,4 100 1 

Table 25 Training dataset generated using FCM with weighted inputs and the 

decision proposed for the experiment 11 (in green) 

Experiment Grit size Hardness qs Q’ 

5 36 0,4 60 1 

8 36 0,4 80 1 

11 36 0,4 100 1 

47 70 0,36 100 2,5 

Table 26 Training dataset generated using FCM with non-weighted inputs and the 

decision proposed for the experiment 11 (in orange) 

On the other hand, the results obtained after training the networks can lead to an analysis 

about the network structure (HN-D). For that purpose, in Table 27, the best networks for 

the prediction of different experiments and for different training datasets are showed. At 
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first sight, no pattern can be observed. For example, in the case of “weighted inputs”, 

networks with 5HN, 7HN and 10HN, and 5D, 7D and 10D can be found as best. In the 

same way, for “non-weighted inputs”, 5HN, 7HN and 10HN, and 5D, 7D and 10D can 

be found. Besides, not many nets can be found on the edges of the ranges (5HN5D and 

10HN10D). Therefore, the preselected HN and D range seems to be the correct one. 

However, for the nets trained with all the data available, all the best networks have 5 

delays in the feedback. Likewise, no net can be found with 10 neurons in the hidden layer. 

Actually, these results differ substantially from those obtained in Section 6.1.3.2, where 

the best two nets have 12 and 14 delays in the feedback. Therefore, the network structure 

yielded can lead to the conclusion that to improve the generalization capabilities of the 

net, as the nets of Section 6.1.3.2, more complex networks are needed i.e. with more 

neurons in the hidden layer (HN) and more delays in the feedback (D). Regarding this 

latter, it is noteworthy that the nets obtained from the neuro-fuzzy approach only 

generalize to one particular case, the one to be predicted.  

 Weighted inputs Non-weighted inputs All training data 

Exp. Best 

Network  

Maximum 

error 

Best 

Network  

Maximum 

error 

Best 

Network  

Maximum 

error 

4 10HU10D 

 Net9 

32.02 

J/mm3 

7HU10D 

 Net8 

30.7 

J/mm3 

7HU5D  

Net5 

26.28 J/mm3 

11 7HU7D  

Net7 

22.53 

J/mm3 

10HU5D 

 Net2 

25.22 

J/mm3 

7HU5D  

Net6 

39.67 J/mm3 

21 7HU5D  

Net9 

5.18 

J/mm3 

10HU7D 

 Net5 

10.00 

J/mm3 

5HU5D  

Net8 

7.64 J/mm3 

30 5HU5D  

Net5 

2.27 

J/mm3 

5HU10D 

 Net10 

2.78 

J/mm3 

5HU5D  

Net8 

4.15 J/mm3 

48 7HU10D 

 Net10 

11.21 

J/mm3 

10HU10D 

 Net1 

33.29 

J/mm3 

7HU5D  

Net6 

8.23 J/mm3 

Table 27 Best networks for different experiment prediction using training dataset 

generated with weighted inputs (FCM), non-weighted inputs (FCM) and all data 

available 

Finally, the MSE and maximum error results yielded are quite similar for the three 

different training datasets. This seems logical because, as said before, all the experiments 

available in the original database are from the same application field, grinding of steel 

parts with non-extremely demanding surface finish. However, although the results are 

similar, the preliminary results yielded with the weighted inputs slightly outperform the 

nets trained with a custom dataset obtained with non-weighted inputs. Likewise, the 

results achieved with all the experiments and with custom datasets are similar, better in 

some cases and worse in others. Therefore, it can be concluded that it is better to use 
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custom training datasets obtained after FCM due to the saving experimental time and 

money, and also, RNNs training time. However, further analysis should be carried out 

with an original database with experiments from different application fields in order to 

draw better conclusions.  

6.3 Conclusions 

In this Chapter a solution based on RNN to predict off-line the specific grinding energy 

with the ability to generalize to new wheel characteristics and grinding conditions has 

been presented.  

The analysis of the time characteristics of the dynamic evolutions (time step and time 

horizon) and the number of points shows that in this kind of ANN applications, neural 

networks trained with dynamic evolutions with more points generalize better. However, 

nets trained with dynamic evolutions with lower time step (and more points for the same 

time horizon) do not ensure better generalization. In view of the results of the analysis of 

the time characteristics of the dynamic evolutions of the specific grinding energy and the 

number of points, 200 points are in this case enough to achieve satisfactory results. Thus, 

given a time horizon of 2000 mm3/mm, the time step is set to 10 mm3/mm.  

In order to achieve the best possible ANN structure (neurons in the hidden layer and delay 

units in the feedback) that can predict with good accuracy the dynamic evolution of the 

specific grinding energy, a two-stage process which involves coarse and fine tuning is 

proposed. The analysis of the time characteristics of the dynamic evolutions also shows 

that the best results are yielded within the ranges 5 and 12 of neurons hidden layer (HN). 

In fact, the best results are obtained with 10 neurons in the hidden layer (HN) and 12 

feedback delays (D). The MAME error for the best configuration is 16.91 J/mm3. 

The Layer-Recurrent Neural Network has shown its potential for modelling the dynamic 

evolution of the specific grinding energy without measuring initial real values and with 

only static inputs in a prediction horizon up to 2000 mm2 of specific volume of part 

material removed. This is a remarkable task because it means that the proposed 

methodology is capable of predicting up to 200 points of a complete dynamic evolution 

only using static inputs without initial real values. The yielded MAME and relative errors 

are lower than 33.60 J/mm3 and 23.65%, respectively, which are really acceptable errors 

for grinding’s users. Besides, the selected RNN net generalizes with good results to new 

grinding conditions, 33.60 J/mm3, and new wheels (not used during the grinding process), 
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15.94 J/mm3. Thus, the net generalizes better to new wheel characteristics. In fact, it might 

be concluded that grinding conditions have bigger influence than wheel characteristics on 

the specific grinding energy prediction. 

Although the proposed solution is able to predict complete dynamic evolutions without 

initial values for new grinding wheels and new grinding conditions, obviously, one unique 

RNN it is not able to predict the specific grinding energy for all the wheels commercially 

available. Thus, a new approach based on the generation of custom networks for specific 

grinding wheels and grinding conditions using available experiments is proposed.  

In particular, a neuro-fuzzy proposal is presented to generate custom networks for specific 

grinding wheels and grinding conditions downsizing the experiments database. Besides, 

in grinding, carrying out grinding experiments is a highly time and resource consuming 

task. Therefore, cutting down on these experiments and selecting the custom training 

dataset is highly recommended and a desirable step forward in order to generate custom 

models for grinding process variables. Among different clustering techniques such as k-

means, in this work fuzzy c-means are used. Unlike k-means, in fuzzy clustering, each 

datum can belong to more than one cluster with a membership level and it is possible to 

select the experiments based on the membership. Therefore, for a better selection of the 

custom training dataset based on membership a set of rules is proposed. Finally, unlike 

other approaches for reducing the dataset using fuzzy c-means, in this work the inputs are 

weighted in order to “help” the FCM by extracting knowledge from trained ANN weights 

and, thus, “illuminating” the black box. 

The FCM results show that for the FCM with weighted inputs the optimum clusters are 5 

while without weighted inputs the optimum clusters are 6, which is very close to 5. 

Therefore, for the following analysis 5 clusters are used. From the analysis of the 

memberships it can be concluded that the results for weighted inputs appear to be more 

“compact” than for non-weighted inputs. Moreover, comparing wheel characteristics and 

grinding conditions of each experiment, as expected, experiments with the same grit size 

share, mostly, the same clusters in the case of weighted inputs. In fact, these results clearly 

show that weighting the inputs with previous knowledge can guide the clustering. 

Under custom training datasets (weighted and non-weighted) and non-custom (all the 

experiments available), the results of training in five experiments show that, although the 

MSE and maximum errors for the three training datasets are quite similar in most of the 

cases, the custom networks obtained with the weighted approach yields slightly better 
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results. Likewise, the results achieved with all the experiments and with custom datasets 

are similar, better in some cases and worse in others. This seems logical because, as said 

before, all the experiments available in the original database are from the same application 

field, grinding of steel parts with non-extremely demanding surface finish. Therefore, it 

can be concluded that it is better to use custom training dataset obtained after FCM due 

to the saving experimental time and money, and also, RNNs training time. However, 

further analysis should be carried out with an original database with experiments from 

different application fields in order to draw better conclusions. 
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7 MODELLING DYNAMIC EVOLUTIONS 

WITH SPIKING NEURAL NETWORKS 

Although the results obtained in Section 5 and Section 6 are satisfactory in 

terms of accuracy from the grinding process perspective, it can be noticed 

that the objective of predicting with high accuracy up to 200 points is really 

ambitious. Actually, there is still much room for improvement. At the sight of 

the results, one could think that the classical artificial neural networks are 

not powerful enough for modelling the complex relationship between the 

grinding wheel characteristics and operating conditions, and the grinding 

variables such as wheel wear, surface roughness or specific grinding energy. 

Actually, studying different issues found in the literature for the selected 

architecture, one could think in two major problems: one, the vanish gradient 

problem due to the number of delays and use of the BPTT, and, two, the 

underfitting, due to lack of training samples and complexity of the grinding 

process. Therefore, in order to overcome this problem the so-called third 

generation neural networks, the Spiking Neural Networks (SNNs), are 

proposed because they are more suited for modelling dynamic evolutions, due 

to the temporal encoding of the spikes. However, the use of SNNs for 

modelling dynamic evolutions is not easy yet because there is no a proper 

method to encode analog data into spikes and reconstruct the original data 

precisely. Likewise, for time series forecasting, in each time step the SNN 

must fire at least one spike in order to have an analog predicted value in the 

output of the net. Thus, in this work a new encoding/decoding algorithm based 

on the pulse-width modulation is proposed in order to use SNNs for modelling 

dynamic evolutions. The results show that the proposed algorithm can encode 

and decode analog signals precisely. Moreover, with the proposed algorithm 

the spiking neuron is capable to fire one spike in each time, something 

fundamental fore time series forecasting. 
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7.1 Introduction 

The results obtained with the LRNN applying the general methodology described in 

Chapter 4, and under the initial perspective of using commercial software and well known 

and well-established ANN architectures and training algorithms, are promising and better 

than those yielded with analytic models. Moreover, the adopted perspective has allowed 

to identify and to understand the implications of the problem, keeping these separated 

from the complexity of new architectures and/or training algorithms. However, although 

the results are good enough for developing soft sensors or providing information about 

the performance of a specific wheel in advance, these models are far from being used for 

control. In fact, as supposed, grinding is a very complicated process to model due to the 

semi-handmade production of the grinding wheels.  

Although the results provided by the smart sensors are satisfactory in terms of accuracy 

from the grinding process perspective, it can be noticed that the objective of predicting 

with high accuracy up to 200 points is really ambitious and, actually, after one point the 

so-called constancy phenomenon arises. Obviously, this is a not desirable phenomenon 

because a sensor should provide an accurate measure during the whole machining 

operation. Regarding the results provided by the ANN model for the estimation of the 

dynamic evolution of specific grinding energy, the results are also satisfactory from the 

grinding process perspective. However, there is still much room for improvement. 

At the sight of the results, one could think that the classical artificial neural networks are 

not powerful enough for modelling the complex relationship between the grinding wheel 

characteristics and operating conditions, and the grinding variables such as wheel wear, 

surface roughness or specific grinding energy. Moreover, the goal of predicting dynamic 

evolutions without any initial real value is really challenging. 

Actually, studying different issues found in the literature for the selected architecture, one 

could think in two major problems: one, the vanish gradient problem due to the number 

of delays and use of the BPTT (Hochreiter & Schmidhuber, 1997), and, two, the 

underfitting, due to lack of training samples and complexity of the grinding process 

(Bishop, 2006). As stated in Section 4.2.3, performing grinding experiments is a highly 

cost and time consuming task, thus, increasing significantly the training dataset does not 

seem the best solution. Therefore, it seems more reasonable to find more powerful neural 

networks to model the grinding process with higher accuracy. Among different network 
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structures two stand out over others for modelling temporal data. The first one is Long 

short-term memory (LSTM) recurrent neural network (Hochreiter & Schmidhuber, 1997) 

used in Deep Learning with excellent results in fields like Natural Language Processing 

(NLP) or video recognition. The biggest advantage of this network is that it avoids the 

vanish gradient. The other networks are the so-called third generation neural networks, 

the Spiking Neural Networks (SNNs). These networks try to mimic human neurons in a 

more realistic way. Besides, in these networks the data is encoded in spikes. Actually, 

due to the temporal encoding of the spikes, the SNNs have inherently the capacity to 

manage temporal data (Grüning & Bohte, 2014). This characteristic make the SNNs more 

suited for modelling dynamic evolutions like the dynamic evolution of the wheel wear, 

the surface roughness and the specific grinding energy. Therefore, in order to obtain better 

models of surface roughness, wheel wear and specific grinding energy, the SNNs 

modelling of dynamic evolutions is proposed in the following Chapter. 

7.2 Spiking Neurons 

The basic idea behind the Artificial Neural Networks of the second generation such as the 

perceptron neuron and the spiking neurons (third generation) is basically the one 

described in Chapter 2: computing systems whose central theme is borrowed from the 

analogy of biological neural networks (Mehrotra, et al., 1997). 

However, real biological neurons communicate with each other using electrical pulses 

called “spikes” (Grüning & Bohte, 2014). The general process of spiking signal 

transmission is illustrated in Figure 54 (Grüning & Bohte, 2014): First, action potentials 

travel along axons and activate synapses. Then, these synapses release a neurotransmitter 

that quickly diffuses to the post-synaptic neuron. In the post-synaptic neuron, these 

neurotransmitters affect the membrane potential of the neuron. Excitatory Postsynaptic 

Potentials (EPSPs) increase the membrane potential, and without new inputs, this 

excitation then leaks away with a typical time constant. On the other hand, Inhibitory 

Postsynaptic Potentials (IPSPs) decrease the membrane potential. When sufficient EPSPs 

arrive at a neuron, the membrane potential may reach a certain threshold, and the neuron 

generates a spike itself, resetting its membrane potential. Thus, the generated spike then 

travels on to other neurons. 
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Figure 53 A) Spikes arrive from other neurons at the synapses of the postsynaptic 

neuron. Its membrane potential rises quickly with each incoming spike, and then 

slowly decays again (inset). However, if several spikes arrive in a short time 

window, the membrane potential may reach a certain threshold, and a spike is 

fired down the axon. B) Schematically, incoming spikes on various dendrites 

produce timed spikes responses as the output. C) Schematic response of the 

membrane potential to several spikes arrive. If the threshold θ is crossed, the 

membrane potential is reset to a low value, and a spike fired (Grüning & Bohte, 

2014) 

The spikes have an amplitude of about 100 mV and typically a duration of 1-2 ms (see 

Figure 54). A chain of spikes emitted by a single neuron is called a spike train, a sequence 

of stereotyped events which occur at regular or irregular intervals (Gerstner & Kistler, 

2002). Since all spikes of a given neuron look similar, the form of the spikes does not 

carry any information. Moreover, it is the number and the timing of spikes which matter. 

The action potential or spike is the elementary unit of signal transmission (Gerstner & 

Kistler, 2002). 
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Figure 54 A) Single neuron in a drawing by Ramon y Cajal. Dendrite, cell body or 

soma, and axon can be clearly seen. The inset shows an example of a neuronal 

action potential, it is a short voltage pulse of 1-2 ms duration and an amplitude of 

about 100 mV. B) Signal transmission from a presynaptic neuron j to a 

postsynaptic neuron i. (Gerstner & Kistler, 2002) 

The above is a simplified explanation of spiking neurons behaviour. In real life, neurons 

show many different spike behaviours. To explain these behaviours, detailed models have 

been developed. These models are typically expressed as dynamical systems of various 

complexity, and include models like the Leaky-Integrate-and-Fire (LIF) model, the 

Izhikevich model (Izhikevich, 2003) or the Hodgkin-Huxley model (Hodgkin & A. F. 

Huxley, 1952). 

7.3 Signal encoding into spike trains 

As explained above, in spiking neural networks the “information” is transmitted as spikes. 

Actually, this requires that meaning is given to spike trains to transmit it to spiking 

neurons. The first dominant paradigm about neural representation of the neural 

information was the idea that it is encoded in the firing rate (Ponulak & Kasinski, 2011). 

The firing rate code has been the dominant paradigm in neurophysiology and, also, in 

artificial neural networks. However, recent neurophysiological research suggests that, in 

some neural systems the efficient neural information processing is more probable to be 

based on the precise timing of action potentials (Ponulak & Kasinski, 2011). A special 

pattern of temporal code is polychronous group where spike-trains with fixed mutual 

timings are distributed across a group of neurons (Izhikevich, 2006). 
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In real-world, almost all signals are analog in nature. Therefore, when spiking neural 

networks are used to process analog signals, these must be converted into spikes. This 

has been much less researched by neuroscience because it was not needed for doing 

neuron analysis (Schrauwen & Van Campenhout, 2003). Some encoding methods 

algorithms proposed for precise timing paradigm are as follows: 

 Hough Spiker Algorithm (HSA): The basic idea behind this algorithm is to try to 

do a reverse convolution of the stimulus (Hough, et al., 1999). Actually, the idea 

is that if the impulse response of the linear filter is smaller or equal than the input, 

then there has to be a spike in order to produce this (Schrauwen & Van 

Campenhout, 2003). It is possible to reconstruct the original signal using this 

algorithm (see Figure 55). 

 

Figure 55 Sine wave encoded into spikes and reconstructed using HSA. In the 

upper plot the original sine wave can be seen in dotted line, and the converted 

version in solid line. The lower plot visualizes the spike train (Schrauwen & Van 

Campenhout, 2003) 
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 Bens Spiker Algorithm (BSA): Like the HSA algorithm, this algorithm also 

assumes the use of a FIR reconstruction filter. Every instant in time τ, the 

algorithm calculates two error metrics. If the first error is smaller than the second 

minus a threshold, then fire and subtract the filter from the input, else do nothing 

(see Figure 56) (Schrauwen & Van Campenhout, 2003).  

 

Figure 56 Sine wave encoded into spikes and reconstructed using BSA. In the 

upper plot the original sine wave can be seen in dotted line, and the converted 

version in solid line. The lower plot visualizes the spike train (Schrauwen & Van 

Campenhout, 2003) 

 Step-Forward Spike Encoding Algorithm (SF): For a given signal S(t) where (t = 

1, 2. . . n), a baseline B(t) variation during time t is defined with B(1) = S(1). If the 

incoming signal intensity S(t1) exceeds the baseline B(t1−1) plus a threshold 

defined as Th, then a positive spike is encoded at time t1, and B(t1) is updated as 

B(t1) = B(t1−1) + Th; and if S(t1) <= B(t1−1) − Th, a negative spike is generated 
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and B(t1) is assigned as B(t1) = B(t1−1)−Th. In other situations, no spike is 

generated and B(t1) = B(t1−1) (Kasabov, et al., 2016). 

7.4 Spiking Neural Networks learning 

As in artificial neural networks, one of the main characteristics of the spiking neural 

networks is their capacity to learn from examples. In biological neural networks, it is 

thought that the basic mechanism behind learning and memory capacity of the neurons is 

the ability of the synaptic weights to change their strength (Baudry, 1998). Various 

models of learning for spiking neural networks have been proposed for unsupervised and 

supervised learning: 

7.4.1 Unsupervised training algorithm  

In spiking neural networks the typical example of unsupervised learning algorithm is the 

Hebbian learning based Spike-timing-dependent plasticity (STDP). In STDP if the 

postsynaptic neurons fires shortly after the presynaptic neuron has fired the synaptic is 

strengthen, and if the presynaptic neuron fires shortly before postsynaptic neurons fires, 

the synaptic is weakened. For further information see (Song, et al., 2000). The above form 

of STDP is just one out of many physiological forms of STDP. 

7.4.2 Supervised training algorithm 

Supervised training algorithms for precise time coding paradigm are still highly 

uncovered by existing approaches (Ponulak & Kasinski, 2011). Moreover, to date, there 

is no general-purpose supervised training algorithm for spiking neural networks (Grüning 

& Bohte, 2014). One of the first algorithms presented was the Spike Prop (Bohtea, et al., 

2002). The method is based on a gradient descent equivalent to the traditional 

backpropagation algorithm (see Section 3.1.5.2). In SpikeProp, the error is calculated as 

the temporal difference between the actual spike and the desired or target spike. The major 

limitation of the SpikeProp is that it can deal only with one spike firing during a single 

simulation cycle. However, some years later other two algorithms based on SpikeProp 

were proposed that could deal with multiple spikes (Booji & Nguyen, 2005) (Ghosh-

Dastidar & Adeli, 2009). Again, later, other supervised training algorithms were proposed 

that could lead with multiple spikes. However, these algorithms can only work with one 

spike neuron connected to multiple spike trains. In particular, the ReSuMe algorithm was 

biologically plausible and the results show that was efficient learning spike sequences 
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and classifying temporal spike patterns (Ponulak & Kasiínski, 2010). Finally, another 

supervised learning algorithm for SNN called SPAN that enables a single neuron to learn 

spike pattern associations was proposed (Mohemmed, et al., 2012).  

7.5 Modelling dynamic evolutions with Spiking Neural Networks 

Due to the temporal encoding of the spikes, the SNNs have inherently the capacity to 

manage temporal data and, thus, they are more suited for modelling dynamic evolutions. 

SNNs have been widely used for classifying temporal-data using unsupervised or 

supervised learning. Thus, for example, for ultra-fast image recognition a feedwordward 

network with STDP learning algorithm was used (Thorpe, et al., 2001). Likewise, other 

unsupervised models have been proposed for image recognition (Shin, et al., 2010), image 

compression and reconstruction (Perrinet & Samuelides, 2002), detection and 

classification of visual objects (Guyonneau, et al., 2004) and odor recognition (Finelli, et 

al., 2008). Besides, spiking neurons have been also used in supervised data classification 

of spike patterns (Nikolic, et al., 2009), epilepsy detection (Ghosh-Dastidar & Adeli, 

2009) or speech recognition (Gütig & Sompolinsky, 2009). Finally, more recently, a 

morphologic framework based on spiking neurons have been presented for modelling 

spatio-temporal data such as seismic data, early stroke or video recognition (Kasabov, et 

al., 2016). 

However, much less effort has been made in order to model dynamic evolutions such as 

one-step ahead, multi-step ahead forecasting or complete dynamic evolutions. Only few 

works of the same research team can be found (Reid, et al., 2014) (Reid, et al., 2015). All 

the works are based on polychronization (Izhikevich, 2006). In fact, these works perform 

a classification task rather than a true forecasting task. Moreover, there is not analog data 

reconstruction and the output resolution is dependant on the number of spike neurons. 

So in conclusion, as the literature review shows, SNNs are suitable for modelling time 

dependant data like dynamic evolutions. However, few works can be found that solve this 

task. Actually, the main reason is that so far there is no a proper method to encode analog 

data into spikes and reconstruct the original data precisely. Likewise, for time series 

forecasting, in each time step the SNN must fire at least one spike in order to have an 

analog predicted value in the output of the net. Thus, in this work a new 

encoding/decoding algorithm is proposed in order to use SNNs for modelling dynamic 

evolutions. 
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7.5.1 Pulse-width modulation based spike encoding  

The proposed technique for encoding analog signal into spikes and reconstruct the 

original signal is based on the well-known Pulse-width Modulation (PWM). Therefore, 

first the PWM technique is explained. Then, the proposed technique is presented. Finally, 

the results are shown. 

7.5.1.1 Pulse-width Modulation 

Pulse-width modulation (PWM) is one of the most commonly used ways to perform 

analog-to-digital conversion in applications of diverse areas, including motor control 

signal processing, communication and power electronics (Meng, et al., 2016). 

The conventional PWM uses sinusoidal modulating signal types as reference signal and 

generally a sawtooth or triangular signal, as a carrier signal. The carrier wave frequency 

must be sufficiently large compared to that of the reference signal. This technique is 

represented in Figure 57. The basic idea is that both signals, reference and carrier, are 

compared in order to obtain a modulated signal. As is represented in Figure 57, if the 

reference signal amplitude is higher than the carrier signal amplitude, the modulated 

signal is represented with a high amplitude rectangular pulse. In the contrary, if the 

reference signal amplitude is lower than the carrier signal amplitude, the modulated signal 

is represented with low amplitude. Therefore, the modulated signal is a quadratic signal 

with different pulse-widths. In the same way, it should be noted that by comparing the 

modulated signal with the carrier signal it is easy to reconstruct again the reference signal. 

 

Figure 57 Diagram of conventional PWM. A carrier signal and the reference signal 

are compared in order to generate a modulated signal (Arab, et al., 2014) 
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Therefore, knowing the basic idea behind the Pulse-width Modulation method, in the 

following Section the modification of this method to obtain a spike train and reconstruct 

the original analog data is presented. 

7.5.1.2 Pulse-width Modulation for Spiking Neurons 

Based on the idea behind the PWM of using a carrier signal and a comparator, an encoding 

method to convert analog signals into spikes is presented. Actually, the basic idea behind 

the encoding method presented here is to translate the slope of the analog signal into the 

time of the spike train. In this case, the so-called reference signal of the PWM is 

substituted by the original analog signal (see Figure 58 A). Then, following the PWM 

methodology the original analog signal and the carrier are compared (see Figure 58 B). 

Actually, if the carrier signal is higher than the original signal the comparison result is 1. 

In the contrary, if the carrier signal is lower than the original signal the comparison result 

is 0 (see Equation 21). Therefore, the result of the comparison is a quadratic signal with 

different widths (see Figure 58 C). Finally, to generate the spike train, each rising edge 

of the quadratic signal represents one spike (see Figure 58 D). 

𝑠(𝑡) ≥ 𝑐(𝑡)                    𝑝(𝑡) = 0  (21) 

𝑠(𝑡) < 𝑐(𝑡)                    𝑝(𝑡) = 1   

Where s is original analog signal, c is the carrier signal, p is the quadratic signal and t 

represents the time. 
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Figure 58 A) Original analog signal normalized within the range [0, 1]. B) A 

comparison between the original analog signal and the sawtooth carrier signal. C) 

The result of the comparison is a quadratic signal with different width. D) Each 

rising edge of the quadratic signal is one spike 

As can be noticed, the basic idea behind the encoding algorithm is quite simple: it is 

basically a comparison between a carrier and the original signal. Likewise, to reconstruct 

the original signal the process is quite similar. First, the spike train is compared with the 

same carrier signal used for encoding (see Figure 59 A and B). The intersection between 
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the carrier signal and the corresponding spike is the point of the reconstructed original 

signal (see Figure 59 C). Then, generally speaking, the original signal can be 

reconstructed by interpolating.  

 

Figure 59 A) Spike train. B) Same carrier signal used for encoding. C) The point of 

the carrier signal that a spike crosses (purple) is a point of the reconstructed 

original signal (red) 

Above the basic idea of the encoding method is described, however, there are two 

important parameters that have a great influence over the reconstruction accuracy:  

a) the number of carrier waves (nc), which is directly related to the carrier pulse 

width.  

b) the number of points per carrier wave (npc).  
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The number of carrier waves (nc) makes reference to the number of sawtooth in the carrier 

signal. For example, the nc of the sawtooth carrier signal in Figure 59 is 20. In order to 

make decision about the value of this parameter, it can be taken into consideration the 

sampling rate (indeed, the sampling requirements) of the original data. As it is well-

known, the Nyquist–Shannon sampling theorem was proposed by Nyquist and 

demonstrated by Shannon (Shannon, 1949). The theorem states that a bandlimited 

baseband x(t) within bandwidth B can be exactly reconstructed from its sample values by 

low-pass filtering if the sampling rate is higher than 2B. Later, in (Huang, et al., 2011) 

they show that by passing the PWM waveform with frequency 2B and voltage ±1 through 

an ideal low-pass filter with cutoff B frequency, it is possible to get back the exact original 

bandlimited signal x(t) within bandwidth B. Actually, in classical sampling, sampling is 

a process of multiplying the analog signal x(t), with a sampling signal s(t), which is a train 

of impulses (Dirac delta) (see Figure 60). Indeed, one value is captured per impulse. 

PWM, on the other hand, represents a signal by using pulses of constant amplitude but 

variable widths and, in that sense, PWM is a substitute for classical sampling (Huang, et 

al., 2011). Actually, making an analogy with classical sampling, in which “one value is 

captured per impulse”, in the PWM based encoding algorithm “one spike is generated per 

carrier pulse”. In other words, and conceptually speaking, the sampling signal in the 

PWM based encoding algorithm is the carrier instead of the train of impulses (see Figure 

61). Taking into account that a proper selection of the sampling rate is essential to 

guarantee a proper signal reconstruction, the number of carrier waves nc (i.e. the width 

of the carrier pulse) should be directly related to the sampling requirements of the signal 

to be encoded. In particular, given an already acquired signal, and assuming that it has 

been acquired at a properly selected sampling rate, the hypothesis is that nc equal to the 

number of points acquired (minus one) should provide a satisfactory recovery accuracy. 
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Figure 60 Classical sampling 

 

Figure 61 PWM based encoding “sampling” 

This means that with the algorithm presented here it is possible to get back the exact 

original by properly adjusting the number of carrier waves, i.e. the sampling rate.  

Likewise, it should be highlighted that for the particular case of forecasting applications 

it is necessary to have one value at each time step. Actually, with the encoding methods 

of the state of the art presented in Section 7.3, it was not possible to perform true 

forecasting with SNN because those methods cannot generate one spike per time step. 

However, using the encoding method proposed here it is possible to generate one spike 

each time step by setting the nc equal to the number of time steps of the time series.  

On the other hand, the number of points per carrier wave npc makes reference to the 

number of points per carrier pulse used to generate one spike. In this case, it can be taken 
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into consideration another important parameter in classical sampling: the resolution. As 

it is well-known, the resolution is the smallest detectable change in the signal and has a 

direct impact on the recovery accuracy. Making again an analogy with classical sampling, 

in which the more resolution the better reconstruction since smaller changes in the value 

of the signal are captured, in the case of the PWM based encoding algorithm, the smallest 

detectable change is determined by the number of points within the carrier pulse. To 

illustrate this idea, in Figure 62 and Figure 63 the reconstruction can be seen for different 

number of points (npc) with the same number of carrier waves (nc). In fact, the hypothesis 

in this case is that the more npc, the better accuracy. The results show that when the 

number of points per carrier is higher the accuracy of the reconstruction increases. Of 

course, this means that, depending on the application requirements, the lowest possible 

resolution should be selected so as not to increase excessively the number of points of the 

carrier.  

 

Figure 62 Original analog signal (‘-‘ red) reconstruction (‘-o’ blue) with npc=5 
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Figure 63 Original analog signal (‘-‘ red) reconstruction (‘-o’ blue) with npc=50 

 

7.6 Results 

In order to demonstrate the effectiveness of the proposed encoding methodology, the 

encoding and reconstruction of different analog signals with different number of carrier 

waves (nc) and number of points per carrier wave (npc) are shown in this Section. Hence, 

the encoding and reconstruction of one analog signal of wheel wear, surface roughness 

and specific grinding energy are shown. In particular, the wheel wear, surface roughness 

and specific grinding energy of 82AA36G6VW grinding wheel with operation 

characteristics of material removal rate (Q’) (mm3/mm·s) equal to 2.5 and speed ratio (qs) 

equal to 60. 

In Figure 64 the MSE results yielded for wheel wear are presented. The results clearly 

show that with more points per carrier wave the results are better i.e. with a higher 

resolution the results are better. However, adding more carrier waves does not mean an 

improvement in the reconstruction of the signal. In fact, the better results are achieved 

with npc=80 and nc=40. That means that after one point, increasing the sample rate 

(number of carrier waves) does not improve the encoding and the reconstruction of the 

original signal. 
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Figure 64 MSE results yielded for wheel wear analog signal of 82AA36G6VW 

qs=60 Q’=2.5 for different combinations of nc and npc 

On the other hand, the MSE error between npc=40 and npc=80 are minimum. Moreover, 

Figure 65 and Figure 66 show that the reconstruction in both cases is excellent, being the 

difference between them minimum. Therefore, depending of the application and the 

analog signal selecting lower nc and nps, although the results are a bit worse, is better 

because less number of points are added to the original signal. In these two cases, the 

number of points of the encoded signal with nc=40 and npc=80 is 3200 whilst for the 

encoded signal with nc=20 and npc=40, the number of points is 800, four times lower. 

 

Figure 65 Wheel wear original and reconstructed signal with nc=40 and npc=80 
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Figure 66 Wheel wear original and reconstructed signal with nc=20 and npc=40 

The MSE results yielded for surface roughness are quite similar (see Figure 67). As for 

the wheel wear, the results clearly show that with more points per carrier wave the results 

are better. However, adding more number of carrier waves does not mean an improvement 

in the reconstruction of the signal. In fact, the better results for npc=40 and npc=80 are 

yielded with nc=40 and nc=20, respectively. Besides, the second lowest MSE error for 

npc=20 is achieved with nc=20. That means that after nc=40, for npc=40 and npc=80 the 

encoding and the reconstruction of the original signal does not improve. 

 

 

Figure 67 MSE results yielded for surface roughness analog signal of 

82AA36G6VW qs=60 Q’=2.5 for different combinations of nc and npc 
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In Figure 68 and Figure 69 similar comparison done for wheel wear is shown. In this case, 

also, the difference between the best solution (nc=20 and npc=80) and the solution with 

npc=40 and minimum number of points in the spike train is minimum. In both cases the 

reconstruction is accurate. However, the number of points of the encoded signal with 

nc=20 and npc=80 is 1600 whilst for the encoded signal with nc=20 and npc=40, the 

number of points is 800, two times lower.  

 

Figure 68 Surface roughness original and reconstructed signal with nc=20 and 

npc=80 

 

 

Figure 69 Surface roughness original and reconstructed signal with nc=20 and 

npc=40 

However, the MSE results yielded for encoding and reconstructing the specific grinding 

energy results are a bit different (see Figure 70). The specific grinding energy signal has 

higher frequency components than wheel wear and surface roughness signals. Therefore, 

the sampling rate (nc) needed to reconstruct the original signal is higher. For example, 

the best result is yielded with nc=160 and npc=80 whilst the worst results for npc=20 and 

npc=80 are, clearly, with nc=20. That confirms that signals with higher frequency 

components need more carrier waves for better reconstruction. 
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Figure 70 MSE results yielded for specific grinding energy analog signal of 

82AA36G6VW qs=60 Q’=2.5 for different combinations of nc and npc 

However, although the MSE difference between the best result (nc=160 and npc=80) and 

the worst results with npc=40 (nc=20) seems to be big, the reconstruction result of both 

signals is good (see Figure 71 and Figure 72). The reconstruction with nc=160 and 

npc=80 is almost perfect. Likewise, while the reconstruction with nc=20 and npc=40 is 

not perfect, it is quite good. Besides, in this case the number of points of the spike train 

between both cases is higher, 12800 against 800, sixteen times higher. Therefore, 

depending of the application field, required accuracy and/or number of training samples, 

in some cases it is worth using lower nc and npc. 
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Figure 71 Specific grinding energy original and reconstructed signal with nc=160 

and npc=80 

 

Figure 72 Specific grinding energy original and reconstructed signal with nc=20 

and npc=40 

Finally, it is important to appoint that the results with npc=20 are by far the worst results 

for the three signals (wheel wear, surface roughness and specific grinding energy). 

Moreover, the results show a huge difference between different numbers of carrier signal 

pulses (nc), and in any case converge to a solution. Therefore, npc= 20 is not 

recommended for encoding these analog signals. 

7.7 Conclusions 

Although one of the main objectives of the presented work was the use of using 

commercial software and well known and well-established ANN architectures and 

training algorithms, and the results obtained with the LRNN applying the general 

methodology described in Chapter 4 are promising and better than those yielded with 

analytic models, at the sight of the results, one could think that the classical artificial 

neural networks are not powerful enough for modelling the complex relationship between 

the grinding wheel characteristics and operating conditions, and the grinding variables 

such as wheel wear, surface roughness or specific grinding energy. 
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Actually, studying different issues found in the literature for the selected architecture, one 

could think in two major problems: one, the vanish gradient problem due to the number 

of delays and use of the BPTT, and, two, the underfitting, due to the lack of training 

samples and complexity of the grinding process. Thus, the next step is to find more 

powerful neural networks to model the grinding process with higher accuracy.  

Among different network structures, the so-called third generation neural networks, the 

Spiking Neural Networks (SNNs), stand over others due to the inherent capacity to 

manage temporal data and, thus, they are more suited for modelling dynamic evolutions, 

because of the temporal encoding of the spikes.  

Despite of SNN being widely used for classifying temporal-data using unsupervised or 

supervised learning, much less effort has been made in order to model dynamic evolutions 

such as one-step ahead, multi-step ahead forecasting or complete dynamic evolutions. 

Only few works that perform a classification task rather than a true forecasting task can 

be found. The main reason is that so far there is no a proper method to encode analog data 

into spikes and reconstruct the original data precisely. Likewise, for time series 

forecasting, in each time step the SNN must fire at least one spike in order to have an 

analog predicted value in the output of the net. Thus, in this work a new 

encoding/decoding algorithm is proposed in order to use SNNs for modelling dynamic 

evolutions. 

The proposed technique for encoding analog signal into spikes and reconstruct the 

original signal is based on the idea behind the PWM of using a carrier signal and a 

comparator. Actually, the basic idea behind the encoding method presented here is to 

translate the slope of the analog signal into the time of the spike train. The results for 

wheel wear and surface roughness clearly show that with more points per carrier wave 

the results are better i.e. with a higher resolution the results are better. However, adding 

more number of carrier waves does not mean an improvement in the reconstruction of the 

signal. On the other hand, the MSE results yielded for encoding and reconstructing the 

specific grinding energy results are a bit different. The specific grinding energy signal has 

higher frequency components than wheel wear and surface roughness signals. Therefore, 

the sampling rate (nc) needed to reconstruct the original signal is higher. 

On the other hand, the reconstruction of the original in the three signals with less number 

of carrier waves (nc=20) and less number of points per carrier wave (npc=40) is quite 
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good. Besides, with lower nc and npc values the number of points in the spike train 

decreases. Therefore, depending of the application field, required accuracy and/or number 

of training samples, in some cases it is worth using lower nc and npc. Finally, results with 

npc=20 are by far the worst results for the three signals (wheel wear, surface roughness 

and specific grinding energy) and not recommended for encoding these analog signals. 
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8 CONCLUSIONS 

Machining tool processes are nowadays key technologies in a competitive global 

manufacturing marketplace. Due to its capacity for producing parts of high precision and 

high surface quality in difficult-to-machine materials, grinding is widely used in high-

added value sectors. Thus, grinding process modelling is of primary importance in order 

to improve the accuracy and save time investment.  

For modelling the grinding process, two main research lines can be highlighted, the 

theoretical models approach and the approach based on intelligent systems. However, 

industrial application of the theoretical models is not an easy task yet due to the lack of 

precise information about the composition and performance of the wheel and the relations 

between the different process variables and process outputs are highly non-linear. 

Therefore, many researchers use intelligent techniques in order to model the grinding 

process. 

However, industrial application of intelligent techniques in grinding has been, also, very 

limited so far because almost all the research works that use intelligent techniques found 

in the scientific literature provide particular solutions for a given wheel-workpiece pair. 

In few cases more than one grinding wheel or workpiece are used. Results cannot be 

generalized, in no case, to other types of grinding wheels not used during the design of 

the models. Besides, in the cases of prediction of surface roughness, the output of the 

model is the value related to the current state of wear of the grinding wheel being this 

value considered unique for the whole grinding process.  

Likewise, all the works that model the wheel wear use signals like Acoustic Emissions 

(AE), vibration signals or audio signals. However, accessibility of the machining area is 

limited due to the very aggressive conditions and low accessibility. Besides, in most of 

the cases, the given solution is binary, the dull or sharp condition of the wheel. Thus, the 

solutions do not give the actual status of the grinding wheel.  

Finally, little effort has been dedicated to the modelling of the specific grinding energy 

with intelligent techniques. However, it is a fundamental variable in order to know the 

performance of the grinding process and it is also useful for estimating the power 

requirement of the grinding machine. 
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Therefore, in order to model the actual status (related to the current state of wear of the 

grinding wheel) of the surface roughness, the wheel wear and the specific grinding energy 

it is necessary to take those as dynamic evolutions i.e. systems that have a dynamic 

behaviour and actual events depend on past events. When dealing with this type of 

systems, ANNs have shown that are suitable and widely used for modelling those 

dynamic evolutions. 

The review of the state-of-the-art shows that in most of the cases the prediction of 

dynamic evolutions is based on the past or historical events. Thus, the ANN is trained 

with past historical data for predicting future events. For the one-step prediction, 

feedforward neural networks or recurrent neural networks are used. In fact, although the 

RNN are more powerful, in one-step forecasting the feedforward neural networks have 

shown great performance. However, for multi-step ahead the problem is more complex. 

Thus, for multi-step ahead the recurrent neural networks are more powerful because it is 

said that the RNNs have “memory” thanks to the feedbacks.  

Aside from modelling dynamic evolutions using historical past values, in other cases, the 

objective is to predict the future events using for training initial values. The training 

strategy is almost the same. However, some application fields require a third approach 

that is totally different. In this approach, historical or initial data are not available. In those 

cases, the aim is to predict a complete dynamic evolution but without initial or real values. 

Thus, the training strategy is completely different. First, the inputs are different from the 

output of the network. Second, the prediction cannot describe neither one-step ahead 

neither multi-step ahead because a new complete dynamic evolution is predicted. Another 

important aspect to highlight is the generalization: given the nature of the undertaken 

applications, the scope of generalization in the literature review is limited to the target 

dynamic evolution, i.e. usually only one dynamic evolution is used for training the net 

and another one is predicted. 

Therefore, in order to model the specific grinding energy, wheel wear and surface 

roughness, it is crucial to predict a complete dynamic evolution without measuring any 

initial real value. Besides, it is crucial to break with the wheel-workpiece pair in order to 

develop more industrial useful models. Thus, under the selected application field, because 

it is reasonable to think that one ANN will not be capable to model all the grinding wheel 

and grinding conditions, a methodology for generating new ANNs for different 
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application fields should be developed with generalization capabilities concerning new 

grinding wheels and new grinding conditions. 

The proposed methodology is based on the knowledge about the grinding process 

extracted from analytical models widely recognized. Actually, these analytical models 

relate the specific grinding energy, the wheel wear and the surface roughness between 

them and with the wheel characteristics and cutting conditions. As a result of the analysis 

of the analytical models, the inputs of the ANN model are selected. These have to 

represent the wheel characteristics and the grinding conditions. Therefore, based on the 

application field selected, grit size and wheel hardness are chosen to characterize the 

grinding wheel while specific material removal rate (Q’) and speed ratio (qs) are used to 

characterize the grinding process. 

Concerning the selection of the ANN architecture, the feedforward ANN architecture is 

discarded because it is not possible to model the dynamic evolution with static inputs with 

feedforward neural networks. Among different RNNs the Elman based LRNN is selected 

because it functions without any initial output values. Besides, the well-known 

Levenberg-Marquardt training algorithm is selected for its fast convergence. Likewise, to 

improve the generalization, the Bayesian regularization is selected for its good 

generalization capabilities and because in Bayesian regularization training and testing 

datasets are enough. Finally, the hyperbolic tangent activation is chosen as activation 

function of the hidden neurons and Nguyen-Widrow approach for initialization of the 

network weights and biases to improve the learning speed. 

The next key point is the training and testing database configuration. First, the data is pre-

processed in order to obtain periodic dynamic evolutions. Then, the training and testing 

datasets are selected. From the 46 experiments available, 4 are selected for testing the 

generalization capabilities of the trained network. Finally, due to the lack of samples to 

train the network, virtual experiments are generated. In this case, 10 experiments are 

generated from each of the 42 training experiments. 

The last part of the presented methodology is how to select the best network. Thus, in this 

work a two-phase methodology is proposed. First, the phase called “coarse tuning” is 

done. During this phase the aim is to obtain the network structure (HN-D) around which 

the lowest MSE test errors are yielded. Given the best structures inferred in the coarse 

tuning, the so called “fine tuning” is carried out in HN-D structure taken one by one within 

the specified range. During the fine tuning, the MAME metric is used. 
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Based on the proposed RNN methodology, soft sensors to measure the wheel wear and 

surface roughness during the process with the ability to generalize to new wheel 

characteristics and grinding conditions are developed. The calibration process of the 

sensor involves establishing the best possible ANN structure (neurons in the hidden layer 

and delay units in the feedback) that can model with good accuracy the dynamic evolution 

of wheel wear or surface roughness. This is carried out in a two-stage process proposed 

in the methodology. 

However, it is not possible to select the best ANN structure only by comparing MSE and 

MAME values of the test dataset. Thus, a new ad-hoc indicator is proposed: the CV of 

the final stage of the prediction horizon. However, the CV analysis is highly dependent 

on the application and modelling signal and, consequently, the reference values to discern 

if a signal remains constant or not depends on those characteristics. 

The selected recurrent neural architecture, Layer-Recurrent Neural Network, has shown 

the potential for modelling the dynamic evolution of the wheel wear and surface 

roughness without measuring initial real values in a prediction horizon up to 2000 mm2 

of specific volume of part material removed. This is a remarkable task because it means 

that the proposed methodology is capable of predicting up to 200 points of a complete 

dynamic evolution without initial real values. Besides, the network configurations that 

optimally represent the wheel wear and surface roughness confirms that for modelling the 

dynamic evolutions of both wheel wear and surface roughness, the quantity of hidden 

neurons and delay units is quite similar. Therefore, this confirms the initial hypothesis 

accepted by literature and expressed in Equations (1) and (2).  

Regarding the estimation of the evolution of wheel wear the highest maximum error for 

wheels used and not used during the training process are 9 µm and 67 µm, respectively. 

Regarding the estimation of the surface finish, the selected net generalizes with good 

results to new wheels (not used during the grinding process), 0.36µm maximum error, 

and new grinding conditions, 0.32µm maximum error. 

After developing soft sensors to estimate on-line the wheel wear and surface roughness, 

a solution based on RNN to predict off-line the specific grinding energy with the ability 

to generalize to new wheel characteristics and grinding conditions is carried out.  

The analysis of the time characteristics of the dynamic evolutions (time step and time 

horizon) and the number of points shows that in this kind of ANN applications, neural 

networks trained with dynamic evolutions with more points generalize better. However, 
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nets trained with dynamic evolutions with lower time step (and more points for the same 

time horizon) do not ensure better generalization. In view of the, given a time horizon of 

2000 mm3/mm, the time step is set to 10 mm3/mm.  In order to achieve the best possible 

ANN a two-stage process is followed. The yielded MAME and relative errors are lower 

than 33.60 J/mm3 and 23.65%, respectively, which are really acceptable errors for 

grinding’s users. Besides, the selected RNN net generalizes with good results to new 

grinding conditions, 33.60 J/mm3, and new wheels (not used during the grinding process), 

15.94 J/mm3.  

Although the proposed solution is able to predict complete dynamic evolutions without 

initial values for new grinding wheels and new grinding conditions, obviously, one unique 

RNN it is not able to predict the specific grinding energy for all the wheels commercially 

available. Thus, a neuro-fuzzy proposal is presented to generate custom networks for 

specific grinding wheels and grinding conditions downsizing the experiments database. 

Besides, in grinding, carrying out grinding experiments is a highly time and resource 

consuming task. Therefore, cutting down on these experiments and selecting the custom 

training dataset is highly recommended and a desirable step forward in order to generate 

custom models for grinding process variables.  

Among different clustering techniques such as k-means, in this work fuzzy c-means are 

used. Unlike k-means, in fuzzy clustering, each datum can belong to more than one cluster 

with a membership level and it is possible to select the experiments based on the 

membership. Therefore, for a better selection of the custom training dataset based on 

membership a set of rules is proposed. Finally, unlike other approaches for reducing the 

dataset using fuzzy c-means, in this work the inputs are weighted in order to “help” the 

FCM by extracting knowledge from trained ANN weights and, thus, “illuminating” the 

black box. 

Under custom training datasets (weighted and non-weighted) and non-custom (all the 

experiments available), the results of training in five experiments show that, although the 

MSE and maximum errors for the three training datasets are quite similar in most of the 

cases, the custom networks obtained with weighted approach yields slightly better results. 

Likewise, the results achieved with all the experiments and with custom datasets are 

similar, better in some cases and worse in others. This seems logical because, as said 

before, all the experiments available in the original database are from the same application 

field, grinding of steel parts with non-extremely demanding surface finish. Therefore, it 

can be concluded that it is better to use custom training dataset obtained after FCM due 
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to the saving experimental time and money, and also, RNNs training time. However, 

further analysis should be carried out with an original database with experiments from 

different application fields in order to draw better conclusions. 

Although one of the main objectives of the presented work was the use of commercial 

software and well known and well-established ANN architectures and training 

algorithms, and the results obtained with the LRNN applying the general methodology 

are promising and better than those yielded with analytic models; at the sight of the 

results, one could think that the classical artificial neural networks are not powerful 

enough for modelling the complex relationship between the grinding wheel 

characteristics and operating conditions, and the grinding variables such as wheel wear, 

surface roughness or specific grinding energy.  

Actually, one could think in two major problems: one, the vanish gradient problem due 

to the number of delays and use of the BPTT, and, two, the underfitting, due to the lack 

of training samples and complexity of the grinding process. Thus, the next step is to find 

more powerful neural networks to model the grinding process with higher accuracy.  

Among different network structures the so-called third generation neural networks, the 

Spiking Neural Networks (SNNs) stand over others due to the inherent capacity to 

manage temporal data because of the temporal encoding of the spikes.  

Despite of SNN being widely used for classifying temporal-data using unsupervised or 

supervised learning, much less effort has been made in order to model dynamic 

evolutions. The main reason is that so far there is no a proper method to encode analog 

data into spikes and reconstruct the original data precisely. Likewise, for time series 

forecasting, in each time step the SNN must fire at least one spike in order to have an 

analog predicted value in the output of the net. Thus, in this work a new 

encoding/decoding algorithm is proposed in order to use SNNs for modelling dynamic 

evolutions. 

The proposed technique for encoding analog signal into spikes and reconstruct the 

original signal is based on the idea behind the PWM of using a carrier signal and a 

comparator. The results for wheel wear and surface roughness clearly show that with 

more points per carrier wave the results are better i.e. with a higher resolution the results 

are better. However, adding more carrier waves does not mean an improvement in the 

reconstruction of the signal. On the other hand, the MSE results yielded for encoding and 
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reconstructing the specific grinding energy results are a bit different.  The specific 

grinding energy signal has faster frequency components than wheel wear and surface 

roughness signals. Therefore, the sampling rate (nc) needed to reconstruct the original 

signal is higher. 

On the other hand, the reconstruction of the original in the three signals with less number 

of carrier waves (nc=20) and less number of points per carrier wave (npc=40) is quite 

good. Besides, with lower nc and npc values the number of points in the spike train 

decreases. Therefore, depending of the application field, required accuracy and/or number 

of training samples, in some cases it is worth using lower nc and npc. Finally, results with 

npc=20 are by far the worst results for the three signals (wheel wear, surface roughness 

and specific grinding energy) and not recommended for encoding these analog signals. 
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9 FUTURE WORK 

The present work has highlighted three main lines for future investigation. These lines 

include the following: 

 As stated in Section 4.2.3, for developing the soft sensor and the off-line 

prediction of the specific grinding energy non-extremely demanding surface 

finish has been selected as application field. However, there are other application 

fields widely used in the industry. Therefore, it would be interesting to extend the 

RNN methodology presented in this work to other application field with different 

grinding wheels (not only aluminum oxide grinding wheels) and operation 

conditions.  

 The second investigation line is closely related with the previous one. As said in 

the conclusions of the Chapter 5, further analysis should be carried out with an 

original database with experiments from different application fields in order to 

draw better conclusions about the improvement in the downsize of the original 

database using FCM with weighted inputs.  

 The third investigation line could be the most interesting and changeling one. In 

order to use the Spiking Neural Networks for modelling dynamic evolutions, in 

this work the first step is presented: encoding analog signals into spikes and, also, 

recovering the analog signal from a spike train. Once the data is encoded, the other 

main task is to train the SNN in order to be able to learn the nonlinear relationships 

between the input and output of the network. Several training algorithms can be 

found to train the SNN. Researchers developed supervised training algorithm 

similar to the training algorithm used in Artificial Neural Networks such as 

SpikeProb, SpikeLM, ReSuMe, Chonotron or SPAN. With these training 

algorithms the gap between the SNNs and ANNs is minimized. Thus, it could be 

possible to use the rich theory available for ANNs. However, the SpikeProb and 

SpikeLM are limited to a single spike per neuron and are not easy to implement 

while the ReSuMe, Chonotron or SPAN are limited to a single neuron layer. 

Hence, the next step will be to train a spiking multi-layer network with a 

backpropagation method with minor changes and using the real data to calculate 

the error. In fact, using the encoding/decoding algorithm presented in this work it 

is quite easy to calculate the real error across the network. This can lead 
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researchers to use Spiking neurons for forecasting and also for deep learning on 

fields such as Natural Language Processing or Video Recognition. 
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