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Abstract

Facial image analysis has been an important subject of study in the communities

of pattern recognition and computer vision. Facial images contain much information

about the person they belong to: identity, age, gender, ethnicity, expression and many

more. Visual kinship recognition is a new research topic in the scope of facial image

analysis which is essential for many real-world applications (e.g., kinship verifica-

tion, automatic photo management, social-media application, and more). However,

nowadays there exist only a few practical vision systems capable to handle such

tasks. We propose a flexible pipeline composed by modules that assembled together

improve the results obtained individually. Our optimized pipeline is based on deep

feature extraction, feature selection, multi-metric learning and classifier blending.

Our kinship verification system improves state-of-the-art results that do not use ex-

ternal data for the two public databases KinFace-I and KinFace-II.
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1 Introduction

Facial image analysis has been an important subject of study in the communities of pat-
tern recognition and computer vision. Facial images contain much information about the
person they belong to: identity, age, gender, ethnicity, expression and many more. For that
reason, the analysis of facial images has many applications in real world problems such
as face recognition, age estimation, gender classification or facial expression recognition.

Visual kinship recognition is a new research topic in the scope of facial image analysis.
It is essential for many real-world applications (e.g., kinship verification [12] [13] [14],
automatic photo management, social-media applications, and more). However, nowadays
there exist only a few practical vision systems capable to handle such tasks. Hence, vision
technology for kinship-based problems has not matured enough to be applied to real-
world problems. This leads to a concern of unsatisfactory performance when attempted
on real-world datasets.

Kinship verification is to determine pairwise kin relations for a pair of given images. It
can be viewed as a typical binary classification problem, i.e., a face pair is either related
by kinship or it is not [8][15][16][17]. Prior research works have addressed kinship types
for which pre-existing datasets have provided images, annotations and a verification task
protocol. Namely, father-son, father-daughter, mother-son and mother-daughter.

1.1 Objectives

The main objective of this Master work is the study and development of feature selection
and fusion for the problem of family verification from facial images.

To achieve this objective, there is a main tasks that can be addressed: perform a compara-
tive study on face descriptors that include classic descriptors as well as deep descriptors.
The main contributions of this Thesis work are:

1. Studying the state of the art of the problem of family verification in images.

2. Implementing and comparing several criteria that correspond to different face rep-
resentations (Local Binary Patterns (LBP), Histogram Oriented Gradients (HOG),
deep descriptors).
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3. Implementing a processing pipeline that can include feature selection, metric learn-
ing architecture for feature fusion (e.g., the metric used in [18]), Discriminant em-
bedding, and classifier blending.

4. Evaluation of the performance on two public databases: KinFaceW-I and KinFaceW-
II.

1.2 Related work

The kinship verification literature is mostly divided into two main types of approaches:
feature-based and model-based solutions. Feature-based methods extract discriminative
features that represent the original facial images to perform supervised or unsupervised
learning. Model-based methods learn discriminative models to verify kin relationship
from face pairs.

In the sequel, we describe some of the most relevant and recent feature-based methods.
Fang et al. [19] used feature extraction and selection methods. They evaluated a set of
low-level image features for kinship verification problem and used the most discriminative
ones to build a K-Nearest-Neighbors (KNN) classifier. They also evaluated human perfor-
mance on this problem. Zhou et al. [20] proposed a new spatial pyramid learning-based
(SPLE) descriptor for face representation and applied support vector machine (SVM) for
kinship verification. Guo et al. [21] developed a descriptor called DAISY, which was
adapted to the problem of kinship verification from facial images that represented the
salient features. They also developed a dynamic scheme to stochastically combine famil-
ial traits. Zhou et al. [22] presented a Gabor-based Gradient Orientation Pyramid (GGOP)
descriptor representation method for kinship verification from facial images and used dis-
criminative SVMs for classification. Kohli et al. [23] proposed an approach for feature
representation termed as filtered contractive deep belief networks (fcDBN). The proposed
descriptor representation encoded relational information present in images using filters
and contractive regularization penalty. Kohli et al. [24] presented a kinship classifica-
tion algorithm that used the local description of the pre-processed Weber face image as
self-similarity representation. Yan et al. [25] proposed a prototype-based discriminative
feature learning (PDFL) method for kinship verification. They also proposed multiview
PDFL method to learn multiple mid-level features that could characterize better the kin
relation of face images for kinship verification. Lu et al. [26] proposed a compact binary
face descriptor (CBFD) feature learning method for face representation and recognition.
They also proposed a coupled CBFD (C-CBFD) method by reducing the modality gap of
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heterogeneous faces at the descriptor level to make their method applicable to heteroge-
neous face recognition. Lu et al. [27] proposed a discriminative multimanifold analysis
(DMMA) method by learning discriminative features from image patches. Dehghan et al.

[28] proposed an algorithm that fused the features and metrics discovered via gated au-
toencoders with a discriminative neural network layer that learned the optimal features to
delineate parent-offspring relationships. Dibeklioglu et al. [29] proposed a method that
employed facial expression dynamics by using features that described facial dynamics
and spatio-temporal appearance over smile expressions; with the objective of recognizing
kinship by resemblance of facial expressions.

Regarding the most relevant and recent model-based methods: Lu et al. [8] proposed
a new neighborhood repulsed metric learning (NRML) method for kinship verification.
To make better use of multiple descriptors to extract complementary information, they
also proposed a multiview NRML (MNRML) method that sought a common distance
metric that provides a linear projection for the multiple features that can be fused at the
classification level. Yan et al. [15] proposed a new discriminative multimetric learning
method for kinship verification via facial image analysis. They extracted multiple features
using different face descriptors to jointly learn multiple distance metrics. Hu et al. [13]
proposed a new large margin multi-metric learning (LM3L) method for face and kinship
verification in the wild. It jointly learned multiple distance metrics under which the cor-
relations of different feature representations of each sample were maximized. Zhou et al.

[17] proposed a new Ensemble similarity learning (ESL) for this problem. First, a sparse
bilinear similarity function was used to model the relative characteristics encoded in kin
data. Then, ESL learned from kin dataset by generating an ensemble of similarity models
with the aim of achieving strong generalization ability. Xia et al. [14] developed a trans-
fer subspace learning based algorithm in order to reduce the significant differences in the
appearance distributions between children and old parents facial images. They also pro-
posed an algorithm to predict the most likely kin relationships embedded in an image. Xia
et al. [30] proposed an extended transfer subspace learning method aiming at mitigating
the enormous divergence of distributions between children and old parents. The idea was
to utilize an intermediate distribution close to both the source and target distributions to
bridge them and reduce the divergence.

There are different reference databases for the field of kinship verification from facial im-
ages publicly available. Namely, KinFace-I and KinFace-II databases [8], Cornell Kinface
[19] and UB KinFace database [14]. Several authors also proposed their own databases
such as the IIITD kinship database [24], UvA-NEMO Smile[29] or WVU kinship database



[23].
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2 Artificial Neural Networks (ANN)

Artificial Neural Networks are an important technology used to extract features from im-
ages in this proposal. This section describes what Neural Networks are and their applica-
tions, based on the book by Nielsen et al. [1]. The most relevant parts of the book have
been summarized and a few paragraphs extracted as stated in the book. Most of the images
and all the equations have also been taken from the book.

2.1 Perceptrons

So as to understand what a neural network is, the concept of perceptron should be learned.
Perceptrons were developed in the 1950s and 1960s by Frank Rosenblatt, inspired by
earlier work by Warren McCulloch and Walter Pitts.

Perceptron are linear discriminators that take several inputs and produce a single binary
output. Figure 1 shows a perceptron with three inputs (x1, x2 and x3) and the output:

Figure 1: Neuron with three inputs and an output. Figure from [1].

The output is computed by using weights which are real numbers that express the im-
portance of each input for the output. The neuron’s output is determined by the sum of
the multiplication of each input by its weight. If this sum is higher lower or equal to a
specific threshold, the output value is 0 and 1 otherwise. This is formally expressed by the
equation (1)

output =

{
0 if ∑ j w jx j ≤ threshold
1 if ∑ j w jx j > threshold

(1)

This threshold was replaced by the term bias, b ≡ −threshold, resulting in the following
equation (2)
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output =

{
0 if w · x+b≤ 0
1 if w · x+b > 0

(2)

Perceptron networks can be created by assembling perceptrons, see Figure 2.

Figure 2: Perceptron network with three neurons as input, four intermediate neurons and one
neuron as output. Figure from [1].

These networks can be used as binary classifiers to model linear functions or pattern
recognition learning. To do so, learning algorithms are used, which set the network’s
weights and biases so that they outputs the desired result.

The problem with perceptron networks is that when one of their weights changes a little
bit (in training stage), the behavior of the network can change a lot, so it is very difficult
to tweak in order to model a specific behavior. This problem is solved using non-linear
neurons.

2.2 Sigmoid neurons

In sigmoid neuron networks, unlike perceptrons, a small change in any weight of the
network or bias causes a small change in the output of the network. Its scheme is the same
as the perceptron neuron. It has inputs (x1,x2...), weights and an output, see Figure 1.

However, the sigmoid neuron can also output any value between 0 and 1, defined by the
equation (3), where z = w · x+b

σ(z)≡ 1
1+ e−z . (3)
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2.3 Feedforward networks

Feedforward networks are divided in layers (see Figure 3). The left layer is the input
layer, where the input data is fed to the network. The right layer is the output layer, which
contains the output values computed by the network for the input in the input layer. All
the intermediate layers are called hidden layers, which connect the input and the output
layers. Feedforward networks do not have loops, all the information flows forward.

Figure 3: Neural Network formed by the input layer, two hidden layers and the output layer.
Figure from [1].

Feedforward networks with non-linear activation functions that have at least two hidden
layers can model any function or behavior. This is because they can create the universal
approximator if the intermediate layers have enough neurons [31].

2.3.1 Gradient descent and cost function

In order to create the learning algorithm, first the cost or objective function must be de-
fined. This indicates how far the network is to obtain the desired output. One example
cost function is the mean squared error (MSE), defined by the following equation:

C(w,b)≡ 1
2n ∑

x
‖y(x)−a‖2. (4)

w denotes the collection of all weights in the network, b all the biases, n is the total
number of training inputs, a is the vector of outputs from the network when x is input,
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y(x) is the desired vector (regression values or probability distribution) and the sum is
over all training inputs, x.

The aim of the training algorithm is to minimize the cost C(w,b) as a function of weights
and biases. Usually, this cost is minimized using gradient descent algorithms.

The gradient descent algorithm is a general concept for minimizing cost functions. In the
literature of neural network learning, one can use also gradient stochastic descent methods
that is very suited to online learning that uses one training examples or a mini batch of
training examples.

Imagine the cost function as if it were a set of mountains and valleys and the objective
is to find its lowest point, denoted as global minimum. It can be reached by selecting the
best variables setting. See the simplification of only two variables and the cost function
value (height) in Figure 4

Figure 4: Cost function as a valley. v1 and v2 variables are represented as width depth respectively
while C cost is represented by height. Figure from [1].

An initial network starts from any part of the cost function and it should find a minimum.
To do so, the learning algorithm gives a small step in each variable’s value. It behaves as
a ball rolling from a mountain to the lowest point. The way to represent a small move ∆v1

in the v1 direction, and a small move ∆v2 in the v2 direction with regard to cost C is given
by the following equation:
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∆C ≈ ∂C
∂v1

∆v1 +
∂C
∂v2

∆v2. (5)

∆v1 and ∆v2 are chosen to make ∆C negative. The gradient vector of C is given by: ∆v≡
(∆v1,∆v2)

T in equation (6):

∇C ≡
(

∂C
∂v1

,
∂C
∂v2

)T

. (6)

Previous equations allow to define a very important equation (7), which allows to choose
∆v so as to make ∇C negative:

∆C ≈ ∇C ·∆v. (7)

Here, a new concept arises called learning rate. It is the size of the step taken to find the
global minimum, which is defined by the following equation:

∆v =−η∇C, (8)

The final equation that defines the way of moving for the gradient descend is as follows:

v→ v′ = v−η∇C. (9)

All in all, the backpropagation work is to repeatedly compute the gradient ∇C, and then
to move in the opposite direction, "falling down" the slope of the valley.

Returning to the scope of neural networks, the gradient descent method can be applied as
follows: the previously called "position" now has components wk and bl , and the gradient
vector ∇C has corresponding components ∂C/∂wk and ∂C/∂bl . Writing out the gradient
descent update rule in terms of components we obtain
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wk → w′k = wk−η
∂C
∂wk

(10)

bl → b′l = bl−η
∂C
∂bl

. (11)

By repeatedly applying this update rule, the cost function can decrease until, hopefully,
finding a minimum value. This is the way gradient descent method is used to learn a neural
network.

2.3.2 Backpropagation

Backpropagation is the algorithm needed to compute the gradient of the cost function
[32]. In addition to being a fast algorithm to learn neural networks, backpropagation gives
detailed insights about how changing their weights and biases change the overall behavior
of the network. The rest of this section is about how the algorithm works.

The following notation will be used in the rest of the section: wl
jk denotes the weight for

the connection from the kth neuron in the (l−1)th layer to the jth neuron in the lth layer.
See Figure 5

Figure 5: Neural network notation: layers weights and connections. Figure from [1].

Extending the notation, the activation al
j of the jth neuron in the lth layer is related to the

activations in the (l−1)th layer by equation (12)
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al
j = σ

(
∑
k

wl
jkal−1

k +bl
j

)
, (12)

The last expression can be represented in matrix form so that calculus are done faster, in
the following way: wl is defined as a weight matrix for each layer, l. The entries of the
weight matrix are just the weights connecting to the lth layer of neurons, that is, the entry
in the jth row and kth column is wl

jk. Similarly, for each layer l there is a bias vector bl .
The components of the bias vector are the values bl

j, one component for each neuron in
the lth layer. The activation vector al is formed by the activations al

j. σ(v) is defined as
σ(v) j = σ(v j).

The equation (12) can be rewritten in matrix form, see equation (13). It gives a global
view of thinking about how activations of one function relate to the activations in the
previous layer: applying weight matrices to the activations, adding the bias vector and
them applying the σ function

al = σ(wlal−1 +bl). (13)

The goal of backpropagation is to compute the partial derivatives ∂C/∂w and ∂C/∂b of
the cost function C with respect to any weight w or bias b in the network. In our example,
the cost function is given by equation (4).

Two assumptions must be made about the cost function. The first one is that it can be
written as an average C = 1

n ∑xCx over cost functions Cx for individual training examples
x. In the case of quadratic cost function, it can be represented as Cx =

1
2‖y−aL‖2; where

L denotes the final layer of the net. The second assumption made is that the cost can be
written as a function of the outputs from the neural network (see Figure 6)

This way, the quadratic cost function can be written as

C =
1
2
‖y−aL‖2 =

1
2 ∑

j
(y j−aL

j )
2. (14)

Backpropagation is about understanding how changing the weights and biases in a net-
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Figure 6: Cost represented as output of a neural network. Figure from [1].

work changes the cost function. Ultimately, this means computing the partial derivatives
∂C/∂wl

jk and ∂C/∂bl
j. But to compute those, first an intermediate quantity δ l

j , which is
the error in the jth neuron in the lth layer, must be computed.

Backpropagation starts from the last layer and propagates till the first layer recursively.
All in all, backpropagation consists on four equations that can be interpreted using the
notation presented in this section. The equations are the following: (15), (16), (17) and
(18). In order to see their proof and development, consult [1], or this tutorial [33].

δ
L
j =

∂C
∂aL

j
σ
′(zL

j ). (15)

δ
l = ((wl+1)T

δ
l+1)�σ

′(zl), (16)

∂C
∂bl

j
= δ

l
j . (17)

∂C
∂wl

jk
= al−1

k δ
l
j . (18)

In the equation (16), � means element wise product.
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2.3.3 Convolutional Neural Network (CNN)

Convolutional Neural Networks are a type of feed-forward networks. They are biologi-
cally inspired by the animal visual cortex and have applications in image and video recog-
nition, recommender systems and natural language processing. They had a big impact in
those scopes, improving state of the art results [3].

CNNs are designed to recognize visual patterns directly from pixel images with minimal
preprocessing. They can recognize patterns with extreme variability (such as handwrit-
ten characters), and with robustness to distortions and simple geometric transformations.
They work by applying K×K convolutional filters w throughout the image (like a sliding
window), encoding the information of the middle pixel by using values of pixels on its
neighborhood (its surrounding KxK pixels including itself). Figure 7 shows that process
graphically.

Figure 7: Convolution kernel applied pixel-by-pixel to the input image. The yellow squares repre-
sent the neighborhood that, when applied the kernel, create the number 2 of the convolved feature
on the right. The image to be convolved is a binary image (its values are the big values that appear
on all the cells of the image) and the weights of the kernel (appear as x0 or x1 on the yellow cells
but they are also applied to the rest of the image by sliding it through the image) are also binary.
The result of the convolution of the first 4 neighborhoods is recorded on the convolved feature
table, remaining the last 5 neighborhoods. Figure from [2].

Normally, a convolutional layer consists of a linear convolution followed by a non-linear
activation function (such as sigmoid or Rectified Linear Unit (ReLU), which is one of
the most used because solves the problem of the vanishing gradient while using back-
propagation) and a max-pooling; which selects the biggest intensity value of small pixel
neighborhoods, thus reducing the size of the filters output. Normally, after several con-
volutional layers, fully connected layers are applied. When performing classification, the
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last fully connected layer can be a softmax, making the output of the network represent
the probability of each class (because the sum of network’s output values is 1). Figure 8
shows a typical CNN architecture.

Figure 8: Lenet CNN architecture. Figure from [3].

2.3.4 Deep learning

Deep learning is the name given to the neural networks with more than 3 hidden layers.
Currently it is a very powerful tool to accomplish state-of-the-art results in many fields.
Thanks to Graphical Processing Units (GPUs), programs that split the data and use this
components obtain a good way to train complex neural networks.

The advantage of deep learning is that, even if a neural network can be the universal
approximator using only two hidden layers, adding more hidden layers can result in less
neurons and time to process and train.

3 Face descriptors

This section will briefly describe some image descriptors that are very often used for
extracting face features. We present two traditional hand-crafted descriptors: LBP and
HOG. However, as recently handcrafted approaches have been outperformed by the last
generation of Convolutional Neural Networks, we also present the two networks we used:
VGG-Face and VGG-F. These pre-trained networks provide deep descriptors that can later
be used for classification.
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3.1 Local Binary Patterns (LBP)

Local Binary Patterns (LBP) [34], [4] is a descriptor that has been widely used in image
processing for texture and face analysis. Its main advantage is that it is robust against
monotonic gray-scale changes, so it is robust against illumination variations. Moreover, it
is computationally simple, what makes it suitable for real-time image processing.

This descriptor works on gray images. It divides an image into several small regions
(neighborhoods of pixels) from which the features are extracted. For each neighborhood,
the central pixel is encoded by comparing its value to the value of its neighbors, creating a
binary cell that contains 0 in the places were it is smaller and 1 otherwise. Figure 9 shows
the steps to extract LBP descriptor from an image.

Figure 9: LBP traditional descriptor scheme. From left to right: input image from which LBP is
extracted; 3x3 pixel window of the input image; intensity values of those pixels (usually between 0
and 255); image obtained by applying the threshold (assigning 1 to the pixels that have an intensity
value equal to or larger than the pixel in the middle and 0 otherwise); decimal value of the last
picture encoded in binary and transformed to decimal (in the case of these pixels it indicates that
their LBP value is 203). Figure from [4].

Those binary cells represent the LBP descriptor for their neighborhood, so by concatenat-
ing these features for all the neighbors of the image, the final LBP descriptor representa-
tion is obtained. LBPs is the histogram of the generated codes over the image.

3.2 Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients (HOG) [5] is a descriptor that has been widely used
in image processing for object detection and recognition. Its main advantage is that it
invariant to geometric and photometric transformations although vulnerable to object ori-
entation.

This descriptor works on gray images. It divides an image into several small overlapping
regions (neighborhoods of pixels) from which the features are extracted. For each neigh-
borhood, the centered horizontal and vertical gradients are computed, together with their
orientation and magnitude. These are the data that will represent each cell as an histogram,
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so they are calculated all over the image and concatenated to form the HOG descriptor
representation of the image. See Figure 10

Figure 10: HOG traditional descriptor scheme. The left image contains a picture of a person which
is aimed to be detected. The center picture is the computed rectangular HOG (R-HOG, one of the
two main block geometries for computing the HOG image descriptor) descriptor of the left picture.
The right picture is the R-HOG descriptor weighted by respectively the positive and the negative
SVM weights presented in the paper [5], which is the original source of the picture.

3.3 VGG-Face descriptors

This pre-trained deep Convolutional Neural Network provides descriptors specifically
trained for face recognition [6].

The architecture of the network is formed by 11 blocks, each containing a linear operator
followed by one or more non-linearities such as ReLU and max pooling (see Figure 11).
The first 8 such blocks are linear convolutional, while the last 3 are fully connected with
ReLU activation function. The input image is RGB and its size is 224× 224 pixels. The
first 2 fully connected layers contain 4,096 neurons and the last one reduces the dimen-
sionality to 2,622 (number of classes of the training dataset). The network was trained
in 2.6M images. The data was further augmented by flipping the image left to right with
50% probability, but did not perform any color channel augmentation.

The hyperparameter setting that was used to train this network is the following: optimiza-
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Figure 11: VGG-Face architecture. Figure from [6].

tion is by stochastic gradient descent using mini-batches of 64 samples and momentum
coefficient of 0.9; dropout of 0.5 after the first two fully connected layers and weight de-
cay of 5 ·10−4; initial learning rate 10−2, which is decreased by a factor of 10, when the
validation error stopped decreasing. The layers were initialized from a Gaussian distribu-
tion with a zero mean and variance equal to 10−2. Biases were initialized to zero.

In order to use this network we removed the last layer, which performed dimensionality
reduction for classification of the training dataset, thus obtaining a 4,096 dimension fea-
ture vector. We also had to resize the input images of the database to have the required
224×224 dimensions.

3.4 ImageNet VGG-F descriptor

This pre-trained deep Convolutional Neural Network provides a descriptor specifically
trained for image recognition and object detection [7]. The architecture of the network
is formed by 8 learnable layers: 5 convolutional and the last 3 fully connected (see Fig-
ure 12). The input image is RGB and its size is 224× 224 pixels. The first 2 fully con-
nected layers contain 4,096 neurons and the last one reduces the dimensionality to 1000
(number of classes of the training dataset). The network was trained on the ILSVRC-2012
database. Data augmentation was applied in the form of random crops, horizontal flips,
and RGB color jittering.

Figure 12: VGG-F architecture. Figure from [7].

The hyperparameter setting that was used to train this network is the following: momen-



32 TABLE INDEX

tum 0.9; weight decay 5 ·10−4; initial learning rate 10−2, which is decreased by a factor
of 10, when the validation error stopped decreasing. The layers were initialized from a
Gaussian distribution with a zero mean and variance equal to 10−2.

In order to use this network we removed the last layer, which performed dimensionality
reduction for classification of the training dataset, thus obtaining a 4,096 dimension fea-
ture vector. We also had to resize the input images of the database to have the required
224×224 dimension.

4 Feature processing

This section explains the tested feature processing techniques. Some of them are super-
vised and others unsupervised.

4.1 Feature selection

Feature selection techniques have been used to reduce the dimensionality of the feature
vectors while maintaining the relevant information, with the objective of improving clas-
sification performance. The tested feature selection techniques are explained in the fol-
lowing list:

• Variance selection: this technique consists on analyzing the variance of all the fea-
tures and removing the ones that are bellow a set threshold. The reason why this
method should work is that it removes the variables that hardly change, so not only
they insert noise in the feature vector but they also do not give information about
the class. It is an unsupervised technique because it does not take into account the
class information in its process.

• Fisher score equation 19[35] (concatenated pair): first, feature vector of each pair
(formed by a parent and a child) must be concatenated, creating a new feature vec-
tor that represents the pairs. This concatenated feature vector is used to calculate the
Fisher score, using each pair’s class. To calculate the score of each descriptor, we
have used the function spider_wrapper of the framework Feature Selection Library,
specifying fisher as feature selection method. Then, the descriptors are ranked using
the score from highest to lowest. This feature selection method has a parameter to
configure how much percentage it must crop the original feature vector. Using the
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ranking of the descriptors and relating it to the parents and children (before merg-
ing) descriptors, each member of the pairs selects its best percentage of descriptors.
These will be the descriptors selected for the final feature vector. This is a super-
vised technique because it takes into account the class of each pair in the calculation
of the score. For family verification problem, we have two classes: related, and not
related.

• Fisher score (subtracted pair): first, the feature vectors of each pair (formed by a
parent and a child) must be merged, creating a new feature vector that represents the
pairs. In order to perform merging, the absolute value of the subtraction of the pair
is calculated. Then, the merged feature vector is used to calculate its Fisher score,
using each pair’s class. To calculate the score of each descriptor, we have used the
function spider_wrapper of the framework Feature Selection Library, specifying
fisher as feature selection method. Then, the descriptors are ranked using the score
from highest to lowest. This feature selection method has a parameter to configure
how much percentage it must crop the original feature vector. Using the ranking of
the descriptors, the best percentage of descriptors are selected for the final feature
vector. This is a supervised technique because it takes into account the class of each
pair in the calculation of the score.

• Fisher score center and subtraction: this procedure is the same as the previous but
before calculating the score, the feature is rescaled: centered by subtracting its mean
and divided by its standard deviation.

fi =
|µi,1−µi,2|2

σ2
i,1 +σ2

i,2
(19)

where µi,1 and σ2
i,1 refer to the mean and variance respectively of the ith feature of class

one (i.e. positive) and µi,2 and σ2
i,2 represent the same for class two (i.e. negative).

4.2 Feature projection

Feature projection techniques have been used to project the extracted features to a new
space in which intra-class distance is minimized while maximizing inter-class distance,
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therefore facilitating the classification task. The tested feature projection techniques are
explained in the following list:

• Principal Component Analysis (PCA)[36] is an unsupervised feature extraction
method, useful when the dataset has redundancy. It generates principal components
from the input data, maximizing its variance and compacting the information in less
variables. These components are obtained by computing the eigenvectors that have
highest eigenvalues of data’s correlation matrix.

• Neighborhood Repulsed Metric Learning (NRML) [8]. This neighborhood separa-
tion metric for kinship verification is motivated by the fact that, interclass samples
(without a kinship relationship) with higher similarity usually lie in a neighborhood
and are more easily misclassified than those with lower similarity. This metric aims
to learn a distance metric under which the intraclass samples (with a kinship rela-
tion) are pulled as close as possible and interclass samples lying in a neighborhood
are repulsed and pushed away as far as possible simultaneously, as shown in Figure
13. This way, more discriminative information can be exploited for verification.

Figure 13: NRML neighborhood projection. (a) The original face images with/without kinship
relations in the high-dimensional feature space. The samples in the left denote face images of
parents, and those in the right denote face images of children, respectively. Given one pair of
face images with kinship relation (denoted as circles), the triangles and squares denote face sam-
ples in the neighborhood and non-neighborhood, respectively. They aim to learn a distance metric
such that facial images with kinship relations are projected as close as possible and those without
kinship relations in the neighborhoods are pushed away as far as possible. (b) The expected distri-
butions of face images in the learned metric space, where the similarity of the circle pair (with a
kinship relation) is increased and those of the circle and triangle pairs are decreased, respectively.
Figure from [8].

• Multiview Neighborhood Repulsed Metric Learning (MNRML)[8]. This multiview
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metric makes better use of multiple descriptors to extract complementary infor-
mation, based on NRML. It seeks a common distance metric to perform multiple
feature fusion, so as to improve the kinship verification performance.

• Linear Discriminant Embedding (LDE) [37]. The objective of this projection is to
estimate a linear mapping that simultaneously maximizes the local margin between
heterogeneous samples and pushes the homogeneous samples closer to each other.
The expected effect of LDE framework on data is shown in Figure 14.

Figure 14: LDE Neighborhood. Figure from [9]: (a) Center point has three neighbors. The points
with the same color and shape belong to the same class. The within-class graph connects nearby
points with the same label. The between-class graph connects nearby points with different labels.
(b) After LDE, the local margins between different classes are maximized, and the distances be-
tween local homogeneous samples are minimized. (a) Original space. (b) Expected mapped space
using LDE

.

5 Classification

The objective of this thesis is to create a method that detects whether two images have a
kinship relationship or not. In order to tackle this classification problem, two methods are
proposed: cosine similarity and support vector machines.

5.1 Cosine similarity

Cosine similarity is a measure of similarity between two non-zero vectors. It is repre-
sented by the following equation
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cosθ =
~vp ·~vc∥∥vp
∥∥‖vc‖

(20)

where vp represents the feature vector of parent for a pair and vc represents the child of
that pair.

We have used this metric to see how far the representation of the individuals (parent and
child) are of each pair by each feature. Its value tends to 1 when vp and vc are similar and
0 when they are not similar. The best features should be the ones that have a value near 1
when the individuals of the pair belong to the positive class and near 0 if they belong to
the negative class.

The cosine similarity value has been used to calculate ROC plots. Different threshold val-
ues (from 0 to 1) have been used to set the point at which pairs with values below or equal
to the threshold belong to the negative class and pairs with values above belong to the
positive class. Once each pair is assigned to a class, the number of Positive (P), Nega-
tive (N), True Positive (TP, number of positive pairs that have been classified as positive),
True Negative (TN, number of negative pairs that have been classified as negative), False
Positive (FP, number of negative pairs that have been classified as positive: FP = N-TN)
and False Negative (FN, number of positive pairs that have been classified as negative: FN
= P-TP) are counted. These values are used to calculate the True Positive Rate (TPR) 21
and False Positive Rate (FPR) 22, which are used to construct the Receiver Operating
Characteristic (ROC) curve plot:

T PR =
T P

T P+FN
(21)

FPR =
FP

FP+T N
(22)

5.2 Support Vector Machine (SVM)

Support Vector Machine (SVM)[38] is a supervised machine learning method used for
classification and regression. We are going to explain its use for classification as that is
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what we have used it for.

SVMs are binary classifiers which consist on creating an hyperplane that separates the
instances of the positive and negative classes. They are used to assign a class to unlabeled
instances, regarding their position to the hyperplane. See Figure 15

Figure 15: SVM scheme. Each dot indicates an instance and its color (green or blue) its class. The
thick line that separates instances of the two classes is the SVM’s hyperplane. The margin is the
distance between the hyperplane and the nearest instance of either class. Figure from [10].

SVMs can have many different kernels. The most basic one is the linear one, which creates
a straight hyperplane to separate the classes. The kernel that we have used has been the
Gaussian kernel because it is a non lineal kernel, so it can model non linear data (this way
we do not assume any behavior about our datasets).

In order to create a super-classifier that holds all the SVMs (one per feature), we blended
their scores; which indicate the distance of each instance to the hyperplanes. It is in range
(−∞,∞), while its sign indicates the class to which it is assigned. The blending works
as follows: in order to classify a new instance all the SVMs’ scores are multiplied by a
factor (that together sum one) and then all those values are summed. The sign of the sum
indicates the class that the super-classifier indicates for that instance.

6 Proposed approach

This section describes the proposed pipeline after performing many experiments to find
the architecture that obtains the best classification results by combining components that
individually improve it. Figure 16 shows an overview of the structure of our approach.
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The following lines describe the behavior of the pipeline while giving details of its compo-
nents. They go through the pipeline from the input images until obtaining their predicted
class.

1. Image pair: each classification instance is formed by a pair of parent and child; this
being the input of the pipeline. Each individual data is a 64x64 pixel image that
contains the person’s face.

2. Feature extraction: this part consists in extracting the most relevant information of
the input images, representing it in features. In Figure 16, only deep features appear
so that it is easier to follow, although many more features can be added following
the established order.

3. Fisher feature selection: in order to remove irrelevant and noisy descriptors that do
not contain information about the class, only relevant descriptors are chosen and
the rest are removed. Different feature selection techniques have been tested and
Fisher feature selection has been the one that provided the best results. It needs a
training set of positive and negative pairs in order to rank the descriptors. First, the
feature vectors of each pair must be merged (performing the absolute value of the
subtraction). Once having the ranking, only the best (feature_selection) part of each
feature is maintained.

4. PCA projection selection: it compacts its input data in less descriptors, thus reduc-
ing its dimensionality to PCA_dim_size.

5. MNRML projection: projects all the input features to a space in which the pairs that
are not similar but related are pulled together and the ones that are similar but not
related are pushed away. This projection works on the feature vectors of each pair.

6. Pair merging per feature: each pair’s feature vector is calculated by performing the
absolute value of the subtraction of the same feature for its individuals.

7. LDE projection: this projection also tries to pull together the instances that belong to
the same class and push away the ones that belong to different class. This projection
works on the pairs’ merged feature vectors.

8. SVM classification per descriptor: each descriptor has its own SVM classifier that
produces a score, whose sign indicates the assigned class.
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9. SVMs blending: it combines all descriptor SVM classifiers into one. It merges the
prediction of all the SVMs (there is one SVM per descriptor) by weighting them
regarding their performance. To do so, the score of each individual SVM is mul-
tiplied by its coefficient computed by the MNRML technique (which indicates the
relevance of that SVM comparing to the rest. Their sum is 1) and summed with
the result of this calculus of all SVMs. The result is a number between −∞ and ∞,
which is converted into predicted class (0 if the number is negative or 0, or class 1
otherwise) per each instance.

It worthy to mention that at the training phase, computing PCA and MNRML re-
quires a set of positive pairs only. However, Fisher selection, LDE, and SVM re-
quires positive and negative pairs.

7 Experimental setup

Our study concerns two hand-crafted descriptors and two deep descriptors. The deep de-
scriptors were obtained by pre-trained CNNs. ImageNet VGG-F was trained on images
of objects for the purpose of image categorization, while ImageNet VGG-Face for face
identification (VGG-Face). With regards to descriptor sizes, the LBP has 243, HOG has
468, and the deep features 4,096.

In order to extract VGG-Face and VGG-F deep descriptors, we have used MatConvNet,
which is a Matlab Toolbox for implementing Convolutional Neural Networks for com-
puter vision applications; we downloaded the pre-trained networks. For feature selection,
we used Matlab’s Feature Selection Library [39] [40] or own implementations.

7.1 Datasets

In our study, we have used the public database called Kinship Face in the Wild (Kin-
FaceW), which contains unconstrained face images collected for studying the problem of
kinship verification. It is composed of two datasets: KinFaceW-I and KinFaceW-II. They
contain images of parents and children, together with metadata that specifies the pairs
association and the class (whether there is a kinship relation between a pair of images or
not).

The data is split in 5 folds so as to provide a testing framework that allows direct compar-
ison between different approaches. There are four representative types of kin relations:



7.2 Search of best configuration 41

Father-Son (F-S), Father-Daughter (F-D), Mother-Son (M-S) and Mother-Daughter (M-
D), respectively.

As explained in the official website [11], face images are collected from the Internet,
including some public face images as well as their parents’ or children’s face images.
Face images are captured under uncontrolled environments in the two datasets with no
restriction in terms of pose, lighting, background, expression, age, ethnicity, and partial
occlusion. All the images have been cropped to the face size, aligned and resized to 64×
64 pixels.

The difference of KinFaceW-I and KinFaceW-II is that face images with a kin relation
were acquired from different photos in KinFaceW-I and the same photo in KinFaceW-II
in most cases. Moreover, the number of data available for each database is also different.
In the KinFaceW-I dataset, there are 156, 134, 116, and 127 pairs of kinship images
for the four relations: (F-S), (F-D), (M-S) and (M-D) respectively. For the KinFaceW-
II dataset, each relation contains 250 pairs of kinship images. Figure 17 shows several
relation images of both databases.

Figure 17: Aligned and cropped examples of KinFaceW-I (left) and KinFaceW-II (right) datasets.
From top to bottom are the F-S, F-D, M-S and M-D kinship relations, and the neighboring two
images in each row are with the kinship relation, respectively. Figure from [11].

These datasets are available online [11].

7.2 Search of best configuration

This section is about the most relevant experiments performed to find the best results
achieved by this master thesis. As baseline, the accuracy of each descriptor is measured
using only a SVM per descriptor (see table 1). In principle, the pipeline should always
improve the best results shown in that table.
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Table 1: Individual descriptor performance. Baseline results for each image descriptor classified
by Gaussian SVM on KinFace-I and KinFace-II databases. Accuracies are shown as a percentage.
Best results are shown in bold.

Database Descriptor Accuracy
F-D

Accuracy
F-S

Accuracy
M-D

Accuracy
M-S

Accuracy
mean

KinFace-I

VGG-Face 57.09 61.22 62.99 59.05 62.44
VGG-F 61.19 69.55 75.98 67.67 66.85

LBP 60.82 58.33 58.27 59.05 59.12
HOG 62.31 70.51 63.39 60.78 64.24

KinFace-II

VGG-Face 58.60 56.60 61.40 57.60 58.55
VGG-F 74.60 76.20 80.60 78.00 77.35

LBP 64.00 61.60 61.40 61.00 62.00
HOG 66.20 70.00 64.40 69.80 67.60

Table 1 shows that VGG-F is the best image descriptor individually and HOG performed
better than VGG-Face but worse than VGG-F.

In order to set the best configuration of LBP descriptor for this problem, we have based
out configuration on Huerta et al. [41]; where authors found the best settings per each
image size for facial age estimation. In our case, images are of size 64×64 pixels, so we
followed the paper parameters that represent the nearest dimensions: 50×50 pixels. The
resulting parameters have been number of sampling points 16; radius 4 and uniform mode
for the two datasets.

In order to set the best configuration of HOG descriptor for this problem, we have again
followed the strategy of Huerta et al. [41]; where authors found the best settings per each
image size for facial age estimation. The images of this problem are of size 64× 64,
so we have chosen the parameters that represent the nearest dimensions: 50× 50. The
resulting parameters have been cell size of 15×15; number of bins 13 for the two datasets.
The methodology followed in the search of the best configuration for the pipeline has
been the following: every component is set as it is and only one of its components is
added/modified at a time. Then, the results for the new setting are computed and compared
with the best previous results. Experimentation continues from the setting that obtained
the best results. The majority of the experiments were performed in the database KinFace-
I because most of the proposals perform worse on this than in KinFace-II. Moreover, using
the same dataset allows comparison among the results of different configurations. Table 2
shows different settings of the pipeline and the best configuration found in bold.
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Table 3: Deep vs deep+traditional descriptors with the best known architecture to see which per-
forms best in databases KinFace-I and KinFace-II. Accuracies are shown as a percentage. Best
results are shown in bold.

Database Descriptors Accuracy
F-D

Accuracy
F-S

Accuracy
M-D

Accuracy
M-S

Accuracy
mean

KinFace-I

VGG-Face +
VGG-F

79.48 84.62 86.61 87.07 84.44

VGG-Face +
VGG-F +

LBP + HOG
72.39 79.17 80.71 81.47 78.43

KinFace-II

VGG-Face +
VGG-F

82.40 86.80 89.00 87.40 86.40

VGG-Face +
VGG-F +

LBP + HOG
77.20 84.40 85.80 84.00 82.85

In table 2 only deep descriptors were used because previous experiments had shown that
deep descriptors alone obtained better results than deep+traditional descriptors combined
(see section 11 for details). In order to confirm that statement, the best configuration found
was tried with both descriptor combinations (see table3).

Table 3 shows that the fusion of VGG-Face and VGG-F descriptors obtains better results
than any descriptor individually. It also shows that only deep descriptors obtain better
results than using deep and traditional descriptors.

8 Results

The best configuration obtained in the previous section is compared against the state-of-
the-art results for KinFace-I and KinFace-II databases (see table 4).

Table 4: Results of the proposed architecture compared against state-of-the-art approaches on
databases KinFace-I and KinFace-II. The symbol * represents that the approach takes outside data
for training. Accuracy is shown as a percentage. Best results without using external data are shown
in bold.

Year Authors Algorithm Database Accuracy

2014

Lu et al. [8]
Multiview neighborhood repulsed
metric learning

KinFace-I 69.90
KinFace-II 76.50

Yan et al. [15]
Discriminative multimetric
learning

KinFace-I 72.00
KinFace-II 78.00
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Table 4: Results of the proposed architecture compared against state-of-the-art approaches on
databases KinFace-I and KinFace-II. The symbol * represents that the approach takes outside data
for training. Accuracy is shown as a percentage. Best results without using external data are shown
in bold.

Year Authors Algorithm Database Accuracy
Dehghan et al.
[28]

Discrimination via gated
autoencoders

KinFace-I 74.50
KinFace-II 82.20

2015

Yan et al. [25]
Prototype discriminative feature
learning

KinFace-I 70.10
KinFace-II 77.00

Liu et al. [42]
Inheritable Fisher Vector Feature
based kinship

KinFace-I 73.45
KinFace-II 81.60

Alirezazadeh et
al. [43]

Genetic Algorithm for feature
selection for kinship

KinFace-I 81.30
KinFace-II 86.15

2016

Zhou et al. [17] Ensenble similarity learning
KinFace-I 78.60
KinFace-II 75.70

Qin et al. [44]
Kinship verification via multi-view
multi-task learning

KinFace-I 73.70
KinFace-II 77.20

Liu et al. [45]
Inheritable Color Space with
Application to Kinship Verification

KinFace-I 77.85
KinFace-II 81.40

Puthenputhussery
et al. [46]

SIFT flow based genetic fisher
vector feature kinship verification

KinFace-I 76.09
KinFace-II 85.65

Li et al. [47]
Similarity Metric Based CNN for
kinship verification

KinFace-I 72.72
KinFace-II 79.25

Fang et al. [48]
Sparse Similarity Metric Learning
for Kinship Verification

KinFace-I 79.55
KinFace-II 80.15

Zhou et al. [49]
Kinship verification from by
scalable similarity fusion

KinFace-I 78.00
KinFace-II 75.90

Lan et al. [50]
Quaternion-Michelson descriptor
for color image classification

KinFace-I 71.00
KinFace-II 75.30

2017

Lan et al. [51]
Quaternionic Weber local
descriptor of color images

KinFace-I 73.60
KinFace-II 76.60

Yan et al. [52]
Neighborhood repulsed correlation
metric learning for Kinship Ver.

KinFace-I 65.50
KinFace-II 77.90

Kohli et al. [23]
Hierarchical Representation
Learning for Kinship Verification

KinFace-I 96.10*
KinFace-II 96.20*

Kumar et al. [53]
Harmonic Rule for Measuring the
Facial Similarities among Relatives

KinFace-I 80.60



Table 4: Results of the proposed architecture compared against state-of-the-art approaches on
databases KinFace-I and KinFace-II. The symbol * represents that the approach takes outside data
for training. Accuracy is shown as a percentage. Best results without using external data are shown
in bold.

Year Authors Algorithm Database Accuracy
KinFace-II 84.40

Serradilla et al. Proposed approach
KinFace-I 84.38
KinFace-II 86.40

The pipeline configuration that obtains the best results is now analyzed. First, the confu-
sion matrix has been processed for all the pairs of the two databases (see table 5).

Finally, the elapsed time for the best configuration is measured. The experiments have
been run in a 16GB RAM intel core i3-6100 2cores-4threads 3.7GHz CPU computer. The
train and test times are recorded in table 6.

Figures 18 and 19 show pictures of testing examples in which the proposed approach
predicts the class correctly and examples in which it does not.
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Table 5: Confusion matrices for the best pipeline configuration for all kinship relationships in
KinFace-I and KinFace-II databases.

Database Pair TP FP
FN TN

KinFace-I

F-D
108 26
28 106

F-S
129 27
23 133

M-D
109 18
16 111

M-S
102 14
16 100

Database Pair TP FP
FN TN

KinFace-II

F-D
204 46
43 207

F-S
224 26
40 210

M-D
223 27
28 222

M-S
220 30
32 218

Table 6: Test and train elapsed time for the best configuration. The train time is calculated for
214 parent-child pair images while the test time is calculated only for one pair image on average.
Numbers’ measure is milliseconds (ms).

Task Train Test
Deep features extraction 73209.4 342.1
Fisher feature selection 4 < 0.1

PCA projection 0.3 < 0.1
MNRML projection 20 < 0.1

Pair merging < 0.1 < 0.1
Classification (SVMs + blending) < 0.1 < 0.1

Subtotal no deep descriptors extraction 24.3 ≈ 0.2
Total 73233.7 342.3



Figure 18: KinFace-I pipeline’s classification results. Here we show correctly and incorrectly
classified pairs, ordered by kinship relation. The number below each image indicates the ID of the
pair in the database.
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Figure 19: KinFace-II results pictures. We show here correctly and incorrectly classified pairs,
ordered by kinship relation. The number below each image indicates the ID of the pair in the
database.

9 Conclusions

This report proposes a pipeline for kinship verification, formed by components that indi-
vidually improve the accuracy and together reach the best results of the state on the art on
KinFace-I and KinFace-II databases that do not use additional data.

For SVM classification, the best pair merging method found for these databases has been
the absolute value of the subtraction of the individuals. The same value divided by the
sum of the individuals metric does not work well because the values of the vector are very
small for the classifiers to perform well. Concatenation of the individuals does not work
well either.

Fisher feature selection has been the only one found that improves the classification re-
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sults. Variance feature selection did not improve them.

PCA dimension has much influence in the final accuracy, that is why almost all the exper-
iments try different PCA dimensions to choose the best one for each setting.

MNRML projection has shown to be a good way for improving the performance of the
descriptors that work well individually, improving the results of any individual descriptor.

LDE does not improve the accuracy in this problem probably because its input data is
very discriminated by the previous two projections, so this new projection is not able to
separate the data even more.

SVM with Gaussian kernel has been the best classifier found and is also very common
in the state-of-the-art approaches. This is because it is a classifier that is easy to com-
pute, performs well with big number of descriptors and gets good classification results in
general.

The SVMs blending technique using its score (weighing the distance from the hyperplane)
has been successful.

Adding traditional descriptors (LBP and HOG) worsen the results obtained by the deep
descriptors. Possibly, the MNRML considers them with large contribution so they deteri-
orate the significance of deep descriptors.

10 Future Lines

Despite having performed more than 50 experiments and achieved state-of-the-art results,
we think that there is still room for improvement in the pipeline’s accuracy.

The most direct way to improve the pipeline is tweaking the parameters of the current
structure. Until now, only exhaustive search has been done for several ranges and values.
Using a genetic algorithm for parameters setting could be a good choice to find the best
setting in feasible time.

Feature selection can adopt a wrapper technique that use the entire pipeline in order to
select the best input features.

We could also try feeding the pipeline with the descriptors used in [23] to see if the results
can be improved.

Changing the VGG-F descriptor by VGG-M and VGG-S descriptors could improve the
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results of the current pipeline, since they seem to perform better [7]. Moreover, other
pre-trained CNNs could also be tested.

Another option would be creating a new ANN similar to VGG-Face and VGG-F but
with two input images instead of one, creating a NN designed and trained specifically
for kinship verification problem. Its final layers should be fully connected to perform
classification and the last layer only containing two neurons as output, so that the network
directly outputs the probability of input images having kinship relationship.

Changing the way SVM’s blending method. Maybe using a majority voting algorithm
could improve the performance of the pipeline (i.e Adaboost).
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11 Appendix

The code is available on GitHub in the following link so that anyone can replicate the
results of this work: https://github.com/oserradilla/KinVer

As appendix there is another document available that shows the development of the
project step-by-step, recording all the secondary results. These have been relevant to dis-
cover which components and descriptors are important, guide the thesis and reach the
primary results.

https://github.com/oserradilla/KinVer
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