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Resumen amplio en castellano 

Los números son uno de los pilares en nuestra sociedad actual y los encontramos en el día 

a día, por ejemplo, en canales de televisión, fechas, señales, números de teléfono, etc. Además, 

usamos los números para cuantificar, ordenar, clasificar y medir prácticamente todo: velocidades, 

tiempo, estaturas, propinas, etc. Un sistema numérico defectuoso tiene consecuencias tanto en la 

infancia como en la vida adulta. 

 La presente tesis se centra en el estudio del funcionamiento numérico en bilingües. Cómo 

procesan las matemáticas las personas bilingües es una cuestión de interés actual y que tiene 

muchas incógnitas por resolver, como por ejemplo qué papel desempeña realmente el lenguaje 

utilizado para la adquisición temprana de las matemáticas.  

 El sistema cerebral encargado del funcionamiento numérico ha atraído la curiosidad en 

neurociencia durante mucho tiempo y numerosos estudios han buscado respuestas a un sinfín de 

cuestiones relacionadas con los números, como las representaciones más simples de magnitud en 

nuestro cerebro (Carey, 2001; Nieder y Dehaene, 2009) o el procesamiento de la aritmética en 

bilingües (Spelke y Tsivkin, 2001; Salillas y Wicha, 2012). Las particularidades del sistema 

numérico en bilingües son objeto de estudio per se, pero, además, dicho estudio puede ayudar a 

resolver muchas dudas sobre los lazos entre las matemáticas y el lenguaje en general. De hecho, 

hay estudios que han demostrado que los bilingües ya muestran una clara preferencia por la 

lengua en la que se han adquirido las matemáticas, no sólo en aritmética (Salillas y Wicha, 2012) 

sino también en procesamientos más simples y desvinculados del lenguaje, como la simple 

comparación entre numerosidades (Salillas y Carreiras, 2014).  

 El objetivo de esta tesis es comprobar los patrones de dominancia de los dos códigos que 

usan los bilingües para el procesamiento matemático. En otras palabras, queremos estudiar si hay 

una lengua que es dominante para las matemáticas y qué determina tal dominancia. Nuestra 

hipótesis es que una de ellas, aquella utilizada durante el aprendizaje numérico temprano, es la 

que establece el código verbal preferido para las matemáticas en bilingües, incluso si estos 

bilingües son equilibrados y fluidos en ambas leguas. A esta lengua, o medio verbal preferido, la 

llamamos lengua del aprendizaje de las matemáticas (LLmath) en comparación con la otra lengua 

(OL).  

 Basándonos en estudios previos (Salillas, Barraza y Carreiras, 2014; Salillas y Carreiras, 

2015, Salillas y Wicha, 2012) aquí nos interesa estudiar el peso de la representación léxica más 
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básica en cada lengua. Es decir, si es el caso que, por ejemplo, en bilingües perfectamente fluidos 

en ambas lenguas, la representación de uno en castellano, difiera de la representación en euskera 

bat. En principio tal desequilibrio es planteado como independiente de representaciones 

equilibradas para palabras no numéricas como mar vs. itsaso.  

 Tal desequilibrio en la representación de las palabras número es fácilmente observable 

atendiendo a lo que se conoce como coste de cambio entre lenguas (switch cost en inglés). Es 

sabido que el desequilibrio entre lenguas genera un coste asimétrico cuando cambiamos de una 

lengua a otra, este desequilibrio depende de la dirección del cambio: es más costoso ir de la 

lengua menos dominante a la más dominante (Green, 1992). Por lo tanto, si tal asimetría ocurre 

para palabras número en bilingües fluidos y ese desequilibrio está originado en la LLmath, 

podremos mostrar que es el aprendizaje temprano lo que determina la dominancia lingüística para 

el material numérico. De manera crucial, ese desequilibrio entre palabras-número, será 

independiente de un uso fluido de ambas lenguas durante la comunicación de material no 

numérico. La presente tesis utiliza por tanto poblaciones bilingües equilibradas euskera-castellano 

en distintas tareas y además gracias al uso de técnicas de Neuroimagen - electroencefalograma 

(EEG), magnetoencefalograma (MEG) - observaremos la base neuronal de las representaciones 

numéricas bilingües. Finalmente, se estudian las implicaciones que tales patrones de dominancia 

numérica tienen cuando el sistema numérico falla en la discalculia de desarrollo, en población 

bilingüe. 

Experimentos 

Experimento 1 

El Experimento 1 investiga la dominancia en los códigos para las matemáticas. La 

hipótesis de este experimento es que en bilingües equilibrados en su primera lengua y en su 

segunda lengua (L1/L2) el factor determinante para la preferencia de un código será la 

experiencia de aprendizaje, es decir la LLmath. Considerando estudios previos de Potenciales 

Evocados con una tarea de cambio de lenguas (cambio o switch) como Chauncey, Holcomb y 

Graigner (2008) y en estudios conductuales (Costa y Santesteban, 2004), la predicción es que el 

cambio entre los códigos numéricos LLmath y OL generará un cambio asimétrico en el componente 

N400, reflejando un coste mayor al pasar desde la OL a la LLmath, siendo esta asimetría en el 

cambio de códigos independiente de la dominancia L1/L2. 
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Métodos 

 Doce bilingües equilibrados en euskera-castellano participaron en este estudio. Todos 

ellos aprendieron ambas lenguas antes de los tres años de edad. De estos 12 participantes, seis 

aprendieron las matemáticas en euskera y seis en castellano. Todos los participantes fueron 

evaluados en la dominancia de ambas lenguas con una adaptación al castellano y euskera del 

Boston Naming Test (Kaplan, 1983), y a través de una entrevista oral.  

 La tarea consistía en clasificar los números en formato verbal que aparecen en pantalla 

como mayor o menor de “6”. El rango de números variaba de 3 a 9 y los estímulos fueron 

presentados en orden aleatorio, pero siempre siguiendo el orden AABB, dónde “A” y “B” son las 

lenguas en las que los números se presentaban. Se crearon un total de 480 ensayos de los cuales la 

mitad eran ensayos en castellano y la otra mitad en euskera, controlando la distancia entre los 

números presentados y el número referencia (6) y que todos los números aparecían el mismo 

número de veces en ambas lenguas. Los participantes realizaron la tarea en una cabina 

insonorizada y los estímulos se presentaban en una pantalla de ordenador con fondo negro. Cada 

estímulo aparecía en pantalla durante 500 ms y entre estímulos la pantalla estaba en negro durante 

un tiempo aleatorio entre 1.500 y 2.000 ms. Los datos fueron recogidos usando un sistema de 

EEG de 27 canales más un electrodo de referencia en el mastoides izquierdo. Otros 6 electrodos 

se usaron para grabar los pestañeos y movimientos oculares. Estos últimos electrodos se 

colocaron encima y debajo del ojo izquierdo y en las sienes. Tras el preprocesamiento de la señal, 

el EEG se segmentó en base a la presentación de las palabras número y promedió para calcular los 

potenciales evocados para cada condición experimental. 

Había dos condiciones de cambio (AB y BA) y dos condiciones de no cambio (AA y BB) 

que eran predecibles por los participantes. Un total de 480 ensayos se presentaron para cada 

participante en dos formatos: una mitad (240) en castellano (p.ej. tres) y la otra mitad en euskera 

(p.ej. hiru). Del total de los ensayos, 120 eran palabras número en euskera precedidas por palabras 

número en castellano, 120 eran palabras número en castellano precedidas por palabras número en 

euskera, 120 palabras número en castellano precedidas por palabras número en castellano y 120 

palabras número en euskera precedidas por palabras número en euskera. La distancia entre los 

números presentados y el número de referencia (6) estaba controlada (había el mismo número de 

ensayos para las distancias 1, 2 y 3), y las palabras número eran las mismas en ambas lenguas. 	
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 Resultados y conclusiones 

 El objetivo de este estudio era comprobar si las representaciones numéricas dependen de 

la dominancia del lenguaje en general o por el contrario dependen de la dicotomía LLmath/OL. 

Esto se observó a través del cambio entre los códigos verbales numéricos (palabras número). Los 

resultados muestran una asimetría en el coste del cambio de códigos cuando se usan los códigos 

numéricos, produciéndose un coste mayor de cambio de lenguas cuando se cambia en la dirección 

OL-LLmath en comparación con la dirección contraria (LLmath-OL). Ello se observó en la amplitud 

del componente N400, el cual tiene una amplitud mayor para el cambio en la dirección hacia la 

LLmath que en la dirección a la OL. Esta asimetría es independiente de la dominancia L1/L2, ya 

que cuando se realizaron los análisis agrupando los ítems en base a la dominancia general del 

lenguaje (L1/L2) los cambios entre una lengua y otra eran similares en ambas direcciones (L1-L2 

y L2-L1).  

 A partir de estos resultados, se concluye que la dominancia relativa de los códigos 

numéricos es independiente de la dominancia de los códigos generales del lenguaje. Por lo tanto, 

la distinción a tener en cuenta cuando se construyan modelos de cognición numérica ha de ser la 

distinción LLmath/OL y no L1/L2.  

Experimento 2 

El Experimento 2 tiene los mismos objetivos y diseño que el Experimento 1, sin 

embargo, el procedimiento es diferente: en lugar de emplear una manipulación explícita de la 

información cuantitativa a través de la comparación numérica se utilizó una tarea de paridad, es 

decir, clasificar los números que aparecen en la pantalla como par o impar. Además, en lugar de 

usar una secuencia predecible de presentación del tipo AABB, se usó una presentación de 

estímulos aleatoria. El procedimiento de presentación era un primado enmascarado en el cual los 

participantes ven una máscara formada por ocho almohadillas (“########”), que fue 

posteriormente sustituida por el estímulo de primado durante un período de tiempo casi 

imperceptible (40 ms) pero capaz de ser procesado inconscientemente, este primado era 

inmediatamente seguido del estímulo que los participantes tenían que clasificar como par o impar. 

Los estímulos que forman el primado podían ser en la misma lengua, o diferente, del estímulo que 

tenían que clasificar. Los estímulos a clasificar podían ser en euskera o castellano, creando así 

cuatro condiciones diferentes al igual que en el Experimento 1: dos condiciones de cambio (LLmath 

a OL y OL a LLmath) y dos condiciones en las que los estímulos del primado y el estímulo a 
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clasificar estaban en la misma lengua, es decir dos condiciones de no cambio (LLmath-LLmath y OL-

OL). Se crearon un total de 504 ensayos, la mitad (252) eran en euskera y la otra mitad en 

castellano. Estos a su vez fueron divididos en ensayos de cambio (126 ensayos de cambio 

castellano-euskera y 126 ensayos de cambio euskera-castellano) y ensayos de no-cambio (126 

ensayos de no-cambio euskera-euskera y 126 ensayos de no cambio castellano-castellano). 

Estos cambios en el diseño se introdujeron con el fin de averiguar si los costes asimétricos 

de cambio de código encontrados en el primer experimento eran debidos a la tarea, o por el 

contrario se deben a la dominancia LLmath/OL. Las predicciones son las mismas que en el 

Experimento 1: habrá un cambio asimétrico que dependerá de la dominancia LLmath/OL. 

Métodos 

14 participantes tomaron parte en este estudio, todos ellos bilingües equilibrados en 

euskera-castellano, siete de ellos aprendieron matemáticas en euskera y siete las aprendieron en 

castellano. A todos ellos se les aplicaron las mismas medidas de evaluación en ambas lenguas que 

en el Experimento 1. Los métodos de recogida de datos fueron los mismos que en el Experimento 

1.  

Resultados y conclusiones 

 Los resultados del Experimento 2 corroboran los del primer experimento ya que una vez 

más se encontró un coste asimétrico de cambio entre lenguas, reflejado en el componente N400: 

el cambio hacia el código más dominante (OL-LLmath) muestra una mayor amplitud de onda. Lo 

más llamativo de este experimento es que los participantes no eran conscientes del cambio y, 

además, no se manipulaba la información sobre magnitud numérica de una manera explícita (es 

decir, los juicios de par/impar no implican atención de si un número es mayor o menor). Este 

cambio inconsciente fue diseñado a propósito para saber si los resultados del Experimento 1 eran 

producidos a nivel léxico o por el contrario eran debidos a la tarea y viendo los resultados se 

puede interpretar que los cambios asimétricos ocurren a nivel léxico. 

Experimento 3 

El Experimento 3 fue diseñado con el objetivo de averiguar que redes neuronales son las 

responsables de los cambios entre los dos códigos para las matemáticas. En los Experimentos 1 y 

2 se encontraron cambios de código asimétricos similares a los que se encuentran en el lenguaje 
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en bilingües no equilibrados (Chauncey et al., 2008; Jackson, Swainson, Cunnington y Jackson, 

2001). Así que el siguiente paso lógico era descubrir si las redes neuronales subyacentes a los 

cambios de los códigos para las matemáticas y para el lenguaje en general son los mismos. 

Estudios que examinan este tipo de cambios muestran que las regiones implicadas son la corteza 

prefrontal dorsolateral, regiones anteriores como las áreas de Brodmann 45 y 9 y el córtex 

cingulado anterior (Abutalebi et al., 2012; Hernández, Dapretto, Mazziotta, y Bookheimer, 2001; 

Rodriguez-Fornells, De Diego Balaguer, y Münte, 2006; Wang, Xue, Chen, Xue y Dong, 2007). 

Métodos 

 12 participantes realizaron la tarea utilizando la técnica de magnetoencefalografía (MEG). 

Al igual que en los Experimentos 1 y 2, los participantes eran bilingües equilibrados euskera-

castellano, de los cuales la mitad habían aprendido las matemáticas en euskera y la otra mitad en 

castellano. La MEG tiene una mejor resolución espacio temporal y un mayor número de sensores 

que el EEG, gracias a ello permite una mejor estimación de fuentes en combinación con una 

imagen de resonancia magnética del cerebro de cada participante. 

Resultados y conclusiones 

 Los resultados de los análisis muestran otra vez un coste de cambio asimétrico en los 

códigos para las matemáticas en la N400, con mayor coste para la dirección OL-LLmath. Los 

campos evocados (ERFs) localizan el coste de cambio en las regiones frontales del cerebro. La 

estimación de fuentes para esos ERFs determinó la implicación de regiones frontales del cerebro 

(Área de Brodmann 9, Cingulado Anterior y Corteza Dorsolateral Prefrontal). Estos resultados 

son similares a los encontrados en otros experimentos que observan el cambio de lengua. Pero 

además, según diversos estudios éstas regiones activas en el cambio de lenguas también se activan 

ante un cambio de tarea en general (Abutalebi y Green, 2007; Craik y Bialystok, 2006; Garbin et 

al., 2010; Luk, Green, Abutalebi, y Grady, 2012). Esto implica que el control cognitivo que se 

ejerce durante los cambios entre lenguas y los cambios entre palabras número puede formar parte 

de un mismo sistema ejecutivo general. Sin embargo, el origen de la activación de tal sistema de 

control común proviene de sistemas léxicos con dominancia independiente, para las matemáticas 

(palabras número) y para el lenguaje en general.  
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Experimento 4 

El Experimento 4 trata de profundizar en el conocimiento del papel de la lengua de 

aprendizaje temprano en el procesamiento matemático cuando el sistema numérico falla. En este 

experimento se investigó el trastorno de la discalculia en bilingües, un síndrome que afecta a un 

6% de la población y que implica más lentitud en el aprendizaje de las matemáticas y su 

procesamiento con un uso inmaduro del cálculo como puede ser el conteo con los dedos. Hoy en 

día es muy común el estudio de estos trastornos, sin embargo, a pesar de estar en un mundo 

multilingüe este trabajo es el único que, hasta el momento, ha estudiado esta condición en 

poblaciones bilingües y multilingües. El estudio de este síndrome en poblaciones bilingües nos 

puede proporcionar información muy valiosa de los lazos del lenguaje con las matemáticas. En 

este estudio se evalúan las posibles interacciones entre los efectos distancia y la lengua con la que 

se operan estos efectos. Los efectos de distancia implican que las distancias entre números se 

procesan más rápido y más precisamente cuando la distancia que separa dos números es más 

pequeña, a medida que la distancia aumenta, el procesamiento se hace más lento y menos preciso. 

Este efecto distancia se ha encontrado en estudios conductuales y en ciertos componentes de 

ERPs en torno a los 200 ms y se toma como un índice de acceso a la representación numérica más 

básica y esencial. Por lo tanto, en este experimento se exploran las posibles interacciones entre los 

efectos de distancia y el lenguaje, es decir, si los efectos de distancia ocurren en cada lengua y si 

esos efectos de distancia ocurren en las mismas regiones cerebrales para cada lengua. Además, se 

evalúa si hay diferencias en estos procesos entre personas con discalculia que son bilingües y sus 

controles equivalentes, todo ello con análisis de EEG y estimación de fuentes. 

Métodos 

 En este estudio participaron un total de 14 niños bilingües euskera-castellano con edades 

comprendidas entre los 8 y los 13 años. La mitad de los niños que participaron en este estudio (un 

total de siete) habían sido diagnosticados previamente con discalculia y se han evaluado usando el 

programa Dyscalculia Screener (Butterworth, 2003). Los otros siete niños forman el grupo control 

equivalente en sexo y edad con el primer grupo. Aunque ambos grupos demostraron una mejor 

eficiencia en castellano en tareas del lenguaje general, la lengua de aprendizaje de las 

matemáticas para todos ellos era euskera.  

 Para la tarea se creó un paradigma de adaptación con seis palabras número en castellano y 

seis en euskera correspondientes con los dígitos 1, 2, 3, 7, 8 y 9. Se crearon ocho listas repetidas 
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ocho veces en cada lengua. Cuatro listas usaban los estímulos 1 y 2 como adaptación y 3 y 7 

como “desvíos”, y otras cuatro listas usaban los estímulos 8 y 9 como adaptación y 3 y 7 como 

“desvíos”. Cada estímulo se presentaba durante 200 ms y había un intervalo entre estímulos de 

1000 ms.  

 Los datos de EEG fueron grabados y preprocesados usando los mismos procedimientos 

que en los Experimentos 1 y 2.  

Resultados y conclusiones 

 Los resultados mostraron que los efectos distancia (es decir, el acceso al código nuclear 

numérico) eran diferentes para ambos grupos, y que tales efectos de distancia dependían de la 

lengua del estímulo. El grupo control mostró efectos de distancia en ambas lenguas en el 

componente N2, mientras que el grupo con discalculia solo mostró efectos de distancia para la 

LLmath, también en la N2. En la estimación de fuentes el grupo control mostró una mayor 

activación de las regiones parietales del hemisferio derecho para la LLmath mientras que el grupo 

discalcúlico las mostró en el izquierdo para ese mismo código, además este último grupo utiliza 

una red en el hemisferio izquierdo que incluye áreas frontales, perisilvianas e inferior-parietal que 

no utilizaban los controles. Para la OL solamente el grupo control mostró efectos de distancia en 

el hemisferio derecho con una red neuronal que consta de áreas frontales en inferioparietales lo 

que sugiere un procesamiento de la magnitud menos automatizado.  

Conclusiones generales de la tesis 

 El objetivo de esta tesis era explorar los vínculos entre el lenguaje y las matemáticas a 

través del bilingüismo. Esta investigación ha mostrado efectos convergentes utilizando distintas 

técnicas de neuroimagen (EEG, MEG) y distintos paradigmas experimentales. Se han observado 

los efectos de dominancia de la LLmath teniendo en cuenta las dos lenguas de los bilingües y se han 

investigado los patrones de cambio de lenguas usando tareas clásicas con estímulos numéricos en 

lugar de los estímulos tradicionales. Además, se ha investigado el acceso a la magnitud en 

bilingües con el síndrome de la discalculia para saber más sobre la preferencia de un código para 

el acceso a la magnitud, así como para conocer las implicaciones de ser discalcúlico bilingüe. 

 Teniendo en cuenta todos los resultados de esta tesis, se ha demostrado que en la 

población estudiada los cambios entre los dos códigos para las matemáticas son asimétricos y que, 
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por lo tanto, un bilingüe equilibrado puede no serlo ante una entrada numérica. En resumen, la 

dominancia para las matemáticas está modulada por la LLmath
 y no por la L1. Por otro lado, el 

control cognitivo sobre las palabras número parece asimilarse al aplicado sobre el lenguaje natural 

y sobre la ejecución de tareas no lingüísticas. Además, se ha demostrado que la LLmath es el 

código dominante para las matemáticas en su representación más básica: en la discalculia bilingüe 

la LLmath es el único código que permite un acceso al código nuclear numérico (efecto de 

distancia) y dicho acceso difiere en su base neural también en población sana. 

 Como posibles investigaciones futuras en el campo de cómo los bilingües procesan los 

dos códigos para las matemáticas podrían enfocarse en las redes neuronales se utilizan 

específicamente para la LLmath y para la OL en el procesamiento de la magnitud en tareas no 

numéricas, por ejemplo, para comparar tamaños de objetos.	 Ya que el procesamiento de la 

magnitud tiene áreas comunes (Sokolowski, Fias, Mousa y Ansari, 2016), sería apropiado 

entender hasta qué punto la LLmath modula el acceso a la magnitud en tareas que no usen números 

en sus formas verbales en estas regiones comunes del procesamiento de la magnitud.  
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1. The Numerical Representation Framework 
Numbers are one of the pillars in today’s society; they can be found in various 

aspects in life, apart from the obvious counting and arithmetic, such as TV stations, dates, 

signals, our favorite player’s number, etc.  Numbers are also used to label, rank, order, 

quantify and measure almost everything. We can calculate speed of trains, the most 

complex equations or even simple everyday tasks such as the percentage of a tip in a 

restaurant.  

Over the last decades research into cognitive number processing has made 

considerable progress and one of the central questions has been how basic numerical 

knowledge is represented in our minds (Carey, 2001; Dehaene, 1999b; Dehaene, Piazza, 

Pinel, and Cohen, 2003; Nieder and Dehaene, 2009; Spelke, 2000; Whalen, Gallistel, and 

Gelman, 1999). It is believed that humans have an innate system for number 

representation (Dehaene, 1997) also present in human infants and animals. This system is 

considered as an abstract, non-verbal representation of magnitude, and mostly, 

independent of language. Although the representation of exact magnitudes can be shaped 

by other numerical information acquired during the early school years, it needs to be 

learned, since it is not part of the preverbal human core quantity representation. 

Moreover, magnitude information is encoded or mapped in various symbolic notations 

(e.g. Arabic, number words) allowing a more precise manipulation of quantity and having 

an effect on individuals’ abilities to compare and represent certain magnitudes (Gilmore, 

McCarthy, and Spelke, 2010; Holloway and Ansari, 2008; Moyer and Landauer, 1967; 

Temple and Posner, 1998). There is enough evidence proving that children and adults can 

manipulate numerical information without symbols (Barth, La Mont, Lipton, and Spelke, 

2005; Pica, Lemer, Izard, and Dehaene, 2004; Whalen et al., 1999) and the use of these 

numerical symbols serves to increase the precision of magnitude representation 

(Holloway and Ansari, 2008). In turn, the general view is that there is a pre-existing 

intuitive system, a core quantity knowledge, that forms the basis for the development of 

symbolic representation. In order to have a better understanding of the general framework 

of mathematical cognition, the most basic concepts and most important models will be 

described in the numerical formats section.   
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1.1 An innate system for magnitude 
The ability to estimate magnitudes is based on an Approximate Number System 

(ANS). This system is essential for the development of numerical skills and it is present 

in human and non-human species (Butterworth, 2010; Cantlon, Platt, and Brannon, 2009; 

Nieder and Dehaene, 2009). Comparative studies have shown that a variety of non-verbal 

animals and human infants are able to detect the approximate difference in magnitude 

between two sets and perform elementary calculations (Agrillo, Piffer, Bisazza, and 

Butterworth, 2012; Dehaene, 1999a; Flombaum, Junge, and Hauser, 2005; Rumbaugh, 

Savage-Rumbaugh, and Hegel, 1987; Woodruff and Premack, 1981). The ANS plays a 

crucial role in the human capacity for estimating and comparing approximate 

numerosities during the course of numerical knowledge development (Feigenson and 

Halberda, 2004; Gallistel and Gelman, 2000). Nevertheless, this system is also involved 

in more complex numerical knowledge, including arithmetic (Butterworth, 2010; 

Gilmore, McCarthy, and Spelke, 2007; Gilmore et al., 2010). The ANS has been assessed 

in several studies using non-symbolic number comparison tasks (e.g. the identification of 

the larger amount between two arrays of dots or objects). Studies suggest that infants and 

humans, and even animals, have a domain-specific representation of number and 

elementary arithmetic operations (Feigenson and Halberda, 2004; Starkey and Cooper, 

1980). Behavioral studies show number perception and discrimination abilities in the 

non-verbal stages of infants, and in animals that also lack of verbal communication. This 

type of performance can be found in animals without training in numerical tasks and in 

inexperienced rhesus macaques (Flombaum et al., 2005). Hauser et al., (2003) further 

suggested that monkeys detect violations in operations of small sets of items, but only 

when the ratio between the observed and the expected outcome is favorable. On the other 

hand, single-cell recording studies have shown number-selective neurons in monkeys’ 

prefrontal and parietal areas, comparable to the prefrontal and parietal number-sensitive 

areas in the human brain (Nieder and Dehaene, 2009). Sensitivity of infants towards 

quantity happens at a very early age (Libertus and Brannon, 2009). They can discriminate 

between groups of objects when the quantities involved are small (1, 2 or 3 items; Antell 

and Keating, 1983; Starkey and Cooper, 1980; Strauss and Curtis, 1981). Lipton and 

Spelke (2003) and Xu and Spelke (2000) showed that 6-month-old infants can also 
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discriminate between large sets of objects such as arrays of 8 dots or from an array of 16, 

but fail to discriminate 8 from 12. At 9 months, infants are able to discriminate 8 from 12 

but fail to discriminate 8 from 10 (Lipton and Spelke, 2003).  Infants can also engage 

rudimentary arithmetic; Wynn, (1992) showed five-month-old participants additions and 

subtractions on small sets of objects. Thus, sensitivity of infants towards quantity happens 

at a very early age (Libertus and Brannon, 2009).  

This sense of approximate magnitude is based on Webber’s law. It states that the 

discriminability between two numerosities varies as a function of the ratio between them. 

In other words, for equal numerical distances, discrimination of two numbers worsens as 

their numerical size increases. Proof of this is the existence of distance and numerical size 

effects (Moyer and Landauer, 1967). These two effects are not only present in humans but 

also in animals and they index the activation of the analogue magnitude system (Dehaene, 

1992, 1999b; Gallistel and Gelman, 1992). Moyer and Landauer (1967) were the first to 

demonstrate the distance effect with a numerical comparison task. They proved that the 

accuracy of magnitude discrimination was influenced by both the linear distance and 

absolute magnitude value.  For example, we know that discriminating the relative 

magnitude of 1 versus 8 is faster than for 1 versus 3; or that discriminating the relative 

magnitude of 1 versus 9 is faster than for 11 versus 19. Thus, the speed of processing also 

decreases proportionally to the number size being represented (number size effect). In 

general terms, Weber’s law is taken as a key characteristic of core numerical knowledge 

(Dehaene, 1992, 1999b; Gallistel and Gelman, 1992).  

This core numerical system is included in all models of numerical cognition: The 

Triple Code model (Dehaene and Cohen, 1995; Lemer, Dehaene, Spelke, and Cohen, 

2003) proposes this core numerical representation to be an analogue magnitude or 

quantity code accessible from all formats of numbers; also McCloskey´s Abstract Code 

Model proposes an abstract semantic around which a whole model is built, similar to 

what Campbell and Clark (1992; 1998) refers as “Analogue Magnitude Representation”.  
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1.2. Numerical formats 
 There are different notations or formats through which magnitudes can be 

accessed. Number symbols are generally acquired in at least two forms: Arabic numerals 

(1, 2, 3...) and number words (one, two, three…). Contrary to core magnitude knowledge, 

symbolic numerical codes are culturally established (Ansari, 2008) and therefore they are 

learned and retrieved from long-term memory. In turn, the phonological code for the 

Arabic digits is not specified, mainly because the relation between the visual symbol 

representing the magnitude and its specific verbal format is arbitrary. The influence that 

number codes have in magnitude processing has been of special interest over the past 

years (Cohen Kadosh, Lammertyn, and Izard, 2008; Damian, 2004; Dehaene et al., 1997; 

Kadosh and Walsh, 2009; Nathan and Algom, 2008; Noël et al., 1997; Seron and Noel, 

1995). The general assumption is that number representation can be directly influenced 

by number codes and that number codes affect the manipulation of number representation 

(Noël and Seron, 1997; Zhang and Norman, 1995).  Hence, a debate has been established 

in regard to the existence of one unique numerical representation, independent from the 

surface code (Dehaene and Cohen, 1995) or instead, notation specific representations 

(Cohen Kadosh, Cohen Kadosh, Kaas, Henik, and Goebel, 2007). In fact, all the proposed 

models for the architecture of the numerical system try to provide a comprehensive 

account of the numerical representation system based on different numerical formats and 

modalities.  

The Abstract-Code Model (McCloskey, 1992; McCloskey, Caramazza, and 

Basili, 1985) proposes a modular architecture of the numerical representation system 

based on three modules (comprehension, production and calculation). Each module is 

connected to a central magnitude code defined as both abstract and amodal (see Figure 1). 

The model’s conception is that there is an abstract semantic representation level on which 

arithmetic fact retrieval from long-term memory is built. In addition, arithmetic facts 

retrieval is independent from any input format (Arabic, verbal) and processed through an 

abstract semantic representation system (e.g. 2x5 and two times five are processed in the 

same central system). The abstract semantic module constitutes a compulsory filter 

engaged in all number processing operations and calculation mechanisms. With regard to 

number codes, this model implies that core numerical processing is achieved independent 
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on the surface code once this code has been transcoded to the abstract semantic 

representation. Thus, no interactions between numerical formats and core magnitude 

processing are proposed. 

 

Figure 1. Illustration of the Abstract Code Model (McCloskey, 1992; McCloskey et al., 1985) 

 

In contrast, the Encoding-Complex Hypothesis by Campbell and Clark 

(Campbell and Clark, 1988, 1992) is based on the assumption that multiple formats are 

connected in a sort of encoding-decoding network of numerical computations. The 

strengths and weaknesses of those connections will directly depend on both the task and 

individual peculiarities mediated by learning experiences. The core of the Encoding-

Complex Model resides in the number of effective networks available to operate 

efficiently at three levels: comprehension, production and arithmetic-fact retrieval, which 

is related to practice and familiarity with the specific formats (Campbell and Epp, 2004; 

Campbell and Xue, 2001). To exemplify how the model functions, the authors propose 

that whenever a numeral is presented, different formats of representations are activated at 

the same time as an “associative network”. All the information associated with the format 

in the specific task, becomes more or less active depending on an inhibitory and 

excitatory mechanism. For example, during Arabic-to-verbal transcoding the model 

allows a direct association between the two codes (i.e. reading aloud implies transcoding 

from the visual- Arabic code to the verbal format) combined with indirect associative 
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connections (e.g. mental number lines, visual-motor procedures) (Campbell and Clark, 

1992). 

Another model attempting to explain the functioning of the number representation 

system is the Triple-Code Model (Dehaene and Cohen, 1995; Dehaene et al., 2003). This 

model postulates that numerical information is based on three representational systems: 

visual-Arabic, verbal-auditory and analogue quantity or magnitude code. These three 

distinct systems exchange information during numerical operations and, depending on the 

task, will recruit one specific code (see Figure 2). The model’s prediction is that some 

operations (e.g. arithmetic facts) are learned and stored verbally, when problems are 

presentenced in an Arabic code (e.g. 3x5) they are converted into a verbal format (e.g. 

three by five) and therefore retrieved through a verbal route. On the other hand, the 

analogue magnitude representation is independent from surface codes and accounts for 

the semantic of numbers. In this representation, access to quantity would not be mediated 

by any format since the model assumes that only the analogue code has the inherent 

meaning of magnitude. Thus, as in the Abstract Code Model, any effect of the surface 

code should be additive. 

 

Figure 2. Illustration of the Triple Code Model (Dehaene and Cohen, 1995; Dehaene et al., 2003). 

	

1.3. Neuroimaging Evidence 

One of the Triple Code Model strengths is its explicit neuroanatomical proposal 

(Dehaene, Piazza, Pinel and Cohen, 2003), by which there are three neuronal circuitries in 
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the parietal lobes to account for each of the three proposed numerical systems. Based on 

meta-analytic neuroimaging data, this model predicts selective neural activation 

depending on the type of numerical information to be processed.  Specifically, these 

authors (Dehaene, 2009; Dehaene et al., 2003; Nieder and Dehaene, 2009) proposed a 

neuroanatomical version of their Tripe Code Model with three parietal circuits for 

number processing: the Intraparietal Sulcus (IPS), the Angular Gyrus and the Posterior 

Superior Parietal System. The IPS would process core magnitude representations. The left 

Angular Gyrus would support the manipulation of numbers in verbal form; and the 

Posterior Superior Parietal System would support attentional orientation of the spatial 

dimension of numbers (i.e. the Mental Number Line).  

 

 
 
 
Figure 3. Schematic Functional and Anatomical Architecture of the Triple-code Model (Dehaene and 
Cohen,1995). The localization of the main areas thought to be involved in the three numerical codes is 
depicted on a lateral view of the left and right hemispheres. The arrows indicate a functional transmission 
of information across numerical codes. 
 
 
 Several studies have explored the representation of numbers as a function of the 

different notations in the IPS using functional Magnetic Resonance Imaging (fMRI). The 

common finding among these studies was that the IPS was activated during numerical 

processing independently of numerical notation (Chochon, Cohen, van de Moortele, and 

Dehaene, 1999; Dehaene, 1996; Dehaene, Spelke, Pinel, Stanescu, and Tsivkin, 1999; 

Piazza, Mechelli, Butterworth, and Price, 2002; Pinel, Dehaene, Rivière, and LeBihan, 

2001). Therefore, the main hypothesis is that the representation of numbers in an abstract 

fashion engages the IPS, which is considered the neural substrate for core numerical 
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representation (Bhatia and Ritchie, 2012; Cantlon, Libertus, et al., 2009; Dehaene, 

Dehaene-Lambertz, and Cohen, 1998; Dehaene et al., 1999; Eger, Sterzer, Russ, Giraud, 

and Kleinschmidt, 2003; Kadosh and Walsh, 2009; Nieder and Dehaene, 2009; Piazza, 

Pinel, Le Bihan, and Dehaene, 2007; Pinel et al., 2001; Rosenberg-Lee, Tsang, and 

Menon, 2009; Venkatraman, Ansari, and Chee, 2005). However, the notion that the IPS is 

the key region for number processing has been challenged. Many neuroimaging studies 

reported activation in regions of the frontal cortex during number processing (Cohen 

Kadosh, Cohen Kadosh, Kaas, et al., 2007; Dormal, Dormal, Joassin, and Pesenti, 2012; 

Eger et al., 2003; Franklin and Jonides, 2009; Hayashi et al., 2013; Kadosh and Walsh, 

2009). It is proposed that although there might be an abstract representation system of 

numerical magnitude in the brain, it is not only limited to the IPS, but includes regions 

across the parietal cortex that are engaged in number processing and frontal regions 

which are activated dependently of the format being processed (see Sokolowski, Fias, 

Mousa, and Ansari, 2016) .  

There are other studies that show another active circuitry of the parietal cortex 

affected during mathematical operations, the left Angular Gyrus. These networks show 

more activation during the performance of exact arithmetic such as multiplications or 

additions, those sorts of operations in which the verbal format is involved and needed for 

arithmetic fact retrieval (Dehaene, 1992; K. M. Lee, 2000).  On this subject, those studies 

comparing different notational effects (e.g. verbal versus Arabic) while performing 

simple arithmetic show that difficulty increases with the verbal format condition 

(Campbell and Alberts, 2009; Cohen Kadosh, Henik, and Rubinsten, 2008; Damian, 

2004; Noel et al., 1998). Other neuroimaging techniques such as Event-related Potentials 

(ERP’s) have also shown parietal activation during performance of simple arithmetic in 

different formats and modalities (Dehaene, 1996, 1997).  

 Apart from the areas mentioned before, there are classical language areas in the 

left hemisphere that are active during the processing of numbers in their verbal notation, 

though the quantity code is not affected (Dehaene and Cohen, 1991; Dehaene et al., 

1999). In this regard, the main claim is that numerical symbols do not modify the number 

core representation when they are incorporated into the numerical system, although recent 

views hypothesize that symbols introduced in the math system may be linked to quantity 
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in an automatic manner (Dehaene, 2009). In this way, format dependencies on the 

distance effect can be explained (e.g., Cohen Kadosh et al., 2007).  

 How the process of integration of numerical symbols occurs is still uncertain and 

unspecified however. Actually, there are recent neuroimaging findings challenging 

previous views and pointing more directly to the fact that the analogue magnitude 

representation can be somehow affected by verbal notation systems (Nuerk, Weger, and 

Willmes, 2005; Salillas, Barraza, and Carreiras, 2015; Salillas and Carreiras, 2014). 

These findings open a debate about the possible influence of language in magnitude 

representations, and highlight the importance of studying the impact of the verbal format 

(Dehaene, 1992, 1996; Salillas and Carreiras, 2014). These studies add upon the notation 

specificity debate (Cohen Kadosh, Henik, et al., 2008), showing some modulation of 

neural signatures in core numerical representations by language and verbal numerical 

symbols. 

In conclusion, there is a general consensus that numerical formats activate 

differently the magnitude representation system in the brain depending on the format. 

Symbols seem to change the neural basis of number processing and access to magnitude 

might be modulated by the input format (Campbell and Epp, 2004; Cohen, Ito, and Hatta, 

2003; Cohen Kadosh, Cohen Kadosh, Kaas, et al., 2007; Cohen Kadosh, Henik, et al., 

2008; Dehaene, 2009; Fias, Reynvoet, and Brysbaert, 2001; Kadosh and Walsh, 2009; 

Sokolowski et al., 2016). 
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2. Language and Number Representation	
 Language constitutes the basis of communication and is the most powerful tool 

not only to share actions or ideas, but also numerical concepts. Although language is the 

media for transmitting these abstract concepts, the role of language in the evolution of the 

innate sense of magnitude is not properly defined by any existing theory. The current 

view is that some basic aspects of number cognition development (e.g. arithmetic facts, 

counting) strongly depend on language (Butterworth, 2010; Carey, 2001; Delazer et al., 

2005; Gelman and Butterworth, 2005; Nieder and Dehaene, 2009; Piazza, 2011; Salillas 

and Wicha, 2012; Spelke and Tsivkin, 2001). It is well known that solving simple 

arithmetic problems involves language processing. Nevertheless, there is also support for 

the idea that language and numerical ability are independent and thus have different 

underlying processes (Cappelletti, Butterworth, and Kopelman, 2001; Cipolotti, 

Butterworth, and Denes, 1991; Varley, Klessinger, Romanowski, and Siegal, 2005). In 

turn, the questions of whether and how language modifies our numerical system, as well 

as what are the neural bases of such possible modulations are not completely responded 

to date. In this section we are going to review the influence language may have in the 

numerical knowledge and how this connection is reflected in the brain.  

2.1. The link between language and numbers 

 First, the role of language in number development has been the focus of some 

research (Carey, 2004). During the first stages of development, language is obviously part 

of the process of the acquisition of a more complex numerical knowledge beyond the 

approximate quantity sense that humans and non-humans share (Feigenson, Dehaene, and 

Spelke, 2004; Gordon, 2004; Hodent, Bryant, and Houde, 2005; Pica et al., 2004). For 

example, the ability to solve complex calculations is based on our capacity to manage 

numerical procedures that are mediated by verbal reasoning (i.e. language). A high level 

of mathematical reasoning can only be reached if an exact quantity representational 

system is present, and this is possible thanks to language (Carey, 2004; Feigenson et al., 

2004).  The link between language and number appears before any mathematical learning 

and formal instruction with the acquisition of number words and counting (Dehaene et al., 

1999; Feigenson et al., 2004; Gelman and Galistell, 1979; Wynn, 1990).    
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 On the other hand, studies on cultures with a very limited range of number words 

to refer to numerical concepts provide us with relevant insights about the relation between 

language and mathematics. Pica et al. (2004) investigated the Munduruku (an Amazonian 

tribe) who only have five number words. In their study the Munduruku were able to 

compare the relative magnitude of large numbers of dots, with a similar performance to 

the French-speaking controls. Similarly, Gordon (2004) asked participants from the 

Piranha culture in Brazil, which only has words for “one” and “two” and a single term for 

larger quantities (“many”), to build sets of nuts or batteries that matched an example set 

in number. Participants were accurate in constructing sets of one, two and sometimes 

three objects; however, when they had to construct sets of numbers larger than three 

precision dropped. The conclusion to be drawn from these studies is that development of 

exact magnitude is based on the acquisition of numerical verbal forms but once they are 

mastered, language (verbal format) is not compulsory to manipulate exact quantities. 

Indeed, exact arithmetic, contrary to approximate number processing, is thought to be 

represented in a specific language-coded format. 

 In turn, a preverbal system is based first on the “approximate number system” 

(ANS), which is approximate and becomes more imprecise as numerosity increases 

(following Weber’s law) and another system, perhaps more debatable, restricted to the 

precise and automatic processing of sets of 1 to 3 objects, often referred to as the “object 

tracking system” (Feigenson and Halberda, 2004). These systems will be, however, the 

bases for symbolic mathematics, a cultural achievement that will allow humans to reach 

mathematical complexity. Hence, a basic number representational system accounts for 

approximate numerosities and this system is present before language acquisition. A 

verbal counting system should not be essential for having a core numerical 

representation; however, learning verbal numbers seems to be fundamental in order to 

develop the representation of exact quantities (see Carey, 1998, 2004; Dehaene, Izard, 

Pica, and Spelke, 2006; Feigenson et al., 2004; Spelke and Tsivkin, 2001).  

 Furthermore, exact arithmetic is thought to be represented specifically in a 

language-coded format (Butterworth, Reeve, Reynolds, and Lloyd, 2008; Dehaene et al., 

1999; Spelke and Tsivkin, 2001). Exact calculations are learned by rote memory, as 

opposed to approximate estimations or numerosity, which do not rely on language as they 
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are supposed to be held through the quantity code (Dehaene, 2009). Nevertheless, the sole 

linguistic nature of arithmetic facts has also been challenged (McCloskey, 1992; Noël et 

al., 1997; Semenza, Salillas, Di Pellegrin, and Della Puppa, 2016) 

 Understanding the role of language in accessing magnitude is essential to acquire 

a full picture of how numbers are represented and stored. The connection of language 

with the basic aspect of magnitude representation is still an open question (Dehaene, 

Bossini, and Giraux, 1993; von Aster and Shalev, 2007). In this respect, it has been 

proposed a role of language beyond the context of exact arithmetic. Recent findings 

suggest a linguistic permeability of quantity code originated during early learning math 

that would remain in adults’ magnitude representation system (Salillas et al., 2015; 

Salillas and Carreiras, 2014).  These recent findings point to the idea that language may 

have a crucial role in the processing of core numerical magnitude, as there would be 

established a link between them during early math learning and the acquisition of 

numerical verbal symbols.   

2.2. Neuroimaging Evidence 

Within the parietal lobe, the intraparietal sulci are assumed to be essential for the 

appreciation of quantity (see, for a review, Dehaene et al., 2004). We have already 

mentioned the role of the IPS in the processing in numerical magnitudes (Ansari, 2008; 

Cipolotti and Butterworth, 1995; Cohen Kadosh, Henik, et al., 2008; Dehaene and Cohen, 

1995; Dehaene et al., 2003). But when the human brain is processing exact calculations 

we find more active regions apart from the IPS. Neuroimaging studies observed 

activation within fronto-parietal areas for simple and complex arithmetic problems (e.g. 

Gruber et al., 2001; Venkatraman et al.,2005; Delazer et al., 2003).  

Most of neuroimaging studies gather around the idea that human number cognition is 

based in the integration of system for the non-verbal representation of approximate 

quantities and a language-based system for exact arithmetic. Dehaene et al., (2003) 

argued that the left Angular Gyrus is mainly involved in the verbal coding of numbers 

because it was strongly activated during small problems of addition and multiplication 

that require the retrieval of arithmetic facts stored in the verbal memory (Chochon et al., 

1999; Dehaene, 1999a; Dehaene et al., 2003; Delazer et al., 2003, 2005; Grabner et al., 
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2009; Ischebeck et al., 2006; Zago et al., 2001). The left AG seems also to play a major 

role during the transfer of facts between arithmetic operations (Ischebeck, Schocke, and 

Delazer, 2009). For example, by comparing problem solving of small versus large 

problems over different arithmetic operations, a significant difference was found in the 

left AG (Grabner et al., 2009), which supports its role in arithmetic fact retrieval. Within 

exact calculation, the left AG shows greater activation for operations that require access 

to a rote verbal memory of arithmetic facts, such as multiplication, than for operations 

that are not stored and require some form of quantity manipulation. For instance, the left 

AG increased activation for multiplication relative to both subtraction and number 

comparison (Chochon et al., 1999; K. M. Lee, 2000).  Additionally, Delazer (2003, 2005) 

contrasted untrained versus trained conditions in arithmetic facts; this contrast showed a 

significant focus of activation in the left AG. Untrained problems showed stronger 

activation in fronto-parietal areas such as the IPS and the left inferior frontal gyrus than 

previously trained problems. Trained problems, on the other hand, showed stronger 

activation in the left AG than untrained problems. This shift of activation within the 

parietal lobe from the IPS to the AG was interpreted to represent a shift from calculation 

to result retrieval from long-term memory. The left IPS showed significant activations, as 

well as the inferior parietal lobule. These results also indicate that the AG is closely 

linked to the retrieval of information stored in long-term memory. Significant activation 

was found in the left inferior frontal gyrus, which may be accounted for by higher 

working memory demands in the untrained as compared to the trained condition. These 

studies ultimately show that the observed relative increase in activation in the left AG 

was specifically related to result retrieval.  

 Additional of the dissociation between the exact and approximate systems are 

neuropsychological studies with patients suffering from brain lesions (Dehaene et al., 

2003; Delazer and Benke, 1997; Lemer et al., 2003). These studies show double 

dissociations between lesions in left inferior parietal areas and left prefrontal damage and 

lesions in parietal regions: patients with lesions in the left frontal regions and left inferior 

parietal regions showed deficits in performing exact calculations related to verbal 

memory such as multiplications, while the ability of performing approximate calculations 
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(e.g. magnitude comparison) was intact; the opposite was found in patients with lesions in 

parietal regions.  

 In summary, the reviewed brain imaging evidence suggests firstly, that the role of 

language in numerical cognition is conditioned to the exact arithmetic system but 

possibly also on most fundamental numerical knowledge. Secondly, arithmetic facts are 

integrated within language cortical networks mainly because they are learned verbally 

and retrieved by rote. 
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3. Bilingualism  
Bilingualism offers a window to the study of the links between math and 

language. Referring to the same numerosity through to different codes implies 

specificities that should not be ignored. Given that nowadays bilingualism is more the 

rule than the exception, and that around half of the world’s population is bilingual (Bhatia 

and Ritchie, 2012; Grosjean, 2010) and two thirds of the world’s children are raised in a 

bilingual environment (Crystal, 1996), these possible peculiarities for math processing in 

bilinguals require attention. Before getting into a more profound exposition on bilingual 

math we will first introduce some relevant issues regarding bilingualism, relevant to the 

present thesis.  

The term bilingualism refers to those individuals who have learned more than one 

linguistic code for oral and written communication (Grosjean, 2010). One must bear in 

mind that bilingualism should not be simplified as a dichotomy of speaking two 

languages, inside bilingualism we can find a wide range of categories related to fluency 

and other linguistic domains (Centeno and Obler, 2001; Hamers and Blanc, 2000; 

Macnamara, 1967).  There is a wide range of dimensions to take into account when 

categorizing bilingualism: age of acquisition (AoA), percentage of use, context and 

cultural identity among others (Baker, 2011; De Houver, 2009; Flege, Mackay, and Piske, 

2002; Grosjean, 2010; Grosjean and Li, 2012; Hazan and Boulakia, 1993; Hernandez, 

2013; Kroll, Dussias, Bogulski, and Valdes Kroff, 2012; Valdes, Brookes, and Chavez, 

2003) Some of these aspects are relevant for this work: The AoA and the relative 

proficiency. 

A language can be acquired very differently across and within societies, going 

from individuals learning two languages with both languages present in extensive 

contexts from birth (this would be the case of simultaneous bilinguals in regions such as 

the Basque Country in Spain), to late learners of a second language (L2) who have less 

contextual presence in the environment (e.g. learning an L2 without natural immersion). 

The AoA makes the distinction between these two kinds of bilinguals, being the first 

group called simultaneous bilinguals, and the second group late learners of an L2 or late 

bilinguals. The influence of the age of acquisition in the level of competence has been 

challenged in many studies (Bosch and Sebastian-Galles, 2003; Gandour et al., 2007; 

Kim, Relkin, Lee, and Hirsch, 1997; Perani et al., 1998, 2003); some of them supporting 
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the notion of a critical period (DeKeyser, 2005; DeKeyser and Larson-Hall, 2005; 

Lenneberg, 1967). It is well known that some aspects of a language such as morphology 

or phonology do not reach a native level when learned in adulthood (Bialystok and 

Miller, 1999; Long, 1990; Pinker, 1994) and that acquiring an L2 becomes increasingly 

difficult after puberty (Flege, Munro, and Mackay, 1995; Johnson and Newport, 1989; 

Weber-Fox and Neville, 1996). At the neuroanatomical level, separate representation 

networks of bilinguals´ L1 and L2 have been related to differences between both 

languages’ age of acquisition (Abutalebi, 2008; Chee, Hon, Lee, and Soon, 2001; García-

Pentón, Pérez Fernández, Iturria-Medina, Gillon-Dowens, and Carreiras, 2014; Perani et 

al., 1998). 

The level of proficiency defines the bilingual speakers’ ability in the different 

competences of a language (e.g. fluency and comprehension). Balanced bilinguals are the 

speakers who have the same abilities in all the competences of a language, whereas 

unbalanced bilinguals are those speakers whose language abilities are superior in one 

language (usually their L1) than in the other. It is very important to interpret the term 

“balanced” appropriately as an exact equal level of proficiency when assessing its degree 

for research purposes. The importance of this fact will be revisited in following sections.  

Indeed, the level of proficiency has an impact on the degree of brain activation related 

with the early or late age of acquisition. In other words, bilinguals with similar levels of 

proficiency have different level of activation in the L2 compared to L1, having the late 

bilinguals higher activation whereas early bilinguals had no different values of activation 

(Kovelman, Shalinsky, Berens, and Petitto, 2008; Perani et al., 2003; Perani and 

Abutalebi, 2005). 

  The procedures to assess the level of proficiency, and therefore the level of 

bilingualism, include self-reporting measures and linguistic competence tests. The former 

gather information about participants’ AoA, percentage of use or speaking contexts in the 

form of questionnaires and/or interviews (Li, Sepanski, and Zhao, 2006). However, if we 

want a more objective and standarized measure of the individuals’’ proficiency, the most 

common way is to evaluate it by the use of tests. One of the most frequently used 

techniques is the naming task, which requires the naming of pictures of objects, graded in 

difficulty, in both languages. Perhaps the Boston Naming Test (BNT) by Kaplan, 

Goodgalss and Weintraub (1983) is the most known test and one of the most frequently 

used to assess bilingual dominance. The BNT offers a standardized measure based on the 
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performance criteria and enjoys widespread use in clinical and experimental research, 

adapted to at least nine different languages (Moreno and Kutas, 2005; Rosselli et al., 

2000; Salillas and Wicha, 2012; Verhoef, Roelofs, and Chwilla, 2009). 

3.1. Bilingualism and Math Cognition: the case of arithmetic 

Bilingualism could imply a specific case for math. The fact that the bilingual 

manages two verbal codes for the same numerosity sets the question of whether these 

codes are equally represented or, on the contrary, imply an imbalance with consequences 

for math processing. In addition, the aforementioned dissociations between the 

neurofunctional bases for approximate vs. exact arithmetic imply that perhaps exact 

arithmetic is not equally represented in the two languages either. Some studies have 

addressed these questions (Bernardo, 2001; Dehaene et al., 1999; Martinez-Lincoln, 

Cortinas, and Wicha, 2015; Salillas and Wicha, 2012; Spelke and Tsivkin, 2001). 

Initial research on math in bilinguals used bilingualism as a mean for testing the 

approximate vs. exact dissociation.  Given the crucial role of language in exact 

arithmetic, as defended by the Triple Code Model, initial studies focused on this specific 

math process. This approach studied the influence of language in bilinguals arithmetic 

performance, with and without training in their L1 or L2 (Bernardo, 2001; Campbell, 

Kanz, and Xue, 1999; Dehaene, 1999b; Marsh and Maki, 1976; Salillas and Wicha, 2012; 

Spelke and Tsivkin, 2001). Particularly, comparisons have been made in bilingual 

children and adults in terms of stronger and weaker language impact (L1 vs L2) during 

arithmetic-solving tasks (Campbell and Epp, 2004; Frenck-Mestre and Vaid, 1993; 

Rusconi, Galfano, and Job, 2007; Secada, 1991).  

 Thus, bilingualism serves as perfect way for testing the link between exact 

arithmetic and language (Frenck-Mestre and Vaid, 1993; Marsh and Maki, 1976; Rusconi 

et al., 2007; Salillas and Carreiras, 2014; Salillas and Wicha, 2012; Spelke and Tsivkin, 

2001). It is well known that bilinguals tend to perform arithmetic facts (e.g. 

multiplications) in one particular language (Spelke and Tsivkin, 2001). In Spelke and 

Tsivkin (2001) three experiments were conducted in order to sort out the influence of 

language in bilinguals’ numerical representation. There were exact arithmetic problems 

(e.g. additions) and approximate problems (e.g. estimating approximate cube roots), all of 

them presented in the numerical verbal format. Participants were Russian-English 

bilinguals who were trained to solve the problems in one of the two languages. After 
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participants were trained they tended to perform better in the trained language 

independently of it being L1 or L2, and similar performances in the approximate 

operations. This suggests the idea that exact arithmetic is represented in a more language-

specific form. Thus, language and math interact during children´s learning of arithmetic. 

Most of bilingual research on math cognition demonstrates that bilinguals feel 

more comfortable and perform better on the language in which they have learnt arithmetic 

in school than in the other language (Marsh and Maki, 1976) and worse performance 

when numerical problems were posed in bilinguals’ weaker language or L2 (Frenck-

Mestre and Vaid, 1993; Morales, Shute, and Pellegrino, 1985).  

 These questions are pivotal to the present thesis, but our approach differs from 

these early studies. Our main interest is focused on the study of actual specificities in the 

bilingual numerical system as it is acquired in usual bilingualism. Specificities that come 

from a possible unbalance between the two languages that are in turn, the medium for 

math communication and numerical information exchange. Recent evidence suggests that 

in fact, language plays an important role in math learning and that bilinguals’ numerical 

processing is directly modulated by some elements such as the language of math 

instruction.  

3.2. Bilingual math and the language of learning math 

 The consequences of bilingualism in the development of numerical skills have 

attracted interest over the last decades and have taken into account critical factors such as 

AoA, the language of instruction in early learning of math or language proficiency. These 

studies have also permitted a deep look in the role played by language in our math 

system. Based on current evidence, it is assumed that mathematical development in 

bilinguals normally involves one of the two languages preferentially (Bernardo, 2001; 

Grabner et al., 2012; Martinez-Lincoln, Cortinas, and Wicha, 2015; Salillas, Barraza, and 

Carreiras, 2015; Salillas and Carreiras, 2014; Salillas and Wicha, 2012). It is also well-

known that bilinguals often translate or switch languages when carrying out simple 

arithmetic facts or for mathematical thinking in general (Moschkovich, 2007). This 

preference for a language for number processing could be the language in which math has 

been studied (Bernardo, 2001; Clarkson and Galbraith, 1992; Frenck-Mestre and Vaid, 

1993; Geary, Cormier, Goggin, Estrada, and Lunn, 1993; Kolers, 1968).  Nevertheless, 

the question of the language preference for magnitude representations in bilinguals 
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requires other important considerations related with whether and how language connects 

also with our core numerical knowledge (Salillas and Carreiras, 2014). 

 The influence of learning experiences in setting a preferred verbal code for 

arithmetic was vaguely contemplated in the Encoding-Complex Model (Campbell, 1994, 

2005; Campbell and Clark, 1988; Campbell and Epp, 2004). The model claims that the 

bilingual arithmetic memory system keeps a relatively strong link with the language used 

for learning and retrieve arithmetic. The connection between one of the languages and the 

arithmetic memory networks, as well as the analogue magnitude code, will depend on the 

prior experience in direct retrieval of numerical information and not on the proficiency of 

the language (see Figure 4).  

 

Figure 4. Illustration of the Encoding-Complex hypothesis by Chinese-English bilinguals (Campbell and 

Epp, 2004). The arrows have two different colors according to strength. Grey arrows illustrate weak 

integration of the interfacing processing, black arrows represent strong integration.  

 

A more pivotal question highlighted in literature refers to the consequences of 

early learning in adults´ numerical representations. In an educational bilingual 

environment, the language of formal instruction has enormous influence in knowledge 

representation (Clarkson and Galbraith, 1992; Malt and Wolff, 2010) and the influence of 

math learning experiences with one of the two languages has been tested in bilingual 

children (Clarkson and Galbraith, 1992; Cummins, 1984; Cummins and Gulutsan, 1974; 

Kempert, Saalbach, and Hardy, 2011; Moschkovich, 2007; Spelke and Tsivkin, 2001). In 

the case of math, consequences can affect early numerical knowledge development as 

well as math competence later in life. The impact of early learning in arithmetic 

processing networks has been recently investigated also in adult bilinguals. Salillas and 
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Wicha (2012) using ERPs tested arithmetic memory networks in adult bilinguals who 

only learned arithmetic in one of their two languages. Independently of the language 

dominance, bilinguals showed stronger and more accurate arithmetic memory networks in 

the language of learning exact arithmetic. These results led authors to conclude that math 

and language connection is maintained in adulthood and language proficiency does not 

alter the arithmetic networks established during early learning. In a subsequent study, 

Martinez-Lincoln et al., (2015) tested, however, if explicit experience using the language 

in which there is no arithmetic experience (i.e. bilingual teachers repeating arithmetic 

facts and teaching them in the other language to the students) could equate the strength of 

the language in which arithmetic facts were acquired. The same paradigm and technique 

as in Salillas and Wicha (2012) was applied to the special case of elementary school 

teachers, adding a new variable: the language in which the participants had been teaching 

arithmetic for an average of 9 years. This language could be either the language of 

learning arithmetic (LA+) or the other language in which they were proficient but not 

arithmetic facts were acquired (LA-). The authors showed that extensive teaching of 

arithmetic facts in LA- equated the strength of arithmetic facts to the LA+. Crucially, 

once more in this study, the pattern of dominance between languages for arithmetic facts 

was independent from overall proficiency in each language. 

These studies show that language plays an important role in those number (and 

essentially verbal) tasks that require the retrieval of exact arithmetic (Dehaene, 1999b; 

Rusconi et al., 2007; Salillas and Wicha, 2012; Van Rinsveld, Brunner, Landerl, Schiltz, 

and Ugen, 2015). To clarify and in line with Dehane ´s Triple Code Model, exact 

calculations (e.g. multiplication and addition) are thought to be coded in a specific 

language contrary to approximate number processing. The reason is that they are learned 

and retrieved by verbal rote. Thus, until very recently the association between language 

and numbers in bilinguals was conceived in relation to the management of exact 

arithmetic (Rusconi et al., 2007; Salillas and Wicha, 2012).  Very little research has 

considered the specific role of language beyond the context of arithmetic facts. Thus, one 

can consider not only the language of learning, encoding and storing arithmetic facts, but 

a broader concept: The Language of Learning Math (LLmath) as the language used for the 

learning of all mathematical concepts. A linguistic context in which more core numerical 

development is carried out. LLmath includes but is not restricted to the LA+, and it will be 
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contrasted to the Other Language (OL) as the language that, albeit being perfectly fluent, 

is not the language used for early math learning. 

The role of language in mathematics comes from the idea that in early learning 

stages the numerical concepts are manipulated verbally (e.g. multiplication tables, 

equation rules, additions, substractions, matching between numerical symbols and their 

meaning, etc.) and therefore several kinds of numerical information is stored in long-term 

memory preferentially in one language. In that sense, Salillas and Carreiras (2014) 

proposed that language should play a further role also in the more basic magnitude 

representation level. In bilinguals, the basic quantity system seems to be shaped by one 

particular language. Therefore, we need a broader concept to define the language of 

preference for magnitude representation that needs to be independent of the language 

proficiency and beyond arithmetic fact retrieval, that is, LLmath. This proposal was 

initially supported by electrophysiological data, exploring the neuroanatomical and 

functional networks that link the core number representations and language (Salillas et 

al., 2015; Salillas and Carreiras, 2014). This link is hypothesized to occur during early 

math learning (Salillas et al., 2015; Salillas and Carreiras, 2014). 

3.4 Neuroimaging evidence 
 Following the previous section, a critical factor should be how the learning 

process of numerical knowledge is influenced by language and how it determines the 

brain organization and functioning of the numerical system in bilinguals. The neuronal 

correlates in the process of learning exact arithmetic have been widely explored (Dehaene 

and Cohen, 1997; Dehaene et al., 2003; Delazer et al., 2003; Delazer and Benke, 1997; 

Venkatraman, Siong, Chee, and Ansari, 2006). The general finding is a difference in the 

language networks (AG, left inferior frontal gyrus) when comparing exact and arithmetic 

mathematical processing. One study comparing solving exact and approximate 

calculations by bilinguals in one of their languages was Venkatraman et al. (2006). In 

their study, a group of English-Chinese bilinguals were trained in solving approximate 

and exact arithmetic calculations in one of their languages. Afterwards, they were tested 

and scanned using fMRI, and the main findings showed that there was greater activation 

for exact problems presented in untrained vs. trained language in the left inferior frontal 

gyrus and the AG. In contrast, comparison of approximate problems presented in the 

untrained vs. the trained language modulated regions in bilateral posterior parietal cortex.  
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Another study by Lin, Imada and Kuhl (2012), observing this time exact 

calculations, found language differences in the form of greater activation for L2 exact 

addition in the left inferior frontal area in bilinguals. A negative correlation between brain 

activation and behavioral performance during mental addition in L2 was observed in the 

left inferior parietal area. These results provide evidence of the bilinguals’ preference for 

one code in computing mathematical operations.  

 There are also studies that do not focus on training but on the average role of each 

of the languages in bilinguals. Specifically, they have studied the impact of the language 

of learning arithmetic facts in the exact arithmetic system in equally proficient bilinguals, 

thus setting apart LLmath and proficiency, by keeping proficiency constant (Martinez-

Lincoln et al., 2015; Salillas and Wicha, 2012). In Salillas and Wicha (2012) measured 

both the strength of the arithmetic networks and their quality in English-Spanish 

bilinguals who were presented with arithmetic facts solutions in the LA+ (Language of 

Learning Arithmetic1) as opposed to the LA- (Other Language). Solutions could be 

correct, incorrect (3x2=7) or incorrect but related to the correct solution (e.g. 3x2=9). The 

ERP results showed that the N400 effect was larger for incorrect solutions that for correct 

solutions for the LA+, and that this amplitude in the N400 was modulated by relatedness 

only in the LA+. The N400 is thought to reflect the automatic spread of activation among 

representation of arithmetic facts (Niedeggen, Rösler, and Rosler, 1999). Indeed, in the 

LA- there was not an amplitude difference between related and unrelated solutions. 

Therefore, the quality and actual form of those networks was different, less precise, for 

the language in which arithmetic facts was firstly acquired. It is worth to highlight that 

these effects were independent on the relative overall proficiency between languages as 

measured by picture naming and fluency tasks. Martinez-Lincoln et al. (2015) did a 

similar study, but in this case, they tried to solve if explicit experience using LA- in the 

case of bilingual teachers repeating arithmetic facts and teaching them in the LA- to other 

students could equate in strength to that of the LA+. The results showed that extensive 

teaching of arithmetic facts in LA- equated the strength of arithmetic facts activations to 

the LA+. This was demonstrated by similar N400 amplitude differences between correct 

and incorrect solutions in both languages. Although the authors did not report the N400 

relatedness effects, these results show that it was exposure to arithmetic facts in one 
																																																													
1	 Notice the difference between the broader concept of the LLmath and LA+. The former refers to the 
language in which all the mathematical concepts were acquired whereas the latter may simply refer to 
arithmetic facts of a given language (e.g. multiplications). 	
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language that determined the imbalance between languages as in Salillas and Wicha 

(2012). 

In addition to the influence of language in exact arithmetic, the linguistic traces in 

the quantity code as result of early learning processes of numerical verbal symbols has 

also been studied using ERPs. Salillas and Carreiras (2014) dug into the effect of the 

language and early learning into the core numerical representation. The task they used 

was a simple comparison task in which participants did number comparisons on pairs of 

digits. The most interesting part of this study was that authors tested two different groups 

of Spanish-Basque balanced bilinguals whose only difference was their LLmath since the 

authors were looking for a possible association between a specific wording system and 

the core numerical knowledge. Spanish and Basque numerical systems differ in that the 

Spanish system follows the base 10 system (e.g., the number word for 58 is 50 and 8, 

“cincuenta y ocho”) whereas in Basque, number words follow the base 20 system (e.g., 

the number word for 58 is 2x20 and 10 and 8, that is, 40 and 10 and 8, “berrogeita 

hamasei”). Base 20, however, is restricted to number words in Basque, so any impact on 

any number effect under study that is related to this vigesimal system should be 

interpreted as coming from the number word and therefore linguistic. The results showed 

that a different ERP pattern was associated to the Basque wording system (base 20) as a 

function of the LLmath. The most important finding was that an earlier N1-P2 distance 

effect appeared for pairs of digits related through the base 20 system and only for those 

participants whose LLmath was Basque. This component involves the transition wave from 

a negative peak at 100 ms to a positive peak at 200 ms, and usually indexes numerical 

semantic processes (access to quantity), together with a subsequent P2p2. This led the 

authors to suggest that verbal signatures in the core magnitude representation system are 

due to early learning math. In a subsequent experiment using EEG oscillatory analysis 

and the same data as in their previous study, the same authors provided consistent 

evidence supporting the same hypothesis. They observed that the brain waves whose 

frequency was close to the band of 40Hz were synchronized (gamma band 

synchronization) to numbers that were related through the vigesimal system, only for the 

group whose LLmath was Basque. Synchronized electrodes were localized to the left 

hemisphere in frontoparietal sites and then extended bilaterally. As numerical comparison 
																																																													
2 A number-specific ERP component emerging over the parietal areas around 200 ms after stimulus 
presentation. 
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of Arabic digits does not imply a verbal code, all these effects would originate in number 

words. Importantly, and similar to Salillas and Carreiras (2014), very proficient bilinguals 

whose LLmath is Spanish did not show this synchronization in the gamma band. These 

results provide information about when number words attach to quantity in the balanced 

bilingual participants, during early math learning. Ultimately, what these studies show is 

that verbal input during simple numerical tasks is not necessary for obtaining verbal 

effects, which influence our quantity manipulation. 

 To sum up, the results showed in the previous studies suggest that language plays 

an important role in exact arithmetic and it could influence the core numerical 

representation. Additionally, arithmetic facts are integrated in language cortical networks 

mainly because they are learned verbally and retrieved by rote, but the link of math and 

language does not seem to be restricted only to that, and a possible linguistic shaping of 

the basic quantity representation system can be proposed (Salillas et al., 2015; Salillas 

and Carreiras, 2014). This latter proposal will be one of the topics of research in the 

present dissertation, in the special case of Develomental Dyscalculia.  Since the reviewed 

papers in this chapter show that bilinguals have a preference for one code in mathematics 

(i.e. LLmath), this might have consequences for cases in which basic numerical knowledge 

is altered, such as developmental dyscalculia. This syndrome is of special importance in 

the understanding the processing of mathematics at a neuronal level and also bilingual 

dyscalculia can help to understand the links between math and language.



 

	

51	4.	Unbalanced	Math	in	Bilingual	Minds?	

4. Unbalanced Math in Bilingual Minds?	
According to the proposed relevance of early learning in setting (1) the strength 

and quality of arithmetic memory networks and (2) a preferential link between one of the 

languages and core numerical knowledge, a most essential question arises: Are the two 

number words systems in a bilingual equally represented? Most of the experimental work 

in this thesis addresses this question. This is to say that a proficient bilingual may have an 

equally strong representation for the word ‘sea’ and the word ‘mar’. However, the same 

bilingual might present an unbalanced representation for number words, ‘one’ vs. ‘uno’. 

As we will see, a straightforward way of measuring such an unbalance is through the 

study of language switching and the relative costs implied in the switching between the 

two number word systems. Language switching has been profusely studied in bilingual 

language cognition, as we expose below. 

4.1. Switch cost as a measure for lexical unbalance for math 

One commonality to all bilinguals is the ability to switch between languages. 

When bilinguals perform this switch, there is always an effort. This effort is known as 

switch cost (Costa and Santesteban, 2004; Jackson, Swainson, Cunnington, and Jackson, 

2001; Meuter and Allport, 1999; Palmer, van Hooff, and Havelka, 2010). Balanced 

bilinguals switch between L1 and L2 indistinctly with the same effort; this is known as 

symmetric switch cost. However, unbalanced bilinguals shown an asymmetry in the 

switch, that is to say the switch in one direction always takes more effort than in the 

other; this is known as asymmetric switch cost (Costa and Santesteban, 2004; Duñabeitia, 

Dimitropoulou, Uribe-Etxebarria, Laka, and Carreiras, 2010; Meuter and Allport, 1999). 

In the last decades, switch cost has been examined in numerous ways and there are 

several models that aim to explain this switch of which two are worth mentioning.  

 Though one may came across different ideas of how bilinguals process and switch 

languages, there are two main views on the consequences of frequent switching between 

languages in bilinguals. There are authors that propose that bilinguals have advantages 

over monolinguals in attentional resources, memory skills and executive control 

mechanisms. In other words, speaking several languages can lead to benefits that go 
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beyond the realm of language, impacting on global cognitive functioning (Bialystok, 

Craik, and Luk, 2012). These advantages are somehow boosted by bilingualism due to the 

constant need of bilinguals to inhibit one of their languages while they use the other. This 

language inhibition is believed to be a part of a greater general mechanism of inhibition 

and since language inhibition is used every day it helps to improve the general inhibition 

mechanism (Abutalebi et al., 2012; Craik and Bialystok, 2006; Garbin et al., 2010). 

Another view on this matter is that the mechanism of inhibition used in languages 

belongs solely to the language system and therefore is not part of any general mechanism 

(Abutalebi et al., 2008; Calabria, Hernandez, Branzi, and Costa, 2012). 

 The first model to account for an asymmetry in the switch is the Revised 

Hierarchical Model (RHM) by Kroll and Stewart (1994). In this model L1 and L2 lexical 

representations are stored in separate lexicons that are connected to each other and to a 

common semantic system. The strength of the connections proposed in this model is 

asymmetric since the connections from the lexical representations in the L2 to their L1 

translations are stronger than the other way around. Additionally, L1 words activate 

conceptual representations with more strength than L2 words do. This model assumes that 

these asymmetries disappear once the bilinguals become more proficient in their L2 since 

the links between the L2 and the conceptual representations become stronger.  

The Inhibition Control (IC) hypothesis (Green, 1998) proposes that bilinguals’ 

expressing and comprehending a communicative intention may be an inherently 

competitive process. Managing competing systems such as phonology, syntax, prosody 

and in reading they must manage distinct mappings of orthography to phonology. In other 

words, syntactically-specified lexical concepts in different languages might compete for 

selection (Green, 1986, 1993, 1998; Hermans, Bongaerts, De Bot, and Schreuder, 1998; 

M.-W. Lee and Williams, 2001; Poulisse, 1999). This models’ proposal is that bilinguals 

may become adept specifically at selecting responses in the face of competing cues even 

in non-verbal tasks (Bialystok, Craik, Klein, and Viswanathan, 2004; Craik and 

Bialystok, 2006), thus, such competition is resolved by inhibiting any active, non-target 

language competitor. In the case of unbalanced bilinguals, it can take longer (and 

therefore more effort) to switch into the more dominant language (L1) compared to the 
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less dominant language (L2). Although the precise circumstances in which this type of 

asymmetry arises are not established by the IC theory. 

Another model, the BIA+ (Dijkstra and van Heuven, 2002), proposes that 

language information is accessed through the lexical representations of words. This 

model is an update of the Bilingual Interactive Activation (BIA) model (Dijkstra and Van 

Heuven, 1998), which is itself a bilingual extension of the Interactive Activation model 

(McClelland and Rumelhart, 1981). It is a word recognition model and is based on the 

hypothesis that bilinguals have a shared bilingual lexicon and each word is recognized as 

belonging to one language or another. It is basically the ability to access the right word in 

the right context. When a word is presented to a bilingual, both languages would be 

initially activated. Once the word is recognized, the use of language nodes (i.e. language 

tags) selectively inhibit the words in the other language producing lexical decision.  The 

original BIA model contained a representational layer with two language nodes (one for 

each language) and these language nodes had top-down connections to the lexicon. Each 

language node collected activation from words of the corresponding language and 

inhibited words from the other language, processing costs following a language switch 

were the result of inhibition of the inappropriate language. However, the BIA+ model 

accounts for these switch costs as they are almost exclusively the result of executive 

control factors and thus external to the language system and related instead to a more 

general control mechanism (Dijkstra and van Heuven, 2002), similar to Green’s IC 

model. All in all, albeit implying some differences the two models account for an 

asymmetry in the switch for unbalanced bilinguals.  

 This aspect is of special relevance for this thesis: first, we will observe the 

symmetry in switches between number words as an index of the balance or unbalance 

between the two number word systems, positing that even in overall balanced bilinguals 

an unbalance should be shown for number words; second, we will study the nature of the 

control system that operates on number words in bilinguals, positing that, although the 

relative unbalance for number words mismatch the otherwise balance for general 

language in proficient bilinguals, very likely the control mechanism that control for 

relative activations is shared with language and with other cognitive domains. 
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4.2.  Neuroimaging evidence 
This section comprises part of the neuroimaging evidence supporting the idea of 

both switch costs based on the models reviewed in the previous section. Bilingual 

language processing and control has been investigated in numerous studies (Abutalebi et 

al., 2008; Abutalebi and Green, 2007; Chee, Tan, and Thiel, 1999; De Bleser et al., 2003; 

Hernandez, Dapretto, Mazziotta, and Bookheimer, 2001b; Hernandez, Martinez, and 

Kohnert, 2000; Perani et al., 2003; Swainson et al., 2003; Wang, Xue, Chen, Xue, and 

Dong, 2007; Yetkin, Yetkin, Haughton, and Cox, 1996). A common finding in these 

studies is a significant difference in activation in the brain regions involved in language 

switching. For example, Hernandez et al. (2001b) performed an fMRI study with early 

Spanish–English bilinguals who had to name objects in one language or switch between 

languages. Increased activity was found in the left dorsolateral prefrontal cortex for the 

switching condition relative to the non-switching condition. Similar findings were 

reported by Chee, Soon, and Ling Lee (2003). Additionally, Rodriguez-Fornells et al. 

(2002) investigated the neural correlates of language selection. They recruited a group of 

early Catalan–Spanish balanced bilinguals. The main aim of their study was to determine 

how bilinguals inhibit the non-target language (Catalan in that study). They addressed this 

question by combining ERPs and fMRI. The results were compared to a control group of 

Spanish monolinguals selecting visually presented real Spanish words intermixed with 

pseudo-words. Activation of a left anterior prefrontal region (Brodmann areas 45 and 9) 

was only observed in the group of bilinguals. Aside from emphasizing this selective 

effect for bilinguals, we stress that this study confirms that even highly proficient 

bilinguals need inhibition mechanisms. 

Another ERP study by Jackson et al. (2001) examined language switching in a 

digit-naming task. Participants named digits in the target language cued by the color of 

the digit. The N2 component, recorded over the left frontocentral region and typically 

associated with response inhibition, was much more negative when individuals switched 

from naming in L1 (the habitual language) to naming in L2. Such data are consistent with 

the notion that the more dominant language requires more active suppression (see also 

Verhoef et al. 2009 for evidence that attentional engagement as confirmed by the N2 

component amplitude is at the root of different switch cost patterns).  
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Jackson et al. (2001) also examined the effects of switching on activity in the 

parietal cortices and found that switching induced an increase over the parietal cortices in 

the late positive complex (LPC) associated with increased demands on response selection 

as in the Stroop interference. The authors related these results with the idea that language 

switching increased frontal and parietal activity consistent with the requirement to inhibit 

ongoing activity and select a relevant response in the face of competition. 

Complementary to this, Chauncey et al. (2008) studied unbalanced bilinguals and found 

an asymmetric switch cost in another component, the N400. In their study participants 

had to perform a semantic categorization task (classify items as animals or non-animals) 

while before the target words participants were presented with words that were perceived 

unconsciously. These unconscious words could be in the same or different language (L1 

or L2) as the word they had to classify with, being harder to switch from the less 

dominant language (L2) to the more dominant language (L1). The results showed a larger 

N400 modulation for the switch cost in the L2 to L1 direction than vice versa. 

Additionally, Duñabeitia et al. (2010) performed a similar study with early bilinguals who 

showed a switch effect in the N2 component for the both directions of the switch (i.e. L2 

to L1 and L1 to L2) and found no asymmetric switch, concluding that the asymmetry 

observed by Chauncey et al (2008) was language-dominance related. 

In sum, the revised studies in this section demonstrate that switching languages in 

bilinguals requires an extra effort, and that this effort is asymmetric in unbalanced 

bilinguals since one of the directions of the switch shows higher activation or bigger 

amplitude in the ERP components. These switch costs could be due to a general control 

mechanism.  

 These facts establish the ground on which most of this thesis relies, namely, that 

with regard to number words, this unbalance will be set by LLmath and not by general 

proficiency.  The final experimental work aims to further explore the impact of LLmath in 

a more profound level of representation, the core numerical knowledge, essentially 

altered in Developmental Dyscalculia. 
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 5. Math Related Disorders: Dyscalculia.  
 Developmental Dyscalculia (DD) is a disorder of numerical development and 

mathematical learning happening in the frame of normal IQ. It has a prevalence of 6%, 

which makes it as prevalent as dyslexia (a developmental disorder that affects the ability 

to read in otherwise normally developing individuals) and there is also a high degree of 

comorbidity between DD and dyslexia. DD is characterized by slow and error-prone 

learning and retrieval of arithmetic facts from memory (Jordan and Montani, 1997). 

Additionally, there is use of immature calculation, problem-solving and counting 

strategies and a delay in the transition from finger counting to verbal counting and fact 

retrieval (Geary, 2004). Additionally, people with DD present heterogeneous 

symptomatology, including spatial working memory deficits or symptoms due to a failure 

in broad executive functions as attention (Henik, Rubinsten, and Ashkenazi, 2011; 

Rubinsten and Henik, 2009).  

Different explanations of its causes suggest possible core numerical deficits 

(Butterworth, 1999, 2005, 2011; Geary, 2004; Landerl, Bevan, and Butterworth, 2004; 

Piazza et al., 2010; Rousselle and Noël, 2007; Wilson and Dehaene, 2010). People with 

DD potentially lack essential numerosity representation due to functional (Price, 

Holloway, Räsänen, Vesterinen, and Ansari, 2007) and morphological alterations in the 

numerical neural networks (Molko et al., 2003; Rotzer et al., 2008). The prevalent view 

for many years has been that DD is caused by an anomaly in the core magnitude 

representation (Butterworth, 1999, 2005, 2010; Geary, 2004; Wilson and Dehaene, 2010).  

There are alternative explanations emphasizing the role of numerosity-to-symbol 

matching and the subsequent modification of the ANS (Piazza et al, 2010; Noël and 

Rousselle, 2011). Thus, a core deficit could arise later on during symbol acquisition. In 

normal circumstances, the acquisition of number words for counting precedes non-verbal 

Arabic number symbols, which might lead to qualitative modifications in ANS (Piazza, 

Pica, Izard, Spelke, and Dehaene, 2013) that also allow exact calculation. For DD 

children, a process of linearization is impaired (Piazza et al., 2010). In fact, there are 

researchers who have observed specific alteration of the processing of quantity when 

using symbols in contrast to an apparent spared quantity processing when non-symbolic 
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numerical stimuli (i.e. dot patterns) are used (Noël and Rousselle, 2011; Rousselle and 

Noël, 2007). 

5.1. Dyscalculia in bilingual populations.  

Although DD has such a significant prevalence the management of two codes in 

bilingual DD (bDD) is a circumstance no study has yet contemplated behaviorally or at 

the neuronal level. Given the mentioned linguistic imbalances for math in bilinguals, one 

might predict that the input language will matter even more when a core number 

processing deficit occurs in bDD. The differences between the two languages in 

bilinguals described above should be based in differences in the brain networks sustaining 

these effects: either the computation of quantity implies a wider network of interacting 

systems or core number parietal areas show a better integration with the preferred 

language in a sort of neural recycling for that specific symbolic system (Dehaene, 2009).  

The study of syndromes and lesions is a powerful tool to understand the proper 

functioning of the neural networks implicated in math. And although there is no research 

on bDD, this syndrome is the second pillar of this thesis and it will provide 

unprecedented work on DD.  

5.2. Neuroimaging evidence.  

This section summarizes the most relevant neuroimaging studies regarding 

Developmental Dyscalculia trying to find out out which brain regions are affected by this 

syndrome. At the neural level, Intraparietal Sulcus (IPS) differences during the processing 

of non-symbolic numerosities have been reported (Price et al., 2007). Kucian et al. 

(2006), when comparing DD children and controls, found similar activation patterns for 

both groups for approximate and exact calculations but with some activation differences: 

DD children presented weaker and more diffuse activation than the controls. 

Additionally, studies using symbolic notations have found that notation modulates the 

activity of frontoparietal activations, as meta-analysis studies demonstrate (Kaufmann, 

Wood, Rubinsten, and Henik, 2011). In turn, DD children differ from controls in not only 

parietal function but also frontal functions during number processing (Rotzer et al., 2008). 

In fact, some residual numerical processing in DD has been found in frontal areas, 

possibly reflecting a greater use of working memory processes than controls (Cappelletti 
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and Price, 2014). Further, there is evidence of disconnection between the areas linked by 

the superior longitudinal fasciculus in DD. That is, deficient fiber projection between 

parietal, temporal and frontal areas has recently been reported in DD (Kucian et al., 

2014). In addition, transcranial electrical stimulation over left posterior parietal areas 

when learning symbol-quantity associations ameliorates those associations in DD by 

facilitating neuroplasticity (Iuculano and Cohen Kadosh, 2014).  

 In addition, ERP studies that investigated numerical magnitude processing in DD 

children showed distance effects that did not differ between controls and DD at an early 

time window during a symbolic number comparison task (Soltész, Szucs, Dékány, 

Márkus, and Csépe, 2007) . However, at a later time window, the controls showed a 

significant distance effect over the right parietal areas while the DD group showed no 

such effect. After further analysis, the authors showed DD participants also presented an 

effect on the fronto-central electrodes that the controls did not. Therefore, the authors 

suggested executive control differences between groups, in keeping with working 

memory deficits contributing to DD (Geary, 2004). All these studies point to the fact that 

DD is characterized at the neuronal level by atypical properties in parietal and frontal 

regions and that DD children show atypical behavior and atypical functional activation in 

the parietal areas during basic numerical processing.  
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6. The Present Study 
With the aim to provide a proper background for the reader, in the previous 

chapters we have described the main theoretical and empirical insights contemplated in 

Math Cognition and the main topics of interest that concern the present thesis. Evidences 

of the connection of language and numbers have been strongly remarked consistent with 

classical and recent research findings. The impact of language in the accessing to core 

magnitude representation has been postulated as an ongoing research question in 

literature, including neuroimaging studies. In order to understand the role of language in 

the core magnitude system, advances in math cognition research have been followed by 

research on bilingualism. Bilingualism is a key to the understanding of bilinguals’ 

preferences for one of the two codes they have for math and studies about how bilinguals 

manipulate and switch languages have been reviewed. The concept of code switching has 

been introduced as a way to measure the possible unbalance between number word 

systems in bilinguals. Finally, a specific numerical syndrome (Dyscalculia) has been 

described and postulated as an ongoing research in the field of bilingualism.  

In the present study, we will observe two main points: 1) the unbalance for 

numerical wording systems in balanced bilinguals and 2) further exploration of 

LLmath in core numerical systems through dyscalculia using neuroimaging and source 

imaging reconstruction techniques.  

 It has been already shown that bilinguals have a preference for one of their two 

codes in arithmetic representations (Martinez-Lincoln et al., 2015; Salillas and Wicha, 

2012; Spelke and Tsivkin, 2001) and more recently it has been shown that LLmath might 

be the language of preference for accessing magnitude (Salillas et al., 2015; Salillas and 

Carreiras, 2014). This preference is proposed to take place during early math learning. At 

the same time this preference will show an unbalance in the switch between the codes for 

math and consequently, balanced bilinguals will be more “proficient” in their LLmath. 

This effect should manifest as an asymmetric switch cost when switching between 

their two codes for math. 

 These preferences for LLmath should also be consistent in the study of bilingual 

bDD. We will explore how distance effects occur in each of the languages in 
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dyscalculic children as compared to controls and their respective neural source 

activations. 

  Experiment 1 investigates dominance in the codes for math. We hypothesize that 

in L1/L2 balanced bilinguals, the determinant factor for a preferential code for math will 

be early learning experience (i.e. LLmath). In order to sort out this preference we will 

distinguish between the two codes for math: the language for learning math (LLmath) and 

the Other Language (OL) as the determinant factors of this relative dominance. The 

novelty of this experiment is that this LLmath-OL distinction has not been previously 

considered in numerical tasks as the dichotomy L1/L2 is always considered. Based on 

previous ERP switch studies (Chauncey et al., 2008; Jackson et al., 2001) we predict that 

switching between LLmath and OL will generate asymmetric N400 switch costs. A larger 

switch cost should appear in the OL to LLmath transition whereas a lower switch cost 

should be found in the other direction. This asymmetry should be independent from 

L1/L2 proficiency.  

  Experiment 2 aimed the same goal as Experiment 1, but it additionally enquires 

about the roots of this asymmetric switch cost. In order to find out about this, this 

experiment was designed to avoid executive functions and avoid explicit magnitude 

manipulation so as to know whether the imbalance is truly lexically driven (code 

dependent). In this Experiment participants will be unaware of the switch so as to avoid 

the aforementioned general mechanisms. Additionally, we aim to find similar asymmetric 

switches between the codes for math and therefore replicate the results from Experiment 

1. 

 Experiment 3 has the objective of knowing the brain bases of switch cost when 

number words are manipulated and whether they are the same or different than in 

language and in general switch mechanisms. This experiment has also a secondary goal: 

observing if the found unbalance for math found in Experiments 1 and 2 is caused by the 

numerical tasks or contrary, it can also occur in linguistic tasks. 

 Experiment 4 has a different goal than previous experiments. This experiment is 

aimed to tests bilingual developmental dyscalculic children and explore distance effects 

across languages; additionally, brain source estimation of the found ERP distance effects 
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will be performed with MEG to gain knowledge of possible differences in the brain bases 

for the distance effects for bDD as compared to controls.  

Together, these four experiments provide a measure of the brain’s 

electrophysiological response (ERP/MEG) to numerical information and switch cost 

when items are presented in LLmath and in the OL. In the next section, the methods and 

results of the four presented experiments will be described together with the fundamental 

conclusions and implications that this study has in the field of Math Cognition and 

Bilingualism. 

  



	

	

64	 Alejandro	Martínez	

  



 

	

65		

 

 

 

 

 

Unbalanced Math in Bilingual Minds:      
Experiments 1 to 3 

 

 

 

 

 



	

	

66	 Alejandro	Martínez	

 

 

  



 

	

67	Experiment	1	

Experiment 1	

Introduction  
Independence between language and math has been challenged by proposals 

suggesting that the acquisition of number symbols and counting modulates the core 

numerical magnitude system (Halberda, Mazzocco, and Feigenson, 2008; Piazza et al., 

2013). Research on bilingual math representations has provided further empirical support 

by showing that the bilingual numerical system could include linguistic traces (Salillas et 

al., 2015; Salillas and Carreiras, 2014). Hence, a preference for one of the languages not 

only in exact arithmetic but also in the fundamental number representations has been 

suggested. The present study directly investigates this possible lexical unbalance for 

math: that is, whether there is an unbalanced dominance for the two bilingual numerical 

lexicons that runs independently of the relative proficiency in general linguistic 

representations.  

Most of the research about the effects of the linguistic component in the math 

system has focused on exact arithmetic. Several studies suggest that the encoding of exact 

arithmetic is verbal, thus arithmetic facts are stored verbally and subsequently verbally 

retrieved (e.g. Dehaene and Cohen, 1995; Delazer and Benke, 1997; Lemer, Dehaene, 

Spelke, and Cohen, 2003; Spelke and Tsivkin, 2001) but see (Noël et al., 1997; Noel et 

al., 1998). When more than two number words are available in bilinguals, it appears that 

only one of the two languages becomes linked to exact calculation (Campbell and Epp, 

2004; Campbell et al., 1999; Frenck-Mestre and Vaid, 1993; Marsh and Maki, 1976; 

McClain and Huang, 1982). In fact, bilinguals often report the inner switch to one of their 

languages for counting or for arithmetic fact retrieval.  

One crucial question is whether that preferred language is also the dominant 

language, L1 or whether contrarily, bilingualism implies an independent dominance 

pattern for mathematical representations. This question has not been directly addressed 

yet. Some studies have addressed the representation of arithmetic facts in bilinguals 

(Bernardo, 2001; Salillas and Wicha, 2012; Vaid and Menon, 2000), focusing on the role 

of early learning in arithmetic representations. More recently, we have extended the 

question further to the impact of each of the languages in core numerical knowledge: in 
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Salillas and Carreiras (2014) it was suggested that one of the languages might enter into 

the core of magnitude. This language would correspond to the language used for learning 

math during early education (LLmath). Thus, early math learning would impact not only 

arithmetic, but also essential numerical knowledge. However, a direct test of the relative 

dominance between the multiple number words in bilinguals is missing. A classical way 

to study such dominance pattern is through the observation of the cost of switching 

between the two verbal codes. 

Switch costs are found when bilinguals switch languages, switch trials elicit 

longer reaction times and differential ERP effects (Costa and Santesteban, 2004; Macizo, 

Bajo, and Paolieri, 2012; Meuter and Allport, 1999; Moreno, Rodriguez-Fornells, and 

Laine, 2008; Palmer et al., 2010). Specifically, behavioural studies have reported 

asymmetric switch costs in bilinguals with unbalanced proficiency. However, when 

testing balanced bilinguals, language switches are similar in both directions (L2 to L1 and 

L1 to L2; Duñabeitia et al., 2010). In Meuter and Alport (1999), participants named items 

in their L1 or L2. Results showed that bilinguals named items faster in their L1 than in 

their L2 in non-switch trials. However, in switch trials, subjects named items more slowly 

in their L1 than in their L2. Based on the Inhibitory Control (IC) model by Green (1998), 

the authors argued that this additional time is needed mainly because the more dominant 

language (L1) requires more inhibition during L2 naming trials, since inhibition is carried 

on to the next trial, a switch from L2 to L1 needs to overcome this inhibition, hence 

making this switch harder than a L1 to L2 switch. Importantly, a different switch pattern 

seems to appear for balanced bilinguals. Costa and Santesteban (2004) contrasted 

language switching performance between balanced and unbalanced bilinguals and only 

the unbalanced group showed asymmetric switch costs. What determines the asymmetry 

or symmetry according to these studies is the level of proficiency that ultimately modifies 

the mechanisms of inhibition or selection in the two lexicons in production tasks (Costa 

and Santesteban, 2004) or the automaticity of the activations for words in the two 

languages during comprehension (Duñabeitia et al., 2010). 

Asymmetric switch costs have frequently been found in ERP studies in at least 

two different components: the N2 and the N400 (Chauncey et al., 2008; Jackson et al., 

2001; Jackson, Swainson, Mullin, Cunnington, and Jackson, 2004; Verhoef et al., 2009) 
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Being these studies always based on unbalanced bilingual samples, asymmetric switch 

costs uncover the cost of switching to the dominant language. In turn, these components 

are differentially modulated by switch direction, with larger amplitudes for the L2-L1 

switch than in the L1-L2 direction, as contrasted with the corresponding non-switch 

conditions. Dissociation between components is also reported for each switch direction, 

suggesting also neurofunctional differences: Chauncey et al (2008) found a switching 

effect in the N400 when switching in the L2-L1 direction, and in the N250 in the L1-L2 

direction. Overall, behavioural and electrophysiological studies converge in showing that 

relative proficiency between languages modulates switch costs, and switch asymmetry 

appears in unbalanced bilinguals. Therefore, an asymmetry between switch directions can 

be taken as an index of proficiency unbalance between verbal codes. 

 To test whether the LLmath makes a difference in the proficiency pattern for 

number words in balanced bilinguals, we will distinguish between LLmath and the OL as 

compared to the L1/L2 dichotomy. Such distinction has not been considered previously, 

albeit using non-numerical tasks (Meuter and Allport, 1999). Here we will sustain that 

while our bilinguals will be L1/L2 balanced bilinguals in terms of proficiency and general 

language use; early learning experience (i.e. LLmath) is what will determine the 

proficiency pattern for number word representations based on previous findings (Salillas 

and Carreiras, 2014; Salillas and Wicha, 2012). Thus, if what determines the relative 

representational strength of the two numerical lexicons is just overall language 

proficiency (L1/L2), balanced bilinguals should show symmetric switch costs even when 

considering the LLmath-OL distinction for analysis, because both languages would have 

equivalent dominance based on general language functioning. However, if a larger switch 

cost appears in the OL to LLmath transition this would index a different dominance pattern 

for math, based on LLmath. Moreover, only an apparent symmetric switch cost should 

appear when the L1/L2 dichotomy is considered, because when L1/L2 is considered for 

analysis, a latent LLmath, that for some participants coincides with L1 while for others 

coincides with L2, would favour the appearance of comparable switch costs between L1 

and L2. We will present two converging studies addressing this hypothesis.  
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Methods 

Participants 

Participants were twelve healthy right-handed Spanish – Basque bilinguals (9 

females, 3 males, mean age = 22, range = 22-26 years. All of them were exposed to 

Basque and Spanish before the age of 3. Of the 12 participants, 6 learned math in Basque 

and the other 6 learned it in Spanish. From the 6 participants who learned math in 

Basque, 3 were slightly more proficient in Basque. From the 6 participants who learned 

math in Spanish, 4 were slightly more proficient in Spanish. Therefore, LLmath coincided 

with the more proficient language in 58% of our sample, whereas LLmath coincided with 

the less proficient language in 42% of our sample. 

Language assessment 

Language proficiency was assessed in two different ways in both languages 

(Basque and Spanish) which consisted of (1) the Boston Naming Test (Kaplan et al., 

1983) (2) another test, the BEST: The Basque English Spanish Test, was developed 

locally to measure the proficiency in both languages (range 1-77). The procedure of this 

test was similar to the Boston Naming test.  The latter test also included an oral interview 

which assessed not only the general vocabulary knowledge, but also general fluency and 

knowledge of the language, i.e. how participants formulated sentences correctly in both 

languages, verb conjugations, ability to get their messages through, etc. Scoring in the 

interview went from 0 to 5, being 0 the lowest score (complete lack of the knowledge 

being tested) to 5 (complete mastery of the language). Additionally, participants also 

reported percentage of daily use of each language.  A summary of these measures can be 

found in Table 1. Participants reported what they considered their L1 was. Additionally, 

participants reported which of the languages was LLmath (the first language used for math 

learning in school, in which language they learnt arithmetic and which language they 

used for counting and calculation).  
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LLmath=Spanish LLmath=Basque 

Spanish Basque Spanish Basque 
		

BNT 53 42 50 48 
BEST 76 62 76 71 

% Daily use 57 43 50 50 
Interview 5 4.8 5 4.8 

 

Table 1. Scores in the different language tests (Experiment 1): BNT: the Boston Naming Test (Kaplan 
et al., 1983). BEST: The Basque English Spanish Test, developed locally to measure the proficiency in the 
three languages (range 1-77). % of Daily use: The approximate percentage of daily use of the language 
reported by the participants. Interview: A personal interview with the participants in which their general 
language skills were measured and scored from 1 (the lowest) to 5 (the highest).  

 

Stimuli and Procedure 

Stimuli consisted of six numbers in their verbal form. Numbers ranged between 3 and 9, 

using 6 as the reference. Stimuli were randomized with the trials always following this 

order: AABBAA where ‘A’ and ‘B’ are the languages in which the numbers were 

presented (Basque and Spanish). Therefore, there were two non-switch conditions (“AA” 

or “BB”), and two switch conditions (“AB” and “BA”) which will be predictable by 

participants as opposed to Experiment 2 in which the switch will be unpredictable. A total 

of 480 trials were created which were presented (as depicted in Figure 5) in two formats: 

one half (240) in Spanish (e.g. “cinco”- five), and one half (240) in Basque (e.g. “bost”- 

five).  From the total of 480 trials, 120 were number words in Basque preceded by 

Spanish number words, 120 were Spanish preceded by Basque, 120 Spanish preceded by 

Spanish, and 120 Basque preceded by Basque. Distance between the presented numbers 

and the reference number 6 was controlled for and the same numbers appeared in each of 

the languages.  

Participants were in a sound-attenuated chamber. The stimuli were presented 

using Presentation software (version 14.7) on the center of a monitor located 60 cm from 

the participant.  Each sequence began with a fixation point (‘*’) appearing for 1300 ms, 

which was immediately followed by the stimuli, appearing for 500 ms and followed by a 

blank screen for 1500 to 2000 ms, the maximum time to respond. Participants were asked 
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to perform a number comparison task, responding whether the number word displayed on 

the screen was bigger or smaller than 6 by using one of the two buttons of a Logitech 

precision gamepad. In the case that a response was not given, the following trial started. 

The number 6 was used as reference because it is a cognate for Spanish (seis) and Basque 

(sei). 

 

Figure 5. Example of trials (Experiment 1). Participants had to compare numbers as smaller as or 
bigger than 6.  At the beginning of each trial an asterisk (*) was presented for 1300 ms. In each trial the 
stimulus was presented for 500 ms, then an inter-trial screen containing a cross “+” appeared for an interval 
between 1500 and 2000 ms, time in which the participant had to give the answer. Stimuli were Basque (lau-
four, zazpi-seven) and Spanish (ocho-eight, tres-three). Stimuli were divided into 4 conditions: 2 non-
switch conditions (LLmath items followed by LLmath items, OL items followed by OL items) and 2 switch 
conditions (LLmath items followed by OL items, OL items followed by LLmath items). 

 

EEG recording and analyses 

The EEG was recorded from 27 scalp electrodes embedded in an Easy-Cap in a 

10-system array, which was referenced online to the left mastoid. Six free electrodes were 

used to record blinks (below the eye), horizontal eye movements (outer canthi). Electrode 

*

lau

+

zazpi

+

ocho

+

tres

Non-Switch Trials

Switch Trials

1300 ms

500 ms

1500 - 2000  ms

500 ms

1300 ms

1500 - 2000  ms

1300 ms

500 ms



 

	

73	Experiment	1	

impedances were maintained below 5 kΩ. The EEG was amplified with Brain Amp 

amplifiers, with the band pass set from 0.01 to 100 Hz, and sampled at a rate of 1000 Hz. 

The output of the amplifiers was fed into a 32 channel 12-bit analogue-to-digital 

converter on a PC computer. Brain Vision Recorder software was used to deliver event 

codes to the data acquisition PC synchronously with the onset of EEG activity to the 

events of interest. Data were re-referenced off-line to the algebraic sum of the left and 

right mastoids, and subsequently averaged for each experimental condition and time-

locked to the onset of the second number. A digital band-pass filter set from 0.1 to 30 Hz 

was used on all of the data prior to running analyses to reduce high frequency content that 

was irrelevant to the components of interest. Baseline correction used the 100 ms pre-

stimulus. Trials with artifacts due to eye movements, excessive muscle activity, or 

amplifier blockage were eliminated offline before averaging. Artifact rejection criteria 

were a minimum to maximum baseline-to-peak allowed voltage of +-70 µV, a maximum 

voltage gradient of 75 µV per sample point, a maximal difference of 150 µV in intervals 

of 100 ms and a minimum voltage of 0.5 µV in intervals of 50 ms. All electrodes were 

assessed for artifacts. Analyses were reported for each critical stimulus relative to a 100 

ms pre-stimulus baseline.  

Mean amplitudes of relevant latency bands were first analyzed in a 27 (electrode) 

x 2 (Switch: switch/non-switch) x 2 (Direction of switch) repeated measures ANOVA. 

When an interaction by electrode was shown, ANOVAS were performed for the 

electrodes in which this interaction was significant. In a first analysis, the contrast L1/L2 

was considered. Proficiency was considered taking into account the measures displayed 

in Table 1. Items were classified as L1 or L2 items depending on each participant’s L1 

and L2. In other words, for those participants whose L1 was Basque the conditions L1-

L1, L2-L1, L2-L2 and L1-L2 were Basque-Basque, Spanish-Basque, Spanish-Spanish 

and Basque-Spanish, respectively. In contrast, for participants whose L1 was Spanish the 

conditions L1-L1, L2-L1, L2-L2 and L1-L2 were Spanish-Spanish, Basque-Spanish, 

Basque-Basque and Spanish-Basque, respectively. The four conditions were collapsed 

between languages for analysis. Contrasts for switch costs entailed the contrast between 

the switch condition and the non-switch condition for each of the directions (to L1: L2-L1 

vs. L1-L1 and to L2: L1- L2 vs. L2- L2).  
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Figure 6. N400 switch cost effect (Experiment 1). a) N400 switch cost effect for L1 to L2 (left) and for 
L2 to L1 (right). b) An asymmetric switch cost is found between 310-350 ms.: the switch cost only 
appeared for the OL to LLmath switch condition versus non-switch (right) compared to the LLmath–OL switch 
condition versus non-switch (left).	

 

In a second analysis, the contrast LLmath-OL was considered from participants 

whose LLmath was Basque (conditions LLmath-LLmath, OL-LLmath, OL-OL, LLmath-OL, i.e., 

Basque-Basque, Spanish-Basque, Spanish-Spanish, Basque-Spanish, respectively), and 

for participants whose LLmath was Spanish (conditions LLmath-LLmath, OL-LLmath, OL-OL, 

LLmath-OL, i.e., Spanish-Spanish, Basque-Spanish, Basque-Basque, Spanish-Basque, 

respectively). The four conditions were collapsed between languages for analysis, 

providing exactly the same stimuli between conditions. Contrasts for switch costs entailed 
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the contrast between the switch condition and the non-switch condition for each of the 

directions (to LLmath: OL-LLmath vs. LLmath-LLmath and to OL: LLmath-OL vs. OL-OL).  

Results 

 A visual analysis of the ERP data showed that a component peaking between 300 

and 400 ms was overall more negative for the switch conditions than for the non-switch 

conditions. This difference started at 310 ms and ended at 350 ms as revealed by a 

consecutive 50 ms time windows analysis contrasting all switch vs. non-switch trials. 

Symmetric switch costs between L1 and L2 (N350 310-350 ms):  The electrode x 

switch x direction ANOVA considering the L1/L2 distinction showed a main effect of 

switch (F (1, 11) = 16.049, p=.002), and no significant direction x switch interaction (F 

(1,11) =0.07, p>.250), thus showing a symmetric switch cost when the L1–L2 distinction 

was considered (see Figure 6a). 

Asymmetric switch costs between LLmath and OL (N350 310-350 ms.):  The 

electrode x switch x direction ANOVA considering the LLmath-OL distinction revealed 

however, asymmetric switch costs (electrode x switch x direction interaction:  F (1,26) = 

3.826, p<0.0001). Two similar analyses taking the 27 electrodes x switch for each 

direction (one for OL-LLmath vs. LLmath-LLmath and another for LLmath-OL vs. OL-OL) 

were carried out separately: the switch to LLmath analysis showed a significant switch cost 

F (1,11) = 8.381, p=.015. But non-switch cost appeared for the opposite direction, to OL 

(switch effect F (1,11) =.224, p > .250).  A significant switch cost for the OL-LLmath vs. 

LLmath-LLmath direction appeared distributed in most part of the electrodes (Fp1, Fp2, F3, 

F4, C3, C4, P3, F8, T8, T7, Fz, Cz, Pz, FC1, FC2, CP1, CP2, FC6; F (1,11) = 9.02, 

p=.012).  In turn, switch trials were more negative than the non-switch trials only for the 

switch to LLmath (see Figure 6b). 

To further ensure that these switch costs were really dependent on the participants’ LLmath 

and not on an actual proficiency in LLmath vs. OL, we performed correlation tests to the 

relative LLmath-OL proficiency (difference between BNT in LLmath minus BNT in OL). 

These analyses showed no correlation between the relative proficiency in LLmath versus 

OL and the N400 switch cost difference (r=.310, n=12, p=.326).	
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Discussion 
The switch asymmetry found in the ERPs agrees with previous literature in 

unbalanced bilinguals when measuring L1-L2 switching (Chauncey et al., 2008; Jackson 

et al., 2001, 2004; Verhoef et al., 2009). Crucially however, the results point to an LLmath 

dominance over the OL in perfectly L1/L2 balanced bilinguals. In turn, it seems that the 

found unbalance is due to the LLmath-OL dichotomy and not the L1/L2 dichotomy. As 

predicted, an only apparent symmetric switch cost appeared when considering L1/L2 for 

analyses, given that L1= LLmath for the 58% of the participants, whereas L2=LLmath for 

42% of the participants.  

These results are similar to those of Jackson et al. (2001), both in the location and 

in the timing of the switch cost effects. Although they consider their results as part of a 

late N2, we believe that they suit better in an N400 in accordance to the existent literature 

on code-switching (Christoffels, Firk, and Schiller, 2007; Jackson et al., 2001; Verhoef et 

al., 2009). 

These results suggest that it is not the L1/L2 distinction we need to have into account 

when building models of mathematical representation but the LLmath-OL dichotomy, since 

perfectly balanced bilinguals who do not show a switch asymmetry when data in 

collapsed based on their L1 dominance, exhibit an asymmetry when collapsed based on 

an LLmath dominance. 
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Experiment 2	

Introduction 
 Experiment 2 had the same experimental design and goals as Experiment 1, 

however, it implied a very different procedure: (1) instead of using an explicit 

manipulation of quantitative information through numerical comparison, a parity task was 

used. Judgements about parity imply the classification of numbers as odd of even 

irrespective of their numerical magnitude. Thus, only implicit activation of magnitude 

occurs (Dehaene et al., 1993; Gevers et al., 2010; Gevers, Verguts, Reynvoet, Caessens, 

and Fias, 2006). (2) Instead of using an AABBAA language presentation sequence, in 

which the switch is predictable, the language presentation sequence was random. 

According to previous studies (Chauncey et al., 2008) this implies that lexical 

representations should drive possible switch costs. (3) Finally, the procedure of 

presentation of the prime in this experiment was masked. Masked priming would uncover 

switch costs driven by lexical representational strengths guiding cognitive drawbacks 

during language switching (Altarriba and Basnight-Brown, 2007; Chauncey et al., 2008; 

Chauncey, Grainger, and Holcomb, 2011; Grossi, 2006). Hence, this experiment was 

designed with the goal of gaining precision in the uncovering of relative lexical strengths, 

by unlinking our measures from numerical and non-numerical executive processes. 

However, our predictions regarding LLmath-OL asymmetries were the same than in 

Experiment 1. 

Methods 

Participants 

Fourteen healthy right-handed Spanish-Basque bilinguals (9 female, 5 males, 

mean age = 24.26 years, range = 19-34 years) participated in this experiment. All of them 

were early bilinguals, exposed to Basque and Spanish before the age of 3. Of the 14 

participants, 7 learned math in Basque and the other 7 learned it in Spanish. From the 7 

participants who learned math in Basque, 3 were slightly more proficient in Basque, from 

the 7 participants who learned math in Spanish, 6 were slightly more proficient in 
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Spanish. Therefore in 64% of our sample LLmath coincided with the more proficient 

language and in 36% of our sample, LLmath coincided with the less proficient language. 

Language assessment 

Language proficiency was assessed with the same three different measures in both 

languages (Basque and Spanish) as in Experiment 1 (see Table 2). 

 

 LLmath=Spanish LLmath=Basque 

 Spanish Basque Spanish Basque 

BNT 54 48 52 50 
BEST 77 62 76 74 

% Daily use 60 40 49 51 
Interview 5 4.8 4.8 5 

 

Table 2. Scores in the different language tests (Experiment 2). 

 

Stimuli and Procedure 

Stimuli were similar to Experiment 1, consisting of numbers in their verbal form. 

The numbers used in the experiment ranged between 1 and 9, excluding 6 as it is a 

cognate number.  Stimuli could be presented in two formats: in Spanish (e.g. “cinco”-

five), or in Basque (e.g. “bost”- five). 

 Participants were asked to perform a parity task so that they classified the numbers 

as odd or even.  Each sequence began with a forward mask composed of hash-marks 

(########) displayed during 500ms. The forward mask was replaced at the same location 

on the screen by a lower case prime item for 40 ms. The prime was immediately replaced 

by the target in uppercase letters that remained in the screen for 1000 ms. All target words 

were followed by an asterisk (*) to indicate when the participants should respond (see 

Figure 7 for a schema of the trials in the task). A total of 504 trials were created, one half 

(252) were Basque trials, and the other half (252) were Spanish trials. These trials were 

again divided into switch trials (126 Basque-Spanish switch trials and 126 Spanish-
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Basque switch trials); and non-switch trials (126 Spanish-Spanish non-switch trials and 

126 Basque-Basque non-switch trials) and distance was equated across all the trials. The 

design was identical to Experiment 1: 2 (switch: switch / non-switch) x 2 (direction: to 

LLmath to OL) x 27 (electrode). 

  

 

Figure 7. Example of trials (Experiment 2 – masked priming paradigm). Participants had to classify 
numbers as odd or even. Each trial consisted of a mask (########) appearing for 500 ms. followed by a 
prime lasting for 40 ms, and finally the target lasted for 100 ms. An inter-trial asterisk appeared for between 
1500-2000 ms, when participants had to provide the delayed response. The prime could be in the same or 
different language as the target, but they were never the same items or translations. As in Experiment 1 
Stimuli were Basque (e.g., lau-four, zortzi-eight) and Spanish (e.g., cinco-five, tres-three); and there were 4 
conditions: 2 non-switch conditions (LLmath primes followed by LLmath targets; OL primes followed by OL 
targets) and 2 switch conditions (LLmath primes followed by OL targets, OL primes followed by LLmath 
targets). The figure depicts an example of a switch and non-switch trial in Spanish, but in the task targets 
were both in Spanish and in Basque. 

 

EEG recording and analyses 

EEG recording and analyses were the same as in Experiment 1. 
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Results 
As in Experiment 1, visual inspection of the data showed a negativity between 

200 and 250 ms, and 300 and 500 ms modulated by switching, with larger negativity for 

the switch conditions than for the non-switch conditions. Consecutive time windows of 

50 ms contrasting all switch vs. non-switch trials determined the exact latency period for 

analysis (400 to 450 ms) and no significant effects were found for the 200-250 ms time 

window. 

Symmetric switch costs between L1 and L2 (N400: 400-450 ms): The first 

ANOVA including the 27 electrodes including switch and switch direction as factors 

revealed a main effect of switch (F (1, 11) = 16.049, p=.002), and no significant direction 

x switch interaction (F (1,11) =0.07, p>.250), thus showing a symmetric switch cost when 

the L1 – L2 distinction was considered (see Figure 8).  

Asymmetric switch costs between LLmath and OL (N400: 400-450 ms): The first 

ANOVA including the 27 electrodes including switch and switch direction as factors 

revealed a switch x direction interaction (F (1,13) = 8.82, p=0.05). The switch cost effect 

was restricted to the OL to LLmath switch in the following electrodes: FC2, Cz, CP2, Fz, 

FC1, Pz, F3, C4, F4, CP1, P4, C3, FC6, CP6, FC5, T8, F8, Fp2 (F (1,13) = 8.82, p= 

0.011).  The LLmath to OL switch showed no significant cost (F (1,13) = 0.17, p>.250). 

Suggesting that the switch trial was also significantly more negative than the non-switch 

trial only in the switch to LLmath. Therefore, an asymmetric switch cost was also found 

here (see Figure 8).  

 By repeating the analysis procedure from Experiment 1 we ensured that these 

switch costs were really dependent on the participants’ LLmath and not on their L1; the 

same correlation tests showed no correlation between the relative proficiency in LLmath 

versus OL and the N400 switch cost difference (r=.383, n=14, p=.176).  
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Figure 8.  N400 switch cost effect (Experiment 1). a) N400 switch cost effect for L1 to L2 (left) and L2 to 
L1 (right) vs. their respective non-switch conditions OL-OL (left) LLmath-LLmath (right). The switch is 
similar in both directions (i.e. symmetric switch); b) N400 switch cost effect for LLmath to OL (left) and OL 
to LLmath (right) vs. their respective non-switch conditions OL-OL (left) LLmath-LLmath (right) An 
asymmetric switch cost is found between 400-450 ms in the OL to LLmath switch condition versus non-
switch (right) compared to the LLmath –OL switch condition versus non-switch (left).  

 

Discussion 
This second experiment replicates the results of Experiment 1, even though a 

parity task was used and, thus, participants did not explicitly manipulate quantity.  There 

is again an N400 effect in the OL-LLmath direction. The most striking fact is that in this 

experiment the switch was masked and therefore, unconscious for the participants. This 

unconscious switch was intentionally designed in the experiment in order to find out 



	

	

82	 Alejandro	Martínez	

whether the results of Experiment 1 were due to a lexically imbalance in the codes for 

math. All these factors favoured overall, an interpretation of switch costs as lexically 

driven. Hence, different strengths in the lexical representations for LLmath and OL can be 

suggested. This lexical unbalance dissociates from the L1/L2 dichotomy for general 

language use.  

 Our effects were moreover localized in the N400 component, which is a 

component that is sensitive to lexico-semantic variables (Alvarez, Holcomb, and 

Grainger, 2003; Hoshino, Midgley, Holcomb, and Grainger, 2010; Moreno, Federmeier, 

and Kutas, 2002; Van Der Meij, Cuetos, Carreiras, and Barber, 2011). This fact also 

speaks in favour of lexically driven switch cost effects (Chauncey et al., 2008). 

 Experiment 2 also replicated the symmetric switch costs during the consideration 

of the L1/L2 dychotomy. Attending to the asymmetrical switch found contrarily, i.e. 

when considering the LLmath - OL dichotomy, the symmetry must be taken just as an 

apparent main effect. Similar to Experiment 1, LLmath was equal to L1 for the 64% of our 

sample, whereas LLmath was equal to L2 for the 36% of our sample, leading again to a 

symmetrical effect when grouping items according to L1/L2 for analyses.
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Experiment 3 
Introduction 

The goal of this experiment was to find the neural networks responsible for the 

mechanisms underlying the costs of switching between the two codes for math.  In 

Experiments 1 and 2 we found an asymmetric switch cost which is similar to those found 

in language in unbalanced bilinguals in ERPs (e.g. Chauncey et al., 2008; Jackson et al., 

2001; Moreno et al., 2010); this asymmetry was due to the LLmath/OL and not to the 

L1/L2 dichotomy that is reported in these studies. So, the next logical step is to find out if 

the neural networks for the switch in the mathematical codes are the same as the ones 

used in general language switching. Studies examining language switching at the 

neuronal level show that the regions implicated in these switches are usually frontal areas 

as the dorsolateral prefrontal cortex (DLPFC) (Hernandez, Dapretto, Mazziotta, and 

Bookheimer, 2001a; Hernandez et al., 2000; Rodriguez-Fornells, De Diego Balaguer, and 

Münte, 2006; Wang et al., 2007) or left anterior prefrontal regions including pars 

triangularis (Brodmann areas 45 and 9). Rodriguez-Fornells et al. (2002) reported 

language-switching involving the left ACC as well (Abutalebi et al., 2008; Crinion et al., 

2006; Van Heuven, Schriefers, Dijkstra, and Hagoort, 2008; Wang et al., 2007) 

 Experiment 3 measured magnetic brain activity during a similar paradigm than 

Experiment 2. The use of Magnetoencephalography (MEG) allows to estimate where in 

the cortex the switch-costs are originated, while preserving the same good temporal 

resolution provided by EEG. Experiment 3 implies a new task however: it is a linguistic 

task (lexical decision) that will further test the task independency of the observed effects. 

That is, if such described unbalances were due to the use of numerical tasks (number 

comparison and parity judgments), no such asymmetry dependent on early learning 

should appear. 

 Generally, the description of the neural basis for switch costs between LLmath and 

OL can provide information in two main ways: (1) It can inform us whether the same 

mechanisms of switching apply to switching between number words and hence; (2) if the 

mechanisms are the same, then the origin of the predicted asymmetries would in fact be 
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caused by different representations and not to different control mechanisms for the 

control of number word activations. That is to say, that for number words a different 

relative dominance between codes would appear in bilinguals but the control mechanisms 

applied to the lexical systems would not differ. 

Methods 

Participants 

Participants were twelve healthy right-handed Spanish – Basque bilinguals (6 

females 6 males), mean age = 26, range = 21-30 years. All of them were exposed to 

Basque and Spanish before the age of 3. Of the 12 participants, 6 learned math in Basque 

and the other 6 learned it in Spanish.  

Language assessment 

Language proficiency was assessed with the same three different measures in both 

languages (Basque and Spanish) as in Experiment 1 (see Table 3). 

  
LLmath=Spanish  LLmath=Basque 

  
  

Spanish Basque Spanish Basque 
  
BNT 54 49 54 55  
BEST 77 62 71 72 
% Daily use 57 43 60 40 
Interview 5 5 5 5 

 

Table 3. Scores in the different language tests (Experiment 3). 

 

Stimuli and Procedure 

Stimuli were similar to Experiment 1 and 2, consisting of numbers in their verbal 

form. The numbers ranged as in Experiment 2 (between 1 and 9, and excluding 6 since it 

is a cognate number).  And again, stimuli could be presented in two formats: in Spanish 

(e.g. “cinco”-five), or in Basque (e.g. “bost”- five). 

In this experiment participants were asked to perform a lexical decision task so 

that they classified the items appearing on the screen as words or non-words. The masked 
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priming sequence was equal to that of the Experiment 2: the sequence begun with a 

forward mask composed of hash-marks (########) displayed during 500ms. The forward 

mask was replaced at the same location on the screen by a lower case prime item for 40 

ms. The prime was immediately replaced by the target in uppercase letters that remained 

in the screen for 1000 ms. All target words were followed by an interrogation (?) to 

indicate when the participants should respond (see Figure 9 for a schema of the trials in 

the task). A total of 384 trials were created, one half (192) were Basque trials, and the 

other half (192) were Spanish trials. These trials were again divided into switch trials (96 

Basque-Spanish switch trials and 96 Spanish-Basque switch trials); and non-switch trials 

(96 Spanish-Spanish non-switch trials and 96 Basque-Basque non-switch trials) and 

distance was equated across all the trials Additionally, a total of 640 distractors were 

included; these distractors were pseudo-words derived from the numbers used in the 

stimuli changing letters in a range from two to four letters in order to make them pseudo-

words (e.g. tres - fres ), but none of these trials were included in the analysis (see Figure 

9).  
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Figure 9.  The design of this experiment was the same as in Experiment 2. But in this case the target could 
be a pseudo-word (cungro) or a word (cinco- five in Spanish). The figure depicts an example of a trial with 
Spanish as a target, but in the task targets were both in Spanish and in Basque. 

	

MEG analyses 

MEG data were acquired in a magnetically shielded room using the whole-scalp 

MEG system (Elekta-Neuromag, Helsinki, Finland) installed at the BCBL. The system is 

equipped with 102 sensor triplets (each comprising a magnetometer and two orthogonal 

planar gradiometers) uniformly distributed around the head of the participant. Head 

position inside the helmet was continuously monitored using four Head Position Indicator 

(HPI) coils. The location of each coil relative to the anatomical fiducials (nasion, left and 

right preauricular points) was defined with a 3D digitizer (Fastrak Polhemus, Colchester, 

VA, USA). This procedure is critical for head movement compensation during the data 

recording session. Digitalization of the fiducials plus ~100 additional points evenly 

distributed over the scalp of the participant were used during subsequent data analysis to 
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spatially align the MEG sensor coordinates with T1-weighted MPRAGE magnetic 

resonance brain images acquired on a 3T magnetic resonance imaging (MRI) scan 

(Siemens Medical System, Erlangen, Germany). MEG recordings were acquired 

continuously with a bandpass filter at 0.01-330 Hz and a sampling rate of 1 kHz. Eye-

movements were monitored with two pairs of electrodes in a bipolar montage placed on 

the external chanti of each eye (horizontal electrooculography (EOG) and above and 

below right eye (vertical EOG)). Source reconstruction in the cortical surface and 

volumetric segmentation was reduced to 15000 vertices in order to simplify analyses, and 

performed with the Freesurfer image analysis suite, which is documented and freely 

available for download online (http://surfer.nmr.mgh.harvard.edu/). Briefly, this 

processing includes motion correction and averaging of multiple volumetric T1 weighted 

images (when more than one is available), removal of non-brain tissue using a hybrid 

watershed/surface deformation procedure automated Talairach transformation, 

segmentation of the subcortical white matter and deep gray matter volumetric structures 

(including hippocampus, amygdala, caudate, putamen, ventricles). Freesurfer 

morphometric procedures have been demonstrated to show good test-retest reliability 

across scanner manufacturers and across field strengths (Han et al., 2006; Reuter et al., 

2012).  

Data pre-processing 

To remove external magnetic noise from the MEG recordings, data were 

preprocessed off-line using the temporal Signal-Space-Separation method (Taulu and 

Kajola, 2005) implemented in Maxfilter 2.1 (Elekta-Neuromag). MEG data were also 

corrected for head movements, and bad channels were substituted using interpolation 

algorithms implemented in the software. Subsequent analyses and heartbeat and EOG 

artifacts and data analysis was performed with Brainstorm (Tadel, Baillet, Mosher, 

Pantazis, and Leahy, 2011), which is documented and freely available for download 

online under the GNU general public license (http://neuroimage.usc.edu/brainstorm). 

Source estimation analyses (MNE):  

The method used to estimate the sources distributed in the cortex was MNE 

(Gramfort et al., 2014) based on all the sensors for each participant/condition average 
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time course. We used the T1-weighted MRI scans for each individual. Analyses were 

performed individually using the standard weighted minimum norm estimate (wMNE) 

generating a source model for the 15.000 vertices. Before the wMNE source 

reconstruction was calculated, the covariance matrix required for computing the wMNE 

source reconstruction was obtained based on the data during a 100 ms baseline period. An 

overlapping spheres method was used to estimate the forward model. Estimated source 

activations were standardized using a Z-score transformation with respect to the average 

and standard deviation of the source activity during the 100 ms baseline period. The Z-

score source space activity was then projected to a template (ICBM152 anatomy) for all 

subjects/condition and averaged for visualization. Relevant latency bands (300-500 ms) 

from the Event Related Field (ERF) analyses (see below) were averaged across time in 

the Z-score source files and exported for each condition/participant into 3D activation 

maps for statistical analyses at the group level. These analyses consisted of n=12 F-tests 

(switch ≠ non-switch) using SPM8 with an uncorrected threshold of p<0.001. 

ERF analyses 

Sensor clusters and latency bands were identified from previous studies and from 

Experiments 1 and 2 (Blanco-Elorrieta and Pylkkänen, 2016; Chauncey et al., 2008; 

Christoffels et al., 2007; Duñabeitia et al., 2010; Jackson et al., 2001).  MEG sensors 

were regrouped into a total of eight clusters, that is four clusters by hemisphere (temporal 

left, temporal right, paracentral left, paracentral right, parietal left, parietal right, frontal 

left, frontal right). Based on Experiment 1 and 2 results, a window between 300 and 500 

ms was considered for the analyses. This time window was divided into 50 ms smaller 

windows to better capture the effects (similar to Experiments 1 and 2). T-tests were 

performed in each time window comparing mean amplitudes of relevant latency bands in 

each cluster. Again, the contrast LLmath-OL was considered from participants whose 

LLmath was Basque (conditions LLmath-LLmath, OL-LLmath, OL-OL, LLmath-OL, i.e., 

Basque-Basque, Spanish-Basque, Spanish-Spanish, Basque-Spanish, respectively), and 

for participants whose LLmath was Spanish (conditions LLmath-LLmath, OL-LLmath, OL-OL, 

LLmath-OL, i.e., Spanish-Spanish, Basque-Spanish, Basque-Basque, Spanish-Basque, 

respectively). The four conditions were collapsed between languages for analysis, 

providing exactly the same stimuli between conditions. Contrasts for switch costs entailed 
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the contrast between the switch condition and the non-switch condition for each of the 

directions (to LLmath: OL-LLmath vs. LLmath-LLmath and to OL: LLmath-OL vs. OL-OL).  

Results 	

Source space 

In order to observe the evolution in the brain sources the original 300-500 ms 

window was split into four smaller windows (300-350, 350-400, 400-450, 450-500). The 

first time-window that showed a switch effect was the 400-450 showing activation in the 

left middle frontal gyrus and anterior cingulate gyrus (BA32). In the 450-500 ms time 

window similar effects were revealed in the dorsolateral prefrontal cortex (DLPFC) (see 

statistical parametric maps in Figure 10 and exact peak coordinates in Table 4). 

 

TIME (ms) Brain region 
Peak MNI 

coordinates 
(x,y,z) 

T-value Z0-value p-value 

400-450 

BA 32 (Anterior 
Cingulate Gyrus) -2, 42, 16 3.98 3.42 .000 

Left Middle 
Frontal Gyrus -22, 4, 54 3.70 3.29 .000 

450-500 
BA 9 
(Dorsolateral 
Prefrontal Cortex) 

-54, 32, 26 3.79 3.29 .000 

 

Table 4. Main effects in the two different time windows (400-450 and 450-500 ms) showing the regions 
where the effect of switch was located, their coordinates and their respective statistical values (T, Z0 and p-
value) 

 

ERFs  

A visual analysis of the ERF data showed that a component peaking between 300 

and 500 ms was more negative for the switch conditions than for the non-switch 

conditions (see Figure 11). This difference started at 400 ms and ended at 500 ms as 

revealed by a consecutive 50 ms time windows analysis (i.e. 400-450 and 450-500 ms) 

contrasting all switch vs. non-switch trials. The t-tests in each region showed a switch 

effect only for the OL-LLmath vs. LLmath-LLmath switch in the 400-450 ms time window in 

the left frontal area t=-2.289, p= .043 and in the 450-500 ms the left temporal areas 
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showed an effect of switch t =2.487, p=.030. However, the t-test in the LLmath –OL switch 

direction did not show any significant results in any region.  

 

Figure 10.  The source analyses revealed main switch effects around 400ms in the left hemisphere. The 
first time-window (400-450 ms) showed the effect in the anterior cingulate gyrus and left middle frontal 
gyrus. In the second time-window, the effects were similar to those in the previous time-window in the left 
inferior frontal gyrus. 
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Figure 11.  Event related fields (ERF) showing the asymmetry in the switch comparing the OL-LLmath (left 
part of the figure) versus the LLmath-OL switch (right part of the figure). The OL-LLmath direction showed 
the asymmetry in the switch in two different time windows (400-450 and 450-500 ms).  In the top of the 
image the switch effect was found in the left-frontal cluster in the 400-450 ms time window. In the bottom 
of the image the effect was found in the left temporal cluster for the 450-500ms time window.  

	

Conclusions 
This experiment addressed the neurophysiological effects of the switch cost 

between the two codes for math and investigated the anatomical basis of these costs. We 

contrasted the switch versus the non-switch conditions in both the LLmath and OL in a 

lexical decision task.   

The results in this experiment nicely converge with the results in Experiments 1 and 2. 

We found an asymmetry in the switch costs being the OL-LLmath switch direction the one 

showing the switch cost. Additionally, the source estimation analyses helped to estimate 

the brain regions behind this switch and localized it in the left hemisphere, more 

concretely in frontal and temporal regions. These results are in accordance with previous 

studies observing the neuroanatomical bases of language switches for language 

(Abutalebi et al., 2008; Abutalebi and Green, 2007; Blanco-Elorrieta and Pylkkänen, 
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2016; Hernandez et al., 2001a, 2000; Rodriguez-Fornells et al., 2005; Wang et al., 2007). 

The switches are located in the anterior cingulate gyrus similar to Blanco-Elorrieta and 

Pylkkänen (2016), the left middle frontal gyrus and the DLPFC, which coincides with 

previous studies locating the switch and inhibition processes in these regions (Abutalebi 

and Green, 2007).  These results further suggest that code-switching for math and the 

general language code-switching share the same neural mechanisms. These could match 

with the idea that language control mechanism are a subdomain of a general control 

mechanisms (Craik and Bialystok, 2006; Garbin et al., 2010; Luk, Green, Abutalebi, and 

Grady, 2012). Thus, also here, the mechanisms controlling for number word activations 

coincide with those reported for general task switching.  Our data also suggest that it is 

language proficiency what modulates these switches (Christoffels et al., 2007; Costa and 

Santesteban, 2004; Duñabeitia et al., 2010), albeit for math, the dominant language will 

always be the one in which numerical knowledge was first acquired. As predicted, the 

pattern of dominance for math is determined by LLmath even though shared control 

mechanisms are used. 
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Interim discussion (Experiments 1 to 3) 
Experiments 1 to 3 were designed to explore the dominance of the linguistic codes for 

math (whether they are LLmath dependent or not) and to reveal the mechanisms underlying 

this dominance. Participants were balanced bilinguals who have learned math in one of 

their two languages (this LLmath could be the same as their L1 or not). In all three 

experiments, the results show an asymmetric switch cost in the codes for math, the switch 

cost always occurring in switches from the OL to the LLmath. These results are replicated 

across three different tasks implying direct access to magnitude as number comparison 

(Experiment 1) or indirect access to magnitude as the parity task or the lexical decision 

task (Experiments 2 and 3) and with two different neuroimaging techniques (EEG and 

MEG).  

Experiment 1 showed the asymmetric switch in the N400. The task was an overt 

switch in which participants were completely aware of the language switches. This switch 

was independent of L1/L2 dominance. Experiment 2, was designed to find out more 

about the general mechanisms underlying this asymmetry. The task was a masked 

priming design which made participants unaware of the switches. This way we 

emphasized on possible lexically driven switch costs. The results of this Experiment 

replicate those of Experiment 1, meaning that the unbalanced lexical representations for 

the two number word systems were the cause of the asymmetric switch. Moreover, these 

results suggest that for math, the dominant language is the one in which math was first 

acquired. The L1/L2 distinction is not valid when talking about the codes for math, it is 

the LLmath-OL the one that must be taken into account. Natural language and math codes 

seem to be independent Finally, Experiment 3 shows that the mechanisms for task 

switching, language switching and the control mechanisms triggered by the switch 

between number words might be the same. In fact, this experiment was designed to study 

the active neural sources during language switches. The experiment was performed using 

MEG technique and source estimation analyses. The ERF results replicated those of 

Experiments 1 and 2 finding the asymmetry again in the N400. Moreover, the active 

sources during switches for the codes for math were located in the frontal areas, similar to 

language switching and general switch mechanisms. Although being the same 
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mechanisms for all the switches, the results show that it is the dominance in the codes 

used in the switches what marks the asymmetric switch. 

With these experiments, the importance of LLmath to the simple lexical 

representation of number words was further extended for the first time, although its 

importance in arithmetic and numerical magnitude processing had already been shown 

(Salillas et al., 2015; Salillas and Carreiras, 2014; Salillas and Wicha, 2012). Since the 

asymmetry in the switch demonstrates that balanced bilinguals have a clear preference for 

the LLmath even at the most basic representational level, and independently of the L1/L2 

dominance, numerical lexical representations seem to operate separately from the general 

language lexical representations. 



	

	

 

 

 

 

 

 

From the Lexical Representations of Number to Core 
Numerical Knowledge: The Case of Bilingual 

Developmental Dyscalculia



	

	

96	 Alejandro	Martínez	

  



 

	

97	Experiment	4	

Experiment 4 

Introduction 

One step further to find out about the role of early learning in math processing is 

studying the syndromes affecting mathematics.  As we have mentioned before, 

dyscalculia is a disorder of numerical development and mathematical learning with 

different explanations (Butterworth, 1999, 2010; Geary, 2004; Gelman and Butterworth, 

2005; Noël and Rousselle, 2011; Piazza et al., 2010; Wilson and Dehaene, 2010). The 

prevalent view has been that DD is ultimately caused by an anomaly in the core 

magnitude representation (Butterworth, 1999; Geary, 2004; Gelman and Butterworth, 

2005; Wilson and Dehaene, 2010). However, no study has yet investigated the 

management of two codes in bilingual DD (bDD). Since we have demonstrated the 

linguistic imbalances for math in bilinguals, we predict that the input language will be the 

key factor when accessing core magnitude representation in bDD.  

Therefore, this study will present ERP data and source estimation of bilingual 

dyscalculic children when doing basic numerical operations with an input in either LLmath 

or the other language (OL) in bDD individuals and matched control participants. 

Specifically, we used an adaptation paradigm (Grill-Spector, Henson, and Martin, 2006; 

Henson and Rugg, 2003) allowing the measure of passive computation of numerical 

distance (Hsu and Szucs, 2012). Numerical distance effect implies that close numerical 

distances are computed faster and more accurately than far numerical distances. This 

effect is thought to reflect the manipulation of the core numerical system (Cohen Kadosh, 

Cohen Kadosh, Kaas, et al., 2007; Piazza et al., 2007) and has been also revealed in 

certain ERP components. Perhaps the most consistent ERP index of the distance effect 

occurs between 190 and 210 ms. in the transition between the N1 and the P2P (Libertus, 

Woldorff, and Brannon, 2007). Effects of numerical distance at this latency have been 

revealed also using time-frequency analyses (Szũcs, Soltész, Jármi, and Csépe, 2007).  

Hence in Experiment 4, by presenting numerical information in the two languages 

(LLmath/OL) to bDD children and matched control children we were able to explore: 

(1) possible interactions between distance effects and the input language (i.e. 

whether distance effects occurred in each of the languages for the control 

group and whether those distance effects were localized in the same brain loci 

for each of the languages). 
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(2) whether there was any difference between the control and bDD for those 

distance effects both in the ERPs and in the estimated brain sources of those 

ERPs. Overall, this experiment allowed for the exploration of specificities in 

the management of quantity in bDD, that are dependent on the input language 

and early math learning.	

Methods   

Participants 

A total of 14 Basque - Spanish bilingual children aged between 8 and 13 years old took 

part in this study. 7 children previously diagnosed with Developmental Dyscalculia and 

tested using the Dyscalculia Screener (Butterworth, 2003) and 7 age-sex matched controls 

(see Table 5). Despite the two groups showed better word retrieval efficiency in Spanish, 

which suggests Spanish dominance (see Table 6), LLmath was Basque for all participants. 

ID Age Gender 
WISC-R DS 

Similarities Arithmetic CAP 1 CAP2 

s01 9.00 M 9 3 2 4 
s02 13.00 F 14 5 2 3 
s03 12.00 F 8 8 2 3 
s04 11.00 M 10 7 2 3 
s05 12.00 F 11 4 2 2 
s06 8.00 M 14 7 2 3 
s07 9.00 M 10 5 4 2 

   10.9 5.6 2.3 2.9 
 

Table 5 – WISC-R and Dyscalculia Screener (DS) score for the DD group. The two capacity tests from 
the DS were taken as the main diagnostic criteria for DD: CAP1 – Dot Enumeration and CAP2 – Numerical 
Stroop. 

 

 Mean age BNT Basque BNT Spanish 

Control Group 10.3 26.4 (3.6) 43.2 (5.9) 

DD Group 10.9 29.8 (6.2) 41.5 (6.4) 
 

Table 6 – Boston Naming Test scores for the two groups. The table displays the average age, and socres 
in the BNT for both groups in Basque and in Spanish.  
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Stimuli and Procedure:  

An adaptation paradigm (Grill-Spector et al., 2006; Henson and Rugg, 2003; Hsu 

and Szucs, 2012) was created. 6 number words in Spanish and 6 number words in Basque 

corresponding to the digits 1,2,3,7,8,9 (“uno, dos, tres, siete, ocho, nueve” in Spanish and 

“bat, bi, hiru, zazpi, zortzi, bederatzi” in Basque) were used to create 8 stimuli lists 

repeated 8 times in each language.  4 stimulus lists were created with the corresponding 

number words to 1 and 2 in each language as the adaptation stimuli with the 

corresponding number words to 3 as a close distance deviant and the corresponding 

number words to 7 as a far distance deviant (as follows): 1-2-1-2-1-2-1-2-1-3; 2-1-2-1-2-

1-2-1-2-3; 1-2-1-2-1-2-1-2-1-7; 2-1-2-1-2-1-2-1-2-7. Similarly, the other 4 stimulus lists 

were also created with the corresponding number words to 8 and 9 in each language as 

the adaptation stimuli and the corresponding number words to 7 as a close distance 

deviant and the corresponding number words to 3 as a far distance deviant (as follows): 8-

9-8-9-8-9-8-9-8-7; 9-8-9-8-9-8-9-8-9-7, 8-9-8-9-8-9-8-9-8-3; 9-8-9-8-9-8-9-8-9-3. In all 

the lists the deviants were always the same; however, 3 could serve as a close distance 

deviant when the adaptation items were 1 and 2 and far when the adaptation items were 8 

and 9. The opposite happened with 7; it could serve as a close distance deviant when the 

adaptation items were 8 and 9 and far when the adaptation items were 1 and 2.  Every list 

was repeated 8 times having a total of 32 close-distance trials and 32 far-distance trials in 

each language.  

Each stimulus was presented for 200 ms with an inter stimulus interval of 1000 

ms. In order to avoid confounds related to spatial locations and sizes stimuli were 

presented on different locations around the center of the screen, and with random sizes. 

During each trial, a fixation cross was presented on the center of the screen. Participants 

were required to fixate on the cross throughout trials. Their task was to press a button 

when the colour of the stimulus was orange which randomly happened 90 times during 

the experiment. This task was used simply to maintain attention. Each trial was followed 

by an intertrial interval of 1000 ms. 26 more lists of fillers were included in the 

experiment to distract participants from the real objective of the experiment. 	

Data recording and analysis 

ERP analyses  

The EEG was recorded following the same procedures as in Experiments 1 and 2. 
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Source estimation analyses (MNE)  

The method used to estimate the sources distributed in the cortex was MNE 

(Gramfort et al., 2014) based on all the electrodes for each participant/condition average. 

We used an MRI-T1 template constructed for the age range 7.5-13.5 from the MNIC 

(Fonov et al., 2011). Cortical reconstruction and volumetric segmentation was performed 

with the Freesurfer image analysis suite (as in Experiment 3). Analyses were performed 

using the standard weighted minimum norm estimate (wMNE) and mapped to a source 

model of 15.002 electric dipoles. Before MNE was calculated, the covariance matrix 

required for computing the wMNE source reconstruction was obtained based on the data 

during a 100 ms baseline period. An overlapping spheres method was used to estimate the 

forward model. Estimated source activations were standardized using a Z-score 

transformation with respect to the average and standard deviation of the source activity 

during a 100 ms baseline. The Z-score source space activity for all subjects/condition was 

then averaged for visualization. For each group and language, relevant latency bands 

from the ERP analyses were averaged across time in the Z-score source files. Then 7 

participants from each group were compared through F-tests (close ≠ far) using SPM8 

with an uncorrected threshold of p<0.03. 

Results 	
ERPs  

Visual inspection of the ERP data showed a negative component peaking around 

200 ms in the LLmath condition for both the control and bDD groups and was more 

positive for the far conditions than for the close conditions in LLmath. Additionally, the 

component revealed the same pattern in the OL condition for the control group. However, 

no effects were found in the bDD group in the OL condition.  

The time window centered on the negativity peak from 170 to 210 ms was 

analyzed. We analyzed the effect of distance in electrode clusters based on proximity to 

sites reported in previous studies (Libertus, Woldorff, and Brannon, 2007; Szucs and 

Csépe, 2004; Temple and Posner, 1998).  

We performed ANOVAs on the mean amplitudes over the test windows with each 

language (LLmath vs. OL), distance (close vs. far), hemisphere (left vs. right), anteriority 

(anterior vs. posterior sites) and electrode as within-subject factors and group (control vs. 

bDD) as a between-subject factor. The electrodes included in the analyses were divided 

into clusters as follows: Fp1, F7, F3 and C3 (frontal left hemisphere); Fp2, F8, F4 and C4 
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(frontal right hemisphere); CP1, CP5, P3 and P7 (posterior left hemisphere); and CP2, 

CP6, P4 and P8 (posterior right hemisphere).  

The general ANOVA revealed a main effect of distance F (1,12) = 10.72, p = 

.007, meaning that both groups (control and bDD) showed a distance effect. Results also 

showed that both groups shared a distance effect in the same time window, but the 

locations of the effect and the languages in which it was found varied for each group 

(language x distance x anteriority: F (1,12) = 6.74, p = .023; language x distance x 

hemisphere: F (1,12) =7.81, p =.016; and language x distance anteriority x hemisphere x 

electrode x group: F (3,36) =3.38, p = .44).  

In order to disentangle these interactions and find out which languages and 

regions the distance effects were located in for each group, we performed a similar 

ANOVA that included the same factors in the bDD and control groups separately. The 

control group showed a close-to-significant main effect of distance F (1,12) = 5.42, p = 

.059 meaning that the distance effect may be present in both LLmath and OL. However, the 

interactions of language x distance x anteriority F (1,12) = 13.01, p = .011 suggested that 

the location of distance effects might differ between languages. Separate ANOVAs 

(language x distance x hemisphere x electrode) of the anterior and posterior electrodes 

were performed to specify the location of the distance effect. The ANOVA of the anterior 

sites showed two interactions: language x distance x electrode F (3,18) = 4.030, p = .039 

and distance x electrode F (3,18) = 4.275, p = .040, meaning there were different distance 

effects for each language for certain frontal electrodes. Then t-tests comparing the two 

distances for each electrode in each language revealed a distance effect in the LLmath in 

the electrodes Fp1 (t = -7.218), F3 (t = .246, p =.049), F4 (t = 3.83, p = .009), whereas no 

effects were found in the OL.  

In the posterior sites, there was another marginal main effect of distance F (1,6) = 

4.60, p = .076, but also a language x distance F (1,6) = 6.302, p = .046 interaction. An 

ANOVA of each language in the posterior sites revealed a main distance effect for LLmath 

(F (1,6) = 11.86, p = .014) and a marginal interaction of distance x hemisphere for OL (F 

(1,6) = 5.30, p = .061). The left posterior cluster showed a main effect of distance in the 

OL (F (1,6) = 7.15, p = .037) but no effects in the right cluster. Given that the distance 

effect appeared to be restricted to a smaller time window, a new ANOVA was performed 

using a smaller time window (190 to 210 ms). Main distance effects in the left 

hemisphere (F (1,6) = 6.46, p = .044) and right hemisphere (F(1,6) = 6.3471, p = .041) 
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appeared in this later, smaller window. Overall, these results point to an overall similarity 

in the location of the ERP distance effect for the two format inputs.  

When looking at the bDD group separately, we found a main effect of distance (F 

(1,12) = 7.75, p =.03) and an interaction of language x distance x hemisphere (F (1,12) = 

6.96, p = .039). These results are similar to the control group results in that both 

languages appear to show a distance effect. However, in the case of the bDD group, the 

interactions show a difference of the distance effect between hemispheres and no 

interaction of anteriority, thus suggesting different locations for the distance effect. The 

two ANOVAs performed for each hemisphere (language x distance x anteriority x 

electrode) revealed an interaction of language x distance F (1,6) = 7.18, p = .037 in the 

left hemisphere and no significant distance effects in the right hemisphere. A separate 

ANOVA (distance x anteriority x electrode) for each language (LLmath and OL) in each 

hemisphere (left and right) showed a main effect of distance (F (1,6) = 6.60, p = .042) for 

LLmath in the left hemisphere and no other significant effects. These results suggest that 

there is a difference in the distance effect of the bDD group, with LLmath being the only 

language showing such effect and it being located in the left hemisphere. In contrast, the 

OL showed no distance effects (see Figure 12). 
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Figure 12.  ERPs and scalp voltages for the distance effect in the control and DD group depending on 
the input language.  A. The control group showed a main distance effect in the posterior electrodes around 
the same time window (170-210 ms) in both LLmath and OL. Voltage maps (difference wave close – far) 
show similar locations for the distance effect in both languages. However, in the OL the effects (B) mainly 
occur in a smaller time window (around 190-210 ms). The DD group showed the effect only in LLmath in the 
same time window as controls although with a left-lateralized distribution. The electrodes selected for each 
display are shown in red next to each wave.  
 
Source space 

 In order to observe possible evolution in the brain sources that generated the 

reported ERP distance effect, the 170 to 210 window was split into two smaller time 

windows (170-190 and 190-210) (see Figure 13 and Table 7). The control group showed 

a main brain source for the LLmath distance effect during the first 170-190 ms interval in 

the right supramarginal gyrus (peak coordinates: x = 64, y = -42, z = 42) and the right 

superior parietal lobule (x = 30, y = -75, z = 47) during the following 190-210 ms 

interval. The ERP distance effect for the OL during the 170-190 ms interval originated in 
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the right frontal operculum (x = 51, y = 18, z = 7), extended dorsally to the supramarginal 

gyrus and subsequently, extended more focally at the right supramarginal gyrus (x = 60, y 

= -31, z = 42) during the 190-210 ms interval.  

In contrast, the ERP distance effect for LLmath in the bDD group had its source in a 

broader set of areas in the left hemisphere: along the left perisylvian (x = -54, y = -24, z = 8 

and middle frontal gyrus (x = -52, y = 2, z = 46) during the first 170-190 ms interval and at 

the left angular gyrus (x = -60, y = -36, z = 24), middle frontal gyrus (x = -64,y = 36, z = 24) 

and inferior frontal gyrus (x = -44, y = 46, z = 28) during the 190-210 ms interval. Hence, 

though both groups showed distance effects in the ERPs for LLmath, the different scalp 

locations of those effects had indeed different brain origins. For OL, the distance effect 

shown by the control group also differed from the LLmath distance effect in its brain 

source, involving a frontoparietal executive network. 

 



 

	

105	Experiment	4	

 

Figure 13.  ERPs´ source estimation for the distance effect in each group depending on the input 
language. For the control group, the distance effect to input in LLmath entailed focal parietal sources: 
supramarginal gyrus (SMG) and then right superior parietal activations, including the intraparietal sulcus 
(IPS). However, when the input is in OL both the inferior frontal gyrus (operculum) and SMG appeared as 
the sources generating the distance effect. In both cases sources were located in the right hemisphere. 
Interestingly, for the bDD group distance effects with LLmath input were generated in the left hemisphere 
including left perisylvian, the left angular gyrus (ANG), and frontal areas (middle frontal gyrus (MFG) and 
inferior frontal gyrus (IFG)). Thus, despite distance effects appeared in all these conditions the ERP 
generators were based on very different brain networks. Statistical parametric maps show F values. 
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  TIME (ms) Brain region 
MNI 

coordinates 
(x, y, z) 

F-value Z0-value p-value 
C

O
N

T
R

O
L

 G
R

O
U

P 

LM 

170-190 
Right 

Supramarginal 
Gyrus 

64, -42, 42 7.73 2,13 .017 

190-210 
Right Superior 

Parietal 
Lobule 

30,-75, 47 7.77 2.07 0.02 

OL 

170-190 Right Frontal 
Operculum 51, 18, 7 7.41 2.09 0.018 

190-210 
Right 

Supramarginal 
Gyrus 

60, 31, 42 12.57 2.65 0.004 

bD
D

 g
ro

up
 

LM 

170-190 Left 
Perisylvian -54, -24, 8 17.44 3.02 0.001 

170-190 Left Middle 
Frontal Gyrus -52, 2, 46 9.66 2.36 0.009 

190-210 Left Middle 
Frontal Gyrus -64, 36, 24 20.61 3.2 0.001 

190-210 Left Inferior 
Frontal Gyrus -44, 46, 28 9.85 2.39 0.009 

190-210 Left Angular 
Gyrus -60, -36, 24 20.61 3.2 0.001 

 

Table 7. Main effects in the two different time windows (170-190 and 190-210 ms) showing the regions 
where the effect of switch was located, their coordinates and their respective statistical values (T, Z0 and p) 
for both groups (control and bDD).  

 

Discussion 

Both groups showed a distance effect in the ERPs when using the LLmath.  

However, no distance effect was found in when using the OL as input for the bDD group. 

Thus, data suggest that both groups have a prevalence of the LLmath when manipulating 

quantity.  In addition, there are some differences between groups in the source 

localization of the distance effect with LLmath input. Although both groups showed 

activation in parietal areas, the bDD group showed activation in areas of the left 

hemisphere, whereas the control group only showed activation in the right hemisphere. 

Moreover, the bDD group relied in a left hemispheric network, involving frontal, 

perisylvian inferioparietal areas, although they may seem close to the Heschl gyrus, the 

fact is that the highest number of active voxels were located in the left cerebellum which 

has been shown to be of relevance in magnitude processing (Tang et al., 2006). These 

sources were not shown by the control group for LLmath, for whom the distance effect was 

more focal in right parietal sites. As per OL in the control group, distance effect involved 
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a right lateralized network comprising frontal and inferioparietal areas, suggesting a less 

automatic processing of magnitude in the OL. These results are in agreement with 

(Salillas et al., 2015; Salillas and Carreiras, 2014) which showed that the bilingual core 

numerical system (as indexed by the distance effect) could include linguistic traces and 

suggested that one of the languages might enter into the core of magnitude representation.  

It is also important to note that all the children in this experiment were more 

proficient in Spanish, however their LLmath was Basque. This entails a nice mismatch 

between the dominance for language and the dominance for math, where crucially the 

preference for LLmath is replicated. 

This experiment addressed the access to core numerical magnitude representations 

in bilinguals in the case of bDD. In this unexplored circumstance, the results show that 

given the aforementioned linguistic imbalances shown in the previous experiments in this 

thesis, the input language indeed matters even more when a core number processing 

deficit occurs. The results in this experiment demonstrate that in bDD, in which the 

differences between languages in the passive computation of basic numerical processes 

are exacerbated, the accessing to core numerical magnitude depends completely on the 

LLmath since the OL showed no distance effect neither in the ERP analyses or the source 

estimation analyses. In other words, when everything goes well, very proficient bilinguals 

should show efficient behavior using both codes, albeit relying on different brain 

networks.  
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General discussion	
Taken together these results support the predictions formulated in this thesis. First, 

we have demonstrated that the switch costs between the two codes for math are 

asymmetrical. Based on the significant differences found on the ERP analyses, we have 

shown that the LLmath and not the L1 modulate these asymmetries; such effects are 

consistent in three experiments contrasting code switching. Additionally, these switches 

seem to follow a similar mechanism that language switching and, according to some 

authors, might trigger general cognitive control mechanisms (Abutalebi et al., 2012; 

Craik and Bialystok, 2006; Dijkstra and Van Heuven, 1998; Garbin et al., 2010; Green, 

1998). Moreover, we have demonstrated that the LLmath is indeed the dominant code for 

math in more nuclear numerical representation, since in bilingual dyscalculia the LLmath is 

the only code showing distance effect and brain source for distance effects also differed 

between languages for the control group.  

Asymmetric switch costs in the codes for math  
 In the present study, the unexplored relative dominance between the two codes for 

math has been investigated during the performance of different code-switching tasks. 

Results show that asymmetric switch costs occur when switching between LLmath                                                                                                                                                                                                                                       

and OL in perfectly balanced bilinguals. This asymmetry is similar to other switch cost 

asymmetries reported in general language between the first and second languages (L1 and 

L2) in unbalanced bilinguals (Alvarez et al., 2003; Chauncey et al., 2008; Costa and 

Santesteban, 2004; Duñabeitia et al., 2010; Macizo et al., 2012; Meuter and Allport, 

1999; Moreno et al., 2002; Palmer et al., 2010; Proverbio, Leoni, and Zani, 2004). The 

transition from the non-dominant to the dominant code (OL to LLmath) implies a larger 

negativity (a bigger switch cost) at the N400 latency. This switch cost does not depend on 

the relative proficiency between L1 and L2 (since in this switch there were no 

asymmetries) but on the LLmath and OL relative proficiency.  

Dominance of the L1/L2 codes has been extensively explored and several models 

accounting for the switches and accounting for these asymmetries have also been 

postulated such as the BIA+ or the IC, which propose that the switch mechanisms in 

language are part of a general control mechanism. Additionally, only one of the several 
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math cognition models accounts for a bilingual switch: the model for bilingual 

mathematical cognition developed by Campbell and Epp (2004). This model already 

proposed an unbalanced representation between the two numerical lexicons. The two 

lexicons would follow the same pattern of dominance that arithmetic fact representations, 

with stronger representations for the dominant language, L1. According to the encoding 

complex hypothesis (Campbell, 1994; Campbell and Clark, 1992), the history of 

interactive encoding-retrieval processes would explain actual numeric representations. 

Attending to the present data, it is not the L1/L2 distinction what must be considered 

when modeling bilingual math representations, but the dichotomy LLmath-OL. This is not 

a trivial question, especially when considering those bilinguals whose LLmath mismatches 

their more proficient language (L1). It means that the pattern of dominance for math runs 

separately of general language. It appears that the words “bi” and “dos” (two), at least in 

the context of numerical operations, have not the same relative activation than “itsaso” 

and “mar” (sea). In terms of the cost of inhibition or competition between languages, the 

present data suggest that for a person who learned math in Spanish albeit equally 

proficient in both languages, “itsaso” would be equivalent to “mar”, but the word “bi” 

would require stronger inhibition of the early learned number word “dos”, at least when 

performing numerical operations.  This agrees with previous observations for arithmetic 

fact retrieval (Bernardo, 2001; Salillas and Wicha, 2012), where the language used for 

early learning not only determines the quality and strength of memory networks for 

arithmetic but also the lexical imbalance between the languages for math. 

In sum, arithmetic memory networks depend on early learning (Salillas and 

Wicha, 2012). Balanced bilinguals have mathematical concepts that are accessed more 

efficiently in the language in which they learned simple arithmetic. But also, the most 

basic numerical representation has showed linguistic traces, inherited from early learning 

(Salillas and Carreiras, 2014). When exposure to number words is associated with 

quantity during early learning, number representations might be shaped by that particular 

language. The present data crucially extends these questions and highlights the 

importance of early learning to lexical representations of number words. The bilingual 

number word system is unbalanced and can cohabit with more balanced representations 

for non-numerical words in fluent bilinguals. 
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Code-switching mechanisms 
The existing explanations of language switching point the idea that switch costs 

are caused by a general domain task-control mechanism. The Bilingual Interactive 

Activation (BIA+) model (van Heuven and Dijkstra, 2010) and the Inhibitory Control 

model (IC) (Green, 1998) propose that inhibitory processes for language are just part of 

executive control factors external to the language system. These models imply what is 

called “task schema”: they are part of the general control system and link the output of 

lexical processing to a behavioral response. Several studies have given support to this 

hypothesis giving evidence for the engagement of the anterior cingulate cortex (ACC) in 

non-language tasks (for review, see Carter and Van Veen, 2007), as well as shared 

involvement between language and domain-general cognitive control (De Baene et al., 

2015). The results in our Experiment 3 yielded similar results having more frontal 

activations when switching languages.  

Due to the fact that in our task, responding to the OL or responding to LLmath 

implied the same output response, as a numerical decision to the very same set of stimuli, 

and still implied asymmetric switching costs, results would support inhibitory 

mechanisms acting upon unbalanced lexico-semantic representations. Both task and 

stimuli for LLmath were identical to task and stimuli in OL, and consequently they could 

not imply different task schemas. In addition, the masked priming paradigm used in 

Experiments 2 and 3 made the switch from one language to another unconscious, and too 

brief to activate any task schema (Chauncey et al., 2008). Still, asymmetric switch costs 

were found. Moreover, the results in Experiment 3 helped to locate the regions of the 

switch in frontal regions, more concretely in anterior cingulate gyrus (BA 32), left middle 

frontal gyrus and DLPFC, which agrees with previous studies locating the sources of the 

switch in frontal regions (Abutelabi et al., 2007; Hernandez et al., 2000, 2001; Rodriguez-

Fornells et al., 2005; Wang et al., 2007; Blanco-Elorrieta and Pylkänen, 2016).  These 

locations coincide with the location of general task switching mechanisms in frontal areas 

of the brain (Craik and Bialystok, 2006; Garbin et al., 2010; Abutalebi et al., 2012). The 

anterior cingulate cortex has been related to attention and comprehension (Botvinick, 

Braver, Barch, Carter, and Cohen, 2001; Carter, Botvinick, and Cohen, 1999; Frith, 

Friston, Liddle, and Frackowiak, 1991; Hikosaka and Isoda, 2010) and the left middle 
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frontal gyrus and DLPFC have been reportedly involved in inhibition (Abutalebi and 

Green, 2007), which consequently matches the idea of having the same switch 

mechanism for both LLmath/OL codes and L1/L2 codes. In conclusion, the control 

mechanisms applied to numerical lexicons seem of similar nature to those applied to 

general language, as shown in paradigms using non-numerical words, in the sense that 

they are sensitive to different baseline activations as reflected by the asymmetry of the 

switch costs. Therefore, while two different dominance patterns would be at work for 

numerical and non-numerical words, similar control mechanisms could be acting in both 

domains.  

LLmath and dyscalculia (access to magnitude) 
Most of the studies in math cognition in bilingualism have centered around the 

idea proposed by the triple-code model (Dehaene and Cohen, 1995) that access to 

magnitude is made through all input forms and that arithmetic is learned by rote via 

language. The studies in the field of bilingual numerical cognition have shown that 

indeed bilinguals have a preference for a language in which they learn calculations 

(Spelke and Tsivkin, 1999; Salillas and Wicha 2012) and even practice in the other 

language can sometimes equate the strength in the neural networks for both languages 

(Martinez-Lincoln et al., 2016). However, recently it has been proposed that early 

learning will facilitate an integration of the LLmath also in our core numerical knowledge 

(Salillas and Carreiras, 2014; Salillas et al., 2015); supporting this proposal is Experiment 

4 in this thesis. In Experiment 4 both bilingual DD (bDD) and matched controls showed 

distance effects in the ERPs when using the LLmath. Nevertheless, only the control group 

showed the distance effect when using the OL. Thus, the data suggest that both groups 

have a preference for the LLmath when manipulating quantity, independently of their L1. 

Moreover, there are differences between groups in the source localization of the distance 

effect with LLmath as input. Both groups show activation in the parietal areas; however, 

the bDD group had activation in the left hemisphere whereas the control group showed 

activation in the right hemisphere. Moreover, the bDD group relied on a left hemisphere 

network that involved the frontal, perisylvian and inferoparietal areas, differing from the 

control group, for whom the distance effect under LLmath input was more focalized in 

right parietal sites similar to what Soltész et al., (2007) found. As for OL in the control 
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group, the distance effect involved a right lateralized network comprising frontal and 

inferoparietal areas, suggesting a less automatic processing of magnitude in the OL. 

Importantly, the present results must be put in the context of an LLmath mismatching L1, 

hence showing again the independence between a dominant language for math and 

general language use. This data suggests interactions between the verbal codes and core 

numerical magnitude marker, the distance effect. What is more, input language and bDD 

interact as shown by the absence of a distance effect in this group. Right-lateralized 

distance effects in superior parietal areas (including the occipital part of the IPS and the 

supramarginal gyrus) for the control group in LLmath suggest an integration of this 

language with classical quantity and calculation areas (Dehaene, 2003; Menon, 2014). 

The control group processed distance differently when the input was in OL, which again 

involved a right lateralized network comprising frontal and inferofrontal areas. This 

suggests that executive processes are involved when input is in OL. In general, this also 

points to a somehow different management of distance than in LLmath input for the control 

group. Moreover, the bDD group seems to also use executive processing, as well as more 

explicit linguistic processes when computing distance in LLmath. In turn, this implies a 

worse integration between the preferred code and core quantity knowledge in bDD. All 

things considered, distance effects that are detectable in the ERPs imply very different 

neurofunctional bases (and networks) for the two groups when functioning in LLmath and 

for the two verbal codes in the control group. 
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Final remarks		
Balanced bilinguals have mathematical concepts that are accessed more efficiently 

in the language in which they learned simple arithmetic. Even the most basic numerical 

representation has showed linguistic traces, inherited from early learning (Salillas and 

Carreiras, 2014). When exposure to number words is associated with quantity during 

early learning, number representations might be shaped by that particular language. The 

present data crucially extend the importance of early learning to lexical representations of 

number words. The available empirical evidence to date suggests that we depart from 

abstract and amodal numerical knowledge. However, the acquisition of number words 

during early education and, likely, repeated exposure to math content in one of the 

languages may facilitate an integration of that language in the storage of arithmetic facts 

and also, in our core numerical knowledge. Our studies suggest a window for the study of 

the math–language relationship. Moreover, they emphasize the relevance of studying 

bilingual math. Though this peculiar imbalance for math in bilinguals may lead to similar 

observed behavior for both language inputs, the underlying brain networks appear to 

differ between the preferred and non-preferred language for math. This makes the study 

of bilingual math relevant, as more complex math functioning is based on the differential 

neural bases that we have outlined. As we have shown, this relevance becomes more 

evident in bDD, in this case, the differences between languages when computing basic 

numerical processes intensifies. That is, in very proficient bilinguals would nod yield any 

behavioral differences when using both codes for math; nevertheless, the brain networks 

being used are different for each code. However, the preference should be evidenced 

when math complexity increases or when core math functions are essentially altered, as in 

bDD. Additionally, the control mechanisms applied to numerical lexicons and general 

language seem to be the same as those general control mechanisms, as shown in 

paradigms using non-linguistic stimuli and source location analyses, based on the 

asymmetric switch costs found and their neural locations.  

 In sum, the present work demonstrates that early math learning shapes core 

numerical magnitude and it also creates an unbalanced dominance for the two codes 

which, in turn, makes use of the same control mechanisms as general language and 

general control tasks. 
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Future directions 
 Future research on how bilinguals process the two codes for math from a 

neurocognitive account may address the specific brain structures that operate for both 

LLmath and OL in magnitude processing for non-numerical tasks. Since magnitude 

processing has been demonstrated to have common areas for numerical and non-

numerical processing (Sokolowski et al., 2016), it would be appropriate to understand to 

what extent does the LLmath modulate access to magnitude in other tasks which do not use 

numbers in their verbal forms in these common areas for magnitude processing. 

Additionally, it would also be suitable to dig out more about to what extent the LLmath 

modulates non-numerical tasks including number words.  This approach would again 

require a combination of neuroimaging methods (EEG, MEG and fMRI). By using a 

multimodal imaging approach, along with source estimation analyses, we could address 

the specific brain structures that operate for the LLmath (and the OL) in magnitude 

processing including numerical and non-numerical stimuli (such as size or time 

comparison of items presented in their written forms) and contrasting the activation of the 

traditional areas found active for magnitude comparison across the different varieties of 

stimuli. Moreover, it would also be interesting to look at the influence of LLmath in non-

numerical tasks that include numbers (e.g. memorization tasks). Furthermore, more 

research into the switch mechanisms employed for language, math and general switch-

mechanisms should be made, in order to disentangle the differences among mechanisms 

(if any) and their commonalities.  

In this regard, exploring the ontogenetic and cultural components of the relation 

between language and numerical cognition remains useful to understand the numerical 

competence acquisition and mathematical performance in child and adult bilinguals. Such 

investigation would require the contribution of other cognitive research areas such as 

Psycholinguistics. Finally, the most practical effects of language upon numerical 

cognition reside in its pedagogical consequences as bilingualism has become a crucial 

factor in the educational context. On such issue, the link between math and language 

requires considerable research effort. 



	

	

118	 Alejandro	Martínez	

 

  



 

	

119	Bibliography:	

Bibliography: 

 A 

Abutalebi, J. (2008). Neural aspects of second language representation and language 
control. Acta Psychologica, 128(3), 466–478.  

Abutalebi, J., Annoni, J. M., Zimine, I., Pegna, A. J., Seghier, M. L., Lee-Jahnke, H., … 
Khateb, A. (2008). Language control and lexical competition in bilinguals: An 
event-related fMRI study. Cerebral Cortex, 18(7), 1496–1505.  

Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., … 
Costa, A. (2012). Bilingualism tunes the anterior cingulate cortex for conflict 
monitoring. Cerebral Cortex, 22(9), 2076–2086.  

Abutalebi, J., AND Green, D. W. (2007). Bilingual language production: The 
neurocognition of language representation and control. Journal of Neurolinguistics, 
20(3), 242–275.  

Agrillo, C., Piffer, L., Bisazza, A., and Butterworth, B. (2012). Evidence for two 
numerical systems that are similar in humans and guppies. PLoS ONE, 7(2), e31923.  

Altarriba, J., and Basnight-Brown, D. M. (2007). Methodological considerations in 
performing semantic- and translation-priming experiments across languages. 
Behavior Research Methods, 39(1), 1–18.  

Alvarez, R. P., Holcomb, P. J., and Grainger, J. (2003). Accessing word meaning in two 
languages: An event-related brain potential study of beginning bilinguals. Brain and 
Language, 87(2), 290–304.  

Ansari, D. (2008). Effects of development and enculturation on number representation in 
the brain. Nature Reviews. Neuroscience, 9(4), 278–91.  

Antell, S. E., and Keating, D. P. (1983). Perception of numerical invariance in neonates. 
Child Development, 54(3), 695–701.  

B 

Baker, C. (2011). Foundations of bilingual education and bilingualism (Vol. 79). 
Multilingual matters. 

Barth, H., La Mont, K., Lipton, J., and Spelke, E. (2005). Abstract number and arithmetic 
in preschool children. Proceedings of the National Academy of Sciences of the 
United States of America, 102(39), 14116–21.  

Bernardo, A. B. (2001). Asymmetric activation of number codes in bilinguals: further 
evidence for the encoding complex model of number processing. Mem Cognit, 
29(7), 968–976.  



	

	

120	 Alejandro	Martínez	

 

Bhatia, T. K., and Ritchie, W. C. (2012). The handbook of bilingualism and 
multilingualism. Wiley-Blackwell. 

Bialystok, E., Craik, F. I. M., Klein, R., and Viswanathan, M. (2004). Bilingualism, 
aging, and cognitive control: Evidence from the Simon task. Psychology and Aging, 
19(2), 290–303.  

Bialystok, E., Craik, F. I. M., and Luk, G. (2012, April). Bilingualism: Consequences for 
mind and brain. Trends in Cognitive Sciences.  

Bialystok, E., and Miller, B. (1999). The problem of age in second-language acquisition: 
Influences from language, structure, and task. Bilingualism: Language and 
Cognition, 2(2), 127–145. 

Blanco-Elorrieta, E., and Pylkkänen, L. (2016). Bilingual Language Control in Perception 
versus Action: MEG Reveals Comprehension Control Mechanisms in Anterior 
Cingulate Cortex and Domain-General Control of Production in Dorsolateral 
Prefrontal Cortex. The Journal of Neuroscience, 36(2), 290 LP-301.  

Bosch, L., and Sebastian-Galles, N. (2003). Simultaneous Bilingualism and the 
Perception of a Language-Specific Vowel Contrast in the First Year of Life. 
Language and Speech, 46(2–3), 217–243.  

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., and Cohen, J. D. (2001). 
Conflict monitoring and cognitive control. Psychol Review, 108(3), 624–652.  

Butterworth, B. (1999). The Mathematical Brain. London: Macmillan. 

Butterworth, B. (2003). Dyscalculia screener, 1–74.  

Butterworth, B. (2005). Developmental dyscalculia. Handbook of Mathematical 
Cognition, 455–467.  

Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. 
Trends in Cognitive Sciences, 14(12), 534–41.  

Butterworth, B. (2011). Foundational Numerical Capacities and the Origins of 
Dyscalculia. In Space, Time and Number in the Brain (Vol. 14, pp. 249–265).  

Butterworth, B., Reeve, R., Reynolds, F., and Lloyd, D. (2008). Numerical thought with 
and without words: Evidence from indigenous Australian children. Proceedings of 
the National Academy of Sciences of the United States of America, 105(35), 13179–
84.  

C 

Calabria, M., Hernandez, M., Branzi, F. M., and Costa, A. (2012). Qualitative differences 
between bilingual language control and executive control: Evidence from task-
switching. Frontiers in Psychology, 3(JAN), 399.  



 

	

121	Bibliography:	

 

Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53(1), 1–44.  

Campbell, J. I. D. (2005). Asymmetrical language switching costs in Chinese–English 
bilinguals’ number naming and simple arithmetic. Bilingualism: Language and 
Cognition, 8(1), 85–91.  

Campbell, J. I. D., and Alberts, N. M. (2009). Operation-specific effects of numerical 
surface form on arithmetic strategy. Journal of Experimental Psychology. Learning, 
Memory, and Cognition, 35(4), 999–1011.  

Campbell, J. I. D., and Clark, J. M. (1988). An encoding-complex view of cognitive 
number processing: Comment on McCloskey, Sokol, and Goodman (1986). Journal 
of Experimental Psychology: General, 117(2), 204–214.  

Campbell, J. I. D., and Clark, J. M. (1992). Chapter 12 Cognitive Number Processing: An 
Encoding-Complex Perspective. Advances in Psychology, 91, 457–491.  

Campbell, J. I. D., and Epp, L. J. (2004). An Encoding-Complex Approach to Numerical 
Cognition in Chinese-English Bilinguals. Canadian Journal of Experimental 
Psychology/Revue Canadienne de Psychologie Expérimentale, 58(4), 229–244.  

Campbell, J. I. D., Kanz, C. L., and Xue, Q. (1999). Number Processing in Chinese-
English Bilinguals. Mathematical Cognition, 5(1), 1–39.  

Campbell, J. I. D., and Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of 
Experimental Psychology. General, 130(2), 299–315.  

Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., and Pelphrey, K. 
A. (2009). The neural development of an abstract concept of number. Journal of 
Cognitive Neuroscience, 21(11), 2217–2229.  

Cantlon, J. F., Platt, M. L., and Brannon, E. M. (2009, February). Beyond the number 
domain. Trends in Cognitive Sciences. NIH Public Access.  

Cappelletti, M., Butterworth, B., and Kopelman, M. (2001). Spared numerical abilities in 
a case of semantic dementia. Neuropsychologia, 39(11), 1224–1239.  

Cappelletti, M., and Price, C. J. (2014). Residual number processing in dyscalculia. 
NeuroImage: Clinical, 4, 18–28. https://doi.org/10.1016/j.nicl.2013.10.004 

Carey, S. (1998). Knowledge of number: its evolution and ontogeny. Science (New York, 
N.Y.), 282(5389), 641–642.  

Carey, S. (2001). Cognitive Foundations of Arithmetic: Evolution and Ontogenisis. Mind 
and Language, 16(1), 37–55.  

Carey, S. (2004). Susan Carey. Doedalus, Wonter(1), 59–68.  

Carter, C. S., Botvinick, M. M., and Cohen, J. D. (1999). The contribution of the anterior 



	

	

122	 Alejandro	Martínez	

cingulate cortex to executive processes in cognition. Reviews in the Neurosciences, 
10(1), 49–57.  

Centeno, J. G., and Obler, L. K. (2001). Principles of bilingualism. Neuropsychology and 
the Hispanic Patient: A Clinical Handbook, 75–86. 

Chauncey, K., Grainger, J., and Holcomb, P. J. (2008). Code-switching effects in 
bilingual word recognition: A masked priming study with event-related potentials. 
Brain and Language, 105(3), 161–174.  

Chauncey, K., Grainger, J., and Holcomb, P. J. (2011). The role of subjective frequency 
in language switching: an ERP investigation using masked priming. Memory and 
Cognition, 39(2), 291–303.  

Chee, M. W. L., Hon, N., Lee, H. L., and Soon, C. S. (2001). Relative Language 
Proficiency Modulates BOLD Signal Change when Bilinguals Perform Semantic 
Judgments. NeuroImage, 13(6), 1155–1163.  

Chee, M. W. L., Soon, C. S., and Lee, H. L. (2003). Common and segregated neuronal 
networks for different languages revealed using functional magnetic resonance 
adaptation. J Cogn Neurosci, 15(1), 85–97.  

Chee, M. W. L., Tan, E. W., and Thiel, T. (1999). Mandarin and English single word 
processing studied with functional magnetic resonance imaging. The Journal of 
Neuroscience : The Official Journal of the Society for Neuroscience, 19(8), 3050–
3056. 

Chochon, F., Cohen, L., van de Moortele, P. F., and Dehaene, S. (1999). Differential 
contributions of the left and right inferior parietal lobules to number processing. 
Journal of Cognitive Neuroscience, 11(6), 617–30.  

Christoffels, I. K., Firk, C., and Schiller, N. O. (2007). Bilingual language control: An 
event-related brain potential study. Brain Research, 1147(1), 192–208.  

Cipolotti, L., and Butterworth, B. (1995). Toward a Multiroute Model of Number 
Processing: Impaired Number Transcoding With Preserved Calculation Skills.    
Journal of Experimental Psychology: General , 124  (4)   Pp. 375-390.   (1995)      .  

Cipolotti, L., Butterworth, B., and Denes, G. (1991). A specific deficit for numbers in a 
case of dense acalculia. Brain, 114(6), 2619–2637.  

Clarkson, P. C., and Galbraith, P. (1992). Bilingualism and Mathematics Learning: 
Another Perspective. Journal for Research in Mathematics Education, 23(1), 34–44. 
https://doi.org/10.2307/749162 

Cohen, L., Ito, Y., and Hatta, T. (2003). Semantic processing of Arabic, Kanji, and Kana 
numbers: evidence from interference in physical and numerical size judgments. 
Memory and Cognition, 31(3), 360–368.  

 



 

	

123	Bibliography:	

Cohen Kadosh, R., Cohen Kadosh, K., Kaas, A., Henik, A., and Goebel, R. (2007). 
Notation-Dependent and -Independent Representations of Numbers in the Parietal 
Lobes. Neuron, 53(2), 307–314.  

 

Cohen Kadosh, R., Cohen Kadosh, K., Linden, D. E. J., Gevers, W., Berger, A., and 
Henik, A. (2007). The brain locus of interaction between number and size: a 
combined functional magnetic resonance imaging and event-related potential study. 
Journal of Cognitive Neuroscience, 19(6), 957–70.  

Cohen Kadosh, R., Henik, A., and Rubinsten, O. (2008). Are Arabic and verbal numbers 
processed in different ways? Journal of Experimental Psychology. Learning, 
Memory, and Cognition, 34(6), 1377–91.  

Cohen Kadosh, R., Lammertyn, J., and Izard, V. (2008). Are numbers special? An 
overview of chronometric, neuroimaging, developmental and comparative studies of 
magnitude representation. Progress in Neurobiology.  

Costa, A., and Santesteban, M. (2004). Lexical access in bilingual speech production: 
Evidence from language switching in highly proficient bilinguals and L2 learners. 
Journal of Memory and Language, 50(4), 491–511.  

Craik, F. I. M., and Bialystok, E. (2006, March). Cognition through the lifespan: 
Mechanisms of change. Trends in Cognitive Sciences.  

Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., … Price, 
C. J. (2006). Language Control in the Bilingual Brain. Science, 312(5779), 1537–
1540.  

Crystal, D. (1996). The Cambridge Encyclopedia of the English Language. Cambridge 
University Press (1996). Cambridge University Press.  

Cummins, J. (1984). Wanted: A theoretical framework for relating language proficiency 
to academic achievement among bilingual students. Language Proficiency and 
Academic Achievement, 10, 2–19. 

Cummins, J., and Gulutsan, M. (1974). Bilingual Education and Cognition. Alberta 
Journal of Educational Research, 20(3), 259–269. 

D 

Damian, M. F. (2004). Asymmetries in the processing of Arabic digits and number 
words. Memory and Cognition, 32(1), 164–171.  

De Bleser, R., Dupont, P., Postler, J., Bormans, G., Speelman, D., Mortelmans, L., and 
Debrock, M. (2003, July). The organisation of the bilingual lexicon: A PET study. 
Journal of Neurolinguistics.  

De Houver, A. (2009). No Early bilingual acquisition. In Handbook of Bilingualism. 



	

	

124	 Alejandro	Martínez	

Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44(1–2), 1–42.  

Dehaene, S. (1996). The organization of brain activations in number comparison: event-
related potentials and the additive-factors method. Journal of Cognitive 
Neuroscience, 8(1), 47–68.  

Dehaene, S. (1997). The number sense Oxford University Press. New York. 

Dehaene, S. (1999a). Sources of Mathematical Thinking: Behavioral and Brain-Imaging 
Evidence. Science, 284(5416), 970–974.  

Dehaene, S. (1999b). The number sense. How the mind creates mathematics. Science 
Spectra. Oxford University Press. https://doi.org/10.2307/2589308 

Dehaene, S. (2003, April). The neural basis of the Weber-Fechner law: A logarithmic 
mental number line. Trends in Cognitive Sciences. https://doi.org/10.1016/S1364-
6613(03)00055-X 

Dehaene, S. (2009). Origins of mathematical intuitions: The case of arithmetic. Annals of 
the New York Academy of Sciences, 1156(1), 232–259.  

Dehaene, S., Bossini, S., and Giraux, P. (1993). The mental representation of parity and 
number magnitude. Journal of Experimental Psychology: General, 122(3), 371–396.  

Dehaene, S., and Cohen, L. (1991). Two mental calculation systems: A case study of 
severe acalculia with preserved approximation. Neuropsychologia, 29(11), 1045–
1074.  

Dehaene, S., and Cohen, L. (1995). Towards an anatomical and functional model of 
number processing. In Mathematical cognition (Vol. 1, pp. 83–120). 

Dehaene, S., and Cohen, L. (1997). Cerebral pathways for calculation: double 
dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 
33(2), 219–250.  

Dehaene, S., Dehaene-Lambertz, G., and Cohen, L. (1998, August). Abstract 
representations of numbers in the animal and human brain. Trends in Neurosciences.  

Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., Perani, D., … Le Bihan, D. 
(1997). Anatomical variability in the cortical representation of first and second 
language. NeuroReport, 8(17).  

Dehaene, S., Izard, V., Pica, P., and Spelke, E. (2006). Core Knowledge of Geometry in 
an Amazonian Group. Science, 311(5579), 381–384.  

Dehaene, S., Molko, N., Cohen, L., and Wilson, A. J. (2004). Arithmetic and the brain. 
Current Opinion in Neurobiology.  

Dehaene, S., Piazza, M., Pinel, P., and Cohen, L. (2003). Three Parietal Circuits for 
Number Processing. Cognitive Neuropsychology, 20(3–6), 487–506.  



 

	

125	Bibliography:	

Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., and Tsivkin, S. (1999). Sources of 
Mathematical Thinking: Behavioral and Brain Imaging Evidence. Science, 
284(5416), 970–974.  

DeKeyser, R. M. (2005, June). What makes learning second-language grammar difficult? 
A review of issues. Language Learning. Blackwell Publishing Ltd/Inc.  

DeKeyser, R. M., and Larson-Hall, J. (2005). What does the critical period really mean. 
Handbook of Bilingualism: Psycholinguistic Approaches, 88–108. 

Delazer, M., and Benke, T. (1997). Arithmetic facts without meaning. Cortex, 33(4), 
697–710. 

Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., and Benke, T. 
(2003). Learning complex arithmetic - An fMRI study. Cognitive Brain Research, 
18(1), 76–88.  

Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C., 
… Felber, S. (2005). Learning by strategies and learning by drill - Evidence from an 
fMRI study. NeuroImage, 25(3), 838–849.  

Dijkstra, T., and van Heuven, W. J. B. (2002). The architecture of the bilingual word 
recognition system: From identification to decision. Bilingualism: Language and 
Cognition, 5(3), 175–197.  

Dijkstra, T., and Van Heuven, W. J. B. (1998). The BIA model and bilingual word 
recognition. Localist Connectionist Approaches to Human Cognition, 189–225. 

Dormal, V., Dormal, G., Joassin, F., and Pesenti, M. (2012). A common right fronto-
parietal network for numerosity and duration processing: An fMRI study. Human 
Brain Mapping, 33(6), 1490–1501.  

Duñabeitia, J. A., Dimitropoulou, M., Uribe-Etxebarria, O., Laka, I., and Carreiras, M. 
(2010). Electrophysiological correlates of the masked translation priming effect with 
highly proficient simultaneous bilinguals. Brain Research, 1359(0), 142–154.  

Eger, E., Sterzer, P., Russ, M. O., Giraud, A.-L. L., and Kleinschmidt, A. (2003). A 
supramodal number representation in human intraparietal cortex. Neuron, 37(4), 
719–725.  

F 

Feigenson, L., Dehaene, S., and Spelke, E. (2004, July). Core systems of number. Trends 
in Cognitive Sciences.  

Feigenson, L., and Halberda, J. (2004). Infants chunk object arrays into sets of 
individuals. Cognition, 91(2), 173–190.  

Fias, W., Reynvoet, B., and Brysbaert, M. (2001). Are Arabic numerals processed as 
pictures in a Stroop interference task? Psychological Research, 65(4), 242–249.  



	

	

126	 Alejandro	Martínez	

Flege, J. E., Mackay, I. R. A., and Piske, T. (2002). Assessing bilingual dominance. 
Applied Psycholinguistics, 23(4), 567–598.  

Flege, J. E., Munro, M. J., and Mackay, I. R. A. (1995). Effects of age of second-
language learning on the production of English consonants. Speech Communication, 
16(1), 1–26.  

Flombaum, J. I., Junge, J. A., and Hauser, M. D. (2005). Rhesus monkeys (Macaca 
mulatta) spontaneously compute addition operations over large numbers. Cognition, 
97(3), 315–325.  

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., and Collins, D. L. 
(2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 
54(1), 313–327. 

Franklin, M. S., and Jonides, J. (2009). Order and Magnitude Share a Common 
Representation in Parietal Cortex. Journal of Cognitive Neuroscience, 21(11), 2114–
2120.  

Frenck-Mestre, C., and Vaid, J. (1993). Activation of number facts in bilinguals. Memory 
and Cognition, 21(6), 809–18.  

Frith, C. D., Friston, K. J., Liddle, P. F., and Frackowiak, R. S. J. (1991). A PET study of 
word finding. Neuropsychologia, 29(12), 1137–1148. 

G 

Gallistel, C. R., and Gelman, R. (1992). Preverbal and verbal counting and computation. 
Cognition, 44(1–2), 43–74.  

Gallistel, C. R., and Gelman, R. (2000, February). Non-verbal numerical cognition: From 
reals to integers. Trends in Cognitive Sciences. Psychology Press.  

Gandour, J., Tong, Y., Talavage, T., Wong, D., Dzemidzic, M., Xu, Y., … Lowe, M. 
(2007). Neural basis of first and second language processing of sentence-level 
linguistic prosody. Human Brain Mapping, 28(2), 94–108.  

Garbin, G., Sanjuan, A., Forn, C., Bustamante, J. C., Rodriguez-Pujadas, A., Belloch, V., 
… Ávila, C. (2010). Bridging language and attention: Brain basis of the impact of 
bilingualism on cognitive control. NeuroImage, 53(4), 1272–1278.  

García-Pentón, L., Pérez Fernández, A., Iturria-Medina, Y., Gillon-Dowens, M., and 
Carreiras, M. (2014). Anatomical connectivity changes in the bilingual brain. 
NeuroImage, 84, 495–504.  

Geary, D. C. (2004). Mathematics and Learning Disabilities. Journal of Learning 
Disabilities, 37(1), 4–15.  

Geary, D. C., Cormier, P., Goggin, J. P., Estrada, P., and Lunn, M. C. E. (1993). Mental 
arithmetic: A componential analysis of speed-of-processing across monolingual, 
weak bilingual, and strong bilingual adults. International Journal of Psychology, 



 

	

127	Bibliography:	

28(2), 185–201.  

Gelman, R., and Butterworth, B. (2005). Number and language: how are they related? 
Trends in Cognitive Sciences, 9(1), 6–10.  

Gelman, R., and Galistell, C. H. (1979). The Child’s Understanding of Number. Harvard 
University Press (Vol. 8). Harvard University Press.  

Gevers, W., Santens, S., Dhooge, E., Chen, Q., Van den Bossche, L., Fias, W., and 
Verguts, T. (2010). Verbal-spatial and visuospatial coding of number–space 
interactions. Journal of Experimental Psychology: General, 139(1), 180–190.  

Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., and Fias, W. (2006). Numbers and 
space: a computational model of the SNARC effect. Journal of Experimental 
Psychology. Human Perception and Performance, 32(1), 32–44.  

Gilmore, C. K., McCarthy, S. E., and Spelke, E. (2007). Symbolic arithmetic knowledge 
without instruction. Nature, 447(7144), 589–591.  

Gilmore, C. K., McCarthy, S. E., and Spelke, E. (2010). Non-symbolic arithmetic abilities 
and mathematics achievement in the first year of formal schooling. Cognition, 
115(3), 394–406.  

Gordon, P. (2004). Numerical cognition without words: evidence from Amazonia. 
Science (New York, N.Y.), 306(5695), 496–499.  

Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., and Neuper, C. 
(2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of 
arithmetic facts during problem solving. Neuropsychologia, 47(2), 604–608.  

Grabner, R. H., Saalbach, H., and Eckstein, D. (2012). Language-Switching Costs in 
Bilingual Mathematics Learning. Mind, Brain, and Education, 6(3), 147–155.  

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., … 
H??m??l??inen, M. S. (2014). MNE software for processing MEG and EEG data. 
NeuroImage, 86, 446–460.  

Green, D. W. (1986). Control, activation, and resource: A framework and a model for the 
control of speech in bilinguals. Brain and Language, 27(2), 210–223.  

Green, D. W. (1993). Towards a model of L2 comprehension and production. The 
Bilingual Lexicon, 249–277. 

Green, D. W. (1998). Mental control of the bilingual lexico-semantic system. 
Bilingualism: Language and Cognition, 1(2), 67–81.  

Grill-Spector, K., Henson, R., and Martin, A. (2006, January). Repetition and the brain: 
Neural models of stimulus-specific effects. Trends in Cognitive Sciences.  

Grosjean, F. (2010). Bilingual. Life and Reality. Sociolinguistic Studies (Vol. 6). Harvard 
University Press. https://doi.org/10.1558/sols.v6i3.595 



	

	

128	 Alejandro	Martínez	

Grosjean, F., and Li, P. (2012). The psycholinguistics of bilingualism. John Wiley and 
Sons. 

Grossi, G. (2006). Relatedness proportion effects on masked associative priming: An 
ERP study. Psychophysiology, 43(1), 21–30.  

 

Gruber, O., Indefrey, P., Steinmetz, H., and Kleinschmidt, A. (2001). Dissociating Neural 
Correlates of Cognitive Components in Mental Calculation. Cerebral Cortex, 11(4), 
350–359. Retrieved from http://dx.doi.org/10.1093/cercor/11.4.350 

H 

Halberda, J., Mazzocco, M. M. M., and Feigenson, L. (2008). Individual differences in 
non-verbal number acuity correlate with maths achievement. Nature, 455(October), 
665–668.  

Hamers, J. F., and Blanc, M. (2000). Bilinguality and bilingualism. Cambridge University 
Press. 

Hauser, M. D., Tsao, F., Garcia, P., and Spelke, E. (2003). Evolutionary foundations of 
number: spontaneous representation of numerical magnitudes by cotton-top 
tamarins. Proceedings. Biological Sciences / The Royal Society, 270(1523), 1441–6.  

Hayashi, M. J., Kanai, R., Tanabe, H. C., Yoshida, Y., Carlson, S., Walsh, V., and 
Sadato, N. (2013). Interaction of Numerosity and Time in Prefrontal and Parietal 
Cortex. Journal of Neuroscience, 33(3), 883–893.  

Hazan, V. L., and Boulakia, G. (1993). Perception and Production of a Voicing Contrast 
by French-English Bilinguals. Language and Speech, 36(1), 17–38.  

Henik, A., Rubinsten, O., and Ashkenazi, S. (2011). The “where” and “what” in 
developmental dyscalculia. The Clinical Neuropsychologist, 25(6), 989–1008.  

Henson, R. N. A., and Rugg, M. D. (2003). Neural response suppression, haemodynamic 
repetition effects, and behavioural priming. Neuropsychologia, 41(3), 263–270.  

Hermans, D., Bongaerts, T., De Bot, K., and Schreuder, R. (1998). Producing words in a 
foreign language: Can speakers prevent interference from their first language? 
Bilingualism: Language and Cognition, 1(3), 213–229.  

Hernandez, A. E. (2013). The bilingual brain. Oxford University Press. 

Hernandez, A. E., Dapretto, M., Mazziotta, J., and Bookheimer, S. (2001a). Language 
switching and language representation in Spanish-English bilinguals: an fMRI study. 
NeuroImage, 14(2), 510–20.  

Hernandez, A. E., Dapretto, M., Mazziotta, J., and Bookheimer, S. (2001b). Language 
Switching and Language Representation in Spanish–English Bilinguals: An fMRI 
Study. NeuroImage, 14(2), 510–520.  



 

	

129	Bibliography:	

Hernandez, A. E., Martinez, A., and Kohnert, K. (2000). In Search of the Language 
Switch: An fMRI Study of Picture Naming in Spanish–English Bilinguals. Brain 
and Language, 73(3), 421–431.  

Hikosaka, O., and Isoda, M. (2010, April). Switching from automatic to controlled 
behavior: cortico-basal ganglia mechanisms. Trends in Cognitive Sciences.  

Hodent, C., Bryant, P., and Houde, O. (2005). Language-specific effects on number 
computation in toddlers. Developmental Science, 8(5), 420–423.  

Holloway, I. D., and Ansari, D. (2008). Domain-specific and domain-general changes in 
children’s development of number comparison. Developmental Science, 11(5), 644–
649. 

Hoshino, N., Midgley, K. J., Holcomb, P. J., and Grainger, J. (2010). An ERP 
investigation of masked cross-script translation priming. Brain Research, 1344, 159–
172.  

Hsu, Y. F., and Szucs, D. (2012). The time course of symbolic number adaptation: 
Oscillatory EEG activity and event-related potential analysis. NeuroImage, 59(4), 
3103–3109. 

I 

Ischebeck, A., Schocke, M., and Delazer, M. (2009). The processing and representation 
of fractions within the brain. An fMRI investigation. NeuroImage, 47(1), 403–413.  

Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstaetter, F., Benke, T., Felber, S., and 
Delazer, M. (2006). How specifically do we learn? Imaging the learning of 
multiplication and subtraction. NeuroImage, 30(4), 1365–1375.  

Iuculano, T., and Cohen Kadosh, R. (2014). Preliminary evidence for performance 
enhancement following parietal lobe stimulation in Developmental Dyscalculia. 
Frontiers in Human Neuroscience, 8, 38. 

J 

Jackson, G. M., Swainson, R., Cunnington, R., and Jackson, S. R. (2001). ERP correlates 
of executive control during repeated language switching. Bilingualism: Language 
and Cognition, 4(2), 169–178.  

Jackson, G. M., Swainson, R., Mullin, A., Cunnington, R., and Jackson, S. R. (2004). 
ERP correlates of a receptive language-switching task. The Quarterly Journal of 
Experimental Psychology. A, Human Experimental Psychology, 57(2), 223–240.  

Johnson, J. S., and Newport, E. L. (1989). Critical period effects in second language 
learning: The influence of maturational state on the acquisition of English as a 
second language. Cognitive Psychology, 21(1), 60–99.  

Jordan, N. C., and Montani, T. O. (1997). Cognitive arithmetic and problem solving: A 
comparison of children with specific and general mathematics difficulties. Journal of 



	

	

130	 Alejandro	Martínez	

Learning Disabilities. SAGE Publications.  

K 

Kadosh, R. C., and Walsh, V. (2009). Numerical representation in the parietal lobes: 
Abstract or not abstract? Behavioral and Brain Sciences, 32(3–4), 313.  

 

Kaplan, E., Goodglass, H., and Weintraub, S. (1983). Boston Naming Test.  

Kaufmann, L., Wood, G., Rubinsten, O., and Henik, A. (2011). Meta-analyses of 
developmental fMRI studies investigating typical and atypical trajectories of number 
processing and calculation. Developmental Neuropsychology, 36(6), 763–787.  

Kempert, S., Saalbach, H., and Hardy, I. (2011). Cognitive benefits and costs of 
bilingualism in elementary school students: The case of mathematical word 
problems. Journal of Educational Psychology, 103(3), 547–561.  

Kim, K. H., Relkin, N. R., Lee, K. M., and Hirsch, J. (1997). Distinct cortical areas 
associated with native and second languages. Nature, 388(6638), 171–174.  

Kolers, P. A. (1968). Bilingualism and Information Processing. Scientific American, 
18(3), 78–86.  

Kovelman, I., Shalinsky, M. H., Berens, M. S., and Petitto, L.-A. (2008). Shining new 
light on the brain’s “bilingual signature”: A functional Near Infrared Spectroscopy 
investigation of semantic processing. NeuroImage, 39(3), 1457–1471.  

Kroll, J. F., Dussias, P. E., Bogulski, C. A., and Valdes Kroff, J. R. (2012). 7 Juggling 
Two Languages in One Mind: What Bilinguals Tell Us About Language Processing 
and its Consequences for Cognition. Psychology of Learning and Motivation-
Advances in Research and Theory, 56, 229. 

Kroll, J. F., and Stewart, E. (1994). Category Interference in Translation and Picture 
Naming: Evidence for Asymmetric Connections Between Bilingual Memory 
Representations. Journal of Memory and Language, 33(2), 149–174.  

Kucian, K., Ashkenazi, S. S. chwizer, Hänggi, J., Rotzer, S., Jäncke, L., Martin, E., and 
von Aster, M. (2014). Developmental dyscalculia: a dysconnection syndrome? Brain 
Structure and Function, 219(5), 1721–1733.  

Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., and von Aster, M. (2006). 
Impaired neural networks for approximate calculation in dyscalculic children: a 
functional MRI study. Behavioral and Brain Functions : BBF, 2(1), 31.  

L 

Landerl, K., Bevan, A., and Butterworth, B. (2004). Developmental dyscalculia and basic 
numerical capacities: A study of 8-9-year-old students. Cognition, 93(2), 99–125.  



 

	

131	Bibliography:	

Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: 
A functional magnetic resonance imaging study and correlation with a case of 
selective acalculia. Annals of Neurology, 48(4), 657–661.  

Lee, M.-W., and Williams, J. N. (2001). Lexical access in spoken word production by 
bilinguals: evidence from the semantic competitor priming paradigm. Bilingualism: 
Language and Cognition, 4(December 2001), 233–248.  

 

Lemer, C., Dehaene, S., Spelke, E., and Cohen, L. (2003). Approximate quantities and 
exact number words: dissociable systems. Neuropsychologia, 41(14), 1942–1958.  

Lenneberg, E. H. (1967). Biological Foundations of Language. Neurology, 17(12), 1219–
1219.  

Li, P., Sepanski, S., and Zhao, X. (2006). Language history questionnaire: A web-based 
interface for bilingual research. Behavior Research Methods, 38(2), 202–10.  

Libertus, M. E., and Brannon, E. M. (2009). Behavioral and neural basis of number sense 
in infancy. Current Directions in Psychological Science, 18(6), 346–351.  

Libertus, M. E., Woldorff, M. G., and Brannon, E. M. (2007). Electrophysiological 
evidence for notation independence in numerical processing. Behavioral and brain 
functions : BBF (Vol. 3).  

Lin, J.-F. F. L., Imada, T., and Kuhl, P. (2012). Mental addition in bilinguals: An fMRI 
study of task-related and performance-related activation. Cerebral Cortex, 22(8), 
1851–1861.  

Lipton, J., and Spelke, E. (2003). Origins of number sense: Large number discrimination 
in human infants. Psychological Science, 14(5), 396–401. 

Long, M. H. (1990). Maturational constraints on language development. Studies in 
Second Language Acquisition, 12(3), 251–285. 

Luk, G., Green, D. W., Abutalebi, J., and Grady, C. (2012). Cognitive control for 
language switching in bilinguals: A quantitative meta-analysis of functional 
neuroimaging studies. Language and Cognitive Processes, 27(10), 1479–1488.  

M 

Macizo, P., Bajo, T., and Paolieri, D. (2012). Language switching and language 
competition. Second Language Research, 28(2), 131–149.  

Macnamara, J. (1967). The Bilingual’s Linguistic Performance-A Psychological 
Overview. Journal of Social Issues, 23(2), 58–77.  

Malt, B., and Wolff, P. M. (2010). Words and the mind: How words capture human 
experience. Oxford University Press. 



	

	

132	 Alejandro	Martínez	

Marsh, L. G., and Maki, R. H. (1976). Efficiency of arithmetic operations in bilinguals as 
a function of language. Memory and Cognition, 4(4), 459–64.  

Martinez-Lincoln, A., Cortinas, C., and Wicha, N. Y. Y. (2015). Arithmetic memory 
networks established in childhood are changed by experience in adulthood. 
Neuroscience Letters, 584, 325–330.  

McClain, L., and Huang, J. Y. (1982). Speed of simple arithmetic in bilinguals. Memory 
and Cognition, 10(6), 591–596.  

McClelland, J. L., and Rumelhart, D. E. (1981). An interactive activation model of 
context effects in letter perception. Psychological Review, 88(5), 375–407.  

McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from 
acquired dyscalculia. Cognition, 44(1–2), 107–157.  

McCloskey, M., Caramazza, A., and Basili, A. (1985). Cognitive mechanisms in number 
processing and calculation: Evidence from dyscalculia. Brain and Cognition, 4(2), 
171–196.  

Menon, V. (2014). Arithmetic in the child and adult brain. In The Oxford Handbook of 
Numerical Cognition. 

Meuter, R. F. I., and Allport, A. (1999). Bilingual Language Switching in Naming: 
Asymmetrical Costs of Language Selection. Journal of Memory and Language, 
40(1), 25–40.  

Molko, N., Cachia, A., Rivière, D., Mangin, J. F., Bruandet, M., Le Bihan, D., … 
Dehaene, S. (2003). Functional and structural alterations of the intraparietal sulcus in 
a developmental dyscalculia of genetic origin. Neuron, 40(4), 847–858.  

Morales, R. V., Shute, V. J., and Pellegrino, J. W. (1985). Developmental Differences in 
Understanding and Solving Simple Mathematics Word Problems. Cognition and 
Instruction, 2(1), 41–57.  

Moreno, E. M., Federmeier, K. D., and Kutas, M. (2002). Switching Languages, 
Switching Palabras (Words): An Electrophysiological Study of Code Switching. 
Brain and Language, 80(2), 188–207.  

Moreno, E. M., and Kutas, M. (2005). Processing semantic anomalies in two languages: 
An electrophysiological exploration in both languages of Spanish-English bilinguals. 
Cognitive Brain Research, 22(2), 205–220.  

Moreno, E. M., Rodriguez-Fornells, A., and Laine, M. (2008). Event-related potentials 
(ERPs) in the study of bilingual language processing. Journal of Neurolinguistics, 
21(6), 477–508.  

Moschkovich, J. (2007, December 8). Using two languages when learning mathematics. 
Educational Studies in Mathematics. Kluwer Academic Publishers.  

 



 

	

133	Bibliography:	

Moyer, R. S., and Landauer, T. K. (1967). Time required for judgements of numerical 
inequality. Nature, 215(5109), 1519–1520.  

N 

Nathan, M. Ben, and Algom, D. (2008). Do the processing of arabic numbers and number 
words differ in tasks of magnitude? Proceedings of Fechner Day, 24(1), 129–132.  

Niedeggen, M., Rösler, F., and Rosler, F. (1999). N400 effects reflect activation spread 
during retrieval of arithmetic facts. Psychological Science, 10(3), 271–276.  

Nieder, A., and Dehaene, S. (2009). Representation of number in the brain. Annual 
Review of Neuroscience, 32(1), 185–208.  

Noël, M.-P., Fias, W., Brysbaert, M., Noel, M. P., Fias, W., and Brysbaert, M. (1997). 
About the influence of the presentation format on arithmetical-fact retrieval 
processes. Cognition, 63(3), 335–374.  

Noël, M.-P., and Rousselle, L. (2011). Developmental changes in the profiles of 
dyscalculia: An explanation based on a double exact-and-approximate number 
representation model. Frontiers in Human Neuroscience, 5(December), 1–4.  

Noël, M.-P., and Seron, X. (1997). On the existence of intermediate representations in 
numerical processing. Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 23(3), 697–720.  

Noel, M. P., Robert, A., and Brysbaert, M. (1998). Does language really matter when 
doing arithmetic? Reply to Campbell (1998). Cognition, 67(3), 365–373. 

Nuerk, H. C., Weger, U., and Willmes, K. (2005). Language effects in magnitude 
comparison: Small, but not irrelevant. Brain and Language, 92(3), 262–277.  

P 

Palmer, S. D., van Hooff, J. C., and Havelka, J. (2010). Language representation and 
processing in fluent bilinguals: Electrophysiological evidence for asymmetric 
mapping in bilingual memory. Neuropsychologia, 48(5), 1426–1437.  

Perani, D., and Abutalebi, J. (2005, April). The neural basis of first and second language 
processing. Current Opinion in Neurobiology.  

Perani, D., Abutalebi, J., Paulesu, E., Brambati, S., Scifo, P., Cappa, S. F., and Fazio, F. 
(2003). The role of age of acquisition and language usage in early, high-proficient 
bilinguals: An fMRI study during verbal fluency. Human Brain Mapping, 19(3), 
170–182.  

Perani, D., Paulesu, E., Galles, N. S., Dupoux, E., Dehaene, S., Bettinardi, V., … Mehler, 
J. (1998). The bilingual brain. Proficiency and age of acquisition of the second 
language. Brain, 121(10), 1841–1852.  

Piazza, M. (2011). Neurocognitive Start-Up Tools for Symbolic Number Representations. 



	

	

134	 Alejandro	Martínez	

In Space, Time and Number in the Brain (Vol. 1, pp. 267–285).  

Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … Zorzi, 
M. (2010). Developmental trajectory of number acuity reveals a severe impairment 
in developmental dyscalculia. Cognition, 116(1), 33–41.  

Piazza, M., Mechelli, A., Butterworth, B., and Price, C. J. (2002). Are Subitizing and 
Counting Implemented as Separate or Functionally Overlapping Processes. 
NeuorImage, 15(2), 435–446.  

Piazza, M., Pica, P., Izard, V., Spelke, E., and Dehaene, S. (2013). Education enhances 
the acuity of the nonverbal approximate number system. Psychological Science, 
24(6), 1037–43.  

Piazza, M., Pinel, P., Le Bihan, D., and Dehaene, S. (2007). A Magnitude Code Common 
to Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron, 53(2), 
293–305.  

Pica, P., Lemer, C., Izard, V., and Dehaene, S. (2004). Exact and approximate arithmetic 
in an Amazonian indigene group. Materials and Method. Science, 306(5695), 1–16.  

Pinel, P., Dehaene, S., Rivière, D., and LeBihan, D. (2001). Modulation of Parietal 
Activation by Semantic Distance in a Number Comparison Task. NeuroImage, 
14(5), 1013–1026.  

Pinker, S. (1994). The Language Instinct. How the Mind Creates Language. 

Poulisse, N. (1999). Slips of the tongue: Speech errors in first and second language 
production (Vol. 20). John Benjamins Publishing. 

Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., and Ansari, D. (2007). Impaired 
parietal magnitude processing in developmental dyscalculia. Current Biology.  

Proverbio, A. M., Leoni, G., and Zani, A. (2004). Language switching mechanisms in 
simultaneous interpreters: an ERP study. Neuropsychologia, 42(12), 1636–1656.  

R 

Rodriguez-Fornells, A., De Diego Balaguer, R., and Münte, T. F. (2006). Executive 
Control in Bilingual Language Processing. Language Learning, 56(s1), 133–190.  

Rodriguez-Fornells, A., Rotte, M., Heinze, H. J., Nösselt, T., and Münte, T. F. (2002). 
Brain potential and functional MRI evidence for how to handle two languages with 
one brain. Nature, 415(6875), 1026–1029.  

Rodriguez-Fornells, A., van der Lugt, A., Rotte, M., Britti, B., Heinze, H. J., and Munte, 
T. F. (2005). Second language interferes with word production in fluent bilinguals: 
brain potential and functional imaging evidence. Journal of Cognitive Neuroscience, 
17(3), 422–433.  

Rosenberg-Lee, M., Tsang, J. M., and Menon, V. (2009). Symbolic, numeric, and 



 

	

135	Bibliography:	

magnitude representations in the parietal cortex. Behavioral and Brain Sciences, 
32(3–4), 350.  

Rosselli, M., Ardila, A., Araujo, K., Weekes, V. A., Caracciolo, V., Padilla, M., and 
Ostrosky-Solís, F. (2000). Verbal fluency and repetition skills in healthy older 
Spanish-English bilinguals. Applied Neuropsychology, 7(1), 17–24.  

Rotzer, S., Kucian, K., Martin, E., Aster, M. von, Klaver, P., and Loenneker, T. (2008). 
Optimized voxel-based morphometry in children with developmental dyscalculia. 
NeuroImage, 39(1), 417–422.  

Rousselle, L., and Noël, M. P. (2007). Basic numerical skills in children with 
mathematics learning disabilities: A comparison of symbolic vs non-symbolic 
number magnitude processing. Cognition, 102(3), 361–395.  

Rubinsten, O., and Henik, A. (2009, February). Developmental Dyscalculia: 
heterogeneity might not mean different mechanisms. Trends in Cognitive Sciences.  

Rumbaugh, D. M., Savage-Rumbaugh, S., and Hegel, M. T. (1987). Summation in the 
chimpanzee (Pan troglodytes). Journal of Experimental Psychology: Animal 
Behavior Processes, 13(2), 107–115.  

Rusconi, E., Galfano, G., and Job, R. (2007). Bilingualism and cognitive arithmetic. In 
Cognitive Aspects of Bilingualism (pp. 153–174). Dordrecht: Springer Netherlands.  

S 

Salillas, E., Barraza, P., and Carreiras, M. (2015). Oscillatory brain activity reveals 
linguistic prints in the quantity code. PLoS ONE, 10(4), e0121434.  

Salillas, E., and Carreiras, M. (2014). Core number representations are shaped by 
language. Cortex, 52(1), 1–11.  

Salillas, E., and Wicha, N. Y. Y. (2012). Early learning shapes the memory networks for 
arithmetic: Evidence from brain potentials in bilinguals. Psychological Science, 
23(7), 745–755.  

Secada, W. G. (1991). Degree of Bilingualism and Arithmetic Problem Solving in 
Hispanic First Graders. The Elementary School Journal, 92(2), 213.  

Semenza, C., Salillas, E., Di Pellegrin, S., and Della Puppa, A. (2016). Balancing the 2 
Hemispheres in Simple Calculation: Evidence From Direct Cortical 
Electrostimulation. Cerebral Cortex.  

Seron, X., and Noel, M.-P. (1995). Transcoding numbers from the Arabic code to the 
verbal one or vice versa: How many routes. Mathematical Cognition, 1(21), 5–243. 

Sokolowski, H. M., Fias, W., Mousa, A., and Ansari, D. (2016). Common and distinct 
brain regions in both parietal and frontal cortex support symbolic and nonsymbolic 
number processing in humans: A functional neuroimaging meta-analysis. 
NeuroImage, 146(October), 1–73. 



	

	

136	 Alejandro	Martínez	

Soltész, F., Szucs, D., Dékány, J., Márkus, A., and Csépe, V. (2007). A combined event-
related potential and neuropsychological investigation of developmental dyscalculia. 
Neuroscience Letters, 417(2), 181–186.  

Spelke, E. (2000). Core Knowledge of Objects. American Psychologist, 55(November), 
1233–1243.  

Spelke, E., and Tsivkin, S. (2001). Language and number: A bilingual training study. 
Cognition, 78(1), 45–88.  

Starkey, P., and Cooper, R. (1980). Perception of numbers by human infants. Science, 
210(4473). 

Strauss, M. S., and Curtis, L. E. (1981). Infant Perception of Numerosity. Child 
Development, 52(4), 1146.  

Swainson, R., Cunnington, R., Jackson, G. M., Rorden, C., Peters, A. M., Morris, P. G., 
and Jackson, S. R. (2003). Cognitive control mechanisms revealed by ERP and 
fMRI: evidence from repeated task-switching. Journal of Cognitive Neuroscience, 
15(6), 785–799.  

Szucs, D., and Csépe, V. (2004). Access to numerical information is dependent on the 
modality of stimulus presentation in mental addition: A combined ERP and 
behavioral study. Cognitive Brain Research, 19, 10–27.  

Szucs, D., Soltész, F., Jármi, E., and Csépe, V. (2007). The speed of magnitude 
processing and executive functions in controlled and automatic number comparison 
in children: an electro-encephalography study. Behavioral and Brain Functions : 
BBF, 3(1), 23.  

T 

Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., and Leahy, R. M. (2011). Brainstorm: a 
user-friendly application for MEG/EEG analysis. Computational Intelligence and 
Neuroscience, 2011, 879716. 

Tang, Y., Zhang, W., Chen, K., Feng, S., Ji, Y., Shen, J., … Liu, Y. (2006). Arithmetic 
processing in the brain shaped by cultures. Proceedings of the National Academy of 
Sciences, 103(28), 10775–10780.  

Temple, E., and Posner, M. I. (1998). Brain mechanisms of quantity are similar in 5-year-
old children and adults. Proceedings of the National Academy of Sciences of the 
United States of America, 95(13), 7836–41. 

V 

Vaid, J., and Menon, R. (2000). Correlates of bilinguals’ preferred language for mental 
computations. Spanish Applied Linguistics, 4(2), 325–342. 

Valdes, G., Brookes, H., and Chavez, C. (2003). Bilinguals and bilingualism.  



 

	

137	Bibliography:	

Van Der Meij, M., Cuetos, F., Carreiras, M., and Barber, H. A. (2011). 
Electrophysiological correlates of language switching in second language learners. 
Psychophysiology, 48(1), 44–54.  

Van Heuven, W. J. B., Schriefers, H., Dijkstra, T., and Hagoort, P. (2008). Language 
conflict in the bilingual brain. Cerebral Cortex, 18(11), 2706–2716.  

Van Rinsveld, A., Brunner, M., Landerl, K., Schiltz, C., and Ugen, S. (2015). The relation 
between language and arithmetic in bilinguals: Insights from different stages of 
language acquisition. Frontiers in Psychology, 6(MAR), 265.  

Varley, R. A., Klessinger, N. J. C., Romanowski, C. A. J., and Siegal, M. (2005). 
Agrammatic but numerate. Proceedings of the National Academy of Sciences of the 
United States of America, 102(9), 3519–24.  

Venkatraman, V., Ansari, D., and Chee, M. W. L. (2005). Neural correlates of symbolic 
and non-symbolic arithmetic. Neuropsychologia, 43(5), 744–753.  

Venkatraman, V., Siong, S. C., Chee, M. W. L., and Ansari, D. (2006). Effect of language 
switching on arithmetic: a bilingual FMRI study. Journal of Cognitive Neuroscience, 
18(1), 64–74. 

Verhoef, K., Roelofs, A., and Chwilla, D. J. (2009). Role of inhibition in language 
switching: Evidence from event-related brain potentials in overt picture naming. 
Cognition, 110(1), 84–99.  

von Aster, M. G., and Shalev, R. S. (2007). Number development and developmental 
dyscalculia. Developmental Medicine and Child Neurology, 49(11), 868–873.  

W 

Wang, Y., Xue, G., Chen, C., Xue, F., and Dong, Q. (2007). Neural bases of asymmetric 
language switching in second-language learners: An ER-fMRI study. NeuroImage, 
35(2), 862–870. 

Weber-Fox, C. M., and Neville, H. J. (1996). Maturational Constraints on Functional 
Specializations for Language Processing: ERP and Behavioral Evidence in Bilingual 
Speakers. Journal of Cognitive Neuroscience, 8(3), 231–256.  

Whalen, J., Gallistel, C. R., and Gelman, R. (1999). Nonverbal Counting in Humans: The 
Psychophysics of Number Representation. Psychological Science, 10(2), 130–137.  

Wilson, A. J., and Dehaene, S. (2010). Number Sense and Developmental Dyscalculia. 
Human Behavior, Learning, and the Developing Brain: Atypical Development, 212. 

Woodruff, G., and Premack, D. (1981). Primative mathematical concepts in the 
chimpanzee: proportionality and numerosity. Nature, 293(5833), 568–570.  

Wynn, K. (1990). Children’s understanding of counting. Cognition, 36(2), 155–193.  

Wynn, K. (1992). Children’s acquisition of the number words and the counting system. 



	

	

138	 Alejandro	Martínez	

Cognitive Psychology, 24(2), 220–251. 

X 

Xu, F., and Spelke, E. (2000). Large number discrimination in 6-month-old infants. 
Cognition, 74(1).  

Y 

Yetkin, O., Yetkin, F. Z., Haughton, V. M., and Cox, R. W. (1996). Use of functional MR 
to map language in multilingual volunteers. American Journal of Neuroradiology, 
17(3), 473–477.  

Z 

Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., and Tzourio-Mazoyer, N. 
(2001). Neural Correlates of Simple and Complex Mental Calculation. NeuroImage, 
13(2), 314–327. 

Zhang, J., and Norman, D. A. (1995). A representational analysis of numeration systems. 
Cognition, 57(3), 271–295.  

	


