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SUMMARY  

 

Transition metal nitride (TMN) films deposited by dc magnetron sputtering (DCMS) 

technique are widely used today as protective hard coatings for different components 

in manifold industries. In spite of the numerous transition metals found in the periodic 

table, the current coating solutions are focused on a limited number of nitrides such 

as TiN, CrN, ZrN, TiAlN and CrAlN, while other attractive candidates are left behind. 

Furthermore, films deposited by DCMS generally fail in specific applications where 

coated components face severe corrosive operation conditions. Low ionization 

degree of sputtered material during DCMS (<5 %) promotes the development of low 

density and columnar microstructure films, which are responsible of these failures, 

enabling the corrosive solution penetration along the pores and defects of the films 

and hindering the substrate long-term protection against chemical attack. Corrosion 

phenomena is present in nearly all current high-tech applications, and hence, the 

development of advanced coating solutions capable to enhance the performance and 

durability of bulk materials is a must if these applications want to progress and 

become competitive.  

The main objective of this thesis is the development of corrosion-resistant tantalum 

nitride (TaN) films by new emerging modulated pulsed power magnetron sputtering 

(MPPMS) technique. TaN thin films are promising candidates for corrosion 

applications owing to the exceptional electrochemical stability of tantalum (Ta), 

comparable to that of noble metals, but they have been barely explored for this 

purpose so far. The huge complexity of Ta-N system may have limited a more 

general knowledge attainment on this material. Ta-N shows many stable and 

metastable phases that motivate the exhibition of completely different properties 

depending on deposition conditions.  
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MPPMS belongs to the well-known high power pulsed magnetron sputtering 

(HPPMS) technologies, which also include high power impulsed magnetron 

sputtering (HiPIMS). HPPMS techniques generate a highly ionized metal plasma by 

the application of short pulses with low duty cycle and frequency leading to peak 

power target densities two orders of magnitude higher than in DCMS. Sputtered 

material ionizations up to 70 % have been reported during HPPMS, which enables 

the deposition of well-adherent, high density and low defect thin films. MPPMS was 

developed in 2006 in order to overcome the deposition rate loss found in HiPIMS 

process compared to DCMS, which has hindered the replacement of DCMS by 

HPPMS techniques worldwide.  

In this thesis, the application of MPPMS for the industrial development of advanced 

TaN thin films to be used in corrosion facing applications was explored. For that 

purpose, an exhaustive study on TaN properties was accomplished.  

Initially, the influence of N2 flow on the composition, microstructure and properties of 

TaN films deposited by MPPMS was investigated, with special focus on corrosion 

resistance evaluation of these films. The industrial viability of MPPMS technique for 

the deposition of improved films at high production rates was also explored.  

Once a general knowledge on electrochemical behaviour of TaN thin films deposited 

by MPPMS was obtained, the suitability of TaN coatings to protect metallic substrates 

in two real applications involving corrosion (namely, biomedical implants and polymer 

electrolyte membrane fuel cells) was addressed.  

Multilayer TaN thin films were deposited by MPPMS to improve the performance and 

durability of pure titanium (Ti-cp) in biomedical implants. Implants are exposed to 

“tribocorrosion” phenomena, the synergistic effect of corrosion and wear taking place 

at the same time at the Ti-cp surface, which is subjected to mechanical loading in 

contact with body fluids. Tribocorrosion is one of the main failure mechanism of 
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biomedical implants. Ti-cp possesses excellent chemical stability and 

biocompatibility in the human body but it has poor mechanical properties which 

compromises the durability of Ti-cp implants. The evaluation of TaN coated Ti-cp and 

the comparison with uncoated Ti-cp performance was accomplished in this work.  

A polymer electrolyte membrane fuel cell (PEMFC) converts hydrogen and oxygen 

gases into electricity with water as the only by-product and is considered as one of 

the most promising clean energy device beyond petroleum. Bipolar plate (BPP) is an 

important component within the PEMFC, since it provides the electrical connection 

from cell to cell, distributes gases and removes heat from the active areas. Stainless 

steel (SS) is the material of choice for the fabrication of BPP for transport 

applications, but its corrosion resistance and conductivity must be improved to 

ensure an adequate long-term operation performance. The deposition of TaN 

coatings by MPPMS for corrosion resistance and electrical properties enhancement 

was accomplished during this work. The electrochemical and electrical 

characteristics of TaN coated BPP were investigated in PEMFC simulated 

environment. A bi-layer coating made of tantalum (Ta) and indium-tin-oxide (ITO) 

layers was also explored as a coating solution for BPP’s protection in PEMFC.  
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RESUMEN  
 

Los recubrimientos duros que se utilizan actualmente en la Industria para aumentar 

la vida útil de distintos componentes, están basados en nitruros metálicos de 

transición depositados por la técnica de magnetrón sputtering en corriente continua 

(DCMS por sus siglas en ingles). Sin embargo, y a pesar del elevado número de 

metales de transición existentes, la mayoría de recubrimientos están formados por 

uno o dos de los siguientes elementos: titanio, cromo, zirconio y aluminio.  

Actualmente, los materiales se enfrentan a fenómenos de degradación por corrosión 

en multitud de aplicaciones. Las capas delgadas depositadas mediante magnetrón 

sputtering convencional, generalmente, no cumplen los requisitos necesarios para 

proteger al material base o substrato de la corrosión durante un periodo de tiempo 

largo. La microestructura de las capas depositadas por magnetrón sputtering tiende 

a ser poco densa y exhibe un crecimiento columnar, debido a la baja ionización del 

plasma generado durante la descarga, características que provocan la penetración 

de los medios corrosivos a través de los defectos de los recubrimientos, exponiendo 

el material base al ataque químico . Por ello, el aumento de la ionización del plasma 

durante el proceso de sputtering es uno de los principales objetivos que se persigue 

en este campo, con el fin de desarrollar recubrimientos con propiedades mejoradas, 

capaces de soportar condiciones de trabajo más severas.  

El principal objetivo de esta tesis es el desarrollo de recubrimientos protectores 

frente a corrosión basados en nitruro de Tántalo (TaN) mediante la nueva tecnología 

conocida como Modulated pulsed power magnetron sputtering (MPPMS). Los 

recubrimientos de TaN tienen un gran potencial para aplicaciones con elevadas 

exigencias de resistencia a la corrosión, debido a la excelente estabilidad química 

del Tántalo, comparable a la de los metales nobles. Sin embargo, su comportamiento 

electroquímico en ambientes corrosivos ha sido poco explorado. La multitud de fases 
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cristalinas distintas que exhibe el TaN en forma de capa delgada, con sus 

correspondientes propiedades diferentes, puede ser una de las razones por la cual 

este recubrimiento sigue siendo un gran desconocido, a diferencia de los 

ampliamente estudiados TiN, CrN o ZrN.   

La tecnología MPPMS es una variante del magnetrón sputtering convencional. 

Durante MPPMS, la potencia se aplica al blanco de sputtering mediante pulsos 

cortos de baja frecuencia dando lugar a potencias e intensidades de pico 2 órdenes 

de magnitud mayores que durante el sputtering convencional. Este fenómeno da 

lugar a la generación plasmas altamente ionizados, que incluyen un largo número 

de iones metálicos provenientes del blanco. La energía y la dirección de estos iones, 

pueden ser, por tanto, controlada mediante la aplicación de campos eléctricos en el 

portasubstratos, siendo una herramienta muy poderosa para la deposición de capas 

con propiedades mejoradas. De hecho, los recubrimientos depositados por MPPMS 

muestran una mayor adherencia, una microestructura más densa y un menor 

número de defectos que aquellos depositados por magnetrón sputtering 

convencional.  

En esta tesis, se ha estudiado la utilización de la técnica de MPPMS  para la 

deposición de capas de protectoras de TaN frente a corrosión en un sistema de 

sputtering industrial. Para ello, se llevó a cabo una evaluación exhaustiva de las 

propiedades de las capas de TaN desarrolladas.  

Primeramente, se estudió la influencia del flujo de N2 utilizado como gas reactivo 

durante el proceso de sputtering, en la composición, microestructura y propiedades 

de las capas de TaN. Se investigó de manera más profunda la resistencia a la 

corrosión de las distintas capas de TaN (caracterizadas por distintos contenidos de 

nitrógeno) en NaCl. Por último, se evaluó la viabilidad industrial de la tecnología de 

MPPMS para la deposición de recubrimientos.  
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Una vez adquirido un conocimiento general del comportamiento electroquímico de 

los recubrimientos de TaN producidos por MPPMS, se exploró la viabilidad de estos 

recubrimientos como capas protectoras para componentes en dos aplicaciones 

reales que están sometidas a fenómenos de corrosión: los implantes biomédicos y 

las pilas de combustible de membrana polimérica.    

Se depositaron recubrimientos multicapa de TaN para mejorar el comportamiento y 

la durabilidad del titanio puro en implantes biomédicos. Los implantes están 

expuestos al fenómeno conocido como tribocorrosion, el cual se define como la 

degradación irreversible que sufren los materiales por la acción simultanea de 

procesos de corrosión y desgaste. Los implantes están sometidos a distintos tipos 

de cargas mecánicas una vez implantados en el cuerpo humano, que además, al 

ser un medio acuoso da lugar a la aparición de fenómenos corrosivos. La pérdida 

de material provocada por fenómenos de tribocorrosion es uno de los principales 

mecanismos de fallo de los implantes. El Titanio puro posee una excelente 

estabilidad química y biocompatibilidad, pero exhibe una baja estabilidad mecánica 

que compromete la durabilidad de los implantes fabricados con este material. En 

esta tesis se llevó a cabo la evaluación del comportamiento de recubrimientos de 

TaN multicapa sobre Titanio puro y se exploró su potencial para aumentar la 

durabilidad del mismo como material para la fabricación de implantes. Los resultados 

se compararon con Titanio puro sin recubrir.  

Las pilas de combustible de membrana polimérica (PEMFC, por sus siglas en inglés) 

son dispositivos electroquímicos que convierten la energía química del hidrogeno en 

energía eléctrica, siendo el vapor de agua el único residuo generado. Las pilas 

PEMFC son consideradas una de las alternativas no contaminantes más 

prometedoras al petróleo para la generación de energía en un futuro próximo. La 

placa bipolar es uno de los componentes más importantes de la pila dado que 

conduce la electricidad generada dentro de la misma, distribuye los gases, disipa el 
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calor y dota de estabilidad mecánica a toda la celda. El acero inoxidable es el 

material seleccionado para la fabricación de placas bipolares en pilas PEMFC. Sin 

embargo, la resistencia  a la corrosión y la conductividad del acero deben ser 

mejoradas para el correcto funcionamiento de las placas bipolares a largo plazo. En 

esta tesis, se desarrollaron recubrimientos TaN mediante MPPMS con el fin de 

mejorar las propiedades del acero y su durabilidad como material base de la placa 

bipolar. Se investigaron las propiedades electroquímicas y eléctricas de las placas 

de acero inoxidable recubiertas con TaN en ambiente simulados de pilas PEMFC. 

También se exploró el comportamiento de un recubrimiento bicapa formado por una 

capa de Tántalo (Ta) seguida de una capa de ITO (oxido de indio dopado con 

estaño) como posible solución para proteger las placas bipolares de acero.  
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NOMENCLATURE 
 

CHAPTER 1 

 

PVD  Physical vapor deposition  

TMN   Transition metal nitrides  

TMC   Transition metal carbides  

DCMS  Direct current magnetron sputtering  

TaN   Tantalum nitride  

Ta   Tantalum  

HPPMS  High power pulsed magnetron sputtering  

HiPIMS  High power impulse magnetron sputtering  

MPPMS  Modulated pulsed power magnetron sputtering  

Ti-cp   Pure titanium  

PEMFC  Polymer electrolyte membrane fuel cell  

SS   Stainless steel  

BPP   Bipolar plate  

 

CHAPTER 2  

 

nn  Neutral particle density   

fn (E)  Energy distribution function of neutral particles  

ne  Electron density  

fe (E)  Energy distribution function of electrons  

ni  Ion density  

fi (E)  Energy distribution function of ions  
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nn  Plasma density  

I   Ionization degree  

Ar0  Argon atom  

Ar+  Argon ion  

A*  Excited argon atom  

e-  Electron 

γ  Sputter yield   

E  Energy of the incident ion  

M1  Mass of the incident ion  

M2  Mass of target atom  

Us   Surface binding energy  

α  dimensionless parameter  

M0  Metal atom  

M+  Metal ion  

M*  Excited metal atom  

G0  Sputtering gas atom  

G*  Excited sputtering gas atom  

λ  Mean free path of an atom in a gas ambient  

P   Working pressure  

F   Lorentz force  

q   charge  

E
→   Electric field 

𝐵
→  Magnetic field  

𝑉
→    Velocity of the particle  

Bz  Magnetic field in the z-axis  

Vb  Bias voltaje  
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ζon  Voltaje “on” time of the micropulses (width of the micropulses) 

ζoff  Voltaje “off” time of the micropulses (distance between micropulses) 

Ecorr   Corrosion potential  

Icorr   Corrosion current  

F   Faraday’s constant  

IA  Anodic current  

IC  Cathodic current  

N   moles involved in corrosion reaction  

n    moles of electrons involved in corrosion reaction  

 

CHAPTER 3  

 

CFUBMS  Closed field unbalanced magnetron sputtering  

GD-OES  Glow discharge optical emission spectroscopy  

SEM   Scanning electron microscope  

TEM   Transmission electron microscope  

FE-SEM  Field emission scanning electron microscope  

XRD   X-ray diffraction  

AES   Auger electron spectroscopy  

NaCl   Sodium chloride  

PBS   Phosphate buffer solution  

H2SO4  Sulfuric acid  

CE   Counter electrode  

RE   Reference electrode  

WE   Working electrode  

OCP   Open circuit potential  
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Eoc  Open circuit potential   

EIS   Electrochemical impedance spectroscopy  

Epit   Pitting potential  

βa   Anodic tafel constant 

βc   Cathodic tafel constant 

Rp  Polarization resistance  

M   Atomic weight  

ρ            Density  

R   Resistor  

V   Voltage  

I   Current  

Z   Impedance 

C   Capacitor  

CPE   Constant phase element  

Y   Admittance  

Rs  Solution resistance  

Rct   Charge transfer resistance  

Cdl   Double layer capacitance  

Cc  Coating capacitance  

Rpore   Coating resistance through the pores  

P  total applied load  

WE  energy invested in the deformation and elastically recovered  

WT  total energy invested in the deformation  

hr  residual depth of the indentation  

ht  maximum penetration depth  
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CHAPTER 4  

 

Pav   Average power  

Vp   Peak voltage 

Ip   Peak current  

Pp  Peak power  

F   Frequency  

P   Porosity  

  

CHAPTER 5  

 

Wtr   Total material loss due to tribocorrosion  

Wm
act   Material loss due to mechanical loading in corrosion environment  

Wc
act   Material loss due to corrosion under wear processes 

Rpass  Polarization resistance of the passive material 

rpass    Specific polarization of passive material  

A0  Total surface area  

ipass  Corrosion current of a passive material  

B  Constant  

Eoc  Equilibrium potential  

Es
oc  Potential during sliding  

Atr  Surface area of the wear track  

Aact   Active surface area  

Apass   Passive surface area  

trot      Rotation period  

treact    Repassivation time  
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Rps   Polarization resistance during sliding  

Ract  Polarization resistance inside the wear track  

ract  Specific polarization resistance of the active area  

tlat  Period between two successive cycles  

d  density  

µ  Friction coefficient  

FTT   Fast fourier transform  

 

CHAPTER 6 

 

Wele  Electrical work  

Qheat   Heat  

MEA   Membrane electrode assembly  

PTFE   Polytetrafluoroethylene 

CL   Catalyst electrode layers  

HOR   Hydrogen oxidation reaction  

ORR  Oxygen evolution reaction  

GDL   Gas diffusion layer  

MPL   Micro-porous layer  

ICR   Interfacial contact resistance  

VSHE   Potential vs standard hydrogen electrode (SHE)  

DoE   US Department of Energy  

ITO   Indium-tin-oxide  
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1. Thin films  
 

Thin films deposited by physical vapour deposition (PVD) technologies are widely 

applied today in a huge number of applications where specific surface properties of 

the materials are required [1-2]. Thin films are layers of material with a thickness 

ranging from a few atomic layers (~nm) to a few micrometers. The importance of thin 

films relies on the exhibition of completely different properties compared to those of 

bulk materials enabling the modification or enhancement of substrate functionality. 

They do not generally affect the properties of bulk material but they can, however, 

totally change the thermal, mechanical, electrochemical, magnetic, electrical and 

optical properties of the substrate surface.  

Protective hard thin films based on transition metal nitrides (TMN) and carbides 

(TMC) [3] have been deposited on cutting tools deployed in machining or drilling for 

years, motivated by a huge increase of their service lifetime due to improved 

hardness, toughness and wear-, erosion- and oxidation/corrosion resistance 

compared with uncoated tools. Such properties are also required in automotive and 

aerospace applications, where the durability of many components is hindered by the 

harsh mechanical and environmental (corrosion, high temperature…) conditions they 

are subjected to.  

Fine tuning of optical and electrical properties of tailored thin films has enabled a 

widespread utilization of thin films as mirrors, antireflective and low emissivity 

coatings in glass industry (eyewear, architectural and automotive windows), and 

transparent conductive oxide coatings in opto-electronic devices (solar cells, touch 

panels, LEDs and OLEDs), just to name a few applications [4]. Possibly, the main 

application of thin films is found in semiconductor devices and microelectronics 

where both conductive and dielectric thin films are crucial parts of integrated circuits 

[5].  
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It should be noticed, that the above-mentioned list of thin film applications is limited 

and by far not exhaustive. In fact, thin films are steadily extending their application 

domains.  

Among PVD technologies, magnetron sputtering is considered the state-of-the-art 

technology attending to its reliability in terms of industrial production and its potential 

for the deposition of almost any material from those with high melting points to metal 

alloys and dielectric materials [2].  

Nevertheless, the industry is continuously demanding thin films with improved 

properties and therefore, an active research is ongoing in the development of new 

structures, materials and deposition technologies capable to fulfill the special 

requirements and withstand the increasingly severe conditions present in current and 

future high-tech applications [6]. 

 

2. Challenges in thin films for harsh environments 
 

Transition metal nitride films (TMN) deposited by magnetron sputtering are currently 

a general procedure in many applications owing to the increased performance and 

durability of coated components. However, nearly all the coating solutions are 

focused on a limited number of metals, namely, combinations of titanium (Ti), 

aluminum (Al), chromium (Cr) and zirconium (Zr) metals in binary and ternary nitride 

forms, while other potentially attractive compounds are overlooked. The same 

situation is found when it comes to scientific publications related to these materials. 

TiN, CrN, TiAlN, CrAlN, ZrN and ZrCN have been extensively studied during the last 

decades in terms of mechanical, tribological, electrical, corrosion and oxidation 

performance.  
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It is true that these “conventional” materials deposited by direct current magnetron 

sputtering (DCMS) as hard protective coatings can meet the established demands 

for tribological applications (including wear, erosion and abrasion resistance). These 

coatings can also enhance the corrosion and oxidation resistance of the uncoated 

substrate. Nevertheless, the main weakness of conventional magnetron sputtering 

techniques remains to be the development of highly corrosion resistance thin films. 

Even if great advantages have been made to improve this property in sputtered films 

(namely, development of amorphous films and fabrication of multilayer structure 

films), the typical columnar structure and the presence of defects, voids and pores 

along the coating thickness represent a direct pathway for the corrosive or oxidizing 

agents towards the substrate, jeopardizing corrosion protection after long time 

exposure [7]. The low ionization degree of sputtered particles (< 5%) during DCMS 

prevents the control of the direction and the energy of the material flux towards the 

substrate by external electric and/or magnetic fields [8-9]. This feature results in 

deposition of low density films containing pores and defects that are directly 

responsible for the not good enough corrosion resistance of the sputtered films [10-

11].  

Besides the importance of the microstructure on corrosion performance of a given 

thin film, the coating material itself represents an essential characteristic [12]. The 

metallic materials (including metallic based thin films) immersed in corrosive 

solutions tend to form an oxide barrier layer on top of their surfaces. This oxide is the 

first layer material facing the corrosive constituents in the solution. If this metal oxide 

layer is porous and electrochemically active, the corrosion resistance of the material 

will be low. Contrary, if the metal oxide is dense and stable, the corrosion resistance 

of the metallic material should be high unless protective oxide starts to break down.  

Hence, two main features should be considered if a coating solution development for 

harsh environments is envisioned.  
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 Thin films should be made from one of the most electrochemically stable metallic 

materials available 

 A strategy to deposit defect-free high density thin films should be addressed.  

An electrochemically reliable coating deposited by magnetron sputtering capable to 

face satisfactorily corrosion phenomena has yet to become a reality. 

 

3. Tantalum nitride films  

Tantalum nitride (TaN) thin films belong to the TMN family group and have been 

studied rather extensively as structural elements in integrated circuits. At present, 

the principal use of TaN thin films is found in resistors and diffusion barriers in 

microelectronics industry [13-14].  

As a transition metal nitride film, TaN owns exceptional features such as high melting 

point, high hardness, excellent mechanical properties and an extraordinary chemical 

stability. The tribological performance evaluation of TaN films has been reported by 

several authors [15-16]. Nevertheless, the electrochemical features evaluation of 

TaN coatings remains rather unexplored regardless of being Tantalum (Ta) one of 

the most inert metals in the periodic table.  

Most metals are prone to corrosion in acids, while Ta is not attacked by acids or other 

strong chemicals. At temperatures below 150 ºC, Ta is completely stable in any 

aggressive environment except for hydrofluoric acid. Furthermore, Ta possess an 

outstanding biocompatibility and it neither reacts with body fluids nor generates 

adverse tissue reaction. The exceptional corrosion resistance of metal Ta to 

aggressive media is due to the spontaneous formation of an impervious stable and 

well-adherent tantalum pentoxide (Ta2O5) barrier layer on the metal surface [17].  
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The lack of information in TaN properties may be caused by the huge complexity of 

Ta-N system. While Ti-N and Cr-N systems are relatively simple with only two 

compounds such as tetragonal Ti2N and cubic TiN and hexagonal hcp-Cr2N and CrN, 

respectively, Ta-N exhibits many different stable and metastable phases [16, 18-19]. 

This complexity certainly gives rise to completely different mechanical, electrical and 

electrochemical features depending on composition, deposition technology and 

deposition process parameters and it is likely responsible for the absence of more 

general knowledge about TaN promising coating material.  

 

4. Modulated pulsed power magnetron sputtering   

Many attempts have been made in order to increase the sputtered material ionization 

during magnetron sputtering discharges that would promote a better control of 

material flux towards the substrate enabling a fine-tuning of film properties. 

Traditionally, the utilization of a hollow cathode or the application of a second 

discharge inside the chamber (by inductive coils, ion sources or microwaves 

applicator) have been employed for this purpose [20, 21]. However, these techniques 

never succeed in widespread industrialization due to the complexity of the deposition 

apparatus.  

More recently, the so-called high power pulsed magnetron sputtering (HPPMS) 

technologies were developed including the initial high power impulse magnetron 

sputtering (HiPIMS) and the later modification known as modulated pulsed power 

magnetron sputtering (MPPMS). HPPMS techniques have gained increasing interest 

among both academia and industry, since they are considered as the best alternative 

for scalable solution in terms of enhanced ionization in magnetron sputtering based 

techniques [20, 22]. HPPMS discharge is created by simply exchanging DC power 
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supply with HPPMS power supply within the same deposition chamber, making easy 

the conversion of “conventional” sputtering system in new advanced HPPMS 

deposition equipment.  

The basic idea behind HPPMS techniques is based on reaching a higher plasma 

ionization by increasing the power applied to the magnetron target. HPPMS 

generates a highly ionized metal plasma by the application of short pulses of low duty 

cycle and frequency leading to peak power target densities of kW cm-2 (two orders 

of magnitude higher than DCMS). The pulses are repeated periodically to produce 

an average power that is comparable to that normally used in DCMS, to prevent 

target overheating [22]. Sputtered material ionization degrees from 20% to 70% 

depending on target material have been reported during HPPMS discharge [23-25]. 

The possibility to control the high flux of metal ions in HPPMS plasmas has turned 

into a new and unique tool to tailor the microstructure and properties of deposited 

films as demonstrated in both lab- and industrial-scale sputtering systems all over 

the world [22, 26-31].  

HiPIMS was firstly introduced by Kouznetsov et al. in 1999 [32]. Henceforth, HiPIMS 

discharges have been theoretically studied thoroughly in lab scale sputtering 

systems. During the last decade, thin films deposited by HiPIMS at industrial scale 

have become a reality. However, the deposition rate for the HiPIMS films compared 

to films deposited by conventional DCMS at the same average power is much lower 

due to the “self-sputtering” effect [33-35]. Self-sputtering process occurs when 

ionized sputtered material is attracted back to the cathode and feeds the discharge 

(contributes to the sputtering process) instead of being deposited on the substrate, 

strongly decreasing the deposition rate of HiPIMS process. Besides, there is a great 

concern about the stability of HiPIMS process when such high peak current densities 

are generated and arcing continuously occurs.  



Chapter 1  Introduction 
 
 

 

P a g e   42 | 286 

 

In order to overcome these problems, the so-called modulated pulsed power 

magnetron sputtering (MPPMS) was developed in 2006 [36]. The main difference 

between HiPIMS and MPPMS is the magnitude, duration and shape of the pulses, 

which are created by different power supplies. A typical HiPIMS pulse is a short (50–

200 μs) and unique pulse which develops very high peak power densities, whereas 

the MPPMS pulse is much longer (500–3000 μs) and can be modulated in different 

steps and generally exhibits lower peak power densities than HiPIMS [22]. Even 

though the peak power during MPPMS is not as high as in HiPIMS approach, it can 

still produce a high degree of ionization of sputtered particles [25]. More importantly, 

the deposition rate of MPPMS is not reduced compared to DCMS but even increased 

under certain conditions and sputtered materials as demonstrated in [37-39] 

MPPMS generates a high density plasma by the superimposition of two or more (up 

to six) micropulses within one overall custom-shaped macropulse [40-41]. This 

versatility in pulse shape modification allows the development of different ionization 

stages during the macropulse to guarantee a stable highly ionized discharge 

regardless of sputtered material. Typically, a macropulse containing two micropulses 

is applied during film deposition discharge. The first micropulse is characterized by 

low peak current density to ignite the plasma in a stable manner followed by a high 

peak current density micropulse as the main ionization stage. Arcing phenomena has 

turned up easier to control when MPPMS technique is applied instead of HiPIMS.  

 

5. Motivation of this work  

At present, a vast number of technological applications involve corrosion degradation 

phenomena, which eventually limits material performance and is considered as one 

of the critical factors hindering new emerging technologies to step further. An 
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exhaustive evaluation of tantalum nitride (TaN) thin films deposited by MPPMS 

technique for corrosion protection of different metallic substrates in specific 

applications is the principal purpose of this thesis. The benefits of TaN material itself 

coupled with the utilization of MPPMS technique for the development of advanced 

corrosion-resistant thin films, briefly summarized above, are the main motivation for 

this work.  

Corrosion processes are found in nearly all application sectors. Simply the humidity 

causes corrosion in materials expose to ambient atmosphere. Automotive internal 

combustion engines produce water vapour and exhaust gases, which condense in 

internal areas and lead to the degradation of metal parts. Implants face severe 

corrosive environment of the human body, including blood and body fluids. Metallic 

components used for the construction of nuclear plants, steam power plants, off-

shore wind power and concentrated solar power deal with extremely harsh 

environments every day, where corrosion and oxidation phenomenon are critical. 

Plastic and food industry also encountered corrosion during processing.  

It should be stressed, that the demand for better-performing and enhanced durability 

materials (i.e. high wear-corrosion-resistant and non-degradable materials) is ever-

increasing to enable the production of more efficient and durable vehicles, aircrafts, 

implants and power plants, just to name a few representative products.  

Clearly it is impossible to address all the applications mentioned above within this 

thesis, but the suitability of TaN thin films deposited by MPPMS to protect metallic 

substrates in two high-tech demanding applications is evaluated and serves as a 

driving force and motivation for the current work. 

Biomedical implants 

Pure titanium (Ti-cp) is commonly used today as an implant material owing to its low 

Young modulus (comparable to that of bone), superior biocompatibility and excellent 
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corrosion resistance. Nevertheless, Ti-cp exhibits poor wear resistance and high 

coefficient of friction. Biomedical implants are a general routine nowadays, and they 

exhibit excellent success rates for 10-15 years. However, they are not designed for 

serving properly much longer and the life expectancy increase is demanding long-

term durability implants capable to work for much longer period of time without failure. 

Implants are exposed to which is known as “tribocorrosion”, the synergistic effect of 

wear and corrosion degradation processes together, because they are subjected to 

mechanical loading in body fluids aggressive environment. The main drawbacks to 

ensure longer lifetime for the implants are the lack of biocompatibility caused by the 

release of metal ions and the material loss due to tribocorrosion. Increasing Ti-cp 

biomaterial performance is explored by the application of multilayer TaN thin films by 

MPPMS.  

Polymer electrolyte membrane fuel cells 

Polymer electrolyte membrane fuel cells (PEMFC) are one of the most promising 

candidates as the next generation power sources using hydrogen as fuel to generate 

green electricity for transport applications. PEMFC electric vehicles are currently a 

technological reality but several components performance and durability must be 

enhanced for a widespread commercialization. The bipolar plate (BPP) is a crucial 

component in PEMFC since it acts as the current conductor between cells, provides 

conduits for reactant gases flow, removes heat and constitutes the backbone of a 

power cell stack. BPPs must be highly corrosion resistance in acidic environment 

and electrically conductive. Stainless steel (SS) is the material of choice for transport 

applications but its chemical stability in PEMFC environment needs to be improved 

for enhanced durability. Furthermore, the passive oxide film formed on top of SS 

bipolar plate during operation reduces its conductivity and hence, fuel cell efficiency. 

The evaluation of TaN coated SS bipolar plates is accomplished during this thesis in 

order to enhance PEMFC performance and lifetime.  
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Last but not least, the industrial viability demonstration of MPPMS technique for the 

production of high density corrosion-resistant thin films, using TaN coating as a proof 

of concept, encourages the attainment of this thesis. The low deposition rate and 

process stability problems found in HiPIMS discharges, have constrained this 

technology to stand in for DCMS as the new technology of choice for thin film 

deposition in Industry. As previously highlighted, MPPMS was developed to 

overcome these problems and to make HPPMS techniques industrially attractive and 

profitable. The demonstration of MPPMS capacity to fabricate low defect and high 

density coatings at high production rates would speed up extensive market 

penetration of these cutting-edge deposition technologies.   

 

6. Objectives   

The main objective of the present thesis is the development of advanced corrosion-

resistant TaN thin films by new emerging MPPMS technology. The development of 

low defect and high density thin films by the application of highly ionized MPPMS 

discharge is pursued. The accomplishment of this objective would overcome the 

limitation currently found in sputtered films, i.e. the exhibition of a low corrosion 

resistance due to a low density and unsuitable microstructure architecture.   

Furthermore, this thesis attempts to enhance the understanding of the 

electrochemical behaviour of TaN thin films deposited on different metallic substrates 

in several corrosive environments. The dependence of TaN film properties (with 

special focus on corrosion resistance) on process parameters during MPPMS 

deposition process is studied. Particularly, the nitrogen content effect on TaN 

microstructure and crystal phases and its correlation with corrosion resistance in 

NaCl solution is aimed.  
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Afterwards, the industrial validation of TaN coatings grown by MPPMS is addressed 

through the evaluation of these films as reliable coating solutions to protect metallic 

materials in two selected high-tech and demanding applications, i.e. biomedical 

implants and polymer electrolyte membrane fuel cells (PEMFC).   

Pure titanium is commonly used for the fabrication of biomaterials. It possess an 

excellent biocompability and chemical stability, but suffers from poor mechanical 

properties. In biomedical implants, both mechanical and corrosion degradation 

phenomena take place at biomaterial surface and are subjected to the so-called 

“tribocorrosion”. The development of different TaN films deposited by MPPMS with a 

multilayer structure architecture to enhance the performance and lifetime of uncoated 

Ti-cp is addressed. The evaluation of TaN as a coating solution to protect Ti-cp from 

tribocorrosion degradation in implants is the objective.  

Stainless steel (SS316L) is generally used to manufacture the bipolar plates for 

PEMFC. It is necessary to improve the corrosion resistance of uncoated SS316L to 

ensure a longer service lifetime of the BPP and to minimize uttermost the power 

losses during cell operation. The development of highly corrosion resistant TaN films 

by MPPMS is proposed. Besides, the bipolar plates need to be conductive during 

operation to prevent cell efficiency reduction. Hence, developed TaN films must 

exhibit low interfacial contact resistance (ICR) with the gas diffusion layer (GDL) after 

corrosion testing. A correlation between oxide barrier film formation on top of TaN 

surface with corrosion current and ICR values needs to be made. The evaluation of 

TaN as a coating solution to protect SS316L bipolar plates from degradation during 

PEMFC operation is the goal.  

Thus, specific objectives can be summarized as follows:  

1. Develop high density and low-defect TaN thin films by MPPMS technique in an 

industrial size sputtering chamber.  
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2. Characterize the composition, microstructure and crystal phases of TaN films 

deposited by MPPMS under different process parameters (variable N2-to-Ar ratio) 

and correlate them with TaN corrosion resistance.  

3. Particularly analyse the corrosion and tribocorrosion performance of TaN coated 

Ti-cp in simulated body fluids. Evaluate TaN as a coating solution for biomedical 

implants.  

4. Assess the corrosion resistance of TaN thin films in PEMFC simulated 

environment for SS316L bipolar plate protection. Measure the interfacial contact 

resistance value before and after corrosion testing. Evaluate TaN as a coating 

solution for BPP in PEMFC.  

5. Elaborate a detailed study on modulated pulsed power magnetron sputtered TaN 

thin films performance in different application environments, being 

electrochemical behaviour the connecting feature.  

6. Control the stability and reproducibility of the MPPMS process.  

 

7. Organization of the thesis 

The thesis is divided into 7 chapters.  

In the next Chapter 2, the theoretical background needed to understand the thesis is 

given. The description of TaN coating material under investigation is displayed. The 

principles of sputtering, drawbacks of conventional DCMS and fundamentals and 

advantages of HiPIMS and more precisely, MPPMS are presented. Finally, a brief 

overview about corrosion degradation phenomena is given and the benefits of 

HPPMS technologies for the deposition of corrosion-resistant films are explained.  

Chapter 3 details the features of the deposition system employed for the production 

of TaN coatings and the techniques used for TaN film characterization. Techniques 
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utilized for TaN films microstructure, composition and properties evaluation are 

described. Special emphasize is given to the electrochemical analysis of TaN films 

under polarization and electrochemical impedance spectroscopy methods.  

The experimental work carried out and results obtained in this thesis are presented 

in Chapters 4, 5 and 6.  

Chapter 4 is dedicated to a general investigation on TaN film microstructure and 

properties deposited by MPPMS. Monitoring of voltage-current characteristics during 

TaN discharge under different MPPMS pulse shapes is accomplished. The effect of 

nitrogen content on the TaN film microstructure and properties is accurately 

investigated.  

In chapter 5, the TaN performance as protective coating for Ti-cp in biomedical 

implants is presented. An overview about metallic materials used for implants is 

given. Multilayer structure TaN films are developed in order to enhance tribocorrosion 

resistance of uncoated Ti-cp. Employed tribocorrosion testing procedure is 

described. Film microstructure and electrochemical, mechanical and tribocorrosion 

properties of multilayer TaN films are compared with monolayer TaN and uncoated 

Ti-cp.  

In chapter 6, the TaN coatings are investigated as a coating solution to improve the 

performance and durability of PEMFC stainless steel bipolar plates. Corrosion and 

conductivity testing is performed on TaN coatings deposited at different N2-to-Ar 

ratios. Special attention is given to the barrier oxide film formation on top of TaN 

coatings surface. Corrosion resistance and interfacial contact resistance values 

exhibited by TaN coatings are correlated with the thickness and the composition of 

the barrier oxide film. Finally, a novel and promising bi-layer coating made of tantalum 

and indium-tin-oxide (ITO) layers is also deposited by MPPMS and evaluated as 

protective coating for BPPs.  
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Finally, Chapter 7 presents overall conclusions of the work carried out in this thesis 

and future work.  
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1. Materials  

1.1 Tantalum  

Tantalum was discovered by Anders Gustaf Ekenberg, a Swedish chemist, in 1802 

in minerals obtained from Ytterby, Sweden. Many scientists believed that he had only 

discovered an allotrope of niobium, an element that is chemically similar to tantalum. 

The issue was finally settled in 1866 when, Jean Charles Galissard de Marignac, a 

Swiss chemist, proved that tantalum and niobium were two distinct elements. The 

first relatively pure samples of tantalum were first produced in 1907. Today, tantalum 

is primarily obtained from the minerals columbite ((Fe, Mn, Mg) (Nb, Ta)2O6), tantalite 

((Fe, Mn)(Ta, Nb)2O6) and euxenite ((Y, Ca, Er, La, Ce, U, Th)(Nb, Ta, Ti)2O6 ). 

Tantalum is a transition metal in Group 5 (VB) of the periodic table characterized by 

atomic number 73 and atomic weight of 180, 9479 g mol-1. Tantalum’s density is 16.4 

gcm-3. It is included within the refractory metals group, with high resistance to heat 

and wear. In fact, it has the third highest melting point (3020 ºC), surpassed only by 

rhenium and tungsten, yet it is highly conductive to heat and electricity [1].   

Tantalum is dark, very hard, dense, ductile and malleable metal. Tantalum is 

renowned for its excellent corrosion resistance, being one of the most inert metals in 

the periodic table. Most metals tend to dissolve in acids but Ta is not affected by 

acids or other strong chemicals. In fact, at temperatures below 150 °C tantalum is 

almost completely immune to attack by the normally aggressive aqua regia. An 

exception here is the hydrofluoric acid which can causes severe corrosion [2]. 

Tantalum is an excellent biocompatible material, which does not react with body 

fluids or generate adverse tissue reaction.  
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Tantalum exists in two crystalline phases, alpha (α) and beta (β). The alpha phase is 

relatively ductile and soft; it has body-centered cubic (bcc) structure, a hardness of 

8-12 GPa and electrical resistivity 15–80 µΩ cm. The beta phase is hard and brittle; 

its crystal symmetry is tetragonal, exhibits a hardness of 18-20 GPA and its electrical 

resistivity is relatively high at 170–210 µΩ cm. The β-phase is metastable and 

converts to the α-phase upon heating to 750–775 °C. Bulk tantalum is almost entirely 

α-phase, and the β-phase usually exists as thin films obtained by magnetron 

sputtering, chemical vapor deposition or electrochemical deposition techniques [3].  

Tantalum forms oxides with oxidation states +5 (Ta2O5) and +4 (TaO2). The most 

stable oxidation state is +5, which forms tantalum pentoxide (Ta2O5). Ta2O5 is an 

inert material characterized by an excellent chemical stability and resistance to acid 

attack which makes it insoluble in all solvents. However, it can be affected by strong 

bases and hydrofluoric acid. It is characterized by high refractive index and low 

absorption coefficient. It is an insulating material characterized by high dielectric 

constant. In fact, the outstanding resistance of metal Ta to aggressive media is 

attributable to the formation of an impervious stable and firmly adhering film of 

tantalum oxide (Ta2O5) on the metal surface [2]. 

The primary use of tantalum is in Electronic industry. Tantalum (Ta) thin films have 

been of importance since the early 1960s for their use in fabricating resistors and 

capacitors. Tantalum electrolytic capacitors exploit the tendency of tantalum to form 

a protective oxide surface layer, using tantalum thin film as one "plate" of the 

capacitor, the oxide thin layer as the dielectric, and an electrolytic solution or 

conductive solid as the other "plate". Because the dielectric layer can be very thin 

(thinner than the similar layer in, for instance, an aluminum electrolytic capacitor), a 

high capacitance can be achieved in a small volume. Because of the size and weight 

advantages, tantalum capacitors are attractive for portable telephones, personal 

computers, and automotive electronics. 
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Ta has a high melting point and is frequently used as a substitute for platinum, which 

is more expensive. Tantalum is used to make components for chemical plants, 

nuclear power plants, airplanes and missiles due to the high chemical stability 

previously mentioned. Tantalum does not react with bodily fluids and is used to make 

surgical equipment. Tantalum also does not irritate the body and is used to make 

surgical sutures as well as implants, such as artificial joints and cranial plates. 

 

1.2 Tantalum nitride  

Tantalum nitride (TaN) is a transition metal nitride rather unexplored compared to the 

well-known titanium nitride (TiN), chromium nitride (CrN) or zirconium nitride 

(ZrN).Transition metal nitrides exhibit remarkable physical properties including high 

hardness and mechanical strength, chemical inertness and high temperature 

stability. Due to its excellent properties, they have become technologically important 

in their thin film form for many industrial application areas [4-5].  

TaN density is 14.3 g cm-3 with a molecular weight of 194.955 g mol-1. It has a high 

melting point of 3090 ºC and it is insoluble in water.  

The properties of TaN thin films are determined by its composition and crystal phase 

structure. TaN thin films are complex since TaN exhibits many different phases and 

stoichiometry revealing different physical, chemical and mechanical properties. Both 

stable and metastable crystal phases have been reported for TaN system; including 

bcc α-Ta, tetragonal β-Ta, hexagonal Ta2N, cubic TaN, hexagonal TaN, hexagonal 

Ta5N6, tetragonal Ta5N6, orthorhombic Ta3N5, orthorhombic Ta4N… [6] Due to this 

complexity, TaN films with hardness ranging from 10 GPa up to 70 GPa have been 

reported [7-9]. Tribological performance and electrical properties of TaN films are 

also considerably variable upon TaN composition and crystal phases [10-12]. Thus, 

the TaN properties have been found to be strongly dependent on the deposition 
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technology, process parameters and growing conditions utilized during TaN films 

deposition.  

TaN has been extensively studied for its application in microelectronic devices and 

as diffusion barrier in magneto resistive random access memory and resistors since 

it works as an excellent barrier against Cu diffusion, or as preferred barrier absorber 

material for EUV masks [13-14]. TaN has also been utilized as wear resistant layer 

and hard coating for cutting tools in tribological applications [15-16]. However, in spite 

of its well-known chemical inertness and corrosion resistance in harsh environments, 

there is a lack of consistency on its general performance against chemical attack. 

TaN is also highly biocompatible but there are not many research papers regarding 

its application in biomedical devices.   

 

2. Sputtering technologies  

2.1 Fundamentals  

2.1.1 The plasma  

Historically the term ‘plasma’ was introduced by Irving Langmuir in 1928 [17] when 

he investigated oscillations in an ionized gas. He used the word to describe a region 

containing balanced charges of ions and electrons.  

Today, a plasma is defined as an ionized gas consisting of approximately equal 

numbers of positively charged ions and negatively charged electrons and a much 

larger number of gas neutrals that is in average electrically neutral but responds to a 

collective behavior [18]. We often refer to it as the “Fourth State of the Matter” 

because of its unique physical properties, distinct from solids, liquids and gases. In 
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fact, considering a temperature increase, a solid material will transform into a liquid, 

a gas, and eventually into a plasma if enough energy is supplied to ionize the atoms 

within the gas.  

 

Fig 2. 1: The four states of matter: solid, liquid, gas and plasma (taken from [19]) 

Under the ordinary conditions on the Earth, plasma is rather a very rare phenomenon 

exclusively observed in lightning, fluorescent lights and neon signs, flames and 

auroras borealis. But in Universe, cold solid bodies are an exception. Most of the 

matter in the Universe is ionized and thus in the plasma state (about 99%). Plasma 

in the Universe is produced by various mechanisms. In the stars, the neutral atoms 

are ionized due to high temperature. Interstellar gases are ionized due to the 

ultraviolet radiation from the stars.  

Currently, plasmas are artificially created in our laboratories and industries 

encompassing many areas ranging from the high-temperature plasmas of 

thermonuclear fusion to the low-temperature plasmas in material processing, and 

more specifically glow discharge plasmas that are the core of sputtering processes 

and will be further described in the next section 2.1.2.  
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The plasmas are characterized by their ionization state and charged particles 

density. This state is expressed in terms of the following parameters:  

 The density of neutral particles, nn 

 The density of the electrons and the ions, ne and ni, respectively  

 The energy distribution function of the neutrals fn (E), ions fi (E), and electrons fe 

(E). 

 The ionization degree   

𝐼 =  
𝑛𝑖

𝑛𝑖+𝑛𝑛
              [2.1] 

Commonly, in the absence of negative ions, ne=ni=n, being n the plasma density.  

 

2.1.2 Sputtering process   
 

The basic principle in sputtering, relies on ejection (sputtering) of atoms from a solid 

source (target) by bombardment of gaseous ions (generally a noble gas such as 

argon) from a plasma. The ejected atoms are then transported to the substrate, 

where they condense to form a film. A schematic drawing of sputtering process is 

plotted in Fig 2.2. 

 

Fig 2. 2: Schematic illustration of sputtering process 
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A sputtering gas (normally argon) is introduced into a vacuum chamber. The plasma 

is created applying a voltage between the target (cathode) and the chamber walls 

(anode). The few free electrons initially presented in the gas will be accelerated away 

from the cathode, eventually hitting the gas atoms. If the electron energy is high 

enough, the gas atoms will be ionized and, hence, more electrons created, 

developing a small current inside the chamber through the following processes [20],  

𝐴𝑟0 + 𝑒− → 𝐴𝑟+ + 2 𝑒−            [2.2] 

𝐴𝑟∗ + 𝑒− → 𝐴𝑟+ + 2 𝑒−            [2.3] 

The Ar+ ions created during ionization processes will be accelerated towards the 

cathode, leading to an energetic bombardment against the target and ejecting target 

atoms and secondary electrons by momentum transfer mechanism. The cascade of 

ionizing collisions will ultimately result in a large current causing the gas to break 

down, and eventually the discharge becomes self-sustaining. This means that 

enough secondary electrons are generated to produce the required amount of Ar+ 

ions to generate again, during the process of sputtering, enough secondary electrons 

to compensate the loss of charged particles through the diffusion to the chamber 

walls. The de-excitations of the particles during the whole process cause the 

emission of visible radiation and therefore, the discharge is called glow discharge. 

Depending on the applied potential and the resulting current, different regimes can 

be identified as shown in Fig 2.3. The sputtering process belongs to the glow 

discharge regime termed as abnormal glow, where the discharge voltage and current 

density increases with increasing applied power.  
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Fig 2. 3: Voltage-current relationship in plasma discharges (taken from [18]) 

The average number of atoms ejected from the target per incident ion is called the 

sputter yield (γ) and depends on the energy of the ion, the masses of the ion and 

target atoms, and the surface binding energy of atoms in the target. Thus, γ is a 

particular feature of the target material and deposition process. According to the 

theory of Sigmund, the sputter yield near threshold, i.e. at low ion energy, is given by 

[21]:  

𝛾 =
3

4𝜋2
𝛼

4𝑀1𝑀2

(𝑀1𝑀2)
2

𝐸

𝑈𝑆
            [2.4] 

with E the energy of the incident ion, and M1 and M2 the masses of the incident ion 

and the target atom (in amu). Us is the surface binding energy and α dimensionless 

parameter depending on the mass ratio and the ion energy. 
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2.1.3 Ionization processes  
 

In a sputtering plasma, the most common ionization process mechanisms for 

sputtered material are [20]:  

 Direct electron impact ionization  

𝑀0 + 𝑒− → 𝑀+ + 2 𝑒−           [2.5] 

 Electron impact ionization of excited sputtered atoms 

𝑀∗ + 𝑒− → 𝑀+ + 2 𝑒−           [2.6] 

 Penning ionization  

𝑀0 + 𝐺∗ → 𝑀+ + 𝐺0 + 𝑒−          [2.7] 

being M and G sputtered atoms and sputtering gas atoms, respectively.  

Plasma discharges with high values of ne are dominated by ionization processes of 

equations [2.5] and [2.6], while low ne discharges are dominated by Penning 

ionization (equation [2.7]. It is also known that ionization degree of the sputtered 

material is higher with increasing ne [20]. However, the ionization degree strongly 

varies between different materials, given material cross section for ionization by 

electron impact. This general trend is demonstrated in Fig 2.4. 

 

Fig 2. 4: Ionization of different sputtered materials with increasing electron density of plasma discharge 

(taken from [20]) 
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2.2. DC Magnetron sputtering 

2.2.1 Definition  

The invention of the planar magnetron cathode by Chapin (patent issued in 1979) 

marked the beginning of a new era in vacuum coating technology. 

In a basic sputtering process, the glow discharge is usually excited and sustained 

electrically by applying, through the gas and between two electrodes direct current 

(DC) power. Typically, the voltage applied is about 1-2 kV and the pressure is about 

a few Pa. In this set-up the electron trajectories are only defined by the electrical field 

between the cathode and the anode. The electrons are accelerated over the cathode 

sheath and move with high velocity towards the anode, leading to a rapid loss of 

electrons and reduction of plasma density in the vicinity of the cathode.  

By applying a magnetic field during DC glow discharge sputter deposition (which is 

known as DC magnetron sputtering (DCMS)), one can trap the electrons in the 

discharge longer and, hence, produce more ions for the same electron density [23]. 

As the electron trajectory is elongated, the probability of ionizing a gas atom during 

their travel from cathode to anode increases, which enables a reduction in the 

discharge pressure (below 1 Pa) and cathode voltage (300-500 V) and increase of 

the mean free path  (average distance traveled by a moving particle between 

successive collisions). Mean free path (λ) of an atom in a gas ambient is defined by 

the following equation:  

𝜆 =
5×10−3 

𝑃 
 (𝑐𝑚)            [2.8] 

being P the working pressure given in Torr. 
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In this way, the ions can reach the cathode with almost the full discharge voltage and 

the sputtered atoms can reach the substrate with only a few collisions. This is of great 

significance for the sputtering process efficiency in terms of thin films growth rate and 

quality compared to basic glow discharge sputtering process.  

In a magnetron, magnets are placed directly behind the target creating a magnetic 

field of hundred Gauss. The electrons will then be trapped by the Lorentz force and 

will be driven around magnetic field lines in spiral-shaped orbits as shown in Fig 2.5. 

The Lorentz force is given by,  

𝐹 = 𝑞(𝐸⃗ + 𝑣 × 𝐵⃗ )            [2.9] 

where q is the charge, is the velocity of the particle and, and 𝐸⃗  and 𝐵⃗  the electric 

and magnetic fields, respectively.  

 

Fig 2. 5: An example of planar magnetron conFiguration (taken from [24]) 

Different magnetron configurations can be found today regarding geometry and 

electrical power, all depending on the application. The electrons in the magnetron 

plasma are highly sensitive to the magnetic fields over the target surface. This effect 

can be used to control the plasma properties and create different plasma effects to 

enhance the deposition process. Apart from magnetic field strength, the most 

influential aspect is the degree of magnetic balance or unbalance. The magnetic null 
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point where Bz is zero in the middle of the target is the characteristic factor. The most 

common configurations (Fig 2.6.) are given below, 

Balanced magnetron sputtering 

The distance to Bz is large. In this configuration, the inner and outer magnets of the 

magnetron balance each other. This configuration enhances the ionization degree 

on the vicinity of the target. 

Unbalanced magnetron sputtering 

In many cases, it is beneficial to avoid a too strong confinement of the plasma just 

close to the target, but also confining it close to the substrate. This is achieved by 

placing stronger outer magnets than the inner ones, forcing the plasma to extend 

further into the chamber toward the substrates. The null point BZ is closer to the target 

in this configuration. Unbalanced magnetron configuration improves both the 

ionization degree and the ion bombardment of the growing film, enhancing its 

physical properties. This is the most utilized type of magnetron in industrial systems.   

 

Fig 2. 6: The most common magnetron configurations in sputtering processes 
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2.2.2 Drawbacks 

DC magnetron sputtering (DCMS) technique has found widespread use in many 

industrial sectors, and it is currently one of the main technologies for the deposition 

of thin films. However, the constant development of coating technology is driven by 

increasing commercial demands on existing coatings as well as a wish to replace 

traditional techniques with novel methods capable to offer thin films with tailored and 

enhanced properties.  

In conventional DCMS discharge, only a small fraction of the sputtered atoms are 

ionized, roughly in the order of one or a few percentage.  Thus, the sputtering process 

is, therefore, a line-of-sight process where the deposition flux towards the substrate 

cannot be easily controlled since it consist of mainly neutral atoms. In fact, the 

uniform deposition of thin films in a complex-shape substrates is rather difficult since 

there is no tool to modify the direction of sputtered atoms. Moreover, the ion 

bombardment of the growing film during synthesis has been shown to have favorable 

effects on film microstructure and properties [25]. To achieve this condition, in many 

cases bias voltage (Vb) values of several tenths or even hundreds of V are required 

in order to increase the average energy provided to the deposited atoms and 

significantly affect the film properties. However, the majority of available ions in 

DCMS for deposition process assistance come from the inert sputtering gas while 

ions of sputtered material are very rare. This fact in combination with the relatively 

high bias voltages may cause subplantation of the Ar atoms in the film, leading to a 

generation of lattice defects, high residual stresses, a deterioration of the quality of 

the film/substrate interface and poor film adhesion. Last but not least, the thin films 

deposited by DCMS tend to exhibit columnar microstructures due to the lack of 

sufficient energy to promote surface mobility of ad-atoms and densification of the 

growing films. A dense microstructure is one of the key characteristics for a well-
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performing thin film in terms of corrosion protection. The voids and defects along the 

film enable the creation of a pathway for the electrolyte penetration towards the 

substrate, strongly jeopardizing its corrosion resistance. Thus, this is one of the main 

reasons why dc magnetron sputtered films are not commonly utilized for applications 

in severe corrosive conditions.  

Thus, the increase of the fraction of the ionized sputtered species within DCMS 

discharge has been an objective of many research works during the recent decades. 

The enhancement of this feature would allow the deposition of improved coatings 

capable to withstand more severe conditions and be applied in not suitable 

substrates up to now.  

The specific characteristics of DCMS processes depend on target material, gas type 

and pressure. Thus, it is difficult to make a general description for DCMS processes. 

However, DCMS often operates at a pressure of 0.1-1 Pa with a magnetic field 

strength between 100-1000 Gauss and at cathode potentials around 300-700 V. This 

leads to current densities below 0.1 A cm-2 and power densities of a few W cm-2 [26, 

27].  This is the main reason why the ionization degree of sputtered particles is 

always very low (< 5%) in DCMS discharge. The given energy by the applied power 

in DCMS is not sufficiently high to ionize the target atoms.  

Several sputtering systems have been designed to increase the plasma density of 

conventional DCMS. These include: inductively coupled plasma magnetron 

sputtering (ICP-MS), microwave amplified magnetron sputtering, hollow cathode 

magnetron sputtering and high power pulsed magnetron sputtering (HPPMS). This 

latter technique requires in principle only the sputtering power supply replacement 

and includes high power impulse magnetron sputtering (HiPIMS) and modulated 

power pulsed magnetron sputtering (MPPMS) depending on the power supply 

employed. During HPPMS discharges, the power is applied in pulses of low duty 
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cycle and frequency instead of in constant direct mode as in DCMS as illustrated in 

Fig 2.7. The HPPMS pulse mode allows the development of much higher peak power 

densities in the cathode at the same average power than during DCMS, which leads 

to much higher plasma density and ionization degree of sputtered particles. The main 

difference between HiPIMS and MPPMS arises from the duration and frequency of 

the pulse and the magnitude of the peak power density.  

 

Fig 2. 7: Power vs time in DCMS, HiPIMS and MPPMS discharges 

 

HiPIMS will be briefly introduced and MPPMS further described since it is the one 

employed for the deposition of TaN coatings in this thesis.  
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2.3 HiPIMS  

High power pulsed magnetron sputtering (HiPIMS) was firstly introduced by 

Kouznetsov et al. [28] in the 1999 as a new promising ionized physical vapor 

deposition technique (I-PVD). In HiPIMS, a dense plasma is generated by applying 

high power unipolar pulses (1 - 3 kW cm-2) to a cathode, for a short period of time 

(e.g. 10-200 μs), resulting in a high degree of ionization of the sputtered species [29, 

30]. The amount of ionization depends mainly on the plasma discharge 

characteristics and the target material as shown in Fig 2.8 [31]. Values ranging from 

5% for C [32] to 90% for Ti [33] have been reported.  

 

Fig 2. 8: A comparison of the metal ionization vs pulse time during HiPIMS for different target materials 

(taken from [31]. 

 

In order to avoid overheating of the target, the power is applied in very short pulses 

of low frequency and duty cycles of a few percentage. The typical V-I characteristics 

of HiPIMS discharge is shown in Fig 2.9.  
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Fig 2. 9: Voltage-current waveforms during HiPIMS discharge in MIDAS 450 system 

 

During the last decade, the high flux of metal ions generated in the HiPIMS 

discharges has been usefully utilized to tailor and enhance the properties of the 

growing films compared to those films deposited by conventional dc magnetron 

sputtering (DCMS) technique [34,35. Alami et al. have shown that Ta films deposited 

by HiPIMS exhibit a fully dense and a very smooth surface along with a less 

pronounced line-of-sight process as compared to DCMS [36]. The application of a 

negative bias voltage to the ionized metal flux allows an accurate control of the 

direction and energy of the arriving ions inducing a more homogeneous coating on 

complex-shape substrates. Besides, the possibility to tailor the phase composition of 

Ta films through the modification of process parameters was also reported by Alami 

et al [37]. The possibility to completely densify the CrN film microstructure by 
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increasing peak current density during HiPIMS process was also demonstrated [38] 

as shown in Fig 2.10.  

 

Fig 2. 10: Cross-sectional SEM images of CrN films deposited on Si by HPPMS at different peak target 

currents (taken from [38]) 

HiPIMS has been shown to be also beneficial in the development of protective 

coatings with enhanced corrosion resistance as demonstrated by C. Reinhard and 

co-workers [39]. The deposition of multilayer coatings by HiPIMS with excellent 

adhesion, oxidation and wear resistance was also demonstrated by P.E. Hovsepian 

et al. [40, 41].  

The major drawback of HiPIMS technique is the drop in the deposition rate compared 

to DCMS technique for an equivalent amount of average power as shown in Fig 2.11. 

Deposition rate of deposited films is of great importance in coating preparation, 

alongside with their microstructure and properties, since it affects the profitability of 
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film production. The deposition rate reduction is caused by various physical reasons, 

being the most important one the loss of sputtered material via ionization and 

subsequent back-attraction towards the target, known as self-sputtering [42, 43]. 

Since high power pulsing greatly increases the probability of ionization of sputtered 

material, the quantity of metal ions created in the vicinity of the target considerably 

rises. These metal ions are then attracted back to the cathode by the electric field 

and participate in the sputtering process instead of contributing in thin film formation.  

 

Fig 2. 11: Deposition rate for DCMS and HiPIMS discharges for different target materials (taken from [31]) 
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2.4 MPPMS   

2.4.1 Principle  

Modulated Pulsed Power Magnetron Sputtering (MPPMS) technique was developed 

by R. Chistyakov and co-workers in 2006 [44-46] as a variation of originally 

introduced HiPIMS technique.  

The differences between the originally introduced HiPIMS and MPPMS techniques 

are basically the magnitude, duration and shape of the high power pulses. With the 

MPPMS approach, the pulse length can be as long as 3000 μs whereas the peak 

power density is lower than in HiPIMS, typically up to 0.1-1.5 kW cm-2. The duty cycle 

can be as high as 28% while during typical HiPIMS discharges it does not exceed 

the 5%. Unlike the simple one pulse shape in HiPIMS, MPPMS generates high 

density plasma by the superimposition of two or more micropulses within one overall 

pulse resulting in a complex step-like shape discharge waveform as shown in Fig 

2.12. 

The MPP generator’s operation principle is based on the possibility to particularly 

design the pulse shape, including up to 6 different micropulses within one overall 

pulse. This mode of operation results in the development of stable discharges 

regardless off the type of deposited material. However, the typical MPP pulses 

generally contain two different micropulses. The first micropulse is characterized by 

low peak current values and ionization degrees in order to ignite and stabilize the 

plasma discharge. The second micropulse develops much higher peak current 

densities and it is known as the main ionization stage during the pulse. The peak 

current density achieved during MPPMS discharge is dependent on cathode voltage, 

target material, gas type, pressure and magnetron and deposition chamber 

configuration. 
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Fig 2. 12: Voltage-current waveforms developed during MPPMS discharge in MIDAS 450 system 

 

MPP generator is a switching power supply that can control the voltage “on” time (ζon) 

(the width of the micropulses) and the voltage “off” time (ζoff) (the distance between 

micro pulses) in the micropulses, offering the possibility to create low and/or high 

ionized micropulses. The higher the ζon / ζoff ratio, the higher the peak current density. 

The operation principle of MPPMS is shown in Fig 2.13. 
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Fig 2. 13: Schematic theoretical explanation of pulse shape generation during MPPMS 

 

The main differences between DCMS, HiPIMS and MPPMS techniques in terms of 

discharge and plasma parameters already described in this Chapter are summarized 

in Table 2.1.  
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DISCHARGE PARAMETERS  

 DCMS HiPIMS MPPMS 

Average power 1-10 kW 1-10 kW 1-10 kW 

Peak power X few MW hundreds of kW 

Peak power density W cm-2 1-3 kW cm-2 0.1-1.5 kW cm-2 

Peak voltage 300-700 V * 200-2000 V 200-1200 V 

Peak current 1-20 A * 10-1000 A 10-550 A 

Pulse length X 2-200 µs 500-3000 µs 

Frequency X 2-500 Hz 10-400 Hz 

Duty cycle X 5 % 28 % 

PLASMA PARAMETERS 

 DCMS HiPIMS & MPPMS 

 
Weakly ionized 

plasma 
Strongly ionized plasma 

Electron density 1014-1015 m-3 1016-1020 m-3 

Ionization degree of 
sputtered material 

< 0.05 0.05-0.90 depending on target material 

DEPOSITION RATE 

 DCMS HiPIMS MPPMS 

 +++ + ++ 
 

Table 2. 1: Comparative study between DCMS, HiPIMS and MPPMS discharges 

 

* in DCMS discharge, voltage and current are constant. There are no peak values 

like in HiPIMS and MPPMS pulsing discharges.  

2.4.2 Advantages of MPPMS  

The principal advantage of MPPMS technique is that ionization degree of the plasma 

discharge can be greatly increased compared to DCMS by simply changing the 

power supply to power the cathode in the sputtering system due to the increase of ne 

of the plasma discharge. Furthermore, MPPMS is known to deliver more stable 

plasma discharges characterized by lower arcing phenomena and higher deposition 

rate than during HiPIMS processes, which can accelerate a widespread industrial 

application of HPPMS techniques.  
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J.Lin and co-workers [47] showed that the amount of Cr+ ions was considerably 

enhanced during MPPMS discharge as well as the energy of the ions as shown in 

Fig 2.14.  

 

Fig 2. 14: Ion energy distributions of Cr+, Ar+ and Cr2+ ions measured from MPP plasma with different peak 

currents and dc plasma during non-reactive sputtering of Cr (taken from [47]) 
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They also pointed out an increase on the quantity and the energy of the ions as the 

peak current density was increased by pulse shape adjustment, as it has been 

proved by many other researchers [33, 38]. It is also important to notice the huge 

increase on the amount of doubly charged Cr2+ ions, which exceed in two-three 

(depending on peak current density) orders of magnitude the amount of Cr2+ ions 

present during DCMS plasma.  

An ionized deposition flux can be controlled in terms of direction and energy of the 

film forming species by electric and magnetic fields which allows for a complete 

control of the deposition process previously unfeasible during DCMS due to the high 

contribution from neutral atom deposition flux. The implications of this in the 

modification of thin film growth due to higher ion content present in the MPPMS 

process has been already demonstrated. The possibility to completely densify the Ta 

films along with phase transformation from β to α phase by the application of different 

bias voltages, and thus, different arriving ion energies was reported in [48] (Fig 2.15).  

 

Fig 2. 15: Cross-sectional SEM micrographs of the Ta coatings deposited at increasing negative substrate 

bias voltages, from 0V (a) to – 70V (d). Taken from [48]. 
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The enhancement of film properties by the possibility to accurately tune the arriving 

ion energies has been also demonstrated. The tribological properties enhancement 

of CrN films deposited by MPPMS technique including higher hardness, lower wear 

and better adhesion compared to DCMS deposited films was shown in [49] by J.Lin 

and co-workers. They measured the Cr+, N2
+ and Ar+ ion flux in MPPMS and DCMS 

and observed 6 times higher Cr+ ion content in the discharge, which is the parameter 

responsible for enhancement of films quality. The refinement of Cr film microstructure 

induced by MPPMS including finer grain size and higher density compared to DCMS 

grown Cr films was observed in [50]. Increasing the peak current density of MPPMS 

discharge led to the development of columnar grain-free Cr film structures. Hardness 

increase from 6 GPa to 16 GPa and corrosion resistance improvement of Cr films 

was seen by the application of MPPMS. The improvement of corrosion resistance of 

Cr-Si-N films deposited by MPPMS was observed in [51].   

Compared to HIPIMS process, the MPPMS technique develops a lower ionized 

sputtering plasma under the same deposition conditions, as demonstrated by M. 

Hála et al [52] and shown in Fig 2.16.  

 

Fig 2. 16: Normalized optical emission spectra recorded at d=1 cm from the Nb target powered by HiPIMS, 

MPPMS and DCMS in Argon at p=1 Pa and at the average power P=300 W. (taken from [52]) 
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The reason for this relies on the lower peak current densities achieved during 

MPPMS which prevents higher ionization degree of the plasma discharge and leads 

to lower self-sputtering effect. MPPMS pulses are much longer than HiPIMS pulses 

which leads to the development of lower peak power pulses in order to not exceed 

the upper limit for target overheating during sputtering process. However, this feature 

has a positive effect on the deposition rate of MPPMS process. Due to lower amount 

of metal ions during MPPMS, the self-sputtering effect is lower compared to HiPIMS 

discharge which in turns lead higher deposition flux towards the substrate. Moreover, 

the application of higher duty cycles during MPPMS promotes a higher deposition 

rate compared to HiPIMS process as observed in Fig 2.17 [53].  

 

Fig 2. 17: Average power-normalized deposition rate for NbOx coatings prepared by DCMS, HiPIMS and 

MPPMS as a function of oxygen flow (taken from [53]) 

 

Therefore, the objective of this thesis is to enhance the understanding of MPPMS 

technique characteristics for the deposition of advanced TaN thin films at fast 

production rates. HiPIMS technique has been more accurately described and 

evaluated in the past few years, and many of these studies have being made public. 
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Nevertheless, MPPMS benefits for the deposition of tailored films are largely 

unknown. Several studies were performed on CrN film deposition by MPPMS [49-51] 

but many other promising coating materials have never been grown by this 

technique.   

 

3. Corrosion  
 

3.1 Definition  
 

Corrosion is a naturally occurring process, which is defined as the degradation or 

deterioration of a substance and/or its properties by chemical or electrochemical 

interaction with their environment. The term corrosion is sometimes also applied to 

the degradation of plastics, concrete and wood, but generally refers to metals. 

The environment to which metals are exposed to consists of the entire surrounding 

in contact with the metal. The major factors used to describe the environment are 

 physical state of the environment either gas, liquid or solid; 

 chemical composition which includes constituents and concentrations, pH 

 temperature 

In nature, almost all metals are found in their thermodynamically stable states which 

are ores that are comprised primarily of oxides, sulfides, and halides [54]. Energy 

must be given to extract the elemental metals from the ores. Hence, as soon as the 

elemental metals are extracted from their ores, they tend to revert back to their 

thermodynamically stable compounds. In most cases, metals will form oxides when 

exposed to moisture as shown in Fig 2.18. If the oxide is porous or does not have 

good adhesion to the substrate metal, the metal will actively corrode. If the oxide 

forms a compact impervious layer and has good adhesion, the metal will passivate, 
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resulting in excellent corrosion resistance. In environments that contain aggressive 

ions, however, the passive film can breakdown, resulting in localized corrosion and 

very high corrosion rates. Hence, coatings are very frequently needed to suppress 

corrosion in metals that do not naturally form protective passive films or for 

aggressive environments that can break down passivity [55]. 

 

Fig 2. 18: Naturally formed oxide layer on top of metallic materials exposed to moisture 

 

3.2 Corrosion process  
 

The corrosion of metals can be divided into three groups [56] 

 Wet corrosion where the corrosive environment is aqueous with dissolved 

species, normally the electrolyte is a liquid and the process is electrochemical.  

 Corrosion in other fluids such as fused salts and/or molten salts. 

 Dry corrosion where the corrosive environment is a high temperature dry gas.  
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This thesis will be focused exclusively on wet corrosion processes occurring in 

different real applications that degrade metallic components and on the application 

of TaN based coatings to reduce or inhibit these degradation mechanisms.   

The wet corrosion process consists of three important elements which are necessary 

for the corrosion process to occur: anodic reaction, cathodic reaction and electrolyte 

solution or conducting liquid. The anodic reaction or oxidation of the metal results in 

dissolution of the metal, which is transferred to the solution as Mn+ ions. The cathodic 

reaction or reduction involves oxygen. Reduction of oxygen is the dominant cathodic 

reaction in natural environments (seawater, freshwater, soil and atmosphere). This 

process forms an electrical circuit without any accumulation of charge. The electrons 

are released by the anodic process and they are conducted through the metal to the 

cathode. The electrons released by the anodic process are consumed by the 

cathodic reaction [57]. This electrochemical process requires an ionically conducting 

liquid, the “electrolyte”, which must be in contact with the metal. The electrochemical 

circuit is closed by ion conduction through the electrolyte. Typically the metal ions 

Mn+ are conducted towards OH- ions and together they normally produce a metal 

hydroxide, which is deposited on the surface of the metal. This process is illustrated 

in Fig 2.20.  
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Fig 2. 19: Corrosion process taking place at iron metal surface (taken from [58]) 

Wet corrosion is an electrochemical process involving anodic (or oxidation) and 

cathodic (or reduction) reactions [57]. Dissolution and/or oxidation of a metal M, 

which is an anodic reaction, is represented by the following reactions  

𝑀 → 𝑀𝑛+ + 𝑛𝑒−           [2.11] 

𝑀 + 𝑛𝐻20 → 𝑀𝑂𝑛 + 2 𝑛𝐻+ + 2 𝑛𝑒−        [2.12] 

The electrons of the anodic reaction must be consumed by a cathodic reaction for 

corrosion to proceed. Two predominant cathodic reactions in aqueous corrosion are 

oxygen reduction and hydrogen evolution. Their half-cell reactions are represented 

as follows: 

Oxygen Reduction  

𝑂2 + 4𝑒− + 4𝐻+ → 2𝐻2𝑂 (in acidic solutions)      [2.13] 

𝑂2 + 4𝑒− + 2𝐻2𝑂 → 4𝑂𝐻− (in basic solutions)       [2.14] 
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Hydrogen Evolution  

2𝐻+ + 2𝑒− → 𝐻2 (in acidic solutions)                   [2.15] 

2𝐻2𝑂 + 2𝑒− → 𝐻2 + 2𝑂𝐻− (in basic solutions)      [2.16] 

Oxygen reduction can only occur in aerated solutions, which contain dissolved 

oxygen molecules. Hydrogen evolution can occur in both de-aerated and aerated 

solutions. 

In the study of corrosion, polarization diagrams [59] are used to determine the rates 

of metal dissolution, metal oxidation, oxygen reduction, and hydrogen evolution and 

will be further described in Chapter 3. The thermodynamic driving force for the 

electrochemical reaction is measured in potential, E, on the vertical axis of the 

polarization diagram. The kinetics of the electrochemical reaction are measured in 

current, I, on the horizontal axis of the polarization diagram. Anodic and cathodic 

reactions involve the transfer of electrons, and, therefore, their rates are proportional 

to the current.  

Based on Faraday’s law, the moles, N, of species reacted is related to the current, I: 

𝑁 =
𝐼𝑡

𝑛𝐹
            [2.17] 

where t is the duration of the current I, F is Faraday’s constant (or charge on one 

mole of electrons), and n is the moles of electrons participating in the reaction.  

Anodic reactions generate anodic currents, IA, and cathodic reactions generate 

cathodic currents, IC. The currents are often normalized with respect to the surface 

area, A, of the electrode: 

𝑖𝑎 =
𝐼𝐴

𝐴
 (Anodic corrosion current density)       [2.18] 

𝑖𝑐 =
𝐼𝐶

𝐴
 (Cathodic corrosion current density)       [2.19] 
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When corrosion occurs, the amount of electrons generated by metal dissolution is 

equal to that consumed by the cathodic reactions to conserve charge. Hence, the 

corroding material assumes the corrosion potential, Ecorr, where the anodic, ia, and 

cathodic, ic, current densities have the same magnitude, called the corrosion current 

density, icorr.  

Depending on the metal and environment, metals may have active, passive, or 

active-passive electrochemical behavior. Active metals and alloys do not form 

protective passive films and show increasing anodic currents as the potential is 

increased above the corrosion potential (Ecorr). Passive metals form protective 

passive films and have very low dissolution currents at potentials more positive than 

Ecorr.  

Most common coating solutions to prevent metal material degradation, provide one 

or more of the following characteristics to protect the metal substrate: (i) an 

impervious barrier to moisture and corrosive species, (ii) corrosion inhibition utilizing 

corrosion inhibitors, and (iii) cathodic protection. Barrier coatings are the ones 

evaluated during this thesis.  

Barrier coatings ideally protect the substrate metal by providing an impervious barrier 

thin oxide layer to moisture and corrosive species. Corrosion cannot initiate if 

moisture is not present; hence, the substrate metal will be free of corrosion if the 

barrier coating is intact, but can initiate from coating defects or cracks in the presence 

of moisture and corrosive species. The electrical and electrochemical properties of 

the barrier coating can also affect the degree of corrosion that initiates at this 

breaches. Barrier coatings that are electrically conductive can accelerate corrosion 

at coating breaches, therefore, inorganic coatings such as oxides, nitrides, carbides, 

and so on, are generally preferable due to their often inherent insulating 

characteristics.  
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3.3 Corrosion modes 

The wet corrosion processes can be divided in two main group, i.e. uniform corrosion 

and localized corrosion. Uniform corrosion (1), as the name suggests, occurs over 

the majority of the surface of a metal at a steady and often predictable rate and it 

accounts for the 30% materials failure. It is easily controllable due to its predictability, 

and the commonly employed strategy is to make the material thick enough to ensure 

the lifetime of the component. The second main group involves localized corrosion 

which represents the 70% of materials failure due to corrosion degradation 

mechanisms. The consequences of localized corrosion are massive compared to 

uniform corrosion, because the failure occurs without warning and the damage can 

be tremendous. Localized corrosion can occur in different forms [60], briefly 

described below:  

(2) Pitting corrosion is a form of corrosion by which cavities or holes are 

generated in the material. Pitting is generally initiate by i) localized chemical or 

mechanical damage to the passive surface oxide film of the material, ii) breakdown 

of a protective coating and/or iii) non-uniformity present on material structure.  

(3) Crevice corrosion refers to the localized attack on a metal surface at the gap 

or crevice between two joining surfaces. It is started by a difference in concentration 

of some metal constituents, generally oxygen, establishing an electrochemical 

concentration cell. Outside the gap, the two materials are corrosion resistant.  

(4) Galvanic corrosion refers to corrosion damage induced when two dissimilar 

materials are coupled in a corrosive electrolyte. When two dissimilar metals are 

immersed in a conducting solution they usually develop different corrosion potentials. 

If the metals are in contact this potential difference provides the driving force for 

increased corrosion, the less noble of the two metals corroding more rapidly.  
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(5) Erosion-corrosion is the acceleration of the rate of deterioration of a metal 

resulting from relative movement between the corrosive fluid and the metal surface. 

It is characterized by the development of a surface profile of grooves, waves and 

rounded holes which usually exhibits a directional pattern.  

(6) Intergranular corrosion is the preferential attack of the grain boundaries of the 

crystals that form the metal. Grain boundaries are somehow more reactive than the 

matrix of an alloy, but since the difference in reactivity is slight, grain boundary effects 

are usually of little consequence. 

 (7) Environmentally assisted-cracking includes stress-corrosion cracking, fatigue 

and hydrogen damage. All these modes of corrosion involve the combination of 

mechanical factors and corrosive environments.  Stress-corrosion is based on the 

combined action of a static tensile stress and corrosion which forms cracks and 

eventually catastrophic failure of the component. During fatigue corrosion, the 

combined action of cyclic stresses and a corrosive environment reduce the life of 

components. Hydrogen, by various mechanisms, embrittles a metal especially in 

areas of high hardness causing blistering or cracking especially in the presence of 

tensile stresses.  

The most common corrosion mechanisms when a coating-substrate system is 

immersed in an electrolyte are galvanic corrosion and pitting corrosion. When a 

coating is applied into a metal substrate and exposed to a corrosive electrolyte, it 

also tends to form a protective oxide layer on the top of its surface. However, if this 

oxide is not protective enough, it can allow the penetration of the corrosive medium 

along the coating thickness. If the microstructure of this coating presents voids, 

defects and/or pores, a diffusion pathway will be created towards the metal substrate.  

When corrosion potentials difference between the metal substrate and the coating is 

high, galvanic corrosion may occur at coating/substrate interface. This form of 
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corrosion can be observed when the coating corrosion resistance is lower than the 

bare metal substrate. When the chemical stability of the protective oxide layer is high, 

the material tends to be protected. However, the oxide layer may start to crack due 

to different factors, i.e. after a long time exposure, by the application of a potential, 

by the application of a mechanical load… In this situation, the fresh metal of the 

coating is exposed to direct contact with the electrolyte giving up electrons easily and 

initiating tiny pits formation which can cause severe corrosion. This form of corrosion 

is known as pitting corrosion. Eventually, pitting corrosion can end up as galvanic 

corrosion if the corrosion potentials of metal substrate and coating are different 

enough. Pitting commences when the electrode potential exceeds the critical value 

known as the pitting potential (Epit) and its occurrence can be easily recognized by 

an abrupt increase on the corrosion current density in polarization diagrams.  

 

3.4 Advantages of HPPMS techniques for the deposition of corrosion 

protective coatings  

As already explained in sections 2.3 and 2.4 within this chapter, HPPMS plasma 

discharges are characterized by much higher ionization degree of sputtered material 

compared with DCMS discharges [29]. The ionized nature of sputtered material 

provides an added parameter to control the energy and direction of the ion flux 

towards the substrate. Superior coating properties can be obtained due to the unique 

high metal ion content in HPPMS plasmas, which allows the control by external 

electrical and magnetic fields of sputtered ion flux trajectory and acceleration 

supplying highly energetic material flux on the growing surface.  

Despite of HPPMS technology was developed in the early 90’s [28], HPPMS coatings 

ready for commercialization became a reality a few years ago. They were mainly 

developed for tribological applications [40, 61], where the better adhesion of coating-
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to-substrate [34, 62-64], smoother surface [65] and more uniform coverage of the 

coated parts [36], did promote improved wear resistance and service lifetime of 

several components in cutting tools and automotive market.  

Currently, there is a general belief about the great advantage HPPMS technology 

offers for the deposition of corrosion-resistant coatings. There is a general trend 

towards the possibility to use HPPMS coatings in real applications subjected to harsh 

environments where conventional sputtered coatings were unsuitable.  

The corrosion resistance enhancement of sputtered films is promoted by the high 

ion-to-neutral ratio of sputtered particles during HPPMS plasma discharge, besides 

the features mentioned above. The two key characteristics to guarantee an adequate 

corrosion protection by a coating are:  

 The formation of a well adherent and stable passive oxide film on the surface 

(which is dependent on coating material)  

 The development of a defect-free and extremely dense microstructure film (which 

is influenced primarily by deposition technology) 

Traditionally, the densification of coatings deposited by conventional magnetron 

sputtering techniques has been achieved by energy supply to the growing films 

through bias voltage and temperature application [66]. However, during DCMS, the 

majority of the ions available for thin film assistance are sputtering gas ions, Ar+ ions, 

which coupled with very high bias voltages can induce argon incorporation into the 

film, lattice defects and high compressive stresses [67-69]. The high temperature 

application during film deposition limits the selection of substrate materials.  

HPPMS technologies application for thin film growth adds a new powerful tool to tune 

the film microstructure and completely densify the coating, i.e. the high metal ion flux. 

It has been reported by several authors that the assistance of growing films by low 

energetic high ion flux irradiation is the most effective strategy for the development 
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of extremely dense films without increasing residual stresses and lattice defects [68, 

70]. HPPMS techniques have well-proven capacity for the generation of highly 

ionized plasmas enabling complete densification and optimization of thin films 

microstructure [29, 30, 36, 38, 48, 71-73].  

This increasing interest on corrosion applications is supported by the high amount of 

articles published recently related to the investigation of HPPMS coatings 

performance in harsh environments. T. Zhang et al. [74] synthesized Ti-Al-N films by 

HiPIMS from a compound Ti2AlN target and showed that densely packed 

nanocrystalline films could be obtained characterized by excellent oxidation and 

corrosion resistance compared to films grown by conventional pulsed DCMS. J.Lin 

and I. Dahan studied the performance of nanocrystalline Cr coatings on SS 304 

samples prepared by MPPMS at different peak target current densities [50]. Cr films 

grown at peak current densities of 1.2 A cm-2 exhibited extremely dense, columnar 

free and fine grain size microstructure with enhanced corrosion resistance compared 

to Cr films deposited by DCMS. P.Eh. Hovsepian and co-workers investigated the 

performance of CrN/NbN nanostructured films grown by HiPIMS in pure steam 

environment at 650 ºC [75]. CrN/NbN films with enhanced adhesion and very dense 

microstructure were deposited on P92 steel showing reliable protection in steam 

turbine simulated environment up to 2000 h operation. Y.X.Ou et al. [76] analyzed 

the structure, adhesion and corrosion resistance of CrN/TiN supperlatice films 

deposited by HPPMS on SS304L samples. They showed that films with dense 

microstructure, well-defined nanolayer interfaces and dense coating/substrate 

interface exhibited improved pitting and stress corrosion cracking compared to 

uncoated SS304L.  
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1.  MIDAS 450 sputtering system  

The Ta and TaNx films were synthetized in the MIDAS 450 closed field unbalanced 

magnetron sputtering (CFUBMS) system designed and mounted at IK4-TEKNIKER 

(Fig 3.1.). The maximum coating area is 500 mm in height and 400 mm in diameter. 

It is pumped to a base pressure of 1 x 10-5 mbar using a primary mechanical pump 

and a diffusion pump connected in series.  

 

Fig 3. 1: MIDAS 450 sputtering system 

 

The system is equipped with three rectangular magnetrons manufactured by Gencoa 

Ltd. with a target size of 550x125 mm2. During this thesis, a unique Ta target (99.99% 

purity supplied by GfE, Gesellschaft für Elektrometallurgie mbH) was employed for 

TaNx films deposition. Metallic Ta and nitride TaN films were grown in Ar and Ar/N2 

mixture atmospheres, respectively.  Ar and N2 gases are introduced into the chamber 

through separate mass flow controllers from the gas inlet shown in Fig 3.1. 
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The system incorporates a twofold rotation substrate holder which can be negatively 

biased up to -600 V. The target-to-substrate distance is 70 mm. The substrate holder 

can be heated up to 350 ºC.  

The magnetrons can be powered by DC, pulsed DC  and MPP power supplies. 

During this thesis MPP power supply and dedicated bias power supply were 

employed for TaNx thin film synthesis and are described below and shown in Fig 3.2. 

The power supply employed for MPPMS plasma discharge generation is the so-

called SOLO/AXIS - 180TM Pulsed DC 

Plasma Generator manufactured by 

Zpulser LLC, USA. It is a 20 kW average 

power supply which can deliver a 

maximum peak power of 300 kW with 

550 A maxium peak current and 1100 V 

maximum peak voltage. Zpulser Vesta is 

a 10 kW DC bias supply solution for 

high-power pulsed plasma magnetron 

that comes with a built-in arc 

suppression circuit to prevent the loss or 

significant drop of bias voltage  during 

high power pulsing.  

The cleaning procedure realized on 

substrate samples before all TaNx 

coating deposition processes that will be 

described in Chapter 4, 5 and 6 is 

explained hereafter.  

Fig 3. 2: Zpulser SOLO and VESTA power supplies 
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The substrates were ultrasonically cleaned in ethanol for 10 min, followed by drying 

in warm air. Once the substrates were introduced into the chamber and base 

pressure of 10-5 mbar was reached, the substrates were sputter etched in Ar+H2 

plasma for 10 min at – 300 V DC bias voltage for adhesion enhancement between 

the substrate and the coating and native oxide layer removal from metal substrate 

surfaces.  

 

2.  Characterization techniques  
 

2.1. MPPMS discharge characteristics  
 

During the Ta and TaNx deposition processes, the voltage and current waveforms at 

the cathode for each pulse shape were monitored and recorded from an oscilloscope 

(ISO-TECH, IDS 8064, Fig 3.3) connected to the magnetron.  

 

Fig 3. 3: ISO-TECH oscilloscope employed for V-I waveforms monitoring 

 

Furthermore, the Zpulser SOLO software registers the evolution of peak and average 

voltage, peak and average current, peak and average power and frequency during 

the whole MPPMS process as shown in Fig 3.4.  
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Fig 3. 4:  Zpulser SOLO software employed for MPPMS discharge management 

 

 

2.2. Techniques for studying thin films microstructure and 

composition  

2.2.1 Glow discharge – Optical Emission Spectroscopy (GD-OES)    

Glow discharge optical emission spectroscopy (GD-OES) is an efficient method for 

the analysis of the elemental composition of a material. It provides rapid depth 

profiling analysis of composition and thickness of solid materials.  

The operational principle of GD-OES is briefly described [1]. In a glow discharge, 

cathodic sputtering using Ar ions is used to remove material layer by layer from the 

tested sample starting from the surface. The removed atoms migrate into the plasma 

where they are excited and ionized through collisions with electrons or Ar gas atoms. 

The characteristic spectrum emitted by these excited atoms or ions is measured by 

a spectrometer. The intensities are recorded as function of time. Based on a 
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calibration method, establish beforehand, these qualitative results can be 

transformed in a quantitative content depth profile. 

In this thesis, a GDPROFILER 2 manufactured by Horiba Jobin Yvon shown in Fig 

3.5 was employed.  

 

Fig 3. 5: GD-OES equipment used for TaNx coatings composition analysis 

The compositional analysis of TaNx coatings obtained during experimental work 

within this thesis is considered qualitative. Quantified profiles can be obtained after 

calibration. Calibration procedure is based on the comparison between measured 

intensities of the unknown sample with those measured using a standard material of 

known composition. An adequate calibration would need different elemental 

composition TaN reference sample measurements to compare with the unknown 

sample. In this study, just Ta reference samples of known composition were used to 

establish a relationship between emission intensities and elemental composition of 

TaNx coatings. Hence, the given elemental composition values of TaNx are relative. 
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2.2.2 Scanning electron microscope (SEM)     
 

Scanning electron microscope (SEM) is a high-resolution microscope that uses a 

focused beam of high-energy electrons to produce a variety of signals at the surface 

of solid materials [2]. The SEM uses electrons for imaging, like optical microscope 

uses visible light. The advantages of SEM are much higher magnification (>100000X) 

and greater depth of field (100 times higher) compared to optical microscope. The 

signals obtained after electron-solid material interactions reveal information about the 

surface of tested material including morphology, composition, surface topography… 

The SEM column and chamber are at vacuum to enable the electrons to travel freely 

from the beam source to the tested material and then to the detectors.  

In this thesis, a high resolution field emission scanning electron microscope (FE-

SEM) Ultra Plus manufactured by Carl Zeiss shown in Fig 3.6 was employed.  

 

Fig 3. 6: FE-SEM microscope used for TaNx films analysis 

In this thesis, different analysis on TaNx coated samples were carried out. The 

microstructure of all TaNx coatings was analyses by cross-sectional micrographs 
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using silicon wafers. The thickness of the TaNx coated silicon wafers was measured 

by the following procedure. 3 different zones along the cross-section were selected 

and 5 thickness measurements were made/per zone, obtaining 15 thickness 

values/per sample to calculate the average thickness of each TaNx coating. The 

starting and ending points of the TaNx films to measure the thickness were 

determined from perpendicular lines drawn using FESEM software at 90 º angle with 

respect to the substrate. 

Surface morphology of TaNx films characterized by different N/Ta ratios was 

investigated in Chapter 5. Surface topography of as-deposited and worn surfaces 

(Chapter 5) of the samples was evaluated.  

 

2.2.3 Transmission electron microscope (TEM)     
 

The transmission electron microscope (TEM) is a very powerful tool for material 

analysis. A high energy beam of electrons is throw through a very thin sample, and 

the interactions between the electrons and the atoms are detected enabling the 

investigation of material features such as the crystal structure and features in the 

structure like dislocations and grain boundaries. Chemical analysis can also be 

performed. TEM can be used to study the growth of layers, their composition and 

defects. High resolution TEM can be employed to study the quality, shape, size and 

density of quantum wells, wires and dots. The resolution of TEM is much higher than 

SEM.  

In this thesis, TEM was used for TaNx multilayer microstructure analysis (Chapter 5), 

since no differences were detected between monolayer and multilayer TaN films 

using SEM. Cross-sectional samples deposited onto Si substrates were prepared for 

transmission electron microscopy (TEM), by dimple-grinding with a Gatan 656 
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dimpler and Ar ion-milling with a Fischione 1010 model until an electron transparent 

area was obtained at the center of the sample. The procedure is fully described in 

reference [4]. Transmission electron microscopy studies were done using a JEOL 

3010 F microscope with a field-emission gun, 300 kV acceleration voltage and 0.17 

nm of structural resolution. Image processing of the high-resolution images was 

carried out using Gatan Digital Micrograph and Image J software packages. 

 

2.2.4 X-Ray Diffraction (XRD) 

 

X-ray diffraction (XRD) is a common technique for the study of crystal structures and 

atomic spacing of materials [5]. XRD is based on constructive interference of 

monochromatic X-rays and a crystalline sample. These X-rays are generated by a 

cathode ray tube, filtered to produce monochromatic radiation, collimated to 

concentrate, and directed toward the sample. The interaction of the incident rays with 

the tested sample produces constructive interference when conditions 

satisfy Bragg's Law (nλ=2d sin θ). This law relates the wavelength of 

electromagnetic radiation to the diffraction angle and the lattice spacing in a 

crystalline sample. These diffracted X-rays are then detected, processed and 

counted.  

In this thesis, the crystal structure of the TaNx films depending on N2-to-Ar ratio was 

determined by X – ray diffraction (XRD) using grazing incidence (Chapter 4). A 

Bruker AXS D8 Advance diffractometer operated in θ–2 θ mode was employed using 

Cu Kα radiation. 
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2.2.5 Auger Electron Spectroscopy (AES) 

 

Auger Electron Spectroscopy (AES) is one of the most sensitive methods of surface 

analysis and is widely employed due to its relative simplicity compared to other 

techniques [6].  

AES operational procedure is based on the excitation of sample surface with a finely 

focused electron beam which causes Auger electrons to be emitted from the surface. 

An electron energy analyser is used to measure the energy of the emitted Auger 

electrons. Using the measured kinetic energy and intensity of an Auger peak, the 

elemental identity and quantity of a detected element can be determined. The 

average depth of analysis for an AES measurement is approximately 5 nm and the 

lateral spatial resolution as small as 8 nm.  Spatial distribution information is obtained 

by scanning the micro focused electron beam across the sample surface. 

In this thesis, AES technique has been utilized to measure the elemental composition 

of barrier oxide film formation (very few nanometres thick) before and after 

polarization tests on TaNx film surface. The sensitivity of AES technique allows the 

thickness and composition measurement of such a thin oxide layer (Chapter 6).   

Auger analysis was conducted using a JEOL 9500F AES microprobe. This was 

operated at 10 kV electron beam energy. Composition depth profiles were achieved 

by sputtering with Ar ions with an accelerating voltage of 500 V. The depth scale is 

defined by the sputtering rate calibrated using a thermal SiO2 standard sample. 
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2.3. Techniques for studying thin film properties  
 

One of the main objectives of this thesis is the evaluation of TaNx films corrosion 

resistance in different corrosive environments. The electrochemical characterization 

of TaNx films is carried out in all the studies completed for this thesis. Summarizing,  

 Electrochemical features of different composition TaNx films in NaCl solution are 

investigated in Chapter 4.  

 Corrosion and tribocorrosion performance of TaN multilayer films in PBS solution 

is examined in Chapter 5.  

 Electrochemical and electrical properties of different composition TaNx films in 

simulated PEM fuel cell environment (H2SO4 solution) are investigated in Chapter 

6.   

Hence, the techniques employed for electrochemical and corrosion resistance 

analysis are deeply described in the following section 2.3.1., which special 

emphasize in their application for coating performance assessment.  

Tribocorrosion characterization procedure and set-up, and interfacial contact 

resistance measurement method and set-up, are uniquely employed within Chapter 

5 and 6, respectively, and thus, they will be individually explained in the 

corresponding chapter.  

Hardness and roughness characterization set-ups are described in the next sections 

2.3.2 and 2.3.3. 

 

2.3.1 Techniques for studying corrosion   
 

Since corrosion is an electrochemical process, it follows that electrochemical 

techniques and electrochemical instrumentation can be used to study the corrosion 
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process. Indeed, a number of electrochemical techniques have been developed over 

the years especially for the measurement of corrosion processes [7]. The reasons 

for the popularity of electrochemical techniques for corrosion resistance evaluation 

of materials are based on the following characteristics:    

 They are fast. Corrosion is a slow process. Real-time weight loss measurements 

need days or even weeks to make a reliable measurement of corrosion rate. 

Electrochemical techniques enable the measurement of corrosion rate in minutes 

or hours. 

 They are sensitive and can measure very low corrosion rates.  

 They are accurate  

 They are versatile. Electrochemical techniques can be used to study a wide range 

of corrosion-related phenomena. The rate of uniform corrosion can be measured. 

The tendency of a metal to exhibit localized (pitting or crevice) corrosion can be 

measured. The passivation behavior of a corroding system can be studied. 

Galvanic corrosion can be quantitated.  

Three-electrode electrochemical cell (Fig 3.7) set up connected to a potentiostat has 

been utilized for corrosion testing [8].  

 

Fig 3. 7:  Three-electrode electrochemical cell connected to a potentiostat  
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This set up is composed of three electrodes, the counter electrode (CE), the 

reference electrode (RE) and the working electrode (WE). The counter electrode, is 

an electrode which is used to close the current circuit in the electrochemical cell. It is 

usually made of an inert material (e.g. Pt, Au, graphite, glassy carbon) and usually it 

does not participate in the electrochemical reaction. The reference electrode is an 

electrode which has a stable and well-known electrode potential and it is used as a 

point of reference in the electrochemical cell for the potential control and 

measurement. The working electrode is the electrode in an electrochemical system 

on which the reaction of interest is occurring. Hence, the coated samples act as WE 

in this set-up.   

In this section, only the electrochemical techniques employed during the study of 

TaN coatings corrosion performance within this thesis will be described; i.e. open 

circuit potential (OCP) measurements, polarization techniques and electrochemical 

impedance spectroscopy (EIS).  

2.3.1.1 Open circuit potential (OCP) measurements    
 

Open circuit potential, named commonly as Eoc, is the potential in a working electrode 

comparative to the reference electrode when there is no current or potential existing 

in the cell. When Eoc reaches a stable value, polarization and EIS techniques are 

applied to the samples to evaluate electrochemical response of the tested materials.  

 

2.3.1.2 Polarization techniques  
 

Polarization methods involve changing the open circuit potential, Eoc, (equilibrium 

potential at which there is no current) of the working electrode and monitoring the 

current which is produced as a function of time or potential.  
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Potentiodynamic polarization  

Potentiodynamic polarization is a technique where the potential of the electrode is 

varied at a selected rate by application of a current through the electrolyte. It is 

probably the most commonly used polarization testing method for measuring 

corrosion resistance. Measurements of current-potential relations under carefully 

controlled conditions can yield information on corrosion rates, coatings and films, 

passivity, pitting tendencies and other important data [9,10]. 

When a metal coated or uncoated sample is immersed in a corrosive medium, both 

reduction and oxidation processes occur on its surface. Typically, the sample 

oxidizes (corrodes) and the medium (solvent) is reduced. In acidic media, hydrogen 

ions are reduced. The sample must function as both anode and cathode and both 

anodic and cathodic currents occur on the sample surface. Any corrosion processes 

that occur are usually a result of anodic currents. When a sample is in contact with a 

corrosive liquid and the sample is not connected to any instrumentation – as it would 

be “in service” – the sample assumes a potential (relative to a reference electrode) 

termed the corrosion potential, Ecorr. A sample at Ecorr has both anodic and cathodic 

currents present on its surface. However, these currents are exactly equal in 

magnitude so there is no net current to be measured. The sample is at equilibrium 

with the environment. Ecorr can be defined as the potential at which the rate of 

oxidation is exactly equal to the rate of reduction. It is important to stress that when 

a sample is at Ecorr both polarities of current are present. If the sample is polarized 

slightly more positive than Ecorr, then the anodic current predominates at the expense 

of the cathodic current. As the sample potential is driven further positive, the cathodic 

current component becomes negligible with respect to the anodic component. 

Clearly, if the sample is polarized in the negative direction, the cathodic current 

predominates and the anodic component becomes negligible [11].  



Chapter 3                                                    Deposition System & Characterization Techniques  
 
 

 

P a g e   119 | 286 

 

Potentiodynamic anodic polarization employed within different chapters of this thesis 

is the characterization of a metal coated or uncoated sample by its current-potential 

relationship. The sample potential is scanned slowly in the positive going direction 

and therefore acts as an anode such that it corrodes or forms a passive oxide film on 

sample surface. These measurements are used to determine corrosion 

characteristics of metallic samples in aqueous environments. Investigation such as 

passivation tendencies of the tested sample is easily performed with this technique.  

Experimentally, one measures polarization characteristics by plotting the current 

response as a function of the applied potential. Since the measured current can vary 

over several orders of magnitude, usually the log current function is plotted vs. 

potential on a semi-log chart. This plot is termed a potentiodynamic polarization plot. 

The potential-current relationship characteristics in a potentiodynamic anodic 

polarization plot can yield important information such as: 

 The ability of the material to spontaneously passivate in the particular medium. 

 The potential region over which the specimen remains passive. 

 The corrosion rate in the passive region. 

 The potential at which the passivating film of the specimen starts to break 

 The pitting potential  

 The transpassive region  

The different regions that can be identified in a potentiodynamic polarization plot are 

shown in Fig 3.9. 
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Fig 3. 8: Potentiodynamic polarization plot including different active-passive regions 

 

Tafel extrapolation method uses data obtained from cathodic and anodic 

polarization measurements to calculate corrosion current density, polarization 

resistance and corrosion rate [12]. To determine these factors from such polarization 

measurements, the Tafel region is extrapolated to the corrosion potential. For an 

electrochemical reaction under activation control, polarization curves exhibit linear 

behavior in the E Vs log (i) plots called Tafel behavior [13]. 
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Fig 3. 9: Sample Tafel plot from a potentiodynamic polarization scan 

Ecorr and Icorr values can be directly determined from the cross-over point, as shown 

in Fig 3.10. At the corrosion potential, rate of cathodic reduction is equal to rate of 

anodic reaction (metal corrosion). Tafel constants (βa and βc) are calculated from the 

anodic and cathodic slopes.  

For potentials close to corrosion potential the following relation can be established 

between corrosion current density icorr and polarization resistance Rp [8]:  

𝑅𝑝 = 2.303 
𝛽𝑎𝛽𝑐

𝛽𝑎+𝛽𝑐
(

1

𝑖𝑐𝑜𝑟𝑟
)                                          [3.1] 

According to Faraday's law, there is a linear relationship between the metal 

dissolution rate or corrosion rate (C.R.) and the corrosion current icorr [8] established 

according to the following equation [3.2]:  

𝐶. 𝑅.=
𝑀

𝑛𝐹𝜌
𝑖𝑐𝑜𝑟𝑟                        [3.2] 

  



Chapter 3                                                    Deposition System & Characterization Techniques  
 
 

 

P a g e   122 | 286 

 

Where M is the atomic weight of the metal, ρ is the density, n is the charge number 

which indicates the number of electrons exchanged in the dissolution reaction and F 

is the Faraday constant, (96.485 C/mol).  

 

Potentiostatic polarization  

Potentiostatic polarization experiments allow the controlled polarization of a metal 

surface in an electrolyte. It is used to observe anodic and cathodic behaviors. 

Measurements of current vs time relationship under a constant applied potential are 

obtained.  

Anodic polarization: the potential is changed in the anodic (or more positive) direction 

causing the working electrode to become the anode and causing the electrons to 

withdrawn to be withdrawn from it.  

Cathodic polarization: the potential shifts in the negative direction (below Ecorr), 

forcing the working electrode to become more negative and adding electrons to the 

sample surface.  
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2.3.1.3 Electrochemical impedance spectroscopy   
 

EIS definition  

Electrochemical impedance spectroscopy (EIS) is a recent and more sophisticated 

tool than conventional dc polarization techniques for the analysis of electrochemical 

response of material systems in the study of corrosion, batteries, fuel cells and 

electro-organic systems. EIS is also called AC Impedance. EIS can give accurate, 

error-free kinetic and mechanistic information about electrochemical systems and it 

is capable to distinguish between the dielectric and electric properties of individual 

contributions of different components within the electrochemical system under 

investigation [14].  

The concept of electrical resistance is well known and is defined by Ohm’s law in DC 

mode. Resistance is the ability of a circuit to resist the flow of current, mathematically 

expressed as: 

𝑅 =
𝑉

𝐼
                         [3.3] 

where R is resistance in ohms, V is voltage in volts, and I is current in amperes. 

However, this relationship is limited to one circuit element, the resistor. In the real 

world, many systems exhibit a much more complex behavior and we are forced to 

abandon the simple concept of resistance. In its place we use impedance, Z, which 

is a measure of a circuit’s tendency to resist (or impede) the flow of an alternating 

(AC) electrical current [11].  

In AC theory, where the frequency is non-zero, the analogous equation is:  

𝑍 =
𝐸(𝑡)

𝐼(𝑡)
=

𝐸0 sin(𝜔𝑡)

𝐼0 sin(𝜔𝑡+𝜑)
= 𝑍0

sin(𝜔𝑡)

sin(𝜔𝑡+𝜑)
          [3.4] 
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Where E (t) and I (t) are instantaneous voltage and current, E0 and I0 maximum 

voltage and current amplitudes, ω is frequency, t is time and φ is the phase angle 

between the voltage and the current.  

In an electrochemical cell, slow electrode kinetics, slow preceding chemical 

reactions, and diffusion can all impede electron flow, and can be considered 

analogous to the resistors, capacitors, and inductors that impede the flow of electrons 

in an AC circuit. Z is defined as impedance, the ac equivalent of resistance. The term 

impedance refers to the frequency dependent resistance to current flow of a circuit 

element, which includes resistors, capacitors, inductors… Thus, the EIS analysis can 

considered more exhaustive and complete than conventional dc polarization 

techniques. 

The main advantages of EIS compared to DC polarization techniques are 

summarized below:  

 More information can be obtained  

 EIS can distinguish between two or more electrochemical reactions taking place  

 EIS can identify diffusion occurring through a passive film  

 EIS provides information on the capacitive behaviour of the system  

 EIS gives information about the electron transfer rate  

During EIS acquisition data, the same three-electrode electrochemical cell connected 

to a potentiostat utilized during polarization methods is employed. However, for EIS 

analysis a small sinusoidal voltage (5-10 mV) is applied to the working electrode 

(coated sample) over a wide frequency range.   

Impedance Z can be easily represented by vector analysis which provides a 

convenient method of characterizing an AC waveform, since it allows the description 

of the wave in terms of its amplitude and phase characteristics. Impedance vector 



Chapter 3                                                    Deposition System & Characterization Techniques  
 
 

 

P a g e   125 | 286 

 

can be defined according to the following equations and may be plotted in the plane 

with either rectangular or polar coordinates as shown in Fig 3.11 [15].   

𝑍(𝜔) = 𝑍′ + 𝑗𝑍′′              [3.5] 

The two rectangular coordinates are 

𝑍′ = 𝑅𝑒(𝑍) = |𝑍| cos𝜑             [3.6] 

𝑍′′ = 𝐼𝑚(𝑍) = |𝑍| sin𝜑            [3.7] 

With the phase angle and modulus being 

𝜑 = tan−1 (
𝑍′′

𝑍′
)              [3.8] 

|𝑍| = [(𝑍′)2 + (𝑍′′)2]1/2            [3.9] 

 

Fig 3. 10: Impedance vector 
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Nyquist and Bode plots  

Once an EIS experiment is complete, the data is generally plotted in terms of Nyquist 

and Bode plots (Fig 3.12). The expression for Z (ω) is composed of a real and an 

imaginary part. If the real part is plotted on the X axis and the imaginary part on the 

Y axis of a chart, the Nyquist plot is obtained. In Bode plots, the impedance is plotted 

with log frequency (log f) on the X-axis and both the absolute value of the impedance 

(|Z| =Z0) and phase-shift φ on the Y-axis. Unlike the Nyquist plot, the Bode plot 

explicitly shows frequency information.  

 

Fig 3. 11: Nyquist and Bode plots obtained from EIS analysis 

 

Equivalent circuit modelling  

The main advantage of EIS is the possibility to use a pure electronic model to 

represent an electrochemical system. An electrode interface being subjected to an 

electrochemical reaction is typically analogous to an electronic circuit consisting of a 

specific combination of resistors and capacitors. Using well-established AC circuit 

theory, this analogy can be employed to characterize the electrochemical system in 
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terms of its equivalent circuit. Experimentally, the information obtained from Nyquist 

and Bode plots for a given electrochemical system can be correlated with one or 

more equivalent circuits. Once a particular model is chosen, physical or chemical 

properties can be correlated with circuit elements and numerical values can be given 

by fitting the data to the circuit model.  

The most common elements employed in equivalent circuit models for 

electrochemical system interpretations are summarized in Table 3.1. 

 

Element Symbol Impedance Description  

Resistor R R 
Impedance is independent of frequency. It has only 

real component. 

Inductor I iwL 
Impedance increases as frequency increases. It 

has only imaginary component. 

Capacitor C 1/iwC 
Impedance decreases as frequency raises. It has 

only imaginary component. 

Constant 
phase 

element 
CPE 1/Y0 (iw)n 

Non-ideal capacitor. Y0 is proportional to the 
capacitance of pure capacitive electrodes. n 

indicates the deviated degree of the capacitance 
from ideal C (0 < n < 1) 

Warburg 
impedance 

W 1/Y0 (iw)-1/2 
Describes diffusion processes occurring at 

coating/substrate system. 

Table 3. 1: Elements used in equivalent circuit modelling 

 

There are many equivalent circuit models to interpret the electrochemical reactions 

occurring in metallic materials immerse in corrosive medium. However, in this thesis, 

two different equivalent circuits have been employed for fitting the data obtained from 

impedance plots of each material tested, i.e. different uncoated metallic substrates, 

and TaNx coated metallic substrates.  
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Circuit 1: Randles circuit  

The Randles cell equivalent circuit [16] is a simple model composed of a capacitor 

and two resistor characterized by a semi-circle featured Nyquist plot and one time 

constant in Bode plot as shown in Fig 3.13.  

 

 

Fig 3. 12: Nyquist and Bode plots associated to Randles equivalent circuit 

This electrical circuit is utilized for representing two type of electrochemical systems 

immersed in an electrolyte; uncoated metal substrate and coated metal with a non-

porous thin film. However, the values and meanings of the components are different 

[17].  
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Rs, solution resistance, is the same for both systems and it is associated with the 

electrolyte resistance.  

When Randles circuit is applied to model an uncoated metal (Fig 3.14), the 

capacitor, C, is associated with the double layer capacitance (Cdl) of the 

metal/electrolyte interface. The resistance, R, is associated with the charge transfer 

resistance Rct which gives information about the kinetics of a surface in a corrosive 

medium. This Rct can be generally named as polarization resistance Rp of the 

uncoated metal. 

 

Fig 3. 13: Randles circuit used to model an uncoated metallic substrate 

When Randles circuit is applied to model a coated metal with a dense film (Fig 

3.15), the capacitor, C, represents the coating capacitance (Cc) and can be 

characterized by the thickness and dielectric constant of the coating material. The 

resistance is associated with the polarization resistance of the coating and is known 

as Rp. It is also a property of the material of the coating and varies with the thickness 

and composition of the coating.  



Chapter 3                                                    Deposition System & Characterization Techniques  
 
 

 

P a g e   130 | 286 

 

 

Fig 3. 14: Randles circuit used to model a coated metal with a non-porous thin film 

 

Circuit 2  

The second equivalent circuit used in this thesis is composed of two pairs of capacitor 

and resistor elements combined in parallel. It is commonly utilized for describing the 

electrochemical characteristics of a metal coated with a porous coating, which 

suggests the presence of two electrochemical interfaces: electrolyte/coating and 

electrolyte/metal substrate [18]. When a coating is not completely stable and dense, 

after a certain amount of time, the electrolyte penetrates into the coating through the 

pores and forms a new electrolyte/substrate interface under the coating. Corrosion 

phenomena can occur at this new interface. 

The corresponding Nyquist plot diagram is characterized by the exhibition of two 

semi-circles, and the Bode plot shows two time constants as illustrated in Fig 3.16.  
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Fig 3. 15: Nyquist and Bode plots associated to two time constant equivalent circuit 

In this equivalent circuit Rs is again related to electrolyte resistance. The semi-circle 

at high frequency (left side) in Nyquist plot is due to the coating capacitance (Cc) and 

the semi-circle at lower frequency is due to the double Layer capacitance (Cdl). In 

Bode plot, the maximum at higher frequencies represents the Cc, and the second 

maximum at lower frequencies Cdl.  Rpore is pore resistance which is an indicative of 

the number of pinholes in the thickness and their resistance to conducting flow and 

Rct is associated with the charge transfer at the electrolyte/substrate interface. Rp is 

the sum of Rpore and Rct.  
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Fig 3. 16: Two time constant equivalent circuit used to model a coated metal with a porous thin film 

The development of a coating with a purely capacitive behavior is the ideal feature 

for a protective coating. Upon initial exposure to an electrolyte, a high performance 

coating with excellent barrier properties will act as an almost-perfect capacitor. At 

this stage, R is extremely high. The Bode plot shows a straight line of slope –1 with 

high impedance at low frequency and a phase angle of –90° throughout the entire 

frequency range, characteristic of a pure capacitor. However, as any ideal behavior 

it does not generally occur in real world applications. Thus, instead of a capacitor, a 

constant phase element (CPE) will be introduced for modelling the coating/metal 

systems. A CPE has been described as a “non-ideal capacitor” and is commonly 

utilized because it gives better fit with a model. CPE is defined by admittance Y and 

power index number n, given by:  

𝑌 = 𝑌0(𝑗𝑤)𝑛                      [3.10] 

This is a general dispersion formula; for n=0 it stands for resistance, while it is 

capacitance if n=1.  
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The impedance of the CPE constant phase element can be defined in terms of the 

admittance Y0 and n parmeter as follows [99]:  

𝑍𝐶𝑃𝐸 =
1

Y0
(iw)−n         [3.11] 

where Y0 is proportional to the capacitance of pure capacitive electrodes and it is 

measured experimentally from EIS data. The parameter n ranging between 0 and 1 

is defined as the phenomenological coefficient which indicates the deviated degree 

of the capacitance from the ideal condition and ω is the angular frequency.  

 

2.3.2 Hardness measurements  

 

The hardness measurements of thin films were performed using the nanoindenter 

Fischerscope H100VP equipped with a Vickers indentation tip plotted in Fig 3.18.  

 

Fig 3. 17 Fischerscope H100VP nanoindenter  

This equipment uses the method developed by Oliver and Pharr to estimate 

hardness, H, and Young Modulus, E, of thin films using load-unload curves shown in 

Fig 3.19 [19].  
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Fig 3. 18  Schematic of a typical load – unload nanoindentation curve (taken from [20]) 

 

The Fischerscope equipment uses a dedicated software for the calculation of the 

hardness from data obtained through 6 to 10 indentation tests and corresponding 

load-penetration parameters. From this data, plastic and elastic properties of the thin 

film material can be measured.  

 Indentation tests are performed in different points over the sample surface and the 

following parameters can be calculated: plastic and elastic coefficients, differential 

hardness, plastic hardness, Young modulus and penetration values depending on 

applied loads. In the Fischerscope equipment, the penetration depth under indenter 

load is measured; in contrast to the Vickers hardness test, where the diagonal of the 

indentation trace is measured. The equivalence with Vickers hardness (expressed in 

GPa) is obtained by applying the next conversion formula from the curves penetration 

depth versus applied load:  

𝐻𝑉 = 
378,5

102
×

𝑃×ℎ𝑟

ℎ𝑡
3(1−

𝑊𝐸
𝑊𝑇

)
  given in GPa       [3.12] 
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Being  

 P  total applied load  

 WE  energy invested in the deformation and elastically recovered  

 WT  total energy invested in the deformation  

 hr  residual depth of the indentation  

 ht  maximum penetration depth  

Total indentation load can range between 4 and 1000 mN; the minimum indentation 

load is 0.4 mN. The sample surface has to be flat and the indentation depth must not 

be higher than 10 % of the coating total thickness to consider the test valid. 

 

2.3.3 Roughness measurements  

  

Surface roughness is a component of the surface texture. In this thesis, the 

Perthometer M2 profilometer of Mahr is employed to calculate the surface roughness 

of TaNX films.  

 

 

Fig 3. 19 Perthometer M2 profilometer of Mahr 
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The Tracing method is an inspection method for the two-dimensional tracing of the 

surface. It requires a surface pick-up to be traversed horizontally across the surface 

at constant speed. The Traced profile is the surface profile traced by the pick-up 

stylus. It is quantified by the vertical deviations of a real surface from its ideal form.  

Different roughness parameters can be obtained during testing. However, the most 

commonly given value is the mean roughness, known as Ra, which is the arithmetic 

average of the absolute values of the roughness profile coordinates and it is defined 

as follows:  

𝑅𝑎 =
1

𝐿
∫ |𝑍 (𝑥)|

𝐿

0
𝑑𝑥            [3.13]  

 

To calculate the Ra values, the equipment has followed the DIN EN ISO 4288 and 

DIN EN ISO 4287 standards. 
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1. Introduction  
 

Ta–N system is rather complex system, containing a variety of different compounds. 

In addition to the equilibrium phases, a lot of metastable phases have been reported 

[1-2]. Unlike the well-known TiN and CrN coating materials that exhibit only two 

compounds, tetragonal Ti2N and cubic TiN [3] and hexagonal Cr2N and cubic CrN 

[4], respectively, the Ta-N system has manifold compounds and has not been 

exhaustively investigated. Ta-N system includes both equilibrium and metastable 

phases such as bcc α-Ta, tetragonal β-Ta, hexagonal Ta2N, cubic TaN, hexagonal 

TaN, hexagonal Ta5N6, tetragonal Ta5N6, orthorhombic Ta3N5, and orthorhombic 

Ta4N [5-7]. 

Due to this complexity, the chemical and phase composition of as-deposited TaNx 

layers have been found to be critically dependent on growth conditions, primarily on 

nitrogen content, for all deposition techniques utilized. K. Valleti et al. [7] and D. 

Bernoulli et al. [8] investigated the relationship between the crystal phases of TaNx 

coatings grown at different N2-to-Ar ratio and film hardness. S.K. Kim et al. [9], A. 

Aryasomayajula et al. [10] and K.-Y. Liu et al. [11] analyzed the tribological behavior 

of TaNx films deposited at different N2-to-Ar ratios by DC, pulsed DC and RF 

magnetron sputtering, respectively. M. Cheviot el al. [12] monitored the influence of 

process parameters on TaNx films structure, confirming the N2 partial pressure as a 

key parameter to optimize TaNx performance. Electrical resistivity of TaNx films has 

been also studied by several researchers with special focus on N2 influence [13, 14]. 

Corrosion resistance and mechanical properties of TaN coated Ti have been recently 

investigated for dental application [15], but nitrogen content influence on TaNx films 

corrosion response is not provided. All these studies demonstrate the importance of 

nitrogen effect on TaNx thin film characteristics. 
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Conventional dc magnetron sputtering is one of the state-of-art techniques for the 

depositions of hard coating materials, including TaN. However, when it comes to 

corrosion resistance evaluation, the large amount of defects typically present on 

sputtered films strongly jeopardizes their performance. To overcome this problem, 

the application of recently developed modulated pulsed power magnetron sputtering 

technology (MPPMS) is analyzed [16] in this thesis. The possibility to deposit very 

dense and columnar-free microstructure Ta coatings by MPPMS technique has been 

demonstrated [17], but the influence of the microstructure on its corrosion response 

remains unknown.  

Hence, in this chapter, an exhaustive investigation on TaNx coating performance 

deposited at different N2-to-Ar ratios by MPPMS is accomplished.  Firstly, the 

fundamentals of MPPMS technique in terms of pulse shape definition are explained 

and particularly studied for TaNx coating deposition. Secondly, the effect of nitrogen 

flow on the microstructure, crystal phases and properties of TaNx films deposited by 

MPPMS, with special focus on TaNx electrochemical behavior, is addressed.  

 

2. Pulse shapes for TaNX deposition  
 

MPPMS technique is characterized for the development of highly ionized plasmas by 

the application of complex step-like pulse shapes as previously described in Chapter 

2. The pulse shape eventually defines the voltage-current (V-I) characteristics of the 

plasma discharge, and hence, the ionization degree of the plasma species. The 

pulsing parameters during MPPMS plasma discharge are also highly dependent on 

process parameters and target material.  

Three different MPPMS pulses have been used to analyze plasma discharge 

characteristics during TaNx coating process under the same process parameter 

conditions. Pulse shape and V-I features during each TaNx coating deposition are 
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monitored using the oscilloscope already described in Chapter 3. The correlation 

between the pulse shape and pulsing parameters (peak voltage, peak current and 

peak power) developed during MPPMS discharge is investigated. The characteristics 

of each pulse are shown in Table 4.1. Pulse 200 and Pulse 914 have the same 

macropulse length (1000 µs) but contained 2 and 3 micropulses, respectively, within 

the overall macropulse. Pulse 996 contains 2 micropulses within one overall longer 

macropulse (1500 µs). Voltage “on” time and voltage “off” time ratios (ζon/ζoff) of the 

capacitors are different per micropulse, which are responsible for different peak 

voltage and current values along and per macropulse.  

Pulse 
Macro pulse 

length (µs) 

1st micropulse 2nd micropulse 3rd micropulse  

Length 

(µs) 

ζon 

(µs) 

ζoff 

(µs) 

Length 

(µs) 

ζon 

(µs) 

ζoff 

(µs) 

Length 

(µs) 

ζon 

(µs) 

ζoff 

(µs) 

P200 1000 500 10 30 500 10 15 - - - 

P914 1000 200 10 30 500 10 20 300 16 6 

P996 1500 1000 10 20 500 12 10 - - - 

Table 4. 1: Different MPPMS pulse shape employed for different plasma features generation during TaNx 
deposition discharge 

The following process parameters have been employed for monitoring (V-I) 

characteristics of each MPPMS pulse through an oscilloscope connected to SOLO 

power supply.  

TaNx coating deposition 

 Pressure: 1 Pa 

 Ar flow: 48 sccm  

 N2 flow: 12 sccm  

 Average power: 4 kW 

 Capacitor voltage: 575 V  

 Temperature: 350 ºC  
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Voltage and peak current evolution with time during each pulse are shown in Fig 1. 

All pulses exhibit the typical MPPMS curves. A current rise is observed at the 

beginning of the pulse to ignite the plasma, followed by a low and stable ionization 

stage (voltage and current values are relatively low) and a final step characterized 

by high peak voltage and current values recognized as the main ionization stage.  All 

pulses show similar current values (~ 30A) during the first micropulse segment. The 

1st and 2nd micropulse of Pulse 914 are indistinguishable due to similar and low ζon/ζoff 

ratios than are not capable to generate considerable differences in current. The main 

difference between pulses is observed during the main ionization stage (2nd 

micropulse for P200 and P996 and 3rd micropulse for P914) caused by substantially 

different ζon/ζoff ratios in these pulse segments.  
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Fig 4. 1 V-I characteristics of different MPPMS pulses employed for TaNx plasma discharge 
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The detailed pulsing parameters measured for each pulse shape are plotted in  

Table 4.2.  

Pulse 
Capacitor 
voltage (V) 

Average 
power          

Pav (kW) 

Peak 
voltage      
Vp (V) 

Peak 
current     

Ip (A) 

Peak 
power      
Pp (kW) 

Frequency   
F (Hz) 

P200 575 4 590 40 24 290 

P914 575 4 800 110 88 190 

P996 575 4 866 100 86 113 

Table 4. 2: Pulsing parameters for each pulse 

As shown in Table 2, the pulse design plays an important role on plasma discharge 

features tuning. Pulse 914 and Pulse 996 exhibit double peak current values than 

Pulse 200 due to much higher ζon/ζoff ratios in the high ionization micropulse segment. 

Peak current density during HPPMS discharges is recognized as the main parameter 

influencing ionization degree of the sputtering plasma [18, 19]. Peak current density 

has been usefully utilized to tailor the density [20], geometry [21], texture and crystal 

phases [22, 23] and tribological properties [24-26] of thin films, among others. 

Absolute peak current value is higher for P914; but during P996, high ionization stage 

is maintained for longer time (1500 µs instead of 1000 µs per pulse) than in P914. 

Hence, P996 is selected as the best alternative in terms of higher ionization degree 

of TaNx sputtering plasma. P996 is employed for further analysis on TaNx film 

properties deposited by MPPMS in this chapter.  
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3. Effect of N2-to-Ar ratio on the TaNx films characteristics 
 

3.1. TaNx coating deposition   
 

TaNx films were deposited by MPPMS in the MIDAS 450 sputtering system 

previously described in Chapter 3.  

AISI 316L coupons, silicon wafers and high speed steel disks were used as 

substrates. The substrates underwent the cleaning procedure explained in Chapter 

3 before TaNx coating deposition. During the depositions, the working pressure was 

maintained at 0.7 Pa. The average power was set at 4 kW and the bias voltage was 

constant at -50 V. The substrate temperature was 350 ºC. Prior to TaNx coatings 

growth, a thin Ta interlayer film of 100 nm thickness was deposited for better 

adhesion between the substrate and the coating. Four different TaNx deposition 

processes were carried out, characterized by different N2-to-Ar ratio of 0, 0.25, 0.625 

and 1.  

The same MPPMS pulse, P996 (Fig 4.1), was used for all deposition processes. 

P996 pulse features were described in Section 2. The detailed V-I characteristics 

during each TaNx coating deposition were monitored by an oscilloscope and are 

summarized in Table 4.3. 

 

 
N2/Ar 
ratio 

Peak target 
voltage (V) 

Peak target 
current (A) 

Peak target 
power (kW) 

Frequency 
(Hz) 

Thickness 
(µm) 

Ta 0 720 85 61.2 150 2.61±0.03 

TaN_0.25 0.25 740 93 68.8 140 2.48±0.02 

TaN_0.625 0.625 700 75 52.5 162 2.29±0.02 

TaN_1 1 700 66 46.2 169 2.09±0.02 

Table 4. 3:  Deposition conditions for TaNx films. Thickness value: 𝐗 = 𝐗 ± 𝟐𝛔 
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3.2 TaNx coating characterization  
 

3.2.1. Deposition rate   

 

The thickness of the TaNx films calculated by SEM is plotted in Table 4.3. From 

thickness measurements, the deposition rate of each TaNx film was calculated. The 

deposition rate decreases as N2-to-Ar ratio increases as shown in Fig. 4.2. Two 

factors are responsible for this tendency, namely 1) TaN formation on the surface of 

the sputtering target which leads to lower deposition rates (target poisoning) and 2) 

lower sputtering yield of the N2 gas with respect to Ar.  

 

Fig 4. 2: Deposition rate vs N2-to-Ar ratio 

 

The deposition rate of TaNx films grown by MPPMS varies from 17 nm min-1 to 21 

nm-1 as N2-to-Ar ratio increases, corresponding to a mean value around 1.12 µm h-1. 
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This deposition rate is considered adequate in terms of industrial productivity of 

MPPMS technique for the deposition of TaNx films.  

 

3.2.2. Film microstructure and composition 
 

The film composition determined from GD-OES is shown in Fig. 4.3.  The TaNx film 

deposited in argon atmosphere (i.e. N2-to-Ar ratio is 0) is certainly characterized by 

100 at. % of Ta. The films deposited at 0.25 and 0.625 N2-to-Ar ratios exhibit 10 at. 

% and 25 at. % nitrogen content on the growing films, respectively. The TaN film 

deposited at 1 N2-to-Ar ratio shows a 45 at. % N content. This slight under 

stoichiometry can be ascribed to the high flux of metal Ta and Ar ions commonly 

observed in MPPMS plasmas which can be responsible for a preferential re-

sputtering effect of light nitrogen instead of tantalum [27]. Large momentum transfer 

from Ta+ and Ar+ ions to the atoms on the film surface is expected during MPPMS 

discharges, contributing to the lightweight N atoms deficiency with respect to heavier 

Ta atoms. 

 

Fig 4. 3: Chemical composition of TaNx films deposited at different N2-to-Ar ratios 



Chapter 4 General evaluation of TaNx film properties deposited by MPPMS 
 

 

 

P a g e   151 | 286 

 

The crystal phases present in the TaNx coatings where characterized by means of 2θ 

XRD scans performed at glancing angle incidence. The XRD scans are plotted in 

Fig. 4.4. Tantalum metallic films exhibit two crystalline phases, Alpha-Tantalum (α-

Ta), which is body-centered cubic and Beta-Tantalum (β-Ta), which is metastable-

tetragonal [1]. α-Ta is generally preferred for wear and corrosion protection 

applications. The spectrum of Ta film deposited during this study exhibits a unique 

peak at 38.4 º, which corresponds to the (110) α-Ta reflection. There are two different 

factors promoting the growth of α-Ta phase in this study, i.e. the application of 

external substrate heating and the utilization of MPPMS deposition technology. 

Substrate temperature reached 350 ºC during TaNx deposition processes.  Myers et 

al. [1] and Knepper et al. [28] have reported that the β to α phase transformation 

occurs at temperatures around 365 ºC and 350 ºC, respectively. The high ion 

bombardment and bias voltage application during TaNx MPPMS discharge induce a 

greater rise in substrate temperature, promoting better adatom mobility onto the 

growing films. In fact, Jin et al. [17] and J. Alami et al. [29] have demonstrated the 

possibility to control the α-Ta phase formation by ion energy modification using 

different bias voltage values.   
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Fig 4. 4: XRD patterns of the TaNx films deposited at different N2-to-Ar ratios 

 

The TaNx films grown at different N2-to-Ar ratio give rise to many different crystal 

phases [5, 7, and 10]. Fig. 4.4 indicates the presence of multiple phases in all TaN 

samples deposited in N2/Ar gas mixture. The TaN_0.25 film shows a prominent broad 

peak between 36.5 º-38.5 º diffraction angles. Contributions from sub-stoichiometric 

TaN phases, such as α-Ta (110), cubic TaN0.1 (110) and hexagonal Ta2N (002), are 

observed in its spectrum. The TaN_0.625 film exhibits two prominent peaks at 

diffraction angles 35 º and 41 º. A strong cubic TaN phase is observed through the 

(111) and (200) reflections. Contribution from hexagonal TaN0.8 and orthorhombic 

Ta4N phases is also considered due to the presence of (100) and (111) reflections, 

respectively. TaN_1 film spectrum exhibits predominant contribution from cubic TaN 

and a smaller contribution from hexagonal Ta3N5. The predominant peak at 41 º 

corresponds to TaN (200) reflection and Ta3N5 crystal phase while the smaller peak 

at 35 º includes the TaN (111) reflection. 
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The microstructure of the films was analyzed by SEM, since the corrosion 

characteristics of thin films are highly dependent on the microstructure. The 

development of columnar-free and low-defect film structure has a positive effect on 

corrosion resistance [30]. Fig. 4.5 shows the cross-sectional and surface topography 

SEM micrographs of TaNx films.  

The pure metallic Ta film (Fig 4.5.a) exhibits a columnar structure with a typical 

signature of competitive growth and a rough surface. Ta surface morphology (Fig 

4.5.e) correlates well with the crystallographic predominant α-Ta phase surface 

appearance, which is characterized by dense regularly spaced grain facets [31].  The 

addition of nitrogen into the gas mixture during TaNx deposition processes leads to 

radical changes in coating microstructure. The TaN film deposited at 0.25 N2-to-Ar 

ratio (Fig 4.5.b and 4.5.f), corresponding to 10 at. % N in the film, exhibits a 

completely dense and featureless microstructure, with no signs of columnar growth 

and granular surface topography. At 0.625 N2-to-Ar ratios, similar dense 

microstructures are developed although some indications of columnar growth start to 

appear. Increasing nitrogen flow, brings back the signature of a columnar growth that 

can be appreciated in the TaN film deposited at 1 N2-to-Ar ratio (45 at. % N in the 

film). The decrease in the peak current value during this deposition process (see 

Table 4.3) also promotes the development of columnar structure since it is indicative 

of lower amount of ions capable to induce densification of the films. In fact, surface 

topography of TaN_0.625 (Fig 4.5.g) and TaN_1 (Fig 4.5.h) exhibits a “cauliflower-

shaped” microstructure, commonly related to columnar structure films [32]. 

Therefore, feature-free microstructure development is not only dependent on the 

application of MPPMS technique characterized by highly ionized plasma. For TaNx 

films deposited in this study the suppression of columnar growth is restricted to the 

films containing 10% of nitrogen in the film.  The influence of the microstructure on 

the corrosion resistance of these films will be further analyzed in section 3.2.3. 
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Fig 4. 5: Cross sectional and surface SEM micrographs of a), e) Ta; b), f) TaN_0.25; c), g) TaN_0.625 and d), 

h) TaN_1, respectively 
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3.2.3. Hardness and roughness  
 

Fig. 4.6 shows the hardness and roughness values of TaNx films deposited at 

different N2-to-Ar ratios. Hardness was calculated using the method of Oliver and 

Pharr [33]. The roughness measurements were performed using the Mahr 

Perthometer M2 equipment. The metallic Ta film shows hardness values of 8 GPa, 

confirming the α-Ta crystalline phase presence [1] and high roughness values of 0.5 

µm. As the nitrogen increases, the hardness also increases up to 25 GPa for the 

TaN_0.625 film, containing 25 at. % N in the film. This great hardness increase can 

be attributed to the small presence of Ta4N phase in this film which was given a 

superhardness value of 51.2 GPa by Valleti et al. [7]. Contrary, a huge decrease on 

the roughness is observed when nitrogen is added to TaNx films deposition 

processes. The hardness of the films decreases significantly at N2-to-Ar gas ratio of 

1, due to the disappearance of Ta4N phase and the formation of softer Ta3N5 phase 

[17].  

 

Fig 4. 6: Hardness and roughness values for TaNx films deposited at different N2-to-Ar ratios. 
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3.2.4. Electrochemical behavior of TaNx films  

 

3.2.4.1 Electrochemical impedance spectroscopy (EIS) 
 

The corrosion performance was analyzed using a potentiostat PGSTAT 30N Autolab-

Metrohm connected to a three-electrode electrochemical cell already described in 

Chapter 3 (Fig 3.7). The reference electrode was an Ag/AgCl (KCl 3 M) with a 

potential of 0.207 V versus standard hydrogen electrode. Tests were carried out at 

room temperature and under aerated conditions. 

Electrochemical impedance spectroscopy (EIS) analysis was performed on coated 

AISI 316L substrates to investigate the electrochemical response of TaNx films in 

NaCl 0.06 M media. A sinusoidal AC perturbation of 10 mV was applied to the 

electrode at a frequency range from 100 kHz to 10 mHz. EIS measurements were 

registered at Open Circuit Potential (Eoc) after 4 h and 168 h of immersion time to 

assess the corrosion resistance evolution with time for each TaNx coating. The 

interpretation of the Impedance experimental data was based on the equivalent 

circuit modeling using Autolab software. 

Nyquist diagrams registered are plotted in Fig. 4.7 for AISI 316L substrate and TaNx 

films. 
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Fig 4. 7: Nyquist diagrams obtained for AISI 316L and TaNx films after EIS measurements at 4 h and 168 h of 

immersion 



Chapter 4 General evaluation of TaNx film properties deposited by MPPMS 
 

 

 

P a g e   158 | 286 

 

The Nyquist diagrams at 4 h and 168 h immersion times (Fig 4.7.a and Fig 4.7.b, 

respectively) presented depressed semi-circles which are characteristic of a 

capacitive behavior. The semi-circles are incomplete for both immersion times 

registered due to high impedance values exhibited by AISI 316L and TaNx films. The 

semi-circle diameters registered at 168 h are higher than those obtained at 4 h, 

indicating an increase in corrosion resistance with immersion time. This behavior is 

observed for the AISI 316L and all TaNx films. This corrosion resistance improvement 

with time is due to the formation of a protective oxide layer on the top of the surfaces 

that occurs spontaneously when metallic passive materials are exposed to oxygen. 

The stability of the oxide layer is higher after 168 h time exposure, demonstrating the 

passive behavior of TaNx films.  The Ta and TaN_0.25 films exhibit the highest 

corrosion resistance values. This difference will be quantified in the following 

paragraphs by equivalent circuit (EC) analysis [34]. The Nyquist plot of TaN_1 cannot 

be clearly observed since higher scale is needed to plot remaining TaNx coatings 

electrochemical response.  

Fig. 4.8 shows the Bode plots diagrams obtained at 4 h and 168 h of immersion time 

in NaCl 0.06 M. Bode plots bring additional information about the electrochemical 

properties of TaNx films and in these diagrams the corrosion characteristics of the 

TaNx films are readily distinguished from each other.  
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Fig 4. 8: Bode plots obtained for AISI 316L and TaNx coatings from impedance measurements after 4 h and 

168 h of immersion 

 

Bode plots are used to characterize the impedance of the 

electrolyte/coating/substrate system. The logarithmic impedance modulus |Z| and 

phase angle vs logarithmic frequency are represented. The point where log |Z| curve 

crosses the Y-axis is related to the polarization resistance of the coating. In the phase 

angle vs log f diagram, if the phase angle is equal to -90 º, the coating behaves like 

an ideal capacitor which implies the presence of a stable dielectric film.  If the phase 

angle equals 0 º, the coating behaves like a resistor. The broader the range of 

frequencies is in which the phase angle remains around -90 º, the more stable the 

material is [35, 36]. The appearance of two maximums or time constants in the phase 

angle diagram reveals the existence of substrate contribution through the pores and 

defects of the coating. At medium frequencies, the electric current is distributed over 
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the entire surface of the coated area, presenting the behavior of TaNx coating. At low 

frequencies, the electric current is concentrated at the defects of the coating, 

exhibiting the response of the substrate along the pores [34].  

EIS spectrum for SS316L shows a unique time constant in phase angle vs log f 

diagram, indicating the passive behavior of the bare substrate. SS316L is best fitted 

using Randles Circuit shown in Fig 4.9a and already described in Chapter 3. 

EIS spectrum for Ta, TaN_0.25 and TaN_0.625 shows one time constant in phase 

angle vs log f diagram. The absence of substrate contribution in the electrochemical 

response of these systems indicates a low defect microstructure. Therefore, the 

equivalent circuit used to model electrochemical behavior of these films is the Circuit 

1, Randles circuit. When Randles Circuit is applied to fit electrochemical behavior of 

a coating, it indicates that the coating is extremely dense allowing the complete 

isolation of bare metal with the corrosive medium It is important to mention that the 

constant phase element (CPE) and resistance (R) have different meanings when 

Randles is applied to an uncoated metal or to a dense coating as shown in Fig 4.9.  
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Fig 4. 9: Randles equivalent circuit used for fitting the EIS experimental data obtained for a) AISI 316L and b) 

Ta, TaN_0.25 and TaN_0.625 

TaN_1 spectrum exhibits two time constants which is ascribed to the presence of 

two-electrochemical interfaces in the system i) electrolyte/coating interface and ii) 

electrolyte/substrate interface. TaN_1 presents higher pore/defect density than the 

other coatings. The TaN_1 coating is fitted by the equivalent circuit shown in Fig. 

4.10, corresponding to Circuit 2 already described in Chapter 3.  

a) 

b) 
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Fig 4. 10: Equivalent circuit used for fitting the EIS experimental data obtained for TaN_1 film 

 

As it is revealed in Fig. 4.8., this coating exhibits two time constants in the phase 

angle vs. log f curves, suggesting the presence of two electrochemical interfaces 

simulated by two pairs of CPE/R elements combined in parallel. When this equivalent 

circuit is used to model a coating, it indicates that the coating is porous and it cannot 

prevent the electrolyte penetration towards the metal substrate. The electrolyte 

penetrates through pores and pinholes of the coating and makes contact with the 

metallic substrate [31, 37].  

Experimental parameters obtained after fitting are displayed in Table 4.4. AISI 316L 

substrate exhibits similar behavior at both registered immersion times, showing 

elevated corrosion resistances (10 MΩ cm2)  and rather capacitive behavior 

represented by a shift near to -90 º phase angles in Bode plot (Fig 4.8.), low Y0 values 

and n values between 0.88-0.91 at 4 h and 168 h, respectively. The high corrosion 

resistance of SS316L is due to the formation of a protective Cr2O3 stable oxide on 

the top of its surface [38].  
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Rs   
(Ω) 

Rct           

(MΩ cm2) 
Y0-CPEdl 

(µF cm-2) 
n    

Rp          

(MΩ cm2) 

AISI 316L 
4h 40.40 11.70 15.10 0.88    11.70 

168h 41.10 10.80 10.50 0.91    10.80 

  
Rs  
(Ω) 

Rc           
(MΩ cm2) 

Y0-CPEc 
(µF cm-2) 

n    
Rp          

(MΩ cm2) 

Ta 
4h 57.28 5.32 12.40 0.96    5.32 

168h 16.37 22.90 8.04 0.97    22.90 

TaN_0.25 
4h 61.54 4.04 10.40 0.96    4.04 

168h 65.90 34.20 7.06 0.97    34.20 

TaN_0.625 
4h 40.12 1.21 27.50 0.95    1.21 

168h 44.52 18.90 13.00 0.96    18.90 

  
Rs  
(Ω) 

Rpore          

(MΩ cm2) 
Y0-CPEc 
(µF cm-2) 

n 
Rct       

(MΩ cm2) 
Y0-CPEdl 
(µF cm-2) 

n 
Rp           

(MΩ cm2) 

TaN_1 
4h 20.30 2.9x10-3 87.90 0.89 0.55 87.00 0.76 0.55 

168h 8.99 2.1x10-3 26.90 0.80 1.03 38.00 0.69 1.03 

Table 4. 4: EIS data of AISI 316L and TaNx coatings obtained by equivalent circuit modelling at different 
immersion times 

All TaNx coatings exhibit lower polarization resistances than the bare substrate after 

4 h of immersion. However, Ta, TaN_0.25 and TaN_0.625 coatings greatly increase 

their polarization resistances (18-32 MΩ cm2) after 168 h showing better resistances 

than the uncoated AISI 316L. The low values of Y0-CPEc element as well as n values 

very close to 1 are indicative of almost perfect capacitors. The reason for this 

behavior is the formation of an extremely stable tantalum pentoxide (Ta2O5) 

protective film on the top of their surfaces [39]. The lower polarization resistance of 

the films at 4 h may indicate slower formation of this tantalum oxide compared to 

Cr2O3 formation on the SS316L substrate surface. In fact, these TaNx coatings exhibit 

much better capacitive behavior after 168 h of immersion than the substrate. The 

high capacitive behavior of TaNx coatings is represented by a single maximum at -

90 º for all medium-low frequencies range. Among them, the broadest range of 

frequencies where phase angle remains at -90 º is observed for Ta coating, 

suggesting higher chemical stability, which is in accordance with the corrosion 
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response expected for this material in NaCl [4]. Nevertheless, the highest polarization 

resistance value is obtained for TaN_0.25 film as shown in Table 4.4. This fact is 

surprising, since such a high corrosion protection is devoted to the tantalum metal 

(Ta) itself and better protection could be expected for Ta coating. The film 

microstructure analysis in Fig. 4.5 reveals a columnar-free microstructure and flat 

surface for TaN_0.25. The suppression of columnar growth in this film promotes 

longer prevention against corrosive medium penetration towards the substrate. The 

lowest roughness observed for TaN_0.25 coating leads to lower area exposure to 

corrosive media which decreases corrosion degradation phenomena. The high 

amount of tantalum (90 at. %) in the nitride film and the presence of corrosion-

resistant α-Ta phase further enhance TaN_0.25 corrosion resistance. It is 

demonstrated that besides electrochemical characteristics of the coating material 

itself, the microstructure of the film plays an important role on the final corrosion 

resistance of a film. The TaN_1 film is the only one showing worse performance than 

the uncoated AISI 316L at both immersion times registered. Contribution from the 

substrate is distinguished from Bode plots. The high content of nitrogen in the film 

(45 at. %) is diminishing its polarization resistance compared to the films containing 

lower amount of nitrogen and higher of tantalum, i.e. Ta, TaN_0.25 and TaN_0.625. 

In fact, the polarization resistance value in the range of the MΩ cm-2 is due to the 

passive behavior of the SS316L substrate itself, not due to coating resistance, since 

Rpore is negligible compared with Rct. The highly corrosion resistance α-Ta phase is 

not detected on TaN_1 XRD spectrum (Fig. 4.4.) and the presence of high nitrogen 

content Ta3N5 may be detrimental in terms of corrosion protection. The exhibition of 

high corrosion resistance and protective character in NaCl 0.06 M is restricted to the 

TaNx films containing at least 75 at. % Ta in the film in this study. The suppression 

of columnar growth and the development of smooth surface on TaN_0.25 positively 

influences the corrosion resistance of this film. 
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3.2.4.2 Potentiodynamic polarization 
 

 Potentiodynamic polarization was performed on TaNx samples after 192 h 

immersion time in NaCl 0.06 M to accurately evaluate the passive behavior of TaNx 

films. The potential was varied from Eoc – 0.4 V to Eoc + 1.4 V with a scan rate of 0.5 

mV/s. Corrosion potential, corrosion current and polarization resistance values were 

obtained by means of Tafel’s extrapolation using Autolab software. The porosity of 

the coatings was also calculated from the experimental results obtained after the 

tests [40, 41].  

The corrosion currents and polarization resistances were calculated from Tafel 

analysis of the polarization curves (Fig 4.10.) and are displayed in Table 4.5.  

 

Fig 4. 11: Current vs applied potential for AISI 316L and TaNx films in NaCl 0.06 M after 192 h of immersion 
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 ECORR (V) ICORR (ηA cm-2) RP (МΩ cm2) 

AISI 316L 0.027 5.40 6.10 

Ta -0.14 0.55 65.61 

TaN_0.25 -0.21 0.28 103.53 

TaN_0.625 -0.05 0.90 55.50 

TaN_1 -0.17 32.10 0.81 

Table 4. 5: Tafel analysis from polarization curve data for TaNx films 

The corrosion current values for Ta, TaN_0.25 and TaN_0.625 are one order of 

magnitude lower than the current values for the bare substrate. They exhibit 

corrosion resistance values one order of magnitude higher than the substrate, 

supporting the better performance of these coatings already reported after EIS 

analysis and quantified in table 4.2. The analysis does not show big differences 

between these three coatings, which confirms that passive and stable tantalum oxide 

barrier film [5] is formed on the top of all these coating surfaces. It is demonstrated 

that tantalum oxide owns better chemical stability than Cr2O3-based oxide film grown 

on the top of the AISI 316L. This analysis evidences that TaN_0.25 presents the best 

corrosion resistance as indicated by the lowest corrosion current (0.28 nA cm-2) and 

the highest corrosion resistance values (103.53 МΩ cm2) shown in table 4.3. This 

behavior is in accordance with the results obtained during EIS analysis, confirming 

the selection of TaN_0.25 coating as the best candidate to protect AISI 316L against 

corrosive attack in NaCl. Contrary, the TaN_1 film exhibits corrosion currents and 

corrosion resistance values worse than the bare substrate indicating that the barrier 

oxide layer cannot block the corrosive medium penetration towards the substrate. 

The high nitrogen content (Fig. 4.3.) on this film may induce lower chemical stability 

surface barrier oxynitride layer formation instead of greatly protective tantalum oxide. 

The composition and crystal phases of the TaNx coatings determines the type of 



Chapter 4 General evaluation of TaNx film properties deposited by MPPMS 
 

 

 

P a g e   167 | 286 

 

barrier oxide surface layer that will grow which eventually protects or not the coating 

from corrosion phenomena.    

The pitting potential represents the critical potential at which pits start to grow on the 

protective oxide layer when transpassive region is reached at anodic potentials 

leading to a complete removal of the oxide layer and exposing the fresh metal to 

corrosive medium. The pitting potential is detected at +0.45 V for AISI 316L substrate 

[42]. At this potential, an abrupt increase of the corrosion current is observed in 

polarization diagram (Fig 4.11.), indicating the fast dissolution of the passive film. No 

pitting corrosion is detected for TaNx films in Fig 4.11, and no pits were observed on 

TaNx sample surfaces when removed from the electrochemical cell after polarization. 

The TaNx films reach a passive state at potentials between 0.5 – 0.75 V, which is an 

indication of tantalum barrier oxide layer growth and do not undergo any change up 

to 1.5 V. They are remarkably chemically stable, showing corrosion currents icorr < 1 

µA cm-2 during the whole polarization test. The corrosion current showed by TaN_1 

is higher than currents exhibited by the other coatings, confirming again the worst 

corrosion resistance of this film compared with other TaNx films.  

Porosity is a key feature influencing corrosion response of the coatings, since high 

pore and defect microstructure film is prone to corrosion. Porosity can be estimated 

from electrochemical values obtained after polarization curves analysis. Matthews et 

al. [40] established an empirical equation to estimate the porosity (P) of the coating:  

𝑃 =
𝑅𝑝𝑚 (𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒)

𝑅𝑝(𝑐𝑜𝑎𝑡𝑖𝑛𝑔)
× 10

−|
∆𝐸𝑐𝑜𝑟𝑟

𝛽𝑎
⁄ |

               [4.1] 

where P is the total coating porosity, Rpm the polarization resistance of the bare 

substrate, Rp the polarization resistance of the coating, ΔEcorr the difference of 

corrosion potential between coating and substrate, and βa the anodic Tafel slope of 

the bare substrate. Experimental parameters used to calculate porosity for each TaNx 

coating are shown in Table 4.6. 
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Rpm           

(MΩ cm2) 
Rp              

(MΩ cm2) 
Rpm/Rp 

∆Ecorr      

(mV) 
βa           

(mV) 
P 

Ta 6.09 65.61 9.2 E-02 168 157.85 8.0E-03 

TaN_0.25 6.09 103.53 5.8 E-02 246 157.85 1.6E-03 

TaN_0.625 6.09 55.50 1.1 E-01 73 157.85 3.7E-02 

TaN_1 6.09 0.81 7.5 E+00 199 157.85 4.1E-01 

Table 4. 6: Experimental data for porosity calculation using equation [4.2] 

The porosity and polarization resistance values of TaNx coatings are plotted in Fig 

4.11. The diagram reveals a significant correlation between these two parameters 

illustrating that polarization resistance of the TaNx films is inversely proportional to 

the estimated porosity. The lowest porosity is observed for TaN_0.25 coating which 

indicates that thin films characterized by columnar-free microstructure lead to defect 

and pore density reduction. Pore and defect density is directly related to the peak 

current density developed during MPPMS discharge (Table 4.3). Higher peak current 

density implies higher metal ion content during the discharge. Larger number of ions 

increases the surface adatom mobility into the growing film surface. This effective 

movement will fill the voids, create more nucleation sites and stop the columnar 

growth, thereby increasing the density of the films and reducing the porosity.  
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Fig 4. 12: Polarization resistance and porosity of AISI 316L and TaNx films deposited at different N2-to-Ar 

ratios 

 

4. Conclusions  
 

Highly corrosion-resistant TaNx films have been obtained by MPPMS technique after 

an appropriate selection of optimized MPPMS pulse shape. The composition, 

microstructure, surface topography, hardness and corrosion resistance of TaNx films 

have been correlated with N2-to-Ar ratio during film deposition processes.  Deposition 

rate mean values around 1.12 µm h-1 have been obtained, demonstrating the 

industrial viability of MPPMS technique for the deposition of high corrosion resistance 

TaNx coatings.  

The development of different crystal phases has been observed depending on the 

atomic %. of nitrogen on the films. The SEM analysis reveals a dense microstructure 

for all TaNx films. However, the suppression of columnar growth is restricted to 
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TaN_0.25 characterized by 10 at. % of nitrogen and corresponding to the higher peak 

current density during MPPMS discharge. The hardness increases from 8-25 GPa 

as nitrogen content on the film increases. The maximum value of hardness is 

observed in case of TaN_0.625 film, characterized by 25 at. % on the film and 

exhibiting the contribution from the super-hard Ta4N crystal phase. The roughness is 

much lower for TaNx films containing nitrogen compared to metallic Ta.  

Corrosion resistance of TaNx films has been analyzed in terms of N2-to-Ar ratio and 

correlated with composition, microstructure and surface topography of the films. High 

corrosion resistance values (107-108 Ω cm2) are observed for metallic Ta and low 

nitrogen content TaNx films (lower than 30 at. %). The excellent corrosion resistant 

of these films is attributable to the growth of a spontaneous, chemical inert and 

extremely stable tantalum oxide surface barrier layer. Pitting corrosion phenomena 

observed on AISI 316L at +0.45 V in NaCl 0.06 M is not detected for TaNx films. Films 

deposited at 0.25 N2-to-Ar ratio present the best corrosion performance. The 

presence of highly corrosion resistant α-Ta phase, the suppression of columnar 

growth, the lowest porosity and the extremely smooth surface topography of 

TaN_0.25 will lead to the formation of a more compact, well-adherent and impervious 

tantalum oxide surface layer that is responsible for better electrochemical behavior 

of this film. The much lower corrosion resistance observed for TaN_1 is due to the 

formation of an oxynitride tantalum surface layer derivable from an excessive amount 

of nitrogen on the film. This oxynitride Ta layer does not own the inertness and 

chemical stability exhibited by tantalum oxide.  

To summarize the corrosion resistance evaluation of different TaNx films 

accomplished in this work, the polarization resistance values obtained after EIS and 

polarization analysis are shown in Table 4.7.  
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EIS analysis 

Samples Time of immersion Polarization resistance, Rp (MΩ cm2) 

AISI 316L 
4 h 11.70 

168 h 10.80 

Ta 
4 h 5.32 

168 h 22.90 

TaN_0.25 
4 h 4.04 

168 h 34.20 

TaN_0.625 
4 h 1.21 

168 h 18.90 

TaN_1 
4 h 0.55 

168 h 1.03 

Polarization, Tafel analysis 

Samples Time of immersion Polarization resistance, Rp (MΩ cm2) 

AISI 316L 192 h 6.10 

Ta 192 h 65.61 

TaN_0.25 192 h 103.53 

TaN_0.625 192 h 55.50 

TaN_1 192 h 0.81 

Table 4. 7 Polarization resistance values obtained after electrochemical testing for AISI 316L and TaNX 
coatings in NaCl 0.06 M. 
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1. Introduction  
 

Materials used for biomedical applications are huge and can be divided in five groups 

based on their physicochemical nature: metallic materials, ceramic materials, 

polymeric materials, composite materials and biodegradable polymers [1-2].  

Currently, biomedical implants and medical devices are commonly employed to 

replace and/or restore the function of traumatized or degenerated tissues or organs, 

and thus improve the quality of life of the patients. This includes a broad range of 

medical solutions [3-4] as summarized in Table 5.1.  

Division Type of implants 

Cardiovascular implantable devices 
Stents, vascular grafts, heart valves, 
pacemakers… 

Neural devices 
Neuronal implants and prostheses, cochlear 
and retinal applications… 

Orthopaedic prostheses 
Bone fixation (plate, screw, pin) 
Artificial joints (knee, hip, shoulder, ankle…) 

Dentistry 
Orthodontic wire, Filling 
Dental implants 

Craniofacial Plates, screw… 

Table 5. 1: Biomaterials application fields and type of implants 

Around 70-80% of implants are made today of metallic biomaterials [5-6]. The high 

strength and resistance to fracture that this class of material can provide, gives 

reliable implant performance in major load-bearing situations. Coupled with a relative 

ease of fabrication of both simple and complex shapes using well-established and 

widely available fabrication techniques (e.g., casting, forging, machining).  Therefore, 

for load-bearing implants; namely, hip and knee prostheses, fracture fixation wires, 

pins, screws, plates and dental implants, metals have been used almost exclusively. 

Despite the large number of metals and alloys available to be produced in industry, 
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only a few are biocompatible and capable of relatively long-term success as an 

implant material [5, 7-8].  

To be considered suitable, metal implants should exhibit some essential features 

such as:  

1. Excellent biocompatibility 

2. High corrosion resistance 

3. Adequate mechanical properties  

4. High wear resistance  

Due to all these requirements, three main groups dominate the biomedical metal 

implant market [9]:  

 Stainless Steel SS316L (Fe-alloy with 16-18 % Cr, 10-14 % Ni, 2 % Mo, 2 % 

Mn, small amount of other elements and an extremely low carbon content to 

prevent chromium depletion, hence the suffix L [10-13]). 

 Cobalt chromium (CoCr) alloys which are classified into two types: CoCrMo 

alloys [Cr (27-30 %), Mo (5-7 %), Ni (2.5 %)] and CoNiCrMo alloys [Cr (19-21 %), 

Ni (33-37 %) and Mo (9-11 %)] [15]. 

 Titanium (Ti) and its alloys which are divided in three categories [16-21]:  

 Pure Ti (Ti-cp): The commercially available Ti-cp is classified into 4 grades 

depending on their oxygen content. Grade 4 is characterized by highest 

oxygen content (0.4 %), whereas grade 1 has the lowest (0.18 %). The 

hardness of Ti-cp increases with increasing oxygen content. 

 Ti6Al4V: Known as titanium grade 5, which is composed of Ti alloyed with 

6 % of Aluminum and 4 % of Vanadium to enhance mechanical properties 

of Ti-cp.  
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 β alloys: Al- and V-free new Ti alloys. Different alloys can be found 

including mainly the following alloying elements: Mo, Nb, Ta and Zr.  

Currently, all these metallic biomaterials are commonly used in different parts of the 

human body, being the number of implants applied for spinal, hip, knee and dental 

replacements extremely high. Increase in life expectancy has led to a considerable 

increase of aged people population and it is estimated to continuously grow in the 

following years. Consequently, the need for biomedical implants has tremendously 

increased, demanding primarily long-lasting implants capable to serve for much 

longer period of time without failure or revision surgery. Unfortunately, stainless steel, 

Co-Cr and Ti alloys have exhibited tendencies to fail after long-time exposure coming 

from different degradation mechanisms for each material [5]. Stainless steel and 

CoCr alloys have shown problems of biocompatibility once Ni, Co and Cr are 

released into the human body [22]. Ni is widely recognized as a high risk element 

due to incompatibility problems with the human body and skin related diseases [23-

24]. Numerous animal studies have demonstrated carcinogenicity due to the 

presence of Co [25]. Moreover, the higher Young modulus of these materials 

compared with bone can lead to bone atrophy and loosening of implants after some 

years of implantation [26-27]. Lately, titanium and its alloys are gaining special 

attention due to their excellent corrosion resistance, highest biocompatibility and low 

Young modulus comparable to that of bone [16, 28]. In spite of these outstanding 

features, mostly used Ti6Al4V alloy has been found to release V and Al ions due to 

corrosion after long time exposure to body environment which are connected with 

toxicity and Alzheimer’s diseases, respectively [29-30]. Ti-cp does not show 

biocompatibility problems, but it suffers for poor mechanical properties that prevent 

its use in loaded joints where high wear can occur [31]. New β- alloys have not yet 

shown biocompatibility problems and own superior mechanical properties than Ti-cp. 

Nevertheless, mechanically reliable titanium implant alloy has yet to become a reality.  
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Mechanical properties and effects of release ions due to corrosion into the human 

body of conventional materials used for biomedical implants fabrication are 

summarize in Table 5.2.  

Materials 
Young’s 
Modulus 

(GPa)   

Ultimate 
Tensile 

strength  
(MPa) 

Release 
ions 

Effects 

316L  200 500-1350 
Cr 
Ni 

Ulcers, central nervous syst. disturbances 
Affects skin – Dermatitis   

CoCr 
alloys  

240 900-1800 

Co 
Cr 
Ni 
Mo 

Anemia B, carcinogenicity 
Ulcers, central nervous syst. disturbances 
Affects skin – Dermatitis   
No toxic effect reported  

Ti-cp 115 240-550 Ti  No toxic effect  

Ti6Al4V 110 930 
Ti 
Al 
V 

No toxic effect  
Alzheimer’s disease and epileptic effects  
Toxic in the elementary state  

Ti β-alloys 40-100 350-1100 
Ti  

Nb, Mo, 
Ta, Zr 

No toxic effect  
Considered relatively safe today  

Cortical 
Bone  

15-30 70-150 - - 

Table 5. 2: Mechanical properties and toxic effects due to ion release shown by conventional biomaterial 
metallic alloys 

Therefore, there is a great concern for the development of appropriate strategies to 

increase implants service lifetime. The main drawbacks to ensure a longer lifetime 

for the implants include both the biocompatibility decrease due to the release of metal 

ions into the body [5, 32-33] and the material loss caused by tribocorrosion 

mechanism which involves the synergistic effect of wear and corrosion processes 

simultaneously [34-35]. Different strategies addressed so far to increase implants 

durability, include the development of new metallic alloys [36-39], biodegradable 

materials [40], surface modification processes [41], advanced coating deposition 

[42], micro/nano engineering methods [4]… One of the most frequent strategies to 
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enhance tribocorrosion behaviour of biomedical alloys is the deposition of corrosion-

wear resistant protective coatings [43-47].  

This chapter describes the corrosion and tribocorrosion phenomenon in current 

biomedical implants. It is well-known that surface characteristics of biomaterials have 

significant impact on their daily performance and hence, in this thesis, the deposition 

of multilayer tantalum nitride (TaN) coatings grown by MPPMS for Ti-cp 

tribocorrosion resistance enhancement is performed and evaluated. Ti and Ta are 

considered amongst the most biocompatible materials and their non-toxicity has 

been already demonstrated [48]. However, Ti-cp wear resistance and mechanical 

properties need to be improved to open up the application fields of this material to 

loaded implant components. A testing protocol for tribocorrosion evaluation of 

passivating materials is deeply described which has been used for addressingTaNx 

coatings performance as protective film for Ti-cp. Apart from the coating material 

characteristics itself, the development of multilayer structure is investigated for 

further enhancing TaN coating properties.   
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2. Corrosion and tribocorrosion phenomena in biomedical

implants 

2.1. Corrosion 

Corrosion is a great concern when metallic biomaterials are implanted in the hostile 

aggressive environment of the human body. Implants face severe corrosion 

environment including blood and body fluids that contain different constituents like 

water, sodium, chlorine, proteins, plasma, amino acids [49].  Moreover, the pH of the 

human body is generally maintained at 7.0, but this value can undergo changes from 

3.0 to 9.0 due to several causes such as accidents, infections, surgery…  

Corrosion resistance of typically used materials; i.e., stainless steel, CoCr alloys and 

Ti alloys, is attributable to the protective oxide film formed on top of their surfaces.  

Surface oxide film plays an important role as an inhibitor for the release of metallic 

ions. The composition, porosity and structure of this surface oxide film will determine 

the corrosion resistance of the biomaterial [50, 51]. The composition of the oxide 

layer depends on the biomaterial composition itself and on the reactions occurring 

between the material surface and surrounding living tissue and constituents [52].  

However, it has been thoroughly demonstrated that even advanced materials used 

today, are prone to corrosion to a certain extent after long time exposures. This 

means that protective surface oxide layer cannot completely block the release of 

metallic ions with time. 

In addition, it is necessary to remember that apart from corrosion, biomedical 

implants are subjected to different wear and fretting processes which will induce the 

rupture of the protective oxide layer [53-54]. This synergistic effect of wear and 

corrosion is known as tribocorrosion and will be deeply described in section 2.2.  
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When the surface oxide film is disrupted, corrosion rapidly starts and metal ions are 

continuously released unless the protective film is re-build. The time taken for re-

passivation is of sum importance since it conditions the quantity of released metal 

ions. Repassivation time for AISI 316L is higher than for Co-Cr alloys and much 

higher than for titanium alloys [55].  

 It is also of sum importance the type of metal ions that are exposed to living tissue, 

since adverse effects of several ions present on most common biomaterials have 

been already reported (Table 5.2).  

AISI 316L alloy owns good corrosion resistance due to the formation of a protective 

oxide layer consisting mainly of chromium and iron oxides [56]. However, it doesn’t 

retain adequate corrosion resistance for long-term biomedical implants. Studies on 

retrieved implants show that more than 90% of AISI 316L implant failures result from 

pitting and crevice corrosion attack.  

CoCr alloys have superior corrosion resistance than stainless steel. The high 

chromium content on its composition leads to the quick and spontaneous formation 

of passive Cr2O3 layer within the human body environment. Cobalt oxides are also 

present on the passive film [57]. Mo and Ni alloy elements further increase CoCr 

alloy’s corrosion resistance [58]. The main problem with CoCr alloys arises from the 

allergic reactions due to Ni and Co release.  

Compared with stainless steel and CoCr alloys, Ti alloys have higher biocompatibility 

resulting from their superior corrosion resistance. Corrosion resistance of Ti-alloys 

come from the formation of highly stable, well-adherent and dense TiO2 protective 

layer [59]. Besides, titanium does not play any known biological role into the human 

body and is non-toxic even in large doses [60]. Surface oxide grown on Ti6Al4V 

consist of TiO2 with a small amount of aluminium oxide [61]. Protective layer formed 



Chapter 5        Multilayer TaNX films for titanium implants protection against tribocorrosion 
 
   

 

P a g e   187 | 286 

 

on β-alloys surface is a mixture of TiO2 with highly stable niobium, tantalum and/or 

zirconium oxide, depending on the alloy type [62-63].  

In terms of corrosion, Ti-alloys are considered superior materials of choice for 

biomedical implants.  

 

2.2. Tribocorrosion  

Apart from corrosion itself, biomedical implants are articulating systems that operate 

under sliding, rotation, vibration and loading conditions [64]. Hence, biomedical 

implants are exposed to degradation by different wear processes. When corrosion 

and wear occur simultaneously, these two processes lead to what is commonly 

known as “tribocorrosion” [65-67]. Tribocorrosion in biomedical implants is defined 

as a degradation phenomena of biomaterial surfaces (wear, cracking, corrosion…) 

subjected to the combined action of mechanical loading (friction, abrasion, erosion) 

and corrosion attack caused by human body environment (chemical and/or 

electrochemical interactions) [64, 68].  

The coupling of the mechanical loading and chemical reactions taking place at the 

interface between the biomaterial and body fluids often results in accelerated 

degradation and implant damage than the one which would be expected by simply 

adding the degradation caused by individual processes [69-71].  

Tribocorrosion is essentially a surface process, but it can negatively affect bulk 

mechanical properties of the whole material which have considerable impact on 

implants lifetime.  

The effect of tribocorrosion on the wear rate of passivating biomaterials used for 

biomedical implants is directly related to some properties of the surface passive film. 

Tribocorrosion phenomena is illustrated in Fig 5.1. Generally, when biomaterials are 
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implanted in the human body, they tend to form a passive film (consisting mainly on 

oxides) that protect themselves from corrosion in the absence of mechanical loading. 

However, once wear processes take place, the protective film is considered to be 

snatched in the contact area, exposing the bare biomaterial alloy to corrosion attack. 

In this situation, the corrosion resistance of biomaterial is considerably reduced by 

wear. After mechanical loading removal, the biomaterial surface undergoes which is 

known as re-passivation phenomena, the re-building of passive protective film. The 

time taken for repassivation particularly in biomedical implants is crucial, since it limits 

the release of metal ions to the human body. Certain constituents of biomaterials (Ni, 

Co, Al, V…) have been found toxic and high ion release can cause adverse tissue 

reaction and loss of biocompatibility of implant material. Corrosion products 

generated during wear and repassivation processes are usually hard oxide particles 

that promote abrasive wear on the contact area. Thus, tribological resistance of the 

biomaterial can be diminished due to three-body wear mechanism induced by 

corrosion products.  

It is hence demonstrated that friction and wear affect corrosion resistance of 

biomaterials and alternatively, corrosion enhance wear degradation of implants. 

Corrosion and wear are widely studied modes of degradation of materials. However, 

in the majority of real life applications two degradation mechanisms take part at the 

same time and cannot be evaluated separately, since one directly affects the other.  

Particularly in biomedical implants, the analysis and control of synergistic effect of 

corrosion and wear is of sum importance, since the implant damage induced by 

tribocorrosion involves the metallic ion release to the human body which has been 

proven to produce important health problems [5, 48, and 51]. Therefore, a dedicated 

testing protocol for tribocorrosion evaluation is crucial.  
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Fig 5. 1: Schematic representation of tribocorrosion phenomena, illustrating corrosion accelerated by 

friction and wear and abrasion accelerated by corrosion products 
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3. Protection of Ti-cp by multilayer TaN films   

3.1. Multilayer TaN film deposition by MPPMS  

TaNx films were deposited by MPPMS in MIDAS 450 sputtering system. The TaNx 

films were deposited on Ti-cp (grade 2) disks of 24mm in diameter and silicon wafers. 

Prior to deposition, the substrates were submitted to a cleaning procedure already 

described in Chapter 3. 

The multilayer structure development approach used in this thesis is new and relies 

on the possibilities offered by the SOLO MPPMS plasma generator. In general, a 

multilayer film is made from two or more heterogeneous phase materials that are 

arranged in a laminated structure with an optimized modulation period. In this thesis, 

the multilayer structure is made from a unique material, TaN, that is composed of 

nanolayers with different composition, hardness and crystal phases.  

The MPPMS generator offers the possibility to develop structurally laminated 

multilayer films by alternately switch between different pulse shapes in the same 

target within one overall process [72]. This mode of operation has been defined by j. 

Lin and co-workers as multi pulse MPPMS technique [73]. Each pulse is applied to 

the target for a certain duration (t) which mainly determines the thickness of each 

nanolayer and the bilayer period of the multilayer film.  The application of different 

pulse shapes leads to the development of different plasma discharge characteristics 

defined by distinct peak power (Pp), peak current (Ip) and peak voltage (Vp) values. It 

is well-known that plasma features strongly influence the properties of the growing 

films. Hence, the application of different pulse shapes along the deposition process 

creates alternate TaN nanolayers featured by different microstructures and 

properties leading to structurally laminated TaN multilayer films. Multilayer films 

commonly exhibit better wear and corrosion resistance than monolayer ones. The 
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presence of a higher number of interfaces preventing the movement of dislocations 

and the propagation of micro-cracks increases wear resistance [74]. The re-

nucleation process present in multilayer structures reduces the amount of pores, 

thereby resulting in better corrosion resistance compared to monolayer films [75].  

In the current study, three different TaN systems have been analyzed. Two different 

multilayer TaN films, characterized by different bilayer periods deposited by multi 

pulse MPPMS using two pulse shapes with different pulse repeat durations and a 

monolayer TaN film deposited by a single MPPMS pulse. 

The selected process parameters for TaNx films deposition were already optimized 

in the experimental work carried out in Chapter 4, and those applied for the deposition 

of columnar-free and most corrosion-resistant TaN monolayer film are used in this 

study, corresponding to TaN_0.25 coating. The working pressure was 0.6 Pa with a 

constant Ar-to-N2 ratio of 0.25.  

For all coatings, a thin Ta interlayer of 100 nm was applied for enhancing the 

adhesion. The average power was set to 4kW during all TaN deposition processes. 

Two fold substrate rotation and 350 ºC substrate temperature were used during 

depositions, while a bias potential of −50 V was applied on the substrate. The 

deposition time was established at 125 min.  

The voltage-current characteristics of the two pulse shapes (P996 and P200, already 

described in Chapter 4) employed for TaNx multilayer depositions are shown in Fig. 

5.2. The pulse 996 was also utilized for the deposition of TaN monolayer film. The 

pulse length, frequency, discharge parameters and deposition rate for each pulse 

shape are summarized in Table 5.3. Two pulses with high variation on peak current 

density were selected to obtained nanolayers with different hardness, density and 

microstructure. 
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Fig 5. 2: Voltage–current characteristics of different pulse shapes applied for TaN film deposition 

 

 
Pulse 

length (μs) 
Frequency 

(Hz) 
Peak target 
power (kW) 

Peak 
target 

voltage (V) 

Peak 
target 

current (A) 

Deposition 
rate 

(nm/min) 

P996 1500 113 86.2 866.5 99.4 18.48 

P200 1000 286 27.1 591.7 45.9 21.51 

Table 5. 3: Pulse length, frequency and resulting peak power, voltage and current values during each pulse 
shape application 

The time during which a given pulse shape was applied, i.e pulse repeat duration (t), 

was 5 and 2 minutes for TaN multilayer_1 and TaN multilayer_2, respectively, which 

leads to different bilayer periods for each coating as shown in Table 5.4.   
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Film 

structure 
Pulse repeat 
duration (s) 

Thickness 
(μm) 

Bilayer 
period (nm) 

Hardness  
(GPa) 

TaN monolayer Monolayer - 2.311 - 16.7 

TaN multilayer_1 Multilayer 300 2.44 ~200 15.81 

TaN multilayer_2 Multilayer 120 2.5 ~80 15.27 

Table 5. 4: Pulse repeat duration, bilayer period and hardness of each TaN film 

 

3.2. Simulated body fluid environment and testing protocol for 

tribocorrosion  

The natural physiological environment contains not only inorganic species but also 

organic molecules such as serum proteins [76]. Thus, a Phosphate Buffered Solution 

(0.14M NaCl, 1mM KH2PO4, 3 mM KCl, 10 mM Na2HPO4) plus 1 gram of albumin 

(PBS+albumin) was chosen as experimental electrolyte for this study in order to 

accurately reproduce the human body fluid environment [77, 78]. Corrosion and 

tribocorrosion tests were performed on this electrolyte.  

Tribocorrosion tests were done by using a uni-directional rotatory tribometer under 

ball-on-disc conFiguration. The electrochemical cell was placed on a rotatory plate in 

order to perform the electrochemical measurements during the tribological process 

as shown in Fig 5.3.  
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Fig 5. 3: Experimental set-up for tribocorrosion analysis used in this study 

 

For analyzing tribocorrosion performance of Ti-cp and TaN coated samples, a new 

protocol introduced by N. Diomidis, J.-P. Celis, P. Ponthiaux and F. Wenger [79-81] 

and specifically designed for testing passivating materials (metallic biomaterials are 

included in this classification) was employed. The testing procedure is divided into 

four experiments and allows the quantification of the total material loss (Wtr), the 

material loss due to mechanical loading in the presence of a corrosive environment 

(Wm
act) and the material loss due to corrosion under wear processes (Wc

act). Four 

experiments and their purpose are described hereafter.  

Experiment 1: Electrochemical impedance spectroscopy (EIS) measurement at open 

circuit potential (Eoc) without any sliding 

This experiment is performed to gather information of the surface characteristics of 

the passive film of the biomaterial in the absence of sliding. For that purpose, the 

tested sample is immersed in the electrolyte and open circuit potential is monitored 

until it reaches a steady value, which is an indicative of passivation of the surface. 

After achieving a long-term stable Eoc, the polarization resistance of the passive 

material, Rp, is measured by EIS. From this measurement, the specific polarization 

of passive material, rpass, can be calculated using the total surface area A0, as:  
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𝑟𝑝𝑎𝑠𝑠 = 𝑅𝑝𝐴0              [5.1] 

The corrosion current density of the material covered by a passive surface film, ipass, 

can be calculated as follows:  

𝑖𝑝𝑎𝑠𝑠 =
𝐵

𝑟𝑝𝑎𝑠𝑠
              [5.2] 

with B a constant. B depends on the nature of the material and the surrounding 

environment and normally varies between 13 and 35 mV for metallic biomaterials. 

This current ipass corresponds to the dissolution current of the biomaterial through the 

passive film in a steady-state.  

Experiment 2: Evolution of open circuit potential in the electrolyte before, during and 

after sliding generating an active material surface  

This experiment is performed in order to get information about passive-active 

characteristics of the material in the rubbed area. A wear test is carried out while Eoc 

is recorded before, during and after the test. The Eoc before sliding represents the 

passive state of the surface. The Es
oc value recorded during sliding corresponds to a 

mixed potential from the galvanic coupling of two material surface features; namely, 

the active material inside the wear track (Atr) and the passive material outside the 

wear track (A0-Atr). Assuming that during continuous sliding the wear track is always 

in an active state and no-repassivation phenomena occurs (tlat, latency time, in 

tribological tests known as the time between two successive contact events, is very 

small). Hence, wear track area Atr and active area Aact are equal and the remaining 

area (A0-Aact) can be considered in a passive state as shown in Fig 5.4. Summarizing,  

𝐴𝑎𝑐𝑡 = 𝐴𝑡𝑟               [5.3] 

𝐴𝑝𝑎𝑠𝑠 = 𝐴0 − 𝐴𝑡𝑟              [5.4] 
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Fig 5. 4: Schematic view of a circular tested sample before sliding (A0) and during sliding showing the wear 

track 

The Eoc after sliding represents the surface characteristics after mechanical loading 

removal and gives information about the re-passivated surface of the tested material. 

If Eoc before and after sliding is equal, it means that the repassivated surface film is 

identical to the initial passive surface.  

Experiment 3: Electrochemical impedance spectroscopy under sliding at a fixed 

potential corresponding to Es
oc 

This experiment allows the determination of the corrosion rate of depassivated 

material. For that purpose, a second wear test is carried out under a rotation period 

(trot) much smaller to the time needed for the passive film to re-grow (treact). Generally, 

trot is taken as: 

𝑡𝑟𝑜𝑡 =
𝑡𝑟𝑒𝑎𝑐𝑡

10000
              [5.5] 

Before the wear test starts, the sample is polarized at Es
oc. Then, during sliding, EIS 

measurements are performed to obtain the polarization resistance of the sample 

surface during sliding, Rps. Rps includes two different polarization resistances; i.e. Ract 
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related to the active area of Aact (resistance of the material inside the wear track) and 

Rpass related to the remaining unworn area A0-Aact:  

1

𝑅𝑝𝑠
=

1

𝑅𝑎𝑐𝑡
+

1

𝑅𝑝𝑎𝑠𝑠
             [5.6] 

where,  

𝑅𝑎𝑐𝑡 =
𝑟𝑎𝑐𝑡

𝐴𝑎𝑐𝑡
               [5.7] 

𝑅𝑝𝑎𝑠𝑠 =
𝑟𝑝𝑎𝑠𝑠

(𝐴0−𝐴𝑎𝑐𝑡)
                 [5.8] 

Since, rpass is known from Equation 5.1, it is possible to calculate specific polarization 

resistance of the active surface, ract, and corrosion current density of the active 

material, iact, using the following equations:  

𝑟𝑎𝑐𝑡 =
𝐴𝑡𝑟𝑅𝑝𝑠𝑟𝑝𝑎𝑠𝑠

𝑟𝑝𝑎𝑠𝑠−𝑅𝑝𝑠(𝐴0−𝐴𝑡𝑟) 
           [5.9]  

𝑖𝑎𝑐𝑡 =
𝐵

𝑟𝑎𝑐𝑡
            [5.10] 

   

During this test, the coefficient of friction is also monitored.  

Experiment 4: Determination of sliding wear track area and profile after testing in the 

electrolyte 

This last experiment enables the quantification of the material loss due to 

tribocorrosion phenomena.  

The sliding track area (Atr) can be measured using a profilometer, an optical 

microscope and/or a scanning electron microscope. The sliding track area (Atr) is 

equal to the active area (Aact), taking into account that there is no time for 

repassivation in this approach. Atr is obtained following the next equation:  
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𝐴𝑡𝑟 = 𝐴𝑎𝑐𝑡 = 𝑎 × 𝐿                              [5.11] 

The total material loss (Wtr) for uni-directional sliding tests can be estimated from the 

cross section area and the length of the wear track using the expression:  

𝑊𝑡𝑟 = 𝑆 × 𝐿          [5.12] 

being,  

𝑆 =
𝜋𝑎𝑏

4
           [5.13] 

𝐿 = 2𝜋𝑟          [5.14] 

Values a and b are calculated for experimental measurements of the wear track and 

r is defined before tribocorrosion tests as illustrated in Fig 5.5.  

 

  

Fig 5. 5: Cross-sectional and top view of the wear track area generated during sliding 

 

For simplicity, it is supposed that total material loss due to tribocorrosion (Wtr) is the 

sum of material loss due to mechanical loading in the presence of a corrosive 

environment (Wm
act) and the material loss due to corrosion under wear processes 

(Wc
act) as stated in the following equation:  

𝑊𝑡𝑟 = 𝑊𝑎𝑐𝑡
𝑚 + 𝑊𝑎𝑐𝑡

𝑐         [5.15] 
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This approach does not take into account the material loss due to pure 

electrochemical or mechanical degradation.  

The electrochemical contribution to the total material loss can be calculated from EIS 

data using the following equation:  

𝑊𝑎𝑐𝑡
𝑐 = 𝑖𝑎𝑐𝑡𝐴𝑎𝑐𝑡

𝑀

𝑛𝐹𝑑
𝑁𝑡𝑙𝑎𝑡       [5.16]  

where iact is the activation current density due to corrosion, Aact is active area of the 

wear track, N the number of cycles performed, tlat the period between two successive 

cycles, F is the Faraday constant (96485 A/mol), d is the density, M the molecular 

weight of the material and n the number of electrons involved in the electrochemical 

process. While iact, Aact, N and tlat are obtained from the experimental EIS 

measurements and testing conditions; d, M and n are intrinsic properties of tested 

materials.  

The mechanical contribution to the total material loss (Wm
act) is then calculated by:  

𝑊𝑎𝑐𝑡
𝑚 = 𝑊𝑡𝑟 − 𝑊𝑎𝑐𝑡

𝑐         [5.17] 

 

Particularly, the following tests and testing conditions were applied for TaNx coatings 

analysis:  

1. Open Circuit Potential measurement was performed during 1 hour of immersion. 

Mean value of the open circuit potential (Eoc) after stabilization period was calculated 

for each sample.   

2. Then, a first EIS measurement was recorded at Eoc. EIS conditions were the same 

as the ones used for corrosion tests. 

3. First sliding process (Wear test 1) was carried out under the following tribological 

conditions: 
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 Counterbody: Alumina ball  - Ø 10 mm   

 Normal load: 3 N  

 Radius track: 5 mm  

 Rotation speed: 100 rpm  

 Number of cycles: 400  

Simultaneously to wear process, the evolution of the open circuit potential was 

monitored and registered. Eoc registration starts two minutes before sliding and ends 

10 minutes after the sliding process ends. Mean value of the open circuit potential 

during sliding (Es
oc) is calculated for each sample.  

4. A second sliding process (Wear test 2) was performed under the same tribological 

conditions described above but for a total number of cycles of 2600. In this case, 

samples are polarized at Es
oc value and a second EIS measurement is performed 

under potentiostatic control during this second wear process. Friction coefficient was 

also simultaneously monitored.  

5. Determination of the total material loss due to tribocorrosion (Wtr) by calculating 

the volume of material loss in the wear track.  

 

3.3. Multilayer TaN film characterization   

3.3.1. Microstructure characterization  

The microstructure of TaN films is theoretically explained in Fig 5.6. The TaN 

monolayer film microstructure is composed of a continuous thick layer developed 

during single MPP pulse utilization. The TaN multilayer_1 film microstructure 

incorporates 25 thin nanolayers which are a consequence of different MPP pulse 
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shape application every 5 minutes as stated in Table 5.4. In the case of TaN 

multilayer_2, the number of nanolayers is higher, up to 63, due to the pulse shape 

alternation every 2 minutes. The thickness of the nanolayers is theoretically 

calculated from the deposition rate of each pulse shown in Table 5.3. 

  

 

Fig 5. 6: Schematic theoretical representation of TaN film microstructure 

 

The chemical composition of the TaN coatings was measured by GD-OES. All TaN 

film composition analysis reveal around 80 at. % of Ta and 20 at. % of N. Fig 5.7 

shows the cross-sectional SEM micrographs of the deposited TaN films. Suppression 

of columnar growth is observed for all TaN coatings. In order to get a more accurate 

analysis, TEM micrographs were taken and are shown in Fig 5.8. The breaking down 

of columnar grains and the grain refinement became more pronounced in the multi 

pulse MPP films (Fig 5.8b and 5.8c). TEM micrographs reveal completely dense 

microcrystalline structures characterized by small micro domains and without clear 

boundaries. These microstructures are promoted by the high metallic ion 

bombardment of the growing films due to highly ionized MPPMS plasma. High 

metallic ion bombardment increases the adatom mobility in the growth surface and 
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induces the densification of the coatings. Thus, MPPMS technology can prevent the 

typical long columnar grain growth with clear grain boundaries attributed to the films 

grown by conventional dcMS technique. This is known as a key parameter to ensure 

a good corrosion response of sputtered films.  

a) 

 

b) 

 

c) 

 

 

Fig 5. 7: Cross-sectional SEM micrographs of a) TaN monolayer, b) TaN multilayer_1, and c), TaN 

multilayer_2 films 
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Fig 5. 8 Cross sectional TEM micrographs a) TaN monolayer, b) TaN multilayer_1, and c), TaN multilayer_2 

films 

TEM micrographs taken with a higher magnification from selected areas in Fig. 5.8a-

5.8c are shown in Fig. 5.9a-5.9b, respectively, with their corresponding Fast Fourier 

transform (FTT) to analyse the differences between monolayer and multilayer films 

(Fig 5.9c and 5.9d). No clear multilayer structure is observed, likely due to the similar 

composition of nanolayers deposited alternatively by pulse 996 and 200, which 

hardly can give any contrast to easily detect the interfaces along the film. 

Nevertheless, the micrographs and FTTs reveal a different microstructure 

development. Both samples show nano-crystalline TaN structures with small domain 

sizes of 3-4 nm and <3nm for TaN monolayer and TaN multilayer_2 films, 

respectively. FTT pattern of TaN monolayer film shown in Fig 5.9c reveals a 

homogeneous and ordered microstructure which exhibits a diffuse spot pattern that 

matches well with a face-centered-cubic (fcc) structure and confirms the small size 

of the microdomains. The FTT pattern of TaN multilayer_2 (Fig 5.9d) evidences a 

more disordered and heterogeneous microstructure characterized by elongated 

diffraction maximums implying that crystal domains are oriented at random as 

typically observed in polycrystalline materials. The FTT image of TaN multilayer_2 

a) b) c) 
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exhibits spots that form either 90 or 120 degrees, suggesting the coexistence of 

hexagonal and cubic TaN crystal phases.   

Even though the multilayer structure is not clearly detected, the microstructure 

modification induced by the multi pulse MPPMS technique application is observed.  

In this study, a slight variation of nitrogen content is observed between TaN 

monolayer and TaN multilayer films. SEM analysis also reveals a more pronounced 

columnar growth suppression during multi pulse MPP technique depositions along 

with a tendency for developing a heterogeneous microstructure. The crystal structure 

is also modified during multilayer film deposition which will eventually influence the 

final properties of the growing films.  
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a) 

 

b) 

 

c) 

 

d) 

 

 

 

 

 

 

Fig 5. 9: Cross-sectional TEM micrographs a) TaN monolayer and b) TaN multilayer_2 films and 

corresponding FTTs for c) TaN monolayer and d)TaN multilayer_2 films at high magnification 

90 º 

Growth direction  Growth direction  

90 º 

120 º 
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3.3.2 Hardness measurements  

 
Table 5.4 shows the hardness values for TaN films deposited during different 

processes calculating using the method of Oliver and Pharr [82].  The hardness 

decreases from 16.7 GPa for TaN monolayer film deposited by pulse 1 to 15.81 and 

15.27 GPa for TaN multilayer 1 and 2 films, respectively. No significant difference 

arise from hardness data and surprisingly TaN monolayer film exhibit the highest 

hardness. It has been documented in the literature that a heterogeneous multilayer 

film, i.e. made from different materials, can exhibit improved mechanical properties 

compared to a monolayer structure film [83, 84]. In general, the hardness of 

multilayer films increases as the bilayer period decreases to an optimized value 

around 3-10 nm [85]. Contrary to the films studied in the literature, TaN multilayer 

films analyzed in this study exhibit much larger bilayer periods than the ones known 

to influence the hardness and their composition is based on a unique material. Thus, 

the general rule may not be applicable in this case. The slight decrease in hardness 

observed for TaN multilayer films may be induced by softer nanolayer grown by pulse 

2 due to the lower peak current density registered during this plasma discharge. 

Lower peak current density means lower ion bombardment towards the substrate 

which is known to reduce the hardness of the growing films [86]. 

 

3.3.3 Corrosion resistance evolution  
 

Electrochemical Impedance Spectroscopy (EIS) measurements were registered at 

open circuit potential (Eoc) after 4 h, 24 h and 168 h of immersion in the PBS+albumin 

electrolyte in order to assess the corrosion resistance evolution with time in the 

simulated body fluid for each material. A sinusoidal AC perturbation of 10 mV was 

applied to the electrode at a frequency range from 100 kHz to 10 mHz with an 
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amplitude of 10 mV. The interpretation of the Impedance experimental data was 

based on the equivalent circuit modeling using Autolab software.  All potential are 

referred to Ag/AgCl electrode (0.207 vs SHE). Fig. 5.10 shows the Bode plots for Ti-

cp and different TaN coatings.  

Ti-cp exhibited a capacitive behavior and elevated polarization resistance, both 

increasing with immersion time. This is represented by a shift to -90º phase angles 

when immersion time reaches 168 hours [87]. The enhancement of polarization 

resistance with time for Ti-cp is due to the formation of a dense and protective TiO2 

layer on the top of its surface [88].  

 

Fig 5. 10: Bode plots obtained from EIS data at different immersion times for a) Ti-cp, b)TaN monolayer, 

c)TaN multilayer_1 and d)TaN multilayer_2 

For TaN coatings, impedance diagrams show even higher capacitive behavior and 

polarization resistance values than for the bare Ti-cp. The phase angle is already -

90º for all coatings at 4 h of immersion which is an indicative of a faster oxide film 
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formation on the top of their surfaces. Such a high polarization resistance for TaN 

coatings is based on the formation of an impervious stable and firmly adherent film 

of tantalum pentoxide (Ta2O5) on the coating surface [89]. The similar behavior 

observed between TaN monolayer and TaN multilayer coatings is due to the fact that 

the topmost layer is exactly the same for all of them and it is well known that 

electrochemical response of the materials is highly dependent on surface 

characteristics.  

For Ti-cp substrate, the best fitting was obtained by the utilization of Randles 

equivalent circuit shown in Fig 5.11 at all immersion times [87]. When Randles is 

applied to model an uncoated metal, the CPE and R are defined by double layer 

capacitance and charge transfer resistance, respectively, as shown in Fig 5.11 a).   

The Bode Plots of TaN films are characterized by a unique constant time at all 

immersion times indicating the absence of substrate contribution in the 

electrochemical response of these coatings. After different equivalent circuit 

simulations with all experimental data registered, the best fitting was obtained by 

using a unique couple of CPE and R representing the coating capacitance and 

coating resistance, respectively, i.e. the previously mentioned Randles Circuit (Fig 

5.11 b).  
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Fig 5. 11: Randles circuit applied for EIS data modeling 

This suggests that the contribution of the substrate trough the coating pores is either 

negligible or difficult to detect for the immersion times analyzed. The possible 

reasons for this can be i) the inhibition of the electrolyte penetration towards the 

substrate promoted by extremely dense and low-defect TaN film microstructure 

a) 

b) 
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developed by MPPMS technology as shown in Fig 5.8, ii) and/or the high polarization 

resistance of Ti-cp which prevents the quantification of its contribution trough the 

coating pores. Thus, experimental parameters obtained after fitting processes are 

displayed in Table 5.5.  

 
Time OCP (V) Rs (Ωcm2) 

Y0-CPEdl 
(μFcm-2) 

n 
Rct=Rp         

(MΩcm2) 

Ti-cp  

4 h -0.466 4.48 64.90 0.96 0.97 

24h -0.407 4.08 55.00 0.96 3.15 

168 h -0.445 3.13 54.20 0.96 17.36 

 Time OCP (V) Rs   (Ωcm2) 
Y0-CPEc   
(μFcm-2) 

n 
Rc=Rp          

(MΩcm2) 

TaN 
monolayer  

4 h -0.297 86.10 3.92 0.97 9.35 

24h -0.299 143.30 4.030 0.97 8.40 

168 h -0.394 32.20 36.80 0.97 17.85 

TaN 
multilayer_1 

4 h -0.294 16.24 41.30 0.97 10.35 

24h -0.352 71.30 41.50 0.97 8.90 

168 h -0.379 70.40 38.80 0.97 20.28 

TaN 
multilayer_2 

4 h -0.284 24.21 41.63 0.97 8.55 

24h -0.274 53.90 39.90 0.97 10.13 

168 h -0.392 92.00 36.36 0.97 21.31 

Table 5. 5  EIS data of Ti-cp and TaN coatings obtained by equivalent circuit modelling using Randles circuit 
at different immersion times 

 

The polarization resistance (Rp) of both Ti-cp substrate and TaN coatings increases 

with immersion time. It is expected that the protective oxides layers, i.e. TiO2 and 

Ta2O5, continuously grow as the time increases up to a steady-state, further 

enhancing the polarization resistance as it is observed in Fig 5.12.  

The low values of Y0-CPE element as well as n values close to 1 are indicative of an 

almost perfect capacitors.  
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Fig 5. 12: Evolution of corrosion resistance with time 

TaN films exhibit better response than the bare substrate and all of them are 

characterized by excellent barrier properties represented by Rp values in the MΩ 

range in simulated body fluid environment at all immersion times. The measurements 

registered at short immersion times are related to growth kinetics of the protective 

oxide film rather than to oxide stability. After 168 h, very similar Rp values are 

obtained for both Ti-cp and TaN films. Even if slightly higher values are observed for 

TaN multilayer_2 film, if standard deviation is considered, all TaN films exhibited the 

same excellent electrochemical behaviour. In fact, these results should be expected, 

since the topmost layer of all TaN films, both monolayer and multilayer ones, is the 

same in terms of composition and properties. Therefore, the growth of very similar 

tantalum oxide surface barrier layer, responsible for the extraordinary inertness and 

chemical stability of TaN films, occurs.  
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Potentiodynamic polarization was carried out after 192 h of immersion in 

PBS+abumin electrolyte (Fig 5.13). The potential range was varied from Eoc– 0.2 V 

to Eoc + 1.2 V with a scan rate of 0.5 mV/s. 

 

Fig 5. 13: Potentiodynamic polarization curves obtained for uncoated Ti-cp and TaN films after 192 h of 

immersion in PBS+albumin solution 

TaN coated Ti samples exhibit higher corrosion potentials (Ecorr) than the uncoated 

Ti-cp, indicating the more passive character of TaN. The corrosion current density of 

Ti-cp was one order of magnitude higher than the TaN coated samples, confirming 

the enhancement of corrosion resistance of Ti-cp substrate by the application of any 

of TaNx films (monolayer or multilayer structure films). At potentials around 0.1-0.2 

V, the corrosion current value of all tested samples stops at 10 µA cm-2 and remains 

stable up to the end of the test (1 V). These low corrosion currents along the whole 

polarization test are an indicative of passive behaviour of both Ti-cp and TaN 
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coatings. The very similar passive features of all TaN films confirm the comparable 

corrosion resistance of monolayer TaN and multilayer TaN coatings.    

 

3.3.4. Tribocorrosion performance  
 

The tribocorrosion performance of Ti-cp and TaN coatings was evaluated following 

the procedure described in section 3.2. The evolution of the open circuit potential 

(Eoc) of Ti-cp and TaN coatings was monitored before, during and after sliding 

process (Wear test 1) in PBS+albumin electrolyte and it is shown in Fig 5.14.  

 

Fig 5. 14: Evolution of open circuit potential (Eoc) before, during and after sliding 

Before the wear tests were carried out, the Ti-cp potential was slightly higher than 

the potentials of TaN coatings. Once the sliding starts, the potentials of both Ti-cp 

and TaN coatings decreased to a more negative values indicating the total or partial 

removal of their passive oxide surface layer. The potential of Ti-cp decreased from -
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0.27 V to -1.07 V once the load is applied and kept decreasing as the number of 

cycles increased. This fact indicates that the active area (wear track size) exposed 

to the corrosive environment due to the elimination of surface protective layer 

continuously grows, negatively affecting both the electrochemical and tribological 

response of the substrate material. After 400 cycles, the alumina ball was unloaded 

and the potential raised to more positive values although it did not reach the highly 

stable initial value. The potential evolution of TaN coatings differed from the substrate 

one. The potential also decreased when the load was applied, but in these cases, 

the potentials were not as low as for Ti-cp. Anyhow, the removal of the protective 

passive layer also occurred in coated surfaces. The achieved values of the potential 

during sliding were similar for all coatings, varying from -0.96 V to -0.98 V for TaN 

multilayer_2 and the other ones, respectively. During sliding all potentials remained 

stable indicating that the active surface area of the TaN coatings exposed to the 

electrolyte was also constant in size during the wear test. Once the alumina ball was 

removed, the potentials of coated samples increased to more positive values faster 

than the substrate potential. After 10 minutes, an almost constant potential was 

reached in all coated samples indicating that the surface repassivation phenomena 

occurred on the wear track area. The potential values registered 10 minutes after the 

end of the sliding were around -0.62 V for TaN monolayer, -0.7 V for TaN multilayer_1 

and -0.5 V for TaN multilayer_2 coatings. Hence, the re-passivation phenomena of 

the worn surface occurs faster for the latter coating.  

Fig 5.15 and Fig 5.16 show the Nyquist and Bode plots, respectively, before and 

during sliding (Wear test 2) for Ti-cp and TaN coatings. The high difference between 

the electrochemical response of the samples before and during sliding, confirms the 

great influence of tribological processes on the electrochemical response of the 

materials. It must be considered that the higher the diameter of the semi-circle in the 

Nyquist diagram and the broader the range of frequencies showing phase angles 
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values near to -90º in Bode diagram, the higher the polarization resistance of the 

material will be [90, 91].  

 

 

Fig 5. 15: Nyquist plots obtained from EIS data a) before and b) during sliding 
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Fig 5. 16 Bode plots obtained from EIS data before a), b) and during c), d) sliding 

 

Experimental data obtained before and during sliding of both Ti-cp and TaN coatings 

were fitted using the simple Randles circuit (Fig 5.11) already explained in previous 

section 3.3.3. This data is shown in Table 5.6.  
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 Time OCP (V) Rs (Ω) 
Y0-CPEdl      
(μF cm-2 ) 

n 
Rct=Rp     

(kΩ cm2 ) 

Ti-cp 
before -0.27 16.57 59.55 0.96 5470 

during -1.07 20.61 1278 0.79 1.22 

 Time OCP (V) Rs (Ω) 
Y0-CPEc       
(μF cm-2) 

n 
Rc=Rp       

(kΩ cm2) 

TaN monolayer 
before  -0.30 10.30 37.08 0.95 19870 

during -0.98 15.97 56.85 0.90 7.56 

TaN multilayer_1 
before -0.28 20.36 41.72 0.93 20360 

during -0.97 25.44 57.74 0.92 10.03 

TaN multilayer_2 
before -0.29 17.88 43.05 0.95 16530 

during -0.96 21.06 60.40 0.91 10.07 

Table 5. 6: EIS data of Ti-cp and TaN coatings before and during sliding obtained by equivalent circuit 
modeling using Randles Circuit 

In both coated and uncoated surfaces, polarization resistance considerably 

decreases as a consequence of the wear process. Before sliding, Ti-cp and TaN 

coatings exhibit passive behavior characterized by extremely high polarization 

resistances in the range of the MΩ and pure capacitive behaviors with phase angle 

very close to -90˚ throughout the entire range of frequencies. No remarkable 

improvements could be observed by the application of the TaN coatings, since Ti-cp 

electrochemical response was already good enough in PBS+albumin media. 

However, during sliding, the worn surface area of all samples was maintained in an 

active state along the whole test due to the specific load and rotational speed 

deliberately selected for preventing the repassivation phenomena to occur on the 

worn surface during sliding and hence, enabling the comparison between different 

materials. This active behavior was clearly represented by the narrowing of the 

maximum amplitude and the phase angle shift towards lower values at low-medium 

frequencies during sliding in Bode plots (Fig 5.15). Moreover, higher capacitance 

(CPE) and lower polarization resistance (Rp) values were observed during sliding for 

both Ti-cp and TaN coatings, an additional indicative of the active state of their wear 

tracks.  Nevertheless, the polarization resistance of the TaN coated samples was still 
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one order of magnitude higher than Ti-cp. The much bigger active area of Ti-cp 

compared to TaN coatings exposed to the corrosive media due to the wear processes 

was responsible for this behavior, since the total polarization resistance of the 

materials was the sum of the resistance inside the wear track (active area) plus the 

resistance outside the wear track (passive area).  

Friction coefficients measured during the second sliding process of 2600 cycles for 

all surfaces are displayed in Fig. 5.17.  

The deposition of all TaN coatings reduced friction coefficient of the bare substrate, 

i.e. 0.58, as it was expected considering the poor mechanical properties of Ti-cp. 

Contrary to electrochemical response, the tribological response between TaN films 

is rather different. The TaN multilayer_2 film, characterized by lowest hardness value 

exhibited a coefficient of friction around 0.4, while TaN monolayer and TaN 

multilayer_1 coatings showed similar friction coefficients of 0.25.  

 

Fig 5. 17: Friction coefficient monitored during Wear test 2 (2600 cycles) 



Chapter 5        Multilayer TaNX films for titanium implants protection against tribocorrosion 
 
   

 

P a g e   219 | 286 

 

Table 5.7 shows the measured width and depth of the wear tracks calculated from 

confocal inspection of the wear tracks cross section. The TaN multilayer_2 wear scar 

is deeper than the other two coatings. The presence of a greater contact area during 

sliding increases the friction coefficient of this film.   

 Depth (μm) Width (μm) 

Ti uncoated 13.310 1360.00 

TaN monolayer 0.450 160.35 

TaN multilayer_1 0.380 167.99 

TaN multilayer_2 0.520 160.66 

Table 5. 7: Depth and width of the wear track of Ti-cp and TaN coatings after tribocorrosion tests 

The wear track for Ti-cp was 10 times deeper and wider than for TaN coatings, 

confirming the enhancement of tribological response of Ti-cp by the application of 

these particular TaN protective coatings.  The big difference between the wear tracks 

can be observed in Fig 5.18, where the tracks of TaN coatings are barely appreciable 

while Ti-cp wear scar is huge. The wear depth of multilayer TaN_2 was deeper 

compared to the wear track of the other TaN coatings and small evidences of 

abrasive scars were observed. The lower hardness and higher coefficient of friction 

of this coating were responsible for this behavior which after all, lead to worse 

tribological response of TaN multilayer_2 coating.  
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a) 

 

b) 

 

c) 

 

d) 

 
 

Fig 5. 18: SEM images of wear tracks after tribocorrosion tests for a) Ti-cp, b) TaN monolayer, c) TaN 
multilayer_1 and d) TaN multilayer_2 

The total material loss of each material after tribocorrosion tests is calculated from 

measured wear tracks (Table 5.7) using equations [5.12], [5.13] and [5.14]. The width 

and depth of the wear track correspond to parameter a and b, respectively, already 

defined in Section 3.2. The total material loss after tribocorrosion for each tested 

sample is shown in Table 5.8.  

 

 a (mm) b (x10-3 mm) r (mm) Wtr (x10-3 mm3) 

Ti uncoated 1.360 13.31 5 464.45 

TaN monolayer 0.160 0.45 5 1.97 

TaN multilayer_1 0.167 0.38 5 1.55 

TaN multilayer_2 0.160 0.52 5 2.00 

Table 5. 8: Total material loss measured after tribocorrosion tests for Ti-cp and TaN coatings 
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Fig 5.19 exhibits the comparison between the total material loss due to tribocorrosion 

processes of Ti-cp and TaN coatings.  The differences of tribocorrosion damage are 

strong between the coated and uncoated surfaces. All tested TaN coatings reduced 

the total material loss of Ti-cp due to tribocorrosion phenomena in ~ 90%.  Comparing 

separately the TaN coatings performance, the material loss after tribocorrosion is 

almost equal for all tested coated samples. TaN multilayer_1 might exhibit a slightly 

better tribocorrosion resistance than TaN monolayer and TaN_multilayer 2.  

 

Fig 5. 19: Determined total material loss (Wtr) from wear tracks volume after tribocorrosion tests 

In a simplified approach, it was considered that the total material loss due to 

tribocorrosion is occasioned by the sum of two different degradation mechanisms; 

namely, electrochemical corrosion and mechanical process. This approach does not 

take into account the synergistic factors that influence on the pure electrochemical 

or mechanical degradation. Then, the corrosion contribution (Wc) to the total material 
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loss (Wtr) could be determined by the equation [5.16] accurately described in Section 

3.2.   

𝑊𝑐  =  𝑖 𝑎𝑐𝑡  𝐴𝑎𝑐𝑡  
𝑀

𝑛𝐹𝑑
  𝑁 𝑡𝑙𝑎𝑡                   [5.16] 

While iact, Aact, N and tlat are obtained from the experimental EIS measurements and 

testing conditions; M, d and n are intrinsic properties of Ti-cp and TaN coatings.  

From testing conditions, N and tlat are obtained. The total number of cycles, N, is the 

sum of the cycles performed during Wear test 1 and Wear test 2; i.e. 3000 and tlat, 

the period between two successive cycles, is 0.6 seconds.   

Aact and iact are calculated from measurements registered during EIS analysis and 

using the equations [5.9], [5.10] and [5.11].  

𝐴𝑎𝑐𝑡 = 𝑎 × 2𝜋𝑟   

𝑖𝑎𝑐𝑡 = 
𝐵

𝑟𝑎𝑐𝑡
= 𝐵 ×

𝑟𝑝𝑎𝑠𝑠−𝑅𝑝𝑠(𝐴0−𝐴𝑎𝑐𝑡)

𝐴𝑎𝑐𝑡𝑅𝑝𝑠𝑟𝑝𝑎𝑠𝑠
  

The calculations are shown in Table 5.9, considering B and A0 constants for all tested 

samples.  

B = 0.024 V; A0 = 2.54 cm2 

 

 
Aact      

(cm2) 
Rp             

(Ω) 
Rps 

(Ω) 
Rpass      

(Ω) 
rpass        

(Ω cm2) 
ract           

(Ω cm2) 
iact              

(A cm-2) 

Ti uncoated 4,30E-01 5,36E+06 1280 6,45E+06 1,36E+07 5,5E+02 4,3E-05 

TaN 
monolayer 

5,04E-02 1,99E+07 7560 2,03E+07 5,06E+07 3,8E+02 6,3E-05 

TaN 
multilayer_1 

5,28E-02 2,04E+07 10000 2,08E+07 5,18E+07 5,3E+02 4,5E-05 

TaN 
multilayer_2 

5,05E-02 8,42E+06 10070 8,59E+06 2,14E+07 5,1E+02 4,7E-05 

Table 5. 9: Experimental parameters obtained during testing to calculate material loss due to corrosion 
mechanism 
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The intrinsic parameters for Ti-cp and TaN coatings are summarized in Table 5.10. 

M and d are molecular weight and density of the tested materials, while n is the 

number of the electrons involved in the anodic reaction occurring on the sample 

surface.  

For Ti-cp the anodic reaction is:  

𝑇𝑖 + 2 𝐻2𝑂 → 𝑇𝑖𝑂2 + 2𝐻+ + 2𝑒−         [5.18] 

For TaN the anodic reaction is:  

2 𝑇𝑎𝑁 + 5𝐻2𝑂 →  𝑇𝑎2𝑂5 + 𝑁2 + 5𝐻+ + 5𝑒−       [5.19] 

 

Material M (g mol-1) d (g cm-3) n 

Ti-cp 47.9 4.5 2 

TaN 147.56 14.3 5 

Table 5. 10: Intrinsic parameters of tested materials 

The mechanical contribution to the total material loss (Wm) could be obtained by 

subtracting the material loss due to electrochemical effect (Wc) to the total material 

loss (Wtr). The detailed contribution from each degradation mechanism to the total 

material loss is shown in Table 5.11.  

 

 Wtr (x10-3 mm3) Wc (x10-5 mm3) Wm (x10-3 mm3) 

Ti uncoated 464.45 185.84 462.6 

TaN monolayer 1.97 12.21 1.85 

TaN multilayer_1 1.55 9.2 1.46 

TaN multilayer_2 2.00 9.16 1.98 

Table 5. 11: Total material loss (Wtr), material loss caused by electrochemical corrosion (Wc) and material 
loss caused by mechanical degradation (Wm) after tribocorrosion tests 
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The main contribution to the total material loss for Ti-cp and TaN coatings was due 

to the mechanical effect rather than electrochemical corrosion degradation. 

Nevertheless, the action of the wear process also compromised the good 

electrochemical performance of the materials since the corrosion resistance was 

three orders of magnitude lower when sliding process took place (Table 5.6). It is 

difficult to make a comparative evaluation of TaN films, since they show similar 

results after tribocorrosion. The main difference among them is caused by 

mechanical degradation processes, where TaN multilayer_1 exhibits lower material 

loss compared to the other TaN films. Multilayer structure of TaN multilayer_1 and 

lower coefficient of friction (Fig 5.17) shown by this film compared to TaN_multilayer 

2 film, might lead to a slightly better tribocorrosion performance of TaN multilayer_1 

coating.  

In fact, more severe wear tests (loads higher than 3N) are needed to induce greater 

degradation of TaN coatings. These tests would give more information about 

significant differences among TaN film performance. But higher loads could not be 

applied on this study due to the complete degradation of Ti-cp. The wear track and 

total materials loss was not measurable at higher loads and hence it was impossible 

to compare with TaN coatings. 

 

4. Conclusions  

Three different TaN coatings were deposited by MPPMS technology to protect pure 

titanium (Ti-cp) substrates against tribocorrosion phenomena in simulated body 

fluids. Two different multilayer TaN films characterized by different bilayer periods 

were developed by alternatively switching two different MPP pulses within one overall 
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deposition process. A monolayer TaN film was also deposited by the application of a 

single MPP pulse.  

The microstructural analysis of the TaN films revealed extremely dense 

microstructures and suppression of columnar growth for all deposited samples 

confirming the importance of highly ionized plasmas developed during MPPMS 

discharges on the densification of the films. TEM micrographs and FTT patterns 

evidenced the transformation from predominant cubic crystal phase in TaN 

monolayer film to a mixture of cubic and hexagonal phases in TaN multilayer films.  

The polarization resistance of Ti-cp and TaN coatings in the absence of sliding was 

incredibly high (~MΩ) and increased with time. TaN coatings exhibited comparable 

electrochemical responses and slightly enhanced the Ti-cp resistance. The topmost 

layer of monolayer TaN and multilayer TaN films is exactly the same, leading to the 

growth of similar surface barrier tantalum oxides which are responsible for the similar 

polarization resistance values exhibited by TaN coatings.    

During sliding processes, the polarization resistance of Ti-cp decreased up to 1 kΩ 

cm2 and TaN coatings exhibit one order of magnitude higher resistance values than 

Ti-cp. This is attributed to the higher wear track of Ti-cp during sliding compared to 

TaN coated Ti-cp, since the total polarization resistance is the sum of polarization 

resistance outside the wear track (passive material) and inside the wear track (active 

material where passive film is broken).   

The coefficient of friction of Ti-cp was reduced from 0.58 to 0.25 by TaN monolayer 

and TaN multilayer_1 coating application. The wear rate of Ti-cp was considerably 

reduced and total material loss caused by tribocorrosion decrease in 90 % by the 

application of any of TaN coatings developed in this study. More severe 

tribocorrosion tests need to be applied in order to observe significant differences 

between monolayer and multilayer TaN films.  
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In order to accurately compare TaN coated Ti-cp (monolayer and multilayer structure 

films) with uncoated Ti-cp performance, electrochemical and mechanical features 

measured in this work during tribocorrosion testing are summarized in the following 

table 5.12. 

Electrochemical properties 

Samples Time Polarization resistance (kΩ cm2) 

Ti-cp 
before sliding 5470 

during sliding 1.22 

TaN monolayer 
before sliding 19870 

during sliding 7.56 

TaN multilayer_1 
before sliding 20360 

during sliding 10.03 

TaN multilayer_2 
before sliding 16530 

during sliding 10.07 

Mechanical properties 

 Friction 
coefficient 

Wear Wtr                          

(x 10-3 mm3) Depth (µm) Width (µm) 

Ti-cp  0.58 13.310 1360.00 464.45 

TaN monolayer 0.25 0.450 160.35 1.97 

TaN multilayer_1 0.25 0.380 167.99 1.55 

TaN multilayer_2  0.4 0.520 160.66 2.00 

Table 5. 12 Electrochemical and mechanical features measured for TaN coatings and uncoated Ti-cp during 
tribocorrosion testing 
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1. Introduction 
 

Fuel cells have gained much attention during the last decade owing to the great 

concern on petroleum based energy resources depletion and environmental pollution 

and climate change.  

Fuel cells are electrochemical devices that convert chemical energy of a fuel directly 

into electrical energy while enabling high efficiencies and low emissions [1]. Polymer 

electrolyte membrane fuel cells (PEMFC) are one of the most promising candidates 

as the next generation power sources using hydrogen as fuel to generate green 

electricity for stationary and transportation applications. PEMFC remarkable features 

are low operating temperature, high power density, efficiencies up to 60% and easy 

up-scaling [2-3]. PEMFC are particularly suited to substitute internal combustion 

engines of passenger vehicles. In fact, major car companies have already 

manufactured prototype cars that meet consumer requirements with respect to 

driving speed, acceleration and driving range. This objective has been reached due 

to advances in both fuel cell components and systems level [4].  

The basic operational processes of a PEMFC [5] are illustrated in Fig 6.1 and 

described below:  
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Fig 6. 1: A schematic representation of operation principle of a PEMFC (taken from [6]) 

 

1. Hydrogen (H2) is delivered through the gas-flow plate to the anode where it reacts 

electrochemically to form hydrogen ions and electrons following the next 

equation:  

𝐻2 → 2𝐻+ + 2𝑒−                           [6.1]  

2. The hydrogen ions migrate through the electrolyte or proton conducting 

membrane while the electrons are conducted through an external electrical circuit 

down to the cathode. At the cathode, the electrons and hydrogen ions re-combine 

with oxygen (O2) outwardly supplied from gas-flow stream to form water, per the 

following equation:  

1

2
𝑂2 + 2𝐻+ + 2𝑒− → 𝐻2𝑂           [6.2] 

3. The global reaction within a fuel cell generates water, heat and electrical work as 

follows:  

𝐻2 +
1

2
𝑂2 → 𝐻2𝑂 + 𝑊𝑒𝑙𝑒 + 𝑄ℎ𝑒𝑎𝑡          [6.3] 
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The theoretical voltage at open circuit of hydrogen –oxygen fuel cell is 1.23 V at 298 

K. Under loading conditions, the fuel cell voltage varies between 0.5 and 1 V, 

delivering a current density up to 1.5 A cm-2. 

In spite of the great interest and important research and development currently in 

progress, there are still two main barriers preventing the widespread 

commercialization of PEMFC: the durability and cost of fuel cell components and the 

optimization of the system layout and balance of plant.  

In this thesis, the improvement of one of the components of the PEMFC is addressed. 

In section 2 of this chapter the different PEMFC components will be described with 

special emphasize on bipolar plates. Section 3 describes bipolar plate requirements 

and limitations, which are the scope of this chapter. The experimental work carried 

out on TaNx coating solution for BPPs durability enhancement is explained in Section 

4. In section 5, a bilayer Ta based coating solution is exhibited.  
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2. PEMFC components  
 

A schematic representation of fuel cell components is given in Fig 6.2. 

 

 

Fig 6. 2: Cross sectional overview of PEMFC components (taken from [7]) 

 

The membrane electrode assembly (MEA) is the core of the PEMFC. It consists of 

the polymer electrolyte membrane (also called proton exchange membrane) and two 

catalyst electrode layers. The gas diffusion media and the bipolar plate completed 

the stack.  

The polymer electrolyte membrane conducts only positively charged hydrogen 

ions and blocks the electrons penetration. It is the key component of a fuel cell since 

it allows only the penetration of the necessary ions from the anode to the cathode. 
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The thickness of the membrane is around 10-100 µm. The accepted commercial 

standard for membranes is made of a Polytetrafluoroethylene (PTFE) backbone with 

a perfluorovinylether side chain that ends with a sulfonic acid group. One of the most 

common and commercially used PEM membrane is Nafion membrane manufactured 

by DuPont.   

The catalyst electrode layers (CL) are where the hydrogen oxidation reaction 

(HOR) and oxygen reduction reaction (ORR) take place at anode side and cathode 

side, respectively. CL is usually very thin (less than 10 µm) and includes several 

materials that are key components to the electrochemical reaction: carbon support 

with Pt catalyst particles dispersed on the carbon surface and the ionomer. Platinum 

(Pt) and Pt alloys are popular catalysts for both HOR and ORR. On the anode side, 

the platinum catalyst enables hydrogen molecules to be split into protons and 

electrons. On the cathode side, the platinum catalyst enables oxygen reduction by 

reacting with the protons generated by the anode, producing water. Thus, catalyst 

layer is one of the most costly components of a PEMFC.  

The gas diffusion media is composed of the gas diffusion layer (GDL) and micro-

porous layer (MPL). The diffusion media plays multiple roles: it electrically connects 

the bipolar plate with the electrodes (anode and cathode), acts as passage for 

reactant transport and heat/water removal, adds mechanical support to the MEA and 

protects the catalyst layer from degradation by corrosion or erosion. Carbon and 

graphite papers as woven structures are being used as GDL. PTFE coatings are 

commonly applied for hydrophobicity property incorporation. The MPL mainly 

consists of carbon powder with a PTFE emulsion.  

The bipolar plates (BPP) provide mechanical support over diffusion media and 

conductive passage for both heat and electron transport. They incorporate gas-flow 

channels which enable the supply and distribution of hydrogen fuel and oxygen 
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reactant for electrochemical reaction and by-product water removal. Furthermore, 

each individual MEA generates less than 1 V which is insufficient voltage for most 

applications. To solve this problem, multiple cells are connected in series to deliver 

the required output voltage and are sandwiched between two bipolar plates to 

separate one from another. Manufacturing of BPP contributes considerably to the 

total fuel cell stack cost.  

 

3. Corrosion phenomena in bipolar plates  
 

One important component in a PEMFC stack is the bipolar plate (BPP) which 

accounts for about 80% of the total weight and about 30% total stack cost [8-9] . This 

multi-functional component provides the electrical connection from cell to cell, 

distributes gases and removes heat from the active areas. Therefore, the bipolar 

plate material must be chemically stable, highly electrical and thermal conductive; 

have low contact resistance to the backing, good mechanical strength, low gas 

permeability and inexpensive massive production.  

BPPs have traditionally been fabricated from graphite due to its excellent corrosion 

resistance, high thermal and electrical conductivity and availability. However, it is not 

suitable for transportation applications because it exhibits poor mechanical 

properties, high manufacturing costs and difficult machinability. In contrast, metal 

bipolar plates are suitable options due to their good mechanical strength, high 

electrical conductivity, low gas permeability, low cost, and easy manufacturing.  

In terms of durability, carbon-polymer composite materials are preferable. However, 

metallic materials can be manufactured in a very thin plate shape, leading to a 

considerable increase in volumetric power density. Major car manufacturers are 

using metallic BPPs in their latest generation fuel cell electric vehicles (FCEV) and 
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high power density shown by these new FECV is ascribed to metallic BPPs 

incorporation [10-11].  

Nevertheless, there is an important concern related to the utilization of metallic BPPs: 

corrosion phenomena in the aggressive environment of a PEMFC which leads to an 

accelerated degradation of the fuel cell and service lifetime reduction [12]. At the 

anode side, corrosion leads to the release of metal ions from the BPP that can 

poisoned the membrane, increase the resistance of the catalyst electrode layer and 

membrane and reduce the PEM fuel cell efficiency [13-14]. At the cathode side, the 

main problem arise from the build-up of an oxide layer that even though it’s true that 

protects the BPP against corrosion, it has lower conductivity than the metal itself 

promoting an increase in the interfacial contact resistance with the GDL. Recent 

studies have revealed that a huge amount of total power losses during fuel cell 

operation are due to high contact resistance between the BPP and the GDL [15].  

Particularly, stainless steel (SS) is considered one of the most promising candidates 

for transport applications. Nevertheless, chemical stability of SS in humid and acidic 

conditions of a fuel cell must be improved. At the cathode side, the protective passive 

film formed on its surface does not completely prevent release of metallic ions leading 

to membrane poisoning, which reduces the efficiency of the fuel cell. This same 

passive film significantly increases ICR between the BPP and the gas diffusion layer 

(GDL), compromising the conductivity of the BPP. In order to improve SS 

performance many attempts have been performed applying different surface 

treatments on different types of SS, many of them related with the deposition of 

transition metal nitrides. The U.S. Department of Energy (DoE) has established 

several targets for year 2020 with respect to bipolar plate requirements [16]. The 

important and challenging targets for bipolar plates are i) corrosion currents < 1 µA 
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cm-2, ii) contact resistance < 10 mΩ cm2 at compaction pressure of 140 N cm-2 while 

iii) cost is kept below 3 $ kW-1. 

 

4. Protective films for stainless steel bipolar plates    
 

4.1. Introduction  
 

The literature on transition metal nitride coatings for stainless steel BPP performance 

improvement is extensive. O. Lavigne et al [17] deposited two thin (100 nm) 

chromium nitride PVD coatings on SS316L bipolar plates. The first coating (coating 

1) was a mixture of Cr2N and Cr, the second (coating 2) a single phase CrN. The 

electrolyte used was an aqueous solution containing 0.07 M of Na2SO4 to limit ohmic 

drop with the addition of a small amount of H2SO4 (to adjust the pH to about 4). The 

electrolyte was either purged with H2 and samples polarized to +0.05 VSHE or purged 

with air and samples polarized to +0.85 VSHE at 60 ºC to simulate anode and cathode 

side environment, respectively. In the simulated anodic environment, the corrosion 

currents of both coatings were very low (~ 10-8 A cm-2). In the simulated cathodic 

environment, corrosion currents were in the range of ~10-7 A cm-2 and ~10-6 A cm-2 

for coating 1 and coating 2, respectively, after 25 h of polarization.  The ICR values 

after polarization tests at 140 N cm-2 compaction pressure were 30 mΩ cm2 and 10 

mΩ cm2 for coating 1 and coating 2, respectively.  

S.H. Lee et al. [18] investigated the corrosion and electrical characteristics of CrN 

and TiN coatings deposited by cathode arc ion plating on SS316L substrate. A 0.1 M 

H2SO4 solution with 2 ppm F- at 80 °C was purged continuously with hydrogen gas 

and air to simulate anodic and cathodic PEMFC environment. While TiN coating was 

dissolved during corrosion testing and showed a corrosion current of 29 µA cm-2 at 

0.6 VSCE, CrN exhibited lower corrosion currents of 6 µA cm-2 at cathode potential. In 
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comparison to uncoated SS316L, CrN- and TiN-coated SS316L exhibit lower ICR 

value. H. Sun et al. [19] tested 1 µm TiN coating deposited on SS316L by closed 

field unbalanced magnetron sputter ion plating (CFUBMSIP) at higher cathodic 

potential of 1 VSHE. Under these simulated conditions, the corrosion current registered 

was 11 µA cm-2, slightly higher than US DoE target of 1 µA cm-2. The ICR value 

measured after corrosion testing increased up to 230 mΩ cm2.  

Wang et al. [20] prepared a molybdenum nitride (Mo-N) diffusion coating on the 

surface of SS304 by a plasma surface diffusion alloying method. The coating was 

tested electrochemically in 0.05 M H2SO4 + 2 ppm F- solution at 70 ºC and ICR 

measurements were taken before and after polarization. The corrosion currents of 

Mo-N coated 304SS were around 1 µA cm-2 at both -0.1 VSCE anodic potential and 

+0.6 VSCE cathodic potential, reducing the corrosion current density of uncoated 

SS304 by nearly one order of magnitude. ICR values measured after polarization at 

140 N cm-2 compaction pressure were 27.26 mΩ cm2 and 100.98 mΩ cm2 for 

coated- and uncoated-SS304.  

C. Choe et al. [21] used inductively coupled plasma assisted reactive magnetron 

sputtering to deposited TaNx coatings at various N2 flow rates. The electrochemical 

properties of the samples were investigated in a 0.05 M H2SO4 + 0.2 ppm HF solution 

at 80 ºC and polarized to -0.1 VSCE (H2 bubbling) and +0.6 VSCE (air bubbling) to mimic 

anode and cathode potential, respectively. TaNx coated samples exhibited excellent 

corrosion resistance that satisfied the DoE requirement with a lowest current density 

value of 0.3 µA cm-2 (at 0.6 V, cathodic condition) and 0.01 µA cm-2 (at - 0.1 V, anodic 

condition). Lowest ICR value of 11 mΩ cm2 was obtained at highest N2 flow rate.  

However, the coating materials, deposition techniques and more importantly, testing 

parameters are so diverse that making conclusions and establishing a tendency 

becomes rather complicated. The US Department of Energy (DoE) has 
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recommended to evaluate electrochemical ex-situ performance of bipolar plates in 

pH 3 environment at potentials not exceeding 0.8 VSHE [8]. Kumagai et al. [22] 

investigated the electrochemical behaviour and contact resistance of different 

austenitic stainless steels as a function of pH after polarization tests and cell 

operation. It was found that pH variation altered the type of oxide and oxide layer 

thickness grown on SS surfaces which led to completely different ICR values after 

corrosion testing.  S. Lædre et al. [23] studied the effect of pH and presence of small 

amounts of fluorides and halides on the performance of SS316L in PEMFC. They 

demonstrated the difference on iron oxide thickness in terms of solution acidity. 

Acidity was not inversely proportional to iron oxide thickness and hence to the ICR 

measured value after polarization. Lowering the pH to simulate accelerated tests may 

not have the expected influence and it was suggested to use a pH value close to the 

real pH in operating fuel cell. Hinds and Brightman have shown that during start-

up/shut down of a PEMFC, cathodic potential as high as 1.4 VSHE are delivered [24]. 

A. Orsi and co-workers [25] studied the effect of corrosion testing variables (applied 

potential, pH and test duration) and compared these ex-situ testing with those from 

in-situ fuel testing. They concluded that ex-situ test parameters that best mimic the 

real operational conditions in a fuel cell were 1.4 VSHE cathodic potential and 1 mM 

H2SO4 solution (pH 3).  

The aim of this study was to investigate the performance of TaNx coatings deposited 

on SS316L by MPPMS as a function of N2-to-Ar ratio. The utilization of MPPMS for 

the deposition of protective coatings for bipolar plates in PEMFC has never been 

reported.  The correlation between the nitrogen content and microstructure of TaNx 

films with electrochemical and electrical properties was analysed thoroughly. The 

relationship between the oxides formed on the top of TaNx coatings and ICR values 

after polarization is investigated. Although passive films protect the SS316L 

substrate from corrosion, they also increase the interfacial contact resistance 
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between the bipolar plate and the gas diffusion layer [23, 26]. The objective is to 

correlate the composition and thickness of the oxide layers grown on top of each 

TaNx coating with corresponding ICR value. C. Choe et al. have tested TaNx coatings 

at different N2 flow rates but only up to 0.84 VSHE cathodic potential during 10 minutes.  

H. Yu et al. [27] examined the corrosion resistance of Ta coated SS316L under 0.8 

VSHE cathodic potential but they didn’t give any information about ICR values. During 

this study, the electrochemical testing was carried out under different applied 

potentials (up to 1.4 VSHE), pH values and test durations (up to 180 min) in order to 

mimic the real operational conditions of a PEMFC. 

 

4.2 Experimental development of TaNX films by MPPMS to protect SS 

bipolar plates in cathode side of PEMFC  

 

4.2.1 TaNX film deposition  
 

The high corrosion resistance of TaNX (different Ta/N atomic ratio) and multilayer 

TaN films observed in previous chapters 4 and 5, encourages the evaluation of these 

films as protective coatings for stainless steel BPP in cathodic side of PEMFC 

environment. Since the composition of the coating defines the composition of the 

barrier surface oxide film and therefore, the electrochemical and electrical features 

of the coating, the development of TaNx films deposited at different N2-to-Ar ratios (0, 

0.25, 0.625, and 1) is proposed.   

The TaNx films were deposited in the MIDAS 450 sputtering system (described in 

Chapter 3) under the same process parameters defined in Chapter 4, section 3.1. 

SS316L thin coupons (35 x 35 x 0.1 mm) and silicon wafers were used as substrates.  
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The same MPPMS pulse 996 was used for all depositions. Pulse characteristics were 

already shown in Chapter 4. The pulse shape is shown in Fig 6.3.  

 

Fig 6. 3: Voltage-current characteristics of pulse 996 applied during TaNx coating deposition 

Table 6.1 exhibits the the peak target voltaje and current values during each film 

deposition process and the thickness and composition of each TaNx film, already 

measured in Chapter 4.  

 

 
N2/Ar 
ratio 

Peak target 
voltage (V) 

Peak target 
current (A) 

Thickness 
(µm) 

Ta         
(at. %) 

N          
(at. %) 

Ta 0 720 85 2.6 100 0 

TaN_0.25 0.25 740 93 2.5 90 10 

TaN_0.625 0.625 700 75 2.3 75 25 

TaN_1 1 700 66 2.1 55 45 

Table 6. 1: Pulsing parameters of MPPMS discharge during TaNx deposition 
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4.2.2 TaNX film characterization equipment in PEMFC simulated environment  
 

To simulate the cathodic side of a real PEMFC electrochemical environment, a three-

electrode cell setup (described in Chapter 3) was used. In order to simulate the pH 

on the bipolar plates during fuel cell operation, polarization tests were carried out for 

in 1 mM H2SO4 and lower concentrated electrolytes to achieve 3 and 6 pH values, 

respectively. The electrolyte was heated (80 ºC) and bubbled with nitrogen gas for 

20 min to reduce the concentration of dissolved oxygen prior to the introduction of 

the samples. During the electrochemical testing, the nitrogen gas bubbler was 

positioned above the surface of the electrolyte in order to maintain the nitrogen levels. 

The reference electrode, Hg/Hg2SO4/K2SO4 (0.64 V vs SHE), was connected to the 

electrolyte cell by a salt bridge.  All standard potentials are referred to standard 

hydrogen electrode potentials (SHE). The simulated PEMFC electrochemical set-up 

can be seen in Fig 6.4.  

 

Fig 6. 4: Electrochemical set-up for ex-situ testing of TaNx coated SS316L in PEMFC environment 
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Interfacial contact resistance (ICR) measurements were conducted before and after 

each electrochemical test. The coated and uncoated SS316L coupons were placed 

between two gold coated copper plates as illustrated in Fig 6.5. A Freudenberg I2C6 

gas diffusion layer (GDL) was located between the coupon and the top plate. A spring 

loaded gold pin was positioned on the centre of the bottom plate. A constant current 

was applied (2A) and voltage difference between the pin and the top plate was 

measured at different compaction pressures from 34-530 N cm-2. The total interfacial 

contact resistance (RT) is calculated from this experiment. The RT is the sum of the 

interfacial contact resistances between i) the top gold plate and the GDL (Rgold/GDL) , 

iii) the GDL and the coated/uncoated sample (RGDL/sample) and the iii) sample and gold 

pin (Rsample/pin). The Rsample/pin is considered negligible and Rgold/GDL is known from 

previous testing. Thus, RGDL/sample can be calculated from the following equation:  

RGDL/sample = RT
 - Rgold/GDL                    [6.4]  

 

 

Fig 6. 5: Experimental set-up for ICR measurement between TaNx coated SS316L samples and GDL 
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4.2.3 TaNx film performance in PEMFC environment   

 

The microstructural characterization of TaNx films was already accomplished in 

Chapter 4, since the films are deposited under the same MPPMS pulse shape and 

process parameters. For simplicity purposes, the cross-sectional microstructure 

images of TaNX films are shown in Fig 6.6. As demonstrated in chapter 4, the 

suppression of columnar growth is restricted to TaN_0.25 characterized by 10 at. % 

of nitrogen and corresponding to the higher peak current density during MPPMS 

discharge [28]. The great density and smooth surface exhibited by TaN_0.25 were 

important factors contributing to the presentation of the best corrosion resistance of 

all evaluated films in NaCl 0.06 M. The microstructure of TaNx films correlation with 

their performance in PEMFC is investigated.  

 
 

  

Fig 6. 6: Cross-sectional SEM micrographs of a) Ta, b)TaN_0.25, c) TaN_0.625 and d) TaN_1 coatings 

a

) 

b

) 

d

) 

c

) 
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The composition of the TaNx films under different N2-to-Ar ratios was previously 

analized in Chapter 4 and illustrated in Table 6.1. The composition of TaNx films 

differs considerably, which will promote different oxide based layers growth after 

polarization. Hence, distinguished behaviours are expected from each TaNx coating. 

The correlation between electrochemical and interfacial contact resistance 

characteristics with TaNx coating composition will be investigated in the following 

sections. 

 

4.2.3.1 Potentiodynamic measurements at different pH values. 
 

Potentiodynamic scans were conducted from - 0.2 to + 1.6 VSHE at scan rate of 1 mV 

s-1 in pH 3 and pH 6 electrolytes. Fig 6.7 shows the potentiodynamic polarization 

behaviour of TaNx coated and non-, coated AISI 316L in electrolytes with different 

pH values. In pH 3 electrolyte (Fig 6.8.a), all TaNx coatings exhibited current densities 

of 1 µA cm2 up to 1.6 VSHE (much higher than recommended DOE targets), 

demonstrating a better performance than non-coated SS316L. The most corrosion 

resistant coating is TaN_0.25, showing the highest corrosion potential and the lowest 

current density in comparison to the other coatings and non-coated SS316L. In fact, 

the denser microstructure is observed for TaN_0.25 coating.  

In pH 6 electrolyte (Fig 6.8.b), the lowest corrosion potential was observed for non-

coated SS316L. But current density started to abruptly increase at potentials higher 

than 1.2 VSHE, suggesting a high corrosion of non-coated sample. The current density 

of TaNx coatings remained stable about 1 µA cm-2 up to 1.5 VSHE.  
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Fig 6. 7: Current-potential relation during potentiodynamic measurements at a) pH 3 and b) pH 6 
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4.2.3.2 Potentiostatic measurements with different variable parameters 

 

Variable parameter: Applied potential  

Potentiostatic measurements were taken after polarization for 5 minutes at 1 VSHE 

and 1.4 VSHE in pH 3 electrolyte and are shown in Fig 6.8 and Fig 6.9, respectively. 

The application of potentials as high as 1.4 VSHE is justified due to the fact that several 

studies have measured potentials above 1.4 VSHE in the fuel cell cathode during start-

up/shut down periods [24, 29]. After 5 minutes electrochemical testing, no significant 

difference is observed on current density values polarized either at 1 VSHE or 1.4 VSHE. 

TaN_0.25 and TaN_0.625 exhibited corrosion currents slightly higher than 1 µA cm-

2, the established DoE target for corrosion current for bipolar plates. Corrosion 

current of metallic Ta is around 4 µA cm-2 while TaN_1 and non-coated SS316L 

showed current densities of 10 µA cm-2. It is important to mention that the corrosion 

current limits established by US DoE were supposed to be measured at 0.8 VSHE. All 

TaNx coatings most likely would have registered much lower current values if they 

had been polarized at potentials lower than 1 VSHE, as observed for TiN coated SS 

[25] and non-coated SS316L. [26].  
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Fig 6. 8: Potentiostatic tests (5 min) at 1 VSHE in pH 3 electrolyte of TaNX (N2-to-Ar ratio 0, 0.25, 0.625 and 1) 
coated on SS316L and non-coated SS316L 

 

Fig 6. 9: Potentiostatic tests (5 min) at 1.4 VSHE in pH 3 electrolyte of TaNx (N2-to-Ar ratio 0, 0.25, 0.625 and 1) 
coated on SS316L and non-coated SS316L 
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The contact resistance measurements performed before and after potentiostatic 

tests for two different applied potentials are presented in Fig 6.10. It is clearly 

observed that when TaNx coatings are polarized at higher potentials (i.e. 1.4 VSHE), 

the ICR values increase abruptly. This rise in ICR value is probably related to the 

thickening of the oxide layer on the coating surface when higher potentials are 

applied [26]. This increase is particularly important for nitride TaNx coatings, reaching 

values between 248 mΩ cm2 – 401 mΩ cm2, much higher than the ICR value 

exhibited from non-coated SS316L (96 mΩ cm2) and exceeding the DoE targets for 

ICR after polarization (< 10 mΩ cm2) considerably. Analysing the corrosion currents 

and ICR values together, it can be concluded that the increased passivity, i.e. lower 

corrosion currents obtained for TaN_0.25 and TaN_0.625, gave rise to much higher 

contact resistance values after polarization tests than the ones recommended by US 

DoE.  

 

Fig 6. 10: 11 ICR at 140 N cm-2 before and after polarization tests in pH 3 electrolyte (5 min) at different 
potentials for TaNx coated- and non-coated SS316L 



Chapter 6     Tantalum based films for bipolar plate protection in PEMFC 
 
 
 

 

P a g e   258 | 286 

 

The behaviour of metallic Ta film is different from the behaviour of nitride films and it 

exhibited lower ICR than the non-coated SS316L. The ICR value after polarization at 

1.4 VSHE is 54 mΩ cm2, much lower than ICR values for nitride films, while Ta film 

still showed an excellent corrosion resistance in PEMFC environment (corrosion 

currents around 4 µA cm-2 at 1.4 VSHE). The much lower ICR value after polarization 

observed for Ta film compared with nitride TaNx films suggests that its oxide film 

composition must be different, indicating the great importance of oxide composition, 

besides the thickness, on interfacial contact resistance.  

Variable parameter: pH of the electrolyte  

The effect of pH variation on corrosion resistance and electrical properties of the 

TaNx films was investigated. Potentiostatic measurements were carried out at 1.4 

VSHE for 5 minutes in pH 6 electrolyte (Fig 6.11) for comparison with results obtained 

in pH 3 (Fig 6.9).  

 

Fig 6. 11: Potentiostatic tests (5 min) at 1.4 VSHE in pH 6 electrolyte of TaNx (N2-to-Ar ratio 0, 0.25, 0.625 and 1) 

coated SS316L and non-coated SS316L. 
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The current densities observed are very similar to the ones recorded at pH 3. The 

lowest currents, values between 6-8 µA cm-2, are registered for Ta, TaN_0.25 and 

TaN_0.625, confirming the tendency observed in more acidic electrolyte. The 

corrosion resistance of TaNx films does not seem to be affected by the pH, for the 

values selected for this study.  

ICR values measured before and after polarization at 1.4 VSHE for 5 minutes in 

electrolytes with different pH are plotted in Fig 6.12. Again, the contact resistance 

values measured after potentiostatic tests in pH 6 electrolyte, follow the trend 

observed in previous tests.  

 

Fig 6. 12: 11 ICR at 140 N cm-2 before and after polarization tests at 1.4 VSHE (5 min) in varying pH 

electrolytes (3 and 6) for TaNx coated- and non-coated SS316L 

Nitride TaNx coatings exhibited highest ICR values (between 383-472 mΩ cm2) while 

metallic Ta showed lowest value of 63 mΩ cm2, reducing the contact resistance of 

the uncoated SS316L by half. All tested samples presented lower ICR values when 
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exposed to lower pH electrolyte. The passive oxide layer of TaNx coatings may 

dissolve when exposed to low pH electrolyte which would lead to ICR decrease, as 

it has been demonstrated for TiN coating elsewhere [25]. Further tests in lower pH 

electrolytes are needed to extend this behaviour to TaNx coatings.  

Variable parameter: polarization test duration  

Potentiostatic measurements at 1.4 VSHE in pH 3 electrolyte recorded for 180 min are 

shown in Fig 6.13.  

A huge decrease of the current density is observed for all tested samples, i.e. TaNx 

coatings and uncoated SS316L, during the first minute of polarization test. The fast 

decay of the current density has been already explained and related to the passive 

oxide formation on nitride coatings [25, 30] and uncoated SS316L [22, 31]. The oxide 

formation process seems to be fast, reaching an almost steady-state after 20 minutes 

of polarization. Ta, TaN_0.25 and TaN_0.625 exhibited current density values 

around 1 µA cm-2 at 1.4 VSHE after 180 minutes. These three coatings are excellent 

alternatives to protect SS316L from corrosion degradation and considerably exceed 

the established DoE targets for corrosion which required current densities lower than 

1 µA cm-2 but at much lower potentials (0.8 VSHE).  
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Fig 6. 13: Potentiostatic tests at 1.4 VSHE for 180 min in pH 3 electrolyte for TaNx coated and non-coated 

SS316L 

ICR values measured before and after polarization tests at 1.4VSHE in pH 3 electrolyte 

for 180 minutes are shown in Fig 6.14. ICR values obtained after 180 minutes of 

polarization at 1.4 VSHE confirmed the trend already observed for ICR values after 

shorter polarization testing (Fig 6.11). The ICR for nitride coatings substantially 

increases up to 538 mΩ cm2 for TaN_1. SS316L contact resistance also rises up to 

278 mΩ cm2. The metallic Ta coating (82 mΩ cm2) is the only one capable to keep 

ICR lower than non-coated SS316L after polarization.  
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Fig 6. 14: ICR measurements at 140 N cm-2 for pre- and post-potentiostatic tests (1.4 VSHE, 180 min, pH 3 

electrolyte) for TaNx coated and non-coated SS316L 

 

When comparing the ICR values measured after 1.4 VSHE after 5 minutes shown in 

Figure 6.10 and the ICR measured after 180 minutes at 1.4 VSHE it can be seen that 

most of the ICR increase has occurred already after 5 minutes. During the 

polarization, dissolution and built up of oxide layer thickness will occur at the same 

time. This means that when the dissolution and the oxide layer build up has the same 

rate, the oxide layer thickness and probably the ICR has reached a steady state. For 

SS316L, Ta and TaN_1 apparently the ICR is increasing slightly after 5 minutes 

polarization, for TaN_0.25 and TaN_0.625 the oxide layer has probably reached a 

steady state thickness already after 5 minutes. For TaN_0.25 the ICR is even higher 

after 5 minutes compared to after 180 minutes, experimental discrepancy most be 

the reason for that. 
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4.2.3.3 AES measurements for barrier oxide features analysis 

 

In order to explain the different behaviours of TaNx coatings in terms of interfacial 

contact resistances values after polarization, AES analysis were performed before 

and after corrosion tests at 1.4VSHE in pH 3 electrolyte during 3 hours. Fig 6.15 shows 

the atomic composition spectra of the first 30 nm of each TaNx coating, since the 

oxide layer grown on the coating surface after polarization is known to strongly 

increase the ICR [25, 32, and 33].  

Before polarization, metallic Ta already exhibited a spontaneously grown thin 

tantalum oxide of approximately 10 nm. Nitride TaNx coatings did not show such 

affinity for oxide layer formation in contact with atmosphere. In spite of different 

compositions observed before polarization, ICR values for all TaNx are low and below 

20 mΩ cm2.  

After polarization, the increase of ICR from 8 to 82 mΩcm2 in Ta coating is due to 

the thickening of tantalum oxide layer which is characterized by a high dielectric 

constant. The passive film formed on TaNx coatings is an oxynitride tantalum layer 

rather than pure tantalum oxide. The much higher ICR shown by TaN_1, 538 mΩ 

cm2, can be related to the much thicker oxynitride layer formation compared to the 

other coatings. However, the passive layer grown on top of TaN_0.25 and TaN_0.625 

is thinner than the pure tantalum oxide formed on top of metallic Ta which does not 

correspond with higher ICR values shown by nitride TaNx coatings. The nitride TaNx 

coatings behaviour after polarization seems to be dominated by the composition of 

the oxynitride layer rather than by its thickness.   
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Fig 6. 15: AES results showing the change in barrier layer thickness and composition before and after 

polarization for each TaNx coating 
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The literature concerning the electrical properties of tantalum oxynitride thin films is, 

at present, quite limited, but an extensive study recently published by D. Cristea and 

co-workers [34] may help to correlate the tantalum oxynitride passive characteristics 

with ICR values obtained on this study. Tantalum oxynitride (TaxNyOz) thin films with 

electrical resistivity’s varying from 5.29x10-4 Ω cm up to 1.93x106 Ω cm were grown 

in [34] by (N+O)/Ta ratio variation. Main conclusions arising from that study are that 

resistivity of the films grows with increasing (N+O)/Ta ratio and that oxygen content 

is the prevalent contributor to the rise in resistivity. The thickness and average 

composition of oxynitride and oxide tantalum layers grown on top of nitride TaNx and 

metallic Ta coatings after polarization, respectively, are plotted in Table 6.2.  

 

 
Oxynitride layer 
thickness (nm) 

Ta  (at. %) N (at. %) O (at. %) (N+O)/Ta O/Ta 

Ta 15 60 0 40 0.66 0.66 

TaN_0.25 10 50 15 35 1.00 0.70 

TaN_0.625 8 45 30 25 1.22 0.55 

TaN_1 25 40 15 45 1.50 1.12 

Table 6. 2: Passive oxynitride layer thickness and composition of TaNx coatings after polarization at 1.4 VSHE 
for 180 min in pH 3 electrolyte 

The quantification is based on sensitivity factors provided by the instrument 

manufacturer. As described in the introduction, thicknesses assume the same 

sputtering rate as for a SiO2 standard. Sputtering of a complete coating thickness for 

one of the samples gave a film thickness that is close to that suggested by the SEM 

observations which suggests that the absolute values are reasonably reliable. For 

the thinnest oxynitride layers, thickness values may be expected to show some 

variation due to small differences in handling and exposure to the atmosphere before 

analysis. 
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These thin oxynitride layers are acting as dielectrics between the sample and the 

GDL during conductivity measurements and are responsible for the abrupt rise in 

ICR. It seems that when (N+O)/Ta is above 1 (non-metallic/metallic atomic ratio 

above 1) the resistivity abruptly increases, while below this threshold the ICR 

increase is not such significant, as observed for metallic Ta film. This assumption is 

based on similar conclusions from [34]. Much higher oxygen content on oxynitride 

film of TaN_1, along with larger thickness, is responsible for the much higher ICR 

compared with other nitride coatings.  

Assuming that in real fuel cell operation conditions, peak voltages as high as 1.4VSHE 

are delivered, none of these TaNx coatings seems suitable due to the high ICR values 

shown after polarization at 1.4VSHE in ex-situ testing. Nitride TaNx coatings are 

definitely rejected as protective candidates as a consequence of abrupt rise in ICR 

readily after a few minutes polarized at 1 VSHE. New strategies to block the dielectric 

thin tantalum oxide layer on top of metallic Ta are under investigations, since this 

coating has exhibited promising behaviour in terms of corrosion resistance but needs 

to exhibit lower ICR values after polarization. An alternative bi-layer coating based 

on Ta is investigated in the following section.  

 

4.3 Experimental development of bi-layer Ta_ITO coating to protect 

SS bipolar plates in cathode side of PEMFC 

  

A new bi-layer coating solution based on Tantalum and ITO layers was deposited on 

SS316L in order to try to reduce the ICR rise observed for pure Ta after 

electrochemical tests. This ICR rise is devoted to the formation of insulating tantalum 

oxide barrier film on top of Ta during polarization. In order to block the growth of 
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insulating oxides that compromise the conductivity of the BPPs, the deposition of a 

conductive oxide layer; specifically, indium-tin-oxide (ITO), on top of Ta is addressed.  

Indium Tin Oxide (ITO) is a tin-doped indium oxide (In2O3:Sn) and n-type 

semiconductor which exhibits high optical transmittance in the visible region, high 

electrical conductivity and good chemical stability. These properties have led to the 

use of ITO films as transparent electrodes in manifold devices for different 

applications.  

In this thesis, the electrical properties of the ITO exclusively are significant, since the 

purpose of this film deposition is to hinder the formation on non-conductive oxides 

when the BPP is subjected to potentials as high as 1.4 VSHE during fuel cell operation.   

 

4.3.1. Ta_ITO film deposition  

 

The bi-layer Ta-ITO film was deposited by successive sputtering of metallic Ta and 

ceramic ITO (In2O3: SnO2, 90:10 wt. %) targets by MPPMS on SS316L coupons and 

silicon wafers.  

Prior to film deposition the substrates were sputter etched in Ar+H2 atmosphere to 

eliminate the oxides on top of SS316L surface. The substrate temperature was 350 

ºC. The Ta film was deposited under the same process parameters employed in 

section 4.2 for pure Ta film development (Table 6.1). ITO film was grown using 

MPPMS 996 pulse shown in Fig 6.3. For comparative purposes, the process and 

pulsing parameters used during Ta and ITO layer deposition are summarized in 

Table 6.3.  
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Pav 

(kW) 
Vp    

(V) 
Ip     

(A) 
Pp 

(kW) 
F 

(Hz) 
Ar 

(sccm) 
O2 

(sccm) 
P 

(Pa) 
Vb   

(V) 
Thickness 

(nm) 

Ta 4 720 85 61.2 150 125 0 0.7 - 50 2600 

ITO 1.5 612 21 13 135 75 3 0.4 0 300 

 

Table 6. 3 Deposition parameters during Ta and ITO layers growth 

 

4.3.2. Ta_ITO film performance in PEMFC environment  
 

The cross-sectional SEM micrograph of Ta_ITO coating is plotted in Fig 6.16. The 

interface between metallic Ta layer and ITO layer on top is clearly observed by a 

color change which is indicated by the red arrow in the image. The ITO growth mode 

clearly follows the well-packed columnar structure of metallic Ta underneath. 

 

 

Fig 6. 16: Cross-sectional micrograph of bi-layer Ta_ITO coating 

 

Interface 
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The Ta_ITO coated SS316L coupons were polarized at 1.4 VSHE during 5 and 180 

minutes in pH 3 electrolyte. The Ta_ITO coating performance is compared with 

metallic Ta film. The evolution of corrosion current with time during polarization at 1.4 

VSHE is monitored and shown in Fig 6.17. Corrosion current of Ta_ITO coating is 

slightly higher than for pure Ta, but remains low and constant around 5 µA cm-2 after 

180 minutes polarization.  

 

Fig 6. 17: Potentiostatic tests at 1.4 VSHE for 180 min in pH 3 electrolyte for metallic Ta and Ta_ITO films  

ICR measurements were taken before and after polarization at 1.4 VSHE during 5 and 

180 minutes at different compaction forces. Fig 6.18 shows the ICR value at 140 N 

cm-2 compaction force (compaction force applied in PEMFC) for Ta and Ta_ITO films 

before and after polarization tests. The deposition of a thin ITO layer on top of metallic 

Ta reduces the ICR from 82 mΩ cm2 to 29 mΩ cm2 after 180 minutes polarization at 

1.4 VSHE, demonstrating the suitability of this approach to somehow prevent the 

formation on non-conductive barrier layer on coating surface. It is true that the DoE 
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target establishes an ICR value of 10 mΩ cm2, but it should be noticed that this 

targeted value corresponds to a measurement taken after 60 minutes polarization at 

0.8 VSHE. It has been previously confirmed that increasing applied potential during 

electrochemical testing, substantially increases the ICR measured after tests. Hence, 

lower ICR value is expected for Ta_ITO film polarized at 0.8VSHE that could meet the 

requirements established by DoE target.  

 

Fig 6. 18: ICR values at 140 N cm-2 measured for Ta and Ta_ITO films before and after polarization tests at 1.4 

VSHE during 5 and 180 minutes 
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4.4. Conclusions  
 

Tantalum based coatings have been evaluated as potential candidates to enhance 

SS316L bipolar plates performance and durability in PEMFC.  

Electrochemical and ICR measurements were performed to study the effect of TaNX 

coating composition (different Ta/N atomic ratio) on corrosion rate and contact 

resistance of TaNx coated SS316L BPP in PEMFC simulated environment. The effect 

of applied potential, pH of the electrolyte and time on TaNx coated SS316L 

performance was also investigated.   

Corrosion currents measured for all TaNx coatings are low (1-10 µA cm-2) for all 

tested conditions. Applied potential and pH of the electrolyte do not alter the excellent 

corrosion resistance of TaNx films even at potentials as high as 1.4 VSHE. Corrosion 

currents measured at 1.4 VSHE for 180 min in pH 3 electrolyte for Ta, TaN_0.25 and 

TaN_0.625 are lower than 1 µA cm-2, satisfying the DOE target for corrosion 

resistance even at such high potentials. Best performance is exhibited from 

TaN_0.25, the film characterized with denser microstructure and hence, lower defect 

content.  

ICR measurements revealed strong influence of testing conditions on all TaNx 

coatings and non-coated SS316L. Overall, ICR considerably increases with 

increasing applied potential and slightly increases with increasing pH. ICRs 

measured after long tests did not show significant rise compared with shorter tests, 

indicating that barrier oxide layer build-up occurs at the beginning of the tests and 

reaches a steady state rapidly. ICR measurements manifested completely different 

behaviours for each TaNx coating. AES analysis showed the difference in both 

composition and thickness of the barrier oxide layer grown on top of TaNx films 

depending on coating composition. Metallic Ta film showed much lower ICR (82 mΩ 
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cm2) than nitride TaNx films (362-538 mΩcm2) after polarization at 1.4 VSHE for 180 

min in pH 3 electrolyte. Composition of barrier oxide films is responsible for this 

behaviour.  When non-metallic/metallic atomic ratio ((N+O)/Ta) in top barrier film is 

above 1, ICR abruptly increases, as observed for nitride TaNx films. (N+O)/Ta atomic 

ratio is below 1 in tantalum oxide grown on metallic Ta surface and hence, such rise 

in ICR is not detected. ICR increase observed for metallic Ta is due to thickening of 

oxide layer. However, neither the metallic Ta can satisfy the DoE targets in terms of 

ICR which is established at 10 mΩ cm2 after 0.8 VSHE polarization during 60 min.  

In order to try to reduce the ICR, the deposition of a conductive indium-tin-oxide (ITO) 

layer on top of metallic Ta to prevent insulating tantalum oxide layer growth during 

polarization is proposed. The ICR measured for this bilayer Ta_ITO film after 

polarization at 1.4 VSHE (180 min) is three times lower than for pure metallic Ta, 

strongly enhancing the performance of Ta_ITO coated SS316L. Moreover, the 

corrosion current of Ta_ITO remains low during polarization at potentials as high as 

1.4 VSHE. To sum it up, the corrosion current and ICR values measured for each 

evaluated coating under different testing conditions are shown in Table 6.4  
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Samples 

Testing conditions Coating properties 

Electrolyte 
pH 

Applied potential 
(VSHE) 

Test duration 
(min) 

Icorr              

(µA cm-2) 
ICR after    
(mΩ cm2) 

SS316L 

3 1 5 ~ 15 47 

3 1.4 5 ~ 11 96 

6 1.4 5 ~ 30 137 

3 1.4 180 ~ 4 278 

Ta  

3 1 5 ~ 5 42 

3 1.4 5 ~ 7 54 

6 1.4 5 ~ 8 63 

3 1.4 180 ~ 1 82 

TaN_0.25 

3 1 5 ~ 3 260 

3 1.4 5 ~ 4 401 

6 1.4 5 ~ 8 418 

3 1.4 180 ~ 0.5 362 

TaN_0.625 

3 1 5 ~ 3 183 

3 1.4 5 ~ 4 339 

6 1.4 5 ~ 8 383 

3 1.4 180 ~ 0.5 364 

TaN_1 

3 1 5 ~ 12 126 

3 1.4 5 ~ 10 248 

6 1.4 5 ~ 15 472 

3 1.4 180 ~ 3 538 

Ta_ITO  
3 1.4 5 ~ 60 15 

3 1.4 180 ~ 5 29 

 

Table 6. 4 Corrosion current and ICR measured for different TaNx and Ta_ITO films in PEMFC 
simulated environment.  
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1. Overall conclusions 
 

The main objective in this work has been the development of high density corrosion-

resistant TaNx thin films by new emerging modulated pulsed power magnetron 

sputtering (MPPMS) technique to be applied for the protection of metallic substrates 

in applications exposed to harsh environments. The in-depth study about TaNx films 

electrochemical performance in different corrosive environments accomplished in 

this thesis, allows a better understanding of this promising and rather unexplored 

material, which has turned into a reliable coating solution to stand up to corrosion 

phenomena. The utilization of MPPMS for the deposition of TaNx has enabled the 

development of columnar-free and low defect microstructure films owing excellent 

corrosion resistance, overcoming the main drawback of conventional dc-sputtered 

films.  

The main conclusion arising from this work is the great importance of TaNx film 

composition and crystal structure on the subsequent type of surface barrier oxide 

layer growth, since this surface layer eventually determines the corrosion resistance 

of the whole film. Additionally, it was found that the microstructure of the films is a 

key feature for the enhancement of electrochemical behaviour of TaNx coatings. 

MPPMS application has allowed the development of improved microstructure TaNx 

films with refined properties.   

In existing literature, there was a lack of information regarding TaN electrochemical 

performance despite of the excellent corrosion resistance and inertness of metal 

tantalum (Ta). This work has demonstrated the potential of TaNx films deposited by 

MPPMS for the protection of metallic substrates in corrosion facing applications. 

MPPMS application for the growth of these films allows the deposition of tailored and 

enhanced TaNx coatings compared to those films grown by conventional DCMS.  
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TaNx film properties are highly dependent on nitrogen content on the film, due to the 

huge complexity of Ta-N system that exhibits many different crystal phases. This 

work presents a detailed study on the influence of nitrogen on TaNx film 

microstructure and properties. TaNx films with nitrogen contents of 0, 10, 25 and 45 

at. % on the film were grown by MPPMS at high deposition rates (~ 20 nm min-1), 

confirming the industrial viability of this technique. Different crystal phases were 

detected depending on TaNx composition that were responsible for the exhibition of 

different properties. It was found that suppression of columnar growth was restricted 

to TaNx films containing 10 at. % of nitrogen (TaN_0.25). TaN_0.625 film (25 at. % 

of nitrogen) exhibited the highest hardness, related to the presence of super-hard 

Ta4N phase. Excellent corrosion resistance in NaCl 0.06 M was observed for TaNx 

coatings containing less than 30 at. % of nitrogen in the film and characterized by the 

presence of α-Ta crystal phase. The extremely stable and impervious tantalum oxide 

layer growth on top of TaNx films was responsible for the outstanding corrosion 

resistance showed by these films. The TaN_1 film, containing 45 at. % of nitrogen, 

did not exhibit such a high corrosion resistance, likely due to the formation of an 

oxynitride tantalum barrier layer instead of greatly protective pure tantalum oxide.  

The second part of the thesis is related to the evaluation of TaNx films for the 

protection of metallic substrate in real applications facing corrosion; i.e. pure titanium 

(Ti-cp) in biomedical implants and SS316L bipolar plates in PEMFC.  

Multilayer and monolayer TaN films were grown on Ti-cp for tribocorrosion resistance 

enhancement. Ti-cp exhibits excellent corrosion resistance but suffers from poor 

mechanical properties that compromise its service lifetime as an implant material. It 

was found that the corrosion resistance in PBS, in the absence of wear processes, 

of uncoated Ti-cp and TaN coated Ti-cp was comparable. TaN films slightly 

increased the Ti-cp corrosion resistance, and all TaN films regardless of 
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microstructure type, exhibited similar polarization values. This comparable 

electrochemical behaviour was due to the same topmost layer in all TaN films which 

gave rise to the formation of similar surface barrier tantalum oxide layer, confirming 

the great importance of this layer in corrosion resistance exhibited by the whole films. 

However, during simultaneous application of corrosion and wear processes, the 

performance enhancement of TaN coated Ti-cp was noticeable. Polarization 

resistance of uncoated Ti-cp during sliding processes was one order of magnitude 

lower than the one shown by TaN coated Ti-cp. Friction coefficient and wear tracks 

measured for Ti-cp were much higher than for TaN coated Ti-cp which led to huge 

differences in total material loss due to tribocorrosion. The benefits of multilayer 

structure in TaN films were not accurately measurable in this study, where all TaN 

films showed comparable performances.  

TaNx films with different nitrogen contents (0, 10, 25, and 45 at. % of nitrogen) were 

grown on SS316L for performance and durability enhancement of BPP in PEMFC 

simulated environment. The corrosion resistance trend previously exhibited by TaNx 

films in NaCl 0.06 M, was reproduced in H2SO4 electrolyte. TaNx films with less than 

30 at. % of nitrogen in the film met the requirements established by DoE targets (icorr 

< 1 µA cm-2, ICR < 10 mΩ cm2 after polarization at 0.8 VSHE during 1 hour) in terms 

of corrosion resistance. TaNx films were stable even up to 1.4 VSHE, guaranteeing an 

adequate corrosion protection of SS316L even during start-up/shut down of PEMFC. 

However, the ICR measurements after polarization were too high for nitride TaNx 

films (~400 mΩ cm2) and high for metallic Ta (82 mΩ cm2). AES analysis revealed 

that even if surface barrier oxide formed was thin, it was sufficient to considerably 

decrease the conductivity of the whole TaN film due to the high dielectric constant of 

tantalum oxide. As an attempt to block the growth of insulating surface tantalum oxide 

layer during polarization, a bi-layer film consisting of tantalum and conductive indium-

tin-oxide (ITO) layers was deposited on SS316L. Corrosion resistance of Ta_ITO film 
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remained low while ICR value after polarization at 1.4 VSHE was 29 mΩ cm2. It can 

be expected that Ta_ITO film would exhibit lower ICR after polarization at 0.8 VSHE, 

reaching the DoE targets of < 10 mΩ cm2 established for 2020. Further and more in-

depth evaluation is needed, but Ta_ITO coating exhibited promising performance for 

the protection of SS316L bipolar plates in PEMFC.  

All the objectives presented in the introduction have been achieved, and this thesis 

has contributed to gain an in-depth knowledge about TaN thin films electrochemical 

performance, which have turned into promising coating candidates for harsh 

environments. MPPMS technique has shown its potential to deposited, at high rates, 

high density microstructure TaNx films owing excellent corrosion resistance.   

 

 2. Future perspectives  
 

The TaNx thin films deposited by MPPMS within this thesis have demonstrated a 

great capacity to protect uncoated metallic substrates from electrochemical 

degradation in several simulated harsh environments. Promising performance is, 

hence, expected when TaNx films are applied to real metallic components in 

investigated applications, but this hypothesis requires a verification under real 

operation conditions and standards.  

The TaNx films should be deposited on real Ti-cp implants in order to analize if the 

TaNx performance is comparable in flat and curved samples. TaNx films show 

promising features for Ti-cp dental implants durability enhancement. However, for 

TaNx films to be considered suitable for commercialization as protective coating in 

dental implants, the following ISO standards need to be fulfilled:  
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 Citotoxicity: ISO 10993-5 

 Biocompatibility: ISO 7405:2008 

 Surface Waste: EN – 1484 Determination of total organic carbon (TOC) 

IK4-Tekniker is currently working with two Spanish companies for the assessment of 

industrial viability and production of TaN based protective films for Ti-cp dental 

implants.  

Additionally, if the benefits of multilayer TaN thin films want to be further analysed, 

higher loads during tribocorrosion testing need to be applied to cause significant 

degradation on TaN films that would facilitate the evaluation and ranking of different 

microstructure films in terms of Ti-cp longer protection.    

Equivalently, TaNx films should be applied on real bipolar plates for PEMFC, since 

these components incorporate gas flow fields to distribute H2 and O2 gases. The 

complete coverage of the bipolar plate surface must be ensured to guarantee a long-

term protection. Furthermore, a more exhaustive study on promising Ta_ITO film has 

to be accomplished. It exhibited promising results both in corrosion resistance and 

ICR measurements, but a more in-depth understanding of Ta_ITO performance is 

essential for a complete assessment of this new coating. For that purpose, ex-situ 

and in-situ tests in PEMFC must be performed before any consideration for 

commercialization.  
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