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Abstract 

Taking advantage of the fact that most of the speech processing techniques neglect the phase information, we seek to 

detect phase perturbations in order to prevent synthetic impostors attacking Speaker Verification systems. Two Synthetic 

Speech Detection (SSD) systems that use spectral phase related information are reviewed and evaluated in this work: one 

based on the Modified Group Delay (MGD), and the other based on the Relative Phase Shift, (RPS). A classical module-

based MFCC system is also used as baseline. Different training strategies are proposed and evaluated using both real 

spoofing samples and copy-synthesized signals from the natural ones, aiming to alleviate the issue of getting real data to 

train the systems. The recently published ASVSpoof2015 database is used for training and evaluation. Performance with 

completely unrelated data is also checked using synthetic speech from the Blizzard Challenge as evaluation material. The 

results prove that phase information can be successfully used for the SSD task even with unknown attacks. 
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1. Introduction 

In speech processing, in speech synthesis and analysis areas alike, phase information has been traditionally 

discarded for most of the conventional applications. The spectral module information is highly correlated with 

the perceptual features of the speech and there are well established techniques to process them. Phase 

information has subtler perceptual effects  (Alsteris and Paliwal, 2007) (Saratxaga et al., 2012) and tricky 

features like wrapping make it more difficult to model and process. 

This unawareness for phase information in most speech processing techniques can indeed be exploited to 

detect such a processing on speech, tracing the unintended perturbations of the natural phase patterns left 

behind by this processing. One particular case where detecting natural speech manipulations can be critical is 

the speaker verification field. 

The first speaker verification (SV) systems tried to resolve the problem of detecting if a voice was certainly 

from a claimant speaker and not from other (Rosenberg, 1976). The improvement of the SV systems allowed a 

high success rate solving the problem of naive speaker verification, but the parallel advance in speech 

manipulation techniques has posed a new menace to these systems: impostors forging speech signals that 

imitate a particular speaker’s voice. This threat was first pointed by (Pellom and Hansen, 1999) and (Masuko 

et al., 2000), and has received more and more attention in literature as new voice adaptation and 

transformation techniques have made more feasible to mimic a speaker’s voice with less and less material 

from the original speaker. A detailed survey is published in (Wu et al., 2015). 

Nowadays two are the main speech processing techniques that allow the creation of synthetic speech 

spoofing signals: First, the statistical speech synthesizers (Yoshimura et al., 1999) (Tokuda et al., 2002) using 

voices adapted to a particular speaker (Yamagishi et al., 2009) even with minimum quality material 

(Yamagishi et al., 2010). Second, the voice conversion (VC) techniques (Jin et al., 2008), (Kinnunen et al., 

2012). Both techniques can be used to generate spoofing signals that can successfully deceive state-of-the-art 

SV systems with false acceptance rates (FAR) around 80% for synthetic speech and 5% for VC.  

A number of countermeasures have been proposed to these attacks. In (Satoh et al., 2001), a 

countermeasure based on the average inter-frame difference was proposed to discriminate between natural and 

synthetic speech from an HMM-based speech synthesis system. Another similar countermeasure which also 

use an average pair-wise distance between consecutive frames was proposed to detect voice-converted speech 

(Alegre et al., 2013a). Rather than capturing the inter-frame distortions, in (Wu et al., 2013) and (Alegre et al., 

2013b), modulation-based features and local binary pattern-based features were proposed to utilize long-term 

spectro-temporal information for synthetic speech detection. In (Sizov et al., 2015), a countermeasure which 

uses  the same front-end as ASV was proposed to discriminate natural and voice-converted speech. 

Above countermeasures which derive features from magnitude spectra work well for the specific attacks. 

Phase-based countermeasures proposed by the authors of this work have been used for both synthetic and 

voice-converted speech detection. In (Wu et al., 2012) synthetic speech detectors (SSD) based on cosine 

normalized phase and modified-group delay (MGD) (Yegnanarayana and Murthy, 1992) are evaluated with 

converted spoofing signals. In (Wu et al., 2013), modulation spectrum derived from the modified group delay 

spectrum was used for synthetic speech detection. These works have confirmed the effectiveness of phase 

information in detecting synthetic speech with matched vocoder. 

Relative Phase Shift (RPS) representation (Saratxaga et al., 2009) for the harmonic phase has also be used 

to build SSD systems aimed to detect spoofing signals created with adapted synthetic voices (De Leon et al., 

2011) (De Leon et al., 2012) with good results. The initial works were focused on evaluating the actual 

capability of the RPSs to detect the phase modifications due to the synthetic generation of the spoofing 

signals. Consequently synthesized impostors were used to model the spoofing attacks. This approach has the 

double downside of requiring the adaptation of synthetic voices to generate the spoofing samples, and, more 
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important, using particular attacks to train the synthetic models yields that their performance will be attack-

dependent, and they will not be able to detect spoofing signals created with another attacking technique. 

Once the validity of the RPS based SSD was demonstrated, the problem of avoiding attack dependence of 

the SSD was addressed in (Sanchez et al., 2014) (Sanchez et al., 2015). In these works, the authors analyze the 

use of copy-synthesized signals to create the imposter models. This way, the models are not dependent on the 

particular features of a specific synthesizer, but they can detect any signal created with a vocoder. Multi-

vocoder models trained and tested with completely unrelated signals were evaluated with good results. 

 Recently the work in this area has been promoted by the ASVSpoof2015, the Automatic Speaker 

Verification Spoofing and Countermeasures Challenge (Wu et al., 2014). The participants were invited to 

submit the results of independent SSD modules for evaluation. Spoofing detection systems were tested with a 

database (the so-called ASVSpoof database), containing different spoofing techniques such as speech 

synthesis and voice conversion. The performance of the different systems was assessed by the organization 

using standard metrics. This database has been made available to the public, and we are using it in this work. 

In this paper we review and evaluate the performance of a MGD based and a RPS based SSD system, 

benchmarking them against a module information based (MFCC) baseline system. We analyze the optimal use 

of training material comparing the strategy of using “real” spoofing signals versus using copy-synthesis 

signals from the natural ones. The performance of the system with completely unknown signals is also 

evaluated using a completely unrelated set of signals from the Blizzard Challenge (Black and Tokuda, 2005), 

the most popular international event for TTS system evaluations, where independent participants build 

synthetic voices using a common speech corpus and send some samples to be evaluated. They are, 

undoubtedly, a representative sample of the current technology in speech synthesis, and, consequently, of the 

kind of likely spoofing technique. 

Furthermore, the tests with a completely unrelated database, as the Blizzard Challenge one, introduces the 

channel-mismatch issue for spoofing detection. While in the ASVSpoof Challenge the same recording channel 

is assumed for every signal, the channel information of Blizzard Challenge data is different from ASVSpoof 

data. The robustness to the channel of the different SSDs has been little studied in literature and will be 

analyzed in this work for the proposed systems.  

The paper is organized as follows. First, the phase representation and parameterization methods – RPS and 

MGD – are described. Then, in section 3, the Synthetic Speech Detection System is described. 4
th
 section is 

devoted to describe the databases used in both the training and test phases, and in the 5
th

 section the evaluation 

experiments are detailed. Finally, some conclusions are drawn. 

2. Phase representation and parameterization. 

We will evaluate two different phase-based systems: the Relative Phase Shift (RPS), based on the phase 

shift of the harmonic components of the speech signal, and the Modified Group Delay (MGD), which includes 

both magnitude and phase related information. Both systems are described below. 

2.1. Relative Phase Shift (RPS) 

The Relative Phase Shift (RPS) is a representation for the phase information of a harmonic speech signal. 

The representation was derived in (Saratxaga et al., 2009), but a brief description is provided in this section.  

2.1.1. Definition and derivation 
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RPS is a representation for the harmonic phase. Harmonic analysis models each frame of a signal by means 

of a sum of sinusoids harmonically related to the pitch or fundamental frequency. 
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where N is the number of bands, Ak the amplitudes, φk(t) the instantaneous phases, f0 the pitch or 

fundamental frequency and θk is the initial phase shift of the k-th sinusoid. The instantaneous phase is 

composed of two terms: the so-called “linear component” (depending on the analysis time instant and the 

frequency of the harmonic) and the initial phase shift term. This complex dependency makes the 

instantaneous phase difficult to use for certain purposes (most notably for pattern analysis and statistical 

modeling). 

The RPS representation consists in calculating the phase shift between every harmonic and the 

fundamental component (k=1) at a specific point of the fundamental period, namely the point where φ1=0. 

This does not imply that the analysis has to be done at that specific time (i.e. pitch synchronous), by the 

contrary, assuming local stationarity, the RPS value can be calculated at any time analysis instant. Let us 

consider two sinusoidal harmonic components like: 
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For the RPS ψ we have to calculate the phase shift in the instant to the closest instant before the analysis point 

when φ1(to)=0, as  
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Assuming local stationarity, we can extrapolate the value of the instantaneous phase of the k-th harmonic. If 

we use principal values for the phases for simplicity, φ1(to)=0 and we can obtain to from (4): 
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From (4) we also know that:  

 1 1 02a at f t      (7) 

Combining (4), (6) and (7) in (5), we have: 
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And so we obtain the RPS transformation for the k-th harmonic component, whose graphical interpretation is 

shown in Figure 1: 

   1( )k a k a at t k t      (9) 

 
Figure 1: Graphical interpretation of the RPS transformation: for an analysis instant ta the RPS of k is the phase shift 

of that component with respect to the fundamental component at the point where the period of the fundamental component 

starts (to). 

Equation (9) defines the RPS transformation which allows computing the RPSs (ψk) from the instantaneous 

phases at any point (ta) of the signal. The RPS values are wrapped to the [-π, π] interval.  

The RPS transformation intrinsically removes the linear phase term, thus resulting in a magnitude that 

remains stable as long as the phase shift relations of the components (and subsequently the waveform) do not 

change. These stable patterns allow the phase structure to arise, as is shown in Fig. 2 where instantaneous 

phase (a) and RPS values (b) of a voiced speech signal /aeiou/ (c) can be compared. It is worth noting that 

there is no useful phase information in the unvoiced frames of the speech. 
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Figure 2: Phasegrams of a voiced speech segment with five continuous vowels. (a) Instantaneous phases. (b)Relative 

phase shift (c) Signal waveform. 

2.1.2. Parameterization 

Although the RPS patterns look very definite, the RPS values are not suitable for statistical modeling. 

Variable numbers of values depending on the number of harmonics, high dimensionality, wrapping 

discontinuities, etc. make it necessary to apply additional parameterization.  

In (Saratxaga et al., 2010) it was described a method to obtain a reduced parameter set out of the RPS 

values, the so called DCT-mel-RPS parameterization. This parameterization reduces the variable number of 

raw RPS values to a constant number of parameters and is well suited for statistical modeling. 

To obtain the parameters, the differences of the unwrapped RPS values are filtered with a mel filter bank 

(48 filters) and a discrete cosine transform (DCT) is applied to the resulting sequence. The DCT is truncated 

to 20 values and the averaged value of the slope of the unwrapped RPS values is also included. The Δ and ΔΔ 

values of this vector are calculated which leads to a total of 63 phase-based parameters, calculated only for 

voiced frames, usually with frame rates of 5-10ms. 

2.2. MGD 

The modified group delay (MGD) feature is a representation of complex Fourier transform spectrum, and 

contains both magnitude and phase spectra information. It has been used for speech recognition in (Zhu and 

Paliwal, 2004) and (Hegde et al., 2007). This section briefly introduces MGD feature. 

Given a speech signal x(n), the complex spectrum representation X(ω) can be obtained through short-time 

Fourier transform. The complex spectrum X(ω) has two parts: real part XR(ω) and imaginary part XI(ω). The 

power spectrum which derives the popular Mel-Frequency Cepstral Coefficients (MFCC) is represented as 
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|X(ω)|
2
. To extract modified group delay spectrum, we define Y(ω) as the complex spectrum of nx(n), which 

is a re-scaled signal of x(n). The modified group delay spectrum  τρ,γ(ω) is defined as, 

 

  
       

 
2

R R I IX Y Y X

S
 

   
 




   (10) 

  
 

 
 ,



  



 
   

 
   (11) 

where XR(ω) and XI(ω) are the real and imaginary parts of X(ω), respectively, YR(ω) and YI(ω) are the real 

and imaginary parts of  Y(ω), |S(ω)|
2
 is the smoothed power spectrum corresponding to |X(ω)|

2
, and ρ and γ   

are two weighted variables to control the shape of the modified group delay spectrum. In practice, |S(ω)|
2
  is 

obtained by cepstrally smoothing the power spectrum |X(ω)|
2
. This can be achieved through two steps: 

 a) apply discrete cosine transform (DCT) on the power spectrum and  

 b) then pass the first 30 DCT coefficients to inverse discrete cosine transform (IDCT) to reconstruct a new 

smoothed spectrum.  

The reason to use the smoothed spectrum rather than the original spectrum is to make the modified group 

delay spectrum much more stable (Hegde et al., 2007). A spectrogram-like graphical representation of this 

magnitude is shown in Figure 3. 

With the modified group delay spectrum, we can compute modified group delay cepstral coefficients 

(MGDCC) as feature representations for modeling. The cepstral feature can be computed through the 

following steps: 

a) Apply Fourier transform to the signal x(n) and its re-scaled version nx(n) to compute the spectrum X(ω) 

and Y(ω), respectively. 

b) Compute the cepstrally smoothed spectrum |S(ω)|
2
 for the power spectrum |X(ω)|

2
. 

c) Compute modified group delay spectrum using Equation (10) and (11). 

e) Apply DCT on the modified group delay spectrum to calculate the MGDCC. 

The two controlling variable ρ and γ are tuned on the development set for better representation performance. 
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Figure 3: MGD spectrogram of a voiced speech segment with five continuous vowels.  

3. Synthetic Speech Detectors (SSD) 

In this work we will compare different Synthetic Speech Detectors (SSD) systems. The purpose of the SSD 

systems is to discriminate between natural speech signals and synthetically generated ones. SSD blocks are 

intended to work jointly with speaker verification (SV) systems, trying to detect synthetically generated 

speaker adapted impostor signals that can cheat the SV system. If the SSD system requires knowing the 

supposed speaker identity to perform the classification task (i.e. it uses speaker dependent models) then the 

SSD will necessarily be placed after the SV system to check the signals accepted as claimants by the SV 

system. If previous knowledge of the speaker identity is not necessary (i.e. speaker independent models), the 

SSD module can be inserted before or after the SV system. This is the case of the systems analyzed in this 

work. 

Figure 4 shows the main structure of an SSD system. The system is a binary classifier. During the training 

phase, parametric models for both natural speech (λhuman) and synthetic speech (λsynth) are created. Then, 

candidate parameter vectors are evaluated.  

To perform the synthetic speech detection task, the system will test a candidate vector sequence 

Y={y1,…,yN} of length N against both natural speech and synthetic speech models to get the corresponding 

likelihood values p(Y|λhuman) and p(Y|λsynth). Then, the log likelihood ratio Λ is calculated as  

human synth( ) log ( ) log ( )Y p Y p Y          (12) 
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The candidate is considered human if it exceeds a certain decision threshold θ which was set to the equal 

error rate (EER) point in the experiments. 
 

 

 

Figure 4: SSD system structure. 

 

In this paper three different systems are referred, with different parameterization and modelling techniques. 

The first one, MFCC, based on the spectral module information, is included as a baseline.  The second one, 

MGD has been successfully used for SSD experiments (Wu et al., 2013). The third one, RPS, has been also 

previously tested in different spoofing scenarios (Sanchez et al., 2014) (Sanchez et al., 2015). In this paper, 

both phase-based systems will be facing new spoofing experiments and compared. 

 

3.1. Natural and synthetic models 

In this work, we focus on feature-based countermeasures rather than model-based approaches. Hence, we 

use the classic GMM-based classifier for the detectors. The GMM-based classifiers have 1024 Gaussian 

components for the MFCC and MGD models and 2048 components for the RPS based models. The natural 

models are trained on the training data of human speech defined by ASVSpoof 2015 protocol, while the 

synthetic models are trained on the training data of the five known attacks (also as defined in ASVSpoof 2015 

protocol) , and/or copy-synthesis speech as it will be described in section 5. 

Input Voice 
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Y 
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4. Training and evaluation databases 

4.1. ASVSpoof Database 

This database was created for the Automatic Speaker Verification Spoofing and Countermeasures 

Challenge  (Wu et al., 2014). 

The natural speech information was collected from 106 speakers (61 female and 45 male). There are no 

remarkable channel or background noise effects. Taking these genuine human signals as a basis, different 

spoofing algorithms are selected to create the spoofed speech. The signals are originally sampled at 16 kHz, 

and that is how they are used to calculate MFCC and MGD parameters, for DCT-mel-RPS they have been 

downsampled to 8 kHz before being parameterized. 

In order to perform training, evaluation and testing, the whole data base is divided in three datasets. 

Different speakers are selected for each of the sets. The number of speakers and in each dataset is illustrated 

in Table 1.  

Table 1: Number speakers and utterances in the different datasets (Wu et al., 2015b) 

 #Speakers #Utterances 

Subset Male Female Genuine Spoofed 

Training 10 15 3750 12625 

Development 15 20 3497 49875 

Evaluation 20 26 9404 184000 

 

4.1.1. Training data 

 

25 speakers, 15 female and 10 male, were selected to make up the training data set. Together with the 

genuine voice utterances, the spoofed versions are also part of the set, created by means of five different 

systems: three of them voice conversion based (including frame selection and spectral slope techniques, and a 

publicly available voice conversion toolkit within the Festvox system
†
) and two speech synthesis algorithms 

(both implemented using HMMs and HTS
‡
).  

4.1.2. Development data 

The second subset of the database, intended to be used for development, takes 3497 genuine utterances  

from 35 speakers (20 female, 15 male), and 49875 spoofed signals, generated using the same five algorithms 

that take part in the training set.  

4.1.3. Copy-synthesis 

Trying to get a more universal model, the same technique as in (Sanchez et al., 2014) is used with both the 

train and development sets: The human signals are copy-synthesized (at the original 16kHz sampling 

 

 
†
 http://www.festvox.org 

‡
 http://hts.sp.nitech.ac.jp 
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frequency) using three state-of-the-art vocoders that are widely used in statistical speech processing 

technologies: AHOCODER (Erro et al., 2014), STRAIGHT (Kawahara et al., 1999) and MLSA (Yoshimura 

et al., 1999). These additional three signal sets of vocoded “impostors” are used for synthetic model training 

in some of the experiments, as described in section 5.  

4.1.4. Evaluation data 

In the evaluation dataset genuine and spoofed signals are included, getting a total of 184000 signals with 

the same recording conditions as those from the other sets. In this case, 10 different algorithms are used to 

generate de spoofed signals: the same five that were used for the other sets and 5 different ones, intentionally 

selected to test the generalization capability of the tested SSD system to face previously unseen attacks. 

Among these unknown algorithms there is a system (S10) that uses unit selection synthesis, a completely 

different technology (not based on vocoder parameterization and statistical modeling). This technology was 

intentionally set aside for the model training material as it can hardly be used for spoofing purposes due to the 

big amount of signals of the target speaker required to create a quality voice.  

4.2. The Blizzard 2012 Database 

In order to test the SSD systems with signals completely unrelated with the training material, it was 

necessary to obtain a representative number of state-of-the-art TTS systems. The Blizzard Challenge (King, 

2014) was an interesting choice.  

In the field of TTS system design, The Blizzard Challenge is the most popular international event for 

evaluations. All participants must use a common speech corpus to build a synthetic voice using their TTS 

systems. Then, some samples of this voice are submitted, so that they can be used in a common subjective 

evaluation, performed by a large pool of listeners. Undoubtedly, the TTS systems presented to the Blizzard 

Challenge are a representative sample of the state-of-the-art technology in speech synthesis.  

Every year, the Blizzard Challenge organizers distribute the listening evaluation: a set of human recordings 

and their counterparts synthesized by means of every TTS system that takes part. Since both human and 

synthetic signals are available, this database can be a good test field for SSD systems.  

A wide sample of TTS technologies is present at the Blizzard Challenge: the main groups are statistical or 

HMM based synthesizers, unit selection based systems and hybrid systems. This last type includes systems 

that, even using unit selection techniques to generate the speech signal, make use of statistical models in the 

unit selection process.  

In the experiments referred in this paper, we have used the listening evaluation data of the 2012 Blizzard 

Challenge (King and Karaiskos, 2012). It consists of 11 signal sets, each one with 209 utterances in US 

English. The set designate A contains the reference human signals, and the system named B is not a 

participant but a standard unit-selection-based benchmark system. Among the others, we can find statistical 

systems like E, H and K, unit selections systems like F, G and I, hybrid like C and D and a diphone 

concatenation system, J.  

5. Experiments and Results 

We have evaluated the phase-based SSD systems in two experiments using two evaluation sets, as 

explained in the previous section. For both of them, the systems have been trained with the training and 

development sets of the ASVspoof DB, including additional signals generated by copy-synthesis of the 

human subset, using the three vocoders explained in 4.1.3. In the first experiment, the test material belongs to 
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the same database as the training material (the ASVspoof DB) whereas in the second, a completely unrelated 

evaluation set is used, in order to test the ability of the SSD systems facing completely unknown impostors. 

5.1. Evaluation with the ASVSpoof Database 

In this experiment the models trained with the training and development material of the ASVspoof DB 

have been tested with the evaluation part of that database. While the human model has remained the same in 

the entire experiment, three different training strategies for the synthetic models have been tested (see Table 

1):  

 M1: Synthetic model developed with the synthetic material provided in the training and development 

set of the database. 

 M2: Synthetic model developed with newly generated synthetic material by copy-synthesis of the 

human set using three different vocoders: AHOCODER, STRAIGHT and MLSA. 

 M3: Synthetic model developed combining the material from M1 and M2. 

 

As mentioned before, the evaluation set is composed of human signals and spoofing signals generated with 

10 algorithms, 5 of which are included in the training material. The other five are “unknown”: 4 of them are 

VC systems with STRAIGHT as vocoder. The 10
th
 system is a unit selection based synthesizer and it is out of 

the scope of the systems trained in this work.  

The results of this experiment are shown in tables 2 and 3. In order to avoid the bias in the average EERs 

due to the unsurprisingly bad performance of the unit selection based system (S10), we show averaged values 

for the rest of the systems (*-S10 columns). We also assume that the S10 values are excluded from the 

analysis in the following lines.  

The MFCC baseline gets some decent results with EER around 2%, showing that the classification task is 

not very demanding for this database.  

It is also remarkable that there is no significant difference between known and unknown systems (always 

excluding the 10
th
 system based in unit selection). For all the systems the performance falls around 10-20% 

from known to unknown systems when trained with spoofing impostor samples (M1). But actually, with M2 

training set (where all the systems are unknown) the performance falls more than for other training sets. That 

is to say: the slight performance difference cannot be attributed to prior knowledge of the attack method but to 

other features of particular spoofing systems included in the “unknown” set that affect the performance. This 

is corroborated by the detailed results of table 3, where it can be seen most of the unknown systems are 

actually better detected than the known ones. Only the EER for the S6 system, which is particularly bad (for 

every training set, thus not depending on being known or unknown) makes the average ratio of the unknown 

systems worse.  

The results for the MGD system show a good performance for M1 and M3 training materials, but it 

degrades for M2 training set. MGD parameters seem to be more affected by the distortions introduced by the 

statistical modeling process required by real spoofing algorithms, which are not present in vocoded signals 

used in M2.  

RPS based systems get consistently good results in all the training sets and attacking algorithms as can be 

seen in Table 3, with values well below 1% EER for all the training sets. 

Regarding the effect of the different training strategies with RPS parameters, using the attack samples to 

train the synthetic model of the classifier (M1) performs better than the other strategies. M2, using vocoded 

material to train the models, produces a poorer but still decent performance, in the same magnitude order than 

the other strategies. The hypothetical benefit of M2 strategy being capable of producing better results for 

unknown systems is not shown in the results. Unfortunately, provided the above-mentioned small 
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differentiation between the known and unknown systems, we cannot state whether this generalization feature 

is or is not true.  

M3 strategy, with models created by combination of attack samples and copy-synthesized samples, gets 

good performance, very close to the M1. Actually, both classifiers are not statistically significant according to 

the McNemar test (p=0.41). It gives small improvements for some of the “unknown” systems (S8 and S9). 

Table 2. Training and evaluation subsets for the different strategies for model training. 

 Training Evaluation 

Model Human signals Synthetic signals Human signals Synthetic signals 

M1 7247 62500 9404 184000 

M2 7247 21741 (7247x3) 9404 184000 

M3 7247 84241 9404 184000 

 

Table 3. EER in percentage of the different system types tested against the ASVProof database. 

SSD System Known Systems Unknown 

Systems-S10 

Unknown 

Systems 

All-S10 All 

MFCC M1 1.8815 2.1070 9.0998 1.9817 5.4907 

MFCC M2 8.9816 11.6447 18.0683 10.1652 13.5250 

MFCC M3 1.9262 2.8537 10.0104 2.3384 5.9683 

MGD M1 0.9270 1.3086 8.9103 1.0966 4.9187 

MGD M2 9.0414 7.4304 14.2777 8.3254 11.6596 

MGD M3 2.4529 2.7788 10.2569 2.5977 6.3549 

RPS M1 0.1274 0.1562 8.8185 0.1402 4.4730 

RPS M2 0.5294 0.6901 10.0970 0.6008 5.3132 

RPS M3 0.1361 0.1669 9.1261 0.1498 4.6311 

 

Table 4. EER in percentage of the different systems tested against the ASVProof database. 

SSD System S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

MFCC M1 0.1102 8.4556 0.0360 0.0438 0.7621 1.5449 3.4747 2.4740 0.9343 37.0711 

MFCC M2 5.0327 13.1417 8.9981 8.9981 8.7375 11.2048 16.3206 9.4169 9.6362 43.7628 

MFCC M3 0.5471 7.6091 0.0690 0.1019 1.3040 2.1734 4.3412 3.1157 1.7846 38.6373 

MGD M1 0.1866 1.8559 0.2446 0.2849 2.0629 2.4006 0.7891 1.3186 0.7260 39.3174 

MGD M2 1.4017 4.7303 7.3400 6.9395 24.7957 19.2032 2.8205 3.3713 4.3265 41.6672 

MGD M3 0.4113 2.5331 0.9455 0.9500 7.4247 6.5415 1.0769 1.9259 1.5708 40.1692 

RPS M1  0.2661 0.1695 0.0217 0.0360 0.1439 0.5147 0.0080 0.0912 0.0108 43.4680 

RPS M2 1.0478 0.7359 0.1625 0.1437 0.5571 2.0239 0.1286 0.2834 0.3243 47.7249 

RPS M3 0.2814 0.1770 0.0152 0.0363 0.1707 0.5711 0.0108 0.0755 0.0101 44.9628 
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5.2. Using the Blizzard 2012 Database 

The second experiment aims to analyze the performance of the SSD systems when they are confronted 

with completely unrelated signals, both natural and spoofed. Besides the unknown spoofing algorithm used, 

these signals would be acquired in a completely different channel, and thus the intrinsic robustness of the 

different SSDs to the channel-mismatch issue will also be evaluated. 

 As mentioned before, we will use the Blizzard 2012 Database with 10 voice adapted TTS (B-K) plus the 

natural voice. 3 of the TTS in this Challenge (E, H and K) are statistical synthesizers which use HMM based 

models of certain speech parameters which, in the synthesis phase, will feed a vocoder to produce the speech 

signal.  

The rest of the systems use unit selection or hybrid technologies for synthesis, which means that they 

concatenate segments of natural signals and therefore do not use any vocoder. As was the case with S10 

algorithm in the previous experiment, these systems are out of the scope of the SSDs evaluated here, and 

should been addressed specifically in future works. On the other hand, unit selection based technology might 

not be suitable for spoofing in some applications which require live conversation (call-center applications, for 

instance), as unit selection technology requires a relative large speech database to produce natural speech, and 

can be easily detected by human ears (Wester et al., 2015).  

In this experiment all the SSDs and the three training strategies have been evaluated, and the results are 

shown in table 5. The EER of the system is obtained by testing every synthetic subset against the human 

counterpart.  

Table 5. EER in percentage of the different systems tested against the ASVSpoof database. 

SSD System B C D E F G H I J K 

MFCC M1 38.2775 44.0191 17.2249 0.0000 27.7512 28.7081 3.8278 22.0096 62.2010 0.0000 

MFCC M2 48.8038 48.8038 52.6316 0.9569 29.1866 35.4067 18.1818 24.8804 14.8325 2.8708 

MFCC M3 43.5407 45.9330 20.5742 0.0000 25.3589 29.1866 3.8278 22.0096 10.0478 0.0000 

MGD M1 59.8086 73.2057 8.6124 2.3923 78.4689 79.4258 7.6555 63.1579 42.5837 5.2632 

MGD M2 62.6794 23.4450 8.1340 5.7416 44.4976 32.5359 3.3493 17.7033 23.4450 3.3493 

MGD M3 59.8086 37.7990 5.2632 3.8278 60.7656 54.0670 3.8278 33.0144 27.2727 3.8278 

RPS M1 49.2823 69.3780 40.6699 0.0000 69.3780 2.8708 0.0000 32.0574 72.2488 0.0000 

RPS M2 34.9282 58.3732 11.0048 0.0000 66.0287 2.8708 0.0000 19.1388 6.2201 0.0000 

RPS M3 40.6699 61.7225 15.7895 0.0000 63.1579 3.8278 0.0000 23.9234 14.3541 0.0000 

 

The first evident result is that none of the systems or the strategies is able to correctly detect the unit 

selection based systems. This is consistent with the results of the S10 system in the previous database. The 

error level is comparable in both experiments, which means that it is not due to the signals being unknown or 

to the channel-mismatch, but it reflects the intrinsic inability to detect unit selection systems without such 

samples in the model training. 

Regarding the vocoder based synthesis systems the results depend on the system. The baseline SSD gets 

good results for some TTS but its performance depends upon the training strategy and system. The MGD 

based system seems to be sensitive to the channel mismatch problem, because the detection rate is not so 

good. The RPS based system, by the contrary, obtains consistent error-free classification regardless the TTS 

or the training strategy, suggesting robustness to the channel and attacking system variation. The average 

errors for vocoder based and unit selection based systems is shown in table 6. 
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Table 6. Average EER in percentage for the different types of synthetic signals. 

SSD System Average vocoder based 

systems (E,H,K) 

Average unit selection & 

hybrid systems 

Average 

All  

MFCC M1 1.2759 34.3131 24.4019 

MFCC M2 7.3365 36.3636 27.6555 

MFCC M3 1.2759 28.0930 20.0478 

MGD M1 5.1037 57.8947 42.0574 

MGD M2 4.1467 30.3486 22.4880 

MGD M3 3.8278 39.7129 28.9474 

RPS M1 0.0000 47.9836 33.5885 

RPS M2 0.0000 28.3664 19.8565 

RPS M3 0.0000 31.9207 22.3445 

 

Regarding the training strategy, the experiment shows diverse behaviours depending on the SSD and the type 

of impostors.  For the baseline system the M3 strategy, combining training samples from spoofing signals and 

vocoded ones seems the best approach. Conversely, for the MGD and the RPS systems the M2 strategy (with 

just vocoded signals) seems to be the best (attending to the average EER for all the systems). This result is 

mainly due to performance with the unit selection systems, which, although very bad in all the cases, is better 

for the M2 training strategy. It can be hypothesised that models trained with attacking samples (M1) are too 

specific to capture the features of other synthesis techniques, while vocoded signals, being of higher quality 

and closer to the natural signals produce more general models better suited to detect unknown signals.  

Considering all the results, there is one interesting observation worth noting: RPS which uses purely phase 

information achieves similar performance by using different training conditions. On the other hand, MFCC or 

MGD which also consider magnitude information varies a lot. It means that the magnitude spectrum is 

distorted a lot after the modelling process by speech synthesis or voice conversion what does not happen for 

the vocoded speech, which produces very high quality synthetic signals. It is possible that MGD and MFCC 

systems are actually modelling the distortions in the magnitude spectra produced by the speech processing 

technology.  

6. Conclusions 

In this paper we have reviewed two phase based methods to detect spoofing using synthetic speech: both 

are based in GMM models for natural and synthetic signals but one of them uses Modified Group Delay 

parameters to train the models while the other uses DCT-mel-RPS parameters. We also use a MFCC based 

system as baseline. We have focused on attacks created with speaker adapted synthetic speech and voice 

conversion systems which use parameter manipulation followed by speech generation using vocoders, as they 

are the most feasible methods to generate the spoofing signals. 

We have evaluated these systems using two databases, with training material coming only from one of 

them in order to evaluate the systems with completely unrelated signals (including acquisition channel). This 

evaluation intends to simulate real application scenarios and to assess the generalization abilities of these 

countermeasures. 

We have also evaluated different training strategies, aiming to address the problem of obtaining suitable 

training data for the spoofing signal model. Hence, we have developed models from “real” spoofing signals 
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but also with copy-synthesizes signals using three of the most common vocoders used in current adapted 

synthetic speech and voice conversion systems.  

The results show that the systems can achieve a good performance, which is maintained even with 

completely unrelated signals coming from other database. Both phase-based systems improve the baseline 

results. The best training strategy appears to be using spoofing samples, but adding vocoded signals can help 

improving results with unknown signals. For the RPS based classifier using both types of signals to train the 

model has no significant downside. More extensive evaluation is needed with different attacking technologies 

and signals to definitely asses the convenience of such training strategies. 

Although they are not the target of the SSDs developed in this work, we have kept the unit selection 

systems in the test material. As it was expected, the SSD systems trained with vocoder based synthetic signals 

do not work with unit selection based ones. It has to be studied if phase based systems like the ones here 

presented, trained with appropriate signals, and could model this kind of synthetic impostors. 
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