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Cross-modal noise compensation in 
audiovisual words
Martijn Baart1,2, Blair C. Armstrong1,3, Clara D. Martin1,4, Ram Frost1,5,6 & Manuel Carreiras1,4,7

Perceiving linguistic input is vital for human functioning, but the process is complicated by the fact that 
the incoming signal is often degraded. However, humans can compensate for unimodal noise by relying 
on simultaneous sensory input from another modality. Here, we investigated noise-compensation 
for spoken and printed words in two experiments. In the first behavioral experiment, we observed 
that accuracy was modulated by reaction time, bias and sensitivity, but noise compensation could 
nevertheless be explained via accuracy differences when controlling for RT, bias and sensitivity. In 
the second experiment, we also measured Event Related Potentials (ERPs) and observed robust 
electrophysiological correlates of noise compensation starting at around 350 ms after stimulus onset, 
indicating that noise compensation is most prominent at lexical/semantic processing levels.

Information about external events in the world enters the system through our senses, but the input is often 
degraded. The system can overcome unisensory noise in the signal and stabilize the percept by integrating infor-
mation from multiple senses (e.g., refs 1 and 2). This is also true for complex signals such as human speech, 
wherein noise in the auditory speech signal can be compensated for by simultaneously presented visual speech 
(i.e., the articulating mouth of a speaker, e.g., refs 3–5) or printed text (e.g., ref. 6). Intriguingly, this latter type of 
compensation occurs despite the fact that print-speech mappings emerged relatively recently in evolution, and the 
system has not been biologically tailored for this type of audiovisual (henceforth, AV) correspondence.

Noise compensation in speech and in print can be assessed with a “matching task” in which a written and a 
spoken word are presented simultaneously, with one or both inputs masked by noise, and participants have to 
indicate whether the same word (congruent trials) or different words (incongruent trials) were presented across 
the two modalities. The underlying rationale is that asking participants to detect AV correspondence requires one 
or more interaction(s) between the unisensory inputs, during which cross-modal compensation for noise can be 
instantiated. This task has been used as an alternative to lexical decision or naming tasks in which one cannot be 
certain whether participants’ responses are driven by the auditory/phonological or visual/orthographic aspects of 
the signal6. Likewise, when AV noise compensation is assessed by comparing noisy unimodal trials to AV trials 
where there is one noisy signal and one clear signal, one cannot rule out the possibility that the AV gain relative to 
unimodal trials is driven by the clear unimodal signal, rather than cross-modal noise compensation per se (except 
when AV stimuli generate percepts that are different from either A or V in isolation, see ref. 7).

Although the matching task has produced evidence for interactions between speech and print (see e.g., refs 
6 and 8), the interpretation of correct “match” responses on AV congruent trials (in which one of the signals 
is masked by noise) is complicated by several factors. Firstly, it is well known that participants may trade-off 
response speed (i.e., reaction times, henceforth RT) for accuracy (e.g., ref. 9). Therefore, high/low proportions 
of correct “match” responses may be the result of (i) a general tendency to respond more quickly or more slowly, 
(ii) successful noise compensation, or (iii) a combination of both (assuming that noise compensation takes time, 
the degree of compensation could vary with RT). Secondly, the proportion of incorrect “match” responses (when 
responding “match” to AV incongruent trials) needs to be considered, as participants may adopt a bias to respond 
“match” or “mismatch” on all trials, irrespective of AV congruency. Thirdly, accuracy is related to the actual noise 
levels as participants will become more sensitive to the match/mismatch as the signal-to-noise ratio increases. In 
two experiments, we isolated noise compensation effects in words when controlling for RT, bias and sensitivity. 
This rigorous assessment approach allowed us to conclude that noise compensation can be explained by accuracy 
(Experiment 1), and mainly occurs on a lexical/semantic level of processing (Experiment 2).
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To assess the effects of noise compensation more formally, we quantified this construct using the following 
logic: First, we assumed that performance on AV stimuli in the clear (henceforth Nonoise) reflects a base-line abil-
ity to detect correspondence of print and speech under optimal conditions. From this baseline, we subtracted the 
accuracy differences under unimodal noise conditions (i.e., Anoise and Vnoise, for noise in the auditory and visual 
modality), and summed them. The resulting value was then subtracted from the accuracy detriment for bimodal 
noise (AVnoise) relative to Nonoise (i.e., noise compensation, or Acccomp =  (Nonoise −  AVnoise) −  [(Nonoise −  Anoise) +   
(Nonoise −  Vnoise)]). This compound noise compensation score increases when the Nonoise −  Anoise and 
Nonoise −  Vnoise differences become smaller (and the Nonoise −  AVnoise difference becomes larger). In Experiment 1 
participants were asked to respond as quickly as possible and we assessed the relationship between these accuracy 
differences relative to Nonoise and noise compensation, when taking into account the interplay between accuracy, 
RT, bias, and sensitivity.

Experiment 2 was a non-speeded variant of the first task in which we probed the time-course of noise com-
pensation via Event-Related Potentials (ERPs). This allowed us to disentangle the noise compensation process 
from processes related to bias and sensitivity in post-lexical response processes. Although it is debated whether 
orthography and phonology interact at all (e.g., ref. 10), there is also evidence for interactions occurring at a 
(sub) lexical level (e.g., refs 6, 11 and 12). As highlighted above, we assume that noise compensation has to be 
instantiated during at least one such interaction, and the time-course of the neural correlates that underlie noise 
compensation would reveal at which level(s) of processing noise compensation occurs.

To preview the main results, noise compensation increased when the difference between the unimodal noise 
conditions and the Nonoise condition decreased, which persisted when RT, bias and sensitivity were controlled 
for. Furthermore, in a 350–390 ms window after stimulus onset, the ERP difference waves of the unimodal noise 
conditions relative to Nonoise were not modulated by bias or sensitivity, but could explain noise compensation in 
accuracy. This result indicated that that compensation for noise in speech and print predominantly occurs at a 
lexical/semantic level of processing.

Results
Behavioral. First, we explored how accuracy, bias, sensitivity and accuracy-based noise compensation were 
modulated by RT, using the noise compensation score described in the introduction (i.e., Acccomp: [Nonoise −   
AVnoise] −  ([Nonoise −  Anoise] +  [Nonoise −  Vnoise]). Based on signal detection theory, we quantified sensitivity 
through d-prime (d′ ) and used response criterion c as a measure of response bias (e.g., refs 13 and 14). As illus-
trated in Fig. 1, the linear trends between RT and accuracy, bias, sensitivity and Acccomp values in the speeded 
task (Experiment 1) always carried over to the non-speeded task (Experiment 2). This is reflected by the fact that 
averages in Experiment 2 increased/decreased relative to Experiment 1 (although differences between were not 
always significant), according to the positive/negative linear relationships related to RT.

Because of the way we defined the compound Acccomp score, it should increase when accuracy differences 
between Anoise/Vnoise and Nonoise become smaller, and conversely, when unimodal noise detriments are high, 
Acccomp is low. Before assessing this however, we first determined how accuracy related to bias and sensitivity. To 
do so, we correlated accuracy with bias and sensitivity for each noise condition separately, which was preferred 
over multiple linear regression because of multicollinearity between the predictors. In both experiments, bias and 
sensitivity were highly and significantly correlated with accuracy in most conditions: accuracy increased with a 
decrease in bias, and an increase in sensitivity. This finding also held for the partial correlations in which we con-
trolled for RT (in Experiment 1 only, see Table 1).

Taken together, it is clear that effects of RT, bias and sensitivity cannot be ignored when explaining Acccomp 
through accuracy. Therefore, the correlations between Acccomp and the Anoise, Vnoise and AVnoise accuracy differ-
ences relative to Nonoise were also computed when controlling for bias and sensitivity in all conditions (the last col-
umn in Table 1). These partial correlations showed that in both experiments, noise compensation increased when 
the unimodal noise accuracy detriments relative to Nonoise decreased. This was not the case for the Nonoise −  AVnoise 
accuracy difference, as it was not significantly correlated with Acccomp in Experiment 1, and was negatively corre-
lated with Acccomp in Experiment 2 (i.e., the smaller the difference between AVnoise accuracy and Nonoise accuracy, 
the larger Acccomp). The partial correlations in Experiment 2 were also clearly stronger than the uncontrolled 
correlations, which suggests that in the non-speeded task, processes related to bias and sensitivity somehow inter-
fered with noise compensation. It is therefore likely that processing of noise compensation, bias and sensitivity 
overlap in time (at least partially). This was assessed empirically in the ERP data.

ERPs. To determine the neural correlates of Acccomp, we constructed the ERPcomp difference wave (using the 
same formula described previously, see Supplementary Information for an expanded rationale) and correlated 
this waveform with the behavioral Acccomp measure (see Fig. 2a). Based on this exploratory correlation analysis, 
we selected five 40-ms time-windows in which ERPcomp correlated with Acccomp in at least three electrodes that 
formed a spatial cluster. As illustrated in Fig. 2a, these criteria included all correlations that coincided in time and 
topography, and were purposely chosen to include all potentially relevant spatial-temporal clusters.

Next, we correlated ERPcomp with bias and sensitivity in all conditions. Figure 2b plots these relationships and 
shows that there was temporal-spatial overlap between these correlations and those between ERPcomp and Acccomp 
(see for example the 500–540 ms window).

Next, we computed the ERPcomp averages (over both time and electrodes) for each of the temporal spatial 
clusters, and correlated the averaged ERPcomp with Acccomp, bias, and sensitivity. The results of these analyses 
are summarized in Fig. 3. Because the temporal-spatial clusters were selected based on the ERPcomp ×  ACCcomp 
correlations, it is not surprising that these correlations were significant in all clusters. More critically, the analy-
ses confirmed the visual pattern in Fig. 2b: Vnoise bias and AVnoise sensitivity were correlated with ERPcomp in the 
500–540 ms window, and Vnoise bias was also correlated with ERPcomp in the 590–630 ms window. To determine 
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which of the components in the ERPcomp waveform drove the correlation with Acccomp, and thereby understand 
the neural basis of the behavioral effects, we correlated the amplitude difference-waves (relative to Nonoise) with 
Acccomp. For the temporal-spatial clusters in which ERPcomp was also correlated with bias and/or sensitivity, these 
correlations involved the residual ERP difference waves after regressing out the bias/sensitivity effect(s).

As illustrated in Fig. 3, the larger the difference between the Nonoise and AVnoise ERPs in the 260–300 ms win-
dow, the larger Acccomp was. In the 350–390 ms window, correlations in the same direction became significant for 
both unimodal noise ERP differences. These correlations were also observed in the 500–540 ms window, and the 
Nonoise −  Anoise ERP difference was also correlated with Acccomp in the 590–630 ms window.

Figure 1. Scatter plots, linear trends and group averages between RT and accuracy (panel a), bias (panel b),  
sensitivity (panel c) and Acccomp (panel d). The individual data (dots) and linear trends are data from 
Experiment 1, with group averages represented by diamonds. The narrow plots on the right of each panel 
represent the averages in Experiment 2 (where RT was not informative given the non-speeded nature of the 
task). All linear trends between RT and accuracy were positive, except for Anoise bias. Dotted lines indicate that 
linear trends were not significant, and grey circles indicate significant differences between group averages in 
Experiments 1 and 2.
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Discussion
Across two experiments, we quantified noise compensation in simultaneously presented speech and print by 
subtracting the summed unimodal noise detriments relative to Nonoise from the bimodal noise detriment relative 
to Nonoise. Because RT, bias, and sensitivity modulated accuracy, we assessed noise compensation after controlling 
for those variables, thereby providing a more rigorous treatment of noise compensation effects than in previous 
work (e.g., ref. 6).

The ERP data from Experiment 2 allowed us to disentangle processes related to noise compensation from pro-
cesses related to bias and sensitivity at the neural level, and we observed that at 350–390 ms after stimulus onset, 
the ERP differences for the unimodal noise conditions relative to Nonoise were correlated with Acccomp: the larger 
the ERP difference was, the larger Acccomp was (as measured about 1500 ms later). The same correlations were 
observed in a 500–540 ms window, but during this time, the ERPs were also modulated by Vnoise bias and AVnoise 
sensitivity. However, after regressing out the direct effect of bias and sensitivity on the ERP difference waves, the 
correlations with Acccomp remained significant. As explained in the Supplementary Material, the timing of these 
effects aligns with an N400 effect that is usually associated with lexical/semantic processing, suggesting that noise 
compensation in audiovisual word processing occurs predominantly on a lexical/semantic level.

This is particularly interesting when considering that other research has demonstrated that integration of print 
and speech can occur on sub-lexical levels15,16. For example, effects of AV incongruence between simultaneously 
printed and spoken single letters takes place already at around 200 ms (i.e., when assessed in electrophysiological 
oddball paradigms, see refs 17 and 18. In the current study, we did observe positive correlations between the 
ERPcomp score and the Acccomp score starting at around 200 ms, but these were not as robust as the later nega-
tive correlations. Moreover, the earliest time-window in which Acccomp was correlated with an individual ERP 
difference wave was 260–300 ms, but since it involved the Nonoise −  AVnoise ERP difference (i.e., the larger the 
ERP difference, the larger noise compensation), and not the Nonoise −  Anoise or Nonoise −  Vnoise differences, it is not 
directly interpretable as noise compensation. What, then, is the source of the discrepancy between our findings 
and previous work? One possibility is that by using full words, our task engages a different, potentially more 
natural/automatic set of audiovisual integration processes than single letter tasks, and this interaction occurs at 
a higher level of representation. A second possibility is that noise compensation is (partially) constituted on a 
sub-lexical level (see also refs 6 and 11). However, the effects of such compensation would then be fed forward 
(and potentially magnified) in higher order representations on lexical/semantic levels that are most relevant for 
the response system (although it is currently not exactly clear how and why response systems engage different 
levels of representation in different tasks, see ref. 19 for discussion).

A second set of highly relevant observations were that the correlations between Acccomp and Nonoise −  Anoise 
accuracy were stronger than for Nonoise −  Vnoise accuracy (see Table 1), and the correlations between the 
Nonoise −  Anoise ERP difference and Acccomp were observed in more time-windows than the correlations between 

r p rp1 p rp2 p

Exp. 1

Nonoise acc × Nonoise c − 0.021 > 0.250 − 0.283 0.110 — —

Anoise acc × Anoise c − 0.364 0.034 − 0.446 0.009 — —

Vnoise acc × Vnoise c − 0.292 0.094 − 0.559 0.001 — —

AVnoise acc × AVnoise c − 0.464 0.006 − 0.537 0.001 — —

Nonoise acc × Nonoise d′ 0.860 < 0.001 0.814 < 0.001 — —

Anoise acc × Anoise d′ 0.904 < 0.001 0.821 < 0.001 — —

Vnoise acc × Vnoise d′ 0.811 < 0.001 0.734 < 0.001 — —

AVnoise acc × AVnoise d′ 0.567 < 0.001 0.577 < 0.001 — —

Acccomp × Nonoise −  Anoise acc − 0.487 0.003 − 0.512 0.004 − 0.895 < 0.001

Acccomp × Nonoise −  Vnoise acc − 0.545 0.001 − 0.552 0.002 − 0.686 < 0.001

Acccomp × Nonoise −  AVnoise acc 0.369 0.032 0.250 0.183 0.309 0.162

Exp. 2

Nonoise acc × Nonoise c − 0.771 < 0.001 — — — —

Anoise acc × Anoise c − 0.828 < 0.001 — — — —

Vnoise acc × Vnoise c − 0.559 0.002 — — — —

AVnoise acc × AVnoise c − 0.514 0.005 — — — —

Nonoise acc × Nonoise d′ 0.635 < 0.001 — — — —

Anoise acc × Anoise d′ 0.672 < 0.001 — — — —

Vnoise acc × Vnoise d′ 0.569 0.002 — — — —

AVnoise acc × AVnoise d′ 0.723 < 0.001 — — — —

Acccomp × Nonoise −  Anoise acc − 0.425 0.024 — — − 0.820 < 0.001

Acccomp × Nonoise −  Vnoise acc − 0.415 0.028 — — − 0.765 < 0.001

Acccomp × Nonoise −  AVnoise acc − 0.062 > 0.250 — — − 0.457 0.043

Table 1.  Correlations between accuracy and bias (criterion c), accuracy and sensitivity (d′), and noise 
compensation (Acccomp) and accuracy differences of the noise conditions relative to Nonoise. Correlation 
values rp1 are partial correlations controlled for RT (correlations involving Acccomp were controlled for RT in all 
noise conditions). Correlation values rp2 are partial correlations that controlled for RT, bias and sensitivity in all 
conditions. Columns labeled ‘p’ represent the corresponding p-values.
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the Nonoise −  Vnoise ERP difference and Acccomp. This suggests that print-driven noise compensation is more prom-
inent than speech-driven compensation, and is consistent with similar asymmetric effects reported by Borowsky, 
Owen and Fonos11. In two related tasks, they presented participants with printed syllables in combination 

Figure 2. Correlations between ERPcomp and Acccomp (panel a), between ERPcomp and bias (criterion c; panel b, 
left plots) and between ERPcomp and sensitivity (d′ ; panel b, right plots). The black outlines represent the clusters 
of electrodes in five 40-ms time-windows where ERPcomp and Acccomp correlated in at least three electrodes (i.e., 
200–240 ms, 260–300 ms, 350–390 ms, 500–540 ms, 590–630 ms).
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with noise-masked auditory syllables (e.g., /ta/), and asked participants to indicate what they had heard via a 
two-alternative-forced-choice response probe (e.g., heard /ta/ or heard /da/); or, they presented the auditory 
syllable in the clear, and the printed one in noise, and asked participants what they had seen. Critically, the 
syllables could be incongruent as well, and the authors observed that the facilitating effect of congruent print 
on noise-masked speech was larger than the cost induced by incongruent print. In contrast, the facilitation/
cost of congruent/incongruent speech on noise-masked print was symmetrical. In a follow-up study with words 
rather than syllables12, the same pattern of results was observed and the authors therefore argued in favor of 
facilitation-dominant connections from orthography to phonology on both sublexical and lexical levels of pro-
cessing, that outweigh connections from phonology to orthography.

A similar asymmetry is observed when the visual signal consists of an articulating mouth rather than print. A 
clear example is provided by past work in which auditory and visual speech are purposely selected to reflect the 
most ambiguous stimulus on the boundary of a phonetic or lip-read contrast (i.e. an ambiguous speech sound 

Figure 3. Correlations between ERPcomp averaged across electrodes (electrode sites correspond to Fig. 2 
and are indicated on the scalp) and Acccomp, bias (criterion c) and sensitivity (d′) in 40 ms windows of 
averaged activity (i.e., 200–240 ms, 260–300 ms, 350–390 ms, 500–540 ms, 590–630 ms). The right panels 
show the correlations between the ERP difference waves (relative to Nonoise) and Acccomp, in which the direct 
effects of Vnoise bias (500–540 ms, and 590–630 ms) and AVnoise sensitivity (500–540 ms) were regressed out.
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or lip-read video in between /aba/ and /ada/ that is perceived as either /aba/ or /ada/ in ~50% of trials). Repeated 
exposure to these ambiguous speech segments in combination with clear unambiguous input in the other modal-
ity has shown that the effect of unambiguous visual speech on the perception of ambiguous sounds (e.g., ref. 20) 
is larger than the effect of unambiguous auditory speech on ambiguous visual speech21. Clearly, visual speech 
and printed text do not engage identical neurocomputational circuits as auditory and visual speech. However, 
it is argued that mechanisms underlying AV speech integration for stimuli in which the visual input consists of 
print or visual speech are similar to some extent (e.g., ref. 22). A general asymmetry in cross-modal effects could 
therefore indicate that the system is biased towards compensating for auditory noise via visual speech (e.g., ref. 4) 
or print (e.g., ref. 6), and not vice versa due to the properties of domain-general noise compensation mechanisms.

Despite the fact that interactions between speech and print may occur on sub-lexical (e.g., refs 15 and 16) and 
lexical levels (e.g., ref. 12), our data suggest that noise compensation occurs mainly on a lexical/semantic level 
in the context of words. Auditory lexical processing is often observed before 350 ms 23–28, whereas we observed 
robust effects of noise compensation at 350–390 ms, and at 500–540 ms. Furthermore, the combined set of find-
ings suggest a general primacy of visual stimuli in AV integration. This provides an intriguing direction for future 
research: Why would visual stimuli take precedence over auditory stimulation when constraint satisfaction is 
performed using cross-modal information? This is especially relevant if one considers the differences in acquisi-
tion trajectories of the different sources of information. That is, auditory and visual-speech information are both 
available early during development (e.g., two month old infants can already detect the correspondence between 
auditory and visual speech, ref. 29). In contrast, linguistic information conveyed by print becomes available only 
relatively late, with reading typically bootstrapping off the spoken language system.

The current paradigm, analytical method and findings can be used to conduct rigorous, direct comparisons of 
the time-courses that underlie cross-modal noise compensation for visual speech and print, and other analogous 
cross-modal integration processes (such as integration of speech and visual speech). This is particularly crucial 
because auditory and visual speech are tightly linked (e.g., the temporal characteristics are highly correlated) 
and biologically grounded through evolution, whereas this is not the case for the relationship between auditory 
speech and print. The present work therefore offers an innovative avenue for contrasting flexible domain-general 
vs. neurobiologically optimized domain-specific processing.

Methods
Experiment 1. Participants. Spanish adults (34 in total, 33 right-handed, 23 females, mean age =  21 years, 
SD =  2.3 years) participated in the experiment for payment. All participants had normal or corrected-to-normal 
vision and reported no language, hearing, or motor impairments. All participants used Spanish as their primary 
language and gave their informed consent prior to testing. The experiment was conducted in accordance with the 
Declaration of Helsinki and approved by the BCBL ethics committee.

Stimuli. The candidate stimulus population was determined using the EsPal subtitle database30 and was con-
strained using three criteria: word frequency (frequency ranged between 1 and 20 per million), word length (the 
number of phonemes ranged in between 3 and 10), and number of syllables (which was restricted to 2 or 3). 
Homophones (e.g., ‘vaca’ [cow], ‘baca’ [roof box]) were excluded, and 2659 words fulfilled the inclusion criteria. 
With the Stochastic Optimization of Stimuli (SOS) algorithm and software31, 400 pairs of words were identified 
(i.e., 800 words) in which the differences on the aforementioned criteria were minimal. For each pair, one word 
formed the basis for an audiovisually congruent stimulus, whereas the other was manually matched with a differ-
ent word with similar psycholinguistic properties to form an incongruent stimulus. All stimuli were inspected by 
two native speakers who removed inflections, compound words, foreign words, and dialect-inappropriate words, 
which resulted in a final set of 304 test stimuli. The AV incongruent items were included for task purposes and not 
analyzed in detail (see also, ref. 32), but they were used to compute sensitivity and bias. A female native speaker 
of Spanish was recorded in a sound-proof booth while reading two differently ordered lists that included all items 
(i.e., each item was recorded twice). After cutting all items at on/offset, a native speaker of Spanish selected the 
recording of each stimulus that sounded most natural for use in the experiment.

Procedure. The experiment was run in a sound attenuated and dimly-lit booth. Participants were seated ~80 cm 
from a 48 cm (19-in) CRT monitor (100 Hz vertical refresh, 1024 px ×  768 px resolution) on which the visual 
words were displayed in Arial font (font height was 5% of the display height, or ~38 px). Auditory words were 
delivered at a comfortable listening level through headphones.

In total, there were 608 trials (presented with PsychoPy, see ref. 33), with 152 trials per noise level (Nonoise, 
Anoise, Vnoise and AVnoise). For each of the four noise levels, 76 trials were AV congruent, and 76 were incongruent. 
Visual noise was created by superimposing a rectangular field of 950 randomly positioned white dots (3 pixels in 
diameter) over an area slightly larger than the longest word in the stimulus set, and auditory noise was created by 
replacing 85% of the auditory waveform with signal-correlated noise.

Trials were distributed in random order across 17 blocks, with the first and last block containing 19 trials, and 
the 15 middle blocks containing 38 trials each. Blocks were separated by self-paced breaks. As shown in Fig. 4, 
each trial began with a fixation cross (750 ms), that was followed by a black screen (50 ms), after which the stim-
ulus was delivered. Participants were asked to indicate whether speech and print matched or not by pressing the 
left or right CTRL key (as fast as possible, and within a 2500 ms window after stimulus onset) with the left or right 
index finger (“match” responses were indicated with the dominant hand). Once participants responded, the next 
trial began automatically after 250 ms. After each block, participants received feedback on the monitor regarding 
their accuracy and RT (based on correct responses) to keep them motivated. The experiment was preceded by a 
short practice session (10 trials), during which participants were acquainted with the task and procedure.
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Experiment 2. Participants. 35 new right-handed Spanish adults with the same profile as those in 
Experiment 1 participated in return for payment. As described below, six participants were excluded because 
of substantial artifacts in the EEG signal. One participant was excluded because responses fell outside of the 
response time window (see Fig. 4) in 19% of trials. In the final set of 28 participants, there were 19 females, 
and mean age was 23 (SD =  2.3 years). All participants used Spanish as their primary language and gave their 
informed consent prior to testing. The experiment was conducted in accordance with the Declaration of Helsinki 
and approved by the BCBL ethics committee.

Stimuli and procedure. The stimuli were the same as in Experiment 1, but procedural details were tailored 
toward a non-speeded ERP paradigm: auditory words were delivered via two regular computer speakers (at 
~65 dBA) placed on both sides of the monitor, and trial timing differed from experiment 1 (see Fig. 4).

EEG recording and analyses. The EEG was recorded at a 500 Hz sampling rate using a 32-channel BrainAmp 
system (Brain Products GmbH) and 28 Ag/AgCl electrodes that were placed in an EasyCap recording cap (elec-
trode locations were Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, 
P7, P3, Pz, P4, P8, O1, O2, and FCz [ground]). Four electrodes (2 on the orbital ridge above and below the right 
eye and 2 next to the lateral canthi of both eyes) recorded the vertical- and horizontal Electro-oculogram (EOG). 
Two additional electrodes were placed on the mastoid bones, of which the left was used to reference the signal 
on-line. Electrode impedance was adjusted to < 5 kΩ (scalp electrodes) and < 10 kΩ (EOG electrodes). Using 
Brain Vision Analyzer 2.0, the signal was re-referenced off-line to an average of the two mastoid electrodes and 
high-pass filtered (Butterworth zero phase filter at 24 dB/octave) at 0.5 Hz. Next, segments in the continuous EEG 
that contained course artifacts such as EMG bursts or glitches (defined as segments + /− 100 ms around ampli-
tude changes > 60 μ V/ms) were identified, and the signal was decomposed into independent components (i.e., 
ICA, e.g., ref. 34). The ICA decomposition (restricted infomax) was based on the entire data-set (not including 
the previously identified artifacts) and components that captured blinks or horizontal eye-movements (identified 
through visual inspection based on components’ energy and topography) were removed (the mean number of 
removed components was 3.32). Next, the data were low-pass filtered at 35 Hz (Butterworth zero phase filter at 
24 dB/octave) and an additional 50 Hz notch filter was applied to remove residual electrical interference. The data 
were segmented into 1200 ms epochs (including 200 ms before, and 1000 ms after stimulus onset), and epochs 
that contained voltage steps > 50 μ V/ms, had a voltage difference > 100 μ V/1000 ms, minima/maxima < − 100/> 
100 μ V, and/or activity < 0.5 μ V were rejected. Six participants with a substantial artifact rate (mean =  36%) were 
excluded from analyses. For the remaining participants, averaged artifact rate was less than 15%. Epochs were 
base line corrected using the 200 ms of data before stimulus onset, averaged per condition, and the resulting ERPs 
were exported for statistical analyses.
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