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Abstract
This Thesis presents a proposal of a dynamic model for loading Deformable Lin-
ear Objects (DLO) with a team of quadrotors. Three factors play a role in this
model: Dynamic model of the payload solid, dynamic model of the quadrotor for
taking into account the passive dynamics of the DLO, and a control strategy for
an efficient and robust transportation. We differentiate two tasks: (a) achieving a
equi-workload spatial configuration of the quasy-stationary DLO-quadrotors sys-
tem. (b) performing the transportation by horizontal displacement of the whole
system. The transportation is a simple follow-the-leader maintining a line strategy,
but the local quadrotor controls must be robust enough to cope with all non-linear
induced by the DLO and other external perturbations. Quadrotor controllers are de-
signed in order to assure the system stability and quick convergence for the robust
achievement of the current task. Offline and online control strategies are compared
and tested in various experiments to compare their fitness to variable dynamic con-
ditions of the system, including external wind disturbances and taking into account
the scalability of the system.
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Chapter 1

Introduction

1.1 Introduction

The growing availability of cheap and robust quadrotors is making feasible inno-
vative applications. A recently proposed challenging task for Unmanned Aerial
Vehicles (UAV) is the transportation of deformable linear objects (DLO) [2], i.e.
cables, by a team of quadrotors, which can be extremely useful in emergency situ-
ations, such rescue operations in highly unstructured environments.

Controlling the motion of isolated quadrotors in obstacle free environments
has been successfully achieved in the literature by optimized Proportional Integral
Derivative (PID) controllers [65]. However, solution of the control of a team of
quadrotors subject to non-linear interactions induced by a DLO hanging from them
is far from being solved. In this regard, the works initiated in [31] and further
developed in this Thesis open a new venue of research, directly related to efforts
of control of cooperative teams of aerial robots under the non-linear dynamical
interactions introduced by the DLO linking.

Modeling DLO kinematics is a complex task requiring a compromise between
model accuracy and computational cost [108]. Computing its reaction to external
forces involves careful modeling and optimization techniques. The DLO acts as a
passive object that links otherwise isolated and independent quadrotors [28], intro-
ducing dynamic interactions among the robots in the form of non-linear constraints.
Previous works have dealt with dynamic modeling of the process of transporting a
DLO by a team of mobile robots on a 2D surface [29].

The physical configuration of an instance of the system with three quadrotors is
represented in Figure 1.1, where three drones are sustaining a DLO hanging freely
in the space in stationary state. Non stationary regimes correspond to take-off and
landing of the robots, until they reach a height where the DLO does not touch any
surface. The DLO in Figure 1.1 appears divided in two sections each hanging from

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Stylized physical representation of three drones carrying a DLO which
is approximated by two catenary curve sections.

a pair of quadrotors.
This introductory chapter aims to set the stage for the entire Thesis, providing

some of the motivations for the research work performed, and some background
ideas on each of the topics covered by the Thesis. Contributions of this Thesis are
stated in this Chapter, too. The Chapter is organized as follows: Section 1.2 gives
some motivation for the works carried out in the Thesis. Section 1.3.1 introduces
deformable linear objects (DLO) models. Section 1.3.3 refers a general view of
drone cooperative systems and introduces engineering control for drone systems.
Section 1.4 summarizes the Thesis goals, which have been set along the years. Sec-
tion 1.5 details achieved contributions. Section 1.5.1 enumerates the publications
achieved. Section 1.6 describes the Thesis organization and content.

1.2 Motivation

Drone technology and business have experimented a great push from industry and
research institutions. Most famous drone application remains photography, but
surveillance and transport of different objects are revealing as big challenges for
designers and researchers. One of the most important fact is that drones will need
autonomy to perform their task with minimal human intervention. Thus, tech-
niques for adapting drone parameters and behaviours to different conditions are
needed, involving navigation, target detection, and coordination among other ma-
chines, humans or drones.

A drone cooperative system may help performing required industrial tasks in a
shorter time and more efficiently. However, drone cooperative systems are not fully
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studied. As more drones are included in the team, or the task complexity increases,
the correct drone coordination becomes a key issue. There, control happens to be
critic, as it involves aspects as whether control is decentralized or centralized, or
rearranges for any incidence, such a single drone failure in the swarm, or changing
outdoors perturbations. Thus, developing a robust control for these autonomous
cooperative systems drones presents as a great technological and scientific chal-
lenge for researchers and industry.

Packet delivery is turning out promising drone application for society. Those
packets are habitually represented as regular small boxes, but after the launch of
this idea some years ago, now unexplored alternatives start to rise up. How would
a swarm of drones be able to coordinate to transport a big packet? Or would a team
of aerial robots be capable of loading a deformable solid that could change their
dynamics continuously? In this Thesis, we combined the two previous mentioned
points, and we developed a semi-autonomous cooperative drone system for the
transport of deformable linear objects.

DLO aerial transportation presents a wide range of potential applications. Some
of them are listed next:

• Tethered quadrotors, which permit a continuous energy supply [104]

• ETH Institute for Dynamic Systems and Control published a video where
a team of quadrotors build autonomously a bridge made of ropes, which is
later tested to support the crossing of a person. Their work was covered in
[9] and [8], and the demo is located in their YouTube Channel 1.

• Second, SAP Group and Service-drone companies together carried out in
2014 small tasks of a high-voltage line renewal with drones. Their video can
be found in Youtube2.

1.3 Elementary definitions

We include here some definitions that are recurrent along the Thesis report.

1.3.1 Deformable Linear Objects (DLO)

A DLO can be considered a single dimensional solid which acts as a passive ob-
ject with strong dynamics linking the quadrotors, and influencing their dynamics.
There are several examples of DLO models [107] such as wires, cables and ropes,
which have different applications in industry [41], i.e. medical robots [67]. DLO

1https://www.youtube.com/watch?v=CCDIuZUfETc
2https://www.youtube.com/watch?v=Cb6DBu8pHO0
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geometrical and kinematics modeling is a complex task and requires a compro-
mise between feasibility of the model and computational cost. Models of DLO
have been developed specifically to model rope manipulation to produce knots
[58],[84]. Vibration damping of DLO has been dealt with fuzzy control and sliding
mode control [27]. Reproducing the motion of the DLO in response to a force in-
volves careful modeling and optimization techniques [60],[25]. Linked Multicom-
ponent Robotic Systems (L-MCRS) [28] are a special case of DLO manipulated
by robots, whose dynamics have been studied in the case of ground mobile robots
[29], achieving control by reinforcement learning [33][54].

1.3.2 Transport problem definition

The challenge of this Thesis work is to achieve robust navigation of a team of
quadrotors while carrying a DLO hanging from them. Robustness means that we
want the team to complete the task despite the perturbations introduced by the DLO
non-linear independent dynamics or external perturbations, such as wind shear of
various frequencies. Transportation means that the whole DLO is moved to an-
other ground location from the initial one. We have identified two phases in this
task. First, setting the drones and DLO in an spatial configuration that imposes
the same workload to each quadrotor, an equi-workload configuration. Second, the
transportation per se that implies the motion of the whole system in the XY plane.

To do research on how to solve this problem we needed to attack two fronts.
One is the accurate modeling of the DLO quadrotors system to be able to simulate
the system under diverse control and environmental conditions. The second is the
design of robust control systems. If we assume quasy-stationary conditions the
DLO can be modeled by sections of catenary curves, which allows very efficient
implementations of the system simulation. We try to achieve robust control by
adaptive control approaches.

1.3.3 Quadrotor modeling and control

Although cooperative robot systems for collective intelligence purposes are widely
studied and big achievements are being obtained [83], cooperative drone systems
for object transportation still remains an unexplored field. Few research groups
have created cooperative transportations [89] for quadrotors, but they still keep two
big differences with this Thesis: first, they do not attack the problem of deformable
linear objects fully, and secondly, they do not develop an efficient strategy for their
transportation.

There are four input forces (one per rotor) and six output states (x,y, z, θ , φ ,
ψ). Therefore, a quadrotor is an underactuated aircraft and modeling a vehicle such
this is not an easy task because of its complex structure. The aim is to develop
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Figure 1.2: Roll, pitch and yaw angles representation

a model of the vehicle as realistic as possible. In the quadrotor, there are four
rotors with fixed angles which represent four input forces that are basically the
thrust generated by each propeller, which create moments simulatenously. These
moments have been experimentally observed to be linearly dependent on the thrust
forces at low speeds. The collective input is the sum of the thrusts of each motor.
Pitch movement is obtained by increasing or reducing the speed of the rear motor
while reducing or increasing the spped of the front motor. The roll movement is
obtained similarly increasing or reducing the speeds on the right and left rotors.
The yaw movement is obtained by varying the speed of the front and rear motors
together while decreasing or increasing the speed of the lateral motors together.
This should be done while keeping the total thrust constant. A representation of
this model is shown in Figure 1.2.

The quadrotor dynamic modeling constrains the possibilities for engineering
control strategies. In the bibliography, different alternatives are studied: PID con-
trollers, LQR controllers, backstepping, robust, or optimal control algorithms, among
others [118], [6]. In this Thesis, PID controllers were used. However, it is also
necessary to obtain a good tuning methodology. The correct choice of these para-
menters must guarantee convergence, stability, and adaptability in different stress
situations [57][100] [65].

1.4 Thesis goals

The main goal of this Thesis can be stated as follows:

1. Design of robust control systems for the transportation of a DLO by a team
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of robots.

2. Experimental validation of the system under specific conditions.

From the operative point of view, we need to achieve specific goals:

1. Building an accurate dynamic simulation model of the DLO + quadrotor
team, in order to validate the control proposal in repeatable and controlled
conditions. To achieve this goal we need to:

(a) Propose an accurate model of the DLO dynamics, that would also be
efficient from the computational cost aspect.

(b) Build simulation models of the quadrotor.

2. Propose an overall team control strategy, i.e. how the drones coordinate to
achieve the transportation task.

3. Define a spatial configuration of the quadrotors in which the energy con-
sumption is the same for all, avoiding early energy depletion by some robots.

4. Propose robust drone control that carries out the desired task under the load
and perturbations induced by the DLO and external perturbations, such as
wind.

(a) Offline tuning of the controllers

(b) Online adaptive tuning of the controllers

1.5 Thesis contributions

Pursuing the above goals, we have achieved several contributions. The main scien-
tific results and contributions from this Thesis are the following:

1. We have proved that catenaries are suitable models for the dynamic repre-
sentation of DLOs transportation by teams of quadrotors.

2. We have formalized a dynamic model that captures the dynamic behavior of
the aerial robots together with the DLOs, which is adaptable to robots and
DLOs with different physical and dynamic properties.

3. We have defined and computed the equi-workload spatial configuration, al-
lowing equal energy consumption of all drones.
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4. We have proposed and published an innovative way of transporting DLOs,
considering the quadrotors payload and difference of relative heights among
them.

5. Defined of a leader-following strategy that ensures that distance limits among
drones is kept along a straight or curved path.

6. We have obtained both offline and online control strategies that ensure the
rapid convergence of the system and its stability.

1.5.1 Publications achieved

• Estevez J., Lopez-Guede J. M., Graña M., (2014), “Quasi-stationary state
transportation of a DLO with quadrotors”. Robotics and Autonomous Sys-
tems, Volume 63, Part 2, pp 187-194, ISSN 0921-8890.

• Lopez-Guede J. M., Estevez J., Graña J., Reinforcement Learning in Single
Robot DLO Transport Task: A Physical Proof of Concept, SOCO 2015 .

• Estevez J., Lopez-Guede J. M., Graña M., (2015), Robust Control Tuning by
PSO of Aerial Robots DLO Transportation. IWINAC 2015.

• Estevez J., Lopez-Guede J. M., Graña M., (2015), “Robust Control Tuning
by PSO of Aerial Robots DLO Transportation”. Bioinspired Computation in
Artificial Systems 9108, pp 291-300. Springer.

• Estevez J., Lopez-Guede J. M., Graña M., (2016), “Particle Swarm Opti-
mization quadrotor control for cooperative aerial transportation of deformable
linear objects”. Cybernetics and Systems. Vol. 47 (1-2), pp 4-16.

• Estevez J., Guisasola J., (2015) “El Taller del “Cuadricóptero” en la Sem-
ana de la Ciencia. Divulgación de las aplicaciones científico-técnicas en la
sociedad”. Revista Alambique (in press).

• Estevez J., Graña M., Lopez-Guede J.M., (2015), “Online fuzzy modulated
adaptive PD control for cooperative aerial transportation of deformable lin-
ear objects”. Integrated Computer-Aided Engineering (submitted)

1.6 Thesis organization

The Thesis is organized as follows:

• Chapter 2 shows the State of the Art of the research lines. The aim of this
chapter is to set the stage for different models and algorithms. Therefore, we
cover in detail the literature for each aspect.
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• Chapter 3 develops a dynamic model both for quadrotors and DLO. Here we
propose the catenary model for DLO, and give the dynamic equations of the
quadrotors. This chapter is the basis for the development of a motion control
for the cooperative system. Quadrotors’ dynamics are non-linear, and thus
a precise and careful control is necessary. The control system is divided in
two parts.

• Chapter 4 explains the equi-workload configuration and its computation.
Then we introduce the PD controller for inner loop control for altitude con-
trol. We report computational experiments validating the approach.

• Chapter 5 discusses outer loop control for position control, proposing a novel
fuzzy modulated adaptive tuning of the PD controllers. We report computa-
tional experiments comparing offline and online approaches, to validate our
proposal.

• Chapter 6 ends with conclusions of the Thesis and some future work lines
planned to work on after current phase.



Chapter 2

State of the Art

In this Chapter we gather descriptions of the state of the art of the two research
lines mentioned in the introductory Chapter. The Chapter is structured as follows:
Section 2.1 gives some basic definitions that will be used all along the Thesis.
Section 2.2 presents a view of the state of the art on DLO modeling for different
applications. Quadrotor modeling and control are divided in two sections: Section
2.3 introduces the antecedents and problems of cooperative robotic systems. Sec-
tion 2.4 gives the dynamical description of the quadrotor. Section 2.5 gives some
background of quadrotors control and adaptive strategies.

2.1 Some basic definitions

Let us recall some definitions.

• Deformable Linear Object (DLO): As the definition states, these solids
can change their shape due to manipulation, representing a passive object.
Due to the complexities of their representation, different simplifications are
usually implemented for the simulation easiness.

• Cosserat rods: It is a physical model to represent DLO. The rod, which is
assumed to undergo flexure about two principal axes, extension, shear and
torsion, are described by a general geometrically exact theory.

• Spline: it is a numeric function that is piecewise-defined by polynomial
functions, and which possesses a high degree of smoothness at the places
where the polynomial pieces connect.

• Cooperative behavior: Given some task specified by a designer, a multiple-
robot system displays cooperative behaviour if, due to some underlying mech-

9
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anism (i.e., the “mechanism of cooperation”), there is an increase in the total
utility of the system.

• Catenary curve: is the model of 2D rigid solid in quasy-stationary state,
hanging freely from its two extremes.

2.2 Previous works on deformable linear objects models

Research on robotic manipulation has mainly focused on manipulating rigid ob-
jects so far. However, many important application domains require manipulating
deformable objects, especially deformable linear objects (DLO), such as ropes, ca-
bles, and sutures. Such objects are very challenging to handle, as they can exhibit
a great diversity of behaviors. However, models that fully show dynamics, graphic
representation, material behaviour and deformation all together is an extreme dif-
ficult task and it requires a very high computational cost. Thus, different models
have emerged where one or two of DLO properties are finely represented while
sacrificing other ones, with a lower computational cost for online realistic simula-
tions.

2.2.1 DLO modeling approaches

Two main representations are found in the bibliography: Cosserat rods and ge-
ometric splines. In the robotics community, several recent works use Cosserat
theory. A Cosserat medium was first described in 1909 by Cosserat brothers.
This medium is described by a set of oriented micro-solids. [74] first introduced
Cosserat’s rod theory in computer graphics to model cantilever objects. This work
first calculates the forces and torques iteratively along the rod discretization, and
then evaluates the geometrical configuration in backward iterations using differen-
tial equations. [108] achieves a very accurate static solution of a cable simulation
by considering it as a succession of oriented frames and by minimizing its potential
energy; this approach is mechanically accurate, but demands a very high compu-
tation cost. He uses Lagrangean formulation for his calculus, which gets a fast
computation method and visually realistic for low resolution rods. [41] formulates
the dynamic model of an inextensible DLO using finite element model (FEM) and
Lagrange motion equations including some dynamic effects, such as mass. The
main drawback of these methods is that it is difficult to combine such models with
constraints. Moreover, these methods need at least a reference point for calculation,
which might not always be available in practical cases.

Spline-based techniques are still quite isolated within the physical animation
literature. [101] initiated deformable models in Computer Graphics, including
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physics-based curves using a Lagrangian form of Newton’s equation. [45] simply
stated, created an algorithm that divides a curve in segments of constant curvature
and solves the constrained energy minimization problem for a DLO manipulation
path planning. Later, [67] extended this idea to 3D, and made the algorithm more
scalable to a higher number of segments. To simulate a deformable object, we need
to compute any physically plausible configuration; not only stable configurations.
The emphasis is on efficiency in computing the response of an object to internal
and external forces. [78] uses a spline of linear springs, while [51] and [18] use
deformable splines for suture simulation in computer graphics, considering some
subtle dynamic effects.

However, these approaches do not consider the dynamic non-linearities that
DLO create when linked between different active agents. In order to model these
effects, [79] developed dynamic NURBS, which is a combination of geometric
splines and physical models. Recently, in many of this kind of applications Geo-
metric Dynamic Exact Splines (GEDS) are used, [103]. GEDS simply explained,
represent a sum of geometric splines and Cosserat rods. For instance, it is used in
[29] and [54] for the modeling of the transportation of deformable linear objects
with wheeled robots. However, the goal of this Thesis pursues the transportation
of DLO through air, thus normally not considering transition states (taking off) or
contact against walls.

2.2.2 Aerial payload transportation using DLO

One situation when DLO are involved in transportation is when the payload to be
transported is connected to the robots by DLO, i.e. some kind of cable. Though the
cable is deformable, when it is transmitting the force of the robot to the payload
the DLO acts as a rigid solid. Nevertheless, we review here some approaches in
the literature for the sake of completitude.

Though there are examples in the literature of robotic teams doing towing of
payloads on the ground, there are significant differences between interacting with
an object on the ground and in the air. The problem of swinging hanging payload
manipulated by a robotic device has been studied for more than 30 years now.
Certainly, in 1983 Gregory Starr [91] presented his work, Swing-free transport
of suspended objects with a robot manipulator, later extended by [92], Swing-Free
Transport of Suspended Objects With a Path-Controlled Robot Manipulator, where
in both cases he used classical elementary applied mechanics equations for the
system modeling. Despite the simplicity of the equations, his work lead to several
patents, such as [87, 44, 40, 39].

After this initial step, following works pushed on a further study on this task,
searching for robotic trajectories for payload transportation [93], vibration reduc-
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tion while performing this task [71], and development of control strategies for
payload manipulators [32] [111] [73]. Most works focused their efforts on sin-
gle cable aerial towing of a payload, which applications go from personal rescues
with helicopter to heavy loads manipulation with cranes whose control is quite
complex. First research works about UAVs transporting payloads appeared in late
90’s [72][13]. In [23], the authors consider the problem of cooperative towing with
a team of ground robots, where under quasi-static assumptions there is a unique
solution to the motion of the object given the robot forces.

Specific studies of multi-rotors or drones transporting payloads has been stud-
ied by few research groups lately. [59] developed a cooperative transportation of a
mass with helicopters with something similar to a DLO model. However, the lab
leaded by Vijay Kumar at Pennsylvania University is one of the most prolific re-
search groups in this topic, having published a series of works concerning the task
of aerial transportation of cable-suspended payloads with multiple drones. Cer-
tainly, in 2010 [63] developed a model in three dimensions for the transportation
of a payload via cables, illustrated in Figure 2.1 extracted from the paper. This
cooperative aerial towing problem is similar to the problem of controlling cable-
actuated parallel manipulators in three dimensions, where in the former the payload
pose is affected by robot positions and in the latter pose control is accomplished
by varying the lengths of multiple cable attachments. Moreover, three years later
the same research group modelled the transportation of a DLO suspended from
cables [43] [90][89], but with severe dynamic limitations according to the paper.
The system is illustrated in Figure 2.2 under quasi-static conditions for the study.
All the works from this group consider that the DLO joining the correspondent
payload and the robot is always tense, so that it can almost be treated as a rigid
bar that rotates around the quadrotor joint, which does not coincide totally with the
mission of this Thesis. Observe in Figure 2.2 that the transported DLO seems to
be rigid in the Z axis, because no catenary like curve appears between the points of
attachment of the cables.

Researchers from other groups, such as [75] and [80], also developed a quadro-
tor system for a payload transportation with wires. Certainly, the payload was rep-
resented as a pendulum, and wires remained tense, similar to the previous works.
Finally, [24] designed an adaptive controller for a quadrotor UAV transporting a
point-mass payload connected by a flexible DLO modeled as serially-connected
rigid links.

Thetered UAVs differ from the previous strategies presented in this section for
DLO modeling. For instance, [105] used a basic model and a standard linear solid
model for DLO, which are both based on the usage of springs and dumps for the
simulation of stretched or relaxed DLO. [56] simplifies even more, and the DLO
model employed in his research is simplified to an always-taut rope, and the effect
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Figure 2.1: Model to transport a payload in three dimensions through the air de-
scribed in [63]

Figure 2.2: 2013 model for DLO transportation through the air
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Figure 2.3: Hose model used in [81]

on the quadrotor is modeled as an axial tension in the DLO direction. As a last
example of this diversity, [69] models a thetered UAV with an umbilical cable using
Lagrangian coordinates, which is a cable which supplies required consumables to
an apparatus.

Finally, air-hose refuelling considers too the problem of DLO modeling, even
their starting hypothesis is not a solid transportation, but a solid link between two
aircrafts at high speed. However, it is also assumed to suffer serious kinematic
and dynamic constraints, as steady steate and static movements due to movements
of the airplanes. Certainly, [81] modeled the hose as a link-connected system,
where the DLO is made up of a finite number of cylindrically-shaped, rigid links
connected with frictionless spherical joints, as seen in Figure 2.3.

2.2.3 Catenaries

Catenaries are a broadly known element of classic Applied Mechanics. Mathe-
matically, the catenary curve is the graph of the hyperbolic cosine function. The
surface of revolution of the catenary curve, the catenoid, is a minimal surface of
revolution. The mathematical properties of the catenary curve were first studied by
Robert Hooke in the 1670s, and its equation was derived by Leibniz, Huygens and
Johann Bernoulli in 1691. Catenaries and related curves are used in architecture
and engineering in the design of bridges and arches, so that forces do not result
in bending moments. Besides, they are also used for the study of the mechanic
behaviour of long hanging cable structures, such as high voltage lines.

The expression of a catenary curve between nodes A and B, illustrated in Figure
2.4, is given by:

y− y0 = a·cosh(
x− x0

a
), (2.1)

This equation is defined in the main reference frame given by axes(X ,Y ) in Figure
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Figure 2.4: Catenary curve modeling a DLO holding between robots A and B.

2.4. The parameter a is the height from the lowest point of the catenary to the
secondary reference frame give by new axes (X1,Y1). The parameter a depends on
w (weight per length unit of the catenary solid) and T0 (the horizontal tension of
the catenary) according to Eq. (2.2):

a =
T0

w
. (2.2)

The tension exerted by the catenary on nodes A and B of Figure 2.4 can be calcu-
lated with expressions based on the previous formula.

TA = w·y0

TB = w(yB + y0)

However, this tension is tangent to the catenary in each point, while we are inter-
ested in the vertical and horizontal tension, as transmitting load to the quadrotors
supporting the catenary at these points:

T y
A = TA sin(αA) T h

A = TA cos(αA)

T y
B = TB sin(αB) T h

B = TB cos(αB)
, (2.3)

where α are the tangent angles in each point of the catenary, which are always
non-negative, taking values in the range [0, π

2 ], being α = 0 at the lowest point of
the catenary.
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The high aspect ratio of thin objects, such as paper and cloth, and linear objects,
such as wire and thread, often causes instability in the computation of deformed
shapes. Thus, various modeling techniques have been adapted for thin or linear
objects. For example, the deformed shape of a thread suspended by two points
has been analyzed using calculus of variations and it has been found that the shape
can be described by a catenary [42]. In these approaches, the material properties
are not considered; only the mass and quasi-static effects are considered. As this
element is a rigid solid, deformations due to collisions cannot be modelled with
such manner.

However, its usage as DLO modeling for robotics is only applied to cable-
driven parallel robots, such as in [62] [48], who proposed an elastic catenary model
for this kind of robots. On the other hand, [94], [4] and [37] perform a good
analysis of effects of catenary joints and assumed hypothesis and considerations,
both in 2D and 3D. Besides, the computer graphics cost, even in online simulations,
is extremely low. [55] proposes a model for catenaries torsion and aerodynamic
effect inspired for hanging bridges. In summary, the application of catenaries to
DLO transportation with quadrotors is an innovative contribution of this Thesis to
the State of the Art.

2.3 Drone cooperative systems

The study of multiple-robot systems naturally extends research done on single-
robot systems, but it is also a discipline unto itself. Multiple-robot systems can
accomplish tasks that no single robot can accomplish, since ultimately a single
robot, no matter how capable, is spatially limited:

• Tasks may be inherently too complex (or impossible) for a single robot to ac-
complish, or performance benefits can be gained from using multiple robots.

• Building and using several simple robots can be easier, cheaper, more flex-
ible and more fault-tolerant than having a single powerful robot for each
separate task. Scalability is rewarded.

• The constructive, synthetic approach inherent in cooperative mobile robotics
can possibly yield insights into fundamental problems in the social sciences
(organization theory, economics, cognitive psychology), and life sciences
(theoretical biology, animal ethology).

• In case of payload transportation, sharing the load among a number of drones
turns the system into a more energy efficient one.
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In the literature, [21] and [76] provide a good study of the early antecedents and
framework of this kind of systems. Coordination and interactions of multiple in-
telligent agents have been actively studied in the field of distributed artificial in-
telligence since the early 1970’s [12]. In the late 1980’s, the robotics research
community became very active in cooperative robotics, beginning with projects
such as CEBOT [34], SWARM [11], ACTRESS [7], and GOFER [20].

First research works about aerial cooperative robotic systems appeared in mid
90’s [112], and this activity heavily increased in next decade, being of special in-
terest for patrolling, fault-tolerant cooperation, swarm control, role assignment,
multi-robot path planning, exploration and mapping, perimeter surveillance, and
nowadays, collaborative learning.

In terms of practical value, one of the greatest benefits of the cooperative sys-
tem is that it can provide users with superior information. However, developing
such an autonomous cooperative system is quite challenging because of techni-
cal and operation issues such as decision making, formation, path planning, to be
solved. Control of the system might be centralized or decentralized.

• Centralized: means that all the information about the aerial robots is sent
to a single server where the controls are calcultated for each aerial robot and
sent back

• Decentralized: means that no central server exists, so that each aerial robot
computes its own control based only on information from other aerial robots
within a particular spatial range of itself. The situation is far from ideal under
the computational perspective because the number of aerial robots that can
be within range at a given time is bounded and therefore so is the time the
algorithm will take to run, regardless of the total number of aerial robots
involved.

2.4 Quadrotor dynamic modeling

A quadrotor is an agile flying vehicle, able to attain the full range of motions. It
is propelled by four rotors symmetrically disposed across its center. They have
smaller dimension and simple fabrication than conventional helicopters. Gener-
ally, it should be classified as a rotary-wing aircraft according to its capability of
hover, perform horizontal flight, and vertical take-off and landing (VTOL). In the
decade of 1920, prototypes of manned quadrotors were introduced for the first time;
however, the development of this new type of air vehicle was interrupted for sev-
eral decades due to various reasons such as mechanical complexity, large size and
weight, and difficulties in achieving robust stable control, especially. Only in re-
cent years a great deal of interests and efforts have been attracted on it; a quadrotor
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Figure 2.5: Plus (left) and cross (right) rotor configurations

has become a more feasible vehicle for practical application, such as search-and-
rescue and emergency response. As a small, unmanned aerial vehicle (UAV), it has
versatile forms from 0.3 to 4 kg. Up to now, only some large quadrotors already
have sufficient payload capacity and flight range to undertake a number of indoor
and outdoor applications, like Bell Boeing Quad TiltRotor and so forth [114].

For the specific purposes including academic research, commercial usage, and
even military aim, many research groups or institutions have fabricated various
quadrotors, such as the X4-flyer, OS4, STARMAC, and Pixhawk which have be-
come the shining stars mentioned on the network, magazines, and all kinds of
academic journals. In addition, numerous cooperation projects exist among contri-
butions from RC hobbyists, universities, and corporations.

Typically, the structure of a quadrotor is composed of four rotors attached at the
ends of arms under a symmetric crossed frame. The forces and moments acting on
the quadrotor are given by rotors driven by the motors. According to the orientation
of the blades, relative to the body coordinate system, there are two basic types
of quadrotor configurations: plus and cross-configurations shown in Figure 2.5.
Arrow is pointing the forward motion direction.

In the plus configuration, each pair of blades, spinning in the same clockwise
or counter-clockwise direction, coordinate the x and y directions of the quadrotor.
On the other hand, in cross-configuration two rotors are on the right side and two
on the left. In contrast with the plus configuration, for the same desired motion, the
cross-configuration provides higher momentum which can increase the maneuver-
ability performance, as each motion requires all four blades to vary their rotation
speed. And so it does with the attitude control. This Thesis makes use of plus
configuration.

Basic control sequences of plus-configuration are shown in Figure 2.6. The
quadrotor’s translational motion depends on the tilting of rotorcraft platform to-
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Figure 2.6: Plus configuration: pitch, roll and yaw controls, where red arrows
indicate the relative rotor speed
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wards the desired orientation. The quadrotor has six degrees of freedom (DOF) to
be controlled by four inputs; therefore it is an underactuated system. In principle,
a quadrotor is dynamically unstable and therefore careful control is necessary to
make it stable. Two main dynamic simulation approaches are widely accepted in
the literature for quadrotors:

• 1) Euler–Lagrange approach

• 2) Newton-Euler approach

Both methods lead to obtain same results in simulations, although Euler-Lagrange
is considered to have the advantage that it takes the same form in any system of gen-
eralized coordinates, and it is better suited to generalizations and control adding.
Typically two reference-frames are necessary to define the quadrotor’s dynamics:
a body-fixed frame and Earth-fixed frame. However, exact and rigorous formulas
derived from these approaches are fairly complex for control purposes, and thus
some simplifications are implemented in most research works. These simplified
formulas are the ones that appear in this section.

2.4.1 Dynamic equations

Let us consider the coordinate system as {x,y,z,φ ,θ ,ψ}, which represent the Earth
frame of reference coordinates x, y and z, and angles φ ,θ ,ψ are referenced to the
body frame of the UAV. However, we have 6 degrees-of-freedom and only 4 inputs
and controllable torques. Hence, a quadrotor is a highly non-linear apparatus. In
these conditions, expressions for the control all the variables are as follows:

φ̈ = U2
Ixx

θ̈ = U3
Iyy

ψ̈ = U4
Izz

 , (2.4)


U1 = b

(
Ω2

1 +Ω2
2 +Ω2

3 +Ω2
4
)
,

U2 = l ·b
(
−Ω2

2 +Ω2
4
)
,

U3 = l ·b
(
−Ω2

1−Ω2
3
)
,

U4 = d
(
−Ω2

1 +Ω2
2−Ω2

3 +Ω2
4
)
 , (2.5)

where parameter b is the propeller thrust coefficient, and d is the drag.
ẍ = (−cosφ sinθ cosψ−sinφ sinψ)

m U1

ÿ = (−cosφ sinθ sinψ−sinφ cosψ)
m U1

z̈ = (cosφ cosθ)U1
m −g

 , (2.6)

Eq. 2.4 represent the angular acceleration of the quadrotor angles; eq. 2.5
describe the total thrust and non-conservative torque of the quadrotor in each angle:
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U2, U3 and U4 are, respectively, roll, pitch and yaw torques, and Ω2
i is the squared

speed of the i -th propeller; and finally eq. 2.6 relates x, y and z absolute with the
total thrust, U1, which is always perpendicular to the body-fixed frame and thus
is necessary the 3D-rotation matrix to transform the reference system. Rotation
matrix is shown in eq.2.7:

 cosψ cosθ −sinψ cosφ + cosψ sinθ sinφ sinψ sinφ + cosψ sinθ cosφ

sinψ cosθ cosψ cosφ + sinψ sinθ sinφ −cosψ sinφ + sinψ sinθ cosφ

−sinθ cosθ sinφ cosθ cosφ


(2.7)

Assumptions made for this formulation are the following:

• The structure is supposed rigid, and symmetrical.

• The CoG and the body fixed frame origin are assumed to coincide.

• The propellers are supposed rigid.

• Thrust and drag are proportional to the square of propeller’s speed.

• Coriolis and aerodynamic terms are neglected.

• Small angles approximation is used for linearizing angular accelerations.

2.4.2 Wind disturbance model

We carried out model tests of robust horizontal motion of the quadrotor system
under wind disturbances. Most research works simulate wind as a constant more
or less intense force. However, it is much more realistic to model wind shear as a
sinusoidal [70] disturbance. It is a tough test for aerial vehicles, because the con-
trol system may resonate with the wind fluctuations, inducing unstable behaviors.
Therefore, the sinusoidal model of eq. 2.8 was the chosen for this work [70, 38].

d(t) = D1 +D2 sin(ωt), (2.8)

2.5 Control strategies

As can be observed in the equations of Section 2.4, the dynamic model of the
quadrotor shows that is an under-actuated and strongly coupled system, where
translational motion depends on the change of attitude angles. For this reason,
the control system can be divided into the outer-loop translation controller and



22 CHAPTER 2. STATE OF THE ART

Figure 2.7: Inner and outer loop for attitude and position

inner-loop attitude controller [36] in a close-loop cascade feedback circuit (Figure
2.7).

Quadrotor controllers last instance is to obtain a rapid convergence, stability,
smoothness, disturbance rejection and a good path planning following for the sys-
tem. Due to the quadrotor intrinsic dynamic instability and non-linearity, control
strategy election is not a minor task in the design [85]. A good summary and com-
parison of some of the most used control methods for autonomous quadrotors are
presented in [118], including:

• Proportional Integral Derivative (PID)

• Linear Quadratic Regulator/Gaussian-LQR/G

• Sliding Mode Control (SMC)

• Backstepping Control

• Adaptive Control Algorithms

• Robust Control Algorithms

• Optimal Control Algorithms

• Feedback Linearization

• Fuzzy Logic and Artificial Neural Network

• Hybrid Control algorithms

In this Thesis’ works we choose PID control for quadrotors on the basis on fea-
sibility for industry applications, bibliography studies, simplicity and robustness
for our quadrotor cooperative system. [106], [95], [14], [68] among others defend
and demonstrate the advantages of PID configuration for autonomous quadrotor
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Figure 2.8: PID controller diagram

systems against others. That way, the tuning of the control system reduces to the
tuning of PID controllers discussed next.

2.5.1 PID tuning algorithms

The PID controller was first introduced in 1939 in the industry and has been suc-
cessfully used as controller in many processes until today. The basic function of
the controller is to execute an algorithm using the information from input variables,
to compute the output variable value minimizing the difference between the control
output variable and the setpoint. The term ‘PID’ is an acronym for proportional,
integral, and derivative. The PID controller circuit is represented in Figure 2.8.

In Laplace and time domain, the traditional PID structure can be rewritten ac-
cording to equation 2.9 and 2.10 respectively:

u(s) = (KP +
KI

s
+KDs)e(s) (2.9)

u(t) = KPe(t)+KI

∫
e(t)dt +KD

de(t)
dt

(2.10)

PID proportional, integral, and derivative terms are represented by the corre-
sponding gains KP,KI,KD. The popularity of such kind of controller is due to their
functional simplicity and reliability. They provide robust and reliable performance
for most systems and the PID parameters may be tuned to ensure a satisfactory
closed loop performance. A PID controller improves the transient response of a
system by reducing the overshoot, and by shortening the stabilization time of the
system. However, the PID loop must be properly tuned for a proper performance
[1].

Various tuning methods have been discussed in the literature for finding out the
parameters of a PID controller [98]. The most used tuning methods include Ziegler
Nichols (ZN), relay auto-tuning (RA), pole placement and internal model control
(IMC). [19] proposed a PID self-tuning controller based on pole placement method
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for controlling an aluminum rolling mill. [117] proposed tuning of PID controller
with time integral performance criteria, where ZN method was used to determining
the controller parameters. [88] proposed a controller with a fuzzy model for air-
conditioning system.

Different control schemes using PID controllers have been discussed in the lit-
erature by various researchers. [77] proposed an internal model based robust inver-
sion feed-forward and feedback control approach for LPV system while [114] pre-
sented a discrete feed-forward and feedback optimal tracking control scheme for a
steel jacket plat subjected to external wave force. [116] presented a comparative
analysis between a single-loop control system and a cascade control system for a
third-order process. [115] proposed model matching methods and approximate dy-
namic inversion techniques for designing feed-forward controllers. A feed-forward
velocity control scheme for a DC motor based on the inverse dynamic model has
been presented in the literature by [10]. A robust cascade control system has been
implemented for controlling central air-conditioning system by [109]. [64] pro-
posed a feed-forward control law based upon the concept of control equilibrium
point.

Genetic Algorithm (GA) was proposed as an effective solution for the search in
the space of parameters for the optimal parameter setting. The fundamental compo-
nents of GA are encoding, reproduction, crossover and mutation [99]. It has been
shown that GA could produce better results in PID tuning than the primitive tun-
ing methods [49] having stochastic global searching characteristics that mimicking
the process of natural evolution. Later, a set of new intelligent approaches called
swarm intelligence tuning, such as Ant Colony Optimization, Particle Swarm Opti-
mization (PSO) (first introduced by Kennedy and Eberhart in 1995 [46]), Bacterial
Foraging optimization algorithm were introduced which could produce an effec-
tive characteristics of positive feedback, search mechanism, distributed computa-
tion and constructive greedy heuristic for simpler, efficient and faster tuning than
primitive and other evolutionary tuning approaches for having improved character-
istics like dynamic adjustment inertia weight factors, etc. Positive feedback search
produces advantageous results, distributive computation can be used to avoid pre-
matured convergence and greedy heuristic is helpful to find the solution of early
stages of search process.



Chapter 3

Dynamical models

3.1 Introduction

In this Chapter, we describe the dynamic models for the simulation of the aerial
DLO transportation with quadrotors that will be used to tune and test the con-
trollers for such task. As discussed in the state of the art of Chapter 2, there are
different approaches for modeling DLO, inspired in different disciplines such as
medicine, engineering, robotics, or computer graphics. However, most proposed
models are subjected to certain modeling and behaviour restrictions due to the big
complexity and cost of processing. Our proposal is a novel way of modeling the
DLO allowing to simulate the its transportation by aerial robots, i.e. quadrotors.
Different quadrotor demos have shown that DLO transportation is feasible, how-
ever in this Thesis we are concerned with developing robust control strategies.

The DLO model allows accurate modeling of the influence of DLO in quadro-
tor dynamics in terms of thrust, weight or any other parameter that affects quadrotor
behaviour. Different quadrotor models exist, although they normally do not take
into account the attachment of any payload. And as a final constraint, the modified
quadrotor dynamics must admit any kind of engineering control which assures that
DLO transportation converges and happens smoothly.

The Chapter contents is as follows: Section 3.2 presents the modeling of the
DLO as a collection of catenary curves, and its dynamical model, i.e. the resulting
forces exerted on the quadrotors. Section 3.3 presents the derivation of the spatial
(vertical) configuration of the quadrotor team where all the drones are supporting
the same load, and, thus, consuming the same quantity of energy. Section 3.4
presents the dynamical model of the quadrotor, focused on the vertical dimension
to achieve the equi-workload spatial configuration.

25
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3.2 Geometrical and dynamical DLO model

This section contains the description of the geometric and dynamical model of the
DLO and the team of quadrotors carrying it. First, we justify and describe the DLO
geometrical model by a composition of catenary curves. Secondly, we give the
characterization of the desired equi-workload configuration, and its computation
from the geometrical/dynamical model.

Previous works on DLO transportation by a team of robots [29] were based
on a Generalized Dynamic Splines (GEDS) model of the DLO. GEDS are an ex-
tension of the Cosserat rods models to capture the dynamics of a DLO. However,
this approach has several drawbacks. The most critical is that the length of the
DLO changes according to the settings of the spline model parameters. This is
unacceptable for the case considered in present Thesis, because this effect would
introduce unreal random changes of altitude of the quadrotor UAVs. We will re-
strict our study in the Thesis to the quasi-stationary state, when the drones are at
cruise height and the DLO is freely hanging at full length. In this situation, the
DLO can be modeled as a catenary curve [16], or a collection of catenary curves
sharing their extreme points, and the deformations induced by its transportation can
be modeled by transformations between catenary curves. The catenary is the ideal
hyperbolic shape of a DLO whose unique load is its own weight, corresponding to
a quasi-stationary state. It is the model of a perfect 2D rigid solid at equilibrium.
Two drones (n = 2) can carry a catenary holding it at its end points (nodes). A long
DLO divided in two sections, is transported by three drones (n = 3), and hence-
forth, so that always n quadrotor UAVs carry a DLO composed of n− 1 sections.
Each section will be modeled as an independent catenary curve without consider-
ation of bending effects at the joining point. The study presented in this Chapter
assumes two sections at most, but results are easily extrapolated to a greater num-
ber of sections. Also, we deal with 2D catenary curves, but extension to 3D is
immediate [22]. Collision with ground surfaces render the catenary model inaccu-
rate. They happen in the phases of take off and landing.

For real life experimentation requiring visual feedback, we need to reformulate
the conventional catenary model. This model, illustrated in Figure 3.1, is given by
the following equations:


F1 =− w·lx

2·λ0

F2 =
w
2 (−ly coth(λ0)+L0)

F3 =−F1

F4 = w·L0−F2

, (3.1)
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Figure 3.1: Catenary parameters (I,J) correspond to the catenary nodes

where the parameter λ0 takes values

λ0 =


106 if (l2

x + l2
y) = 0

0.2 if (L2
0 ≤ l2

x + l2
y + l2

z )√
3
(

L2
0−y2

l2
x
−1
)

if (L2
0 ≥ l2

x + l2
y + l2

z )

 , (3.2)

L0 is the total length of the catenary, and F1, F2, F3, and F4 are the projected com-
ponents of cable tension in the (X ,Y ) axes at the extreme points. This model has
the advantage of visually measurable parameters lx and ly allowing for visual ser-
voing experiments [102]. The assumptions underlying Eqs. (3.1) and (3.2) are the
following:

• The cable is a perfect not elongable solid (length is constant)

• The cross-sectional area of the cable is kept constant

• In Figure 3.1, node I is located at point (0,0), while node J is at point (lx, ly)

• Material and cross sectional area is not taken into account.

• Inherent to catenary nature, only quasi-static situations are valid

• Torsion and bending moments are non-existent

3.3 Desired team spatial configuration

For practical reasons, we aim to have identical vertical forces exerted by the DLO
on all quadrotors, so that energy expenditure is the same for all, which assures



28 CHAPTER 3. DYNAMICAL MODELS

Figure 3.2: Catenary and two robots system

Figure 3.3: Catenary and three robots system. Initial state
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Figure 3.4: Plot of the differences with the desired state in Eq. 3.4.

that the autonomous life-span of equivalent drone models carrying the task will
be almost the same and thus, avoiding early energy depletion by some quadrotor,
which would result in failure of the collaborative task. In the simplest case, only
one DLO section and two quadrotors, shown in Figure 3.2, the sought optimal
state corresponds to identical heights of the extreme nodes In case of a perturbation
altering the height of either A or B, the only way to retrieve the optimal state of this
system is to return the nodes to equal height.

Let us consider now the case with 3 robots. Then the DLO shape is modeled
by two catenaries sharing one of the extreme points, as illustrated in Figure 3.3.
The horizontal distance between each drone is lx = 50cm and constant, and each
catenary section measures L0 = 100cm. The quadrotor located in node B supports
twice the weight supported by the quadrotors located in nodes A and C. To achieve
equal distribution of load in this system we need to make node B to support one
third of the total weight of both catenaries; in order to get that, the variable to
derivate is the difference in vertical height between node A and B. For the specific
numerical data given above, the functional expression of the vertical tension at
node B is as follows:

FB (4y, lx) =
w
2

−ycoth


√√√√3

(
L2

0− (4y)2

l2
x

−1

)+L0

 (3.3)

where 4y is the height difference between nodes A and B (C is supposed at the
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same height as A). Then the desired state is characterized by the following equality:

DF = FB (4y, lx)−
(n−1)·w·L0

n
= 0 (3.4)

Where n is the number of drones taking part in the cooperative transport system
(n = 3 in current example) and DF represents the load difference among node B
and any of the remaining nodes. Using the Newton-Raphson iterative method, min-
imization of this function converges quickly using the expression of the gradient of
Eq. (3.3) for the specific numerical values of the parameters given above:

∂

∂y
FB (4y, lx) = F ′ =

w
2

(
-coth(A)−

√
3·(4y)2 · 1

sinh2 (A)

l2
x ·A

)
, (3.5)

where A is:

A =

√√√√3·

(
L2

0− (4y)2

l2
x

)
−1

In the plot shown in Figure 3.4 the X axis corresponds to variable DF of Eq.
(3.4), and the Y axis corresponds to 4y. The red dot represents the vertical dis-
placement between catenary nodes4y for which DF = 0. This value is the height
descent of the robot located at point B in order to reach a vertical load this node
equal to those in A or C. The curve plotted in Figure 3.4 is obtained setting
lx = 50cm, L0 = 100cm, and w = 1kg/m. The desired state is shown in Figure
3.5 as the red configuration of the DLO, where the difference between nodes A and
B is exactly the same as difference between B and C.

An asymmetric configuration is shown in Figure 3.6. In this case, the length of
the left and right catenaries are 100cm and 110cm, respectively, and the horizontal
distances between robots A and B, and robots B and C are different. To achieve
a desired state of equal load on all robots from this initial configuration, we need
to derive two different functions. First, height difference between node A and B is
calculated so that vertical tension in A and B is equivalent to one third of the total
DLO weight. Once this calculated, the height difference between node B and C
is calculated so that vertical tension in C is one third of the total weight. The two
equations are solved with Newton-Rapshon algorithm. Figure 3.7 shows final state
of the system, where blue line represents the initial state and red line represents the
final state. Notice that nodes A and C are no longer at the same height in the desired
state. Three different height points can be observed. We also show an evolution of
intermediate states (green lines) of the system leading from the initial configuration
to the desired one in 20 steps. Larger systems, with more drones, follow similar
patterns. In Figure 3.8, the lengths of the catenaries are the same, hence new robots
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Figure 3.5: Two fold catenary sustained by a three robots system. Initial (blue) and
final (red) states.

Figure 3.6: Two fold catenary sustained by three robot in an asymmetric initial
state.
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Figure 3.7: Catenary and three robot asymmetric system. Intermediate and final
states

in the team add length to the DLO.

3.4 Quadrotor modeling

In this section we present the dynamical model of the quadrotor that is relevant
for the task of achieving the equi-workload configuration. First we introduce the
relevant coordinate frames, second the dynamic equations for the vertical motion
used to achieve the equi-workload configuration.

3.4.1 Coordinate frames

While the quadrotors are hovering, we can treat the catenary as being attached to
stationary points through rigid rods and ball joints to arrive at the constraints [63].
The aim of this section is to relate the coordinates of one robot with the coordinates
of the robots in the other nodes of the catenary. For this purpose, equations based
on [42] will be used. Equations relate points (x1,y1) and (x2,y2) in the X−Y plane.
Coordinates in node 1 keep steady, and x2 coordinate does change according to the
model developed in Section 3.2.
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Figure 3.8: Equi-workload configurations for systems with 3, 4, and 5 quadrotors,
having 2, 3, and 4 catenary sections
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Figure 3.9: Roll (φ), pitch (θ), yaw (ψ) angles in a plus configuration quadrotor

y2 = y1−
1
w
·
(√

F2
1 +(wL0−F4)

2−
√

F2
1 +F2

4

)
(3.6)

Equation (3.6) implies the following assumptions on the behavior of the cate-
nary and the limitations of this model:

• Funicular equilibrium of the deformed element: Once deformed, the cate-
nary element adopts the equilibrium configuration corresponding to the final
distribution of forces on the cable.

• The catenary does not elongate, and so it conserves the total unit weight after
the displacements.

Equation (3.6) is the same whether the DLO is composed or a unique catenary or
two. The formula is applied to nodes in the same catenary.

3.4.2 Dynamic equations

Angles φ , θ , and ψ represent the Euler angles referring the Earth inertial frame
with respect to the body-fixed frame (φ , θ , and ψ represent the rotation along axis
Y , X and Z respectively, as shown in Figures 3.10 and 3.9, and Z represents the
height of the quadrotor with respecto to Earth frame of reference. Eq. 3.7 are
the linear and angular accelerations of the system dofs including the presence of
the catenaries A and B tensions (V , H subindexes represent vertical and horizontal
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Figure 3.10: Coordinate systems and catenary tensions

components respectively, represented in Figure 3.10), which are obtained by the
classical applied mechanics formulas for catenaries. Note that the approximation
in eq. 3.7 is valid only for small angles and small rotational velocities, and equa-
tions are specified for the central drone, as the rest are affected only by tension
components on their own catenary section. dGC is the vertical distance from the
attachment point of the catenary to the gravitational center of the drone, which is
assumed to be 10cm. Take into account that Z coordinate for the drone is Y coor-
dinate for the catenary, while X remains the same for both systems, and represents
the forwards direction.

z̈ =−g− (TV,A+TV,B)
m +(cosθ cosφ)U1

m ,

φ̈ = U2
Ixx
,

θ̈ = U3
Iyy

+
(TH,A−TH,B)·dGC

Iyy
,

ψ̈ = U4
Izz
.

, (3.7)

where U1, U3, and U4 are control commands as defined in Chapter 2 that must be
provided by the control loops.
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Chapter 4

Quadrotor control system

4.1 Introduction

This chapter proposes and details the control structure for the dynamic model of
the quadrotor described in Chapter 3. In essence, a quadrotor has a complex non-
linear behaviour. It has 6 degrees of freedom, but we can only act on 4 different
inputs, so any linear control will always be underdetermined. Although there are
various control models from the technical literature that may be used, no one takes
into account that the actual dynamic equations of the robot are modified by the
DLO non-linear influence, and so a very robust control is crucial to achieve the
DLO transportation that is the main goal in this Thesis.

This Chapter describes the equations and parameters needed to control the
quadrotor and manage them to get to the final equilibrium position according to
criteria presented in Chapter 3. Though there are proposals for quadrotor control
using artificial neural networks [26], or optimal robust control [86], in this Chapter
we attack the problem using classical Proportional Integral Derivative controllers,
though we tune their parameters offline. In fact, a simplified Proportional Deriva-
tive controller (PD) [5] gives a good control response for this task. In this Chapter,
we follow coordinate system and the modeling approach of quadrotor dynamics
and kinematics proposed in [17] consisting of a collection of equations, involving
spatial coordinates, local angles, torques, angular speed of rotors. Here, electric
system modeling will not be taken into consideration as our focus is on the dynam-
ical aspects of the system.

The contents of the Chapter are as follows: Section 4.2 overviews the general
motion control strategy to achieve the DLO transportation. Section 4.3 describes
the inner control loop. Section 4.4 describes the algorithms employed for offline
inner control loop tuning. Section 4.5 reports the experimental results.

37
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Figure 4.1: Two loops controllers for quadrotor position and orientation

4.2 General motion control for DLO transportation

Once reached the desired vertical position distribution configuration, with the quadro-
tors sustaining the DLO catenary sections at their energy consumption balanced
equilibrium, quadrotors may start their horizontal or vertical motion. The system
control strategy is decentralized, so each quadrotor control in the system is inde-
pendent from the rest, and there are two controller loops in cascade configuration
for each quadrotor:

• An inner control loop in charge of reaching the desired altitude and attitude.
The controller acts on different torques and thrust of the quadrotor (attitude
circuit).

• An outer control loop in charge of navigating to a specific point in space
(position circuit), so that it calculates the desired rotor angles in order to
move horizontally.

This two-loop structure is illustrated in Figure 4.1.
Current motion control loops structure is the same in all the drones that take

part in the DLO transport task, and both altitude and position loop are PID/PD
equipped. However, different tuning strategies have been tested to tune the con-
troller parameters.

1. Inner control loop tuning is described in this Chapter 4. PID/PD parameters
were obtained with an offline particle swarm optimization (PSO) tuning and
classic Ziegler-Nichols rules.

2. Second, outer control loop is presented in Chapter 5, and an offline PSO
tuning and an online adaptive fuzzy tuning methods were implemented to
tune the parameters of this circuit.
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Figure 4.2: Roll (φ), pitch (θ), yaw (ψ) angles in a plus configuration quadrotor

4.3 Inner control loop

We use four PD controllers for the roll, pitch, yaw and height, respectively, which
are the degrees of freedom (dof) of each quadrotor [17]. The block diagrams speci-
fying the control of the degrees of freedom of each quadrotor are shown in Figures
4.3, 4.4, 4.5, and 4.6. In the four control subsystems, the aim is that the real value
of the degree of freedom reaches the desired value, denoted by a d subindex. KP,
KI , and KD are the three PID control parameters to be tuned. Finally, IXX , IYY , IZZ

[Nms2 or kgm2] are the body rotational moment of inertia around the X , Y and Z
axis.

The control system is scalable and can work with multiple drones. For greater
simplicity, the ψ degree of freedom is set to 0, so we will deal with PD controllers.
The methodology to tune PD parameters of the quadrotor is described in Section
4.4. In our experiments, all the quadrotors taking part in the system are equipped
with the same inner-loop PD parameters. In order to find them, two different exper-
iments are carried out. In Experiment 1a, we carry out a comparison between the
two offline tuning methods. In Experiment 1b, the robustness of chosen parameters
in Experiment 1a is tested.
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Figure 4.3: PID Z controller

Figure 4.4: PID φ controller

Figure 4.5: PID θ controller
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Figure 4.6: PID ψ controller

4.4 Offline inner control loop tuning

Torque control is crucial so that quadrotors tend to the desired angles properly. We
have compared the following parameter tuning methodologies:

• Ziegler-Nichols tunning (ZN): which is the classical approach to set PID
parameters.

• Particle Swarm Optimization (PSO) algorithm: a novel algorithm based on
metaheuristic optimization.

4.4.1 Ziegler-Nichols algorithm

This a heuristic method of tuning a PID controller developed by John G. Ziegler
and Nathaniel B. Nichols in 1942. It is performed as follows. First, setting the I
and D gains to zero. Then, the P gain Kp is increased (from zero) until it reaches the
ultimate gain Ku, at which the output of the control loop has stable and consistent
oscillations. After that, Ku and the oscillation period Tu are used to set the P, I,
and D gains depending on the type of controller used. Therefore, ZN is an offline
tuning method. It tuning rules are summarized in Table 4.1. Ziegler-Nichols has
been widely used by industry and vendors traditionally, and it shows good results
with linear and deterministic control systems. However, it might lack of robustness
and the tuning is obtained with little knowledge of the system.

4.4.2 Particle Swarm Optimization (PSO)

This technique is a relatively recent heuristic search method whose mechanics
are inspired by the swarming or collaborative behavior of biological populations,
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ZIEGLER-NICHOLS
Control type Kp Ki Kd

P 0.50Ku - -
PI 0.45Ku 1.2 Kp

Tu
-

PD 0.8Ku - Tu
8

PID 0.60Ku 2 Kp
Tu

KpTu
8

Table 4.1: Ziegler-Nichols rules

which looks to search the objective value taking into account a cost function. In
PSO, a set of particles are distributed randomly in a function and share information
among each other, letting the rest of the particles direct to the particle that find
the best solution in each iteration at a configurable speed, which makes reference
to the mutation velocity of the algorithm. PSO algorithm can be used as a good
offline optimization method because due to the number of particles involved in the
algorithm, they avoid local minimums. For this reason, we propose it as an effi-
cient PID tuning algorithm. In the literature, [66], [15], [3], and [96] among others
defend the PSO advantages for quadrotor control system tuning.

The main steps in the PSO and selection process are as follows:

1. Initialize a population of particles with random positions and velocities in d
dimensions of the problem space.

2. Evaluate the fitness of each particle in the swarm.

3. For every iteration, compare each particle’s fitness with its previous best
fitness (Pbest) obtained. If the current value is better than Pbest , then setPbest

equal to the current value and the Pbest location equal to the current location
in the d-dimensional space.

4. Compare Pbest of particles with each other and update the swarm global best
location with the greatest fitness (Gbest)

5. Change the velocity and position of the particle according to equations 4.1
and 4.2 respectively,

Vid = ω ·Vid +C1 · rand1 (Pid−Xid)+C2 · rand2
(
Pgd−Xid

)
(4.1)

Xid = Xid +Vid (4.2)

where:

(a) Vid and Xid represent the velocity and position of the ith particle with
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Parameter Value
mass, m 0.5kg

length of the arm, l 25cm
rotational inertia moments Ixx = Iyy 5 ·10−3[Nms2]

rotational inertia moments Izz 10−2[Nms2]

propeller thrust coefficient,b 3 ·10−6[Ns2]

drag, d 1 ·10−7[Nms2]

Table 4.2: Values of standard parrot quadrotor physical parameters.

d dimensions, respectively. rand1 and rand2 are two uniform random
values, and ω is the inertia weight.

(b) The constants C1 and C2 in equations 4.1 and 4.2 are acceleration con-
stants which changes the velocity of a particle towards Pbest and Gbest .
This is, the mutation velocity.

Control subsystem takes the difference between the real and desired value of dofs
in quadrotors. All the quadrotors of the DLO transportation team share the values
of the four PD circuits (φ ,θ ,ψ and z). The process to go from an initial vertical
configuration to a vertical configuration of equal distribution of workload on the
drones in the quadrotor cooperative system is the experimental framework where
controllers tuning must be achieved. Results were published in [31] and [30].

4.5 Experiment 1

The settings of the simulations carried out to demonstrate the proposed control
tuning experiment are as follows: Catenaries have the same weight per unit length
(w), which is 1kg/m. We adopt standard values for mass and inertia moments of the
quadrotors given in Table 5.2. Computational experiments were carried out using
a discretization of the time variable. Time increment used to compute simulation
steps is 0.1 seconds. Speed in the second experiment is specified by an array of
values corresponding to each time instant.

The values for KP, KI , and KD are the same for the four PID controllers. We
compute the values of these parameters with classical Ziegler-Nichols algorithm
according to criteria in table 4.1, where Ku is the critical gain of the system and Tu

is its correspondent period of time. In the present case, Ku = 12.5 and Tu = 2.4s.
Under these conditions, Kp = 2.5, KI = 2.08, KD = 1.98.

Two experiments are carried out in order to test the response of our system in
two different situations:
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Figure 4.7: Catenary and three robots system for Experiment 1a. Initial and final
state

• In Experiment 1a, we perform the basic tuning performance experiment. We
have two catenaries in a symmetric configuration (as shown in Figure 4.7)
measuring 200cm long each and with a horizontal distance between nodes of
120cm. The desired state of equal vertical force exerted to all quadrotors is
achieved when the quadrotor in the central node height difference is 4y =

66.54cm. The control goal is to descend smoothly maintaining φ , θ , and ψ=
0 during all the descent, without position overshooting to the final position
shown in Figure 4.7.

• In Experiment 1b, we test the recovery from a loss of the equi-workload
configuration. We have two catenaries measuring 70cm long each, with
a horizontal distance among the nodes of 50cm. The central drone is al-
ready in vertical equilibrium. In this configuration, the experiment consists
in achieving the desired state in the following scenario: the three quadrotors
are moving at the same speed horizontally, but one of them has a perturba-
tion and moves during a small time lapse slightly faster. The system has a
transitory regime from time 0s to 45s, during which quadrotors have a linear
acceleration starting from 0 and reaching 0.5m/s. In the stationary regime,
all quadrotors cruise at 0.5m/s, until one of them (C) has a sudden increase
to 1.5m/s for a short period, coming back to 0.5m/s again. At each moment,
desired pitch angle is 0.3 rads for three quadrotors. Due to this change in
velocity, the vertical position of the middle quadrotor (B) must be corrected
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Figure 4.8: Balanced catenary for Experiment 1b

to maintain the desired equi-workload distribution among drones.

4.5.1 Results of Experiment 1a

ZIEGLER-NICHOLS The response of the middle quadrotor in Z coordinate is
presented in Figure 4.9. It can be seen that the system converges to the desired state
of equal load per robot approximately after 4 seconds, achieving an error between
the desired height and the measured height close to zero. The vertical speed and
acceleration of the drone are plotted in Figures 4.10 and 4.11.

PSO PSO parameters are stated in Table 4.3. In the majority of tests, most par-
ticles reached the optimum before 10 iterations. However, these particles present
different velocities of convergence. In Figure 4.12, we plot the evolution of the
central drone position for three different P-D tunings. We choose the combination
of PD values (Kp = 4.6521 Kd = 10.1373) in Figure 4.12 for ensuing tests, be-
cause it has the fastest convergence among the three alternatives. In this situation,
different values of final height for the central drone were chosen, regardless of ob-
taining a statically balanced system. Results are shown in Figure 4.13. The next
experiment tests the performance with different quadrotor dynamic parameters for
a 4y = 66.54cm. The default parameter values in this article are standard (Table
5.2) . The alternative parameters are commercial AR Drone Parrot’s, reported in
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Figure 4.9: Response of middle quadrotor in Figure 4.7, position in the Z coor-
dinate (elevation) under ZN tuning control to achieve the desired state of robot
equiload.

Figure 4.10: Response of quadrotor B of Figure 4.7, vertical speed under ZN tuning
control to achieve the desired state of robot equiload.
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Figure 4.11: Response of quadrotor vertical B of Figure 4.7, vertical acceleration
under ZN tuning control to achieve the desired state of robot equiload.

Parameter Value
number of particles 10

weight, w 1
C1 2.5
C2 2.5

Table 4.3: PSO parameters for Experiment 1

[47] (see Table 4.4). Convergence plot results are shown in Figure 4.14.

4.5.2 Results of Experiment 1b

In this experiment, we focus on the responsed of the central robot. There is no
additional tuning of controller parameters. The horizontal speed of three drones is
discretized in 50 position arrays which represent the X axis in next graphs. Three
quadrotors start from 0m/s till 0.5m/s. However, the drone on the right accelerates
from time 36 to 45 up to a speed of 1.5m/s. The effect of this acceleration is
that the distance between nodes B and C enlarges, so that load on B increases. To
restore the state of equal load, the quadrotor in node B must accelerate to close the
distance with C while descending to reduce its own load. Figure 4.15 shows the
plot of the height of quadrotor in node B in time in response to this perturbation of
the global system state. Figure 4.16 plots the evolution of the thrust supported by
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Figure 4.12: Response of quadrotor vertical B of Figure 4.7, vertical displacement
under PSO tuning control to achieve the desired state of robot equiload. Three
different PD tuning combinations

Figure 4.13: Response of quadrotor vertical B of Figure 4.7 Z displacement. Three
different convergence heights
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Parameter Value
mass, m 0.38kg

length of the arm, l 17cm
rotational inertia moments, Ixx = Iyy 86 ·10−2[Nms2]

rotational inertia moment, Izz 172 ·10−2[Nms2]

propeller thrust coefficient,b 3.13 ·10−5[Ns2]

drag, d 7.5 ·10−7[Nms2]

Table 4.4: Values of AR Parrot [47]

Figure 4.14: Response of quadrotor vertical B of Figure 4.7 vertical displacement
under PSO for different dynamic parameters
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Figure 4.15: Response of quadrotor B of Figure 4.8, position in the Z coordinate
(elevation) under the PID control to achieve the desired state of robot equiload after
the extension of one of the catenaries due to change in cruise speed of the C robot.

quadrotor in node B, which decreases when the quadrotor in node C accelerates.

4.6 Conclusions

In this Chapter we have introduced the general two loop control scheme for the
quadrotors, one loop devoted to altitude control and the other to horizontal naviga-
tion. We have show that offline tuning of PD controllers for the task of achieving
the equi-workload can be efficiently carried out by PSO. The navigation control
will be dealt within the next chapter.
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Figure 4.16: Time plot of the load supported by quadrotor B of Figure 4.8 after the
extension of one of the catenaries due to change in cruise speed of the C robot.
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Chapter 5

Transportation control

5.1 Introduction

This Chapter presents the second part of the quadrotor control structure for the task
of team DLO transportation, which is in charge of tuning the outer-loop control,
i.e. the navigation towards the goal position. As in Chapter 4, PID/PD controllers
will be used for the outer-loop control configuration too. However, inner-loop tun-
ing has been carried out offline in this Thesis, which has the advantage of adapt-
ing from scratch to different quadrotor dynamic parameters, catenary lengths, or
height objectives. But it turns out that it might be not easily adapted to uncertain
conditions, such as suffering variable wind perturbations along a path. PID is tai-
lored to control linear stationary systems, but a team of quadrotors carrying a DLO
is strongly non-linear and non-stationary, hence we propose an adaptive control
whose implementation is explained in this Chapter. Simulation based experiments
show the comparison between an offline and online tuning of outer-loop control
under different stress conditions. Regarding the kind of PID controller, the integral
control term has not been considered in the works of this Chapter due to the good
response that the PD controller achieved in Experiment 1a in Chapter 4. Having
comparable response quality, we prefer to work with a computationally simpler
and easier to tune controller.

The content of the chapter is as follows: Section 5.2 presents the quadrotor
team control stategy to achieve DLO transportation. Section 5.3 presents the outer
control loop, which achieves the robust quadrotor motion to perform DLO trans-
portation. Section 5.4 presents our online adaptive control using a fuzzy modula-
tion in order to achieve outer loop controller tuning. Section 5.5 discusses some
heuristics that we apply to obtain smooth system behavior. Section 5.6 describes
the results of the DLO transportation simple scenario of line-following following
a baseline approach of tuning the PD controllers with a PSO approach similar to

53
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the one in Chapter 4. Section 5.7 presents the results of computational experiments
with our proposed fuzzy modulated adaptive approach.

5.2 Quadrotor team control model

The team of quadrotors carrying the DLO will move in a line formation according
to a leader following strategy [61, 82]. This strategy is defined in the horizontal
subspace spanned by the XY axes, the Z axis position of the drone has been deter-
mined by the equilibrium position of the catenary. Control to achieve this equilib-
rium has been presented in Chapter 4. Polar coordinates could be used, however,
this could lead to singularity points [52], therefore cartesian coordinates are used.

The desired position of a follower robot related to the leader robot is given by
eq. 5.1, maintaining a constant distance and angle of following drone.{

xF = xL +λX cos(ψL)−λY sin(ψL)

yF = yL +λX sin(ψL)+λY cos(ψL)
, (5.1)

where L and F subindices denote the leader and f ollower parameters, respec-
tively. Angle ψ is the orientation in the XY plane at each moment of the quadrotor
produced by θ and φ . Factors λX and λY are the projections of the constant dis-
tance λ on axes X and Y , respectively, according to eq. 5.2, where ϕ is a constant
angle that the leader drone tries to keep with its follower(s):{

λX = λ cos(ϕ)
λY = λ sin(ϕ)

, (5.2)

In our basic controller, we chose ϕ = π . This leader following strategy is summa-
rized in Figure 5.1:

Thus, xF and yF are the desired xd and yd of eq. 5.4 for the follower drone(s),
while the desired x and y values are the path equation points for the leader drone.
Maintaining the catenary shape is an additional constraint for the model, because
the entire dynamical system modeling is invalid for non-catenary curves. As a
consequence, drones cannot get too near or too far from each other.

5.3 Outer-loop control

The outer control loop is responsible for calculating the desired values for each
quadrotor angle (θd , φd) according to equations 5.3 and 5.4. The control commands
for the quadrotor to adapt its torques and thrust towards those desired values is the
competence of inner control loop.
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Figure 5.1: Follow-the-leader behavior parameters: distance (λ ) between quadro-
tors positions, and heading angular difference (ϕ) parameters.

Quadrotor displacement of is achieved by an increase of the corresponding
Euler angles. Simply stated, setting ψ angle to 0, while θ and φ angles are positive,
produces a motion in the X ,Y axes, respectively. Equations to find the desired
angles follow the approach in [36], who sets a desired goal point in the space,
and calculates the correspondent angle based on the actual quadrotor angle and the
remaining distance to reach the ending position of the quadrotor, as follows: φd =−arcsin

(
uy·m
U1

)
θd = arcsin

(
uxm

U1 cosφ

) , (5.3)

where m is the mass of the quadrotor, and (ux,uy) are the motion commands in the
X and Y axis, respectively. Angles are limited by a built-in saturator to 0.8 rads.
The equations for the outer-loop control are given by the following expressions:

{
ux = ẍd +Kdx(ẋd− ẋ)+Kpx(xd− x)
uy = ÿd +Kdy(ẏd− ẏ)+Kpy(yd− y)

. (5.4)

As can be appreciated in eq. 5.4, there are two independent PD controllers in outer-
loop circuit: one corresponding to axis Y and dependent on φ , and another relating
to axis X and angle θ . Each quadrotor of the system is controlled by independent
PD controller for the outer loop-circuit. Given that they are independent, we can
tune them separately.
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Figure 5.2: Membership functions of the fuzzy adaption rules of the PD control
parameters

5.4 Outer control loop adaptive tuning

The paramter tuning of outer-loop PD controllers of each and all the quadrotors in
the team is an online adaptive algorithm which combines fuzzy membership func-
tion activation and gradient descent like adaptation rule, achieving an online fuzzy
controller [110, 113]. Takagi-Sugeno controllers [97] are built as i f − then rules,
where the antecedent are fuzzy logic expressions based on evidences modeled by
fuzzy membership functions. The consequents are fuzzified actions or fuzzy vari-
able assignments. Reasoning is carried out in the framework of a rule based expert
systems. There has been some work about fuzzy logic applied for quadrotor sys-
tems for the optimization of stability and dynamics control [50][53][35], however
there is no reference to team control performing a joint task.

The approach that we have implemented and successfully tested, consists in the
adaptive estimation of the PD controller parameters by updating rules performing
gradient descent on the perceived trajectory error. The degree of activation of such
rules is modulated by fuzzy terms modeling the error into two fuzzy categories.
Error modeling is based on the relative error between the real control signal and its
reference:

Pe =
Yre f −Yreal

Yre f
·100, (5.5)

where Yre f is the reference position, and Yreal is the real quadrotor position. The
proposed system has four error fuzzy categories dependent on the Pe value, which
can be negative and positive, represented in Figure 5.2. The control variables are
the angles θd and φd , determining the motion in the XY plane as discussed above.
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We have a independent PD controller for each angle. Therefore, there are two error
e(t) functions depending on the spatial coordinate to control, as shown in eq. 5.6:{

eφ (t) = φd−φ (t)
eθ (t) = θd−θ (t)

, (5.6)

where φd and θd are the desired values of the angles. Membership functions
µ1 (Pe(t)) and µ4 (Pe(t)) modulate the activation of equation 5.7 that performs
the adaptation of parameter Kp, while functions µ2 (Pe(t)) and µ3 (Pe(t)) modu-
late the activation of equation 5.8 that performing the adaptation of parameter Kd .
The online parameter adaptation equations read as follows:

Kp (t +1) = Kp (t)+αe(t)(µ1 (Pe(t))+µ4 (Pe(t))) (5.7)

Kd(t +1) = Kd (t)+αe(t)(µ2 (Pe(t))+µ3 (Pe(t))) (5.8)

where α is the adaptation factor, e(t) is the navigation error at each t moment, and
µk (Pe(t)) is the k− th membership value function, which provides the activation
strength of the adaptation function (note that the activation values are always be-
tween 0 and 1 due to the triangular shape of the membership functions specified
in Figure 5.2, which have empty support intersections). The adaption factor α is
initialized with a value between 0 and 1 and remains constant until the end of the
process. The online PD controller tuning is intended to allow the system to adapt to
different trajectories, dynamic parameters of the quadrotors, and unknown catenary
weight per length.

Convergence of the fuzzy modulation approach The online adaptation equa-
tions Eq. (5.7) and Eq. (5.8) are in fact instances of the general stochastic gradient
descent algorithm applied in many neural network learning algorithms. It is well
known that convergence of online stochastic gradient descent learning in station-
ary environments require that the gradient descent gain αt complies with conditions
∑t α2

t < ∞ and lim
t→∞

αt = 0. However, if the environment is non-stationary the decay
of the gradient descent gain freezes adaptation, so that after some time the system
becomes insensitive to changes in the environment and, therefore, equivalent to an
offline training/tuning algorithm. Hence we leave the gain fixed to a small constant
value, so that adaptation is never stopped. Additionally, the membership function
modulation factors further enhance convergence, because they focus the learning of
the PID coefficients Kp and Kd according to the error magnitude. For greater error
magnitude, the Kp coefficient is more affected, while fine tuning to small errors is
achieved affecting the Kd coefficient. Lacking a formal analytical proof, the intu-
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ition is that the process will not diverge because the overall gain is always smaller
than 1. Empirical (simulated) experiments confirm that the approach works well.

5.5 Heuristics for smooth behaviors

In a multi-quadrotor system, there is no gurantee that all the robots will fly at the
same speed, therefore inducing distance variations among catenary nodes, which
may lead to system instability and collapse. In order to prevent that, two extra
conditions are introduced in the model. For each leader-follower pair of drones:

• If the euclidean distance between drones overcomes a threshold, the leader’s
desired angles turn to 0 until the distance falls within the desired range again.

• If the euclidean distance between drones is shorter than a threshold, the fol-
lower’s desired angles turn to 0 until the distance increases.

Besides, ϕ constant angle creates sharp path changes, and abrupt changes in cate-
nary node distances. To achieve path smoothing we make ϕ variable, as follows:

ϕ = π− (ψL−ψF)

2
, (5.9)

where, ψL and ψF are the XY heading angles of the leader and follower robot
respectively, in [rad].

5.6 Experiment 2

This section gives results on the baseline PD controller tuning by a PSO approach
for the DLO transportation task, as in the tuning of the controller to achieve the
equi-workload position in Chapter 4. We train a PD controller, which is applied to
each of the four rotors in the quadrotor. The PSO cost function value is computed
after the simulation of the system performing one instance of the task. There-
fore, carrying the PD parameter tuning by PSO is very time consuming, involving
thousands of simulations. Once the PD parameter values are chosen, robustness
experiments are carried out.

The experimental system is composed of three quadrotors carrying a DLO in
two sections of symmetric catenaries, with the robots flying in parallel. That is,
three quadrotors must reach the (x0,i +∆x,y0,i +∆y) coordinates at the same time,
where (x0,i,y0,i) is the inital position of the i-th robot, and (x,y) is the displacement
to the desired position. Robots are named D1, D2, and D3.

Time increment used to compute simulation steps is 0.1 seconds. Specific val-
ues of system parameters in the experiment are: each catenary section has length
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CF1 CF2
Parameter Value Value

number of particles 15 4
weight, w 0.9 0.9

C1 0.01 0.01
C2 0.01 0.01

Table 5.1: PSO parameters for CF1 in Experiment 2

L0 = 300cm; horizontal distance between drones is 120cm, the weight parameter
of the catenary is w = 0,005kg/cm. The system initial state for the simulation is
set in its energy balanced configuration by maintaining drones D1 and D3 at the
same height z0 and decreasing the middle drone D2 to 4y = 99.9cm. During the
experiments, though the horizontal distance between drones alters slightly in time,
no correction of height is applied. Dynamic parameters of the quadrotors are as-
sumed as in Table 5.2. Initial angles of three drones are all set to 0. Inner control
loop PD parameters were tuned as explained in Experiment 1 (Chapter 4), for this
section are set to Kp = 140.66 and Kd = 41.36. We denote (xd ,yd) the desired final
position of the leader drone.

We carried out three experiments in order to test the robustness of the obtained
controller.

• Experiment 2a: Horizontal motion with no wind disturbances for the trans-
portation of a DLO symmetric catenary.

• Experiment 2b: Horizontal motion with DLO sections between drones mod-
eled by catenary sections of different length as shown in Figure 5.3, so that
we have an unbalanced system, lx1 = 150cm and lx2 = 120cm. Height of
point A (drone D2) at balanced energy equilibrium configuration is 4y =

99.9cm.

• Experiment 2c: Horizontal motion with wind disturbance (along 200cm in
X , 90cm in Y ) of the same catenary in Experiment 2a. The equation of wind
disturbance is:

d(t) = 3+ sin(
π

4
t), (5.10)

where t corresponds to the time variable used in the quadrotor model and
d(t) is measured in Newtons[N].

Minimization with PSO is performed setting constants as given in Table 5.1.
Besides we test two starategies for the PSO:

• CF1: Optimize the PD parameters to minimize the overshot of the quadrotor
in X direction. Needed iterations for convergence are approximately 10. The
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Figure 5.3: Catenaries configuration for Experiment 2

hypothesis underlying this function is that we can achieve optimal control
using limited information.

• CF2: Optimize the PD parameters to minimize the overshot in (X ,Y ) plane.
Number of needed iterations are about 15.

5.6.1 Results of Experiment 2a

Figures 5.4 and 5.5 plot the overshot depending on the distance to be traversed by
the robots carrying the DLO, for a given range of distances, when the design is
achieved by minimizing cost functions specified according to CF1 and CF2, re-
spectively. Distance is quite limited because the quadrotor model in the simulation
does not have a specific thrust saturator. The control of robots D1 and D2 produce
different overshot relative to the target position depending on the cost function min-
imized to estimate the parameters (CF1 or CF2). Also, it can be noticed that D2 has
greater overshot than D1, due to the combined effect of the DLO in both sectors.
The controller designed minimizing cost function CF2 proves to be much more ac-
curate in both directions. Robot D3 has not been represented, as it behaves exactly
the same as D1. To illustrate the detailed behavior of the robots we show in Figure
5.6 the trajectories of the robots in the XY plane for two specific goal displace-
ments. It can be appreciated that PD controller parameters obtained by minimizing
cost function CF2 provide much smoother trajectories, without overshot.
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(a)

(b)

Figure 5.4: Dependence of overshot in X (image a) and Y (image b) of robots D1
and D2 on the required distance when training the controllers by minimizing CF1
in Experiment 2a
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(a)

(b)

Figure 5.5: Dependence of overshot in X (image a) and Y (image b) of robots D1
and D2 on the required distance when training the controllers by minimizing CF2
in Experiment 2a
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(a)

(b)

Figure 5.6: Trajectory of the three quadrotors in (X ,Y ) space when the desired
motion is (a) (4x,4y) = (60,30), (b) (4x,4y) = (140,60), for the controllers
achieved with both cost functions CF1 (up) and CF2 (down).
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5.6.2 Results of Experiment 2b

Figure 5.7 shows the trajectory of the three drones carrying the unbalanced sec-
tors of the DLO under controllers whose parameters are tuned minimizing CF1
or CF2. Again, controllers obtained minimizing CF2 provide much more smooth
trajectories.

5.6.3 Results of Experiment 2c

This experiment tests the quadrotor system PD control performance under sinu-
soidal wind disturbances. In Figure 5.8 appears the time evolution of thrust of the
system for controllers trained minimizing CF1 and CF2 when there are no wind
disturbances. In the experiments with wind disturbances, the examination of the
thrust response gives information on how the quadrotor is reacting to overcome the
disturbance in order to accomplish the task. Figures 5.9 and 5.10 show the trajec-
tory and the thrust of the three drones under disturbances in X direction with con-
trollers trained minimizing CF1 and CF2, respectively. It can be appreciated that
the system trained minimizing CF2 achieves smooth convergence and the thrust
does stabilize soon.

5.7 Experiment 3

Two computational experiments based on accurate simulations of the system have
been carried out in order to test the efficiency and robustness of the adaptive fuzzy
modulated tuning of the PD controllers. The benchmarking systems for compari-
son have the parameters PD controllers estimated offline by Particle Swarm Opti-
mization (PSO) for attitude and motion control, as discussed in the previous sec-
tion. The simulation experiments were carried out using a discretization of the time
variable and all the simulations cover a time of 20s, including the transient state
of the experiment. Time increment used to compute simulation steps is 0.1s. The
experiments are as follows:

• Experiment 3a: The team follows a straight line carrying the DLO.

• Experiment 3b: It consists on a curve path to be completed by team of
quadrotors carrying the DLO. The shape of this trajectory is shown in Figure
5.11.

Both experiments are carried out with and without wind disturbances. Initial hor-
izontal distance between quadrotors is set different for each one, and the bal-
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(a)

(b)

Figure 5.7: X (image a) and Y (image b) trajectory of three quadrotors in Experi-
ment 2b
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(a)

(b)

Figure 5.8: Thrust of D1 and D2 in Experiment 2c under no disturbances
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Figure 5.9: Trajectory and thrust of drones under controllers trained minimizing
CF1 suffering wind disturbances in X direction in Experiment 2c

Figure 5.10: Trajectory and thrust of drones under controllers trained minimizing
CF2 suffering wind disturbances in X direction in Experiment 2c

Figure 5.11: Path of the leader quadrotor for the Experiment 3b
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Parameter Value
mass, m 0.5kg

length of the arm, l 25cm
rotational inertia moments Ixx = Iyy 5 ·10−3[Nms2]

rotational inertia moments Izz 10−2[Nms2]

propeller thrust coefficient,b 3 ·10−6[Ns2]

drag, d 1 ·10−7[Nms2]

Table 5.2: Values of standard parrot

Coordinate Value Coordinate Value
(x1,y1) (240,0) (x4,y4) (240,−280)
(x2,y2) (240,−90) (x5,y5) (240,−360)
(x3,y3) (240,−200) (x6,y6) (240,−450)

Table 5.3: Drones starting coordinates for Experiment 3

anced energy consumption spatial configuration is assumed to be maintained. Spe-
cific values of system parameters in the experiment are as follows: length of
each catenary part of the DLO L0 = 240cm; the weight parameter of the solid
is w = 0,005 [kg/cm]. During the experiments, though the horizontal distance be-
tween drones chages in time, no correction of height is applied. Reference dis-
tances among drones were all set to λ = 70 [cm]. Adaption factor is α = 0.5 for
adaptive fuzzy modulated PD tuning. Mass and inertia moments of the quadrotors
are assumed in Table 5.2. Initial angles of four drones are all set to 0. Inner-loop PD
parameters are calculated as in previous experiments (see Expriment 1a of Chapter
4), which for experiments in this Chapter are set to Kp = 140.66 and Kd = 41.36.
Thrust of the drones is limited by hardware to 20[N]. Initial PD parameter values
for X and Y axes in all the drones are Kpx = Kpy = 0.22; Kdx = Kdy = 0.76, respec-
tively. Drone starting coordinates in the XY plane are stated in Table 5.3, where
subindex 1 is used for the leader drone and the rest are the followers. Drone leader
flight along the planned reference, followed by the rest of the drones. Conditions
and parameter values are stated previously. The expression for wind disturbance is
shown in eq. 5.11

d(t) = 2+2sin(
π

4
t), (5.11)

with d(t) measured in [N]. Wind affects simultaneously to each and every quadro-
tor, nominal wind frequency is ω = π

4 , but in the robustness experiments we test a
range of wind frequencies.
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5.7.1 Results of Experiment 3a

A central question is the scalability of the control system. Could the controller cope
with an increasing number of drones in the system? This question is answered
in these experiments, by measuring the maximum deviation as the system size
grows. Another relevant question is the robustness of the control against wind
perturbations. Are there critical wind shear frequencies that overcome the control
system? We explore the response over of a range of wind shear frequencies.

We implemented the experiment both with and without wind perturbations for
systems with a different number of quadrotors, and we measured the maximum ab-
solute displacement from the desired trajectory in the X axis for the last quadrotor.
The main results of the Experiment 3a are shown on Figure 5.12. As can be seen,
the PSO optimal offline control strategy, cannot complete the straight path with a
formation of more than 5 quadrotors. This happens because the accumulating er-
ror makes the distance among the quadrotors excessive, breaking the catenary so
that the DLO-quadrotors model is no longer valid. On the other hand, results for
adaptive fuzzy controller shows robust control and bounded error with ten or more
quadrotors, suffering little displacement in all the cases (with and without wind
perturbation). To illustrate the behavior of the system, Figure 5.13 shows the tra-
jectories of the drones in a system with 4 quadrotors under the PSO optimal offline
and adaptive online fuzzy controller in the case without wind disturbances. It can
be observed that the PSO offline trajectory has some fluctuations at the start, that
induce some spurious trends until the end of the linear path.

5.7.2 Results of Experiment 3b

Figure 5.14 shows the trajectories of four quadrotors following the leader along
the curve path of Figure 5.11, for the offline trained and online adaptive fuzzy
controllers. It can be appreciated that the maneuver achieved by the adaptive fuzzy
modulated controller is smooth and with little deviation from the leader path. On
the other hand the PSO offline estimated parameters produce large oscillations at
the beginning of the control, and some of the followers lose the leader path. To
measure the efficiency of the model we use the maximum displacement in the X
axis of the actual path relative to the desired curved path of the last quadrotor in
the formation. Figure 5.15 plots the results of the tests for increasing numbers of
quadrotor in the system. The PD controller tuned offline by PSO cannot deal with
systems of more than five quadrotors, while our online fuzzy modulated adaptive
controller is able to control teams of up to ten drones with small navigation error.
If we include the wind shear perturbation in the simulations, the PSO optimized
controller can not deal with more than four quadrotors, while the online fuzzy
modulated adaptive controller is able to cope with the wind conditions though the
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(a)

(b)

Figure 5.12: Comparison offline PSO optimal estimation of PD controller param-
eters vs online fuzzy modulated adaptive controller in Experiment 3a. a) Results
without perturbations. b) Results under wind conditions.
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(a)

(b)

Figure 5.13: Trajectories of a system of four quadrotors in Experiment 3a without
disturbances. Each color line corresponds to the motion of a quadrotor. (a), of-
fline PSO optimal parameter setting of the controller. (b), online fuzzy modulated
adaptive controller.
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navigation error increases linearly with the number of quadrotors.
Another critical issue is the influence of the wind shear frequency. We have

tested a range of wind shear frequencies affecting a system of four drones per-
forming the task of Experiment 3b. Results are shown in Figure 5.16. The PSO
optimized PD controller can not cope with frequencies greater than π

2 , while the
online fuzzy modulated adaptive controller is able to sustain much greater wind
shear frequencies with small increase of navigation error. Figure 5.17 shows the
time evolution of the desired and real angles of 3 quadrotors tuned by our online
adaptive fuzzy controller in a realization of Experiment 3b. The figure shows how
the fuzzy online adaptive control recovers from the initial oscillations in all the
robots appearing in the transitory initial stages of the DLO transportation. Finally,
Figure 5.18 presents the distance among quadrotors in Experiment 3b for a n = 3
system under no wind conditions. Distance remains quite stable for the designed
distances in the quadrotor formation.

5.8 Conclusions

In this Chapter we have been able to show that quadrotors endowed with a novel
adaptive fuzzy modulated tuning of PD controllers is able to deal with complex
maneouvers while performing the task of team DLO transportation. We have tested
the approach under harsh wind conditions, and for increasing size of the team and
the DLO and it clearly outperforms offline tuned PD controllers.
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(a)

(b)

Figure 5.14: Trajectories of a system of four drones in Experiment 3b. (a), offline
PSO optimal parameter setting. (b), online fuzzy modulated adaptive controller.
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(a)

(b)

Figure 5.15: Error of offline PSO optimal parameter setting versus online fuzzy
modulated adaptive controller following a curve path in Experiment 3b, increasing
the number of quadrotors in the system. a) plot without wind shear infuence. b)
wind frequency perturbation is set to its nominal value.
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Figure 5.16: Exploration of wind shear frequency impact on navigation error of
offline PSO optimal parameter setting versus online fuzzy modulated adaptive con-
troller following the curve path in Experiment 3b with 4 drones
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Figure 5.17: Time evolution of reference (blue) and real (red) values of the θ

and φ angles in a system of 3 quadrotors controlled by the fuzzy online adaptive
algorithm in the setting of Experiment 3b, for no wind conditions. Left and right
column plots correspond to the θ and φ angles of each robot, respectively.
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Figure 5.18: Time evolution of reference (blue) and real (red) values of the dis-
tance between 3 quadrotors controlled by the fuzzy online adaptive algorithm in
the setting of Experiment 3b, for no wind conditions.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The general goals of the Thesis were proposed in the Introduction. Sections 6.1.1,6.1.2
and 6.1.3 discuss our achievements of these goals.

6.1.1 Aerial robots modeling for cooperative transportation of DLOs

In this Thesis a novel model of a system to transport DLO solids such as wires and
ropes with some aerial robots has been proposed and validated and it represents a
work aligned with the Linked Multi-Robot-Component-Systems that the research
group of Computational Intelligence in UPV-EHU previously worked on. Being a
quadrotor a non-linear system, a careful and precise modeling becomes indispens-
able. In our approach, the dofs of the system are related to body-centered frame
angles (yaw, pitch, roll) and earth-frame Z coordinate. The proposal presents a
novel way of representing DLO during transportation as catenaries, going a step
further of the state of the art, as most researchers consider payload transportation
with UAVs modelled as a pendulum. The dynamic parameters used for the experi-
ments are standard drones’ and do not require any modification excepting the ideal
linking point between the catenary and the UAV. The simulations show feasible
drone behaviour and torque-thrust values.

6.1.2 Offline control strategy

Each quadrotor control was formed by two-loops circuits: attitude-control (inner-
loop) and position-control circuits (outer-loop). We considered that all the quadro-
tors share the same values of inner controllers and that all the circuits related to the
four dofs are equal. Offline control strategy was used in first phase for inner-loop
tuning and in second, for outer-loop tuning.
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We have compared two PID/PD offline tuning methods to adapt the quadro-
tor system for a smooth, fast and reliable behaviour. Firstly, we tested classical
Ziegler-Nichols strategy, and later, we adopted an intelligent tuning method: PSO
(Particle Swarm Optimization). Results showed that PSO tuning obtained a better
performance, which also resulted to be robust to different quadrotor dynamic pa-
rameters and different catenary own weights, which turn the transportation system
into an adaptable and robust system and PSO implementation showed good results
even with only PD parameters. These experiments were carried out in a single axis
direction.

In the second phase of the offline control tuning, horizontal motion of quadro-
tor system was implemented. Here, only PSO tuning was tested under different
stress conditions, paths distances and catenary weights. Experiments resulted in a
better performance of the UAV systems if the PSO tuning considered two moving
directions rather than only one.

6.1.3 Online adaptive control strategy

Online adaptive strategy was applied to outer-loop PD tuning only. We consid-
ered inner-loop PD values fixed by PSO in previous step. An adaptive fuzzy
strategy tuning method was implemented, inspired on Takagi-Sugeno controllers
and i f − then rules. This tuning strategy was tested in linear and curve paths for
quadrotor transportation systems against basic offline control based on PSO algo-
rithm. Effects of number of drone members was also studied and experiments were
carried out under different stress conditions.

Besides, a proposal of quadrotors formation both in curve and straight paths
was proposed, considering the distance constraints that catenary usage implies.

6.2 Future Work

Next, Sections 6.2.1, 6.2.2 describe the future work plan for the three main areas
shown in this Thesis.

6.2.1 System modeling

Further work will involve testing new approaches to cope with transient states pro-
voked by DLOs and their deformation during transportation process. As explained
in State of Art Chapter, multiple proposals of deformable linear objects exist, but
a further study on how these dynamic effects change the quadrotor transportation
current behaviour should be studied.
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Moreover, an experimental realization of the quadrotor DLOs transporting sys-
tem is highly advisable in order to test the efectiveness and eficiency of current
Thesis work. This step will drop loads of information about correct solids or per-
turbations modeling, control strategy and extra features.

Collision with ground surfaces render the catenary model inaccurate and they
happen in the phases of take off and landing. In this Thesis work have not been
taken into consideration, and thus and enhancement of the model to adopt this
posibility appears as a challenging task.

6.2.2 Control strategy

Implementation of Machine Learning Techniques to our system, focused on future
implementation of professional routine works, such as the continuous transporta-
tion of cables from one point to another. We refer to adaptive systems when the
system uses some intelligent algorithms to find the most suitable actions to its cur-
rent situation, but we talk about "learning" machine or system once the system
is not just able to find some efficient solutions by running some intelligent meth-
ods, but also through memorizing, comparing the result of "adaptive" algorithm.
Sort of getting experience with time. Machine learning presents a wide horizon of
possibilities to implement in drone applications such this.
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