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ABSTRACT 

The research described throughout this doctoral thesis has been carried out at CIC 

energiGUNE, an Energy Cooperative Research Centre, located in Miñano (Alava, 

Spain). 

Doctor Javier Carretero-González and Professor Teófilo Rojo Aparicio have been 

the supervisors of this work. During the development of this thesis and as part of 

the doctoral training, Miss Adriana M. Navarro-Suárez, the PhD candidate, has 

carried out a 6-month stay at A.J. Drexel Nanomaterials Institute (Philadelphia, 

USA). Professor Yury Gogotsi is the founder and director of this institute.   

In the development of this doctoral thesis, the PhD candidate has explored the 

potential applications of graphene-related materials for electrochemical energy 

storage (EES), specifically in supercapacitors. Supercapacitors are expected to 

find many forthcoming applications in hybrid electric vehicles and other load-

levelling applications. In order to achieve that end, their energy density must be 

maximized while the power capability continues intact. In the constantly changing 

technological landscape, it is relevant to face new strategies and mechanisms to 

achieve high energy density materials. Hence, in this thesis, the preparation of 

innovative redox active materials along with their nanostructuration with 

graphene or other nanomaterials to lead a high energy and high power 

density electrode in supercapacitors were our main goal.  

Graphene has a large theoretical specific surface area and a very high intrinsic 
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electrical conductivity in plane as well as high mechanical strength and chemical 

stability.  Because of these characteristics, graphene has been projected to provide 

better means for storing electricity. In this thesis, we explored and evaluated new 

electrode materials that either showed graphene-type structure or contained directly 

graphene layers. By using these materials, we expected to develop supercapacitors 

that exhibit double-layer capacitance, redox pseudo-capacitance, extrinsic redox 

pseudo-capacitance, or intercalation pseudo-capacitance.  

To this end, this Doctoral Thesis has four defined objectives. 

1. Synthesis of a nanoporous carbon with graphene-like structure to use it as

double-layer capacitors.

2. Design, characterization and development of novel polymer-graphene cells

with enhanced redox-pseudocapacitive behaviour.

3. Synthesis of an electrochemically active polymer as electrode material and

the nanostructuration of the electrode by introducing low-dimensional

carbon nanostructures.

4. Development of an asymmetric supercapacitor with two 2D nanomaterials

showing intercalating pseudocapacitance.
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LABURPENA 

Doktorengo tesi honetan deskribatzen den ikerkuntza lana CIC energiGUNEn, 

Energiaren Ikerkuntza Zentro Koperatiboan, Miñaon (Araba) garatu da. 

Lan honen gainbegiraleak Javier Carretero González doktorea eta Teófilo Rojo 

katedraduna izan dira. Doktorego tesiaren garapenean, Adriana M. Navarro-Suárez 

PhD kandidatuak, A.J. Drexel Nanomaterials Institutuan (Philadelphia, EEBB) 

6 hilabeteko egonaldia egin du. Yury Gogotsi katedraduna da institutu honen 

zuzendari eta sortzailea. 

Doktoretza tesi honetan grafenoa eta bere deribatuak energia elektrokimikoaren 

metaketa sistematan, zehazki superkondentzadoreetan, izan ditzaketen erabilera 

aztertu da. Izan ere, etorkizunean gailu hauek ibilgailu hibridoetan eta bestelako 

karga-balaztatze aplikazioetan berezko lekua izatea espero da. Hala ere, helburu 

hau lortzeko ezinbestekoa da energia dentsitatea maximizatzea potentzia-

ahalmena bere horretan mantentzen delarik. Etengabeko aldaketak jasaten dituen 

teknologia baten testuinguruan, estrategia eta mekanismo berriei aurre egiteak 

berebiziko garrantzia du energia dentsitatea altuko materialak lortu nahi baldin 

badira. Hori horrela izanik, Tesi honen helburu nagusia propietate elektrokimikoei 

dagokionez berriak diren grafeno-deribatu nanoegituratuak edo bestelako 

nanomaterialak prestatzea izan da, beti ere energia eta potentzia dentsitate balio 

altuak lortzeko xedearekin.  

Grafenoaren gainazal azalera espezifiko teorikoak eta planoko konduktibitate 
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elektriko intrintsekoak oso balio altuak dituzte. Era berean, bere erresistentzia 

mekanikoa eta egonkortasun kimikoa ere oso onak dira. Propietate hauek direla 

eta, grafenoa kargak biltegiratzeko etorkizuneko materialtzat hartu izan ohi da. Ildo 

horri jarraituz, grafeno motako egitura edo zuzenean grafeno geruzak dituzten 

elektrodo material berriak aztertu eta ebaluatu dira lan honetan. Material horiek 

erabiliz, geruza bikoitzeko kapazitantzia, erredox-pseudokapazitantzia, erredox-

pseudokapazitantzia estrintsekoa edo pseudokapazitantzia tartekatua erakusten 

duten superkondentsadoreak garatu dira. 

Laburbilduz, Doktorego Tesi honen helburu zehatzak lau izan dira: 

1. Grafeno motako egitura duten ikatz nanoporotsuaren sintesia geruza

bikoitzeko kondentsadoreetan erabiltzeko.

2. Polimero-grafeno gelaxka berrien diseinua, karakterizazioa eta garapena

erredox-pseudokapazitantzia ekarpen hobetuarekin.

3. Elektrokimikoki aktiboa den polimero baten sintesia eta bere

nanoegituraketa dimentsio baxuko karbono egiturak gehituz.

4. Superkondentsadore asimetriko baten garapena pseudokapazitantzia

tartekatua aurkezten duten bi dimentsiotako nanomaterial ezberdinak

erabiliz.
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RESUMEN 

La investigación llevada a cabo durante el desarrollo de esta tesis doctoral

ha sido realizada en CIC energiGUNE, un centro de Investigación

Cooperativa dedicado a la investigación en Energía, localizado en Miñano

(Álava, España).

El doctor Javier Carretero González y el Profesor Teófilo Rojo Aparicio

han sido los supervisores de este trabajo. Durante el desarrollo de esta

tesis y como parte de su entrenamiento doctoral, la señorita Adriana

Milena Navarro Suárez, ha llevado a cabo una estancia de 6 meses en el

A.J. Drexel Nanomaterials Institute (Filadelfia, Estados Unidos de

América). El profesor Yury Gogotsi es el director y fundador de este

instituto.

Durante el desarrollo de esta tesis doctoral, la candidata ha explorado las

posibles aplicaciones de materiales relacionados con grafeno para

almacenamiento de energía electroquímico, específicamente en

supercondensadores. Se espera que los supercondensadores encuentren

futuros usos en vehículos eléctricos híbridos y otras aplicaciones

relacionadas con balance de carga energética.  Para lograr este objetivo,

la densidad energética de los supercondensadores debe ser maximizada
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mientras su potencia se mantiene intacta. En el cambiante panorama

tecnológico, es importante utilizar nuevas estrategias y mecanismos para

lograr materiales con una alta densidad energética.  Por lo tanto, el

principal objetivo de esta tesis es la preparación de materiales novedosos

con propiedades electroquímicas capacitivas y su nanoestructuración con

grafeno u otros nanomateriales que conlleven a una alta densidad de

energía y potencia.

El grafeno tiene alta área superficial teórica y alta conductividad eléctrica

intrínseca en plano, así como alta fuerza mecánica y estabilidad química.

Gracias a estas características, el grafeno se ha proyectado como un

material superior para almacenar electricidad que los materiales

tradicionales. En esta tesis, exploramos y evaluamos nuevos materiales

para electrodos que o mostraban una estructura tipo grafeno o que

contenían menos de 30 capas de grafeno. Al usar estos materiales,

esperamos desarrollar supercondensadores que muestren capacitancia de

doble capa, pseudocapacitancia intrínseca o extrínseca causada por

reacciones de reducción-oxidación y pseudocapacitancia de intercalación.

En esta tesis doctoral se han definido cuatro objetivos:

1. Síntesis de un carbón nanoporoso con estructura tipo grafeno para

su uso como electrodo en un supercondensador de doble capa.

2. Diseño, caracterización y desarrollo de una novedosa celda

basada en un polímero y óxido de grafeno reducido con un

pronunciado comportamiento pseudocapacitivo causado por

reacciones de reducción-oxidación.

3. Síntesis de un polímero electroquímicamente activo como material

para electrodo y la nanoestructuración de dicho electrodo

introduciendo nanoestructuras de carbono de baja

dimensionalidad.

4. Desarrollo de un supercondensador asimétrico usando dos

nanomateriales con estructura bidimensional que muestran

pseudocapacitancia de intercalación.

Teniendo en cuenta los objetivos determinados anteriormente, esta tesis

doctoral se ha dividido en seis capítulos:
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Capítulo 1: Introducción

En este capítulo se hace una revisión de los mecanismos capacitivo y

farádico de almacenamiento de energía. Se da una vista global de los

diferentes tipos de supercondensadores. Esta sección describe los

métodos de fabricación de estos dispositivos y de algunos materiales para

electrodos. Este capítulo atrae la atención a los principales retos de los

materiales usados tradicionalmente para aplicaciones en

supercondensadores.

Capítulo 2: Electrodos basados en carbones nanoporosos con

estructura similar al grafeno para supercondensadores.

El efecto de las temperaturas de carbonización y activación, así como la

proporción entre el hidróxido de potasio y el carbón (KOH/C) en la

estructura nanoporosa de los carbones derivados de lignina se estudió

empleando TGA (en inglés Thermogravimetric Analysis),

Adsorción/desorción de Nitrógeno gaseoso y SAXS (en inglés Small Angle 
X-ray Scattering). La información estructural, como es la distribución del

tamaño de poros y área superficial, fueron extraídas mediante un

programa de análisis de la adsorción de gas basado en NLDFT (en inglés

Non-Local Density Functional Theory). Está información fue contrastada

con la obtenida mediante un programa de análisis de dispersión de rayos

X llamado IRENA. La presencia de regiones ordenadas en el material fue

analizada por espectroscopia Raman, SEM y TEM (en inglés Scanning
Electron Microscopy y Transmission Electron Microscopy). La relación

entre el tamaño de poro, el área superficial y el tamaño del cristalito de las

regiones ordenadas con la capacitancia de doble capa en electrólitos

acuosos y orgánicos fue discutida en detalle.

Capítulo 3: Electrodos multi-redox para supercondensadores

basados en óxido de grafeno parcialmente reducido y un biopolímero

El monómero 3,4-etilendioxitiofeno es polimerizado en presencia de

lignina; de esta manera PEDOT (poli-3,4-etilendioxitiofeno), un polímero



GRAPHENE-RELATED MATERIALS FOR ELECTROCHEMICAL CAPACITORS
Adriana M. Navarro-Suárez – November 2016

xxviii Resumen

conductor de electrones, ayuda a aumentar el comportamiento capacitivo

de la lignina, un biopolímero con procesos electroquímicos controlados por

difusión. Este aumento fue confirmado estudiando los biopolímeros lignina

y lignina/PEDOT con un microelectrodo a diferentes velocidades de

barrido y calculando las contribuciones capacitivas y farádicas a la

corriente. El biocomposite fue caracterizado mediante FTIR (en inglés

Fourier Transform Infrared) y análisis termogravimétrico. Por otro lado, un

óxido de grafito fue reducido térmicamente a baja temperatura para

incrementar su conductividad mientras mantenía su solubilidad en agua y

conservaba algunos grupos funcionales para tener un comportamiento

pseudocapacitivo causado por las reacciones reversibles de

reducción/oxidación de dichos grupos. El prGrO (en inglés partially 
reduced Graphite Oxide) fue caracterizado por FTIR (en inglés Fourier 
Transform Infrared Spectroscopy), adsorción/desorción de nitrógeno

gaseoso, Difracción de rayos X y XPS (en inglés X-ray Photoelectron 
Spectra). Estos dos materiales, el biopolímero Lignina/PEDOT y el prGrO,

fueron estudiados en un electrólito acuoso en configuraciones de 3-

electrodos, simétricas y asimétricas y finalmente en una configuración

simétrica usando un composite de los dos materiales.

Capítulo 4: Estudio de polímeros derivados de quinonas y aminas

que presentan reacciones de reducción/oxidación para dispositivos

de almacenamiento energético

Dos biopolímeros basados en monómeros con grupos funcionales quinona

y amina fueron sintetizados. Sus propiedades electroquímicas fueron

evaluadas en una configuración de tres electrodos en un electrólito

acuoso. En diferentes estados de carga, los electrodos fueron analizados

por FTIR (en inglés Fourier Transform Infrared Spectroscopy), difracción

de rayos X y espectroscopia de Raman; basados en estos resultados un

mecanismo de almacenamiento de carga fue propuesto. Para mejorar la

procesabilidad de los materiales para electrodo, un conector PEO (en

inglés Polyethylene oxide) fue introducido durante la polimerización.

Pruebas de solubilidad de los nuevos materiales fueron realizadas para

determinar la mejor ruta de preparación de los electrodos. Los nuevos ter-

polímeros fueron analizados en una configuración de tres electrodos en un
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electrólito acuoso para cuantificar la cantidad de carga almacenada en

estos materiales. Una evaluación de los valores capacitivos como función

de las densidades de corriente también fue llevada a cabo.

Capítulo 5: Desarrollo de supercondensadores en configuración

asimétrica usando como electrodos carburo de titanio bidimensional

(MXene) y óxido de grafeno reducido

En este capítulo se describe la preparación y estudio de cuatro materiales

de electrodo diferentes: i) Carburo de Titanio bidimensional (MXene), ii)

Un composite preparado a partir de Carburo de Titanio bidimensional

(MXene) y Nanotubos de carbono multi-pared, iii) óxido de grafeno

reducido químicamente, y iv) óxido de grafeno reducido térmicamente.

Estos materiales fueron caracterizados por espectroscopia Raman,

difracción de rayos X y microscopía electrónica de barrido. Todos los

materiales fueron estudiados electroquímicamente en configuraciones de

tres electrodos y simétrica. A partir de estos resultados, el Carburo de

Titanio bidimensional (MXene) y el óxido de grafeno reducido

químicamente fueron escogidos como la pareja electroactiva de electrodos

para supercondensadores en configuración asimétrica en un electrolito

acuoso. Siguiendo el mismo procedimiento, el composite preparado a

partir de Carburo de Titanio bidimensional (MXene) y Nanotubos de

carbono multi-pared y el óxido de grafeno reducido térmicamente fueron

usados como electrodos en un supercondensador en configuración

asimétrica en un electrolito orgánico y un líquido iónico. La retención de

capacitancia con el número de ciclos y su eficiencia coulombica durante el

ciclado también fueron evaluadas.

Capítulo 6: Conclusiones & Perspectivas

Las principales conclusiones del trabajo realizado durante el desarrollo de

esta tesis son presentadas en esta sección. También delineamos futuros

métodos para la mejora de las propiedades de los materiales

desarrollados en esta tesis.
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1 INTRODUCTION 

World energy consumption is projected to double in the next fifty years, making the 

research in energy storage and conversion a priority.  Particularly in energy storage, 

researchers focus especially on the development of electrochemical energy storage 

(EES) systems that should meet market requirements such as low cost, efficiency 

and safety.1–4  There is a full spectrum of energy-storage applications with varying 

storage times, volumes and rates of charging and discharging, creating market 

opportunities for advanced batteries, fuel cells, flywheels, pumped water, 

compressed air, supercapacitors and other technologies. The importance of 

electrical energy storage will continue to grow as markets for consumer electronics 

and electrification of transportation expand. Due to the intermittent character of 

renewable energy sources, there is also a need, particularly with transportation and 

grid storage applications, for devices where large amounts of energy is delivered or 

accumulated quickly (within seconds or minutes).5  

Scheme  1-1 depicts the different kinds of electrochemical energy storage devices. 

Electrochemical energy storage technology is based on devices capable of 

exhibiting high energy density (batteries) or high power density (electrochemical 

capacitors).  Batteries store energy in chemical bonds that follow reduction-

oxidation (redox) reactions in which a phase transformation is involved.  Capacitors 

store energy electrostatically in electric fields, and in the case of electrochemical 

capacitors (ECs or supercapacitors) between ions in solution and an electrode 

material.6    
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Scheme  1-1. Classification of electrochemical energy storage.6 

ECs have attracted interest because of their high pulse power (5 – 10 kW.kg-1), long 

cycle life (because of their high reversibility), fast rate capability. The use of low cost 

and renewable precursors to prepare electrode materials and the possibility of using 

them in aqueous media,7,8 in the absence of harmful chemicals make of this system 

also a desired option.1–3 Because of the differences in the charge storage 

mechanisms in ECs and batteries, the energy density   exhibited by the former (5 

Wh.kg-1)9 is at least one order of magnitude lower than the one presented by the 

latter.  Thus, batteries are used in applications requiring a higher energy while 

supercapacitors in those demanding high power output within a few seconds; 

otherwise, combinations of both devices are used when both high energy and high 

power are needed.  

1.1 Principle of Capacitors 

Capacitors can be explained using a simple model consisting of two conductive 

plates separated by a dielectric material. By applying an electric field, the two plates 

are positively and negatively charged respectively.  

The ability to store charge, also called Capacitance (C in farads), is determined by 

the ratio between the charge stored (Q in coulombs) at each conductor plate and 

the voltage difference (V  in volts) across the capacitor:  

𝑪 = 𝑸×𝑽 

In a capacitor with electrodes of equal area, in parallel configuration and separated 

by a determined distance and a dielectric medium, the capacitance will also be 

determined by Equation 1-2 

Electrochemical Energy 
Storage

Battery

Primary Secondary 
(Rechargeable)

Capacitor

Electrostatic Electrolytic Electrochemical

EDLC Pseudocapacitance

Redox Intercalation

Hybrid

Equation 1-1
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𝑪 = 𝜺𝟎×𝜺𝑹×
𝑨

𝒅

where ε0 and εR are the vacuum permittivity (8.854×10−12 F.m–1) and the dielectric 

constant of the material between the plates (for vacuum εR = 1), respectively, A is 

the area of the plates in m2, and d stands for the distance between the two parallel 

plates in m. 

1.2 Faradaic and Capacitive Energy Storage 

The development of high energy density devices with optimum performance is 

based on first understanding of the chemistry and electrochemistry of the materials 

used as electrodes to develop new ones with improved properties. Figure 1-1 

illustrates the characteristic behaviour of these electrochemical energy storage 

materials and summarizes the features that distinguish them from each other.10 

Similar to dielectric capacitors, electrical double-layer capacitance (EDLC) 

originates from the formation of an electrical double layer upon device polarization. 

The ions of the electrolyte adsorb onto the electrode surface or inside the pores of 

opposite charge. When charged, the anions in the electrolyte will move towards the 

positive electrode while cations will diffuse towards the negative. This can be 

assimilated to a series connection of two unequal parallel plate capacitors, one 

being made up of one carbon electrode (one plate) and the cations (the other plate) 

while the other is composed of the other carbon electrode and the anions.11 Thus, 

the best performing EDLC materials should have a high specific surface area (SSA), 

making nanostructured carbons the materials of choice, since they can easily deliver 

high SSA at low price and possess good electrical conductivity. Generally, EDLCs 

offer great cyclability and power densities and are characterized by nearly 

rectangular cyclic voltammograms (CVs) and linear galvanostatic charge–discharge 

profiles (Figure 1-1 (a)). 

Pseudocapacitive materials present a continuous, highly reversible change in the 

oxidation state during charge/discharge. Redox pseudocapacitance occurs when 

ions are electrochemically adsorbed onto the surface or near surface of a material 

with a concomitant faradaic charge-transfer.5 Intercalation pseudocapacitance 

occurs when ions intercalate into the tunnels or layers of a redox-active material 

accompanied by a faradaic chare transfer with no crystallographic phase change.5 

Pseudocapacitive materials present a continuous, highly reversible change in the 

oxidation state during charge/discharge, characterized by CVs with almost perfectly 

rectangular CVs or little separation in peak position on charge/discharge (surface 

Equation 1-2
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redox, Figure 1-1 (b)) or significantly broadened peaks (intercalation, Figure 1-1 

(c)).10  

Pseudocapacitance can be intrinsic or extrinsic to a material, in that the property 

can emerge through material engineering. Intrinsic pseudocapacitive materials 

display the characteristics of capacitive charge storage for a wide range of particle 

sizes and morphologies. On the other hand, extrinsic materials do not exhibit  

 

Figure 1-1. Faradaic and capacitive energy storage. Summary of the characteristic 

metrics such as cyclic voltammetry, galvanostatic profiles, key mechanism 

descriptions and typical systems that are known to utilize the mentioned charge 

storage mechanisms: double-layer capacitor12–16 (a), surface redox 

pseudocapacitance due to adsorption and/or fast intercalation of ions 17–19
 (b), 

intercalation pseudocapacitance20
 (c) and  batteries4,21,22 (d). i = current, v = sweep rate. 

Different colours in the plots indicate different storage mechanisms.10 
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pseudocapacitance in the bulk state due to phase transformations during ion 

storage. With these materials, increasing the surface area through nanostructuring 

leads to improved high rate behaviour due to a decrease in diffusion distances and 

in some cases, the suppression of a phase transformation. 

A capacitive charge storage mechanism is not diffusion limited and follows Equation 

1-3. 

𝒊 = 𝑪𝒅𝑨𝒗 

where, 𝒊 is the current (A), 𝑪𝒅 is the areal capacitance (F.m-2), 𝑨 is the surface area 

(m2) and 𝒗 is the scan rate (V.s-1).23 

Charging in batteries is often accompanied by a phase transformation in the host 

material. This process is characterized by distinct peaks in the CV and plateaus in 

the galvanostatic charge/discharge profiles (Figure 1-1 (d)).10 The change of the 

maximum current peak with the potential scan rate for a reversible diffusion-

controlled reaction is given by the Randles–Sevcik equation: 

𝑰𝒑𝒆𝒂𝒌 = 𝟎. 𝟒𝟒𝟔𝟑(𝒏𝑭)𝟑 𝟐⁄ 𝑨𝑪 (
𝑫

𝑹𝑻
)

𝟏 𝟐⁄

×𝒗𝟏 𝟐⁄  

where, 𝑰𝒑𝒆𝒂𝒌 is the maximum peak current (A), 𝒏 the number of electrons involved, 

𝑭  the Faraday constant (A.s), 𝑪  the concentration of the diffusing species 

(mol.cm−3), 𝑫 the diffusion coefficient of the diffusing species (cm2.s−1) and 𝒗 the 

potential scan rate (V.s−1).23 

Materials exhibiting a hybrid charge mechanism can be described as the 

combination of two separate mechanisms, namely capacitive effects (𝒌𝟏𝒗)  and 

diffusion-controlled insertion (𝒌𝟐𝒗𝟏 𝟐⁄ ) according to: 

𝒊(𝒗) = 𝒌𝟏𝒗 + 𝒌𝟐𝒗𝟏 𝟐⁄  

where, 𝒗 is the sweep rate. By determining both 𝒌𝟏 and 𝒌𝟐, it is thus possible to 

distinguish the fraction of the current arising from diffusion-limited and that from 

capacitive processes at specific potentials.24 

 

 

 

Equation 1-3 

Equation 1-4 

Equation 1-5 
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Table 1-1. Comparison of the properties of battery and supercapacitor. 

 Battery Supercapacitor 

Discharge time  0.3-3 h 0.3-30 s 

Charge time  1-5 h 0.3-30 s 

Energy Density 

(Wh.kg-1) 

10-100 1-10 

Specific Power  

(W.kg-1) 

50-200 ~1000 

Charge/Discharge Efficiency (%) 70-85 85-98 

Cycle life (# cycles) 500-2000 >100000 

Table 1-1 summarizes the differences expected between batteries and ECs.25 Due 

to their different electrochemical behaviour, their properties are also different. The 

supercapacitor has high power density, short charge-discharge time, high charge-  

discharge efficiency and long cycle life compared with battery.  

The Ragone plot (energy density vs power density) has been widely employed to 

evaluate the overall performance of an energy storage device. The energy density 

values (𝑬) of a device can be calculated by using Equation 1-6: 

𝑬 =
𝟏

𝟐
𝑪𝑽𝟐 

where, 𝑪 is the capacitance and 𝑽 is the specific voltage window for device. 

The power density values of a supercapacitor device can be calculated according 

to  

𝑷 =
𝑽𝟐

𝟒𝑹𝒔

=
𝑬

𝒕
 

where, 𝑷 is the power density (W.kg-1), 𝑹𝒔 is the equivalent series resistance, 𝑬 is 

the energy density (Wh.kg-1) and 𝒕 is the discharge time (h).24 

A Ragone plot is shown in Figure 1-2, it can be seen that supercapacitors occupy a 

region between conventional capacitors and batteries.26   

It should be noted that the energy/power density can only be used to characterize 

the electrochemical profile of a supercapacitor device, rather than a  single 

electrode. In addition, the energy/power density is critically dependent on the mass 

loading of electrode-active materials. It is clear that a low mass loading of the  

Equation 1-6 

Equation 1-7 
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Figure 1-2.  Specific power against specific energy, also called a Ragone plot, for 

various electrical energy storage devices.11   

electrode always results in a better electrochemical performance, due to its low 

relative current. However, the low mass loading of electrode materials also results 

in the energy/power density calculated from the mass of active materials being far 

form that of the practical supercapacitor device.27 

1.3 Best Methodology for Electrode Performance 

Testing 

The key factor that reflects the performance of supercapacitors is the capacity of 

the electrodes to store and release energy. In this section, different cell 

configurations for electrode testing are reviewed. The goal is to find the optimal 

configuration that would allow the best electrode performance.  

1.3.1 Test cell configuration 

The test cell configuration for electrode performance testing typically consists of 

either 2 or 3 electrodes. These two different test-cell configurations yield distinctively 

different results and should only be used to test electrodes in the appropriate 

setting.28 

A typical 3 electrode cell consists of a reference electrode, a working electrode and 

a counter electrode. Only the working electrode would contain the material that is 

being tested for its electrochemical properties. In addition, the voltage potential 
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Figure 1-3. Schematic diagram of mechanism of a supercapacitor. 

applied to the working electrode is highly dependent on the reference electrode and 

would yield more capacitance compared to a 2-cell electrode configuration.29 As a 

result, these attributes make the 3-cell electrode configuration especially sensitive 

and this could result in significant errors when estimating the energy storage 

capacity for electrode performance in supercapacitance applications. Despite the 

limitations, the 3-cell electrode configuration does allow users to study the 

electrochemical properties of the active material in the working electrode. In 

addition, the electrolyte and solvent stability can also be investigated.30 

Nevertheless, as commercial supercapacitors consist of a 2-electrode configuration, 

tests using this configuration should also be performed. In most of the cases of this 

work, the materials are first studied in a 3-electrode configuration to study the 

stability of the material in the electrolyte and then in a 2-electrode configuration. 

Figure 1-3 shows the schematic diagram of a 2-electrode configuration. The 

electrodes are immersed in an electrolyte solution, with a separator between them. 

The separator is placed between the electrodes to prevent electrical contact, but 

allows ions from the electrolyte to pass through. When charged, the anions in the 

electrolyte will move towards the positive electrode while cations will diffuse towards 

the negative. This can be assimilated to a connexion in series of the capacitors. 

According to the composition of electrode materials, supercapacitor devices in a 2-

electrode configuration can be classified in symmetric, asymmetric and hybrid 

supercapacitors.  

 Symmetric supercapacitors are typically composed of two identical 

supercapacitor-type electrodes (Figure 1-4 (a)), including EDLCs and  
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Figure 1-4. Schematic potential profiles of a symmetric (a), asymmetric (b), and hybrid 

(c) system.31 
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pseudo-capacitive materials.24 During this thesis, we will refer to 

capacitance when the electrode capacitance was calculated and to cell 

capacitance to the value of the whole device. This distinction will be 

specifically important when comparisons between symmetric and 

asymmetric cells are made. 

 

 Asymmetric supercapacitor refers to every combination of positive and 

negative electrodes whenever there is any difference between the two 

electrodes (weight, thickness, material, etc.). Due to the asymmetry in the 

electrochemical behaviour for the cations and anions (Figure 1-4 (b)), 

unequal specific capacitances for positive (𝑪𝑺𝑷+)  and negative ( 𝑪𝑺𝑷− ) 

electrodes occur. Therefore, in order to maintain the stable voltage 

conditions of 𝑽− = 𝑽+, the weight of the electrodes (𝒎− and 𝒎+) should be 

unequal to compensate for the different specific capacitance values10: 

 

𝒎− =
𝑪𝑺𝑷+𝒎+

𝑪𝑺𝑷−

 

 Hybrid supercapacitors constitute a special case of asymmetric 

supercapacitors. They are typically composed of two electrodes with 

different charge storage mechanisms, i.e. a supercapacitor-type electrode 

and a battery-type electrode (Figure 1-4 (c)).24  

1.3.2 Choice of electrolyte 

Energy and power densities are affected by the kind of electrolyte used. The energy 

density is affected by the voltage window and ion concentration of the electrolyte 

(Equation 1-7). The power density is impacted by the resistance of the electrolyte 

(Equation 1-8). Three types of electrolytes are usually used: aqueous, organic and 

ionic liquid electrolytes. Usually, salts are added to both, aqueous and organic 

electrolytes, to provide additional ionic conductivity in the full specified temperature 

range. The salts must be added in sufficient quantities (typically 1M) to prevent any 

depletion at high voltage. Ionic liquid electrolytes may be mixed with a solvent to 

reduce its viscosity and consequently increase its conductivity while reducing the 

series resistance.32 When choosing an electrolyte, four parameters should be taken 

into account: low ionic resistance, high capacitance, simple synthesis and wide 

potential window in which the electrolyte will remain stable.28 

 Aqueous electrolytes: Compared to organic electrolytes, can provide the 

highest ionic concentration and lowest resistance. These characteristics 

Equation 1-8 
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cause aqueous-based supercapacitors to display the highest capacitance 

of the three electrolyte types. Common aqueous electrolytes include 

Na2SO4, KOH, H2SO4, and KCl salts. They are most commonly used in lab-

scale testing.28 The most important disadvantage of aqueous electrolytes is 

their small voltage window as low as about 1.2 V. 

 Organic electrolytes: The most common type of organic electrolyte is 

tetraethylammonium tetrafluoroborate (Et4NBF4) in propylene carbonate or 

acetonitrile. They are mostly used in real-world applications because of their 

large electrochemical window (as high as 3.5 V). However, the water 

content should be kept below 3 - 5 ppm or the voltage window will 

be reduced. Drawbacks are depletion of the electrolyte upon charging, 

small operating temperature range, poor conductivity (2 - 56 

mS.cm-1)33, and safety issues.34  

 Ionic liquid electrolytes are non-volatile molten salts that can exist in liquid 

form at the desired temperatures. They are rarely used but recent research 

suggests that their use may increase in the near future because of their 

favourable properties such as excellent thermal stability (up to 500 ºC),35 

conductivity, large electrochemical window (about 4.5 V) and recyclability. 

Additionally, the physical and chemical properties of the electrolyte can be 

managed by substituting its cations or anions.34  

1.4 Strategies for Improving the Energy Density of

Supercapacitors

Now that portable electronic devices such as smartphones have become 

ubiquitous, one major problem remains: battery technology has not kept up with the 

demands placed on them. Moreover, the lack of a reliable battery still holds back 

electric vehicles from being readily adopted over vehicles using an internal 

combustion engine.36 Supercapacitors have several useful features, such as high 

power density, excellent performance at low temperatures and a large number of 

charge and discharge cycles. However, the low energy density of current 

supercapacitors is the main impediment to realizing the full commercial potential of 

this technology in high energy density applications.  

It is important to think outside the box when developing new storage solutions 

utilizing supercapacitors (Scheme 1-2). On the one hand, design of new electrolytes 

with bulky ions or with multi-electron redox reactions has been predicted to be the 

new research direction in the electrolyte area.10 On the other hand, further 
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Scheme  1-2. Diagram showing the different strategies to improve the performance of 

supercapacitors.37 
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developing new materials with high capacitance and improved performance relative 

to existing electrode materials is the most important method to improve the energy 

density of supercapacitors.38  

1.5 Electrode Materials 

Understanding the charge storage mechanisms and the development of high-quality 

materials have allowed great progress in the recent years. Nevertheless, to achieve 

high energy density without sacrificing the high power density is still a major 

bottleneck in establishing supercapacitors as the primary power source.39 Amongst 

all the components of a full supercapacitor device (electrodes, separator and 

electrolyte), electrodes are key components which greatly affect the performance of 

supercapacitors.36 Hence, designing and fabricating high quality electrode materials 

play a decisive role in developing next-generation high performance 

supercapacitors. As seen in Figure 1-1, the electrode materials of ECs can present 

three storage mechanisms: double-layer capacitance, surface redox 

pseudocapacitance and intercalation pseudocapacitance. In this thesis, materials 

related to these three mechanisms are studied for supercapacitor applications.  

1.5.1 Double-Layer Capacitive Materials 

The conventional electrode materials for EDLCs are porous activated carbons (AC) 

(Figure 1-5) with large specific surface areas (1000 – 2000 m2.g-1) which can deliver 

capacitances of 200 F.g-1 and 100 F.g-1 in aqueous and organic electrolytes, 

Figure 1-5. Double-layer capacitance mechanism.
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respectively.24  The advantages of carbon materials include abundance, low cost, 

easy processing, non-toxicity, good electronic conductivity, high chemical stability, 

and wide operating temperature range.40 Normally, carbon materials store charges 

mainly in an electrochemical double-layer formed at the interface between the 

electrode and the electrolyte, rather than storing them in the bulk of the capacitive 

material. Therefore, the charge accumulation capability of carbon materials at the 

electrode/electrolyte interface is increased with their specific surface area .41 

Activated carbons can be produced by chemical or physical methods. In physical 

activation, the carbon precursor is pyrolyzed at temperatures in the range 600 – 

900 ºC, in absence of oxygen, to remove non-carbon species and cross-link 

carbon atoms, and subsequently, oxidized (mainly under CO2 or steam) at 

temperatures between 600 – 1200 ºC, in order to remove carbon atoms and 

create pores. In chemical activation, a carbon precursor or amorphous carbon is 

impregnated with certain chemicals (such as KOH, NaOH, H3PO4, ZnCl, H2SO4) and 

then heat-treated at temperatures between 450 – 900 ºC with chemical reactions 

finally producing pores.42 Chemical activation offers some advantages over 

physical activation such as: lower temperatures, faster heat treatment, 

usually simultaneous carbonization/activation steps and higher carbon yields.43 

Activated carbon materials produced from different precursors like fossil coals or 

renewable low cost precursors (biomass) are the most frequently used in 

commercial EDLC systems. The double layer capacitances of ACs from natural 

renewable materials reach 35 – 166 F.g-1 in organic electrolytes, and more than 

300 F.g-1 in aqueous electrolytes. The highest specific capacitances of ACs from 

natural renewable materials can reach the values for ACs from fossil fuels and 

even exceed them.44 This indicates that ACs from natural, renewable, 

low-cost and environmental-friendly materials will likely replace the more 

conventional ACs from fossil fuels and dominate the future AC market.

Graphene, a two dimensional defect free carbon monolayer, has recently enabled 

the dramatic improvement of portable electronics and electric vehicles by providing 

optimum means for storing electricity.37 

1.5.2 Surface Redox Pseudocapacitance 

Materials based on an electrical double-layer mechanism have limited specific 

capacitance, typically in the range of 10 – 50 µF.cm-2 for a real electrode surface. 

As pseudocapacitance may be 10 – 100 times greater, supercapacitors made of 

redox-active materials are highly desirable as the next generation of ECs.40  
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Figure 1-6. Redox pseudocapacitive mechanism. 

Conducting polymers (CPs), including polyacetylene (PA), polypyrrole (PPy), 

polyaniline (PANI), and poly(3,4-ethylenedioxythiophene)  (PEDOT) have been 

considered as promising pseudo-capacitive electrode materials for supercapacitors 

(Figure 1-6) due to their prominent properties.24 Conducting polymers are rendered 

conductive through a conjugated bond system along the polymer backbone. They 

offer capacitive behaviour through redox reactions that occur not only on the 

surface, but also throughout the entire bulk. The redox processes are highly 

reversible because no structural changes, such as phase transformation, happen 

during the redox reactions. Early researchers termed the oxidation-reduction 

processes of these polymers as ‘doping’. The positively-charged polymers, 

introduced by oxidation on the repeating units of polymer chains, are termed as ‘p-

doped’, while negatively-charged polymers generated by reduction are termed as 

‘n-doped’. The potentials of these doping processes are determined by the 

electronic state of  electrons.40 

CPs can only supply charges within a strict potential window. Beyond this strict 

potential range, the polymer may be degraded at more positive potential, and as the 

potential is too negative, the polymer may be switched to an insulated state (un-

doped state). Hence, the selection of a suitable potential range for ES performance 

is crucial.45 

PEDOT has been explored as a candidate material for ECs because of is high 

stability. Capacitance values from 60 to 160 F.g-1 were achieved by using ultrasonic 

radiation on the CP46 or mixing it with multiwalled carbon nanotubes.47 

Unfortunately, swelling and shrinking of CPs may occur during the 
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intercalating/deintercalating process. These problems often lead to mechanical 

degradation of the electrode and fading electrochemical performance during 

cycling, and then compromise CPs as electrode materials.40  

1.5.3 Intercalation Pseudocapacitance 

Another type of charge storage mechanism has been recently discovered, 

intercalation pseudocapacitance depends on the intercalation/de-intercalation of 

cations (e.g. Li+, Na+, K+, and H+) in the bulk of active materials, but is not limited by 

the diffusion of cations within the crystalline framework of active materials (Figure 

1-7). In cation-intercalated pseudocapacitance, the advantage of batteries (i.e. 
charge storage in the bulk of the electrode materials) is combined with the 
advantage of supercapacitors (i.e. charge storage without diffusion control).

Properties such as diffusion ion length or contact area with electrolyte for utilization 

of active material in the performance of the ECs are of utmost importance. Due to 

their high surface area (with no bulk volume), 2-dimensional (2D) nanomaterials 

have attracted substantial interest for supercapacitor applications. Moreover, 2D 

materials have the ability to intercalate ions and thus can provide intercalation 

pseudocapacitance.48 

Recently, MXene, a new family of 2D carbides with metallic conductivity, 

hydrophilicity, and capability for ion intercalation has emerged. MXenes have shown 

high volumetric capacitance values in microsized binder-free and mechanically 

strong electrodes for supercapacitors.19 

Figure 1-7. Intercalation pseudocapacitive mechanism. 
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MXenes derive from the layered hexagonal MAX phases, where M represents an 

early transition metal, A stands for and A-group element and X represents C or N. 

The A-group element is removed by selective etching, yielding 2D MXene sheets.49 

Most research on MXenes has been focused on Ti3C2. Upon immersion into 

aqueous solutions, Ti3C2 shows spontaneous intercalation of Na+, K+, Li+, Al3+, Mg2+ 

with sulphates, hydroxides and nitrates as anions.19 When tested in 1 M H2SO4, 

Ti3C2 free standing films show high volumetric and gravimetric capacitance (900 

F.cm-3 and 246 F.g-1, respectively). However, the main issue for MXene use as 
pseudocapacitive materials is finding a matching positive electrode with equally 

high capacitance and conductivity, as they can only operate under negative 

potentials in aqueous electrolytes.48

1.6 Graphene for Supercapacitors 

In the 20th century, a significant number of graphene and graphite related studies 

were conducted. However, it was not until 2004 when the article “Electric Field Effect 

in Atomically Thin Carbon Films”50 was published in the Science journal that 

graphene finally gained worldwide attention. This report constituted the first study 

on the electrical properties of graphene and showed the potential of graphene and 

its future use in electronics (Scheme  1-3). 

The fundamental properties of graphene make it promising for a multitude of 

applications (Figure 1-8). In particular, graphene has attracted great interest for 

supercapacitors because of its extraordinarily theoretical high surface area of up to 

2630 m2.g-1. Recently, the intrinsic capacitance of single layer graphene was 

reported to be ~21 µF.cm-2; this value sets the upper limit for electric double-layer 

capacitance for all carbon-based materials.51 Thus, supercapacitors based on 

graphene could, in principle, achieve an EDLC as high as ~550 F.g-1 if the entire 

surface area can be fully utilized. 

Graphene is also interesting as electrode material for supercapacitors due to its 

unique properties: high conductivity,50 good chemical and thermal stability,52 wide 

potential window,53 and excellent mechanical flexibility54. 

Currently, graphene is the most studied material for charge storage and the 

published results confirm its potential to change today’s energy storage landscape. 

Specifically, graphene could present several new features for energy storage 

devices, transparent batteries, and high capacity and fast-charging devices.37 

Over the past few years, some low cost and high yield two-dimensional carbon 
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Scheme  1-3. Flowchart showing the history of graphite/graphene research.28 

 

 

Figure 1-8. Overview of Applications of Graphene in different sectors ranging from 
conductive ink to chemical sensors, light emitting devices, composites, energy, touch 
panels and high frequency electronics.55 
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forms, such as reduced graphene oxide (rGO), have been developed as members 

of the graphene family.56 rGO are commonly produced by reduction of graphene 

oxide (GO) with chemical, thermal or electrochemical methods.57–59 These materials 

can be only classified as moderate quality graphene materials according to their 

defects (residual oxygen-containing groups, vacancy defects, edges and 

deformations) even after reduction.37 Nevertheless, the rGO allows for continuous 

large-scale production with low cost and effective functionalization for further 

enhancement of the electrochemical performance of supercapacitors. 

A variety of chemical reducing agents have been considered to restore the 

graphene network and its conductivity in the GO sheets.60 Hydrazine is the most 

commonly reported reducing agent for GO reduction. Chemically modified graphene 

by reduction of suspended graphene oxide in water using hydrazine hydrate has 

been reported. The resulting sheets showed a surface area of 705 m2.g-1 and 

provided specific capacitances of 135 and 99 F.g-1, respectively, in aqueous and 

organic electrolytes.61 

Thermal treatment of GO suspension from 150 – 200 °C has also been shown to 

produce rGO by removing the oxygen from GO thus enabling high conductivity up 

to 5230 S.m-1. A specific capacitance of 122 F.g-1 at 5 mA could be achieved after 

thermal treatment at 200 °C, corresponding to a charge/discharge rate of 1000 

mA.g-1.62 The advantage of this approach is its potential for scalable green 

production of carbon-based supercapacitor electrode materials.  

The full potential of energy-storage devices built from graphene has yet to be 

realized. Many challenges remain, particularly with regard to feasible techniques for 

the low-cost mass production of graphene with controlled microstructure and low 

residual oxygen content. Further understanding of the interaction of graphene 

sheets at the nanoscale to form self-assembled structures of different shapes and 

dimensionalities will drive more potential applications for graphene.37  

1.7 Scope of this Thesis 

In this thesis, materials with different capacitive mechanisms will be developed and 

studied as electrode materials for supercapacitor applications. Four approaches are 

presented in this thesis.   

 The first one is the study of the effect of the synthesis temperature and 

KOH/C ratio on the structural and textural properties of activated 

nanoporous carbons and their posterior use as electrode materials for 

double-layer capacitors.  
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 For the second path, two materials are developed; the first one is a partially 

reduced Graphite Oxide, while the second is a copolymer based on a 

biopolymer and PEDOT. Both materials are studied as electrodes for 

supercapacitors separately, then in an asymmetric configuration and finally 

as a self-assembly composite.  

 In the third strategy, the nanostructuring process of a redox active polymer 

electrode with different types of nanocarbons is studied. The optimum 

synthesis conditions are determined to provide the best match between the 

electrochemical properties of the redox active polymer and the 

dimensionality of the conductive filler.   

 In the last chapter, two asymmetric supercapacitors based on two different 

2D materials (i.e. reduced Graphene Oxide and MXene) with applications 

in aqueous and organic electrolytes are developed.  
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2 NANOPOROUS CARBON 

ELECTRODES WITH 

GRAPHENE‒LIKE STRUCTURE 

FOR SUPERCAPACITORS  

2.1 Introduction  

Carbon materials are widely used for supercapacitor applications because of their 

unique combination of chemical and physical properties, namely: high conductivity, 

high surface-area, good electrochemical stability over a wide potential range, high 

temperature stability, controlled pore structure, processability and compatibility in 

composite materials, and relatively low cost.1 

In particular, activated carbon (AC) is a group of porous materials with high surface 

area (1000 – 2000 m2.g-1). The most frequently used in commercial EDLC systems 

are produced from different precursors like fossil coals or renewable low cost 

precursors (biomass).  

Lignin is an industrial by-product of cellulosic ethanol, pulp and paper industries. 

Kraft pulping is currently the most common method used for removal of the 
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unwanted components from wood during the manufacture of paper products, these 

residues are extracted in an aqueous solution called Black Liquor, which contains 

around 25 % of lignin. The thermo-chemical conversion of lignin into value added 

products is of interest because of its huge availability and its potential to produce 

higher value products. Extensive research has been done to expand the use of lignin 

in various sectors, given that currently the largest amount of lignin is burned to cover 

the energy needs. Minor applications of lignin are in adhesives and polymer 

composites.2  

Johnson et al.3 and Baker4  have shown that lignin fibres synthesized above 1000 

°C present ordered inclusions of a highly graphitic nature. These same inclusions 

are observed in lignin-derived carbons produced at 1800 °C5 and also when 

potassium hydroxide (KOH) is used as activating agent at 1000 °C.6  

Graphene is a promising electrode material for EDLCs because of its high electrical 

conductivity, large theoretical specific surface area and easy modification.7–9  

However, the effect of graphene insertions on activated carbons on their 

electrochemical performance has not been studied so far. 

The aim of this work is to obtain low-cost and high-surface-area nanoporous 

carbons with inclusions of ordered regions to study the effect of these zones in the 

electrochemical performance. The approach is to use chemical activation of a 

renewable precursor (i.e. Lignin) at different temperatures and further implement 

the derived carbons as electrode materials for EDLCs in both aqueous- and organic-

based electrolytes. The impact of the carbonization and subsequent activation 

conditions of lignin, on the textural properties (surface area and porosity) of the 

activated nanoporous carbons and their correlation with the electrochemical 

properties are carried out. Lignin is characterized by Thermogravimetric Analysis 

(TGA), and Optical and Scanning Electron Microscopy (SEM). The carbons are 

characterized by Nitrogen adsorption/desorption at 77 K, Small Angle X-Ray 

Scattering (SAXS), Raman Spectroscopy, X-Ray Diffraction (XRD), and Scanning 

and Transmission Electron Microscopy (SEM and TEM respectively), cyclic 

voltammetry and galvanostatic and impedance measurements.  

2.2 Methodology 

2.2.1 Lignin Isolation from Black Liquor Samples 

The black liquor (BL) sample used in this study is produced during a Kraft pulping 

process and comprise ~17 wt.% of solids by weight, being 30 – 55 wt.% inorganic 
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and 45 – 70 wt.% organic. The inorganic substances are reported to be sodium 

hydroxide (NaOH, 5 – 6 g.L-1), sodium sulphide (Na2S, 14 – 16 g.L-1) and sodium 

carbonate (Na2CO3, 25 – 30 g.L-1).10 These compounds are chemicals added during 

the Kraft process to convert wood into wood pulp and then separate cellulose 

compounds from lignin.  

Natural lignin is isolated from BL after treatment at room temperature by adding 

125 ml of 1 M sulphuric acid (H2SO4, Fisher Chemical, A.R.) to 20 ml of BL. After 

lignin precipitation, a solid biopolymer is collected by filtration under vacuum by 

using polytetrafluoroethylene membranes (Sartorius, pore size 0.45 µm and 4.5 cm 

diameter). Natural lignin is washed with deionized water and then centrifuged at 

least 5 times before drying at 80 °C under vacuum. 

2.2.2 Activation Process 

Prior to activation, the carbonization process of the natural lignin is studied by 

thermogravimetric analysis in a NETZSCH STA 449F3 Jupiter thermal analyser 

under an argon stream (Praxair, purity 99.9 %) at a heating rate of 5 °C.min-1 up to 

900 ºC. 

Natural lignin is kept under vacuum at 80 ºC prior to the activation process. This 

procedure consists of an initial carbonization under argon flow of the isolated natural 

lignin at a heating rate of 5 °C.min-1 up to the chosen temperature (400 °C or 900 

°C) and kept for 2 hours, cooled down and stored for later activation.  

For the activation, the carbon powders are mixed homogenously in an agate mortar 

with the desired KOH/Carbon ratio. The mixture is pressed to prepare a pellet and 

then heated at a heating rate of 5 °C.min-1 up to the desired temperature for 2 hours. 

The samples will be referred from now on as BL_CT_#_AT, where CT and AT 

correspond to the carbonization and activation temperatures respectively and # to 

the KOH/C ratio. For example, a sample carbonized at 900 °C and activated at 600 

°C with a KOH/Carbon ratio of 4 will be referred as BL_900_4_600 and a sample 

just carbonized at 400 °C with no activation step will be BL_400. On the first section, 

the experiments are dedicated to analyse the effect of the carbonization and 

activation temperatures on the final carbon, so we maintain the KOH/C ratio equal 

to four. On the second section, the effect of the KOH/C ratio is evaluated and the 

carbonization and activation temperatures are set on 900 ºC. The different samples 

are shown on Scheme 2-1. 

After the activation process, the products are cooled down under argon flow to  
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room temperature and washed with 1 M hydrochloric acid (HCl, Scharlau, A.R.) and 

deionized water (10.1 mΩ.cm) until neutral pH is evidenced, and then filtered off 

under vacuum to remove any remaining chemical impurity. The final carbonaceous 

material is dried at 120 ºC under vacuum before electrode preparation. 

Scheme 2-1. Samples synthesized from lignin to evaluate the effect of 

carbonization, activation and KOH/C ratio on the nanoporous carbon. 
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2.2.3 Characterization Methods 

The materials are analysed by SEM, TEM, N2 sorption, Raman and XRD as 

explained in Appendix I. Other special characterization techniques for carbon 

nanomaterials such as SAXS and Raman spectral imaging are used in this chapter. 

Small Angle X-Ray Scattering is used to investigate the internal porosity of the 

carbons and to confirm the results from N2 sorption. The measurements are 

performed using a Nanostar U (Bruker, Germany) equipped with microfocus Cu 

source, evacuated beam path and Vantec 2000 detector, using 107 cm, 28 cm and 

4.8 cm sample-detector distances. The incident beam has been carefully calibrated 

in order to obtain absolute intensities in cm-1 with a perfect overlap of the 

measurements made at the three distances. Intensities are then normalized in 

cm2.g-1 by the macroscopic density of the powder samples. 

Particle size distributions are extracted using the IRENA tool package,11 using 

globules form factor (aspect ratio equal to 1) and maximum entropy algorithm. The 

total specific surface, SSAPSD, is obtained by integrating the whole particle surface 

distribution. 

Mesoscopic specific surface, SSAPorod, in m2.g-1, has been extracted from low Q limit 

using the Porod’s law of scattering by sharp interfaces:12,13 

𝑰 (𝒄𝒎𝟐. 𝒈−𝟏) = 𝟐𝝅(∆𝝆)𝟐𝑺𝑺𝑨𝑷𝒐𝒓𝒐𝒅𝑸−𝟒 

For the Raman spectral imaging, a 50X objective lens and 10 seconds of exposition 

time of the laser beam to the sample are used in areas of at least 600 μm2. To obtain 

the Raman images, the sample is moved with a step size of 1 μm and a Raman 

spectrum is recorded at every point.  

The D and G bands are fitted with 2 symmetric Lorentzian functions;14 the ID/IG ratio 

is calculated from the maximum intensities of the simulated peaks. Crystallite size 

is calculated from Tuinstra and Koenig (Equation 2-1)15 model, where ID and IG 

correspond to the intensities of the simulated peaks D and G respectively, C532 nm is 

4.9516 and La is the cluster diameter. 

𝑰𝑫

𝑰𝑮

=
𝑪𝝀

𝑳𝒂

 

The spectra are analysed and Raman images are then constructed using the 

integrated peak intensity by means of the Origin Lab® software. 

Equation 2-1 

Equation 2-2 



GRAPHENE-RELATED MATERIALS FOR ELECTROCHEMICAL CAPACITORS 
Adriana M. Navarro-Suárez – November 2016 

34 Nanoporous Carbon Electrodes with Graphene‒Like Structure for Supercapacitors 

2.2.4 Electrodes Preparation  

In order to study the electrochemical behaviour of the carbons, electrodes are 

prepared by mixing 95 wt.% of lignin-derived activated carbon with a 5 wt.% of 

polytetrafluoroethylene (PTFE solution 60 %, Sigma-Aldrich) as the polymer binder. 

The mixture is hand-mixed with few millilitres of ethanol until viscous slurry is 

obtained. The slurry is laminated with the help of a glass test tube until the final 

thickness is within the micrometre range. Then, the film is dried and kept at 120 ºC 

under vacuum for 12 hours prior to each measurement. Electrodes of comparable 

mass (up to 15 mg) with 11 mm diameter and a thickness ranging between 200 µm 

– 250 µm are studied. 

2.2.5 Electrochemical Analysis Conditions 

Electrochemical studies are carried out by using a 6 M KOH solution for voltage 

between 0 and 1 V or in 1.5 M tetraethylammonium tetrafluoroborate (Et4NBF4, 

Acros Organics, 99 %, stored under Argon) in acetonitrile (ACN, 99.9 %, extra dry, 

Acros Organics, stored under Argon) in a voltage window range of 0 to 2.5 V.  

To study their cycling life, two samples are aged by the application of constant 

voltage at 1 V or 2.5 V, for aqueous or organic electrolyte, respectively, for 

140 hours. Every 2 hours, galvanostatic charge/discharge curves at 1 A.g-1 are 

recorded. Before and after the ageing experiments, electrochemical impedance 

spectroscopy is measured for the two-electrode test cells within the ac frequency 

region from 10 mHz to 1 MHz at different fixed ΔV with ac voltage amplitude of 

10 mV. 

2.3 Results and Discussion 

2.3.1 Extraction of Lignin from Black Liquor 

Images of the Lignin after isolation from the black liquor suspension are taken using 

an optical and Scanning Electron microscope. Figure 2-1 (a - b) shows optical 

microscope images at different magnification for the biopolymer particles of natural 

lignin. The final amount of lignin per volume of black liquor is 120 g.L-1.  

Figure 2-1 (c - d) shows a SEM image with its corresponding EDX analysis. Sodium 

and sulphur impurities are present in the lignin, which are the product of the Kraft 

process used in the paper industry to remove black liquor. 
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Figure 2-1. Images of the polymer particles of lignin after extraction taken by optical 

microscope at 5X (a) and 20X (b). SEM image (c) of the same particles and EDX analysis 

from SEM (d). 

2.3.2 Activation Process and Characterization of the 
Nanoporous Carbons 

2.3.2.1 Thermogravimetric Analysis 

The formation of the porous structure is as complex as the structure itself.  In order 

to understand the physical phenomenon taking place during the carbonization 

process of lignin, the sample is studied by thermal gravimetric analysis coupled with 

mass spectrometry (Figure 2-2). Mass spectrometry identifies the products of the 

thermal process by using m/z, where m stands for mass and z stands for charge 

number of ions. The thermal degradation study under argon gas shows a first loss 

of mass at a temperature lower than 200 ºC corresponding mainly to the loss of 

water molecules (m/z = 18), above 200 ºC the mass loss is caused by water and 

carbon dioxide molecules (m/z = 18 and 44, respectively) being produced. The  
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Figure 2-2. Thermogravimetric/mass analysis of a sample of lignin extracted from 

Black Liquor.  

carbon monoxide and ethylene (m/z = 28) molecules are mainly observed below 

600 ºC. Between 350 ºC and 700 ºC release of methane (m/z =16) is observed.   

According to several studies, in the carbonization step a char low pore volume is 

formed,17 to increase the porosity in the carbon, an activation step is required. In 

order to see the effect of methane losses in the final structure of the carbons 400 

°C and 900 °C are chosen as carbonization temperatures. At these temperatures, 

the remaining carbon content is approximately 65 and 45 wt.%, respectively. 

During activation with KOH the following reaction takes place: 

𝟔𝑲𝑶𝑯 + 𝑪 ↔ 𝟐𝑲 + 𝟑𝑯𝟐 + 𝟐𝑲𝟐𝑪𝑶𝟑 
 

Below 400 °C, the KOH would diffuse and intercalate into the carbon. Above 400 °C 

the removal of water and redistribution of potassium increase the net volume of the 

sample and lower its density. Above 650 °C, metallic potassium would be liberated, 

creating the microporosity of a new structure.18 

2.3.2.2 Effect of the Synthesis Temperature on the Porosity 

2.3.2.2.1 N2 Adsorption-Desorption 

Textural properties are analysed by N2 adsorption-desorption experiments. Figure 

2-3 and Table 2-1 show the main results from these analyses. It can be seen that  

Reaction 2-1 
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Figure 2-3. Pore size distributions by NLDFT method for samples activated at 600 ºC 

(a), 700 ºC (b), 800 ºC (c) and 900 ºC (d). 

the activated samples previously carbonized at 900 ºC have narrow pore size 

distribution (PSD) with most of the pores belonging to the ultramicroporous range 

(< 0.7 nm). By contrast, the activated samples previously carbonized at 400 ºC 

display broader PSD encompassing both ultramicropores and large micropores with 

some mesoporosity (< 3 nm). 

Table 2-1 shows the values for some of the main textural properties calculated from 

the N2 adsorption isotherms by using the NLDFT method.  It is evident that as the 

activating temperature increases, the surface area also increases in both sets of 

samples accomplishing NLDFT specific surface areas up to ~1500 m2.g-1.  For the 

sample carbonized first and then activated at 900 ºC (BL_900_4_900), the surface 

area is not increased most probably because at this temperature a  
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Table 2-1. Textural properties of the activated carbon samples produced from naturally 

occurring lignin. 

Name 
SNLDFT 

(m2.g-1) 

Smicro-NLDFT 

(m2.g-1) 

Smeso-NLDFT 

(m2.g-1) 

L o-NLDFT 

(nm) 

Lo-DR 

(nm) 

BL_400_4_600 766 762 4 0.84 1.23 

BL_400_4_700 1479 1461 18 1.09 1.34 

BL_400_4_800 1510 1303 207 1.21 1.52 

BL_400_4_900 1534 1298 236 1.18 1.50 

BL_900_4_600 897 897 0 0.69 0.67 

BL_900_4_700 1186 1184 2 0.70 0.67 

BL_900_4_800 1500 1491 9 0.84 0.94 

BL_900_4_900 1272 1254 18 0.76 0.81 

competition between the activation process and the C-C bond reorganization takes 

place, as it will be explained in Section 2.4.2.4. In the case of the samples 

carbonized at 400 ºC the contribution of the mesoporosity to the surface area is 

higher than for those samples carbonized at 900 ºC in which, a larger contribution 

from the micropores to the final value of the surface area is observed.  

2.3.2.2.2 Small Angle X-Ray Scattering 

In order to understand the nanostructure of the material and to correlate the 

microporosity differences between the carbons with the carbonization step, all the 

samples are further analysed by SAXS as can be seen in Figure 2-4.  Unlike 

adsorption measurements, scattering techniques detect a total surface area, 

including that of pores that may be inaccessible to the adsorbate with a given 

geometry. In general, the SAXS profiles of the lignin-derived carbons can be 

described by the following regions: the slope of the form factor at small angles 

(Guinier region) is primarily determined by the overall size and the final slope at 

large angles (Porod region) bears the information of the surface.  The information 

about the shape and the internal density distribution of the carbon lies in the 

oscillating part in the middle section of the form factor (Fourier region).19  For 

BL_400 (Figure 2-4 (a)), the Porod law scattering from the micropores lies beyond 

the maximum observable scattering vector, indicating that these samples do not 

present micropores.  For BL_900 (Figure 2-4 (b)) a fast decrease in the intensity 

while the scattering angle increases for 0.12 nm-1 < Q < 0.8 nm-1 is observed. A  
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Figure 2-4. SAXS intensity versus scattering angle of the carbonized and the activated 

samples carbonized at 400 °C (a) and 900 °C (b). 

decrease in the slope followed by another drop (0.9 nm-1 < Q < 2.9 nm-1), indicating 

a scattering caused by the presence of micropores in this sample, is also observed.  

The difference between the samples carbonized at 400 °C (no microporosity 

evidenced) and 900 °C (presence of microporosity after carbonization) might be 

caused by the release of methane, which occurs above 350 °C. When the 

carbonized samples are activated, the presence of micropores is evidenced by the 

existence of the Fourier and Porod regions in all the SAXS profiles.  For both set of 

samples, it can be seen that as the activation temperature increases, the intensity 

in the Fourier region increases as well, evidencing an enlargement in the average 

micropore size. Scheme 2-2 shows a picture for the different porous carbon 

microstructures that might be developed from the different carbonization-activation 

routes of lignin. 

A carbonization process usually approaches completion at 600 °C, therefore the 

pyrolysis of a polymer below this temperature yields a reticulated product of 

polymer/carbon.20 During the activation step of the samples carbonized at 400 ºC, 

the carbonization and activation process are occurring at the same time. Then, at 

high temperatures (i.e. above 800 ºC), internal microporosity is developed which 

causes a difference in the Specific Surface Areas calculated by IRENA and NLDFT, 

as seen in Figure 2-5.   
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Scheme 2-2. Development of the internal and external porosity during the 

carbonization and activation processes. 

 

 

 

 

Figure 2-5. Evolution of the Specific Surface Areas with activation temperature of 

samples previously carbonized at 400 ºC (a) 900 ºC (b) calculated by IRENA and NLDFT. 

400 °C 900 °C 

Activation Step 

Hemicellulose + 
Cellulose + 

Lignin 

Lignin 
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Figure 2-6. Normalized Raman spectra of activated samples after carbonization at 

400 °C (a) and 900 °C (b). 

2.3.2.2.3 Raman Spectroscopy 

Raman spectroscopy is widely used for the characterization of carbonaceous 

materials because it can provide key information about the properties and 

characteristics of the sp2-hybridized carbon bond.21 Figure 2-6 shows the 

normalized Raman spectra for the carbonized (non-activated) and the activated 

samples. The major features of the Raman spectra of all samples include the defect-

induced D band (at ~1340 cm-1); the G band (at ~1580 cm-1), which is related to the 

in-plane vibration of sp2 carbons and, the 2D band (at ~2705 cm-1), which is the 

second order of the D band.  

2.3.2.2.4 X-Ray Diffraction 

Structural ordering of the lignin-derived carbons is studied by X-Ray Diffraction. 

Figure 2-7 shows the XRD patterns of the activated samples studied here as well 

as that of the carbonized (non-activated) samples for comparison. All the samples 

show a remarkable diffraction peak centred around 2θ = 25.5 º reminiscent of peak 

(002) in hexagonal graphite although very broad, pointing to small crystallite size. 

This is typical of amorphous carbons.22 The narrow peaks at 29.5 º and 30.5 º 

correspond to compounds formed by Sodium, Potassium and Sulphur, remnants 

from the Kraft process.  
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Figure 2-7. XRD patterns corresponding to the nanoporous carbon materials prepared 

from natural lignin and activated using KOH. The pyrolyzed samples from natural 

lignin are also included for comparison. Samples initially carbonized at 400 °C (a) and 

at 900 °C (b). 

2.3.2.3 Effect of the Synthesis Temperature on the Electrochemistry 

Because the final microstructure of the nanoporous carbons prepared from natural 

lignin will have a strong impact on the electrochemical properties, we study them as 

electrode material for supercapacitors applications at room temperature. Figure 2-8 

shows the main results of the electrochemical analysis performed on the activated 

carbon samples in aqueous 6 M KOH electrolyte. Figure 2-8 (a) shows the cyclic 

voltammograms performed at a constant scan rate of 10 mV.s-1 for samples 

BL_400_4_900 and BL_900_4_700. Both curves exhibit the typical EDLC 

rectangular shape during the electrosorption of ions.  At high scan rates, sample 

BL_900_4_700 retains its rectangular shape, which proves good electrical 

conductivity and ion diffusion inside the pores (Figure 2-8 (b)). The highest specific 

capacitance values (Figure 2-8 (c)) among all the different porous lignin-derived 

carbons are reached by samples BL_400_4_900 and BL_900_4_700 (~200 F.g-1 at 

0.1 A.g-1), which correspond to the samples with the highest specific surface area 

(1534 m2.g-1) and the smallest pore size (0.67 nm), respectively.  

Figure 2-8 (d) shows the volumetric values for the capacitance calculated taking into 

account the densities of each electrode (including the polymer binder). The highest 

value, 107 F.cm-3 at 0.1 A.g-1, is evidenced by the sample BL_900_4_700, proving 

that this sample can be used in applications where high gravimetric and/or 

volumetric capacitance are desired. The high volumetric capacitance value of 

sample BL_900_4_700 is without any doubt related to its small average pore size,  
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Figure 2-8. Cyclic voltammetry of BL_400_4_900 and BL_900_4_700 at 10 mV.s-1 (a). 

Cyclic voltammetry of BL_900_4_700 at different scan rates (b). Gravimetric (c) and 

Volumetric (d) capacitance values exhibited by the samples in an aqueous-based 

electrolyte. 

which is a direct consequence of the internal microporosity developed in the 

carbonization step and observed by SAXS.  

In the present work, the electrochemical tests in organic electrolyte are conducted 

by using a 1.5 M solution of tetraethylammonium tetrafluoroborate salt in 

acetonitrile. By using organic-based electrolytes, the voltage window will be 

increased and the energy density enhanced. As shown in Figure 2-9, the CV curves 

of almost all the samples carbonized at 400 ºC show a symmetric and rectangular 

shape at 5 mV.s-1, revealing a nearly ideal electrical “double-layer” behaviour, 

suggesting a non-hindered interaction between the nanopores and the  
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Figure 2-9.  Cyclic Voltammetry in a two-electrode cell configuration with a pseudo-

reference electrode in an organic electrolyte of BL_400_4_600 (a), BL_400_4_700 (b), 

BL_400_4_800 (c) and BL_400_4_900 (d). 

electrolyte ions as well as no faradaic side reactions. By contrast, sample 

BL_400_4_600 exhibits distorted CV shapes, most probably due to the intricate 

interaction between the ions and the nanopores. For the other samples, the right 

interaction between ions and pores is also proved by the fact that both electrodes, 

the positive and the negative, achieve the same capacitance values in similar 

voltage windows. The highest capacitance value, 97 F.g-1, is shown by sample 

BL_400_4_700. 

The distorted shape of the CV for the samples carbonized at 900 ºC (Figure 2-10) 

may be due to the particular porous texture (pore size, shape, tortuosity)23  of the 

material. All these samples present a low average micropore size (< 1 nm)  
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Figure 2-10.  Cyclic Voltammetry in a two-electrode cell configuration with a pseudo-

reference electrode in an organic electrolyte of BL_900_4_600 (a), BL_900_4_700 (b), 

BL_900_4_800 (c) and BL_900_4_900 (d). 

compared to the effective ion size (i.e. the size of the ion inside the pore) leading to 

the ion sieving effect.24–26  More precisely, the sizes of the ions in ACN vary in the 

following way: BF4- bare anion is 0.48 nm while solvated > 1 nm; for the Et4N+ bare 

cation is 0.67 nm and solvated = 1.3 nm.27  This effect is avoided in the samples 

carbonized at 400 ºC given that most of them have an average micropore size above 

1.3 nm, allowing the unrestricted access of the ions to the pores of the carbon. 

In the case of the samples carbonized at 900 ºC, the electrochemical potential 

window for the negative electrode is larger than for the positive electrode, due to 

their small average pore size. This way, the restrictive effect of the organic cations 

(Et4N+) to enter into the pores because of the larger molecular shell size in 
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comparison with the anions (BF4-) is confirmed. The gravimetric capacitance values 

of the negative electrodes are lower than the positive electrode ones due to the 

larger potential window of the negative electrodes.  These measurements clearly 

confirm the importance of matching the pore and ion size to optimize capacitive 

performance. 

As the cycle life of supercapacitors is inherently long (due to absence of redox 

reactions), aging acceleration tests are of primary importance. In this study, we use 

floating tests28  to evaluate the behaviour in aqueous and organic electrolytes of 

samples BL_900_4_700 and BL_400_4_700, respectively.  To understand the  

 

Figure 2-11. Capacitance retention (a) and Nyquist plot (b) of sample BL_900_4_700 in 

an aqueous electrolyte. Capacitance values (c) and Nyquist plot (d) of sample 

BL_400_4_700 in an organic electrolyte. 
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changes in the cell by this aging method, electrochemical impedance spectroscopy 

is measured before and after the floating test.  The result of floating at 1 A.g-1 for 

150 h for BL_900_4_700 in an aqueous electrolyte is shown in Figure 2-11 (a). No 

capacitance fading during cycling is observed. The small increase observed in the 

capacitance, might be caused by the slow diffusion of electrolyte in the carbon. From 

the Nyquist plot shown in the inset in Figure 2-11 (b), it can be observed that the 

equivalent series resistance (ESR) for sample BL_900_4_700 in aqueous 

electrolyte increases from 0.05 Ohm to 0.10 Ohm after the floating test. This is 

probably due to dimensional changes of the carbon’s pores during cycling.29 

However, the time constants (RC) before and after cycling are 0.3 s and 0.4 s, 

respectively, showing an optimum charge propagation in the electrochemical 

capacitor.    

In the case of sample BL_400_4_700 in an organic electrolyte, the floating test 

(Figure 2-11 (c)) shows that even though the pores are well adapted to the ions, a 

drastic capacitance fading as well as a large increase of the electrolyte resistance 

(from 0.6 Ohm to 1.9 Ohm) and of the ESR (from 0.17 Ohm to 21 Ohm) (Figure 2-11 

(d)), are observed.  The fading in the capacitance and the increase in both, the 

electrolyte and the equivalent series resistances suggest the presence of surface 

oxygen-containing groups, which is probable due to the low carbonization and 

activation temperatures, that results in instability of the electrode and increase of 

series resistance.1 

2.3.2.4 Effect of the KOH/C Ratio on the Porosity 

After studying the effect of the carbonization and activation temperatures, the 

KOH/C ratio effect is studied. For this, a carbonization and activation temperature 

of 900 ºC is selected to avoid presence of functional groups that can affect the 

electrochemical performance of the materials.  

2.3.2.4.1 Yield 

Figure 2-12 shows the yield (% burn off) for the different activated carbons studied 

in this section. Carbonized lignin (sample BL_900, carbonization yield ~45 wt.%) is 

used as starting material during the activation step and then also as a reference for 

the calculation of the activation yields. Although a drastic drop in the yield can be 

seen from BL_900_1_900 to BL_900_2_900 (~37 wt.%), a more progressive yield 

decrease from BL_900_2_900 to BL_900_5_900 is observed. Activation by using 

larger amounts of KOH provokes a further decrease in the final content of carbon 

rendering a yield of ~25 wt.% for sample BL_900_7_900. 
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Figure 2-12. Effect of the KOH/C ratio on the yield of the activated carbons. 

2.3.2.4.2 N2 Adsorption/Desorption 

Textural properties of the carbon samples are studied by N2 adsorption/desorption 

experiments. All these samples present a type I isotherm testifying that lignin-

derived carbons are microporous materials. Moreover, the well discernible 

hysteresis loop at high relative pressure is associated with capillary condensation 

in mesoporosity (Figure 2-13 (a)).30–32 After applying the corresponding analysis 

method to the adsorption isotherms, the surface areas, average pore sizes and 

micropore volumes are calculated (Table 2-2). Figure 2-14 (b) shows the variation 

of the specific surface area and the average micropore size determined by the 

NLDFT method versus the KOH/C ratio. The observed dependence suggests that 

there is no trend between the KOH/C ratio and the final porosity of the carbon, as 

distinct from activated carbons based on fossil fuels.33 The SSA and the average 

micropore size values show a non-linear trend as the chemical activation of the char 

proceeds by increasing the KOH/C ratio from 1 to 7. For samples BL_900 and 

BL_900_1_900 (as for BL_400 in the previous section), the porosity is weakly 

developed and thus stronger activation is required to achieve practically significant 

values of specific surface area. As the amount of KOH increases the SSA and the 

average pore size also increases, but further activation gives rise to a minimum in 

both values at a KOH/C ratio between 4 and 5. Higher KOH/C ratios provoke the 

development of an extra porosity with the resulting raise in the SSA and the pore 

size reaching maximum values of ~1406 m2.g-1 and 0.96 nm for sample 

BL_900_6_900 and ~1262 m2.g-1 and 0.98 nm for sample BL_900_7_900, 

respectively. 
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Figure 2-13. Textural analysis for samples 2, 3 and 4 (I) and 5, 6 and 7 (II). Normalized 

isotherms of the activated carbon samples (a) and differential pore volume calculated 

by NLDFT method (b). 

2.3.2.4.3 Small Angle X-Ray Scattering 

The textural properties of the materials are further studied by Small Angle X-Ray 

Scattering. SAXS profiles for all the samples can be seen in Figure 2-15.  They all 

present the Guinier, Porod and Fourier regions described in the previous section.  

The major differences are observed during activation of the first four samples, where 

the activation of the carbon allows the opening of the internal porosity and some 

mesoporosity appears as well. Samples with KOH/C ratios between 4 and 7, 

present similar SAXS profiles as their areas and average micropore sizes are fairly 

similar. 
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Table 2-2. Textural properties of the activated carbon samples produced from naturally 

occurring lignin. 

Name SNLDFT 

(m2.g-1) 

Smicro-

NLDFT 

(m2.g-1) 

Smeso-NLDFT 

(m2.g-1) 

L o-NLDFT 

(nm) 

Lo-DR 

(nm) 

BL_900_1_900 9 5 4 1.80 -- 

BL_900_2_900 845 797 48 0.90 1.07 

BL_900_3_900 1280 1259 21 0.80 0.87 

BL_900_4_900 1272 1254 18 0.76 0.81 

BL_900_5_900 1236 1234 2 0.79 0.87 

BL_900_6_900 1406 1311 95 0.96 1.24 

BL_900_7_900 1262 1196 66 0.98 1.22 

In order to see the differences in specific surface area and porosity between the 

samples by SAXS, the data are analysed with the IRENA tool package and the 

results are compared to the ones acquired by N2 sorption in Figure 2-16 and Figure 

2-17. 

Specific Surface Areas calculated by both methods follow the same trend (Figure 

2-16). At KOH/C equal to five, the difference in SSA is more notorious, this can be 

explained by the structure inhomogeneity of the sample as it will be explained with 

the Raman experiments.  

 

Figure 2-14. Textural properties: specific surface area and average micropore size of 

the pyrolyzed and activated carbon samples determined by NLDFT method. 
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Figure 2-15. SAXS intensity versus scattering angle of the carbonized and the activated 

samples at different KOH/C ratios: 0, 1, 2, and 3 (a) and 4, 5, 6, and 7 (b). 

Comparison of the pore size distribution of the activated carbons with the one from 

sample BL_900, calculated by IRENA, allows us to confirm that the microporosity 

observed in all the activated carbons comes from the internal microporosity 

developed in the carbonization step (Figure 2-17). 

 

Figure 2-16. Comparison of the Specific Surface Area calculated by SAXS/IRENA (red 

dots) and NLDFT method (green circles). 
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Figure 2-17. Comparison of the pore size distributions calculated by SAXS/IRENA 

(orange line) and NLDFT method (blue line). KOH/C equal to 0 (a), 1 (b), 2 (c), 3 (d), 4 

(e), 5 (f), 6 (g), and 7 (h). 
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2.3.2.4.4 Raman Spectroscopy 

In order to study the ordering of the carbons, acquisition of a single Raman spectrum 

is performed on several particles of the same specimen for the whole series of 

carbons prepared in this section. A minimum of 10 spectra are taken on different 

points of the sample particle. Figure 2-18 shows the typical Raman spectrum of 

each sample, the samples activated with a KOH/C ratio ≥ 2, clearly show two 

different zones, ordered (blue line) and disordered (orange line). For all the carbon 

samples derived from lignin, the low frequency region shows the two characteristic 

bands for carbonaceous materials; the graphite (G) band between 1570 cm -1 and 

1600 cm-1 and the disorder‒induced (D) band between 1330 cm-1 and 1360 cm-1. 

The presence of graphene domains produces the appearance of a weak but well 

defined band at ~2450 cm-1 which is due to a non‒dispersive overtone mode of an 

in‒plane optical phonon.34 The G mode has E2g symmetry and involves the in‒plane 

bond‒stretching motion of pairs of C sp2 atoms; while the D peak is a breathing 

mode with an A1g symmetry involving phonons near the K zone boundary, which 

only becomes active in the presence of disorder.14 At the second-order region, the 

2D band (2670 – 2760 cm-1) appears. This band is due to two phonon with opposite 

momentum in the highest optical branch near the K point of the Brillouin zone (A´1 

symmetry at K).35 

A Raman spectral imaging study (Figure 2-19) in at least 600 different points of a 

representative single particle is performed. In order to observe the morphology of 

these materials, the deconvolution and the ratio between the ID and IG peaks (~1340 

and ~1580 cm-1 respectively) are calculated. 

The analysis shows that lignin-derived carbons have a complex structure 

comprising a distribution of ordered (ID/IG < 0.5) and disordered (ID/IG > 0.5) zones. 

In Figure 2-19 Raman maps are shown coloured according to the ratio of the peaks 

intensities, showing the distribution of ordered as well as disordered areas.  

For sample BL_900_2_900, the formation of ordered regions seems to be in the 

initial stages. The presence of more ordered areas increases as the KOH/C ratio 

increases obtaining almost completely organized zones for ratios 4, 5, 6 and 7. 

The probability distribution of ID/IG in a particle in the different samples is shown in 

Figure 2-20 (a - g); the area of each rectangle represents the frequency of points 

with an ID/IG ratio corresponding to each interval and the total area is equal to the 

number of spectra taken in each sample. Figure 2-20 shows the percentile 

distribution of the samples in ordered and disordered zones. KOH/C ratios equal to 

1, 4 and 7 show almost no deviation from the main peaks and the carbons appear 

either completely disordered (BL_900_1_900) or ordered (BL_900_4_900  
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Figure 2-18. Normalized Raman spectra of samples with KOH/C ratio of 0 (a), 1 (b), 2 

(c), 3 (d), 4 (e), 5 (f), 6 (g) and 7 (h); depicting the two different spectra observed in 

different particles. 
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Figure 2-19. Distribution obtained by Raman spectral imaging of the ordered and 

disordered areas inside a particle for KOH/C ratio 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 

(g). Colour scale on the right bottom varies with the ID/IG values from 0.0 (dark blue) to 

1.2 (dark red). 

and BL_900_7_900). At KOH/C equal to 2, 3, 5 and 6, the presence of outliers of 

low frequency indicates that for these ratios the morphology of the carbon is more 

heterogeneous, even though the majority of the structure is disorganized 

(BL_900_2_900 and BL_900_3_900) or organized (BL_900_5_900 and 

BL_900_6_900). This heterogeneity causes discrepancies in the calculations of 

Specific Surface Areas by NLDFT and IRENA.  
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Figure 2-20. Histogram of KOH/C ratio calculated from the Raman spectral imaging for 

KOH/C ratio 1 (a), 2 (b), 3 (c), 4 (d), 5 (e), 6 (f), 7 (g) and percentile distribution of the 

samples (h). 

2.3.2.4.5 X-Ray Diffraction 

Figure 2-21 (a - h) shows the diffraction profiles for the set of samples studied in the 

present work. The XRD measurements did not show any remarkable difference 

among the samples. All of them presented a prominent and broad peak at ~2θ = 26 

º corresponding to the (002) diffraction in graphite (Figure 2-21 (i)). 
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Figure 2-21. X-Ray Diffraction patterns of the lignin-derived carbons, by KOH/C ratio 

equal to 0 (a), 1 (b), 2 (c), 3 (d), 4 (e), 5 (f), 6 (g) and 7 (h). Image illustrating the interlayer 

distance causing the 26 ° peak (i). 

2.3.2.4.6 Scanning and Transmission Electron Microscopy 

Four samples (BL_900, BL_900_2_900, BL_900_4_900, BL_900_6_900) are 

selected to analyse their morphology and microstructure by SEM (Figure 2-22 (a - 

d)) and TEM (Figure 2-22 (e – h)). Sample BL_900 in Figure 2-22 (a and e) has a 

typical microstructure of low-ordered carbon produced by thermal carbonization.  
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Figure 2-22. SEM (left) and HRTEM (right) images of the samples 0 (a and e), 2 (b and 
f), 4 (c and g) and 6 (d and h). Inset images: electron diffraction of the samples 0 (e) 
and 4 (g) and TEM image of a particular area in sample 4 (g). 
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SAD pattern (inset in Figure 2-22 (e)) shows only continuous uniform rings. After 

activation at 900 °C by using a KOH/C ratio above 2, the material shows not solely 

typical amorphous microstructure of activated carbons but also ordered regions. 

Figure 2-22 (b) shows the corrugation produced on the surface of the material due 

to the development of well-defined graphene layers during the activation process. 

The presence of few-layer graphene (FLG) embedded into the amorphous carbon 

matrix is confirmed by HRTEM (Figure 2-22 (f)). This phenomenon becomes more 

noticeable on the more strongly activated carbon specimens BL_900_4_900 (Figure 

2-22 (c)) and BL_900_6_900 (Figure 2-22 (d)). The top-right inset in Figure 2-22 (g) 

shows an agglomerate of carbon particles being mostly made up of few-layer 

graphene (see the HRTEM image of a selected area in Figure 2-22 (g)). A curved 

few-layer graphene structure, similar to the one obtained from delamination of highly 

graphitized carbon materials, is observed. The electron diffraction (ED) analysis (the 

bottom-left inset in Figure 2-22 (g)) also confirms the crystallinity of the material.  

Figure 2-22 (h) shows an HRTEM image of sample BL_900_6_900, in which 

nanoparticles exhibiting a larger number of stacked graphene layers than for sample 

BL_900_4_900 along with less ordered carbon are observed; the maximum number 

of graphene layers is estimated to be up to 30. As the amount of KOH/C ratio 

increases, the presence of both FLG along with less ordered areas is identified by 

SEM and TEM, this appearance of well-defined graphene layers occurs after 

carbonization and corresponds to a solid-state rearrangement.36 

Lignin-derived carbon can graphitize at temperatures above 2100 °C by the catalytic 

effect of sodium and sodium compounds present in lignin.3,4 Therefore, the C–C 

bond reorganization observed in these lignin-derived carbons might be due to a 

catalytic effect caused by presence of metals in the material, e.g. metallic impurities 

(ash content) from the biopolymer as well as metallic potassium produced during 

chemical activation.  

Actually, potassium hydroxide has been proved to be a catalytic agent in the 

reconstruction of closed-shell graphitic carbon37 and during the rearrangement of 

carbon nanofibers.38 More recently, activated carbon prepared from graphite oxide 

exhibited both the typical breakdown of the C–C bond network and a re-structuring 

process during the chemical activation with KOH.22 Thus, the final microstructure of 

lignin-derived carbon might be the result of two competitive processes: the chemical 

oxidation and the re-organization of the C–C bond mainly induced by metallic 

particles. The detailed mechanism of chemical activation still requires elucidation 

although the overall process can be described by Reaction 2-1, followed by side 

reactions amongst the different by-products (K/K2CO3/CO2) with carbon.22 
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2.3.2.5 Effect of the KOH/C Ratio on the Electrochemistry 

Figure 2-23 shows the cyclic voltammetry results at 5 mV.s-1 of the series 

BL_900_#_900  (where # denotes de KOH/C ratio), indicating gravimetric (Figure 

2-23 (a)) and volumetric (Figure 2-23 (b)) capacitance values. The almost purely 

capacitive behaviour of the nanoporous materials with KOH/C > 2, is evidenced in 

their cyclic voltammetry measurements (Figure 2-23) at 5 mV.s-1, in which a 

rectangular shape demonstrates the lack of faradaic charge transfer processes. 

Moreover, the profiles are quite symmetric meaning that these novel nanoporous 

carbon electrodes have good electrochemical reversibility and coulombic efficiency 

in 6 M KOH. Sample BL_900_1_900 shows a more resistant shape because of its 

low porosity. 

Figure 2-24 shows how the gravimetric and volumetric capacitance follow the same 

trend as the specific surface area, confirming that capacitive storage is strongly 

dependent on the available surface.  

Figure 2-25 shows the variation of the capacitance with the current density. Sample 

BL_900_6_900 exhibits the highest capacitance (144 F.g-1) at 0.1 A.g-1 and the 

largest retention (75 % at 10 A.g-1), this is a direct result of this sample having the 

largest SSA and second largest micropore average size from this set of samples. 

Samples BL_900_5_900 and BL_900_7_900 show lower capacitance values than 

their counterparts and poorer retention because of their low Smicro (Table 2-2). 

 

Figure 2-23. Gravimetric (a) and Volumetric (b) capacitance values in function of the 

voltage exhibited by the samples in aqueous electrolyte. 
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Figure 2-24. Specific surface area and gravimetric and volumetric capacitance in an 

aqueous electrolyte in function of the KOH/C ratio. 

The main results of the electrochemical analysis performed on the activated carbon 

samples in Et4NBF4/ACN electrolyte are shown in Figure 2-26. CVs for samples 

BL_900_2_900 and BL_900_4_900 (see results for a constant scan rate of 5 mV.s-

1 in Figure 2-26 (a - b)) show distorted CV shapes most probably due to the intricate 

interaction between the ions and the nanopores.23 Sample BL_900_4_900 exhibits 

a gradual decrease in capacitance as the voltage increases up to 2.5 V, most likely 

due to the low average micropore size (0.76 nm)  

 

Figure 2-25. Evolution of the capacitance with current density (a) and comparison of 

capacitance retention with current density (b). 
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Figure 2-26. Cyclic voltammetry (a), rate capability (b), and normalized rate capability 

(c) of the samples in organic electrolyte. 

compared to the effective ion size (i.e. the size of the ion inside the pore), leading 

to the ion sieving effect.25 A similar behaviour is observed during the discharge from 

2.5 V to 0 V. The rest of the samples have pores large enough for fitting the organic 

ions (the size of the largest ion, Et4N+, is about 0.67 nm and 1.30 nm for the bare 

and solvated ions, respectively).27 

Figure 2-26 (c - d) shows the evolution of the specific capacitance as a function of 

the current density ranging between 0.1 A.g-1 and 10 A.g-1. Sample BL_900_6_900 

presents the highest capacitance value (89 F.g-1) and samples BL_900_6_900 and 

BL_900_7_900 achieve the highest rate capability at 10 A.g-1, 59 %, in 

Et4NBF4/ACN. 
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Additional information about the capacitance and the real working potential range 

of each electrode in 1.5 M Et4NBF4/ACN is studied by measuring the 

charge/discharge curves using a 2-electrode cell configuration, where a silver rod is 

additionally used as a pseudo-reference electrode.39,40 Figure 2-27 shows the 

galvanostatic curves for all the samples at 0.1 A.g-1. KOH/C ratios from 2 to 5 show 

non-symmetric charge/discharge curves, while samples BL_900_6_900 and 

BL_900_7_900 show a linear dependence of the voltage on time, indicating non-

restricted access of ions into porosity. The asymmetry in the potential range is more 

notorious in sample BL_900_4_900, confirming the difficulty of the organic cations 

(Et4N+) to enter into the pores as a consequence of their larger size in comparison 

with the anions (BF4-). Because of the lower gravimetric capacitance exhibited by 

the negative electrode (i.e. 32 F.g-1) compared to the positive electrode (i.e. 67 F.g-

1), its potential window increases remarkably (i.e. 1.7 V compared to 0.8 V for the 

positive electrode) in order to satisfy the equivalence of charges stored in each 

electrode. Thus, the negative electrode restricts the overall cell performance. 

Considering that the pore size of 0.76 nm is lower than the size of solvated ions, it 

can be reasonably supposed that at least partially solvated Et4N+ ions are 

electrosorbed. Nevertheless, for the rest of the samples, this effect is less drastic 

because the average pore size is closer to the size of the solvated ions. As a result, 

the ion-sieving effect is not discernible.  

The relationship between the KOH/C ratio, the microstructure and the capacitance 

values in an organic electrolyte is depicted in Figure 2-28. The in-plane crystal size 

averaged out separately for the disordered and ordered areas is calculated on the 

basis of the Raman data using the Tuinstra–Koenig equation, widely used for the 

characterization of amorphous and graphitic materials.41 The in-plane crystal size 

shows an opposite tendency when compared to the textural properties depicted in 

Figure 2-14. A local maximum is observed at the KOH/C ratio equal to 4, 

corresponding to an ordered in-plane crystal size of 37 nm. The reason for this 

interplay between the crystallite and the pore size might be related to the pore 

shrinking when the size of the carbon cluster increases. However, this is not 

observed for sample BL_900_7_900 which shows the highest crystal size as well 

as the largest pore size. This behaviour can be explained by the presence of isolated 

ordered regions, and/or the consumption of more KOH for the reorganization of C–

C bonds rather than for the creation of porosity. Remarkably, the increase in the 

crystal size of the ordered regions does not improve the capacitive properties in 1.5 

M Et4NBF4/ACN. In this way, samples BL_900_4_900 and BL_900_6_900, with 

ordered crystallite sizes of 37 and 24 nm, achieve capacitance values of 44 and 87 

F.g-1, respectively.  
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Figure 2-27. Charge/discharge curves at 0.1 A.g-1 in a two-electrode cell configuration 
(green line) using a Ag pseudo-reference electrode. The orange line indicates the 
contribution of the positive electrode whereas the violet line shows the contribution of 
the negative electrode. Samples BL_900_2_900 (a), BL_900_3_900 (b), BL_900_4_900 
(c), BL_900_5_900 (d), BL_900_6_900 (e), and BL_900_7_900 (f). 
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Figure 2-28. Changes in the crystallite size of graphene domains in disordered (green 

squares) and ordered (orange dots) regions along with the gravimetric capacitance 

(F.g-1) (violet triangles) versus KOH/C ratio. The values shown along the capacitance 

line refer to the average micropore size calculated by the NLDFT method. Gravimetric 

capacitance was calculated from the galvanostatic curves at a current density of 0.1 

A.g-1 in Et4NBF4/ACN. 

2.4 Conclusions and Perspectives 

A series of nanoporous carbons were prepared by chemical activation of natural 

lignin and tested as electrode materials for electrical double-layer capacitors. 

The pore development in lignin-derived carbons depended strongly on the 

carbonization temperature. Two sets of samples were carbonized at 400 °C and 

900  °C. A carbonization temperature of 900 °C yielded carbons with higher 

micropore volume than those carbonized at 400 °C, this difference was probably 

caused by the release of methane above 350 °C. Carbons with high micropore 

volume proved to be better materials for aqueous supercapacitors because of their 

small micropore size (i.e. samples BL_400_4_900 and BL_900_4_700 achieved 

200 F.g-1 in 6 M KOH) while carbons with some mesoporosity achieved higher 

capacitance values in organic electrolytes thanks to a better interaction between 

average pore and ion sizes (i.e. sample BL_400_4_700 achieved 97 F.g-1 in 1.5 M 

Et4NBF4/ACN). 

The effect of the KOH/C ratio used during the activation step on the in-plane crystal 

size of FLG and the pore size of the resulting carbons and, ultimately, its impact on 



GRAPHENE-RELATED MATERIALS FOR ELECTROCHEMICAL CAPACITORS 
Adriana M. Navarro-Suárez – November 2016 

66 Nanoporous Carbon Electrodes with Graphene‒Like Structure for Supercapacitors 

the final capacitive properties were assessed. Generally, an increase in the in-plane 

crystal size of FLG in this carbon was related to a decrease on the average 

micropore size and, therefore, the capacitance values. Using the carbon activated 

with KOH/C ratio equal to 6, 144 F.g-1 and 87 F.g-1 were achieved in 6 M KOH and 

1.5 M Et4NBF4/ACN, respectively, indicating that the presence of ordered zones in 

activated carbons was counterproductive to achieve high capacitance. 

The operational voltage window of organic electrolytes was also maintained in 

systems based on lignin-derived carbon, which confirmed the suitability of this 

material for industry-standard organic electrolytes. 

In general, lignin-based activated carbon exhibits a highly disordered microstructure 

with a high number of defects resulting in a complex porous network. This material 

is a good example proving that advanced nanoporous materials with tuneable pore 

size and partially ordered microstructure can be achieved by using natural and 

affordable precursors, such as lignin, thereby enhancing electrochemical 

performance when used as electrodes in energy storage applications. 
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3 MULTI-REDOX PARTIALLY 

REDUCED GRAPHITE 

OXIDE/BIOPOLYMER 

ELECTRODES FOR 

SUPERCAPACITORS 

3.1 Introduction  

The introduction of redox active moieties into the electrode material is a well-

positioned strategy to enhance capacitance through reversible Faradaic 

reactions.1–3 Electroactive organic compounds and polymers involving reversible 

redox reactions are considered promising candidates to introduce these moieties. 

Even though there is a large number of suitable organic molecules, those 

containing quinones have received the greatest attention, since they have high 

theoretical capacity, high electron transfer kinetics, excellent redox reversibility 

and low cost.4–6 In those molecules containing quinone/hydroquinone (Q/QH2) 

moieties, two electrons and protons are stored in a structure of 6 carbon and 2 

oxygen atoms, an electronic charge density of 2 Farads per 108 g, 1787 C.g-1, or  
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Reaction 3-1. Quinone/Hydroquinone Redox reaction. 

496 mAh.g-1 (Reaction 3-1).  

Phenol and quinone compounds are found in plants and wood. Black liquor, a by-

product of paper processing, incorporates lignin rich in phenol groups, which can 

be further converted to quinones through oxidation processes (Reaction 3-2). 

However, lignin is a poor electron conductor. Accordingly, it is necessary to 

combine lignin with an electron conducting material, in order to allow charge 

transport.7,8  The electron conductor may then facilitate the transport of electrons 

and ions to the lignin moiety where charge can be stored in a reversible redox 

reaction between the hydroquinone and quinone forms (Reaction 3-2). The use of 

electron conducting polymers is attractive as their properties can be modified by 

variations in polymer structure.9,10 The first example of this approach utilized a 

combination of lignin and polypyrrole.9  In addition, various combinations of lignin 

and another electron conductors such as reduced graphene oxide11  or carbon 

nanotubes12 have been investigated. 

More recently, poly(3,4-ethylenedioxythiophene) (PEDOT) was used to facilitate 

the electron transfer to the lignin. The lignin/PEDOT biopolymer was studied as 

supercapacitor and higher capacitance retention (83 % after 1000 cycles) was 

achieved than with the lignin/polypyrrole blend, in which strong degradation after 

cycling was observed.13  

However, lignin has not been tested in a two-electrode configuration yet, as the  

Reaction 3-2. Lignin Redox reaction. 
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previous studies have focused on the electrochemical characterization of the 

material. Here, to develop a full cell we have used a partially reduced Graphite 

Oxide (prGrO) synthesized by the Marcano-Tour method14 which yields a material 

with majority of quinone groups.15  The electrochemistry of a quinone group is 

determined by its neighbours;16 therefore, different peak potentials are expected 

for the lignin/PEDOT and the prGrO. By having another peak in the CV curve, 

higher values of capacitance than the ones reported in the literature17–22 are 

foreseen. 

 The goals of the chemical approach delineated herein are the following:  

i) The use of low cost electrodes is of utmost importance and with that objective in 

mind, the lignin used in these experiments is separated from an industrial by 

product and the prGrO is partially reduced at low temperatures avoiding any 

additional step and the use of hazardous chemicals. 

ii) Synergize both features of the electroactive Lignin/PEDOT blend and the 

electron-conducting partially reduced Graphite Oxide for renewable energy-

storage materials. For that, two strategies are explored: an asymmetric cell with 

Lignin/PEDOT and prGrO as negative and positive electrode, respectively and 

development of a composite between Lignin/PEDOT and prGrO, tested in a 

symmetric cell. 

3.2 Methodology 

3.2.1 Materials Synthesis  

3.2.1.1 Lignin/PEDOT Polymerization 

The natural lignin is isolated from Black Liquor with sulfuric following a process 

explained in section 2.3.1. Lignin/PEDOT biopolymers are synthesized via 

chemical oxidative polymerization of EDOT monomer in the presence of lignin, by 

using Iron (III) Chloride as catalyst and Sodium Persulfate as primary oxidant at 

room temperature during 8 hours, as explained elsewhere.13  In this case, as lignin 

is not sulfonated, the mixture containing lignin and oxidant is left stirring in water 

for 8 hours in order to partially solubilise the lignin. Then, EDOT monomer is 

added and the mixture is left stirring at room temperature for 8 more hours. Finally, 

Lignin/PEDOT dispersions are dialyzed with deionized water in 12000-14000 Da 

molecular weight cut-off membranes for 2 days. After freeze-drying the 

Lig/PEDOT polymers, are obtained as dark bluish powders.  The initial  
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Scheme  3-1. Chemical oxidative polymerization of Lig/PEDOT blends. 

 

Lignin:EDOT mass ratios used are 0:100, 20:80, 40:60 and 60:40 yielding the as 

called PEDOT, Lig/PEDOT 20/80, Lig/PEDOT 40/60 and Lig/PEDOT 60/40 

polymers, respectively. These polymers are also tested as cathodes in Na-ion and 

Li-ion batteries as can be seen in Appendix II. 

3.2.1.2 Partially Reduced Graphite Oxide Synthesis 

Graphite powder (Sigma Aldrich, particle size < 20 μm, cat#282863) is oxidized by 

a modified Hummers’ method described elsewhere.14   Briefly, a 9:1 mixture of 

concentrated H2SO4/H3PO4 (360:40 mL) is added to a mixture of graphite powder 

(3.0 g, 1 wt. equiv.) and KMnO4 (18.0 g, 6 wt. equiv.).  The reaction is then heated 

to 50 °C and stirred overnight.  The reaction is cooled down to room temperature 

and poured onto ice (~400 mL) with 30 % H2O2 (3 mL). The solution is centrifuged 

(10000 rpm for 30 min), and the supernatant is decanted away.  The remaining 

solid material is then washed in succession with 200 mL of water, 200 mL of 30 % 

HCl, and then water until neutral pH; for each wash, the mixture is centrifuged 

(10000 rpm for 30 min) and the supernatant decanted away.  The solid recovered, 

Graphite Oxide (GrO), is vacuum-dried overnight at 60 ºC.  GrO is then heated, 

under argon flow, at a heating rate of 5 ºC.min-1 up to 160 ºC, followed by an 

isothermal step of 1 hour.  The solid obtained is referred as prGrO (partially 

reduced Graphite Oxide). 
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3.2.2 Characterization Methods 

Lignin/PEDOT and prGrO are a polymer and a carbon, respectively. This means 

that different characterization methods should be used for each one of them. 

3.2.2.1 Lignin/PEDOT Characterization 

The different functional groups in the polymer are studied by Fourier Transform 

Infrared Spectroscopy (FTIR) measurements. These are acquired at room 

temperature using a Thermo scientific model Nicolet 6700 FT-IR spectrometer, 

applying 10 scans in transmission mode using KBr pellets. 

The thermal stability of the polymers is investigated through thermo-gravimetric 

analysis (TGA) performed on a TGA Q500 from TA Instruments. Measurements 

are carried out by heating around 3 mg of the sample at 10 °C.min-1, under 

nitrogen atmosphere, from room temperature to 800 °C. 

3.2.2.2 prGrO Characterization 

The carbon and oxygen content of prGrO is quantified by X-Ray Photoelectron 

Spectra (XPS). The spectra are recorded on a KRATOS AXIC 165 equipped with 

Mg Kα radiation and hemispherical analyser Phoibos 150 with 3D-DLD detector 

(SPECS).  The binding energy (BE) of all the samples are tested as referenced to 

C 1s at 284.8 eV. The assignment of C 1s and O 1s components are based on 

theoretical predictions of core level shifts and on reported spectra containing the 

particular oxygen functional groups.23,24  The XPS peaks are fitted to pseudo-Voigt 

functions having 80 % Gaussian and 20 % Lorentzian character, after performing 

a Shirley background subtraction. 

The changes from GrO to prGrO are followed with Fourier Transform Infrared 

Spectroscopy, N2 gas sorption, X-Ray Diffraction. These techniques are explained 

in Appendix I. 

3.2.3 Electrochemical Testing 

3.2.3.1 Qualitative Methods 

To determine the capacitive contributions to the current of each material, initial 

voltammetric measurements are made in a cavity micro-electrode (CME), in which 

the electrochemical interface area is around a fraction of mm2 and the ohmic drop 

coming from the bulk of the electrolyte can be neglected, allowing the use of high 
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scan rates.25  The lignin/PEDOT and prGrO are studied in a 3-electrode 

configuration in a 0.1 M perchloric acid (HClO4, sigma Aldrich) solution with a 

platinum wire as counter electrode and Ag/AgCl as reference electrode.  Given the 

electronically insulating character of lignin, a composite made out of lignin and 

Multi-Walled Carbon Nanotubes (MWCNT) is physically mixed in a proportion 

(80:20) and its electrochemical properties are measured with the CME.  The 

microcavity is filled with active material by pressure of the carbon powders against 

a glass plate.  The cavity is cleaned by immersing the electrode in ethanol in an 

ultrasonic bath between experiments. A study of the charge/discharge mechanism 

of the prGrO electrode in different aqueous-based electrolytes is performed by 

means of the cavity microelectrode and X-Ray Diffraction as it will be explained in 

Appendix III. 

3.2.3.2 Quantitative Methods 

Lignin/PEDOT and Lignin/PEDOT/prGrO electrodes are prepared by drop-casting 

on a Platinum mesh from an aqueous solution. The electrodes are left to dry at 

room temperature under air for 8 h before testing.  

Initially, to study the electrochemical properties of the prGrO three strategies are 

used: a pellet prepared with 1 Ton pressure, a slurry with 10 % PTFE and a film 

prepared by vacuum-assisted filtration. This latter method is selected for the 

symmetric and asymmetric cells. The preparation is as follows, the prGrO is 

suspended in ethanol and filtered under vacuum by using polytetrafluoroethylene 

membranes (Sartorius, pore size 0.45 µm and 4.5 cm diameter) and dried in a 

vacuum oven at 60 °C for 8 h, resulting in a prGrO film that detaches easily from 

the membrane and can be further used as a free-standing electrode.  

To quantify the amount of charge stored by these materials, Swagelok cells are 

assembled and the materials are electrochemically tested as follows. 

The cells are electrochemically studied by using a 0.1 M HClO4 solution and 

Ag/AgCl as reference electrode. For those tests carried out by using a 3-electrode 

cell, a platinum mesh is used as counter electrode.  Details about the 

electrochemical measurements can be found in Appendix 1.  
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3.3 Results and Discussion 

3.3.1 Lignin/PEDOT Characterization 

In order to confirm the EDOT polymerization in the presence of lignin and their 

blending, FTIR and TGA experiments are performed on the lignin, the PEDOT and 

the Lig/PEDOT 20/80, Lig/PEDOT 40/60 and Lig/PEDOT 60/40 polymers. 

3.3.1.1 Fourier Transform Infrared 

Lignin Fourier Transform Infrared Spectrum (Figure 3-1) shows peaks at 1600, 

1510 cm-1 (vibrations of aromatic ring), 1460, 1428 cm-1 (aromatic ring vibrations 

combined with methyl and methylene C-H deformations), 1212 cm-1 (C-C and C-O 

stretching vibrations) and 1040 cm-1 (C-O-C stretching vibrations). Conversely, 

PEDOT shows peaks at 1200, 1090, 1060 cm-1 (C-O-C stretching of ethylenedioxy 

group), 980, 840 cm-1 (C-S stretching) and 685 cm-1.13 All the Lig/PEDOT 

polymers exhibit vibration bands related to lignin and PEDOT structures and the 

intensity of the bands depend on the composition of the polymer. For instance, the 

peak at 1600 cm-1 attributed to the C=C stretching of the aromatic ring in lignin 

decreases as the percentage of PEDOT increases in the polymer. On the 

contrary, the broad C-S stretching peak at 840 cm-1 decreases as the percentage 

of Lignin is increased. This peak is characteristic of PEDOT and its decrease is 

associated with the decrease of the conductive polymer proportion on the 

biopolymer.   

Figure 3-1. FTIR spectra of lignin, Lig/PEDOT 60/40, Lig/PEDOT 40/60, Lig/PEDOT 

20/80 and PEDOT. 
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Figure 3-2. TGA curves obtained for lignin, Lig/PEDOT 60/40, Lig/PEDOT 40/60, 

Lig/PEDOT 20/80 and PEDOT at a heating rate of 10 °C.min-1 under Nitrogen 

atmosphere. 

3.3.1.2 Thermogravimetric Analysis 

The lignin and Lig/PEDOT polymers show high thermal stability as shown in the 

TGA curves in Figure 3-2. All the Lig/PEDOT polymers are stable up to 190 ºC. 

Then, a continuous degradation occurs, corresponding to the elimination of 

absorbed water, and then a major decomposition in the region between 300 ºC 

and 450 ºC is observed, which is attributed to the decomposition of PEDOT main 

chains.26 Finally, at 800 °C, PEDOT shows a residual trace of 28 %, while lignin 

and Lig/PEDOT polymers exhibit residual traces of 41 % of the total mass; this 

value agrees with the results achieved under Argon atmosphere in the previous 

chapter (Figure 2-2).  

3.3.2 prGrO Characterization 

In order to determine the functional groups, present in the prGrO synthesized, the 

material in powder is analysed by XPS and FTIR. Graphite Oxide (GrO) is also 

analysed as comparison.   

3.3.2.1 X-Ray Photoelectron Spectroscopy 

The significant surface charging effect due to the electrically insulating nature of 

GrO is reflected in the presence of XPS bands towards high binding energies 

(Figure 3-3 (a – b)). The C 1s spectrum of GrO on the top of Figure 3-3 (a) has 

two main peaks at 285.5 eV and 287.3 eV. These can be fit to peaks at 284.5,  
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Figure 3-3. C 1s (a) and O 1s (b) survey by X-Ray Photoelectron Spectroscopy of the 

Graphite Oxide (top) and the partially reduced Graphite Oxide (bottom). 

285.5, 286.5, 287.7 and 288.7 eV and thus assigned to C=C, C-C, C-O, C-O-C 

and C=O, and C(O)OH respectively. Upon heating under Argon flow, the C 1s 

spectrum exhibits a transformation from a double peak at room temperature to a 

single peak (~284.6 eV) at 160 °C, being indicative of a tendency to restore the 

sp2 bonding graphene character. This affirmation can be confirmed by the intensity 

increase of the peak at 284.5 eV, related to C=C bonds, from 10.5 % to 67.3 % 

and the decrease of the peaks related to Carbon directly attached to an Oxygen 

atom, from 75.2 % to 28.4 %. A clear shift of peak-maxima to lower BE with 

increasing temperature signifies the transformation from electrically insulated GO 

to the conducting nature of graphite. Comparing the C/O atomic ratio of GrO with 

prGrO, there is an increase in C-content and an associated decrease of the O 

groups, from 1.5 to 2.5.  

Information provided by analysis of the O 1s spectra (Figure 3-3 (b)) can 

complement the information provided by analysis of C 1s spectra. As the O 1s 

photoelectron kinetic energies are lower than those of the C 1s, the O  1s 

sampling depth is smaller, and therefore the O 1s spectra are slightly more 

surface specific. The peak corresponding to the C-O bonds increases from 62.2 % 

to 68.0 % during the thermal reduction, this could be explained by the formation of 

phenol (or aromatic diol) groups during deoxygenation because of the close 

proximity of C-OC and C-OH on the basal plane.27 

3.3.2.2 Fourier Transform Infrared Spectroscopy 

Five main absorption bands are identified in the FTIR spectra (Figure 3-4), centred  
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Figure 3-4. FTIR of the Graphite Oxide and the partially reduced Graphite Oxide. 

at 3400 cm-1 (O-H stretching vibrations), 1714 cm-1 (C=O stretching vibrations), 

1620 cm-1 (skeletal vibrations from unoxidized graphitic domains), 1230 cm-1 (C-

OH stretching vibrations) and 1160 cm-1 (C-O stretching vibrations).28   The 

decrease in the C=O band, when comparing prGrO with GrO, and the increase in 

all the other bands, agrees with the results from XPS and reinforces the 

hypothesis of phenol and/or aromatic diols as the main functional groups in the 

prGrO.  These observations are consistent with the ones made by Pumera et al., 

who noticed that quinone/hydroquinone functionalities are the likely source of the 

redox reactions observed in graphene oxide prepared by Marcano-Tour’s 

method.15  

The textural properties (average pore size, pore size distribution, surface area) as 

well as the change of the basal distance between the individual graphene layers 

before and after oxidation, were determined by N2 gas sorption, Raman and XRD. 

3.3.2.3 N2 Adsorption/Desorption 

The N2 isotherms of the two samples are shown in Figure 3-5 (a).  On the one 

hand, GrO presents a type I isotherm indicating that is a microporous material; 

while, the hysteresis loop at high relative pressure is associated with capillary 

condensation in mesoporosity. On the other hand, prGrO presents a type IV 

isotherm indicating a wide distribution of pore sizes.  

Comparing GrO and prGrO textural properties (Table 3-1), a slight increment in 

the Specific Surface Area is observed after thermal reduction. This increase 

seems to be caused by the development of mesopores in the structure (Figure 3-5  
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Figure 3-5. N2 isotherm (a), and Pore size distribution (b) of the Graphite Oxide (GrO) 

and the partially reduced Graphite Oxide (prGrO). 

(b)), which could be explained by the removal of functional groups during the 

deoxygenation process. 

3.3.2.4 Raman Spectroscopy 

Raman spectra of GrO and prGrO (Figure 3-6 (a)) yield the G and D peaks at 

1587 and 1347 cm-1, respectively.  The G peak is due to the bond stretching of all 

pairs of sp2 atoms in both rings and chains.  The D peak is attributed to the 

breathing modes of sp2 atoms in rings.29  The ID/IG ratio, provides a measure of the 

disorder in the sample. In this case the ratio in both, the GrO and the prGrO, is 

0.87. Other thermally reduced graphene oxides have been reported to have ID/IG 

ratio above 1.5,30 indicating that our method yields a less disordered rGO.    

 

Table 3-1. Textural properties of the Graphite Oxide and the partially reduced 

Graphite Oxide. 

Sample 
SNLDFT 

(m2.g-1) 

Smicro-NLDFT 

(m2.g-1) 

Smeso-NLDFT 

(m2.g-1) 

Lmicro-NLDFT 

(nm) 

GrO 27 24 3 1.19 

prGrO 30 16 14 0.99 
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Figure 3-6. Raman (a) and XRD (b) of the Graphite Oxide (GrO) and the partially 

reduced Graphite Oxide (prGrO). 

3.3.2.5 X-Ray Diffraction 

The X-Ray Diffraction patterns of Graphite Oxide (GrO) and partially reduced 

Graphite Oxide (prGrO) can be seen in Figure 3-6 (b). The interlayer distance 

range calculated from the (002) peak is 6.86 – 11.53 Å in GrO. After thermal 

reduction, a heterogeneous material with interlayer distances ranging from 2.60 to 

5.32 Å is achieved; prGrO also exhibits the (100) and (110) Bragg reflections 

indicating a turbostratic structure.31 A turbostratic structure indicates a stacking 

disorder in which different layers have no regular rotational or translational 

relationship.32 

3.3.3 Electrochemical Testing  

3.3.3.1 Qualitative Methods 

Lignin, Lig/PEDOT 40/60 (as example) and prGrO are tested electrochemically in 

a 3-electrode configuration with a microcavity as working electrode. Two separate 

mechanisms, surface capacitive effects and diffusion-controlled processes, can be 

discriminated by relating the current response to the voltammetric sweep rate 

according to the following equation: 

𝒊

𝒗
𝟏
𝟐⁄
= 𝒌𝟏𝒗

𝟏
𝟐⁄ + 𝒌𝟐 

where 𝒊 is the measured current, 𝒗 is the sweep rate, and 𝒌𝟏 and 𝒌𝟐 are related to 

Equation 3-1 
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the current contributions from the surface capacitive effects and the diffusion-

controlled process, respectively. Figure 3-7 shows the cyclic voltammetry curves 

at 100 mV.s-1 of lignin, Lig/PEDOT 40/60 and prGrO. By plotting 𝒊 𝒗
𝟏
𝟐⁄⁄  vs 𝒗

𝟏
𝟐⁄ , 

according to Equation 3-1, the values of 𝒌𝟏 and 𝒌𝟐 are calculated in the whole 

potential window and therefore we are able to quantify the fraction of the current 

due to each of these contributions. 

The comparison of Figure 3-7 (a) and Figure 3-7 (b), will give us important 

information about the electrochemical properties of lignin and how these 

characteristics change by polymerizing EDOT in the presence of lignin. In Figure 

3-7 (a), Lignin-MWCNT presents a narrow peak around 0.5 V and its potential 

window is constricted between 0 and 0.9 V vs Ag/AgCl. When analysing the 

capacitive contributions, a small peak appears at 0.5 V, indicating that both 

capacitive and diffusion-controlled processes cause this peak. This peak might 

correspond to the redox process of the quinones present in the lignin,9 and is 

present in both curves as result of the reaction taking place in both the surface of 

the material (pseudocapacitive process) and the bulk of the electrode. The total 

capacitive contribution was of 42 % at 100 mV.s-1.   

When EDOT is polymerized in the presence of lignin, the CV shape changes 

dramatically (Figure 3-7 (b)). First, the potential window is increased in 0.20 V, 

going from -0.2 to 0.9 V vs Ag/AgCl. Second, the peaks attributed to the Reaction 

3-2 in lignin-MWCNT are now broader and more separated, indicating a more  

 

Figure 3-7. Total (blue area) and capacitive contributions (orange area) to charge 

storage in 0.1 M HClO4 of lignin-MWCNT (a) and Lig/PEDOT 40/60 (b). 
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Figure 3-8. Total (blue area) and capacitive contributions (orange area) to charge 

storage in 0.1 M HClO4 of prGrO. 

pseudo-capacitive process. Third, the shape of the cyclic voltammetry looks more 

rectangular indicating a more capacitive process than in the lignin-MWCNT 

composite. These two last points are confirmed by the more rectangular shape of 

the capacitive contributions to the current of the Lig/PEDOT 40/60 polymer and 

the increase of the contribution up to 66 % at 100 mV.s-1. These results prove that 

PEDOT is an adequate facilitator for transferring electrons to the lignin and the 

Lig/PEDOT biopolymer is ideal for supercapacitor applications thanks to its high 

capacitive contributions at high scan rates. 

In the case of the prGrO (Figure 3-8), the redox peaks observed at ~0.3 V, 

correspond to the redox reactions involving the quinone/hydroquinone 

functionalities (Reaction 3-1). The capacitive charge storage corresponds to 75 % 

of the total charge at 100 mV.s-1 and might be caused by double-layer and pseudo 

capacitive processes. However, given the low Specific Surface Area presented by 

the prGrO, most of this capacitance should be caused by redox 

pseudocapacitance involving again the quinone/hydroquinone functionalities 

(Reaction 3-1) or fast intercalation of the ions inside the material. This surface-

confined charge-transfer process is confirmed by the broad peak in the capacitive 

curve of the material. 

3.3.3.2 Quantitative Methods 

As the quantity of material inserted in a cavity micro-electrode is unknown, 

Swagelok cells were assembled to quantify the capacitance achieved by the 
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materials.  

3.3.3.2.1 Optimization of the Lignin/PEDOT Ratio 

Figure 3-9 shows the rate capability of the different Lig/PEDOT proportions. In 

Figure 3-9 (a) the differences in capacitance between the different proportions can 

be observed. These differences can be explained by the effect the lignin and 

PEDOT proportions have on the electrochemical conductivity of the film. On the 

one hand, in Lig/PEDOT 20/80, as the percentage of lignin is low, there is 

probably not enough quinone moieties for Reaction 3-2. On the other hand, in 

Lig/PEDOT 60/40, the percentage of PEDOT might be too low, making it difficult 

for the electrons to transfer to the lignin. The highest capacitance value, 97 F.g-1, 

is achieved by Lig/PEDOT 40/60.  

Figure 3-9 (b) relates the capacitance retention with the current density of the 

Lig/PEDOT biopolymers. The increment of the lignin proportion on the polymer 

increases the capacitance retention with the current density. This might seem 

counterintuitive, as the PEDOT should be increasing the conductivity of the 

material. However, as explained by Ajjan et al., Lignin acts in the polymer as both 

dopant and dispersing agent,13 therefore its decrease might cause a charge 

unbalance that reflects on a more difficult charge transport, hence a drop in the 

capacitance with the current density. 

 

Figure 3-9. Rate capability (a) and capacitance retention (b) of the Lig/PEDOT 

different proportions in 0.1 M HClO4. 

 



GRAPHENE-RELATED MATERIALS FOR ELECTROCHEMICAL CAPACITORS 
Adriana M. Navarro-Suárez – November 2016 

86  Multi-Redox Partially Reduced Graphite Oxide/Biopolymer Electrodes for Supercapacitors 

3.3.3.2.2 Optimization of the prGrO Electrode 

In the case of the prGrO, the development of an electrode that could retain its 

capacitance with the current density was the key challenge. The quinone groups in 

the prGrO should yield high capacitance values because of the redox reactions in 

the surface and bulk of the material, as explained in the previous section. 

However, as they are involved in the electrochemical process a depletion of the 

quinone group with increase of the current density or cycling is expected.33 Figure 

3-10 shows the rate capability of the three different electrodes of prGrO in HClO4, 

i.e. pellet, slurry and film.  

The pellet achieves 221 F.g-1 at 0.1 A.g-1 (Figure 3-10 (a)) but is rapidly diminished 

when the current density is increased (Figure 3-10 (b)). This might be caused by 

the high resistance present in a pellet caused by the thickness of the electrode. In 

order to prepare thinner films, a slurry with PTFE and a vacuum-assisted film are 

tested.  

At low current densities, the prGrO slurry shows lower capacitance at 0.1 A.g-1 

than the pellet, i.e. 148 F.g-1; however, after 0.5 A.g-1 the prGrO slurry maintains 

larger values than the pellet. In fact, as can be seen in Figure 3-10 (b) the 

preparation of thinner electrodes improves the capacitance retention of the prGrO. 

The prGrO film achieves the highest capacitance, 248 F.g-1, of the three 

preparation methods and keeps a capacitance retention similar to the slurry up to 

3 A.g-1. At higher current densities, the slurry’s capacitance drops faster than the 

film’s.  

 

Figure 3-10. Rate capability (a) and capacitance retention (b) of prGrO in 0.1 M HClO4. 
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3.3.3.2.3 Symmetric Cells of Lig/PEDOT 40/60 and prGrO 

Lig/PEDOT 40/60 and the prGrO film are selected as the optimum electrode 

materials for this study. Therefore, they are tested in different symmetric cells and 

the electrochemical results are shown in .  (a – b), show the rate performance of 

the symmetric cells. As expected from the 3-electrode measurements, the 

symmetric prGrO exhibits a higher capacitance (130 F.g-1) than the symmetric 

Lig/PEDOT 40/60 (44 F.g-1). Nevertheless, symmetric Lig/PEDOT 40/60 maintains 

77 % of its capacitance at 10 A.g-1, while symmetric prGrO only retains 15 % at 3 

A.g-1. This is caused by the balance between Lignin and PEDOT that provides an 

optimum charge transport. Lig/PEDOT’s electron conductivity proceeds from  

 

Figure 3-11. Rate capability (a) and capacitance retention (b) of the symmetric cells 

of prGrO and Lig/PEDOT 40/60 in 0.1 M HClO4. Cyclic Voltammetry in a symmetric 

cell configuration at 5 mV.s-1 of Lig/PEDOT 40/60 (c) and prGrO (d).  
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tunnelling between small conducting grains separated by insulating barriers34 

while prGrO has a lower conductivity given that it is caused by delocalization of 

the electrons.35  

Both, Lig/PEDOT 40/60 ( (c)) and prGrO ( (d)) show rectangular CVs which 

evidence a capacitor behaviour. In the case of the Lig/PEDOT 40/60 cells, the 

potential window of each electrode is slightly different, being 0.6 V for the negative 

electrode and 0.4 V for the positive electrode. The difference in the potential 

window is caused by the redox reaction of the quinones (Reaction 3-2) in the 

positive electrode increasing the capacitance of this electrode.  

By principle, the charge (𝒒 ) stored at the positive and negative electrode is 

equivalent (𝒒+ = 𝒒−). This charge depends on the specific capacitance (𝑪), the 

potential window (∆𝑬) and the mass (𝒎) of each electrode following the equation 

below:36  

 

𝒒 = 𝑪×∆𝑬×𝒎 

In the case of the Lig/PEDOT 40/60 electrode, the redox reaction related to the 

quinone moieties occurs at the positive electrode; therefore, its capacitance is 

larger than the one exhibited by the negative electrode, and as 𝒒+ = 𝒒−, then 

∆𝑬+ < ∆𝑬−. These results indicate that the supercapacitor performance is limited 

by the negative electrode.  

For the prGrO film, the potential windows and capacitance values of each 

electrode are equal.  

3.3.3.2.4 Asymmetric Device 

An asymmetric device based on Lig/PEDOT 40/60 as positive electrode and 

prGrO as negative electrode is assembled. This device will take advantage of the 

redox reactions taking place at the positive electrode in the Lig/PEDOT polymer 

and its high capacitance retention, and the large capacitance values exhibited by 

the prGrO. As both electrode materials have the same potential window, we 

assume that the whole potential will be divided equally in between the materials. 

Therefore, their masses are balanced based on their capacitance values at 0.1 

mAh.g-1, as follows: 

𝑪+×𝒎+ = 𝑪−×𝒎− 

 

Equation 3-2 

Equation 3-3 



GRAPHENE-RELATED MATERIALS FOR ELECTROCHEMICAL CAPACITORS 
Adriana M. Navarro-Suárez – November 2016 

Multi-Redox Partially Reduced Graphite Oxide/Biopolymer Electrodes for Supercapacitors   89 

 
Figure 3-12. Results of the asymmetric Lig/PEDOT//prGrO device. Cyclic voltammetry 
(a), rate capability (b) and capacitance retention with current density (c) Capacitance 
retention after 1000 cycles at 5 mV.s-1 (d), 2nd cycle CV at 5 mV.s-1 (e) and 1000th cycle 
CV at 5 mV.s-1 (f). 
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𝒎+

𝒎−

=
𝑪−
𝑪+

=
𝟐𝟒𝟖

𝟗𝟕
= 𝟐. 𝟔 

Figure 3-12 shows the main electrochemical results of the asymmetric 

Lig/PEDOT//prGrO device with 𝒎+ 𝒎−⁄ = 2.6. To compare the results from the 

asymmetric and symmetric devices, the capacitance values here reported 

correspond to the cell capacitance. The CVs of the asymmetric device in Figure 

3-12 (a), show that even having two diffusion-limited processes, the total effect is 

an almost rectangular CV, similar to the ones exhibited by double-layer capacitors. 

This behaviour is kept at different scan rates, demonstrating appropriate electronic 

conductivity in the material. By using an asymmetric device, the capacitance is 

increased to 140 F.g-1, 7 % and 69 % higher than the symmetric cells of prGrO 

and Lig/PEDOT 40/60, respectively. Then, Figure 3-12 (c) shows that at 10 A.g-1, 

the asymmetric device still maintains 17 % of its initial capacitance. These effects, 

large capacitance and intermediate capacitance retention, are caused by a 

synergistic effect between Lig/PEDOT and prGrO. The former provides 

capacitance retention while the latter delivers high capacitance values. 

In real life applications, supercapacitors are cycled thousands of times; herein, we 

cycled the Lig/PEDOT//prGrO asymmetric device at 5 mV.s-1 during 1000 times. 

Figure 3-12 (d) shows the capacitance retention of the device every 100 cycles. 

The results show that the device keeps 52.2 % of its initial capacitance after 1000 

cycles. In order to understand the reason for this loss of capacitance, a pseudo-

reference electrode is introduced to study the electrochemical processes in each 

electrode. Cycles number 2 and 1000 are shown as example.  

Figure 3-12 (e) shows the 2nd cycle of the cycling life test of the asymmetric 

device. The positive electrode, Lig/PEDOT 40/60, shows the redox peaks 

characteristic of the quinone/hydroquinone process (Reaction 3-2). The negative 

electrode, prGrO, presents wider peaks product of the pseudocapacitive 

processes. The potential windows are 0.46 V and 0.54 V for the positive and 

negative electrode, respectively, showing that the initial mass balance is 

appropriate for this device. 

After 1000 cycles (Figure 3-12 (f)), the positive electrode expands its potential 

window to 0.65 V, leaving the negative electrode to work in a total electrochemical 

window equal to 0.35 V. This effect is caused by the decrease in capacitance in 

the Lig/PEDOT 40/60 electrode, which might be induced by depletion of quinone 

groups in the material.33 This can be confirmed by the diminishing in the intensity 

of the redox peaks in the CV curve of the positive electrode.  

Equation 3-4 
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Figure 3-13 Results of the symmetric composite Lig/PEDOT//prGrO device. Cyclic 
voltammetry (a), rate capability (b) and capacitance retention with current density (c) 
Capacitance retention after 1000 cycles at 5 mV.s-1 (d), 2nd cycle CV at 5 mV.s-1 (e) 
and 1000th cycle CV at 5 mV.s-1 (f). 
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3.3.3.2.5 Composite Lig/PEDOT//prGrO 

In order to maximize the capacitance values and capacitance retention, 

Lig/PEDOT 40/60 and prGrO are dispersed in water in a 50/50 ratio and then 

drop-cast in a platinum mesh, which acts as current collector. Figure 3-13 shows 

the main results of the electrochemical test of the composite in a symmetric cell 

configuration. The cyclic voltammetry curves of the composite (Figure 3-13 (a)) 

are rectangular, a behaviour usually seen when charging the electric double layer. 

In Figure 3-13 (b), can be seen that the distribution of an equal pseudocapacitive 

effect in both electrodes, is traduced in a capacitance slightly higher than the one 

exhibited by the asymmetric device, i.e. 144 F.g-1 for the composite and 140 F.g-1 

for the asymmetric device. This effect is also caused by the similarity of the 

electrodes’ masses, as there is not additional weight on any side in this 

configuration. When the current density increases, Figure 3-13 (c), the 

capacitance retention of the composite (54 %) is superior to the one exhibited by 

the asymmetric device (17 %), as a result of a more appropriate charge transfer in 

the electrodes. These devices cannot achieve the high capacitance retention of 

the symmetric Lig/PEDOT 40/60; however, in these cases, cycle life is sacrificed 

for the sake of large capacitance values. 

The symmetric composite cell is also tested at 5 mV.s-1 during 1000 cycles, the 

main results are shown in Figure 3-13 (d-f). After 1000 cycles, the composite 

Lig/PEDOT 40/60//prGrO retains 79 % of its initial capacitance (Figure 3-13 (d)).  

This is an exciting result, as the composite not only achieves larger capacitance 

values, and higher capacitance retention but also a better cycling life when 

compared to the asymmetric device.  

Moreover, the analysis of each electrode, in Figure 3-13 (e – f), shows more 

rectangular CVs than in the asymmetric device. During the second cycle, the 

negative and positive electrode works in a potential window of 0.55 and 0.45 V, 

respectively. After 1000 cycles, the new potential window is 0.40 and 0.60 V for 

the negative and positive electrode, respectively. This increase in the potential 

window of the positive electrode potential is caused by the higher capacitance of 

the negative electrode. 

3.4 Conclusions and Perspectives 

EDOT was polymerized in presence of Lignin, a biopolymer rich in quinone 

moieties, to enhance the electron conductivity of the material and transport charge 

to the active sites of the polymer. Lig/PEDOT polymers with different 

Lignin/PEDOT ratios were characterized by means of FTIR and TGA to confirm 
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the polymerization of EDOT and the blending with Lignin. These polymers were 

studied in a 3-electrode configuration, being Lig/PEDOT 40/60 the material with 

the largest capacitance.  

Graphite Oxide was partially reduced at 160 °C to improve electron conductivity 

while maintaining a high concentration of quinone/hydroquinone groups. The 

obtained prGrO was characterized by means of XPS, FTIR, N2 gas sorption and 

XRD techniques. 

The capacitive contributions to the charge storage of the materials was studied 

with a cavity microelectrode. This technique proved that the PEDOT enhanced the 

lignin’s capacitive contribution to the current by 22 %. The capacitive contributions 

were equal to 66 % and 75 % in the Lig/PEDOT 40/60 and the prGrO respectively. 

Asymmetric supercapacitors were assembled using Lig/PEDOT 40/60 as positive 

electrode and prGrO as negative electrode. The electrochemical results showed 

that the asymmetric device achieved high capacitance values, 140 F.g-1 at 0.1 A.g-

1, and intermediate capacitance retention when compared to symmetric cells of 

Lig/PEDOT 40/60, and prGrO. When cycled 1000 times at 5 mV.s-1, the device 

kept 52.2 % of its initial capacitance due to depletion of the quinone groups in the 

positive electrode, i.e. Lig/PEDOT 40/60. 

A composite between the Lig/PEDOT 40/60 and the prGrO in a ratio 50/50 was 

prepared by physical mixture. Due to the distribution of the pseudocapacitive and 

faradaic processes between the two electrodes high capacitance values, 144 F.g-1 

at 1 A.g-1, and high capacitance retention, 54 % at 10 A.g-1, is achieved. A long 

cycle life was also accomplished by this method, maintaining 79 % of its 

capacitance after 1000 cycles.  

There is still plenty of room to improve the electrochemical performance of Lignin 

and prGrO. Changing the composite ratio, improving the conductivity in the prGrO 

or by polymerizing the lignin with other conductive polymers might be solutions in 

the outlook for these materials.  
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4 STUDY OF REDOX ACTIVE 

QUINONE-AMINE POLYMERS 

FOR ENERGY STORAGE 

DEVICES 

4.1 Introduction  

As mentioned before in this thesis, introducing redox active moieties in the surface 

of the materials will enhance the capacitive contributions to the total current by 

moving from an exclusive double-layer capacitor to a pseudocapacitor.1,2  

Among the surface functional groups, oxygen- and nitrogen-containing groups 

have been well-studied for years.3 Several functions of nitrogen have been 

proposed, such as being an electron donor to attract protons or enhance charge 

density of space charge layer,4–6 strengthening oxidation/reduction of quinone,7 

and introducing redox reactions of amine groups.8  

Herein, the nanostructuring process of a redox active polymer electrode with 

different types of nanocarbon are studied. Two kinds of diamine, linear and 

aromatic, are polymerized with benzoquinone to favour the development of 
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pseudo-faradaic charge transfer processes, (linear diamine) and to introduce a 

redox reaction of amine groups (aromatic diamine). A straightforward strategy to 

improve the electron conductivity of a polymer is the addition of conductive fillers. 

As the electronic properties of a carbon are expected to depend on its crystal 

structure and C-C bonding connectivity, carbons with different dimensionalities like 

carbon black nanoparticles (3D), graphene (2D) and carbon nanotubes (1D) are 

evaluated as conductive fillers.  

The aim of this work is to develop low cost and easy to process electrodes for 

applications in batteries or supercapacitors. The approach is to copolymerize a 

monomer with quinone/hydroquinone functional groups with a second monomer 

based on diamines. The impact of the linearity/aromaticity of the second monomer 

on the electrochemical properties is assessed. In order to improve processability in 

solution, a third monomer based on polyethylene oxide is used as a linker. 

Polymerizations of the copolymers are also studied in the presence of carbons 

with different dimensionalities to improve their conductivity. The optimum synthesis 

conditions are determined to provide the best match between the electrochemical 

properties of the redox active polymer and the dimensionality of the nanocarbon. 

The polymers are characterized by X-Ray Diffraction, Fourier Transform Infrared, 

Raman Spectroscopy, Thermogravimetric Analysis, Scanning Electron 

Microscopy, cyclic voltammetry and galvanostatic measurements. 

4.2 Methodology 

4.2.1 Materials Synthesis  

4.2.1.1 Synthesis of Benzoquinone-Diamine Bipolymers 

3 mmol of p-benzoquinone (Sigma Aldrich, 98 %) are dissolved in 25 ml of ethanol 

(EtOH, Scharlau, 96 %) or Dimethylformamide (DMF, Fisher scientific, 99.97 %) to 

wh ich  1  m m o l  o f  p -phen y lened iam ine  ( S igm a A ld r i ch ,  98  %)  o r 

hexamethylenediamine (Sigma Aldrich, 98 %), previously dissolved in 25 ml of 

EtOH or DMF, is added. Polymerization is allowed to complete within 14 hours at 

room temperature. Scheme 4-1 and Table 4-1 shows the polymerization 

conditions. After completion of reaction, the product is removed from the reaction 

solution by centrifugation at 10000 rpm for 15 minutes in a Sorvall legend X1 

centrifuge (Thermo Scientific, Germany).   The solid obtained is dried at 60 °C 

under vacuum.  When the polymerization takes place with the conductive filler, (in 

situ polymerization), the Graphene Oxide (GO), the multi walled carbon 

nanotubes, or the carbon black nanoparticles (C65) are sonicated for one hour in  
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Scheme 4-1. Conditions of the bipolymer formation. 

 

EtOH previous to each polymerization. The graphite is oxidized by the Marcano-

Tour method9 as explained in section 3.3.1.2. After sonication, the GrO is 

delaminated and Graphene Oxide (GO) is obtained. In order to thermally reduce 

the GO, the in situ bipolymer is heated under argon flow at a heating rate of 5 

°C.min-1 up to 140 °C and kept for 6 hours, cooled down and stored for later 

utilization.  

The benzoquinone is the limiting reagent, given that 2 mmoles are converted into 

hydroquinone and these do not make part of the final polymer structure.  

4.2.1.2 Synthesis of Benzoquinone-PEO-Diamine Terpolymers  

For the preparation of the terpolymer, five different PEO molecules are tested as 

linkers for the terpolymers. They were 1,10-Diamino-4,7-dioxadecane (Acros  

Table 4-1. Reaction conditions of the bipolymer formation. 

Entry 
 

Product (Copolymer) 
Time 

(h) 
Conditions 

1 
 

 

14 

1a. EtOH 

1b. DMF 

1c. C65/DMF 

1d. C65/EtOH 

1e. MWCNT/EtOH 

1f. GrO/EtOH 

2 

  

14 

2a. EtOH 

2b. DMF 

2c. C65/DMF 

2d. C65/EtOH 

2e. MWCNT/EtOH 

1f. GrO/EtOH 
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Table 4-2. List of PEO molecules used as linkers. 

Structure Name Acronym 

 

1,10-Diamino-4,7-

dioxadecane 

Dioxa 

 

4,7,10-Trioxa-1,13-

tridecanediamine 

Trioxa 

 

n ≈ 6.1 

(Poly(propylene 

glycol) bis(2-

aminopropyl ether) 

D-400 

 

m ≈ 9; (l+n) ≈ 3.6 

O,O′-Bis(2-

aminopropyl) 

polypropylene 

glycol-block-

polyethylene glycol-

block-polypropylene 

glycol 500 

ED-600 

 

m ≈ 12.5; (l+n) ≈ 6 

O,O′-Bis(2-

aminopropyl) 

polypropylene 

glycol-block-

polyethylene glycol-

block-polypropylene 

glycol 800 

ED-900 

Organics CAS nº 2997-01-5), 4,7,10-Trioxa-1,13-tridecanediamine (also known as 

O,O′-Bis(3-aminopropyl)diethylene glycol, Sigma-Aldrich 369519), Poly(propylene 

glycol) bis(2-aminopropyl ether) (Mn ~ 400  Sigma-Aldrich, 406678), O,O′-Bis(2-

aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene 

glycol 500 (also known as Jeffamine-ED600,  Sigma-Aldrich 14526) and O,O′-

Bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-

polypropylene glycol 800 (also known as Jeffamine-ED900,  Sigma-Aldrich 

14527). Their structures and the short names used for them in this manuscript are 

shown in Table 4-2. 

The synthesis is carry out by dissolving 1 mmol of PEO linker is dissolved in 25 ml 

of EtOH to which 6 mmol of p-benzoquinone, previously dissolved in 25 ml of  
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Scheme 4-2. Synthesis conditions of the terpolymer formation. 

 

EtOH, are added. Polymerization is allowed to complete within 48 hours at room 

temperature and then 1 mmol of p-phenylene diamine or hexamethylene diamine, 

is added to the solution. The reaction is left for another 48 hours. The reaction 

conditions are summarized in Scheme 4-2. After completion of reaction, the 

product is removed from the reaction solution by centrifugation at 10000 rpm for 

15 minutes in a centrifuge.   The solid obtained is dried at 60 °C under vacuum.  

When the polymerization takes place with the conductive filler, (in situ 

polymerization), the GO or the MWCNT is sonicated for one hour in EtOH previous 

to be added to the reaction mixture to each polymerization. For the in situ 

polymerization by using GO, the graphite is oxidized by the Marcano-Tour 

method9 as explained in section 3.3.1.2. After sonication, the GrO gets 

delaminated and Graphene Oxide (GO) is obtained. In order to thermally reduce 

the GO, the in situ terpolymer is heated under argon flow at a heating rate of 

5 °C.min-1 up to 140 °C and kept for 6 hours, cooled down and stored for later 

utilization. 

During the synthesis of the terpolymer, the benzoquinone reacts with two different 

diamines; therefore, each structural unit of the polymer will contain two 

hydroquinone molecules and four other will be by-products of the reaction. 
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4.2.2 Preparation of the Electrodes  

4.2.2.1 Benzoquinone-Diamine Bipolymers 

Bipolymer pellets of 11 mm diameter and with a thickness between 150 – 200 μm 

are pressed under a pressure of 2 Tons for 1 minute. The pellets are directly used 

as working electrodes and assembled in an asymmetric cell (Swagelok type) with 

a platinum mesh as counter electrode, in a 0.1 M HClO4 solution for potential 

between -0.2 and 0.9 V and silver/silver chloride (Ag/AgCl) is used as reference 

electrode. Details on the electrochemical characterization are described in 

Appendix I. 

4.2.2.2 Benzoquinone-PEO-Diamine Terpolymers 

For the processing of the terpolymer-based electrodes by drop casting, a 

screening of different solvent media was explored. Among the different solvent 

used are the following: deionized water, perchloric acid (Sigma Aldrich, 70 %), N-

methyl-2-pyrrolidone (Sigma Aldrich, 99.5 %), dichloromethane (Sigma Aldrich, 

> 99.8 %), tetrahydrofuran (Acros, 99.9 %), chloromethane (Sigma Aldrich, 

> 99.5 %), 1,4-dioxane (Sigma Aldrich, 99.8 %), dimethyl sulfoxide (Sigma Aldrich, 

99,9 %), acetonitrile (Sigma Aldrich, 99.8 %), ethyl acetate (Panreac, 100 %), 

diethyl ether (Sigma Aldrich, 100 %), isopropyl alcohol (Sigma Aldrich, 99.8 %). 

As it will be seen, N-methyl pyrrolidone shows the best solvent properties for the 

processing of the terpolymer electrodes. Then, 60 mg of each terpolymer are 

dissolved in 3 ml of N-methyl-2-pyrrolidone. In order to create porosity in the 

electrode, to enhance the electroactive surface area, 20 % of sodium chloride 

(NaCl, Fisher Scientific, 99.5 %) is also added. The mix was drop-cast on a 

Stainless-Steel disk. The electrodes are left to dry at room temperature in the 

vacuum fume hood for 8 h. Then, the electrodes are washed with water to remove 

the NaCl and left to dry again for 8 h before testing. 

All the materials are first characterized electrochemically to select the optimum 

electrochemical parameters and then, these materials are physicochemically 

characterized by X-Ray Diffraction, Fourier Transform Infrared, Raman 

Spectroscopy, and Thermogravimetric Analysis as explained in Appendix I. 
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4.3 Results and Discussion 

4.3.1 Benzoquinone-Diamine Bipolymers  

Theoretically, poly[benzoquinone-co-hexamethylenediamine] (herein referred as 

BQhMdA) and poly[benzoquinone-co-(p-phenylenediamine)] (herein referred as 

BQpPhdA) should undergo a 2 e- and 4 e- redox process per structural unit, 

respectively, as indicated in Reactions 4-1 and 4-2: 

Based on these reactions, poly[benzoquinone-co-hexamethylenediamine] and 

poly[benzoquinone-co-(p-phenylenediamine)] should deliver 239 mAh.g-1 (717 F.g-

1) and 496 mAh.g-1 (1487 F.g-1), respectively, which makes these polymers 

attractive for energy storage applications. 

The electrochemical properties of the electroactive polymers herein developed are 

affected by different parameters during the synthesis.  In order to maximize the 

capacity values achieved with these compounds, the following parameters are 

studied and optimized:  Reaction medium, inclusion of the conductive filler and 

dimensionality of the conductive filler.  

 

 

Reaction 4-1. Redox process of poly[benzoquinone-co-(hexamethylene diamine)] 

 

Reaction 4-2. Redox reaction of poly[benzoquinone-co-(p-phenylenediamine)] 
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4.3.1.1 Poly[benzoquinone-co-hexamethylenediamine] 

Poly[benzoquinone-co-hexamethylenediamine] is first synthesized in EtOH and 

DMF to find those conditions in which the electrochemical capacity is the highest. 

Figure 4-1 shows the galvanostatic charge/discharge of the bipolymers 

synthesized in DMF and EtOH. In order to improve conductivity, the bipolymers 

are physically mixed with C65 (Figure 4-1 (a.I and b.I)) or the polymerization takes 

place in the presence of C65 (Figure 4-1 (a.II and b.II)) to achieve their maximum 

capacity. The ratio for all the mixtures of BQhMdA:C65 is 50:50. 

 

 

Figure 4-1. Galvanostatic discharge at 0.08 A.g-1 of the poly[benzoquinone-co-

hexamethylenediamine] synthesized in DMF (a) and in EtOH (b). Inclusion of the C65 

after polymerization (I) and before polymerization (II). 
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The bipolymer synthesized in DMF and then mixed with C65 shows a discharge 

with a linear slope similar to the ones yielded by double-layer capacitors (Figure 

4-1 (a.I)). This might imply that the charge being stored is just in the surface of the 

polymer and no redox reactions are taking place. This hypothesis would agree 

with the low capacity value yielded by the bipolymer, 1 mAh.g-1. The synthesis 

developed in EtOH improves 4.5 times the capacity achieved (Figure 4-1 (b.I)) 

thanks to a plateau at 0.4 V, probably caused by Reaction 4.1. These results 

indicate that when the BQhMdA is synthesized in EtOH, its redox reaction is 

favoured.  

To confirm that all the possible capacity of the polymer is being attained, the 

polymerization is repeated in EtOH and DMF but the C65 is added at the 

beginning of the reaction. The galvanostatic results are shown in Figure 4-1 (a.II 

and b.II). When the polymerization occurs in the presence of C65 particles, both 

products show a plateau around 0.3 V, and the slope between 0.2 V and -0.4 V is 

increased. These phenomena enhance the capacity values up to 37 mAh.g-1 and 

39 mAh.g-1, in DMF and EtOH, respectively. After 10 cycles, the BQhMdA 

synthesized in DMF, has retained 49 % of its capacity while the one synthesized in 

EtOH still preserves 59 % of it. To achieve the maximum capacity and capacity 

retention, in the following experiments regarding hexamethylenediamine, the 

polymerizations will be carried out in situ in the presence of the conductive filler 

and in EtOH. 

Afterwards, the effect of the nanodimensionality of the conductive filler is studied. 

Herein, C65, rGO, and MWCNT are used as 3-D, 2-D, and 1-D carbons, 

respectively. Figure 4-2 shows the galvanostatic discharges of the polymers with 

C65, rGO and MWCNT. When polymerizing BQhMdA with C65 and MWCNT, the 

monomers are attracted towards the carbons by non-covalent interactions and 

therefore the carbon nanomaterials do not interfere with the redox moieties.  

However, GO has a large number of highly reactive oxygen-containing functional 

groups that might be creating covalent bonds with the monomers10 and therefore 

causing a change in the redox potential of the polymers as can be seen in Figure 

4-2 (b). The only composite that shows a clear plateau around 0.4 V is the one 

prepared with C65 (Figure 4-2 (a)). MWCNTs, show only a change in the slope at 

0.4. Probably, the polymerization with the 1-D material enhance the capacitive 

abilities of this material in such a way that the redox peaks get concealed. 

Because of these reasons, the rGO composite presents the lowest capacity (1.9 

mAh.g-1) from the three samples and MWCNT the highest (109 mAh.g-1). To 

achieve the maximum capacity deliverable by BQhMdA, the reaction must be 

made in EtOH with previous addition of MWCNT. 
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Figure 4-2. Electrochemical comparison at 0.08 A.g-1 of the poly[benzoquinone-co-

hexamethylenediamine] synthesized in EtOH in situ with C65 (a) rGO (b) and 

MWCNT (c). 
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The changes caused in the material by in situ polymerization with MWCNT are 

followed by XRD and TGA as can be seen in Figure 4-3. The XRD pattern of the 

MWCNTs (Figure 4-3) shows an intense peak at 2θ = 25.8 ° corresponding to the 

(002) reflection. Compared to the normal graphite, 2θ = 26.5 °, this peak shows a 

downward shift; which is attributed to an increase in the number of sp2 bonds, C=C 

layers spacing.11 The polymer without conductive filler presents a broad peak, 

indicating an amorphous structure.12  When the polymerization takes place around 

the MWNCTs, the peak at 25.8 ° is broaden but still an intense peak is observed. 

This pattern indicates a microcrystallinity, meaning that the polymer has regions of 

aligned chains in small crystallites that diffract and that the remaining chains have 

no order and contribute to an incoherent scatter.13 

In order to know the real content (compared to the nominal content) of BQhMdA in 

the composite, a TGA is performed. Figure 4-3 (b) shows the TGA of the 

MWCNTs, BQhMdA and their composite. The MWCNTs have an initial weight loss 

temperature at 542 °C and an oxidation temperature at 621 °C. At 900 °C a 

residual mass of 12 % is found, product of the metal catalyst used to manufacture 

the nanotubes.14  The BQhMdA undergoes thermal degradation beginning at 250 

°C and with a total mass loss of 97 %.  The BQhMdA-CNT undergoes thermal 

degradation beginning at 250 °C with a mass loss of 30 %. At 900 °C, the residual 

mass is 15 %. As 30 % of the composite is active material, Figure 4-2 (c) is 

recalculated and the new values are shown in Figure 4-3 (c). The capacity 

delivered by BQhMdA-MWCNT is 364 mAh.g-1, 1.5 times higher than the 

theoretical one. This extra stored charge might be due to capacitive effects 

between the polymer and the ions.  

Herein, Raman, XRD and FTIR are used to follow the reactions taking place 

during the galvanostatic cycling of the BQhMdA-MWCNT. To decrease the signal 

coming from the MWCNTs in the previous techniques, the ratio BQhMdA:MWCNT 

is modified to 95:5. The results are shown in Figure 4-4.  

The structure of the bipolymer is obviously affected by the insertion of the 

conductive filler before polymerization as can be seen by comparing Figure 4-3 (a) 

and Figure 4-3 (b). By decreasing the proportion of MWCNTs in the composite, 

BQhMdA-MWCNTs goes from having a microcrystalline structure to a more 

amorphous structure. Still, the polymer has some regions of aligned chains that 

are the cause of the small peaks in the broad feature.  After charge and discharge, 

these aligned regions are not observable anymore.  

Figure 4-4 (b) shows the Raman spectra of the sample before cycling and after 

charge and discharge. The only appreciable peaks are at ≈ 1601 cm-1 and ≈ 1337 

cm-1 and might correspond to the G and D band of the MWCNTs, respectively.  



GRAPHENE-RELATED MATERIALS FOR ELECTROCHEMICAL CAPACITORS 
Adriana M. Navarro-Suárez – November 2016 

110                    Study of Redox Active Quinone-Amine Polymers for Energy Storage Devices 

 

Figure 4-3. XRD (a) and TGA (b) of the BQhMdA, MWCNT and their composite. 

Galvanostatic discharge at 0.08 A.g-1 of the BQhMdA-MWCNT per active material (c). 
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Figure 4-4. XRD (a), Raman (b) and FTIR (c) plots of the BQhMdA-MWCNT before 

cycling, and after charge and discharge. 
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The G peak corresponds to the E2g phonon at the Brillouin zone centre. The D 

peak is due to the breathing modes of sp2 rings and requires a defect for its 

activation.15 These defects that activate the D band might be caused by the 

polymer surrounding the MWCNT. These bands are not affected by the cycling of 

the polymer, meaning no more defects are included in the material with cycling. 

However, these peaks are also overlapped with the typical Raman shifts from the 

hydroquinone molecules. In this case, the peaks at ~1601 cm-1 and ~1337 cm-1, 

would correspond to the C=C and C-C vibrations, respectively.16 These vibrations 

do not change with cycling; therefore, the bands do not change either. 

Figure 4-4 (c) shows the FTIR of the BQhMdA before cycling and after charge and 

discharge. BQhMdA shows peaks at 3338 cm-1 (amine N-H stretch), 3261 cm-1 

(Phenol O-H stretch), 2933, 2851 cm-1 (alkyl C-H stretch), 1643, 1566, 1495, 1470 

cm-1 (aromatic C=C bending), 1346, 1209 cm-1 (Aromatic C-N) and 810 cm-1 

(aromatic C-H bending). After charging and discharging, the strong peak at 1690 

cm-1, typical of Aromatic C=O does not appear, which indicates that is not the 

reaction indicated as Reaction 4.1 as expected but instead a new mechanism is 

occurring. The changes in the spectra (shadowed in light blue) are instead a 

diminishing of the peaks at 3261, 1346, and 1209 cm-1 and the appearance of a 

new feature at 1054 cm-1.  In fact, all these characteristics are interrelated and can 

be explained by an intramolecular hydrogen bonding in the molecules as can be 

seen in Reaction 4.3. 17–19 

The formation of intramolecular hydrogen bonds would be benefited by the 

formation of a 5-atom ring, which is stable and energetically favoured.  The 2e- 

and 2H+ transfer would still occur, explaining the high capacity.  Still, the Fourier 

Transform Infrared fingerprint would not change as much as expected but for a 

slight diminish of the Phenol O-H stretch and a red-shift of the aromatic C-N from 

1209 cm-1 to 1054 cm-1.   

As proved in this section, BQhMdA-MWCNT is a promising polymer for energy  

 

Reaction 4-3.  Intramolecular hydrogen bonding in of poly[benzoquinone-co-

(hexamethylene diamine)] during cycling. 
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storage devices.  Preparation of thinner electrode films has proven to be beneficial 

for increasing the pseudo-capacitance behaviour of a material.20 A method to 

process the poly[benzoquinone-co-(hexamethylene diamine)] electrode will be 

studied in Section 4.4.2.1. 

4.3.1.2 Poly[benzoquinone-co-(p-phenylenediamine)] 

The same parameters from the previous section are studied with the BQpPhdA: 

Reaction medium, inclusion of the conductive filler and dimensionality of the 

conductive filler.  

Figure 4-5 shows the electrochemical results of the polymers synthesized in DMF 

and EtOH, with ex situ and in situ addition of the C65. When the reaction takes 

place in DMF and the C65 is physically mixed, Figure 4-5 (a.I), the galvanostatic 

discharge plateau appears around 0.4 V but also more features are observed. This 

might indicate presence of oligomers or hydroquinone in the sample. In EtOH, 

there is no well-defined plateau but the presence of different slopes is also 

observed. Besides, in both solvents, the capacity increases after 10 cycles, this 

might be related to these oligomers reacting with each other and making longer 

chains that yield higher capacity values than the smaller molecules, because of 

the increase in conjugation.  

When the polymerization occurs in the presence of C65 and in DMF, the 

BQpPhdA’s discharge curve presents again several changes in the slope but the 

capacity is doubled compared to the ex situ process in the same solvent (Figure 

4-5 (a.II)). The polymer synthesized by in situ process in EtOH, presents one slope 

change at 0.4 V and its capacity retention after 10 cycles is 100 %, indicating that 

there is no presence of oligomers or another species contributing to an extra 

capacitance. These studies confirm that for BQpPhdA, the conductive filler must 

be added before polymerization and the reaction should be made in EtOH. 

Figure 4-6 shows the galvanostatic discharges of the BQpPhdA synthesized in 

EtOH, in situ with C65 (Figure 4-6 (a)), rGO (Figure 4-6 (b)), and MWCNT (Figure 

4-6 (c)).  Compared to the results from the linear polymer in Figure 4-2, all the 

composites achieve higher capacity values.  This is most probably due to the 4e- 

transfer of the aromatic polymer compared to the 2e- transfer in the linear one. The 

electrode containing C65, as explained above, achieves 102 mAh.g-1 without loss 

of capacity with cycling. When the polymerization takes place in the presence of 

GO (Figure 4-6 (b)), the same effect than with the BQhMdA occurs. The change of 

slope takes place around 0 V and the capacity achieved is the lowest of the three 

composites, i.e. 11 mAh.g-1.  Following, when the MWCNTs are used as  
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Figure 4-5. Galvanostatic discharge at 0.08 A.g-1 of the poly[benzoquinone-co-(p-

phenylenediamine)] synthesized in DMF (a) and in EtOH (b). Inclusion of the C65 after 

polymerization (I) and before polymerization (II). 

conductive fillers, the change of slope occurs at 0.4 V, the capacity achieved 

during the first cycle is equal to 151 mAh.g-1 and 64 % of it is maintained after 10 

cycles. Even though the capacity retention with C65 is better than with MWCNT, 

herein we will continue the studies with the latter as the capacity achieved is 

higher and the retention might be improved by engineering of the electrode. This 

optimization will be studied in Section 4.4.2.2.  

The structure and thermal properties of the bipolymer containing MWCNTs are 

studied by XRD and TGA. Figure 4-7 (a) shows the XRD of the MWCNT, the 

BQpPhdA and the composite BQpPhdA-MWCNT.  As explained in the previous 

section, MWCNTs show an intense peak at 2θ = 25.8 ° corresponding to the (002)  
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Figure 4-6. Electrochemical comparison at 0.08 A.g-1 of the poly[benzoquinone-co-(p-

phenylenediamine)] synthesized in EtOH in situ with C65 (a) rGO (b) and MWCNT (c). 
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diffraction. Yet, the aromatic polymer still contain crystalline domains due to the  -

 stacking between the chains after in situ polymerization.12   

The experimental composition of the composite is found by TGA. Figure 4-7 (b) 

shows the TGA of the MWCNTs, BQpPhdA and their composite. The MWCNTs 

start losing mass at a temperature of 542 °C and have an oxidation temperature in 

air at 621 °C. The BQpPhdA losses 10 % of its mass below 200 ºC, due to loss of 

moisture. Then, the bipolymer undergoes thermal degradation at 310 °C with a 

total mass loss of 93 %.  The absorbance of water seems less drastic in the 

BQpPhdA-CNT as only 1 % of mass is loss below 200 °C. The thermal 

degradation of the composite starts at 310 °C with a mass loss of 32 %. At 900 °C, 

the residual mass is 15 %. As 32 % of the composite is active material, the actual 

capacity   delivered by the active material is calculated and shown in Figure 4-7 

(c). The capacity delivered by BQpPhdA-MWCNT is 472 mAh.g-1 in its first cycle, 

95 % of the theoretical. The stability of the capacity as mentioned before will be 

improved by optimizing the design of the electrode in Section 4.4.2.2. 

The changes in the BQpPhdA by cycling were studied by XRD, Raman and FTIR. 

The potentials at which these studies were performed are 0.9 V and at -0.2 V vs 

Ag/AgCl. The proportion of BQpPhdA: MWCNTs is diminished to 95:5 in order to 

follow these changes easily. Figure 4-8 (a) shows the XRD spectra of the 

composite at different potentials. Before cycling, the aromatic composite presents 

a semi-crystalline structure, caused by the presence of MWCNTs. After charge 

and discharge, the broad features of the amorphous regions overshadow the 

crystalline peaks, still, some microcrystallinity is observed. 

The Raman spectra of BQpPhdA-MWCNT (Figure 4-8 (b)) shows several peaks 

that correspond to the p-phenylenediamine structure.  Badawi et al.21 have 

reported these peaks might be: 1598 cm-1 (ring deformation), 1489 cm -1 (ring 

stretch deformation), 1470 cm -1 (ring stretch deformation and p-CH in plane 

bending), 1320 cm-1 (ring-N stretch and ring breathing), and 1168 cm-1 (p-CH in 

plane bending). As the redox processes of the BQpPhda involve the active 

moieties of the p-phenylenediamine, changes in the spectra are expected; 

however, the reaction is difficult to follow because of the vicinity of all the bands.  

Figure 4-8 (c) shows the FTIR spectrum of the BQpPhdA.  BQpPhdA shows peaks 

at 3219 cm-1 (Phenol O-H stretch), 1629, 1562, 1514, 1481 cm-1 (aromatic C=C 

bending), 1350, 1275, 1206 cm-1 (Aromatic C-N) and 827 cm-1 (aromatic C-H 

bending). This bipolymer features changes in its structure with cycling as can be 

highlighted in light blue in the FTIR spectrum. The first feature to notice is the lack 

of appearance of the aromatic C=O at 1690 cm-1, indicating that the mechanism is  
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Figure 4-7. XRD (a) and TGA (b) of the BQpPhdA, MWCNT and their composite. 

Galvanostatic discharge at 0.08 A.g-1 of the BQpPhdA-MWCNT per active material (c). 
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Figure 4-8. XRD (a), Raman (b) and FTIR (c) plots of the BQpPhdA-MWCNT before 

cycling (mustard line), and after charge (green line) and discharge (red line). 
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Reaction 4-4. Electrochemical process during cycling of poly[benzoquinone-co-(p-

phenylenediamine)], proposed in this work. 

different from Reaction 4.2. Then, the peak at 3219 cm-1 is decreased but does not 

disappear indicating the presence of the Phenol O-H bond during cycling.  The 

most significant change is the appearance of a broad peak at 1033 cm -1 at 0.9 V. 

This peak is caused by the asymmetric stretching band of ClO4
-.22 The presence of 

this anion suggests a possible mechanism that is depicted in Reaction 4-4. 

Because of the aromatic ring connected to the nitrogen, BqpPhdA is more likely to 

have a second redox process than BQhMdA as the p-orbitals of the system will be 

connected and the electrons will be delocalized. The structure of the BQpPhdA 

does not allow forming intramolecular hydrogen bonds because of steric 

interference. Still, the hydrogen bonds are formed with the water in the electrolyte 

and a doped state in perchloric acid, similar to the one presented by polyaniline is 

found.23 The presence of a benzoquinone in between the p-phenylenediamine 

molecules would stop the dissociation of the bipolaron.24 The doping of polyaniline 

with perchlorate is beneficial for its conductivity,23 so it will be interesting to see if 

with a better electrode design, the capacity achieved will be higher than expected. 

4.3.2 Benzoquinone-PEO-Diamine Terpolymers 

4.3.2.1 Poly[benzoquinone-co-hexamethylenediamine-co-PEO]  

I n  o rde r  t o  deve lop  p rocessab le  e l ec t rod es ,  ben zoqu inon e  an d 

hexamethylenediamine are copolymerized with PEO derivatives. The polymers 

formed are depicted in Scheme 4-3. Table 4-3 relates the PEO linkers with the 

terpolymers shown in Scheme 4-3 as well as their theoretical capacity.  

Each structural unit of the terpolymer comprises two benzoquinone molecules that 

will have a redox process. Hence, the theoretical capacity of the terpolymers 

should be higher than the one calculated by the poly[benzoquinone-co-

hexamethylenediamine] (239 mAh.g-1). However, as more weight is being added 

to the electrode material a decrease is observed. 
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Scheme 4-3. Polymerization of Poly[benzoquinone-co-hexamethylenediamine-co-

PEO]. 

 

To develop processable electrodes, these materials should be soluble in a solvent 

whit low evaporation temperature so it can be easily eliminated after casting. In 

addition, the terpolymers cannot be soluble in perchloric acid as this is the 

electrolyte in which they are going to be electrochemically tested. The results of 

these tests are summarized in Table 4-4. 

Most of the terpolymers are insoluble or partially soluble in the solvents tested. 

Only poly[benzoquinone-co-hexamethylenediamine-co-poly(propylene glycol) 

bis(2-aminopropyl ether)] (herein referred as BQhMdA400) is soluble in NMP while 

still being insoluble in perchloric acid.  

Table 4-3. Poly[benzoquinone-co-hexamethylenediamine-co-PEO] theoretical 

capacity related to the PEO linker. 

Entry Remarks PEO Acronym Terpolymer Theoretical Capacity 

mAh.g-1 

3a -- Dioxa 211 

3b -- Trioxa 194 

3c n ≈ 6.1 D-400 146 

3d m ≈ 9; (l+n) ≈ 3.6 ED-600 115 

3e m ≈ 12.5; (l+n) ≈ 6 ED-900 87 
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Table 4-4. Solubility tests of the Poly[benzoquinone-co-hexamethylenediamine-co-

PEO]. 

Solvent 3a 3b 3c 3d 3e 

Water No No No No No 

HClO4 No No No No No 

NMP Partially Partially Yes No No 

CH2Cl2 Partially Partially Partially No No 

THF Partially Partially Partially No No 

CH3Cl Partially Partially Partially No No 

Dioxane Partially Partially Partially No No 

DMSO Partially Partially Partially No No 

ACN Partially Partially Partially No No 

Ethyl Acetate Partially Partially Partially No No 

Diethyl Ether Partially Partially Partially No No 

Isopropanol Partially Partially Partially No No 

 

 

Figure 4-9. Galvanostatic discharge at 0.08 A.g-1 of the BQhMdA400 synthesized in 

situ with MWCNT. Gravimetric (a) and areal (b) capacity. Inset in (a) corresponding to 

the galvanostatic discharge of BQhMdA-MWCNT. 
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Figure 4-9 shows the galvanostatic discharge of the BQpPhdA400 at 0.08 A.g-1. 

When comparing the discharge of BQpPhdA (Inset in Figure 4-9 (a)) and 

BQpPhdA400 (Figure 4-9 (a)), a decrease in the initial resistance drop is 

observed. Moreover, the capacity value is doubled in the terpolymer (230 mAh.g-1 

at 0.08 A.g-1 for BQpPhdA400), even though the mass of the polymer has 

increased because of the PEO linker. This is caused by the development of a film 

electrode instead of a pellet. Another advantage of engineering the electrodes is 

that areal capacities can be calculated. BQpPhdA400 achieves 20 Ah.cm-2 

(Figure 4-9 (b)), a value comparable with the one exhibited by activated carbons in 

double-layer capacitors.25  

4.3.2.2 Poly[benzoquinone-co-(p-phenylenediamine)-co-PEO] 

The processability of the Poly[benzoquinone-co-(p-phenylenediamine)] is 

improved by co-polymerization with PEO linkers, following Scheme 4-4. 

As with the previous terpolymer, the increase of mass in the structure decreases 

the capacity (Table 4-5) when comparing to the poly[benzoquinone-co-(p-

phenylenediamine)] (496 mAh.g-1).  

In order to choose an adequate solvent for the preparation of the electrode, 

solubility tests of the Poly[benzoquinone-co-(p-phenylenediamine)-co-PEO] in 

different solvents are performed. The results of these tests are shown in Table 4-6. 

 

Scheme 4-4. Polymerization of Poly[benzoquinone-co-(p-phenylenediamine)-co-PEO] 
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Table 4-5. Poly[benzoquinone-co-(p-phenylenediamine)-co-PEO] theoretical capacity 

related to the PEO linker. 

Entry Remarks PEO Acronym Terpolymer Theoretical Capacity 

mAh.g-1 

4a -- Dioxa 321 

4b -- Trioxa 295 

4c n ≈ 6.1 D-400 222 

4d m ≈ 9; (l+n) ≈ 3.6 ED-600 174 

4e m ≈ 12.5; (l+n) ≈ 6 ED-900 131 

The only material that is completely soluble in NMP is the Poly[benzoquinone-co-

(p-phenylenediamine)-co-(O,O′-Bis(2-aminopropyl) polypropylene glycol-block-

polyethylene glycol-block-polypropylene glycol 800)] (herein referred as 

BQpPhdA900). Therefore, the electrochemical tests are performed in 

BQpPhdA900 electrodes drop-casted from a NMP slurry.  

Table 4-6. Solubility tests of the Poly[benzoquinone-co-(p-phenylenediamine)-co-

PEO]. 

Solvent 4a 4b 4c 4d 4e 

Water No No No No No 

HClO4 No No No No No 

NMP Partially Partially Partially No Yes 

CH2Cl2 Partially Partially Partially No Partially 

THF Partially Partially Partially No Partially 

CH3Cl Partially Partially Partially No Partially 

Dioxane Partially Partially Partially No Partially 

DMSO Partially Partially Partially No Partially 

ACN Partially Partially Partially No Partially 

Ethyl Acetate Partially Partially Partially No Partially 

Diethyl Ether Partially Partially Partially No Partially 

Isopropanol Partially Partially Partially No Partially 
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To see if the rate capability of the material is improved by the inclusion of the PEO 

linker, the electrochemical properties of the BQpPhdA900 are studied. As 

mentioned on Section 4.4.1.2, the polymers are synthesized in situ with the 

conductive filler and in EtOH. MWCNTs or rGO are used as conductive fillers, the 

former because of the superior properties shown in section 4.4.1.2. While the latter 

to study if the behaviour previously observed is affected by the PEO linker. 

Figure 4-10 (a.I) shows the galvanostatic discharges at 0.08 A.g-1 of the 

BQpPhdA900 in situ with MWCNT. When comparing the bipolymer (Figure 4-6 (c) 

and Inset in Figure 4-10 (a.I)) with the terpolymer (Figure 4-10 (a.I)) a decrease in  

 

Figure 4-10. Galvanostatic discharge at 0.08 A.g-1 of the BQpPhdA900 synthesized in 

situ with MWCNT (a) and rGO (b). Gravimetric (I) and areal (II) capacity. Insets in a.I 

and b.I corresponding to the galvanostatic discharge of BQpPhdA-MWCNT and 

BQpPhdA-rGO, respectively. 
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the capacity values can be observed. While BQpPhdA-MWCNT achieves 151 –

 96 mAh.g-1, BQpPhdA900-MWCNT only exhibits 45 – 22 mAh.g-1.  

The electrochemical plateau of BQpPhdA900-rGO is observed below 0 V (Figure 

4-10 (b)), following the same trend as BQpPhdArGO. However, an increase in the 

electrode capacity of one order of magnitude is observed in this terpolymer when 

compared to the bipolymer. The shape of the discharge curve is similar to the one 

exhibited by materials used as catalysts in the Hydrogen Evolution Reaction 

(HER).26  

BQpPhdA900-MWCNT shows areal capacitance values up to 75 Ah.cm-2 in 

Figure 4-10 (a.II). This value is four times higher than the one achieved by the 

linear terpolymer. Indicating that BQhMdA400-MWCNT can be used in 

applications where gravimetric capacity is required, while BQpPhdA900-MWCNT 

can be used for portable electronics - thin film technology.  

4.4 Conclusions and Perspectives 

Two bipolymers with quinone-amine functional groups were synthesized and their 

electrochemical properties were tested in an aqueous-based electrolyte.  The 

poly[benzoquinone-co-(hexamethylene diamine)] presented a redox process 

involving 2 e- and 2 H+, while the poly[benzoquinone-co-(p-phenylenediamine)] 

one consisted of 4e- and 4H+. 

Different parameters during the synthesis steps were optimised in order to achieve 

the highest capacity values possible. In situ polymerization with multi-walled 

carbon nanotubes in EtOH was chosen as the optimum synthesis condition. 

An intramolecular hydrogen bonding in of poly[benzoquinone-co-(hexamethylene 

diamine)] was confirmed by Fourier Transform Infrared during cycling. The 

structure of the poly[benzoquinone-co-(p-phenylenediamine)] does not allow 

forming intramolecular hydrogen bonds, yet hydrogen bonds were formed with the 

water in the electrolyte and a doped state in perchloric acid, similar to the one 

observed in electroactive polymers was found. 

A PEO linker was introduced during the polymerization step, in order to process 

thin film electrodes. The mass of this PEO linker played an important role in the 

final achieved capacity as the terpolymer with the lowest molecular weight 

achieved the highest capacity values.  

The excellent performance observed by poly[benzoquinone-co-
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hexamethylenediamine-co-PEO] and poly[benzoquinone-co-(p-

phenylenediamine)-co-PEO], makes them interesting for thin film technology and 

grid energy storage. On the one hand, poly[benzoquinone-co-

hexamethylenediamine-co-PEO] achieved up to 230 mAh.g-1 at 0.08 A.g-1. On the 

other hand, poly[benzoquinone-co-(p-phenylenediamine)-co-PEO] shows areal 

capacitance values up to 75 Ah.cm-2. 

These high-quality materials showed significant improvement of processability by 

introducing linkers during the polymerization, proving that development of these 

electrode materials can be scaled up for real-life applications.  

4.5 References 

(1)  Chen, X.; Wang, H.; Yi, H.; Wang, X.; Yan, X.; Guo, Z. J. Phys. Chem. C 
2014, 118 (16), 8262–8270. 

(2)  Le Comte, A.; Chhin, D.; Gagnon, A.; Retoux, R.; Brousse, T.; Bélanger, D. 
J. Mater. Chem. A 2015, 3 (11), 6146–6156. 

(3)  Liu, C.; Li, F.; Ma, L.-P.; Cheng, H.-M. Adv. Mater. 2010, 22 (8), E28–E62. 

(4)  Hulicova, D.; Kodama, M.; Hatori, H. Chem. Mater. 2006, 18 (9), 2318–
2326. 

(5)  Hulicova, D.; Junya Yamashita; Yasushi Soneda; Hatori, H.; Kodama, M. 
Chem. Mater. 2005, 17 (5), 1241–1247. 

(6)  Lota, G.; Lota, K.; Frackowiak, E. Electrochem. commun. 2007, 9 (7), 
1828–1832. 

(7)  Ania, C. O.; Khomenko, V.; Raymundo-Piñero, E.; Parra, J. B.; Béguin, F. 
Adv. Funct. Mater. 2007, 17 (11), 1828–1836. 

(8)  Li, W.; Chen, D.; Li, Z.; Shi, Y.; Wan, Y.; Huang, J.; Yang, J.; Zhao, D.; 
Jiang, Z. Electrochem. commun. 2007, 9 (4), 569–573. 

(9)  Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; 
Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. ACS Nano 2010, 4 (8), 
4806–4814. 

(10)  Wang, M.; Duan, X.; Xu, Y.; Duan, X. ACS Nano 2016, 10 (8), 7231–7247. 

(11)  Zhang, H.-B.; Lin, G.-D.; Zhou, Z.-H.; Dong, X.; Chen, T. Carbon N. Y. 
2002, 40 (13), 2429–2436. 

(12)  Klug, H. P. (Harold P.; Alexander, L. E. (Leroy E. X-ray diffraction 
procedures for polycrystalline and amorphous materials, 2nd ed.; John 
Wiley & Sons, 1974. 

(13)  Lee, T. H.; Boey, F. Y. C.; Khor, K. A. Polym. Compos. 1995, 16 (6), 481–
488. 



GRAPHENE-RELATED MATERIALS FOR ELECTROCHEMICAL CAPACITORS 
Adriana M. Navarro-Suárez – November 2016 

Study of Redox Active Quinone-Amine Polymers for Energy Storage Devices   127 

(14)  Lehman, J. H.; Terrones, M.; Mansfield, E.; Hurst, K. E.; Meunier, V. 
Carbon N. Y. 2011, 49, 2581–2602. 

(15)  Casiraghi, C.; Hartschuh, A.; Qian, H.; Pliscanec, S.; Georgia, C.; Fasoli, 
A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Nano Lett. 2009, 9 (4), 
1433–1441. 

(16)  Stammreich, H.; Teixeira Sans, T. J. Chem. Phys. 1965, 42 (3), 920–931. 

(17)  Gupta, N.; Linschitz, H. J. Am. Chem. Soc. 1997, 119 (27), 6384–6391. 

(18)  Joseph, J.; Jemmis, E. D. J. Am. Chem. Soc. 2007, 129, 4620–4632. 

(19)  Gilli, P.; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122 
(42), 10405–10417. 

(20)  Simon, P.; Gogotsi, Y.; Dunn, B. Science (80-. ). 2014, 343 (6176), 1210–
1211. 

(21)  Badawi, H. M.; Förner, W.; Ali, S. A. Spectrochim. Acta Part A Mol. Biomol. 
Spectrosc. 2013, 112, 388–396. 

(22)  Chen, Y.; Zhang, Y.-H.; Zhao, L.-J. Phys. Chem. Chem. Phys. 2004, 6, 
537–542. 

(23)  Catedral, M. D.; Tapia, A. K. G.; Sarmago, R. V; Tamayo, J. P.; Del 
Rosario, E. J. Sci. Diliman 2004, 16 (2), 41–46. 

(24)  Deibel, C.; Strobel, T.; Dyakonov, V. Phys. Rev. Lett. 2009, 103 (3), 36402. 

(25)  Marsh, H.; Rodríguez-Reinoso, F. Activated Carbon; Elsevier, 2006. 

(26)  Li, Y.; Wang, H.; Xie, L.; Liang, Y.; Hong, G.; Dai, H. J. Am. Chem. Soc. 
2011, 133 (19), 7296–7299. 

 



 



DEVELOPMENT OF ASYMMETRIC 
SUPERCAPACITORS USING TITANIUM 

CARBIDE-REDUCED GRAPHENE OXIDE 
COUPLES AS ELECTRODES





GRAPHENE-RELATED MATERIALS FOR ELECTROCHEMICAL CAPACITORS 
Adriana M. Navarro-Suárez – November 2016 

Development of Asymmetric Supercapacitors Using Titanium Carbide-Reduced Graphene Oxide 
Couples as Electrodes    131 

5 DEVELOPMENT OF ASYMMETRIC 

SUPERCAPACITORS USING 

TITANIUM CARBIDE-REDUCED 

GRAPHENE OXIDE COUPLES AS 

ELECTRODES  

5.1 Introduction  

In this thesis, we have been focused on the development of electrode materials for 

supercapacitor devices showing a rapid electrochemical charge/discharge and long 

cycle life. However, the incorporation of supercapacitors in high energy density 

applications demands improvement on the density of the electrode materials.1 

Moreover, developing miniaturized supercapacitors for applications such as 

microchip technology, wearable electronics, etc., demands high volumetric 

capacitances for light, small and flexible devices.2 

Two-dimensional (2D) materials are inherently flexible, have a high surface 
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reactivity, high electrical conductivity, and large surface area, which are 

fundamental characteristics for energy storage devices.3 The exfoliation of graphite 

into single layers of graphene and the discovery of their astonishing properties, in 

2004, resulted in a new field of interest based on two-dimensional materials.4  The 

latest addition to the single layered materials is MXene, a two-dimensional transition 

metal carbide family discovered in 2011.5 

MXenes are produced by the etching out of the A layers from “MAX” phases. The 

latter are so-called because of their composition, 𝑀𝑛+1𝐴𝑋𝑛 , where 𝑀 is an early 

transition metal (e.g. Ti, Nb), 𝐴 is an element of group 13 or 14 (e.g. Al, Si), 𝑋 can 

be Carbon or Nitrogen, and 𝑛 might be equal to 1, 2 or 3. The strong 𝑀 − 𝑋 bond 

has a mixed covalent/metallic/ionic character, whereas the 𝑀 − 𝐴 bond is metallic.6 

Taking advantage of the differences in character and relative strengths of the 𝑀 − 𝐴 

compared with the 𝑀 − 𝑋 bonds, the A layers can be selectively etched by chemical 

routes without disrupting the 𝑀 − 𝑋 bonds. After etching, MXene has a general 

formula of 𝑀𝑛+1𝑋𝑛.  

MXenes have shown a great potential as electrode materials in supercapacitors.7–

15 Pristine d-Ti3C2, the most studied MXene, has achieved capacitance values up to 

238 F.g-1, and 900 F.cm-3 in 1 M H2SO4. 8,15 The main drawback of d-Ti3C2 is that its 

potential window in aqueous electrolytes is narrow (-0.2 to 0.35 V vs Ag/AgCl). This 

translates in lower energy and power densities when compared to other carbon 

materials.16  

Herein, we will develop a full cell using d-Ti3C2 and rGO as negative and positive 

electrode, respectively, in aqueous and organic electrolytes. The goals of the 

preparation and study of an asymmetric capacitor delineated within this chapter are 

the following:  

i) By using an asymmetric device, the electrochemical window of the d-

Ti3C2 will be enlarged and higher energy and power densities than 

those exhibited by pure d-Ti3C2 will be achieved.  

ii) rGO and d-Ti3C2 are both conductive materials with high surface area 

and ion intercalation capability. Because of these properties, high 

gravimetric and volumetric capacitance, and a long cycle life are 

expected from the asymmetric device. 

iii) Preparation of the electrode materials as a thin film, will open the path 

for flexible energy storage devices. 
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5.2 Methodology 

5.2.1 Materials Synthesis  

5.2.1.1 2D Titanium Carbide MXene  

The synthesis method is described elsewhere.8 Briefly, to synthesize Ti3C2, 20 mL 

of 9 M hydrochloric acid (HCl, Fisher Scientific) are added to 7.5 molar equivalents 

(2 g) of lithium fluoride (LiF, Alfa Aesar). The mixture is stirred until the salt is 

dissolved. Then, two grams of the ternary Titanium Aluminium Carbide in powder 

(Ti3AlC2, < 38 μm particle size) are slowly added to this solution. The reaction 

mixture is held at 35 °C for 24 h while stirring at 200 rpm. After 24 h, the mixture is 

washed by adding deionized water, separated by centrifugation at 3500 rpm for two 

minutes and the supernatant is collected. The washing process is repeated until pH 

above 5 is achieved. In order to increase the surface area, the Ti3C2 solution is 

delaminated (d-Ti3C2) by bath sonication for one hour under argon flow. Then, we 

centrifuge for another hour at 3500 rpm. Finally, the supernatant containing the d-

Ti3C2 is collected. In order to prepare a d-Ti3C2 film, the d-Ti3C2 is filtered using a 

polypropylene membrane (3501 Coated PP, Celgard LLC) and dried under vacuum.  

To increase the interlayer distance of the d-Ti3C2 for organic-based supercapacitors, 

a d-Ti3C2/Multi-walled Carbon Nanotube (MWCNT) composite is prepared as 

described elsewhere.17 First, an aqueous 1 mg.ml-1 d-Ti3C2 suspension is prepared 

as well as an aqueous solution of 0.1 mg.ml-1 MWCNT in 8 mg.ml-1 aqueous solution 

of sodium dodecyl sulphate (SDS, Sigma Aldrich). Sandwich-like MXene/MWCNT 

films are prepared using an alternating filtration method. Specifically, 1 ml of the d-

Ti3C2 dispersion is filtered through a polypropylene membrane to yield a thin d-Ti3C2 

layer. Then, 1 mL of the MWCNT-SDS dispersion is filtered on top of the d-Ti3C2 

layer. This alternate filtration is repeated several times to yield composite films 

composed of 5 and 4 alternating d-Ti3C2 and MWCNTs layers, respectively. 

Afterwards, the film is washed with 200 millilitres of deionized water. The composite 

film is vacuum dried under argon flow.  

5.2.1.2 Reduced Graphene Oxide Synthesis 

The Graphite Oxide is prepared following the Marcano-Tour method,18 as it was 

explained in Section 3.2.1.2, using KMnO4, H2SO4, and H3PO4. The Graphite Oxide 

(GrO) is then sonicated in water for 1 hour and the exfoliated Graphene Oxide (GO) 

is collected. Then, two different reduction methods are used. The first one, is a 
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chemical method that yields rGO with carboxylic acid groups.19 These groups can 

be beneficial for pseudocapacitance in aqueous electrolytes.20 In the second 

method, the rGO is reduced thermally, eliminating the oxygen functional groups.21 

These groups are known for being detrimental to capacitance in organic-based 

supercapacitors.22 

5.2.1.2.1 Hydrazine Method 

Graphene Oxide (GO) was reduced following the Li-Wallace method. 23 Briefly, 30 

ml of GO in water (7 mg.ml-1) are heated at 85 °C, then 2 ml of hydrazine hydrate 

(98 %, TCI America) and 1 ml of ammonium hydroxide (Fischer Scientific) are added 

to the GO. The reaction is kept under reflux during one hour, after which the solution 

is left to cool down, centrifuged for half an hour and the reduced Graphene-Oxide 

(rGOH) is re-dispersed in ethanol (Decon Labs, Inc). In this case, hydrazine 

monohydrate acts as reducing agent and ammonium hydroxide is used to promote 

the colloidal stability of the Graphene Oxide sheets through electrostatic repulsion.24 

In order to prepare a film, the rGOH is filtered using a polypropylene membrane 

(3501 Coated PP, Celgard LLC) and dried under vacuum. 

5.2.1.2.2 Thermal Method 

The GO solution is freeze dried producing a GO aerogel. Then, 200 mg of the freeze 

dried-GO is heated under argon flow at a heating rate of 10 °C.min-1 up to 900 °C 

and kept for 2 h. After cooling down, the reduced Graphene-Oxide (rGOT) is re-

dispersed in ethanol. The, the rGOT is filtered using a polypropylene membrane 

(3501 Coated PP, Celgard LLC) and dried under vacuum. 

5.2.2 Characterization Methods 

The characterization of the d-Ti3C2, d-Ti3C2-MWCNT, and rGO films morphologies 

is carried out using Scanning Electron Microscopy (SEM, Zeiss Supra 50VP, 

Germany). 

The vibration frequencies of the materials are studied by Raman Spectroscopy. The 

Raman spectra are recorded on Renishaw inVia spectrometer with a 632 nm laser 

as an excitation source (5 % laser power). 

The interlayer distance of the d-Ti3C2, d-Ti3C2-MWCNT, and rGO films is calculated 

from the X-Ray Diffractions. XRD is carried out on a Rigaku Smart Lab (Japan) 

diffractometer using Cu-K radiation (40 kV and 44 mA) and step scan 0.02 °, the 
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2 range is 5 – 50 ° and step time of 0.5 s.  

5.2.3 Electrochemical Testing 

To quantify the amount of charge stored by these materials, all tested films are cut 

with the same thickness and weight and assembled in Swagelok type cells. The 

materials are evaluated in a 3-electrode configuration to evaluate their capacitance 

and electrochemical window. Then, symmetric and asymmetric devices are 

assembled. The cells are electrochemically studied by using a 1 M sulfuric acid 

(H2SO4, Sigma Aldrich) solution with Ag/AgCl as reference or pseudo-reference 

electrode. For organic electrolyte, 1 M tetraethyl ammonium tetrafluoroborate 

(Et4N+BF4
-, Sigma Aldrich) in acetonitrile (ACN, Fischer) is used as electrolyte and 

Ag wire as reference or pseudo-reference electrode. For those tests carried out by 

using a 3-electrode cell, activated carbon (YP-50, Kuraray) is used as counter 

electrode. Electrochemical cyclic voltammetry (CV) measurements at different scan 

rates ranging from 2 to 100 mV.s-1, as well as impedance measurements are 

performed at ambient conditions in a multichannel potentiostat/galvanostat (Biologic 

VMP3, France). The cycling performance of the asymmetric devices is tested at 20 

mV.s-1 over 1000 cycles in 1 M H2SO4 and 1 M Et4NBF4/ACN from 0 V to 1.1 V and 

from 0 V to 2 V, respectively. Before and after the cycling testing, electrochemical 

impedance spectroscopy is measured within the ac frequency region from 10 mHz 

to 200 kHz at different fixed ΔV with ac voltage amplitude of 10 mV. 

5.3 Results and Discussion 

5.3.1 Materials for Aqueous-Based Supercapacitors 

5.3.1.1 2D Titanium Carbide MXene  

Scheme 5-1 shows the approach to the synthesis of d-Ti3C2 from Ti3AlC2. After 

dissociation of HCl and LiF, H+ and F- ions weaken the Ti-Al bonds. Consequent 

opening of interlayer gap allows further insertion that leads to the formation of AlF3 

and H2. The 2D Ti3C2 layers possess two exposed Ti atoms per unit formula that 

have as ligands hydroxyl and fluorine (not shown in Scheme 5-1), which are present 

in the reaction media.25 The synthetic process is summarized by Reaction 5-1. 

In order to confirm the synthesis of d-Ti3C2 and to study its structure, a d-Ti3C2 film 

is studied by Scanning Electron Microscopy, Raman, and X-Ray Diffraction. 
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Scheme 5-1. Illustration of the Ti3C2 MXene formation process. 

 

2𝑇𝑖3𝐴𝑙𝐶2 + 6𝐻𝐶𝑙 + 6𝐿𝑖𝐹 → 2𝑇𝑖3𝐶2 + 3𝐻2 + 2𝐴𝑙𝐹3 + 6𝐿𝑖𝐶𝑙 

Reaction 5-1. Formation of MXene from MAX phase. 

5.3.1.1.1 2D Titanium Carbide MXene Characterization 

Figure 5-1 shows the cross-sectional Scanning Electron Microscopy (SEM) image 

of a binder-free d-Ti3C2 film. This image proves that the entire film is composed of 

well-aligned stacked Ti3C2 MXene sheets. This layered morphology resembles 

expanded graphite, as the nanolayers are clearly separated from each other. This 

shearing of the 2-dimensional particles allows the material to be a flexible standing 

film.   

Figure 5-2 (a) shows the Raman spectrum of the d-Ti3C2 film. All the vibration bands 

are consistent with the reported ones.26 The four broad Raman peaks centred 

around 199.5, 369, 628.5 and 716.3 cm−1 are attributed to the vibrations from non-

stoichiometric titanium carbide.27 

The XRD pattern of the d-Ti3C2 (Figure 5-2 (b)) shows a sharp, intense peak (002) 

and higher-order (00l) peaks ascribed to restacking of Ti3C2 flakes. Pristine MXene 

has been reported to have a hexagonal structure with a = b = 3.0505(5) Å. The (002)  
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Figure 5-1. Cross-sectional SEM image of d-Ti3C2 film. 

 

Figure 5-2. Raman (a), XRD (b) of the d-Ti3C2. Numbers in the Raman spectrum denote 

the vibration frequency while in the XRD pattern indicates the miller indices related to 

the diffraction peaks. Inset in (b) shows the crystallographic structure of the d-Ti3C2. 

peak around 7.1 ° corresponds to a c-lattice parameter of 25 Å and an interlayer 

distance of 12.5 Å (Inset in Figure 5-2 (b)). This separation is caused by the 

presence of water between the d-Ti3C2 flakes.14 It has been shown previously that 

vacuum drying at above 100 °C is needed to remove the water between MXene 

flakes.28  

5.3.1.1.2 2D Titanium Carbide MXene Electrochemistry 

The d-Ti3C2 binder-free film is electrochemically characterized in a 3-electrode 

configuration. Figure 5-3 shows the main results of the electrochemical 

characterization of the film. The CV curves of d-Ti3C2, shown in Figure 5-3 (a) keep 

a rectangular shape even at a fast scan rate of 100 mV.s-1, confirming ion diffusion 

in between the layers. The maximum capacitance achieved by d-Ti3C2 is 230 F.g-1 

at 2 mV.s-1. The specific capacitance of the material decreases gradually with the 

scan rate (Figure 5-3 (b)) to 167 F.g-1 at 100 mV.s-1, showing acceptable 

capacitance retention with scan rate. Because of the high density of d-Ti3C2 films 

(4.07 g.cm-3) an outstanding volumetric capacitance of 934 F.cm-3 is achieved. The 

excellent performance of d-Ti3C2 as supercapacitor electrode has been ascribed to 

the smaller size of H+ compared to other intercalating cations, surface redox 

processes, and good accessibility of interlayer spacing because of the pre-

intercalated water.14 
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Figure 5-3. Cyclic voltammetry (a) and rate capability (b) of the d-Ti3C2 in 1 M H2SO4. 

By combining two d-Ti3C2 electrodes, a full device might be assembled and as 

result, the performance of the material in a real environment can be tested.  Figure 

5-4 shows the results of the cyclic voltammetry tests at different scan rates for the 

symmetric cell. As the potential window of d-Ti3C2 is constricted from -0.2 to 0.35 V 

vs Ag/AgCl (Figure 5-3 (a)), the electrochemical window of the symmetric device is 

only 0.55 V (Figure 5-4 (a)). At 2 mV.s-1, the gravimetric and volumetric values of 

capacitance are 216 F.g-1 and 880 F.cm-3, respectively.  The symmetric cells exhibit 

94 % of the capacitance expected from the 3-electrode measurement, showing  

 

Figure 5-4. Cyclic voltammetry (a) and rate capability (b) of d-Ti3C2 in a symmetric 

configuration in 1 M H2SO4. 
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Scheme 5-2. Approach to synthesize reduced Graphene Oxide, where the blue points 

denote Carbon and the red ones oxygen groups. 

 

optimum electronic conductivity of the electrolyte between the electrodes. The rate 

capability of the material is studied in Figure 5-4 (b). The capacitance decrease is 

more marked in the symmetric device than in the 3-electrode configuration owing to 

the presence of having two capacitors in series. At 100 mV.s-1 the gravimetric and 

volumetr ic capacitances are 110 F.g -1  and 444 F.cm -3 , respect ively.  

5.3.1.2 Chemically Reduced Graphene Oxide 

The synthesis of the reduced Graphene Oxide is summarized on Scheme 5-2. By 

comparing Scheme 5-1 and Scheme 5-2, can be observed that both materials 

present a 2-dimensional structure. 

To confirm the 2-dimensional structure of the rGOH film, the material is analysed by 

Scanning Electron Microscopy, Raman, and X-Ray Diffraction. 

5.3.1.2.1 Chemically Reduced Graphene Oxide Characterization 

A cross section image of the rGOH film by SEM is shown in Figure 5-5. As with d- 
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Figure 5-5. Cross section of the rGOH film analysed by Scanning Electron Microscopy. 

Ti3C2, the structure is layered. 

Figure 5-6 shows the Raman and XRD results of the analysis of the rGOH film. The 

Raman spectrum (Figure 5-6 (a)) shows the typical D and G bands explained before 

in this thesis. Briefly, the G band (1595 cm-1) is the only band coming from a normal 

first order Raman scattering process in graphene, while the D band (1331 cm-1) is 

originated from a second-order process, involving one phonon and one defect.29 

The ID/IG ratio is 1.4 indicating a disordered structure. 30 

Figure 5-6 (b) shows the X-Ray Diffraction of the rGOH film. The material shows 

interlayer distances ranging from 2.2 to 4.4 Å. 

 

 

Figure 5-6. Raman (a) and XRD (b) of the rGOH.  The number in the XRD pattern 

indicates the miller index of the maximum peak. 
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5.3.1.2.2 Chemically Reduced Graphene Oxide Electrochemistry 

Figure 5-7 shows the results from cycling the rGOH binder-free film in a 3-electrode 

configuration at different scan rates. The cyclic voltammetry curves (Figure 5-7 (a)) 

show an almost rectangular shape with a wide peak around 0.4 V vs Ag/AgCl. This 

redox process is due to residual functional groups in rGOH. The maximum 

capacitance achieved is 251 F.g-1 at 2 mV.s-1. The capacitance of the material has 

a rapid decrease when the scan rate is increased (Figure 5-7 (b)), reaching 129 F.g-

1 at 100 mV.s-1 (51 % of the initial one). This decrease is caused, in principle, 

because of the depletion of functional groups in the material.20 The volumetric 

capacitance value is similar to the gravimetric one, given that the density of the film 

is 0.99 g.cm-3. 

The rGOH film is tested in a symmetric configuration to evaluate its potential in real 

life applications. These results are shown in Figure 5-8. When the electrodes are 

tested in a symmetric configuration, the CV curves (Figure 5-8 (a)) are more 

rectangular than in a 3-electrode configuration. However, at high scan rates the 

capacitance becomes more dependent on the voltage.  The maximum capacitance 

value of the symmetric device is 167 F.g-1 at 2 mV.s-1, which is 66 % of the one 

achieved with the 3-electrode configuration. At high scan rates, the rGOH film only 

exhibits 33 % of the capacitance achieved at low scan rates.  

 

Figure 5-7. Electrochemical characterization of the rGOH in 1 M H2SO4. Cyclic 

voltammetry (a) and rate capability (b). 
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Figure 5-8. Cyclic voltammetry (a) and rate capability (b) of rGOH in a symmetric 

configuration in 1 M H2SO4. 

The electrochemical studies of the d-Ti3C2 and the rGOH films can be summarized 

as it follows: On the one hand, the d-Ti3C2 film has a high volumetric and gravimetric 

capacitance and excellent capacitance retention. On the other hand, the rGOH film 

achieves a high gravimetric capacitance but its volumetric capacitance and 

capacitance retention need to be improved. As these materials have complementary 

potential windows (from -0.2 to 0.35 V for d-Ti3C2 and from 0.0 to 0.9 V for rGOH), 

herein an asymmetric device is proposed.  

5.3.1.3 Aqueous-Based Asymmetric Device 

In order to assemble the asymmetric capacitor, the d-Ti3C2 film is used as negative 

electrode (CE) and the rGOH film as positive electrode (WE). The mass balance is 

calculated using Equation 1-13, taking into account the maximum capacitance of 

each material in three electrodes and the same potential window.  Then, 

𝒎𝒓𝑮𝑶𝑯

𝒎𝒅−𝑻𝒊𝟑𝑪𝟐

=
𝑪𝒅−𝑻𝒊𝟑𝑪𝟐×∆𝑬𝒅−𝑻𝒊𝟑𝑪𝟐
𝑪𝒓𝑮𝑶𝑯×∆𝑬𝒓𝑮𝑶𝑯

=
𝟐𝟑𝟎

𝟐𝟓𝟏
= 𝟎. 𝟗 

In an asymmetric device, the electrodes have dissimilar charge storage capacities; 

therefore, in this section the capacitance reported will be the one corresponding to 

the cell. Figure 5-9 (a) shows the evolution of the cell capacitance with voltage at 

different scan rates of the asymmetric device with 𝑚𝑟𝐺𝑂𝐻 𝑚𝑑−𝑇𝑖3𝐶2
⁄ = 0.9.  The 

capacitive behaviour (rectangular shape) is maintained at different scan rates 

proving optimum electrical conductivity and ion diffusion inside the pores. In the  

Equation 5-1 
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Figure 5-9. Cyclic voltammetry at different scan rates (a) and at 10 mV.s-1 (b) of the 

asymmetric device in 1 M H2SO4. 

asymmetric device, the electrochemical window is expanded to 1.1 V as the 

electrodes have complementary potential working windows. This increment in 

voltage window will affect positively the energy and power delivered by the device. 

Figure 5-9 (b) shows the contributions from each electrode when the cell is cycled 

at 10 mV.s-1. The potential window corresponding to the rGOH and d-Ti3C2 is 0.71 

and 0.39 V, respectively. To equilibrate the charges, other mass balance 

proportions are tried (not shown) but the d-Ti3C2 potential window always is 

constricted to less than 0.4 V. The capacitance achieved by the d-Ti3C2 electrode, 

and the rGOH electrode at 10 mV.s -1 are 195 and 114 F.g-1, respectively. 

The cell gravimetric capacitance and Ragone plot (calculated for the active material) 

of the asymmetric and symmetric devices are shown in Figure 5-10 (I). The 

asymmetric device exhibits intermediate capacitance retention in between the 

symmetric cells of d-Ti3C2 and rGOH (Figure 5-10 (a.I)). The maximum cell 

capacitance achieved by the asymmetric device is 48 F.g-1 (78 F.cm-3). The use of 

d-Ti3C2 as counterpart to rGOH in an asymmetric cell, improves the capacitance 

retention (44 % at 10 A.g-1) compared to the symmetric rGOH (33 % at 10 A.g-1). 

However, the value is lower than the one achieved by the symmetric d-Ti3C2 device.  

The advantage of using rGOH as counterpart of d-Ti3C2 is, as explained before, the 

increment of the voltage window of the MXene electrode. In the Ragone plot 

observed in Figure 5-10 (b) can be seen that because of its small voltage window, 

the symmetric d-Ti3C2 device presents the lowest gravimetric energy values of the 

three devices. The symmetric rGOH device exhibits a larger energy density than the  
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Figure 5-10. Comparison of the capacitance retention (a) and Ragone plot (b) 

calculated gravimetrically (I) and volumetrically (II) of the asymmetric device with the 

symmetric ones in 1 M H2SO4. 

symmetric d-Ti3C2 device, but drops quickly as the power increases. As expected, 

the asymmetric device achieves the highest energy density, because of its voltage 

window, and the most stable energy density of the three devices. The asymmetric 

d-Ti3C2//rGOH achieves up to 8 Wh.kg-1, this value is comparable to the ones 

exhibited by carbon-based active materials.31  

The influence of the density of the materials can be observed in Figure 5-10 (II). As 

explained before, d-Ti3C2 is a denser material than rGOH, then, when comparing 

their volumetric capacitance retention, d-Ti3C2 exhibits the highest values, rGOH the 

lowest and the asymmetric device, intermediate values. This behaviour is translated  
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Table 5-1. Summary of the performance of d-Ti3C2 and rGOH in aqueous-based 

supercapacitors. 

Aqueous-based supercaps CCell 

F.g-1 

CCell 

F.cm-3 

Ret at 100 mV/s 

% 

Energy Density 

Wh.kg-1 

Symmetric d-Ti3C2 54 220 50 2 

Symmetric rGOH 42 41 33 5 

Asymmetric d-Ti3C2//rGOH 48 78 48 8 

to the Ragone plot, where as in the gravimetric plot, the asymmetric device achieves 

the highest energy values. Nevertheless, in contrast to the gravimetric plot, d-Ti3C2 

achieves larger energy values than rGOH, as its film density is 4 times higher. Table 

5-1 summarizes the main results of the electrochemical testing of d-Ti3C2 and rGOH 

in aqueous-based electrolytes in symmetric and asymmetric configurations.  

One of the advantages of supercapacitors is their long-term cycling behaviour.32 

Therefore, the asymmetric device is tested for 1000 cycles and the evolution of its 

capacitance is plotted on Figure 5-11 (a). After 1000 cycles at 20 mV.s-1, the 

capacitance retained is 76 % of the initial one. The decrease in  capacitance might 

be caused by the lower conductivity of the rGOH, as it has been proven that d-Ti3C2 

can be cycled up to 10000 cycles without capacitance losses.15 Coulombic  

 

Figure 5-11. Capacitance retention during 1000 cycles at 20 mV.s-1 (a) and 

Electrochemical Impedance spectroscopy before and after cycling (b) of the 

asymmetrical device in 1 M H2SO4. 
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efficiency is close to 100 % confirming that the process does not involve parasitic 

reactions. 

The asymmetric device is analysed by Electrochemical Impedance Spectroscopy 

before and after cycling as shown in Figure 5-11 (b). The Nyquist plot of the 

asymmetric device, before cycling, shows a straight line in the low frequency region 

and no presence of a semicircle at high frequencies. This behaviour indicates low 

electronic resistance between the electrolyte and the electrodes. The electronic 

resistance increases with cycling as can be observed by the appearance of a 

semicircle after the cycle test. The slope of the 45 º portion of the curve is called 

Warburg resistance.33 The increment on the Warburg resistance after cycling, 

describes an increment in the ion diffusion path between the electrode and the 

electrolyte.  

For the first time, we have found a matching positive electrode for MXene in 

aqueous-based electrodes. Thus, this work opens up exciting possibilities of using 

d-Ti3C2 and rGOH as couples in asymmetric aqueous-based supercapacitors. 

5.3.2 Materials for Organic- and Ionic Liquid-Based 

Supercapacitors 

In order to increase the energy density delivered by the asymmetric device, the 

materials are also tested in an organic electrolyte. The materials are slightly 

modified to improve their performance in organic electrolytes and are characterized 

as the ones used for aqueous electrolytes. 

5.3.2.1 2D Titanium Carbide MXene-MWCNT Composite 

Recently, Dall’Agnese et al. proved that the addition of MWCNT improves the 

performance of d-Ti3C2 in organic electrolytes.11 After delamination of the MXene, 

the MWCNT are added following the procedure explained elsewhere.12 In this case, 

the proportion d-Ti3C2:MWCNT of the film is 92:8. The insertion of MWCNT between  

 

Figure 5-12. Cross section image of d-Ti3C2/MWCNT film. 
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the layers of d-Ti3C2 decreases the density of the film from 4.07 in the MXene to 

2.44 g.cm-3 in the composite. The influence of the MWCNT on the d-Ti3C2 is studied 

by Scanning Electron Microscopy, Raman and X-Ray Diffraction. 

5.3.2.1.1 2D Titanium Carbide MXene-MWCNT Composite 

Characterization 

Figure 5-12 shows the cross-sectional Scanning Electron Microscopy image of a d-

Ti3C2/MWCNT composite. The anticipated increase in spacing between the Ti3C2 

layers after the incorporation of the MWCNTs is evident in the image.  

Figure 5-13 shows the characterization of d-Ti3C2/MWCNT film by Raman 

Spectroscopy and X-Ray Diffraction. The spectrum combines the features of both 

d-Ti3C2 and MWCNT. The peaks observed at low frequencies in Figure 5-13 (a) 

correspond to the peaks attributed to d-Ti3C2 and are in agreement with the values 

of the MXene by itself (Figure 5-2 (a)). d-Ti3C2 does not present observable peaks 

at high frequencies; yet, the d-Ti3C2/MWCNT film does. The peak at 1141.4 cm-1 

corresponds to C-H vibration of the surfactant.34 Then, the peaks at 1295 and 

1538.4 cm-1 correspond to the D and G band of the MWCNT, respectively. The D 

band can be understood as a measurement of structural disorder coming from 

amorphous carbon and any defects. The G band originates from the tangential in-

plane stretching vibrations of the carbon–carbon bonds.35   

 

Figure 5-13.Raman (a) and XRD (b) of the d-Ti3C2/MWCNT film. Numbers in the Raman 

spectrum denote the vibration frequency while in the XRD pattern indicate the distance 

between the layers of the material. 
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Figure 5-14. Electrochemical characterization of the d-Ti3C2/MWCNT in 1 M Et4NBF4. 

Cyclic voltammetry (a) and rate capability (b). 

The XRD pattern of the d-Ti3C2/MWCNT (Figure 5-13 (b)) shows a sharp, intense 

peak corresponding to the (002) reflection of d-Ti3C2. The (002) peak in the XRD 

pattern of d-Ti3C2 shifted from 7.1 ° to 6.4 ° for the sandwich-like d-Ti3C2/MWCNT 

film. This shift translates in an increase in the interlayer distance from 12.5 Å in d-

Ti3C2 to 13.8 Å in d-Ti3C2/MWCNT.  

5.3.2.1.2 2D Titanium Carbide MXene-MWCNT Composite 

Electrochemistry 

The electrochemical stability of the d-Ti3C2/MWCNT binder-free film in 1 M 

Et4NBF4/ACN is investigated by studying the material in a 3-electrode configuration. 

It is important to mention that other MWCNTs addition methods and other 

proportions were tried but the Sandwich-like d-Ti3C2/MWCNT in a 92:8 proportion 

delivers the highest capacitance values and the best capacitance retention from all 

the methods. The main results of the testing of this material are shown in Figure 

5-14. The electrochemical signature of the d-Ti3C2/MWCNT film is characterized by 

a capacitive envelope and broad peaks typical of intercalation.31  

This behaviour is maintained at high scan rates. The potential range (1.8 V) is 

narrower than expected from this electrolyte, but can been explained by water 

trapped between d-Ti3C2 layers. The intercalated water is responsible for electrolyte 

reaction at the extrema of the potential range visible at low scan rates.11 At low scan 

rates, the d-Ti3C2/MWCNT film achieves 42 F.g-1 (102 F.cm-3) and maintains 65 %  
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Figure 5-15.  Cyclic voltammetry (a) and rate capability (b) of d-Ti3C2/MWCNT in a 

symmetric configuration in 1 M Et4NBF4/ACN. 

of this capacitance at 100 mV.s-1.  

The electrochemical performance of two d-Ti3C2/MWCNT films is evaluated in a 

symmetric cell in 1 M Et4NBF4/ACN and shown in Figure 5-15. The shape of the 

CVs (Figure 5-15 (a)), at different scan rates, is rectangular indicating a capacitive 

behaviour. Moreover, an intercalation process seems to occur below 0.4 V. The 

maximum capacitance achieved by the symmetric cell in the organic electrolyte is 

27 F.g-1 (65 F.cm-3). Comparing the electrochemical results of the 3-electrode and 

symmetric configurations, the latter shows 64 % of the maximum capacitance 

achieved by the former. At 100 mV.s-1, only 39 % of the capacitance exhibited at 2 

mV.s-1 is maintained. The intercalated water in the MXene layers might cause this 

phenomenon. 

5.3.2.2 Thermally Reduced Graphene Oxide 

The presence of surface functionalities, water or impurities in the active material 

are the main causes of ageing in organic-based supercapacitors.22  The hydrazine 

reduction of Graphene Oxide does not remove epoxide groups from the edges of 

the aromatic domains,21 making of the rGOH a weak candidate for organic-based 

supercapacitors. Thermal annealing of the Graphene Oxide above 700 °C 

eliminates hydroxyl and carboxyl groups from the material.21 Herein, the Graphene 

Oxide is thermally reduced at 900 °C (labelled in here as rGOT) in order to use it as 

electrode material for organic-based supercapacitors. rGOT is characterized by 

Scanning Electron Microscopy, Raman Spectroscopy, and X-Ray Diffraction. 
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Figure 5-16. Cross-sectional SEM image of rGOT film. 

5.3.2.2.1 Thermally Reduced Graphene Oxide Characterization 

A cross section image of the rGOT film by SEM is shown in Figure 5-16. This image 

confirms the layered nanostructure of the material. 

Figure 5-17 shows the Raman and XRD results of the analysis of the rGOT. The 

Raman spectrum (Figure 5-17 (a)) shows the typical fingerprint of carbon materials. 

The D band is around 1323 cm-1 while the G band is at 1598 cm-1, with an ID/IG ratio 

of 1.3. rGOT and rGOH have similar ID/IG ratios indicating that the two reduction 

methods achieve similar reduced Graphene Oxides in terms of ordering of the 

material.  

Figure 5-17 (b) shows the XRD pattern of rGOT. The (002) peak of the material is at 

25.4 °, 1.7 ° to the right of the (002) peak of the rGOH. This shift towards higher 

angles indicates that rGOT is less oxidized than rGOH. 

 

Figure 5-17. Raman (a) and XRD (b) of the rGOT.  The number in the XRD pattern 

indicates interlayer distance. 
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Figure 5-18. Electrochemical characterization of the rGOT in 1 M Et4NBF4/ACN. Cyclic 

voltammetry (a) and rate capability (b). 

5.3.2.2.2 Thermally Reduced Graphene Oxide Electrochemistry 

Figure 5-18 shows the results from cycling the rGOT binder-free electrode in organic 

electrolyte in a 3-electrode configuration. The cyclic voltammetry curves (Figure 

5-18 (a)) have a capacitive envelope with some broad peaks, caused by 

intercalation, at low scan rates. The evaluation of the capacitance at different scan 

rates shows that the maximum capacitance achieved is 71 F.g-1 at 2 A.g-1. 70 % of 

this capacitance is maintained at 100 A.g-1 showing acceptable capacitance 

retention with scan rate. The density of rGOT is 0.84 g.cm-3, making of this film, 15 % 

less dense than rGOH.  

Figure 5-19 shows the main results of the testing of rGOT in a symmetric 

configuration in 1 M Et4NBF4/ACN. The voltage window for the cyclic voltammetry 

measurements in Figure 5-19 (a) is equal to the maximum potential window in the 

3-electrode configuration i.e. 2.5 V. At 2 mV.s-1, the capacitance is 75 F.g-1 and at 

100 mV.s-1, 50 % of it is retained. At low scan rates, the electrolyte reaction at the 

right extreme of the voltage is more pronounced.  This electrolyte decomposition 

affects the capacitance calculation, making it larger than it probably is. 
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Figure 5-19. Cyclic voltammetry (a) and rate capability (b) of rGOT in a symmetric 

configuration in 1 M Et4NBF4/ACN. 

5.3.2.3 Organic-Based Asymmetric Device 

The assembling of an asymmetric organic-based supercapacitor, is not as 

straightforward as the aqueous-based one. The potential windows of the d-

Ti3C2/MWCNT and rGOT are not complementary and rGOT has a better 

electrochemical performance in 1 M Et4NBF4/ACN than the composite. 

Nevertheless, the asymmetric supercapacitor is assembled to see if the 

performance of the d-Ti3C2/MWCNT can be improved by using rGOT as positive 

electrode. rGOT is chosen as positive electrode as it has a larger potential window. 

d-Ti3C2/MWCNT is chosen as negative electrode as its interlayer distance is larger 

and can fit better the Et4N+ ions. The mass balance is calculated using Equation 1-

13, and taking into account the maximum capacitance values showed by each 

material in the 3-electrode configuration.  Then, 

𝒎𝒓𝑮𝑶𝑻

𝒎𝒅−𝑻𝒊𝟑𝑪𝟐/𝑴𝑾𝑪𝑵𝑻

=
𝑪𝒅−𝑻𝒊𝟑𝑪𝟐/𝑴𝑾𝑪𝑵𝑻

𝑪𝒓𝑮𝑶𝑻
=
𝟒𝟐

𝟕𝟏
= 𝟎. 𝟔 

 

Figure 5-20 shows the cyclic voltammetry analysis of the asymmetric d-

Ti3C2/MWCNT and rGOT device using 𝑚𝑟𝐺𝑂𝑇 𝑚𝑑−𝑇𝑖3𝐶2/𝑀𝑊𝐶𝑁𝑇⁄ = 0.6. The cell can 

reach up to 2.3 V but the cell capacitance drops drastically when the scan rate is 

increased, therefore the asymmetric cells in this study are run up to 2 V (Figure 

5-20 (a). The performance of each electrode is studied with a pseudo-reference  

Equation 5-2 
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Figure 5-20. Cyclic voltammetry of the asymmetric device in 1 M Et4NBF4/ACN. Cell 

capacitance variation with voltage at different scan rates (a) and behaviour of each 

electrode with potential at 10 mV.s-1 (b). 

electrode. On the one hand, the potential window of rGOT is equal to 0.8 V and 

shows a capacitance of 83 F.g-1. On the other hand, d-Ti3C2/MWCNT exhibits a 

potential window of 1.2 F and achieves 35 F.g-1. 

Figure 5-21 (a) shows the cell capacitance values of the asymmetric device and the 

symmetric cells of d-Ti3C2/MWCNT and rGOT. Surprisingly, the cell capacitance 

value of the asymmetric device is the highest one, this is caused by the matching of 

the interlayer distance with the ion sizes. The XRD pattern indicated an interlayer 

distance for d-Ti3C2/MWCNT of 1.38 nm and the size of the Et4N+ bare cation is 0.67 

nm and solvated is 1.3 nm,36 the similarity in size allows the insertion of ions in 

between the layers of the material. Then, rGOT has an interlayer distance ranging 

between 0.23 and 0.44 nm which matches perfectly the BF4
- ion size which is 0.33 

nm.37  

When taking into account the density of the materials (Figure 5-21 (a.II)), the 

symmetric cells achieve similar capacitance values at 2 mV.s-1. After increasing the 

scan rate above 5 mV.s-1 the symmetric rGOT retains 71 % of its initial capacitance 

while the symmetric d-Ti3C2/MWCNT maintains 84 %. Figure 5-21 (b) shows the 

gravimetric (I) and volumetric (II) Ragone plot of the asymmetric devices in aqueous 

and organic electrolytes. As expected, the increase in voltage window is reflected 

on a higher energy density for the cell. Nevertheless, the aqueous-based 

supercapacitor exhibits a better energy retention as there is no decomposition of 

electrolyte caused by the water in between the layers. Table 5-2 summarizes the  
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Figure 5-21. Comparison of the capacitance retention of the asymmetric device with 

the symmetric ones in 1 M EtN4BF4 (a). Ragone plot comparing the aqueous- with the 

organic-based supercapacitor (b). Values calculated gravimetrically (I) and 

volumetrically (II). 

Table 5-2. Summary of the performance of d-Ti3C2-CNT and rGOT in organic-based 

supercapacitors. 

Organic-based supercaps CCell 

F.g-1 

CCell 

F.cm-3 

Ret at 100 mV/s 

% 

Energy Density 

Wh.kg-1 

Symmetric d-Ti3C2-CNT 7 16 37 3 

Symmetric rGOT 19 16 47 16 

Asymmetric d-Ti3C2-CNT//rGOT 30 41 50 20 
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Figure 5-22. Capacitance retention during 1000 cycles at 20 mV.s-1 (a) and 

Electrochemical Impedance spectroscopy before and after cycling (b) of the 

asymmetrical device in 1 M Et4NBF4/ACN. 

performance of d-Ti3C2-CNT and rGOT as electrodes for supercapacitors in organic-

based electrolytes. 

The asymmetric d-Ti3C2/MWCNT//rGOT device is cycled 1000 times at 20 mV.s-1 

and the main results are shown in Figure 5-22. As it can be seen in Figure 5-22  (a), 

the cell maintains 97% of its initial capacitance after 1000 cycles showing a good 

long-term cycling performance. The Coulombic efficiency during the cycling is 

maintained around 90%. This indicates that the charge storage process is not 

caused entirely by capacitive processes but some diffusion-limited processes might 

be involved as well. In fact, Dall’Agnese et al.11 have already proven that d-

Ti3C2/MWCNT presents some redox peaks in organic electrolytes. Herein, these 

peaks might be overshadowed by the high capacitance of the material. Figure 5-22 

(b) shows the electrochemical impedance spectrum before and after the cycling test. 

There is no appreciable change in the spectrum confirming the long-term stability at 

high rates of this device. 

There is only one report on the performance of d-Ti3C2/MWCNT in organic based 

supercapacitors. Electrochemical testing of d-Ti3C2/MWCNT in ET4NBF4/ACN in a 

3-electrode configuration has been previously reported.11 Capacitance values  

(reported for the electrode) are around 40 F.g-1. By multiplying our cell capacitance 

by four, we can give an approximate electrode capacitance for comparison. This 

means that our organic-based asymmetric device delivers up to 120 F.g-1, a value  
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Figure 5-23. Comparison of the capacitance retention of the asymmetric device with 

the symmetric ones in C8H11F6N3O4S2 (a). Ragone plot comparing the different 

electrolytes (b). 

three times higher than the previous report.  

5.3.2.4 Ionic Liquid Asymmetric Supercapacitor 

d-Ti3C2/MWCNT and rGOT electrodes are electrochemically characterized in a 3-

electrode and symmetric configurations in an ionic liquid electrolyte (results not 

shown).    d-Ti3C2/MWCNT and rGOT electrodes are used as negative and positive 

electrodes, respectively, in an ionic liquid-based supercapacitor. A summary of the 

asymmetric device results is shown in Figure 5-23. A decrease in the capacitance 

of the materials when compared to organic electrolyte is expected. The maximum 

cell capacitance achieved by the asymmetric device in ionic liquid is 10 F.g-1, three 

times lower than the maximum capacitance exhibited by the asymmetric device in 

an organic electrolyte. Moreover, the presence of water in between the layers of d- 

Ti3C2/MWCNT also causes a decrease in its maximum potential window (1.6 V). 

These two parameters, greatly affect the energy and power delivered by the device 

and values even lower than for aqueous electrolyte are achieved (Figure 5-23 (b)). 

Recently, Lin et al.9 have shown that a pre-intercalation of the ionic liquid is 

necessary to increase the capacitance, energy and power delivered.  
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5.4 Conclusions and Perspectives 

Pure d-Ti3C2 and a composite made out of d-Ti3C2 and MWCNT were tested as 

counterparts of chemically and thermally reduced Graphene Oxide electrodes in 

asymmetric supercapacitor devices in aqueous-, organic- and ionic liquid 

electrolytes. SEM images of the materials proved that they presented layered 

morphologies.  

The aqueous-based asymmetric supercapacitor achieved cell capacitances of 48 

F.g-1 (78 F.cm-3). These values were lower than those achieved by a symmetric d-

Ti3C2 cell. However, the increase in the potential window of the asymmetric when 

compared to the symmetric cell rendered an increase of the energy density.  

The organic-based asymmetric supercapacitor exhibited larger gravimetric and 

volumetric cell capacitances (30 F.g-1 and 41 F.cm-3, respectively) when compared 

to the symmetric cells of d-Ti3C2 and rGOT. The increase in the voltage window of 

the device caused an increase in the energy density of the organic-based device 

when compared to the aqueous one. 

The great performance of the asymmetric devices could not be maintained in an 

ionic liquid electrolyte. Further experiments on displacement of the intercalated 

water by ionic liquid ions are required. This problem might be solved by pre- 

incorporating electrolytes in between 2-Dimensional nanosheets. 
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6 CONCLUSIONS & OUTLOOK 

6.1 Conclusions  

From the evaluation of graphene-based materials as electrodes for 
electrochemical capacitors can be concluded the following: 

♦ An activated carbon with tuneable porosity and microstructure can be 
synthesized from lignin by chemical activation with KOH at different 
temperatures and ratios. 

♦ Tuneable porosity is achievable by changing the carbonization 
temperature of the precursor. 

♦ Graphene-like zones can be introduced in the activated carbon by 
adjusting the KOH/C ratio.  
 

♦ Increment on the capacitive contribution of lignin is achievable by 
copolymerizing the biopolymer with PEDOT. 

♦ A pseudocapacitive behaviour can be introduced in the reduced graphite 
oxide by selecting the appropriate oxidation and reduction method. 

♦ The preparation of a composite made out of Lignin/PEDOT and partially 
reduced Graphite Oxide enhances the electrochemical performance of 
each material.  
 

♦ Quinone-amine polymers present optimum characteristics for applications 
in energy storage devices.  

♦ Processability of the material is achieved by introducing a PEO linker.  

♦ Notable electrochemical performance is achieved by introducing 
nanostructured materials, i.e. multiwalled carbon nanotubes, during 
polymerization. 
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♦ Outstanding volumetric capacitance values are achievable by assembling
an aqueous-based asymmetric device using chemically reduced graphene
oxide and d-Ti3C2 MXene.

♦ Enhancement of the energy density is attainable by increasing the
interlayer distance in between the MXene layers and thermally reducing
the graphene oxide and using them as electrodes in organic-based
supercapacitors.

6.2 Outlook 

Based on the results achieved in this thesis the following further experiments are 
recommended: 

6.2.1 Lignin-Derived Carbons for Supercapacitors 

 Carbonization of the material at different temperatures to further study the
development of the internal microporosity.

 Doping of the activated carbons with heteroatoms to increase the charge
carrier density, and therefore, increase the capacitance values of the
supercapacitor.

 Assembling of asymmetric EDLC by using lignin-derived carbons which
porosity matches perfectly either the cations or anions present in the
electrolyte used.

6.2.2 Multi-Redox Electrodes for Supercapacitors 

 Improvement of the conductivity of the prGrO by mixing the material with
conductive filler.

 Copolymerization of the lignin with other conductive polymers.
 Variation of the ratios Lig/PEDOT//prGrO in the composite to achieve

optimal distribution of the pseudocapacitive and faradaic processes.

6.2.3 Quinone-Amine Polymers for Energy Storage Devices 

 Replacing the PEDOT linkers with other Jeff Amines of lower molecular
weight to increase the capacity offered by the terpolymer.

 Studies of solubility of the terpolymer in other solvents in order to replace
the NMP by a less harmful solvent.

 Utilization of the polymers in a full cell assembly.
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6.2.4 Titanium Carbide-Reduced Graphene Oxide 
for Supercapacitors 

 Preparation of a Titanium carbide-reduced graphene oxide composite to
optimize the distribution of charges.

 Pre-intercalation of organic and ionic liquid electrolytes in the layers to
displace the water molecules.

 Testing of other MXenes as counterparts to the reduced graphene oxide in
asymmetric configurations.

As concluding remark, the general research direction of supercapacitors would be 
greatly benefitted from theoretical studies to analyse nanostructured materials with 
well-defined surface chemistry and their performance as electrode materials for 
energy storage devices. 
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APPENDIX I: Characterization Methods  

Scanning Electron Microscopy and Energy-Dispersive X-
Ray Spectroscopy  

The SEM technique utilizes electron beams to scan the surface of a sample 

specimen. The specimen is irradiated by a focused electron beam and the signals 

produced create useful images describing the surface morphology of the specimen. 

Samples must be electronically conductive to prevent charging effects that can blur 

image quality at higher resolutions. To avoid this, some insulating samples are gold 

sputtered to provide a nanometre-thick conductive surface layer. 

When the incident electron strikes the specimen surface, instead of bouncing off 

immediately, it penetrates for some distance before it collides with a surface atom 

and a region of primary excitation where signals are produced is created.1 The most 

common signals used for imaging are secondary electrons, backscattered 

electrons, and characteristic X-rays. In normal conditions, the secondary electrons 

created from inelastic surface scattering can reach the detector in greater numbers, 

depending on incidence angle, and generate topographic information. 

The backscattered electrons are higher energy electrons deflected elastically or 

scattered back to the detector. This backscattering provides specimen composition 

data because heavier elements produce greater backscattering intensity, resulting 

in brighter images than those produced by lighter elements.1,2 Characteristic X-rays 

can reveal the distribution of chemical elements. Drawbacks of SEM include the 

requirement for a sample to be in a solid state and stable inside a vacuum. Normally, 

materials saturated with hydrocarbons, wet samples, and moisture-containing 

organic materials and clays are not compatible with SEM until they are lyophilized.3 

In the study of supercapacitors, SEM can provide important information about the 

material surface morphologies of cell components, specifically when analysing 

separator membrane porosity and electrode morphology.4 Images of the material 

surface can be collected before and after certain chemical or physical modifications 

or treatments to investigate their effects on material phases and morphologies 

EDX is commonly used as an addition to SEM, utilizing an electron gun and imaging 

equipment to locate the desired sample position. To perform EDX analysis of a 

sample, the electron imaging detector is replaced by an X-ray detector system. As 

previously noted, an electron beam that hits a sample produces a variety of signals 
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including characteristic X-rays. 

The X-rays are created when the incident electrons cause ejection of an electron in 

the inner shell. An outer shell electron fills the hole and releases the energy 

difference as an X-ray.5 The X-ray energy is characteristic of the atomic structure 

and the difference between the electron shells.  

EDX is a useful tool for ECs research, for example, for determining the atomic 

dispersion of a sample surface. However, EDX loses measurement accuracy 

because of (1) overlapping peaks, (2) detector resolution, and (3) emission of X-

rays in all directions—they must escape the sample before being reabsorbed to be 

detected. The third factor can mean lower energy X-rays are collected with lower 

intensity than is actually present and rough morphology can mask elements 

resulting in inaccurate atomic composition descriptions.6 

In this thesis, the morphological characterization of the materials is conducted by 

scanning electron microscopy (SEM) in a Quanta 200 FEG (FEI) microscope. The 

chemical composition is studied by energy dispersive X-rays (EDX).  

Transmission Electron Microscopy 

Similar to SEM, transmission electron microscopy (TEM) also utilizes a highly 

focused electron beam. However, TEM imaging requires a very thin specimen to 

achieve good image quality. This means that sample preparation is extremely 

important. A sample layer must be thin enough to allow electrons to pass through.7 

An electron gun emits high energy beams that can penetrate several microns into a 

solid. The electrons can penetrate through a thin specimen. 

The essential components of a TEM instrument consist of an electron gun, lenses, 

detectors, and a specimen holder. 3 A three- or four-stage condenser system will 

control variation of the illuminating aperture and the area of the specimen 

illuminated. The electrons that pass through the specimen then go through an 

imaging detection system and the image is displayed.8 TEM is essential for material 

tomography or examining crystalline defects. However, TEM analysis is two-

dimensional and it may be difficult to distinguish some features of an image. Further, 

the combination of ultrahigh voltage beam and high power electron sources makes 

the technique destructive for many sample types.7 

In electrochemical supercapacitors, TEM is used to collect and examine the 

microstructures of electrode materials, providing information about pore 

arrangements.4 If a specimen is crystalline, the electrons will diffract or scatter off 
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atomic planes inside the material, enabling the resolution of the crystal lattice 

structure down to atomic scale.9 Similar to SEM, TEM can also show changes in 

pore structures or arrangements after a material undergoes certain chemical or 

physical changes.10,11 

Images taken by transmission electron microscopy (TEM) through this thesis are 

performed in a Tecnai G2 (FEI) operated at 200 kV field emission gun (FEG). 

N2 sorption 

N2 sorption provides precise specific area measurements of a material by analysing 

the absorption isotherm of nitrogen gas compared to a reference cell. Initially the 

sample is degassed fully to remove all the gas within the sample volume. During 

testing, a film of the test gas will form on the surface of the sample area, penetrating 

the pores. The gas desorption is also measured during a final degas as well. The 

analysis of the absorption and desorption isotherms provides total specific surface 

area (usually m2/g-1). It also allows determination of pore size distribution.3 

N2 sorption is an important tool for ECs characterization because surface area and 

pore size are both important parameters in determining material capacitance.12. 

Pore size measurements enable the estimation of electrochemical effectiveness of 

an active material when matched to a specific electrolyte. Pore size and surface 

area are also good indicators of structural changes after chemical or heat treatment 

Textural properties of the materials prepared are studied using a Micromeritics 

(ASAP 2020) surface analyser by adsorption/desorption of N2 gas at 77 K. Before 

the analysis, the samples are outgassed for 8 hours at 200 °C. The specific surface 

area (SNLDFT) and the micro- (Smicro-NLDFT) and mesopores (Smeso-NLDFT) contributions 

to the total surface area, average pore size (Lmicro-NLDFT) and the pore size 

distribution are determined by 2D Non-Local Density Functional Theory (NLDFT).13 

For comparison, the average micropore size (Lo-DR), is determined from the 

adsorption data using the Dubinin–Radushkevich and Stoeckli equations.14 

Raman Spectroscopy 

Raman is a spectroscopic technique based on inelastic or Raman scattering of a 

monochromatic light source on a sample. A typical Raman spectroscopy instrument 

should have an excitation source (laser generation), sample illumination and light 

collection optic system, spectrophotometer (for filtering and selecting wavelength), 

and a detector.3 The technique measures weak inelastic scattering that occurs when 

photons interact with the electron cloud (Raman effect). The molecules absorb the 
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photons, becoming excited, and then re-emit photons of different wavelengths, 

returning the molecule to a different rotational or vibrational state than its original 

ground state.15 

A filter removes all the elastically scattered light that retains the same wavelength 

as the incident photons. Energy shifting information collected over the spectrum of 

wavelengths is used to study vibrational, rotational, and other low-frequency 

transitions in molecules. Raman Spectroscopy gives results on most molecular 

samples and is flexible for testing solids, gases, and aqueous states. It can also 

identify mixtures through characteristic peaks that fingerprint certain functional 

groups in a molecule.  

Raman is used as a complementary tool with TEM and XPS to examine structures 

and chemical composition changes of ECs electrode materials that have undergone 

chemical or physical alterations. 

The spectra of the materials here developed are recorded with a Renishaw 

spectrometer (Nanonics multiview 2000) operating with an excitation wavelength of 

532 nm. The spectrum is acquired after 10 seconds of exposition time of the laser 

beam to the sample.  

X-Ray Diffraction 

XRD is a non-destructive method of bombarding a sample with an X-ray beam to 

analyse the transmitted and diffracted beams.3 The three basic components of an 

XRD instrument are the X-ray production unit arm, sample holder, and detector arm. 

The detector can rotate around the sample to measure the intensity of the diffracted 

X-rays at different angles. The angles, intensity, and peak widths of the resulting 

spectrum are keys for analysing the sample against a materials database and 

calculating information about the sample. XRD performs best when a sample is 

homogeneous or single-phase. For non-isometric crystalline structures, indexing of 

patterns can be very difficult and amorphous materials cannot be identified. 

The method is widely used for characterizing and identifying unknown crystalline 

materials, determining the structures and orientations of single crystals or grains, 

and measuring average spacing between layers or rows of atoms. XRD can also 

measure sample purity or texture.3 In ES research, XRD is usually used to gather 

information about structure arrangements, crystallite size, defects, and alterations 

of materials after they undergo certain processes.3 

The interlayer distance of the materials synthesized during this thesis are studied 
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by X-Ray Diffraction performed in a D8 X-Ray diffractometer (Bruker).     

Fourier Transform Infrared Spectroscopy  

FTIR is an analytical spectroscopy method that utilizes the infrared light spectrum 

to probe sample interactions. In principle, a sample is irradiated with infrared 

radiation (IR) and some of the IR light is absorbed by the material and some is 

transmitted through it.3 The absorbed IR photons will excite molecules into a higher 

vibrational energy state and the wavelength absorbed is unique to the sample’s 

molecular structure. The result is a unique profile of a material. FTIR fingerprints 

can be used quantitatively to determine concentration down to a few parts per 

million. Qualitatively, FTIR can be used to identify quality of a material. 

Changes in the functional groups of the materials developed in this work are 

followed with Fourier transform Infrared spectroscopy. This analysis is performed in 

a Hyperion 1000 FT-IR spectrometer, using about 5% of the material to be analysed 

grinded with KBr. 

Electrochemical Cell Preparation  

Electrochemical tests are performed in a Swagelok cell using a glass fibre 

membrane (Whatman® glass microfiber filters, grade GF/B) of 12.7 mm diameter 

as separator and placed in direct contact with polished stainless steel or titanium 

plungers. To confirm the reproducibility of the measurements at least three 

electrochemical cells are assembled for each type of material described in the 

present work.  For the electrochemical studies in organic electrolyte, the cells are 

assembled inside an argon glove box with O2 and H2O concentration levels below 

5 ppm.   

Electrochemical Analysis Conditions 

Capacitance (F.g-1 and F.cm-3) and energy/power density (Wh.kg-1 and W.kg-1), 

tested at a specific current density (A.g-1), are generally used to evaluate the 

electrochemical performance of an electrode material or a supercapacitor device. 

Several typical electrochemical measurements for the evaluation of 

supercapacitors, such as cyclic voltammetry, galvanostatic charge/discharge, and 

electrochemical impedance spectrometry are briefly summarized in here. 

Electrochemical cyclic voltammetry (CV) measurements at different scan rates, as 

well as rate capability measurements in galvanostatic mode at different current 

densities are performed at ambient conditions in a multichannel 
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potentiostat/galvanostat (Biologic VMP3, France). To analyse independently the 

behaviour and to determine the capacitance and the real working potential range of 

each electrode,16,17 a silver rod (Ag) is used as a pseudo-reference electrode in the 

organic electrolyte. When aqueous-based electrolytes are used, an Ag/AgCl 

electrode is used as reference. 

The specific capacitance is evaluated per active mass of a single electrode after a 

minimum of 20 cycles at each scan rate. The volumetric capacitance is calculated 

by considering the density of a single electrode. The specific capacitance (Cgrav) is 

calculated from the CVs using the following equation: 

𝑪𝑮𝒓𝒂𝒗 =
𝟐𝑰

𝒅𝒗
𝒅𝒕

𝒎
 

where I is the current, m the mass of the active material and dv/dt is the scan rate. 

The CV measurement can be directly used to evaluate the average capacitance for 

an EDLC behaviour and/or a typical pseudocapacitance behaviour that exhibits a 

rectangular CV curve. However, the faradaic behaviour of a battery type electrode 

or the intercalation pseudocapacitive behaviour displays obvious redox peaks in the 

CV curves, and thus the corresponding average capacitance cannot be directly 

calculated from CV measurements.18 In those cases, Equation 7-2 should be used: 

𝑪 =
𝟏

𝟐𝒎∆𝑽
[𝑸𝒂 + 𝑸𝒄] 

where, 𝒎 is the is the mass of the active material, ∆𝑽 the working potential window 

of the electrode (V) and 𝑸𝒂 and 𝑸𝒄 the anodic and cathodic charge in one cycle of 

potential sweep, respectively.19 

A charge/discharge test is the most efficient measurement for capacitance 

evaluation. It is also well known that the capacitance of electrode materials can be 

calculated on the basis of: 

𝑪 =
𝒊×𝒕

∆𝑽
 

where, 𝒕 is the charging/discharging time (s).18  

Coulombic Efficiency is defined as the ratio of discharging time and charging time 

and it can be calculated by the following equation 

 

Equation 7-1 

Equation 7-2 

Equation 7-3 
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𝜼 =
𝒕𝑫

𝒕𝑪

×𝟏𝟎𝟎 

where, 𝜼 is the coulombic efficiency, 𝒕𝑫 is discharging time (s), 𝒕𝑪 is charging time 

(s). The coulombic efficiency is calculated by comparing the first and the end cycle 

after hundreds or thousands galvanostatic charge/discharge cycles. 19 

Electrochemical Impedance Spectroscopy (EIS) measurements are usually 

performed by collecting the supercapacitor impedance data at a specific potential, 

with small voltage amplitude of 5 or 10 mV over a wide range of frequencies, 0.01 

Hz to 100 kHz. The EIS can be expressed as a Nyquist plot. From this plot, a charge 

transfer resistance can be obtained from the diameter of the semicircle. At high 

frequency (larger than 104 Hz), the impedance implies the conductivity of both active 

materials and electrolyte. The high-to-medium frequency region (104 to 1 Hz) shows 

pseudocharge transfer resistance, which is associated with the porous structure of 

the electrodes. At low frequency ranges (less than 1 Hz), the impedance plot is the 

characteristic feature of pure capacitive behavior.20 The relationship between the 

imaginary part of the impedance −𝑰𝒎(𝒁) and the frequency 𝒇 can be obtained from 

EIS measurements. The capacitance can be calculated using Equation 7-5. 

𝑪 =
𝟏

𝟐𝝅𝒇[−𝑰𝒎(𝒁)]
 

The impedance results can also be visualized in a Bode plot, that shows how the 

capacitance decreases with increasing frequency by plotting 𝒍𝒐𝒈(−𝑰𝒎(𝒁))  vs 

𝒍𝒐𝒈(𝒇).  

Ragone plots are calculated from the galvanostatic charge‒discharge curves. The 

gravimetric energy (Egrav) and power (Pgrav) corresponding to the mass of the active 

material per electrode are estimated by using the following equations respectively: 

 

𝑬𝑮𝒓𝒂𝒗 =
𝑪𝑮𝒓𝒂𝒗∆𝑽𝟐

𝟖
 

   

𝑷𝑮𝒓𝒂𝒗 =
𝑬𝑮𝒓𝒂𝒗

𝒕
 

   

where ΔV is the voltage drop of the galvanostatic discharge curve after ohmic drop 

subtraction and t is the discharge time.  

Equation 7-5 

Equation 7-7 

Equation 7-6 

Equation 7-4 
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In order to compare the capacitance values of asymmetric and symmetric devices, 

capacitance of the cells is calculated using Equation 7-4, where m+ and m- 

corresponds to the mass of the positive and negative electrode, respectively. 

𝑪𝑪𝒆𝒍𝒍 =
𝑰

𝒅𝒗
𝒅𝒕

(𝒎+ + 𝒎−)
 

   

Then, Equation 7-2 becomes: 

𝑬𝑮𝒓𝒂𝒗 =
𝑪𝑪𝒆𝒍𝒍∆𝑽𝟐

𝟐
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APPENDIX II: Lignin/PEDOT as Cathode Material 

for Sodium- and Lithium-Ion Batteries 
The use of earth abundant and renewable materials is encouraging for the future 

development of environmentally clean, safe and affordable batteries. Herein, we 

use the Lignin/PEDOT polymers synthesized on Chapter 3 (Table 7-1) as 

cathodes for battery applications.  

Electrochemical tests are conducted in 2032 coin cells, which are assembled in an 

argon filled dry box, with Sodium or Lithium foil as anode and Lignin/PEDOT 

blends as cathode. In order to test the lignin by itself, the powder is mixed with 20 

wt.% of Timcal Super C65 Conductive Carbon Black. Four different electrolytes 

are used and are shown in Table 7-12 in a 50/50 vol.% mixture of ethylene 

carbonate and dimethyl carbonate (EC/DMC). The cathode materials re kept 

under vacuum at 80 ºC overnight prior to each experiment, while the anode 

and electrolyte are maintained at the dry box. 

The theoretical capacity of Lignin/polypyrrole is 80 mAh.g-1.1 Then, the cells are 

cycled at C/20 (4 mA.g-1), C/10 (8 mA.g-1), C/2 (40 mA.g-1) for five cycles each 

one, and finally C/20 (4 mA.g-1) for 25 cycles. Results of this cycling testing are 

shown in Figure 7-1.  

Figure 7-1 (a.I) shows the results of the cycling in LiClO4 (EC:DMC). It can be seen 

that in this electrolyte, Lig/PEDOT 20:80 presents the most favourable combination 

of total capacity (62 mAh.g-1 at C/20) and capacity retention (44 % after 25 cycles 

at C/20). Lignin mixed with C65 shows a similar performance, yet the capacity 

Table 7-1. Lignin/PEDOT ratios synthesized. 

Acronym 
Lignin 

wt.% 

PEDOT 

wt.% 

PEDOT 0 100 

Lig/PEDOT 20/80 20 80 

Lig/PEDOT 40/60 40 60 

Lig/PEDOT 60/40 60 40 

Lignin 100 0 
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Table 7-2. Electrolytes used in the evaluation of Lig/PEDOT for battery applications. 

Salt 
Acronym electrolyte 

(Salt Chemical Formula) 

Lithium Hexafluorophosphate LiPF6 

Lithium Perchlorate LiClO4 

Sodium Hexafluorophosphate NaPF6 

Sodium Perchlorate NaClO4 

 

Figure 7-1. Discharge capacity retention at different current densities in LiClO4 (a.I), 

LiPF6 (b.I), NaClO4 (a.II), and NaPF6 (b.II). 
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values are lower and less stable. The other Lig/PEDOT proportions do not 

intercalate lithium ions. This behaviour proves that in this electrolyte, lignin requires 

either a conductive filler (C65) or a high proportion (80 %) of electron conductor 

polymer. 

The cycle-life data in LiPF6 (EC:DMC) is shown in Figure 7-1 (b.I). Lig/PEDOT 20:80 

exhibits the highest capacity of all the materials and shows an improvement in 

comparison to the same material in LiClO4. Capacity values up to 92 mAh.g-1 at 

C/20 and capacity retention of 70 % after 25 cycles at C/20 are achieved with this 

material. In contrast to the performance in LiClO4, all the other proportions insert 

lithium ion in the cathode, showing an improvement in the intercalation properties 

of lignin.  

Results of the cycling evaluation in NaClO4 (EC:DMC) are shown in Figure 7-1 (a.II). 

In this case, the conductive filler allows the continuous insertion of ions in the lignin 

cathode, maintaining 48 % of its initial capacity. Lig/PEDOT 20:80 achieves the 

highest capacity during the second discharge, but the material saturates and ceases 

inserting Na+. The co-polymerization of Lignin and PEDOT worsens the Na+ 

intercalation abilities in NaClO4. 

A contrasting effect is observed in NaPF6 (EC:DMC) (Figure 7-1 (b.II)), where all the 

Lignin-derived material present intercalation abilities even after 40 cycles. The 

increment on the PEDOT proportion enhances the insertion abilities of the lignin, 

achieving the highest capacity value, 83 mAh.g-1 at C/20, with Lig/PEDOT 20/80.  

The behaviour of these cathode materials seems to be dependent on the salt anion. 

By comparing Figure 7-1 (a) and Figure 7-1 (b), it is evident that the intercalation 

phenomenon is enhanced in the Lig/PEDOT blends when PF6
- is the anion 

accompanying the metal.  

Nor Lignin, nor Lignin/PEDOT blends have been studied for sodium battery 

applications. Hydrolysis lignin has been studied as cathode for Li-ion batteries at 

low-rate, achieving up to 185 mAh.g-1 at 75 A.cm-2.2 As our experiments are 

performed in powder, a comparison between the two materials cannot be drawn. 

As concluding remark, lignin, a renewable and inexpensive material, can be used 

as sustainable organic electrode with highly efficient electrochemical energy storage 

for Lithium- and Sodium-ion batteries. Surface and interface engineering is essential 

to improve the electrochemical performance of Lignin/PEDOT materials for Lithium- 

and Sodium-ion batteries.  
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APPENDIX III: Partially Reduced Graphite Oxide: A 

Close Examination of the Capacitive Contributions 

to its Storage Capacity 
Batteries and supercapacitors have proven to be of crucial importance for advanced 

and highly efficient energy storage and management. The nature of their 

electrochemical processes is directly correlated to their charge-storage 

mechanisms and understanding them is crucial to optimize both their energy and 

power densities. Graphene-derived materials have been used both in batteries and 

supercaps because of their high electronic conductivity, intercalation properties and 

large surface area.1 This study provides insight into the role of the diffusion- and 

surface controlled processes during the voltammetry cycling of a partially reduced 

graphite oxide. 

prGrO synthesized in Chapter 3 is electrochemically analysed with a cavity micro 

electrode (CME), in which the electrochemical interface area is around a fraction of 

mm2 and the ohmic drop coming from the bulk of the electrolyte can be neglected, 

allowing the use of high scan rates.2 The prGrO is studied in a 3-electrode 

configuration with a platinum wire as counter electrode and Hg/HgSO4 as reference 

electrode for the sulphuric acid, and sodium sulphate, and Ag/AgCl for the 

potassium hydroxide solution.  The microcavity is filled with active material by 

pressure of the carbon powders against a glass plate.  The cavity is cleaned by 

immersing the electrode in ethanol in an ultrasonic bath between experiments. Two 

separate mechanisms, surface capacitive effects and diffusion-controlled insertion 

processes, can be discriminated by relating the current response to the 

voltammetric sweep rate according to equation 7-10:3 

𝒊𝒊

𝒗𝒗𝟏𝟏 𝟐𝟐�
= 𝒌𝒌𝟏𝟏𝒗𝒗

𝟏𝟏
𝟐𝟐� + 𝒌𝒌𝟐𝟐

where 𝒊𝒊 is the measured current, 𝒗𝒗 is the sweep rate, and 𝒌𝒌𝟏𝟏 and 𝒌𝒌𝟐𝟐 are related to

the current contributions from the surface capacitive effects and the diffusion-

controlled intercalation process, respectively. Figure 7-2 (a to c) shows the cyclic 

voltammetry curves at 100 mV.s-1, in the three different electrolytes. By plotting 
𝒊𝒊

𝒗𝒗
𝟏𝟏
𝟐𝟐�
 vs 𝒗𝒗𝟏𝟏 𝟐𝟐� , according to Equation7-10, the values of 𝒌𝒌𝟏𝟏 and𝒌𝒌𝟐𝟐  are calculated in the

whole potential window and therefore we are able to quantify the fraction of the 

current due to each of these contributions (Figure 7-2 (d)). 

Equation 7-1 



GRAPHENE-RELATED MATERIALS FOR ELECTROCHEMICAL CAPACITORS 
Adriana M. Navarro-Suárez – November 2016 

186  Appendices 

 

Figure 7-1. Total (blue area) and capacitive (orange area) contributions to charge 

storage in prGrO, cycled in 0.1M H2SO4 (a), 0.1M K2SO4 (b), and 0.1M KOH (c) at 100 

mV.s-1. The dotted green lines indicate the oxygen evolution potential. Summary of the 

contributions in each one of the electrolytes (d). 

The cycling of the material in H2SO4 (Figure 7-2 (a)), yields redox peaks at ~0.6V 

that correspond to the redox reactions involving the quinone/hydroquinone 

functionalities confirmed by the XPS and FTIR experiments (Section 3.3.1.2). The 

capacitive charge storage, in both cases, corresponds to 75% of the total current 

and is caused by double-layer and pseudo capacitive processes. However, given 

the low Specific Surface Area presented by the prGrO, most of this capacitance 

might be caused by redox pseudocapacitance, involving again the 

quinone/hydroquinone functionalities, or intercalation pseudocapacitance. This 

surface-confined charge-transfer process is confirmed by the broad peak in the 

capacitive curves of both electrolytes. 
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In the case of the K2SO4 (Figure 7-2 (b)), the capacitive contribution is diminished 

to 22%. The rectangular shape of the capacitive contribution for K2SO4 indicates a 

double-layer process.  

When prGrO is tested in KOH, the capacitive contribution increases to 47%, and the 

presence of peaks at ~0.66 V in the capacitive charge storage indicates that the 

quinone/hydroquinone functionalities are involved in a redox process.  The reactions 

occurring in acidic, neutral and basic media are shown in Scheme  7-1.4 

Pseudocapacitance can be due to monolayer adsorption of ions at an electrode 

surface, surface redox reactions or ion intercalation that does not result in a phase 

change.5 Intercalation processes occurring in the prGrO might be confirmed by 

changes in the interlayer distance of the prGrO, for this X-ray diffractions of the 

prGrO at the OCV in the different electrolytes are measured (Figure 7-3). X-ray 

diffraction pattern of the material in water is shown for comparison.  

 

Scheme  7-1. Quinone Redox Reactions at different pH. 
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The first thing to notice is that all the spectra have three broad peaks at 2θ equal to 

13°, 30° and 43° (Figure 7-3 (b-d)). The peak at 2θ equal to 43° corresponds to the 

(100) and (110) Bragg reflections and it is also observed in the original prGrO 

(Figure 7-3 (a)). The peaks at 13° and 30° correspond to the intercalation of the ions 

inside the material layers. The presence of these peaks evinces spontaneous 

intercalation and the presence of several intercalation stages. These results are 

particularly exciting in the case of H2SO4, as this is the first time that a sulfuric acid 

graphite intercalation compound is observed without anodic or chemical oxidation.6  

To study the intercalation stages during cycling, thick electrodes (~100 µm) are 

charged and discharged, following the same and opposite scan direction than with  

 

Figure 7-2. X-ray diffraction of prGrO at OCV after being immersed in water (a), H2SO4 

(b), K2SO4 (c) and KOH (d). 
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Figure 7-3. Schematic description of the symbols (a) and proposed charging 

mechanism in H2SO4 (b), K2SO4 (c), and KOH (d). 

the microcavity electrode. X-ray diffraction patterns are taken in different stages of 

charge/discharge (not shown). The analysis of these patterns and the charging 

mechanisms proposed by Forse et al7 allow us to formulate a schematic illustration 

of the process occurring in each electrolyte in Figure 7-4. 

The charge storage mechanism depends on initial scan direction and pH of the 

electrolyte. While cycling prGrO in H2SO4 (Figure 7-4 (b)) an inverse mechanism, to 

the one observed in KOH (Figure 7-4 (d)), is discern. From OCV (open circuit 

voltage) towards positive potentials in H2SO4, the cation is the mainly ion involved 

in the movement into (or out) of the carbon pores. From OCV towards negative 

potentials, is the anion that becomes mainly involved in the adsorption/desorption 

process.  

Figure 7-4 (c) shows the charging mechanism of the material in K2SO4. In this case, 

counter-ion adsorption is accompanied by simultaneous co-ion desorption from the 

pores, i.e. ion exchange.  

In situ characterization by techniques such as Raman, NMR and XRD are 

fundamental to confirm the method herein proposed. Nevertheless, this work opens 
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up the path to deeper studies of the charging mechanisms of graphene-related 

materials in aqueous electrolytes.  
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