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Resumen 

La industria de la televisión (TV) ha experimentado grandes cambios 

durante las últimas dos décadas. El hecho de que las expectativas de los 

espectadores son cada vez mayores (mayor calidad de imagen y más entornos de 

recepción) y el espectro disponible para los servicios de TV se ha reducido 

drásticamente debido al dividendo digital, ha provocado la aparición de nuevos 

desafíos a los que deben responder los nuevos sistemas de Televisión Digital 

Terrestre (TDT), que deben ser cada vez más robustos. 

El primer intento de dar respuesta a estos nuevos requisitos es el estándar 

europeo de nueva generación DVB-T2, publicado en 2009. La publicación de 

un nuevo estándar de TDT lleva consigo el inicio de un proceso completo de 

evaluación de su rendimiento antes de su comercialización. Al inicio de esta 

tesis, este proceso estaba prácticamente terminado para la recepción fija y móvil 

de DVB-T2; sin embargo, los escenarios de interiores aún no se habían 

estudiado en detalle. Por esta razón, esta tesis ha completado la evaluación de 

rendimiento del estándar DVB-T2 mediante el análisis de su recepción en 

interiores. Además, se ha definido una nueva metodología de evaluación de 

rendimiento optimizada para este tipo de escenarios. 

A pesar de que las tecnologías utilizadas en DVB-T2 eran lo más avanzado 

en su momento, el sistema se definió hace casi diez años y durante el desarrollo 

de la tesis han aparecido nuevas técnicas avanzadas, como por ejemplo, nuevos 

códigos de corrección de errores o la nueva técnica de multiplexación por 

división en capas (LDM). Al igual que en el caso de DVB-T2, aún no se ha 

estudiado en detalle el rendimiento de estas nuevas técnicas en entornos de 

interior. Por ello, esta tesis incluye el análisis de rendimiento de estas nuevas 

técnicas para determinar su idoneidad para mejorar el sistema de DVB-T2 en 

escenarios de interior. Además, se ha probado que los algoritmos tradicionales 

implementados en los receptores de TDT no están optimizados para la nueva 

situación en la que se consideran señales multicapa y escenarios móviles. Por 

esta razón, se han propuesto modificaciones a los algoritmos existentes para 

mejorar el rendimiento de la recepción de TDT. 

El último intento de hacer frente a los altos requerimientos para los 

nuevos sistemas de TDT, ha sido el estándar americano de nueva generación 

ATSC 3.0, finalmente aprobado en 2016. Igual que en el resto de sistemas de 

TDT, también es necesario un proceso completo de evaluación del rendimiento 

del sistema. Por ello se han realizado algunos de los primeros estudios del 

rendimiento de ATSC 3.0 en base a simulaciones por ordenador y pruebas de 



 

laboratorio en diferentes escenarios. 

Como resultado de todos estos estudios, se ha probado la viabilidad de 

ofrecer servicios de alta calidad en escenarios muy desafiantes para los sistemas 

DVB-T2 y ATSC 3.0, así como para algunas nuevas técnicas desarrolladas entre 

ambos procesos de estandarización. Para ello, se han obtenido los valores de de 

relación señal a ruido umbral (SNR) en diferentes escenarios de recepción. Estos 

resultados muestran el rendimiento de los sistemas en diferentes condiciones, lo 

cual es útil para la planificación de redes de TDT. 

Todo este trabajo de investigación se ha difundido en una conferencia 

nacional y varias conferencias y revistas internacionales. 

  



 

Laburpena 

Telebista industriak aldaketa nabari jasan ditu azkenengo bi hamarkadetan. 

Ikuslegoaren itxaropenak gero eta zorrotzagoak dira (irudi kalitate handiagoa eta 

harrera ingurune gehiago) eta espektro erabilgarria Telebista zerbitzuetarako 

nabari murriztu egin da dibidendu digitala dela eta. Faktore hauek erronka 

berrien agerpena eragin dute eta Telebista Digitalaren Sistema berriek (DTT) 

erantzuna eman behar diete gero eta sendoagoak izanik. 

Eskakizun hauei aurre egiteko lehenengo ekinaldia DVB-T2 belaunaldi 

berriko europar estandarra da, 2009-an argitaratuta hain zuzen. DTT estandar 

berriaren argitalpenak bere errendimenduaren ebaluaketa prozesu osoa eragin 

zuen estandarraren merkaturatzea hasi baino lehen. Tesi honen hasieran, 

aipaturiko DVB-T2-ren ebaluaketa, bai harrera finkorako bai harrera 

mugikorrerako, ia amaituta zegoen. Hala ere, eraikinen barne dauden agertokiak 

artean ez ziren zehazki aztertu. Guzti hau dela eta, tesi honek DVB-T2 

estandarraren errendimendu ebaluaketa osotu du eraikinen barne dauden 

agertokiak aztertuz. Gainera, mota honetako agertokien errendimendu 

ebaluaketa hobetua egiteko metodologia berria definitu egin da.  

Nahiz eta DVB-T2 estandarrak, bere garaian zeuden teknologiarik 

aurreratuenak erabili, sistema orain dela 10 urte definitu zen eta tesi honen 

garapenaren zehar teknologia aurreratu berriak agertu egin dira: erroreak 

zuzentzeko kode berriak eta geruza zatituen multiplexazioaren teknika berria 

(LDM) hain zuzen. DVB-T2-ren kasuaren antzera, teknika berri hauen 

errendimendua ez da zehazki aztertu eraikin barneko agertokietan. Hori dela eta, 

tesi honek teknika berri hauen errendimenduaren analisia barneratzen du, 

beraien egokitasuna determinatu ahal izateko DVB-T2 sistema eraikinen 

barneko agertokietan hobetzeko. Gainera, tesi honetan, telebista digitaleko 

hartzaileetan inplementaturiko ohiko algoritmoak, geruza anitzeko seinaletarako 

eta agertoki mugikorretarako hobetu daitezkeela frogatu egin da. Hau dela eta, 

ohiko algoritmoen zenbait aldaketa proposatu egin dira DTT-ren harreraren 

errendimendua hobetzeko. 

Telebista Digitaleko sistema berrien eskakizun zorrotzei aurre egiteko 

azken ekinaldia, belaunaldi berriko ATSC 3.0 estandar amerikarra izan da, 2016. 

urtean aprobatuta. Telebista Digitaleko beste sistema guztien moduan, sistema 

honen errendimenduaren ebaluaketa prozesu osoa beharrezkoa da. Hori dela 

eta, ordenagailu simulazio eta agertoki desberdinetan egindako laborategi 

frogetan oinarritutako ATSC 3.0 errendimendua ebaluatzen duten lehenengo 

ikerketak egin dira.  



 

Lehen aipaturiko ikerketa guztien ondorioz, agertoki erronkarietan kalitate 

handiko zerbitzuak eskaintzeko bideragarritasuna frogatu egin da, DVB-T2 eta 

ATSC 3.0 sistementzako eta garatu egin diren zenbait teknika berrientzako. 

Horretarako, seinale eta zarataren arteko erlazioak (SNR) lortu egin dira harrera 

agertoki desberdinetarako. Emaitza hauek aipaturiko sistemen errendimendua 

baldintza desberdinetan agerian utzi egiten dute eta guztiz beharrezkoak eta 

erabilgarriak dira Telebista Digitaleko sareen plangintzarako. 

Tesiaren ikerketa lan osoa estatu mailako konferentzia batean eta zenbait 

nazioarteko konferentzia eta aldizkarietan argitaratu egin da.  

  



 

Summary 

The television (TV) broadcasting industry has experienced dramatic 

changes during the last two decades. The continuously increasing expectations 

of viewers and the reduced available spectrum for TV services due to the digital 

dividend issue have recently caused the emergence of new challenges. As a 

consequence, more robust Digital Terrestrial Television (DTT) systems are 

needed. 

The first attempt to fulfill these high requirements was the European new 

generation DVB-T2 standard, published in 2009. The publication of a new DTT 

standard means the beginning of a whole performance evaluation process. At 

the beginning of this thesis, this process was almost finished for fixed and 

mobile reception. However, indoor scenarios had not been studied in detail. For 

this reason, this thesis has completed the performance evaluation of the DVB-

T2 standard by means of analyzing the system indoor reception. In addition, a 

new performance evaluation methodology optimized for this kind of scenario 

has been defined.  

In spite of the cutting-edge technologies used in DVB-T2, the system was 

defined almost ten years ago and new advanced techniques, such as new error 

correction codes or the novel Layered Division Multiplexing (LDM) technique 

have appeared during the thesis development. Similarly to DVB-T2, these new 

techniques performance has not been widely studied in indoor environments 

yet. Consequently, this thesis includes the performance analysis of these new 

techniques to determine their suitability to improve the DVB-T2 system 

performance in indoor scenarios. Moreover, it has been proved that traditional 

DTT receivers’ algorithms are not optimized to the new situation where 

multilayer signals and mobile scenarios are considered. For this reason, some 

modifications to the receivers’ algorithms have been proposed in order to 

improve the reception performance. 

The last attempt to cope with the high desired requirements was the 

American new generation ATSC 3.0 standard, finally approved in 2016. As a 

complete performance evaluation process of the system is also necessary in this 

case, some computer simulations and laboratory measurements have been 

conducted so as to test the performance of this new DTT system in different 

scenarios. 

As a result of all these studies, the feasibility to deliver high quality services 

in very challenging scenarios has been tested for DVB-T2 and ATSC 3.0 



 

systems as well as some new techniques studied between both systems 

standardization processes. For this purpose, Signal to Noise Ratio (SNR) 

threshold values have been obtained under different reception scenarios 

features. These results show the systems performance under different 

conditions, which is helpful for broadcasters planning purposes. 

All this research work has been disseminated in one national conference 

and several international conferences and journals. 
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CHAPTER I: Introduction 

In this chapter, a brief description of the evolution of the most important terrestrial 

broadcasting systems until the current situation is included. The reception scenarios 

and expected video quality have increased with the time resulting in high demanding 

requirements in terms of robustness and capacity for the next generation broadcasting 

systems. According to this context, the motivation and main objectives of this thesis 

are also defined. Finally, the thesis organization is also presented. 
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1. Research Context 

It is widely agreed that television broadcasting is a fundamental element in 

the life of most of the people as it can be considered one of the most cost-

effective technologies for informing, educating and offering entertainment all 

over the world, especially in the developed countries where 98% of the 

households had at least one TV set since 2010 according to the International 

Telecommunications Union (ITU). Besides, although new ways of delivering 

video and audio contents have appeared with the time, live TV viewing still 

suppose almost the 60% of the viewers according to Figure 1 [1]. Nowadays, it 

is hard to imagine our world without TV. In fact, young people find it difficult 

to understand a TV system with just one or two programs which ended their 

emissions at certain time every day and from that moment a test card was 

shown [2]. 

 

Figure 1. TV Contents Viewers 

TV systems have highly evolved in their more than 100 years of history. In 

the beginning, the contents changed adapting to the viewers changing demands. 

However, the largest change was in the technical aspect. When the TV 

broadcasting started in the beginning of the last century, it was entirely based on 

analog terrestrial transmissions of sound and black and white images. The first 

regular television broadcasting services began in England by the British 

Broadcasting Corporation (BBC) in 1936. However, the color images were soon 

introduced in 1953 as well as new transmission methodologies such as satellite 

or cable and also digital systems. Indeed, prior to the development of the fully 
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digital TV systems, there were several attempts to improve the existing analog 

systems, such as Eureka EU 95 Project [3] or PALplus [4] in Europe, Japan 

Broadcasting Corporation HDTV project in Japan [5], and Advanced 

Compatible Television in the United States [6]. However, they were still 

extremely inefficient as a complete radiofrequency (RF) channel was needed to 

transmit just one TV service. For this reason, complete digital systems were 

needed. In this context, the 21st century brought a substantial change, 

digitalizing both the contents and the transmission systems.  

1.1 Birth of DTT Systems 

As their analog predecessors, the first generation of digital television 

standards were also developed in parallel in different parts of the world due to a 

mixture of technical and geopolitical reasons. Although all the DTT systems had 

similar requirements, they were quite different in terms of technical features [7] 

[8] [9]. 

Nowadays, several regions of the world are in different stages of the 

television broadcasting systems digitalization process, implementing different 

broadcasting standards [10], as it is shown in Figure 2. The first generation DTT 

systems, whose main requirements are fixed reception and Standard Definition 

(SD) video quality, are described in Recommendation ITU-R BT.1306 [11].  

Current DTT systems can be technologically classified in four different 

categories: 

 Digital Video Broadcasting (DVB), which has been adopted in Europe, 

Australia and New Zealand. 

 Advanced Television System Committee (ATSC), adopted by: The United 

States of America (USA), Canada, Mexico, South Korea, Dominican 

Republic and Honduras. 

 Integrated Services Digital Broadcasting (ISDB), adopted in Japan and the 

Philippines. ISDB-T International is an adaptation of this standard using 

H.264/MPEG-4 AVC and has been adopted in most of South America and 

Portuguese-speaking African countries. 

 Digital Terrestrial Multimedia Broadcasting (DTMB) adopted in the 

People's Republic of China, including Hong Kong and Macau. 

https://en.wikipedia.org/wiki/ISDB-T_International
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Figure 2. Worldwide DTT Systems [Source: dvb.org, 2016] 

The first DTT standard was DVB-T which was standardized in March 

1994 as the European Telecommunications Standards Institute (ETSI) EN 300 

744 [12] [13]. It was firstly broadcasted in the United Kingdom (UK) in 1997 

but it is nowadays the most popular DTT standard widely adopted by more than 

60 countries in Europe, Asia and the Middle East. The adopted DVB-T 

configurations, such as for example in Spain, France and Germany, allow high 

bitrates up to 19.9, 24.8 and 13.3 Mbps (in 8 MHz bandwidth) with a required 

rooftop SNR of about 17.3, 18.5 and 15.3 dB, respectively.  

Just one year later, in September 1995, the North American standard 

(document number A/53) [14] [15] was approved and it was launched in USA in 

November 1998. ATSC A/53 is still in use in America with a bitrate of about 

19.9 Mbps (in 6 MHz bandwidth) and a required SNR of around 15 dB in 

rooftop reception. 

Once in the 21st century, the specification for the Japanese DTT system, 

ISDB-T, was approved by Association of Radio Industries and Businesses 

(ARIB) in 2000 [11] and started to be commercially used in Japan in December 

2003 [16]. Although ISDB-T can be considered an evolution of DVB-T because 

of their similar technical features and system parameters [17], it is also 

considered one of the first attempts for the simultaneous delivery of fixed and 
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mobile services. For South America, a new version of the ISDB-T standard was 

developed, named ISDB-T International or ISDB-Tb (Brazilian version) [18]. In 

2010, an interactive evolution named ISDB-Tmm [19] was also developed.  

In China, the development of the digital television system started on 1996, 

but it was not until 2006 when the Government published the first DTT 

standard known as Digital Terrestrial Broadcast (DTMB) [20] [21] [22]. 

Summarizing, all the first generation DTT systems are flexible by choosing 

the appropriate system capacity (bitrate) and robustness (SNR) and determining 

the power of the transmitter for a given coverage area. Their maximum bitrate is 

about 30 Mbps, which was enough for HD services delivery at that moment. 

Besides, the most of them only target fixed reception; that is why, in general, the 

required SNR threshold is not low.  

1.2 New Broadcasting Trends 

At their time, the first generation broadcasting systems were the most 

innovative DTT standards with the main cutting-edge technologies included in 

their definitions. These systems have been widely adopted all over the world, 

providing high quality and cost effective services. However, new challenges have 

recently emerged, due to the continuously increasing expectations of viewers 

and the reduced available TV spectrum due to the digital dividend [23]. 

On the one hand, the importance of mobility in broadcasting systems and 

the desire for mobile and portable devices to be capable of correctly working are 

totally clear. This fact requires more robust DTT systems in order to be able to 

received TV services in very challenging scenarios [24]. Moreover, the deploying 

of higher resolution systems (from HD to UHD quality), which get a closer 

representation of reality, is highly desirable but means more necessary capacity. 

On the other hand, the efficiency of the existing standards was not enough for 

the growing spectrum scarcity. Finally, it must be taken into account that most 

of them were defined more than 10 years ago when processing capabilities were 

lower.  

1.2.1 New Scenarios 

By the early nineties, it was observed that the consumer habits were 
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evolving very fast toward handheld and mobile devices due to the high 

popularity of mobile phones. The TV digitalization brought the very first steps 

for mobile TV. However, the first generation standards performance in mobility 

was not satisfactory because of the very challenging receiving conditions for 

handheld/mobile terminals on urban and indoor environments. Due to the 

limits of some of first generation broadcasting systems in mobility, new 

standards were defined providing broadcasting services for handheld receiving 

devices and using a dedicated transmission standard. In general, they take into 

account the special requirements of the handheld devices, such as the receiver 

small size and lightweight, and low battery [25]. These properties implicate 

severe restrictions, such as low power consumption and impossibility of 

pointing at the transmitter if the reception terminal is in motion. 

One of the first attempts at mobile broadcasting was the European 

Handheld DVB-H. This is a specific standard for handheld terminals adopted as 

ETSI standard EN 302 304 in November 2004 [26] so as to solve the limits of 

DVB-T in mobility. One year later, in December 2005, T-DMB was launched in 

Korea as ETSI standard TS 102 427 and TS 102 428. By the end of 2009, T-

DBM service had become the world’s largest terrestrial broadcast mobile service 

with more than 20 million customers [27]. In North America, ATSC 

Mobile/Handheld, (document number A/153) [28] was launched in April 2009. 

It uses the physical layer of ATSC but with higher protection for being correctly 

received in mobile challenging scenarios. Regarding the Japanese standard, 

ISDB-T directly enables mobile reception.  

The international market prospective of mobile broadcasting services is 

variable. They are successfully implemented in Korea and Japan using the T-

DMB and ISDB-T respectively. However, in Europe and North America, their 

use was limited due to the limited market in that moment and the need to use a 

dedicated standard. However, the situation is currently totally different, and 

mobile reception is considered one of the most important reception scenarios. 

Besides, a practical solution could be to design more protected mobile services 

that can be understood as an additional capability of an already existing legacy 

system in a simultaneous delivery. This fact provides the broadcasters the 

advantage to maintain or even increase the profits without the need to change 

the network. 

https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
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1.2.2 More Video Quality 

The demand for high quality services is to a great extent driven by the 

growing number of households with flat panel displays, able to present not only 

SD (Recommendation BT.601 [29]), but also HD (Recommendation BT.709 

[30]) and, more recently, UHD (Recommendation BT.2020 [31]). Consequently, 

broadcasters in many countries consider the distribution of HDTV or even 

UHDTV as essential for an enhanced quality for viewers. The tendency is to 

increase the video quality and limit the number of broadcasted SD services. 

However, some very robust SD programs are still desirable to be delivered in 

very challenging scenarios where the available bitrate is really limited. 

Higher resolution and higher quality mean higher necessary bitrate. 

However, existing DTT systems cannot directly cope with the high bitrate 

increment needed for HD and especially UHD services. For this reason, video 

compression algorithms are needed to reduce the necessary bitrate while 

maintaining the same high video quality. Table 1 includes the different standards 

considered in DTT systems depending on the considered video quality. 

Table 1. Main Video compression algorithms in DTT systems 

Replacement 
Year 

Quality Standard 
Improvement over the 

previous 

-- SDTV 
Moving Picture Experts 
Group (MPEG)-2 [32] 

-- 

2003 HDTV MPEG-4 [33] 
50% bandwidth reduction 

[34] 

2013 UHDTV 
High Efficiency Video 
Coding (HEVC) [35] 

50% (HD) or 60% 
(UHD) bandwidth 

reduction 

In 2014, a scalable version is defined, named Scalable High Efficiency 

Video Coding (SHVC) and based on the division in two sub-bitstreams or 

scalable video coding layers [36]. The base layer (BL) must be HEVC compliant, 

while the enhancement layer (EL) can improve the video quality using one or a 

combination of six possible scalabilities: spatial, temporal, quality hybrid codec, 

bit depth and color gamut scalability. The main advantage of using SHVC is the 

bandwidth reduction (See Figure 3). By this way, more programs can be 
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delivered or higher quality can be offered. Besides, less network congestion and 

reduced storage sizes are achieved. However, users that only need the EL 

increases the necessary bandwidth and the decoding complexity, as it can also be 

seen in Figure 3. In average, the bandwidth requirement of video streams 

reduces about an extra 30% for the EL if the BL quality is not changed [37]. 

 

Figure 3. Main advantages and disadvantages of SHVC 

Summarizing, video compression is necessary in order to be able to reduce 

the needed bitrate for video contents transmission. Raw video contents require 

very high bitrate, but with good compressing techniques, the required bitrate for 

the same video quality can be highly reduced. MPEG-4 standard was 

demonstrated to be efficient enough for HDTV transmissions but when 

UHDTV appeared, the HEVC next generation video coding standard was 

needed. 

1.2.3 Spectrum Regulation 

Another problem of the broadcast industry is the scarcity and high cost of 

the radiofrequency spectrum. The regulation establishes the allocation of some 

parts of the spectrum to specific services, such as mobile services, radars or 

broadcasting services. Due to the high problematic, several international bodies 

are in charge of the worldwide spectrum allocation, such as the ITU or the 

European Commission (EC). 

The increment in about 60-75% in the transmission capacity after the 

digitalization process in comparison with previous analog TV systems meant 
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that only about the 30% of the previous spectrum was needed to accommodate 

the existing services, and therefore, about the 70% of the previously occupied 

channels could be freed up to different services, especially mobile services [38], 

in a fact known as digital dividend [39]. This fact started in 2000 resulting in 

allocation of mobile services in the upper part of Ultra High Frequency (UHF) 

band (694-862 MHz). It seemed that this trend was going to be maintained 

during the following years, and consequently, the available spectrum for 

broadcasting services was going to decrease more and more. However, the 

situation has become stagnant in 2014 [40], when it was agreed that there would 

be no change to the allocation in the 470-694 MHz band. Moreover, the use of 

the entire UHF band is going to be reviewed in 2023. Despite this, the first 

generation DTT systems are not efficient enough to cope with the spectrum 

reduction and more efficient systems are needed.  

1.3 New Generation DTT Systems 

The new challenges that have recently emerged for the DTT systems 

cannot be correctly fulfilled with the first generation of DTT systems. For this 

reason, a new generation of broadcasting standards came to light with the aim 

of applying new processing techniques to achieve higher capacity, higher 

robustness and better power efficiency in comparison to the existing ones. For 

example, in England, capacity increased from 24 Mbps with DVB-T to 40 Mbps 

with DVB-T2, while transmitter power and coverage area remained the same. In 

addition, all of them include features to target any kind of reception scenario 

being able to offer simultaneously the highly protected mobile services and high 

capacity stationary programs over the same radiofrequency channel. By this way, 

the new desired mobile services can be transmitted over the same deployed 

network. 

The Recommendation ITU-R BT.1877 [41] describes the new generation 

DTT systems. Chinese and Japanese standards have been set aside as they have 

not evolved as fast and clear as the American and European standards and no 

new generation systems have been developed. In fact, according to Figure 4 

[42], they are the least used systems by far.  
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Figure 4. Worldwide DTT Systems Use 

DVB-T2 was standardized as ETSI EN 302 755 in September 2009 [43] 

with the main objective of increase the maximum throughput up to around 50 

Mbps (in an 8 MHz bandwidth) to be able to deliver higher quality services. 

Based on, but not compatible with its preceding standard DVB-T, DVB-T2 

includes some of the most advanced techniques increasing the spectral 

efficiency by more than 30 percent. Additionally, a new profile named T2-Lite, 

which targets mobile reception, appeared in 2012. Basically, it is based on 

adapting some aspects of DVB-T2 for non static services with lower capacity 

resulting in cheaper, smaller and more efficient receivers. For this reason, T2-

Lite can be considered as a patch in a system which primarily targets stationary 

reception.  

During the thesis development, the document entitled “Call for Proposals 

for ATSC 3.0 Physical Layer. A Terrestrial Broadcast Standard” [44], established 

that a new next generation DTT standard must provide improvements in 

performance, functionality and efficiency. There were three main technical 

challenges to overcome: the provision of tools for a flexible and robust use of 

the spectrum, the use of the latest technology improvements to increase the 

spectrum efficiency and the maximum system capacity and the increment of the 

system robustness to improve the portable, mobile and indoor reception. 

ATSC has just developed a new generation broadcasting standard, named 

ATSC 3.0 (document A/322) [45], with similar technical features to DVB-T2 
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but with some novelties. This new standard gives an answer to all the 

requirements for a next generation DTT system, presenting an important quality 

leap with a physical layer defined as a flexible, robust and efficient next 

generation tool for delivering high quality services (up to around 60 Mbps in a 6 

MHz bandwidth) to fixed, portable, indoor and mobile receivers. 

In addition, DVB has recently started to study the WideBand reuse-1 

(WiB) concept [46]. This idea was described in the International Broadcasting 

Convention (IBC) in September 2016 in order to improve DVB-T2 system in 

terms of efficiency in the network planning. 

1.4 Framework of the thesis research 

Taking everything into account, Figure 5 shows the timeline related to the 

main worldwide DTT systems. First generation of DTT systems appeared in the 

middle of 90’s widely improving the existing analog systems. Due to the 

differences in each market, four different systems were developed: DVB-T in 

Europe, ATSC A/53 in North America, ISDB-T in Japan and, more recently, 

DTMB in China.  

 

Figure 5. Thesis research Framework 

However, although these systems were very efficient, they could not cope 

with the new requirements that have appeared with the time. At the beginning 

of the new century, viewers started to demand more video quality and more 

reception scenarios (mobile TV). In addition, the boom of the mobile 

communications caused the meant of more efficient DTT systems. Moreover, at 
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the same time more efficient techniques appeared with the aim of improving the 

previous DTT systems. For this reason, DVB-T2 was developed in Europe and, 

more recently, ATSC 3.0 has been defined in USA.  

In all the cases, some research time is needed before commercially 

launching the systems so as to determine the different configuration options 

performance. By this way, the most efficient configurations are considered for 

each reception scenario.  

Figure 5 also includes the time period of the current research. The 

research context starts at the final steps of the DVB-T2 performance analysis. 

The research continues with the test and evaluation of new techniques that have 

appeared since the DVB-T2 standardization process up to the definition and 

first performance evaluation of the ATSC 3.0.  
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2. Motivation of this thesis 

After explaining the current situation of the DTT systems, it is clear that 

the first generation cannot cope with the increasing need of higher quality 

services in more challenging scenarios demanded by current TV consumers. 

Additionally, the spectrum reduction imposed by the spectrum regulatory bodies 

is another disadvantage for the first generation DTT systems. However, new 

advanced techniques have appeared in the last decade to significantly improve 

the spectrum efficiency, system robustness and system capacity. As a result, a 

new generation of broadcasting systems that is supposed to deal with the 

current high viewers demands has started to appear. More specifically, the 

European DVB-T has evolved into the new generation DVB-T2 standard.  

Any new system must be clearly evaluated before its commercial 

launching. For this purpose, a complete performance evaluation process to test 

its feasibility to fulfill its entire requirements is usually performed. This process 

includes computer simulations, laboratory measurements and field trials to 

check the system performance under different conditions.  

The initial main motivation of this thesis is to complete the performance 

evaluation studies to check the feasibility of new generation DVB-T2 system to 

cope with the high quality contents delivery in challenging scenarios in a 

spectrum efficient way.  

Furthermore, during the thesis development, a call for proposal for a new 

generation DTT in USA meant the appearance of new more efficient 

technologies, which were supposed to improve the DVB-T2 standard, 

motivating new evaluation research work to test their suitability for a new 

generation DTT system improving the existing ones. Besides, the uncompleted 

adaptation of traditional DTT receivers’ to the current requirements has also 

motivated the study of new algorithms to improve the reception performance in 

the required challenging scenarios. 

Finally, the thesis development also coincided with the definition of the 

new generation ATSC 3.0 standard in USA, which shares some technical 

features with DVB-T2. This fact motivated some research work in the first steps 

of the evaluation process testing some ATSC 3.0 technical features performance 

in order to test their suitability in terms of capacity, robustness and efficiency.  
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3. Objectives 

The thesis aims to contribute with performance tests and research studies 

to evaluate and improve the most recent DTT systems. At the beginning of the 

thesis development, the most recent standard was the new generation DTT 

system DVB-T2. However, during the thesis development, new techniques to 

be applied in DTT systems appeared improving their performance and 

spectrum efficiency. Finally, making use of these new techniques, a new 

generation DTT standard, named ATSC 3.0, was standardized.  

For this reason, the main objective can be further described by means of 

specific partial targets that can be grouped into three sequential different areas: 

DVB-T2 Indoor Studies 

The objectives about DVB-T2 indoor studies are focused on completing 

the necessary DVB-T2 performance evaluation: 

 Study and performance evaluation of DVB-T2 fixed and portable indoor 

reception by means of laboratory measurements under different 

standardized channel models. The most appropriate channel model for 

indoor reception should be also studied. 

 Study and evaluation of the DVB-T2 feasibility to offer indoor reception by 

means of coverage studies with field trials. The most appropriate DVB-T2 

configuration features should be also determined.  

 Study and performance evaluation of DVB-T2 fixed and portable indoor 

reception by means of field trials.  

 Definition of a good methodology for performance analysis in indoor 

scenarios. The study of the time and location variability of real indoor 

scenarios is needed in order to obtain performance degradations that could 

be applied in any other indoor studies. 

Studies of New techniques for the next generation DTT systems 

Four objectives have been defined related to some of the new techniques 

to be possibly applied to a new next generation DTT system physical layer so as 
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to improve its performance.  

 Check the improvement in indoor scenarios in terms of robustness of the 

recently designed Quasi-Cyclic (QC) LDPC codes by means of field trials. 

 Analyze the suitability of new Layered Division Multiplexing (LDM) 

technique to offer indoor services in an efficient way. The performance 

evaluation for the delivery of HD and UHD services should be also 

performed. 

 Definition and evaluation of new decoding algorithms for improving 

multilayer signals reception performance.  

 Definition and evaluation of ICI power estimators to implement in a DTT 

receiver improving portable, indoor and mobile reception.  

ATSC 3.0 Studies 

The objectives in the ATSC 3.0 research work are based on the 

completion of the first phase of the system performance evaluation: 

 Development of an ATSC 3.0 emulation platform to create a basic tool to 

analyze the standard by means of computer simulations. 

 Study and evaluation of the ATSC 3.0 BICM theoretical spectral efficiency 

and robustness.  

 Study and performance evaluation of the ATSC 3.0 interleaving parameters 

by means of computer simulations.  

 Study and evaluation of the ATSC 3.0 LDM parameters by means of 

computer simulations and laboratory measurements.  

 Performance comparison of different ways to provide simultaneous 

services in ATSC 3.0 (TDM/FDM and LDM) with different decoding 

algorithms with computer simulations. 

  



CHAPTER I: Introduction 
 

 

 35 
 

4. Thesis Organization 

This thesis is organized in 5 different chapters. There is one introductory 

chapter to show the context of the present thesis. In addition, three main 

chapters dedicated to the three different DTT temporal contexts studied in this 

thesis are included. Each one of these chapters includes a state of the art as well 

as all the studies carried out organized according to the related dissemination. 

Finally, one conclusive chapter with the main contributions and some possible 

additional research related to the topic are included. 

Chapter I. The context of the research is presented by means of a 

description of the evolution of the digital broadcasting systems until the most 

recent DTT systems (DVB-T2 and ATSC 3.0) appearance. In this context, the 

main motivations for this research work and the related objectives are 

presented.  

Chapter II. In this part, the DVB-T2 performance studies are widely 

analyzed based on existing bibliography. In addition, new indoor studies have 

been carried out by means of simulations, laboratory measurements and field 

trials, as this target scenario has not been previously analyzed in detail. 

Chapter III. This chapter introduces and studies some new techniques to 

improve the existing DTT systems performance and efficiency. More efficient 

code-rates and new multiplexing techniques have been analyzed. Moreover, new 

algorithms optimized for mobile and multilayer signals reception have been 

tested over a DVB-T2 system platform evaluating their performance gain. 

Chapter IV. In this part, the ATSC 3.0 performance is widely analyzed, 

including fixed, indoor and mobile reception. Studies with simulations are 

performed related to the system interleavers and multiplexing techniques. 

Furthermore, some research related to LDM is also carried out by means of 

computer simulations and laboratory measurements.  

Chapter V.  In this final chapter, the main contributions of this thesis are 

summarized. The disseminating results of this thesis are also presented. 

Moreover, the identified future research topics as a follow up of this dissertation 

are also highlighted. 

  



 

 

 



 

 

 

 

 

 

 

 

 

 

CHAPTER II: DVB-T2 

Indoor Studies 

This chapter surveys the previous studies for DVB-T2 standard available at the 

moment of the writing. As the main gap in the research work is about indoor 

reception performance, the three steps of a performance evaluation process over this 

scenario (computer simulations, laboratory measurements and field trials) are carried 

out in order to complete the existing DVB-T2 performance information. 
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1. Introduction 

DVB-T2 was first standardized in September 2009 [47] with the aim of 

updating the way DTT services were broadcasted at that time. In other words, 

its main objective was to improve the existing DVB-T standard, which had 

appeared in 1993. In 16 years, new algorithms and signal processing techniques 

had been developed, while others already discovered a long time ago, became 

feasible with improvement of the related consumer electronics. As a result, the 

performance of this new generation broadcasting system highly improved the 

DVB-T system [23] [48] [49] and it was even very close to the Shannon limit 

[50] [51]. This gain is thanks to enhanced Orthogonal Frequency Division 

Multiplexing (OFDM) transmission, flexible frame structure, Low Density 

Parity Check (LDPC) [52] and Bose, Ray-Chaudhuri and Hocquenghem (BCH) 

codes, bit-interleaved coded modulation (BICM) with iterative decoding… 

What is more, a new standard version was published in April 2012 with a new 

profile, named T2-Lite, intended to broadcast mobile services. 

The requirements for DVB-T2 standard were collected in DVB 

Document A114, Commercial Requirement for DVB-T2, released in April 2007 

[53]. Twenty one requirements were defined grouped in several categories, such 

as transmission and receiving conditions, efficiency or robustness. All these 

requirements follow the current viewers’ requirements asking for higher quality 

and target scenarios. The most prominent requirements for this thesis and their 

meaning are: 

 DVB-T2 should increase the capacity of DVB-T in at least 30 % 

considering similar reception conditions. By this way, the service quality can 

be increased offering HD services instead of only SD ones. 

 Each transmitted service should be configurable independently to provide 

varying degrees of protection and robustness. This fact refers to the 

possibility of simultaneously delivering different kind of services with 

different target scenarios and, consequently, different configuration 

parameters (specific capacity and robustness levels). For this purpose, the 

main novelty was the definition of Physical Layer Pipes (PLP) [54] [55] [56], 

allowing specific trade-off of capacity and robustness services with different 

coding and modulation schemes. Besides, the Future Extension Frames 

(FEFs) have been also included in order to transmit any other kind of 
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information inside the DVB-T2 data. These are the first European attempts 

to deliver simultaneously mobile and stationary services based on the Time 

Division Multiplexing (TDM)/ Frequency Division Multiplexing (FDM). 

 DVB-T2 should be designed for stationary reception but it should be 

possible to design DVB-T2 networks for all kind of receiving conditions in 

fixed, mobile and indoor scenarios. On the one hand, fixed reception refers 

to the optimal situation in which the receiver is a roof-top antenna, so there 

is usually Line-of-Sight (LOS) with the transmitter. On the other hand, 

mobile reception refers to the situation in which the receiver is moving at 

any speed (from pedestrian to very high speed) in an outdoor environment. 

Finally, indoor reception refers to any situation that happens indoors both 

when the receiver is static or moving at a pedestrian speed. 

Any new standard must be clearly tested before its commercial launching. 

In order to test the feasibility of this standard to fulfill all its requirements, a 

performance analysis is needed. The most common feature to evaluate a system 

performance is the Signal to Noise Ratio (SNR) threshold value under different 

reception scenarios conditions. 

In the case of DVB-T2 standard, it was firstly tested with computer 

simulations using the Common Software Platform (CSP) [57] [58], which is a 

DVB-T2 emulation platform developed inside the DVB consortium but finally 

made public. The purpose of these first tests was to determine the system 

performance under ideal conditions by means of some common Validation & 

Verification (V&V) trials.  

Next, and once some hardware prototypes were implemented, laboratory 

measurements are usually conducted so as to test the system performance under 

different reception conditions. These performance results are much closer to the 

real world as hardware (HW) equipment is involved in the performance 

evaluation. Finally, a series of field trials are usually needed. They are 

characterized by using HW equipment and antennas so as to analyze the 

feasibility and performance of a system under real conditions. 

By the moment of the thesis writing, the DVB-T2 performance had been 

widely studied in fixed and even mobile scenarios, showing the feasibility of the 

system in this kind of scenarios. However, indoor reception, which was one of 

the target scenarios for DVB-T2, was still poorly studied, especially with 

hardware equipment. For this reason, in this thesis some laboratory 
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measurements and field trials have been performed so as to test the DVB-T2 

performance in indoor scenarios and check the feasibility of DVB-T2 to offer 

broadcasting services indoors.  

Taking everything into consideration, this chapter includes a detailed state-

of-the-art including the most prominent DVB-T2 performance studies. In 

addition, new research work related to the DVB-T2 performance analysis in 

indoor scenarios is also included by means of three different studies. 
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2. Previous Studies 

As any new standard, DVB-T2 must be clearly tested before its 

commercial launching. For this purpose, computer simulations, laboratory 

measurements and, finally, field trials are needed. 

2.1 Computer Simulations 

The DVB-T2 theoretical system performance by means of computer 

simulations is provided along the DVB-T2 implementation guidelines document 

[59], which contains the first values of minimum required SNR for correct 

reception. The values appear in chapter 14 of the guidelines, entitled 

“Performance” and dedicated to the qualitative analysis of the DVB-T2 system 

performance based on simulations carried out with the publicly available CSP 

DVB-T2 software (SW) platform [57] [58]. These theoretical simulations were 

performed for fixed reception, which was the major aim of this standard. In this 

case, the receiver usually includes a roof-top antenna. This is the most common 

situation in many countries, such as in Spain, where the usually high gain 

directional receiving antenna is located on the building roof to deliver TV 

services to all the residents. In this case, there is usually line-of-sight with the 

transmitter and the receiver stays static. Although the Ricean channel model 

(F1) is the most similar to the real roof-top reception, there is another channel 

usually considered as reference (Additive White Gaussian Noise, AWGN). 

Similarly, more demanding scenarios are also analyzed (Rayleigh, P1 and 0 dB 

Echo). Moreover, the robustness of P1 synchronization symbol and the 

behavior of the P2 signaling symbols are also studied. 

In these simulations, the minimum SNR threshold results gathered in [59] 

are given at a Bit Error Rate (BER) of 10-7 after LDPC decoding, which 

approximately corresponds with a BER of 10-11 after BCH decoding. To ensure 

reliable results, at least 1000 erroneous bits have to be detected. In other words, 

to reach a BER value of 10-7, 10+10 bits have to be decoded, resulting in a 

considerably long simulation time. However, due to the sharp fall in the BER vs 

SNR curve for LDPC decoding, no so restrictive BER values can be considered 

with similar performance. Furthermore, the DVB-T2 OFDM parameters used 

for the simulations were chosen to be as similar as possible to those for DVB-T 
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standard. These parameters are as follows: the Fast Fourier Transform (FFT) 

size is 8k with a guard interval of 1/32, and the bandwidth is 8 MHz with 

normal carrier mode. Rotated constellations were used and Peak-to-Average 

Power Ratio (PAPR) techniques were not applied [60]. All the combinations of 

constellation and code-rate have been considered for the two FEC block sizes. 

The simulations assumed ideal synchronization and ideal channel estimation and 

no phase noise. Besides, Genie-Aided Demapping is considered with a prior 

knowledge of the transmitted bits for the constellation demapping. In addition, 

no pilot carriers and neither special symbols (P1, P2 and frame closing symbols) 

are included.  

Due to the lack of pilots in the simulations it is necessary to increase the 

obtained minimum SNR value. The reason is that the pilot carriers have slightly 

higher power than data carriers to increase their protection against AWGN. This 

implies that the total power of the OFDM symbol is higher than when only data 

carriers are considered in the simulations. The increment in SNR depends on 

the percentage of pilot carriers with respect to the data carriers in each symbol. 

Consequently, it depends on the FFT size, the use of normal or extended mode 

and the specific scattered pilot pattern.  

As the conditions for the computer simulations are ideal, it is clear that the 

results are too optimistic and they are practically impossible to be achieved 

under normal reception conditions with clock mismatches, time synchronization 

errors and channel frequency shifts. Moreover, the channel estimation is 

performed by means of pilot carriers resulting in a not perfectly estimated 

frequency response as pilot carriers suffer from noise. Consequently, 

interpolation for the not so accurate pilot carriers must be applied for the data 

carriers. Moreover, although an iterative demapping process is used, the prior 

knowledge of the transmitted bits shows better performance. These 

degradations on the minimum SNR threshold, which are called implementation 

losses, depend on the specific receiver implementation.  

Another information source that provide theoretical minimum SNR 

values for DVB-T2 fixed reception is the EBU Technical Report 3348 [61], 

entitled Frequency and Network Planning Aspects of DVB-T2. This document 

gathers the main features of the standard and some criteria for DVB-T2 

networks planning. The considered minimum SNR thresholds are not 

innovative as it uses those from DVB-T2 implementation guidelines. Moreover, 

some DVB-T2 configurations are suggested for typical fixed reception 
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scenarios. Additionally, there are some research works such as that in [23][62] 

[63] and [64] which includes additional simulation results for minimum SNR 

threshold in fixed reception. The presented results are comparable to those 

gathered in [59]. 

It must be noted that simulation results for T2-Lite are not provided in 

[59]. In this sense, on the one hand, code-rates that are also present in the DVB-

T2 base profile keep similar SNR threshold values from the guidelines. On the 

other hand, the SNR threshold for fixed reception for the new code-rates 

introduced in T2-Lite (1/3 and 2/5), has been extrapolated from DVB-S2 

simulations values [65]. 

DVB-T2 was also developed with mobile reception as one of the target 

user groups, including the time interleaving feature to benefit from time 

diversity. The term “mobile” has become a very broad meaning term, and thus, 

the National Association of Broadcasters (NAB) has recently presented a more 

focused definition of what is considered as a mobile service [66]. The NAB 

association considers mobile outdoor reception when pedestrian handheld 

receivers are used in outdoor environments. Furthermore, vehicular built-in 

receivers, handheld used in-vehicle devices and portable devices should also be 

considered in this scenario. Finally, the mobile reception should also be possible 

at ground speed of at least 150 kmph. Although there are several channel 

models to emulate portable or mobile outdoor reception [67], Typical Urban 6 

paths (TU6) [68] is usually the considered channel model for the mobile 

reception despite being too pessimistic [69]. 

However, mobile reception was not one of the main focuses for DVB-T2. 

Consequently, DVB-T2 Implementation Guidelines [59] do not focus on 

portable and mobile outdoor performance. They only include some reference 

figures with minimum SNR thresholds. The defined figures shows the DVB-T2 

performance at different Doppler frequencies (10 Hz and 80 Hz) and with 

different time interleaving depths. Besides, the use of subslicing and inter-frame 

time interleaving is also tested. The considered threshold criterion is based on 

1% of BaseBand (BB) Frame Error Rate (FER) which takes into account the bit 

error correlation, unlike BER criteria which only indicate the percentage of 

erroneous bits. Considering that one single erroneous bit is enough to corrupt 

an entire BB frame, the final performance of the system depends highly on the 

bit error correlation.  

Some additional minimum SNR values for mobile reception are provided 
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in the EBU Technical Report 3348 [61] for different Doppler frequencies. The 

values for the new code-rates introduced in T2-Lite are obtained by 

extrapolation. Besides, some DVB-T2 configurations are suggested for several 

portable and mobile scenarios. However, it does not include any SNR threshold 

for mobile scenarios neither any methodology to obtain it as no receivers 

particularly optimized for portable and mobile reception were available at the 

moment. These results are not representative enough and more research was 

needed. For this reason, several studies were carried out in order to analyze the 

DVB-T2 theoretical performance in mobility. In [23] and [70] BER vs SNR 

curves are presented for several channel models intended for portable and 

mobile outdoor reception. Equally, in [64] some BER vs SNR curves for TU6 

channel are presented. These curves are extrapolated in [71] using a sigmoidal 

shaped curve-fit so as to obtain the required SNR thresholds for portable 

reception. 

Moreover, several research works focus on the flexible time interleaving 

parameter, whose length ranges from hundreds of milliseconds up to several 

seconds at the expense of increased latency and zapping time. In [72] and [73] 

several simulations are conducted so as to test the influence of the DVB-T2 

time interleaving scheme that allows multiple tradeoffs in terms of time diversity 

for mobile scenarios, latency and power saving by means of inter-frame 

interleaving, frame hopping and subslicing. It concludes that the use of 

subslicing highly improves the system performance in fast fading scenarios 

whereas the use of intra-frame time interleaving improvement achieves very 

important gains in shadowing scenarios, especially at low speeds. In [48] the 

frequency, time and space diversity influence of DVB-T and DVB-T2 systems is 

studied in mobile reception showing similar results. In [74], a detailed study of 

the influence on the mobile performance of several waveform parameters, such 

as FFT size and pilot pattern, is presented. 

In addition to the TU6 channel, [23] analyzes the DVB-T2 performance 

with some preliminary theoretical BER vs SNR curves with Vehicular Urban at 

30 kmph (VU) and Motorway Rural at 100 kmph (MR) [75] [76] [77]. Channel 

models, which have been sometimes considered to emulate mobile outdoor 

performance.  

Moreover, in case of portable outdoor reception, in addition to the TU6 at 

low speeds, the P1 channel model has been traditionally considered as well. 

However, its use is very optimistic as it is a stationary channel model and slow 
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channel variations from portable reception cannot normally be avoided. Even if 

the receiver itself is stationary there are often other objects in the vicinity of the 

receiver which move, such as cars or people. For this reason, a new channel 

model has been recently defined, such as Pedestrian Outdoor at 3 kmph (PO) 

[75] [76] [77]. The DVB-T2 performance under this channel model is also 

included in [23]. 

Finally, indoor reception is also a target scenario for DVB-T2 system. It 

refers to the situation when any static or handheld device is used indoors [78]. 

This scenario is very common in some countries such as USA, where each 

resident has its own indoor TV antenna connected to its TV device. However, it 

is not so common in Europe and consequently, equally to mobile reception, it is 

not a primary target scenario. For this reason, no theoretical studies for specific 

indoor reception are included in the DVB-T2 Implementation Guidelines [59] 

or EBU Technical Report [61], where only DVB-T2 performance under P1 

channel can be considered for indoor reception as this channel has been widely 

considered as reference of this kind of scenario. However, as it was 

demonstrated in WingTV project [75], P1 is too optimistic as no channel 

variations are taken into account: nor the receiver movement neither the 

surrounding elements movement. For this reason, other channel models have 

been recently defined to emulate indoor reception. The most common one is 

Pedestrian Indoor at 3 kmph (PI) [75] [76] [77]. Some preliminary theoretical 

BER vs SNR curves for PI channel model have been presented in [23]. 

2.1 Laboratory Measurements 

In Europe, some laboratory measurements for testing DVB-T2 reception 

have been carried out within the development of Broadcast for 21st Century 

(B21C) [79] and Enabling Next GeneratIon NEtworks for broadcast Services 

(ENGINES) [80] projects. The latest one also analyzed the T2-Lite 

performance. Most particularly, in Spain Futura Red Integrada Audiovisual 

(FURIA) [81] and Nueva Generación de sistemas de Radiodifusión DigitAl 

Terrestre (NG-RADIATE) [82] deliverables also contain some performance 

results for DVB-T2 fixed reception.  

The most of the laboratory measurements for fixed reception are gathered 

in [83], studying the DVB-T2 configuration parameters influence on the 

performance in detail. Additionally, [84] and [85] includes some results for 
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AWGN, F1, P1 and 0 dB Echo channel models. Besides, the influence of 

different DVB-T2 configuration parameters such as constellation order, code-

rate, FFT size, the use of rotation constellations, guard interval lengths and pilot 

patterns is also tested. Finally, the influence of modifications on the second path 

delay, attenuation and frequency shift on the system performance is also studied. 

The results show that the implementation losses due to different receivers’ 

implementation are about 2 dB in AWGN channels an up to 4 dB under F1 

channel models. Besides, the EBU Technical Report [61] includes some 

laboratory measurement results for AWGN and F1 channel models carried out 

with four different receivers. The results are in line with those in [83] [84] and 

[85]. 

As DVB-T2 main target scenario is fixed reception, DVB-T2 receivers are 

not tested for mobile reception. Consequently it is important to carry out 

laboratory measurements for mobile and indoor reception to establish the losses 

due to the receiver implementation. For this reason, portable and mobile 

receptions have been widely tested in ENGINES [80], with special emphasis in 

T2-Lite performance as it is the profile intended for mobility.  

On the one hand, in [86] the influence of some DVB-T2 configuration 

parameters (FFT size guard interval length and the use of rotated constellations) 

on the portable and mobile performance (PO and TU6 channel models) is 

tested in the laboratory. On the other hand, some preliminary laboratory 

measurements for indoor reception are also gathered in [86], showing the 

influence of some DVB-T2 configuration parameters (FFT size guard interval 

length and the use of rotated constellations) under PI channel model. The main 

conclusion is that indoor reception is more SNR demanding than fixed or 

mobile reception. 

2.1 Field Trials 

On the one hand, several field trials have been performed in order to test 

the DVB-T2 fixed reception in different countries with the objective of testing 

the feasibility of the DVB-T2 system in different type of cities. Various field 

strength measurements have been conducted in Thailand [87], in Oman [88], in 

Croatia [89] and in Mongolia [90] to test the DVB-T2 coverage in comparison 

with the previous television systems in each country. Furthermore, minimum 

SNR threshold were obtained by means of field trials carried out in Croatia [70] 
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and in Spain [49] [83] [91] within the FURIA [81] and NG-RADIATE [82] 

projects. The results show that the SNR thresholds in fixed reception with roof-

top antennas are between 1 to 2.5 dB higher than those based on computer 

simulations [59] [61]. 

On the other hand, some field trials have been conducted in order to test 

the DVB-T2 performance in mobile scenarios. Mobile urban coverage results 

and minimum SNR thresholds are presented in [92] and [93], respectively by 

means of field trials carried out in Spain. Moreover, in [94] and [95] the portable 

and mobile reception are analyzed in detail following several mobile routes in 

Germany for several DVB-T2 configurations and with special emphasis in the 

FFT size and time interleaving length influence on the system performance.  

The performance in mobile scenarios is very dependent on the receiver 

implementation, especially in the channel estimation and equalization processes. 

Depending on the specific implementation, the degradation can be higher. This 

is the problem of commercial DVB-T2 receivers, which have not been created 

for mobile reception. For this reason, in [96] different channel frequency 

response implementations have been tested showing different performance in 

mobility. 
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3. Research Work 

As it can be seen in the former section, indoor scenarios are still poorly 

studied. This is because although indoor reception is considered a booming 

scenario in some countries where each TV device has its own indoor receiver 

antenna, the most current broadcasting networks are still designed for rooftop 

reception. For this reason, there is still a lack of indoor DVB-T2 studies so as to 

complete the existing theoretical results and check the feasibility of the system 

for providing indoor services, as this kind of scenario is increasingly more and 

more common.  

On the one hand, although some laboratory measurements have been 

performed under P1 and PI channel model conditions, there are other channel 

models that have been recently defined for portable indoor reception that can 

also be considered as reference. Some of them are Indoor Office A 

(IOA)/Indoor Office B (IOB) and Indoor Outdoor and Pedestrian A (IOPA)/ 

Indoor Outdoor and Pedestrian B (IOPB) [97], defined by the ITU. Finally, the 

TU6 [68] widely used for emulating mobile outdoor reception, is sometimes 

considered for portable indoor reception with a pedestrian speed of 3 kmph. On 

the other hand, some field trials in indoor scenarios are needed in order to test 

the DVB-T2 feasibility under real indoor conditions.  

The technical information offered by most of the DVB-T2 commercial 

receivers was very limited from the researching point of view in the moment of 

the studies development. For this reason, a complete DVB-T2 and T2-Lite 

receiver framework, totally implemented in the University of the Basque 

Country, was considered for the analyses. 

These results can improve the existing performance information and help 

the broadcasters to ideally design the broadcasting network including indoor 

coverage. Especial emphasis is needed in portable indoor reception because, 

although the indoor receiver can stay static, there are always several moving 

elements in an indoor scenario that can produce variations in the reception 

channel.  

For this reason, in this thesis some laboratory measurements with 

different indoor channel models and some field trials have been carried out so 

as to evaluate the DVB-T2 performance in indoor scenarios by means of 
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obtaining of SNR thresholds for a correct indoor reception.  

More specifically, three studies have been carried out: 

 Study A: The portable indoor reception has been tested in the laboratory. 

 Study B: The portable indoor reception coverage has been tested in the 

field  

 Study C: The fixed and portable indoor reception has been deeply analyzed 

by statistical studies with laboratory measurements and field trials. 
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3.1 DVB-T2 Receiver Framework 

The TSR research group, within the UPV/EHU, has developed a 

professional Software Defined Radio (SDR) DVB-T2 Test Receiver Framework 

for demodulating DVB-T2, DVB-T2-Lite and combined signals [47]. This 

receiver has been widely used in this thesis for all the DVB-T2 indoor studies 

because, unlike existing commercial DVB-T2 receivers at the research time, it is 

totally compatible with all the DVB-T2 parameters. Figure 6 shows a diagram 

with the main blocks in which the SW receiver is organized. Green boxes 

describe the available measurements for each block. 

 

Figure 6. Main blocks of the UPV/EHU DVB-T2 Receiver 
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This receiver is a SW demodulator that can work in two different modes 

as it can be seen in Figure 7. The first one is based on an offline analysis, by the 

demodulation of In-phase and Quadrature (IQ) samples previously recorded 

into an IQ samples file. The second one consists on demodulating RF signals by 

using an additional RF module which receives the DVB-T2 or DVB-T2-Lite RF 

signal as baseband IQ samples. These samples can be saved in a file, which 

could be later demodulated by the SW demodulator, or can be sent directly to 

the SW demodulator by a TCP/IP socket, getting a pseudo-real time analysis of 

the received signal. This additional module can be a Universal Software Radio 

Peripherical (USRP) N-210 device from Ettus Research [98], which is connected 

to the computer using a Gigabit-Ethernet link. 

 

Figure 7. UPV/EHU DVB-T2 Receiver Operation Modes 

When doing offline analysis, the input to the SW receiver is a file with the 

previously recorded IQ samples of the signal to be demodulated. Supported 

formats for the input files are: 

 Binary files with double (IEEE) IQ samples. 

 Text files with double IQ samples separated by spaces or newline. 
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 Binary file with IQ samples saved as signed Int16 little Endian. 

 Binary file in the Tektronix IQT format. 

 Binary file in the Tektronix TIQ format. 

 Binary file in the HP VSA SDF format. 

 Binary file in the HP VSA BIN format. 

 Binary file in the ADIVIC TCX format after proprietary conversion. 

 Binary file in the Anritsu DGZ format. 

When doing pseudo-real time analysis, the inputs to the SW receiver are 

the IQ samples sent by a Transmission Control Protocol (TCP)/Internet 

Protocol (IP) socket. In this last case, the RF signal is received using the RF 

input interface the USRP has, whose supported format is: 

 Int16 IQ samples through TCP/IP socket. 

As this is a SW demodulator, there are no physical input/output 

interfaces. The data input is by a binary file or a TCP/IP socket with the IQ 

samples of the signal to demodulate. In case of demodulating a RF signal using 

the USRP device, as done in this thesis, the input interface is: 

 RF input (when using the USRP N-210 device) 

 General function: DVB-T2 or DVB-T2-Lite RF signal reception. 

 Frequency range: From 50 MHz to 2.2 GHz. 

 Level range: -90 dBm to -20 dBm 

 Connector: SMA (SubMiniature version A) - 50 Ω (Female) 

 Capture Bandwidth: 10 MHz 

The demodulator gives some graphic information such as signal spectrum 

(Figure 8b), channel estimation (Figure 8c), P1 symbol detection (Figure 8d), 

impulsive response (Figure 8e), pilot carriers correlation (Figure 8f) and 

constellation (Figure 8g). 
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Figure 8. UPV/EHU DVB-T2 Receiver Provided Information. 

Besides, Table 2 resumes the main text information monitored by the 

receiver and gathered in Figure 8a. 
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Table 2. DVB-T2 Receiver main provided text information 

Synchronization 

Status (synced or no) 
Signal 

Properties 
SNR (dB) 

P1 frequency shift 

PLP 

Information 

Modulation 

Norm. Frequency shift Code-rate 

CPE 
Time Interleaving 

Length 

Clock Error WMER (dB) 

Detected GI MER (dB) 

Equalization 

Window Position Pre LDPC BER 

Time Filter Size Pre BCH BER 

Delay Spread LDPC FER 

Signaling 

S1/S2/L1 Pre/L1 Post 

OK 
BCH FER 

S1/S2 Probability LDPC Iterations 

FFT Size Bit Rate (Mbps) 

Mode  

Pilot Pattern  

Frame Length  

The obtained information depends on the operation mode. When the 

offline analysis is carried out, all the information from Table 2 and Figure 8 is 

provided. However, there are two possible pseudo-real time analysis modes. In 

one of them, all the information from Table 2 and Figure 8 is provided but it 

takes between 1 and 3 s (depending on the DVB-T2 configuration parameters) 

to analyze the receiving signal before updating the whole information. However, 

it is possible to obtain more frequent updates of the information in Table 2 and 

Figure 8 by using the second pseudo-real time analysis mode. This could be 

named fast pseudo-real time analysis, as it only spends about 500 ms analyzing 

the received signal before updating the graphic and text information. 

Nevertheless, when using the fast pseudo-real time analysis mode it is not 

possible to obtain BER and FER measurements. Besides, if the rotated 

constellation feature is in used, it is not possible to obtain neither a constellation 

graphic nor Modulation Error Rate (MER) measurements. The other text and 

graphic results are always provided. 

  



CHAPTER II: DVB-T2 Indoor Studies 
 

 

56  

 

3.2 Indoor Performance Studies 

Three different studies have been carried out in order to complete the 

DVB-T2 indoor performance information by means of laboratory 

measurements and field trials.  

 Study A: DVB-T2 portable reception in indoor environments 

This study analyzes and evaluates the DVB-T2 performance in indoor 

scenarios by means of laboratory measurements under different channel models 

intended for fixed and portable indoor reception.  

 

 Study B: DVB-T2 field trials for portable indoor reception 

This study includes a coverage analysis to test the feasibility of DVB-T2 

system to offer indoor reception with a real broadcasting network. Besides, 

different DVB-T2 configuration parameters are tested determining which the 

most appropriate for indoor reception are. 

 

 Study C: Field Trials Based Planning Parameters for DVB-T2 Indoor 

Reception 

This study includes a detailed analysis and evaluation of the DVB-T2 

performance in fixed and indoor scenarios by means of field trials. Furthermore, 

some performance results with laboratory measurements are also presented so 

as to determine the standardized channel model which better fits the real DVB-

T2 indoor reception. 

In addition, a complete performance evaluation methodology for indoor 

scenarios has been widely defined and tested, including the obtaining of time 

and location variability. 
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3.2.1 Study A: DVB-T2 portable reception in indoor 

environments 

The main objective of this study is the obtaining of minimum SNR 

thresholds for correct DVB-T2 reception in portable indoor scenarios, testing 

the system performance in this kind of scenarios.  

For this purpose, laboratory measurements with several channel models 

have been carried out including reference channels (AWGN, F1 and P1) for 

fixed reception and specific channel models, which includes some Doppler 

effect because of the movement, for portable indoor reception. These results 

improve the existing results as HW equipment is used and several indoor 

channel models are considered. Besides, three different DVB-T2 receivers have 

been used in order to see the difference in terms of performance. 

3.2.1.1 Physical Layer Pipes (PLPs) 

With the appearance of new target scenarios, one of the requirements for 

the new generation broadcasting systems was the possibility of offering several 

services for different scenarios at the same time. In DVB-T2, PLPs enable the 

definition of different service specific robustness levels, allowing different 

protection levels by means of different coding parameters, constellation orders 

and interleaving depths. 

By this way, a single radiofrequency channel can therefore transmit one or 

more PLPs, configured for different bitrates and robustness. For example, one 

PLP can be configured for broadcasting high bitrate services to be received by 

roof-top antennas (low protection and high constellation order) whereas a 

second PLP can be configured for high robustness but low bitrate so as to be 

received by portable or mobile receivers. Nevertheless, it is important to be 

noted that waveform parameters (FFT size, Guard Interval (GI) length or pilot 

patterns) are common for all the PLPs. 

This feature can be also used for researching purposes in order to test 

different DVB-T2 BICM parameters under the same channel conditions, as all 

the PLP configurations are transmitted in the same DVB-T2 frame.  
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3.2.1.2 DVB-T2 Configuration  

This study takes advantage of the DVB-T2 capacity to simultaneously 

transmit different DVB-T2 configurations by means of multiple PLPs in order 

to test the performance under the same channel conditions.  

Table 3 summarizes the main parameters of the three tested DVB-T2 

configurations. These configurations are good examples of future possible 

configurations that could be used for the transmission of at least one or two 

HD services in complex indoor scenarios with H.264 video compressing 

standard [99] [100] [101] [102]. However, a bit-rate of 1.1 Mbps has been 

considered as a common reference for the tested configurations in the different 

PLPs. The considered modulation schemes are Quadrature Phase-Shift Keying 

(QPSK) and 16 Quadrature Amplitude Modulation (QAM) with low code-rates, 

so as to be robust enough for indoor reception. 

Table 3. DVB-T2 tested Configuration modes for portable indoor reception 

Parameters 
Indoor Modes 

#1 #2 #3 

BW 8 MHz (Extended) 

FFT GI PP 16k 1/32 PP4 

Modulation QPSK QPSK 16QAM 

Rotated Yes 

Code-rate 1/2 2/3 1/2 

Interleaving Time 247 ms 

Capacity (Mbps) 6.8 9.3 13.6 

Considered Bitrate (Mbps) 1.1 

Most parameters are common in the three configurations. The 

combination of FFT size, guard interval and pilot pattern (FFT GI PP) takes an 

intermediate value between capacity and robustness, while modulation and 

code-rate values have been chosen to ensure the robustness needed for the high 

robustness needed in portable indoor scenarios. Besides, the time interleaving 

option is used with almost the highest possible interleaving length defined in 

DVB-T2 to improve the system performance in portable scenarios. 
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3.2.1.3 Laboratory Set-up 

Figure 9 shows the set-up used for the portable indoor reception 

laboratory measurements. The transmitter includes a DVB-T2 signal modulating 

card generating the desired DVB-T2 profiles on 690 MHz frequency (channel 

48). Although the modulating card includes the channel simulating option, an 

external Anite HW channel emulator (Radio Channel Emulator Propsim F8) 

with the capacity of emulating every channel model has been considered in this 

study.  

 

Figure 9. Laboratory Measurements Set-up 

Table 4 shows the simulated channels models for portable indoor 

reception including the considered speed in each case. The output of the 

channel emulator is connected to a 1 to 3 splitter in order to simultaneously 

receive the DVB-T2 signal with 3 different receivers. 

In this study, the traditional channel models related to fixed reception 

(AWGN, F1 and P1) [59] have been tested as reference. Additionally, some 

channel models specific to emulate portable indoor reception have also been 

considered. First, the PI at 3 kmph defined in DVB-H Implementation 

Guidelines [76] has been considered. Additionally, the IOA (with a delay spread 

low average), IOB, (with a delay higher average spread), IOPA (with a delay 

average spread bass), IOPB, (with a delay average spread high), defined by the 

ITU [97] have also been tested. Finally, the TU6 [68], widely used for emulating 

mobile reception, has also been tested with a pedestrian speed of 3 kmph. 
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Table 4. Simulated channel models for portable indoor reception 

Name Channel Model Speed Reference 

AWGN AWGN -- 

DVB-T2 [59] F1 Ricean -- 

P1 Rayleigh -- 

PI Pedestrian Indoor 3 kmph DVB-H [76] 

IOA Indoor Office A 3 kmph 

ITU-R [97] 

IOB Indoor Office B 3 kmph 

IOPA 
Indoor to Outdoor  

Pedestrian A 
3 kmph 

IOPB 
Indoor to Outdoor  

Pedestrian B 
3 kmph 

TU6 Typical Urban 6 paths 3 kmph GSM [103] 

Three different DVB-T2 receivers were simultaneously used in the 

laboratory measurements so as to determine possible performance differences 

for the different channel models. 

 The first receiver is a commercial Set-Top Box (STB) connected via High-

Definition Multimedia Interface (HDMI) to a monitor allowing the visual 

observation of the decoded video contents. 

 The second receiver is a professional HW receiver with information of 

signal quality parameters, such as SNR, BER or FER, among others. 

Furthermore, the decoded video contents can be sent to a video player by 

Real-time Transport Protocol (RTP) or User Datagram Protocol (UDP) 

and be able to visually observe the image on a screen.  

 The third receiver is the professional SDR receiver [104] described in the 

former section in its offline mode. Similarly to the HW professional 

receiver, it includes information about the quality of the received signal. As 

it is a SW receiver, a previous digitalization process must be carried out in 

order to store the received signal IQ samples which are then analyzed by 

the SW receiver [105]. 
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3.2.1.4 Laboratory measurements Description 

The aim of these laboratory measurements is the obtaining of the 

minimum SNR threshold under different channel models considering a signal 

demodulation without error over a period of 30 s [106]. For this purpose, the 

DVB-T2 signal is generated based on the settings defined in Table 3. It is next 

introduced into the channel simulator, which emulates the channels defined in 

Table 4.  

The first step consists on checking the correct signal reception with the 

first two receivers by a subjective analysis. In addition, a signal digitalization 

process is performed so that it can be further processed with the professional 

SDR receiver by an objective analysis. Consequently, two different processes are 

simultaneously performed.  

On the one hand, the channel simulator allows the addition of AWGN in 

the signal band. For receivers 1 and 2, which monitor the demodulated received 

signal in real time, increasingly AWGN is added in steps of 0.2 dB until each 

receiver is unable to demodulate the signal without errors (the threshold 

situation has been reached). The threshold situation for both receivers is based 

on a direct visual observation of the video content in real time. Thus, the 

presence of errors in the received signal is considered when errors happen in the 

picture or the image is pixilated. The signal power and the added noise power 

are then measured with a power meter. Thus, the value of SNR threshold can be 

directly obtained.  

On the other hand, the receiver 3 does not allow a direct real time 

demodulation and requires a previous digitalization process of the received 

signal. Consequently, the AWGN addition to the signal is carry out in the 

receiver (it also includes the capability of AWGN addition). Otherwise, the 

needed time for the laboratory measurements could be extremely long. The 

measuring process is similar to the one considered for the other two receivers, 

starting with very low AWGN power (high SNR) which is incremented in steps 

of 0.2 dB until the free-error threshold situation is achieved. In this case the 

error detection cannot be done by image observation. However, there is a direct 

relationship between errors in the visual image and the value of the FER after 

BCH as when FER is different from 0, errors appear in the visual image, 

reaching the threshold situation. In this case, the SNR threshold value is directly 

obtained in the receiver when the threshold condition is reached with a FER 
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value different to 0. 

Finally, these processes must be repeated for all channel models defined in 

Table 4 and for all the DVB-T2 configurations in Table 3. 

3.2.1.5 Laboratory Performance Results 

The results for minimum SNR threshold for the DVB-T2 configuration 

modes shown in Table 3 under channel models listed in Table 4 are presented in 

Table 5. 

Table 5. SNR threshold for portable indoor reception on the laboratory  

Receiver 1 (commercial STB) 

Modes\ 
Channels 

AWGN F1 P1 PI IOA IOB IOPA IOPB TU6 

#1 1.2 1.6 3.2 6.7 14.3 12.8 16.9 13.2 8.2 

#2 3.8 4.0 6.6 10.2 17.9 17.0 21.6 15.8 12.0 

#3 6.2 6.6 8.4 12.2 20.3 19.2 22.0 18.0 14.1 

Receiver 2 (Professional HW receiver) 

Modes\ 
Channels 

AWGN F1 P1 PI IOA IOB IOPA IOPB TU6 

#1 1.2 1.6 3.2 6.7 14.3 12.8 16.9 13.2 8.4 

#2 3.8 3.8 6.6 10.0 17.7 16.8 21.6 15.8 12.4 

#3 6.2 6.6 8.4 12.0 20.3 19.2 22.0 18.0 13.9 

Receiver 3 (Professional SW receiver) 

Modes\ 
Channels 

AWGN F1 P1 PI IOA IOB IOPA IOPB TU6 

#1 1.0 1.5 3.4 6.5 14.3 11.2 12.6 10.8 7.9 

#2 3.2 3.3 6.8 9.1 17.9 14.7 15.4 13.6 10.8 

#3 6.0 6.4 8.6 11.2 20.4 16.7 17.5 15.9 13.0 

All in all, the performance of receivers 1 and 2 (commercial receivers) is 

very similar to each other, being also very similar to the receiver 3 (professional 

SDR receiver) performance for the reference stationary channel models 

(AWGN, F1 and P1). The existing small differences may be due to the 0.2 dB 

step in the noise level addition in the laboratory tests. However, these two 
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receivers generally show lower performance than receiver 3 under portable 

indoor channel models conditions with differences of up to 4 dB in the SNR 

threshold. This fact may be because receivers 1 and 2, unlike receiver 3 [104], 

are not optimized for mobility, so its performance slightly decreases in portable 

scenarios. In addition, it can be observed that the P1 channel, which is 

sometimes considered as a suitable model for fixed indoor reception as non 

line-of-sight with the transmitter is considered, has a minimum SNR threshold 

at least 3 dB lower (and even up to 13 dB) than any portable indoor channel 

model.  

On the one hand, if only portable reception is considered, the 

performance differences between different channel models can be up to 10 dB. 

PI channel model is the least restrictive with a performance degradation of 

about 3 dB with respect to model P1 channel. However, IOA and IOPA are the 

most restrictive with SNR thresholds of about 13 dB higher than P1 channel 

model. Moreover, if all the specific portable indoor channel models are 

compared with the mobile TU6, it can be stated that all of them, except for PI, 

have a SNR threshold at least 3 dB higher than TU6. PI, however, has a SNR 

threshold 1.5 dB lower than TU6. 

On the other hand, the obtained SNR thresholds are always higher for 

16QAM configurations, with values that can be excessively high. For example, 

in a country as Spain in which the existing DVB-T broadcasting network is 

designed for a SNR threshold of about 17 dB [49], mode #3 and sometimes 

even mode #2 SNR requirements are extremely high. Consequently, only mode 

#1, the most robust and with lower available bitrate, could be feasible for DVB-

T2 portable indoor reception. 

3.2.1.6 Conclusions of this study 

This study includes the DVB-T2 performance characterization in indoor 

environments by means of laboratory measurements carried out with several 

channel models intended for this kind of scenario. Thus, the main performance 

differences between some of the channel models defined by various agencies 

(DVB, European COoperation in the field of Scientific and Technical Research 

–COST- 207, ITU) have been presented. 

The results show that the TU6, usually used for mobile outdoor reception, 

and P1 channel model, typically used for fixed indoor reception, present very 
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different performance to other specific portable indoor channel models. On the 

one hand, all of them are focused on portable reception, while the P1 channel 

model is focused on fixed reception, so its SNR is always lower (between 3 and 

13 dB). Furthermore, the characteristics of an indoor scenario are very different 

from those in an outdoor environment for which the TU6 channel is oriented. 

Consequently, TU6 is more optimistic that the most channel models considered 

for portable indoor reception with up to 8 dB lower SNR thresholds. However, 

the PI channel model, proposed in DVB-H for portable indoor reception, is 

even more optimistic with SNR thresholds of about 2 dB lower than TU6. 

Thus, it can be concluded that there are a lot of standardized channel models 

intended for portable indoor reception. However, due to the high variability in 

the measured SNR thresholds, a single reference model for suitable portable 

indoor reception planning cannot be established. 

Finally, the presented SNR threshold values can update and complete 

those in DVB-T2 implementation guidelines [59] and in the Frequency and 

Network Planning Aspects technical report of the EBU [61]. These results can 

be considered for future planning of digital broadcasting services in indoor 

environments.  
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3.2.2 Study B: DVB-T2 field trials for portable indoor 

reception 

The main purpose of this study is the analysis of DVB-T2 coverage for 

portable indoor reception (with a moving receiver at pedestrian speed) by means 

of field trials conducted in Spain for different DVB-T2 configuration 

parameters. 

These field trials were performed within the ENGINES project [80], 

being the first field trials including the analysis of T2-Lite. Besides, they are the 

first attempt to check the feasibility of the DVB-T2 system to offer portable 

indoor services in real scenarios.  

3.2.2.1 T2-Lite & Future Frame Extension (FEF) 

DVB-T2-Lite is the mobile profile included to the DVB-T2 specification 

in the release number 1.3.1 in 2012. It targets mobile and portable reception and 

consequently, it only contains the transmission modes suited for mobile 

reception while minimizing the amount of receiver complexity as it is usual in 

handheld receivers. For example, it establishes restrictions in terms of time 

interleaver memory, modulation orders, code-rate and bitrate. At the same time, 

the number of new elements has been restricted in order to maintain 

compatibility with DVB-T2.  

DVB-T2 includes the possibility of use FEFs, which are part of the T2 

frame that can be filled with any signal. Thanks to the FEFs feature, it is 

possible to introduce a T2-Lite signal optimized for mobile reception inside a 

T2 frame transmitting a mixed configuration. The combination of T2-Lite with 

DVB-T2 transmissions is one solution for the new requirements of broadcasting 

systems. For example, it would be possible to dedicate 75 % of the transmission 

time to fixed DVB-T2 and 25 % to mobile T2-Lite.  

In this case, unlike the PLPs, each profile has total independency in the 

configuration parameters as they are individual signals transmitted in the same 

multiplex. By this way, a T2-Lite signal with 8k FFT size (with extended carrier 

mode), QPSK constellation 1/2 code-rate and PP1 pilot pattern, configuration 

parameters ideal for mobile scenarios, has a capacity of approximately 1.2 Mbps 

per channel (8 MHz bandwidth), which is enough for a HD service or 3 SD 

services at about 400 kbps. In general, the overall spectral efficiency gain 
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depends on the percentage of time dedicated to the transmission of mobile 

services. Summarizing, the use of FEFs is a time multiplexing technique based 

on the transmission of two totally independent signals transmitted in the same 

T2 frame. 

Equally to multiple PLPs, the FEFs can also be used for researching 

purposes in order to test different DVB-T2 waveform and BICM parameters 

under the same channel conditions.  

3.2.2.2 DVB-T2 Configuration  

Thanks to the FEFs, the influence of different DVB-T2 parameters on the 

coverage can be ideally tested, as all the configurations are transmitted at once. 

The DVB-T2 parameters that have been studied are:  

 FFT size. DVB-T2 adds the 1k, 4k, 16k and 32k FFT sizes to those used in 

DVB-T (2k and 8k). Larger FFT sizes mean a greater delay tolerance for 

the same fraction of guard interval, allowing the planning of larger SFNs. 

However, smaller FFT sizes are preferable in mobile or portable reception 

with Doppler effects as larger FFT sizes have higher vulnerability to fast 

time-varying channels. For these reason 4k and 8k sizes have been studied.  

 Pilot Pattern (PP).The performance in time varying channels can also be 

affected by the choice of the PP. In DVB-T2 eight PPs are available 

(named from PP1 to PP8) unlike DVB-T in which only one PP was 

available. The network planner has to choose a PP considering the expected 

channel and a tradeoff between capacity and performance.  

In the case of portable indoor reception with multipath effects, denser PPs 

are recommended so as to follow channel variations in both frequency and 

time. In this study PP1 and PP2 have been tested with the different FFT 

sizes mentioned above to obtain their influence on the performance.  

 Code-rate and constellation. In DVB-T2 several code-rates (1/2, 3/5, 2/3, 

3/4, 4/5 and 5/6) and constellation schemes (QPSK, 16QAM, 64QAM 

and 256QAM) are allowed. However, new high constellation schemes and 

code-rates are oriented to fixed reception because they require high SNR. 

In this case, 1/2 code-rate has been tested with QPSK and 16QAM so as to 

have a tradeoff between robustness and capacity. 

Taking all above into consideration, two mixed modes were defined and 
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tested. Both of them make use of the FEF and multiple PLP new features.  

 Mode #1 (FFT Change). This is a mixed mode with two T2-Base 

components with two PLPs inserted in each one. Both components share 

the same configuration parameters with the exception of the FFT size. It 

allows testing in identical conditions of reception the effect of two FFT 

sizes (4k and 8k) and two modulation schemes (QPSK and 16QAM). 

 Mode #2 (PP Change). This is also a mixed mode with two T2-Base 

components with two PLPs inserted in each one. Both components share 

the same configuration parameters with the exception of the pilot pattern. 

It allows testing in identical conditions of reception the effect of two 

different pilot patterns (PP1 and PP2) and two different modulation 

schemes (QPSK and 16QAM). 

The main changing parameters of these modes are resumed in Table 6, 

while the other primary configuration parameters were the same in all cases: 

bandwidth of 7.61 MHz, guard interval fraction of 1/8, 1/2 code-rate, 16k for 

LDPC FEC length, the use of rotated constellations and around 32 ms of 

interleaving length. The capacity for QPSK configurations is about 6.0 Mbps 

whereas it grows up to 12 Mbps when 16QAM is considered. This capacity is 

enough for the transmission of several HD services with H.264 [99] [100] [101] 

[102]. However, as the time had to be divided into 4 different PLPs in each 

mode, the considered bitrate in all the configurations with QPSK constellation 

is 1.3 Mbps and exactly the double with 16QAM constellations constellation.  

Table 6. DVB-T2 measured modes Main Changing Parameters 

Mode Comp FFT Pilot Pattern Constellation 
Considered Bitrate 

(Mbps) 

#1 

Base 8k PP2 
QPSK 1.3 

16QAM 2.6 

Lite 4k PP2 
QPSK 1.3 

16QAM 2.6 

#2 

Base 8k PP1 
QPSK 1.3 

16QAM 2.6 

Lite 8k PP2 
QPSK 1.3 

16QAM 2.6 
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3.2.2.3 Measurement Campaign Description 

Experimental Network 

Two sections shown in Figure 10 were involved in the experimental 

network. The first one was the T2 Modulator Interface (T2-MI) Generation 

section. For each mixed mode four services were combined using two T2-

gateways, one for each component of the mixed signal. Each gateway combined 

two PLPs, so two Transport Streams (TS) players connected to each T2-gateway 

with Asynchronous Serial Interface (ASI) connections were needed. 
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Figure 10. Network scheme for the mixed mode signals transmission 

The two T2-MI signals generated were sent to the second section, the T2 

Transmission section, via Ethernet links. The transmitter directly received one 

of the components to configure the mixed mode. However, the T2-MI signal of 

the second component was previously sent to an IP to ASI converter so as to 

convert the IP data signal into an ASI signal that was next sent to the ASI 

transmitter input. By this way, the transmitter was capable to combine both 

components and generate the mixed signal. As a result, four different T2 

configuration modes were transmitted in each mixed mode. All the equipment 

was configured through web interfaces using an Ethernet link. 

The transmitter centre was located on a mountain in Collserola 
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(Barcelona, Spain), 448 m higher and around 8 km away from the Barcelona 

Exhibition Centre reception building. Figure 11 shows an image of the 

transmitter and reception building in their locations.  

The transmission system consisted on a 300 W transmitter with a radiating 

system based on a three dipole array panel with vertical polarization radiating in 

482 MHz (UHF channel 22) with an antenna gain of 16 dBi. 

 

Figure 11. Transmitter and reception building locations 

Measurement System 

The measurement system was based on an online IQ signal recording for 

posterior offline laboratory processing, which provided great flexibility [105] 

[107]. 

Figure 12 shows a scheme of the equipment used in the measurement 

system inside the mobile unit. The reception system had a vertical dipole tuned 

to the transmission frequency of 482 MHz. This antenna was on the roof of a 

self-powered mobile unit. The received signal was recorded in a high speed 

eSata hard disk as baseband IQ samples for a posterior offline processing stage 

using and IQ recorder equipment. Online measurements were also carried out at 

the same time with the professional SDR DVB-T2 demodulator developed by 
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UPV/EHU in its pseudo-real time mode, connected to an IQ digitalizer so as to 

verify the correct reception in real time. Besides, a signal analyzer was used to 

measure the received signal power. A custom SW system application, which 

remotely configures each measure, records the RF signal (IQ samples) and 

associates this information with the receiver speed and position information 

provided by a Global Positioning System (GPS) and a tachometer. 

 

Figure 12. Measurement system scheme 

Measurement environment 

The measurement campaign was conducted inside the Barcelona 

Exhibition Centre. This is a group of one floor buildings in the outskirts of the 

city of Barcelona. 

These buildings are obvious examples of typical industrial pavilions or 

public exhibitions buildings. As it is shown in Figure 13, the walls are of 

reinforced concrete with metallic beams and pillars on roof and walls. There are 

also some glass panels both on the roof and on the walls.  

When the measurements were performed, the buildings were empty and it 

was possible to drive the mobile unit inside the pavilions at pedestrian speed 

(less than 5 kmph). Several routes were carried out along two of these buildings 

and recording the received signal on hard disks for a posterior offline analysis. 
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Figure 13. View inside the Barcelona Exhibition Centre building 

Measurement Analysis Methodology 

The measurements were divided into two phases. The first one consisted 

on online measurements carried out during the field trials. With these 

measurements some preliminary results of coverage were obtained and the 

signal for the posterior offline analysis was recorded on hard disks. 

All the data stored on hard disks during the field trials were afterwards 

processed in the laboratory with the professional SDR receiver [104] defined in 

DVB-T2 Receiver Framework in its offline operation mode in order to obtain 

the performance results. It implements the whole reception chain, from 

synchronization to PLP extraction, providing detailed measurements of the 

main parameters of the recorded signal.  

The offline processing generated multiple files with information about the 

quality of the received signal. The main objective of this offline analysis was to 

measure the amount of seconds with good reception and with errors, so as to 

obtain the percentage with no errors (correct reception). 

Reception Threshold Criterion 

The DVB-T2 standard sets the threshold criterion for DVB-T2 signal 
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reception in getting to the Quasi Error Free (QEF) point, which is reached 

when the BER is lower or equal to 10-7 after LDPC [59].  

However, due to the high measurement time required to obtain BER = 

10-7 values and considering the receiver capabilities, the threshold criterion for 

the measurements was based on a FEC Blocks Error Rate (FBER) [108], which 

is defined as the ratio of erroneous FEC blocks received during an observation 

period established in a T2-frame time. In other words, the FBER value per 

frame is the number of FEC blocks with errors inside a T2-frame.  

By this way, the number of T2-frames with FBER≠0 (any FEC Block in 

the T2-frame has errors) were measured for each configuration mode, obtaining 

the correct reception percentage. 

Methodology 

The measuring analysis methodology in outline is shown in Figure 14.  

 

Figure 14. Measurement analysis methodology 

The received signals recorded as IQ samples during the field trials were 

analyzed using a professional DVB-T2 demodulator. As result, many log files 

with the FBER information were obtained. This information was combined 
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with the location data from the GPS (latitude and longitude coordinates) and 

the speed data from both the GPS and the tachometer. Besides, it was also 

analyzed in combination to the power measurements taken during the trials.  

All in all, the number of correct frames (frames with FBER=0) and 

incorrect frames (frames with FBER≠0) were calculated, obtaining the correct 

reception percentage for each configuration mode in portable indoor reception.  

The offline laboratory processing also enables the simulation of lower 

transmitted power levels by means of adding external white noise to the 

recorded signals. By this way, the SNR decreases as if the transmitted power 

during the trials was lower. 100 W, 10 W and 1 W simulated transmitted power 

levels were tested. The decrement in the SNR (SNRdec) needed to obtain the 

desired simulated transmitter power (Ptx_des) considering a real transmitter 

power (Ptx_real) of 300 W can be obtained obtained by (1). 
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This necessary decrement in the SNR cannot be done by decreasing the 

transmitted power level but it can be performed equally by adding an additional 

noise power level to the existing noise level. The existing noise power level 

(Nex) was measured in the received signal out of band samples, obtaining en 

empirical value of -97.8 dBm (measured in a bandwidth of 7.61 MHz). By this 

way, the real noise power level (Nreal) needed to obtain the SNR decrement 

necessary to simulate the decrement in the transmission power is obtained by 

(2). 
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3.2.2.4 Field Trials Coverage Results 

The results presented are based on the correct received percentage, in 

other words, the percentage without errors of the measured signal, for each 

configuration mode under study along the tested routes inside the Barcelona 

Exhibition Centre buildings. Table 7 shows the performance results for the two 

measured modes (M1 and M2 respectively). The results are shown in terms of 

average percentage of frames without errors, considering erroneous frames 
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those with FBER≠0. 

Considering the results obtained in Table 7, which includes the general 

correct reception percentages (CRPs), the CRP is always higher than 95% 

(which is considered as a limit for “good” reception in portable reception [61]) 

with the entire tested configuration modes with a simulated transmission power 

of 300 W and 100 W. The CRP is also higher than the limit of 95% with 10 W 

and QPSK modulation scheme. However, it is decreased in at maximum 13% 

when the constellation order increases to 16QAM, but maintaining a CRP 

higher than 70% (which is a secondary limit for “acceptable” reception in 

portable reception [61]). The CRP decreases up to around 50% when a 

simulated transmission power of 1 W is considered. The situation worsens when 

the constellation order increases to 16QAM, reducing the CRP up to values of 

7%. 

Table 7. Correct Reception percentages (CRP) % for the measured DVB-T2 Modes for 
Different Transmission Powers 

Mode Comp. Const. 
Cap. 

(Mbps) 

CRP 

(300W) 

CRP 

(100W) 

CRP 

(10W) 

CRP 

(1W) 

#1 

(PP2) 

Base: 

8k 

QPSK 

16QAM 

1.3 100 100 99.9 43.7 

2.6 100 99.9 87.5 7.3 

Lite: 

4k 

QPSK 

16QAM 

1.3 100 100 100 67.5 

2.6 100 100 95.6 9.5 

#2 

(8k) 

Base: 

PP1 

QPSK 

16QAM 

1.1 100 100 100 54.7 

2.2 100 100 87.7 12.1 

Lite: 

PP2 

QPSK 1.3 100 100 100 53.8 

16QAM 2.6 100 100 87.8 11.3 

Besides, analyzing the influence of the parameters under study, the 

following results have been obtained. The influence of the parameters is 

noticeable with lower simulated transmission power levels, especially with 10 W 

and 1 W: 

 Increments in the CRP of up to 20% with QPSK and 8% with 16QAM are 

obtained with 4k over the CRP values obtained with 8k FFT size, with no 

decrement in the capacity. 
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 The Pilot Pattern has little influence on the results, obtaining increments of 

less than 1% using PP2 instead of PP1. 

 The change in the constellation order from QPSK to 16QAM means a 

decrement in the CRP of between 5% and 13%. 

3.2.2.5 Conclusions of this study 

This study provides results about the feasibility of DVB-T2 system to 

offer HD portable indoor reception by means of field trials with a real 

broadcasting network. Field trials were conducted in real indoor scenarios at 

pedestrian speed so as to obtain performance measurements of DVB-T2 based 

on the correct reception percentage of the measured signal. These trials took 

advantage of some of the new features of the DVB-T2 standard, such as the 

multiple PLP and the FEF features, being able to measure different 

combinations of configuration parameters (such as the FFT size, the pilot 

pattern and the constellation order) at once, in other words, in exactly the same 

reception conditions.  

Besides, it also provides performance results of the indoor reception 

depending on the transmitted power, obtaining reference results that could be 

helpful for future network planners. The obtained results demonstrate that a 

correct reception percentage of more than 95% is possible for SDTV with all 

the configurations tested both with a transmission power of 300 W and 100 W 

in portable indoor reception. However, a transmission power of 300 W is 

excessively high, as 100 W are enough to ensure a CRP higher than 95% for up 

to 2.6 Mbps of capacity. Indeed, if a capacity lower than 1.3 Mbps is desired for 

this reception scenario, it is possible to design the network with a transmission 

power of only 10 W.  

On the other hand, considering lower simulated transmission power levels 

(10 W and 1 W), the influence of the FFT size, the pilot pattern and the 

modulation schemes in the indoor portable reception has been tested. The 4k 

FFT size is better than 8k because it allows a higher CRP without decreasing the 

capacity. The pilot pattern has an almost null influence on the CRP in portable 

indoor reception. Finally, the change in the modulation scheme from QPSK to 

16QAM means an increment in the capacity at expense of a considerable 

decrement in the CRP.  
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3.2.3 Study C: Field Trials Based Planning Parameters 

for DVB-T2 Indoor Reception 

The main objective of this study is to characterize in detail the 

performance of DVB-T2 signals in indoor environments by means of field trials 

so as to determine the required minimum SNR for a correct indoor portable 

reception and complete the DVB-T2 performance evaluation process in indoor 

scenarios. These results could be considered as reference information that could 

be taken into account by future network planners to establish the necessary 

transmitted power [109].  

In addition, a detailed methodology to obtain the SNR threshold in indoor 

scenarios is defined. For this purpose, a correct reception criterion for both 

fixed and pedestrian indoor reception is defined. Moreover, the time variability 

of the received signal in each measured indoor scenario as well as the location 

variability of all the measurements is analyzed. 

3.2.3.1 DVB-T2 Configuration  

One mixed DVB-T2-Base and T2-Lite signal with multiple PLPs was 

defined and tested in order to test different signal parameters at once. This 

signal includes two profiles by means of the FEF feature. The main parameters 

of each tested configuration mode of the mixed signal are shown in Table 8. 

The DVB-T2 Base profile has been selected to have high capacity 

(256QAM), because it is intended for HDTV fixed reception. The highest FFT 

size and the smallest guard interval have been selected because they provide 

higher capacity with no noticeable performance degradation in fixed reception. 

The pilot pattern is the least dense which means lower overhead and, 

consequently, higher capacity [85].  

The DVB-T2 Lite profile has been selected to be more robust because it is 

intended for mobility reception in difficult scenarios. DVB-T2 Lite includes 3 

PLPs with different modulation and code-rate combinations, including the new 

most robust code-rate of the DVB-T2 profile (1/3). In this case, the FFT size is 

the one which provides a trade-off between capacity and performance in 

mobility. The selected guard interval and pilot pattern are also a trade-off 

between overhead and performance in indoor scenarios [86].  
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Table 8. DVB-T2 and DVB-T2 Lite Parameters 

Main Changing Parameters 

Profile 
Frame 
length 
(ms) 

FFT / IG / PP 
LDPC 
FEC 

length 
MOD-COD 

Considered 
Bitrate 

(Mbps) 

Base 209.7 32k /1/128 /PP7 64k 256QAM 2/3 23.0 

Lite 249.6 8k /1/16 /PP4 16k 

QPSK 1/3 1.1 

QPSK 1/2 1.1 

16QAM 1/2 1.1 

Main Common Parameters 

Bandwidth (MHz) Rotated Constelation. L1 MOD Interleaving length 

7.71 Yes BPSK 
T2-Frame length 

(subslicing ON) 

On the whole, the signal was defined so as to maintain a similar capacity 

(1.1 Mbps) in all the configuration modes dedicated to mobility services in the 

DVB-T2 Lite component. This bitrate is enough for one SD service when 

H.264 is used. Besides, if the whole T2-Lite slot is dedicated only to one PLP, 

the available bitrate will be higher and more SD or HD services could be 

allocated with H.264. The DVB-T2 Base component is dedicated to high 

capacity fixed services so its capacity increases up to 23 Mbps enabling the 

transmission of two or even three HD services with H.264 [99] [100] [101] 

[102]. 

This signal is a good example of possible future configurations that could 

be used to cover any services, from high capacity services in fixed locations, to 

low capacity services but more robust in challenging scenarios, such as indoor or 

mobile environments.  

3.2.3.2 Experimental Network 

Transmission System 

Banderas transmission center, shown in Figure 15, was used to cover the 

urban core of the city of Bilbao, in the north of Spain. It is located on a hill of 

about 216 m high and about 3 km far from the city centre of Bilbao. Bilbao is a 

city with an urban centre with medium altitude of around 8 m over the sea level. 
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The most of the buildings are between 5 and 10 floors with very few 

skyscrapers. 

The transmission equipment for the DVB-T2 mode consisted of: 

 DVB-T2 and DVB-T2-Lite modulator that generated the signal at 

Intermediate Frequency (IF). 

 Frequency converter and pre-amplifier that shifted the IF signal to the RF 

frequency channel 48 (690 MHz) and amplified it to achieve the required 

level power to input the power amplifiers. 

 Power amplifier that provided a total power level of 300 W. 

 Computer to configure the DVB-T2 configuration options (modulator) and 

the transmission power levels (up-converter and main amplifier). 

 Radiating system in vertical polarization with a two panel array (16 dBi 

maximum gain), providing a 5kW Effective Radiated Power (ERP). 

 

Figure 15. Banderas transmission center 

The DVB-T2 modulator and the up-converter were connected to the 

computer, while the computer and the amplifier were directly connected to the 

transmission internal network. In that way, accessing the transmission internal 

network through a Virtual Private Network (VPN) by means of a Remote 
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Desktop application, the equipment was remotely controlled. Besides, a fast 

configuration of all the parameters associated with the transmitted signals was 

allowed. Figure 16 shows all the signal and control connections in the 

transmitter. 

 

Figure 16. Transmitter scheme 

Reception System 

The reception system, shown in Figure 17, was based on an online IQ 

signal recording for posterior offline laboratory processing, as in the Study B 

[105]. 

The reception system consisted of a 2 dBi vertical monopole tuned to the 

transmission frequency of 690 MHz and connected to a channel filter, set to 

channel 48, to prevent other emissions interfere with desired signal 

measurement. The received signal was recorded using an IQ recorder equipment 

in a high speed eSata hard disk as baseband IQ samples for a posterior offline 

processing stage. Furthermore, during the measurements, information related to 

the environment was manually recorded (location, height, type of building, type 

of room, presence of furniture or people around, presence of windows in the 

room…) so as to obtain information about the reception environment. 
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Figure 17. Reception system 

Measurement locations 

The measurement campaign was conducted in 10 buildings inside the city 

of Bilbao. Figure 18 shows a map of Bilbao with the location of the transmitter 

marked with a yellow triangle and the reception locations marked with purple 

circles. 

 

Figure 18. Measurement locations 
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Fixed and pedestrian indoor scenarios were measured. In a fixed indoor 

scenario the receiver is static although there could be people moving around it. 

Furthermore, in a pedestrian indoor scenario the receiver moves at near 3 kmph 

while there could also be people moving around it.  

Eight of the locations consisted in housing buildings. Measurements were 

carried out in every room in the house, including rooms with and without 

windows, at different floors and with different wall materials. In addition, data 

was also recorded in common spaces of the building (landings, as well as 

vestibules). Figure 19 shows an example of this kind of scenarios. The other two 

locations were inside public buildings (university and primary school) with many 

people inside. All these locations have been considered as a representative 

sample of indoor environments. 

 

Figure 19. View inside one of the measured locations 

Table 9 summarizes all the main features of the measured locations. 

Altogether, 107 different fixed locations and 137 different pedestrian routes 

were measured in indoor environments. 

The first column indicates each location number informing about the 

floor in Column 2. Column 3 shows the number of fixed measurements 

recorded in rooms inside its building. Column 4 indicates the number of 

pedestrian measurements carried out inside each building. 
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Table 9. Measurements Main Features 

Point Floor 
Fixed  

locations 

Pedestrian 
routes 

Point Floor 
Fixed  

locations 

Pedestrian 
routes 

01 3 10 8 06 5 14 8 

02 0 10 8 07 4 15 8 

03 9 10 8 08 5 10 8 

04 5 12 8 09 
From 1 

to 4 
10 53 

05 8 12 8 10 4 4 20 

TOTAL 107 fixed locations 137 pedestrian routes 

Recording times 

In order to define appropriate recording times in each type of 

measurements (fixed and pedestrian), different criteria were applied. 

In the case of fixed reception in indoor scenarios, several measurements 

with different recording times were previously performed in the same locations 

with and without people moving in the surrounding area. Analyzing the signal 

power along the different tested recording times, it has been checked that the 

power time variation is almost the same in all the cases. For this reason, it is not 

necessary to record the received signal during long periods of time. Thus, 15 s 

recording time has been considered representative enough for the signal power 

time variability in indoor environments. 

On the other hand, in the case of the pedestrian reception in indoor 

environments, the recording time has been chosen considering the typical size 

of a room in a housing building. Taking into account that routes of around 8 m 

length have been carried out inside each room and that 3 kmph is a typical 

speed of a person walking in an indoor environment, measurements during 10 s 

are considered to define a route inside a room. 

3.2.3.3 Processing Methodology 

The processing methodology is very similar to that in Study B with a first 

step of storing all the data on hard disks during the field trials and a posterior 

step of processing them in the laboratory with the UPV/EHU professional 

SDR DVB-T2 Receiver defined in DVB-T2 Receiver Framework in its offline 
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operation mode. The receiver generates multiple quality files as shown in Figure 

20. The most relevant were the error rate for each FEC block in a DVB-T2 

frame and the SNR per symbol in a DVB-T2 frame. 

 

Figure 20. Offline measurement system 

Threshold Criterion 

The first step to make a performance study of the measured DVB-T2 

configuration mode in indoor environments is based on establishing the correct 

reception threshold criterion to be applied. As in the Study B: Study B it is based 

on the FBER [108], in other words the ratio of erroneous FEC blocks received 

during an observation period established in a T2-frame time. 

Due to the establishment of the T2-frame time as the observation period 

for the defined threshold criterion, all the data obtained from the offline 

processing (FBER and SNR) has to be combined and reduced to an updating 

period corresponding to the T2-frame length time. Therefore, the FBER value 

per T2-frame has been obtained as the percentage of FEC blocks with errors in 

comparison with the total number of FEC blocks inside the corresponding T2-

frame time. The representative value of SNR per T2-frame is the median value 

in a T2-frame. 

As in several locations the reception was always correct and no erroneous 

FEC block was received, additional noise had to be added to the entire signal so 

as to simulate the effect of decreasing the SNR value for each T2-frame until 

several erroneous FEC Blocks appear. The process is based on adding 

increasing additional noise power to every recorded signal so as to locate the 

SNR threshold in each case. The limit in the noise power level is reached when 

erroneous FEC Blocks appear in every recorded signal for any of the 

configuration parameters sets. 
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Figure 21 depicts an example of the relation between SNR per T2-frame 

and the FBER percentage in a real indoor location for one PLP. FBER values 

per T2-frame (also considering different additional noise power levels in the 

specific location), are represented with crosses. As it can be seen, the relation is 

very sharp. This is because of the sharp drop in the relation between the error 

rate and the SNR of the LDPC codes, which means a change from correct 

reception to signal loss in just a few tenths of decibel in the SNR value [110]. 

The FBER percentage values can be easily approximated to a straight line. 

On that way, a linear approximation has been applied (shown in Figure 7 as a 

blue line) so as to obtain an instantaneous SNR threshold for each measured 

location based on the FBER vs SNR relation per T2-frame. 

The selected FBER threshold criterion is based on the limit of the 

percentage of frame length time that can be erroneous. In that way and 

considering that having a coverage of 99% time is considered as good reception 

in mobility [61], a threshold criterion based on having 1% FBER has been 

established.  

 

Figure 21. SNR vs FBER 

Methodology for Obtaining the SNR threshold  

The data obtained from the offline processing with the professional 

receiver (FBER and SNR per T2-frame) is the starting point for the 
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performance analysis. The methodology to obtain the reference SNR threshold 

in fixed and pedestrian indoor scenarios is shown in Figure 22. 

The starting point calculates the threshold criterion based on 1% FBER to 

every recorded signal (both in fixed and pedestrian measurements), obtaining an 

instantaneous SNR threshold per location/route. These instantaneous SNR 

thresholds should be referred to 50% of time as in planning tools. In this case, 

each location is mainly characterized with its median SNR or median power 

level in the time domain, which is the information usually used by broadcasters. 

Thus, the instantaneous thresholds referred to 50% time (Step 1 in Figure 22) 

are obtained. 

The second step carries out a statistical study of the instantaneous SNR 

threshold from Step 1, obtaining the median value of the instantaneous SNR 

thresholds of all the locations/routes (SNRinst). By this way, the SNR threshold 

for the 50% of the time and 50% of the locations is obtained (Step 2 in Figure 

22). 

In digital services, it is typical to cover the 99% time [61], so it is 

important to determine the signal variation and obtain the SNR threshold value 

for this percentage of measured time. For this reason, the following step (Step 3 

in Figure 22) consists in analyzing the time variability of the SNR in each 

location/route so as to obtain the necessary time correction factor between 

covering the 50% and 99% of the signal time in each location/route. Next, a 

statistical study of the time correction factors of each location/route is done in 

order to obtain a generic and common Time Correction Factor (TCF) to cover 

the 99% signal time in an indoor environment. This common time correction 

factor is applied to the SNR threshold for 50% time and 50% locations from 

Step 2 resulting in a SNR threshold value for the 99% time and 50% locations. 

The final step (Step 4 in Figure 22) lies in making a statistical study of the 

instantaneous SNR threshold values for all the locations from Step 1 so as to 

obtain the Location Correction Factor (LCF) to cover the 95% of the locations. 

The LCF is applied to the SNR for 99% time and 50% locations from Step 3 

resulting in a unique SNR threshold value that covers the 95% of the locations 

[61]. This threshold value is an overall SNR threshold value for the 99% of the 

time and the 95% of the locations. 
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Figure 22. Methodology for obtaining the SNR Threshold 

Taking all above into consideration, the SNR threshold in indoor 

reception is given by equation (3): 

)()()()( dBLCFdBTCFdBSNRinitialdBSNRfinal  (3) 

Equation (3) summarizes that the SNR threshold (SNRfinal) per each 

configuration parameters set is initially given by the SNR for 50% time and 50% 

locations (SNRinitial) obtained by means of 1% FBER criterion (Step 2). This 

value has to be updated with the TCF (Step 3) and the LCF (Step 4) so as to 

cover the 99% of the time and the 95% of the locations. 

Laboratory Reference Values 

Apart from the results obtained in the field trials, some laboratory 

measurements were also carried out so as to obtain the referenced values for 

indoor reception with emulated channel models. F1 and P1 theoretical channels 

[59] will be considered for fixed indoor reception. Additionally, it is shown in 

[75] that a specific channel model was needed in order to simulate the 

pedestrian indoor reception. This was the PI [76] channel model. Besides, the 

ITU also proposed two channel models intended for pedestrian indoor 

reception, IOA and IOB [97]. 

Figure 23 describes the laboratory measurements set-up using the same 

receiver as in the field trials but emulating the channels by means of the HW 

channel simulator used in Study A. The methodology applied is the one 

described in “Methodology for Obtaining the SNR threshold” section but 
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considering that the time variation is null (TCF = 0 dB) for the channel models 

considered for fixed indoor reception, while the spatial variation is null (LCF = 

0 dB) for every simulated channel model. 

 

Figure 23. Laboratory measurements set-up 

3.2.3.4 Studies and Results 

SNR Threshold for 50% time and 50% locations 

Applying the 1% FBER criterion for every measured location/route 

during the 15 s recording time in fixed reception and during 10 s in case of 

pedestrian reception, the instantaneous SNR threshold values per location/route 

(Step 1 in Figure 22) are shown in Figure 24 and Figure 25 for fixed and 

pedestrian reception, respectively. The straight lines show the median 

instantaneous SNR value for each DVB-T2 configuration mode considering all 

the measured locations.  

Numbers in the abscissa axis of Figure 24 and Figure 25 indicate the 

amount of measurement locations on which the threshold situation has been 

reached for each DVB-T2 configuration parameters set. This number depends 

on the robustness of the configuration parameters, showing in general fewer 

locations for the least robust configuration mode (256QAM) on which it was 

not possible to reach the threshold situation because it was directly received 

with more errors than those of the 1% FBER criterion. 

Furthermore, although the highest number of measurement locations 

should be for the most robust configuration mode (QPSK 1/3), the situation is 

different. This is because it is necessary to establish a tradeoff between the 

additional processing time required for reaching the threshold situation in new 

locations and the number of measurements that are statistically representative. 

Thus, the statistical analysis results will be the same with a higher number of 

measurements. 
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Figure 24. Instantaneous SNR thresholds for measured fixed locations 

 

Figure 25. Instantaneous SNR thresholds for measured pedestrian routes 

Table 10 shows the median values of the obtained instantaneous SNR 

values per location/route and for both fixed and pedestrian scenarios. These 

results are important due to the fact that they are the reference values 
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broadcasters take into consideration and are also used in network planning 

tools. The results included in Table 10 are the SNR thresholds for 50% time and 

50% locations (Step 2 in Figure 22) and its variance, obtained from the previous 

results in dB. 

Table 10. Threshold for 50% time and 50% locations Main Statistical Features (dB) 

Modes 
Fixed Scenario Pedestrian Scenario 

Median Variance Median Variance 

Base: 256QAM 2/3 20.7 2.2 23.3 5.4 

Lite: QPSK 1/3 1.5 1.0 3.7 1.0 

Lite: QPSK 1/2 3.0 1.2 5.7 1.8 

Lite: 16QAM 1/2 7.8 1.4 10.1 1.4 

As it can be seen, the median value of the instantaneous SNR threshold in 

pedestrian scenarios increases between 2.2 and 2.7 dB depending on the 

configuration mode. However, the variance is mainly the same in pedestrian 

than in fixed scenarios. This is because the receiver movement has less influence 

on the SNR threshold than the changing surrounding environment. For this 

reason, the variance in static and pedestrian reception is similar because it is only 

affected by the surrounding scenario. The variance for the 256QAM parameters 

set is higher, especially in case of pedestrian reception. The reason for this high 

value may be the high SNR threshold of this configuration as it is not suitable 

for indoor reception.  

SNR Threshold for 99% time and 50% locations 

The instantaneous SNR per location for the 50% time obtained in “SNR 

Threshold for 50% time and 50% locations” section (Step 2) has to be updated 

to the 99% of the signal time [61]. For this purpose, the time variability of the 

SNR in each location has to be analyzed to obtain the necessary correction 

factor [111].  

Figure 26 shows an example of the process of obtaining the time 

correction factor for the 99% time in one location/route. “D99” is the 

difference between the SNR for 99% and 50% time .In other words, the 

difference between the SNR value that is exceeded during the 99% of the time 

and during the 50% of the time. “D99” is the time correction factor that should 
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be applied to the SNR threshold for the 50% time in each location/route (from 

Step 1) because of the time variability of the signal. 

This correction factor has been obtained for all the measured 

locations/routes. “D99” is the same for every configuration parameters set in a 

DVB-T2 mode because it only depends on the signal power level received 

during the recording time (or SNR). Red crosses in Figure 27 and Figure 28 

show the obtained “D99” values for each fixed and pedestrian measurements, 

respectively. As it can be seen, “D99” varies in each location as the SNR time 

variability also does. 

 

Figure 26. Time variability correction example 

In order to have a unique and common correction value for all the 

locations that could be applied in any case, the variation of “D99” correction 

factor is analyzed for all the locations. For this reason, a statistical study of the 

“D99” variation has been done showing the main significant features (median, 

75% and 95% percentiles) in Figure 27 for fixed reception and in Figure 28 in 

case of pedestrian reception.  
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Figure 27. “D99” statistical analysis in fixed locations 

 

Figure 28. “D99” statistical analysis in pedestrian routes 

In addition to obtaining the time variability correction factor for the 99% 

of the time (“D99”) as it is typical in digital services, other time percentages can 

be also studied. The main percentages of time to consider besides 99% are 

100% (“D100”) and 95% (“D95”), because they are typical percentages to 

consider for the time variability [61]. The process to obtain them is the same as 

for “D99” but with different percentages of time.  
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Table 11 shows the main statistical features of the time correction factors 

(TCF) (“D100”, “D99” and “D95”) in fixed and pedestrian indoor locations. 

Table 11. Time Variability Correction Factor (TCF) (dB): Statistical Analysis in Fixed and 
Pedestrian Scenarios 

Statistical 
Features 

Fixed Time Correction Factor 
(TCF) 

Pedestrian Time Correction 
Factor (TCF) 

“D100” “D99” “D95” “D100” “D99” “D95” 

100% 4.9 4.8 4.1 11.7 11.7 9.9 

99% 4.6 4.6 4.0 10.6 10.6 9.2 

95% 3.5 3.5 2.9 8.2 8.1 7.5 

75% 1.7 1.6 1.4 5.7 5.6 4.9 

50% 0.9 0.9 0.8 4.2 4.1 3.6 

In fixed scenarios, as it can be seen in Table 11, the differences between 

“D100” and “D99” are always lower than 0.1 dB while the differences between 

“D99” and “D95” can be up to 0.7 dB. Equally, in pedestrian reception, the 

differences between “D100” and “D99” are always lower than 0.1 dB but this 

differences increase up to 1.8 dB when comparing “D99” with “D95”. This 

means that the time variability correction factor for the 99% time (“D99”), 

which is the typical one for digital services, is restrictive enough without 

involving huge degradation in the TCF in comparison with other time 

percentages (always lower than 0.1 dB). 

The statistical features of “D99” in Table 11 show that 100% and 99% 

percentiles are too restrictive with increments of around 1.2 dB in fixed 

reception and between 2.5 and 3.6 dB in pedestrian reception in comparison 

with 95%. Considering that 50% and 75% percentiles are not restrictive enough, 

the 95% percentile statistical feature, which is considered as good reception [61], 

is the one to consider for the time variability correction factor in both fixed and 

pedestrian indoor scenarios.  

Taking all into consideration, the time correction factor in a fixed indoor 

environment is established in 3.5 dB while it increases up to 8.1 dB in case of 

pedestrian indoor scenarios. For this reason, the time variability of the received 

signal in indoor environments has more influence on the pedestrian than on the 

fixed reception. The receiver movement in pedestrian indoor scenarios in 

comparison with fixed scenarios means an increment of 4.6 dB in the TCF for 
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covering the 99% time. 

The SNR thresholds values for 50% time and 50% locations from Step 2 

are updated with this time correction factor to cover the 99% time. The results 

are summarized in Table 12, resulting in SNR thresholds for 99% time and 50% 

locations (Step 3 in Figure 22). 

Table 12. SNR Threshold for 99% time and 50% locations (dB) 

Modes 
Fixed Scenario Pedestrian Scenario 

Median Median 

Base: 256QAM 2/3 24.2 31.4 

Lite: QPSK 1/3 5.0 11.8 

Lite: QPSK 1/2 6.5 13.8 

Lite: 16QAM 1/2 11.3 18.2 

As it can be seen, the median value of the SNR threshold for 99% time in 

pedestrian scenarios increases between 6.7 and 7.3 dB in comparison with the 

fixed SNR thresholds, depending on the configuration mode. Besides, the 

variance remains as in “SNR Threshold for 50% time and 50% locations” 

section, as the time correction factor applied is common to all the DVB-T2 

configurations. 

SNR Threshold for 99% time and 95% locations 

Once the TCF has been assessed, the location variability has also to be 

established [112]. The study of the location variability depends on the specific 

configuration parameters set because it is based on a study of the SNR 

thresholds in different locations. 

The instantaneous SNR threshold from Step 1 is different in each 

measured location and a statistical study of the location variation has to be 

carried out. Therefore, the main statistical features of the location variability 

(75% and 95% percentile values) have been obtained for each configuration 

mode.  

A good reception is supposed if the 95% of the locations are covered, 

while an acceptable reception is in case of 75% [61]. For this reason, “D95 and 

“D75” are obtained. “D95” is the difference between the SNR for 95% and 
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50% locations, while “D75” is the difference between the SNR for 75% and 

50% locations. These are the location correction factors that should be applied 

to the SNR threshold for the 99% time and 50% locations (from Step 3) 

because of the location variability of the signal. 

Figure 29 and Figure 30 show the Cumulative Distribution Function 

(CDF) for instantaneous SNR thresholds (Step 1) depending on the 

locations/routes for fixed and pedestrian reception, respectively.  

The dotted black lines and their associated values are the SNR threshold 

for the 50% time and for typical percentiles of locations, such as 50%, 75% 

(acceptable reception) and 95% (good reception). For this reason, the LCF 

“D95” and “D75” are shown in Figure 29 and Figure 30 in blue for one 

exemplifying configuration parameters set. These LCF should be applied to the 

SNR threshold from Step 3 and are different for each configuration mode. 

As it can be seen in Figure 29 and Figure 30, the slope of the CDF curve 

for each configuration parameters set indicates the influence of the location 

variability in each case. If the curve was perfectly vertical, all the measured 

locations/routes would have the same instantaneous SNR threshold for 50% 

time and the location correction factor in these cases would be null. However, 

different measured points have different instantaneous SNR threshold for 50% 

time, and for this reason, there is a slope in the CDF curve. The higher the slope 

is, there is more influence of the location variability on the SNR threshold. 

 

Figure 29. CDF of instantaneous SNR threshold for 50% time depending on the fixed 
locations 



Chapter II: DVB-T2 Indoor Studies 

 

 

 95 
 

 

Figure 30. CDF of instantaneous SNR threshold for 50% time depending on the number 
of routes 

Table 13 shows the LCF “D75” and “D95” for both fixed and pedestrian 

reception for each configuration mode.  

Table 13. Location Variability Correction Factor (LCF) (dB) 

Modes 
Fixed Scenario Pedestrian Scenario 

“D95” “D75” “D95” “D75” 

Base: 256QAM 2/3 2.5 1.6 6.4 1.0 

Lite: QPSK 1/3 1.9 0.4 1.3 0.4 

Lite: QPSK 1/2 2.4 0.9 1.6 0.7 

Lite: 16QAM 1/2 2.4 0.9 1.7 0.7 

As it can be seen in Table 13, the more robust the DVB-T2 configuration 

is, the lower influence on the location variability is presented both fixed and 

pedestrian reception. As all the configuration modes were measured at once, the 

changes in the measuring location/route, and the consequent change on the 

propagation channel, has an increasing influence according to the decreasing 

configuration robustness. It has been previously demonstrated [83], that the 

higher the code-rate robustness is, the propagation channel has lower influence 

on the required SNR spatial variability. For this reason, modes with the same 

code-rate present similar variability results 
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All in all, it is not possible to establish a common and unique location 

variability correction factor to cover higher percentages of locations and thus, 

the location variability has to be considered individually for each configuration 

parameters set.  

In fixed reception, considering an increment from 50% to 75% on the 

location percentage, increments on the SNR threshold between 0.4 and 1.6 dB 

should be considered. In case of covering 95% of the locations, the increment 

on the SNR threshold is between 1.9 and 2.5 dB. In case of pedestrian 

reception, the increment to cover 75% locations is between 0.4 and 1.0 dB, 

while the location correction factor to cover 95 % locations depending on the 

configuration parameters set varies from 1.3 and 6.4 dB. This last high LCF is 

for the 256QAM configuration mode, which presents a high variance on the 

SNR threshold for 99% time, due to the fact that its high instantaneous SNR 

threshold is not appropriate for pedestrian indoor reception. The results are 

similar to those proposed in [112]. 

If fixed and pedestrian LCF are compared, it can be seen that the location 

variability for pedestrian reception is mainly equal or even lower than in fixed 

scenarios. This might be because the receiver movement may counteract some 

of the changing environment effects on the reception, obtaining a similar or 

even lower LCF. 

Anyway, from Table 13, the “D95” location correction factor, which is 

considered as a “good” reception [61], is the one that should be applied to the 

SNR threshold for 99% time from Step 3. Thus, the SNR threshold for 99% 

time and 95% locations obtained after applying all the processing methodology 

for both fixed and pedestrian indoor scenarios are obtained (Step 4 in Figure 

22). These SNR thresholds can be a reference value to be considered for fixed 

and pedestrian indoor reception (with the exception, again, of the 256QAM 

configuration, whose high SNR threshold are not appropriate for pedestrian 

reception).  

All in all, Table 14 and Table 15 summarize the main DVB-T2 planning 

parameters that can be considered as reference for broadcasters and can be 

taken into account in planning tools, for both fixed and pedestrian indoor 

reception. The first column is the median SNR threshold (SNR for 50% time 

and 50% locations) (Step 2 in Figure 22). The second and third columns are the 

TCF and LCF respectively. The forth column is the SNR threshold for 99% 

time and 95% locations (Step 4 in Figure 22). 
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Table 14. DVB-T2 Planning Parameters in Fixed indoor scenarios (dB) 

Modes 

Fixed Scenarios 

50% / 50% 

SNR 
TCF LCF 

99%/95%  

SNR 

Base: 256QAM 2/3 20.7 

3.5 

2.5 26.7 

Lite: QPSK 1/3 1.5 1.9 6.9 

Lite: QPSK 1/2 3.0 2.4 8.9 

Lite: 16QAM 1/2 7.8 2.4 13.7 

Table 15. DVB-T2 Planning Parameters in Pedestrian indoor scenarios (dB) 

Modes 

Pedestrian Scenarios 

50% / 50% 

SNR 
TCF LCF 

99%/95%  

SNR 

Base: 256QAM 2/3 23.3 

8.1 

6.4 36.6 

Lite: QPSK 1/3 3.7 1.3 13.1 

Lite: QPSK 1/2 5.7 1.6 15.4 

Lite: 16QAM 1/2 10.1 1.7 19.9 

As it is shown in Table 14 and Table 15, the location variability influence 

on the SNR threshold is lower than the time variability in both scenarios. This is 

because the indoor propagation channels (both fixed and pedestrian) are time 

variant but they are similar in every location. 

Taking the 99% time and 95% locations requirements into consideration, 

the increment in SNR threshold between fixed and pedestrian indoor reception 

is between 6.2 and 6.5 dB with the exception of the 256QAM configuration 

mode (the increment increases up to 9.9 dB), which it is not ideal for indoors. 

Comparison with reference values 

The SNR threshold obtained for the fixed indoor reception (by means of 

field trials) will be compared with the F1 and P1 channels, considering results 

with laboratory measurements and the reference values included in the DVB-T2 

implementation guidelines (IG) [59]. In pedestrian scenarios, the SNR threshold 

for the real pedestrian indoor channel (in field trials) will be compared with the 

PI channel [76] and IOA / IOB [97] (with laboratory measurements). In this 
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case, there are no reference values in the DVB-T2 implementation guidelines. 

The laboratory measurements were carried out following the same 

methodology as in the case of the field trials but without considering the Step 4 

as the location variability is null (the emulated channel do not present this 

variability). In case of fixed reception (F1 and P1), the time variability is also null 

as the channel power is constant during all the measured time. For this reason, 

in these cases, the time correction factor is also null and Step 3 in Figure 22 

does not have to be applied. However, in pedestrian reception (PI, IOA and 

IOB), the channel power varies with the time and the corresponding TCF has to 

be obtained and applied (Step 3 in Figure 22). Indeed, “D99” for the PI 

propagation channel model during 10 s is 1.9 dB while this value increases up to 

4.8 dB in case of IOA and 4.2 dB for IOB channel models. 

Table 16 summarizes the comparison of the SNR threshold results in 

fixed indoor scenarios between reference values with simulations (from the 

DVB-T2 Implementation Guidelines), laboratory measurements with typical 

fixed indoor propagation channel models and measured results by means of 

field trials. As the SNR thresholds for theoretical fixed channel models are for 

50% time and 50% locations (TCF and LCF are null), the SNR thresholds for 

field trials considered to be compared are also for 50% time and 50% locations. 

Table 16. SNR Thresholds in Fixed Indoor Scenarios (dB) 

Modes 

Reference value 
(IG) 

Laboratory 
measurements 

Field trials 

F1 P1 F1 P1 50% / 50% 

Base: 256QAM 2/3 18.4 20.4 19.1 21.2 20.7 

Lite: QPSK 1/3 -- (*) -- (*) -0.1 1.7 1.5 

Lite: QPSK 1/2 1.4 2.5 2.0 3.5 3.0 

Lite: 16QAM 1/2 6.2 7.4 6.6 8.3 7.8 

(*)”--“: SNR Threshold reference values in IG do not exist for T2 Lite new code-rates 

As it can be seen in Table 16, the laboratory measurement results for F1 

and P1 channel models compared with the reference values from IG show the 

implementation losses of the receiver and the FBER criterion applied. These 

losses are slightly different depending on the DVB-T2 configuration parameters 

although its value remains always lower than 1 dB with independence of the 

channel model [106][113]. 



Chapter II: DVB-T2 Indoor Studies 

 

 

 99 
 

Comparing the SNR threshold values obtained from laboratory 

measurements and those obtained from field trials, it can be stated that the 

actual fixed indoor channel is similar to the P1 theoretical channel model (with 

differences always lower than 0.5 dB). For this reason, it can be concluded that 

the P1 channel model, which is usually considered to model the fixed indoor 

reception, is appropriate for emulating an actual indoor reception, as it was 

similarly concluded in [114]. 

In case of pedestrian indoor reception, Table 17 summarizes the 

comparison of the SNR threshold results in fixed indoor scenarios between 

reference values by means of simulations (from IG), laboratory measurements 

with typical fixed indoor channel models and measured results based on field 

trials. As the SNR thresholds for theoretical fixed channel models are for 50% 

time and 50% locations (TCF and LCF are null), the SNR thresholds from field 

trials considered to be compared are also for 50% time and 50% locations. 

Table 17. SNR Thresholds in Pedestrian Indoor Scenarios (dB) 

Modes 

Laboratory measurements 
Field trials 

PI IOA IOB 

50% / 
50% 

TCF 
50% / 
50% 

TCF 
50% / 
50% 

TCF 
50% / 
50% 

TCF 

Base: 256Q 2/3 20.9 

1.9 

22.4 

4.8 

22.1 

4.2 

23.3 

8.1 
Lite: QPSK 1/3 1.2 3.4 2.5 3.7 

Lite: QPSK 1/2 2.9 5.4 4.4 5.7 

Lite: 16QAM 1/2 8.0 10.2 9.5 10.1 

Comparing the SNR results for 50% time and 50% locations obtained 

from laboratory measurements and those obtained from field trials, it can be 

stated that the actual pedestrian indoor channel is similar to the IOA theoretical 

channel model, with differences lower than 0.3 dB (with the exception of the 

256QAM configuration, where the high variability of the SNR threshold 

increases the differences up to 0.9 dB). However, the TCF factor in the actual 

pedestrian indoor scenario is much higher than that obtained in the laboratory 

for the three simulated channel models, with differences between 3.3 dB for 

IOA and 6.2 dB for PI. For this reason, the IOA channel model is the good 

estimation for obtaining the SNR threshold in pedestrian indoor scenarios but 

the time variability of the signal should be increased in 3.3 dB. 
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3.2.3.5 Conclusions of this study 

This study completes the DVB-T2 performance evaluation and aims at 

improving the accuracy of the recommended SNR threshold values for the 

DVB-T2 system so as to be a good reference to be taken into account by 

broadcasters or in planning tools. For this purpose, a detailed methodology has 

been established and followed. This was based on three main phases: obtaining 

an instantaneous SNR threshold in each location/route; next, correcting the 

previous values considering the signal time variability and, finally, applying the 

location variability correction. 

Table 14 and Table 15 summarize the main DVB-T2 planning parameters 

for fixed and pedestrian indoor reception, respectively. This information 

includes SNR thresholds for 50% time and 50% locations (which are necessary 

in planning tools), time and location variability correction factors, and SNR 

thresholds for 99% time and 95% locations (which are the actual thresholds to 

achieve the required coverage percentages in digital services. 

The differences in the SNR thresholds for 99% time and 95% locations 

for fixed and pedestrian reception are mainly due to the different time variability 

of the received signal between fixed and pedestrian reception which supposes 

approximately an increase of 3.5 dB in fixed but 8.1 dB in pedestrian indoor 

scenarios. These time variability correction factors are valid not only for DVB-

T2 but also for other digital 8 MHz OFDM technologies in UHF band.  

Furthermore, the location variability influence is lower than the time 

variability. In fixed scenarios the location correction factor value reaches up to 

2.4 dB, while in pedestrian the value is mainly up to 1.7 dB (with the exception 

of 256QAM configuration which, as mentioned before, is not a valid 

configuration for indoor environments). 

Taking all into account, the increment in the SNR threshold so as to allow 

the pedestrian indoor reception in comparison to just fixed indoor reception is 

mainly between 6.2 and 6.5 dB (reaching 9.9 dB in case of 256QAM). 

Apart from that, a comparison between the SNR threshold obtained in the 

field and those obtained in the laboratory for suggested theoretical channel 

models has been presented in Table 16 and Table 17. It is suggested that the P1 

channel model perfectly fits the fixed indoor reception. In case of pedestrian 

indoor reception, the IOA channel model is the most appropriate. However, a 
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time correction factor of extra 3.3 dB should be applied.  

These results show the feasibility of DVB-T2 to offer HD quality services 

as configurations with a capacity of about 10 Mbps (QPSK 1/2) can be correctly 

received for SNR higher than about 8.9 dB or 15.4 dB in fixed and portable 

indoor scenarios, respectively. However, as rooftop services have often to be 

simultaneously transmitted, part of the frame time should be dedicated to the 

rooftop service, remaining at least about 3-4 Mbps, which is enough for at least 

one HD program with H.264.   
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4. Summary 

In this chapter, the DVB-T2 system performance has been widely studied. 

First, a state of the art has been carried out concluding that fixed and mobile 

reception performance has been widely studied in the bibliography in the three 

phases of a performance evaluation process (computer simulations, laboratory 

measurements and field trials). However, DVB-T2 reception in indoor 

environments was an almost non-studied scenario that had to be analyzed more 

in detail, especially with hardware equipment (laboratory measurements and 

field trials) to check and evaluate the DVB-T2 indoor performance. 

In order to complete the DVB-T2 indoor research work, three new 

studies have been carried out during the thesis development. These studies 

gather some performance reference results by means of laboratory 

measurements under several indoor channel models (Study A and Study C) as 

well as real environments by means of field trials (Study B and Study C). For this 

purpose, in addition to commercial receivers, a custom professional SDR 

receiver developed by the TSR research group and defined in DVB-T2 Receiver 

Framework has been considered. 

First, several DVB-T2 configurations have been considered in the 

different studies concluding that a suitable configuration for indoor reception 

should have an appropriate combination of FFT size, guard interval and pilot 

pattern, taking into account that small FFT sizes and denser pilot patterns are 

more suitable for challenging portable scenarios indoors as concluded in Study 

B. Moreover, modulation and code-rate values should ensure the robustness 

needed. For this reason, low order constellations (up to 16QAM) and robust 

code-rates should be considered. Finally, due to the presence of slow fading in 

portable reception, a long time interleaving option should be considered so as to 

improve the system performance. These configuration features make the DVB-

T2 indoor reception possible. 

Furthermore, a new detailed methodology for performance study in 

indoor scenarios has been defined in Study C. This is based on three main 

phases: obtaining an instantaneous SNR threshold in each measured location; 

next, correcting the previous values considering the signal time variability and, 

finally, applying the location variability correction. The measured degradation 

due to the time variability is of 3.5 dB in fixed indoor reception and 8.1 dB in 
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portable indoor reception. The degradation because of the location variability in 

indoor scenarios is of 2.4 and 1.7 dB for fixed and portable indoor reception, 

respectively. These degradations are valid not only for DVB-T2 but also for 

other digital 8 MHz OFDM technologies in UHF band.  

Regarding to portable indoor reception, as there are so many different 

standardized channel models and with quite different required SNR thresholds 

(with differences up to 9.2 dB) as concluded in Study A, a reference model 

cannot be easily defined. The obtained results show that typically considered PI 

and TU6 channel models are very optimistic. However, it has been concluded in 

Study C that the IOA channel model can be considered appropriate to model 

the pedestrian indoor reception but with an extra degradation of 3.3 dB because 

of too low time variability present in this model. In general, the increment in the 

SNR threshold so as to allow the pedestrian indoor reception in comparison to 

just fixed indoor reception is about 6.5 dB. 

Finally, Study C performance results conclude that DVB-T2 

configurations with a capacity of about 10 Mbps can be correctly received in 

fixed indoor scenarios for SNR higher than about 8.9 dB. Similarly, these 

configurations require a SNR higher than about 15.4 dB to be correctly received 

in portable indoor scenarios based on Study A and Study C performance results. 

As rooftop services have often to be simultaneously transmitted, part of the 

frame time is dedicated to the rooftop service, remaining at least about 3-4 

Mbps, which is enough for at least one HD program with H.264. Besides, 

preliminary coverage results from Study B show that the portable (and 

consequently also fixed) indoor reception is possible with currently considered 

transmission powers in existing broadcasting networks. In fact, the considered 

example shows that the power is oversized and DVB-T2 configurations with 10 

Mbps capacity can show good coverage for much lower powers. 

With this new research work, the DVB-T2 system performance, including 

some of its more advanced features, has been widely evaluated with laboratory 

measurements and field trials. Moreover, a new methodology for analyzing an 

OFDM system performance in indoor scenarios has been totally defined 

updating the existing methodologies. 



 

 

 

  



 

 

 

 

 

 

 

 

 

 

CHAPTER III: Studies of 

New Techniques for Next 

Generation DTT Systems 

In this section, some modifications to the DVB-T2 standard are suggested and tested 

in order to check its influence on the reception performance, especially for the new target 

scenarios, including mobile and indoor reception. 

First, the most recently developed FEC codes and modulation schemes will be applied 

to the current DVB-T2 system. Next, the new Layered Division Multiplexing 

(LDM) technique will be tested so as to offer mobile and UHD services 

simultaneously. Finally, some optimizations to the current DTT receivers’ algorithms 

will be presented in order to improve the performance with multilayer signals and 

portable and mobile new target scenarios. 
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1. Introduction 

The DVB-T2 standard was first published in September 2009 with the 

cutting-edge technologies of the moment, what supposed high improvements in 

comparison to the previous standards. However, since then, new processing 

capabilities and new technologies have been developed enabling a new 

broadcasting system with more available capacity and robustness. By this way, 

the system performance can be improved over the DVB-T2 performance.  

For this reason, the thesis includes some research work about some of the 

new technologies or features that have been developed since the DVB-T2 

standardization process, with a detailed state of the art of their performance. 

Besides, some new performance analyses have been also included in the thesis in 

order to test the performance gain over the original DVB-T2 specification 

checking their suitability for a new DTT system. 

On the one hand, the performance of new LDPC codes has been 

presented by means of field trials. These new LDPC codes improve the 

performance with a BER vs SNR relation nearer Shannon while highly reduce 

their complexity at the receiver. On the other hand, the LDM and SHVC 

techniques are presented and tested in the laboratory so as to provide different 

services at the same time with a better capacity and robustness trade-off than 

other multiplexing techniques. In both cases, the considered scenario is indoors 

as it was not as widely analyzed as fixed and mobile scenarios, whose 

performance is included in the state of the art analysis. 

Moreover, some improvements to the typical DTT receivers’ algorithms 

implementation have been presented and tested. First, a new LLR reliability 

formula optimized for multilayer signals such as those using LDM has been 

presented. Next, the inter-carrier interference (ICI) effect on mobile reception 

has been considered as an additional interference source. Several low complexity 

ICI noise estimators have been evaluated to establish the one with the best 

performance. Besides, a new method has also been proposed considering an 

experimental analysis.  

Taking everything into consideration, this chapter includes a detailed state-

of-the-art including the performance studies related to the considered new 

techniques for the next generation DTT systems. Additionally, new research 



Chapter III: Studies of New Techniques for Next Generation DTT Systems 

 

 

108  

 

work related to the performance of new LDPC codes and LDM technique is 

also included by means of two different studies. Finally, two new algorithms 

have been defined and tested in other two different studies in order to improve 

the reception performance. 
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2. Previous Studies 

Since the DVB-T2 standard definition, several new technologies have 

been developed for the next generation DTT systems so as to improve the 

capacity, robustness, efficiency or performance of the systems. However, not all 

of them have shown real improvement over the existing ones. In this section, 

the state of the art of the most promising innovations has been included. 

The major improvements have been performed in the BICM module. On 

the one hand, the traditional uniform constellations (UCs), characterized with 

uniform spacing between constellations points and square shape, and considered 

in several systems such as DVB-T2 because of their simplicity for encoding and 

decoding operations, have been improved with the development of non-

uniform constellation (NUCs). NUCs have been proposed to reduce the gap 

between UCs performance and the Shannon limit, and provide a better 

performance, reducing the required SNR [115] [116] [117]. It has been 

demonstrated that the capacity of a communication system can be increased if 

all the constellation points are adapted to the SNR range in which the system is 

expected to work. This means that for each SNR value, there is one location for 

each constellation symbol which maximizes the system capacity. Consequently, 

different NUC can be defined for each specific coding value, since the optimum 

shape of the constellation depends on the operating SNR.  

Indeed, NUCs can be optimized with respect to one of the axis (dividing 

the QAM in two pulse amplitude modulations and optimizing one of them) so, 

resulting in one dimension non uniform constellations (1D-NUC), with still 

rectangular but not uniform shape as it can be seen on the left side of Figure 31. 

Afterwards, an additional degree of freedom has been considered in the design 

of NUC resulting in two dimensional non uniform constellations (2D-NUC), 

with circular shape as it can be seen on the right side of Figure 31. For most 

cases, the capacity gain of 2D-NUC is higher than 1D-NUC. However, the 

calculation and processing complexity is higher, especially for high order 

constellations, due to the high number of variables involved as each symbol is 

optimized with respect to both I and Q axes [118].  

Additionally, one of the special features of DVB-T2 relies on the possible 

use of rotated constellations [119] [120], also known as Signal Space Diversity 

(SSD). This technique usually leads to an additional diversity improving the 
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receiver performance when severely faded channels are encountered at the 

receiver side, especially with low order constellations and high code-rates. It has 

been demonstrated that its combined use with NUC degrades the system 

performance [121]. More studies related to the NUCs and modifications over 

them are being conducted at the moment in another thesis research work. 

 

Figure 31. Examples of 1D-NUC (on the left) and 2D-NUC (on the right) 

On the other hand, many efforts have been dedicated to the improvement 

of FEC codes in order to withstand with very noisy environments, such as 

complex mobile and indoor scenarios, where the total interference power (noise, 

multipath and co-channel interference) may be even larger than the desired 

signal level. In this context, newly designed QC LDPC codes [122], which can 

be easily shortened from their mother code to higher code-rates with a relatively 

good performance, have been developed. For example, when the SNR is high, 

the 1/4 code-rate can be truncated in a 50% of its length to form a 1/2 code-

rate. By this way, the latency and computation complexity are reduced by 50%. 

In addition, when the SNR is 3 dB above the threshold value of the specific 

LDPC code, the required number of iterations is reduced by 90%.  

Taking into account that the most of the broadcasting coverage area has 

SNR values about 3 dB higher than the required, full error correction 

capabilities that are designed for the lowest SNR are not needed in those cases. 

In this area, receivers can take advantage of the shortening capability of the 

LDPC code to achieve better power efficiency, in other words, longer battery 

life. Furthermore, the recently developed codes, specially designed to work 

under very low SNR scenarios, can significantly outperform those included in 

the DVB T2 standard. 

Taking advantage of the puncturing capability of the rate compatible QC 

LDPC codes, they can be used to perform product code FEC blocks with lower 
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complexity than traditional concatenated codes [123], such as a two-dimensional 

LDPC-RS error correction code, where the LDPC encoding is performed 

vertically and the Reed Solomon (RS) code implemented horizontally [124]. The 

advantage of a two dimensional error correction structure is that, even if its 

error correction capability is equivalent to a concatenated error correction code, 

a less complex decoding process is allowed thanks to the puncturing capability. 

At the receiver, the bidimensional product code works as follows: the received 

data are written in row by row, top to bottom; afterwards, the LDPC code is 

operated column by column, followed by RS (or BCH) code operated row-by-

row [123].  

The most of the studies have been performed to compare the new QC 

LDPC performance with other traditional LDPC codes performance. On the 

one hand, in [122], [125] and [126] a detailed theoretical performance study for 

these new codes is performed, showing the improvement over the DVB-T2 

LDPC codes. In [127] some QC LDPC codes performance is tested in AWGN 

and 0 dB Echo channels whereas the mobile performance is tested in [124] 

under TU6 channel model. On the other hand, the performance of these LDPC 

has not been highly tested with HW equipment. Only some laboratory 

measurement results are resumed in [128] as well as some field trials in mobile 

environments [129]. However, indoor reception, which is a high SNR 

demanding scenario that can take real advantage of the new QC codes, had not 

been tested in the moment of the thesis writing. 

Another new very efficient multiplexing technique, based on the high 

robustness of QC LDPC codes, is LDM [130], [131]. It is based on the 

simultaneous transmission of two (or even more) synchronized signals on the 

same RF television channel. LDM suitability to simultaneous delivery of mobile 

HD and rooftop UHD services has been widely analyzed theoretically and in the 

laboratory [132] [133] [134] [135] [137] showing much better performance than 

TDM and FDM multiplexing techniques present in current DTT systems with 

small implementation losses [136]. However, the possibility to offer indoor 

services by means of LDM had not been tested by the time of the thesis writing 

in spite of being a worldwide booming scenario. For this reason, LDM needs to 

be analyzed in more detail to check its feasibility to offer indoor services by 

means of this promising technique.  

Finally, it is important to adapt the traditional DTT receivers’ algorithm 

implementation to the new generation broadcasting systems requirements. On 
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the one hand, the traditional DTT receivers have been always designed for 

single layer systems [138] and, consequently, the LDM receiver implementation 

needs to be improved in order to optimize the multilayer signals reception 

performance. On the other hand, DTT receivers have been always designed 

only for static reception, where only AWGN is considered as noise source. 

However, it has been demonstrated in [139] that new target scenarios such as 

indoor and especially mobile reception, include an additional noise source due 

to the presence of ICI.   
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3. Research Work 

As it can be seen in the former section, the techniques to improve the 

next generation DTT physical layer have been poorly tested in indoor scenarios. 

For this reason, a detailed indoor analysis is needed related to the new more 

robust LDPC codes to allow higher capacity in indoor reception. Furthermore, 

LDM technique needs to be tested in indoor scenarios in order to check the 

feasibility of this technique to deliver services indoors. 

Moreover, some modified algorithms need to be applied in the next 

generation DTT receivers so as to adapt to the new requirements improving the 

reception performance. On the one hand, the new systems target mobile and 

portable indoor scenarios, where an ICI noise is presented that should be taken 

into account in the receiver. There are several ways to measure the ICI noise, 

such as [140] [141] [142], so it is important to determine which one shows the 

best performance once implemented in a DTT receiver. On the other hand, the 

use of the traditional decoding algorithms designed for single layer signals with 

new multilayer signals means performance degradation. Besides, as LDM seems 

to be more efficient than single layer signals for the simultaneous delivery of 

several services, new decoding algorithms can be defined to optimize the 

multilayer performance. 

For this reason, on the one hand, two studies have been carried out during 

the thesis development in order to test the performance improvement of new 

technologies over the traditional DVB-T2 standard in indoor scenarios.  

 Study D: The portable indoor reception of new more robust FEC codes 

has been tested in the field. 

 Study E: The portable indoor reception of LDM signals has been tested by 

means of laboratory measurements. 

On the other hand, two modifications related to the reception algorithms 

have been defined and theoretically tested. 

 Study F: Definition and computer simulations of a new LDM optimized 

LLR reliability formula. 

 Study G: Definition and analysis with computer simulations of considering 
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the ICI as an additional noise in mobile reception.  
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3.1 Performance Studies 

Two studies have been carried out so as to check the suitability of recent 

techniques to improve the next generation DTT system performance.  

 Study D: Cloud Transmission System Performance in Portable 

Indoor Environments 

This study evaluates the new FEC codes performance in indoor 

environments by means of field measurements in order to check the 

performance gain in comparison to existing FEC codes used in DVB-T2.  

 

 Study E: SHVC and LDM Techniques for HD/UHD TV Indoor 

Reception 

This study verifies the transmission of HD and UHD services in indoor 

scenarios by means of LDM technique and SHVC video coding standard. In 

addition, a performance evaluation is performed in the laboratory by means of 

the emulation of different channel models. 
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3.1.1 Study D: Cloud Transmission System Performance 

in Portable Indoor Environments 

The main aim of this study is to evaluate the new FEC codes performance 

in indoor environments by means of field trials to check the performance gain 

in comparison to current FEC codes used in DVB-T2. These results complete 

the existing ones with simulations and laboratory measurements and could be 

considered as reference that could be taken into account by future network 

planners.  

To this purpose, coverage studies, as well as preliminary SNR threshold 

values for correct indoor reception, are obtained with the new FEC codes. 

3.1.1.1 Configuration Mode 

A DVB-T2 based configuration with modified FEC modes has been 

tested. The main parameters of this mode are shown in Table 18. On the whole, 

the mode was defined so as to support robust portable indoor reception. For 

this reason, the bits are mapped to a QPSK constellation and a low code-rate 

(CR=1/4) is used. Besides, a low FFT size (8k) is used so as to be robust 

enough in mobility. Considering a 6 MHz bandwidth channel, the data bit rate is 

finally set to 2.4 Mbps, which should be enough for two SD program when 

H.264 is considered or even one HD program if HEVC is considered [143] 

[100] [144] [145].  

Table 18. Main configuration parameters 

BW FFT Size Modulation CR LDPC Block Capacity 

6 MHz 8k QPSK 1/4 64800 2.4 Mbps 

3.1.1.2 Experimental Network 

Banderas transmission center was used to cover the urban core of the city 

of Bilbao, in the north of Spain. It is located on a hill of about 216 m high and 

about 3 km far from the city centre of Bilbao. Bilbao is a city with an urban 

centre medium altitude of around 8m over the sea level. The most of the 

buildings have between 5 and 10 floors with very few skyscrapers. 
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As the new FEC codes were under study when the field trials were carried 

out, there was no HW transmitter yet. For this reason, a SW tool was used for 

the offline generation of the IQ samples file to be played afterwards. The 

transmission equipment, which is shown in Figure 32, consisted of: 

 IQ samples file player at IF. 

 Frequency up-converter and amplifier that shifted the IF signal to the RF 

frequency channel 48 (690 MHz) and amplified it to achieve the required 

level power to input the power amplifiers. 

 Power amplifier that provided a total power level of 300 W. 

 Radiating system with a two panel array providing 16 dBi maximum gain 

using vertical polarization. 

Considering the features of all the transmission equipment, the ERP is 

5kW. 

 

Figure 32. Transmitter main blocks 

3.1.1.3 Reception System 

The reception system, shown in Figure 33, was based on an online IQ 

signal recording for posterior offline laboratory processing, which provided 

great flexibility [146]. 

The reception system consisted of a 2 dBi vertical monopole tuned to the 

transmission frequency of 690 MHz connected to a channel filter, set to channel 

48, to prevent other emissions interfere with desired signal measurement. The 

received signal was recorded in a high speed eSata hard disk as baseband IQ 

samples for a posterior offline processing stage using and IQ recorder 

equipment. 
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Figure 33. Reception system 

Besides, during the measurements, information related to the environment 

was manually recorded (location, height, type of building, presence of windows, 

presence of furniture and presence of people moving around). 

3.1.1.4 Measurement environment 

The measurement campaign was conducted inside 5 buildings in the city 

of Bilbao. Figure 34 shows a map of Bilbao with the location of the transmitter 

marked with a green triangle and the reception locations marked with purple 

circles. Four of the locations were housing buildings at different levels with no 

more than 3 or 4 people inside, while the other one was a public building 

(school) with much more people inside. All these locations have been 

considered as representative samples of indoor environments. 

 

Figure 34. Transmitter and locations for indoor reception 
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In all the locations, between 10 and 15 fixed measurements were carried 

out as well as one pedestrian route covering the whole building floor. In the 

public building, 5 different pedestrian routes were conducted.  

Fixed measurements were taken during 10 s, which is considered enough 

time as the received power level variation in a static location is almost constant 

along this recording time. In total, more than 12 minutes of fixed indoor 

reception has been analyzed. The pedestrian measurements were performed 

during 2 minutes, which was the necessary time to cover each whole building 

floor at a pedestrian speed. In total, approximately 20 minutes were analyzed in 

pedestrian indoor reception. 

3.1.1.5 Analysis Methodology 

The main objective of the processing analysis was to analyze the coverage 

of the DVB-T2 system with new FEC codes by measuring the correct reception 

time percentage. Besides, preliminary SNR thresholds for correct reception in 

indoor and mobile environments are obtained. The correct reception threshold 

criterion for obtaining the coverage area and the SNR threshold is based on 

obtaining a FBER = 0 in a T2 frame time as described in Study C. 

The used methodology is the same as considered in Study B and Study C, 

based on the data storing during the field trials for a posterior analysis in the 

laboratory with a modified version with new FEC codes capabilities of the 

professional SDR DVB-T2 receiver framework developed in the University of 

the Basque Country and described in detail in section 3.1 in Chapter II. 

As the receiver provided data every OFDM symbol, all the measurements 

were gathered to obtain data every DVB-T2 frame. This is because it is 

necessary to analyze uncorrelated data and due to the signal interleaving value, 

this condition is fulfilled if the data analysis is carried out every DVB-T2 frame. 

The field power and SNR median values along a frame have been taken as 

representative.  

In order to calculate the optimum transmitted power to obtain a good 

coverage over the target area, the offline laboratory processing also enables the 

simulation of lower transmitted power levels by means of adding external white 

noise to the recorded signals when 300 W were transmitted (Ptx_real). By this 

way, the SNR was decreased as if the transmitted power during the trials was 

lower. Desired simulated transmitted power levels (Ptx_des) of 200 W, 100 W, 
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10 W and 1 W were tested. The noise power level increment (Nincr) to simulate 

the decrement in the transmission power level is obtained by (4). 

 )()(log10)( _ WPWPdBN desrealtxincr   (4) 

The existing noise power level (Nex) was measured in the received signal 

out of band samples, obtaining an empirical value of -98.7 dBm (for 5.71 MHz 

noise bandwidth). By this way, the noise power to be added to the recorded 

signals (Nadd) is given by (5). 

)()()( dBNdBmNdBmN increxadd   (5) 

3.1.1.6 Results 

The presented results show the main coverage features of the DVB-T2 

system with new FEC codes. They are based on the correct received percentage, 

in other words, the percentage of the measured signal without errors, 

considering all the measured indoor locations. In [61] the limit for good portable 

reception is defined for coverage values higher than 95% while the limit for 

acceptable portable reception is achieved with coverage values higher than 70%. 

Figure 35 shows a histogram of the received power level in the measured 

indoor scenarios for fixed reception, considering a transmission power level of 

300 W (5 kW ERP). Each sample is the median received power level value each 

about 200 ms. The received power level in a particular fixed location does not 

vary significantly. However, as the measurements were conducted in different 

indoor locations (with different type of materials in walls, windows, furniture 

and presence of people moving around), the received power level varies 

significantly from one point to another. For this reason, there are huge 

differences between different measured locations.  

The majority of the total received power level samples are between -90 

and -50 dBm. It is important to outline that the existing noise power level is 

around -98.7 dBm. Consequently, the received SNR are mainly between 8.7 and 

48.7 dB. 
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Figure 35. Received power histogram for fixed indoor reception 

Figure 36 shows the histogram of the power level (per about 200 ms) 

received in the measured pedestrian indoor scenarios, considering a 

transmission power level of 300 W. 

 

Figure 36. Received power histogram for pedestrian indoor reception 

In this case, due to the receiver movement inside each housing building, 

the received power level in a particular pedestrian route varies significantly. 

However, as the pedestrian routes were measured along the same rooms than 

those were the fixed recordings were carried out, the range of received power 

level samples is similar to the fixed reception case.  

Table 19 shows the main coverage features results in fixed and portable 

indoor reception in terms of average percentage of frames without errors, 
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considering erroneous frames those with FBER ≠ 0, for different simulated 

transmission power levels (300 W, 200 W, 100 W, 10 W and 1 W). 

Table 19. Correct Reception percentages (CRP) for different transmission powers  

Scenario CRP (300W) CRP (200W) CRP (100W) CRP (10W) CRP (1W) 

Fixed 100.0 98.6 95.7 52.1 35.1 

Portable 100.0 93.1 88.7 49.6 28.6 

The CRP obtained in Table II show that in fixed reception, the CRP is 

always higher than 95% for a simulated transmission power level of 100 W or 

higher. To ensure an acceptable reception (CRP higher than 70%) a power level 

between 100 and 10 W should be transmitted. For lower transmission power 

levels, the CRP is always lower than the required to achieve an acceptable or 

good quality reception. 

In portable reception, the good reception requirement [61] is achieved 

with a transmission power of 300 W (200 W power level is in the limit of good 

quality coverage features) while an acceptable coverage value is obtained with 

100 W or higher. When the transmission power level is lower, the coverage area 

in pedestrian indoor scenarios reduces considerably, obtaining unacceptable 

reception coverage. 

Figure 37 and Figure 38 show a preliminary study of the SNR values 

received (in blue) vs. the erroneous (“1”) or correct (“0”) demodulated frames 

(in red) considering one of the measured fixed locations and pedestrian indoor 

routes, respectively. The represented SNR value in is the median SNR value in a 

frame, so the instantaneous SNR value may differ. In fixed reception, this is 

because, although the receiver is static, the presence of people moving around 

may mean changes on the received power level that might sometimes be very 

sharp. On the contrary, in pedestrian routes, the receiver movements makes the 

received power vary.  

This preliminary analysis of the SNR threshold shows that the modified 

DVB-T2 with new FEC codes fixed indoor reception is feasible with a median 

SNR per frame higher than 2.3 dB. Theoretically it requires a SNR threshold of 

around -3.4 dB for AWGN channels [147]. In this case, the propagation channel 

is fixed indoor and it is expected to show multipath and even Doppler effects 

due to the presence of people moving around, so the threshold SNR value is 
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higher than the theoretical one. The portable reception is also feasible with a 

median SNR per frame higher than 3 dB. The increment in the SNR threshold 

because of the receiver movement is about 0.7 dB.  

These measured SNR values are for the 50% time and 50% locations, and 

should be updated with the TCF and LCF determined in Study C for a city as 

Bilbao. However, the QC LDPC codes performance by means of field trials 

have been deeply studied in [128]. 

 

Figure 37. SNR vs. Erroneous Cloud-Txn frames in fixed indoor environments 

 

Figure 38. SNR vs Erroneous Cloud-Txn frames in pedestrian indoor environments 
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3.1.1.7 Conclusions of this study 

This study provides the coverage results of the indoor (fixed and 

pedestrian) reception for a HD program (or several SD programs) by means of 

a DVB-T2 signal modified with new FEC codes, by means of field trials. Field 

trials were conducted in real scenarios in the city of Bilbao, so as to obtain 

performance values based on the CRP of the measured signal. 

On the one hand, this study has provided the main coverage features 

depending on the transmitted power level, obtaining reference results that could 

be helpful for future network planners. The obtained results demonstrate that 

with a transmission power level of 300 W (5 kW ERP) a CRP higher than 95% 

is always possible in both fixed and pedestrian indoor reception. However, the 

use of lower transmission powers highly affects the CRP in indoor reception. 

An emulated transmission power of 100 W (1.67 kW ERP) is enough to ensure 

a good reception (CRP > 95%) in fixed indoor environments. However, in 

pedestrian indoor scenarios, the good quality requirement is nearly reached with 

200 W (3.33 kW ERP). The indoor reception is much more demanding than 

mobile reception in terms of transmission power according to results in [129]. 

On the other hand, some preliminary results of the SNR thresholds for 

fixed and pedestrian indoor reception have also been presented. The results 

show that the new FEC codes enable a correct reception for SNR thresholds 

higher than 2.3 dB for fixed indoor scenarios and higher than 3 dB for 

pedestrian indoor scenarios. Comparing these results with those from DVB-T2 

and also T2-Lite [148] it can be seen that the use of these new FEC codes 

improves the indoor performance in more than 0.7 dB.   
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3.1.2 Study E: SHVC and LDM Techniques for 

HD/UHD TV Indoor Reception 

The main objective of this study is to verify whether the transmission of 

HD and UHD services in indoor scenarios is possible considering the bitrate 

and SNR threshold requirements. For this purpose, the new LDM technology 

and the recently developed SHVC standard are considered as they are 

considered optimal technologies at the moment. 

Besides, the optimal configuration parameters of the LDM signal will be 

theoretically defined to fulfill the bitrate and SNR requirements. Afterwards, 

these configurations will be tested in the laboratory by means of the emulation 

of different channel models. By this way, the real performance of the selected 

configurations will be tested in practice for indoor scenarios. 

3.1.2.1 Layered Division Multiplexing (LDM) 

The current radio spectrum scarcity has led to the development of new 

technologies that maximize the spectrum efficiency. In this scenario, the 

reutilization of the limited existing spectrum to transmit superimposed services 

stacked in the same RF channel, through power allocation multiplexing, is 

presented as an interesting solution [149]. Moreover, mandatory requirement for 

new generation broadcasting system is the capability of simultaneously 

delivering services with different capacities [150], such as mobile and HDTV, or 

even UHDTV. DVB-T2 standard uses TDM by means of PLPs or the insertion 

of the mobile service within the FEFs of the fixed services [59] to fulfill this 

requirement. In ISDB-T [151], on the contrary, FDM is used for delivering 

different contents within the same frame. Recently, a new multiplexing 

technique has been developed from the concept behind Cloud-Txn [130], [131]. 

It is called Layered Division Multiplexing (LDM).  

LDM is a new resource sharing technique based on constellation 

superposition that combines multiple PLPs at different power levels, often with 

different modulation and channel coding schemes before transmission in one 

RF channel at it can be seen in Figure 39. The most typical and realistic case is a 

two layer LDM system with two different synchronized signals (in time and 

frequency), which are broadcasted on the same channel and at the same time 

reusing the existing spectrum in a flexible way. The second layer is injected 
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certain dBs below (Injection Level, IL). These are named Core Layer (CL) and 

Enhanced Layer (EL) [152].  

Each Layer is a different PLP with its specific modulation and code-rate 

for obtaining different capacities and robustness depending on the target service 

of each signal. However, TI and waveform parameters are common for all of 

them in order to simplify the receiver implementation. The CL is the layer with 

more power (UL) intended, in general, for mobile services with high robustness 

and low capacity, whereas, the EL is usually the layer with lower power (LL) 

intended to very high bitrate services for UHD fixed services. In general, it has a 

better capacity and robustness trade-off for the delivery of fixed UHD and 

mobile HD services than other multiplexing techniques such as TDM or FDM 

[132] [153] [154]. 

 

Figure 39. LDM Description 

In general, LDM is feasible due to the high robustness provided by the 

current FEC techniques, such as those studied in Study D, which allows a 

correct reception even with negative SNR, and an optimal cancellation process 

for data demodulation [155].  

The LDM signal, xLDM [k], in the frequency domain can be represented as 

(6), where xUL[k] is the UL modulated data stream, xLL[k] is LL one, and k is the 

sub-channel index. IL defines the injection level, between both layers, in other 

words, the relative power of the signal between the different transmission layers. 

For example, an IL of -5 dB sets the LL 5 dB lower the UL signal. In other 

words, the 80% of the LDM signal power is allocated to the mobile service. 
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Consequently, IL must get values between -∞ and 0 as the UL requires higher 

power because it targets mobile and indoor services. 

      2010

IL

LLULLDM kxkxkx 
 (6) 

LDM Transmitter  

In an LDM transmitter, the major parts of the transmission modules are 

shared by both layers, and therefore, there is no significant complexity increase. 

A detailed block diagram of the transmitter is shown in Figure 40.  

 

Figure 40. LDM transmitter system main bloks 

The first important outcome is that each stream has its own Input Format 

and BICM modules, and consequently, data streams can be separately 

configured taking into account the different services that they target. Once 

signals are modulated, the UL is considered as the primary signal at the mapper 

output, and thus, it is superimposed to the LL signal staying frequency locked 

and clock synchronized with it.  

In this architecture, the Injection Level (IL) is the key parameter indicating 

how deep the lower layer signal is embedded. The OFDM-based physical-layer 

is the same for both layers so the waveform parameters, such as the FFT size, 

guard interval length and pilot pattern are shared. This concept can be easily 

extended to more than two layers by means of more layers addition, or to a 

single layer by means of not adding (IL is -∞) the LL signal. 

LDM Receiver  

In the receiver, consecutive signal cancellation processes must be applied 
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to correctly decode the overlaid signals [155]. The LDM receiver main blocks 

diagram is shown in Figure 41, which can be easily adapt to single layer signals if 

the UL regeneration and cancellation process is not performed. 

The initial blocks after the antenna are the same as standard OFDM 

receivers. The synchronization, Waveform Detection (GI removal and OFDM) 

and equalization blocks are common for the two layers while an independent 

decoding block (DeBICM) is needed for each layer as different modulation 

schemes can be applied on different layers or even on different data carriers in 

the same layer. The PLP concept can also be applied on each layer. Actually, the 

LDM approach is equivalent to a layered PLP. 

 

Figure 41. LDM receiver system main bloks 

The decoding process of the UL is the same as a single layer signal but 

considering the LL signal as an additional noise source being the impact of this 

interference controllable by assigning different injection levels to the LL signal. 

However, for the LL decoding process, the receiver first correctly decode the 

UL, then, re-modulate the decoded data, and last, cancel UL from the received 

signal [155]. Once the UL has been removed, the decoding of the LL signal can 

proceed as a single layer signal. What is more the receiver first performs channel 

estimation and signal detection of the UL signal. It is important to note that, 

considering that the required SNR for LL decoding is much higher than what is 

required for error-free decoding of the UL, it is reasonable to assume that the 

UL signal can be perfectly reconstructed.  
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3.1.2.2 Theoretical Study 

Bitrates requirements 

In this study the considered coding algorithm is SHVC with HEVC 

compatibility for the two video coding layers both for HD and UHD services 

[36]. Based on the literature, the coding output bitrate is still a matter of 

discussion depending mainly on the perceptual quality [156] [100] [101] [102]. 

The required bitrates are presented in Table 20 for both HD and UHD services 

[144] [145]. Furthermore, as there is still not much information about SHVC 

requirements, the required bitrates for the BL and EL of the SHVC system have 

been proposed. Finally, the considered bitrates in this study for each service 

have been suggested. 

On the one hand, in the case of offering HD content in the BL of SHVC 

scheme, a bitrate of around 3.5 Mbps has been considered, as it is an 

intermediate value between the suggested. On the other hand, two possible 

bitrates for the delivery of UHD services in the EL of a SHVC scheme have 

been considered: 10 Mbps and 20 Mbps, depending mainly on the desired frame 

rate value, 30 and 60 Hz respectively [144]. 

Table 20. HD and UHD Coding Bitrates with HEVC & SHVC (Mbps) 

Format 
Suggested Bitrates 

with HEVC 

Suggested Bitrates 

with SHVC 

Considered Bitrates in 

this study 

HD 2.5-4.5 2.5-4.5 (BL) ~3.5 (BL) 

UHD 15-32 10-23 (EL) 10 and 20 (EL) 

Reception Scenarios 

In a near future, it is expected that broadcasters will have to provide 

services in different scenarios [157]. First, the capacity of offering static and 

mobile reception (both in portable and high speed scenarios) will be essential. 

Second, the receivers will not only be located outdoors, but also inside the 

buildings. All in all, and considering all the possible combinations, 4 different 

scenarios will have to be considered [158]: portable and indoor (PI), mobile and 

outdoor (MO), static and indoor (SI), and static and outdoor (SO). The name of 

each scenario clearly defines its reception environment. The main difference 

between all of them is that the SNR requirements are completely different in 
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each scenario, which means a consequently different set of configuration 

parameters. 

Table 21 resumes the four potential scenarios and their requirements in 

terms of SNR threshold (for AWGN channels) to be correctly received [158]. 

Besides, the maximum SNR threshold value considered in this study is also 

stated. It is, always an intermediate value in the suggested range in [158] but 

closer to the upper extreme, to take advantage of all the SNR suggested range. 

The main target of this study is to offer HD or also UHD services in 

indoor scenarios. This refers not only to static indoor scenarios (SI), but also to 

portable indoor environments (PI). Besides, to maintain a realistic broadcasting 

services delivery, it should be also necessary to also offer UHD services in SO 

and HD services in MO scenarios [159]. 

Table 21. SNR Requirements for Future Broadcasting Scenarios (dB) 

Reception Type Static /Mobile 
Indoor/ 

Outdoor 

Required 

SNR 

Considered 

max. SNR  

PI Portable Indoor -6 – 1.5 1 

MO Portable/Mobile Outdoor 1-5 - 8 6 

SI Static Indoor 8 - 14 13 

SO Static Outdoor 14 - 24 22 

LDM Configuration parameters 

Taking the bitrate and SNR threshold requirements included in Table 20 

and Table 21 respectively, the appropriate LDM configuration parameters will 

be defined. 

As the SHVC scheme is based in the transmission of two video coding 

layers (HD services in BL and scalability information for UHD services in EL), 

LDM technology completely fits. The video coding BL will be transmitted in the 

physical UL and the video coding EL will do in the physical LL. By this way, 

when only the HD services are required, the decoding of the video coding BL is 

necessary and, consequently, only the demodulation of the physical UL is 

needed. On the contrary, when both HD and UHD services are desired, the 

video coding EL for the UHD service requires first access to the HD service 

and, equally, the physical LL first needs the correct demodulation of the physical 

UL. So, taking all into consideration, the physical UL of the LDM system will 
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deliver HD services (BL in SHVC) of about 4 Mbps. The physical LL will 

include UHD services (by means of EL in SHVC) with 10 or 20 Mbps 

depending on the desired frame rate. By this way, the feasibility of LDM to 

deliver HD and UHD services in indoor scenarios is demonstrated. 

Taking all above into consideration, four potential LDM configurations 

have been proposed for four different scenarios that include the delivering of 

HD or UHD services in indoor scenarios. These four scenarios are summarized 

in Table 22.  

Table 22. HD/UHD TV Services Delivering Cases Using LDM and SHVC 

Scenario 
UL minimum 

bitrate (Mbps) 

UL max. SNR 

threshold (dB) 

LL minimum 

bitrate (Mbps) 

LL max. SNR 

threshold (dB) 

1 3.5 (HD) 1 (PI, MO, SI, SO) 10 (UHD) 22 (SO) 

2 3.5 (HD) 1 (PI, MO, SI, SO) 20 (UHD) 13 (SI, SO) 

3 3.5 (HD) 6 (MO, SI, SO) 10 (UHD) 22 (SO) 

4 3.5 (HD) 6 (MO, SI, SO) 20 (UHD) 13 (SI, SO) 

Scenario 1 includes the transmission of HD services in mobility both in 

indoor and outdoor scenarios while UHD services will be only offered to static 

outdoor receivers. Scenario 2 includes the same HD services transmission, but 

in this case, UHD services will be also offered in static indoor environments. 

Scenario 3 and 4 includes the transmission of HD in mobility only for outdoor 

receivers, but also for static indoor and outdoor receivers; the UHD services will 

be offered in outdoor and in indoor and outdoor scenarios, respectively. 

Between all the configuration parameters in a LDM system, those which 

really mean a change in maximum offered bitrate or/and SNR threshold will be 

studied (different types of modulation and code-rates for both physical layers). 

Besides, the possible injection levels between UL and LL will be analyzed. On 

the contrary, the remaining parameters of the LDM signal stay unchanged. 

Some of them are 5.7 MHz of BW, PP of PP12,2, GI of 1/16 and FFT size of 

16k, which is a tradeoff between capacity and robustness when in mobility. 

The considered modulation schemes (M) are the new non-uniform 

constellations ranging from QPSK to 256QAM. The analyzed code-rates (CR) 

are QC LDPC codes, similar to those in Study D, ranging from 2 to 13 fractions 

of 15 and the recommended IL in the LDM system ranges from -3 to -6 dB. In 
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LDM, the %Time for each service in 100%. 

The capacity calculation for a specific configuration based on the main 

configuration parameters of an OFDM signal is defined as defined in equation 

(7) [132] [136]. 

TimeBWPPov
GI

CRMMbpsC %.)1(
1

1
log)( 2 


 (7) 

The SNR threshold of each possible combination of modulation and 

coding schemes, defined as SNR for the single-layer system (SNR-SL), has been 

obtained by ideal computer simulations. These values must be corrected 

depending on the injection level value as defined in equation (8) and (9) for the 

UL and LL respectively [153]. 

)101(10log10)101(10log10)( 1010

SLSNRILIL

xSLSNRdBULSNR



  (8) 

)101(10log10)( 10

IL

xILSLSNRdBLLSNR   (9) 

After a deep analysis of all the possible configuration of LDM to provide 

the services resumed in Table 22, it can be assured that there are many 

configuration sets that fit all the requirements in each case. However, those 

providing the maximum bitrate in the LL have been considered as better 

because they enable the improvement of the quality of the UHD signal. The 

optimal configuration set in each case is resumed in Table IV, including its 

maximum transmission bitrate and the SNR-UL and SNR-LL thresholds under 

AWGN channel conditions. All the configurations show in Table 23 fulfill the 

requirements of the four scenarios defined in Table 22 for the delivery of only 

HD or also UHD services in indoor environments. 

The capacity of the physical UL configuration of modes 3 and 4 fits 

perfectly with the HD services bitrate requirements, while the capacity of the 

UL of modes 1 and 2 is much more limited. The physical LL of mode 2 is also 

very limited to offer UHD services, while the LL of the other modes fits 

perfectly well. For this reason, mode 2 is the more limited for both services 

while mode 1 is only limited for HD services and modes 3 and 4 completely 

enables the transmission of HD and UHD services in indoor scenarios. 
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Table 23. Optimal LDM Configuration To Provide HD/UHD Indoor Services 

Scenario 

UL 
IL 

(dB) 

LL 

Conf. 
Bitrate 

(Mbps) 

SNR 

(dB) 
Conf. 

Bitrate 

(Mbps) 

SNR 

(dB) 

1 
QPSK 

5/15 
3.4 0.6 -6 

64QAM 

11/15 
22.6 21.6 

2 
QPSK 

5/15 
3.4 0.6 -6 

64QAM 

5/15 
10.2 13 

3 
QPSK 

6/15 
4.1 4.2 -3 

256QAM 

10/15 
27.3 22 

4 
QPSK 

6/15 
4.1 4.2 -3 

64QAM 

6/15 
12.3 12.5 

3.1.2.3 Laboratory Measurements Description 

Once that the optimal configuration modes, resumed in Table 23, have 

been theoretical determined, they must also be tested in laboratory 

measurements so as to test their real performance in indoor scenarios. 

Channel models 

Some of the channel models that represent the indoor reception which is 

target in this study are presented. First of all, the stationary channels F1 and P1, 

defined in the DVB-T2 Implementation Guidelines [59], will be considered 

because they are the classically reference of stationary reception in indoor and 

outdoor scenarios, respectively. Besides, the mobile indoor reception will be 

tested by the following channel models: PI, defined in the DVB-H 

Implementation Guidelines [76] and IOA (with low delay spread) and IOB (with 

medium delay spread), defined by the ITU [160]. Moreover, the TU6 [161] 

highly recommended for mobile outdoor scenarios but also used for indoor 

reception, will be also tested at pedestrian speed. Finally, the AWGN channel 

model will be also tested as reference. 

Set-up 

The set-up used in the laboratory measurements is the one based on 

recording for posterior analysis processing [146], as shown in Figure 42. For the 

first phase, it is necessary a LDM transmitter, a channel emulator and a 

recording device. The LDM signal is generated by means of a modified DVB-T2 
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SW transmitter including the novelties that have been considered in this study 

(QC LDPC codes, NUC and LDM). The transmitter consists in playing the 

desired LDM signal (previously generated for each configuration in Table IV) in 

a radiofrequency channel by means of a generic IQ samples file player. The 

transmitter output is connected to the channel emulator input in which the 

channel models defined in “Channel Models” section will be implemented by 

HW. The length of the measurements is about 5 s for the stationary channels 

(AWGN, F1 and P1) and 10 s for the pedestrian scenarios (TU6, PI, IOA and 

IOB) [148]. Finally, the channel simulator output is directly connected to an IQ 

digitalizer in which the LDM signal affected by a specific channel model is 

recorded as an IQ samples file. 

 

Figure 42. Laboratory measurements set-up 

The phase 2 consists on a performance analysis of the previously recorded 

IQ samples files by means of an adapted LDM professional SDR receiver 

completely developed in the University of the Basque Country described in 

detail in section 3.1 in Chapter II. This receiver provides performance 

information, such as the received power level, BER, MER or FBER.  

The reception threshold criterion to establish if the reception is correct or 

not, is based on FBER [148] [162] as described in Study C. In order to obtain 

the threshold criterion, increasing AWGN with steps of 0.25 dB, has been 
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added by SW until the first errors appear in the receiver (FBER not equal to 0). 

At this time, the SNR threshold can be obtained as the relation between the 

mean signal power level per frame and the mean external AWGN power level 

per frame. 

3.1.2.4 Results 

The SNR thresholds obtained in the laboratory measurements are 

presented in Table 24 and Table 25, for UL and LL respectively. 

Table 24. SNR Threshold based on Laboratory Measurements for UL (dB) 

Scenario 

UL 

Stationay channels Portable Indoor channels 

AWGN F1 P1 PI IOA IOB TU6 

1 0.9 1.3 2.4 2.9 1.5 2.3 4.7 

2 1.0 1.3 2.6 3.1 1.8 2.6 4.5 

3 4.7 4.8 7.6 8.2 5.3 8.6 8.7 

4 4.6 4.9 7.6 8.1 6.1 9.8 8.1 

Table 25. SNR Threshold based on Laboratory Measurements for LL (dB) 

Scenario 

LL 

Stationay channels Portable Indoor channels 

AWGN F1 P1 PI IOA IOB TU6 

1 22.0 22.2 24.9 26.7 22.8 24.7 >35 

2 13.4 13.8 16.2 18.3 16.4 19.2 19.5 

3 22.6 23.0 25.4 29.5 25.2 31.3 >35 

4 12.9 13.2 16.0 18.4 17.0 21.7 20.3 

On the one hand, the performance of the F1 channel model, which can be 

considered as a reference channel model for the static outdoor reception, 

because it includes the line-of-sight, suffers a degradation always lower than 0.4 

dB in comparison to the AWGN channel model. For this reason, in the static 

outdoor reception with line-of-sight, the degradation is very small in practice. 

On the other hand, the performance of the P1 means a degradation of 

between 1.5 and 3.1 dB with reference to AWGN. This channel model is usually 

considered the reference channel model for static indoor reception, as there is 
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no line-of-sight. Besides, it can be also a reference for the static outdoor in case 

the reception antenna has no direct sight with the transmission antenna because 

of any intermediate obstacle. This fact especially affects the considered LL with 

highest capacity (modes 1 and 3), as the degradation means SNR threshold of 

near 25 dB, which starts to be quite high. 

The four considered channel models defined as reference for portable 

indoor reception (at 3 kmph) have completely different performance. This 

means that the real performance of the specific LDM configuration depends on 

the type of mobile indoor scenario and no exact SNR threshold for PI scenarios 

can be established. However, these results are very helpful for planning 

purposes. The TU6 at 3 kmph and the IOB channel models are in general the 

most demanding in terms of SNR. However, the IOA has a similar performance 

to that with the static F1 channel model. The performance for the PI channel 

model takes intermediate values.  

The UL, especially for modes 1 and 2, still maintains low SNR thresholds 

in MI scenarios for all the considered channel models. However, in case of 

modes 3 and 4 UL, the SNR takes higher values, up to around 8 and 9 dB, with 

the exception of the IOA channel, which is less SNR demanding.  

Although, the LL target scenario is not the PI, the LL could be correctly 

received in this kind of scenario for SNR higher than about 20 dB. However, 

the SNR demanded for the LL of modes 1 and 3 is in general higher than 25 dB, 

not being ever possible to be correctly received. 

Taking all above into consideration, mode 1 is the best option as the 

bitrate for the UHD services is higher, so does the quality, and the SNR 

threshold for the physical LL in static reception and for the physical UL in 

mobile reception are acceptable. 

3.1.2.5 Conclusions of this study 

In this research, the most efficient way to deliver HD and UHD services 

in indoor environments, both in fixed and portable scenarios, has been 

presented. For this purpose, two new technologies in combination have been 

considered: LDM and SHVC. By this way, the transmission of HD services is 

made in the physical UL of the LDM system as the video coding BL of the 

SHVC scheme while the delivering of UHD services is made in the physical LL 

as the video coding EL of the SHVC scheme. For this purpose, the bitrate and 



Chapter III: Studies of New Techniques for Next Generation DTT Systems 

 

 

 137 
 

SNR necessities have been theoretically studied to define the best configuration 

parameters that fulfill these requirements. 

In addition, some laboratory measurement results have been presented in 

order to show the performance of the selected LDM configurations for the 

delivery of HD and UHD services in indoor scenarios. The new very robust 

LDPC codes used with LDM enables always the indoor HD and even UHD, 

reception. These results, shown in Table V and Table VI, can be helpful for 

broadcasters for network planning purposes.  
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3.2 Improvement Studies 

Two research works have been carried out in order to adapt the traditional 

DTT receiver implementation to the current scenarios, improving the DTT 

systems performance.  

 Study F: LLR Reliability Improvement for Multilayer Signals 

This study defines a new LLR reliability formula optimized for multilayer 

signals such as LDM signals. Additionally, computer simulations are performed 

to determine the performance improvement over the traditional approach. 

 

 Study G: Performance Evaluation of Different Doppler Noise 

Estimation Methods 

This study defines a new ICI power noise estimator so as to determine the 

ICI noise to be considered in DTT receivers in order to improve their 

performance in mobility. In addition, other low complexity ICI power noise 

estimators are also compared in terms of receiver performance. 
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3.2.1 Study F: LLR Reliability Improvement for 

Multilayer Signals 

The aim of this study is to adapt the current DTT receivers, optimized to 

single layers signals, to multilayer signals such as LDM signals. For this purpose, 

the design of a new LLR reliability formula is proposed.  

Furthermore, several computer simulations are conducted in order to 

establish the performance improvement over the traditional approach optimized 

for single layer systems. These studies have been carried out depending on 

several signal parameters (LL and UL constellations and injection level). In fact, 

the new LLR reliability formula has been also proved in multilayer systems with 

more layers than usual (three layers). 

3.2.1.1 Traditional LLR reliability formula 

Considering, for simplicity, a scenario of two simultaneous signals, the 

reception of the most powerful signal, also called upper layer (UL), is corrupted 

by the superimposed signal with lower power, also called lower layer (LL). The 

reception of the LL signal, in contrast, is not degraded as the UL cancellation is 

first performed and no other signals are present in the decoding process. 

It is important to note that it is well known that soft decision decoding 

algorithms outperform hard decision decoding algorithms since they make use 

of reliability measures to gain knowledge of the transmitted codewords [163]. 

LLR has been shown to be a very efficient measure. 

In particular, since LLR is the input to the soft input decoder, knowledge 

of its probability density function (PDF) is required. Gaussian modeling of the 

PDF has traditionally been used. It depends on the channel estimation, ρr , and 

the existing noise power, N0, as shown in (10) [138], where (It,Qt) and (Ir,Qr) 

represent the transmitted and received in-phase (I) and quadrature (Q) 

codewords, respectively. 

 (10) 

In the absence of any other noise source, only AWGN power is 
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considered (N0= NAWGN). This equation fits well for single layer systems but it 

does not take into account the LL influence on the UL decoding process in 

multilayer systems.  

3.2.1.2 Theoretical Study 

The theoretical study presented in this work applies for a two layers 

system; nevertheless it can be directly extended to more layers. The first 

approach presented in the literature considers the LL as a white noise 

interference added to the external AWGN power (NAWGN) [164] [154].  

Considering that the multilayer (ML) signal power (PML) is the sum of the 

UL signal power (PUL) and LL signal power (PLL), which is lower in an Injection 

level (IL) factor, the overall noise power to be considered is defined in (11): 
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Thus, the LLR PDF calculation in the decoder was done based on (10) 

taking N0 as indicated in (11). However, the LL is an OFDM signal and its 

influence on the UL is different from that caused by the AWGN. For this 

reason, this coarse approximation of the LL signal as AWGN leads to 

degradation in the UL decoding process and, consequently, a new approach 

should be considered. 

The new proposal for the LLR PDF in the UL decoding process is based 

on the study of the PDF of the IQ components of the received multilayer signal 

for different LL powers (depending on the specific IL) and different AWGN 

power levels. By means of curve-fitting, the PDF analytical solution in each case 

is calculated. This solution is based on the sum of as many Gaussian PDFs as 

LL constellation I/Q samples are. These Gaussian distributions consider only 

the external noise power level for its variance (N0=NAWGN), and their average 

values depend on the LL constellation and the IL between the UL and LL of the 

multilayer signal.  

PDF for the LLR reliability in the decoder based on the new approach 

should be modified according to the following more accurate formula shown in 

(12). In this case, (IMLt,QMLt) and (IMLr,QMLr) represent the ML transmitted and 

received IQ codewords, respectively, as defined in (13), where k spans each of 

the possible ILL, QLL samples depending on the LL constellation. 
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Figure 43 and Figure 44 show, in black dots, some example of the PDF of 

the in-phase component of the received multilayer signal for a “noise-free” 

(SNR = 30 dB) and a “noisy” (SNR = 0 dB) environment, respectively. In blue, 

the resulting LLR PDF of a Gaussian distribution based in (10) considering that 

the LL is an additional Gaussian noise added to the existing AWGN as shown 

in (11). In red, the improved LLR PDF of the received signal following (12) and 

(13) is shown. In this case, the IL between the UL and LL is 3 dB and the LL 

uses a 16QAM modulation (four possible in-phase samples).  

 

Figure 43. Example of the PDF of the received multilayer signal (black dots), the LLR 
PDF considering the LL as AWGN (in blue) and with the new approach (in red) in a 

“noise-free” environment (SNR = 30 dB). 

As it can be seen, the new approach (red) based in equation (12) and (13) 

is much more accurate to the received signal PDF (black) than the original 

approach (blue) based in (10) and (11), especially for high SNR. In low SNR 

environments, the existing AWGN power is higher than the LL power and, 

consequently, the major influence is due to the AWGN. In this situation, the 
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proposed distribution from equation (12) and (13) is similar to the Gaussian 

one, as it can be seen in Figure 44. 

 

Figure 44. Example of the PDF of the received multilayer signal (black dots), the LLR 
PDF considering the LL as AWGN (in blue) and with the new approach (in red) in a 

noisy environment (SNR = 0 dB). 

3.2.1.3 Simulation results 

In this section, several simulations have been carried out to validate the 

new approach for the LLR PDF defined in (12) and (13), measuring the gain 

over the use of (10) and (11). For this purpose, the value of the improvement 

gain, in terms of multilayer SNR thresholds for correct UL decoding, is 

calculated with the two options. Four different studies have been carried out. 

First, the influence on the gain of the specific IL between UL and LL is 

measured. Next, the influence of the LL constellation and the specific UL 

constellation influence on the performance gain are also analyzed for a two 

layers system. Finally, the study is extended to a three layers system. 

The SW implementation of a multilayer system (LDM profile) has been 

used, superimposing each layer with specific injection levels, after being 

separately formatted, encoded and modulated. Perfect time and frequency 

synchronizations are assumed, and ideal channel estimation is considered. In 

addition, the multilayer SNR is perfectly estimated as the average value per FEC 

block.  
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Thus, the minimum possible SNR thresholds are defined as the SNR 

points satisfying the condition that the FBER at the output of the outer coder is 

null. They are numerically obtained by a brute-force search with a simulation 

step of 0.1 dB [165]. The considered simulation step is 0.1 dB. The evaluation 

has been conducted for a P1 channel model [68], which is widely used as 

reference for portable indoor reception in wireless communications, which is 

one of the potential target of the UL service [166] [167].  

Injection Level influence 

Table 26 shows the power distribution of the UL (PUL) and LL (PLL) 

signals in a normalized multilayer signal for different IL values. 

Table 26. Power Distribution on a Two Layers Signal depending on the IL 

IL (dB) PUL (dBm) PLL (dBm) 

1 0.56 0.44 

2 0.61 0.39 

3 0.66 0.34 

4 0.72 0.28 

5 0.76 0.24 

6 0.80 0.20 

7 0.83 0.17 

8 0.86 0.14 

9 0.89 0.11 

10 0.90 0.10 

For testing purposes, five different UL configurations have been 

considered: QPSK modulation with 3/15, 4/15, 5/15, 6/15 and 7/15 code-rate. 

The LL specific configurations are detailed in each section. Table 27 shows the 

theoretical SNR threshold for a P1 channel and the equivalent acceptable 

NAWGN (dBm) of the normalized UL configurations when no LL is considered 

(Single Layer (SL) profile with PUL = 0 dBm). 

In a multilayer system, the UL suffers from two different effects. On the 

one hand, the PUL decreases with lower values of IL between UL and LL signals. 

Consequently, the acceptable NAWGN for UL correct decoding at the threshold 

situation is also decreased. On the other hand, as it has been stated before, the 

LL acts as an additional interference power that cannot be eliminated. 



Chapter III: Studies of New Techniques for Next Generation DTT Systems 

 

 

144  

 

Considering in a first approach the LL as white noise, it also reduces the 

acceptable NAWGN at the threshold situation in order to maintain the same SNR 

threshold for UL. In consequence the theoretical acceptable NAWGN at the 

threshold situation for UL correct decoding depends on the UL threshold SNR 

in SL profile and on the IL between both layers. Figure 45 shows the theoretical 

NAWGN depending on the IL between UL and LL for the five considered UL 

configurations when the LL is considered as an additional white noise. The PLL 

for its IL value is also shown. 

Table 27. UL Configuration SNR Threshold (dB) in Single Layer Profile 

UL PUL (dBm) SNR (dB) NAWGN (dBm) 

QPSK 3/15 

(Normalized  

SL profile) 

-3.6 2.29 

QPSK 4/15 -2.0 1.58 

QPSK 5/15 -0.6 1.15 

QPSK 6/15 0.8 0.83 

QPSK 7/15 1.9 0.65 

Figure 45 shows that the NAWGN needed for reaching the correct reception 

threshold situation is almost constant after a certain value of IL. From this IL 

value, the LL power influence on the SNR threshold is almost negligible and, 

consequently, the new proposal based on using (12) and (13) does not provide 

any gain. This limit IL value depends on the specific robustness of the UL 

configuration, as the less robust the configuration is, the influence of the LL on 

the UL becomes negligible for higher IL values.  

From Figure 45, it can be stated that the major LL influence for the 

considered UL configurations is with IL of up to 5 dB. From this reason, so as 

to the gain of using the new approach based on (12) and (13) depending on the 

IL, some computer simulations have been performed for IL ranging from 1 dB 

to 5 dB. 
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Figure 45. Acceptable NAWGN (dB) for UL correct decoding for different ILs. 

Table 28 shows the SNR threshold for correct UL decoding when using 

the original approach (equations (10) and (11)) and the new approach (equations 

(12) and (13)) for the considered UL configurations.  

By this way, the real improvement gain of using the new suggested 

approach can be measured. Besides, the theoretical SNR threshold considering 

the acceptable NAWGN from Figure 45 is also shown in order to make easier the 

understanding of the gain value. In this case, the LL signal is a 16 NU-QAM 

11/15. The (*) means that the decoding process is incorrect for a multilayer 

SNR of up to 20 dB, so no improvement gain can be assessed, showing an 

“Undefined” value. 

As it can be stated from Table 28, the UL decoding using the new 

approach in (12) and (13) does not mean degradation in any of the analyzed 

cases. In fact, its use almost always means gain for the considered IL values. The 

gain value increases with lower IL values because, as expected, the effect of the 

LL on the UL is higher for low IL (1 dB) and the influence of the new LLR 

PDF formula is more significant. 

Besides, the gain improvement for the same IL is higher for less robust 

configurations, as the acceptable NAWGN is lower, (see Figure 45) and 

consequently, the existing PLL is comparatively higher than the NAWGN. Under 

that circumstance, the use of the new approach based on (12) and (13) is more 

noticeable with less robust configurations and the gain significantly increases. 
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Table 28. SNR Threshold and Improvement Gain (dB) for different IL 

UL IL Theory (10)+(11) (12)+(13) Gain (dB) 

QPSK 3/15 

1 0.8 1.8 1.2 0.6 

2 0.0 0.6 0.2 0.4 

3 -0.8 -0.4 -0.6 0.2 

4 -1.3 -1.0 -1.2 0.2 

5 -1.8 -1.6 -1.6 0.0 

QPSK 4/15 

1 3.6 5.5 4.0 1.5 

2 2.3 3.3 2.6 0.7 

3 1.4 2.0 1.7 0.3 

4 0.7 1.1 1.0 0.1 

5 0.2 0.4 0.3 0.1 

QPSK 5/15 

1 7.1 11.4 6.9 4.5 

2 5.0 6.5 5.0 1.5 

3 3.7 4.4 3.9 0.5 

4 2.7 3.2 2.8 0.4 

5 2.0 2.2 2.0 0.2 

QPSK 6/15 

1 16.8 (*) 11.6 Undefined 

2 9.1 12.6 8.2 4.4 

3 6.6 7.7 6.3 1.4 

4 5.1 5.7 5.0 0.7 

5 4.1 4.4 4.1 0.3 

QPSK 7/15 

1 (*) (*) 17.8 Undefined 

2 (*) (*) 10.8 Undefined 

3 10.2 10.8 8.2 2.6 

4 7.5 7.6 6.6 1.0 

5 6.0 6.0 5.5 0.5 

Moreover, if the new expression to calculate LLRs (equations (12) and 

(13)) is considered, the SNR threshold for correct UL detection is closer to the 

theoretical one. In fact, the performance of the new approach sometimes 

overtakes the theoretical performance based on considering the LL as AWGN. 

This fact happens when the PLL is higher than the theoretical acceptable NAWGN, 

as it can be seen in Figure 45, so the new LLR PDF formula optimizes its 

performance. 

Figure 46 shows the theoretical acceptable NAWGN, the value obtained 
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with (10) and (11) and the one obtained using (12) and (13), for all the UL tested 

configurations and IL values.  

As it can be seen in Figure 46, the acceptable NAWGN obtained with the 

original LLR PDF formula based on (10) and (11) differs from the theoretical 

value. The difference increases for low IL and less robust configurations, when 

the LL has a major impact. In this situation, the new LLR PDF formula based 

on (12) and (13) especially increases its performance, getting more accurate 

NAWGN values.  

 

Figure 46. SNR threshold in theory, with (10) + (11) and with (12) + (13) 

LL Constellation influence 

As the new proposal based on (12) and (13) depends on the number of 

I/Q samples of the LL constellation, the improvement gain over using the 

original approach based on (10) and (11) depending on the specific LL 

constellation size has also been tested. This analysis has been performed for 16 

NU-QAM 11/15 (4 bits), 64 NU-QAM 11/15 (6 bits), 256 NU-QAM 11/15 (8 

bits) and 1024 NU-QAM 11/15 (10 bits) [168]. The considered IL value ranges 

from 1 to 5 dB.  

Table 29 shows the improvement gain of using the new LLR PDF 
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formula (equations (12) and (13)) for QPSK 3/15 UL configuration. Similar 

results have been also obtained for the rest considered UL configurations, so 

they are not included in Table 29. 

As it can be stated from Table 29, although the definition of the new 

approach in (12) and (13) depends on the specific LL constellation, there are no 

high differences (always lower than 0.1 dB) on the gain values for different LL 

constellations. This is because the specific LL constellation is considered in the 

shape of the LLR PDF formula in each case. 

Table 29. SNR Threshold and Improvement Gain (dB) for different IL and LL 
constellations (UL: QPSK 3/15) 

LL IL (10)+(11) (12)+(13) Gain (dB) 

16 NU-QAM 

1 1.8 1.2 0.6 

2 0.6 0.2 0.4 

3 -0.3 -0.6 0.3 

4 -1.0 -1.2 0.2 

5 -1.6 -1.7 0.1 

64 NU-QAM 

1 1.8 1.2 0.6 

2 0.6 0.2 0.4 

3 -0.4 -0.6 0.2 

4 -1.0 -1.2 0.2 

5 -1.6 -1.7 0.1 

256 NU-QAM 

1 1.8 1.3 0.5 

2 0.6 0.3 0.3 

3 -0.4 -0.6 0.2 

4 -1.0 -1.2 0.2 

5 -1.6 -1.6 0.0 

1024 NU-QAM 

1 1.8 1.2 0.6 

2 0.7 0.3 0.4 

3 -0.4 -0.6 0.2 

4 -1.1 -1.2 0.1 

5 -1.6 -1.7 0.1 

UL constellation influence 

The UL constellation influence on the improvement gain of using (12) and 

(13) instead of (10) and (11) has also been tested. Different UL constellations 
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sizes have been considered: QPSK (2 bits), 16 NU-QAM (4 bits) and 64 NU-

QAM (6 bits). The specific code-rate in each case is the one that means a similar 

SNR threshold for correct decoding in a P1 channel model when no LL is 

present (SL profile). By this way, the influence of the UL specific constellation is 

studied with no influence of the different robustness level. Moreover, as it has 

been demonstrated in “LL Constellation influence” section, the specific LL 

constellation has very low influence on the improvement gain value, so the last 

LL constellation from the previous study (1024 NU-QAM) has been considered 

for the simulations. In this case, the IL also ranges from 1 to 5 dB. 

Table 30. SNR Threshold and Improvement Gain (dB) for different IL and UL 
constellations 

UL IL Theory (10)+(11) (12)+(13) Gain (dB) 

QPSK 6/15 

1 16.8 (*) 11.6 Undefined 

2 9.1 12.6 8.2 4.4 

3 6.6 7.7 6.3 1.4 

4 5.1 5.7 5.0 0.7 

5 4.1 4.4 4.1 0.3 

16 NU-QAM 3/15 

1 15.0 (*) 14.8 Undefined 

2 8.7 (*) 8.4 Undefined 

3 6.3 8.6 6.5 2.1 

4 4.9 6.2 5.3 0.9 

5 3.9 4.8 4.3 0.5 

64 NU-QAM 2/15 

1 16.8 (*) 13.0 Undefined 

2 9.1 (*) 8.5 Undefined 

3 6.6 9.2 6.8 2.4 

4 5.1 6.4 5.3 1.1 

5 4.1 4.8 4.2 0.6 

Table 30 includes the SNR threshold when using the original approach 

((10) and (11)) and the new LLR PDF formula ((12) and (13)). By this way, the 

gain improvement is assessed for different UL constellations. Besides, the 

theoretical SNR threshold has also been included. The (*) means that the 

decoding process is incorrect for a multilayer SNR of up to 20 dB, so no gain 

can be assessed, showing an “Undefined” value. 

As it can be seen, for similar robust UL configurations the gain is higher 
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for higher order modulations. This is because the distance between consecutive 

IQ points is smaller in higher constellations. For this reason, the LL increases its 

influence on the UL for the same IL. Consequently, the improvement because 

of the use of the new LLR PDF approach ((12) and (13)) instead of the original 

one ((10) and (11)) increases with the UL constellation order. 

However, the SNR threshold using (12) and (13) is similar for the three 

UL constellations orders, as the tested configurations have also similar 

performance when no LL is present. The differences in the gain value are due to 

the different SNR threshold when (10) and (11) are considered. This value 

increases with the constellation order resulting in higher degradation for UL 

higher constellations.  

Therefore, the UL higher order constellations suffer more degradation 

because of the presence of a LL when (10) and (11) are considered. However, 

the improvement of using (12) and (13) is also higher for high order UL 

constellations so as to correct the specific degradation in each case. 

Three Layers performance 

If more than two layers are transmitted in the same radiofrequency 

channel at once, the influence of all of them should be taken into account [169]. 

If three layers are considered, the UL is influenced by LL1 with an IL1 and LL1 

constellation; and LL2 with an IL2 and LL2 constellation.  

In this case, the LLR formula defined in (12) is completely valid but with 

the new definition in (14) of transmitted and received IQ codewords of the 

multilayer signal, (IMLt,QMLt) and (IMLr,QMLr), respectively, where k1 spans each of 

the possible ILL1, QLL1 samples depending on the LL1 constellation and k2 spans 

each of the possible ILL2, QLL2 samples depending on the LL2 constellation 
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In order to measure the improvement gain of using the new LLR PDF 

approach ((12) and (14)) instead of the original one ((10) and (11)), the used 

ATSC 3.0 multilayer system has been adapted to the simultaneous transmission 

of three layers instead of only two as defined in the standard.  
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Table 31 shows the power distribution of the UL (PUL) and LLs (PLL1 

and PLL2) signals in a normalized multilayer signal for different IL1 and IL2 

values ranging between 1 and 5 dB. Equally to the two layers system, the 

acceptable NAWGN at the threshold situation depends on the IL1 and IL2 and 

the UL configuration robustness as it can be seen in Figure 47. Consequently, 

the theoretical SNR also depends on IL1 and IL2. 

Table 31. Power Distribution on a Three Layers Signal depending on the IL 

IL1 (dB) IL2 (dB) PUL (dBm) PLL1 (dBm) PLL2 (dBm) 

-1 

1 0.39 0.30 0.30 

2 0.41 0.33 0.26 

3 0.43 0.35 0.22 

4 0.46 0.36 0.18 

5 0.47 0.38 0.15 

-2 

2 0.44 0.28 0.28 

3 0.47 0.30 0.23 

4 0.49 0.31 0.20 

5 0.51 0.32 0.16 

-3 

3 0.50 0.25 0.25 

4 0.53 0.26 0.21 

5 0.55 0.28 0.17 

-4 
4 0.56 0.22 0.22 

5 0.58 0.23 0.18 

-5 5 0.61 0.19 0.19 

As it can be seen in Figure 47, the influence of the IL1 and IL2 on the 

most robust configurations is low, especially for high IL values. However, less 

robust UL configurations (QPSK 6/15 or 7/15) are more influenced by the 

specific IL and, in general, cannot be correctly decoded with two layers, 

especially if both LL1 and LL2 are very low. 

Taking everything into consideration, in this case, a QPSK 4/15 UL has 

been analyzed as it is robust enough to be correctly decoded with LLs inserted 

with low IL and it is no so robust to be able to detect the influence of the LLs 

over the existing AWGN in the threshold situation. As it has been demonstrated 

in the “Injection Level Influence” section, the specific LL constellation has very 

low influence on the improvement gain, so only two LL constellations have 
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been considered (16 NU-QAM for LL1 and 64 NU-QAM for LL2).  

 

Figure 47. Acceptable NAWGN (dB) for UL correct decoding for different ILs in a three 
layers system 

Table 32 shows the improvement gain of using (12) and (14) instead of 

(10) and (11) with different IL1 and IL2 values. The (*) means that the decoding 

process is incorrect for SNR lower than 20 dB, and consequently the gain stays 

“Undefined”. 

The results follow the same tendency than with only one LL. On the one 

hand, the higher the IL1 and IL2 are, the lower the improvement is as the LLs 

have lower influence on the UL. In fact, when IL1 is very low, the use of (12) 

and (14) enables an UL correct decoding at the receiver whereas it is not 

possible with the original approach based on (10) and (11), obtaining a very high 

improvement gain. 

Moreover, although the gain cannot be exactly estimated for very low IL1 

(such as 1 or 2 dB), a minimum gain can be deduced with value from 3.7 dB up 

to 12.4 dB depending on the specific IL2 value.  

The LL1 decoding improvement is not analyzed as once the UL has been 

cancelled, a two layers system is present and the results will follow the same 

tendency than in “Injection Level Influence”, “LL Constellation Influence” and 

“UL Constellation Influence” sections. 
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Table 32. SNR Threshold and Improvement Gain (dB) for different IL1 and IL2 in a 
Three Layers System (UL: QPSK 4/15) 

IL1 (dB) IL2 (dB) Theory (10)+(11) (12)+(14) Gain (dB) 

1 

1 (*) (*) (*) “Undefined” 

2 11.8 (*) 16.3 “Undefined” 

3 9.0 (*) 10.3 “Undefined” 

4 7.5 (*) 8.6 “Undefined” 

5 6.5 (*) 7.6 “Undefined” 

2 

2 8.4 (*) 9.7 “Undefined” 

3 6.7 (*) 7.6 “Undefined” 

4 5.6 11.6 6.4 5.2 

5 4.8 8.2 5.3 2.9 

3 

3 5.4 9.9 6.0 3.9 

4 4.4 7.2 5.0 2.2 

5 3.7 5.8 4.1 1.7 

4 
4 3.6 5.4 4.0 1.4 

5 2.9 4.2 3.1 1.1 

5 5 2.3 3.4 2.7 0.7 

3.2.1.4 Conclusions of this study 

This study has proposed a new LLR reliability algorithm to be used in the 

reception of signals using multilayer multiplexing techniques to improve the 

receiver performance with this kind of signals. This new formula takes into 

account the degradation of a superimposed layer on the desired signal through a 

change in the expression of the LLR PDF formula. The new expression, defined 

in (12) and (13), depends on the injection level between layers and the specific 

lower layer constellation. 

Several computer simulations have been conducted with an ATSC 3.0 

transmission/reception platform, using the LDM profile. As a result, the 

multilayer SNR threshold for the correct upper layer decoding performance is 

never degraded and can be improved in up to 4.5 dB, depending mainly on the 

signal robustness, the specific signal constellation and the injection level. 

Besides, it has also been confirmed that the higher SNR requirement the signal 

has, the higher the new proposal gain, as the AWGN present in the threshold 

situation is lower and the lower layer has more impact on the performance. For 
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this reason, these results can be extended for more challenging scenarios 

resulting in higher gain values. Furthermore, it has been also proved that the 

new LLR reliability expression can be extended to more than two layers with 

even higher performance gain. 

Thus, the implementation of this new algorithm means that the receivers 

could correctly decode the upper layer of a multilayer signal with lower SNR 

thresholds, improving the receiver performance and increasing consequently the 

coverage area. 
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3.2.2 Study G: Performance Evaluation of Different 

Doppler Noise Estimation Methods 

The main objective of this study is to improve the DTT receivers’ 

performance under portable or mobile conditions, the new target scenarios 

defined for the new generation DTT systems. For this purpose, the effect of the 

ICI power resulting from the movement has to be considered the receiver as 

additional noise source. In this context, a new ICI power estimator has been 

proposed. Additionally, several low complexity ICI power noise estimators have 

been comparatively evaluated in a DVB-T2 receiver by means of the obtaining 

of theoretical minimum SNR thresholds for correct reception. 

3.2.2.1 ICI Interference 

In OFDM systems [170], such as DVB-T2, the ICI caused by Doppler 

frequency in mobile wireless channels degrades the reception performance. Due 

to the current importance of mobile reception for future broadcasting systems, 

the effect of the ICI must be studied in order to improve the system 

performance in mobile scenarios. 

The ICI can be mainly reduced by increasing the space between carriers, 

which is inversely proportional to the FFT size. In addition, the space between 

carriers is also inversely proportional to the OFDM symbol length; in other 

words, the space between carriers increases with shorter symbols [139]. 

However, the symbol length cannot be highly reduced because the overhead due 

to the need of long cyclic prefix to avoid intersymbol interference (ISI) would 

become too large with short symbols.  

The ICI has two main consequences on the received OFDM signal: on the 

one hand, it reduces the signal power converting it into ICI power, and on the 

other hand, it also introduces an additional noise that should be taken into 

account [171]. For this reason, the influence of the considering the ICI effect on 

the mobile performance should be tested. 

3.2.2.2 ICI Power as Noise Source 

The Doppler frequency shift (fD) present in mobile channels leads to the 

ICI. Figure 48 shows an example of IQ components of a received OFDM signal 
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(7.71 MHz bandwidth, QPSK constellation and 8k FFT size) for different fD 

and null AWGN. For this example the TU6 [161] channel model is used to 

simulate mobile reception at different receiving speeds. 

As it can be seen, the higher fD is, the more the constellation points 

spread. The effect of this degradation can be considered similar to the effect of 

the AWGN degradation. 

 

Figure 48. Example of the IQ components of a received signal with 8k FFT and QPSK 
constellation for different Doppler values TU6 channel model. 

A DVB-T2 receiver architecture includes a LDPC channel coding block 

which relies heavily on the soft decision algorithms for the decoding stage. In 

particular, it makes use of reliability measurements, such as LLR [172], to gain 

knowledge of the transmitted signal. The reliability of the LLR depends on the 

PDF of the channel model, which depends on the channel estimation (ρr) and 

the noise power (N0), as shown in (10), where (It,Qt) and (Ir,Qr) representing the 

transmitted and received in-phase and quadrature symbols, respectively.  

In static channels, the unique present source of noise to be considered in 

(10) is the NAWGN. However, in the case of mobile reception, an additional 

source of distortion has to be considered so as to improve the reliability of the 
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transmitted signals. For this reason, the overall noise power to be considered in 

Eq. (15) is: 

ICIAWGN NNN 0  (15) 

The AWGN noise power (NAWGN) estimation has been comprehensively 

studied in the literature [173]. However, the ICI noise power (NICI) estimation 

has not been so deeply analyzed. The independently calculations of NAWGN and 

NICI allows the extension of theoretical SNR thresholds in fixed scenarios (with 

only NAWGN) to mobile scenarios, by the consideration of the additional NICI. 

3.2.2.3 Experimental ICI Noise Estimator 

An experimental method for estimating the Doppler noise power is 

proposed in this section. For this purpose, the Probability Density Function 

(PDF) of the IQ components of a DVB-T2 signal after being affected by a TU6 

channel are obtained. Different fD values ranging from very low speeds (fD of 2 

Hz, or ~1 kmph at 600 MHz) to very high speeds (fD of 200 Hz, or ~360 kmph 

at 600 MHz) have been considered.  

 

Figure 49. Example of the PDF in case of 200 Hz maximum Doppler frequency shift (in 
blue) and in case of no Doppler frequency shift with AWGN (in red). 

It is important to outline that the PDF width increases with the increment 
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of the fD value. Equally, providing AWGN is increasingly added to the signal in 

a stationary channel model, the PDF also increases in width. Consequently, 

there is one value of AWGN power (NAWGN) for which its PDF fits in shape to 

that for each fD value. This value of AWGN can be considered as the equivalent 

ICI noise power (NICI) caused by mobile reception. In that point, as it can be 

seen in Figure 49, the pure NAWGN case (in red) is similar to the estimated NICI 

from the Doppler frequency shift of the TU6 channel (in blue).  

Several measurements for different fD values, for different FFT sizes (8k, 

16k and 32k), and consequently, for different space between carriers, have been 

carried out. As a result, the NICI for each case has been estimated as the 

equivalent NAWGN for obtaining similar PDF shapes. By means of curve-fitting, 

a new analytical solution for the NICI depending on the maximum Doppler 

frequency shift (fD), signal power (Ps) and the space between carriers (Δf) has 

been obtained as shown in equation (16):  

88.2

_
5

74












f

f
PN D
snewICI



 (16) 

This proposal is proportional to fD and inversely proportional to Δf in a 

power factor of 2.88. Besides, it includes an amplitude factor of value 74πPs/5. 

The Ps is usually normalized to 1mW and the Δf is dependent on the FFT size 

and the signal bandwidth of the OFDM signal. A decrement in the space 

between carriers can be caused by an increment in the FFT size or a decrement 

on the signal bandwidth, causing an increment in the NICI_new. 

3.2.2.4 Comparison to Existing ICI Estimators 

In the literature there are several proposals to estimate the NICI power that 

affects OFDM signals [140]-[177]. On the one hand, several of the studied 

proposals require hard calculations in exchange of good precision and, on the 

other hand, there are also some fast estimators that can be implemented easily in 

a receiver. It is important to note that some of the most remarkable solutions 

are based on different formulas that mainly depend on the signal power (Ps), 

maximum Doppler frequency shift (fD) and the space between carriers (Δf) in an 

OFDM system [140]-[142]. In particular, some of these studies establish that the 

NICI can be measured with the formulas (17), (18) and (19) respectively. 
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The three methods are very similar sharing the same square proportional 

dependency with fD and inversely proportional with Δf, being the main 

difference between them the amplitude factor. 

These three methods are different to the proposal described in section 

3.2.2.3 (Experimental ICI Noise Estimator). Figure 50 shows the NICI (dBm) 

obtained for the three methods and for the proposal presented in this study for 

Doppler frequencies ranging from 0 to 250 Hz and considering Δf = 558 Hz 

and Ps = 1mW. 

 

Figure 50. NICI (dBm) for different fD with different methods (Δf of 558 Hz). 

As it can be seen in Figure 50, for the same signal configuration, the three 

methods from the bibliography show the same dependency with fD but with 

different amplitude, as this is the unique difference between them. The new 

New Proposal 

Reference [140] 

Reference [141] 

Reference [142] 
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proposal shows a different tendency as the power factor is different. This 

method estimates higher NICI values than other methods, especially for high fD. 

For low fD (lower than 25 Hz), it estimates lower NICI than the other considered 

methods. 

3.2.2.5 Influence of NICI on the SNR Threshold 

In this section, the mobile reception performance considering the NICI as 

an additional noise to the NAWGN has been measured with the four considered 

estimators. Furthermore, the reception performance for stationary reception 

conditions is also measured. This refers to the typical receiver implementation 

without considering ICI noise. For this purpose, the SNR threshold, defined as 

the relation between signal power level (Ps) and the noise power (NAWGN) is 

obtained when only AWGN is considered (N0 = NAWGN) and when ICI noise is 

also considered (N0 = NAWGN + NICI) for the four estimators. 

A DVB-T2 transmitter and receiver have been fully implemented in a 

simulation platform. It includes a LDPC coding/decoding block that makes use 

of the LLR PDF formula defined in (10). Perfect time and frequency 

synchronizations are assumed, and ideal channel estimation is considered. In 

addition, at the receiver the maximum Doppler shift is known and the SNR is 

perfectly estimated. The signal reception will be considered error free when the 

BER value at the output of the outer coder is lower than 10-6 [59]. The 

computer simulations have been carried out for an 8 MHz bandwidth signal 

with 16k FFT size (Δf of 558 Hz). The signal power level is normalized (Ps = 1 

mW) and different fD values have been measured (50, 100, 150, 200 and 250 

Hz). The tested configurations are a QPSK constellation with 1/4 and 2/3 

code-rate, testing different robustness levels. 

Table 33 shows the SNR threshold for fD values from 50 to 250 Hz for 

the two considered configurations. The (*) indicates that the considered DVB-

T2 configurations were not correctly decoded for SNR lower than 30 dB. 

As it can be seen, the higher the fD, the more critical the Doppler 

influence is in the receiver performance. What is more, there might be the case 

where the Doppler noise power is similar or even higher than the required 

AWGN for reaching the correct threshold situation, and its influence is, 

consequently, higher. 

 



Chapter III: Studies of New Techniques for Next Generation DTT Systems 

 

 

 161 
 

Table 33. SNR Threshold for different fD 

QPSK 1/4 

fD (Hz) NICI = 0 NICI_new NICI [140] NICI [141] NICI [142] 

50 -1.2 -1.2 -1.2 -1.2 -1.2 

100 -0.8 -0.8 -0.8 -0.8 -0.8 

150 0.3 0.3 0.3 0.3 0.3 

200 1.9 1.6 1.7 1.7 1.7 

250 3.9 3.6 3.8 3.7 3.9 

QPSK 2/3 

fD (Hz) NICI = 0 NICI_new NICI [140] NICI [141] NICI [142] 

50 6.6 6.5 6.5 6.5 6.5 

100 8.7 8.5 8.5 8.5 8.5 

150 (*) 19.5 19.8 19.5 (*) 

200 (*) (*) (*) (*) (*) 

250 (*) (*) (*) (*) (*) 

Table 34 gathers the NAWGN powers for each SNR receiving threshold 

and, additionally, the NICI power for the different considered fD. At this point, 

only QPSK 1/4 is considered as it is the only configuration robust enough to be 

correctly received at high Doppler frequency shift levels. 

Table 34. AWGN and ICI Noise Power Levels (dBm)  

QPSK 1/4 

fD (Hz) NICI = 0 NICI_new NICI [140] NICI [141] NICI [142] 

50 1.2 -13.5 -18.8 -15.8 -20.1 

100 0.8 -4.8 -12.8 -9.8 -14.9 

150 -0.3 0.2 -9.2 -6.2 -11.4 

200 -1.9 3.8 -6.7 -3.7 -8.9 

250 -3.9 6.6 -4.8 -1.8 -7.0 

As it can be seen, for low Doppler noise (fD < 50 Hz) the Doppler 

frequency is much lower than NAWGN, and consequently, it can be considered 

negligible. Nevertheless, when high Doppler noise is presented, (fD =250 Hz), 

the NICI has more influence than the NAWGN, and NICI estimation method has 

strong influence on the performance results. 

In general, the method in [141] and the new proposal have a similar 
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performance in terms of SNR threshold when the NICI is considered in the LLR 

reliability formula. They match with the highest NICI power levels. The gain 

increases with the fD value as the influence of the specific NICI is higher.  

On the one hand, for considerable NICI power levels, they present a gain 

of up to 0.2 dB in comparison to method in [140] and of more than 1 dB in 

comparison to the method in [142]. On the other hand, the consideration of the 

NICI in the LLR reliability can improve the SNR threshold in about 0.5 dB, for a 

medium fD (about 150 Hz). However, it can exceed 10 dB gain for high fD 

(about 200 Hz), being able to correctly decode some configurations that could 

not otherwise be received (QPSK 2/3 at fD 150 Hz). 

3.2.2.6 Tolerance to a Doppler Frequency Shift 

miscalculation 

As it has been stated before, the three considered methods for estimating 

the noise power level and the new proposal suggested in this study depend on 

the fD. This value must be usually estimated and can be miscalculated with an ε 

error value. This error can be valued up to between 35 and 65 % of the real fD 

value [178]. The error in the fD estimation, leads to an error in the NICI of value 

ΔNICI.  

This section studies the influence of an ε error in the estimation of the fD 

value for the four considered methods, both theoretically and practically. In 

order to do that, SNR threshold value is obtained when the resulting erroneous 

NICI is considered in the LLR reliability formula. 

If the fD is measured with an ε error, the NICI suffers also an ΔNICI error 

which is different for each NICI estimation method. The theoretical ΔNICI for a 

fD of 150 Hz considering the four studied methods is graphically represented in 

Figure 51. The considered ε error in the fD is between -65 and +65% of the real 

fD value. The ∆NICI for lower and higher fD follow the same tendency but with 

lower and higher values, respectively. 

As it can be seen, the theoretical ΔNICI is much higher for the new 

proposal while the lowest ΔNICI is obtained for the method in [142] but with a 

similar tolerance to method in [140]. The difference in ΔNICI between the 

considered methods increases with the fD as the error tendency of the each 

method remains unchanging while the absolute value increases. 
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Figure 51. ΔNICI with up to 65% ε error for fD = 150 Hz 

The changes in the considered NICI in the LLR reliability formula may 

affect the SNR threshold for correct decoding. For low SNR thresholds (QPSK 

1/4), an fD error estimation leads to a degradation in the SNR threshold of up 

to 0.7 dB only for highest percentage of error (65%). In this case, the worst 

tolerance is for the new proposal and for the method described in [141]. For the 

remaining percentage errors, no degradation is present.  

Nevertheless, when high SNR thresholds are considered, the ICI noise 

power is remarkable. Table 35 resumes the SNR threshold for different 

percentage errors in the estimation of 150 Hz fD for QPSK 2/3 configuration. 

The (*) indicates that the received signal was not correctly decoded for SNR 

lower than 30 dB. 

As it can be seen, the best tolerance in terms of SNR threshold is for 

method described in [140]. Besides, the degradation in the SNR threshold is, in 

general, higher for negative errors. A consideration of NICI higher than the real 

one degrades less the SNR threshold than an underestimation.  

All in all, for very negative errors (-65%), the four analyzed methods have 

a similar performance. For low negative percentage errors (-15%) the method in 

[141] has the best performance while for low positive percentage errors (15%) 

the best performance is with the new proposal. Finally, for high positive errors 

(65%), the method in [142] presents the lowest SNR threshold. 

New Proposal 

Reference [140] 

Reference [141] 

Reference [142] 
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Table 35. SNR (dB) Threshold for Different fD Estimation Errors (dBm) considering fD 
150 Hz 

QPSK 2/3 

ε (%fD) NICI = 0 NICI_new NICI [140] NICI [141] NICI [142] 

-65 (*) (*) (*) (*) (*) 

-30 (*) (*) (*) (*) (*) 

-15 (*) (*) (*) 18.1 (*) 

0 (*) 19.5 19.8 19.5 (*) 

15 (*) 16.5 16.7 (*) (*) 

30 (*) (*) 17.9 (*) 18.1 

65 (*) (*) (*) (*) 19.0 

3.2.2.7 Conclusions of this study 

This study presents a comprehensive comparison framework for various 

low complexity theoretical methods to estimate the ICI power level so as to 

improve reception performance under mobile conditions. This is an important 

contribution for the soft decoding algorithms which rely on the LLR formula. 

Three methods have been analyzed from the literature, whereas a new one has 

been proposed based on an experimental study of the received signal PDF 

shape. All of them mainly depend on the maximum Doppler frequency shift and 

the space between carriers. 

In order to compare the four methods, some computer simulations have 

been conducted. The method in [141] and the presented proposal show the best 

performance. With both ICI power estimators, performance improvements of 

about 0.5 dB (for medium receiver speeds) or up to more than 10 dB (for high 

speeds) have been measured. 

Finally, the tolerance error of misestimating the Doppler frequency shift 

for the four methods has been also tested. Although, theoretically, the method 

in [142] shows the best tolerance, when practically analyzed it only offers gain 

for high positive fD estimation errors. For low fD estimation errors, the new 

proposal and method in [140] present the best performances. 

Although this study has been carried out for the DVB-T2 standard, it is 

also applicable to other DTT standards based on OFDM and LLR reliability 

formulas for the decoding process.  
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4. Summary 

In this chapter, the state-of-the-art of some new technologies, which have 

appeared since the DVB-T2 standard definition, has been analyzed. Besides, 

some additional research studies have been carried out to complete the 

information available in the bibliography. These new technologies have been 

applied to the definition of the DVB-T2 standard to check the improvement in 

terms of robustness and efficiency over the new generation existing techniques.  

On the one hand, QC LDPC codes had been proved to show high 

robustness by means of simulations, laboratory measurements and field trials for 

fixed and mobile reception. However, they had not been tested in indoor 

environments. For this reason, some field trials, included in Study D, have been 

conducted in order to test the suitability of these new codes for indoor 

reception. For this purpose, these new codes have been applied as the LDPC 

codes in the DVB-T2 physical layer. The results show good coverage in indoor 

scenarios for low transmission powers due to their high robustness. 

Furthermore, instantaneous SNR thresholds for fixed and portable indoor 

reception have been also presented showing that correct reception is feasible for 

SNR thresholds higher than 2.3 dB in fixed and 3 dB in pedestrian indoor 

scenarios, 0.7 dB lower than the most robust DVB-T2 FEC code. By this way, 

the new QC LDPC codes have been proved to improve the system 

performance in indoor scenarios in comparison to existing DVB-T2 FEC codes. 

In addition, LDM technology has been widely studied theoretically and in 

the laboratory in Study E, adapting the DVB-T2 physical layer with the new QC 

LDPC codes to LDM technique by means of layers addition in the transmission 

and layers cancellation in the receiver. This study shows the high suitability of 

LDM in combination with the new SHVC coding technique for providing HD 

indoor services for SNR values from 4.7 dB or even UHD indoor services with 

SNR values from 19.5 dB. 

On the other hand, existing DTT receivers are not optimized for these 

new multilayer signals, such as when LDM technique is used. For this reason, a 

new LLR reliability algorithm optimized for multilayer signals has been 

proposed in Study F, taking into account the injection level and the LL specific 

constellation. Some simulations have demonstrated that with the new suggested 

LLR formula an improvement of up to 4.5 dB can be obtained in comparison to 
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the traditional approach, depending mainly on the signal robustness, the specific 

signal constellation and the injection level. It has been also proved that the new 

LLR reliability formula can be easily extended to more layers systems. 

Moreover, neither are current DTT receivers adapted to new target mobile 

scenarios as only AWGN is considered as noise in the receiver. However, the 

ICI is an additional noise source due to the Doppler effect present in mobility 

that should be considered so as to improve the performance. A wide 

bibliography study about low complexity theoretical methods to estimate the 

ICI noise power level present in mobile reception has been carried out in Study 

G. Besides, a new method has also been proposed based on the signal PDF 

shape. In order to compare the different estimators, some computer simulations 

have been carried out considering the ICI power as an additional interference in 

the receiver decoding process. The studied methods show, in general, 

performance gains of about 0.5 dB (for medium receiver speeds) or up to more 

than 10 dB (for high speeds) in comparison to the traditional receivers’ 

implementation with no consideration of the ICI noise power, especially for less 

robust DVB-T2 configurations and high Doppler situations. The method in 

[141] and the new proposal show the highest gains in terms of SNR threshold.  

 



 

 

  



 

 

  



 

 

 

 

 

 

 

 

 

 

CHAPTER IV: ATSC 3.0 

Studies 

This part of the thesis analyzes the new generation DTT system ATSC 3.0. Some 

performance evaluation computer simulations are included so as to theoretically 

analyze the influence of different ATSC 3.0 signal parameters reception under 

different scenarios conditions. 

Moreover, different ways to deliver simultaneous fixed UHD and mobile or indoor 

HD services are also studied. 
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1. Introduction 

From Chapter III, it is clear that the application of new techniques and 

receivers’ modifications highly improves the robustness and efficiency of the 

DVB-T2 new generation DTT system. Consequently, another new generation 

DTT system can be defined making use of these new technologies.  

Taking into consideration some of the physical layer features from the 

current European new generation DVB-T2 system and some of the new 

techniques that have been proved to improve current DTT standards, ATSC 

has just developed a DTT candidate standard, named ATSC 3.0 (document 

A/322) [45], which gives an answer to the current requirements. As any other 

DTT standard, it is necessary to test the system feasibility to fulfill all the 

requirements by means of a performance analysis before launching the system 

commercially.  

As the thesis was developed during the ATSC 3.0 standard definition, 

research work on the first phase of the evaluation process (computer 

simulations) is needed. In addition, some of the first ATSC 3.0 laboratory 

measurements have been also conducted during the thesis writing. 

More specifically, as there is no common simulation platform, unlike the 

case of DVB-T2 standardization process, an ATSC 3.0 emulation platform has 

been totally implemented to perform ATSC 3.0 computer simulations. Besides, 

a robustness study of the ATSC 3.0 BICM has been performed in order to 

determine the most important robustness reference values of the system.  

Taking everything into consideration, this chapter includes a state-of-the-

art including the existing ATSC 3.0 performance studies. Furthermore, new 

research work related to the ATSC 3.0 performance analysis is also included by 

means of an emulation platform implementation and four different studies.  
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2. Previous Studies 

During the thesis development, the definition of the ATSC 3.0 system [45] 

was carried out, being finally approved as a standard in September 2016. As in 

the case of the previous DTT standard, a complete performance evaluation 

process is needed before launching a system in a real network.  

As in the case of DVB-T2, the first step in a system performance analysis 

is by means of computer simulations with a SW emulation platform so as to 

obtain the theoretical minimum SNR thresholds under ideal conditions. Unlike 

the case of DVB-T2 standardization process, in which the CSP SW platform 

[59] [57] was implemented and worldwide available for carrying out computer 

simulations, in the ATSC 3.0 standard definition process no common simulation 

platform was neither implemented nor defined. For this reason, every company 

and research group involved in the standard definition, performed research 

works related to their own implementation of some of the ATSC 3.0 physical 

layer modules, widely defined in [179]. However, there have been several 

verification phases to check that, with independence of the specific 

implementation, each ATSC 3.0 module generates the same correct output 

signal.  

Once the correct implementation of the standard is checked, the system 

performance of the different ATSC 3.0 modules has to be checked under ideal 

conditions. It is important to address that due to the high importance of this 

standard, several companies took part in the performance evaluation process. 

The first module in an ATSC 3.0 is the input formatting block in order to 

generate ATSC Link layer Protocol (ALP) packets according to [180] and [181], 

so no performance analysis is needed.  

The next block is the BICM, widely defined in [182], where the specific 

modulation and coding is applied and, consequently, also the bit interleaving. 

More specifically, LDPC codes based on the recent LDPC codes studied in 

Study D, are included with twelve code-rates ranging from 2/15 to 13/15. 

Equally, NUCs are used, using a uniform QPSK modulation and five NUCs: 16 

NU-QAM, 64 NU-QAM, 256 NU-QAM, 1024 NU-QAM and 4096 NU-QAM. 

Some comparative studies have been presented in [183] and [118], measuring 

the new LDPC codes and new NUCs performance, respectively in comparison 
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to previous DTT LDPC codes and UCs. What is more, [184] and [121] study 

some possible modifications to the defined NUCs based on the application of 

SSD or constellation condensation techniques. However, the complete ATSC 

3.0 BICM module performance had not been analyzed yet in spite of being the 

module with the most influence on the system performance. 

The following module is formed by the framing and interleaving processes 

as well as the signaling module, whose performance under AWGN and P1 

channel conditions has been widely studied in [185] in comparison to the DVB-

T2 signaling. Some preliminary computer simulations have been presented in 

[186] about the time interleaving influence on the performance and latency of 

the system under TU6 channel. More recently, the frequency interleaver 

performance has also been analyzed in [187]. However, more research work is 

needed so as to determine the optimal use of all the interleavers included in the 

ATSC 3.0 standard definition depending on the specific target scenario. 

Another module is the waveform generation process, whose performance 

is expected to be very similar to other OFDM based DTT standards as the 

configuration parameters are quite similar (FFT, guard interval, PAPR...). 

However, some research studies have been conducted in [188] about the 

different pilot pattern and boosting performance in fixed and mobile scenarios 

in order to determine the optimal election depending on the specific scenario. 

In addition, the newly designed bootstrap symbol for the system 

discovery, synchronization and transmitted signals identification has been totally 

defined in [189]. Besides, its high robustness under different kind of scenarios 

has been tested in [190]. 

Finally, there is an additional module related to the new LDM technique, 

introduced in Study E, useful for the delivery of simultaneous UHDTV to 

rooftop antennas and HD services to mobile or indoor receivers. However, its 

suitability within ATSC 3.0 has not been tested by the moment of the thesis 

writing. Additionally, the modification suggested in Study F to optimize the 

multilayer systems performance presents a practical implementation problem. 

The suggested new LLR reliability depends on the specific LL constellation 

points, so the mobile receiver should keep the whole constellations points 

although they are not needed with the classical LLR approach. Consequently, 

the memory requirements and system complexity increase.  

Once the theoretical SNR thresholds are obtained with ideal computer 
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simulations, the performance analysis must be brought closer to the real world 

by means of laboratory measurements and, next, field trials. However, by the 

moment of the thesis writing, the efforts were dedicated to the first phase of 

ATSC 3.0 (computer simulations) as no HW equipment had been still 

developed.  
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3. Research Work 

As it can be seen in the former section, as ATSC 3.0 is a standard defined 

during the thesis development, there is much research work to do. First of all, 

an ATSC 3.0 emulation platform was designed and implemented in the thesis in 

order to have a tool to carry out the performance evaluation computer 

simulations. 

With this emulation platform, research work about different system 

parameters need to be done. It is important to study the influence of the 

different configuration parameters in the theoretical threshold to determine if its 

use is recommended.  

On the one hand, current DTT systems are very close to the Shannon 

theoretical limit by means of LDPC codes and uniform QAM constellations up 

to 256QAM. However, ATSC 3.0 candidate standard has included new elements 

in the BICM module in order to increase its closeness to the Shannon limit, 

being highly efficient without additional transmission power or bandwidth. 

What is more, the BICM module performance evaluation is especially significant 

as its influence is the highest. For this reason, all the BICM possible 

combinations’ spectral efficiency and robustness have been obtained in this 

thesis so as to establish the base performance information about the system. 

On the other hand, although some interleavers influence on the 

performance had been previously analyzed, more research was needed in order 

to test all the existing interleavers (time, frequency, cell and subslicing) under the 

same channel conditions, with special emphasis in mobile scenarios where their 

influence is much higher. What is more, as the implementation of each 

interleaver increases the system complexity, latency, necessary memory and, 

consequently, the power consumption in the receiver, the real performance 

improvement of using each interleaver has to be measured. Thus, the trade-off 

between complexity and performance gain can be maximized.  

The remaining configuration parameters’ performance, such as those from 

waveform OFDM module (guard interval length, pilot pattern, bandwidth…) 

had been previously studied in detail or can be extrapolated from other DTT 

standards due to their high similarity. 

In addition, as the optimization of simultaneous fixed and mobile or 
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indoor services has been considered equally important in the requirements for 

the ATSC 3.0 standard, LDM technique, which has been previously shown to 

be the most efficient multiplexing technique [132] [191], is also analyzed for this 

purpose. Furthermore, some of the first ATSC 3.0 performance results by 

means of laboratory measurements are also presented for LDM signals. What is 

more, a comparative performance study between TDM and LDM has been also 

carried out to test the advantage in ATSC 3.0 of LDM over TDM for the 

simultaneous UHD fixed and HD mobile or indoor services delivery. In fact, 

the optimized LDM receiver implementation suggested and tested in Study F 

(Chapter II) has been also applied so as to increase the advantage of LDM over 

TDM. Moreover, some pseudo-optimal approaches have also been suggested in 

order to reduce the high complexity and memory requirements. 

All in all, three studies have been carried out in this thesis related to the 

performance analysis of ATSC 3.0 configuration parameters. 

 Study H: The spectral efficiency and robustness of all the ATSC 3.0 BICM 

combinations have been obtained with computer simulations. 

 Study I: The influence on the performance of all the ATSC 3.0 interleaving 

options has been tested in fixed and mobile scenarios with computer 

simulations. 

 Study J: The fixed and mobile ATSC 3.0 LDM performance has been tested 

by means of computer simulations and laboratory measurements. 

In addition, one study has been carried out in order to improve the LDM 

operation in ATSC 3.0. 

 Study K: The gain of LDM over TDM has been theoretically tested 

considering different decoding algorithms. 
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3.1 ATSC 3.0 Emulation Platform 

A complete ATSC 3.0 emulation platform, including a complete 

transmission and reception chain as well as configuration functions with all the 

features described in [45], has been developed in this thesis with the objective of 

creating a tool similar to the DVB-T2 CSP [57] [58]. This tool is needed for the 

first phase of the performance evaluation process of any DTT standard, which 

is based on computer simulations. It also enables the simulation of different 

channel models. 

3.1.1.1 Platform Structure 

The ATSC 3.0 emulation platform structure can be seen in Figure 52. 

 

Figure 52. ATSC 3.0 Simulation Platform 
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All the baseline configuration parameters defined in the ATSC 3.0 A/322 

standard [45] have been included in the platform. The design is so modular that 

it is a very flexible tool for research purposes and performance tests. In the 

platform, any module can be passed or even exchanged with a different module. 

By this way, the platform design allows any modification to the standard, as well 

as any block activation. Each module has some inputs (input data and ATSC 3.0 

configuration) and some outputs (output data).  

Furthermore, some V&V test points have been also included at the output 

of each module in the transmitter chain in the form of plain text files with data 

sample values. These V&V text files fulfill the required format defined for 

ATSC V&V [192] group in each point and have been correctly checked with 

V&V Plug Fest #2 testbenchs (March 2016) [193]. 

3.1.1.2 Transmission Chain 

The ATSC 3.0 implemented transmission chain includes the main 

configuration options defined in the standard and summarized in Table 36. 

Table 36. Main ATSC 3.0 parameters supported in the SW platform 

Waveform Generation Parameters Interleaving Parameters 

Bandwidth All Time Interleaver CTI & HTI  

Pilot Patterns All Frequency Interleaver Yes 

MISO / MIMO No Extended Interleaver Yes 

PAPR Tone Reservation LDM Parameters 

Guard Interval  All LDM Yes 

Time Aligned Mode Yes Injection Levels All 

Bootstrap Yes BICM Parameters 

TxID No Inner Code (LDPC) Length All 

Framing Parameters Inner Code (LDPC) code-rate All 

Multiple Frames Yes Outer Code All 

Multiple Subframes Yes Constellations All 

Symbol Types All Bit Interleaver Yes 

FFT Size All Input Parameters 

Reduced Carriers All Multiple PLP Yes 

Subslicing Yes Channel Bonding No 

Signaling All   
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The input to the Input Format block in the transmission chain is the data 

to be transmitted using the ATSC 3.0 physical layer. As shown in Figure 53, this 

process starts with a PseudoRandom Binary Sequence (PRBS)  generated using 

an external Linear Feedback Shift Register (LFSR) with the polynomial 

generator x23+x18+1, as specified by ITU-T recommendation O-151 [194]. 

The generator initialization value depends on the specific PLP identification 

[192]. The payload results from dividing the PRBS output into fixed length 

portions of 1200 bytes with UDP and IP headers so as to generate the IP Packet 

for each PLP that should be considered as the input to the Input Format block.  

 

Figure 53. PRBS Input Data Generator 

The output of the Waveform Generation block in the transmission chain 

is a file with the IQ samples of the generated ATSC 3.0 signal. This can be:  

 Binary file with I/Q samples saved as signed Int16 Little Endian. 

 Binary files with double (IEEE) IQ samples.  

The sampling rate of the IQ samples depends on the bandwidth of the 

signal as shown in Table 37. 

Table 37. Output IQ file sampling-rate 

Bandwidth (MHz) Sampling-rate (Mbps) 

4.5 (Bootstrap) 6.144  

6  6.912  

7  8.064  

8  9.216  

This transmission chain can also be used in a SDR system in combination 

with a general purpose HW device with the capability of transmitting 

radiofrequency signals. One example of general purpose device is USRP. 
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3.1.1.3 Channel 

The standardized channel models that have been included in the SW 

platform are mostly resumed in [195]: 

 AWGN [59]. This channel model simulates the ideal reception, with nor 

multipath neither Doppler and only AWGN is added. 

 Rice (F1) [59]. This 21 path channel model refers to a fixed scenario with 

LOS. 

 Rayleigh (P1) [59]. This 20-path channel model refers to a fixed scenario 

with no LOS. 

 0 dB Echo [59]. This channel model refers to a Single Frequency Network 

(SFN). 

 Pedestrian Indoor (PI) [76], Indoor Office A/B (IOA, IOB) [97] and 

Pedestrian A/B (PA, PB) [195]. All these channel models refer to a portable 

indoor reception at 3 kmph. 

 Pedestrian Outdoor (PO) [76]. This channel model refers to a portable 

outdoor reception at 3 kmph. 

 Vehicular A/B (VA, VB) [97]. This channel model refers to a mobile 

reception at 120 kmph. 

 Typical Urban 6 paths (TU6) [196]. This is the most used channel model 

intended to simulate mobile reception. The Doppler value is a 

configuration parameter. 

 Other. In addition to, all the channel models included in [195] have been 

implemented (Brazil, Communications Research Centre Canada and ATSC 

ensembles). 

3.1.1.4 Reception Chain 

The receiver implements the inverse ATSC 3.0 block chain than the 

transmitter. Besides, in this SW platform, ideal time and frequency 

synchronization is considered and perfect channel estimation is assumed. 

In the receiver, several quality measurements can be obtained at several 
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points of the receiver: BER, FER and SNR can be calculated, comparing the 

obtained data samples with those generated in the transmitter at the same point 

of the chain.  

  



Chapter IV: ATSC 3.0 Studies 

 

 

182  

 

3.2 Performance Studies 

Three different studies have been carried out during the ATSC 3.0 

definition process in order to test the system performance for different 

parameters in all kind of scenarios.  

 Study H: ATSC 3.0 BICM Analysis 

This study determines the reference values for spectral efficiency and 

robustness of ATSC 3.0 BICM by means of computer simulations under ideal 

conditions. These results show the basic relation between capacity and 

robustness. 

 

 Study I: ATSC 3.0 Interleavers Influence in Reception Performance. 

This study evaluates the influence of each ATSC 3.0 interleaver in the 

system performance for different scenarios. 

 

 Study J: LDM Core Services Performance in ATSC 3.0 

This study includes a theoretical study of ATSC 3.0 LDM different 

parameters as well as some performance evaluation results based on laboratory 

measurements. 
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3.2.1 Study H: ATSC 3.0 BICM Analysis 

The main objective of this research work is to analyze the reference values 

for spectral efficiency and robustness of ATSC 3.0 by means of computer 

simulations under ideal conditions. For this purpose, the BICM component of 

ATSC 3.0 is studied in detail, analyzing its spectral efficiency and performance 

as its influence in the system is the highest. 

3.2.1.1 Spectral Efficiency 

The spectral efficiency (Eff) can be obtained with equation (20), where 

Mbits refers to the bits of the modulation and CR refers to the considered code-

rate.  

                       (20) 

Table 38 shows the spectral efficiency of all the possible modulation and 

code-rate combinations in ATSC 3.0. The results are round to the first decimal 

value. 

Table 38. Spectral Efficiency (bps/Hz) of ATSC 3.0 modulations and code-rates  

 2/15 3/15 4/15 5/15 6/15 7/15 

QPSK 0.3 0.4 0.5 0.7 0.8 0.9 

16 NU-QAM 0.5 0.8 1.1 1.3 1.6 1.9 

64 NU-QAM 0.8 1.2 1.6 2.0 2.4 2.8 

256 NU-QAM 1.1 1.6 2.1 2.7 3.2 3.7 

1024 NU-QAM 1.3 2.0 2.7 3.3 4.0 4.7 

4096 NU-QAM 1.6 2.4 3.2 4.0 4.8 5.6 

 8/15 9/15 10/15 11/15 12/15 13/15 

QPSK 1.1 1.2 1.3 1.5 1.6 1.7 

16 NU-QAM 2.1 2.4 2.7 2.9 3.2 3.5 

64 NU-QAM 3.2 3.6 4.0 4.4 4.8 5.2 

256 NU-QAM 4.3 4.8 5.3 5.9 6.4 6.9 

1024 NU-QAM 5.3 6.0 6.7 7.3 8.0 8.7 

4096 NU-QAM 6.4 7.2 8.0 8.8 9.6 10.4 

As it can be seen in Table 38, some of the modulation and code-rate 

combinations have the same spectral efficiency, and they are consequently 



Chapter IV: ATSC 3.0 Studies 

 

 

184  

 

redundant. For this reason, the Eb/No of each modulation and code-rate 

combination is obtained in order to know which the most robust configurations 

for the same spectral efficiency are.  

3.2.1.2 Robustness 

The Eb/N0 is defined as the ratio between the signal energy per bit and 

the noise power spectral density. It can be directly related to the SNR with 

equation (21). 

          
  

  
                                  (21) 

Table 39 and Table 40 resume the Eb/N0 thresholds of the BICM block 

for all the possible modulation and code-rate combinations with long length 

LDPC codes for AWGN and P1 channel models respectively. As it can be seen, 

there are in total 72 modulation and code-rate combinations for long length 

LDPC codes (64800 bits). However, short length LDPC codes, which are 

usually used in mobile scenarios due to their less latency, have no sense with 

high modulations (1024 and 4096 NU-QAM). For this reason, short length 

LDPC codes (16200 bits) analysis is limited up to 256 NU-QAM. 

Table 39. Eb/N0 (dB) of ATSC 3.0 modulation and code-rate combinations for long 
LDPC codes under AWGN channel 

 2/15 3/15 4/15 5/15 6/15 7/15 

QPSK -0.6 -0.4 -0.2 0.0 0.4 0.6 

16 NU-QAM -0.1 0.7 1.1 1.5 2.1 2.5 

64 NU-QAM 0.6 1.4 2.1 2.9 3.8 4.4 

256 NU-QAM 1.2 2.1 3.2 4.2 5.4 6.3 

1024 NU-QAM 1.8 3.1 4.4 5.8 7.3 8.5 

4096 NU-QAM 2.5 4.0 5.5 7.3 9.1 10.6 

 8/15 9/15 10/15 11/15 12/15 13/15 

QPSK 0.8 1.1 1.5 1.9 2.5 3.1 

16 NU-QAM 3.0 3.5 4.0 4.8 5.5 6.4 

64 NU-QAM 5.2 5.9 6.8 7.8 8.7 9.8 

256 NU-QAM 7.6 8.6 9.8 11.0 12.3 13.8 

1024 NU-QAM 10.1 11.6 13.1 14.7 16.4 18.3 

4096 NU-QAM 12.5 14.4 16.4 18.3 20.4 22.6 
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Table 40. Eb/N0 (dB) of ATSC 3.0 modulation and code-rate combinations for long 
LDPC codes under P1 channel 

 2/15 3/15 4/15 5/15 6/15 7/15 

QPSK -0.1 0.3 0.7 1.2 1.8 2.2 

16 NU-QAM 0.8 1.7 2.4 3.0 3.9 4.4 

64 NU-QAM 1.8 2.8 3.8 4.7 5.8 6.5 

256 NU-QAM 2.5 3.9 5.1 6.2 7.7 8.8 

1024 NU-QAM 3.3 4.9 6.5 7.9 9.7 11.1 

4096 NU-QAM 4.0 5.9 7.7 9.6 11.9 13.4 

 8/15 9/15 10/15 11/15 12/15 13/15 

QPSK 2.9 3.5 4.3 5.3 6.7 8.5 

16 NU-QAM 5.3 6.1 7.0 8.0 9.4 11.3 

64 NU-QAM 7.6 8.6 9.7 10.9 12.5 14.5 

256 NU-QAM 10.2 11.3 12.6 14.1 15.8 18.1 

1024 NU-QAM 12.7 14.4 16.2 17.8 19.7 22.2 

4096 NU-QAM 15.4 17.6 19.5 21.6 23.9 26.2 

Table 41 and Table 42 resumes the Eb/N0 thresholds of the BICM block 

for all the possible modulation and code-rate combinations with short length 

LDPC codes for AWGN and P1 channel models respectively. As it can be seen, 

ATSC 3.0 varies from the most robust mode (QPSK 2/15) operating below -0.6 

dB Eb/N0 with a spectral efficiency of 0.3 bps/Hz, up to the highest capacity 

mode (4096 NU-QAM 13/15) with 10.4 bps/Hz but Eb/N0 of 26.2 dB.  

Table 41. Eb/N0 (dB) of ATSC 3.0 modulation and code-rate combinations for short 
LDPC codes under AWGN channel 

 2/15 3/15 4/15 5/15 6/15 7/15 

QPSK 0.0 0.1 0.4 0.5 0.7 0.7 

16 NU-QAM 0.4 1.1 1.6 1.8 2.3 2.7 

64 NU-QAM 1.0 1.8 2.5 3.1 3.9 4.7 

256 NU-QAM 1.8 2.6 3.7 4.5 5.6 6.7 

 8/15 9/15 10/15 11/15 12/15 13/15 

QPSK 1.1 1.4 1.7 2.2 2.7 3.4 

16 NU-QAM 3.1 3.7 4.2 5.0 5.6 6.5 

64 NU-QAM 5.6 6.1 7.0 8.2 8.9 10.0 

256 NU-QAM 8.0 8.8 10.0 11.3 12.7 14.0 
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Table 42. Eb/N0 (dB) of ATSC 3.0 modulation and code-rate combinations for short 
LDPC codes under P1 channel 

 2/15 3/15 4/15 5/15 6/15 7/15 

QPSK 0.5 0.8 1.2 1.7 2.1 2.5 

16 NU-QAM 1.4 2.2 2.9 3.3 4.1 4.7 

64 NU-QAM 2.4 3.2 4.3 5.0 6.0 6.9 

256 NU-QAM 3.1 4.5 5.8 6.7 7.9 9.2 

 8/15 9/15 10/15 11/15 12/15 13/15 

QPSK 3.0 3.8 4.7 5.6 6.9 9.2 

16 NU-QAM 5.5 6.3 7.2 8.4 9.7 11.7 

64 NU-QAM 7.8 8.8 10.0 11.2 12.8 15.0 

256 NU-QAM 10.6 11.5 13.0 14.5 16.5 18.5 

Compared to ATSC A/53 [14], ATSC 3.0 is almost 4 dB and 7 Mbps 

closer to the Shannon limit in a 6 MHz RF channel [50] [51]. Compared to the 

current DVB-T2 standard the gain reaches up to 1 dB in some cases. 

Change of constellation order 

The increment in the constellation order means degradation in terms of 

Eb/N0, because the highest the constellation order is, the nearest the 

constellation points are and the robustness decreases. Figure 54 shows the 

degradation in Eb/N0 because of the change between a low order constellations 

to the consecutive one in size for all the defined code-rates. 

As it can be seen in Figure 54, the degradation increases with the code-

rate, from 0.5 dB for the lowest code-rate (2/15) up to 4.5 dB for the highest 

code-rate (13/15). Besides, for code-rates lower than 8/15, the degradation is 

similar (differences always lower than 0.5 dB) independently of the constellation 

orders. However, for code-rates higher than 8/15, the degradation of increasing 

the constellation in one order slightly increases with the order value. For 

example, for 12/15 code-rate, the degradation in Eb/N0 of changing from 

QPSK to 16 NU-QAM is 3 dB while the increment between 1k to 4k 

constellations is 4 dB. 
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Figure 54. Eb/N0 increment for increments on consecutive constellation orders 

Change of code-rate 

The degradation in the Eb/N0 because of the change between a low code-

rate to the consecutive one is shown in Figure 55 for all the ATSC 3.0 defined 

constellations. 

 

Figure 55. Eb/N0 increment for increments on consecutive code-rates 

As it can be seen in Figure 55, the degradation because of the change in 

code-rate is higher for higher order constellations. Besides, Eb/N0 increment 

because of the change between consecutive code-rates from 10/15 is slightly 

higher than for lower code-rates. The change between 6/15 and 7/15 is an 

special case that decreases the tendency of the degradation in Eb/N0 for all the 
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modulation orders, This is because in addition to the change in code-rate, there 

is also a change in the LDPC codes internal type [183]. 

Change of LDPC length 

The degradation in the Eb/N0 because of the change in the LDPC size 

between long length (64800 bits) to short length (16200) is shown in Figure 56 

for all the ATSC 3.0 defined modulation and code-rate combinations. This 

degradation is only shown from QPSK to 256 NU-QAM as higher constellation 

orders are not defined for short length LDPC codes. 

 

Figure 56. Eb/N0 increment for decrement on the LDPC length 

As it can be seen, using 16200 bits means always degradation for all the 

modulation and code-rate combinations defined in ATSC 3.0. This degradation 

is higher for low code-rates up to 5/15 (0.5-0.6 dB) while it remains lower 

(around 0.3 dB) for higher code-rates. The constellation order has no real 

influence in the Eb/N0 degradation when the LDPC length is changed. 

Change in the target scenario 

The degradation in the Eb/N0 because of the change in the target scenario 

from an ideal AWGN to a more challenging P1 channel model is shown in for 

all the modulation and code-rate combinations defined in ATSC 3.0. 

As it can be seen in Figure 57, the degradation because of the more 

challenging channel model has the same tendency for all the constellation 

orders, increasing its value with the increment in the considered code-rate. Up 

to 9/15 code-rate, the degradation is lower for lower constellation orders. For 

10/15 code-rate, the degradation is similar for all the modulation orders. 

However, for code-rates higher than 10/15, the degradation increases for lower 
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constellations. 

 

Figure 57. Eb/N0 increment for change in the target scenario 

3.2.1.3 Conclusions of this study 

This research work includes a spectral efficiency and robustness study of 

the ATSC 3.0 BICM module. The results show that that the BICM module 

provides not only the highest spectral efficiency compared to any DTT system 

today, but it also provides a significant increase in the maximum transmission 

robustness and capacity, as it was later shown in [182]. 

When various BICM combinations satisfy the capacity requirements, some 

considerations must be taken into account in order to choose the most robust 

modulation and code-rate combination.  

On the one hand, the increment in the constellation order degrades the 

Eb/N0 lower for low code-rates. Equally, the increment in the code-rate 

degrades the Eb/N0 lower for low constellation sizes. On the other hand, the 

change in the LDPC length from 64800 to 16200 bits degrades the Eb/N0 

lower for high code-rates while the change in the target scenario to a more 

challenging one degrades the Eb/N0 lower for low code-rates and low 

constellation orders.  
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3.2.2 Study I: ATSC 3.0 Interleavers Influence in 

Reception Performance 

The main objective of this research work is to evaluate the influence of 

each type of ATSC 3.0 interleaver in the system performance for different 

scenarios so as to check for which target scenario they are useful. As a matter of 

fact, the most advantageous interleaver and the related configuration can be 

identified for each scenario based on these results. 

3.2.2.1 Interleavers Utility 

ATSC 3.0 FEC codes are the most efficient existing LDPC codes in the 

approach to the Shannon capacity limit in transmissions over memoryless 

channels with randomly distributed and statistically independent errors [183]. 

However, when the signal suffers from impulsive noise or selective fading, the 

performance highly degrades [197]. This is because severe burst errors can occur 

in the same FEC block and its high robustness is not enough to correct so many 

erroneous bits. 

One possible solution to this problem is based on the distribution of burst 

error patterns in different FEC blocks [198]. By this way, the severe burst errors 

are divided in several FEC blocks and LDPC codes could probably effectively 

correct the erroneous bits. Therefore, different channel interleavers have been 

included in the ATSC 3.0 standard in order to uniformly distribute codewords in 

time and frequency. Consequently, the transmitted symbols subject to impulsive 

noise and selective fading do not end up in the same coded frame, taking 

advance of the available time and frequency diversities from the channel. 

3.2.2.2 ATSC 3.0 Interleavers 

ATSC 3.0 includes several channel interleavers: Time Interleaver [186] in 

two different ways: Convolutional Time Interleaver [199] and Hybrid Time 

Interleaver, which includes an optional Cell Interleaver, and Frequency 

Interleaver [200] interleavers is to ensure an uncorrelated error distribution 

inside the FEC blocks, over time and frequency selective propagation channels.  

Once the coded and bit interleaved bits have been mapped in 

constellations, they can be time interleaved. The use of the ATSC 3.0 Time 

Interleaver (TI) [186] is defined as optional. The TI can be configured enabling 
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different trade-offs in terms of time diversity and transmission robustness, 

latency and power saving. Figure 58 shows the TI main blocks depending on the 

number of transmitted PLP [200].  

 

Figure 58. ATSC 3.0 Time Interleaver Blocks 

On the one hand, single PLP modes use a conventional Forney 

convolutional TI (CTI) [199], with interleaving depths of up 200 ms depending 

on its number of rows. Besides, for low order constellations (QPSK), these 

values can be increases up to 400 ms using the extended interleaving option. On 

the other hand, for multiple PLP, a hybrid TI (HTI) is used. This consists of a 

cell interleaver, a twisted BI and a convolutional delay line based on First-In-

First-Out (FIFO) registers.  

The Cell Interleaver (CI) is also optional in ATSC 3.0 so as to randomize 

residual burst errors within a FEC block. To this end, the CI uniformly spreads 

the cells in the FEC block, to ensure in the receiver an uncorrelated distribution 

of channel distortions and interference along the FEC blocks. For this purpose, 

the CI permutes each FEC block according to a pseudo-random sequence that 

varies every FEC block. 

Furthermore, the time interleaving depth can be highly increased by 

means of subslicing. That means that the PLP data cells from the TI output can 

be divided into two or more subslices. Each subslice shall occupy a set of 

contiguous data cells, but the highest data cell index of a subslice shall be non-

contiguous to the lowest data cell index of the following subslice of the same 

PLP.  

After being time interleaved and organized in OFDM symbols, the data 

symbols can be frequency interleaved by changing their cell index, as it is shown 

in Figure 59. By this way, consecutive data cells are uniformly spread over the 
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available spectrum. The use of the Frequency Interleaver (FI) is defined as 

optional in ATSC 3.0 [200]. 

 

Figure 59. ATSC 3.0 Frequency Interleaver Blocks 

Each FI consists on a change of the cell index inside an OFDM symbol. 

For this purpose, each FI address generator consists of three generation blocks: 

a toggle block, an interleaving sequence generator with a wire permutation, and 

a symbol offset generator.  

3.2.2.3 ATSC 3.0 configuration 

The high number of configuration options defined in ATSC 3.0 makes the 

system suitable for different uses [201]. Although fixed and mobile scenarios are 

considered in this study, the influence of some of the interleavers emphasizes in 

mobility. For this reason, the tested ATSC 3.0 configuration is robust enough to 

be correctly received in mobile scenarios at high speeds. 

A single and a multiple PLP modes will be tested to evaluate the influence 

of all the interleaving options in the reception performance. Table 43 describes 

the main configuration parameters of each ATSC 3.0 mode. 

Table 43. ATSC 3.0 Tested Configurations main parameters 

Common configuration parameters 

Bandwidth LDPC Length FFT / Pilot Pattern / GI 

6 MHz 64800 8k / SP3,4 / 1024 

Specific configuration parameters 

Mode Constellation Code-rate 

Single PLP QPSK 5/15 

Multiple PLP 
QPSK 5/15 

64 NU-QAM 9/15 



Chapter IV: ATSC 3.0 Studies 

 

 

 193 
 

On the one hand, both configurations have been defined for 6 MHz 

bandwidth and 64800 LDPC length to obtain lowest bound reception 

thresholds. The FFT size is 8k, as it is a study based on mobile reception. Pilot 

pattern and guard interval length has no real influence on the performance as 

ideal channel estimation is considered in the ATSC 3.0 emulation platform. 

On the other hand, for Single PLP mode a QPSK constellation with a 

5/15 Code-rate (CR) has been selected aiming at mobile scenarios. As matter of 

fact, this is very robust, which should be enough for being correctly received in 

mobility environments. Its BICM theoretical threshold in AWGN is -1.7 dB 

SNR or 0 dB Eb/N0 as determined in Study H: ATSC 3.0 BICM Analysis, and 

the requirements for mobile indoor and outdoor reception are at least -1.5 dB 

SNR in AWGN [158]. Additionally, it must be noted that its capacity of more 

than 3 Mbps, obtained with equation (7), is enough for transmitting HD services 

with HEVC [101] [102].  

Finally, the multiple PLP mode includes the single PLP configuration as 

well as a 64 NU-QAM with 9/15 code-rate, which presents a good trade-off 

between capacity and robustness. However, only the common PLP is tested 

because the second PLP configuration does not target mobile reception and the 

influence of the interleavers cannot be correctly analyzed. The number of 

codewords considered for the multiple PLP mode is set to 15 (486000 cells with 

QPSK constellation) as ATSC 3.0 limits the time deinterleaving memory in a 

receiver to a maximum of 219 cells. 

3.2.2.4 Evaluation Trials 

These simulations are conducted with the purpose of evaluating the 

influence of each ATSC 3.0 interleaver in the reception performance in different 

scenarios. In order to establish the performance reception, the SNR threshold 

for correct reception is measured. The signal reception is considered error free 

when the BER value at the outer coder output is lower than 10-6 [47]. This value 

is a reliable tradeoff between simulation time and system performance. In order 

to satisfy this criterion, AWGN is added at the receiver input with steps of 0.2 

dB. The noise is added until the first errors appear in the receiver (BER higher 

than 10-6). At this time, the SNR threshold can be obtained as the relation 

between the mean signal power level per ATSC 3.0 frame and the mean external 

AWGN power level per ATSC 3.0 frame. 
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The considered interleaving options are resumed in Table 44. The bit 

interleaver is not considered in the study as it is defined as compulsory in the 

ATSC 3.0 standard.  

The CTI is optional (ON/OFF) and it can be configured depending on its 

number of rows and the possible use of the extended interleaving length (only 

for QPSK mode). The FI is also optional and its influence on the performance 

is also measured (ON/OFF). These two interleavers are tested with the single 

PLP mode defined in Table 43. The HTI and the CI for multiple PLP 

configurations are also optional (ON/OFF). Finally, the subslicing influence is 

tested with multiple PLPs considering different number of subslices. 

Table 44. ATSC 3.0 Tested Interleaving options 

Interleaver Mode Options 

CTI Time Interleaver Single PLP 

ON/OFF 

Rows: 512, 724, 887, 1024 

Extended: Yes/No 

HTI Time Interleaver Multiple PLP Intra-subframe 

Cell Interleaver (CI) Multiple PLP ON/OFF 

Frequency Interleaver (FI) Single PLP ON/OFF 

Subslicing Multiple PLP 1, 50 

As it has been stated before, the channel interleavers are used so as to 

improve the system performance in fading channels. The most representative 

example of this type of channels in broadcasting systems is mobile reception. 

For this reason, the TU6 [196], which is considered as the most representative 

channel model for mobility, is tested for speeds up to 200 kmph. Moreover, as 

TU6 channel model is not well adapted to slow speeds and it is generally more 

demanding than reality in portable scenarios [202] pedestrian more specific 

channel models are also considered, including PI at 3 kmph and PO at 3 kmph 

[76]. Finally, the AWGN is measured as reference as well as fixed reception in 

order to check that there is no real gain because of the use of channel 

interleavers. In this case, F1 and P1 channel models are considered [59]. 

3.2.2.5 Performance Results 

The single PLP configuration SNR thresholds for the different 

combinations of ATSC 3.0 interleavers are gathered in Table 45 for stationary 
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scenarios (AWGN, F1 and P1 channel). 

As expected the interleavers show no gain for AWGN and F1 channel 

models. Nevertheless, for P1 channel models, the gain due to the FI or TI 

means a gain of only 0.2 dB as the selected configuration code-rate is very 

robust, and therefore, the multipath distortion could be overcame with the 

LDPC codes correction capability.  

Table 45. SNR Threshold with Single PLP Interleaving options in stationary scenarios 

Interleavers State 
Channel model 

AWGN F1 P1 

FI: OFF TI: OFF -1.0 -0.8 0.2 

FI: ON TI: OFF -1.0 -0.8 0.0 

FI: OFF TI: ON 

(Any rows, Extended: Yes/No) 
-1.0 -0.8 0.2 

FI: ON TI: 512, 724 -1.0 -0.8 0.2 

FI: ON TI: 887, 1024 (Extended: Yes/No) -1.0 -0.8 0.0 

The same results for mobile scenarios are gathered in Figure 60. The SNR 

threshold without enabling any interleaving option is shown in black. The other 

results include the SNR threshold with FI and/or TI for all the possible 

interleaving lengths (from 50 up to 400 ms in case of extended TI).  

The mobile scenarios performance is different to the fixed reception. As it 

can be seen in Figure 60, the gain due to FI is only up to 0.4 dB (in red). 

However, the CTI performance gain increases linearly with the number of rows 

(or interleaving length), especially for low speeds. It improves from 0.6 dB (50 

ms TI length) up to 3.2 dB (400 ms TI length) when pedestrian channel models 

are considered. The main reason is the critical fading or “shadowing” that might 

appears. For higher speeds, this gain is reduced up to 1.4 dB as the time 

variability of the channel acts as a natural interleaver itself. In addition, it must 

be noted that the SNR reception thresholds are low, and therefore, the Doppler 

Noise is masked under the AWGN noise. Moreover, if both interleavers are 

considered, the simulations show that the SNR thresholds remain mainly 

unchanging with differences of between ±0.2 dB.  
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Figure 60. SNR Thresholds for single PLP interleaving options in mobile scenarios 

The multiple PLP configuration SNR thresholds for the first PLP are 

gathered in Table 46 and Figure 61 for fixed and mobile scenarios, respectively. 

As it can be seen, TI, CI and subslicing have no influence for AWGN and 

F1 channel models. In P1 channels, the gain due to these interleavers means 

only 0.2 dB gain as the highest robustness is provided by the robust measured 

code-rate.  

Table 46. SNR Threshold with Multiple PLP Interleaving options in stationary scenarios 

Interleavers State 
Channel model 

AWGN F1 P1 

TI: OFF CI: OFF Subslices: 1 -1.2 -0.8 0.2 

TI: ON CI: OFF Subslices: 1 -1.2 -0.8 0.0 

TI: ON CI: ON Subslices: 1 -1.2 -0.8 0.0 

TI: ON CI: ON Subslices: 50 -1.2 -0.8 0.2 

In mobility, as Figure 61 shows, the gain due to the HTI is up to 2.0 dB in 

pedestrian reception and 0.6 dB in high mobility (in red). These gains are slightly 

different if CI is considered (in blue) with a ±0.2 dB extra gain as the spread 

errors are mainly corrected by the bit interleaver. Besides, if subslicing is 
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considered (in purple) an extra 0.6 dB gain can be reached because of the extra 

time interleaver.  

 

Figure 61. SNR Thresholds for Multiple PLP interleaving options in mobile scenarios 

3.2.2.6 Conclusions of this study 

This study determines the influences of each ATSC 3.0 interleaving option 

in the reception performance under different channel conditions. 

Considering a very robust configuration intended for mobile reception, if 

all the interleaving options are compared, it can be stated that in fixed scenarios 

none of the considered interleavers improves the reception performance.  

In mobile scenarios, the time interleaver is in general the interleaver that 

shows higher improvements. The convolutional time interleaver for single PLP 

configurations shows increasing improvements with the number of rows 

showing gains between 0.6 dB (for low number of rows and high speeds) and 

3.2 dB (for the highest number of rows and pedestrian speeds). When multiple 

PLP are used, the hybrid time interleaver means up to 2.0 dB gain for the tested 

configuration. The gain is higher for the CTI as the interleaving length is longer 

than with HTI. In addition, the frequency and cell interleavers means almost no 

gain in all the studied cases as their effects are masked with the time interleaver, 

the bit interleaver and the high robustness of the tested configuration. 

Furthermore, the use of subslicing increases the time interleaving length and 

consequently, the performance improves in up to 0.6 dB.  
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These results show the high utility of the interleavers for mobile scenarios, 

but not for fixed reception, when it is not necessary to use them thus reducing 

the system latency. In mobile reception, the only interleaver that really improves 

the system performance for very robust ATSC 3.0 configurations is the time 

interleaver. Consequently, frequency and cell interleavers are not really useful.   
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3.2.3 Study J: LDM Core Services Performance in ATSC 

3.0 

A theoretical study is performed so as to shed some light on the possible 

receiving performance issues of the mobile services when LDM is used for 

some of the ATSC 3.0 signal parameters. However, these theoretical analyses 

only establish the lower bounds for the ATSC 3.0 performance, as the 

emulation platform cannot be considered as a real system.  

For this reason, another objective of this study is to test on the laboratory 

the performance of the mobile service of an LDM system in ATSC 3.0 to 

deliver indoor or mobile services, obtaining results very close to a real scenario 

situation.  

3.2.3.1 Theoretical Study 

This study is based on obtaining the SNR thresholds for correct reception. 

These thresholds are results of computer simulations by means of the SW 

platform described in ATSC 3.0 Emulation Platform. Besides, perfect time and 

frequency synchronization are assumed while ideal channel and AWGN 

estimations are considered [47].  

Injection Level penalty on LDM  

LDM is based on splitting the available transmission power into two 

layers, and due to this power split the UL suffers from inter-layer interference. 

At the receiver, the LL acts as interference for the UL. As a result, the UL SNR 

threshold in LDM depends on the single layer SNR threshold and the defined 

injection range, as shown in equation (7). SNR-UL stands for the SNR 

threshold of the UL signal in the LDM system while SNR-SL is the SNR 

threshold value of the single layer configuration and IL is the injection level 

between both layers. All units are in decibels (dB). 

Following (7), in Figure 62 the SNR-UL threshold is shown as a function 

of IL (∆) and the SNR-SL. The lower the IL, the more power is shared with the 

LL. Therefore, the UL signal power is lower and, consequently, the SNRUL 

threshold increases. For instance, in Figure 62 vertical lines show that if the 

desired SNRUL threshold is kept constant at a value of 0 dB, the UL single layer 

configuration should guarantee an error free reception threshold of {-3, -2.5, -
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2.1, -1.75} dB, for ∆={-3,-4,-5,-6} dB injection levels, respectively. 

 

Figure 62. Upper layer minimum SNR depending on the selected injection level and 
selected configuration receiving threshold. 

Inter-Carrier Interference (ICI) 

One of the main novelties of ATSC 3.0 is the adoption of OFDM as the 

physical layer waveform with its consequent main weakness: the orthogonality 

loss that occurs in mobile environments. As explained in [203], the impact of 

ICI is usually measured through the relationship between the existing maximum 

Doppler frequency, fd, and the carrier frequency space,        , which 

depends on the OFDM symbol duration, Tu. It has been demonstrated in [204] 

that this ICI leads to the presence of a Doppler noise. Doppler noise increases 

exponentially as the receiver speed goes up. 

The overall shape of the ICI and its relevance on the final threshold can 

be seen in Figure 63. In this figure, the dashed blue line represents the ICI 

power obtained through experimental analysis from the behavior of the received 
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OFDM physical waveform considering a TU6 channel model with different 

normalized Doppler values, fdTu.  

 

Figure 63. ICI influence in a TU6 channel and the tolerable AWGN power for different 
signal configurations. 

The continuous blue line plots the theoretical upper bound for Doppler 

degradation described in [203], which aligns well with the practical results of the 

presented simulations. In addition, the dashed black line represents the total 

transmitted signal power (0 dBm) and the colored dashed lines show the 

allowed AWGN power for an error free reception according to the selected 

modulation scheme and code-rate. For instance, if QPSK modulation and 4/15 

code-rate is selected the total tolerable AWGN power is 2.9 dBm (violet line). 

When the tolerable AWGN power values are compared with the ICI 

power values in the analyzed cases, it can be seen that the difference is at least 5 

dB for the worst case. In this case, there will be some degradation on the 

receiver performance, but for many of the rest cases, especially with differences 

higher than 10 dB, AWGN masks completely the impact of ICI. These results 

confirm the viability of using higher FFT sizes (16k, 32k) for mobile scenarios.  
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Besides, when the ICI is high (high receiver speeds), there is a Doppler 

noise contribution that cannot be neglected as it can be even similar to the 

AWGN contribution. For this reason, its power should be taken into account in 

the LDPC decoding process based on LLR. Figure 64 shows two performance 

curves in terms of SNR threshold for a QPSK 3/15 signal over a TU6 channel 

for different normalized Doppler values (fdTu).  

 

Figure 64. SNR thresholds for different mobile conditions and noise estimation 
algorithms. 

The continuous line (N0 = NAWGN) represents the case where the ICI 

power is not considered for the overall noise calculation, whereas the dashed 

line (N0 = NAWGN + NICI) represents the case where the overall noise power, 

Gaussian plus Doppler, is taken into account.  

For high Doppler scenarios, a SNR threshold gain of almost 1 dB can be 

achieved if the Doppler Noise contribution is considered. Nevertheless, for low 

speed scenarios, there is a small gain, always lower than 0.5 dB, or even no gain 

for pedestrian speeds. The obtained results are in line with the results obtained 

in Study G. 
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Time Interleaving in LDM 

The main objective of this section is to confirm the impact of different TI 

lengths on the receiver performance in mobility. Figure 65 shows the results of 

the simulations carried out for evaluating the performance in terms of SNRUL 

threshold, using the four different TI depths described in the ATSC 3.0 

standard (200, 150, 100 and 50 ms) which correspond to 1024, 887, 724 and 512 

rows of a convolutional interleaver, respectively [186]. 

 

Figure 65. UL SNR thresholds for different receiving speeds and the four ATSC 3.0 time 
interleaving lengths. 

Increasing the TI length provides higher gains at low speed scenarios 

(speed < 20 kmph), where critical fading appear (about 3 dB difference between 

the extreme TI depths). For high speed scenarios (speed > 20 kmph), the time 

variability of the channel acts as a natural interleaver itself, and therefore, the 

gain is lower (ranging from 0.5 to 1.5 dB for minimum to maximum TI depths 

respectively). 
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Cell and Frequency interleavers have not been tested because as it has 

been demonstrated in Study H, its influence on the reception performance is 

very low for very robust configurations as tested in LDM UL. 

Upper Layer Code-rate 

Figure 66 shows the SNR threshold values for the LDM UL with several 

code-rate configurations. The FFT size is 16k and the GI length is 150 ms. The 

modulation is QPSK and the code-rate ranges from 3/15 to 6/15, covering 

capacities ranging from about 2 Mbps to 4 Mbps respectively, enough for the 

delivery of HD services [101] [102]. Finally, it should be mentioned that in this 

case the LDM signal has a -4 dB injection level and the maximum TI length 

defined in ATSC 3.0 (200 ms) is used.  

 

Figure 66. SNR thresholds for different code-rates in ATSC 3.0 

On the one hand, the difference in SNR threshold for different code-rates 

depends on the speed of the receiver, with differences of about 2 dB between 

consecutive code-rates for high speed scenarios (speed > 20 kmph). However, 

the differences in SNR threshold for low speed scenarios (speed < 20 kmph) 
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can be up to 10 dB considering consecutive code-rates. 

On the other hand, the SNR thresholds at low speeds are higher because 

the biggest challenge is not the ICI, but the possible flat fading that may happen 

due to the channel slow time variability. Therefore, in order to overcome this 

drawback, the time interleaver should be increased. Thus, depending on the 

target use case, the time interleaving length is more important than the ICI on a 

specific FFT size associated to a certain receiver speed.  

Finally, the performance curves are almost flat for speeds that range from 

10 kmph to 175 kmph, meaning that the ICI degradation due is not significant 

and remains masked under the AWGN. However, for very high speeds (speed 

> 175 kmph) the ICI impact and exceeds the AWGN. In this case the SNR 

threshold is degraded accordingly, as explained in Inter-Carrier Interference 

(ICI). 

3.2.3.2 Laboratory measurements 

ATSC 3.0 Configuration  

As laboratory measurements can be very time consuming, the number of 

configurations to be tested is highly reduced considering theoretical results. As a 

first approach, the delivery of about 3 Mbps in the mobile/indoor service is 

considered enough for two SD or one HD services when HEVC is used [101] 

[102]. The stationary service, on the contrary, can range from 8 Mbps to 25 

Mbps, depending on the expected content quality. 

As it has been already described in [147] in a low-profile complexity LDM 

receiver, both layers are added at the BICM output, and thus they share some 

configuration parameters for the OFDM physical waveform: TI, GI, and FFT 

size. For this study a 16k FFT has been selected with 1/16 GI, which is a good 

compromise between the Doppler resilience tolerance for the UL and the 

overhead due to the GI for the LL. The chosen PP is PP6,2, where Dx=6 and 

Dy=2, which offers a density strong enough to perform an accurate channel 

estimation under the worst multipath scenarios.  

The other important configuration parameters can be found in Table 47 

and have been chosen considering the theoretical studies. Three different UL 

configurations have been considered. The three of them are suitable for mobile 

and indoor reception ad they are very robust and have enough capacity for the 
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delivery of HD services [101] [102]. 

Table 47. ATSC 3.0 LDM Signal Configuration for mobile and indoor reception 

Main Changing Parameters 

TI Depth Injection Level 

Upper Layer 

M-CR 
Capacity 
(Mbps) 

1024 

-4 dB, -5 dB 

QPSK 3/15 2.0 

QPSK 4/15 2.6 

512 
QPSK 5/15 3.3 

  

Main Common Parameters 

Bandwidth 
(MHz) 

FFT / IG / PP 
Frame 
Length 

Lower Layer 

M-CR 
Capacity 
(Mbps) 

6 16k|1/16| PP6,2 200 ms 
64 NU-QAM 

7/15 
13.7 

The capacity shown in Table 47 is calculated based on (7).In this case, for 

a 6 MHz channel, an occupied bandwidth of 5.75 MHz is considered. In 

addition, two injection levels, IL={-4,-5} dB, have been selected. These values 

offer a very good balance between enhancing the mobile layer performance and 

maintaining a reasonable coverage for fixed services. Finally, the two extreme TI 

depths defined in ATSC 3.0 CTI mode (1024 and 512) have been selected to 

study the TI implication in a real system. 

ATSC 3.0 SDR Receiver 

Taking as a reference the SW platform defined in ATSC 3.0 Emulation 

Platform, a functional C/C++ based custom professional SDR receiver has 

been built by TSR research group in the UPV/EHU. This SW is a modified 

version of the previous DVB-T2 receiver. The main differences appear on the 

SW part as the HW components are the same than with DVB-T2 standard. 

This receiver also has two operation modes: pseudo-real time and offline. 

Besides, the same quality and graphic information is provided. 



Chapter IV: ATSC 3.0 Studies 

 

 

 207 
 

Set-up 

The implemented laboratory test bench is depicted in Figure 67. It is 

based in the two phases analysis methodology used in previous studies [105].  

 

Figure 67. Laboratory measurements set-up 

Firstly, the ATSC 3.0 signal must be generated, passed through the desired 

channel model and finally stored in a hard disk. The first half of this process is 

SW based, where the signals are generated, as IQ files, in a PC running the 

ATSC 3.0 baseline physical waveform SW implementation defined in 

Transmission Chain. The HW part consists of a general purpose Vector Signal 

Generator (VSG) with the capability of modulating the IQ files into the selected 

RF channel, which is defined in 590 MHz. The transmitter is connected to a RF 

channel emulator where the desired channel models are implemented. Finally, its 

output is directly recorded in a hard disk by a Vector Signal Analyzer (VSA), 

which digitalizes the signal fed into its RF input.  

Mobility and indoor reception with handheld devices cases should be 

tested, as they are very important business models [44]. Even if in the literature 

there is a wide range of channel models, in this approach the analysis is going to 



Chapter IV: ATSC 3.0 Studies 

 

 

208  

 

be restricted to the TU6 [196] for mobility and PI and PO [76] for handheld 

reception in indoor and outdoor scenarios, respectively, as they are the most 

representative channel models to validate the use cases chosen. Besides, they are 

the most used channels in broadcasting and therefore, a direct comparison to a 

lot of previously presented mobile performance results is feasible.  

In the second phase, which is based on SW, all the data stored in the hard 

disk has to be post-processed so as to obtain the system performance. For this 

purpose, increasing values of AWGN power are added by SW to the stored IQ 

file, in steps of 0.2 dB. As the tested channel models are mobile, the noise is 

injected symbol by symbol in the frequency domain, guaranteeing a controlled 

constant relation between the signal and noise powers. Afterwards, all the data is 

processed with the receiver defined in ATSC 3.0 SDR Receiver, in order to 

obtain the SNR thresholds. The implemented channel estimation and carrier 

recovery methods can be found in [104]. In these laboratory tests, it is 

considered that the reception is correct when the FBER is null [148] during a 

measured time established in 10 s.  

3.2.3.3 Performance Results 

This section describes the performance evaluation of the ATSC 3.0 LDM 

signal configurations defined for mobile and indoor reception. Only UL 

performance results are presented as LL influence over the UL is desired to be 

checked. Besides, the LL targets fixed reception and it does not contribute to 

mobile and indoor reception. The results have been divided in two different 

subsections: mobile and indoor reception performance. 

Mobile Reception 

In this subsection, the LDM configurations performance for mobile 

scenarios by means of laboratory measurements is analyzed. Figure 68 and 

Figure 69 show the SNR threshold for the UL configurations defined in Table 

47 considering a 1024 TI depth (200 ms length) and 512 TI depth (50 ms), 

respectively, for different receiver speeds. 

The results show the same tendency than the simulations the theoretical 

studies with exception of low speeds where the obtained SNR thresholds are 

much lower than expected. This may be because of the possible big differences 

between different realizations of the TU6 at 3 kmph in the simulations and in 

the laboratory measurements. 
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Figure 68. Performance evaluation of ATSC 3.0 for different code-rates and injection 
levels in mobile scenarios for 1024 TI depth. 
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Figure 69. Performance evaluation of ATSC 3.0 for different code-rates and injection 
levels in mobile scenarios for 512 TI depth. 

On the one hand, QPSK 3/15, which is the most robust tested 

configuration, shows an almost flat performance for speeds between 30 and 175 

kmph with differences lower than 0.5 dB. However, a decrement in the 

robustness means an increment in the performance slope with differences of up 

to 1.5 dB for QPSK 4/15 and 2.0 dB for QPSK 5/15. This is because the SNR 

thresholds in these cases are closer to the ICI power due to the receiver 

movement and, thus, the degradation increases. Higher speeds (speed > 175 

kmph) show always additional degradation as the receiver uses well-known 

channel estimation, interpolation and filtering algorithms that are not optimized 

for very high speeds and the performance could be improved for these 

challenging scenarios. 
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On the other hand, the change in the injection level between -5 and -4 dB 

means degradation in the performance of between 0 and 2.4 dB, with a median 

degradation value of 0.6 dB, which agrees with the simulation results in the 

theoretical studies. 

Finally, the SNR threshold for different TI depths also follows the 

tendency from the simulations from the theoretical analysis for high speed 

reception (speed > 20 kmph) with a median gain value of 0.6 dB between the 

biggest (1024) and the smallest (512) TI depth values. In case of low speed 

reception (speed < 20 kmph), the gain due to the use of longer TI is not as high 

as expected based on the simulation results. It takes values up to 2 dB, but the 

median value is 0.3 dB. This is because there are not slow fadings in the majority 

of the tested realizations of the TU6 at low speed and, consequently, the gain 

due to the longer TI cannot be correctly appreciated. 

Moreover, the performance under the PO channel model has been also 

tested. Table 48 shows the SNR threshold for the UL considering different IL 

and TI depths. On the one hand, the gain due to the increment in the IL from -

4 to -5 dB ranges between 0 and 1.4 dB, with a median degradation value of 0.5 

dB, which agrees with the simulation results in the theoretical analysis. On the 

other hand, the gain due to longer TI length is lower than 0.6 dB due to the 

absence of slow fadings in the tested realizations of the PO channel model. 

Table 48. ATSC 3.0 Pedestrian Outdoor Performance SNR (dB). 

Pedestrian Outdoor 

UL Configurations 

Time Interleaving Depth & Injection Level 

1024 512 

-4 dB -5 dB -4 dB -5 dB 

QPSK 3/15 0.0. 0.0 0.6 0.0 

QPSK 4/15 2.0 1.6 2.0 2.0 

QSPK 5/15 4.6 3.2 4.6 3.4 

All in all, considering the best results in terms of TI depth (1024) and IL (-

5 dB), the UL SNR thresholds for speeds lower than 175 kmph are always lower 

than 2, 4.2 and 6.4 dB for code-rate 3/15, 4/15 and 5/15, respectively, which 

makes ATSC 3.0 a very promising standard for satisfying the handheld 

generation customers. 
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Indoor Reception 

In this subsection, the LDM configurations performance are analyzed for 

indoor scenarios, which are supposed to be considered as one of the most 

promising business model for the broadcasting industry. For this purpose, the 

TU6 at 3 kmph and the PI channel models have been tested. The minimum 

SNR reception thresholds for indoor scenarios are gathered in Table 49. 

Table 49. ATSC 3.0 Indoor Performance SNR (dB). 

Pedestrian Indoor 

UL Configurations 

Time Interleaving Depth & Injection Level 

1024 512 

-4 dB -5 dB -4 dB -5 dB 

QPSK 3/15 0.6 -0.4 0.6 0.0 

QPSK 4/15 2.2 2.0 3.0 2.2 

QSPK 5/15 4.6 4.0 5.6 4.0 

Typical Urban 6 Paths 3 kmph 

UL Configurations 

Time Interleaving Depth & Injection Level (dB) 

1024 512 

-4 dB -5 dB -4 dB -5 dB 

QPSK 3/15 0.4 0.2 0.8 0.2 

QPSK 4/15 3.0 2.0 3.2 2.0 

QSPK 5/15 4.8 4.2 5.0 4.0 

The obtained results follow the same tendency than in the mobile study. 

On the one hand, he gain due to the increment in the IL ranges between 0.2 and 

1.6 dB, with a median degradation value of 0.7 dB, while the gain due to longer 

TI length is lower than 1 dB. On the other hand, the TU6 at 3 kmph and PI 

channel models show similar performance results, with differences always lower 

than 0.8 dB, being in general the TU6 a slightly more SNR demanding channel 

model. 

All in all, considering the best results in terms of TI depth (1024) and IL  

(-5 dB), the UL SNR thresholds indoor reception is always lower than 0.2, 2 and 

4.2 dB for code-rate 3/15, 4/15 and 5/15, respectively.  
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3.2.3.4 Conclusions of this study 

Some of the ATSC 3.0 configuration parameters have been studied in 

order to determine their optimal configuration for the simultaneous HD mobile 

and UHD fixed services delivery. It is important to find a trade-off between 

capacity and robustness when selecting the injection level in an ATSC 3.0 LDM 

signal. This is because the lower the injection level, the more power is shared 

with the lower layer. And the upper layer signal power is lower and, 

consequently, the SNRUL threshold increases. Besides, as the Upper layer signal 

will be usually dedicated to mobile and indoor portable services, it is important 

to take into account the effect of ICI on the receiver. The ICI acts as an 

additional noise that has to be taken into account, especially at high speeds. 

Moreover, an increment on the time interleaving length means a decrement on 

the SNR threshold for upper layer signals, especially for pedestrian speeds. This 

performance improvement is higher than in single layer systems as the upper 

layer robustness is degraded due to the presence of the lower layer. Finally, the 

effect of the upper layer code-rate is noticeable, especially for pedestrian speeds. 

Once the LDM parameters theoretical influence has been studied in detail, 

practical laboratory measurements have been presented to prove the feasibility 

of the system testing the ATSC 3.0 performance with real equipment. The 

results are very close to the expected values, and therefore, they prove the 

ATSC 3.0 suitability to address the requirements of the new generation services 

offering simultaneous UHD services to fixed receivers (in the LL) and HD 

indoor or mobile services (in the UL) for SNR thresholds of up to 4.6 or 5.6 dB, 

in pedestrian outdoor and indoor scenarios, respectively. In addition, the SNR 

requirements for mobile reception increase up to 10 dB for very high speeds 

(200 kmph). 
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3.3 Improvement Study 

One study has been carried out so as to improve the performance in 

ATSC 3.0 when LDM is considered.  

 Study K: Improving LDPC Decoding Performance for ATSC 3.0 

LDM profiles (under revision) 

This study analyzes the gain in terms of performance of LDM over TDM 

when different LLR PDFs are considered: traditional, LDM optimized (from 

Study F) and new LDM semi-optimal approaches with lower implementation 

requirements. 
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3.3.1 Study K: Improving LDPC Decoding Performance 

for ATSC 3.0 LDM profiles 

The main objective of this study is to analyze the gain in terms of 

performance of LDM over TDM when different LLR PDFs are considered 

(traditional, LDM optimized and LDM semi-optimal approaches). By this way, 

the best trade-off between robustness or capacity improvement and practical 

implementation is presented. Additionally, different channel conditions are 

analyzed by means of computer simulations under several channel model 

conditions. 

3.3.1.1 Theoretical Study 

Service Types and Bitrates requirements  

In this study, UHD and HD quality services are considered. As it has been 

explained in “More Video Quality” section, the most recommended format for 

HD services is 1080p with 50/60 Hz [156]. In case of UHD quality, the 

preferred format is 2160p. In addition, an enhanced quality UHD can also be 

provided by means of improvements gathered in the BT.2020 recommendation 

[31]: HFR of up to 120 Hz, WCG covering 75% of CIE 1931 color space and 

HDR with more natural colors closer to those in real life. All these enhanced 

features can be applied in return to an increment in the necessary bitrate of 

about 8 Mbps [205] [206] [207] [208]. 

As ATSC 3.0 uses HEVC [35], in this study SHVC video coding algorithm 

is considered to reduce the necessary bitrates for the UHD services due to the 

fact that SHVC [36] reduces the necessary bitrate when the same information 

has to be transmitted in two different qualities, as often happens with 

simultaneous transmissions in TDM and LDM.  

As it has been analyzed in Study E, the required output bitrate is still 

under discussion depending on the perceptual quality. However, based on more 

recent literature [208], Table 50 gathers some suggestions of the necessary 

bitrates for HD and UHD services with SHVC that slightly updates those in the 

Study E. The requirements for UHD stay almost unchanged whereas the HD 

quality necessary bitrate is reduced in about 0.5 Mbps in comparison to previous 

studies [156] [100] [101] [102]. Moreover, the specific considered bitrates in this 

study are also presented. 
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Table 50. HD and UHD Necessary Bitrates with HEVC and SHVC (Mbps) 

Format 
Suggested Bitrates 

with SHVC 

Considered Bitrates in 

this study 

HD (1080p) 2.0-3.5 (Base Layer) 2.7 

UHD (2160p) 10.0-15.0 (Enhanced Layer) 12.0 

Enhanced UHD 18.0-23.0 (Enhanced Layer) 20.0 

Reception Scenarios and SNR Requirements 

Current broadcasters should provide services in all kind of scenarios, 

including indoor and outdoor locations with static or portable/mobile receivers. 

For this reason, four different scenarios with different robustness requirements 

are considered [158] (the same as in Study E). Table 51 resumes the minimum 

SNR threshold ranges (for correct reception in AWGN channels) for the four 

target scenarios. Besides, the considered SNR threshold value in this study is 

also stated as an intermediate value in the suggested range. These exact values 

are slightly lower than those considered in Study E, so as to consider more 

demanding situations. 

Table 51. SNR Requirements for ATSC 3.0 Reception Scenarios (dB) 

Scenario Required SNR Considered maximum SNR 

Portable Indoor (PI) -6.0-1.5 0.5 
Mobile Outdoor (MO) 1.5-8.0 4.5 

Static Indoor (SI) 8.0-14.0 11.0 
Static Outdoor (SO) 14.0-24.0 20.0 

ATSC 3.0 Configuration Parameters 

The studied ATSC 3.0 configurations are based on the bitrates and SNR 

threshold requirements from Table 50 and Table 51, respectively. All of them 

include the simultaneous delivery of UHDTV to rooftop antennas and HD 

services to mobile, or even indoor handheld devices. 

Between all the configuration parameters in ATSC 3.0, only those which 

really mean a change in maximum offered bitrate and SNR threshold 

(modulation scheme (M), code-rates (CR), time division percentages (%Time) in 

TDM and injection level (IL) in LDM) are considered. The capacity calculation 

of each configuration is based on equation (7), with an occupied bandwidth 

(BW) of 5.7 MHz (6 MHz). A compromise 16k FFT length has been selected 
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for LDM configurations as it is shared between mobile and enhanced layers. In 

TDM, on the contrary, there is no such limit, and thus, 8k has been considered 

for the mobile service and 32k for the stationary service. A guard interval (GI) 

of 148.15 µs has been considered to avoid ISI from transmitters located up to 

45 km away. Regarding the pilot patterns, in LDM both services share PP6,2, 

which is the most dense option and means an overhead around 8% (PPover). In 

TDM each service has its own pattern: PP6,2 for the mobile case and PP12,2 for 

the stationary case, with a reduced overhead of around 4%. 

The SNR threshold of each ATSC 3.0 BICM configuration, defined as 

SNR for the single layer system (SNR-SL), is gathered in Study H: ATSC 3.0 

BICM Analysis. These are directly the theoretical SNR threshold values for each 

service in TDM, but these values must be corrected for LDM depending on the 

IL as defined in equations (8) and (9) for the mobile (UL) (SNR-UL) and 

enhanced services (LL) (SNR-LL), respectively.  

After analyzing in terms of capacity and robustness of all the possible 

configurations in ATSC 3.0 to provide simultaneous UHDTV to rooftop 

antennas and HD services to portable and indoor receivers, some of the suitable 

ATSC 3.0 configurations have been defined in Table 52.  

Table 52. Capacity (Mbps) and SNR (dB) Requirements for Measured Configurations 

Configuration Service Capacity SNR 

TDM 
Mobile: QPSK 11/15 40% 2.8 3.5 

Stationary: 256 NU-QAM 12/15 60% 18.8 20.4 

LDM #1 
Mobile & Indoor: QPSK 4/15 IL = -3 2.6 0.2  

Stationary: 64 NU-QAM 10/15 19.6 17.6  

LDM #2 
Mobile & Indoor: QPSK 4/15 IL = -4 2.6 -0.5 

Stationary: 64 NU-QAM 10/15 19.6 18.3 

LDM #3 
Mobile: QPSK 6/15 IL = -4 3.9 2.9  

Stationary: 64 NU-QAM 10/15 19.6 18.3  

As it has been previously demonstrated on the literature [132] [154], LDM 

improves TDM. However, in order to make some comparisons, a TDM 

configuration with the required capacity values for the UHD fixed service and 

HD mobile (but not portable indoor) has been also considered. In the case of 

LDM, three different configurations have been considered with different 

balanced energy sharing between fixed and mobile services. 
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LLR PDF Optimization for LDM 

As it was widely demonstrated in Study F, the new LLR PDF formula 

described in (11) and (12) can be used in the LDPC decoding process in the 

reception of LDM UL signals to improve their performance. By this way, the 

gain of LDM configurations in comparison to TDM can be even higher. 

The new multilayer optimized PDF formula for the UL decoding process 

depends on the specific LL constellation points. In fact, the receiver complexity 

gradually increases with the increment in the LL constellation order, which is 

usually high to deliver high capacity services. What is more, handheld receivers, 

which are very restrictive, especially in terms of size, weight and price [209], are 

supposed to receive only UL signals, which are generally very robust and use 

low order constellations. The need to store all ATSC 3.0 high order 

constellation points in order to adapt to all the possible LL signals means an 

increment in the receiver memory requirements. These two main issues are a 

practical implementation drawback in mobile receivers. For this reason, semi-

optimal UL LLR PDF formulas will be tested in this study considering lower 

order LL constellation alternatives with independence of the specific LL 

constellation order as shown in Table 53, which resumes the modulation and 

code-rate considered for the semi-optimal PDF formulas in each combination.  

Table 53. Combination and Associated Constellation for Semi-optimal LLR PDF 

Comb. MOD-COD. Comb. MOD-COD. 

1 Classical PDF 14 16 NU-QAM 12/15 
2 Optimized (64 NU-QAM 10/15) 15 16 NU-QAM 13/15 

3 QPSK 16 64 NU-QAM 2/15 

4 16 NU-QAM 2/15 17 64 NU-QAM 3/15 

5 16 NU-QAM 3/15 18 64 NU-QAM 4/15 

6 16 NU-QAM 4/15 19 64 NU-QAM 5/15 

7 16 NU-QAM 5/15 20 64 NU-QAM 6/15 

8 16 NU-QAM 6/15 21 64 NU-QAM 7/15 

9 16 NU-QAM 7/15 22 64 NU-QAM 8/15 

10 16 NU-QAM 8/15 23 64 NU-QAM 9/15 

11 16 NU-QAM 9/15 24 64 NU-QAM 11/15 

12 16 NU-QAM 10/15 25 64 NU-QAM 12/15 

13 16 NU-QAM 11/15 26 64 NU-QAM 13/15 

By this way, the possible degradation because of the consideration of 
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lower order LL constellations can be measured so as to determine a good trade-

off between capacity and implementation requirements. 

3.3.1.2 Computer Simulations 

Simulation Platform 

The complete ATSC 3.0 emulation platform implemented in this thesis 

and described in “ATSC 3.0 Emulation Platform” section is used in order to 

evaluate the system performance under different scenarios. This tool allows any 

modification to the standard, enabling the possibility of carrying out 

performance tests of different ATSC 3.0 parameters implementing the 

traditional [172], the LDM optimized (Study F) and the suggested semi-

optimized LDM LLR PDF (considering lower LL constellation orders) for the 

UL decoding process are implemented. 

Simulation Procedure 

These simulations are conducted with the purpose of evaluating the 

performance of the delivery of UHD services to rooftop antennas and HD 

services in indoor and mobile scenarios. For this purpose, the SNR threshold 

for correct reception is measured for several channel models to emulate all kind 

of reception conditions.  

In addition to the traditionally considered stationary channel models 

(AWGN, F1 and P1) [59], the UHD service is tested in Ray6, Brazil-E & C, 

CRC-41, 2 & 3, while the robust HD service is also analyzed under indoor (PI, 

PA, PB) and mobile (PO, VA, VB, TU6) channel conditions. All the selected 

channel models are defined in the ATSC Proposed Recommended Practice 

document [195]. 

The reception is considered error free when the BER value at the outer 

coder output is lower than 10-6 [59] during 500 ms for stationary channels and 

during 2 s for portable and mobile channel conditions. In order to reach this 

situation, increasing AWGN in steps of 0.1 dB is added at the receiver input 

until the first errors appear in the receiver (BER higher than 10-6). The SNR 

threshold is obtained as the relation between the mean signal power level and 

the mean external AWGN power level. 

This procedure is repeated for the different ATSC 3.0 considered 

configurations and for all the considered channel models. Furthermore, 
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different combinations are performed considering different LLR PDF formulas 

are in LDM cases to measure the performance differences. 

3.3.1.3 Performance Results 

LDM Improvement over TDM with optimized LLR PDF 

On the one hand, the SNR threshold for the mobile & indoor service with 

TDM and LDM is gathered in Table 54 for different channel models. In LDM 

configurations, the optimized UL LLR PDF formula (Op.) (Study F) as well as 

the classical formula (Cl.) [172] are considered. In TDM, only the Cl. formula is 

considered. The LL performance is not included as the considered LLR is 

always the traditional one. 

Table 54. SNR (dB) Thresholds for the mobile and indoor service in TDM and LDM 
with Classical and Optimized PDFs 

Channel 
TDM LDM#1 LDM#2 LDM#3 

Cl. Cl. Op. Cl. Op. Cl. Op. 

AWGN 3.9 0.4 0.4 -0.2 -0.2 3.0 3.0 
DVBT-F 4.4 0.8 0.7 0.2 0.2 3.5 3.4 

DVBT-P 7.4 2.4 2.1 1.4 1.3 6.1 5.6 

RAY6 6.4 1.9 1.7 1.1 1.0 5.3 4.9 

BRAZIL-E 7.8 2.7 2.4 1.7 1.6 6.7 5.8 

BRAZIL-C 6.7 1.9 1.8 1.1 1.1 5.5 5.0 

CRC-1 5.3 1.3 1.2 0.5 0.5 4.4 4.1 

CRC-2 6.5 1.9 1.8 1.0 1.0 5.4 4.9 

CRC-3 6.6 1.9 1.7 1.0 1.0 5.4 4.9 

PA 9.1 10.4 8.3 8.0 7.4 10.2 9.1 

PB 10.4 9.4 8.0 9.2 7.8 11.9 10.5 

PI 8.3 5.5 4.8 4.0 3.6 7.5 6.6 

PO 8.4 5.1 4.4 2.6 2.4 7.5 6.0 

VA 8.9 5.1 4.5 3.1 2.9 7.8 6.7 

VB 8.6 5.0 4.3 3.0 3.0 7.5 6.7 

TU6 (129 Hz) 8.8 4.9 4.4 3.2 3.0 7.0 6.0 

As it can be seen from Table 54, the three LDM measured configurations 

are always more robust than the TDM for the mobile and indoor service 

delivery, even with the classical PDF approach. The less robust LDM 

configuration (LDM #3) is between 0.9 and 1.3 dB better than TDM in 

stationary reception whereas this improvement is up to 1.8 dB in mobile 
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channels. What is more, if the LDM optimized PDF formula is considered, the 

gain in terms of robustness of LDM over TDM is even higher with values up to 

2 dB in stationary reception and 2.6 dB in mobility for LDM #3. There is an 

exception for PA and PB channel models as LDM show worse performance. 

This can be due to the huge differences between different realizations of these 

channels. 

In general, the improvement due to the use of the LDM optimized PDF 

formula shows a similar tendency than in Study F, with higher gains for the less 

robust configurations (LDM #1 with lower IL and, especially LDM #3 with less 

robust code-rates). Under stationary channel models, the improvement ranges 

between 0-0.1 dB (LDM #2) up to 0.9 dB (LDM #3). The gain under indoor 

and mobile conditions is much higher with values up to 1.5 dB (or even higher 

for the PA/PB channel models). 

On the other hand, the SNR threshold for the stationary service is 

gathered in Table 55 for TDM and LDM configurations for different channel 

models. In this case, LDM also improves TDM performance for all the tested 

channel models. 

Table 55. SNR (dB) Thresholds for the stationary service in TDM and LDM  

Channel TDM LDM#1 LDM#2 LDM#3 

AWGN 20.7 18.1 19.0 18.9 

DVBT-F 21.3 18.5 19.4 19.4 

DVBT-P 24.7 21.9 22.7 22.9 

RAY6 23.5 20.8 21.7 21.7 

BRAZIL-E 24.3 21.8 22.4 22.6 

BRAZIL-C 23.7 20.9 22.0 21.8 

CRC-1 22.3 19.5 20.6 20.7 

CRC-2 23.8 20.9 22.0 22.0 

CRC-3 23.8 21.0 21.9 21.9 

 

Optimized vs Semi-optimized UL LDM LLR PDF formulas  

Figure 70 shows the SNR thresholds for LDM #3 configuration for 

different stationary channel models considering different decoding approaches. 

Under stationary channel model conditions, combinations 3, 4 and 16 

(and sometimes 13, 14 and 15) show a similar performance to the classical 

approach (combination 1) whereas the rest combinations show a similar 



Chapter IV: ATSC 3.0 Studies 

 

 

222  

 

performance than the optimized PDF (combination 2). However, the semi-

optimized LLR PDF never means degradation in comparison to the classical 

approach. In addition, the most of the modulation and code-rate combinations 

have a similar performance to the optimized approach. 

 

Figure 70. SNR Threshold for LDM #3 for different LLR PDF approaches under 
stationary channel model conditions 

The situation follows the same tendency under indoor and mobile channel 

conditions for the three LDM measured configurations, as it can be seen in 

Figure 71 for LDM #3. 

The use of combinations 3, 4 and 16 (and sometimes 13, 14, 15, 24 and 

25) shows slightly worse performance than the rest of the combinations. 

However, in this case, the performance of the worst combinations is much 

better than the classical approach, with degradations of up to 0.4 dB in 

comparison to the optimized approach. 

The small differences in performance for the different combinations can 

be due to the high robustness of the selected UL, which targets indoor and 

mobile reception. In these cases, the threshold situation is reached for high 

noise power levels and, consequently, the influence of the specific LLR PDF is 

lower. 
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Figure 71. SNR Threshold for LDM #3 for different LLR PDF approaches under indoor 
and mobile channel model conditions 

3.3.1.4 Conclusions of this study 

This study includes a comparative analysis between TDM and LDM to 

offer HD indoor/mobile services as well as UHD stationary services. In 

addition, different LDPC decoding PDF have been considered: the classical 

approach, the LDM optimized approach described in Study F and several semi-

optimal approaches in order to reduce the implementation complexity in the 

receiver. 

Some computer simulations under stationary, indoor and mobile channel 

models have been presented showing that LDM is always more robust than 

TDM in at least 0.9 dB. However, if the optimized formula is considered, there 

is an extra gain of up to 0.9 dB in stationary reception and 1.5 dB in mobility. 

The semi-optimal approaches, considering lower LL constellations than 

the existing one, show very promising results. The most of the options show a 

similar performance than when using the optimized approach. There are only a 

few cases with a degradation of up to 0.4 dB in comparison to the optimized 

approach. For this reason, it has been demonstrated that the consideration of a 

different LL than the existing one means mainly the same performance than 

considering the optimized one.  
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4. Summary 

In this chapter, some of the first ATSC 3.0 performance results by means 

of computer simulations have been included so as to complete the performance 

evaluation first phase, needed to evaluate any DTT standard. 

For this purpose a complete ATSC 3.0 emulation platform has been 

completely designed and implemented. This tool is useful because an ATSC 3.0 

transmitter and receiver are totally implemented. By this way, performance 

simulations of any of the ATSC 3.0 configuration parameters can be carried out. 

Study H obtained the performance and spectral efficiency of all the BICM 

existing combinations of modulation and code-rate for AWGN and P1 

reference channel models. These values can be considered as reference in order 

to determine the most suitable configuration depending on the desired bitrate 

and robustness as these are the parameters with the major influence on the 

signal robustness. The spectral efficiency ranges between 0.3 and 10.4 bps/Hz, 

whereas the Eb/N0 ranges between -0.6 and 22.6 dB in AWGN and -0.1 and 

26.2 dB under P1 channel conditions, resulting in a BICM 1 dB closer to the 

Shannon limit than DVB-T2.  

Moreover, the different options of interleaving performance have been 

theoretically measured in fixed, indoor and mobile scenarios, concluding, as 

determined in Study I, that their use does not mean real improvement in static 

reception. Furthermore, the time interleaving has been shown to be the 

interleaver with higher improvements (of up to 3.2 dB) in mobility with 

independence of the receiver speed. The frequency interleaving and the use of 

subslices improve the performance in about 0.4 and 0.6 dB, respectively. 

Additionally, different multiplexing techniques to deliver several services 

have been analyzed. On the one hand, as LDM is a novelty in ATSC 3.0, a deep 

study of this technique has been carried out. First, the influence of some of the 

configuration parameters for LDM has been measured in Study J so as to 

determine the optimal configuration for different scenarios. For this purpose, 

the performance for different injection levels, code-rates and time interleaving 

lengths has been theoretically evaluated as well as the consideration of the ICI 

power as an additional source of interference. Based on these theoretical studies, 

suitable configurations for the simultaneous delivery of HD services in indoor 
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and mobile scenarios, and UHD services in fixed scenarios have been defined. A 

LDM configuration is the most effective one with a very robust upper layer and 

high capacity lower layer. These configurations performance has been also 

tested in the laboratory for mobile and indoor reception and, consequently, with 

emphasis in the upper layer of the LDM signal which targets challenging 

scenarios. These results show the feasibility of using ATSC 3.0 LDM for the 

delivery mobile HD services in pedestrian outdoor and indoor scenarios with 

SNR of up to 4.6 and 5.6 dB, respectively. The SNR requirements for very high 

speed reception increase up to 10 dB. 

On the other hand, Study K has proved that LDM is more efficient than 

TDM for the simultaneous transmission of HD mobile/indoor services and 

UHD stationary services. When the classical approach is considered for the UL 

decoding, LDM gains TDM in at least between 0.9 and 1.3 dB for stationary 

channel models and between 0.8 and 1.8 dB in indoor and mobile scenarios. 

The situation improves for LDM when a multilayer optimized decoding 

algorithm is considered, improving the gain over TDM up to 1.8 dB and 2.6 dB 

under stationary and indoor/mobile channel conditions, respectively. In 

addition, several semi-optimal decoding algorithms have been proposed to 

decrease the complexity and memory requirements of the optimized solution 

while improving the LDM system performance in a similar way than with the 

optimized algorithm. There are only a few cases with a degradation of about 0.4 

dB.  

Taking everything into consideration, the first step of the ATSC 3.0 

performance evaluation process with computer simulations has been widely 

measured completing the existing system parameters performance studies. 

Additionally, some recommendable configurations have been defined and tested 

in the laboratory for new desired scenarios, such as indoor and mobile.  

 



 

 

  



 

 

 

 

 

 

 

 

 

 

CHAPTER V: Contributions 

& Future Work 

This chapter contains a summary of the main contributions of this thesis, as well as a 

brief description of the dissemination of those contributions. In addition, possible future 

research lines in the scope of the contributions of this thesis are suggested. 
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1. Contributions 

The driving force for this research work is the willing to contribute to the 

existing new generation broadcasting standards performance evaluation and 

improving processes. In particular, this thesis is focused on checking the 

feasibility of recent DTT systems to give high quality services in very 

challenging scenarios in a spectrum efficient way. 

More precisely, the main contributions of the research work carried out in 

this thesis can be divided in the same three major chapters the thesis is 

organized: DVB-T2 indoor studies, studies of new techniques for next 

generation DTT systems and ATSC 3.0 studies. 

1.1 DVB-T2 Indoor Studies 

The DVB-T2 performance evaluation process has been completed with 

studies about indoor reception in several laboratory measurements and field 

trials. In addition, the most suitable DVB-T2 configurations for indoor services 

delivery have been suggested obtaining a signal very robust to slow fading 

present in indoor scenarios, whose main parameters are presented in Table 56. 

Table 56. Suggested DVB-T2 configuration parameters for DVB-T2 indoor reception 

Configuration Parameter Suggested Value (Optimal) 

FFT Size Small (8k) 
Pilot Pattern Dense (PP2) 

Time Interleaver Long (250 ms) 
Modulation Low order (QPSK) 
Code-rate Low (1/3, 1/2) 

Furthermore, on the one hand, SNR thresholds have been obtained on 

the laboratory for several DVB-T2 configurations under different channel 

models intended for emulating indoor reception. Each measured channel model 

has each own features, showing differences in the performance of up to 9.2 dB. 

For this reason, it is very difficult to define a reference channel model. On the 

other hand, SNR thresholds have been also obtained on the field determining 

comparatively that the channel model Indoor Office A (IOA), defined by the 

ITU, is the most accurate to emulate real portable indoor reception in the 



Chapter V: Contributions & Future Work  

 

 

230  

 

laboratory, but with 3.3 dB of extra degradation because of the indoor too low 

time variability. 

Moreover, a new detailed methodology for indoor performance study has 

been proposed, as it is shown in Figure 72. It is based on the calculation of time 

and location corrections factors (TCF and LCF, respectively) in order to obtain 

a SNR threshold for the 99% time and 95% locations. 

 

Figure 72. Suggested methodology for the study of DVB-T2 indoor performance. 

As a result of all the indoor reception analyses, it can be concluded that 

DVB-T2 indoor reception of HD services is possible for SNR higher than 

about 8.9 dB and 15.4 dB for fixed and portable reception, respectively. By this 

way, the feasibility of the system to offer HD indoor services has been proved. 

The specific values following the methodology described in Figure 72 are 

gathered in Table 57. 

Table 57. Suggested DVB-T2 SNR threshold, TCRF and LCF (dB) for indoor reception 

 
50% Time / 

50% Location 
TCF LCF 

99% Time / 

95% Location 

Fixed 3.0 3.5 2.4 8.9 

Portable 5.7 8.1 1.6 15.4 

As a result, the DVB-T2 coverage studies conducted in chapter II show 

that indoor reception is possible with current broadcasting networks. In fact, 

HD quality services can be correctly received with lower power levels than the 

existing in current broadcasting networks in Spain. 
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1.2 Studies of new techniques for the next 

generation DTT systems 

New technologies have been applied to the traditional DVB-T2 standard 

so as to check the improvement in terms of robustness and efficiency. On the 

one hand, the suitability of recently suggested QC LDPC codes in order to 

increase the robustness of the DTT signals for new challenging scenarios have 

been tested by means of field trials in indoor locations. The indoor reception 

with these new codes is correct from 2.3 dB and 3 dB for fixed and portable 

reception, respectively. The robustness of the signal increases in about 0.7 dB in 

comparison to DVB-T2 most robust LDPC codes.  

In addition, LDM technique has been proved to be efficient in the HD 

indoor services delivery in the UL or even UHD indoor services in the LL. For 

HD indoor reception, 4.7 dB are needed, whereas for UHD indoor services the 

SNR increases up to 19.5 dB. Anyway, these values show the feasibility of this 

new technology to provide DTT services indoors. 

On the other hand, some new decoding algorithms have been defined and 

proved improving the reception performance, especially for multilayer signals 

and mobile scenarios. 

First, a new LDPC decoding algorithm based on the adaptation of the 

LLR PDF to multilayer signals have been proposed showing performance gains 

of up to 4.5 dB when LDM technology is used in stationary reception. It is 

based on the IL value between the two layers in a LDM system as well as on the 

specific LL constellations as indicated in equations (22) and (23). 

   




















 AWGN

tMLrrMLtMLrrML

N

QQII

AWGN

tMLtMLrMLrMLi e
N

QIQIPDF 2

22

2

1
),/,(




(22) 

 







k
kLLLL

IL

tULtULtMLtML

rLLrLL

IL

rULrULrMLrML

QIQIQI

QIQIQI

k
),(10),(),(

),(10),(),(

20/

20/

. (23) 

Furthermore, different low complexity ICI power estimators have been 

tested in a DVB-T2 receiver so as to determine the most accurate in the 

estimation process of the ICI power present in portable and mobile reception 
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that has to be considered as an additional noise source. The two most accurate 

ICI power estimators, which similarly depend on the Doppler spread and space 

between carriers, are presented in equations (24) and (25). 
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With both ICI power estimators, performance improvements of about 0.5 

dB (for medium receiver speeds) or up to more than 10 dB (for high speeds) 

have been measured. 

1.3 ATSC 3.0 Studies 

The first step of the ATSC 3.0 evaluation process has been performed in 

order to determine the system performance under different situations. By this 

way, the feasibility of this system to offer HD services in challenging scenarios 

in a more efficient way than previous existing standards have been 

demonstrated. 

For this purpose, a complete ATSC 3.0 emulation platform has been 

designed and implemented to have a tool that allows the system performance 

simulation. With this tool, the required SNR for different challenging situations 

have been measured. 

On the one hand, as a result of the studies carried out in Chapter IV with 

the ATSC 3.0 emulation platform developed during the thesis, the main features 

for all the possible combinations of the new NUCs and LDPC codes in the 

ATSC 3.0 BICM are resumed in Table 58. 

Table 58. Measured ATSC 3.0 BICM Main features 

 Minimum Maximum 

Spectral Efficiency (bps/Hz) 0.3 10.4 

Eb/N0 in AWGN (dB) -0.6 22.6 

Eb/N0 in P1 (dB) -0.1 26.2 
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On the other hand, the influence on the performance of all the 

interleavers defined in ATSC 3.0 has been checked for a very robust 

configuration. In fixed reception, all the interleavers influence on the 

performance is almost negligible. In mobility, on the contrary, the situation 

changes showing the performance improvements resumed in Table 59. 

Table 59. Measured ATSC 3.0 interleaving performance gain 

Interleaving Option Performance Gain (dB) 

Frequency Interleaver 0.4 
Convolutional Time Interleaver 1.4 (mobile) / 3.2 (pedestrian) 

Hybrid Time Interleaver 2.0 
Hybrid Time Interleaver + Cell Interleaver 2.2 

Subslicing 0.6 

The interleaver that really improves the system performance in mobility is 

the time interleaver, masking the effect of the resting interleaving options.  

Moreover, the LDM technique has been successfully tested in the ATSC 

3.0 system for the simultaneous transmission of UHD contents to rooftop 

antennas and HD contents in mobile or indoor scenarios. Besides, the IL, 

BICM and time interleaver influence on the performance have been also tested 

with similar results to those obtained in single layer systems. Additionally, LDM 

has been proved to be more efficient than the traditional TDM approach in the 

simultaneous delivery of HD mobile/indoor and UHD stationary services. This 

gain is even higher if the multilayer optimized LLR PDF is considered. In 

addition, several semi-optimal LLR PDF approaches have been also tested 

reducing the receiver complexity and memory requirements and with a very 

similar performance to the optimized approach. The gains of LDM over TDM 

with different decoding algorithms (classical, multilayer optimized and semi-

optimal approaches) are resumed in Table 60.  

Table 60. Measured LDM over TDM gain (dB) in ATSC 3.0 

Decoding Algorithm Stationary Indoor and Mobile 

Classical approach 0.9-1.3 0.8-1.8 
LDM Optimized approach 0.9-1.8 1.7-2.6 

Best Semi-optimal approach 0.9-1.8 1.7-2.6 

Finally, some of the first ATSC 3.0 laboratory measurements have been 
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carried out, adapting a DVB-T2 custom professional SDR receiver to this new 

standard. In this context, the feasibility of ATSC 3.0 for the simultaneous 

transmission of mobile or indoor HD contents and UHD fixed contents by 

means of LDM has been also verified in the laboratory for SNR of up to 4.6 

and 5.6 dB in pedestrian outdoor and indoor scenarios, respectively. The SNR 

requirements for very high speed reception increases up to 10 dB. 
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2. Dissemination 

Equally to the thesis contributions, all the studies carried out during the 

thesis development can be organized in the same three major chapters the thesis 

is organized.  

2.1 DVB-T2 Indoor Studies  

DVB-T2 indoor evaluation studies are related to the studies described in 

Chapter II. They have been being disseminated as follows: 

Title: “DVB-T2 field trials results for portable indoor reception using T2-Lite and 
multiple PLP”. 

Authors: C. Regueiro, G. Berjon-Eriz, I. Perez de Albeniz, I. Eizmendi, G. Prieto and 
M. Velez. 

Publication: IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB), London (England), pp. 1-5.  

Date: June 2013. 

DOI: 10.1109/BMSB.2013.6621781 

Contribution: This paper includes the study and evaluation of the DVB-T2 feasibility to 
offer portable indoor reception by means of a coverage study with a real network testing 
different configuration parameters. This research is described in Study B. 

Title: “Caracterización de la recepción portatil de señales de DVB-T2 en entornos 
indoor” 

Title (in English): “Characterization of DVB-T2 portable reception in indoor 
environments”. 

Authors: C. Regueiro, X. Gomez, M. Velez and U. Gil. 

Publication: XXIX Simposium Nacional de la Unión Científica Internacional de Radio 
(URSI), Valencia (Spain), pp. 1-4. 

Date: September 2014. 

Contribution: This paper includes the study and performance evaluation of the DVB-T2 
portable indoor reception based on laboratory measurements under different channel 
model conditions. This research is described in Study A 
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Title: “Field Trials Based Planning Parameters for DVB-T2 Indoor Reception”. 

Authors: C. Regueiro, U. Gil, M. Velez, I. Eizmendi and P. Angueira. 

Publication: IEEE Trans. on Broadcasting, vol. 61, no. 2, pp. 251-262. 

Date: February 2015. 

DOI: 10.1109/TBC.2015.2400814 

JCR Impact Factor: 2.381. Q1 (12/82) .in Telecommunications. 

Contribution: This paper includes the study and performance evaluation of the DVB-T2 
indoor reception based on laboratory measurements and field trials. Besides, a new 
methodology for indoor performance analysis is also defined. Moreover, the most 
appropriate channel model for indoor reception is also studied. This research is described 
in Study C. 

Title: “Field Trial Results of DVB-T2 Mobile Reception”. 

Authors: I. Eizmendi, C. Regueiro, I. Sobrón, I. Fernandez and M. Velez. 

Publication: IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB), Nara (Japan), pp. 1-4. 

Date: June 2016. 

DOI: 10.1109/BMSB.2016.7522007 

Contribution: This paper includes the study and performance evaluation of the DVB-T2 
mobile reception based on field trials and different channel estimation methods. The 
field trials campaign definition and the analysis methodology considered in this research 
are derived from those considered in Study C.  
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2.2 Studies of new techniques for the next 

generation DTT systems 

The studies related to new techniques for the next generation DTT 

systems have been defined in Chapter III. They have been being disseminated as 

follows: 

Title: “Cloud Transmission System Performance in Portable Indoor Environments”. 

Authors: C. Regueiro, U. Gil, I. Fernández, I. Eizmendi, M. Velez, D. Guerra, I. Peña 
and D. de la Vega. 

Publication: IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB), Beijing (China), pp. 1-5. 

Date: June 2014. 

DOI: 10.1109/BMSB.2014.6873504  

Contribution: This paper includes the study and evaluation of the new QC LDPC codes 
in indoor scenarios by means of coverage studies in the field, checking their 
improvement in terms of robustness in comparison to previous existing LDPC codes. 
This research is described in Study D. 

Title: “Cloud Transmission System Performance for Mobile Urban Scenarios in the 
Field”. 

Authors: U. Gil, C. Regueiro, I. Angulo, I. Eizmendi, M. Velez, D. de la Vega and J-L. 
Ordiales. 

Publication: IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB), Beijing (China), pp. 1-5. 

Date: June 2014. 

DOI: 10.1109/BMSB.2014.6873505 

Contribution: This paper includes the same research than the previous one but in 
mobile scenarios. The field trials campaign definition and the analysis methodology are 
very similar to those described in Study D. 
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Title: “Performance Study of Layered Division Multiplexing Based on SDR Platform”. 

Authors: J. Montalban, I. Angulo, C. Regueiro, Y. Wu, L. Zhang, S-I. Park, J-Y. Lee, H-
M. Kim, M. Velez and P. Angueira. 

Publication: IEEE Trans. on Broadcasting, vol. 61, no. 3, pp. 436-444. 

Date: June 2015. 

DOI: 10.1109/TBC.2015.2432463 

JCR Impact Factor: 2.381. Q1 (12/82) .in Telecommunications. 

Contribution: This paper includes the study and performance evaluation of LDM in 
fixed and mobile scenarios by means of computer simulations and laboratory 
measurements with a SDR LDM receiver. The considered simulation platform and the 
SDR LDM receiver are the same as the considered in Study D and Study E, respectively. 
Some work has been carried out helping in their definition, implementation and 
validation.  

Title: “SHVC and LDM Techniques for HD/UHD TV Indoor Reception”. 

Authors: C. Regueiro, J. Barrueco, J. Montalbán, U. Gil, I. Angulo, I. Eizmendi, P. 
Angueira and M. Velez. 

Publication: IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB), Ghant (Belgium), pp. 1-6. 

Date: June 2015. 

DOI: 10.1109/BMSB.2015.7177224  

Contribution: This paper includes a performance evaluation and an analysis of the LDM 
suitability to efficiently offer HD and UHD indoor services by means of laboratory 
measurements. This research is described in Study E. 

Title: “LDM and TDM Performance Evaluation for Next Generation Broadcasting”. 

Authors: J. Montalban, C. Regueiro, M. Velez, L. Zhang, Y. Wu, W. Li, H-M. Kim, S-I. 
Park and J-Y. Lee. 

Publication: IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB), Ghant (Belgium), pp. 1-6. 

Date: June 2015. 

DOI: 10.1109/BMSB.2015.7360814. 

Contribution: This paper includes a comparative study of LDM and TDM multiplexing 
technique to offer HD mobile and UHD fixed services by means of computer 
simulations. The considered simulation platform is the same considered in Study D. 
Some work has been carried out helping in their definition, implementation and 
validation. 
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Title: “Performance Evaluation of Different Doppler Noise Estimation Methods”. 

Authors: C. Regueiro, J. Barrueco, J. Montalban, I. Sobron, I. Eizmendi and M. Velez. 

Publication: International Symposium on Advances in Wireless and Optical 
Communications (RTUWO), Riga (Latvia), pp. 125-128. 

Date: November 2016. 

DOI: 10.1109/RTUWO.2016.7821869  

Contribution: This paper includes the comparative performance and tolerance to errors 
evaluation of different low complexity ICI power estimator algorithms, as well as the 
definition of a new one. This research is described in Study G. 

Title: “LLR Reliability Improvement for Multilayer Signals”. 

Authors: C. Regueiro, J. Barrueco, J. Montalban, P. Angueira, J.L. Ordiales and M. 
Velez. 

Publication: IEEE Trans. on Broadcasting, vol. 63, no. 1, pp. 275-281. 

Date: March 2017. 

DOI: 10.1109/TBC.2016.2617280 

JCR Impact Factor: 2.381 (2015). Q1 (12/82) .in Telecommunications. 

Contribution: This paper includes the definition and performance improvement 
evaluation of a new decoding algorithm for multilayer signals. This research is described 
in Study F. 

  



Chapter V: Contributions & Future Work  

 

 

240  

 

2.3 ATSC 3.0 Studies 

All the studies related to ATSC 3.0 are defined in Chapter IV. They have 

been being disseminated as follows: 

Title: “LDM Core Services Performance in ATSC 3.0”. 

Authors: C. Regueiro, J. Montalban, J. Barrueco, M. Velez, P. Angueira, Y. Wu, L. 
Zhang, S-I. Park, J-Y. Lee and H-M. Kim.  

Publication: IEEE Trans. on Broadcasting, vol. 62, no. 1, pp. 244-252. 

Date: January 2016. 

DOI: 10.1109/TBC.2015.2505411 

JCR Impact Factor: 2.381 (2015). Q1 (12/82) .in Telecommunications. 

Contribution: This paper includes a evaluation of different ATSC 3.0 configuration 
parameters related to LDM technique. In addition, a performance evaluation based on 
laboratory measurements have been carried out for fixed, indoor and mobile scenarios. 
This research is described in Study J. 

Title: “ATSC 3.0 Interleavers Influence in Reception Performance”. 

Authors: C. Regueiro, J. Barrueco, J. Montalban, I. Eizmendi and M. Velez. 

Publication: IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB), Nara (Japan), pp.1-4. 

Date: June 2016. 

DOI: 10.1109/BMSB.2016.7521940 

Contribution: This paper includes a performance evaluation of all the interleaving 
options defined in ATSC 3.0 by means of computer simulations. This research is 
described in Study I. 

Title: “Improving LDPC Decoding Performance for ATSC 3.0 LDM profiles”. 

Authors: C. Regueiro, J. Barrueco, J. Montalban, I. Eizmendi and M. Velez. 

Publication: IEEE International Symposium on Broadband Multimedia Systems and 
Broadcasting (BMSB), Cagliari (Sardinia), pp. 1-5. 

Date: June 2017 (ACCEPTED). 

Contribution: This paper includes a performance comparison of TDM and LDM to 
offer HD mobile and UHD fixed services. Additionally, the performance with different 
decoding algorithms has been considered. This research is described in Study K. 
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3. Future Work 

Taking into account that this thesis describes the research activities carried 

out through a temporal evolution of DTT systems from DVB-T2 to ATSC 3.0, 

the following step should be directed to study the situation from ATSC 3.0 to 

the near future. In particular, DVB has recently started to research about new 

broadcasting techniques that could be considered in the future of broadcasting 

systems. In addition, there are still some pending research topics of the new 

techniques for the next generation DTT systems studied in the thesis.  

More precisely, this research work could be continued in three different 

directions. 

3.1 Additional Studies of new techniques for 

next generation DTT systems 

In this context, some of the studies about new techniques for next 

generation DTT systems can be continued in the following way: 

 Study the performance improvement in hardware of the new decoding 

algorithm optimized for different multilayer signals by means of laboratory 

measurements. 

 Study the performance improvement in hardware of considering different 

ICI power estimator methods in the receiver by means of laboratory 

measurements. 

 Study the performance improvement of combining the new multilayer and 

ICI power estimator algorithms in the receiver by means of computer 

simulations and laboratory measurements. 

In addition, some research can be focused on the WiB technique, which 

makes use of some of the techniques studied in the thesis, in the following way: 

 Study and performance evaluation of the multilayer signal generated in a 

WiB scenario with 1-frequency reuse. 

 Study the application of the new multilayer optimized decoding algorithm 
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to a multilayer WiB environment. 

 Carry out WiB one frequency reuse coverage studies in different reference 

cities so as to help the broadcasters in the network planning. 

3.2 Additional ATSC 3.0 Performance 

Studies 

In this context, as the ATSC 3.0 is still being widely evaluated, more 

research work is needed in order to complete the system performance 

evaluation process. More specifically: 

 Study the influence on the performance of ATSC 3.0 advanced features 

(time aligned mode, segmentation options, multiple subframes, MISO, 

MIMO, PAPR, channel bonding) by means of computer simulations. 

 Carry out field trials of ATSC 3.0 under different environments conditions 

so as to determine the system performance in real scenarios. 

 Carry out ATSC 3.0 coverage studies to provide different kind of services 

in different reference cities so as to help the broadcasters in the network 

planning. 
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2. Glossary 

1D One Dimensional 
2D Two Dimensional 
ALP ATSC Link layer Protocol 
ASI Asynchronous Serial Interface 
ATSC Advanced Television System Committee 
ARIB Association of Radio Industries and Business 
AWGN Additive White Gaussian Noise 
B21C Broadcast for 21st Century 
BB Baseband 
BBC British Broadcasting Corporation 
BCH Bose, Ray-Chaudhuri and Hocquenghem 
BER Bit Error Rate 
BICM Bit-Interleaved Coded Modulation 
BL Base Layer 
CDF Cumulative Distribution Function 
CI Cell Interleaver 
CIE Comission Internationale de l´Eclairage 
CL Core Layer 
COST European COoperation in the field of Scientific and Technical 

Research 
CR Code-rate 
CRC Communications Research Centre 
CRP Correct Reception Percentage 
CSP Common Simulation Platform 
CTI Convolutional Time Interleaving 
DTMB Digital Terrestrial Multimedia Broadcasting 
DTT Digital Terrestrial Television 
DVB Digital Video Broadcasting 
EBU European Broadcasting Union 
EC European Commission 
EL Enhanced Layer 
ENGINES Enabling Next GeneratIon NEtworks for broadcast Services 
ERP Effective Radiated Power 
ETSI European Telecommunications Standards Institute 
F1 Ricean Channel Model 
FBER FEC Blocks Error Rate 

https://www.ic.gc.ca/eic/site/069.nsf/eng/home
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FD Frequency Shift 
FDM Frequency Division Multiplexing 
FEF Future Extension Frame 
FER Frame Error Rate 
FFT Fast Fourier Transform 
FI Frequency Interleaving 
FURIA Futura Red Integrada Audiovisual 
GBD Greater Bit Depth 
GI Guard Interval 
GPS Global Positioning System 
HD High Definition 
HDMI High-Definition Multimedia Interface 
HDR Higher Dynamic Range 
HEVC High Efficiency Video Coding 
HFR Higher Frame Rate 
HTI Hybrid Time Interleaving 
HW Hardware 
IBC International Broadcasting Convention 
ICI Inter-Carrier Interference 
IF Intermediate Frequency 
IL Injection Level 
IOA Indoor Office A 
IOB Indoor Office B 
IOPA Indoor Outdoor and Pedestrian A 
IOPB Indoor Outdoor and Pedestrian B 
IP Internet Protocol 
IQ In-phase Quadrature  
ISDB Integrated Services Digital Broadcasting 
ISI Inter Symbol Interference 
ITU International Telecommunications Union 
JCR Journal Citation Report 
L1 Layer 1 
LCF Location Correction Factor 
LDM Layered Division Multiplexing 
LDPC Low Density Parity Check 
LFSR Linear Feedback Shift Register 
LL Lower Layer 
LLR Log-likelihood ratio 
LOS Line-of-sight 
MER Modulation Error Rate 
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ML Multilayer 
MO Mobile Outdoor 
MPEG Moving Picture Experts Group 
MR Motorway Rural 
NAB National Association of Broadcasters 
NG-
RADIATE 

Nueva Generación de sistemas de Radiodifusión DigitAl 
Terrestre 

NUC Non-Uniform Constellations 
OFDM Orthogonal Frequency Division Multiplexing 
P1 Rayleigh Channel Model 
PAPR Peak-to-Average Power Ratio 
PDF Probability Density Function 
PI Pedestrian Indoor 
PLP Physical Layer Pipe 
PO Pedestrian Outdoor 
PP Pilot Pattern 
PRBS PseudoRandom Binary Sequence 
QAM Quadrature Amplitude Modulation 
QC Quasi-Cyclic 
QEF Quasi Error Free 
QPSK Quadrature Phase-Shift Keying 
RF Radiofrequency 
RS Reed Solomon 
RTP Real-time Transport Protocol 
RX Receiver 
SD Standard Definition 
SDR Software Defined Radio//Standard Dynamic Range 
SFN Single Frequency Network 
SHVC Scalable High Efficiency Video Coding 
SI Static Indoor 
SL Single Layer 
SMA SubMiniature version A 
SNR Signal to Noise Ratio 
SO Static Outdoor 
SSD Signal Space Diversity 
STB Set-Top Box 
SW Software 
TCF Time Correction Factor 
TCP Transmission Control Protocol  
TDM Time Division Multiplexing 
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TI Time Interleaving 
TS Transport Stream 
TU6 Typical Urban 6 paths 
TV Television 
TX Transmitter 
Txn Transmission 
UC Uniform Constellation 
UDP User Datagram Protocol 
UHD Ultra High Definition 
UHF Ultra High Frequency  
UK United Kingdom 
UL Upper Layer 
UPV/EHU University of the Basque Country 
USA The United States of America 
USRP Universal Software Radio Peripherical 
VA Vehicular A 
VB Vehicular B 
VPN Virtual Private Network 
VSA Vector Signal Analyzer 
VSG Vector Signal Generator 
VU Vehicular Urban 
V&V Verification and Validation 
WCG Wider Color Gamut 
WiB WideBand reuse-1 
WING-TV Services to wireless, integrated, nomadic, GPRS-UMTS & TV 
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