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Progression from selective to general involvement of
hippocampal subfields in schizophrenia
NF Ho1,2, JE Iglesias3,4, MY Sum1, CN Kuswanto1, YY Sitoh5, J De Souza2, Z Hong2, B Fischl4,6, JL Roffman7,8, J Zhou2,10, K Sim1,9,10 and
DJ Holt7,8,10

Volume deficits of the hippocampus in schizophrenia have been consistently reported. However, the hippocampus is anatomically
heterogeneous; it remains unclear whether certain portions of the hippocampus are affected more than others in schizophrenia. In
this study, we aimed to determine whether volume deficits in schizophrenia are confined to specific subfields of the hippocampus
and to measure the subfield volume trajectories over the course of the illness. Magnetic resonance imaging scans were obtained
from Data set 1: 155 patients with schizophrenia (mean duration of illness of 7 years) and 79 healthy controls, and Data set 2:
an independent cohort of 46 schizophrenia patients (mean duration of illness of 18 years) and 46 healthy controls. In addition,
follow-up scans were collected for a subset of Data set 1. A novel, automated method based on an atlas constructed from ultra-high
resolution, post-mortem hippocampal tissue was used to label seven hippocampal subfields. Significant cross-sectional volume
deficits in the CA1, but not of the other subfields, were found in the schizophrenia patients of Data set 1. However, diffuse
cross-sectional volume deficits across all subfields were found in the more chronic and ill schizophrenia patients of Data set 2.
Consistent with this pattern, the longitudinal analysis of Data set 1 revealed progressive illness-related volume loss (~ 2–6% per
year) that extended beyond CA1 to all of the other subfields. This decline in volume correlated with symptomatic worsening.
Overall, these findings provide converging evidence for early atrophy of CA1 in schizophrenia, with extension to other hippocampal
subfields and accompanying clinical sequelae over time.
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INTRODUCTION
Abnormalities of the hippocampus are among the most
consistently reported findings in studies of schizophrenia, and
have been hypothesized to underlie the neuropsychological
deficits and symptoms observed in the disorder.1–3

Meta-analyses of numerous structural magnetic resonance
imaging (MRI) studies show reductions of the hippocampus in
patients in both the early and chronic stages of illness.4–6 A recent
large-scale multisite consortium study found that among the
subcortical regions examined in schizophrenia, the largest
magnitude of volume deficits was in the hippocampus.7 However,
it is less clear whether the volume deficits of the hippocampus
worsen during the course of illness, with some studies finding no
atrophy over time8–11 and other studies suggesting progressive
volume loss that begins at early stages.12–14

It is also unclear whether certain portions of the hippocampus
are affected more than others.15 The hippocampus is comprises
the dentate gyrus (DG), Cornu Ammonis (CA) regions CA4,
CA3, CA2 and CA1 of the hippocampus proper, and the
subiculum (Sub).16,17 The study of these cellularly demarcated,
inter-connected hippocampal subfields, which have distinct
functions,18–22 could offer insights into the underlying pathogenic
mechanisms of hippocampal abnormalities in schizophrenia.3

With new advances in MRI data acquisition and analysis methods,

many studies have shown that it is now possible to examine the
subfields of the hippocampus separately.23–28

Previous structural MRI studies of the hippocampal subfields in
schizophrenia have produced mixed results. In cross-sectional
studies of schizophrenia, semiautomated shape analyses—which
involve manually tracing the perimeters of each individual
subject’s hippocampus and high-dimensional mapping with a
hippocampal anatomical template—have found deformity in
regions corresponding to the CA1 in first-episode29 and chronic
patients.30 Also, using an automated approach of labeling the
subfields, one study reported volume reductions in CA1 and CA2/3
in chronic patients.31 However, two subsequent, larger-scale
cross-sectional studies of subjects with chronic schizophrenia
reported the greatest degree of volume reductions in the CA2/3,
CA4/DG and Sub instead.32,33 The discrepancies among these
findings could be due to differences in the stages of illness of the
schizophrenia patients examined, the image acquisition
sequences or the methods used to delineate the hippocampal
subfields. Surface-based shape analyses cannot adequately model
the subfields that are embedded deep in the hippocampal
formation, such as the DG and CA4.34 Also, the initial iteration of
the automated method of labeling the subfields (used in the
above-mentioned studies)32,33 relied on an atlas constructed from
in vivo hippocampal scans of limited MRI contrast.23,35,36 A newly
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developed approach, used in this study, relies on the much
greater spatial resolution obtainable in ultra-high field scans of
ex vivo hippocampal tissue.37 The higher level of segmentation
accuracy associated with this approach should help clarify
remaining questions about the distribution and time course of
hippocampal volume loss in schizophrenia.
Hence in this study, we sought to determine the extent

and trajectory of volume deficits of hippocampal subfields in
schizophrenia, using this novel, automated method to label the
subfields. We measured hippocampal subfield volume in two
independent cohorts of schizophrenia patients and controls
cross-sectionally; one cohort consisted of patients who were
primarily in the early stages of illness, whereas the other cohort
included a greater number of patients with chronic schizophrenia.
Finally, a longitudinal analysis was performed in one cohort, to
assess any changes in hippocampal subfield volumes that occur
over the course of the illness.

MATERIALS AND METHODS
Participants
Written informed consent was obtained from all subjects in accordance
with the guidelines of the National Healthcare Group (Singapore), National
Neuroscience Institute (NNI, Singapore), Partners Healthcare and Harvard
University (Boston, MA, USA) institutional review boards.
Clinically stable outpatients with schizophrenia were recruited at two

sites: the Institute of Mental Health (IMH), Singapore, from 2006 to 2013
(Data set 1), and the Massachusetts General Hospital (MGH) in Boston, MA,
USA, from 2008 to 2013 (Data set 2). Diagnosis of schizophrenia for the
patients was confirmed by the Structured Clinical Interview for DSM-IV
disorders (SCID)-Patient version.38 Healthy controls were recruited from the
community at the same time through advertisements by the study team of
KS at IMH, and DJH and JLR at MGH, and the Cognitive Neuroscience
Laboratory based at both Harvard University and MGH. Healthy controls
were screened using the SCID-Non-Patient (SCID-NP) interview; none had

any history of Axis I disorders. Also, none of the participants had a history
of neurological or neurodevelopmental disorders, or a diagnosis of
substance or alcohol abuse 3 months preceding the study, claustrophobia
or any other contraindications for having an MRI.
Demographic, clinical and imaging information for Data set 1 (155

patients and 79 controls) and Data set 2 (46 patients and 46 controls) is
described in Supplementary Tables 1 and 2. In addition, we conducted a
secondary analysis of a subset of 53 patients from Data set 1 in early stages
of schizophrenia, who at the time of baseline data collection, had an
onset of illness at an age o35 years, zero or just one hospitalization and
o5 years of psychosis, and 61 demographically matched controls
(Supplementary Table 3). Also, demographic information about the
34 patients and 41 controls (from Data set 1) that were followed up
naturalistically for 2–7 years are described in Supplementary Table 4.
Symptom severity of all the patients was assessed using the Positive and

Negative Symptom Scale (PANSS). 39 Also, estimates of antipsychotic
dosages were calculated using daily chlorpromazine (CPZ) equivalent
dosages.

MRI acquisition and image processing
All MRI scans were performed within 2 weeks after the clinical and
neuropsychological assessments. All participants of Data set 1, including
those scanned a second time 2–7 years later, were scanned on the same 3-
Tesla whole-body scanner MRI (Philips Achieva, Best, The Netherlands) with
an 8-channel SENSE (Sensitivity Encoding) head coil at the NNI, Singapore.
Participants of Data set 2 were scanned on one of two identical 3-Tesla Tim
Trio Siemens MRI scanners located at either the Athinoula A Martinos
Center for Biomedical Imaging or at the Harvard University Center for Brain
Science. There were no major scanner hardware or software upgrades
during the MRI data collection period at either site. Scan parameters are
detailed in Supplementary Methods 1.
Preprocessing of the structural images collected at both sites was

performed using the open-source FreeSurfer pipeline (version 5.3, http://
surfer.nmr.mgh.harvard.edu).40–43 The longitudinal data were additionally
processed using a specialized longitudinal processing stream where
unbiased subject-specific templates were created, and then within-
subject images for each time-point re-processed with common

Figure 1. Representative subfield labels of the hippocampus generated by an automated ex vivo hippocampal segmentation approach.
Subfield labels of the left anterior hippocampus of a representative healthy control subject from (a) Data set 1 and (b) Data set 2, in the
sagittal, axial and coronal planes, are shown.
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information from the template.44 This has been demonstrated to reduce
the variability in within-subject morphological measures, and hence result
in greater statistical power and the ability to detect small changes.44

To label the subfields, a new automated algorithm from FreeSurfer was
used (Figure 1). This algorithm was based on a computational atlas built
from ex vivo MRI data of post-mortem medial temporal tissue from 15
subjects, acquired at an average of 0.13 mm isotropic resolution on a 7-T
scanner, and an in vivo atlas that provided information about adjacent
extrahippocampal structures.37 Compared with the previous algorithm
developed by FreeSurfer,45 the volumes generated by this new algorithm
are more comparable with histologically based measurements of the
subfields.37 It also provides a more comprehensive, fine-grained segmen-
tation of the structures of the hippocampus, including areas such as the
granule cell layer (GCL) of the DG, and the molecular layer (ML) of the CA
fields and Sub. See Supplementary Methods 2 for comparisons of volume
measures derived from both the older and new segmentation methods.
We measured volumes of the (i) overall hippocampus, generated by the

widely used automated FreeSurfer subcortical segmentation script (based
on the in vivo atlas)42 and (ii) seven structures considered to be subfields of
the hippocampus:16,17 the GCL, CA4, CA2/3 (CA2 and CA3 were combined
in the atlas because of the lack of distinguishing MRI contrast), CA1, ML,
the hippocampal tail (the posterior end of the hippocampus, which
includes portions of the CA fields and DG undistinguishable with the MRI
contrast) and the Sub.

Statistical analysis
All analyses were performed using open-source R software (version
3.1.3).46 Cross-sectional demographic differences between the patients
and controls were tested using χ2 tests for categorical variables (gender,
handedness and ethnicity) and F tests or independent t-tests for
continuous variables (age, intracranial volume (ICV), CPZ and time between
scans). Longitudinal change in clinical variables was assessed using paired
t-tests (duration of illness, PANSS scores and CPZ). Differences in age, ICV,
CPZ, duration of illnesses between the data sets were assessed using the
Welch two-sample t-test of unequal variances.

Cross-sectional analyses (Data sets 1 and 2). We first determined whether
there were any group-based differences in the overall mean hippocampus
volume of Data set 1 and Data set 2, as well as the early course patients of
Data set 1 and matched controls. A multiple linear regression, with volume
as the dependent variable, diagnosis as the main predictor, and ICV, age
and gender as covariates, was conducted. We then investigated whether
schizophrenia differentially affects the volume measures of the inter-
related hippocampal subfields. The Shapiro–Wilk test and Bartlett’s test of
homoscedasticity was first performed to ensure multivariate normality of
the subfield volumes and equal variances of in the healthy control and
patient groups of each data set, respectively. The subfield values were then
log transformed. A multivariate analysis of covariance, with the 14
subfields as dependent (and correlated) variables, diagnosis as the main
predictor, and ICV, age, gender and duration of illness as covariates, was
conducted. The alpha was set at Po0.05. This was followed by a post-hoc
univariate analysis of covariance to determine which subfield (dependent
variable) contributed to the significant overall effect of illness.

Longitudinal analysis (Data set 1). We sought to determine whether there
was an interaction effect between diagnosis and time (between baseline
and follow-up scans) for each hippocampal subfield. A separate multi-level
model was constructed here, which accounted for the unevenly spaced
time-points among subjects and the intra-individual variability in initial
subfield volumes and their trajectories (Supplementary Methods 3). After
model fitting, fixed effects included diagnosis, time, interaction between
diagnosis and time, ICV, CPZ, age, and gender. Random effects included
individual intercept and slope of time. The change in volume was modeled

linearly, as volume trajectories in studies of gray matter in schizophrenia47

and the hippocampus in childhood-onset schizophrenia (which followed
subjects until their late twenties)48 have been shown to be linear. In
addition, the annualized rate of change in subfield volume measures was
calculated: (Volumefollow-up – Volumebaseline)/(Volumebaseline × time).

Secondary analyses. As some studies have reported effects of treatment
with antipsychotics,11 antidepressants49 and mood stabilizers50 on
hippocampal structure, we repeated our primary analyses with the dosage
or use of medication classes of antipsychotics, antidepressants and mood
stabilizers as covariates. To minimize the potential confounding effect of
ethnicity, we also repeated our analyses with ethnicity included as a
covariate.

Post-hoc correlations between illness severity and hippocampal subfield
volumes in subjects with schizophrenia
Cross-sectional analyses: We examined the relationship between
clinical measures (PANSS subscales) and absolute volume measures of
the subfields that were significantly different in the patients. A linear
regression model was used, with the clinical measures as primary variables
of interests, and age and sex among the covariates. We also tested the
hypothesis that duration of illness is correlated with subfield volumes. In
addition, we tested for correlations between antipsychotic dosages and
subfield volumes.
Longitudinal analysis: We examined whether there was an intra-individual
relationship between the rate of change in clinical symptoms—calculated by
(Scoresfollow-up – Scoresbaseline)/(Scoresbaseline × time)—and the annualized
rate of change in the subfield volume measures using similar
regression modeling, controlling for age, sex, CPZ and baseline duration
of illness.
To address the multiple testing for the various hypotheses, the Holm–

Bonferroni method controlling for family-wise errors at alpha level (0.05)
was applied.51

RESULTS
Subject and cohort characteristics
Within each data set, the schizophrenia patients and controls were
well-matched in terms of age, gender, ethnicity, and handedness.
Between the cross-sectional Data sets 1 and 2, no cohort
differences were found in the MRI estimates of head sizes, or in
handedness or sex, for either the controls (t106.7 =−0.14, P= 0.89;
χ2= 0.34, P= 0.56; χ2= 1.7, P= 0.20, respectively) or the patients
(t81.7 = 0.23, P= 0.82; χ2= 1.24, P= 0.54; χ2= 1.39, P= 0.25, respec-
tively). Also, there was no difference in mean age of illness onset
between the two patient cohorts (t79.33 = 1.11, P= 0.28). However,
as expected, the mean age of the subjects was higher in Data set 2
(patients: 42.9 ± 10.2; controls: 41.9 ± 9.1) compared with Data set
1 (patients 32.5 ± 8.8 years; controls 31.2 ± 9.9 years) (controls:
t100.6 = 6.2, P= 1.4 × 10− 8; patients: t67.1 = 6.05, P= 7× 10− 8). Also,
compared with the patients of Data set 1, the patients of Data
set 2 had a significantly longer mean duration of illness (Data set
1: 6.6 ± 7.0 years; Data set 2:18.2 ± 11.0 years) (t57.8 = 46.78,
P= 7× 10− 9), received higher mean daily doses of antipsychotic
medication (Data set 1: 212.3 ± 191.3 mg; Data set 2: 525.4 ±
444.9 mg) (t51.3 = 4.7, P= 2× 10− 5) and were more symptomatic
(see Supplementary Tables 1; positive: t61.7 = 7.45, P= 3.58 × 10− 10;
negative: t58.2 = 13.67, P= 2.2 × 10− 16; general psychopathology:
t47.1 = 8.44, P= 5.53 × 10− 11).

Figure 2. Cross-sectional hippocampal subfield volume deficits in schizophrenia. Group-based comparisons of the hippocampal subfield
volumes in (a) Data set 1 and (b) Data set 2. In each data set, the subfield volumes of individual controls (blue) and schizophrenia subjects
(red) are shown after co-adjusting for cohort-averaged head size. Multivariate analysis of covariance of the combined volumes of the 14
hippocampal subfields, followed by post-hoc univariate analysis of covariance and a Holm–Bonferroni correction for multiple comparisons
across the 14 subfields showed that the volume deficit is limited to the CA1 in the schizophrenia patients who are at an early-to-mid stage of
illness (Data set 1), whereas the volume deficits involve multiple subfields in chronic patients (Data set 2). *Indicates significance in corrected
P-values controlling for family-wise error rate of alpha level of o0.05. GCL, granule cell layer; ML, molecular layer; Sub, subiculum.
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Cross-sectional findings of Data set 1
Comparison of overall hippocampal volumes indicated that,
compared with the controls, the schizophrenia patients had a

smaller left hippocampus (β=− 150.7, s.e. = 52.1, t230 =− 2.89,
P= 0.0042) and right hippocampus (β=− 169.9, s.e. = 47.7, t230 =
− 3.56, P= 0.00046). Following measurement of the volumes of the
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subfields, a significant effect of group on the combined volumes
of the subfields GCL, CA4, CA2/3, CA1, ML, tail and Sub (Pillai’s
trace = 0.11, F14, 215 = 1.83, P= 0.036) was observed (Figure 2a).
Post-hoc testing, after correction for multiple comparisons,
revealed a significant volume deficit in the left CA1 (but not in
the other subfields) in the schizophrenia patients, relative to the
controls (P= 0.0010; Table 1a).

The first 5 years of illness
To determine whether a change in CA1 is present during the
earliest stages of schizophrenia, we conducted a secondary
analysis in 53 patients in the first 5 years of illness and 61 healthy
controls of Data set 1. This analysis showed reduced volumes of
the left hippocampus (β=− 154.8, s.e. = 63.29, t110 =− 2.45,
P= 0.016) and right hippocampus (β=− 179.6, s.e. = 63.43, t110 =
− 2.83, P= 0.0055) in the patients (mean age 27.6 ± 4.9 years),
compared with the controls (mean age 27.2 ± 4.7 years).
There was a marginal effect of group on the combined
subfield volumes (Pillai’s trace = 0.12, F14,151 = 1.58, P= 0.09).
Post-hoc testing revealed that the subtle hippocampal volume
deficit found in the schizophrenia patients of this subgroup
was due to a smaller left and right CA1, as well as right GCL
(Table 1b).

Cross-sectional findings of Data set 2
Comparisons of the overall hippocampal volumes showed a
significant effect of group (that is, smaller in the patients) for both
the left (β=− 260.1, s.e. = 86.2, t88 =− 3.02, P= 0.003) and right
(β=− 219.4, s.e. = 86.6, t88 =− 2.53, P= 0.013) hippocampus. Also,
there was a significant effect of group on the combined subfield
volumes (Pillai’s trace = 0.27, F14, 73 = 1.91, P= 0.037) (Figure 2b).
Post-hoc testing revealed that all of the subfields contributed to
this overall main effect (Table 1c).

Longitudinal findings of Data set 1
In 41 controls (mean age 31.6 ± 9.3 years) and 34 patients (mean
age 30.9 ± 9.1 years, of which 13 were in the first 5 years of illness),
we tested whether there was an interaction effect between group
and time for each subfield. In this subsample, only a subtle group

difference in baseline volumes was seen in CA1 (β=− 32.5,
s.e. = 14.54, P= 0.043; uncorrected). Over time, the volumes of all
subfields, except the left tail, decreased at a significantly greater
rate in the schizophrenia cohort than in the healthy control cohort
(Figure 3a). Specifically, subfields showing significant volume loss
in the schizophrenia group (as indicated by the beta coefficients,
as well as derived P-values that survived multiple comparisons)
included the left CA1, right CA1, right ML, right CA2/3, left GCL
and right GCL (Table 2a).

Secondary analyses
After adjusting for different medication classes, the CA1 volume
deficit in Data set 1 remained significant (Supplementary
Table 5A). Similarly, the extensive volume deficits across the
hippocampal subfields of the more chronic patients of Data set 2
remained present, as well as the progressive volume decline
across multiple subfields in the patients of the longitudinal cohort
(Supplementary Table 5B). Also, the results of our primary analyses
remained unchanged after adjusting for ethnicity.

Relationships of the findings to symptoms and illness duration
Across the two cross-sectional data sets, no significant correlations
were found between symptom levels and absolute volume
measures of all of the subfields, after correction for multiple
comparisons. Also, no relationships between medication dosages
and subfield volumes were found (Supplementary Table 6).
However, negative associations between duration of illness and
CA1 volumes were observed in both cohorts (Data set 1, left CA1:
r=− 0.22, P= 0.006, right CA1: r =− 0.21, P= 0.01; Data set 2,
left CA1: r=− 0.27, P= 0.065, right CA1: r=− 0.32, P= 0.03)
(Supplementary Table 7).
Within the patient cohort of the longitudinal analysis, there

were—on average—mild improvements in positive symptoms
(Po0.012) and general psychopathology symptoms (Po0.06),
but no significant changes in negative symptoms, over time
(between baseline and follow-up). However, when we examined
intra-individual relationships between symptoms and subfield
volumes over time (adjusting for age, sex, antipsychotic dosages
and baseline duration of illness), associations between rate of
worsening of symptoms across all symptom domains and the rate

Table 1a. Group-wise comparisons of hippocampal subfields in (A) Data set 1

(A) Data set 1

Subfields Healthy controls Schizophrenia F-value P-value Cohen's d

Left GCL 343.65 (29.14) 337.53 (30.75) 1.32 0.2512 0.14
Right GCL 366.48 (32.66) 354.94 (30.42) 5.40 0.0210 0.26
Left CA4 310.28 (28.67) 304.65 (29.78) 1.19 0.2769 0.14
Right CA4 336.49 (30.47) 324.84 (29.55) 6.27 0.0130 0.29
Left CA3 302.35 (31.99) 298.34 (32.53) 0.41 0.5204 0.08
Right CA3 327.37 (36.31) 318.30 (30.41) 2.67 0.1036 0.21
Left CA1 726.95 (57.22) 695.45 (63.97) 11.10 0.0010a 0.49
Right CA1 735.72 (63.87) 716.69 (60.54) 6.99 0.0088 0.39
Left ML 559.18 (44.30) 543.14 (51.57) 4.25 0.0404 0.23
Right ML 586.99 (46.00) 569.67 (45.57) 5.51 0.0197 0.25
Left tail 687.80 (72.98) 666.28 (75.06) 5.12 0.0246 0.27
Right tail 714.18 (80.66) 697.02 (80.87) 3.67 0.0566 0.26
Left Sub 482.38 (45.26) 462.56 (46.08) 3.01 0.0844 0.22
Right Sub 485.71 (38.54) 471.28 (40.83) 1.67 0.1975 0.14

Abbreviations: CA, Cornu Ammonis; GCL, granule cell layer; ML, molecular layer; Sub, subiculum. The mean volumes (± s.d.) in cubic millimeters of the
hippocampal subfields of the healthy control and patient group are indicated. The F-values and P-values represent the results of post-hoc univariate analysis of
covariance (with intracranial volume, age, sex and duration of illness in years as covariates) testing the effect of diagnosis on group means and variances of the
subfield volumes. aIndicates significance (Po0.05) after Holm–Bonferroni correction for multiple comparisons across the 14 subfields. Cohen’s d provides
approximates of the effect sizes, or magnitude of group differences in the mean volume measures of each subfield.
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of change in subfield volume were observed (Table 2b). Figure 3b
displays a plot of the correlation between the rate of left CA1
atrophy and rate of increase in negative symptom severity
(r=− 0.54, P= 0.0023).

DISCUSSION
Here we demonstrated that MRI volume estimates of the CA1 of
the hippocampus were selectively reduced in patients in the early
(including those in the first 5 years of illness) to mid-course of
schizophrenia, when compared with healthy controls. In contrast,
in a cohort of chronic schizophrenia patients, the volume deficits
were widespread across the subfields. Consistent with this pattern,
the results of our longitudinal analysis indicated that over time,

the focal atrophy associated with early illness extends beyond
CA1, involving other subfields such as the CA2/3 and GCL. Finally,
correlational analyses revealed that subfield volumes were (1)
cross-sectionally smaller with greater illness duration and (2)
declined with illness progression (that is, worsening symptoms)
over time.

Early changes in CA1 in schizophrenia, with later involvement of
other subfields
The pattern of disproportionate reductions in CA1 volume in
schizophrenia patients of Data set 1 agrees with convergent
evidence from shape morphometric studies of first-episode
schizophrenia patients.29 The diffuse subfield volume deficits in
the chronic patients of Data set 2 are consistent with prior

Table 1b. Group-wise comparisons of hippocampal subfields in (B) a subset of Data set 1 in the first 5 years of illness

(B) Data set 1 subset

Subfields Healthy controls Early course schizophrenia F-value P-value Cohen's d

Left GCL 348.39 (29.04) 333.98 (35.39) 1.84 0.1764 0.18
Right GCL 366.95 (35.53) 349.40 (37.71) 8.69 0.0037a 0.37
Left CA4 315.10 (27.65) 301.36 (33.31) 1.45 0.2310 0.17
Right CA4 337.08 (33.45) 320.19 (36.36) 5.65 0.0186 0.39
Left CA3 305.87 (30.83) 292.87 (35.71) 1.06 0.3047 0.14
Right CA3 327.16 (38.52) 310.89 (36.86) 6.67 0.0107 0.31
Left CA1 737.79 (67.38) 691.32 (80.88) 11.22 0.0010a 0.41
Right CA1 740.07 (71.62) 705.42 (72.60) 9.30 0.0027a 0.36
Left ML 568.18 (45.89) 538.11 (60.42) 4.97 0.0272 0.29
Right ML 589.62 (53.99) 562.94 (55.19) 7.95 0.0054 0.34
Left tail 690.49 (84.22) 655.75 (77.86) 3.49 0.0635 0.25
Right tail 713.75 (86.07) 680.19 (95.87) 3.53 0.0621 0.23
Left Sub 487.22 (47.74) 460.02 (53.08) 5.60 0.0191 0.32
Right Sub 488.09 (44.71) 465.28 (47.35) 6.15 0.0141 0.31

Abbreviations: CA, Cornu Ammonis; GCL, granule cell layer; ML, molecular layer; Sub, subiculum. The mean volumes (± s.d.) in cubic millimeters of the
hippocampal subfields of the healthy control and patient group are indicated. The F-values and P-values represent the results of post-hoc univariate analysis of
covariance (with intracranial volume, age, sex and duration of illness in years as covariates) testing the effect of diagnosis on group means and variances of the
subfield volumes. aIndicates significance (Po0.05) after Holm–Bonferroni correction for multiple comparisons across the 14 subfields. Cohen’s d provides
approximates of the effect sizes, or magnitude of group differences in the mean volume measures of each subfield.

Table 1c. Group-wise comparisons of hippocampal subfields in (C) Data set 2

(C) Data set 2

Subfields Healthy controls Schizophrenia F-value P-value Cohen's d

Left GCL 304.66 (34.86) 280.71 (35.04) 11.12 0.0013a 0.69
Right GCL 318.23 (40.22) 295.62 (41.05) 7.20 0.0088a 0.56
Left CA4 250.77 (28.67) 232.86 (27.48) 9.68 0.0025a 0.64
Right CA4 261.05 (32.63) 243.51 (32.70) 6.65 0.0116a 0.54
Left CA3 225.34 (30.23) 203.98 (26.91) 12.94 0.0005a 0.75
Right CA3 236.61 (32.51) 219.33 (33.45) 6.46 0.0128a 0.52
Left CA1 620.96 (64.39) 580.20 (86.01) 7.63 0.0070a 0.54
Right CA1 640.91 (72.54) 596.85 (84.26) 7.95 0.0062a 0.56
Left ML 579.85 (56.53) 541.76 (62.67) 9.63 0.0026a 0.64
Right ML 597.67 (61.57) 561.76 (62.13) 7.63 0.0070a 0.58
Left tail 545.27 (66.98) 482.53 (65.86) 20.56 0.0000a 0.94
Right tail 550.78 (63.32) 500.90 (68.96) 13.23 0.0005a 0.75
Left Sub 407.23 (46.08) 384.50 (45.22) 5.94 0.0168a 0.50
Right Sub 406.30 (45.59) 382.42 (45.33) 6.31 0.0139a 0.53

Abbreviations: CA, Cornu Ammonis; GCL, granule cell layer; ML, molecular layer; Sub, subiculum. The mean volumes (± s.d.) in cubic millimeters of the
hippocampal subfields of the healthy control and patient group are indicated. The F-values and P-values represent the results of post-hoc univariate analysis of
covariance (with intracranial volume, age, sex and duration of illness in years as covariates) testing the effect of diagnosis on group means and variances of the
subfield volumes. aIndicates significance (Po0.05) after Holm-Bonferroni correction for multiple comparisons across the 14 subfields. Cohen’s d provides
approximates of the effect sizes, or magnitude of group differences in the mean volume measures of each subfield.
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Figure 3. Longitudinal change in hippocampal subfield volumes in schizophrenia over time. (a) Spaghetti plots are shown indicating the
trajectories of volumes of the hippocampal subfields, which showed a steeper rate of loss in patients compared with controls (in a subset of
Data set 1). Bold lines indicate the group mean linear regression line. GCL, granule cell layer; ML, molecular layer; Sub, subiculum. (b) Also, in
this cohort, the rate of atrophy of left CA1 was correlated with the rate of increasing negative symptom severity in the patients. The scatter
plot showing the standardized rate of change of negative symptoms versus the rate of change of left CA1 volume across all schizophrenia
patients (r=− 0.54, P= 0.0023) is displayed.
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evidence of widespread volume deficits along the anterior–
posterior extent of the hippocampus in patients with long-term
schizophrenia.15 Negative correlations between illness duration
and subfield volumes were also found in both data sets, similar to
prior reports of an association between hippocampal volume
reduction and illness duration in chronic schizophrenia.12,52,53

Taken together, these cross-sectional findings raise the possibility
that a progressive extension of atrophy across the hippocampus
occurs during the illness. We tested this hypothesis by conducting
a longitudinal analysis in a subset of subjects of Data set 1. Here
we found subtle volume reductions at baseline in the left CA1—
but not in the other subfields—in the schizophrenia patients
when compared with the controls. Over time, significant effects of
the illness were observed not only in the CA1 but also in other
subfields that are part of the trisynaptic circuit, that is, CA2/3, ML
and GCL.16,54 The extent of atrophy averaged about 2–6% loss per
year in the most affected subfields, with the greatest amount of
volume change in the CA1 subregion (~6%). We found that the

rate of atrophy across the subfields in schizophrenia correlated
with the rate of symptom worsening over time. Thus, our findings
suggest that the greatest decline in subfield volume over time
may occur in patients who have a poor course of illness.
The present finding of an initial, selective loss of CA1 volume

during the early stages of illness is consistent with a finding of
increased CA1 regional cerebral blood volume in prodromal
subjects who subsequently became ill, compared with those that
did not.55 In this prior study, CA1 hypermetabolism predated
changes in shape measures of CA1 and subicular atrophy in these
subjects.55 The present finding is also consistent with prior
findings of selective CA1 hypermetabolism or shape deformity in
patients in the early-to-mid stages of illness, including patients
with mean illness duration of ⩽ 10 years.29,30,56,57

Our findings, however, are not in line with two recent studies,
which found pronounced volume deficits in the CA2/3, CA4/DG
and Sub subfields of the hippocampus in schizophrenia patients,
with little or no differences in CA1.32,33 The discrepancy between

Table 2a. Longitudinal group-based comparisons between schizophrenia patients and healthy controls of slopes of hippocampal subfield volumes

Hemisphere Subfield Results after model fitting Controls Patients

Fixed effects parameters for interaction
between diagnosis and time

Mean annualized % change Mean annualized % change

Beta s.e. t-value P-value

Left GCL −2.04 0.65 − 3.17 0.0023a 0.34 (2.75) − 2.0 (3.05)
CA4 − 0.87 0.63 − 1.38 0.17 0.24 (3.10) − 1.5 (3.20)
CA2/3 − 1.26 0.81 − 1.55 0.12 0.31 (3.60) − 1.5 (3.94)
CA1 − 5.96 1.66 − 3.60 0.0006a − 0.2 (6.43) − 5.9 (9.40)
ML − 2.42 1.02 − 2.37 0.02 0.46 (4.34) − 3.1 (4.47)
Tail 1.38 1.80 0.77 0.45 1.24 (7.67) 2.30 (8.23)
Sub − 1.15 0.85 − 1.35 0.18 0.23 (3.44) − 1.9 (4.94)

Right GCL − 2.08 0.63 − 3.29 0.0016a 0.24 (3.16) − 2.2 (4.04)
CA4 − 1.77 0.68 − 2.62 0.01 0.25 (3.04) − 2.2 (4.29)
CA2/3 − 2.15 0.64 − 3.35 0.0013a 0.50 (3.15) − 2.2 (4.61)
CA1 − 8.87 2.15 − 4.13 0.0001a 1.57 (7.34) − 6.1 (10.0)
ML − 3.73 0.99 − 3.78 0.0003a 1.05 (4.39) − 3.4 (6.36)
Tail − 0.99 2.05 0.48 0.63 0.0 (6.81) − 0.89 (11.1)
Sub − 1.81 0.79 − 2.29 0.03 0.31 (3.51) − 2.3 (5.71)

Abbreviations: CA, Cornu Ammonis; GCL, granule cell layer; ML, molecular layer; Sub, subiculum. The mean annualized percentage change of each
hippocampal subfield in each group is also indicated. aIndicates significance (Po0.05) after Holm–Bonferroni correction for multiple comparisons across the
14 subfields.

Table 2b. Correlations between rate of symptom change and rate of volume change in the hippocampal subfields showing significant atrophy in
schizophrenia over time

Subfield Positive and Negative Symptom Scale, subscales

Positive Negative General psychopathology

Beta s.e. P-value r2 Beta s.e. P-value r2 Beta s.e. P-value r2

Left CA1 − 1.60 1.95 0.419 0.04 − 7.83 7.83 0.00018a 0.41 − 3.80 1.14 0.0024a 0.42
Right CA1 − 3.04 1.22 0.019 0.19 − 1.32 1.57 0.410 0.060 − 2.39 0.70 0.0018a 0.30
Left GCL − 4.79 2.01 0.024 0.18 − 6.49 2.30 0.0085 0.244 − 3.66 1.16 0.0038a 0.26
Right GCL − 4.01 2.06 0.134 0.06 − 3.20 2.52 0.22 0.086 − 3.44 1.18 0.0068 0.23
Right CA2/3 − 2.59 1.41 0.123 0.08 − 1.34 1.75 0.449 0.055 − 2.56 0.78 0.0028a 0.28
Right ML − 3.69 1.61 0.029 0.17 − 4.02 1.93 0.046 0.162 − 3.15 0.90 0.0015a 0.30

Abbreviations: CA, Cornu Ammonis; GCL, granule cell layer; ML, molecular layer. The negative betas across all subfields investigated suggested a pattern of
association between rate of symptom worsening and rate of volume decline. aIndicates significant association (Po0.05) after Holm–Bonferroni correction for
multiple comparisons across the 6 subfields and 3 symptom subscales.
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these prior findings and ours is likely due to differences in
hippocampal subfield labeling methods. It has recently been
shown that portions of CA1 are misattributed as CA2/3, CA4-DG
and Sub by the older automated algorithm used in these prior
studies.23,36,58 Indeed, our own calculations indicate that volume
estimates45 of the CA1 using the prior algorithm are approxi-
mately 40% smaller than the current, ex vivo algorithm’s CA1
volume estimates, and that the previous volume estimates of the
CA2/3 are four times larger than the ex vivo algorithm’s CA2/3
volume estimates.

Possible mechanisms underlying the selective-to-diffuse changes
in the hippocampus in schizophrenia
Small et al.3 and Schoebel et al.55 have proposed a framework to
explain an early involvement of CA1 in the pathophysiological
process underlying psychosis. They suggest a sequence of events
involving an increase in synaptic glutamate levels, subsequent
increase in metabolic demand and blood flow, and down-
regulation of GABAergic interneurons in the hippocampus.55

Owing to the greater density of glutamate receptors (N-Methyl-D-
aspartate receptor and α-Amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid receptor) in CA1 compared with the other
hippocampal subfields,59 CA1 may be particularly vulnerable to
dysregulation of glutamatergic neurotransmission and excitotoxic
injury.3 Moreover, as Konradi et al.60 have shown, CA1 has the
largest numbers of primary hippocampal interneuron subtypes
among the subfields, the loss of function of these interneurons,
which control information flow arriving from the entorhinal cortex
and excitatory hippocampal pyramidal cell activity,61 may produce
excessive, feedforward excitation of the trisynaptic hippocampal
circuit,54,62 driving an extension of these abnormalities in
excitation–inhibition balance to other portions of the hippocam-
pus and beyond.61,63–66 Empirical support for this model has been
produced using ketamine-treated mice, which showed hyperme-
tabolism followed by atrophy selectively in CA1 and the Sub; these
effects were subsequently blocked by reducing synaptic gluta-
mate levels.55

The progression of atrophy from CA1 to other hippocampal
subfields could result from an extension of the pathophysiological
process underlying psychosis, such as the one hypothesized
above. Consistent with this possibility are the findings of extensive
reductions in interneuron subtypes throughout the hippocampus
(in the CA1, CA2/3 and CA4 fields) in post-mortem studies of
schizophrenia.60 This possibility is also supported by the associa-
tion between progressive atrophy and symptomatic worsening
observed in this study. Alternatively, this progression could result
from an interaction between (1) a fundamental cellular abnorm-
ality and (2) environmental factors,61 including stress, substance
use and/or treatment with antipsychotic medications, all of which
have been associated with decreases in brain tissue volume.67–69

However, when we controlled for antipsychotic medication
dosages (as well as the use of mood stabilizers and antidepres-
sants) in the analyses, both our cross-sectional and longitudinal
findings in both data sets remained significant, suggesting that
progression of atrophy across the hippocampus over time in
schizophrenia is not a consequence of medication treatment.
Also, it is notable that our longitudinal data were collected in a
country (Singapore) with extremely strict prohibitions against
(and hence very little) illicit substance use. Thus, although
substance use, cannabis in particular, has been linked to
reductions in hippocampal volume in both healthy and schizo-
phrenia groups,70–72 it is unlikely to have had a role in our
longitudinal findings.
However, we speculate that elevated stress levels,68 as well as

unhealthy lifestyle practices common in patients with chronic
schizophrenia, such as poor nutrition, cigarette smoking73,74 and
lack of exercise,75,76 exacerbate dysfunction and structural

changes of the hippocampus in the illness. Future studies can
quantitatively measure these environmental factors longitudinally
to determine which influence progression of hippocampal atrophy
in schizophrenia.
Intriguingly, a recent multisite structural MRI study of major

depressive disorder show a pattern of results that is similar to
those of this study, with hippocampal volume deficits in chronic
patients, but no such deficit in first-episode depression subjects.77

Taken together with evidence for hippocampal hypermetabolism
in depression,78,79 these findings suggest that related, overlapping
mechanisms may be responsible for hippocampal abnormalities in
schizophrenia and depression, as recently proposed.3 The
possibility that identical mechanisms, affecting overlapping but
partially distinct circuits, underlie psychosis and depression, could
account both for the overlap in symptoms (for example,
anhedonia) as well as the phenomenological differences across
the two disorders.

Potential limitations and summary
There are several potential limitations of our study. First, although
the hippocampal segmentations of all subjects studied here were
visually inspected individually, it is possible that schizophrenia
disrupts the folding of the multi-layered hippocampus, influencing
the accuracy of the hippocampal segmentation process. However,
the current segmentation algorithm has been used, with a high
level of accuracy, to delineate the subfields of the hippocampus in
patients with Alzheimer’s disease—who exhibit greater cellular
degradation and atrophy of the hippocampus than patients with
schizophrenia,37 suggesting that this method is likely fairly robust
to disease-induced alterations.
Second, it is possible that there may be differences in

hippocampal structure across ethnic groups that may limit the
validity of examining hippocampal subfields across cohorts with
different ethnic compositions. However, prior studies, including
one that directly compared the brain structures of 140 cognitively
matched young and old Chinese Singaporeans and non-Asian
Americans, have found no evidence of effects of ethnicity on
hippocampal volume measures.80,81 Hippocampal volume deficits
are also consistently reported in studies of schizophrenia across
patients of varying ethnicities;4,7,82–86 thus it is unlikely that the
differences in ethnicity across the two sites of our study impacts
the generalizability of these results.
In conclusion, this study reports selective volume deficits of the

CA1 in the early-to-mid phases of schizophrenia, with evidence for
an extension of this atrophy to the remaining hippocampal
subfields over the course of the illness. Correlations between these
findings and measures of illness progression suggest that these
anatomical changes may have direct clinical consequences, which
could be treated, in future trials, by interventions aimed at
restoring or preserving the hippocampus.
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