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The appropriate use of fractional-order holds (8-FROH) of correcting gains f € [—1,1]
as an alternative to the classical zero-and first-order holds (ZOHs, FOHs) is discussed
related to the positive realness of the associate discrete transfer functions obtained from
a given continuous transfer function. It is proved that the minimum direct input/output
gain (i.e., the quotient of the leading coefficients of the numerator and denominator of
the transfer function) needed for discrete positive realness may be reduced by the choice
of B compared to that required for discretization via ZOH.

1. B-fractional-order holds and introductory background on positive realness

The realizable continuous transfer function p(s) = q(s)/n(s) = p'(s) + d, of numerator
and denominator polynomials q(s) and n(s) with p’(s) being strictly proper, is positive
real (p € {PR}) if p(s) € R (the set of real numbers), for all s € R and Re(p(s)) = 0 for
0 =Res >0, forall s € C [3, 4] (the set of complex numbers). A necessary condition for
a realizable continuous transfer function to be positive real is that it is stable with zero or
unity relative degree and with eventually critically stable poles being simple with nonneg-
ative residuals. Positive realness also implies stability of zeros [1, 2, 4] and it is a key feature
in achieving asymptotic hyperstability via feedback for all nonlinear/time-varying device
satisfiying a Popov -type inequality [5]. The scalar d is the direct input/output gain, with
d = 0 if and only if p(s) = p’(s) is strictly proper. Consider the class of f-FROH (includ-
ing ZOH (8 = 0) and FOH (f = 1)) of transfer function hg(s) leading to the 3-dependent
discrete transfer functions

g8(2) = Z[hp(s)p(s)] = gg(2) + dg,

1+sT

(1.1
() = [1- 6+ B ho(9) ot :

where Z[-] stands for the z-transform. The transfer function hg(s) is obtained directly
[1, 2] since the output of the hold device being injected as input to the continuous transfer
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function is

u(t) = up+ = (ug — ug_1) (t = kT) (1.2)

T
forall t € [kT,(k+1)T) with ux = u(kT) for any sample-indicator integer k > 0 with T
being the sampling period. Note that h(s) may be directly synthesized with two ZOHs
and a simple linear network. It has been proved [4] that gy (z) is discrete positive real (g €
{PRg}) if p(s) is stable (or, in particular, positive real) and biproper (i.e., of zero relative
degree) with a sufficiently large associated direct input/output gain dy = d > din > 0.
This implies that if d = 0 (i.e., p(s) = p’(s) is strictly proper), then gy & {PR4} even if
p € {PR} with unity relative degree. Positive realness under discretization via 3-FROH is
now discussed by first defining positive realness with prescribed margins.

Definition 1.1. It is said that gg € {PR4(e)}, some & > 0, if Regg(z) = e forall z € UC :=
{zeC:|z| =1}.

Note that {PR4(0)} = {PR4}, gg € {PRy(e)} = gg € {PRy(¢)} for all & € [0,¢) and
g € {PRy(e)} for some real € >0 = gg € {SPRy}, that is, gg(z) is strictly positive real
(since Minzeyc(Regs(z)) >0).

2. Positive realness of gs(z)

Direct simple calculations allow rewriting the first equation in (1.1) as

g(2) = (1- Bz 1) (g)(2) +dp) + BT 'z (z — 1)go1(2) (2.1)

if p(s) = p’(s) +dp with go1(2) = (1 —2z71)Z(s2p(s)) which implies that go(z) = (1 —
Bz 1)(go(2) +dp). Simple calculations with (2.1) lead to

g8(2) = (1+Bg(2)) (go(2) +dp),

v 171 qn(2) (2.2)
(2) = [T qo(2) B 1]

since g01(2)/g0(2) = qo1(2)/((z — 1)qo(2)) with qo1(z) and gqo(z) being the respective nu-
merator polynomials of gy;(z) and g(z) since their respective denominator polynomials
no1(z) and ny(z) satisfy the constraint n¢;(z) = (z — 1)ng(z) from direct calculations in-
volving z-transforms. Since p’(s) is strictly proper, then g'( ) = Z[hp(s) p’( )] is strictly
proper of unity relative degree and order deg (s)) if =0 and (1 +deg(n(s))) if f # 0.
Let real constants m;, m, = m;; m;, m, = m; be such that

Reg(z) € [m;,ms], Re(§(2)gy(2)) € [mi,ms], Vze UC (2.3)

Direct calculations using the worst lower-bound minimum bound for Re(gs(z)) from
(2.2) via (2.3) lead to
Regp(=0)(2) = &9+ Adg + B[m; + (dy + &0 + Adg) m

N] (2.4)
Regpi<0)(2) = &+ Adg — | Bl [ms + (dj + €0 + Adp) 1],
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which hold, respectively, for 5 > 0 and for 8 < 0. The technical subsequent assumption is
then used.

Assumption 2.1. go € {PRy(e)}(= go € {PRy}) and dg > (d, — &) for some real & > 0, all
B-FROH.

Now, define auxiliary real constants 7, from my,n1, from (2.3) as 7, := m, + (dj +
&)y (€ = i,s). From Assumption 2.1 and the constraints (2.4), the following result holds.

TueOREM 2.2 (discrete positive realness via design of ). If Assumption 2.1 holds, then
gs € {PRy(e)} with Regp(z) = ¢ for some sufficiently small ¢ = 0 and some -FROH, 8 €
[Bmin> Bmax] S [—1,1] if some of the subsequent items hold.

(i)
—&—Ad
880_45 ’ <f=1 (2.5)
;i
provided that
m; o~
s—eozAdﬁzMax<—so,—%> ifm; # 0, (2.6)
i
or
E—& = Ad[; = —& lfm, >0, I/IN’I,' 7’/: 0. (2.7)
(ii)
—¢g —Ad
0sﬁsMax( 787 0% ,1) (2.8)
i
provided that
m; e
= >Adg=e—g ifm;#0, (2.9)
or
Adﬁ =E— & ifmi <0, I/T’li =0. (210)
(iii)
+Adg —
B<0, IﬂlsMaX( e ,1) (2.11)
M
provided that
myg o
Adg > Max (s—eo,— ﬁ) ifms #+ 0, (2.12)
or

Adg=e—¢y ifms>0, g #0. (2.13)
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(iv)
+Adg —
B<0, 1zl |2T2H7° (2.14)
M
provided that
ms [N
s—eozAdﬁzMax(—so,—g) ifms # 0, (2.15)
S
or
e—g =Adg>=—g ifm;<0, ;#0. (2.16)

By using (2.4) with € = &, the following result stands.

THEOREM 2.3 (positive realness via f-FROH by increasing/decreasing direct input/output
gains). If go € {PRy(e0)} with dy = dy+ &, then gg € {PRy(e0)} if dg = do + Adg with

Ad,gzMax<—so,— prmi ) ifﬁe[o,l]withﬁ#—%,

1+‘8ﬂ~’l,‘ i
Bl ] (2.17)
AdﬁZMaX<—£o,?ﬁ|;~1$) if p € [—1,0] with |B] #gs

Remark 2.4. Note that the margin of positive realness, compared to that achieved with
a ZOH, is improved with smaller positive values 0 < dg < dy, since for positive realness
of discrete transfer functions, the relative degree is required to be zero, the direct input/
output gain from Theorem 2.3 if < 0 satisfies || < Min(1,1/|m,|) provided that
Min(eo, ) > 0. This also holds if 1 > f > 1/|m;| with m; <0, |m;| > 1, and m; < 0,
or if 0 < < Min(1/]m;|,1) if |m;] < 1. If the usual constraint f € [—1,1] is removed,
then several alternative solutions with || > 1 are useful for such a purpose of achieving
positive realness for 0 < dg < do.

Example 2.5. Note that Theorems 2.2 and 2.3 are based on obtaining worst-case positive
lower bounds of the Re(gs(z)), where each $-dependent right-hand side term in (2.4) is
minimized. However, it is possible to obtain refinements from positive lower bounds via
numerical evaluation of the relation

A(B) > dumin(B) = — | ;\E/[(i]%g/'g(z)‘ = Min Z[hs(s)p' (s) | =0 (2.18)
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Proceed in that way with p’(s) = 1/(s+ 1) € {PR}. Figures 2.1 and 2.2 display the thresh-
old dmin(B) to be used in the continuous transfer function to achieve positive realness
with a f-FROH for six distinct values of the sampling period ranging from 0.001 to
10 seconds. Note that the smaller values of such a threshold are highly dependent on
the sampling period and achieved for a range of negative values of f which improve the
threshold diin(0) required for § = 0.



378  On discrete positive realness

References

[1] S. Liang and M. Ishitobi, The stability properties of the zeros of sampled models for time delay
systems in fractional order hold case, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algo-
rithms 11 (2004), no. 3, 299-312.

[2] S.Liang, M. Ishitobi, and Q. Zhu, Improvement of stability of zeros in discrete-time multivariable
systems using fractional-order hold, Internat. J. Control 76 (2003), no. 17, 1699-1711.

[3] M. dela Sen, A method for general design of positive real functions, IEEE Trans. Circuits Systems
I Fund. Theory Appl. 45 (1998), no. 7, 764-769.

, Relationships between positive realness of continuous transfer functions and their digital

counterparts, Electron. Lett. 35 (1999), no. 16, 1298-1299.

, On the asymptotic hyperstability of dynamic systems with point delays, IEEE Trans. Cir-

cuits Systems I Fund. Theory Appl. 50 (2003), no. 11, 1486—1488.

M. de la Sen: Instituto de Investigacién y Desarrollo de Procesos, Facultad de Ciencias, Universidad
del Pais Vasco Leioa (Bizkaia), Apartado 644 de Bilbao, 48080 Bilbao, Spain
E-mail address: wepdam@lg.ehu.es

A. Bilbao-Guillerna: Instituto de Investigaciéon y Desarrollo de Procesos, Facultad de Ciencias,
Universidad del Pais Vasco Leioa (Bizkaia), Apartado 644 de Bilbao, 48080 Bilbao, Spain
E-mail address: webbigua@ehu.es


mailto:wepdam@lg.ehu.es
mailto:webbigua@ehu.es

