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This paper investigates the properties of reachability, observability, controllability, and
constructibility of positive discrete-time linear time-invariant dynamic systems when the
sampling instants are chosen aperiodically. Reachability and observability hold if and only
if a relevant matrix defining each of those properties is monomial for the set of chosen
sampling instants provided that the continuous-time system is positive. Controllability
and constructibility hold globally only asymptotically under close conditions to the above
ones guaranteeing reachability/observability provided that the matrix of dynamics of the
continuous-time system, required to be a Metzler matrix for the system’s positivity, is
furthermore a stability matrix while they hold in finite time only for regions excluding
the zero vector of the first orthant of the state space or output space, respectively. Some
related properties can be deduced for continuous-time systems and for piecewise constant
discrete-time ones from the above general framework.

Copyright © 2007 M. De la Sen. This is an open access article distributed under the Cre-
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1. Introduction

Nonperiodic sampling has been proved to be a powerful tool to improve error signal
adaptation in model-following or signal-tracking problems by adapting the sampling rate
to the signal variation through time [1, 2]. It is also useful to reduce relative numerical
errors in computations of results from data by appropriately distributing the distribution
of such data so that the condition number of the coefficient matrix in linear algebraic
problems be minimized as, for instance, when studying controllability, observability and
identifiability problems in dynamic systems [1–4]. Other useful applications of nonpe-
riodic sampling techniques arise in multirate sampling problems of usefulness in filter-
ing, flight control of aircrafts and stabilization of stable discrete plant zeros, as well as
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in hybrid control, random sampling problems, in compensation to parametrical uncer-
tainties, [1–9] or in algebraic or numerical computation [1, 2, 10–14] as well as in sensor
implementation, control of digital systems and estimation of populations, identification,
error estimation. A wide range of useful applications related to multirate, nonperiodic,
adaptive and random sampling have been investigated in [8, 9, 12–26]. On the other
hand, hybrid systems are very common in nature and in technological applications and
are composed, in general, of coupled, continuous-time, and discrete-time or digital sys-
tems and/or subject to driving events [4, 7, 27–32]. Dynamic hybrid systems have been
investigated under nonperiodic or multirate sampling [4, 7], in order to obtain the above-
mentioned advantages of such techniques. On the other hand, positive dynamic systems
are present in nature, for instance, in biological processes and ecology, and are useful
for modelling some queuing models, Markov processes, or electronic circuits, as well as
models based on differential, difference, mixed differential—difference (roughly speak-
ing hybrid models) and integral equations, in general (see, for instance, [32–40]). The
main characteristics of these systems are that either all the state and output components
are nonnegative for all time for nonnegative controls and nonnegative initial conditions.
Such a kind of system is said to be internally positive commonly referred to simply as
a positive system [32, 33, 38, 39]. A weaker property is the external positivity stated in
terms that the system output components are nonnegative for all time under zero initial
conditions and nonnegative controls [38, 39]. (Internal) positivity depends on the state-
space realization while external positivity is only transfer matrix dependent but not on the
state-space description. Positive continuous-time linear time-invariant systems are char-
acterized by the output, control, and direct input-output interconnection matrix being
nonnegative (i.e., with all their entries being nonnegative) while the matrix of dynam-
ics is a Metzler matrix (i.e., with all its off-diagonal entries being nonnegative). Linear
discrete-time positive systems are characterized by the above four matrices being non-
negative (see, for instance, [32, 33, 38]). The reachability and controllability of positive
discrete systems under nonnegative controls have been studied in [39]. In particular, the
reachability property of positive systems is quite stringent since it only holds if and only
if the controllability Grammian, or equivalently, a square submatrix of the controllabil-
ity one, is monomial; that is, with no negative entry and only one nonzero and positive
entry per row and column and being nonsingular. Controllability is still more stringent
since the matrix of dynamics is required to be convergent for asymptotic controllability
and, furthermore, nilpotent for controllability in finite time. Those issues are rigorously
discussed in detail in [39] for discrete-time positive systems in a pedagogical style easy to
follow for readers.

This paper is devoted to investigate the above properties when the sampling period is
nonconstant, in general, and to derive sufficient conditions to ensure the maintenance of
such properties if the sequence of sampling instants becomes modified. Section 2 contains
some definitions about reachability, controllability, observability, and constructibility of
linear dynamic systems and preliminaries. It also contains some preliminary technical
results. Section 3 is devoted to obtain some formal results for reachability and control-
lability of positive linear time-invariant systems under, in general, a nonperiodic distri-
bution of the samples. An important feature is that the properties in the discrete-time
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framework require their fulfilment in the continuous-time one provided that the sam-
pling instants have appropriate distribution which does not involve very restrictive con-
ditions. Section 5 is concerned with obtaining some parallel results to those of Section 3
related to observability and constructibility. Some examples are discussed in Section 6
and, finally, conclusions end the paper.

Notation 1. n := {1,2, . . . ,n} ⊂N is a finite subset of the set of the natural numbers N; In
denotes the n-the order identity matrix.
Rn

+ := {z = (z1,z2, . . . ,zn)T ∈Rn : zi ≥ 0, i∈ n} is the first closed orthant of Rn, where
the superscript T stands for transposition

A= (ai j) is a real n-Metzler matrix, denoted by A∈Mn×n
E , if and only if ai j ≥ 0, for all

i, j( �= i)∈ n.
The real matrix P = (pi j)∈Rn×m

+ ⇔ pi j ≥ 0, for all i, j ∈ n. Such a matrix is said to be
nonnegative denoted by P ≥ 0.

The matrix P ∈ Rn×m
+ is positive, denoted by P > 0, if it has at least a positive entry.

The matrix P ∈Rn×m
+ is strictly positive, denoted by P� 0, if all its entries are positive.

The square nonsingular matrix P ∈ Rn×n
+ is monomial if pik > 0 ⇔ pi j = 0, for all

j( �= i) ∈ n, for all i ∈ n; that is, each row and column has only a positive entry with all
the remaining ones being zero so that P is, in addition, nonsingular. P ∈ Rn×n

+ mono-
mial ⇔ P−1 > 0. A monomial matrix with all its nonzero entries being unity is called a
permutation matrix.

2. The system and a set of basic definitions

Consider the linear and time-invariant continuous-time positive system:

ẋ(t)= Ax(t) +Bu(t); y(t)= Cx(t) (2.1)

subject to x(0) = x0 where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input
vector and y(t)∈ Rp is the output vector for any t ∈ R+. All the matrices in (2.1) are of
compatible orders with the dimensions of the above vectors. The state trajectory solution
vector function x : R+ → Rn and the output trajectory vector function y : R+ → Rp are
unique for each initial condition x(0) = x0 ∈ Rn and each piecewise continuous control
vector function u :R+ →Rm from Picard theorem. The state and output solution trajec-
tories are defined by the subsequent closed formulas:

x(t)=Ψ(t)x0 +
∫ t

0
Ψ(t− τ)Bu(τ)dτ,

y(t)= C
(
Ψ(t)x0 +

∫ t

0
Ψ(t− τ)Bu(τ)dτ

) (2.2)

for all t ∈ R+, where the state-transition matrix Ψ(t) = eAt is a C0-semigroup generated
by the infinitesimal generator A which is a fundamental matrix of the differential system
of the first (2.1). Assume any totally ordered set of (q + 1) sampling instants defined by
SI := {ti : i∈ q∪{0}}, which is then also a finite sequence of real elements, with sampling
periods Ti = ti+1− ti > 0; for all i∈ q− 1∪{0} and assume that the control input is con-
stant in-between consecutive sampling instants, that is, generated by a zero-order hold so
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that u(ti + τ)= u(ti);∀τ ∈ [0,Ti). Then, one gets from (2.2) that

x
(
ti+1

)=Ψ
(
Ti
)
x
(
ti
)

+Γ
(
Ti
)
u
(
ti
)=Ψ

(
ti+1

)
x0 +

∫ ti+1

0
Ψ
(
ti+1− τ

)
Bu(τ)dτ

=
i∏

j=0

[
Ψ
(
Tj
)]
x0 +

i∑
j=0

i∏
�= j+1

[
Ψ
(
T�
)]
Bu
(
t j
)
; ∀i∈ q− 1∪{0}

y
(
ti+1

)= Cx
(
ti
)
; ∀i∈ q− 1∪{0};

(2.3)

where the control transition matrix is defined by

Γ
(
Ti
)

:=
(∫ Ti

0
Ψ
(
Ti− τ

)
dτ
)
B. (2.4)

The set of definitions to specify precisely the properties of the discrete system (2.3) to be
dealt with are now given as follows.

Definition 2.1 (Reachability). The positive system (2.3) is reachable for a given finite set
SI of q sampling instants if there is a sequence of controls u(ti) ∈ Rm

+ ; for all ti ∈ SI(q),
for all i∈ q− 1∪{0}, such that x(tq)= x∗ for any given bounded x∗ ∈Rn

+ provided that
x0 = 0.

Definition 2.2 (Global controllability). The positive system (2.3) is globally controllable
for a given finite set SI(q) of q sampling instants if there is a sequence of controls u(ti)∈
Rm

+ ; for all ti ∈ SI, for all i ∈ q− 1∪ {0}, such that for x(tq) = x∗ each given bounded
x∗ ∈Rn

+ and x0 ∈Rn
+.

Definition 2.3 (Global controllability to a region or to a point). The positive system (2.3)
is controllable to a region RS ⊂ Rn

+ for a given finite set SI(q) of q sampling instants if
there is a sequence of controls u(ti)∈Rm

+ ; for all ti ∈ SI, for all i∈ q− 1∪{0}, such that
x(tq) = x∗ for each given x∗ ∈ RS and any x0 ∈ Rn

+. If 0 ∈ RS and the above holds then
the system (2.3) is said to be controllable to the origin.

Definition 2.4 (Global asymptotic controllability to the origin). The positive system (2.3)
is globally asymptotically controllable to the origin for some given infinite set SI(q) of q
sampling instants if there is an infinite sequence of bounded controls u(ti)∈ Rm

+ ; for all
ti ∈ SI(q), for all i∈N, such that limi→∞ x(ti)= 0 for each given x0 ∈Rn

+.

This last definition might be equivalently referred to as asymptotic stabilizability to the
origin and, furthermore, as global asymptotic stabilizability to the origin provided that
the only equilibrium is zero.

Definition 2.5 (Observability). The positive system (2.3) is observable for a given finite
set SI(q) of q sampling instants if any initial condition x(0)= x0 ∈ Rn

+ can be calculated
uniquely from a finite set of future measured outputs y(ti) ∈ Rp

+; for all ti ∈ SI, for all
i∈ q.

Definition 2.6 (Global constructibility). The positive system (2.3) is globally constructible
for a given finite set SI(q) of q sampling instants if any bounded state x(tq) = x∗ ∈ Rn

+
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can be calculated uniquely from a finite set of past measured outputs y(t j)∈ Rp
+; for all

t j ∈ SI, for all j ∈ q− 1∪{0}.
Note that since the system is positive, so that eAti ∈Rn×n

+ and C ∈Rp×n
+ , the unforced

response

CeAtix0 = y
(
ti
)−

i∑
j=0

i∏
�= j+1

C
[
Ψ
(
T�
)]
u
(
t j
)≥ 0; ∀ti ∈ SI, ∀i∈ q− 1∪{0} (2.5)

for any set SI of sampling instants. Then, the properties of observability and global con-
structibility are independent of the controls and can be then tested for the unforced sys-
tem with no loss in generality. Similar reachability/controllability definitions to Defini-
tions 2.1–2.4 may be given by replacing the state space or a particular state region or
point by the output space, a particular output region or a particular output value leading
to output reachability/output controllability characterizations.

Definitions 2.7 to 2.10. They are directly referred to the output, replacing the state, con-
cerned with the concepts of output reachability, global output controllability, global out-
put controllability to a region or point and global asymptotic output controllability, re-
spectively, as direct extensions of Definitions 2.1–2.4.

3. Main results on reachability and controllability

In the following, the subsequent matrices are used for then establishing the formulation
of the main results of the paper: C(A,B) := [B,AB, . . . ,An−1B] is the controllability ma-
trix of the continuous-time system (2.1) also often referred to as the controllability ma-
trix of the pair (A,B). Some authors refer to this matrix as the reachability matrix of the
system (2.1) or the pair (A,B). O(C,A) := [CT ,ATCT , . . . ,An−1TCT]T is the observability
matrix of the continuous-time system (2.1) also often refereed to as the observability ma-
trix of the pair (C,A). Ĉ(Ψ,Γ,SI(n)) := [Γ(Tn−1),Ψ(Tn−1)Γ(Tn−2), . . . ,Ψ(

∑n−1
j=1 Tj)Γ(T0)]

is the controllability matrix of the discrete-time system (2.3) obtained from the contin-
uous one (2.1) under a zero-order hold for the, in general, sequence of aperiodic sam-
pling instants SI(n) := {t0, t1, . . . , tn} and corresponding sampling periods Ti = ti+1 − ti;
for all i ∈ n− 1∪ {0}, and Ô(C,Ψ,SI(n)) := [CT ,ΨT(Tn−1)CT , . . . ,ΨT(

∑n−1
j=1 Tj)CT]T is

the observability matrix of the discrete-time system (2.3) obtained from the continuous
one (2.1) under a zero-order hold for the, in general, sequence of aperiodic sampling
instants SI(n) := {t0, t1, . . . , tn} and corresponding sampling periods Ti = ti+1 − ti; for all
i∈ n− 1∪{0}. When the sampling period is constant then the sampling sequence is not
included in the notation of the controllability Ĉ(Ψ(T),Γ(T)) matrix and the observability
Ô(C,Ψ(T)) matrix but instead in the discrete state-transition and control matrices since
no confusion is expected.

Remarks

Remark 3.1. Ψ(
∑q

j=1Tj)=
∏q

j=1[Ψ(Tj)] for any sequence of q sampling periods from the
properties of the state transition matrix.
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Remark 3.2. Define M(Q,W ,q) := [Q,WQ, . . . ,Wq−1Q] for any q ∈ N and any pair of
matrices (Q,W) of compatible orders such that the product QW exists then M(A,B,n)=
C(A,B). Note that

rank
[
M(A,B,q)

]= rank
[
M(A,B,μ)

]= rank
[
C(A,B)

]
(3.1)

by construction for any N  q ≥ μ with μ ∈ n being the degree of the minimal polyno-
mial of A. The meaning is that the rank of the expanded matrix M(A,B,q) in powers of
A equalizes for q ≥ μ to the achieved at most for q = μ by construction. Since the degree
of the minimal polynomial of the fundamental matrix of A equalizes that of A then if

one defines M̂(Ψ,Γ,SI(q),q) := [Γ(Tq−1),Ψ(Tq−1)Γ(Tq−2), . . . ,Ψ(
∑q−1

j=1 Tj)Γ(T0)] for a se-
quence of q sampling instants SI(q) := {t1, t2, . . . , tq} and its associate sampling periods
Ti = ti+1− ti; for all i∈ n− 1∪{0}, then

rank
[
M̂
(
Ψ,Γ,SI(q)

)]= rank
[
M̂
(
Ψ,Γ,SI(μ)

)]= rank
[
Ĉ
(
Ψ,Γ,SI(n)

)]
(3.2)

again by construction for any Nq ≥ μ with μ ∈ n being the degree of the minimal poly-
nomial of A provided that the sampling instants satisfy SI(q)⊃ SI(n)⊃ SI(μ).

In the same way, M(C,A,n)=O(CT ,AT) and for any Nq ≥ μ

rank
[
M
(
CT ,AT ,q

)]= rank
[
M
(
CT ,AT ,μ

)]= rank
[
O(C,A)

]
,

rank
[
M̂
(
CT ,ΨT ,SI(q)

)]= rank
[
M̂
(
CT ,ΨT ,SI(μ)

)]= rank
[
Ô
(
C,Ψ,SI(n)

)]
.

(3.3)

Remark 3.3. qc ∈N exists such that

rank
[
M
(
A,B,qc

)]= rank
[
M(A,B,μ)]= rank

[
C(A,B)

]
(3.4)

and qc :=Max1≤i≤m(qi) is furthermore the controllability index of (2.1), provided that
such a system is controllable, for some set of nonnegative integer numbers qi ∈ q; for all
i∈m such that μ=∑m

i=1 qi, and

rank
[
M(A,B,q)

]= rank
[
M
(
A,B,qc

)]

= rank
[
M(A,B,μ)

]= rank
[
C(A,B)

]= n
(3.5)

for all Nq ≥ qc if (2.1) is controllable. In the multi-input case (i.e., m ≥ 2), it can occur
that qc < μ. In the single-input case (i.e.,m= 1), qc = μ. In the same way, we can define the
observability index q0 :=Max1≤i≤p(q0i) for an observable system (2.1) which can be lesser
than the degree of the minimal polynomial of the matrix A in the single-output case. The
controllability, the observability indexes, respectively, are also the number of samples, dis-
tributed appropriately, required to keep the respective property under discretization from the
continuous-time case. Note that the controllability index could also be named “reachabil-
ity index” in the same way as the controllability matrix could be renamed “reachability
matrix.” Although controllability is sometimes equivalent to reachability (as, for instance,
in the case of purely discrete-time systems) they are not coincident, in general. In partic-
ular, they are not coincident in the particular case of positive reachable or controllable
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systems discussed in this paper. However, the controllability and reachability indexes are
anyway identical since they refer to the maximum of the maximum number of appear-
ances of all the columns of the control matrix in the reachability matrix or, equivalently, to
the maximum number of samples of any nonzero input component necessary to achieve
full rank of the controllability matrix. Similar considerations apply to the coincidence of
observability and constructibility indexes. Due to this fact, we refer in the following to the
indexes, as usual in the literature, as the controllability or, respectively, the observability
index irrespective of the fact that reachability/controllability or, respectively, observabil-
ity/constructibility property be characterized in the same way as the corresponding ma-
trices will be referred to as the controllability and observability matrices. An appropriate
distribution of samples that maintain the respective property always exists for arbitrary
linear time-invariant systems as discussed in [1–3]. The integers qi (resp., q0i) are the sets
of samples requested to appropriately generate each control input component (resp., to
observe each output component) in order to guarantee the respective property from the
continuous-time case for some appropriate distribution of the sampling instants (that in
fact might be generically selected [1]).

A set of known results from the literature is summarized as follows for the dynamic
continuous-time system (2.1) and its discrete-time counterpart under a fixed sampling
period T and a zero-order hold provided that (2.1) is not positive. It is taken into account
that the ranks of the controllability and observability matrices equalize by construction
those of their submatrices involving powers of the matrix of A only up till the degree μ of
its minimal polynomial.

Theorem 3.4. The following properties hold.
(i) The system (2.1) is reachable if and only if rankC(A,B)=rank[B,AB, . . . ,Aμ−1B]=

n. The discrete-time system (2.3) under constant sampling period sequence Ti = T ;
i∈N is reachable and, equivalently, globally controllable if and only if

rank Ĉ
(
Ψ(T),Γ(T)

)= rank
[
Γ(T),Ψ(T)Γ(T), . . . ,Ψ(T)μ−1Γ(T)

]= n. (3.6)

(ii) The system (2.1) is observable if and only if rankO(C,A) = rank[CT ,ATCT , . . . ,
Aμ−1TCT]T = n. The discrete-time system (2.3) under constant sampling period se-
quence Ti = T ; i ∈ N is observable and, equivalently, globally constructible if and
only if

rank Ô
(
C,Ψ(T)

)= rank
[
CT ,Ψ(T)TCT , . . . ,Ψ(T)μ−1TCT

]T = n. (3.7)

Note that since Ψ(T) is a fundamental matrix and then nonsingular, it follows that if
the system (2.3) is reachable under constant sampling then it is controllable-to-the origin
and vice-versa since

rank Ĉ
(
Ψ(T),Γ(T)

)= rank
[
Γ(T),Ψ(T)Γ(T), . . . ,Ψ(T)μ−1Γ(T)

]

= rank
[
Ψ(T)−nΓ(T),Ψ(T)1−nΓ(T), . . . ,Ψ(T)μ−1−nΓ(T)

]

= rank
[
Ψ(T)−nΓ(T),Ψ(T)1−nΓ(T), . . . ,Ψ(T)−1Γ(T)

]= n.

(3.8)
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In particular, note that any bounded x(0) = x0 ∈ Rn is driven to x(nT) = 0 by an exist-
ing unique control sequence {u0,u1, . . . ,un−1} with ui = u(Ti); for all i∈ n− 1∪{0} that
satisfies the linear algebraic system:

−x0 =
[
Ψ(T)−nΓ(T),Ψ(T)1−nΓ(T), . . . ,Ψ(T)−1Γ(T)

][
uT0 ,uT1 , . . . ,uTn−1

]T
. (3.9)

The system is also shown to be equivalently globally controllable. A similar reasoning
applies to the equivalence between observability and global constructibility. However,
note the following observations.

Observation 1. The equivalences reachability/controllability do not hold for arbitrary
digital systems which can possess components which do not involve discretization from
the continuous-time system since then the state transition matrix is not a fundamental
matrix from a differential system. Also, controllability-to-the origin system in a contin-
uous-time, even in finite time, does not require the controllability matrix to be full rank
although this property guarantees both reachability and global controllability. Very close
considerations apply to potential equivalences or not of observability/global constructi-
bility [39].

Observation 2. If the system (2.1) is positive then its discrete-time version (2.3) is also
positive for discretization under constant sampling period and zero-order hold [38]. It
turns out by inspection that (2.3) is also positive for discretization under any arbitrary
sampling sequence. The properties of positivity, reachability, observability, and so forth,
are established through this paper in an integrated way. Then, the full rank condition
which guarantees each property in an arbitrary system are not useful for positive systems
without incorporating further constraints since the state and output have to evolve in the
first orthant of the state space under nonnegative control sequences for any nonnegative
initial condition.

The subsequent technical result holds.

Lemma 3.5. The following properties hold.
(i) The unique solution of the state of the system (2.1) for x(0) = x0 and any piecewise

continuous control u :R+ →Rm is given by

x(t)=
μ−1∑
k=0

αk(t)Akxo +M(A,B,μ)
[
β0(t,u),β1(t,u), . . . ,βμ−1(t,u)

]T
, (3.10)

where {βk :R+×Rm→R : k ∈ μ−1∪{0}} is a set ofm-real vector functions defined unique-
ly as βk(t,u) := ∫ t0 αk(t − τ)u(τ)dτ being linearly independent functions on R+ and {αk :
R+ →R : k ∈ μ− 1∪{0}} is a set of unique real linearly independent functions onR+ which
satisfy the linear algebraic system [1, 2]

di

dλi
[
1,λ, . . . ,λμj−1][α0(t),α1(t), . . . ,αμ−1(t)

]T

= [eλ1t, teλ1t, tμ1−1eλ1t, . . . ,eλσ t, teλσ t, tμσ−1eλσ t
]T

; i∈ μj − 1∪{0}, j ∈ σ ,

(3.11)
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where {λ1,λ2, . . . ,λσ} is the spectrum of A and μi is the multiplicity of λi; for all i∈ σ in the
minimal polynomial of A.

(ii) Let SI(q) := {t0 = 0, t1, t2, . . . , tq} be a set of sampling instants. Then

x
(
ti
)=

μ−1∑
k=0

αk
(
ti
)
Akxo +M(A,B,μ)

[ i−1∑
j=0

γ0 j
(
t j ,Tj , ti

)
u
(
t j
)
, . . . ,

i−1∑
j=0

γμ−1, j
(
t j ,Tj , ti

)
u
(
t j
)]T

(3.12)

for all ti ∈ SI(q), provided that the discretization of (2.1) is performed through a zero-order

hold, where: γk j(t j ,Tj , ti) := ∫ Tj

0 αk(ti − t j − τ)u(τ)dτ; Tj := t j+1 − t j (sampling periods),
for all ti ∈ SI(q), for all j ∈ i− 1∪{0}, for all k ∈ μ− 1∪{0}.

(iii) Properties (i)-(ii) might be reformulated by calculating the state-trajectory solution
from the formula

x(t)=
ρ−1∑
k=0

αρk(t)Akxo +M(A,B,ρ)
[
βρ0(t,u),βρ1(t,u), . . . ,βρ,ρ−1(t,u)

]T
, (3.13)

where ρ(≥ μ) ∈ N is arbitrary, the αρk(·)-real functions are linearly independent on R+,
dependent on ρ and unique for each given ρ, and calculated from a similar linear algebraic
system to (3.11) with the replacements αk(·)→ αρk(·), βk(·)→ βρk(·), μ→ ρ≥ μ, μj → ρj ≥
μj ( j ∈ σ , k ∈ ρ− 1∪{0}) being in general nonunique but satisfying ρ =∑σ

j=1 ρj .

Proof. (i) With the given definitions of the functions α(·)(t) and vector functions β(·)(t),
note that the unforced and forced state-trajectory solutions of (2.1) are Ψ(t)x0 = eAtx0 =∑μ−1

k=0αk(t)Akx0 and
∫ t

0 Ψ(t− τ)Bu(τ)dτ =∑μ−1
k=0A

kBβk(t), respectively. Thus, Property (i)
follows trivially by composing both solutions by using the superposition principle while
taking into account the definition of the matrix M(A,B,μ). Uniqueness of the solution for
each initial condition and control input is direct from the well-known Picard-Lindëloff

theorem for ordinary differential equations.
(ii) The state-trajectory solution of (2.1) by Property (i) and the fact that the input is

piecewise constant generated by a zero-order hold becomes at a sampling time t = ti ∈
SI(q):

x
(
ti
)=Ψ

(
ti
)
x0 +

∫ ti

0
Ψ
(
ti− τ

)
Bu(τ)dτ =Ψ

(
ti
)
x0 +

i−1∑
j=0

∫ t j+1

t j
Ψ
(
ti− τ

)
Bu(τ)dτ

= eAti
[
x0 +

i−1∑
j=0

(∫ t j+1

t j
e−Aτdτ

)
Bu
(
t j
)]

=
μ−1∑
k=0

αk
(
ti
)
Akx0 +

i−1∑
j=0

μ−1∑
k=0

(∫ t j+1

t j
αk
(
ti− τ

)
dτ
)
AkBu

(
t j
)

(3.14)

which coincides with (3.12) by taking into account the definition of the matrix M(A,B,μ)

and defining γk j(t j , t j+1, ti) := ∫ t j+1

t j αk(ti − τ)dτ = ∫ Tj

0 αk(ti − t j − τ)dτ; for all ti ∈ SI(q),

for all j ∈ i− 1∪{0}, for all k ∈ μ− 1∪{0} and the proof is complete.
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(iii) It is proved as (i) by considering eAt as a function of the matrix A which might
be calculated by sets of linearly independent functions satisfying linear algebraic systems
similar to (3.11) [1, 2]. �

4. Main results on reachability and controllability

The subsequent result addresses the facts that a necessary condition for the reachability
of a positive system (2.3) is the positivity and reachability of the continuous-time sys-
tem (2.3) while a necessary and sufficient condition, provided that the above necessary
condition holds, is that, furthermore, the necessary minimum set of sampling instants is
non larger than the degree of the minimal polynomial of A, which can be always fulfilled
through a design disposal together with their appropriate distribution so that the discrete
controllability matrix possesses a square monomial submatrix, namely, each row and col-
umn of such a submatrix has only a nonzero positive entry. This second part of sufficiency
is, in principle, much more restrictive than the generic condition to maintain reachabil-
ity under, in general, aperiodic sampling for arbitrary linear time-invariant systems. In
general, aperiodic sampling systems are reachable under similar conditions except that
the requirement of the existence of a monomial square submatrix of the controllability
one is replaced with a weakest condition. Such a weakest requirement is that the sampling
instants are distributed so that a certain square matrix associated with the γ(·)-functions
of Lemma 3.5(i) is nonsingular. It has been proved in the literature that this property is
(generically) accomplished with by almost any arbitrary distribution of the samples since
the linearly independent functions α(·) are, furthermore, a Tchebyshev system on each
real interval [ζ ,ζ +π/ω) where ζ ∈R+ is arbitrary and ω is an upper bound of the maxi-
mum eigenfrequency of (2.1), that is, any upper-bound of the maximum absolute value
of the imaginary part of all its complex eigenvalues [1, 2]. Thus, it suffices to choose

SI(μ) :=
{
t j
( �= ti for i �= j

)∈
[
ζ ,ζ +

π

ω

)
: ζ ∈R+, t j < t j+1 < tj+2, ∀ j ∈ μ

}
(4.1)

to maintain a reachability property from the continuous-time system by avoiding potential
hidden oscillations nondetectable at sampling instants and the associate lost of reachability.
If all such eigenvalues are real then admissible intervals to distribute the sampling instants
are [ζ ,∞). (see, for instance, [1, 2] and references therein).

Theorem 4.1. The system (2.3) is positive and reachable in finite time for a set of sampling
instants SI(μ) := {t0 ≡ 0, t1, . . . , tμ} if and only if the following two conditions hold together.

(1) The continuous-time system (2.1) is positive and reachable; that is, A ∈Mn×n
E , B ∈

Rn×m
+ , C ∈Rp×n

+ and rankC(A,B)= n which requires the necessary condition μ≥ n/m.
(2) An n-square real submatrix ĈS(Ψ,Γ,SI(n)) of the controllability matrix Ĉ(Ψ,Γ,

SI(n)) of the discrete-time system (2.3) is monomial. A necessary condition for Ĉ(Ψ,Γ,SI(n))
to possess a monomial submatrix ĈS(Ψ,Γ,SI(n)), and, then, to be also full rank, is that the
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real square μm-matrix TSI(μ) defined by

TSI(μ) :=

⎡
⎢⎢⎢⎣

γ00
(
t0,T0, tμ

)
Im ··· γ0,μ−1

(
tμ−1,Tμ−1, tμ

)
Im

...
...

...

γμ−1,0
(
t0,T0, tμ

)
Im ··· γμ−1,μ−1

(
tμ−1,Tμ−1, tμ

)
Im

⎤
⎥⎥⎥⎦ (4.2)

and depending on a set SI(μ) ⊂ SI(n) of sampling instants, be nonsingular, where the real
functions γk j(t j ,Tj , tμ); for all ti ∈ SI(μ), for all k, j ∈ μ− 1∪ {0} are defined in Lemma
3.5(ii).

Proof (“Sufficiency part”). Note from Lemma 3.5(ii) that

x
(
tμ
)= M̂

(
Ψ,Γ,SI(μ)

)[
uT
(
t0
)
,uT

(
t1
)
, . . . ,uT

(
tμ−1

)]T

=M(A,B,μ)TSI(μ)
[
uT
(
t0
)
,uT

(
t1), . . . ,uT

(
tμ−1

)]T
.

(4.3)

Note that if Conditions (1)-(2) hold jointly then the discrete system is positive, directly
from Condition (1). Furthermore, the coefficient matrix M̂(Ψ,Γ,SI(μ))=M(A,B,μ)TSI(μ)

of (4.3) is full rank if and only if M(A,B,μ) is full rank and the square matrix TSI(μ) is
nonsingular with μ ≥ n/m. In other words, the algebraic system (4.3) is solvable from
Rouché-Froebenius theorem from Linear Algebra since

rank
(
M(A,B,μ)TSI(μ)

)= rank
(
M(A,B,μ)TSI(μ),x∗

)

= rank Ĉ
(
Ψ,Γ,SI(n)

)= rankM̂
(
Ψ,Γ,SI(q)

)

= rankM̂
(
Ψ,Γ,SI(μ)

)= rankM(A,B,μ)

= rankC(A,B)= n

(4.4)

for any given arbitrary bounded prefixed x(tμ)= x∗ so that a solution [uT(t0),uT(t1), . . . ,
uT(tμ−1)]T exists and is able to drive the state-solution trajectory from x0 = 0 to x(tμ)= x∗

from Theorem 3.4 provided that the continuous-time system is reachable and provided
that the sequence of sampling instants satisfies DetTSI(μ) �= 0. Furthermore, if there ex-

ists a monomial matrix ĈS(Ψ,Γ,SI(μ)), a submatrix of M̂(Ψ,Γ,SI(μ)), then its inverse
Ĉ−1
S (Ψ,Γ,SI(μ)) ∈ Rn×n

+ exists (since the inverse of a monomial matrix exists and it is
positive and a matrix is monomial if and only if its inverse is positive [38]) so that a valid
control sequence solution satisfying (4.3), for each bounded prefixed x(tμ)= x∗, has the
form

u
(

SI(μ)
)

:= [uT(t0),uT(t1), . . . ,uT(tμ−1
)]T = (VĈ−1

S

(
Ψ,Γ,SI(μ)

)
x∗
)∈Rμm

+ (4.5)

provided that x∗ ∈ Rn
+, since Ĉ−1

S (Ψ,Γ,SI(μ)) ∈ Rn×n
+ , where V is a real n× μm-matrix

whose entries are all either zero or unity so that (mμ− n) components of the solution
u(SI(μ)) are fixed to zero and the remaining ones, which are not all zero if x∗ �= 0, are
calculated from Ĉ−1

S (Ψ,Γ,SI(μ))x∗. Then, there exists a nonnegative control which drives
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the state-space trajectory from a zero initial state to any arbitrary bounded x∗ ∈ Rm
+ if

Conditions (1)-(2) hold jointly. The sufficiency part has been fully proven.
Necessity part. If Condition (1) fails then either the discrete-time system is not positive,

from the lack of positivity of a discrete-time system if the corresponding continuous-
time system is not positive, or it is not reachable since rankC(A,B) < n⇒ rank Ĉ(Ψ,Γ,
SI(n)) < n by inspection of (4.3). If Condition (2) fails, then either rank Ĉ(Ψ,Γ,SI(n)) < n
and the discrete-time system is not reachable for the given sequence of sampling instants
even if Condition (1) holds, or rank Ĉ(Ψ,Γ,SI(n))= n but there is no subset of columns
of Ĉ(Ψ,Γ,SI(n)) such that the associate square matrix is monomial so that there is no
nonnegative control sequence able to drive the equilibrium for all given arbitrary state in
the first orthant. Necessity has also been proven. �

The subsequent result follows directly from Theorem 4.1 and Lemma 3.5(iii).

Corollary 4.2. If Theorem 4.1 holds for some sequence of samples SI(μ) then it also holds
for any arbitrary sequence of samples SI(ρ)⊃ SI(μ) for any ρ≥ μ including ρ = n so that the
system is reachable for sequences of sampling instants of arbitrary finite cardinal exceeding
μ.

Proof. For any natural number ρ ≥ μ, note that if the continuous-time controllability
matrix C(A,B) is full rank then M(A,B,ρ) is also full rank. Note also that by replacing
TSI(μ) → TSI(ρ), sequences of samples might be found defined as

TSI(ρ) :=

⎡
⎢⎢⎢⎣

γ00
(
0,T0, tρ

)
Im ··· γ0,ρ−1

(
tρ−1,Tρ−1, tρ

)
Im

...
...

...

γρ−1,0
(
0,T0, tρ

)
Im ··· γρ−1,ρ−1

(
tρ−1,Tρ−1, tρ

)
Im

⎤
⎥⎥⎥⎦ (4.6)

guaranteeing DetTSI(ρ) �= 0 by calculating a sufficiently large number and unique (for
each given ρ) of linearly independent real γρ(·,·)-functions according to Lemma 3.5((ii)-

(iii)). Furthermore, since ĈS(Ψ,Γ,SI(μ)) is monomial then there is a monomial square
submatrix of any M̂(Ψ,Γ,SI(ρ)) provided that SI(ρ)⊃ SI(μ). �

Corollary 4.2 is useful for potential applications since the number of sampling instants
might be increased while maintaining the reachability of the discrete-time system pro-
vided that the continuous one is reachable. This allows the choice of the time interval
used to drive the system to the desired final state and to generically choose the distribu-
tion of the sampling instants under rather weak constraints. The increase in the number
of samples also allows the improving of the noise influence in the numerical results since
more data are processed. On the other hand, particular distributions of sampling instants
might be chosen, for instance, to optimize the condition number of the coefficient matrix
of the algebraic problem associated with the reachability one. This results in improving
the relative errors in the solution generated by those of the measured data and the associ-
ated with the entries of the coefficient matrix. Such issues have been previously addressed
in the context of general linear dynamic time-invariant systems [1, 2]. Corollary 4.2 ad-
dresses the way of arbitrarily increasing the number of sampling instants while keeping
the stability in order to take advantages such as to improve the measuring errors influence
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from the measurements to the results. From an algebraic point of view it is, however, in-
teresting to solve the problem with the smallest possible number of calculations by using
a square coefficient matrix of nth-order. This only requires the injection of a number of
nonzero input components being equal to n for the whole number of sampling instants at
hand, with the remaining input components being zeroed, in order to algebraically solve
the reachability problem. The subsequent result addresses that issue.

Corollary 4.3. Assume that Theorem 4.1 holds. Then, there is a (in general, nonunique)
set of m nonnegative integer numbers mi (i ∈ m) such that

∑m
i=1 mi = n and 1 ≤ nc :=

Max1≤i≤m(mi)≤ μ being the controllability index of (2.1) such that
(1) it exists a (in general nonunique) nonsingular n-square real submatrix of C(A,B)

Cnc(A,B) := [Cn1

(
A,b1

)
,Cn2

(
A,b2

)
, . . . ,Cnm

(
A,bm

)]
, (4.7)

where Cni(A,bi) := [bi,Abi, . . . ,Ab
ni−1
i ] and bi is the ith column of B, i∈m,

(2) the reachability of the discrete-time system (2.3) is guaranteed by a minimum num-
ber of nonunique and nonuniquely distributed nc controls

(
uT
(
t0
)
,uT

(
t1
)
, . . . ,uT

(
tnc−1

))T ∈Rmnnc
+ (4.8)

fulfilling ui(t j) = 0, for all j(≥mi) ∈ nc− 1∪ {0}, for all i ∈m being injected at
sequences of sampling instants SI(nc) := {t0 ≡ 0, t1, t2, . . . , tnc−1} of cardinal equal-
izing the controllability index.

Outline of Proof. Introducing the constraints ui(t j)= 0, for all j(≥mi)∈ nc− 1∪{0}, for
all i∈m in (4.3), it is trivial to deduce

x
(
tnc
)= M̂

(
Ψ,Γ,SI

(
nc
))[

uT
(
t0),uT

(
t1
)
, . . . ,uT

(
tnc−1

)]T

= M̂
(
Ψ,Γ,SI

(
nc
))
û
(

SI
(
nc
))= Cnc(A,B)QQTT̂SI(nc)û

(
SI
(
nc
))

= Cnc(A,B)T̂SI(nc)û
(

SI
(
nc
))

,

(4.9)

where the two vectors below are identical after appropriately reordering the components
in any of them:

û
(

SI
(
nc
))

:= [ûT1 (SI
(
nc
))

, û
T
2

(
SI
(
nc
))

, . . . , û
T
m

(
SI(nc

))]T
,

û
(

SI
(
nc
))

:= [ûT1 (SI
(
m1
))

, ûT2
(

SI
(
m2
))

, . . . , ûTm
(

SI
(
mm

))]T (4.10)

with

û
T
i

(
SI
(
nc
))

:= [ûTi (SI
(
mi
))

,0, . . . ,0
]∈Rnc

+ , ∀i∈m,

ûTi
(

SI
(
mi
))

:= [ui(t0),ui(t1), . . . ,ui(tmi−1
)]

, ∀i∈m
(4.11)
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and ui(t j)= 0, for all j(≥mi)∈ nc− 1∪{0}, for all i∈m, so that

M̂
(
Ψ,Γ,SI

(
nc
))= Cnc

(
A,B)QQTT̂SI(nc) = Z1M̂

(
Ψ,Γ,SI

(
nc
))
Z2 (4.12)

is a similar matrix to M̂(Ψ,Γ,SI(nc)) via some equivalence transformation defined by the
n× μm and μm× n real matrices Z1 and Z2, respectively, Q being a real full row rank
n× nμm matrix, so that QQT is a square nonsingular n-matrix for μ ≥ n/m, which re-
orders the columns of C(A,B), and potentially reduces its number to n. By construction,
the distribution of sampling instants may be chosen such that Cnc(A,B)T̂SI(nc) be mono-
mial since a submatrix of the controllability matrix of the discrete-time system (2.3) is
monomial from Theorem 4.1. Thus, the discrete-time system (2.3) is positive and reach-
able in nc samples at some sampling instant tnc through some sequence of nc sampling
instants SI(nc) := {t0 = 0, t1, . . . , tnc−1}. The proof is complete. �

Now, the close property of controllability is investigated. Controllability refers to drive
any nonzero arbitrary initial condition in the first orthant to some arbitrary prescribed
point or proper or improper region in the first orthant (see Definitions 2.2–2.4). First,
note that the state transition matrix is never nilpotent at any time. Discrete or digital
systems not being related to discretization of continuous-time systems, are globally con-
trollable in finite time if they are reachable and its state-transition matrix Ψd is nilpotent.
In such a case, there is a natural number ν such that Ψν

d = 0 so that x∗ −Ψ
q
dx0 = x∗ ∈Rn

+

for any q ≥ ν and any given pair (xT0 ,x∗)T ∈ R2n
+ and the system is globally controllable

in any finite number of step non less than ν. A sequence of the nonzero components
of the control input driving x0 to x∗ is calculated from the formula Ĉ−1

S (Ψd,Γ,SI(μ))x∗

(in a similar way as that used for reachability in the proof of Theorem 4.1 for discrete-
time systems) for some appropriate distribution of the sampling instants including po-
tentially the case of constant sampling periods for appropriate values. Global controlla-
bility is then guaranteed for any initial and final conditions in the open first orthant for
any 1≤ q ≤ ν and pairs fulfilling (xT0 ,x∗)T ∈R2n

+ such that (x∗ −Ψdx0)∈Rn
+, alternative

nonzero control components valid to drive the state from the initial to the final position
might instead be calculated as Ĉ−1

S (Ψd,Γ,SI(μ))(x∗ −Ψdx0). Since it is unfeasible a nilpo-
tent state transition matrix of a discrete-time system when arising from the discretization
of a continuous-time one, global controllability in finite time is unfeasible. Then, global
controllability to a specific region and global asymptotic controllability are now investi-
gated. Define Rn

ε := {z ∈ Rn
+ : zi ≥ ε, for all i ∈ n}, for all ε ∈ R. Note that Rn

0 ≡ Rn
+. The

following result follows directly from Theorem 4.1 and Corollaries 4.2-4.3.

Theorem 4.4. The following properties hold
(i) The discrete system (2.3) is positive and globally controllable from x0 ∈ BR ⊂Rn

+ (BR

being a bounded domain of the first orthant) to any region Rn
ε := {z ∈ Rn

+ : zi ≥ ε, for all
i∈ n} being a proper subset of the closed first orthant, for any ε ≥ ε0 and some ε0 > 0, for a
finite sequence of sampling instants SI(ρ), ρ being a finite natural number dependent on ε, if
and only if
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(1) the continuous-time system (2.1) is positive, reachable, and globally asymptotically
Lyapunov’s stable, that is, A∈Mn×n

E , B ∈Rn×m
+ , rankC(A,B)= n, which requires

the necessary condition μ≥ n/m, and A is a stability matrix;
(2) A n-square real submatrix ĈS(Ψ,Γ,SI(n)) of the controllability matrix of (2.3) is

nonsingular and the sequence of sampling instants SI(ρ) satisfies that the matrix

TSI(ρ) :=

⎡
⎢⎢⎢⎣

γ00
(
0,T0, tρ

)
Im ··· γ0,ρ−1

(
tρ−1,Tρ−1, tρ

)
Im

...
...

...

γρ−1,0
(
0,T0, tρ

)
Im ··· γρ−1,ρ−1

(
tρ−1,Tρ−1, tρ

)
Im

⎤
⎥⎥⎥⎦ (4.13)

is nonsingular. Then, the system is also reachable for the finite sequence of sampling instants
SI(ρ). The property is always guaranteed to hold for some finite sequence of sampling instants
of cardinal ρ ≥ μ provided that it holds for some finite ρ, and also for any finite or infinite
sequence of sampling instants of cardinal ρ′ ≥ ρ provided that it holds for some ρ.

(ii) If Property (i) holds then the discrete system (2.3) is also globally asymptotically con-
trollable to the origin with a nonnegative control.

Proof. (i) Property (i) follows directly from Theorem 3.4 and from Corollary 4.2, which
allows to extend the sequence of sampling instants, since for sufficiently large, but fi-
nite t, (x∗ −Ψ(t)x0 − ε) ∈ Rn

+ where ε ∈ Rn
+ has all its components identical to ε, since

A is a stability matrix. Then for any finite time tρ ≥ t a sequence of sampling instants
SI(ρ) := {0, t1, . . . , tρ−1, tρ} satisfying the nonsingularity of TSI(ρ) exists and a submatrix of
the discrete controllability matrix is monomial. The remaining of the proof follows as in
Theorem 4.1. A sequence of nonnegative controls driving the state from the initial to the
final position is calculated as in Theorem 4.1 with the replacement x∗ → (x∗ −Ψ(tρ)x0).

(ii) Define x∗(tk+1,x0) :=Ψ(tk−k1+1)x0(∈ Rn
+)→ x∗ ≡ 0 as tk →∞ for all finite k1 ∈N

and any finite x0 ∈Rn
+. From the properties of the state-transition matrix:

Ψ
(
tk+1

)=Ψ
(
tk1

)
Ψ
(
tk−k1+1

)=
( k1∏

i=1

[
Ψ
(
Tk−k1+i

)])
Ψ
(
tk−k1+1

)
(4.14)

so that, for each given real constant δ ∈ (0,1), there exists k∗ = k∗(δ) such that ‖∏k1
i=1

‖2 < δ where ‖(·)‖2 is the �2 (spectral) matrix or (induced) vector norm for any k1 ≥ k∗.
Then

x∗
(
tk+1,x0

)− x
(
tk+1

)= (Ψ(tk−k1+1
)−Ψ

(
tk+1

))
x0 =

(
In−

k1∏
i=1

[
Ψ
(
Tk−k1+i

)])
Ψ
(
tk−k1+1

)
x0

=
k∑
j=0

k∏
�= j+1

[
Ψ
(
T�
)]
Bu
(
t j
)

(4.15)
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and ‖x∗(tk+1,x0)− x(tk+1)‖2 ≥ (1− δ)‖Ψ(tk−k1+1)x0‖2. If now, k1 →∞ and (k− k1)→∞
then δ→ 0 so that

(
In−

k1∏
i=1

[
Ψ
(
Tk−k1+i

)])
Ψ
(
tk−k1+1

)

= (In− on×n(δ)
)
on×n(δ)≥ on×n(δ)−∣∣o2

n×n(δ)
∣∣= on×n(δ)∈Rn×n

+ ,

(4.16)

where
∏k1

i=1[Ψ(Tk−k1+i)] = on×n(δ) ∈ Rn×n
+ and Ψ(tk−k1+1) = on×n(δ) ∈ Rn×n

+ . Further-
more, both matrices are also On×n(δ), with the extended “Big-O,” “Small-o” Landau’s
notations as follows.

(i) A real n-matrix F is On×n(δ) if (δIn − |F|) � 0, where � 0 stands for positive
semidefinite and |F| = (| fi j|) is the matrix of entries of the absolute values of the
matrix F = ( fi j).

(ii) A real n-matrix F is on×n(δ) or, respectively, o2
n×n(δ) if it is On×n(δ) and, further-

more, limδ→0( fi j /δ)= 0, respectively, limδ→0( fi j /δ2)= 0.
From (4.15)-(4.16), it follows that

x∗
(
tk+1,x0

)− x
(
tk+1

)=
k∑
j=0

k∏
�= j+1

[
Ψ
(
T�
)]
Bu
(
t j
)= on(δ)∈Rn

+ (4.17)

for all x0 ∈Rn
+ being bounded as δ→ 0 for k1 →∞ and (k− k1)→∞, that is, limk→∞(

∑k
j=0∏k

�= j+1[Ψ(T�)]Bu(t j)) = 0 and lim k1→∞
(k−k1)→∞

(x∗(tk+1,x0)) = 0 so that a nonnegative in-

finite sequence of controls generated at appropriately distributed infinite sequences of
sampling instants is able to asymptotically drive any bounded initial state x0 ∈ Rn

+ to
zero from property (i) according to the vanishing real vector sequence x∗(tk+1,x0) :=
Ψ(tk−k1+1)x0(∈Rn

+)→ x∗ ≡ 0. The proof is complete. �

Note related to the proof of Theorem 4.4(ii) that although (−∏k1
i=1[Ψ(Tk−k1+i)])Ψ

(tk−k1+1) = o2
n×n(δ) is not necessarily nonnegative, (In −

∏k1
i=1[Ψ(Tk−k1+i)])Ψ(tk−k1+1) =

on×n(δ)∈Rn×n
+ from (4.16).

A crucial constraint for reachability and controllability of linear positive systems is that
the controllability matrix be monomial. Thus, it is interesting to derive conditions for the
controllability matrix to be monomial under alternative sets of sampling instants or state
transformations. This idea is addressed in the subsequent result as follows.

Theorem 4.5. Consider the state transformation x′ =Qx, where Q is an n-real square ma-
trix, so that the discrete state transition and control matrices are related as Ψ′ = Q−1ΨQ
and Γ′ =Q−1Γ, respectively; and also that two different sets of μ sampling instants SI(μ) and
SI′(μ). Then, the following properties hold.

(i) The controllability matrices are related as

Ĉ
(
Ψ′,Γ′,SI′(μ)

)=Q−1Ĉ
(
Ψ,Γ,SI′(μ)

)
T−1

SI(μ)TSI′(μ) (4.18)

provided that TSI(μ) is nonsingular.
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(ii) If Ĉ(Ψ,Γ,SI(μ)) is a monomial matrix M, so that the positive system (2.3) is reach-
able for the set of sampling instants SI(μ), then Ĉ(Ψ′,Γ′,SI′(μ)) is monomial if and only
if (T−1

SI′(μ)TSI(μ)M−1Q)−1 is monomial and then T−1
SI′(μ)TSI(μ)M−1Q is also monomial. As a

result the system (2.3) is positive and reachable for the new state variables and sampling in-
stants.If Q = In (i.e., the state vector is not transformed) then Ĉ(Ψ,Γ,SI′(μ)) if and only if
Ĉ(Ψ,Γ,SI(μ)) provided that T−1

SI′(μ)TSI(μ) is monomial.

Proof. (i) Direct calculations yield

Ĉ
(
Ψ′,Γ′,SI′(μ)

)=Q−1C(A,B)TSI′(μ) =Q−1Ĉ
(
Ψ,Γ,SI′(μ)

)
T−1

SI(μ)TSI′(μ) (4.19)

provided that TSI(μ) is nonsingular. Property (ii) follows directly from the above expres-
sion since the inverse of a monomial matrix is nonsingular and monomial [38]. �

Theorem 4.5 may be directly extended to controllability and also to observability/con-
structibility by considering pairs (C,Ψ) and (C′,Ψ′). Parallel results for output reacha-
bility and controllability might be obtained directly by extending Theorems 4.1–4.5 and
Corollaries 4.2-4.3 by using from (2.3):

y
(
ti+1

)= C
(
Ψ
(
Ti
)
x
(
ti
)

+Γ
(
Ti
)
u
(
ti
))= CΨ

(
ti+1

)
x0 +

∫ ti+1

0
CΨ

(
ti+1− τ

)
Bu(τ)dτ

=
i∏

j=0

[
CΨ

(
Tj
)]
x0 +

i∑
j=0

i∏
�= j+1

C
[
Ψ
(
T�
)]
Bu
(
t j
)
; ∀i∈ q− 1∪{0}

(4.20)

by noting that the output controllability matrix of (2.1) and (2.3) are, respectively,

Ĉ0(C,A,B) := C · Ĉ(A,B); Ĉ0
(
C,Ψ,Γ,SI(n)

)
:= C · Ĉ(C,Ψ,Γ,SI(n)

)
(4.21)

so that necessary conditions for rank Ĉ0(C,Ψ,Γ,SI(n)) = p are rankC = rank Ĉ(A,B) ≥
p, DetTSI(μ) �= 0 for some sequence of μ sampling instants SI(μ). The discrete output con-
trollability matrix has also to possess a monomial square real p-matrix. Those conditions
guarantee directly output reachability and some extra ones accordingly modifying those
supplied in Theorem 4.4 guarantee directly controllability and asymptotic controllability
of the discretized system (2.3).

5. Main results concerning observability and constructibility

Now, the properties of observability and constructibility are formulated. The observabil-
ity and constructibility of positive systems under arbitrary sampling are dual properties to
reachability and controllability, respectively (see, for instance, [41]). From Lemma 3.5(i),
the unforced output trajectory may be expressed as follows:

y(t)=
μ−1∑
k=0

αk(t)CAkxo =
[
α0(t)Ip,α1(t)Ip, . . . ,αμ−1(t)Ip

]
M
(
CT ,AT ,μ

)T
x0. (5.1)
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Since the properties of observability and constructibility hold or not independent of the
control, it suffices the above unforced trajectory to characterize them. Consider a se-
quence of μ sampling instants is SI(μ) := (t1, t2, . . . , tμ) and the associate output vector
sequence

ŷSI(μ) := [yT(t1), yT(t2), . . . , yT(tμ)]T =ΠSI(μ)M
(
CT ,AT ,μ)Tx0, (5.2)

where

ΠSI(μ) :=

⎡
⎢⎢⎢⎣
α0
(
t1
)
Ipα1

(
t1
)
Ip ··· αμ−1

(
t1
)
Ip

... ··· ...

α0
(
tμ
)
Ipα1

(
tμ
)
Ip ··· αμ−1

(
tμ
)
Ip

⎤
⎥⎥⎥⎦ . (5.3)

The algebraic system of linear equations (5.2), if solvable, allows solving the observabil-
ity problem consisting of the calculation of the initial state from future output measure-
ments. Since the state transition matrix is a fundamental matrix of the differential system,
it is nonsingular for all finite time. Thus, for any finite time tμ+1 > tμ,

x0 =Ψ−1(tμ+1
)
x
(
tμ+1

)=Ψ
(− tμ+1

)
x
(
tμ+1

)
(5.4)

which replaced into (5.2) yields

ŷSI(μ) := [yT(t1), yT(t2), . . . , yT(tμ)]T =ΠSI(μ)M
(
CT ,AT ,μ

)T
Ψ−1(tμ+1

)
x
(
tμ+1

)
. (5.5)

The algebraic system of linear equations (5.5) is solvable if and only if (5.2) is solvable
which allows solving the global constructibility problem consisting of the calculation of a
future state from previous output measurements. However, note that each of the coeffi-
cient matrices is not guaranteed to possess a monomial submatrix if the other coefficient
matrix possesses that property. Thus, constructibility and observability are equivalent
properties for nonpositive discretized systems for the same sequence of sampling instants
but the equivalence does not hold in the general case for positive systems. Using those
features, Theorems 4.1–4.4 and Corollaries 4.2-4.3 lead to close results for observabil-
ity/global constructibility as follows.

Theorem 5.1. The following properties hold.
(i) The discrete system (2.3) is positive and observable if and only if the continuous-

time system (2.1) is positive and observable; that is, A ∈Mn×n
E , B ∈ Rn×m

+ , C ∈ Rp×n
+ , and

rankO(C,A) = n which requires the necessary condition μ ≥ n/m and, furthermore, an
n-square real submatrix ÔS(C,Ψ,SI(n)) of the observability matrix Ô(Ψ,Γ,SI(n)) of the
discrete-time system (2.3) is monomial. A necessary condition for the existence of a mono-
mial submatrix ÔS(C,Ψ,SI(n)), and then the observability matrix to be full rank, is that a
sequence of sampling instants SI(μ) := {t1, t2, . . . , tμ} ⊂ SI(n) real square μp-matrix ΠSI(μ)

defined in (5.3) be nonsingular.
If the system (2.3) is observable for a sequence SI(μ), then it is also observable for sequences

of sampling instants SI(ρ) of a larger number of samples.
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If the system (2.3) is observable for a sequence SI(μ), then there exists a set of nonnegative
integer numbers pi (i∈ p) such that

∑m
i=1 pi = n and 1≤ no :=Max1≤i≤p(pi)≤ μ, no being

the observability index of both (2.1) and (2.3) such that t he system is still observable for
sequences of sampling instants SI(ρ) of any finite cardinal ρ ≥ n0.

(ii) Property (i) may be reformulated for global constructibility of a positive discretized
system (2.3) by replacing the existence of a monomial square n-matrix ÔS(C,Ψ,SI(n)) of
the observability one by the existence of a monomial matrix of the constructibility matrix
[Ô(C,Ψ,SI(n))Ψ−1(tμ)]. Global constructibility is guaranteed by observability for a sequence
of sampling instants SI(μ) if the state-transition matrix is monomial at some finite tμ+1 > tμ.

The proof of Theorem 5.1 is omitted since the reasoning is very close to those used
in the proofs of Theorems 4.1–4.4 and Corollaries 4.2-4.3. Note that the square matrix
ΠSI(μ) is guaranteed to be nonsingular by almost any arbitrary distribution of the samples
SI(μ) since the linearly independent functions α(·) are, furthermore, a Tchebyshev sys-
tem on each real interval [ζ ,ζ +π/ω) where ζ ∈R+ is arbitrary and ω is an upper bound
of the maximum eigenfrequency of (2.1) [1, 2]. It suffices then to take the sampling in-
tervals distinct and belonging to such intervals. Note also that to prove the last part of
Theorem 5.1(ii), the property that the product of monomial matrices is monomial and
the inverse of a monomial matrix is monomial is used [38, 39]. It seems promising to
extend in the future the above formulation to neural networks, which are very useful
in computation and for describing certain dynamical systems which often have hybrid
disposals and possess constant or time-varying delays [42] and to polytopic parameteri-
zations of dynamic systems [43–45].

6. Examples

Example 6.1. Consider the second-order positive continuous-time system with one sin-
gle input of state equation parameterized by A=Diag(λ1,λ2), b= (b1,b2)∈R2

+, λ1,2 ∈R.
The controllability matrix of the obtained discretized system for a constant sampling pe-
riod T is

C
(
Ψ(T),Γ(T)

)=

⎡
⎢⎢⎢⎢⎣

eλ1T − 1
λ1

b1
eλ1T

(
eλ1T − 1

)
λ1

b1

eλ2T − 1
λ2

b2
eλ2T

(
eλ2T − 1

)
λ2

b2

⎤
⎥⎥⎥⎥⎦ (6.1)

which cannot be monomial for any parameterization of the form b = (b1,b2)∈R2
+, λ1,2 ∈

R and no bounded positive sampling period. Then, the discretized system cannot be posi-
tive and reachable/controllable for any set of sampling instants with constant or aperiodic

associate sampling periods. If A =
[μ −ν

ν μ

]
is the real canonical matrix associated with

a pair of complex conjugate eigenvalues λ1,2 = μ± iν then the associate system cannot be
positive since A /∈M2×2

E .

Example 6.2. Now, consider a second-order positive continuous-time system with two
input components with its matrix A in diagonal Jordan form with either a Jordan block
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or two Jordan blocks defined by Ag =
[λ g

0 λ

]
, B = (bi j)∈R2×2

+ , λ∈R with g = 1, respec-

tively, g = 0 for the case of one, respectively two, Jordan blocks. For a sampling period T ,
the discrete state-transition and control-transition matrices are given by

Ψg(T)=
[
eλT gTeλT

0 eλT

]
,

Γg(T)= 1
λ

⎡
⎢⎢⎣
b11
(
eλT−1

)
+b21g

(
eλT
(
T− 1

λ

)
+

1
λ

)
b12(eλT−1)+b22g

(
eλT
(
T− 1

λ

)
+

1
λ

)

eλTb21
(
eλT − 1

)
eλTb22

(
eλT − 1

)

⎤
⎥⎥⎦ .

(6.2)

In the case of two Jordan blocks, that is, g = 0, the discrete system is positive and reach-
able in two steps t0 = 0 and t1 = T for any λ∈ (−∞,−ε)∪ (ε,∞), T ∈ (ε,∞) provided that
bii = 0 for i∈ 2 and bi j > 0, i, j( �= i)∈ 2 and in the case that bii > 0 for i∈ 2 and bi j = 0,
i, j( �= i)∈ 2. For the case g = 1, the system is reachable if bii > 0 for i∈ 2 and bi j = 0 for
i, j( �= i) ∈ 2 since then the (1,1) and (2,2) entries of Γ1(T) are positive, its (2,1) entry
is zero while its (1,2) entry is also zero provided that λ = f (λ,T) := (eλT − 1)/(TeλT) :
R×R+ → R since g = 1. If λ > 0, this always holds for some sufficiently large T > 0
since 0 < (eλT − 1)/(TeλT)→ 0 as T →∞ so that there is a real solution to the constraint
λ = (eλT − 1)/(TeλT). For λ < 0 it also exists such a sampling period implying that the
above constraint holds since f (λ,0)= 0, f (λ,∞) := limT→∞ f (λ,∞)=−∞ and f (λ,T) is
continuous on R×Rε, for all ε ∈ R+. In this last case, the discrete system is also glob-
ally asymptotically controllable to any region Rn

ε := {z ∈Rn
+ : zi ≥ ε, for all i∈ n}, for all

ε ∈R+.
If, in addition to the above conditions, λ < 0 then the discretized system is globally

asymptotically controllable to any region Rn
ε := {z ∈ Rn

+ : zi ≥ ε, for all i ∈ n}, for all
ε ∈R+. If the parameterization changes to A=Diag(λ1,λ2), λ1,2 ∈R (i.e., the two eigen-
values are real and distinct or they are equal with two Jordan blocks discussed above) then
Ψ0(T)=Diag(eλ1T ,eλ2T) and Γ(T)= Γ0(T), defined above with the replacements λ→ λ1

and λ→ λ2 in the first and second row vectors, respectively. The same conclusions about
reachability and global asymptotic controllability to Rn

ε := {z ∈Rn
+ : zi ≥ ε, for all i∈ n},

for all ε ∈ R+, provided that λi < 0, i ∈ 2, as in the case g = 0. The number of samples
might be increased as stated in Corollary 4.2 under weak conditions.

Example 6.3. Consider again the single-input Example 6.1. The system is reachable for
all bounded positive sampling periods if and only if the eigenvalues are distinct but its
positivity is lost. However, the discretized system is positive reachable for any given sam-
pling instants t0 = 0, t1 = T > 0 and a state-space transformation in the continuous-time
system x(t)=Qz(t), Q∈R2×2 being nonsingular such that Ĉ(Ψz(T),Γz(T))=M (mono-
mial) so that Az =Q−1AQ and Bz =Q−1B are the new dynamics and control matrices in
the transformed state variables. Similar considerations as those in the above examples can
be derived for observability and constructibility with the manipulation of the observabil-
ity matrix.
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7. Conclusions

This paper has been devoted to investigate basic properties of linear time-invariant sys-
tems under discretization with arbitrary, in general, aperiodic sampling. The properties
investigated have been reachability and controllability and their dual properties of observ-
ability and constructibility. The main issue is that the properties hold if the corresponding
ones of the continuous-time system hold and some extra ones concerning the distribu-
tion of the sampling instants hold as well. The conditions on the sampling instants hold
generically based on the properties of the linearly independent functions used to expand
the fundamental matrix of the differential system from its infinitesimal generator and
their associate Tchebyshev system which possesses a nonzero determinant [1, 2]. It is
pointed out that a possible practical usefulness is the choice of the samples so that the
coefficient matrix of the linear algebraic system associated with each of the investigated
properties has a condition number as small as possible in order to improve the transmis-
sion of the measuring, parameterization, and rounding relative errors from the data and
parameters to the solution.
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