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RESUMEN TESIS 

 

Los glicosaminoglicanos (GAGs) también conocidos como mucopolisacáridos, 

son polisacáridos lineares que se encuentran formando parte de la matriz extracelular 

(MEC). Los GAGs se pueden encontrar unidos mediante el aminoácido serina a la 

estructura central de diversas proteínas formando complejos de gran tamaño conocidos 

como proteoglicanos. Los GAGs están compuestos de unidades de repetición de 

distintos disacáridos, y se clasifican en función de su composición de monosacáridos y 

en función del enlace glicosídico entre ellos. En general están compuestos por un 

monosacárido de tipo ácido urónico (D-glucurónico o L-idurónico) y una hexosamina (D 

-glucosamina o D-galactosamina). La mayoría de los GAGs poseen una importante 

carga neta negativa debido a la presencia de diversos grupos sulfato en las posiciones 2, 

4 y 6 y en los grupos amina no acetilados de su estructura. 

 

La expresión de GAGs es específica de cada tipo de célula o tejido, y puede 

verse alterada por su estado de desarrollo o por la aparición de ciertas patologías como 

enfermedades vasculares, enfermedades neurodegenerativas como el Alzheimer y el 

cáncer. La gran variabilidad estructural de los GAGs se refleja en el gran número de 

funciones biológicas en las que están involucrados. Los GAGs poseen una función 

estructural muy importante, mediante la unión a proteínas fibrosas como el colágeno y 

la laminina, son los principales componentes de la matriz extracelular, que mantiene 

unidas las células individuales proporcionando protección, forma y soporte a células, 

tejidos y órganos. La interacción entre GAGs con distintas proteínas tiene un importante 

efecto en la regulación de procesos como la hemostasia, el transporte de lípidos, el 

crecimiento celular, la migración y el desarrollo celular. La gran variedad de actividades 

biológicas asociadas a los GAGs se deriva por la habilidad de regular la actividad de un 

gran número de proteínas. La unión con GAGs regula la actividad de diversos enzimas, 

el reconocimiento de ligandos mediante sus receptores y la protección de las proteínas a 

la degradación. Sin embargo, en muchos casos los requerimientos estructurales 

responsables de la interacción GAG-proteína no se encuentran bien definidos debido a 

la enorme complejidad que presentan estos polisacáridos.  

 



La heparina tiene una gran importancia en medicina ya que impide la 

coagulación de la sangre. Una de las interacciones GAG-proteína mejor estudiadas es la 

interacción de un pentasacárido de heparina presentando un patrón de sulfatación 

específico con la proteína del plasma antitrombina III (AT-III). Esta unión produce un 

cambio conformacional que bloquea la cascada de coagulación de la sangre. Aunque 

existe algún derivado comercial completamente sintético, la mayor parte de los 

medicamentos antitrombóticos se producen mediante la degradación química o 

enzimática de heparina proveniente de fuentes animales. En 2007, se produjo una 

emergencia sanitaria tras la distribución de unos lotes de heparina de origen animal 

contaminada con sulfato de condroitino, que produjo un centenar de muertes. Por lo 

tanto, el desarrollo de nuevas estrategias que permitan la preparación de GAGs 

sintéticos con completo control en su estructura y grado de sulfatación son campos de 

investigación de amplio interés.  

 

Conceptualmente la síntesis en fase sólida de carbohidratos puede ofrecer 

importantes ventajas a la síntesis de oligosacáridos en disolución y en particular para el 

ensamblaje de oligo- y polisacáridos compuestos por unidades repetitivas como es el 

caso de los GAGs. En la síntesis en fase sólida, uno de los bloques de unión sacarídicos 

se encuentra anclado a un soporte sólido mediante un espaciador, y las transformaciones 

químicas se llevan a cabo con el resto de los reactivos y bloques de unión en disolución. 

Un punto clave en el diseño de una síntesis de carbohidratos en fase sólida es la 

preparación de bloques de unión convenientemente protegidos, sobre los que se puedan 

llevar transformaciones químicas sin afectar al resto de las funcionalidades y se puedan 

liberar de manera ortogonal las posiciones que se encuentran involucradas en la 

elongación del polisacárido. La síntesis en fase sólida permite emplear  un exceso de 

reactivos que da lugar a transformaciones químicas más eficientes sin perjudicar la 

purificación posterior. El exceso de reactivos y ciertos subproductos de la reacción se 

pueden eliminar de manera sencilla mediante el exhaustivo lavado del soporte sólido.  

 

En esta tesis se describe el desarrollo y la optimización de la síntesis en fase 

sólida de precursores de heparán sulfato y de dermatán sulfato. Estas familias de 

GAGs se encuentran ampliamente distribuidas en diferentes tejidos, y se encuentran 



involucrados en diversos procesos biológicos. El heparán sulfato se encuentra presente 

en todos los tejidos animales unido a proteínas, en forma de proteoglicanos y participa 

en interacciones con diversas proteínas como factores de crecimiento, quimioquinas, 

componentes de la matriz extracelular y enzimas, modulando su actividad biológica. Por 

otro lado el dermatán sulfato (condroitín sulfato B) es el principal GAG presente en la 

piel, aunque también aparece en vasos sanguíneos, en el corazón y en los pulmones. El 

dermatán sulfato se encuentra implicado en enfermedades cardiovasculares, en la 

infección bacteriana y en la reparación de heridas.  

 

En general, la síntesis química de este tipo de oligosacáridos se lleva a cabo 

mediante el ensamblaje de unidades disacarídicas protegidas, que representan los 

principales bloques estructurales del GAG objetivo. En nuestro caso, se plantea una 

estrategia más flexible basada en la combinación de bloques de unión de tipo 

monosacárido. Debido a que la síntesis en fase sólida requiere un exceso de reactivos 

para la obtención de altas conversiones, el uso de bloques de unión de tipo 

monosacárido puede resultar más eficaz frente al uso de disacáridos más elaborados. 

Adicionalmente, la combinación de unos bloques de unión de distinta naturaleza 

permitiría la preparación de diversas familias de GAGs siguiendo la misma estrategia 

sintética. 

 

En la presente tesis doctoral, se lleva a cabo el diseño y preparación de un nuevo 

espaciador de tipo carbamato que se puede anclar a una resina Merrifield mediante un 

enlace de tipo éster. Este tipo de anclaje permite llevar a cabo las subsecuentes 

reacciones de glicosidación, que generalmente son catalizadas por reactivos ácidos, 

sobre el soporte sólido manteniéndose inalterado. Una vez el oligosacárido anclado 

posee la longitud deseada, es desanclado de la resina bajo condiciones básicas. Los 

oligosacáridos se obtienen unidos a un espaciador de cinco carbonos protegido en forma 

de carbamato, que en la secuencia de desprotección final liberaría un grupo amino para 

la futura conjugación de los GAGs sobre diversos soportes sólidos.  

 



Inicialmente, se llevó a cabo la optimización en disolución de la estrategia 

sintética de unión secuencial de monosacáridos mediante el ensamblaje sobre un 

espaciador modelo y empleando diferentes donadores de glicosilo. En la presente tesis 

doctoral, se lleva a cabo una evaluación sistemática de la reactividad de diferentes 

monosacáridos derivados de L -idosa (Ido) y de ácido L -idurónico (IdoA). En el caso de 

donadores derivados de L -idosa, se preparó una colección de donadores con distinto 

patrón de sustitución de grupos protectores y adicionalmente se evaluó la diferente 

reactividad de distintos grupos salientes en la posición anomérica.  

 

Entre los donadores derivados de ácido L-idurónico (IdoA), se sintetizaron y 

evaluaron por primera vez donadores de tipo n-pentenil ortoester (NPOE). El uso 

directo de donadores IdoA para el ensamblaje ser oligómeros evita pasos adicionales de 

desprotección y oxidación para la obtención de los GAGs naturales. Sin embargo, los 

ácidos urónicos debido a la capacidad electrón-atractora del grupo carboxílico, son 

menos reactivos que sus análogos no oxidados. En la presente tesis doctoral se muestra 

que el uso directo de IdoA NPOEs como donadores en fase sólida es viable, llegándose 

a preparar un trisacárido precursor de heparán sulfato.  

 

Los resultados más prometedores del estudio de reactividad en disolución de 

diversos donadores de L -idosa fueron posteriormente aplicados a la síntesis en fase 

sólida, verificando las tendencias de reactividad previamente observadas. La reacción 

secuencial en fase sólida de dos donadores activados en forma de tricloroacetimidatos, 

permite la preparación de un hexasacárido precursor de heparán sulfato protegido. La 

combinación de un donador derivado de  L -idosa sustituido con un grupo 6-O-PMP y 

un derivado de D-glucosamina cuyo grupo amino se encuentra enmascarado en forma 

de un grupo azido, permite la preparación estereoselectiva de enlaces glicosídicos en 

fase sólida.  

 

En la última parte de la presente tesis doctoral se ha llevado a cabo la 

preparación de dos precursores protegidos de dermatán sulfato, mediante el ensamblaje 

secuencial del donador derivado de L-idosa previamente optimizado y un derivado de D-



galactosamina, que fue desarrollado para tal efecto. La síntesis en fase sólida permitió la 

preparación de un tetrasacárido y un octasacárido de DS con altos rendimientos y en 

tiempos relativamente cortos comparados con la síntesis convencional en disolución.  

 

La estrategia desarrollada en la presente tesis doctoral para la preparación de 

GAGs en fase sólida mediante el ensamblaje de bloques de unión de tipo monosacárido 

podría constituir las bases hacia la preparación automatizada de GAGs. La combinación 

estratégica de tres donadores de tipo L-idosa,  D-glucosamina y D-galactosamina, 

permitiría la preparación automatizada de una quimioteca de precursores de heparán 

sulfato, heparina y dermatán sulfato de diversa longitud y con un patrón de sulfatación 

definido por la estrategia de grupos protectores empleada.  



List of abbreviations 

 

 

LIST OF ABBREVIATIONS 

 
 

Ac Acetyl 

AcCl Acetyl chloride 

AcOH Acetic acid 

Ac2O Acetic anhydride 

AIBN 2,2ʹ-Azobisisobutyronitrile 

aq aqueous 

AT III Antithrombin 

BAIB [bis(acetoxyiodo]benzene 

Bn Benzyl 

b broad 

tBuOH tert-Butanol 

Bz Benzoyl 

C Carbon 

c concentration 

CAN Cerium (IV) ammonium nitrate 

cat catalytic 

Cbz Benzyloxycarbonyl 

CS Chondroitin sulphate 

CSA Camphorsulfonic acid 

δ chemical shift 

d doublet 

COSY Correlation spectroscopy 

DBU 1,8-Diazabicylco[5.4.0]undec-7-ene 

dd doublet of doublets 

DIC N,N′-diisopropylcarbodiimide 

DIPEA N,N-Diisopropylethylamine 

DCC N,N′-Dicyclohexylcarbodiimide 

DMAP 4-Dimethylaminopyridine 

DMF Dimethylformamide 

DMSO Dimethylsulfoxide 



List of abbreviations 

 

 

DS Dermatan sulfate 

EDC Ethyl-3‐(3‐dimethylaminopropyl)carbodiimide 

eq equivalent 

ESI Electrospray ionization 

Et Ethyl 

EtOAc Ethyl acetate 

FGF Fibroblast growth factor 

Fmoc 9-Fluorenylmethoxycarbonyl 

GAG Glycosaminoglycan 

Gal Galactose 

GalNAc N-Acetyl galactosamine 

GlcA Glucuronic acid 

GlcN D-Glucosamine 

GlcNS N-Sulfonato glucosamine 

HA Hyaluronan 

HP Heparin 

HS Heparan sulphate 

HSQC Heteronuclear single quantum correlation 

HR High resolution  

Ido L-Idose 

IdoA L-iduronic acid 

KS Keratan sulphate 

LG Leaving group 

NaOMe Sodium methoxide 

NBS N-bromosuccinimide 

NIS N-iodosuccinimide 

Hz Hertz 

IR Infrared spectroscopy 

J Coupling constant 

LC Liquid chromatography 

Lev Levulinoyl 

m multiplet 

M Molar 



List of abbreviations 

 

 

m/z Mass to charge ratio 

MALDI Matrix Assisted Laser Desorption/Ionization 

min minutes 

MS Mass spectroscopy 

ms Molecular sieves 

na Not analyzed 

NMR Nuclear magnetic resonance 

NPOE N-pentenyl orthoester 

NPG N-pentenyl glycoside 

p para 

PEG polyethylene glycol 

PG Proteoglycan  

Piv Pivaloyl 

PMB p-Methoxybenzyl 

PMP p-Methoxyphenyl 

ppm Parts per million 

PS Polystirene 

quant quantitative 

rt room temperature 

SAR Structure activity relationship  

t triplet 

TBAI Tetra-n‐butylammonium iodide 

TBDPS tert-Butyldiphenylsilyl 

TDS Dimethylthexylsilyl 

TEMPO 2,2,6,6-tetramethyl‐1‐piperidinyloxy free radical  

TFA Trifluoroacetic acid 

TfOH Trifluoromethane sulfonic acid 

TLC Thin layer chromatography 

THF Tetrahydrofuran 

TMS Trimethylsilyl 

TMSOTf Trimethylsilyl trifluoromethanesulfonate 

TOF Time of flight 

TOM tri-iso-propylsilyloxymethyl 



List of abbreviations 

 

 

tr Retention time 

Troc 2,2,2-Trichloroethyl 

TsOH p-Toluenesulfonic acid 

UPLC Ultra Performance Liquid Chromatography 

  

 



Table of contents 

 

 

 

TABLE OF CONTENTS 

 

1.Introduction ................................................................................................................. 3 

1.1 Biological importance of GAG ............................................................................... 3 

1.2 HP/HS and DS: structure, localization and function .............................................. 8 

1.2.1 Structure and location of HP and HS ............................................................... 8 

1.2.2 HP/HS-protein interactions ............................................................................ 10 

1.2.3 Structure and location of DS .......................................................................... 14 

1.2.4 DS-protein interactions .................................................................................. 14 

1.3 Chemical Synthesis of oligosaccharides: solution and solid-phase ...................... 16 

1.3.1 Protecting group strategy ............................................................................... 16 

1.3.2 Chemical glycosylation .................................................................................. 18 

1.3.3 Chemical synthesis of HS/DS oligosaccharides in solution........................... 22 

1.3.4 Enzymatic and chemoenzymatic synthesis .................................................... 27 

1.3.5 Chemical synthesis of oligosaccharides on solid-phase ................................. 27 

1.4 Microarrays and other possible applications......................................................... 31 

References ................................................................................................................... 33 

 

2. Objectives and synthetic strategy ............................................................................ 43 

References ................................................................................................................... 51 

 

3. Result and discussion ............................................................................................... 55 

3.1 Linker and solid support ....................................................................................... 55 

3.1.1 Linker synthesis and glycosylation trials on solid support. ........................... 55 

3.2 Building block synthesis ....................................................................................... 58 

3.2.1 Synthesis of L-Idose (Ido) Building Block ..................................................... 58 

3.2.2 Synthesis of L-iduronic acid (IdoA) building blocks ..................................... 64 

3.2.3 Synthesis of 2-azido-D-glucopyranose (Glc) building blocks ........................ 71 

3.2.4 Synthesis of galactosamine building blocks................................................... 74 

3.3 Evaluation of glycosyl donors for the synthesis of HS oligosaccharides in solution

 .................................................................................................................................... 76 



Table of contents 

 

 

 

3.3.1 Glycosylation of the linker ............................................................................. 76 

3.3.2 Disaccharide synthesis ................................................................................... 79 

3.4 Evaluation of glycosyl donors in the solid phase synthesis of HS precursor ....... 86 

3.4.1 Initial studies: trisaccharide solid phase synthesis using idose TBDPS ........ 86 

3.4.2 Solid phase synthesis of HS precursor trisaccharide using n-pentenyl 

orthoester of iduronic acid as glycosyl donors ........................................................ 92 

3.4.3 Solid phase synthesis of HS trisaccharide precursor using L- idopyranosyl 

donors  .................................................................................................................. 97 

3.4.4 Solid phase synthesis of a HS hexasaccharide precursor ............................. 101 

3.5 Towards the solid phase synthesis of dermatan sulfate ...................................... 104 

3.5.1 Initial attemps on solid phase: disaccharide synthesis ................................. 105 

3.5.3 Solution synthesis of a dermatan sulphate disaccharide .............................. 107 

3.5.3 Solid phase synthesis of dermatan sulfate tetrasaccharide ........................... 110 

3.5.4 Solid phase synthesis of a dermatan sulfate octasaccharide ........................ 113 

3.5.5 Deprotection schemes for DS tetra and octasaccharides .............................. 115 

References ................................................................................................................. 117 

 

4. Conclusions ............................................................................................................. 123 

 

5.Experimental part ................................................................................................... 129 

References .................................................................................................................... 250 

 

6. Appendix ................................................................................................................. 253 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

3 
 

 

The main purpose of this thesis has been to develop suitable methodologies 

for the solid phase synthesis of glycosaminoglycan (GAG) type oligosaccharides, 

particularly heparan sulphate (HS) and dermatan sulphate (DS). GAGs are complex 

and highly heterogeneous linear polysaccharides which are involved in a variety of 

important biological events and their preparation in pure form for further structure-

activity studies is difficult to achieve from natural sources. Therefore, effective 

chemical or chemo-enzymatic syntheses which could afford sufficient amount of 

these molecules in pure form are much needed. However, these syntheses constitute 

one of the most serious challenges in preparative carbohydrate chemistry. 

 

 1.1 Biological importance of GAGs 

GAGs are the polysaccharide components of proteoglycans which constitute 

the major class of glycoconjugate present at the cell surface and in the extracellular 

matrix (ECM) that surrounds all mammalian cells. Proteoglycans are formed by 

different GAG  polysaccharides (GAGs) anchored to proteins in the outside of the 

cell membrane lipid bilayer trough a specific tetrasaccharide composed by a 

glucuronic acid (GlcA), two galactose (Gal) and a xylose (Xyl) residues (GlcAβ1-

3Galβ1-3Galβ1-4Xylβ1-O). This tetrasaccharide is coupled through an O-glycosidic 

bond to a serine residue in the protein (Figure 1).
1
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Figure 1.1 Schematic representation of proteoglycans, glycoproteins and glycolipids at the 

cell surface and in the extracellular matrix (picture taken from Ann. Rev. BioChem., 2011
1
) 

 GAGs are the most abundant heteropolysaccharides in the body. They are 

historically referred as mucopolysaccharides due to the fact that were originally 

found in mucus membrane. GAGs constitute a family of linear polisaccharides 

consisting of repeating disaccharide units with a high density of negative charge and 

an extended conformation that results in a high viscosity in solution. Along with their 

high viscosity, GAGs have low compressibility, which makes these molecules ideal 

as lubricanting fluids in the joints. 

Considering their prominent location in the extracellular matrix (ECM), often 

attached to the cell surface via proteoglycans, and their large structural diversity, it is 

not surprising that GAGs are involved in many molecular recognition processes 

including growth factor signaling, cell adhesion, and interactions with other 

extracellular matrix components, Figure 1.2.
2
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Figure 1.2. Biological interactions of GAGs. Location and distribution of GAGs and their 

interactions with numerous proteins such as growth factors, morphogens, proteases, and 

pathogens. The chemical and structure diversity of GAGs enable their specific interactions 

with these proteins, and affect on their biological role (picture taken from Ann. Rev. 

BioChem., 2006
2
). 

There is growing evidence indicating that GAGs, such as heparin and heparan 

sulphate (HS), can have significant physiological effects on lipid transport and 

adsorption, cell growth, migration and development.
3,4

 Alterations in GAG 

expression have been associated with serious diseases as cancer and for example, 

significant changes in the structure of GAGs have been reported in the stroma 

surrounding tumours, which is important for tumour growth and invasion.
5,6 In 2014 

Nadanaka et al
7
 reported the inhibition of heparanase activity by synthetic HS-

tetrasaccharides containing unsubstituted glucosamine residues and suppression of 

breast cancer cells invasion in vitro. GAGs also have important neurobiological 

functions and examples include neuroepithelial growth and differentiation, neurite 

outgrowth, nerve degeneration, axonal guidance and branching, deposition of 

amyloidotic plaques in Alzheimer´s disease, and astrocyte proliferation.
8
 In this 

context, an improved understanding of the role that GAGs play in cellular 

communications should facilitate the development of new therapeutic strategies for 

the treatment of a wide variety of diseases states. 
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The biosynthesis of GAGs is a complex non-template driven process 

involving several enzymes that initially assemble the GAG polymer and then 

introduce sulfate groups at specific positions. The synthesis is initiated by the 

attachment of the tetrasaccharide anchoring linker (GlcAβ1-3Galβ1-3Galβ1-4Xylβ1-

O) to the serine by the four specific monosaccharides glycosyltransferase enzymes 

(Xyl-T, GalT-I, GalT-II y GlcAT-I). After the anchoring of this tetrasaccharide 

linker, the initiation of the chain by the transfer of GlcNAc or a GalNAc determine 

the type of GAG to be biosynthesized (except for hyaluronic acid HA, which is an 

extracellular matrix component). The chain elongation is performed by the action of 

a multidomain glycosyltransferase, which successfully transfer GlcNAc, GlcA or 

GalNAc. The GAG polymer is then further processed by tissue-specific deacetylases, 

sulfuryltransferases and epimerases). These enzymes are responsible of the cleavage 

of N-deacetylation, the N-, O- sulfation and the C-5 epimerization to convert GlcA 

into IdoA. Therefore, the large structural diversity of GAG structures results of the 

substrate specificities and tissue-specific expression of the GAG-chain processing 

enzymes. 

GAGs are classified according to their monosaccharide composition and 

glicosidic linkage in five groups: hyaluronan (HA), chondroitin sulfate (CS), 

dermatan sulfate (DS), heparin/heparan sulfate (HS) and keratan sulfate (KS). HA is 

a non sulfated polysaccharide composed by disaccharide repeating units of N-acetyl-

D-glucosamine and D-glucuronic acid (Figure 1.3). HA is unique among the GAGs 

because is not covalently attached to proteins forming proteoglycans, but it is found 

in non-covalent complexes with them in the extracellular matrix. CS is the most 

prevalent GAG and it is formed by N-acetyl-D-galactosamine and D-glucuronic acid 

disaccharide units (GalNAc-β-1,4-GlcAβ-1,3). DS is distinguished from CS by the 

presence also of L-iduronic acid (IdoA) in the repeating disaccharide units (GalNAc-

β-1,4-IdoAα-1,3). sulphate HS and heparin (HP) are two related GAGs composed by 

repeating units of hexosamines typically, N-acetyl-D-glucosamine and the uronic 

acids D-glucuronic acid and L-iduronic acid (GlcNAcα-1,4-GlcAβ-1,4 or GlcNAcα-

1,4-IdoAα-1,4). KS lacks uronic acids and instead consists of sulfated galactose and 

N-acetylglucosamine residues (GlcNAc-β-1,3-Galβ-1,4). 
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Many of the GAGs structures can be further modified by sulfation at different 

position of both uronic acid and hexosamine, generating a high degree of complexity 

and making GAGs encode a great number of biological information. For example, 

HS GAGs could potentially contain up to 48 different disaccharide building blocks 

based on the different sulfation pattern, which can be contrasted with that of DNA 

only formed by four building blocks and of proteins, formed by twenty building 

blocks.  

 

Figure 1.3. A) Disaccharide building blocks for the different types of GAGs: HA, CS, DS, 

HP/ HS and KS. B) Schematic representation of the five types of GAGs using 

monosaccharides symbols. Possible sulfation presence and location (2S, 6S, 4S) as well as 

N-sulfation (NS) are indicated. 
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1.2 HP/HS and DS: structure, localization and function 

1.2.1 Structure and location of HP and HS. 

 HP and HS are structurally related polisaccharides and for this reason are assigned 

to one GAG type. HP is the oldest carbohydrate-based drug. It is isolated from 

porcine mucosal tissue and has been used as an anticoagulant in heart disease for 

more than 60 years
9
. Its molecular weight ranges from 5 to 40 kDa with an average 

molecular weight of around 15 kDa.  HP is a linear, unbranched, highly sulfated 

polysaccharide that is composed of disaccharide repeating units consisting of an 

uronic acid 1,4˗linked to a D‐glucosamine unit (Figure 1.4). In HP polymers 

L‐iduronic acid accounts for over 90% of uronic acid residues, while in HS α-L-IdoA 

accounts for 50-90%. With a molecular weight range of 5 to 50 kDa and an average 

molecular weight of 30 kDa, sulphate HS chains are generally longer than those of 

HP. Therefore, HS is a far more complex mixture of individual compounds than 

heparin.  

 

HP has the highest negative charge density of any known biological 

macromolecule due to the high content of sulfo and carboxyl groups. In addition, HP 

shows higher degree of sulfation (2.3-2.8 sulfated/disaccharide) when compared to 

HS (0.6 – 1.5 sulfate/disaccharide). The most common structure in HP is the 

disaccharide repeating unit sulfated at position 2-OH of uronic acids and at 3-OH 

and/or 6-OH of the glucosamine unit. The 3-O-sulfation into the glucosamine residue 

occurs infrequently in HS, but is intimately linked to its biological function.
10

 

 

In HS the glucosamine residues can be either N-sulfated, unsubstituted, or N-

acetylated, whereas in HP the occurrence of N-acetyl groups corresponds to less than 

5%. On this basis, 48 different disaccharide units can theoretically be found in native 

HP/HS, but due to the restriction on the biosynthesis only 23 disaccharides have been 

identified to date in  HP, sulphate HS or as intermediates in biosynthesis  
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Figure 1.4. Regular and variable disaccharide repeating units in HP and sulphate HS. R
1
= H 

or SO3
-
, R

2
= Ac, H or SO3

-
. 

 

 HP is expressed in the granules of connective tissue-type mast cells as an 

intracellular serglycin proteoglycan.
11

 Post synthesis, the HP chains are cleaved at 

random points of the chain to give polydisperse mixtures of smaller HP 

polysaccharides that are stored in the cytoplasmic secretory granules of mast cells.
12

 

 

 HS, in contrast, is expressed and secreted by most if not all, mammalian 

cells. HS proteoglycans (HSPGs) such as agrin, perlecan and type XVIII collagen are 

located in the extracellular matrix (ECM) or linked to the cell surface in 

transmembrane proteins such as syndecans or GPI-anchored proteins (glypicans).
13,14 

Therefore, HSPGs could show a dual function: they could be involved in the 

regulation of different biological processes through the cell membrane
15,16

 or be 

involved in the structural organisation and mechanical support of tissues.
17
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1.2.2 HP/HS-protein interactions 

Due to their enormous structural diversity HP and HS are able to bind and interact 

with a wide variety of proteins, such as growth factors, chemokines, morphogens, 

extracellular matrix components and enzymes, modulating their biological activity 

(Figure 1.5)18,4. In this way, HP and HS are involved in angiogenesis
19

, regulation of 

cell adhesion
20

, tumor development and metastasis
21

, brain development
22

and 

inflammation
23

 among others.  

 

Figure 1.5. HS-protein interactions in various functional settings. (A, B) HSPGs present 

growth factors to their receptors, on the same or an adjacent cell, and may form part of 

signalling complexes. Chemokines are bound to HS chains for transcytosis (C) and 

presentation at cell surfaces (D). Truncation of HSPGs by proteolytic shedding of 

ectodomains and cleavage of HS chains by heparanase (F). Uptake of cell-surface HSPGs by 

endocytosis (G) for degradation in lysosomes (H) or recycling back to the surface. HSPGs 

facilitate cell adhesion by interacting with extracellular-matrix protein through their HS 

chains (I) and with the cytoskeleton via cytoplasmatic core-protein domains (J). HSPGs in 

extracellular matrix contribute to physiological barriers (K) and provide storage of growth 

factors and morphogens (L). Serglycin carrying heparin chains are required for storage of 

proteases and histamine in secretory granules of mast cells (M). Experiments suggest that HS 
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chains with special structural deatures may be located in the nucleus, although with so far 

unknown function (N). Picture taken from Nature, 2007.4
  

The different aspects of HP/HS-protein interactions have been studied by a 

large number of groups and in this section we will summarize the best studied 

HP/HS protein interactions. 

 

The best understood and most extensively studied GAG-protein interaction is 

that of HP with the plasma protein antithrombin III (ATIII) in which a specific HP-

pentasaccharide structure binds to the protein which upon binding undergoes  a 

conformational change which blocks thrombin and factor Xa in the coagulation 

cascade.
24

 The unique HP pentasaccharide domain recognized by the HP binding 

region of ATIII was identified in the early 1920 by several authors.
25

 As a result of 

the medical importance of this finding enormous synthetic efforts both by academic 

and industrial research groups led to the development of de novo synthesis of the 

pentasaccharide which ultimately was commercialized under the trade name Arixtra 

(fondaparinux sodium; GlaxoSmithKline) in 2002 (Figure 1.6). This synthetic 

derivative has a much-improved subcutaneous bioavailability. However, Arixtra does 

have some clinical disadvantages, like a longer half-life than natural HP and 

additional adverse side effects limiting altogether its range of applications. 

Therefore, low molecular weight heparins (LMWHs), prepared through the chemical 

or enzymatic degradation of porcine unfractionated (UF) heparin, still have the 

highest market share of all antithrombotic, and the need for additional synthetic 

heparin molecules with specific activities persists. In a recent publication, Liu et al. 

described the chemoenzymatic synthesis of six 3-O-sulfated oligosaccharides at 

glucosamine residues (including hexasaccharides and octasaccharides) and identified 

a 3-O-sulfated octasaccharide that interacts with antitrombin and display anti-factor 

Xa activity. Interestingly, the octasaccharide displays a faster clearance rate than 

fondaparinux, making this octasaccharide a potencial short-acting anticoagulant drug 

candidate that could reduce bleeding risk.
10
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Figure 1.6. Heparin pentasaccharides recognized by AT-III. a) Pentasaccharide 

sequence of HP responsible for the anticoagulant activitity; b) Structure of Arixtra 

commercialized by GlaxoSmithKline. 

 

The intrinsic problems with complex HP mixtures obtained from animal 

sources were highlighted in 2007 through the discovery HP batches adulterated with 

a semi-synthetic over- sulfated sulphate CS, causing hypertension and leading to 

nearly hundred deaths.
26, 27 

 

Many growth factors, including the fibroblast growth factors (FGFs), bind to 

the extracellular matrix of target tissues by the interaction with GAGs such as HP 

and HS. FGFs are a family of proteins composed by more than 20 members, 

involved in cell proliferation, differentiation and angiogenesis.
93,28

  

 

Acidic fibroblast growth factor (FGF-1) and basic fibroblast growth factor 

(FGF-2) are the most widely studied members of the family. FGF signalling implies 

the binding of FGFs to specific cell surface tyrosine kinase receptors (FGFRs) which 

results in receptor oligomerization which is followed by phosphorylation of other 

signalling molecules and initiation of the signalling cascade. HS plays an important 

role by facilitating the formation of ternary FGF-FGFR complexes stabilizing and 

enhancing FGF and FGFR oligomerization. X-ray crystal structures and NMR 

spectroscopy of FGF-1 and FGF-2 complexed with HS oligosaccharide fragments 

and of HS oligosaccharides-FGF-FGFR ternary complexes have been obtained and 
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the structural features of the HS fragments for signalling identified. These studies 

have shown the complexity of the molecular mechanism involved in HP/HS-FGF 

signalling.
29-31

 

 

Chemokines, a ~45 members family of small cytokine like proteins that 

facilitate leukocyte migration, angiogenesis, breast cancer metastasis, and leukocyte 

degranulation, also interact with HP and HS
9,30

. Platelet factor 4 (PF-4), binds to HP 

and HS with a very high affinity in 1:1 ratio. The interaction of therapeutically 

administered HP with PF-4 results in HP-induced thrombocytopenia (HIT), a 

dangerous, immunological loss of platelets. There is a growing interest in 

understanding the chemokine function at molecular level in order to identify 

strategies related with their functions. In recent studies it was demonstrated that 

oligomerization is critical for GAG-chemokine interactions, and in some cases 

provide specificity.
30

 

 

Surface proteins of many pathogenic microorganism (viruses, bacteria and 

parasites) interact with cell surface GAGs. Several studies in cell culture 

demonstrated the role of HSPGs as co-receptors in viral invasion of target cells.
18

 In 

the case of Herpes simplex virus types 1 and 2 (HSV-1, HSV-2), the virus entry is a 

multi-step process which includes firstly the virus binding to the cell by the 

interaction of viral glycoproteins gB and gC with sulphate HS chains in cell surface 

proteoglycan. In the next step, a third viral glycoprotein, gD, interacts with a specific 

sequence within sulphate HS chains that have been modified by 3-O-sulfation of 

specific glucosamine residues and this interaction can facilitate fusion pore formation 

during viral entry.
31,32,33 Sulfation pattern in HS chains are known to play critical role 

during viral entry, virus trafficking and replication.
34

 In addition, strains of 

Plasmodium falciparum associated with development of severe forms of malaria 

employ heparan sulfate as a host receptor, and a HS-binding protein encoded by the 

parasite was implicated with the “rosetting” and endothelial binding of infected 

erythrocytes typical for the disease. The resultant sequestration of malaria parasites 

in vivo was efficiently blocked by administration of a HP derivative lacking 

anticoagulant activity.
35
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1.2.3 Structure and location of DS 

Dermatan sulfate (DS), also known as chondroitin sulfate B (CS-B), is 

composed of disaccharide units formed by the hexosamine, N-acetyl galactosamine 

(GalNAc) and glucuronic acid (GlcA) joined by β-1,4 or 1,3 linkages respectively 

(Figure 1.7). DS is defined as CS by the presence of GalNAc. However, the presence 

of IdoA in DS differentiates it from CS and links it structurally to HP and HS.  

 

Figure 1.7.  Typical Disaccharide Repeating Units in CS and DS. R= H, SO3
-. 

DS can be sulfated at positions C-4 and C-6 of the GalNAc residues (as CS-A 

and CS-C) and at C-2 of the IdoA (as HS or HP).DS chains can vary in size up to a 

hundred or more disaccharide repeating units. In the mammalian organisms CS occur 

either intracellularly in secretory vesicles, membrane-bound, or as secreted PGs in 

the ECM (decorin, biglycan, syndecan versican, endocan, perlecan, etc.). There is a 

growing evidence that this variable DS chain length, disaccharide unit, and sulfation 

pattern determine binding affinity and control functional interactions with proteins. 

 

1.2.4 DS -protein interactions 

CSPG/DSPG can bind a diverse range of molecules including matrix 

molecules, growth factors, protease inhibitors, cytokines, chemokines and pathogen 

virulence factors.
36,37

  

Decorin, a small leucine-rich DSPG, “decorates” the cell surface and is 

considered to participate in extracellular matrix assembly. The single DS chain of 

decorin binds to tenascin-X which is an extracellular protein localized in connective 

tissues. Several studies have been published indicating the important role of GAG 

chains of decorin in fibrillogenesis and structure 
38

. An anti-oncogenic role has been 

also demonstrated due to the inactivation of ErbB2 (an oncogenic member of the 

EGF tyrosine kinase receptor family associated with poor prognosis in tumors of the 



Introduction 

 

15 
 

breast, ovary and prostate. In addition, decorin levels are reduced or even lost by 

several tumor cells.
14,38

 

 DS also interacts with growth factors. In contrast of HP/HS, interaction 

between DS and FGF-2 has only been studied with respect to cellular proliferation 

showing higher capacity to stimulate cell growth in vitro.
36

 Decorin has also been 

described to bind specifically and with high affinity the hepatocyte growth factor 

(HGF) receptor known as Met, which plays a role in morphogenesis, differentiation, 

motility and angiogenesis in a variety of cell types. An octasaccharide with 

unsulfated IdoA with a 4-O-sulfated GalNAc has been identified as the minimum DS 

binding epitope. 

 DS has been shown to be involved in infection. Phatogenesis of Pseudomonas 

aeruginosa, Enteroccus faecalis, and Streptococcus pyogenes involves release of 

proteinases that degrade DS-containing PGs. The free DS binds to neutrophil-derived 

cationic α-defensin and this binding completely neutralized its bactericidal activity.
39

 

 Several chemokines, as IL-8, MIP-1 α and β (macrophage inflammatory 

peptides), RANTES (regulated on activation normal T cell expressed and secreted) 

and MCP-1 (monocyte chemoattractant protein-1) and interferon gamma (IFN-γ) 

bind to DS. These interactions consist in the formation of gradients along the 

extracellular matrix and the facilitation of the binding ligands-receptors.
36

 

Overall, additional studies on DS are required to expand our understanding of 

the biological functions of this GAG. 

In 2004, Hsieh-Wilson and co-workers published one of the first biological 

studies using synthetic CS molecules, in which a CS tetrasaccharide was identified as 

the minimum motif required for neuronal stimulation. In addition, they demonstrated 

that the sulfation is required to promote the neuronal growth. These studies 

demonstrated that the CS sulfation pattern was a molecular recognition element for 

growth factors and the activity was not related to nonspecific electrostatic effects.
40,41

 

In addition, they demonstrated the power of GAG oligosaccharide synthesis to 

provide defined probes of high purity required for deciphering the details of GAG-

protein interactions on a molecular scale.  
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1.3 Chemical Synthesis of oligosaccharides: solution and solid-phase 

Carbohydrate organic synthesis is a complicated task due to the 

polyhydroxylated nature of these molecules. Common challenges in oligosaccharide 

synthesis include  lengthy multiple step routes due to numerous protecting group 

operations, orthogonal conditions for the introduction and removal of  these groups 

and the conditions for the stereoselective formation of glycosidic bonds as well as 

efficient access to rare sugars (as IdoA). Therefore, critical aspects of any 

oligosaccharide synthesis are high yielding chemical transformations and high 

stereoselectivity in the coupling step. In addition and very relevant for GAG 

synthesis is an efficient access to protected monosaccharide building blocks, which 

are often rare sugars. 

 

1.3.1 Protecting group strategy 

Considering the intrinsic polyfunctional nature of the GAG´s, their syntheses 

require extensive use of protecting groups for temporarily masking and 

differentiating the different hydroxyl, carboxyl and amino groups to achieve high 

selectivity in the coupling and sulfation reactions. A large number of different 

protecting groups are available to aid in the differentiation of functions of very 

similar reactivity.
42

 The chosen protecting groups should fulfil a number of 

conditions to be considered suitable for the lengthy and complex oligossacharide 

synthesis. Firstly, reagents for the introduction and removal of a protecting group 

should be easily accessible and ideally commercially available. Secondly, the 

installation and cleavage reactions themselves should preferably be carried out under 

mild conditions and not affect any other groups present in the molecule (the ability to 

add/remove protecting groups in the presence of others is termed orthogonality). 

Thirdly, the groups should also remain stable throughout the synthesis and during the 

work-up and purification steps. Usually, the protection of a free chemical function 

will afford a final product that is more hydrophobic than the starting material, which 

is easier handled during work-up and chromatographic purification and sometimes 

could be crystallised for convenient large scale purification. In addition, the reaction 

should ideally afford a product that is easily separated via chromatography from the 

starting material during the work-up and purification steps. The sequence of 
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protecting different hydroxyl groups of similar reactivity in a monosaccharide is 

determined by their relative reactivities in the required chemical transformation. As a 

general rule the nucleophilicity of hydroxyl groups decreases in the order anomeric 

hydroxyl, primary and secondary and equatorial over axial groups. It has been 

observed that in a first approximation, the reactivity of the hydroxyl groups generally 

decreases with increasing distance from the anomeric position. It is however to be 

noted that this rule of thumb is valid in the presence of both axial/equatorial hydroxyl 

groups (axial hydroxyl groups are far less reactive than equatorial ones).
43

  

A typical monosaccharide building block used in oligosaccharide assembly is 

equipped with permanent and temporary protecting groups. Permanent groups are 

used to mask those hydroxyl groups that are not going to be modified during the 

course of the synthesis and will only be exposed at the very end. Permanent benzyl 

(Bn) protecting groups, which can be cleaved by hydrogenation at the end of the 

synthesis, are most frequently used but rather stable esters, such as pivaloyl (Piv), 

acetyl (Ac) or even benzoyl (Bz) esters are also used. Temporary protecting groups 

are functional groups that are usually less stable and hence more easily cleaved such 

as fluorenylmethoxycarbonyl (Fmoc), levulinoyl (Lev) and several silyl groups. For 

the synthesis of HP or HS oligosaccharides numerous orthogonal 

permanent/temporary groups have to be selected to ensure the flexible access to 

defined sulfation and acetylation patterns on the GAG chain (Figure 1.9). Most 

synthetic strategies mask positions for unsubstituted hydroxyl groups as benzyl ether 

and sulfated positions as ester groups (eg. Ac, Bz and Piv), respectively. However, 

whether a protecting group is finally employed as permanent or temporary is often 

dependent on the chosen glycosylation strategy.  
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Figure 1.9. Some of the major protecting groups used for HP/HS oligosaccharide synthesis. 

R = carbohydrate. 

 

1.3.2 Chemical glycosylation  

Glycosylation reaction consists in the formation of a covalent bond, known as 

glycosidic linkage, between two sugar units or between a sugar and an aglycon 

(Scheme 1.1). This bond can be chemically formed by the displacement of an 

anomeric leaving group (LG) by an alcohol, or by the OH group of a partially 

protected sugar moiety. The nucleofilic compound presenting the free hydroxyl 

group is called glycosyl acceptor, and the sugar residue bearing the leaving group 

(LG) at its anomeric position is known as glycosyl donor. The reaction generally is 

performed in the presence of an activator called “promoter” assisting in the departure 

of the leaving group. The role of the promoter is to assist the departure of the leaving 

group (LG) and is often used in catalytic amount, although in some instances they 

could be used in stoichiometric amounts.  
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Scheme 1.1. Glycosylation reaction between glycosidic donor and acceptor  

 The general mechanistic pathways for glycosidic bond formation consists on 

the activation of the glycosyl donor by the promoter resulting in the departure of the 

leaving group and the creation of a glycosyl cation intermediate, called 

oxacarbenium ion (Scheme 1.2). This transient entity can hence be attacked by the 

free hydroxyl group of the glycosyl acceptor from either the top face or the bottom 

face of the ring plane, which will finally result in the formation of the new glycosidic 

bond, with α or β configuration at C-1.  

In this context, the stereochemistry at the anomeric carbon must be controlled 

during the formation of the new glycosidic bond. In theory, a glycosylation reaction 

could lead to the formation of both 1,2-cis and 1,2-trans glycosides. The resulting 

stereoselectivity of a glycosylation reaction is governed by many parameters such as 

the stereochemistry of the donor, the anomeric and remote protecting effects; and the 

steric hindrance and nucleophilicity of the acceptor. Highly stereoselective 

glycosylation reactions can be achieved by controlling some of these parameters. The 

formation of 1,2-trans glycosidic linkages can be achieved exploiting the  

neighbouring group effect of an acyl protecting group at C-2 of the glycosyl donor 

(Scheme 1.2). The presence of this electron donating moiety stabilises the 

oxocarbenium cation intermediate (neighbouring group participation) and leads to 

the formation of an acetoxonium ion (also called acyloxonium ion). Since one of the 

faces of the ring plane is sterically more hindered, the nucleophilic attack of the 

glycosyl acceptor will preferentially occurs on the opposite side of the plane. 

Ultimately, this leads to the preferential formation of the 1,2-trans glycoside, even 

though some traces of the 1,2-cis glycoside may be detected. In contrast, non 

participating C2 protecting group and the anomeric effect 
44,45,4546

 favour the 

formation of 1,2-cis glycosides, although it is far more challenging to obtain good 

stereoselectivity than for 1,2-trans glycosides. Other factors such as conformational 

strain or solvent effects have also an influence on the stereochemical outcome. Non-

polar solvents such as diethyl ether tend to favour  1,2-cis linkage formation whereas 
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polar solvents, such as acetonitrile  stabilize the intermediate oxocarbenium ion, 

favouring the formation of the 1,2-trans glycosides
44

,
47

 

 

 

Scheme 1.2 General  mechanistic pathways for glycosidic bond formation. SN
1
 pathway: 

non-participating group –NP at C-2; SN
2
 pathway: participating group –OP and the different 

outcomes ,1,2-trans or 1,2-cis glycoside 

 

Moreover, even though it is widely agreed that the general mechanism of a 

chemical glycosylation can be described as depicted in Scheme 1.1, the exact 

mechanism is still not fully understood. Many mechanistic studies have been carried 

out during the years to gain a deeper understanding of the underlying parameters that 

control stereoselectivity of glycosylation reactions
48-49

. Yoshida and co-workers.
50

 

reported the synthesis of alkoxycarbenium in the absence of nucleophiles and the 

subsequently reaction with nucleofiles previous to their decomposition. The lifetime 

of these intermediates is in the order of seconds and is highly dependent on the 

temperature. In recent studies glycosyl cations derived from 2-deoxy and 2-

bromoglucospyranose have been generated in superacid medium and characterized at 

low temperature by NMR spectroscopy.
49
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On the other hand, protecting groups can affect the reactivity of the donors 

due to their influence on the conformation and/or through glycosyl oxocarbenium by 

disarming effects arising from their electron-withdrawing ability
51

. Furthermore, the 

influence of promoters and additives to the glycosylation reaction has been studied 

for many years by different groups
52

. A higher knowledge of the reaction 

mechanism, as well as having a better overview of the impact of all the 

parameters/components on its outcome, will help in finding appropriate solutions to 

overcome the difficulties still encountered for the synthesis of complex sugars. 

Therefore, the stereochemical outcome of each glycosylation reactions needs 

to be investigated individually, especially in the formation of large oligosaccharides. 

In the case of HP/ HS the 1, 2- trans linkage between the uronic acid and the 

glucosamine residues is usually achieved through the use of a participating protecting 

group at C-2 of the uronic acid glycosyl donor. However, formation of the 1, 2-cis 

linkage the glucosamine and the uronic acid units can be difficult to control. The non 

participating azido group, is employed to mask the C-2 amino group of the 

glucosamine glycosyl donor and to permit 1,2-cis coupling. High stereoselectivities 

are generally achieved for L-idosyl acceptors; however, for D-glucuronic acid-based 

acceptors, an anomeric mixture results from the glycosylation and therefore an 

extensive protecting group manipulation is required. 

The choice of an anomeric leaving group is one of the most important 

consideration for oligosaccharide assembly. Glycosyl halides
53,54,55

, glycosyl 

trichloroacetimidates
56

, glycosyl N-phenyltrifluoroacetimidates
57

, glycosyl 

sulphoxides
58

, glycosyl phosphates
59

, thioglycosides
60

, n-pentenyl glycosides
61

 are 

major leaving groups that have found entry in the routine synthetic protocols of 

carbohydrate chemists worldwide (see Figure 1.10). Glycosyl trichloroacetimidates 

are perhaps the most extensively used glycosylating agents, due to their high 

reactivity, easy preparation, mild activation under only catalytic amounts of Lewis 

acid promoters and compatibility with base and acid labile protecting groups.  

Also as a general rule, the synthesis of protected monomeric building blocks 

remains the most time consuming process of oligosaccharide synthesis. Commonly, 

the differently protected and functionalized monosaccharides are accessed from 
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naturally occurring sugar starting material through a series of lengthy and often 

tedious protection-deprotection manipulations.  

 

Figure 1.10. Various glycosyl donors used for glycosylation reactions. 

In general, there are two major strategies for the assembly of 

oligosaccharides, and both were applied to GAGs synthesis. The first approach is the 

linear construction of oligosaccharides, by which each building block (or 

disaccharide units) is added to the growing oligosaccharide chain. In order to 

increase the yield of each single step the smaller unit is generally used in excess. 

A second strategy is the convergent synthesis involving the assembly of 

similarly sized units. Despite the fact that this strategy produces shorter synthetic 

routes with potentially higher overall yields, main disadvantages are the activation of 

highly elaborated starting material which is lost when used in excess. The decision to 

use either one of the described strategies usually depends on several factors, 

including literature precedent, sourcing of starting materials, and individual 

expertise.  

 

1.3.3 Chemical synthesis of HS/DS oligosaccharides in solution 

Due to its significant medical importance and clinical potencial HP/HS 

oligosaccharides are among the most studied GAGs and considerable efforts have 

been invested in the development of strategies for their synthesis over the past 30 

years.
62

 

The synthesis of HS/DS oligosaccharides present several difficulties inherent 

to the complex structure of the target molecules. First, L-idose and L-iduronic acid 
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are not readily available from natural sources and affordable prices. Efficient and 

synthetic routes to produce large amounts of protected monosaccharide building 

blocks are therefore required. In addition, the development of an appropriate 

protecting group strategy needs to be considered allowing the implementation of the 

high degree of functionalization of the HS/DS fragments (see section 1.3.1). A final 

challenge is the complete stereoselective interglycosidic bond formation between the 

synthetic building blocks. 

Many procedures and strategies for the synthesis of heparin like 

oligosaccharides were pioneered by Petitou, Jacquinet and co-workers during the 

total synthesis of the ATIII binding HP pentasaccharide
63,64,65

. The following years, 

several studies were published describing the preparation of pentasaccharide analogs 

to simplify the chemical synthesis and increasing the knowledge of HP structure-

activity relationship
66,67,68

. 

These initial studies inspired the chemical synthesis of a wider range of these 

types of GAGs and their mimetics. At the end of the 90s and beginning of the 21st 

century several oligosaccharide sequences (tetra-, hexa- and octasaccharides) of the 

regular region of HP (IdoA(2S)-GlcNS(6S)) were synthesized by a convergent 

modular strategy using disaccharide as building blocks.
69,70,71

 In order to understand 

in more detail the interactions of HP with fibroblast growth factors
29

, the synthesis of 

various modified HP sequences replacing L-IdoA residues present in the HP regular 

sequence by D-GlcA has been reported
72

. 

Over the last three decades, three main strategies for the synthesis of HP and 

HS oligosaccharides have emerged. The convergent modular synthesis is based on 

the sequential assembly of fully differentiated building blocks, until the desired 

length is reached. This final precursor is then modified to attain the desired 

functionalised oligosaccharide. This convergent modular synthesis requires extensive 

and lengthy synthetic pathways and is more suitable for the preparation of 

structurally homogenous oligosaccharides
70,32,73-74

. On the other hand, the divergent 

approach requires the synthesis of one or several common precursors which will 

undergo structural modifications of their backbone prior to further elongation until 

the desired size is obtained
75-76

. The divergent type of synthesis allows easier 

preparation of a wider range of structures, unlike the convergent modular one.  
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Finally, over the last decade, for the aim of developing concise and more 

efficient synthetic pathways, much effort has been put into the development of 

versatile syntheses, which can be defined as a combination of both divergent and 

modular syntheses 
77,78,79

. Despite the differences that can be listed between those 

synthetic strategies, they all rely on diverse glycosylating agents, which thus appear 

to be one of the keystones of oligosaccharide chemical synthesis.  

In general, the synthetic approaches reported in the literature mainly differ in 

the degree of modulation: monomeric
80

, dimeric
81,82

, trimeric
83

 or even tetrameric 

residues
84

 have been used as elongation blocks in modular glycosylation strategies. 

They also differ in the type of building blocks used, in the timing of the oxidation of 

the hydroxyl group at position 6 to obtain the uronic acid and finally in the 

glycosylation procedures. 

Scheme 1.3. Different synthetic approaches for heparin –like oligosaccharides considering 

the different modulation degree. a) monomers
80

; b) dimers
81

; c) trimers
83

 and d) tetramers
84

. 

In 2006, Lu et al. were the first to report the chemical synthesis of the first set 

of 48 fully and orthogonally protected disaccharide precursors that can be used as 

building blocks for the modular synthesis of HP/HS oligosaccharides
85

. A multitude 

of different size building block precursors have been designed throughout the years 

86,87
. The differences between the building blocks are essentially based on the type of 

protecting groups used
88,89

.  
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Although carbohydrate synthesis allows in theory the preparation of any 

HP/HS structure, many challenges as the exclusive stereoselective formation of α-

glycosidic linkages in the absence of a participating neighbouring group or the often 

low yields in glycosylation reactions including IdoA residues still have to be 

overcome. In addition, uronic acids are known to be less reactive than their non 

oxidized analogues
90

. This can be explained by the electron withdrawing effect of the 

carboxyl group at position 5 that decreases the nucleophilicity of the neighbouring 

hydroxyl groups. The more reactive idosides 
91

and glucosides
73

 have therefore been 

used as glycosylating agents leaving the oxidation to uronic acids to a later stage in 

the synthesis.  

Recently, Boons and coworkers reported the synthesis of modular 

disaccharide building blocks containing glucuronic acid residues.
92

 They 

demonstrated that glucuronic acids protected at C-2 with a permanent 4-acetoxy-2,2-

dimethyl butanoyl- PivOAc or temporary Lev ester can be used as glycosyl donors to 

prepare dimeric precursors with high yields, avoiding the late-stage oxidation step at 

the very end of the synthetic process. 

The chemical synthesis of long GAGs remains a major challenge. All the 

work performed in the development of new synthetic routes has allowed the 

preparation of well defined oligosaccharides of different sizes. Gardiner and 

coworkers
93

 described in 2012 the first gram-scale synthesis of an heparin–related 

dodecamer and recently
84

, the total synthesis of the longest synthetic heparin like 

oligosaccharide yet described (40 mer).  

DS like HS contains the iduronic acid residues in its repeating unit, making 

the chemical synthesis of these polymers somewhat more complex than that of other 

related GAGs. In 1987, Jacquinet and Sinaÿ synthesized the first disaccharide 

fragments of DS employing an unstable L-idopyranose chloride without a 

participating group at C-2 as donor and azido D-galatopyranose as acceptor which 

gave rise to an anomeric mixture of formed disaccharide. Comparing the reactivity of 

different iduronic acid donors (trichloroacetimidates, thioglycosides, n-pentenyl and 

fluorides)
89

 the Jacquinet group found trichloroacetimidates and n-pentenyl 

glycosides94 to be more reactive than thioglycosides and fluorides. 
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 L-Idose instead of IdoA residues were employed as glycosyl acceptors for the 

synthesis of the DS hexasaccharides. Goto and Ogawa containing IdoA(2S)-

GalN(4S) to improve glycosylation yields and the C-6 hydroxyl groups oxidized 

under Swern conditions followed by treatment with sodium hipochlorite furnishing 

the final product after esterification in 39% overall yield.
95

 

In 2000, Barroca and Jacquinet reported an efficient and stereoselective 

glycosylation reaction of C4 position of L-IdoA as acceptor employing an 2-deoxy-2-

trichloroacetamido-D-galactopyranose as donor. This method was later applied to the 

synthesis of various sulfoforms of DS trisaccharides.
96

 Highlights of this synthesis 

are the regioselective oxidation of the disaccharides in the Ido 4, 6 diols after 

treatment with catalytic amount of 2,2,6,6-tetramethylpiperidine 1-oxyl free radical 

(TEMPO) in the presence of stable calcium hypochlorite and the use of pivaloyl and 

acetates as temporary protecting groups allowing the preparation of different 

sulfoforms from a common precursor. 

 In 2009, Jacquinet et al. developed a combinatorial approach to synthesize a 

library of O-sulfate tetra- and hexa- chondroitin sulfate oligosaccharides from a 

GlcA-GalN disaccharide precursor which had been prepared in 11 steps from the 

natural chondroitin sulfate polymer.
97,98

 The synthetic route was based on a 2+2 

strategy employing this disaccharide with the acceptor position protected as a 

levulinate. Glycosylations were carried out with a galactosamine trichloroacetimidate 

donor carrying a 2-deoxy-2-trichloroacetamido group to ensure 1,2-trans selectivity 

in the glycosylation.   

Yamane and co-workers developed synthetic routes towards CS 

oligosaccharides with the inverse sequence to glycans made by the Jacquinet group. 

In contrast to previous approaches, disaccharide building block used for the 

construction of hexa- and octasaccharides was the reverse-type sequence β-GalNAc-

GlcA.
99

 

In 2013, Maza et al. reported the synthesis of sulfated CS/DS tetrasaccharides 

using N-trifluoroacetyl as temporary protecting group in the amine function of the D-

galactosamine building block, which can be easily cleaved under mild conditions. 

Binding studies with FGF-2 by fluorescence polarization assay indicated that the 

synthesized tetrasaccharides compounds are able to interact with FGF-2.
100
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1.3.4 Enzymatic and chemoenzymatic synthesis 

 Chemoenzymatic synthesis of GAGs has also been developed.
101,102

 Two 

main methods have been investigated, involving glycosyltransferases and reverse-

activity glycosyl hydrolases, and glycosynthases have also been introduced as new 

efficient tools
103,104

. These approaches can help shorten the synthetic routes, and 

therefore help save a considerable amount of time when preparing libraries of 

oligosaccharides
105–108

. The GAG sequences, synthesized using the chemoenzymatic 

approach include the AT-III binding domain of HP
105

 oligosaccharides concurrently 

displaying several anti-factor activities
109

; Ultra Low Molecular Weight (ULMW) 

Heparins
110,111

 and HS oligosaccharides displaying a range of affinity towards FGF2 

and which therefore allow the SAR of these GAGs
112

. The assembly of 

oligosaccharides by enzymatic methods has the advantages that the oligosaccharides 

may be prepared without protecting group manipulation. However, several glycosyl 

transferases are not commercially available and life-time of the enzymes is limited.  

 

1.3.5 Chemical synthesis of oligosaccharides on solid-phase. 

Solid-phase synthesis is a methodology in which synthetic transformations 

are conducted with one of the reactants attached to an insoluble matrix, allowing the 

removal of other reagents and solvents by simple filtration. This strategy was 

developed by Merrifield in 1960 for the sequential solid-supported synthesis of 

polypeptides on a polystyrene resin, now known as Merrifield´s resin. Solid-phase 

synthesis was conceived under the theory that an excess of reagents could be used to 

drive reaction on the solid support to completion, and that the excess of reagents and 

soluble by-products can simply be removed by filtration and washing of the 

polymeric support. This methodology was efficiently applied for preparation of 

oligonucleotides and peptides
113

, and later adopted for the preparation of complex 

oligosaccharides
114

. The solid-supported synthesis of oligosaccharides, however, 

faces additional challenges like the requirement for anhydrous reaction conditions, 

stereo-selective glycosylation reactions, low temperature coupling procedures, and 

more complex protecting group regimes that allow for the synthesis of branched 

structures. The low stability of many of the highly reactive glycosyl donors is 

particularly a problem for the automation of solid-phase procedures. Therefore, 
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stereoselective glycosylation and protective group manipulation in high yield are 

essential for a successful solid-phase synthesis.  

In general, solid-supported synthesis of oligosaccharides is carried out from 

the reducing to the non-reducing end coupling a glycosyl acceptor as a primer via a 

cleavable linker to the solid support (Scheme 1.4). After attachment, this glycan 

primer is selectively deprotected to produce a glycosyl acceptor for the subsequent 

coupling step with a suitable donor. Glycosylations and protective group 

manipulations are carried out in a repetitive cycle, and the final cleavage from the 

solid support releases the protected oligosaccharide. 

 

 

Scheme 1.4. General procedure for solid-phase oligosaccharide synthesis. 

 

A major limitation of the solid-phase synthesis is monitoring the reactions 

performed on the polymeric support. In general, destructive methods are applied, 

where a small amount of solid support is cleaved and subjected to ordinary solution-

phase analysis, for instance liquid chromatography–mass spectrometry (LC-MS), 

thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) 

spectroscopy. The disadvantage with these methods is that valuable product is 

consumed and that intermediates may decompose during cleavage, which could 

complicates the analysis. Even though these methods required really small quantities 

of product, non destructive methods are desirable and several innovative NMR 



Introduction 

 

29 
 

spectroscopy methods suited for on-bead analysis have therefore been developed. 

However, considering the automated solid phase synthesis as the new era of 

oligosaccharide synthesis, a more direct methodology is preferred. Fluorescent 

monitoring using Fmoc as temporary protective group allowed calculated the 

efficiency of the glycosylation reaction draining the deprotection solution through a 

UV-based cell
115

,
116

. In addition, several innovative NMR spectroscopy methods 

suited for on-bead analysis have therefore been developed. 

 

The structure and physicochemical properties of the resin/solid support may 

have a major impact on the outcome of a reaction performed on a polymeric support. 

Therefore, understanding the resin properties is important for an efficient solid-phase 

glycoconjugate synthesis and the properties of the resin, such as swelling, cross-

linking, particle size, stability, functional groups and loading capacity needs to be 

considered during the synthetic route design. Numerous resins with different 

synthetic properties are commercially available and the most frequently used are the 

gel-type resins. These are typically spherical beads of cross-linked polystyrene (PS) 

or poly(styrene-oxyethylene) graph copolymers. In organic solvents, these resins 

furnish a solvent-swollen gel, which improves the diffusion of molecules through the 

solid matrix. 

 

The classical and the most commonly employed resin today is the Merrifield 

resin (1 or 2% divinylbenzene cross-linked polystyrene). Its exhibits high loading 

capacity and excellent stability tolerating a wide range of reaction conditions. 

Polystyrene exhibits excellent swelling in dichloromethane, tetrahydrofurane (THF), 

dimethylformamide (DMF) and dioxane, but swelling of the beads in polar solvents 

and also the diffusion of polar reagents into the polystyrene matrix is limited. The 

compatibility of the polystyrene resin with protic solvents has been improved by 

grafting polyethylene glycol (PEG) chains onto polystyrene backbone. TentaGel
TM

 

or ArgoGel
TM

, is a member of this PEG‐family. This resin exhibits good swelling 

properties even in water. A drawback of the PEG‐derived resins is their lower 

loading capacity and higher price compared to Merrifield’s resin. 
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Insoluble support normally requires additional development to transfer 

protocols for solution-phase synthesis to the solid-phase. On the other hand, 

polyethylene glycol soluble polymers (MPEG) combine advantages of the solution-

phase synthesis with the easy work-up of solid-phase synthesis. The reactions are 

carried out in homogeneous solution; however, the polymer is precipitated out after 

each step in order to remove any excess of reagent by simple filtration. The principal 

disadvantage of this support is the loss of material during the precipitation step after 

each coupling, which can decrease severely the overall yield in the synthesis of 

larger oligosaccharides. In addition the precipitation step is not easily automated for 

the introduction in automated synthetiser workflows. 

Another critical element of solid-phase synthesis is the choice of an 

appropriate linker to attach the first sugar unit to the solid support. Silyl ether 

linkers
117

, acid- and base-labile linkers, thioglycoside linkers, photocleavable 

linkers
118

 and linkers that can be cleaved by oxidation or hydrogenation
119

 are 

commonly used for solid-phase synthesis.
120 

1.3.3.1 Historical perspective of solid-phase synthesis of oligosaccharides-GAGs 

The application of solid phase methods toward the preparation of 

oligosaccharides began in the 70’s but interest in this field decreased due to 

deficiency lack of efficient glycosylation methods available at that time. In the 

1980’s and 1990’s the development of novel glycosylating agents renewed the 

interest in solid phase carbohydrate synthesis.
121,122,123

  

 

 In 1997 Van Boeckel and coworkers demonstrated the successful assembly of 

several heterogenic HS-like oligosaccharides in a polymer supported solution 

synthesis using disaccharide building blocks
124

. The same n+2 block synthesis 

strategy was later employed to synthesize a series of four hexasaccharides and two 

octasaccharidic heparin-like oligosaccharides with different charge distribution on a 

soluble polymer support (MPEG) or on a PEG grafted polystyrene resin 

(ArgoGel
TM

)
125,126

. In these studies, a succinoyl ester linker was used to attach the 

conveniently protected glycosyl acceptor to the resin. The elongation of the 

oligosaccharide chain was carried out by repetitive glycosylation of the 4-OH group 

of the L-iduronate unit of the acceptor with a conveniently protected glycosyl donor 
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and the trichloroacetimidate method was used in all glycosylations. Several 

attachment sites of the disaccharide acceptor to the polymer support have been 

investigated and finally the best results were obtained using MPEG as polymer 

support and attaching the disaccharide acceptor through the carboxylate group of the 

L-iduronate unit by mild transesterification in the presence of dibutyltin oxide.  

 

 In 2001 Seeberger and coworkers developed the first automated 

oligosaccharide synthesizer.
114 In the last years, automated solid phase synthesis by 

sequential assembly of differentially protected monosaccharide as building blocks 

was successfully applied for the synthesis of partially protected chondroitin sulfate 

hexasaccharides
116

 and conjugated dermatan sulfate oligosaccharides.
127

 Nowadays, 

this improved automated platform, Glyconeer 2.1 synthesizer, is commercially 

available via GlycoUniverse 
115

 and Activotec
128

.  

 

Therefore, solid phase methodology with appropriate building blocks could 

be well suited to provide rapid access to defined GAG oligosaccharides such as 

heparin, heparin sulfate, dermatan sulfate or keratan sulfate of varying length. In this 

context, new synthetic approaches needs to be developed. 

 

1.4 Microarrays and other possible applications 

Solid phase synthesis will produce GAGs functionalized with a linker that 

could be directly employed in interaction studies. 

Several methods have been established to study the interactions of 

carbohydrate with various glycan binding proteins. Carbohydrates have been 

immobilized to surfaces for surface plasmon resonance (SPR) and microarray 

screening. Additionally, carbohydrates could be attached to gold nanoparticles, 

quantum dots, magnetic beads and chromatographic solid phases for the preparation 

of affinity columns.  

Carbohydrate microarrays have been used in glycomics research to examine 

the interactions of carbohydrates with glycan binding proteins. The first carbohydrate 
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microarray was developed in 2002.
129

 The use of microarrays offers important 

advantages, because only minimum amounts of analyte and ligand are required and 

several binding events can be screened on a single glass slide at the same time. The 

sugar ligands are immobilized on activated surface of glass slides and screened with 

solutions of glycan binding proteins (GBPs). After incubation, the array is washed to 

remove any unbound material and binding events are measured and analyzed. 

Carbohydrate microarrays have been widely applied for rapid analysis of the 

carbohydrate-protein binding properties, the detection of specific antibodies, and fast 

assessment of substrates specificities of glycosyltransferases.
130,129

 

In 2006, in order to understand the structure-function relationship of heparin 

like-glycosaminoglycans and growth factors, J.L de Paz et al. published the 

preparation of microarrays using synthetic heparin oligosaccharides derived by 

solution and solid phase assembly methods
131

. In recent years, new studies have been 

published using microarray technology to investigate/understand the molecular 

mechanism of interactions between GAGs and specific proteins.
132-133

 

However, some limitations need to be overcome for wider applications of the 

carbohydrate array technology.
130

 The major limitation is still the preparation and 

supply of thousands of saccharides that could reflect the heterogeneity of natural 

GAG populations. Despite the remarkable advantages in the automated assembly of 

oligosaccharides, the solid-phase synthesis of structures with the complexity and 

polarity of GAGs is still a difficult goal to achieve and therefore new approaches 

need to be developed. 
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2. OBJECTIVES AND SYNTHETIC STRATEGY 

 The main objective of this thesis has been to establish a suitable methodology 

for the solid phase synthesis of glycosaminoglycans (GAGs), with special attention to 

heparan sulfate (HS) and dermatan sulfate (DS) oligosaccharides. The synthetic strategy 

is based on the acceptor bound solid phase approach and in performing sequential 

glycosylations with highly reactive monosaccharide building blocks, avoiding the use of 

advanced disaccharide units commonly employed in previously published GAGs 

synthesis.  

 

To achieve this main objective, the following partial objectives have been addressed 

(Figure 2.1): 

 

1. Selection of a suitable polymer support and the development of a linker that will 

be stable during all synthetic operations and that could be cleaved efficiently. 

2. Identification of appropriately protected building blocks in order to access 

biologically relevant glycosaminoglycans with different N- and O- sulfation 

patterns. 

3. Development of rapid, stereoselective and high yielding coupling 

(glycosylation) reactions. Deprotection conditions for temporary protecting 

groups in positions where the elongation of the biopolymer will be performed. 

4. Study of cleavage of the protected oligosaccharides from the solid support. 

5.  Sulfation and global deproctection of the final product 
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Figure 2.1. Considerations for the development of the solid-phase synthesis strategy.  

 

2.2.1 Solid support  

The polymer support has an immense influence on the synthetic strategy and the 

choice of reagents (refer to section 1.3.3.1). Merrifield´s resin
1
 which is composed by 

polystyrene (PS) backbone cross-linked with 1% divinylbenzene was selected as matrix 

support based on the previous published work for solid-phase oligosaccharide 

synthesis
2,3

. Merrifield´s resin is commonly employed in solid phase synthesis due to its 

high loading capacity, good compatibility with a broad range of reaction conditions, 

durability and low price. In addition, Merrifield resin only exposes its reactive sites 

when it is used in a swelling solvent, such as CH2Cl2, THF or toluene. On the other 

hand, Tentagel
®
 resin at different loading capacities was evaluated in the 

immobilization of linker and in model glycosylation reactions. This optimization 

process revealed that polystyrene support was the best option to be used for the solid 

phase synthesis of GAG oligosaccharide precursors. 

 



Objectives and Synthetic Strategy 

 

45 
 

2.2.2 Linkers for solid phase synthesis 

Another critical element of solid phase synthesis is the choice of an appropriate 

linker to attach the first sugar unit to the solid support. In this thesis, a new linker based 

on a 4-hydroxymethylbenzyl N-(5-hydroxypentyl)-N-benzyl carbamate spacer and 

attached via an ester linkage to the carboxy-functionalized resin has been specifically 

designed (Scheme 3.1). This linker provides a stable handle under Lewis acid catalysis 

(TMSOTf) normally employed during glycosylation reactions, under electrophilic 

conditions necessary for the activation of certain glycosidic donors (NIS) and under 

mild basic conditions. Once the synthesis of biopolymer has achieved the desired 

length, it could be easily and efficiently cleaved under basic conditions releasing the 

amine protected as carbamate. This protecting group is compatible with the azide 

function employed as N-protecting groups in glucosamine building blocks. Previously 

described approaches for the immobilisation of amino-functionalized glycoconjugates 

release highly polar amines
4
 which are difficult to purify and are not compatible with 

the orthogonal functionalization of glycosamines e.g. N-sulfation or acetylation in HS 

synthesis. Furthermore, the final hydrogenation step would provide the glycoconjugates 

functionalized with amino C5-linker which can be attached to carrier proteins, 

nanoparticles or activated surfaces (microarrays) in order to perform interaction studies 

(Scheme 2.1). 

 

Scheme 2.1. Cleavage and final hydrogenation release the aminopentyl glycoside handle. 
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2.2.3 Building blocks 

The design and synthesis of monosaccharide building blocks used in the solid 

phase synthesis of GAGs is a laborious and time-consuming task. With a notable 

exception from the group of van Boom ,
5
 the solution-phase synthesis of HS fragments 

is usually based on the assembly of highly elaborated disaccharides, reflecting the major 

repeating units of the polymer. Our strategy is based on the sequential assembly of 

monosaccharide building blocks on a solid support that avoids the multi-step processing 

of elaborated disaccharides structures and introduces a higher degree of flexibility for 

the generation of structurally diverse HS/DS libraries. In addition, this approach is more 

practical from a synthetic point of view; for example, to synthesize all possible different 

dermatan sulfate oligosaccharides 12 different disaccharides are required, while the 

same variability can be achieved with only 7 different monosaccharide building blocks. 

To improve conversion rates in solid phase synthesis usually an excess of 

reagents is employed making the preparation of sufficient quantities of fully 

differentiated building blocks with an appropriate protecting group pattern is a key 

consideration for the synthesis of complex oligosaccharides. To this end the 

development of short, high–yielding and convergent synthetic routes to central building 

blocks are important also to quickly optimize glycosyl donors for stereo-selective and 

efficient glycosyl bond formation. In our approach benzyl ethers (Bn) were chosen as 

permanent protection for free hydroxyl groups in the final compound. Benzoyl and 

acetyl esters (Bz, Ac) were selected to mark hydroxyl groups to be orthogonally 

functionalized with sulfate groups. Levulinic ester (Lev) was chosen as temporary 

protecting group, which will be orthogonally cleaved after each coupling reaction to 

allow the elongation of the growing biopolymer. Furthermore, the protecting groups 

directly control the stereoselectivity during oligosaccharide synthesis when installed at 

C-2 by anchimeric assistance. The choice of protecting groups not only influences the 

stereoselectivity of the glycosylation as described above, but also can have an effect on 

the overall reactivity of a carbohydrate building block due to the armed-disarmed effect 

of the protecting group. Carbohydrates substituted with strong electron-withdrawing 

groups like esters (-OCOR,) are called disarmed donors, they have a destabilizing effect 

on the oxocarbenium ion and they are less reactive that so called armed-donors. Armed-

donors have as substituent electrodonating groups such as benzyl groups (-OBn) that 

reacts faster than disarmed donors. 
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In this thesis, different L-idose (compounds 25 – 30, 35 – 38), L-iduronic (43, 44, 

52 – 54, 57), and 2-azido-D-glucopyranosyl (65, 66) donors were synthesized to study 

the effect of different protecting group patterns in the reactivity of the glycosyl donors, 

and evaluate if  Ido or IdoA derived donors are better suited for solid-phase synthesis 

HS precursors. Under optimized conditions, the preparation on solid phase of 

trisaccharide and hexasaccharide HS precursors was achieved. Using a similar same 

strategy, a solid phase approach for the synthesis of tetra and octasaccharide DS 

precursors was developed. In this case, previously optimized common idose building 

block donor 30 was used and the reactivity of different D-galactosamine building blocks 

donors (81 – 82) evaluated in solution and on solid support (Figure 2.2).  

 

 

Figure 2.2. a) L-Iduronic acid, L-idose, D-galactosamine and azido-D-glucose donors employed 

in the solid phase synthesis of HS/DS protected precursors. TBDPS: tert-butyldiphenylsilyl, 

TDS: thexyldimethylsilyl, PMP: p-methoxyphenyl, PMB: p-methoxybenzyl, TOM: tri-iso-

propylsilyloxymethyl, Lev:levulinoyl, Bz: benzoate, Ac: acetate, TCA: thrichloroacetimidate. 
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2.2.4 Synthetic Cycle 

The assembly of oligosaccharides in the solid phase involves a synthetic cycle of 

alternating glycosylation and deprotection (Scheme 2.2) steps. Between these steps the 

resin needs to be washed thoroughly to remove any excess of reagents or soluble by-

products. In the glycosylation step, a resin-bound nucleophile acceptor reacts with the 

activated glycosidic donor to form a glycosidic linkage on the resin. In the initial 

glycosylation, the nucleophile is the hydroxyl group of linker SP-9 that would serve as 

anchoring point for the growing biopolymer in the solid support. Selective removal of 

temporary protecting group (PG) in saccharide furnishes a hydroxyl group in 

saccharides linked to the solid support as nucleophile for the next coupling. 

One of the advantages of solid phase synthesis is the possibility of performing 

each glycosylation step several times and using an excess of building blocks generally, 

between three to six-fold excess with respect to the solid phase bound nucleophile. 

These experimental conditions could potentially favor high yielding coupling reactions 

with the easy removal of excess of reagents by simple washings. The glycosylation 

reactions would be performed as in solution phase using activating reagents such as N-

iodosuccinimide (NIS), triflic acid (TfOH) or trimetylsilyltrifluoromethanesulfonate 

(TMSOTf). Levulinic ester protecting group will be used as temporary protecting group 

(R in saccharide, Scheme 2.2) for the hydroxyl positions that needed to be liberated to 

perform glycosylation reactions. This group can be orthogonally deprotected using 

hydrazine acetate, leaving unaltered the rest of temporary and permanent protecting 

groups.  

One of the challenges in solid phase synthesis is to monitor efficiently the 

reaction progress. In our case, each step of glycosylation and/or deprotection will be 

monitored by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) 

or by Matrix-assisted laser desorption/ionization (MALDI-Tof) mass spectrometry after 

analytical cleavage of a small aliquot of the resin (2-10 mg). 
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Scheme 2.2. Coupling cycle of solid phase synthesis, cleavage from the support and global 

deprotection. 

 

2.2.5 Cleavage from the Resin 

Once the protected GAG precursor of the desired length has been assembled on 

the solid phase, it has to be cleaved for further processing into the final target compound 

or for reaction monitoring. (Scheme 2.2). The ester linkage chosen for the attachment 

oligosaccharides on the solid-support is cleaved under strong basic conditions, cleaving 

all other base-labile functions in the molecule simultaneously.  

For complete compound cleavage the resin is transferred to a microwave flask 

and treated with sodium methoxide under microwave irradiation until thin layer 

chromatography (TLC) analysis showed no further product being released from the 

resin. At this point, the purity and composition of the crude product can be assessed by 

UPLC-MS. For improved purification of the released product mixture, the crude is 

acetylated by treatment with acetic anhydride in pyridine.  
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2.2.6 Sulfation and Global deproctetion to the Final Product. 

At the end of the synthesis, protecting group manipulations and global 

deprotection need to be carried out in order to afford the final products. Depending of 

the nature of the protecting groups one or more transformations would be required. 

When idose is used as building block, the C-6 position must to be deprotected and 

oxidized to form the iduronic acid moiety presented in GAGs. O- and N-sulfation 

followed by global deprotection would afford the fully unprotected sugars ready to be 

used in interaction studies. 
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3.1 LINKER AND SOLID SUPPORT 

3.1.1 Linker synthesis and glycosylation trials on solid support. 

The synthesis of linker 7 was performed as shown in Scheme 3.1. N-

Benzylaminopentanol 1 was silylated by treatment with thexyldimethylsilylchloride 

(TDS-Cl) affording benzylamine 2 in 80% yield. On the other hand, 1,4-

dihydroxymethylbenzene 3 was mono-protected in 50% yield as 

trichloroethylcarbonate (Troc) 4. In order to synthesize carbamate 6, compound 4 

was activated as p-nitrophenylcarbonate 5 using p-nitrophenyl chloroformate and 

then reacted with 2 to give the desired carbamate 6 in 80% yield over the two steps. 

The deprotection of the Troc group in 6 using zinc in acetic acid, afforded 7 in 

quantitative yield. 

 

Scheme 3.1. Synthesis of linker 7. Reagents and conditions: a) TDS-Cl, imidazole, DMF, 

80%; b) TrocCl, pyridine, CH3CN, 0ºC to rt, 52%; c) ClCOOPhNO2, pyridine, CH2Cl2; d) 2, 

DIPEA, DMF, 0ºC to rt, 78% over 2 steps; e) Zn, AcOH/THF (1:1) rt, 95%;  

The linker 7 was immobilized onto commercially available carboxy-

polystyrene (PS) and Tentagel
®
 (PEG-PS) solid supports using N,N′-

diisopropylcarbodiimide (DIC) and catalytic 4-dimethylaminopyridine (DMAP) 

affording resin SP-8 with different capacity adjusted to 0.2 mmol/g and 0.4 mmol/g 

(SP-8PS0.2, SP-8PS0.4, SP-8TENT0.2 and SP-8TENT0.4) (Scheme 3.2). Any remaining 

unreacted carboxylic acid groups were capped as methyl esters by treating the resin 

overnight with trimethylsilyldiazomethane.
1 The complete capping of the carboxylic 

acid of the polystyrene resin was confirmed by a rapid and sensitive colour test using 

a 0.25% solution of malachite green (MG)-oxalate in EtOH in the presence of 

triethylamine.
2
 Cleavage of the TDS-ether in SP-8 with hydrogen fluoride·pyridine 

(HF·Py) complex in THF afforded the resin bound alcohol SP-9 (SP-9PS0.2, SP-9PS0.4, 
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SP-9TENT0.2 and SP-9TENT0.4) in quantitative yield after three hours at room 

temperature. To monitor the progress of the reaction performed on the solid support, 

an analytical sample was obtained by treating a resin aliquot with NaOMe in 

CH2Cl2/MeOH for five minutes under microwave irradiation at 55 ºC. This sample 

was analyzed by Matrix-Assisted Laser Desorption/Ionization (MALDI-Tof) mass 

spectrometry showing a single and clean product corresponding to compound 10. 

Finally, preparative cleavage of the deprotected linker 10 from the resin SP-9 was 

performed as reported by Roussel et al
3
 employing NaOMe in CH2Cl2/MeOH and 

the loading of 0.2 mmol/g and 0.4 mmol/g was confirmed. The different resins 

prepared were evaluated during the synthesis of HS precursor along current thesis. 

 

  

Scheme 3.2. Synthesis of solid supported linker SP-9. Reagent and conditions: a) 

carboxypolystyrene 2.19 and 4.19 mmol/g or Tentagel, DIC, DMAP, CH2Cl2, quantitative, 

b) capping: Me3SiCHN2, THF, MeOH, rt, overnight; c) HFpyridine, THF, 0ºC to rt, 

quantitative; d) MeONa, MeOH, MW, 55ºC, quantitative. 

 

We then tested the general utility of the linker modified resin SP-9PS0.2 for the 

preparation of C5-aminolinked glycoconjugates (Scheme 3.3). Reaction of 5 

equivalents of mannose N-phenyltrifluoracetimidate 11
4 with SP-9PS0.2 resin under 

trimethylsilyl trifluoromethanesulfonate (TMSOTf) catalysis afforded resin bound 

glycoconjugate SP-12 after two glycosylation cycles. Cleavage from the resin with 

sodium methoxide at room temperature during 2 hours gave glycoconjugate 13 in 

79% yield. This procedure was repeated twice to ensure complete recovery of the 
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compound from the resin. Finally, compound 13 was completely deprotected to the 

aminopentyl glycoside 14 by catalytic transfer hydrogenation with palladium black 

in quantitative yield
5
. 

 

 

Scheme 3.3. First glycosylation trial on solid phase. Reagents and conditions: a) SP-9, 10% 

TMSOTf, CH2Cl2; 2 cycles; b) MeONa, MeOH, 79%; c) Pd black, 10% HCOOH in MeOH, 

H2, quantitative. 
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3.2 BUILDING BLOCKS SYNTHESIS 

The most time consuming task in the synthesis of GAGs is the preparation of 

building blocks employed in the assembly of the oligosaccharide. As previously 

shown, fully differentiated building blocks are required in order to arrive at GAGs of 

different lengths and/or defined sulfation patterns. The synthesis of these building 

blocks requires robust and well established synthetic procedures that allow for the 

preparation of building blocks in large scale from commercially available and 

inexpensive starting materials like D‐glucosamine and D‐diacetone glucose. 

 

3.2.1 Synthesis of L-Idose (Ido) Building Block 

As L-idose derivatives are not commercially available in large quantities at 

affordable prices, the synthesis of these building blocks was carried out using 

previously published synthetic routes which start from D-glucose derivatives and 

involve C-5 epimerization. Starting from D-diacetone glucose 15, the OH-3 group 

was first protected as benzyl ether, using benzyl bromide, sodium hydride and tetra-

n-butylammonium iodide in DMF and the 5,6-isopropylidene group was then 

selectively cleaved under mild acidic conditions (Scheme 3.4). 
6,7 

The resulting diol 

16 was converted into L-ido epoxide 18 by the method described by van Boeckel,
7
 

which can be readily performed on a 100 g scale. This method comprises the 

mesylation of free hydroxyl groups in 16 followed by the selectively substitution of 

the primary mesylate group by an acetyl group using potassium acetate in the 

presence of crown-ether (18-crown-6) to afford 17. Treatment of 17 with potassium 

tert-butoxide yielded the L-ido epoxide 18 which underwent epoxide opening, 

cleavage of the isopropylidene group and intramolecular glycosylation
7,8

 to give the 

1,6-anhydro-β-idopyranose derivative 19 in a single step after microwave irradiation 

in 1M H2SO4 in dioxane at 120ºC. In compound 19, the ring is fixed in the pyranose 

form, and the reaction product was readily isolated by crystallization in 55% yield 

thus avoiding tedious chromatographic separation of the furanose and pyranose 

tautomers required in other synthetic routes. Different trials were performed in order 

to improve the reported yield. Small scale reactions (100 mg) using different acid 

concentrations (3M, 2M and 1M of H2SO4), temperatures (80, 90, 100 and 120 ºC) 

and different number of cycles under microwave irradiation were tested. Some 
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improvement (~80% of the desired product by UPLC-MS) was observed when the 

reaction was performed using 3M H2SO4 at 90 ºC in 3 cycles of 10 minutes under 

microwave irradiation. Unfortunately, when these conditions were applied at one 

gram scale the reaction yield decreased and the previously described conditions were 

to be employed for the large scale preparation of 19. Finally, the anhydro compound 

19 was selectively monobenzoylated to give 20 in the presence of pyridine and 

DMAP at 0  C via slow addition of benzoyl chloride
8
 in order to minimize the 

formation of dibenzoylated anhydro byproduct. 

 

 

Scheme 3.4. Synthesis of the anhydro compound 20. Reagents and conditions: a) BnBr, 

NaH, TBAI, DMF, 0 °C to rt, 94%; b) AcOH, H2O, 40 °C, 98%; c) MsCl, pyridine, 0 °C to 

rt, 87%, d) KOAc, CH3CN, 18-crown-6, reflux, 83%; e) 
t
BuOK, 

t
BuOH, 0 ºC, CH2Cl2, 87%; 

f) 1M H2SO4 in dioxane microwave irradiation ,120 °C, 55%; g) BzCl, pyridine, DMAP, 

CH2Cl2, 0 °C, 88%. 

 

 The reactivity of a synthetic glycosyl donor is highly dependent on the 

protecting group pattern and the leaving group at the anomeric position.
9
A series of 

idose building blocks (28 – 30 and 35 – 38) with different protecting groups at OH-6 

were prepared and evaluated as glycosyl donors for the solution and solid-phase 

synthesis of HS precursors. (Scheme 3.5). Thioglycoside 21 was accessible via 

thiolysis of 20 employing trimethyl(phenylthio)silane in the presence of zinc iodide.
6
 

Selective protection of primary alcohol in 21 either with tert-butyldiphenylsylil 

chloride (TBDPSCl) or with thexyldimethylsilyl chloride (TDSCl) was achieved to 

give compounds 22 and 23 in high yields. The protection with para-methoxy phenol 
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was performed using the Mitsunobu reaction
10

 to afford compound 24 in 70 % yield. 

Levulination of the free OH-4 under Steglich esterification conditions employing 

levulinic acid in combination with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC·HCl) and 4-dimethylaminopyridine (DMAP), afforded 

thioglycosides 25, 26 and 27, which could be used directly in glycosylation reactions 

or could be converted in more reactive trichloroacetimidate donors, after hydrolysis 

of the thiophenyl group and activation of the resulting hemiacetals.  

 

The reaction of thioglycosides 25-27 with N-iodosuccinimide in the presence 

of triflic acid produced the corresponding hemiacetals. These intermediates were 

treated with trichloroacetonitrile in the presence of DBU as a base to afford imidates 

28, 29 and 30. The procedure for the hydrolysis of thioglycoside 27 needed to be 

optimized in order to avoid the reported NIS-promoted iodination of the p-

methoxybenzyl group
11

. The formation of an iodinated byproduct was detected by 

UPLC-MS resulting in a peak of [M+127] corresponding to the correponding 

hemiacetal plus one iodine atom. The formation of this halogenated byproduct could 

be completely eliminated when the reaction was performed using N-

bromosuccinimide in a mixture of acetone and water (9/1). This is related with the 

amount of the free electrophilic halide (X
+
) available, which decreases as bond 

energies increase (N-Cl > N-Br > N-I). 

 

In order to prepare 6-O-p-methoxybenzyl and 6-O-benzyl protected 

idoyranosyl thioglycosides 33 and 34, positions OH-6 and OH-4 of diol 21 were 

simultaneously protected by p-toluenesulfonic acid catalysed acetalisation with 

benzaldehyde dimethyl acetal or p-methoxy benzaldehyde to form respectively 

thioglycosides 31 and 32 in good yields (79% for 31 and 84% for 32). Regioselective 

reductive ring opening of 31 to form 6-O-benzyl protected donor 33 was achieved 

employing triethylsilane in the presence of trifluoracetic acid.
12

 Nevertheless, when 

these conditions were applied to the acid labile p-methoxy benzylidene acetal 32, 

diol 21 was obtained as the major reaction product. The use of sodium borohydride 

in combination with different acids
13

 such as HCl in dioxane
14

 and triflic acid did not 

improve the outcome of the ring opening reaction. Hence, the reductive ring opening 

of 32 was performed under neutral conditions with sodium cyanoborohydride and 

iodine
15

 at -20 °C affording the desired 6-O-p-methoxybenzyl protected donor 34 in 



Building blocks synthesis 

 

61 
 

61% of yield. Acetals 33 and 34 were then protected as 4-O-levulinic esters to obtain 

thioglycosides 37 and 38, respectively.  

 

Finally, from fully protected compound 25, the 6-O-TBDPS ether was 

selectively removed using HF·pyridine and the 6-O-acetate protected donor 37 was 

prepared in quantitative yield by treatment of the resulting compound with acetic 

anhydride in the presence of pyridine. Similarly, the 6-O-TOM protected 

thioglycoside 38 was prepared in 64% from 25 by alkylation of the 6-O- deprotected 

derivative employing tri-iso-propylsilyloxymethyl chloride (TOMCl). 
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Scheme 3.5. Synthesis of the thiophenyl idopyranoside donors 28 – 30, 35 – 38. Reagents 

and conditions: a) Me3SiSPh, ZnI2, rt, o/n, 77% b) for 22: TBDPSCl, pyridine, o/n, for 23: 

TDSCl, cat. DMAP, pyridine, rt, o/n, 85%; for 24: PMPOH, PPh3, DIAD, THF, 2h, 80 °C, 

70%; c) LevOH, EDCHCl, cat. DMAP, CH2Cl2, 5h, 91% (25 over two steps), 65% (26), 

90% (27), 94% (35), 81% (36); d) for 28: NIS, TfOH, THF, H2O, 75%, for 29: NIS, TfOH, 

THF, H2O, rt, 75%, for 30: NIS, TfOH, THF, H2O, rt, 56%; e) trichloroacetonitrile, DBU, 

CH2Cl2, 0 ºC, 2h, 90% (28), 72% (29) , 56% (30, over two steps); f) PhCH(OMe)2 (for 31), 

para-methoxybenzaldehyde (for 32), CSA, DMF, 80 °C, 5h, 79% (31), 84% (32); e) 

Triethylsilane, TFA, 0 °C to rt, 2h, 70% (33), I2, NaCNBH3, CH2Cl2, -20 °C, 61% (34). h, i) 

HF·pyridine, THF, 0 °C to rt, 50%; for 37: Ac2O, pyridine, CH2Cl2, quantitative; for 38: 

TOMCl, DIPEA, CH2Cl2, 0 °C to rt, 64%. 
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3.2.1.1 Synthesis of the Ido non-reducing end building block  

For the synthesis of capping building block 41, (Scheme 3.6), that contains a 

permanent benzyl protecting group at OH-4 to avoid sulfation of this position during 

the final steps, several attempts of benzylation of 27 using benzyl bromide-silver 

oxide, benzyl bromide-sodium hydride or acid catalyzed (benzyl 

trichloroacetimidate) benzylation failed. On the other hand, regioselective ring 

opening of the benzylidene acetal 31 to form the corresponding 4-O-benzylated 

derivative  using 1M borane in THF and cupper triflate, followed by Mitsunobu 

reaction with p-methoxyphenol in combination with triphenylphosphine and 

diisopropyl azodicarboxylate (DIAD) gave the desired compound 39 but in moderate 

40% yield. Finally, a benzyl ether was installed in OH-4 of 27 in a two-step process 

which afforded 39 in 70% yield employing an excess of trimethylsilyl chloride 

(TMSCl) followed by treatment with benzaldehyde, triethylsilane and a catalytic 

amount of acid (TMSOTf). In this reaction the order of reagents was essential as the 

addition of acid prior to the addition of the aldehyde and triethylsilane resulted in the 

loss of the temporary trimethylsilyl group. Finally, the hydrolysis of the 

thioglycoside using NBS in acetone/water produced hemiacetal 40 that was activated 

as trichloroacetimide 41 by treatment with trichloroacetonitrile and DBU (Scheme 

3.6). 

 

 

Scheme 3.6. Synthesis of the non reducing end building block 41. Reagents and conditions: 

a) TMSCl, pyridine; b) BnCHO, TES, TMSOTf (cat.), 70% over two steps; c) NBS, acetone/ 

water, 72%; d) CCl3CN, DBU, CH2Cl2, 76%. 
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3.2.2 Synthesis of L-iduronic acid (IdoA) building blocks 

Since the synthesis of IdoA glycosyl donors from commercial iduronic acid is 

unpractical and expensive IdoA building blocks were developed from a common 

intermediate of the idose building blocks synthesis. Selective oxidation of the OH-6 

in diol 21 using TEMPO/BAIB
16,17

 produced the desired iduronic acid derivative 

whose free carboxylic group was protected as methyl ester using the Steglich 

esterification conditions in MeOH with N-(3-dimethylaminopropyl)-N′-

ethylcarbodiimide hydrochloride (EDC·HCl) and dimethylaminopyridine (DMAP) 

as catalyst to give 42 (Scheme 3.7). The protected thioglycoside 42 was isolated in 

60% of yield after the two step sequence of oxidation and esterification. The 

remaining OH-4 was protected with levulinic acid under Steglich esterification 

conditions to generate the fully differentiated compound 43 in excellent 93% of 

yield. This thioglycoside could be either directly employed in glycosylation reactions 

or transformed in the corresponding trichloroacetimidate 44 after hydrolysis to the 

corresponding hemiacetal by treatment with N-iodosuccinimide and trifluoroacetic 

acid and activation with trichloroacetonitrile and DBU.  

 

  

Scheme 3.7. Synthesis of iduronic acid building blocks. Reagents and conditions: a) 

TEMPO, BAIB, CH2Cl2/H2O (3/1), 2h; b) MeOH, EDC·HCl, DMAP, CH2Cl2, 0 °C to rt, 

60% in 2steps; c) LevOH, EDC·HCl, DMAP, CH2Cl2, 0 ºC to rt, 90%; d) NIS, TFA, CH2Cl2, 

0 ºC, 15 min; e) Cl3CCN, DBU, CH2Cl2, 0 °C to rt, 75% over two steps. 

 

 



Building blocks synthesis 

 

65 
 

The pyranose ring of IdoA monosaccharides may generally adopt 
1
C4 and 

4
C1 

chair conformations, or a 
2
S0 skew-boat conformation (Scheme 3.8).

18,19,20
 IdoA  

derivatives could adopt either a 
1
C4 conformation or a skewed boat 

2
S0 conformation 

depending upon the substituents on the pyranoid ring.
19,6

 For IdoA units bearing a 

sulfate group at C2, the 
1
C4 chair or 

2
S0 skew‐boat conformations are preferred. 

Unsubstituted IdA units, however, reside predominantly in the 
1
C4 form. The 

flexibility of the IdoA residues can be an important factor for specific GAG-protein 

interactions. 

 

 

Scheme 3.8. Conformational flexibility of IdoA rings.   

 

The assignment of the conformation of the IdoA derivatives could be 

performed by analyzing the coupling constants between vicinal H-1 and H-2 protons 

in the 
1
H NMR spectra since it is well known that  vicinal proton–proton coupling 

constants (JH1-H2) depend on the dihedral angle between them according to  the 

Karplus equation.
21

 The 
1
H NMR spectra of the IdoA derivatives prepared in this 

thesis showed small coupling constants between these protons (
3
JH1-H2 ~0 Hz) and the 

signal of H-1was always observed as a broad signal
20

, thus indicating the presence of 

a major 
1
C4 conformation of the pyranoid ring for all of them.  

 

 

Scheme 3.9. 
1
C4 -

2
S0 Conformational equilibrium of IdoA rings in compound 43. 
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3.2.2.1 Synthesis of n- pentenyl orthoesters (NPOEs) as IdoA donors 

n-Pentenyl orthoesters (NPOEs) have been described by Fraser–Reid et al. as 

potent glycosyl donors of mannose, 
22

 glucose 
22

 and galactose.
23

 Depending on the 

monosaccharide configuration, n-pentenyl glycosides (NPGs) and NPOES can show 

very distinct reactivities and react through different charged intermediates. For 

example the mannose-NPOE, with a 1,2-cis diol configuration, found also in the 

stable L-idose-NPOE 
1
C4 conformer, was found to be nearly three times more  

reactive than the corresponding 2-O-acyl NPG.
24

 Activation of idose and iduronic 

acid as NPOEs simultaneously activates the anomeric position as a glycosyl donor 

and differentiates positions C-2 and C-4, a feature that would otherwise require 

multiple additional steps for other glycosyl donor types. A further hallmark of 

NPOEs is their facile preparation from per-acylated anomeric bromides by treatment 

with a soft base in the presence of n-pentenol.
22

 Surprisingly, in spite of these 

potential advantages, NPOEs have not been evaluated up to date as potential glycosyl 

donors for the synthesis of HS oligosaccharides, while NPGs have been investigated 

previously.
25

  

 

We synthesized orthoesters 52-57 via the corresponding bromosugars from 

triol 48,
26 

 which was prepared in 6 steps with an overall yield of 50% by the method 

described by Bonaffé (Scheme 3.10). The key step of this route is the preparation of 

the L-ido diastereomer by addition of (PhS)3CLi to the aldehyde 45 at -78°C with 

complete  stereoselectivity. Orthothioester 46 was then converted to the 

corresponding methyl ester 47 using a copper salt mixture CuO/CuCl2 in 86% and 

subsequently rearranged to the pyranose 48 with position 3 protected as Bn ether by 

treatment with 90% of trifluoroacetic acid. 
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Scheme 3.10. Synthesis of triol 48. Reagents and conditions: a) NaIO4, silica gel, 

H2O/CH2Cl2, quantitative; b) (PhPS)3CLi, THF, 78% c) CuO/CuCl2, MeOH/CH2Cl2/H2O, 

89%; d) 90% CF3CO2H, quantitative. 

 

Triol 48 as central precursor was then acylated either with acetic anhydride, 

levulinic acid or benzoyl chloride to afford the corresponding triacyl compounds 

49,
27

 50 and 51 respectively. Tribenzoate 51 was most readily obtained and easily 

crystallized while acetate 49 and levulinate 50 required very careful adjustment of 

reaction conditions to suppress the competing furanoside formation. The 

corresponding 1-bromosugars from 49-51 were obtained in high yield by either 

treatment with HBr/AcOH or TiBr4, and rapidly reacted with n-pentenol to give 

mixed orthoesters 52-54 (Scheme 3.11).
25
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Scheme 3.11. Synthesis of orthoesters with increasing steric bulk at the exocyclic carbon. 

Reagents and conditions: a) AcCl, pyridine, DMAP, CH2Cl2, -40 °C to rt ,78% ; b) LevOH, 

EDC·HCl, DMAP, -25 °C to rt, 80%; c) BzCl, pyridine, CH2Cl2, -40 °C to rt, 91%, d) 

HBr/AcOH, CH2Cl2 or TiBr4 (1.3 eq.), CH2Cl2; e) 4-pentenol, 2,6-lutidine, CH2Cl2; f) 

Trimethyltin hydroxide, toluene, microwave 100°C; g) NaOMe/ MeOH, microwave 60°C; h) 

MeOH, EDC·HCl, DMAP, 60% over 3 steps; i) LevOH, EDC·HCl, DMAP, CH2Cl2, 90%.  

In order to transform orthoester 54 into 4-O-levulinoyl ester protected 

derivative 57, the benzoate group in 54 was removed under Zemplén deacylation 

conditions. Unfortunately, the hydrolysis of the benzoate group using sodium 

methoxide was accompanied by extensive elimination to form alkene 55. This 

elimination reaction has been described as a usual transformation in heparin chains 

exposed at basic pH
28

. The elimination is proposed to take place  via a E1cB 

mechanism, which is specially favoured when there are acidic protons with electron 

attracting groups in α position such as (COOMe), that could stabilize the carbanion 

formed (Scheme 3.12). 
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The use of lithium peroxide has been proposed in order to avoid this 

elimination reaction, but in our case, it was applied without any success. 

Nevertheless, mild ester hydrolysis of compound 54 using trimethyltinhydroxide,
 29

 

allowed debenzoylation without any elimination. Re-esterification of the carboxylic 

acid intermediate under Steglich esterification conditions using MeOH, cleanly 

afforded 56 although care had to be taken in the workup to avoid the cleavage of the 

acid labile orthoester function. Final levulination of the OH-4 in 56 gave rise to the 

fully differentiated orthoester glycosyl donor 57. 

 

As indicated previously the conformation of the pyranoid ring in all IdoA 

glycosyl donors described so far, including NPOEs 52-57, was unambigously 

established as 
1
C4 by analysis of the coupling constant in the NMR spectra.  

 

Figure 3.1. Possible configuration of the n-pentenyl orthoester. 

 

The formation of 1,2-orthoesters involves the generation of a new chiral 

center  and two isomers, endo-type and exo-type, could be formed (Figure 3.1). All 

synthesized NPOEs were exo-type isomers as determined by NOE measurements 

which showed the proximity of the –OCH2pent protons to protons H-1 and H-2 of the 

pyranoid ring as could be expected for exo-type structures.  
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3.2.3 Synthesis of 2-azido-D-glucopyranose (Glc) building blocks 

The glucosamine building blocks 65 and 66 were obtained from commercially 

available D-glucosamine hydrochloride 58 in 9 steps as described in Scheme 3.13. 

First, the amino group was masked as an azide by an azido transfer reaction using 

trifluoromethanesulfonyl azide (TfN3), which was prepared in situ from sodium azide 

and trifluoromethanesulfonyl anhydride.
30,31 In a one pot procedure, positions OH-4 

and OH-6 were then protected as a benzylidene acetal with benzaldehyde dimethyl 

acetal in the presence of catalytic amounts of p-toluenesulfonic acid to afford 

compound 59. Selective silylation of the anomeric position in 59 with tert-

butyldimethylsilyl chloride (TBSCl) at low temperature (-10 °C), gave compound 60 

in 65% yield. Benzylation of 60 with benzyl bromide and sodium hydride to give 61 

followed by removal of the 4,6-O-benzylidene acetal by transacetalisation with of p-

toluenesulfonic acid and ethanethiol yielded diol 62 with 82% yield over the two 

steps. Compound 62 was then regioselectively benzoylated at OH-6 with benzoyl 

cyanide in the presence of a catalytic amount of triethylamine at -40 °C to afford 

compound 63. Finally the OH-4 in 63 was protected as a levulinic ester (64) allowing 

orthogonal deprotection prior to subsequent activation of the anomeric position.  
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Scheme 3.13. Synthesis of acetimidates 65 and 66. Reagents and conditions: a) MeONa, 

MeOH, TfN3, DMAP; b) PhCH(OMe)2, p-TsOH, DMF, 40 °C, 76% over 2 steps; b) TBSCl, 

imidazole, CH2Cl2, -20°C, 79%; c) BnBr, NaH, CH2Cl2, TBAI, 76%; e) EtSH, p-TsOH, 

CH2Cl2, 3h, rt, 89%; f) BzCN, cat. Et3N, AcCN, 7h, - 40 °C, 90%; g) EDC·HCl, LevOH, cat. 

DMAP, CH2Cl2, rt, 91%; h) TBAF, AcOH, THF, 0 °C, 3h; i) for 65: trichloroacetonitrile, 

DBU, CH2Cl2, 0 °C, 2h, 85% over two steps, for 66: (N-Phenyl) trifluoroacetimidoyl 

chloride, K2CO3, acetone, rt, o/n, 91% over two steps.    

 

 Treatment of 64 with tetrabutylammonium fluoride solution (TBAF) in THF, 

buffered with acetic acid allowed the selective deprotection of the anomeric silyl 

group in the presence of levulinoyl ester group. The corresponding hemiacetal was 

activated either with trichloroacetonitrile in the presence of DBU as base to form 

trichloroacetimidate 65 or with (N-phenyl) trifluoroacetimidoyl chloride
32

 using 

potassium carbonate as base to form (N-phenyl)trifluoro acetimidate 66 (Scheme 

3.13).  
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3.2.3.1. Synthesis of the glucosamine non-reducing end building block  

The synthesis of the capping building block 70 involved first the 

regioselective ring opening of benzylidene acetal intermediate 61 using 1M borane in 

THF solution and a catalytic amount of cupper triflate to afford intermediate alcohol 

68. Benzoylation of 68 employing benzoyl chloride in pyridine gave 69 and cleavage 

of the anomeric silyl protecting group in 69 with TBAF buffered with acetic acid in 

THF at 0 °C resulted in the formation of the corresponding hemiacetal, which was 

subsequently activated as trichloroacetimidate 70 using trichloroacetonitrile and 

DBU (Scheme 3.14).  

 

 

Scheme 3.14. Synthesis of Non-reducing End Building Block of Glucosamine 70. Reagents 

and conditions: a) BH3·THF, Cu(OTf)2, 85%; b) BzCl, pyridine, DMAP, CH2Cl2, 95%; c) 

TBAF, AcOH, THF, 0°C; d) CCl3CN, DBU, 0°C to rt, CH2Cl2, 80% over two steps. 
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3.2.4 Synthesis of galactosamine building blocks 

For the synthesis of the D-galactosamine protected building blocks, a reported 

procedure for D-glucosamine by Bergmann and Zervas was applied (Scheme 3.15) 33 

The amino group of D-galactosamine hydrochloride (71) was protected as an imine 

by treatment with p-anisaldehyde in aqueous solution of NaOH (1M). The imine was 

peracetylated with acetic anhydride in pyridine to obtain 72 in 65% of yield. 

Hydrolysis of the imine by treatment of 72 with HCl 5N in acetone provided the free 

amine 73, which was protected as trichloroacetamide 74 by treatment with 

trichloroacetyl chloride and triethylamine in good yield (91%). Selective removal of 

anomeric acetate of 74 using hydrazine acetate followed by treatment with tert-

butyldimethylsilylchloride (TBDMSCl) and subsequent deproctecion of the acetyl 

groups under Zemplén deacetylation conditions using catalytic NaOMe in MeOH 

gave compound 75 in 86% yield over three steps. Treatment of 75 with an excess of 

benzaldehyde dimethylacetal (2.7 eq.), in the presence of camphorsulfonic acid 

(CSA) in acetonitrile afforded 76 in 93% yield. Compound 76 was levulinoylated by 

DMAP mediated esterification with levulinic acid to give 77 with a yield of 92%. 

The regioselective ring opening of benzylidene acetal 77 to form 6-O-benzyl 

derivative 78 needed to be optimized. Treatment of 78 with sodium 

cyanoborohydride and HCl (4M) in dioxane, resulted in the formation of byproducts 

in which the keto group in levulinate was reduced to an alcohol. The identity of this 

byproduct was confirmed by NMR which showed the disappearance of ketone 
13

C 

NMR signal at δ 206 ppm thus indicating the simultaneous reduction of the ketone 

on to alcohol group. The use of borane tetrahydrofuran complex with TMSOTf
14

 

produced the same byproduct. Finally, the successful regioselective ring opening of 

the benzylidene acetal 77 was achieved using a mixture of triethylsilane and 

trifluoroacetic acid to give 78 in 69% yield.
12

 The free hydroxyl group in 78 was 

protected both as benzoate (79) and as acetate (80) by treatment with acetic 

anhydride in pyridine. The hydrolysis of the anomeric TBS protecting group in 79 

and 80 afforded the corresponding hemiacetals which were activated as 

trichloroacetimidates 81 and 82 (Scheme 3.15). 
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Scheme 3.15. Synthesis of galactosamine building blocks 81 and 82. Reagents and 

conditions a) NaOH 1M, p-anisaldehyde, b) Ac2O, pyridine, 65% in 2 steps; c) HCl 5N, 

acetone, 96%; d) trichloroacetyl chloride, Et3N (cat.), CH2Cl2, 91%; e) N2H4·AcOH, DMF; f) 

TBDMSCl, imidazole, DMF; g) NaOMe, MeOH, 86% over three steps; h) PhCH(OMe)2, 

CSA (cat.), acetonitrile, 93%; i) levulinic acid, EDC·HCl, DMAP, CH2Cl2, 92%; j) 

triethylsilane, trifluoroacetic acid, CH2Cl2, 69%; k) for 79: benzoyl chloride, pyridine, 

CH2Cl2, 96%; for 80: Ac2O, pyridine, 82%; l) TBAF, AcOH, THF, 0 °C; m) CCl3CN, DBU, 

0 °C to rt, CH2Cl2,78% over two steps (81), 85% (82). 
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3.3. EVALUATION OF GLYCOSYL DONORS FOR THE SYNTHESIS OF 

HS OLIGOSACCHARIDES IN SOLUTION 

With the different donors in hand, their performance in key glycosylation 

reactions involved in the assembly of HS oligosaccharides was first investigated in 

solution using a model carbamate spacer 83. (Scheme 3.16). This linker was 

synthesized starting from 7 by treatment with benzoyl chloride in the presence of 

pyridine. TDS group was removed using HF pyridine complex to produce acceptor 

83. The benzoyl group in the linker would mimic the ester linkage towards the resin 

presented in the solid phase synthesis.  

 

Scheme 3.16. Synthesis of a linker for solution synthesis evaluation. Reagents and 

conditions: a) BzCl, pyridine, 95%; b) HF-pyridine, 68%. 

 

3.3.1 Glycosylation of the linker 

First, the glycosylation of the carbamate spacer linker 83 with 
 
building 

blocks 25-27, 35-38, 43 and 57 was studied. The results are summarized in Table 3.1. 

Most of the donors provided the desired products in good yields (60-90%), with the 

only exception of 6-O-acetyl protected idose and iduronic acid (IdoA) derivatives 

.All reactions involving idose derivatives  were carried out at –20 °C after 

temperature optimization in a series of test glycosylations employing the 6-O-tert-

butyldiphenylsilyl (TBDPS)-derivative 25 (entries 1-3, (84)). Thioglycoside donors 

(25-27, 35-38, 43 and 57.) reacted to give the product in good to excellent yield 

independently of the size of the substituent at OH-6. Donors 37, 43, and 57 with 

electron withdrawing substituents in position C6 performed less well under the same 

reaction conditions. Stronger activation conditions employing higher excess of NIS 

were required to achieve good yields (entry 11). In general, the glycosylation of the 

primary linker hydroxyl group proved to be straightforward for all glycosyl donors 

evaluated including orthoester derivative 57 (entry 12) performed equally well as the 
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corresponding phenyl thioglycoside 43 (entry 11). Analysis of the 
1
H and 

13
C NMR 

spectra of the isolated products 84-91 demonstrated an exclusive trans selectivity due 

to neighbouring group participation by the 2-O-benzoyl group. 

At this point, we wanted also to investigate a synthetic route that would allow 

the oxidation of L-idose residues to iduronic acids maintaining the protecting groups 

employed in the synthesis (Scheme 3.17). The oxidation of 6-OH position would be 

performed after cleavage of the assembled oligosaccharide from the resin.34-37 This 

strategy was evaluated in solution on model compound 84. The 6-O-TBDPS group in 

84 was easily cleaved employing HF·pyridine complex and the resulting alcohol was 

oxidized using a catalytic amount of TEMPO and stoichiometric amounts of an 

organic oxidant [bis(acetoxy)-iodo]benzene (BAIB) in aqueous16,38 and biphasic 

system.34 The corresponding uronic acid 92 was isolated in good yield without 

affecting other protecting groups. 

 

Scheme 3.17. Transformation of idose derivative 84 into corresponding iduronic acid 

derivative 92. Reagents and conditions: a) HFpyridine, THF, 0 ºC, 84% b). TEMPO/BAIB, 

CH2Cl2/H2O (3:1) 80%. 
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Table 3.1. Test glycosylations of linker 83 in solution using glycosyl donors 25-27, 35-38, 

43 and 57. 

 

Entry Donor R Temperature Product Yield (%)
[a]

 

1 25 CH2OTBDPS -20°C to rt
[b]

 84 82% 

2 25 CH2OTBDPS 0°C to rt
[b]

 84 60% 

3 25 CH2OTBDPS -45°C to rt
[b]

 84 63% 

4 26 CH2OTDS -20°C to rt
[b]

 85 80% 

5 27 CH2OPMP -20°C to rt
[b]

 86 79% 

6 35 CH2OBn -20°C to rt
[b]

 87 82% 

7 36 CH2OPMB -20°C to rt
[b]

 88 70% 

8 37 CH2OAc -20°C to rt
[c]

 43 52% 

9 38 CH2OTOM -20°C to rt
[c]

 42 90% 

10 43 COOMe 0°C to rt
[b]

 44 55% 

11 43 COOMe rt
[d]

 44 66% 

12 57 IdoANPOE 0°C to rt
[d]

 44 69% 

[a] only α-anomer formed; [b] 1.5 eq. donor, 1.5 eq. NIS, 0.25 eq TMSOTf [c] 1.2 eq donor, 

1.5 eq. NIS, 0.1 eq. TfOH; [d] 1.5 eq. donor, 3 eq. NIS, 0.25 eq TMSOTf.  
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3.3.2 Disaccharide synthesis 

More pronounced differences in reactivity were expected in the following 

glycosylation of Ido and IdoA acceptors with glucosamine derived 

trichloroacetimidate 65 and trifluroroacetimidate 66, due to the different protecting 

group regimes presented by the acceptors. The deprotection of 4-O-levulinic ester in 

glycosides 84-91 to liberate position OH-4 for subsequent glycosylation reaction was 

performed using hydrazine acetate in dichloromethane providing the required 

glycosyl acceptors 93- 100 in high yields ranging from 71 to 91% (Scheme 3.18). 

 

Scheme 3.18. Deprotection of 4-O-levulinic ester in glycosides 84-91. Reagents and 

conditions: a) hydrazine acetate, CH2Cl2; 85% (93); 91% (94); 90% (95); 91% (96); 86% 

(97); 71% (98); 91% (99) and 85% (100). 

 

The influence of the 6-O-protecting group on the reactivity of acceptors was 

studied in detail and the results are shown in Table 3.2. As a general trend, the 

glycosylation yields increased with the decreasing of steric hindrance. Substitution of 

OH-6 by bulky protecting groups such as TBDPS- (entries 1-2) or a tri-iso-

propylsilyloxymethyl (TOM) group (entry 7), extensively employed in nucleic acid 

chemistry, hampered the accessibility of the acceptor site substantially and the 

disaccharides 101 and 106 were formed in yields below 50%. Changing the bulky 

TBDPS group for a smaller thexyldimethyl silyl (TDS) group (entry 3), led to a 

slight increase in the formation of the corresponding disaccharide (from 42% yield 

for 101 to 51% yield for 102). An improvement was observed for 6-O-p-

methoxyphenyl (-PMP), 6-O-benzyl, and 6-O-p-methoxybenzyl (-PMB) protected 

Ido acceptors (entries 4-6), which produced disaccharides 103-105 in yields around 

60%. These protecting groups provide both good accessibility of axial acceptor and 
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additionally, the electro-donating character of these groups enhance the 

nucleophilicity of the acceptors.  

 

This effect was reversed however, when smaller but electron-withdrawing 

groups were employed. Both, 6-O-acetate derivative 99 (entry 8) and IdoA derivative 

100 (entry 9, 10) were poorer acceptors with yields for the corresponding 

disaccharides 107 and 108 below 50%, probably as result of decreased 

nucleophilicity of the axial OH-4 acceptor. Furthermore, in the case of the 6-O-

acetate derivative 99, an α/β mixture of anomers which could not be separated was 

obtained as a further consequence of its decreased reactivity. In a direct comparison 

of the imidate donors 65 and 66 (entries 1, 2 and 9, 10) the trichloroacetimidate 65 

performed with both Ido and IdoA acceptors consistently better than the 

corresponding N-phenyl trifluorocetimidate 66. 
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Table 3.2. Glycosylations of different Ido and IdoA acceptors with azido glucose donors 65 

and 66 in solution.  

 

Entry Donor R Temperature 
TMSOTf 

(eq.) 
Product 

Yield 

(%)
[a]

 

1 65 CH2OTBDPS -20 °C to rt 0.25 101 42% 

2 66 CH2OTBDPS -20 °C to rt 0.25 101 32%
[a]

 

3 65 CH2OTDS -20 °C to rt 0.25 102 51% 

4 65 CH2OPMP -20 °C to rt 0.25 103 65% 

5 65 CH2OBn -20 °C to rt 0.25 104 58% 

6 65 CH2OPMB -20 °C to rt 0.25 105 61% 

7 65  CH2OTOM -20 °C to rt 0.10 106 50% 

8 65 CH2OAc -20 °C to rt 0.10 107 15%
[b] 

9 66 COOMe  0°C to rt 0.05 108 32% 

10 65 COOMe 0°C to rt 0.05 108 48% 

Reagents and conditions: 1.2-1.4 eq. donor. TMSOTf, CH2Cl2, [a] conversion 

determined by UPLC-MS analysis, [b] obtained as α/β mixture of anomers.  
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3.3.2.1 Evaluation of n-pentenyl orthoesters as of L-iduronic acid donors 

A particular challenge in the chemical synthesis of HS oligosaccharides is the 

efficient glycosylation of OH-4 of glucosamine residues. While little difference 

between the reactivity of Ido and IdoA donors was found for the glycosylation of the 

primary hydroxyl-group in the aminopentyl linker 83 we were intrigued to 

investigate the performance of the IdoA orthoesters and thioglycosides in the 

notoriously more difficult glycosylation of the azido glucose acceptors 109
39

 and 

110. The n-pent-4-enyl orthoacetate 49, ortholevulinoate 50 and orthobenzoate 51 

were activated with NIS and a catalytic amount of TMSOTf and reacted with the 

azido glucose acceptors 109 and 110 (Table 3.3). Glycosylations involving the 

orthoacetate 49 and ortholevulinoate 50 produced the disaccharides 111 and 112 in 

30% and 36% respectively. These compounds were accompanied by up to 30% of a 

disaccharide with undetermined stereochemistry lacking the OH-2 protecting group, 

which had presumably formed via an orthoester exchange mechanism after attack on 

the exocyclic carbon.
40,41 
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Table 3.3. Comparison of n-pentenyl orthoesters 49-51 in the key glycosylation with 

different azido glucose acceptors 109-110.
[a] 

[a]
 Reagents and conditions: a) 1.2 eq. donor, 1.5 eq. NIS, 0.2 eq. TMSOTf; b) 1.2 – 

1.5 eq. donor, 3.0 eq. NIS, 0.2 eq. TMSOTf. 

 

 

 

 

 

 

Entry Donor Acceptor Conditions
 

Product 
Yield 

(%) 

1 

 

109 a, 0°C to rt 111 30 

2 

 

110 a, 0°C to rt 112 36 

3 

 

109 b, 0°C to rt 113 85 
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Scheme 3.19 shows the activation of an NPOE by the electrophilic addition of 

a halogenium ion, typically iodonium or bromonium, to the double bound (B), its 

subsequent cyclisation to the iodo or bromomethylfuran (C) and the formation of an 

oxocarbenium ion D, which can react with the sugar nucleophile (Nu, pathway a) 

(Scheme 3.19). Under Lewis acid catalysis the NPOE A can react also in different 

ways.
24

 Depending on the size of the acyl group in O2 and the stability of the 

intermediate dioxolenium ion E the attack of the nucleophile can preferentially occur 

on the anomeric carbon (a) leading to irreversible and trans-selective glycoside 

formation F or attack on the exocyclic carbon (b) which can react in a multitude of 

modes including glycoside anomerisation, transacylation of the acceptor or 

hydrolysis.
40 

 

Scheme 3.19. Schematic representation of activation of n-pentenyl orthoesters by iodonium 

ions.  

 

We reasoned that the increasing of the bulk of the orthoester alkyl substituent 

from methyl to phenyl (compounds 49 and 50, Table 3.3) should favour the attack of 

the nucleophile at the anomeric (attack a of Scheme 3.19) rather than the exocyclic 

carbon (attack b of Scheme 3.19), leading to a stronger stereo-control in the 

glycosylation. Indeed, after activating the orthobenzoate 51 with NIS/TMSOTf the 

disaccharide 113 was produced in an excellent 85% yield as pure α-anomer.  
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After this promising result, we compared the performance of IdoA 

thioglycoside 43 and n-pent-4-enyl orthobenzoate donor 57 in the glycosylation of 

more complex disaccharide acceptor 114. Both reactions involving thioglycoside 43 

and orthoester 57 proceeded less well than expected from the previous results with 

less than 50% yield of trisaccharide 115, obtained after chromatographic purification. 

In any case, the orthoester 57 performed slightly better (45% yield) than the 

thioglycoside 43 derivative (34% yield) in this trial. With all this information about 

reactivity in solution, we moved on to evaluate performance as glycosyl donors of 

the orthoesters and thioglycosidesin the solid-phase assembly of building blocks 

taking advantage of the possibility of increasing the reaction conversion by using 

excess of donor and various cycles of glycosylation. 

 

Table 3.4. Glycosylation of disaccharide acceptor 114.
[a] 

 

Entry Donor Acceptor Conditions Product 
Yield 

(%) 

1 

 

114 a, rt 115 34 

2 

 

114 a, 0°C to rt 115 45 

 
[a]

 Reagents and conditions: a) 1.2 eq. donor, 3.0 eq. NIS, 0.2 eq. TMSOTf 
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3.4 EVALUATION OF GLYCOSYL DONORS IN THE SOLID PHASE 

SYNTHESIS OF HS PRECURSORS.  

 

3.4.1 Initial studies: trisaccharide solid phase synthesis using idose TBDPS 

As a first attempt, L-idopyranosyl thioglycoside 25
36,6

 bearing 6-O-TBDPS 

protecting group was used in the glycosylation of different linker functionalized 

resins SP-9 (SP-9PS0.2, SP-9PS0.4, SP-9TENT0.2 and SP-9TENT0.4, see section 3.1.1) to 

afford α-neoglycoconjugate funtionalized material SP-116 (SP-116PS0.2, SP-116PS0.4, 

SP-116TENT0.2 and SP-116TENT0.4). The glycosylation of different resins was 

performed employing 2 equivalents of donor 25 activated with NIS in the presence of 

catalytic amounts of TMSOTf acid. The glycosylation yield was determined by 

UPLC-MS after treatment of the glycosylated resin with NaOMe/MeOH. The results 

of these trials are summarized in Table 3.5. The use of Tentagel at two different 

loading capacities (0.2 and 0.4 mmol/g) afforded low conversion (30 %) at high 

loading capacity (entry 4) and no reaction when employing the lower loading resin 

(entry 2). On the other hand, the use of polystyrene (PS) resin resulted in very high 

conversion for both loading capacities (Table 3.5). This difference in resin reactivity 

could be related to the better swelling properties of polystyrene in dichloromethane 

compared with Tentagel.
42

 Based on previous result, the resins SP-116PS0.2 and SP-

116PS0.4 were selected as the best candidates for the solid phase synthesis of HS 

precursors.  
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Table 3.5. Evaluation of the linker functionalized solid support in the glycosylation of 

thioglycoside 25. 
[a]

 

 

 

Entry Resin Loading UPLC-MS conversion (%) 

1 Polystyrene (SP-9PS0.2) 
0.2 mmol/g 

86 

2 Tentagel (SP-9TENT0.2) No reaction 

3 Polystyrene (SP-9PS0.4) 
0.4 mmol/g 

95 

4 Tentagel (SP-9TENT0.4) 30 

[a] 
Reagents and conditions: a) 25, NIS (2.5 eq.), TMSOTf, -20ºC to r.t CH2Cl2 

 

After the glycosylation of the linker functionalized resin with 25, it was 

necessary to cap the possible non reacted hydroxyl groups. This was achieved by 

acetylation with acetic anhydride in pyridine and a catalytic amount of DMAP. The 

OH-4 group of the resin bound L-idopyranosyl unit was then orthogonally 

deprotected using an excess of hydrazine acetate in CH2Cl2/MeOH (5/1) at room 

temperature. The efficiency of this delevulination step in SP-116 was difficult to 

monitor as cleavage from the resin employing standard conditions (NaOMe catalytic 

in MeOH) resulted in the concomitant delevulination and an alternative method for 

cleavage need to be developed. 

 

For this reason, we investigated the use of dibutyltin oxide (DBTO) mediated 

transesterification of carboxylic acid esters
43

 on model compound 84. As shown in 

Scheme 3.20, the treatment of 84 with dibutyltin oxide in dichloromethane/methanol 

at 120 ºC allowed the cleavage of the primary benzoate ester with high selectivity 

affording alcohol 116, in which the 4-O-levulinic ester remained intact. Likewise, 

microwave assisted irradiation of idose bound resin SP-116 with 5 eq of DBTO at 
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120 °C afforded the idose derivative 116 with all protecting groups in place after 10 

min.  

 

Scheme 3.20. Transesterification reaction for the cleavage of primary benzoate groups. 

Reagents and conditions: a) Bu2SnO, CH2Cl2, MeOH, MW 120 °C. 

 

Therefore, the hydrazine-acetate mediated hydrolysis of the 4-O-levulinic 

ester group on SP-116 could be efficiently monitored after DBTO mediated cleavage 

of an analytical sample from the resin (116, see Scheme 3.21).  

In Scheme 3.21 is shown the synthesis on solid phase of a trisaccharide HS 

precursor. The disaccharide synthesis was performed on resin SP-118PS0.2 using 5 

equivalents of the 2-azido-D- glucopyranosyl donor 65 under TMSOTf catalysis 

affording resin SP-119 with a 53% conversion after 2 cycles as determined by 

UPLC-MS analysis (119). This yield could be raised to 82% after three additional 

glycosylation cycles (see Figure 3.2). In comparison, the solution phase reaction 

(previously described) with equimolar amounts of reactants produced disaccharide in 

only 42% yield, evidencing one of the advantages of employing solid phase synthesis 

in the preparation of complex HS precursors. 
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Figure 3.2. UPLC-MS data for conversion of monosaccharide SP-116 (average retention 

time=4.39 min) to the disaccharide SP-119 (average retention time=4.81 min) derivative 

 

Treatment of SP-119 with hydrazine acetate to remove levulinoyl group, 

afforded the free acceptor SP-122. (Scheme 3.21). The glycosylation of SP-122 with 

28 under NIS/TfOH activation produced trisaccharide SP-123 in a moderate 50% 

yield.  
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Scheme 3.21. A) Synthesis of a trisaccharide HS precursor 125. Reagents and conditions: a) 

carboxypolystyrene resin, DIC, DMAP, CH2Cl2, then Me3SiCHN2, THF, MeOH; b) 

HF·pyridine, THF; c) 25, NIS, TMSOTf, CH2Cl2; d) NaOMe, MeOH; e) Ac2O, pyridine, 

DMAP f) hydrazine acetate, CH2Cl2; g) Bu2SnO, MeOH, CH2Cl2; h) 65, TMSOTf, CH2Cl2, 

for conversion see Figure 3.2; h) 28, NIS, TMSOTf, CH2Cl2; B) Monosaccharide protected 

idose donors 25, 28 and glucosamine 65 building blocks used for HS trisaccharide synthesis. 

 

Attempts to increase the conversion by using subsequent glycosylation cycles 

led to substantial breaking of both α- glycosidic linkages. In order to investigate in 

detail this secondary reaction, model glycoconjugate 84 was subjected to the same 

NIS/TfOH excess treatment in solution. The crude product was analyzed by UPLC-

MS and both anomerisation and partial cleavage of glycosidic linkages accompanied 

by iodination were observed. 
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On the other hand, the use of dimethyl(methylthio)sulfonium (DMTST) as 

activator for L-idopyranosyl  thioglycoside 25 on the solid support did not alter the 

glycosidic linkage, but was less efficient as only 40% of glycoconjugate SP-116 

resin was obtained after one reaction cycle. More reactive trichloroacetimidate donor 

28 was employed for the glycosylation of SP-122. Trichloroacetimidate 28 was 

activated with a catalytic amount of TMSOTf and cleanly produced the trisaccharide 

SP-123 with 53% conversion after 4 cycles of glycosylation reactions. Under these 

experimental conditions no competing cleavage of labile L-idopyranosyl glycosidic 

bonds was observed. Cleavage from the resin employing sodium methoxide in 

methanol produced trisaccharide 124. In order to facilitate the purification, the crude 

product after resin cleavage was subjected to acetylation. This allowed the full 

characterisation of the protected trisaccharide 125.  

Based on this preliminary result, we can conclude that monosaccharide 

building blocks can be successfully assembled on a solid support to produce HS 

glycan precursors, thereby avoiding the use of far more advanced disaccharides. The 

novel ester type linker incorporating a carbamate protected C5-spacer for later ligand 

immobilisation proved to be stable throughout the synthesis and it was easily cleaved 

from the resin by a choice of two complementary methods (DBTO and 

NaOMe/MeOH). The lability of L-idopyranosyl residues under NIS/TfOH activation 

makes thioglycoside donors less attractive for the solid-phase synthesis of heparan 

sulfate oligosaccharide precursors. L-Idopyranosyl and 2-azido-D-glucopyranosyl 

trichloroacetimidates, however, were activated without any cleavage of glycosidic 

bonds.  
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3.4.2 Solid phase synthesis of HS precursor trisaccharide using n-pentenyl 

orthoester of iduronic acid as glycosyl donors  

 

Based on our previous results on disaccharide synthesis in solution with n-

pentenyl orthoesters as L-IdoA donors, orthoester 57 was evaluated for solid phase 

synthesis of a HS trisaccharide precursor. The direct use of IdoA donors in the 

synthesis would avoid the need of deprotection and oxidation steps to produce the 

natural structure.  

 

Glycosylation of the linker modified resin SP-9 with 5 equivalents of the 

IdoA orthoester 57 under conventional NIS/TMSOTf activation provided the SP-126 

resin (Scheme 3.22). UPLC-MS analysis of a cleaved aliquot of the resin confirmed 

the formation of compound 127 with 85% yield after one glycosylation cycle. (See 

Table 3.6, entry 3). The use of trichloroacetimidate 44 under TMSOTf catalysis at -

40 °C also afforded resin-bound monosaccharide SP-126, that after analytical 

cleavage also produced compound 127 in 84% yield as determined by UPLC-MS 

analysis. Similar yield was obtained with 5 eq. of thioglycoside 43 under 

conventional NIS/TMSOTf activation, thus reproducing the high yields of the 

solution-phase experiments for this reaction with the primary hydroxyl group of resin 

immobilized linker.  

 

The following deprotection of the 4-O-levulinic ester of SP-126 with 3 

equivalents of hydrazine acetate to the resin-bound acceptor SP-128 was monitored 

by dibutyltinoxide (DBTO) mediated
43

 cleavage of an analytical sample of the resin. 

Subsequent glycosylation of SP-128 with 3 equivalents of trichloroacetimidate 65 at 

-20 C afforded resin SP-129. Cleavage of a resin aliquot with sodium methoxide 

showed the formation of disaccharide 130 with only 21% yield after one cycle. After 

a second cycle of glycosylation, the formation of elimination byproducts was 

detected by UPLC-MS analysis after cleavage from the resin. As previously reported 

for solution phase synthesis, the sodium methoxide cleavage of iduronic acids is 

accompanied by elimination products. The use of lithium peroxide described by 
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another authors
44

 to avoid elimination side reactions was then used without success 

possibly due to the lack of proper resin swelling under the required aqueous reaction 

conditions. Also trimethyltinhydroxide (TMTOH) as in the case of NPOE donor was 

unsuccessfully applied. Finally, the use of dibutyltin oxide (DBTO) in 

CH2Cl2/MeOH (2/1) as solvent at 120 ºC under microwave irradiation for 10 minutes 

allowed the analytical cleavage without any elimination. Several heating cycles were 

applied until no further released of compound was detected by thin layer 

chromatography (TLC). 
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Scheme 3.22. A) Solid-phase synthesis of a trisaccharide employing IdoA donors. Reagents 

and conditions: a) carboxypolystyrene resin, DIC, DMAP, CH2Cl2, then Me3SiCHN2, THF, 

MeOH; b) HF·pyridine, THF; c) 57, 43, or 44, NIS, TMSOTf, CH2Cl2; d) NaOMe, MeOH; 

e) Ac2O, pyridine, DMAP; f) hydrazine acetate, CH2Cl2; g) 65, TMSOTf, CH2Cl2; h) 

Bu2SnO, MeOH, CH2Cl2; i) 57, NIS, TMSOTf, CH2Cl2, for conversions see Table 4. B) 

Monosaccharide protected idose donors 57, 43, 44 and glucosamine 65 building blocks used 

for HS trisaccharide synthesis. 
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Table 3.6. Evaluation of iduronic acid derivatives 57, 43, and 44 in the solid-phase synthesis 

of HS trisaccharide precursors.  

Entry Donor Acceptor Conditions Product Conversion
[a] 

1 44 SP-9 
1 x 3 eq., -40 °C to rt, 

10%TMSOTf 
127 84% 

2 43 SP-9 
1x 5 eq., rt, NIS (3.5eq.), 

15% TMSOTf 
127 87% 

3 57 SP-9 
1 x 5 eq., 0 °C to rt, NIS 

(3.5eq.), 15% TMSOTf 
127 85% 

4 65 SP-128 
1 x 3eq., -20 °C to rt , 

15% TMSOTf 
130 21% 

5 65 SP-128 
4 x 3eq., -20 °C to rt , 

15% TMSOTf 
130 84% 

6 57 SP-132 
3 x 3eq., 0 °C to rt, 

15%TMSOTf 
134 76% 

[a] conversion was determined by UPLC-MS analysis after cleavage from the resin. 

 

After 4 cycles the conversion of disaccharide 131 (cleaved with dibutyltin 

oxide (DBTO)) was increased to 86%. Again, 4-O-levulinic ester was deprotected by 

hydrazinolysis affording resin bound acceptor SP-132 which was condensed with the 

n-pent-4-enyl orthoester donor 57 after activation with NIS and TMSOTf at 0 °C. 

The glycosylation was repeated twice affording resin SP-133 and UPLC-MS analysis 

of a cleaved sample 134 showed a conversion of around 76% after three cycles of 

glycosylation. The preparative scale cleavage of the trisaccharide 134 from the resin 

with DBTO to avoid elimination was less effective than expected from the analytical 

trial and had to be repeated several times for complete recovery of the target 

trisaccharide. The use of lithium peroxide to hydrolyse the ester groups prior to the 

methoxide mediated cleavage from the resin was hampered by the low swelling of 

the hydrophobic resin in the aqueous solution. Also the use of trimethyltinhydroxide 
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as in the case of the NPOE in solution (previously described) was applied to 

compound SP-133 without success. In the course of the reaction using DBTO, 2-O-

benzoate groups were partially cleaved, but as they were not fully removed, we 

decided to treat the crude product with benzoyl chloride in pyridine in order to 

recover a more homogeneus product and to facilitate purification by preparative 

TLC. The protected trisaccharide 115 was isolated in 8% overall yield over 8 steps. 

 

In conclusion, we evaluated the use of n-pentenyl orthoester donors for the 

solid phase synthesis of a trisaccharide heparin sulphate precursor. We have found 

that n-pentenyl orthoester based donors of IdoA could be employed successfully in 

glycosylation reactions to construct of HS protected oligosaccharides on the solid 

support. Nevertheless, the use of Ido A donors for the solid phase HS 

oligosaccharides synthesis was not compatible with the strong basic conditions 

required to cleave our ester linker and important elimination of IdoA ester residues to 

the corresponding alkene was observed. A change to more basic labile linkers, 

cleavable under milder conditions, or to orthogonal photolinkers as employed by 

Seeberger group
45

 could permit the direct use of IdoA donors in the preparation of 

HS oligosaccharides.  
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3.4.3 Solid phase synthesis of HS trisaccharide precursor using L- idopyranosyl 

donors 

 The incompatibility of the iduronic acid derivatives with the effective 

methoxide-promoted linker cleavage conditions led us to investigate L-idopyranosyl 

donors for the solid phase synthesis of a HS trisaccharide precursor.  

First, resin bound glycoside SP-135 was synthesised in near-quantitative yield, 

as the analysis of the methoxide cleavage product 136 suggested, using thioglycoside 

37 as glycosylating agent (Scheme 3.25). Hydrazinolysis afforded the acceptor SP-

137 which was reacted with 65 to produce SP-138, albeit in only 22% as detected by 

UPLC-MS analysis of the cleaved compound 139. Apparently, the electronic effect 

of the 6-O-acetate group on the nucleophilicity of the OH-4 acceptor compensated 

any favourable reduction of the steric bulk at C6 leading to an overall poor yield in 

the glycosylation and confirming the results of the solution-phase glycosylation 

(previously described), albeit with complete α-selectivity.  

 

Next, employing the 6-O-thexyldimethylsilyl (TDS) protected thioglycoside 26 

we prepared resin SP-140 in near quantitative yield (141). Hydrazinolysis to SP- 142 

was followed by three cycles of glycosylation with three equivalents of the imidate 

65 giving rise to the resin bound disaccharide SP-143 with excellent conversion 

(77%, 144). Removal of 4-O-levulinic ester provided acceptor SP-145, that was 

subjected to glycosylation reaction with trichoroacetimidate 29. In this case, 

thioglycoside was not used in order to avoid the cleavage of the glycosidic bond 

observed previously. After 4 cycles of glycosylation with 3 equivalents of donor 29, 

under TMSOTf activation, SP-146 was formed in 70% yield (147). This result is 

comparable to the yield obtained with orthoester IdoA 57.  

 

Based on these promising results, we decided to scale up this reaction but 

unfortunately, during the scale up, we could observed partial loss of 6-O-TDS 

protecting group due to the high concentration of acid activator (TMSOTf) and 

subsequent overglycosylation in 6-OH was detected by UPLC-MS. So finally, we 
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focused our attention in 6-O-PMP protected L-idopyranosyl donors. Compound 27 

would offer high stability under Lewis acid conditions required for the glycosylation 

reactions and also had demonstrated excellent acceptor properties in the solution 

based glycosylation trials (Table 3.7, entry 4). 

 

Scheme 3.23. A) Solid-phase synthesis of trisaccharide precursors involving idose donors. 

Reagents and conditions: a) 26, 27 or 37, NIS, TMSOTf; b) NaOMe, MeOH; c) Ac2O, 

pyridine, DMAP; d) hydrazine acetate, CH2Cl2; e) 65 or 66, TMSOTf, CH2Cl2; f) 29 or 30, 

NIS, TMSOTf, CH2Cl2; for conversions see Table 5. B) Monosaccharide protected idose 

donors (26, 27, 29, 30 and 37) and glucosamine 65 and 66 building blocks used for HS 

trisaccharide synthesis. 

Preparation of resin bound glycoside SP-148 proceed with excellent conversion 

(152). Deprotection of the 4-O-levulinic ester (SP-150) and glycosylation with 

trifluoroacetimidate 66 produced resin bound disaccharide SP-151 in 71 % yield 

(152, entry 7 of Table 3.7) 
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Table 3.7. Evaluation of Idose derivatives 26, 37, 29, 30 and 37 in the solid-phase synthesis 

of HS trisaccharide precursors 

 

Entry Donor Acceptor Conditions Product Conversion
[a]

 

1 37 SP-9 
1x 5eq., -20ºC to rt, NIS (6.5eq.), 

10% TMSOTf 
136 96% 

2 65 SP-137 1x 3eq., -20 ºC to rt, 10% TMSOTf 139 22% 

3 26 SP-9 
1 x 5 eq., -20 °C to rt, NIS (6.5eq.), 

10% TMSOTf 
141 >95% 

4 65 SP-142 3 x 3 eq. -20 °C to rt, 10% TMSOTf 144 77% 

5 29 SP-145 4 x 3 eq. -20 °C to rt, 10%TMSOTf 147 70% 

6 27 SP-9 
1 x 5 eq., -20 °C to rt, NIS (6.5eq.), 

10% TMSOTf 
149 >95% 

7 66 SP-150 2 x 6 eq. -20 °C to rt, 10% TMSOTf 152 71% 

8 65 SP-150 4 x 3 eq. -20 °C to rt, 10% TMSOTf 152 80% 

9 65 SP-150 2 x 6 eq. -20 °C to rt, 10%TMSOTf 152 85% 

10 65 SP-150 1 x 12 eq. -20 °C to rt, 10% TMSOTf 152 68% 

11 65 SP-150 
1 x 12 eq. + 1 x 6 eq. -20 °C to rt, 

10% TMSOTf 
152 85% 

12 65 SP-150 3 x 6 eq. -20 °C to rt, 10% TMSOTf 152 90% 

13 30 SP-153 2 x 6 eq. -20 °C to rt, 10% TMSOTf 155 94% 

[a] conversion was determined by UPLC-MS analysis after cleavage from the resin. 
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Coupling with imidate 65 in 4 cycles of 3 equivalents raised the yield of SP-151 

to 80% (152, entry 8). A larger donor excess of 6 equivalents improved the yield 

slightly after only 2 cycles to 85%, while a single cycle of 12 equivalents resulted in 

a slightly lower yield (Table 4, entries 9 and 10). On the other hand, 90% conversion 

was achieved after 3 cycles employing 6 equivalents of donor 65 (entry 12). Finally, 

after removal of the levulinic ester, acceptor SP-153 was coupled in 2 cycles with 

imidate 65 to afford the resin bound trisaccharide SP-154 with 94% conversion (155, 

entry 13).  

 

Once optimized the conditions for glycosylation and deprotection reactions, the 

full solid phase glycosylation procedure towards HS precursor trisaccharide 

formation was carried out. Following this strategy we could obtain 39 mg of the 

crude HS precursor 156. In order to facilitate the purification process by column 

chromatography, cleaved crude trisaccharide 155 was acetylated providing 156 in 

72% overall yield over 8 steps with an average yield of 95% per step (Scheme 3.23).  

 

In order to unequivocally assign the configuration of all glycosidic bonds, the 

geminal coupling constants between 
13

C-
1
H in the anomeric positions were 

determined in heteronuclear single quantum correlation (HSQC) nuclear magnetic 

resonance experiment. Measurement of the three 
13

C-
1
H heteronuclear anomeric 

coupling constants confirmed a 1,2-cis configuration for all glycosidic linkages 

(idose JC-1, H-1 = 169 Hz, 170 Hz and azido glucose JC-1, H-1 = 171 Hz, see Figure 

3.4).
46,47
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Figure 3.3. HSQC NMR spectra of heparin trisaccharide precursor 156. JC,H coupling values 

(≈ 170 Hz) confirmed α-selectivity of the glycosylation reactions.  

 

 

3.4.4 Solid phase synthesis of a HS hexasaccharide precursor. 

Among the Ido and IdoA donors tested both in solution and solid-phase 

synthesis of a HS trisaccharide precursor (previously described), imidate 30 (Scheme 

3.24) combined excellent stability and good reactivity and was selected for further 

studies targeting larger oligosaccharides. 

Following up on these studies we now investigate the viability of a sequential 

assembly of monosaccharide building blocks to HS hexasaccharides on a solid 

support. For the synthesis of HS precursor 162, Ido and GlcN donors 27, 30 and 65 

were employed in an alternating fashion and donor 70 was used as a final capping 

block (Scheme 3.24).  

JC´,H´ = 171 Hz

JC´´,H´´ = 169 Hz

JC,H = 170 Hz



Evaluation of glycosyl donors in the solid phase of HS precursors 

 

102 
 

 

Scheme 3.24 Solid-phase assembly of a heparan sulfate hexasaccharide precursor. a) 27, N-

iodosuccinimide, 20% TMSOTf, -20 °C to r.t; b) NaOMe (cat), MeOH, MW; c) Ac2O, 

pyridine, DMAP; d) hydrazine acetate, CH2Cl2: MeOH (4:1); e) 65, 20% TMSOTf, -20 °C to 

r.t; f) 30, 20% TMSOTf, -20 °C to r.t; g) 70, 20% TMSOTf, -20 °C to r.t; h) Ac2O, pyridine, 

0 °C to r.t. 

 

Individual coupling efficiencies were estimated as previously by UPLC-MS 

after cleaving an analytical sample from the resin (see Table 3.8). Table 3.8 shows 

the apparent conversion for every coupling reaction and cycle. Reaction conditions 

were streamlined where possible to common procedures to evaluate the robustness of 

the chemistry for later translation to an automated synthesizer. The synthesis of the 

resin bound trisaccharide SP-154 which had been described previously could be 

reproduced with similar conversion, namely with 92% and 94% respectively, for the 

di- and trisaccharide intermediates. Also in this case unreacted acceptor functions 
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were capped by acetylation to avoid the production of any deletion sequences. 

Successive capping, delevulination and alternate glycosylation cycles with 30 and 65 

led to SP-159 which was finally reacted with terminating capping donor 70. High 

conversions were achieved after 3 cycles from trisaccharide SP-154 to 

hexasaccharide SP-161 UPLC-MS analysis of a cleaved analytical sample showed a 

conversion of 46% to the hexasaccharide SP-161 (as 162) in the first cycle which 

could be improved to an excellent 92% in a second cycle.  

 

Table 3.8. UPLC-MS conversion for HS hexasaccharide.  

 

Hexasaccharide 162 was cleaved off the resin by repeated treatment with 

sodium methoxide, acetylated with acetic anhydride and purified by preparative 

HPLC to afford the heparan sulfate hexasaccharide precursor 163 in 11% yield over 

the 14 steps (85% average yield for each step). 

Glycosylation Donor Product 

UPLC-MS conversion (%) 

Cycle 1 Cycle 2 Cycle 3 

1 27 149 >99 - - 

2 65 152 n.a n.a 92 

3 30 155 n.a 94 - 

4 65 158 28 62 78 

5 30 160 62 72 76 

6 70 162 46 92 92 
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3.5 TOWARDS THE SOLID PHASE SYNTHESIS OF DERMATAN 

SULFATE  

 

Dermatan Sulfate (DS) is a polyanionic linear polysaccharide composed of a 

repeating disaccharide unit of β-1,3 linked iduronic acid (IdoA) and N-acetyl 

galactosamine (GalNAc). DS is also commonly known as chondroitin sulfate B 

(CSB), because of the presence of GalNAc residues along its backbone. But the 

major difference to CS is the occurrence of iduronic acid (IdoA) moieties along its 

backbone highlighting structural similarities to heparin and HS, both of which too 

contain IdoA as a major building block.  

 

DS polysaccharides are complex mixtures characterized by a broad range of 

chain lengths and heterogenous sulfation patterns along the backbone. The high 

presence of sulfate and carboxylate groups imparts DS with a high negative charge 

density facilitating its interaction with a wide array of different proteins. Sulfation in 

DS can occur at three major locations, the C2 position on IdoA (similar to HS or 

heparin) and the C4 and C6 of the galactosamine residues (similar to CSA and CSC). 

Most strategies for the solution-phase synthesis of GAGs have been based on the 

stereoselective assembly of conveniently protected disaccharide building blocks that 

allow the site-specific introduction of N- and O-sulfate groups.
48–54

  

 

As mentioned in the Chapter 1, during the course of this work Seeberger 

reported the automated assembly of two CS hexasaccharide precursors employing 

monosaccharide building blocks in an overall yield of 8 and 13 %, respectively. This 

is a remarkable result, but a routine synthesis of GAGs on an automated synthesizer 

will require further improvement of coupling yields in order to outperform current 

solution-phase strategies.
55 
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 Based on excellent results obtained in the preparation of hexasaccharide 

precursor 163 of HS on the solid phase by the sequential assembly monosaccharide 

building blocks, we move towards the solid phase assembly of DS oligosaccharide 

precursors. The strategy would also be based in the sequential coupling of 

differentially protected monosaccharide building blocks on linker SP-9 modified 

polystyrene resin.  

 

3.5.1 Initial attemps on solid phase: disaccharide synthesis. 

 Solid-phase trials were performed on a polystyrene resin functionalized with 

the carbamate type linker SP-9 at 0.2 mmol/g prepared as previously described. After 

methylation of the unreacted carboxylic acid functions using diazomethane, the TDS 

group of resin bound linker SP-8 was deprotected with HF-pyridine to afford the 

acceptor SP-9. Glycosylation of primary hydroxyl group employing 5 equivalents of 

the N-trichloroacetimidate donor 81 under TMSOTf catalysis at -20 °C afforded 

resin bound monosaccharide SP-163. UPLC-MS analysis of an aliquot of the resin 

after cleavage with sodium methoxide at 55 ºC under microwave irradiation showed 

the formation of compound 165 with a conversion of 67% accompanied by a 

byproduct 166 in which the trichloroacetamide moiety was partially lost. The 

formation of this byproduct occurred during the harsh basic conditions applied for 

cleavage from the resin but could be reduced to less than 5% when the cleavage was 

carried out at 40°C for 5 min. The efficiency of these conditions proved to be 

efficient for the quantitative cleavage of the resin bound saccharides, we applied 

these conditions to monosaccharide SP-163 which could be isolated in 89% yield 

after acetylation of crude product.  

 

Compound 168 was confirmed to be a single isomer analysis as β-isomer. 

The 
1
H NMR spectrum show signal of a doublet with a large coupling constant, 

(JH1,2= 8.1 Hz) in agreement with a newly established 1, 2-trans glycosidic linkage. 

Selective deprotection of 3-O-levulinic ester (SP-163) by treatment with 5 

equivalents of hydrazine acetate in one cycle afforded SP-167 acceptor. 

Glycosylation of SP-167 acceptor with 5 equivalents of trichloroacetimidate 30 
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under TMSOTf catalysis (2 cycles), produced resin bound disaccharide SP-169 in 97 

% yield. Quantitative cleavage of the disaccharide SP-169 from the resin gave 170 in 

79 % yield. Unfortunately, 
1
H and HSQC NMR analysis showed that an α/β mixture 

(9/1) in the newly formed idose anomeric position. Nevertheless, the mixture could 

be easily purified after deprotection of 6-O-PMP group using CAN in a mixture of 

acetonitrile/water (4/1). 

 

 

 

Scheme 3.25. Disaccharide Dermatan Sulfate Solid-Phase Synthesis. Reagents and 

conditions: a) carboxypolystyrene resin, DIC, DMAP, CH2Cl2, then Me3SiCHN2, THF, 

MeOH; b) HF·pyridine, THF; c) 81, 20% TMSOTf, -20 °C to rt; d) NaOMe (cat), MeOH, 

MW; e) Ac2O, pyridine, DMAP, CH2Cl2; f) hydrazine acetate, CH2Cl2: MeOH (4:1); g) 30, 

20% TMSOTf, -20 °C to rt; h) cerium ammonium nitrate, acetonitrile/water (4/1), 0ºC to rt, 

70% (as only α-anomer).  
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3.5.2 Solution synthesis of a dermatan sulphate disaccharide 

In order to improve the stereoselectivity of the reaction, the disaccharide 

formation was optimized in solution using different activation conditions and 

differently protected acceptors and donors (Table 3.9). 

 

 

Scheme 3.26. Acceptor synthesis in solution. Reagents and conditions: a) donor 81 or 82, 

TMSOTf, -20 ºC to rt; b) hydrazine acetate, CH2Cl2/MeOH (4/1).  

 

 Initially, galactosamine acceptors bearing different protecting groups in OH-4 

were prepared. The model linker 84 was glycosylated with trichloroacetimidates 81, 

82 under TMSOTf catalysis to afford compounds 172, 173 both in good yields 87% 

(Bz) and 85% (Ac), respectively (Scheme 3.26). After selective removal of 3-O-

levulinic ester group with hydrazine acetate, acceptors 174 and 175 were ready for 

coupling trials with trichloroacetimidates 81 and 82. Under the previously explored 

conditions on the solid phase disaccharide 176 was formed again as a mixture of 

anomers (α/β: 9/1, see Table 3.9). To avoid the formation of the β-isomer, different 

activator systems (entry 1, 2, 3) were explored and different donors (entry 4) were 

tried without success (Table 3.9). In all cases, the same ratio of disaccharide isomers 

was observed. Only when the galactosamine 177 with a less bulky 4-O-acetate group 

was employed as acceptor the compound 175 was obtained in 89% yield and with 

complete α-selectivity.  
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Table 3.9. Evaluation of different donors and activators in DS disaccharide synthesis. 

[a] conversion was determined by UPLC-MS analysis after cleavage from the resin. 

 

 After assembly of the disaccharide 177, deprotection steps were tested early 

on to evaluate the overall strategy for the synthesis of sulfated oligosaccharides 

(Scheme 3.27). Therefore, 177 was treated with cerium ammonium nitrate (CAN) to 

selectively remove the p-methoxy phenyl group affording compound 178 in 82% of 

yield. Subsequently, the primary OH-6 hydroxyl group was oxidized to carboxylic 

acid with TEMPO/BAIB followed by the hydrolysis of all acyl groups with sodium 

methoxide obtaining disaccharide 179 in 70% over 2 steps. The pyridine sulfur 

trioxide complex in pyridine at 60 ºC in the microwave was used for the sulfation of 

free hydroxyl groups. The reaction crude was quenched by adding triethylamine and 

was purified by size exclusion chromatography. In order to form the sodium salt the 

crude was passed through an ion exchange resin. 
1
H NMR analysis showed 

significant downfield shifts of H4 of the galactopyranosyl unit and H-4 and H-2 of 

idopyranosyl moiety: H-4 at 4.94 ppm (before at 4.04 ppm, 0.6 ppm at downfield 

than in the previous), H-4´ at 4.77 ppm (before at 4.14 ppm) and H-2´ at 4.44 ppm 

(before at 3.93 ppm). 

 

 

Entry Acceptor Temperature Activator Yield (%)
[a] 

α/β 

ratio 

1 174 -20 °C to r.t TMSOTf (15%) 72 9/1 

2 174 0 °C to r.t Cu(OTf)2 68 9/1 

3 174 0 °C to r.t Yb(OTf)3 64 9/1 

4 174 -20 °C to r.t 
NIS, TMSOTf 

(10%) 
70 9/1 

5 175 -20 °C to r.t TMSOTf (15%) 80 Only α 
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Scheme 3.27. Deprotection of disaccharide 177. a) cerium ammonium nitrate, 

acetonitrile/water (4/1), 0 ºC, 82%; b) TEMPO/BAIB, acetonitrile/water (1/1), c) 

NaOMe/MeOH, 0 ºC to rt, 70%; d) Py·SO3, pyridine, 60 ºC, 73%. 

  Catalytic hydrogenation of 180 was anticipated to provide the natural product 

in good yields applying procedures previously reported for very similar 

intermediates.
56
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3.5.3 Solid phase synthesis of dermatan sulfate tetrasaccharide  

Based on the previous result obtained for the synthesis of disaccharide 177 in 

solution trichloroacetimidate 82 was use in the solid phase synthesis of DS 

tetrasaccharide precursor. First, linker modified resin SP-9 was glycosylated with 

imidate 82 to afford SP-181 in near-quantitative yield as demonstrated by the 

analysis of the methoxide cleavage product 165 (Scheme 3.28). Hydrazinolysis 

afforded the acceptor SP-182 which was reacted with trichloroacetimidare 30 to give 

SP-183, with excellent conversion (99%) after two cycles and complete α-selectivity. 

After capping reaction and delevulination, acceptor SP-184 was glycosylated with 

trichloroacetimidate 22 affording SP-185 in high yield (97%) after two glycosylation 

cycles. Subsequently, delevulination with hydrazine acetate was performed to afford 

resin SP-187. Glycosylation of SP-187 was performed using the capping glycosyl 

donor 43 and SP-188 was obtained in 90% of yield. 

 

To facilitate the purification process crude tetrasaccharide 189 was acetylated 

with Ac2O in pyridine after cleavage from the resin providing 190 in 72% overall 

yield over 8 steps with an average yield of 95% per step (Scheme 3.28). 

Measurement of the four C,H heteronuclear anomeric coupling constants confirmed a 

1,2-cis configuration for idose glycosidic linkages (2xIdose JC,H = 170 Hz) and 1,2-

trans configuration for galactosamine (JC,H = 163.0 Hz and 164.0 Hz, Figure 3.5).  
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Scheme 3.28. A) Synthesis of tetrasaccharide of DS on solid-phase. Reagents and 

conditions: a) 82, 20% TMSOTf, -20 °C to r.t; b) NaOMe, MeOH; c) Ac2O, pyridine, 

DMAP (cat.), CH2Cl2; d) hydrazine acetate, CH2Cl2/MeOH ;e) 30, 20% TMSOTf, -20 °C to 

r.t; f); 41, 20% TMSOTf, -20 °C to r.t; for conversions see Table 3.10. B) Monosaccharide 

building blocks of galactosamine (82) and of idose (30 and 41). 

 

Table 3.10. UPLC-MS conversion for DS tetrasaccharide. 

 

Glycosylation Donor Product 
UPLC-MS conversion (%) 

Cycle 1 Cycle 2 

1 82 165 98 - 

2 30 170 n.a 99 

3 82 186 n.a 97 

4 41 189 n.a 90 
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Figure 3.4. HSQC NMR spectra of heparin tetrasaccharide precursor 156. JC,H coupling 

values confirmed the desired stereoselectivity.  
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3.5.4 Solid phase synthesis of a dermatan sulfate octasaccharide  

Continuing with these studies we now show the viability of a sequential 

assembly of monosaccharide building blocks up to octasaccharide size on a solid 

support with good to excellent coupling yields. For the synthesis of DS precursor 

200, Ido and GalN donors 82 and 30 were employed in an alternating fashion and 

trichloroacetimidate 41 was used as a final capping block (Scheme 3.29).  

 

 

Scheme 3.29. Solid-phase assembly of a dermatan sulfate octasaccharide precursor 201. a) 

donor 82 (5eq.), TMSOTf (0.1eq.), -20 °C to r.t; b) NaOMe (cat.), MeOH, MW; c) Ac2O, 

pyridine, DMAP; d) hydrazine acetate, CH2Cl2/MeOH (4/1); e) donor 30 (5eq.), TMSOTf 

(0.1eq.), -20 °C to r.t; f) capping donor 41 (5eq.), TMSOTf (0.1eq.), -20 °C. 
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Coupling yields were determined by UPLC-MS analysis of resin aliquots after 

individual coupling cycles (Table 3.11). Successive cycles of glycosylation, capping 

with acetic anhydride in pyridine, removal of the levulinic ester protection and 

alternated coupling with trichloroacetimidates 82 and 30 finally afforded resin bound 

heptasaccharide (SP-197). After delevulination, the acceptor was coupled with the 

capping trichloroacetimidate 41 in a single cycle and 97% of conversion into 

octasaccharide (SP-199) as estimated by UPLC-MS. 

 

Table 3.11. UPLC-MS conversion of DS octasaccharide. 

  

 Preparative scale cleavage of resin with sodium methoxide followed by 

acetylation with acetic anhydride and purification by HPLC produced a mixture of 

the desired octasaccharide 201 and an octasaccharide presenting a mass increase of 

90Da (201+Bn). Careful separation by HPLC afforded 201 in 9.4% overall yield and 

5.6% of a presumably N-benzylated octasaccharide. N-benzylation of 

trichloroacetamides, which might be explained by a benzyl transfer under strong 

Lewis acid conditions, has been reported previously.
57

 The additional benzyl group 

should be easily removed in the envisaged final removal of benzyl groups by 

Glycosylation Donor Product 
UPLC-MS conversion (%) 

Cycle 1 Cycle 2 

1 82 149 98 - 

2 30 170 n.a 99 

3 82 184 n.a 97 

4 30 192 86 98 

5 82 194 n.a 100 

6 30 196 n.a 91 

7 82 198 94 100 

8 41 200 n.a 97 



Towards solid phase synthesis of dermatan sulfate 

 

115 
 

hydrogenation.
57

 Compound 201 should be readily transformed to the final 

deprotected dermatan sulfate as had been shown for a similar derivative.
58, 10

 

 

3.5.5 Deprotection schemes for DS tetra and octasaccharides.  

 The tetrasaccharide compound 202 will be subjected to a set of orthogonal 

deprotection conditions followed by sulfation at the designed positions (Scheme 

3.30). Reduction of the trichloroacetamide groups to acetamide in compound 202 by 

treatment with a mixture of tributyltinhydride and the radical starter 

azobisisobutyronitrile (AIBN) and subsequent treatment of the  with cerium 

ammonium nitrate in a mixture of acetonitrile/water (4/1) to remove the p-

methoxyphenyl groups afforded 206. 

 

Scheme 3.30. Deprotection strategy for tetrasaccharide compound 202. Reagent and 

conditions: a) tributyltinhydride, AIBN, toluene b) cerium ammonium nitrate, 54% over two 

steps; c) TEMPO, BAIB, acetonitrile/water (1/1), c) NaOMe/MeOH, 0 ºC to rt; d) Py·SO3, 

pyridine, DMF, 60 ºC; e) H2, Pd-C. 

 

  This compound was then subjected to TEMPO oxidation in the presence of 

BAIB. UPLC-MS analysis of the reaction crude confirmed the presence of a major 

product with a +16 Da deviation over the expected mass for the target compound 

suggesting overoxidation 
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 Next, treatment of the free hydroxyl groups with SO3.Pyr complex in DMF 

would lead the sulphated intermediate. Finally, the benzyl and the 

benzyloxycarbonyl groups would be removed by catalytic hydrogenation.
58

 

Unfortunately, due to lack of sufficient material the final sequence to the natural 

products could not be completed. 

 

 In the same way, the octasaccharide 201 was treated with tributyltinhydride 

and azobisisobutyronitrile (AIBN) until no intermediates were detected by UPLC-

MS. Next, this compound was treated with cerium ammonium nitrate in a mixture of 

acetonitrile/water (4/1) to remove the p-methoxyphenyl groups and purified by 

preparative HPLC to obtain 6 mg of compound 210. The further oxidation and 

sulfation of the synthesized precursor compounds is anticipated to provide the natural 

products in good yields applying procedures reported for very similar intermediates. 

 

 

 Scheme 3.31. Deprotection strategy for octasaccharide compound 201. Reagent and 

conditions: a) tributyltinhydride, AIBN, toluene b) cerium ammonium nitrate, 

acetonitrile/water (4/1); c) TEMPO, BAIB, acetonitrile/water (1/1), c) NaOMe/MeOH, 0 ºC 

to rt; d) Py·SO3, pyridine, DMF, 60 ºC; e) H2, Pd-C. 
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4. CONCLUSIONS  

 

We have designed a novel ester type linker incorporating a carbamate 

protected C5-spacer for later ligand immobilization that proved stable through the 

synthesis and was easily cleaved from the resin by a choice of two complementary 

methods. We have found that the lability of the idose residue under NIS/TfOH 

activation makes thioglycoside donors less attractive for the solid phase synthesis of 

the heparin sulfate oligosaccharides precursors. On the other hand, idose  and 2-

azido-glucose trichloroacetimidates activated with lower amounts of promoter, did 

not lead to any cleavage of glycosidic bonds. 

 

We have performed a systematic evaluation of IdoA and Ido glycosyl donors, 

with variation in the protecting group pattern and the leaving group, for the 

sequential solution- and solid-phase synthesis of glycosaminoglycans precursors. In 

this evaluation, we found that the sterically demanding TBDPS and other bulky 

substituents compromised yields in glycosylation when idose was used as acceptor. 

 

For the first time, a series of idorunic acid n-pentenyl orthoester have been 

prepared and evaluated in the solution and solid-phase synthesis of trisaccharide 

heparin sulfate precursors including all major structural features of larger HS chains. 

We have found that the use of IdoA donors for the solid phase heparin sulfate 

synthesis was not compatible with the strong basic conditions required to cleave our 

ester linker, and considerable elimination of IdoA ester residues to the alkene was 

observed. A change to base-labile linkers cleaved under less harsh conditions or to 

orthogonal photolinkers in the future could permit the direct use of IdoA donors. 

 

Our results also demonstrate that the idose donors with electron-donating 

groups and reduced steric demand at C-6 outperform iduronic acid as glycosyl 

donors and acceptors in the glycosylation with azidoglucose derivatives even though 

additional off-bead oxidation is required to arrive at the natural products. In 
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particular, the solution- and solid-phase involving the 6-O-PMP protected idose 

derivatives showed high yields for all conversions studied and therefore was selected 

for the synthesis of larger heparin sulfate and dermatan sulfate fragments. 

 

An efficient strategy for the synthesis of dermatan sulfate disaccharide has 

been discussed above considering the results obtained in the initial attempts of DS on 

solid synthesis. A set of orthogonally protected idosyl donors and galactosamine 

acceptors were coupled to obtain the desired disaccharide in excellent yield and in a 

stereoselective manner. The substitution of the 4-O-benzoate ester group for a a less 

bulky 4-O-acetate ester of galactosamine effective and valuable to achieve full 

stereoselectivity in the glycosylation with idose donors both in solution and on the 

solid phase. 

 

We have developed an effective strategy for the SP high yielding and high 

stereoselective assembly of simple monosaccharide building blocks into advanced 

oligosaccharide precursors up to the size of an octasaccharide for two important 

classes of GAGs. This is a significant progress in the ongoing development of a 

routine and automatable solid-phase synthesis of GAGs affording hexasaccharide 

and octasaccharide precursors in 2-3 weeks time, which in solution phase would have 

required several months. In addition, this strategy introduces a higher degree of 

flexibility for the generation of structurally diverse HS/ DS libraries and avoids the 

multi-step processing of elaborated disaccharide structures. 

 

These results complement and considerably extend the last published 

automated syntheses of chondroitin sulfate (CS) hexasaccharide and DS 

tetrasaccharide precursors which utilize phosphate based glycosyl donors in the key 

glycosylation steps. The use of the alternative highly reactive trichloroacetimidates 

as glycosyl donors in the syntheses here reported has allowed the preparation of 

tetra- and octa-saccharides in the dermatan sulfate series in a highly efficient manner. 

We envisage that these trichloroacetimidate glycosyl donors can be easily introduced 

in an automated process for the assembly of GAG precursors. 
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The further deprotection and sulfation of the synthesized GAG precursors is 

anticipated to provide the natural products in good yields applying procedures 

previously reported for very similar intermediates. The deprotection of PMP 

followed by oxidation using TEMPO and bis(acetoxy)iodobenzene was successfully 

performed in a disaccharide model. The final deprotection of hexa and 

octasaccharide was initialized; however it could not be concluded due to constraints 

in time and amount of synthesized material. 

 

 

Figure 4.1. Thesis results and future work related to solid-phase synthesis strategy 

developed. 
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5.1 GENERAL METHODS. All anhydrous reactions were performed in flame-dried 

or oven-dried glassware under a positive pressure of dry Argon. Air- or moisture-

sensitive reagents and anhydrous solvents were transferred with dried syringes or 

cannulae. Purification of compounds was performed on a Biotage SP4 automated flash 

chromatography system, Biotage AB, Uppsala, Sweden or by conventional flash 

chromatography using Merck 62Å 230-400 mesh silica gel. Size exclusion 

chromatography was performed on Sephadex
®
 LH-20. All solution-phase reactions 

were monitored using analytical thin-layer chromatography (TLC) with 0.2 mm pre-

coated silica gel 60 F254 aluminium plates. Components were visualized by 

illumination with a short-wavelength (254 nm) ultraviolet light and/or by charring with 

vanillin, ceric ammonium molybdate, potassium permanganate, or phosphomolybdate 

staining solution. All solvents used for anhydrous reactions were distilled. 

Tetrahydrofuran (THF) was distilled from sodium/benzophenone under Argon. 

Dichloromethane and acetonitrile were distilled from calcium hydride. Methanol was 

distilled from calcium sulfate. N,N-dimethylformamide (DMF) was stored over 

activated 4 Å molecular sieves under Argon. Solid-phase reactions were performed in a 

normal Schlenck tube under an Argon atmosphere.  

1
HNMR, DQF-COSY, HSQC and 

13
C NMR spectra were recorded at ambient 

temperature on a Bruker 500 MHz spectrometer and chemical shifts () are given in parts per 

million (ppm) relative to the residual signal of the solvent used.  Deuterated chloroform 

(CDCl3), methanol (CD3OD), or water (D2O) was used as the solvent for NMR 

experiments.Splitting patterns are designated as follows: s, singlet; ps, pseudo-singlet; 

d, doublet; t, triplet; dd, doublet of doublet; m, multiplet; b, broad. Low –resolution 

mass spectrometry (LRMS) was performed on a electrospray ionization time of flight 

mass spectrometer equipped with an electrospray source with a pump rate of 5µL/min 

using electrospray ionization (ESI) or a matrix-assisted desorption ionization time of 

flight (MALDI-TOF) mass spectrometer operated in the reflectron/positive ion mode 

with DHB in MeOH as MALDI matrix. High-resolution mass spectrometry (HRMS) 

data were acquired on a time of flight mass spectrometer. Samples in CH2Cl2/ MeOH 

were mixed with ES tuning mix for internal calibration and infused into the mass 

spectrometer at µL/min. Microwave irradiation was performed on Biotage Initiator 

monomode oven, Biotage AB, Uppsala, Sweden. UPLC-MS analysis were performed 

using Acquity UPLC coupled to a ESI-TOF LCT Premier XE (Waters, Milford, MA, 
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US), column Acquity BEH 100x2.1 mm 1.7 um particle size (Waters); flow rate 300 

uL/min; PDA wavelength range: 195 - 500 nm; eluents (A) Ammonium formate 10mM 

/ (B) MeOH. grad. B (10 min: Isocratic 99% A – 0.5 min. / 99-25% A – 2.5 min / 25-

1% A – 3 min / isocratic 1% A – 4 min) or grad. D (20 min: Isocratic 99% A –  0.5 min. 

/ 99-25% A – 5.5 min / 25-75% A – 10.5 min / isocratic 1% A – 4 min). 

5.2 COMPOUND NUMBERING 

Resin-bound compounds carry the prefix SP- (e.g. SP-1) 

 

5.3 GENERAL PROCEDURES FOR SOLUTION SYNTHESIS 

Procedure A (Levulination). To a solution of 4-hydroxy acceptor (1 eq.) in dry CH2Cl2 

(~10 mL/mmol) a catalytic amount of DMAP was added at room temperature, followed 

by addition of levulinic acid (1.5-5 eq.) and EDC·HCl (1.5-5 eq.). After five hours, TLC 

control (hexane/ EtOAc 2/1 or 3/1) indicated full conversion of the starting material. 

The reaction mixture was diluted with CH2Cl2 (~ 150 mL) and subsequently washed 

with saturated NaHCO3aq solution (2 x ~200 mL), 1 MHCl (~200 mL), water (~200 

mL) and brine (~200 mL). After drying over anhydrous MgSO4 and concentration the 

crude was purified by column chromatography on silica using a hexane/EtOAc gradient 

(1:0 to 1:1). 

 

Procedure B (Glycosylation with thiophenyl idose derivatives and n-pentenyl 

orthoester derivatives). The linker acceptor and thiophenyl donor (1.2 – 1.5 eq.) were 

dissolved in dry CH2Cl2 (2 mL) under argon and then cooled to the desired temperature. 

N-iodosuccinimide and catalytic amount of trimethylsilyl triflate (TMSOTf) or triflic 

acid (TfOH) were added and the reaction mixture was allowed to warm to room 

temperature. After 1.5 – 3 h, the crude reaction mixture was quenched with saturated 

NaHCO3 aq solution and solid Na2S2O3. The mixture was filtered and washed with 

saturated NaHCO3 aq solution, water and brine. The crude reaction mixture was purified 

by column chromatography. 

 

Procedure C (Glycosylation with azido glucose trichloroacetimidate donor, 

disaccharide synthesis). The idose acceptor and azido glucose donor were dissolved in 

dry CH2Cl2 (15 mL/ mmol) under argon and then cooled to -20 °C (0 °C for iduronic 

acid). After addition of trimethylsilyl triflate (TMSOTf) the reaction mixture was 
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allowed to warm slowly to room temperature. After 2 h, the reaction mixture was 

quenched with triethylamine. The crude reaction mixture was diluted with CH2Cl2 and 

washed with saturated NaHCO3 aq solution, water and brine. The concentrated crude 

reaction was purified by column chromatography. 

 

5.4 GENERAL PROCEDURES FOR SOLID PHASE SYNTHESIS 

Procedure D (preparative cleavage from the resin). Preparative cleavage of the 

product from the resin was performed under alkaline conditions according toRoussel 

procedure. 
1
 

To a dry Schlenk flask under argon, dry resin loaded compound and NaOMe in MeOH 

(pH=8)/CH2Cl2 (1:4) solution were added. The resin was shaken at room temperature 

for 2 hours, filtered and the filtrate was neutralized with Amberlite
®
 IR-120(H) ion 

exchange resin. The cleavage procedure was repeated 2 times and the filtrates were 

combined and concentrated.  

 

Procedure E (analytical cleavage from the resin). To a 0.2-0.5 mL Biotage 

microwave reaction flask equipped with magnetic stir bar, After swelling the resin with 

250 µL anhydrous CH2Cl2, 50 µL of a 0.2 M sodium methoxide solution was added. The 

mixture was irradiated in microwave oven for 5 min at 55 °C with pre-stirring of 30 sec. 

After cooling to room temperature the supernatant was transferred to an Eppendorf vial 

and the solution was concentrated to dryness by air stream. The residue was redissolved 

in 100 µL methanol (HPLC grade). A 1: 10 dilution of this solution was used for 

UPLC-MS analysis or MALDI-TOF MS. 

 

Procedure F (Bu2SnO mediated cleavage from the resin). To a 0.2-0.5 mL Biotage 

microwave reaction flask equipped with magnetic stir bar, 3-5mg of resin loaded 

compound was added. Bu2SnO (1 eq) solution in MeOH was added and the sealed 

reaction vessel was heated in microwave at 120ºC for 10 minutes. After swelling of 

resin with 200 µL anhydrous dichloromethane 100 µL MeOH was added. The mixture 

was irradiated in microwave oven for 10 min at 120 °C with pre-stirring of 30 sec. After 

cooling to room temperature the supernatant was transferred to an Eppendorf vial and 

the solution was concentrated to dryness by air stream. The residue was resolved in 100 

µL methanol (HPLC grade). A 1: 10 dilution of this solution was used for UPLC-MS 

analysis or MALDI-TOF MS. 
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Procedure G (Solid phase glycosylation). Solid phase glycosylations were performed 

in either a Schlenk tube fitted with a cooling jacket or a normal Schlenk tube under 

argon atmosphere. Unless otherwise noted, the resin was swollen with the glycosyl 

donor (thioglycoside or trichloroacetimidate) in dry CH2Cl2 (750 µL/ 100 mg resin). 

The reaction mixture was shaken for 10 minutes on a vortex or an orbital shaker. Then, 

the Schlenk tube with cooling jacket was connected to a cryostat and cooled to the 

specified temperature. The normal Schlenk tube was cooled by immersion in a dewar 

containing a cooling bath at the specified temperature. After additional shaking for 10 

minutes the activator (NIS, TMSOTf/ TfOH for thioglycosides or TMSOTf for 

trichloroacetimidates) was added. The mixture was shaken for 10 minutes at the 

specified temperature. Then, the mixture was allowed to warm to room temperature and 

was shaking for 1 – 1.5 hours. The resin was washed with THF (5 x 3 mL/ 100 mg 

resin), CH2Cl2 (5 x 3 mL/ 100 mg resin) and dry diethyl ether (2 x 3 mL/ 100 mg resin) 

and dried in high vacuum. The THF washings were collected for possible recovery of 

the donor. 

Procedure H (Solid phase capping and delevulination): Solid phase synthesis was 

performed either in a Schlenk tube fitted with a cooling jacket or a normal Schlenk tube 

under argon atmosphere. The resin was swollen in dry CH2Cl2 (1 mL / 100 mg resin) for 

10 minutes, followed by addition of pyridine (300 µL / 100 mg resin), acetic anhydride 

(300 µL / 100 mg resin) and a catalytic amount of DMAP. After 5 h at room 

temperature resin was washed with CH2Cl2 (5 x 3 mL/ 100 mg resin), MeOH (5 x 3 mL/ 

100 mg resin) and dry diethyl ether (2 x 3 mL/ 100 mg resin) and dried in high vacuum. 

The resin was used without further characterization for the delevulination: the resin was 

swollen in dry CH2Cl2 (1 mL / 100 mg resin) for 10 minutes, followed by addition 

hydrazine acetate (5 eq. in 200 µL methanol). After 5 h at room temperature the resin 

was washed with CH2Cl2 (5 x 3 mL/ 100 mg resin), methanol (5 x 3 mL/ 100 mg resin) 

and dry diethyl ether (2 x 3 mL/ 100 mg resin) and dried in high vacuum.  
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5.5 LINKER SYNTHESIS AND GLYCOSYLATION TRIALS ON SOLID 

SUPPORT 

 

N-Benzyl-5-((2,3-dimethylbutan-2-yl)dimethylsilyloxy)pentan-1-amine (2): To a 

solution of 5-(benzylamino)pentan-1-ol (1) (5.00 g, 25.9 mmol) in dry DMF (25 mL) at 

0°C, imidazole (3.52 g, 51.7 mmol) and dimethylthexylsilyl chloride (6.09 mL, 31.0 

mmol) were added respectively. The reaction mixture was stirred overnight, then diluted 

with ether and washed with a saturated solution of ammonium chloride and water. The 

organic layer was then dried over MgSO4 and concentrated. Flash column 

chromatography (10% EtOAc/Toluene) afforded compound 2 as a clear oil (6.6 g, 

80%). 
1
H NMR (500 MHz, CDCl3)  7.30-7.15 (m, 5H), 3.73 (s, 2H), 3.52 (t, J=6.5 Hz, 

2H), 2.58 (t, J=6.8 Hz, 2H), 1.62-1.51 (m, 1H), 1.51-1.41 (m, 4H), 1.36-1.24 (m, 2H), 

0.83 (s, 3H), 0.82 (s, 3H), 0.78 (s, 6H), 0.02 (s, 6H); 
13

C NMR (125 MHz, CDCl3)  

140.58, 128.35, 128.08, 126.83, 62.79, 54.08, 49.46, 34.18, 32.69, 29.88, 25.12, 23.62, 

20.36, 18.48, -3.39; HRMS (ESI): Calcd for C20H37NOSi [M+H]
+
 336.2723, found 

336.2708. 

 

4-(Hydroxymethyl)benzyl 2,2,2-trichloroethyl carbonate (4): To 1,4-benzene-

dimethanol (1.93 g, 14.0 mmol) in dry CH3CN (50 mL) and pyridine (2.25 mL, 28.0 

mmol), a solution of 2,2,2-trichloroethoxycarbonyl-chloride (1.88 mL, 14.0 mmol) in 

CH3CN (125 mL) was added dropwise over a period of 3 hours. After 4 hours the 

reaction was diluted with EtOAc and washed with saturated solution of CuSO4 and 

water. The organic layer was then dried over MgSO4 and concentrated. Flash column 

chromatography (30% EtOAc/toluene) afforded 4 as a clear oil (2.23 g, 53%). 
1
H NMR 

(500 MHz, CDCl3)  7.46-7.33 (m, 4H), 5.24 (s, 2H), 4.77 (s, 2H), 4.71 (s, 2H) ppm; 

13
C NMR (125 MHz, CDCl3)  153.96, 141.63, 133.88, 128.79, 127.18, 94.35, 76.88, 

70.44, 64.91 ppm; HRMS (ESI): Calcd for C11H11Cl3O4 [M+Na]
+
 334.9621, found 

334.9604.   

 

4-(((2,2,2-Trichloroethoxy)carbonyloxy)methyl)benzyl N-benzyl N-(5-((2,3-

dimethylbutan-2-yl)dimethylsilyloxy)pentyl) carbamate (6): To a solution of 4-

(hydroxymethyl)benzyl 2,2,2-trichloroethyl carbonate (4) (4.57 g, 14.6 mmol) in 

CH2Cl2 (100 mL) at 0°C, pyridine (2.35 mL, 29.2 mmol) and 4-nitrophenyl-
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chloroformate (3.52 g, 17.5 mmol) were added. The reaction mixture was allowed to 

warm to room temperature and was stirred overnight. The solution was then 

concentrated and the resulting crystals were washed several times with hexanes to 

remove pyridine. Next, the dried solid was dissolved in DMF and N-benzyl-5-((2,3-

dimethylbutan-2-yl)dimethylsilyloxy)pentan-1-amine (2) (5.87 g, 17.5 mmol) and 

DIPEA (3.31 mL, 19.0 mmol) were added at 0°C. The reaction mixture was stirred 

overnight, then diluted with diethyl ether and washed with saturated solution of NH4Cl. 

The organic extract was dried over MgSO4 and concentrated. Flash column 

chromatography (gradient of 10 to 50% EtOAc/hexanes) gave the title product in 79% 

yield as a colorless oil. 

1
H NMR (500 MHz, CDCl3)  7.50-7.10 (m, 9H), 5.31-5.12 (m, 4H), 4.79 (s, 2H), 4.55-

4.47 (m, 2H), 3.61-3.50 (m, 2H), 3.34-3.16 (m, 2H), 1.68-1.41 (m, 5H), 1.38-1.22 (m, 

2H), 0.89 (s, 3H), 0.88 (s, 3H), 0.85 (s, 6H), 0.08 (s, 6H,); 
13

C NMR (125 MHz, CDCl3) 

  156.59, 156.02, 153.90, 137.87, 137.59, 134.09, 128.59, 128.51, 127.99, 127.68, 

127.24, 127.06, 94.32, 76.84, 70.33, 66.60, 62.63, 50.48, 50.19, 47.33, 46.25, 34.16, 

32.42, 27.90, 27.49, 25.09, 23.13, 20.34, 18.48, -3.41; HRMS (ESI): Calcd for 

C32H46Cl3NO6Si [M+Na]
+
 696,2057, found 696,1990. 

 

4-(Hydroxymethyl)benzyl N-benzyl N-(5-((2,3-dimethylbutan-2- 

yl)dimethylsilyloxy)pentyl) carbamate (7): To a solution of 4-

(((2,2,2trichloroethoxy)carbonyloxy)methyl)benzyl benzyl(5-((2,3-dimethylbutan-2-

yl)dimethylsilyloxy)pentyl)carbamate (6) (6.16 g, 9.12 mmol) in 150 mL of AcOH/THF 

(1:10) at 0ºC was added freshly activated Zn dust (1.79 g, 27.4 mmol). The reaction 

mixture was stirred for 4 hours, diluted with EtOAc and the residual zinc was filtered 

off. The filtrate was concentrated and after flash column chromatography 

(hexane/EtOAc, 9/1 to 75/25), compound 6 was obtained as an oil (>95%). 
1
H NMR 

(500 MHz, CDCl3)  7.45-7.10 (m, 9H), 5.24-5.07 (m, 2H), 4.75-4.63 (m, 2H), 4.56-

4.41 (m, 2H), 3.61-3.44 (m, 2H), 3.33-3.10 (m, 2H), 1.71 (s, 1H), 1.66-1.38 (m, 5H), 

1.36-1.15 (m, 2H,), 0.88 (s, 3H), 0.86 (s, 3H), 0.83 (s, 6H), 0.06 (s, 6H); 
13

C NMR (125 

MHz, CDCl3)  137.93, 128.50, 128.06, 127.79, 127.23, 127.05, 66.85, 65.06, 62.60, 

50.18, 47.21, 46.24, 34.17, 32.43, 27.91, 27.52, 25.11, 23.12, 20.34, 18.48, -3.41; 

HRMS (ESI): Calcd for C29H45NO4Si [M+Na]
+
 522.3016, found 522.2964. 
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Resin bound 4-(Hydroxymethyl)benzyl N-benzyl N-(5-((2,3-dimethylbutan-2-

yl)dimethylsilyloxy)pentyl) carbamate (SP-8): To a dry Schlenk flask 500mg of 

carboxypolystyrene resin (2.19 mmol/g capacity or 4.19 mmol/g) or Tentagel resin 

(2.19 mmol/g capacity or 4.19 mmol/g) was added under Argon. The resin was swollen 

with CH2Cl2 for 10 minutes then washed 3 times with CH2Cl2. To this resin in 23 mL of 

CH2Cl2, 7 (0.028 g, 0.110 mmol) dissolved in 2 mL of CH2Cl2, DIC (0.034 g, 0.548 

mmol), and DMAP (0.002 g, 0.022 mmol) were added and the reaction mixture shaken 

overnight. After complete reaction of the linker with the solid support (determined by 

TLC), the reaction solution was filtered off and the resulting resin was washed with 3 

cycles of CH2Cl2, MeOH and CH2Cl2. Finally, the resin was washed with 3 times THF 

and dried under vacuum. Capping of the unreacted carboxylate groups was performed 

according to Roussel and co-workers work.
1
 

 

Resin bound 4-(Hydroxymethyl)benzyl N-benzyl N-(5-hydroxypentyl) carbamate 

(SP-9): Dry resin SP-8 (0.500 g) was transferred to a Teflon reaction vessel and swollen 

with THF (5 mL). Equal volume (5 mL) of HF pyridine (Note: this reagent is extremely 

toxic!) was added and the reaction mixture was shaken for 3 hours. The reaction 

mixture was filtered off and the resin was washed 3 times with THF, 3 cycles of MeOH 

then CH2Cl2, and 3 times CH2Cl2. The resin was then dried under vacuum.  

 

4-(Hydroxymethyl)benzyl N-benzyl N-(5-hydroxypentyl) carbamate (10): Loading 

of the linker on the solid phase support was determined by cleaving the linker from 

0.100 g of the resin SP-9 according to Procedure D. The loading of 0.2 mmol/g or 0.4 

mmol/g was confirmed based on the obtained weight of 10. 
1
H NMR (500 MHz, 

CDCl3)  7.44-7.08 (m, 9H), 5.22-5.07 (m, 2H), 4.67 (m, 2H), 4.53-4.43 (m, 2H), 3.64-

3.38 (m, 2H,), 3.34-3.10 (m, 2H), 2.50-1.90 (m, 2H), 1.75-1.05 (m, 7H); 
13

C NMR (125 

MHz, CDCl3)  156.76, 156.34, 140.94, 140.76, 137.86, 136.15, 128.56, 128.42, 

128.11, 127.83, 127.34, 127.26, 127.20, 127.08, 67.01, 64.96, 62.58, 50.52, 50.17, 

46.94, 46.12, 32.21, 27.83, 27.38, 22.83; HRMS (ESI): Calcd for C21H27NO4Na 

[M+Na]
+
 380.1838, found 380.1814.  

 

Resin bound 4-(Hydroxymethyl)benzyl N-benzyl N-(5-(2-O-acetyl-3,4,6-tri-O-

benzyl--D-mannopyranosyloxy)pentyl) carbamate (SP-12): To a dry schlenk flask 
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under argon, resin loaded with the linker (0.10 g, 0.2 mmol/g), donor 11 (0.146 g, 0.22 

mmol) and CH2Cl2 (1.5 mL) were added respectively. The resin was shaken for 15 

minutes, and the reaction mixture was cooled to 0 ºC. TMSOTf (5 μL, 0.022 mmol) was 

added and the reaction mixture was allowed to warm to room temperature. After 1 hour, 

the reaction solution was filtered off, washed with 3 times with CH2Cl2 and the 

glycosylation cycle was repeated. The resin was then washed with 3 cycles of CH2Cl2 

then MeOH, 3 times with CH2Cl2 and dried under vacuum. 

 

4-(Hydroxymethyl)benzyl N-benzyl N-(5-(3,4,6-tri-O-benzyl--D-

mannopyranosyloxy)pentyl) carbamate (13): Compound 13 (10 mg, 79% yield) was 

obtained by preparative cleavage from 80 mg of resin SP-12 according to Procedure D 

in 3 cycles of 2 hours. 
1
H NMR (500 MHz, CDCl3, 323 K)  7.38-7.00 (m, 24H), 5.14-

5.02 (m, 2H), 4.80-4.65 (m, 2H), 4.64-4.50 (m, 5H), 4.49-4.34 (m, 4H), 3.95-3.84 (m, 

1H), 3.82-3.70 (m, 2H), 3.70-3.57 (m, 3H), 3.57-3.42 (m, 1H), 3.35-3.02 (m, 3H), 2.75-

1.65 (br s, 2H), 1.60-1.30 (m, 4H), 1.30-1.00 (m, 2H); 
13

C NMR (125 MHz, CDCl3)  

156.52, 141.00, 138.48, 138.41, 138.11, 137.98, 136.19, 128.51, 128.45, 128.28, 

128.09, 127.90, 127.77, 127.58, 127.49, 127.28, 126.98, 99.27, 80.35, 75.06, 74.59, 

73.50, 71.99, 71.30, 69.31, 68.54, 67.42, 66.96, 64.85, 50.54, 46.39, 28.99, 27.66, 

23.32; HRMS (ESI): Calcd for C48H55NO9Na [M+Na]
+
 812.3774, found 812.3718. 

 

5-Aminopentyl -D-mannopyranoside (14): To a solution of 13 (40 mg, 0.05 mmol) 

in MeOH (2 mL) with 10% formic acid, palladium black (40 mg) was added and the 

reaction mixture was stirred overnight under H2 atmosphere. The reaction mixture was 

then filtered over Celite, concentrated and the resulting residue was purified by 

Sephadex
®
 LH-20 column chromatography to afford 14 in quantitative yield. 

1
H NMR 

(500 MHz, CDCl3)  8.39 (br s, 1H), 4.74 (s, 1H), 3.82 (dd, J=4.5, 8.9 Hz, 1H), 3.80-

3.63 (m, 4H), 3.60 (dd, J=9.5, 9.5 Hz, 1H), 3.55-3.42 (m, 2H), 2.99-2.88 (m, 2H), 1.76-

1.58 (m, 4H,), 1.56-1.42 (m, 2H); 
13

C NMR (125 MHz, CDCl3)  168.54, 101.71, 

74.84, 72.79, 72.35, 72.31, 68.81, 68.20, 63.11, 40.81, 30.19, 28.50, 24.48; HRMS 

(ESI): Calcd for C11H23NO6 [M+Na]
+
 288.1423, found 288.1424. 
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5.6 BUILDING BLOCK SYNTHESIS 

5.6.1 Synthesis of Idose Building Block 

 

3-O-Benzyl-1,2-di-O-isopropylidene--D-glucofuranose (16): To a cooled (0 ºC) 

solution of NaH (60% in mineral oil, 1.15 g, 28.8 mmol) in dry DMF (25 mL) was 

added a solution of compound 15 (5.00 g, 19.2 mmol) in dry DMF (8 mL), the resulting 

mixture was stirred at 0 ºC for 30 minutes before benzyl bromide (4.6 mL, 38.4 mmol) 

and TBAI (1.42 g, 3.84 mmol) were added. The reaction mixture was warmed to room 

temperature and stirred for 17 hours. The reaction was quenched by adding methanol, 

diluted with EtOAc (100 mL) and washed with water. The organic layer was dried over 

anhydrous MgSO4, filtered and concentrated. The crude product was purified by flash 

chromatography (hexane/EtOAc, 9/1 to 4/1) to give 3-O-Benzyl-1,2;5,6-di-O-

isopropylidene--D-glucofuranose as white foam (6.3 g, 94%).
 
A solution of this 

benzylated compound (6.3 g, 18 mmol) in AcOH (18 mL) and water (10 mL) was 

stirrred at 40 ºC overnight. The mixture was diluted with CH2Cl2 (200 mL) and 

neutralized with solid potassium carbonate. The aqueous phase was extracted with 

CH2Cl2 and the combined organic phases were washed with water and saturated NaCl 

solution. The organic layer was dried over anhydrous MgSO4, filtered and concentrated. 

The product was obtained as transparent oil and was used in the next step without 

further purification (5.5 g, 98%). 
1
H NMR (500 MHz, CDCl3) δ 7.39 – 7.32 (m, 5H, 

Ph), 5.95 (d, J = 3.7 Hz, 1H, H-1), 4.74 (d, J =11.8 Hz, 1H, CHaHbPh), 4.64 (d, J =3.8 

Hz, 1H, H-2), 4.54 (d, J=7.8 Hz, 1H, CHaHbPh), 4.14 – 4.10 (m, 2H, H-3, H-4), 4.05 – 

4.00 (m, 1H, H-5), 3.82 (dd, J = 3.5, 11.4Hz , 1H, H-6a ), 3.70 (dd, J = 5.6, 11.4 Hz, 1H, 

H-6b), 1.49 (s, 3H, CH3), 1.33 (s,3H, CH3); 
13

C NMR (126 MHz, CDCl3) δ 137.10(qC, 

Ar), 128.86, 128.35, 128.05(CH, Ar), 101.18 (CH, C-1), 82.03 (CH, C-2), 82.09 (CH, 

C-4), 78.0 (CH, C-3), 72.10 (CHPh), 69.39 (CH, C-5), 64.45 (CH, C-6), 26.77, 26.25 

(CH3, Ac) ppm.  

 

6-O-Acetyl-3-O-Benzyl-1,2-O-isopropylidene-5-O-methanesulfonyl--D-

glucofuranose (17): To a solution of 16 (5.30 g, 17.07 mmol) in pyridine (25.5 mL) 

was added methanesulfonyl chloride (3.1 mL) at 0 ºC. The resulting mixture was 

warmed to room temperature and was stirred overnight. The mixture was diluted with 

EtOAc (200 mL) and was washed with water (3x). The organic phase was dried over 
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anhydrous MgSO4, filtered and concentrated. The crude product was triturated with 

hexane. The resulting product was filtered, dried under vacuum and was used in the next 

step without further purification (6.90 g, 87%). 
1
H NMR (500 MHz, CDCl3) δ 7.39 – 

7.30 (m, 5H, Ph), 5.88 (d, J = 3.6Hz, 1H, H-1), 5.27 – 5.24 (m, 1H, H-5), 4.69 – 4.66 

(m, 4H, H-2, H-6a, CHaHbPh, CHaHbPh), 4.62 (dd, J = 5.7, 11.9Hz, 1H, H-6b),4.60 (dd, 

J = 3.1, 7.4Hz , 1H, H-4), 4.13 (d, J = 3.11, 1H, H-3), 3.09 (s, 3H, CH3), 3.01 (s, 3H, 

CH3), 1.49 (s, 3H, CH3), 1.32 (s, 3H, CH3). 
13

C NMR (126 MHz, CDCl3) δ 136.91(qC, 

Ar), 128.58, 128.23 (CH, Ar), 112.50 (qC, C(CH3)2), 105.31 (C-1), 81.52 (C-2), 81.04 

(C-3), 78.08 (C-4), 74.35 (C-5), 72.49 (CH2Ph), 68.96 (C-6), 39.107, 37.517 (CH3, Ms), 

26.86, 26.22 (CH3, Ac). To a solution of the crude product (6.81 g, 14.60 mmol) in 

acetonitrile (135 mL) was added potassium acetate (13.51 g) and 18-crown-6 (0.39 g). 

The resulting mixture was stirred under reflux 43h. The mixture was diluted with 

dichlorometane (150 mL) and was washed with water (3x) and with NaCl sat. The 

organic phase was dried over anhydrous MgSO4, filtered and concentrated. The crude 

product was crystallized from ethanol (100 mL) to give the title compound 17 as white 

solid (5.22 g, 83%). 
1
H NMR (500 MHz, CDCl3) δ 7.38 – 7.30 (m, 5H, Ph), 5.89 (d, J = 

3.6Hz, 1H, H-1), 4.26 – 4.23 (m,1H, H-5), 4.71 – 4.66 (m, 2H, CHaHbPh, H-6a), 4.61 – 

4.59(m, 2H, CHaHbPh, H-6b), 4.36(dd, J=7.8, 3.1Hz , 1H, H-4), 4.25 – 4.21 (m, 1H, H-

6b), 4.10(d, J = 3.1Hz, 1H, H-3), 3.02 (s, 3H, Ms), 2.09(s, 3H, Ac), 1.49 (s, 3H, CH3), 

1.31 (s,3H, CH3). 
13

C NMR (126 MHz, CDCl3) δ 170.33(qC, Ac), 137.11(qC, Ar), 

128.51, 128.04 (CH, Ar), 112.30 (qC, C(CH3)2), 105.32 (C-1), 81.50 (C-2), 81.11 (C-3), 

78.30 (C-4), 75.45 (C-5), 72.30 (CH2Ph), 63.50 (C-6), 38.96 (CH3, Ms), 26.87, 26.28 

(CH3), 20.79 (CH3, Ac) ppm 

 

3-O-Benzyl-1,2-epoxy-5,6-di-O-isopropylidene--D-glucofuranose (18): To a 

solution of compound 17 (0.696 g, 1.62 mmol) in CH2Cl2 (7 mL) was added a solution 

of 
t
BuOK (364 mg, 3.24 mmol) in 

t
BuOH (3.5 mL) at 0ºC. The resulting mixture was 

stirred at 0ºC for 75 minutes. The reaction was quenched by adding water, diluted with 

CH2Cl2 and was washed with water and NaCl saturated. The organic layer was dried 

over anhydrous MgSO4, filtered and concentrated. The crude product was used in the 

next step without further purification (452 mg, 87%). 
1
H NMR (500 MHz, CDCl3) δ 

7.37 – 7.30 (m, 5H, Ph), 6.0 (d, J = 3.8Hz, 1H, H-1), 4.75 (d, J =12.2Hz, 1H, 

CHaHbPh), 4.64 (d, J = 3.8Hz, 1H, H-2), 4.52 (d, J =12.2Hz, 1H, CHaHbPh), 3.96 (d, J 

= 3.5Hz, 1H, H-3), 3.81 (dd, J= 3.6, 6.1Hz, 1H, H-4), 3.29-3.26 (m, 1H, H-5), 2.77 (dd, 
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J = 4.4, 4.7Hz, 1H, H-6b), 2.54 (dd, J = 2.7, 4.9Hz, 1H, H-6a), 1.45 (s, 3H, CH3), 1.32 

(s,3H, CH3). 
13

C NMR (126 MHz, CDCl3) 137.27 (qC, Ar), 128.55, 128.09, 127.71 

(CH, Ar), 111.96 (qC, C(CH3)2), 105.47 (C-1), 82.71 (C-3), 82.43 (C-2), 82.07 (C-4), 

71.94 (CH2Ph), 50.20 (C-5), 43.19(C-6), 26.86, 26.34 (CH3) ppm. 

 

1,6-Anhydro-3-O-benzyl-β-L-idopyranose (19): A solution of 18 (2.30 g, 7.86 mmol) 

in 1M aq H2SO4 (2 mL) and dioxane (2 mL) was heated under MW for 40min. The 

mixture was neutralized with aq Ba(OH)2, the solid was removed by filtration and was 

washed with EtOAc. The filtrate was extracted with EtOAc, the organic layers were 

combined and was washed with water (3x), dried over anhydrous MgSO4 and 

concentrated. The residue was purified by column Toluene/acetone (9/1 to 7/3) and a 

white solid was obtained (1.09 g; 55%).The spectroscopic data of the compound were in 

agreement with the data previously reported in literature. 
2
  

 

1,6-Anhydro-2-O-Benzoyl-3-O-benzyl-β-L-idopyranose (20): To a solution of 19 

(0.417 g, 1.65 mmol) in CH2Cl2 (5 mL) was added pyridine (0.39 mL, 4.95 mmol) and 

benzoyl chloride (0.21 mL, 1.82 mmol) at 0ºC under argon. After being stirred 

overnight, the reaction was quenched with MeOH (0.3mL) and concentrated. The 

mixture was dissolved in EtOAc, and the solution was washed with aq 1M HCl, 

saturated aq NaHCO3, water, and brine. The organic layer was dried over anhydrous 

MgSO4, filtered, and concentrated. The residue was purified by medium pressure 

column chromatography (7%- 60%; Hexane/EtOAc) to afford 20 as a white solid (517 

mg, 88%). The spectroscopic data of the compound were in agreement with the data 

previously reported in literature. 
3
 

 

Phenyl 2-O-Benzoyl-3-O-Benzyl-1-thio-α-L-idopyranose (21): To a solution of 1,6-

anhydro compound 20 (0.328 g, 0.920 mmol) in dry CH2Cl2 (3.5 mL), 

trimethyl(phenylthio)silane (0.57 mL, 3.0 mmol) and ZnI2 (0.65 g, 1.8 mmol) were 

added. The mixture was stirred at room temperature overnight, filtered through a pad of 

celite. The filtrate was diluted with CH2Cl2, after which a solution of HCl in dioxane 

and water were added. The mixture was stirred at room temperature for 15 min, the 

organic layer was washed with aq 1 M HCl solution, saturated NaHCO3 aq solution, and 

water, filtered and concentrated. The crude product was purified by flash 
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chromatography (hexane/EtOAc, 4/ 1 to 1/ 1) to obtain the compound 21 as a white 

solid (252 mg, 77%). 
1
H NMR (500 MHz, CDCl3) δ = 8.03 – 8.02 (m, 2H, aromatic); 

7.58 – 7.24 (m, 15H, aromatic), 5.64 (s, 1H, H-1), 5.54 (s, 1H, H-2), 4.93 – 4.90 (d, J = 

11.8Hz, 1H, CH2Ph), 4.78 (m, 1H, H-5), 4.67 (d, J = 11.8 Hz, 1H, CH2Ph), 3.97 (dd, J = 

11.8, 6.3 Hz, 1H, H-6a), 3.93 – 3.82 (m, 3H, H-6b, H-3, H-4), 3.10 – 2.51 (bs, 1H, OH), 

2.04 – 1.65 (bs, 1H, OH) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 165.0, 137.2, 135.6, 

133.7, 132.0, 129.7, 129.1, 128.7, 128.5, 128.0, 127.8, 127.7, 127.5, 86.7 (C-1), 74.0, 

72.3 (CBn), 69.9 (C-2), 68.4, 68.2, 63.3 (C-6) ppm; HRMS (ESI) m/z calcd for 

C26H26O6S [M+Na]+ 489.1348, found 489.1320.  

 

Phenyl 2-O-benzoyl-3-O-benzyl-6-O-dimethylthexylsilyl-1-thio-α-L-idopyranoside 

(23): To a solution of thiophenyl glycoside 21 (1.02 g, 2.19 mmol) in dry pyridine (9 

mL) a catalytic amount of DMAP was added, followed by addition of TDSCl (2.63 

mmol). The reaction mixture was stirred overnight at room temperature. TLC control 

(hexane/EtOAc, 2/1) indicated the full conversion of the starting material. The mixture 

was diluted with CH2Cl2 (100 mL) and was washed with saturated CuSO4 aq solution (3 

x 100 mL), water (100 mL) and brine (100 mL). The organic layer was dried over 

MgSO4, filtered and concentrated. The crude was purified by column chromatography 

on silica using a hexane/EtOAc (1/1 to 0/1). The title compound was obtained as a 

colorless oil (1.13 g, 85%). Rf  = 0.56 (Hexane/EtOAc, 4/1); 
1
H NMR (126 MHz, 

CDCl3) δ = 8.04 – 7.98 (m, 2H, aromatic), 7.60 – 7.53 (m, 3H, aromatic), 7.46 – 7.22 

(m, 10H, aromatic), 5.61 (bs, 1H, H-1), 5.50 – 5.48 (m, 1H, H-2), 4.91 (d, J = 12.0 Hz, 

1H, CH2Ph), 4.83 (td, J = 5.3, 1.5 Hz, 1H, H-5), 4.78 (d, J = 11.9 Hz, 1H, CH2Ph), 3.94 

– 3.85 (m, 4H, H-3, H-6ab, H-4), 3.01 (bs, OH), 1.68 – 1.60 (m, 1H, CHthexyl), 0.89 (d, J 

= 6.9 Hz, 6H, CH3thexyl), 0.87 (s, 6H, CH3thexyl), 0.11 (s, 6H, SiCH3) ppm; 
13

C NMR (126 

MHz, CDCl3) δ = 167.1,  129.8, 129.7, 133.4 , 131.6, 128.8, 128.2, 127.5, 127.1, 85.9, 

77.0, 72.7, 72.1, 69.8, 67.0, 67.2, 61.2, 37.7, 29.7, 27.8 ,27.7, 27.6, 20.1, 18.6, -3.4, -3.7 

ppm; MALDI-TOF: m/z calc. C34H44O6SSi: 631.25 [M+Na]
+
, found 631.33 [M+Na]

+
; 

HRMS (ESI) m/z calcd for C34H44O6SSi [M+Na]
+
 631.2526, found 631.2534. 

 

Phenyl 2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-1-thio-α-L-idopyranoside 

(24): A solution of compound 21 (2.20 g, 1.85 mmol) and p-methoxyphenol (2.92 g, 

23.5 mmol) in dry THF (6 mL) was added to a solution of DIAD (1.85 mL, 9.40 mmol), 

and triphenylphosphine (2.47 g, 9.40 mmol) in dry THF (5 mL). After stirring overnight 
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at room temperature the mixture was diluted with EtOAc and was washed with 1 M 

NaOH aq, water and brine. After drying over MgSO4 and concentration under reduced 

pressure the crude material was purified by column chromatography on silica using 

hexane/ EtOAc (3/1 to 1/1). The title compound was obtained as a colorless syrup (1.75 

g, 70%). Rf  = 0.38 (hexane / EtOAc, 3/1); [α]D
20 

= +8.8° (c = 1.0, CHCl3); 
1
H NMR 

(500 MHz, CDCl3) δ = 8.01 – 7.99 (m, 2H, aromatic), 7.66 – 7.65 (m, 2H, aromatic), 

7.61 – 7.57 (m, 1H, aromatic), 7.49 – 7.29 (m, 10H, aromatic), 6.90 (d, J = 9.2 Hz, 2H, 

aromaticPMP), 6.84 (d, J = 9.2 Hz, 2H, aromaticPMP), 5.61 (s, 1H, H-1), 5.56 – 5.54 (m, 

1H, H-2), 5.21 – 5.17 (m, 1H, H-5), 4.95 (d, J = 11.8 Hz, 1H, CH2Ph), 4.71 (d, J = 11.8 

Hz, 2H, CH2Ph), 4.25 (d, J = 5.9 Hz, 2H, H-6ab), 3.95 – 3.88 (m, 2H, H-3, H-4), 3.78 

(s, 3H, CH3PMP) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 164.9, 154.1, 153.0, 137.3, 

135.8, 133.7 - 127.8 (Carom), 115.6 - 114.7 (CaromPMP), 86.8 (C-1), 74.0 (C-3), 72.4 (CBn), 

70.1 (C-2), 68.3 (C-6), 67.6 (C-4), 67.2 (C-5), 55.7 (CH3PMP) ppm; MALDI-TOF m/z 

calcd for C33H32O7S 595.18 [M+Na]
+
, found 595.44. HRMS (ESI) m/z calcd for 

C33H32O7S [M+Na]
+
 595.1766, found 595.1754. 

 

Phenyl 2-O-Benzoyl-3-O-Benzyl-6-O-tert-butyldiphenylsilyl-4-O-levulinyl-1-thio-α- 

L-idopyranose (25): A solution of 21 (0.957 g, 2.05 mmol) in anhydrous pyridine (15 

mL), TBDPSCl (0.8 mL, 3.08 mmol) was added. After stirring overnight at room 

temperature under nitrogen, the mixture was diluted in EtOAc, was washed with water, 

CuSO4 sat. and brine. The resulting product 22 was filtered, dried under vacuum and 

was used in the next step without further purification. 
1
H NMR (500 MHz, CDCl3) δ 

8.00 (m, 2H, aromatic), 7.71 (d, 4H, aromatic), 7.60 – 7.28 (m, 19H, aromatic), 7.25 – 

7.18 (m, 3H, aromatic), 5.60 (s, 1H, H-1), 5.50 (s, 1H, H-2), 4.91 (d, J = 12.0Hz, 1H, 

CH2Ph), 4.81 (t, J = 5.1Hz, 1H, H-5), 4.68 (d, J = 11.9Hz, 1H, CH2Ph), 3.98 (d, J = 5.3, 

2H, H-6), 3.88 (s, 2H, H-3, H-4), 3.01 (s, 1H, OH), 1.06 (s, 9H, (CH3)3C). Levulination 

was carried out according to general procedure A using the crude product, levulinic acid 

(0.84 mL, 8.2 mmol), EDC·HCl and a catalytic amount of DMAP in dry CH2Cl2 (3.5 

mL). The mixture was stirred at room temperature overnight. The residue was purified 

by chromatography on silica gel (Hexane/EtOAc, 8/2) to afford the product 25 in 91% 

of yield (over 2 steps). 
1
H NMR (500 MHz, CDCl3) δ 8.14 – 8.08 (m, 2H, aromatic), 

7.72-7.21 (m, 23H, aromatic), 5.66 (s, 1H, H-1), 5.49 (m, 1H, H-4), 5.18 (s, 1H, H-2), 

5.01 – 4.93 (m, 2H, H-3, CH2Ph), 4.84 (d, J = 11.8Hz, 1H, CH2Ph), 4.03 (m, 1H, H-5), 

3.89 (dd, J = 6.4Hz, 4.1Hz, 2H,H-6), 2.56 (m, 2H; CH2(Lev)), 2.49 – 2.40 (m, 2H, 
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CH2(Lev)), 2.06 (s, 3H, CH3(Lev)), 1.09 (s, 9H, (CH3)3C ). 
13

C NMR (126 MHz, 

CDCl3) δ:
 13

C NMR (126 MHz, CDCl3) δ: 205.53 (qC), 171.86 (qC), 165.11 (qC), 

137.36, 135.88 (qC), 135.54, 133.37, 133.06, 133.01, 131.64, 129.74, 129.69, 129.47, 

128.78, 128.34, 127.72, 127.66, 127.45, 127.24, 86.09 (C-1), 72.63, 72.23 (C-5), 69.72 

(C-4), 67.14, 67.05 (C-2, C-3), 62.35 (C-6), 37.67 (CH2Lev), 29.50 (CH3(Lev)), 27.76 

(CH2Lev), 26.71 (CH3)3C), 19.07 (qC, TBDPS).  

 

Phenyl 2-O-benzoyl-3-O-benzyl-6-O-dimethylthexylsilyl-4-O-levulinoyl-1-thio-α-L-

idopyranoside (26): The reaction was carried out according to general procedure A of 

section 4.3 using compound 23 (1.13 g, 1.86 mmol), levulinic acid (1.30 g, 11.2 mmol), 

EDC·HCl (2.15 g, 11.2 mmol) and a catalytic amount of DMAP in dry CH2Cl2 (20 mL). 

The compound 20 was obtained as colorless syrup (860 mg, 65%). Rf  = 0.33 (hexane / 

EtOAc, 4/1); [α]D
20 

= -13.5° (c = 1.0, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ = 8.10 – 

8.05 (m, 2H, aromatic), 7.59 – 7.55 (m, 3H, aromatic), 7.47 – 7.43 (m, 4H, aromatic), 

7.39 – 7.36 (m, 2H, aromatic), 7.33 – 7.23 (m, 4H, aromatic), 5.64 (s, 1H, H-1), 5.46 – 

5.44 (m, 1H, H-2), 5.10 (s, 1H, H-4), 4.89 (d, J = 11.9 Hz, 1H, CH2Ph), 4.87 – 4.83 (td, 

J = 2.0, 6.5 Hz, 1H, H-5), 4.79 (d, J = 11.9 Hz, 1H, CH2Ph), 3.99 – 3.95 (m, 1H, H-3), 

3.82 – 3.77 (m, 2H, H-6ab), 2.67 – 2.52 (m, 3H, CH2Lev), 2.47 – 2.38 (m, 1H, CH2Lev), 

2.07 (s, 3H, CH3Lev), 1.66 – 1.58 (m, 1H, CHthexyl), 0.90 (d, J = 6.9 Hz, 6H, CH3thexyl), 

0.85  (2s, 6H, CH3thexyl), 0.13 (s, 3H, SiCH3), 0.11 (s, 3H, SiCH3) ppm; 
13

C NMR (126 

MHz, CDCl3) δ = 205.9, 172.1, 165.2, 137.5, 136.4, 133.6 - 127.3 (Caromatic), 86.1 (C-1), 

72.8 (CBn), 72.3 (C-3), 70.0 (C-2), 67.4 (C-5), 67.2 (C-4), 61.4 (C-6), 37.8 (CH2Lev), 

34.2 (CHthexyl), 29.7 (CH3Lev), 28.0 (CH2Lev), 25.2 (Cqthexyl), 20.3, 20.2, 18.6 (CH3thexyl), 

-3.5, -3.7 (Si(CH3)2) ppm; HRMS (ESI): m/z  calcd. for C39H50O8SSi [M+Na]
+
 

729.2893, found 729.2894. 

 

Phenyl 2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-6-O-p-methoxyphenyl-1-thio-α-L-

idopyranoside (27): The reaction was carried out according to general procedure A of 

section 4.3 using compound 24 (246 mg, 420 µmol), levulinic acid (146 mg, 1.26 

mmol), EDC·HCl (242 mg, 1.26 mmol) and a catalytic amount of DMAP in dry CH2Cl2 

(3 mL). The compound 11 was obtained as a colorless syrup (259 mg, 90%). Rf  = 0.22 

(hexane/ EtOAc, 3/1); [α]D
20 

= - 15.1° (c = 1.0, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ 

= 7.89 – 7.80 (m, 2H, aromatic), 7.59 – 7.54 (m, 2H, aromatic), 7.52 – 7.48 (m, 1H, 

aromatic), 7.42 – 7.19 (m, 10H, aromatic), 6.88 (d, J = 9.2 Hz, 2H, aromaticPMP), 6.83 
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(d, J = 9.2 Hz, 2H, aromaticPMP), 5.59 (bs, 1H, H-1), 5.48 – 5.46 (m, 1H, H-2), 5.28 – 

5.24 (m, 1H, H-5), 5.15 (bs, 1H, H-4), 4.93 (d, J = 11.8 Hz, 1H, CH2-Ph), 4.79 (d, J = 

11.7 Hz, 1H, CH2-Ph), 4.18 (dd, J = 9.9, 7.2 Hz, 1H, H-6a), 4.10 (dd, J = 9.9, 5.2 Hz, 

1H, H-6b), 3.96 – 3.94 (m, 1H, H-3), 3.77 (s, 3H, CH3PMP), 2.64 – 2.48 (m, 3H, CH2Lev), 

2.40 – 2.34 (m, 1H, CH2Lev), 2.06 (s, 3H, CH3Lev) ppm; 
13

C NMR (126 MHz, CDCl3) δ 

= 206.1, 172.6, 165.3, 154.2, 152.9, 137.4, 135.9, 133.6 – 127.6 (Carom), 115.8, 114.7 

(Carom-PMP), 86.3 (C-1), 72.8 (CBn), 72.2 (C-3), 69.3 (C-2), 67.7 (C-6), 67.5 (C-4), 65.5 

(C-5), 55.8 (CH3PMP), 37.8 (CH2Lev), 29.7 (CH3Lev), 28.0 (CH2Lev) ppm; HRMS (ESI): 

m/z calcd for C38H38O9S [M+Na]
+ 

693.2134
 
, found 693.2120. 

 

2-O-Benzoyl-3-O-benzyl-6-O-dimethylthexylsilyl-4-O-levulinoyl--L-

idopyranosyl trichloroacetimidate (29): The thioglycoside 26 (820 mg, 1.16 mmol) 

was hydrolyzed using NIS (662 mg, 2.94 mmol) and TfOH (11 µL, 0.12 mmol) in wet 

THF at room temperature for 6 h. The reaction mixture was quenched with saturated 

NaHCO3aq solution and solid Na2S2O3. The mixture was filtered and washed with 

saturated NaHCO3 aq. solution, water and brine. The organic layer was dried over 

MgSO4, filtered and concentrated. The reaction crude was purified by column 

chromatography on silica (hexane/ EtOAc, 4/1). The intermediate hemiacetal was 

obtained as a colorless syrup and used in the next step without further purification (534 

mg, 75%). Rf  = 0.23 (hexane/ EtOAc, 4/1); MALDI-TOF m/z calcd for C33H46O9Si 

[M+Na]
+
 637.28, found 637.57. 2-O-Benzoyl-3-O-benzyl-6-O-dimethylthexylsilyl-4-O-

levulinoyl--L-idopyranose (753 mg, 1.25 mmol) and trichloroacetonitrile (2.51 mL, 

25 mmol) were dissolved in anhydrous CH2Cl2 (10 mL) with activated 4 Å molecular 

sieves. After 30 minutes stirring the solution was cooled to 0 °C and DBU (55 µL, 0.38 

mmol) was added. After 2 h, TLC (hexane/ EtOAc, 4/1) indicated complete conversion 

of the starting material. The mixture was concentrated under reduced pressure and 

purified by column chromatography on silica (hexane / EtOAc, 1/0 to 4/1 with 1% of 

triethylamine) to obtain the compound 29 as a colorless solid,  mixture (ratio 5.8/1) 

(683 mg, 72%). Rf  = 0.23 (hexane/ EtOAc, 4/1); α-anomer: 
1
H NMR (500 MHz, 

CDCl3)δ = 8.63 (s, 1H, OCNHCCl3), 8.10 (d, J = 7.7 Hz, 2H, aromatic), 7.59 (t, J = 7.4 

Hz, 1H, aromatic), 7.49 – 7.24 (m, 7H, aromatic), 6.41 (s, 1H, H-1), 5.38 (s, 1H, H-2), 

5.12 (bs, 1H, H-4), 4.84 (d, J = 11.6Hz, 1H, CH2Ph), 4.75 (d, J  = 11.6 Hz, 1H, CH2Ph), 

4.55 (t, J  = 6.5 Hz, 1H, H-5), 3.99 (s, 1H, H-3), 3.80 – 3.70 (m, 2H, H-6), 2.64 – 2.36 
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(m, 4H, 2CH2Lev), 2.07 (s, 3H, CH3Lev), 1.28 – 1.24 (m, 1H, CHthexyl), 0.85 (d, J = 6.7 

Hz, 2 x 3H, CH3thexyl), 0.81 (s, 6H, CH3thexyl), 0.08 (s, 3H, SiCH3), 0.07 (s, 3H, SiCH3) 

ppm; 
13

C NMR (126 MHz, CDCl3) δ = 205.4, 171.9, 165.0, 129.7 – 127.4 (Carom), 94.9 

(C-1), 72.3 (CBn), 71.9 (C-3), 68.5 (C-5), 66.5 (C-2), 66.3 (C-4), 61.1 (C-6), 37.7 

(CH2Lev), 33.9 (CHthexyl) 29.7 (CH3Lev) 27.9 (CH2Lev), 27.8 (CH2Lev), 20.2 (CH3thexyl), 

18.5 (CH3thexyl), -4.1 (SiCH3) ppm; MALDI-TOF m/z calcd for C35H46Cl3NO9Si 

[M+Na]
+
 780.19, found 780.10.  

 

2-O-Benzoyl-3-O-benzyl-4-O-levulinoyl-6-O-p-methoxyphenyl-/β-L-idopyranosyl 

trichloroacetimidate (30): The thioglycoside 27 (2.10 g, 3.13 mmol) was hydrolyzed 

using NIS (1.76 g, 7.83 mmol) and TfOH (27 µL, 0.31 mmol) in wet THF at room 

temperature for 6 h. The reaction mixture was quenched with saturated NaHCO3 aq 

solution and solid Na2S2O3. The mixture was filtered and washed with saturated 

NaHCO3 solution, water and brine. The reaction crude was purified by column 

chromatography on silica (hexane / EtOAc, 4/1). Rf = 0.21 (hexane/ EtOAc, 2/1); 

MALDI-TOF m/z calcd for C33H46O9Si [M+Na]
+
 637.28, found 637.57. 2-O-Benzoyl-3-

O-benzyl-4-O-levulinoyl-6-O-p-methoxyphenyl-/β-L-idopyranose (3.13 mmol) and 

trichloroacetonitrile (3.14 mL, 31.3 mmol) were dissolved in anhydrous CH2Cl2 (16 

mL) with activated 4 Å molecular sieves. After 30 minutes stirring the solution was 

cooled to 0 °C and DBU (417 µL, 0.32 mmol) was added. After 2 h, TLC (hexane/ 

EtOAc, 3/1) indicated complete conversion was the starting material. The mixture was 

concentrated under reduced pressure and was purified by column chromatography on 

silica (hexane 100% → hexane/ EtOAc, 2/1) to obtain the compound 30 as a colorless 

syrup, mixture (ratio 2/1) (1.27 g, 56% over 2 steps). Rf  = 0.40 (hexane/ EtOAc, 

2/1); 
1
H NMR (500 MHz, CDCl3) δ = 8.61 (s, 1H, OCNHCCl3), 8.09 – 7.93 (m, 2H, 

aromatic), 7.56 – 7.45 (m, 1H, aromatic), 7.43 – 7.20 (m, 7H, aromatic), 6.83 – 6.65 (m, 

4H, aromaticPMP), 6.38 (s, 1H, H-1), 5.33 (s, 1H, H-2), 5.13 (s, 1H, H-4), 4.81 (d, J = 

11.6 Hz, 1H, CH2Ph), 4.74 (s, 1H, H-5), 4.69 (d, J = 11.6 Hz, 1H, CH2Ph), 4.10 – 4.07 

(m, 1H, H-6a), 4.01 – 3.95 (m, 1H, H-6b), 3.93 (s, 1H, H-3), 3.68 (s, 3H, CH3PMP), 2.55 

– 2.22 (m, 4H, CH2Lev), 1.97 (s, 3H, CH3Lev) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 

205.9, 172.0, 165.5, 165.1, 160.6, 160.3, 154.2, 152.4, 133.6 - 128.2 (Carom), 115.9 – 

114.6 (CaromPMP), 94.8 (C-1), 72.5 (CBn), 71.9 (C-3), 67.5 (C-2), 67.1 (C-6), 66.5 (C-5), 

66.0 (C-4), 55.7 (CH3PMP), 37.7 (CH2Lev), 29.7 (CH3Lev), 27.8 (CH2Lev) ppm; MALDI-
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TOF m/z calcd for C35H46Cl3NO9Si [M+Na]
+
 780.19, found 780.10; HRMS (ESI): m/z 

calcd for C34H34Cl3NO10 [M+Na]
+ 

744.1146, found 744.1146. 

 

Phenyl 2-O-benzoyl-3-O-benzyl-4,6-O-benzyliden-1-thio--L-idopyranoside (31): 

To a solution of diol 21 (500 mg, 1.07 mmol) and benzyladehyde dimethyl acetal (10.7 

mmol, 1.1 mL) in DMF (5 mL) a catalytic amount of CSA was added and the mixture 

was heated to 60 °C under reduced pressure for 5 h. After cooling to room temperature 

the mixture was diluted with CH2Cl2 (100 mL) and the organic layer was washed 

saturated NH4Cl aq solution (3 x 100 mL), water (100 mL) and brine (100 mL). After 

drying over MgSO4 and concentration under reduced pressure the crude material was 

purified by column chromatography on silica using hexane/ EtOAc (4/1 to 2/1). The 

title compound was obtained as a colorless syrup (468 mg, 79%). Rf  = 0.56 (hexane / 

EtOAc, 3/1); [α]D
20 

= +42.5° (c = 1.0, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ = 7.88 (d, 

J = 8.3, 2H, aromatic), 7.51 – 7.07 (m, 18H, aromatic), 5.75 (bs, 1H, H-1), 5.52 (s, 1H, 

Hacetal), 5.48 – 5.43 (bs, 1H, H-2), 4.91 (d, J = 11.8 Hz, 1H, CH2Ph), 4.64 (d, J  = 11.8 

Hz, 1H, CH2Ph), 4.45 (bs, 1H, H-5), 4.32 (d, J = 12.6 Hz, 1H, H-6a), 4.13 (d, J = 12.6 

Hz, 1H, H-6b), 4.05 (bs, 1H, H-4), 3.85 (bs, 1H, H-3); 
13

C NMR (126 MHz, CDCl3) δ = 

165.7 (Cq), 137.8 - 126.3 (Carom), 101.0 (Cacetal), 85.9 (C-1), 73.2 (C-4), 73.1 (C-3), 72.4 

(CBn), 69.9 (C-6), 67.8 (C-2), 60.6 (C-5) ppm; MALDI-TOF m/z calcd for C33H30O6S 

577.17 [M+Na]
+
, found 577.36; HRMS (ESI) m/z calcd for C33H30O6S [M+Na]

+
 

577.1661, found 577.1683. 

 

Phenyl 2-O-benzoyl-3-O-benzyl-4,6-O-p-methoxybenzyliden-1-thio--L-

idopyranoside (32): To a solution of diol 21 (250 mg, 536 µmol) and p-anisaldehyde 

(650 µL, 5.36 mmol) in toluene (5 mL), a catalytic amount of CSA was added and the 

mixture was heated under reflux using Dean-Stark aparatus for 2 h. After cooling to 

room temperature, the mixture was neutralized with triethylamine and the crude was 

concentrated under reduced pressure. The crude material was purified by column 

chromatography on silica using hexane/ EtOAc (4/1 to 2/1). The title compound was 

obtained as a colorless syrup (263 mg, 84%). Rf  = 0.65 (hexane / EtOAc, 3/1); [α]D
20 

= -

77.3 ° (c = 1.0, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ 8.01 – 7.97 (m, 2H, aromatic), 

7.60 – 7.20 (m, 15H, aromatic), 6.79 (m, 2H, aromaticPMP), 5.83 (bs, 1H, H-1), 5.57 – 

5.51 (m, 2H, H-2, Hacetal), 4.99 (d, J = 11.8 Hz, 1H, CH2Ph), 4.72 (d, J = 11.8 Hz, 1H, 

CH2Ph), 4.52 (bs, 1H, H-5), 4.38 (dd, J = 12.7, 1.7 Hz, 1H, H-6a), 4.19 (dd, J = 12.8, 



Experimental part 

 

146 

 

2.0 Hz, 1H, H-6b), 4.11 (bs, 1H, H-4), 3.92 (bs, 1H, H-3), 3.80 (s, 3H, CH3PMP) ppm; 

13
C NMR (126 MHz, CDCl3) δ = 165.8, 160.3, 137.4, 136.7, 133.2, 130.6, 130.6, 130.2, 

129.7, 129.1, 128.7, 128.3, 128.2, 128.0, 127.8, 127.1, 113.5, 101.2 (Cacetal), 86.1 (C-1), 

73.3 (C-3), 73.3 (C-4), 72.6 (CBn), 70.1 (C-6), 68.1 (C-2), 60.7 (C-5), 55.4 (CH3PMP) 

ppm. MALDI-TOF m/z calcd for C34H32O7S 607.18 [M+Na]
+
, found 607.9; HRMS 

(ESI) m/z calcd for C34H32O7S [M+Na]
+
 607.1766, found 607.1776. 

 

Phenyl 2-O-benzoyl-3,6-di-O-benzyl-1-thio--L-idopyranoside (33): Under argon 

atmosphere trifluoroacetic acid (172 µL, 2.25 mmol) was added slowly to a solution of 

the acetal 22 (250 mg, 451 µmol) and triethylsilane (360 µL, 2.25 mmol) in dry THF (2 

mL) at 0 °C and stirred for 2 h. The mixture was diluted with CH2Cl2 (25 mL) and 

washed with saturated NaHCO3 aq solution. After drying over MgSO4 and 

concentration under reduced pressure the crude material was purified by column 

chromatography on silica using hexane/ EtOAc (3/1 to 1/1). The title compound was 

obtained as a colorless syrup (175 mg, 70%). Rf  = 0.40 (hexane / EtOAc, 3:1); [α]D
20 

= 

+25.9° (c = 1.0, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ = 8.03 – 7.99 (m, 2H, 

aromatic), 7.62 – 7.56 (m, 3H, aromatic), 7.48 – 7.42 (m, 4H, aromatic), 7.40 – 7.28 (m, 

8H, aromatic), 7.26 – 7.20 (m, 3H, aromatic), 5.62 (s, 1H, H-1), 5.54 – 5.51 (m, 1H, H-

2), 5.03 – 4.99 (m, 1H, H-5), 4.93 (d, J = 11.8 Hz, 1H, CH2Ph), 4.68 (d, J = 11.8 Hz, 

1H, CH2Ph), 4.64 (d, J = 11.8 Hz, 1H, CH2Ph), 4.59 (d, J = 11.8 Hz, 1H, CH2Ph), 3.92 

– 3.81 (m, 1H, H-3, H-4, H-6ab), 2.72 (bs, 1H, OH) ppm; 
13

C NMR (126 MHz, CDCl3) 

δ = 165.2, 138.1, 137.5, 136.0, 133.7 – 127.7 (Caromatic), 86.9 (C-1), 74.3 (C-3), 73.6 

(CBn), 72.5 (CBn), 70.5 (C-6), 70.1 (C-2), 68.1 (C-4), 67.4 (C-5) ppm; MALDI-TOF m/z 

calc C33H32O6S [M+Na]
+
 579.18, found 579.25; HRMS (ESI) m/z calcd for C33H32O6S 

[M+Na]
+
 579.1817, found 579.1809. 

 

Phenyl 2-O-benzoyl-3-O-benzyl-6-O-p-methoxybenzyl-1-thio--L-idopyranoside 

(34): Under argon atmosphere iodine (416 mg, 1.64 mmol) was added portionwise in 5 

min to a solution of the acetal 32 (240 mg, 410 µmol) and sodium cyanoborohydride 

(258 mg, 4.10 mmol) in dry CH2Cl2 (2 mL) at -20 °C and stirred for 15 min. The 

mixture was diluted with CH2Cl2 (25 mL) and washed with saturated NaHCO3 aq 

solution. After drying over MgSO4 and concentration under reduced pressure the crude 

material was purified by column chromatography on silica using hexane/ EtOAc (3/1 to 

1/1). The title compound was obtained as a colorless syrup (146 mg, 61%). Rf  = 0.34 
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(hexane /EtOAc, 3:1); [α]D
20 

= -97.7° (c = 1.0, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ 

8.02 – 7.97 (m, 2H, aromatic), 7.61 – 7.55 (m, 3H, aromatic), 7.48 – 7.40 (m, 4H, 

aromatic), 7.40 – 7.35 (m, 2H, aromatic), 7.34 – 7.21 (m, 6H, aromatic), 6.90 – 6.85 (m, 

2H, aromaticPMB), 5.61 (bs, 1H, H-1), 5.52 – 5.49 (m, 1H, H-2), 4.99 – 4.95 (m, 1H, H-

5), 4.91 (d, J = 11.8 Hz, 1H, CH2Ph), 4.67 (d, J = 11.8 Hz, 1H, CH2Ph), 4.57 (d, J = 

11.5 Hz, 1H, CH2PMB), 4.51 (d, J = 11.4 Hz, 1H, CH2PMB), 3.88 (td, J = 2.9, 1.4 Hz, 1H, 

H-3), 3.86 – 3.76 (m, 6H, H-4, H-6, CH3PMB), 2.87 (bs, 1H, OH) ppm; 
13

C NMR (126 

MHz, CDCl3): 165.2, 159.4, 137.5, 136.0, 133.7, 132.2, 130.2, 129.9, 129.5, 129.5, 

129.4, 129.0, 128.8, 128.7, 128.6, 128.1, 128.0, 127.9, 127.7, 113.9, 86.9 (C-1), 74.3 

(C-3), 73.3 (CBn), 72.5 (CBn), 70.2 (C-6), 70.0 (C-2), 68.2 (C-4), 67.4 (C-5), 55.4 

(CH3PMB) ppm; MALDI-TOF  m/z calcd for C34H34O7S [M+Na]
+
 609.19, found 608.96; 

HRMS (ESI) m/z calcd for C34H34O7S [2M+NH4]
+
 1190.4389, found 1190.4389. 

 

Phenyl 2-O-benzoyl-3,6-di-O-benzyl-4-O-levulinoyl-1-thio--L-idopyranoside (35): 

The reaction was carried out according to general procedure A of section 4.3 using 

compound 33 (220 mg, 395 µmol), levulinic acid (140 mg, 1.18 mmol), EDC·HCl (225 

mg, 1.18 mmol) and a catalytic amount of DMAP in dry CH2Cl2 (3 mL). The compound 

9 was obtained as colorless syrup (258 mg, 94%). Rf  = 0.45 (hexane/ EtOAc, 3/1); 

[α]D
20 

= -10.7° (c = 1.0, CHCl3); 
1
H NMR (500 MHz, CDCl3, 25) δ = 8.08 – 8.06 (m, 

2H, aromatic), 7.59 – 7.54 (m, 3H, aromatic), 7.42 – 7.19 (m, 15H, aromatic), 5.62 (s, 

1H, H-1), 5.45 – 5.42 (m, 1H, H-2), 5.13 – 5.09 (m, 1H, H-5), 5.08 – 5.06 (m, 1H, H-4), 

4.90 (d, J = 11.8 Hz, 1H, CH2Ph), 4.77 (d, J = 11.8 Hz, 1H, CH2Ph), 4.58 (d, J = 11.4 

Hz, 1H, CH2Ph), 4.53 (d, J = 11.8 Hz, 1H, CH2Ph), 3.92 – 3.90 (m, 1H, H-3), 3.76 – 

3.71 (m, 1H, H-6a), 3.71 – 3.66 (m, 1H, H-6b), 2.65 – 2.43 (m, 3H, CH2Lev), 2.40 – 2.31 

(m, 1H, CH2Lev), 2.06 (s, 3H, CH3Lev) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 205.8, 

171.9, 165.2, 133.3 – 125.1 (Carom), 86.1 (C-1), 72.7 (CBn),  71.9 (CBn), 71.5 (C-3), 70.7 

(C-2), 68.5 (C-6), 67.2 (C-4), 66.4 (C-5), 37.7 (CH2Lev), 28.5 (CH3Lev), 29.2 – 21.0 

(CH2Lev) ppm; HRMS (ESI): m/z  calcd. for C38H38O8S [M+Na]
+
 677.2180, found 

677.2155.  

 

Phenyl 2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-6-O-p-methoxybenzyl-1-thio--L-

idopyranoside (36): The reaction was carried out according to general procedure A of 

section 4.3 using compound 34 (127 mg, 216 µmol), levulinic acid (50mg, 433 µmol), 

EDC·HCl (83 mg, 0.433 µmol) and a catalytic amount of DMAP in dry CH2Cl2 (2 mL). 
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The compound 36 was obtained as a colorless syrup (120 mg, 81%). Rf  = 0.25 (hexane/ 

EtOAc, 3/1); [α]D
20 

= -49.6° (c = 1.0, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ 8.11 – 

8.05 (m, 2H, aromatic), 7.61 – 7.54 (m, 3H, aromatic), 7.49 – 7.40 (m, 4H, aromatic), 

7.40 – 7.36 (m, 2H, aromatic), 7.34 – 7.29 (m, 1H, aromatic), 7.28 – 7.21 (m, 5H, 

aromatic), 6.87 (d, J = 8.6 Hz, 1H, aromaticPMB), 5.62 (bs, 1H, H-1), 5.44 (m, 1H, H-2), 

5.11 – 5.03 (m, 2H, H-4, H-5), 4.90 (d, J = 11.8 Hz, 1H, CH2Ph), 4.77 (d, J = 11.8 Hz, 

1H, CH2Ph), 4.52 (d, J = 11.4 Hz, 1H, CH2PMB), 4.46 (d, J = 11.5 Hz, 1H, CH2PMB), 

3.93 – 3.90 (m, 1H, H-3), 3.80 (s, 3H, CH3PMB), 3.72 (dd, J = 9.9, 6.8 Hz, 1H, H-6a), 

3.66 (dd, J = 10.0, 5.4 Hz, 1H, H-6b), 2.66 – 2.57 (m, 1H, CH2Lev), 2.57 – 2.44 (m, 2H, 

CH2Lev), 2.39 – 2.31 (m, 1H, CH2Lev), 2.07 (s, 3H, CH3Lev) ppm; 
13

C NMR (126 MHz, 

CDCl3): 206.0, 172.1, 165.3, 159.3, 137.4, 136.0, 133.6, 132.1, 132.1, 130.3, 130.0, 

130.0, 129.7, 129.6, 129.5, 129.1, 129.1, 129.0, 128.6, 128.5, 127.9, 127.7, 127.7, 

127.6, 113.8 (CaromaticPMB), 86.3 (C-1), 73.1 (CH2PMB), 72.8 (CBn), 72.3 (C-3), 69.5 (C-

2), 68.7 (C-6), 67.6 (C-4), 65.8 (C-5), 55.4 (CH3PMB), 37.9 (CH2Lev), 29.8 (CH3Lev), 27.9 

(CH2Lev) ppm; HRMS (ESI): m/z calcd for C39H40O9S [M+NH4]
+
 702.2731 found 

702.2722. 

 

Phenyl 6-O-acetyl-2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-1-thio-α-L-

idopyranoside (37): To a solution of 25 (400 mg, 0.498 mmol) in THF (2 mL) at 0 °C, 

HF-pyr (1 mL) was added. The reaction mixture was allowed to warm to room 

temperature and it was stirred overnight. Next, the reaction was quenched by addition of 

saturated NaHCO3aq solution and solid NaHCO3 and was washed with saturated 

NaHCO3aq solution and water. The organic layer was dried over MgSO4 and 

concentrated. Flash chromatography (hexane/EtOAc, 1/0 to 8/2) afforded phenyl 2-O-

benzoyl-3-O-benzyl-4-O-levulinoyl-1-thio-α-L-idopyranoside (141 mg, 50%). 
1
H NMR 

(500 MHz, CDCl3)  = 8.16 – 8.08 (m, 2H, aromatic), 7.64 – 7.56 (m , 3H, aromatic), 

7.54 – 7.26 (m, 10H, aromatic), 5.64 (s, 1H, H-1), 5.52 – 5.48 (m, 1H, H-2), 5.14 – 5.10 

(m, 1H, H-5), 4.99 – 4.91 (m, 1H, H-4), 4.94 (d, J = 11.8 Hz, 1H, CH2Ph), 4.80 (d, J = 

11.8 Hz, 1H, CH2Ph), 3.96 – 3.91 (m, 1H, H-3), 3.85 (dd, J = 11.6, 6.9 Hz, 1H, H-6a), 

3.76 (dd, J = 11.6, 6.3 Hz, 1H, H-6b), 2.79 – 2.69 (m, 1H, CH2Lev), 2.69 – 2.56 (m, 2H, 

CH2Lev), 2.44 – 2.34 (m, 1H, CH2Lev), 2.12 (s, 3H, CH3Lev) ppm; 
13

C NMR (126 MHz, 

CDCl3)  206.4, 172.5, 165.1, 137.1, 135.6, 133.5, 131.8, 129.7, 129.4, 129.0, 128.4, 

128.4, 127.8, 127.5, 86.1, 72.5, 72.1, 69.1, 67.2, 66.8, 61.1, 37.8, 29.5, 27.8 ppm; 

MALDI-TOF m/z calcd for C31H32O8S [M+Na]
+
 587.2, found 587.4. To a solution of 
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phenyl 2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-1-thio-α-L-idopyranoside (0.095 g, 

0.168 mmol) in CH2Cl2 (1 mL) at 0 °C, pyridine (0.020 mL, 0.252 mmol) and acetic 

anhydride (0.021 g, 0.202 mmol) were added. The reaction was allowed to warm to 

room temperature and was stirred until completion. The mixture was diluted with 

CH2Cl2, washed with saturated CuSO4 aq solution and water. The organic layer was 

dried over MgSO4, filtered and concentrated in vacuum. Flash column chromatography 

(hexane/EtOAc, 1:0 to 7:3) afforded 37 as colorless syrup (102 mg, quantitative). 
1
H 

NMR (500 MHz, CDCl3)  = 8.15 – 8.08 (m, 2H, aromatic), 7.65 – 7.56 (m, 3H, 

aromatic), 7.54 – 7.25 (m, 10H, aromatic), 5.70 – 5.64 (m, 1H, H-1), 5.50 – 5.44 (m, 

1H, H-2), 5.16 – 5.09 (m, 1H, H-5), 5.07 – 5.02 (m, 1H, H-4), 4.94 (d, J = 11.8 Hz, 1H, 

CH2Ph), 4.79 (d, J = 11.7 Hz, 1H, CH2Ph), 4.33 (dd, J = 7.9, 11.5 Hz, 1H, H-6a), 4.28 

(dd, J = 5.0, 11.5 Hz, 1H, H-6b), 3.98 – 3.92 (m, 1H, H-3), 2.72 – 2.52 (m, 3H, CH2Lev), 

2.47 – 2.37 (m, 1H, CH2Lev), 2.11 (s, 3H, CH3Lev), 2.07 (s, 3H, CH3Ac) ppm; 
13

C NMR 

(126 MHz, CDCl3)  205.7, 171.9, 170.5, 165.0, 137.1, 135.7, 133.5, 131.7, 129.8, 

129.4, 128.8, 128.4, 128.3, 127.9, 127.6, 127.5, 86.0 (C-1), 72.7 (CBn), 71.9 (C-3), 68.8 

(C-2), 67.0 (C-4), 64.6 (C-5), 62.7 (C-6), 37.7 (CH2Lev), 29.5 (CH3Lev), 27.8 (CH2Lev), 

20.7 (CH3Ac) ppm; LRMS (MALDI-TOF) m/z calcd for C33H34O9S [M+Na]
+
 629.2, 

found 629.7; HRMS (ESI): m/z calcd for C33H34O9S [M+Na]
+
 629.1821, found 

629.1844. 

 

Phenyl 2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-1-thio-6-O-tri-iso-

propylsiloxymethyl-α-L-idopyranoside (38): To a solution of 25 (260 mg, 0.460 

mmol) in CH2Cl2 (2 mL) at 0 °C, freshly distilled DIPEA (0.402 mL, 2.302 mmol) and 

(triisopropylsiloxy)methyl chloride (0.260 mL, 0.921 mmol) were added. The reaction 

was allowed to warm to room temperature and was stirred until completion. The 

mixture was diluted with CH2Cl2, washed with water, dried over MgSO4 and 

concentrated in vacuum. Flash column chromatography (hexane/EtOAc, 1:0 to 8:2) 

afforded 38 as a colorless syrup (220 mg, 64%). 
1
H NMR (500 MHz, CDCl3)  = 8.15 – 

7.10 (m, 15H, aromatic), 5.63 (s, 1H, H-1), 5.50 – 5.44 (m, 1H, H-2), 5.11 – 5.05 (m, 

2H, H-4, H-5), 4.99 – 4.93 (m, 2H, CH2TOM), 4.92 (d, J = 11.8 Hz, 1H, CH2Ph), 4.81 (d, 

J = 11.8 Hz, 1H, CH2Ph), 3.98 – 3.93 (m, 1H, H-3), 3.88  – 3.78 (m, 2H, H-6ab), 2.71 – 

2.52 (m, 3H, CH2Lev), 2.49 – 2.39 (m, 1H, CH2Lev), 2.10 (s, 3H, CH3Lev), 1.11 – 1.07 (m, 

21H, 6CH3TOM, 3CHTOM); 
13

C NMR (126 MHz, CDCl3)  205.7, 172.0, 165.2, 137.3, 
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135.9, 133.4, 131.94, 129.8, 129.5, 128.8, 128.4, 127.8, 127.5, 127.4, 90.1 (CH2TOM), 

86.2 (C-1), 72.6 (CBn), 72.0 (C-3), 69.4 (C-2), 67.4 (C-4), 66.3 (C-6), 65.6 (C-5), 37.8 

(CH2Lev), 29.6 (CH3Lev), 27.8 (CH2Lev), 17.8 (CH3TOM), 12.0 (CHTOM) ppm. LRMS 

(MALDI-TOF) m/z calcd for C41H54O9SSi [M+Na]
+
 774.00, found 773.95. HRMS 

(ESI): m/z calcd for C41H54O9SSi [M+Na]
+
 773.3156, found 773.3118. 

 

5.6.1.1 Synthesis of the Ido non-reducing end building block 

 

Phenyl 2-O-benzoyl-3,4-di-O-benzyl-6-O-p-methoxyphenyl-1-thio-α-L-

idopyranoside (39): 27 (0.637 g, 1.29 mmol) was dissolved in pyridine (2 mL) and 

TMSCl (0.4 mL, 7.8 mmol) was added at 0 °C. After stirring for 2h at room 

temperature, the reaction mixture was diluted with EtOAc (50 mL) and was washed 

with water, saturated CuSO4 aq solution, water and brine (10 mL each). The crude was 

concentrated, dried under vacuum and used in the next reaction without further 

purification. To a solution of this intermediate in dry CH2Cl2 (13 mL), 4 Å molecular 

sieves (0.400 g) and benzaldehyde (0.16 mL, 1.55 mmol) were added and after stirring 

the suspension for 1h at room temperature. The reaction mixture was cooled at -78 °C, 

triethylsilane (0.25 mL, 1.55 mmol) and TMSOTf (23 µL, 0.13 mmol) were added via 

microsyringe. After stirred for 3h, TLC analysis showed the presence of some starting 

material. Additional volume of TMSOTf (0.5 eq) was added and the reaction mixture 

was gradually warmed up. After stirred overnight, the reaction was diluted with CH2Cl2 

(50 mL) and was washed with saturated NaHCO3 aq solution, water and brine. The 

crude product was purified by column chromatography (hexane/EtOAc, 95:5 to 80:20) 

to obtain compound 39 (600 mg, 70%). [α]D
20 

- 43.1 (c 0.5, CHCl3); 
1
H NMR (500 

MHz, CDCl3) δ 8.06 – 8.01 (m, 2H, aromatic), 7.66 – 7.60 (m, 2H, aromatic), 7.56 – 

7.46 (m, 3H, aromatic), 7.45 – 7.39 (m, 2H, aromatic), 7.38 – 7.18 (m, 9H, aromatic), 

7.17 – 7.11 (m, 2H, aromatic), 6.91 – 6.83 (m, 4H, aromaticPMP), 5.66 (s, 1H, H-1), 5.55 

– 5.53 (m, 1H, H-2), 5.11 (td, J = 6.3, 2.0 Hz, 1H, H-5), 4.97 (d, J = 11.9 Hz, 1H, 

CH2Ph), 4.70 (d, J = 11.9 Hz, 1H, CH2Ph), 4.54 (d, J = 11.4 Hz, 1H, CH2Ph), 4.40 (d, J 

= 11.4 Hz, 1H, CH2Ph), 4.25 (d, J = 6.3 Hz 2H, H-6), 4.07 – 4.02 (m, 1H, H-3), 3.83 – 

3.77 (s, 3H, CH3PMP), 3.75 – 3.70 (m, 1H, H-4) ppm; 
13

C NMR (126 MHz, CDCl3) δ 

165.8, 154.1, 153.0, 137.6, 137.5, 136.2, 133.3, 131.7, 130.1, 129.7, 129.0, 128.6, 

128.4, 128.4, 128.1, 128.0, 127.9, 127.4, 115.6, 114.7, 86.1, 73.4, 72.6, 72.5, 71.1, 69.5, 
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67.4, 67.0, 55.8 ppm; HRMS (ESI) m/z: [M+Na]
+
  Calcd for C40H38O7SNa  685.2230; 

Found 685.2217. 

 

2-O-benzoyl-3,4-di-O-benzyl-6-O-p-methoxyphenyl-α/β-L-idopyranosyl 

trichloroacetimidate (41): Compound 39 (527 mg, 0.79 mmol) was dissolved in 

acetone/ water (9/1; 11 mL) and freshly recristallyzed NBS (155 mg, 0.87 mmol) was 

added in portions by spatula over 10 min at room temperature with vigorous stirring. 

After 45 minutes, TLC analysis showed presence of some starting material and 

additional NBS (84 mg, 0.47 mmol) was added. After 30 min, the reaction was diluted 

with EtOAc and was washed with 1M Na2S2O3 aq solution, water and brine. The 

reaction crude was dried over anhydrous MgSO4, concentrated and purified by column 

chromatography (hexane/EtOAc, 1:0 to 8:2) to obtain an α/β (1/1) mixture of the 

hemiacetal 40 (324 mg, 72%). 
1
H NMR (500 MHz, CDCl3) δ 8.10 – 7.94 (m, 2H, 

aromatic), 7.57 – 7.50 (m, 1H, aromatic), 7.42 – 7.29 (m, 7H, aromatic), 7.23 – 7.07 (m, 

3H, aromatic), 7.06 – 7.03 (m, 1H, aromatic), 7.02 – 6.99 (m, 1H, aromatic), 6.89 – 6.81 

(m, 4H, aromaticPMP), 5.32 – 5.26 (m, 1H, H-1α, H-1β), 5.21 – 5.18 (m, 0.5H, H-2), 

5.16 – 5.13 (m, 0.5H, H-2), 4.81 – 4.75 (m, 1H, CH2Ph), 4.71 – 4.64 (m, 1H, CH2Ph), 

4.64 – 4.61 (m, 0.5H, H-5), 4.45 – 4.36 (m, 1.5H, H-5, CH2Ph), 4.33 (d, J = 11.2 Hz, 

0.5H, CH2Ph), 4.28 (d, J = 11.2 Hz, 0.5H,  CH2Ph), 4.25 – 4.15 (m, 2H, H-6), 4.14 – 

4.09 (m, 1H, H-3), 3.78 (2s, 3H, CH3PMP), 3.68 (t, J = 2.7 Hz, 0.5H, H-4), 3.58 (t, J = 

2.4 Hz, 0.5H, H-4). HRMS (ESI) m/z: [M+Na]
+
 Calcd for C34H34O8 593.2151, Found 

593.2185. The hemiacetal 40 (360 mg, 0.63 mmol) was dissolved in dry CH2Cl2 (6.3 

mL), trichloroacetonitrile (0.95 mL, 9.46 mmol) and catalytic amount of DBU (19 µL, 

0.126 mmol) were added at 0 °C. The reaction mixture was allowed to warm up to room 

temperature and was stirred for 2h until TLC analysis showed disappearance of starting 

material. The reaction crude was concentrated and purified by column chromatography 

(hexane/EtOAc, 9/1 to 7/3 containing 5% of triethylamine) to obtain compound 41 as 

α/β (4/6) mixture in 76% of yield. 
1
H NMR (500 MHz, CDCl3) δ 8.65 (s, 0.4H, 

OCNHCl3), 8.52 (s, 0.6H, OCNHCl3), 8.05 – 8.00 (m, 2H, aromatic), 7.57 – 7.53 (m, 

1H, aromatic), 7.39 – 7.09 (m, 12H, aromatic), 6.87 – 6.80 (m, 4H, aromaticPMP), 6.51 

(d, J = 2.7 Hz, 1H, H-1β), 6.43 (s, 1H, H-1α), 5.50 – 5.46 (m, 1H, H-2α, H-2β), 4.90 – 

4.89 (d, J = 11.8 Hz, 1H, CH2Ph), 4.83 – 4.81 (d, J = 11.5 Hz, 1H, CH2Ph), 4.78 – 4.76 

(m, 2H, H-5α, CH2Ph), 4.66 – 4.64 (d, J = 11.8Hz, 1H, CH2Phα), 4.63 – 4.52 (m, 5H, 
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CH2Ph, H-5β, CH2Ph), 4.43 – 4.41 (m, 1H, CH2Ph), 4.39 – 4.31 (m, 2H, H-6β), 4.27 – 

4.17 (m, 3H, H-6α, H-3β), 4.04 - 4.03 (m, 1H, H-3α), 3.90 – 3.85 (m, 1H, H-4β), 3.80 – 

3.75 (m, 4H, CH3PMP, H-4α); 
13

C NMR (126 MHz, CDCl3) δ 165.9, 165.7, 160.8, 160.7, 

154.2, 154.1, 152.8, 152.7, 137.7, 137.6, 137.5, 133.5, 133.3, 130.2, 130.1, 129.5, 

129.4, 128.6, 128.5, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.9, 115.8, 115.6, 

114.7, 97.8, 95.6, 95.3, 75.4, 74.5, 74.1, 73.7, 73.4, 72.7, 72.4, 72.1, 71.0, 69.3, 68.0, 

67.3, 66.8, 66.3, 55.9 ppm. 

 

5.6.2 Synthesis of L-iduronic acid (IdoA) building blocks 

Methyl [Phenyl 2-O-benzoyl-3-O-benzyl-1-thio-α-L-idopyranoside]uronate (42): To 

a solution of the compound 21 (106 mg, 0.23 mmol) in acetonitrile/water (1/1 v/v, 1 

mL), TEMPO (7 mg, 0.045 mmol) and BAIB (183 mg, 0.57 mmol) were added. The 

mixture was stirred for 4h. The reaction mixture was quenched by the addition of 1M 

aqNa2SO3 (0.7 mL). The layers were separated and the aqueous layer was acidified with 

1M aq HCl, and extracted with CH2Cl2 (3X). The combined organic layers were dried 

over anhydrous MgSO4 and concentrated. The residue was dissolved in dry MeOH, 

EDC·HCl, DMAP were added at 0 ºC and was stirred overnight. The mixture was 

quenched with CH2Cl2 and was washed with water, HCl 1M, NaHCO3 sat. and brine. 

MgSO4 anhydrous was added, filtered and concentrated. The crude was purified by 

flash column chromatography Hexane/EtOAc (8/2) to obtain compound 38 as a 

colorless syrup (67 mg, 60% over 2 steps). 
1
H NMR (500 MHz, CDCl3) δ 8.10 - 7.26 

(m, 15H, aromatic), 5.76 (s, 1H, H-1), 5.53 (m, J = 2.0 Hz, 1H, H-2), 5.44 (m, 1H, H-5), 

4.93 (d,  1H, J = 11.8Hz, 1H, CH2Ph), 4.73 (d, J = 11.8Hz, 1H, CH2Ph), 4.19 (m,1H, 

H-4), 3.97 (m, 1H, H-3), 3.85 (s, 3H, CH3ester), 2.77 (bs, 1H, OH).  

Methyl [Phenyl 2-O-benzoyl-3-O-benzyl-4-O-levulinyl-1-thio-α-L-

idopyranoside]uronate (43): The reaction was carried out according to general 

procedure A using compound 42 (166 mg, 0.21mmol), levulinic acid (77 mg, mmol), 

EDC·HCl (127 mg, 0.66 mmol) and a catalytic amount of DMAP in dry CH2Cl2 (2.5 

mL). The crude was purified by flash column chromatography Hexane/EtOAc (7/3) to 

obtain compound 43 as a colorless syrup (177 mg, 90%). 
1
H NMR (500 MHz, CDCl3) δ 

8.10 - 7.26 (m, 15H, aromatic), 5.81 (s, 1H, H-1), 5.50 (d, J = 2.0 Hz, 1H, H-5), 5.45 

(m, 1H, H-2), 5.34 (m, 1H, H-4), 4.93 (d, J = 11.8Hz, CH2Ph), 4.82 (d, J = 11.8Hz, 
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CH2Ph), 4.01 (1H,bs, H-3), 3.84 (3H, CH3ester), 2.65 - 2.61 (2H, m, Lev), 2.45 - 2.35 

(2H, m, Lev), 2.10 (3H, s, Lev). 
13

C NMR (126 MHz, CDCl3) δ 205.68 (qC), 171.44 

(qC), 168.53, 165.04, 136.89, 135.40, 133.51, 131.22, 129.79, 129.21 (qC), 128.98, 

128.43, 128.32, 127.93 (qC), 127.56, 127.48, 86.30 (C-1), 72.73 (CH2Ph), 71.59 (C-3), 

68.72 (C-2), 67.82 (C-5/4), 66.82 (C-5/4), 52.47 (CH3ester), 37.62, 29.48, 27.80 ppm. 

 

Methyl (2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-α/β-L-idopyranosyluronate) 

trichloroacetimidate (44): To a solution of thioglycoside 43 (110 mg, 0.18 mmol) in 

CH2Cl2 (1.86 mL), NIS (84 mg, 0.37 mmol) and trifluoroacetic acid (28 µL, 0.37 mmol) 

were added at 0 ºC. After 15 min TLC analysis showed complete consumption of the 

starting material, the reaction was quenched with saturated Na2S2O3aq solution and was 

washed with saturated NaHCO3 aq solution. The organic layer was dried over 

anhydrous MgSO4 and concentrated. The crude was dissolved in dry CH2Cl2 (2.4 mL), 

trichloroacetonitrile (0.36 mL, 3.6 mmol) and catalytic amount of DBU (3.6 µL, 0.024 

mmol) were added at 0 °C. After stirring for 1h at room temperature, the reaction 

mixture was concentrated. The residue was purified by column chromatography 

(hexane/EtOAc, 7/3 containing 1% of Et3N) to yield 44 as a viscous oil (90 mg, 75%). 

1
H NMR (500 MHz, CDCl3) δ 8.74 (s, 0.8 H, NHCCCl3), 8.69 (s, 0.2H, NHCCCl3), 

8.11 – 8.08 (m, 2H, aromatic), 7.59 – 7.53 (m, 1H, aromatic), 7.45 – 7.26 (m, 7H, 

aromatic), 6.56 (s, 0.8H, H-1α), 6.34 (s, J = 1.8Hz, H-1β), 5.51 (m, 0.2H, H-2β), 5.37 

(m, 0.8H, H-2α), 5.34 (m, 0.8H, H-4α), 5.28 (m, 0.2H, H-4β), 5.12 (d, J = 1.9Hz, 0.8H, 

H-5α), 4.86 – 4.75 (m, 2.2H, CH2Ph, H-5β), 4.14 (t, 0.2H, H-3β), 4.01 (m, 0.8H, H-3α), 

3.79 (s, 3H, CH3COOMe), 2.60 – 2.56 (m, 2H, CH2Lev), 2.45 – 2.40 (m, 2H, CH2Lev), 2.36 

– 2.31 (m, 2H, CH2Lev), 2.06 and 2.04 (2s, 3H, CH3Lev) ppm; 
13

C NMR (126 MHz, 

CDCl3) δ 205.7, 171.5, 168.0, 167.1, 165.4, 164.9, 160.2, 160.0, 137.1, 136.8, 133.8, 

133.5, 129.9, 129.0, 128.6, 128.5, 128.3, 127.9, 127.6, 95.0 (C-1α), 94.5 (C-1β), 73.3 

(C-5β), 73.1 (C-3β), 72.6, 71.5 (C-3α), 67.7 (C-5α), 67.4 (C-4α), 67.3 (C-4β), 66.0 (C-

2β), 65.2 (C-2α), 52.7 (CH3COOMe), 37.7, 29.5, 27.8 ppm. 

 

5.6.2.1 Synthesis of n- pentenyl orthoesters (NPOEs) as IdoA donors 

 

3-O-Benzyl-1,2-O-isopropiliden-α-D-xilo-dialdose (45): At first, silica gel (106 g) was 

suspended in CH2Cl2 (8.4 mL/g silica) and was stirred vigorously for 5min. After, a 

solution of NaIO4 (14.4g) in water (101mL) was added. A solution of the diol 16 was 
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added slowly to the mixture before prepared and the reaction was stirred for 30min. 

When the starting material disappeared, the mixture was filtered, concentrated and was 

used in the next step without purification. The spectroscopic data of the compound were 

in agreement with the data previously reported in literature.
4
 

 

Tris(thiophenyl) 3-O-Benzyl-1,2-O-isopropylidene-β-L-orthoidofuranuronate (46): 

nBuLi (195 mL of a 1.6M solution. in hexane, 6.51 mmol, 1.1 equiv.) was added to a 

cooled (-78 °C), stirred solution of tris(thiophenyl)methane (2.42 g, 7.11 mmol, 1.2 

equiv.) in THF (9 mL). Upon addition of nBuLi the colour changed to bright yellow and 

a yellow solid precipitated. After 1.5 h of stirring at this temperature, a solution of 45 

(1.65 g, 5.92 mmol) in THF (9 mL) was added dropwise. The mixture was stirred for 1 

h at the same temperature and was then allowed to come to room temperature overnight. 

The reaction mixture was quenched by adding saturated aq NH4Cl (500 mL), and the 

aqueous phase was extracted with Et2O (3X). The combined organic layers were 

washed with water (2X), dried over anhydrous MgSO4, filtered, and concentrated. Flash 

chromatography of the residue (Hexane/ EtOAc, 9/1 to 8/2) gave 46 (2.72 g, 78%). The 

spectroscopic data of the compound were in agreement with the data previously 

reported in literature.
4
  

 

Methyl 3-O-Benzyl-1,2-O-isopropylidene-β-L-idofuranuronate (47): Methanol 

(960mL), CuO (5.94 g, 74 mmol, 1.7 equiv.), CuCl2 (22.4 g, 167.0 mmol, 3.8 equiv.), 

and water (80 mL) were successively added to a solution of compound 46 (27.2 g, 43.0 

mmol) in CH2Cl2 (80 mL). The reaction mixture was vigorously shaken for 2 h, filtered 

through a Celite 545 pad and concentrated without warming above 30 °C. The residue 

was dissolved in CH2Cl2 (1 L), and water (500 mL) was added, giving a Cu salt 

precipitate that was eliminated by filtration through a pad of celite. The aqueous layer 

was extracted with CH2Cl2 (2 X 250 mL). The combined organic layers were washed 

with a saturated NaHCO3 aq solution (200 mL) and water (200 mL). The organic phase 

was dried over anhydrous MgSO4, filtered and concentrated. Flash chromatography of 

the residue (Hexane/EtOAc, 7/3 to 1/1) gave 47 (13.2 g, 89%).  The spectroscopic data 

of the compound were in agreement with the data previously reported in literature.
5
  

 

Methyl 3-O-Benzyl-β-L-idofuranuronate (48): A solution of 47 (8.95 g, 26.45 mmol) 

in aqueous 90% trifluoroacetic acid (50 mL) was kept at room temperature for 15 min, 



Experimental part 

 

155 

 

concentrated to dryness, and concentrated twice with water (2 x 20 mL) to give a white 

solid residue 48 (7.5 g, 95%), which was crystallized from EtOAc. The spectroscopic 

data of the compound were in agreement with the data previously reported in literature.
5
 

 

Methyl 1,2,4-tri-O-acetyl-3-O-benzyl-β-L-idopyranurate (49): A solution of 48 (1g, 

3.35 mmol) in dry CH2Cl2 at -40ºC, DMAP (0.1eq.), pyridine and acetyl chloride were 

added and the reaction was stirred overnight. The mixture was diluted with CH2Cl2 and 

the organic phase was washed with aqueous saturated NaHCO3 solution (3X), water 

(2X), 1M H2SO4 solution (3X), water (2X), dried (MgSO4) and concentrated. The 

residue was purified by columm of silica gel hexane/EtOAc to yield 49 (1.1 g, 78%). 

The spectroscopic data of the compound were in agreement with the data previously 

reported in literature.
5 

 

 

Methyl 1,2,4-tri-O-levulinoyl-3-O-benzyl-β-L-idopyranurate (50): The compound 48 

(1.0 g, 3.35 mmol) was dissolved in dry CH2Cl2 and cooled to -25 °C.EDC·HCl (3.2 g, 

16.75 mmol), DMAP (1.64 g, 13.4 mmol) and levulinic acid (1.7 mL, 16.75 mmol) 

were added. The mixture was stirred overnight at -25 °C and warmed to room 

temperature and stirred for additional 3h. The reaction was diluted with CH2Cl2 and 

washed with with HCl 1M, water, saturated NaHCO3 aq solution and brine. The organic 

layer was dried over anhydrous MgSO4, filtered and concentrated. The crude was 

purified by column chromatography (hexane/EtOAc, 7/3) and compound 50 was 

obtained (1.58 g, 80%). [α]D
20 

= +2.2 ° (c = 1, CHCl3) , 
1
H NMR (500 MHz, CDCl3) δ = 

7.38 – 7.29 (m, 5H, aromatic), 6.05 (d, J = 1.7 Hz, H-1), 5.19 – 5.17 (m, 1H, H-4), 5.06 

– 5.04 (m, 1H, H-2), 4.76 (d, J = 2.2 Hz, 1H, H-5), 4.72 (m, 2H, CH2Ph), 3.94 (t, J = 3.0 

Hz, 1H, H-3), 3.78 (s, 3H, CH3), 2.86 – 2.49 (m, 12H, CH2Lev), 2.17 (s, 6H, CH3Lev), 

2.16 (s, 3H, CH3Lev); 
13

C NMR (126 MHz, CDCl3) δ = 206.38 (C=O, Lev), 206.28 

(2xC=O, Lev), 172.13, 171.91, 170.70, 167.34, 136.86, 128.65, 128.29, 127.90, 90.36 

(C-1), 73.44 (C-3), 73.38 (C-5), 73.23 (CBn), 67.18 (C-4), 66.27 (C-2), 52.71 

(CH3COOMe), 37.83 (CH2Lev), 37.77 (CH2Lev), 37.69 (CH2Lev), 29.93 (CH3Lev), 29.88 

(CH3Lev), 29.84 (CH3Lev), 27.97 (CH2Lev), 27.93 (CH2Lev), 27.89 (CH2Lev) ppm; HRMS 

(ESI) m/z calcd for C29H36O13 [M+Na]
+
 615.2054, found 615.2031. 
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Methyl 1,2,4-tri-O-benzoyl-3-O-benzyl-β-L-idopyranurate (51): The triol 48 (2.08g, 

6.97 mmol) was dissolved in dry CH2Cl2 and cooled to -40 °C, benzoyl chloride (6.1 

mL, 53 mmol), pyridine (5.6 mL, 69.7 mmol) and DMAP (0.1eq.) were added and the 

reaction was stirred overnight. The residue was dissolved in CH2Cl2, and water was 

carefully added with cooling and vigorous stirring to decompose the excess of benzoyl 

chloride. The product was extracted with CH2Cl2, washed with HCl 1M, saturated 

NaHCO3 aq solution, water and brine, dried and concentrated. The crude was purified 

by column chromatography (hexane/ EtOAc, 8/2) to obtain the perbenzoylated 

compound 51 (3.86 g, 91%). [α]D
20 

= -18.3 ° (c = 1, CHCl3), 
1
H NMR (500 MHz, 

CDCl3) δ = 8.05 – 7.13 (m, 20H, aromatic), 6.49 (d, J = 1.3 Hz, H-1), 5.50 – 5.49 (m, 

2H, H-2, H-4), 5.08 (d, J4,5 = 1.9 Hz, 1H, H-5), 4.93 (d, J = 11.6 Hz, 1H, CH2Ph), 4.90 

(d, J = 11.6 Hz, 1H, CH2Ph), 4.37 (t, J = 3.0 Hz, 1H, H-3), 3.73 (s, 3H, CH3) ppm; 
13

C 

NMR (126 MHz, CDCl3) δ 167.70, 165.74, 165.66, 164.45, 136.89, 133.73, 133.63, 

133.38, 130.34, 130.12, 129.22, 128.99, 128.82, 128.58, 128.48, 128.29, 128.10, 91.01 

(C-1), 73.83, 73.79 (C-5, C-3), 73.50 (CBn), 68.09, 66.97 (C-2, C-4), 52.79 (CH3COOMe) 

ppm; HRMS (ESI) m/z calcd for C35H30O10 [M+Na]
+
 633.1736, found 633.1757. 

 

Methyl (4-O-acetyl-3-O-benzyl-[1,2-O-(1-pent-4-enyloxyethylidene)]-β-L-

idopyranuronate (52): The peracetylated compound 49 (109 mg, 0.257 mmol) was 

dissolved in dry CH2Cl2 (2.6 mL) and 30% HBr in AcOH (0.26 mL) was added at 0 °C 

and was stirred for 3h at this temperature. The reaction mixture was diluted with cold 

CH2Cl2 and washed with ice-cold water and cold saturated NaHCO3 aq solution. The 

organic layer was dried over anhydrous MgSO4, filtered, concentrated. The crude 

bromide productwas used in the next reaction without further purification. A solution of 

bromide in dry CH2Cl2 (0.5 mL) containing 2,6-lutidine (0.59 mL, 5.1 mmol) and n-

pentenol (0.26 mL, 2.6 mmol) was stirred for 20 h at room temperature under argon. 

The mixture was diluted with CH2Cl2, washed with saturated NaHCO3 aq solution and 

water. The organic layer was dried over anhydrous MgSO4, filtered and concentrated. 

The residue was purified by column chromatography (hexane/ EtOAc, 6/4 containing 

1% of triethylamine) to obtain the orthoacetate 52 as a viscous oil (71 mg, 0.15 mmol, 

60% in 2 steps). [α]D
20 

= -19.2 ° (c = 1, CHCl3), 
1
H NMR (500 MHz, CDCl3) δ 7.48 – 

7.32 (m, 5H, aromatic), 5.83 – 5.75 (m, 1H, CHpent), 5.53 (d, J = 2.7 Hz, H-1), 5.22 – 

5.19 (m, 1H, H-4), 5.03 – 4.94 (m, 2H, CH2pent), 4.81 (d, J = 11.7 Hz, 1H, CH2Ph), 4.68 

(d, J = 11.7Hz, 1H, CH2Ph), 4.54 (d, 1H, J = 1.3 Hz, H-5), 4.12 (t, J = 2.3 Hz, 1H, H-3), 
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4.05 – 4.04 (m, 1H, H-2), 3.78 (s, 3H, CH3COOMe), 3.53 – 3.41 (m, 2H, CH2pent), 2.12 – 

2.07 (m, 2H, CH2pent), 2.03 (s, 3H, CH3Ac), 1.73 (s, 3H, CH3), 1.66 – 1.62 (m, 2H, 

CH2pent) ppm; 
13

C NMR (126 MHz, CDCl3) δ 170.3, 168.3, 138.2 (CHpent), 137.0, 128.7 

– 128.1 (Caromatic), 124.1 (Cq, orthoester), 115.0 (CH2pent), 96.7 (C-1), 76.0 (C-2), 

73.04 (CBn), 71.5 (C-3), 69.8 (C-5), 67.0 (C-4), 61.3 (CH2pent), 52.7 (CH3COOMe), 30.3 

(CH2pent), 28.7 (CH2pent), 25.3 (CH3), 20.9 (CH3Ac) ppm;  HRMS (ESI) m/z calcd for 

C23H30O9 [M+Na]
+
 473.1782, found 473.1763. 

 

Methyl (3-O-benzyl-4-O-levulinoyl-[1,2-O-(1-pent-4-enyloxylevulinylidene)]-β-L-

idopyranuronate (53): The perlevulinated compound 50 (133 mg, 0.22 mmol) was 

dissolved in dry CH2Cl2 and 30% HBr in AcOH (0.76 mL) was added at 0 °C and 

stirred for 3h. The mixture was diluted with cold CH2Cl2 and sequentially washed with 

ice-cold water and cold saturated NaHCO3 aq solution. The organic layer was dried over 

anhydrous MgSO4, filtered and concentrated. The crude product was used in the next 

reaction without further purification. A solution of the bromide in dry CH2Cl2 (0.5 mL) 

containing 2,6-lutidine (0.52 mL, 4.47 mmol), n-pentenol (0.23 mL, 2.26 mmol) was 

stirred for 20 h at room temperature under argon. The mixture was diluted with CH2Cl2, 

washed with saturated NaHCO3 aq solution and water. The organic layer was dried over 

MgSO4, filtered and concentrated. The residue was purified by column chromatography 

(hexane/EtOAc, 6/4 containing 1% of triethylamine) to obtain 53 as a viscous oil. (91 

mg, 73%). [α]D
20 

= -7.4 ° (c = 1, CHCl3), 
1
H NMR (500 MHz, CDCl3) δ 7.38 - 7.31 (m, 

5H, aromatic), 5.82 – 5.74 (m, 1H, CHpent), 5.49 (d, J = 2.7 Hz, 1H, H-1), 5.20 – 5.19 

(m, 1H, H-4), 5.03 – 4.95 (m, 2H, CH2pent), 4.81 (d, J = 11.7 Hz , 1H, CH2Ph), 4.66 (d, J 

= 11.7 Hz, 1H, CH2Ph), 4.51 (d, 1H, J = 1.3 Hz, H-5), 4.08 - 4.05 (m, 2H, H-3, H-2), 

3.79 (s, 3H, CH3COOMe), 3.51 – 3.41 (m, 2H, CH2pent), 2.81 – 2.69 (m, 4H, CH2Lev), 2.54 

– 2.51 (m, 2H, CH2Lev), 2.29 – 2.25 (m, 2H, CH2Lev), 2.18 (s, 3H, CH3Lev), 2.16 (s, 3H, 

CH3Lev), 2.10 – 2.06 (m, 2H, CH2pent), 1.65 – 1.60 (m, 2H, CH2,pent) ppm; 
13

C NMR (126 

MHz, CDCl3) δ 208.4, 206.3, 172.0, 167.9, 138.1 (CHpent), 137.0, 128.8, 128.4, 128.1, 

124.4 (Cq, orthoester), 115.1 (CH2pent), 96.5 (C-1), 75.6 (C-2), 73.1 (CBn), 71.8 (C-3), 

69.7 (C-5), 67.0 (C-4), 61.5 (CH2pent), 52.7 (CH3COOMe), 38.7, 37.9 (CH2Lev), 32.0 

(CH2Lev), 30.3 (CH2pent), 30.0, 29.9 (CH3Lev), 28.7 (CH2pent), 28.1 (CH2Lev) ppm; HRMS 

(ESI) m/z calcd for C29H38O11 [M+Na]
+
 585.2312, found 585.2309. 
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Methyl (4-O-benzoyl-3-O-benzyl-[1,2-O-(1-pent-4-enyloxybenzylidene)]-β-L-

idopyranuronate (54): The perbenzoylated compound 51 (310 mg, 0.508 mmol) was 

dissolved in dry CH2Cl2 (9.3 mL), 30% HBr in AcOH (1.72 mL) was added at 0 °C and 

the solution stirred for 3h. The mixture was diluted with cold CH2Cl2 and was washed 

with ice cold water and cold saturated NaHCO3 aq solution. The organic layer was dried 

over anhydrous MgSO4, filtered and concentrated. The crude bromide was used in the 

next reaction without further purification. A solution of bromide in dry CH2Cl2 (1mL) 

containing 2,6-lutidine (1.18 mL, 10.2 mmol), n-pentenol (0.52 mL, 5.1 mmol) was 

stirred for 20 h at room temperature under argon. The mixture was diluted with CH2Cl2 

(200 mL), washed with saturated NaHCO3 aq solution and water. The organic layer was 

dried over anhydrous MgSO4, filtered and concentrated. The residue was purified by 

column chromatography (hexane/EtOAc, 7/3 containing 1% of triethylamine) to obtain 

compound 54 (214 mg, 73%). [α]D
20 

= -1.7 ° (c = 1, CHCl3), 
1
H NMR (500 MHz, 

CDCl3) δ 7.73 – 7.21 (m, 16H, aromatic), 5.80 – 5.73 (m, 1H, CHpent), 5.71 (d, J = 2.7 

Hz, 1H, H-1), 5.47 – 5.46 (m, 1H, H-4), 5.01 – 4.97 (m, 3H, CH2pent, CH2Ph), 4.78 (d, J 

= 11.7 Hz, CH2Ph), 4.68 (d, J = 1.3 Hz, 1H, H-5), 4.38 – 4.37 (m, 1H, H-2), 4.28 (t, J = 

2.17 Hz, 1H, H-3), 3.69 (s, 3H, CH3COOMe), 3.44 – 3.34 (m, 2H, CH2pent), 2.11 – 2.05 

(m, 2H, CH2pent), 1.68 – 1.62 (m, 2H, CH2pent); 
13

C NMR (126 MHz, CDCl3) δ 168.1, 

165.9, 138.1 (CHpent), 137.0, 136.9, 133.2, 130.0, 129.2, 128.8, 128.4, 128.4, 128.1, 

127.1, 122.4 (Cq, orthoester), 115.0 (CHpent), 96.9 (C-1), 75.4 (C-2), 73.2 (CBn), 72.1 

(C-3), 70.2 (C-5), 67.1 (C-4), 63.5 (CH2pent), 52.7 (CH3COOMe), 30.3 (CH2pent), 28.9 

(CH2pent); HRMS (ESI) m/z calcd for C33H34O9 [M+Na]
+
 597.2101, found 597.2082. 

 

Methyl (3-O-benzyl-[1,2-O-(1-pent-4-enyloxybenzylidene)]-β-L-threo-hex-4-

enopyranuronate (55): The compound 54 (20 mg, 0.035 mmol) was dissolved in 

MeOH (0.5 mL) and was treated with catalytic amount of sodium methoxide (0.5 eq.) 

overnight. The crude was quenched with Amberlite
®

 IR-120(H), filtered and 

concentrated to obtained compound 51 (14 mg, 90%). 
1
H NMR (500 MHz, CDCl3) δ 

7.54 – 7.31 (m, 10H, aromatic), 6.22 (dd, J = 1.1 Hz, 5.2 Hz, H-4), 5.96 (d, J = 4.0 Hz, 

H-1), 5.83 – 5.74 (m, 1H, CHpent), 5.03 – 4.95 (m, 2H, CH2pent), 4.80 – 4.76 (m, 1H, H-

2), 4.67 (d,  J = 11.7 Hz, 1H, CH2Ph), 4.60 (d, J = 11.7 Hz, 1H, CH2Ph), 4.27 – 4.25 

(dd, J = 2.1, 5.2 Hz, 1H, H-3), 3.73 (s, 3H, CH3), 3.52 – 3.43 (m, 2H, CH2pent), 2.14 – 

2.10 (m, 2H, CH2pent), 1.71 – 1.66 (m, 2H, CH2pent) ppm; 
13

C NMR (126 MHz, CDCl3) δ 

162.1, 143.6, 138.1 (CHpent), 137.4, 137.1, 129.3, 128.7, 128.5, 128.3, 128.2, 128.1, 
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126.4, 122.3, 115.1 (CH2pent), 108.1 (C-4), 96.8 (C-1), 71.2 (CBn), 67.1 (C-3), 63.2 

(CH2pent), 52.6 (CH3COOMe), 30.3 (CH2pent), 28.8 (CH2pent) ppm.  

 

Methyl 3-O-benzyl-[1,2-O-(1-pent-4-enyloxybenzylidene)]-β-L-idopyranuronate 

(56): To a solution of compound 54 (105 mg, 0.182 mmol) in dry toluene (0.4 mL), 

trimethyltinhydroxide (18 mg, 0.201 mmol) was added, the reaction mixture was stirred 

in the microwave at 100 °C until TLC indicated the disappearance of the starting 

material (1h). The mixture was concentrated and dried under high vacuum. The residue 

was dissolved in dry MeOH and a solution of 1M NaOMe (0.27 mL) was added. The 

mixture was placed in the microwave at 60 °C, and after 1h 30min. was quenched with 

Amberlite
®
 IR-120(H) until pH=7. The reaction crude was dissolved in dry CH2Cl2 (0.4 

mL), MeOH (1.1 mL), EDC·HCl (286 mg, 1.5 mmol) and DMAP (86 mg, 0.71 mmol) 

were added. After stirring overnight, the reaction mixture was concentrated and purified 

by flash chromatography (hexane/EtOAc , 6/4containing 1% of triethylamine) to obtain 

the compound 56 (52 mg, 60%). 
1
H NMR (500 MHz, CD3OD) δ = 7.72 – 7.32 (m, 10H, 

aromatic), 5.80 (m, 1H, CHpent), 5.63 (d, J = 2.8 Hz, 1H, H-1), 5.05 – 4.92 (m, 2H, 

CH2pent), 4.74 (m, 2H, CH2Ph), 4.50 (d, J = 1.7 Hz, 1H, H-5), 4.36 – 4.32 (m, 1H, H-2), 

4.07 – 4.02 (m, 2H, H-3, H-4), 3.73 (s, 3H, CH3), 3.44 (m, 2H, CH2pent), 2.11 (m, 2H, 

CH2pent), 1.70 – 1.59 (m, 2H, CH2pent) ppm; 
13

C NMR (126 MHz, CD3OD) δ = 170.8, 

139.2, 139.0, 138.8, 130.2, 129.6, 129.2, 129.1, 129.0, 127.8, 123.5, 115.4, 98.6 (C-1), 

77.4 (C-2), 76.0 (C-3), 73.8 (CBn), 73.0 (C-5), 68.0 (C-4), 64.1 (CH2pent), 52.6 

(CH3COOMe), 31.3 (CH2pent), 29.9 (CH2pent) ppm; HRMS (ESI) m/z calcd for C26H30O8 

[M+Na]
+ 

493.1838, found 493.1832. 

 

Methyl (3-O-benzyl-4-O-levulinoyl-[1,2-O-(1-pent-4-enyloxybenzylidene)]-β-L-

idopyranuronate (57): The reaction was carried out according to general procedure A 

using compound 56 (205 mg, 0.44 mmol), levulinic acid (152 mg, 1.31 mmol), 

EDC·HCl (250 mg, 1.31 mmol) and a catalytic amount of DMAP in dry CH2Cl2 (4 

mL). The crude was purified by flash chromatography (hexane/EtOAc, 8/2 containing 

1% of triethylamine) to obtain the compound 57 as a viscous oil (225 mg, 90%). [α]D
20 

= +19.7 ° (c = 1, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ 7.75 – 7.73 (m, 2H, aromatic), 

7.38 – 7.33 (m, 5H, aromatic), 5.80 – 5.74 (m, 1H, CHpent), 5.66 (d, J = 2.8Hz, H-1), 

5.17 (m, 1H, H-4), 5.02 – 4.94 (m, 2H, CH2pent), 4.82 (d, J = 11.8 Hz, 1H, CH2Ph), 4.70 

(d, J = 11.8 Hz, 1H, CH2Ph), 4.55 (d, J = 1.0 Hz, 1H, H-5), 4.31 – 4.30 (m, 1H, H-2), 
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4.14 – 4.13 (m, 1H, H-3), 3.75 (s, 3H, CH3COOMe), 3.48 – 3.41 (m, 2H, CH2pent), 2.34 – 

2.18 (m, 2H, CH2Lev), 2.13 – 2.08 (m, 2H, CH2Lev), 2.00 (s, 3H, CH3Lev), 1.70  – 1.64. 

(m, 2H, CH2pent); 
13

C NMR (126 MHz, CDCl3) δ 206.4, 171.7, 167.9, 138.1 (CHpent), 

137.4, 137.0, 129.2, 128.8, 128.4, 128.1, 128.0, 127.0, 122.4 (Cq, orthoester), 115.0 

(CH2pent), 96.8 (C-1), 75.4 (C-2), 73.1 (CBn), 71.6 (C-3), 69.7 (C-5), 66.8 (C-4), 63.3 

(CH2pent), 52.6 (CH3COOMe), 37.6 (CH2Lev), 30.3 (CH2Lev), 29.7 (CH3Lev), 28.9 (CH2Lev), 

28.1 (CH2Lev) ppm; HRMS (ESI) m/z calcd for C31H36O10 [M+Na]
+
 591.2206, found 

591.2197. 

 

5.6.3 Synthesis of 2-azido-D-glucopyranose (Glc) building blocks 

2-Azido-4,6-O-benzylidene-2-O-deoxy-β-D-glucopyranoside (59): In a 1L 

three-neck round-botton flask, equipped with a dropping funnel, an internal 

thermometer and an argon inlet, NaN3 (62.22g) was dissolved at room temperature in 

water. CH2Cl2 was added, the mixture was cooled to 0ºC and to the vigorously stirred 

solution Tf2O (32mL) was added within 1h30min, while keeping the temperature 

unchanged. After completation of the addition, the mixture was stirred for 2h at 0 ºC, 

the organic layer was separated and the aqueous layer was extracted with CH2Cl2 (2x). 

The combined organic layers were washed with saturated NaHCO3 aq solution, dried 

over anhydrous MgSO4 and filtered to obtain a 0.4 M TfN3 solution. 

In a 2L three-neck round-botton flask, equipped with a dropping funnel, a 

septum and a argon inlet, a suspension of D-glucosamine hydrochloride (10 g) in dry 

MeOH (200mL) was treated with a 0.5M solution of NaOMe in MeOH (110 mL). 

After stirring for 30min. at room temperature, the mixture was diluted with 

MeOH and treated with 4-(dimethylamino)pyridine (6 g) to afford a clear and colourless 

solution, to wich 0.4M TfN3 solution (350mL) was added dropwise at room temperature 

within 2h.(WARNING: TfN3 has been reported to be explosive when not in solvent and 

should always be used as a solution). After stirring 48h at room temperature under 

argon, solvent was concentrated at 30ºC to furnish an oily residue wich was dissolved in 

MeOH, treated with NH4Cl until pH 7, concentrated and finally filtered through a short 

silica column (4:1, CH2Cl2:CH3OH). After concentration, a mixture of the residue, 

benzaldehyde dimethyl acetal (10.4mL) and a catalytic amount of 10-camphor-sulfonic 

acid in 60mL of dry DMF was stirred for 5h under reduced pressure. The mixture was 



Experimental part 

 

161 

 

neutralized with solid NaHCO3 and concentrated. The residue was purified by column 

chromatography (toluene/EtOAc, 8/2) to yield the product (10.3 g, 76%). The 

spectroscopic data of the compound were in agreement with the data previously 

reported in literature.
6
  

 

Tert-butyldimethysilyl-2-Azido-4,6-O-benzylidene-2-O-deoxy-β-D-glucopyranoside 

(60): To a solution of 59 (7.74 g, 26.39 mmol) in dry CH2Cl2 (10 mL) was added 

imidazole (better in solution), and at -20ºC TBDMSCl (4.37 g, 29.03 mmol) was added. 

The mixture was stirred for 6h and the reaction was partitioned betweenwater and 

CH2Cl2. The organic layer was washed with water and extracted with CH2Cl2 

(2x25mL). The combined organic layers were dried over anhydrous MgSO4 and 

concentrated. The residue was purified by column chromatography (Hexane/EtOAc, 

7/1) to afford the product 60 (8.51 g, 20.88 mmol) in 79% of yield. 
1
H NMR (500 MHz, 

CDCl3) δ: 7.50 – 7.45 (m, 2H, aromatic), 7.40 – 7.33 (m, 3H, aromatic), 5.54 (s, 1H, 

PhCHO), 4.66 (d, J = 7.6Hz, 1H, H-1), 4.30 (dd, J = 10.5Hz, 5.0Hz, 1H, H-6a), 3.79 

(m, 1H, H-6b), 3.64 (m, 1H, H-3), 3.58 (m, 1H, H-4), 3.42 (m, 1H, H-5), 3.35 (m, 1H, 

H-2), 2.61 (s, 1H, OH), 0.94 (s, 9H, (CH3)3C), 0.17 (s, 6H, CH3). 
13

C NMR (126 MHz, 

CDCl3) δ: 136.85 (qC, TBS), 129.39, 128.39, 126.28 (Caromatic), 102.04 (PhCHO), 

97.58 (C-1), 80.74 (C-4), 71.83 (C-3), 69.00 (C-2), 68.57 (C-6), 66.33 (C-5), 25.56 

(CH3, TBS), -4.35, -5.17 (CH3, TBS) ppm. 

 

Tert-butyldimethysilyl -2-Azido-3-O-benzyl-4,6-O-benzylidene-2-O-deoxy-β-D-

glucopyranoside (61): NaH (60% dispersion in mineral oil) was added to a cooled (0 

ºC) solution of 60 (5.85 g, 14.35 mmol) in dry CH2Cl2 (60 mL). After the mixture was 

stirred for 3h, benzyl bromide and catalytic TBAI were added. The reaction was 

quenched with MeOH, was diluted with CH2Cl2 and was washed with NH4Cl solution 

and water. The aqueous layers were extracted with CH2Cl2, and the combined organic 

layers were dried over anhydrous MgSO4 and concentrated. The crude product was 

crystallized from ethanol to give the title compound 61 as white solid (5.46 g, 10.97 

mmol, 76%). 
1
H NMR (500 MHz, CDCl3) δ 7.48 (m, 2H, aromatic), 7.41 – 7.27 (m, 

8H, aromatic), 4.90 (d, J = 11.4Hz, 1H, CH2Ph), 4.79 (d, J = 11.4Hz, 1H, CH2Ph), 4.59 

(d, J = 7.7Hz, 1H, H-1), 4.29 (dd, J = 10.5Hz, 5.0Hz, 1H, H-6), 3.79 (m, 1H, H-6), 3.71 

(m, 1H, H-3), 3.52 (m, 1H, H-4), 3.38 (m, 2H, H-5, H-2), 0.94 (s, 9H, (CH3)3C), 0.16 (s, 

6H, CH3); 
13

C NMR (126 MHz, CDCl3) δ: 137.98 (qC), 137.20 (qC), 129.05, 128.36, 
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128.28, 128.12, 127.82, 126.03 (Caromatic), 101.34 (PhCHO), 97.51 (C-1), 81.65 (C-

3), 78.84 (C-4), 74.84 (CH2Ph), 68.76 (C-2), 68.63 (C-6), 66.34 (C-5), 25.57 (CH3, 

TBS), -4.34, -5.17 (CH3, TBS) ppm. 

 

2-Azido-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-β-D-glucopyranose (62): 

EtSH (8 mL, 103.52 mmol) and catalytic pTsOH were added to a solution of 2-azido-3-

O-benzyl-4,6-O-benzyliden-1-O-tert-butyldimethylsilyl-2-deoxy-β-D-glucopyranose 

(26) (10.3 g, 20.70 mmol) in dry CH2Cl2. After stirring for 3h under argon, the mixture 

was neutralized with solid NaHCO3, diluted with CH2Cl2 and washed with water. The 

organic layer was dried over anhydrous MgSO4 and concentrated to dryness. The 

residue was purified  by column chromatography (hexane/EtOAc, 7/3) to yield 27 (7.25 

g, 89%). 
1
H NMR (500 MHz, CDCl3) δ = 7.38 – 7.29 (m, 5H, aromatic), 4.95 (d, J = 

11.5 Hz, 1H, CH2Ph), 4.71 (d, J = 11.4 Hz, 1H, CH2Ph), 4.57 (d, J = 7.6 Hz, 1H, H-1), 

3.83 (dd, J = 11.8, 3.7 Hz, 1H, H-6a), 3.74 (dd, J = 11.8, 5.0 Hz, 1H, H-6b), 3.58 (dd, J 

= 9.7, 8.7 Hz, 1H, H-4), 3.32 – 3.27 (m, 2H, H-2, H-5), 3.21 (dd, J = 9.9, 8.7 Hz, 1H, H-

3), 0.95 (s, 9H, TBS), 0.17 and 0.16 (2s, 6H, TBS); 
13

C NMR (126 MHz, CDCl3) δ = 

138.2, 128.8, 128.3, 128.2, 97.4 (C-1), 82.5 (C-3), 75.3 (C-5), 75.1 (CBn), 70.6 (C-4), 

68.4 (C-2), 62.7 (C-6), 25.7 (CH3TBS), 18.1 (CqTBS), -4.2 (CH3TBS), -5.0 ppm (CH3TBS); 

HRMS (ESI) m/z calcd for C19H31N3O5Si [M+Na]
+
 432.1931, found 432.1913. 

 

2-Azido-6-O-benzoyl-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-β-D-

glucopyranose (63): BzCN (2.1 mL of  0.9 M solution in dry CH3CN) and catalytic 

Et3N (3.5 mL) were added to a cooled (-40 °C) solution of 62 (7.25 g, 17.70 mmol) in 

dry CH3CN (35 mL). After 4h, additional BzCN was added (0.5 mL) until starting 

material had disappeared. After 7h, MeOH was added and the mixture was allowed to 

reach room temperature. The solvent was concentrated, and the residue was dissolved in 

MeOH and concentrated to dryness. The purification was carried out by column 

chromatography (hexane/ EtOAc, 4/1) to afford the product 63 (8.18 g, 90%). 
1
H NMR 

(500 MHz, CDCl3) δ = 8.06 – 8.04 (m, 2H, aromatic), 7.59 – 7.56 (m, 1H, aromatic), 

7.45 – 7.32 (m, 7H, aromatic), 5.96 (d, J = 11.4 Hz, 1H, CH2Ph), 4.76 (d, J = 11.4 Hz, 

1H, CH2Ph), 4.61 – 4.58 (m, 2H, H-6a, H-1), 4.55 (dd, J = 12.0 Hz, 5.1 Hz, 1H, H-6b), 

3.58 – 3.51 (m, 2H, H-4, H-5), 3.35 (dd, J  = 7.6 Hz, 9.9 Hz, 1H, H-2), 3.25 (dd, J = 9.9, 

8.0 Hz, 1H, H-3), 2.74 (bs, 1H, OH), 0.93 (s, 9H, CH3TBS), 0.16 and 0.15 (2s, 6H, 

CH3TBS); 
13

C NMR (126 MHz, CDCl3) δ = 166.9, 138.1, 133.3, 130.0, 129.9, 129.9, 
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129.8, 128.8, 128.8, 128.5, 128.5, 128.4, 128.3, 128.2, 97.5 (C-1), 82.2 (C-3), 75.3 

(CH2Ph), 74.0 (C-5), 70.4 (C-4), 68.3 (C-2), 64.0 (C-6), 25.7 (CH3TBS), 18.1 (CqTBS), -

4.2 (CH3TBS), -5.1 (CH3TBS); HRMS (ESI) m/z calcd for C26H35N3O6Si [M+Na]
+
 

536.2187, found 536.2214. 

2-Azido-6-O-benzoyl-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-4-O-

levulinoyl-β-D-glucopyranose (64): The reaction was carried out according to general 

procedure A using compound 63 (9.81 g, 19.09 mmol), levulinic acid (3.32 g, 28.6 

mmol), EDC·HCl (5.5 g, 28.6 mmol) and a catalytic amount of DMAP (50 mg, 0.44 

mmol) in dry CH2Cl2 (5 mL). The residue was purified by column chromatography 

(hexane/EtOAc, 9/1) to obtain compound 64 (9.96 g, 91%). 
1
H NMR (500 MHz, 

CDCl3)  = 8.06 – 8.02 (m, 2H, aromatic), 7.58 – 7.53 (m, 1H, aromatic), 7.46 – 7.40 

(m, 2H, aromatic), 7.38 – 7.26 (m, 5H, aromatic), 5.09 – 5.02 (m, 1H, H-4), 4.82 (d, J = 

11.4 Hz, 1H, CH2Ph), 4.67 (d, J = 11.4 Hz, 1H, CH2Ph), 4.57 (m, 1H, H-1), 4.49 (dd, J 

= 12.1, 2.4 Hz, 1H, H-6), 4.28 (dd, J = 12.1, 6.8 Hz, 1H, H-6), 3.73 – 3.68 (m, 1H, H-5), 

3.44 – 3.40 (m, 2H, H-2, H-3), 2.77 – 2.58 (m, 2H, CH2Lev), 2.54 – 2.46 (m, 1H, 

CH2Lev), 2.42 – 2.34 (m, 1H, CH2Lev), 2.12 (s, 3H, CH3Lev), 0.89 (s, 9H, TBS), 0.11 (s, 

6H, TBS); 
13

C NMR (126 MHz, CDCl3) δ = 206.28, 171.80, 166.22, 137.96, 133.22, 

129.94, 129.89, 128.56, 128.44, 128.12, 127.99, 97.34 (C-1), 80.01 (C-3), 75.01 (CBn), 

72.43 (C-5), 70.72 (C-4), 68.46 (C-2), 63.36 (C-6), 37.95 (CH2Lev), 29.83 (CH3Lev), 

27.99 (CH2Lev), 25.66 (CH3TBS), 18.06 (CqTBS), -4.21 (CH3TBS), -5.14 (CH3TBS) ppm; 

HRMS (ESI) m/z calcd for C31H41N3O8Si [M+Na]
+
 634.2561, found 634.2565.  

 

2-Azido-6-O-benzoyl-3-O-benzyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl 

trichloroacetimidate (65): To a cooled (0 °C) solution of compound 64 (2.0 g, 3.26 

mmol) in dry THF (16 mL), AcOH (0.20 mL) and TBAF (1.38 mL, 3.59 mmol) were 

added. After 3h, water was added and the mixture was diluted with EtOAc and washed 

with water. The aqueous layer was extracted with EtOAc, and the combined organic 

layers were dried over anhydrous MgSO4 and concentrated to dryness. The residue was 

concentrated and use in the next reaction without further purification. The hemiacetal 

(1.62 g, 3.27 mmol) and trichloroacetonitrile (4.9 mL, 49 mmol) were dissolved in 

anhydrous CH2Cl2 (32 mL) with activated 4 Å molecular sieves. After 30 minutes of 

stirring, the solution was cooled to 0 °C and DBU (48 µL, 0.33 mmol) was added. After 

2 h, TLC (hexane/ EtOAc, 3/1) indicated complete conversion of the starting material. 
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The reaction mixture was concentrated under reduced pressure. The title compound 65 

was obtained after column chromatography on silica (hexane/ EtOAc, 1:0 to 2:1) as a 

colorless solid (1.78 g, 85%). [α]D
20 

= + 64.9° (c = 1.0, CHCl3), 
1
H NMR (500 MHz, 

CDCl3) δ = 8.75 (s, 1H, OCNHCl3), 8.01 (m, 2H, aromatic), 7.55 (m, 1H, aromatic), 

7.42 (m, 2H, aromatic), 7.33 (m, 2H, aromatic), 6.45 (d, J = 3.5 Hz, 1H, H-1), 5.30 (dd, 

J = 9.6, 9.3 Hz, 1H, H-4), 4.86 (d, J = 11.0 Hz, 1H, CH2Ph), 4.77 (d, J = 11.0 Hz, 1H, 

CH2Ph), 4.50 (dd, J = 12.3, 2.1 Hz, 1H, H-6a), 4.32 (dd, J = 12.3, 5.1 Hz, 1H, H-6b), 

4.26 (ddd, J = 9.3, 5.1, 2.1 Hz, 1H, H-5), 4.08 (dd, J = 10.1, 9.6 Hz, 1H, H-3), 3.78 (dd, 

J = 10.1, 3.5 Hz, 1H, H-2), 2.77 – 2.62 (m, 2H, CH2Lev), 2.54 – 2.50 (m, 1H, CH2Lev), 

2.45 (m, 1H, CH2Lev), 2.12 (s, 3H, CH3Lev) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 206.1 

(OCNH), 171.5 (Cq), 166.0 (Cq), 160.4 (Cq), 137.2 - 128.0 (Carom), 94.2 (C-1), 77.6 (C-

3), 77.2 (CCl3), 75.1 (CBn), 70.8 (C-5), 70.0 (C-4), 62.6 (C-2), 62.2 (C-6), 37.7 (CH2Lev), 

29.6 (CH3Lev), 27.8 (CH2Lev) ppm, HRMS (ESI) m/z calcd for C27H27Cl3N4O8 [M+Na]
+ 

663,0787, found 663.0784. 

 

2-Azido-6-O-benzoyl-3-O-benzyl-2-deoxy-4-O-levulinoyl-α/β-D-glucopyranosyl N-

phenyl trifluoroacetimidate (66): To a cooled (0°C) solution of compound 64 (773 

mg, 1.26 mmol) in dry THF (6 mL) , AcOH (79 µL) and TBAF (1.38 mL, 1.26 mmol) 

were added. After 3h, water was added and the mixture was diluted with EtOAc and 

washed with water. The aqueous layer was extracted with EtOAc, and the combined 

organic layers were dried over anhydrous MgSO4 and concentrated to dryness. The 

residue was concentrated and use in the next reaction without further purification. To a 

solution of hemiacetal (636 mg, 1.28 mmol) in acetone (10 mL), potassium carbonate 

(350 mg, 2.56 mmol) and (N-phenyl) trifluoroacetimidoyl chloride
7
 (600 mg, 2.89 

mmol) were added. The reaction was stirred overnight and the solvent was concentrated. 

Flash chromatography on silica gel (hexane hexane/ EtOAc, 1/0 to 2:1 containing 1% of 

triethylamine) afforded a mixture (1:1) of 66α and 66β (765 mg, 91%). α-anomer: 
1
H 

NMR (500 MHz, CDCl3) δ 8.05 – 8.03 (m, 2H, aromatic), 7.59 – 7.56 (m, 1H, 

aromatic), 7.45 – 7.42 (m, 2H, aromatic), 7.37 – 7.31 (m, 5H, aromatic), 7.26 – 7.22 (m, 

2H, aromatic), 7.11 – 7.08 (m, 1H, aromatic), 6.72 (d, 2H, aromatic), 6.42 (bs, 1H, H-

1), 5.27 (t, J = 9.8 Hz, 1H, H-4), 4.88 (d, J = 11.0 Hz, CH2Ph), 4.77 (d, J = 11.0 Hz, 

CH2Ph), 4.51 (dd, J = 12.4 Hz, 2.3 Hz,  1H, H-6a), 4.36 (dd, J = 12.4, 5.4 Hz, 1H, H-6b), 

4.19 – 4.17 (m, 1H, H-5), 4.05 (t, J = 9.7 Hz, 1H, H-3), 3.76 – 3.74 (m, 1H, H-2), 2.67 – 

2.64 (m, 2H, CH2Lev), 2.6 – 2.53 (m, 1H, CH2Lev), 2.46  – 2.40 (m, 1H, CH2Lev), 2.13 (s, 
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3H, CH3Lev) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 206.2 (OCNPh), 171.7 (Cq), 166.2, 

143.1, 137.4, 133.3, 129.9, 129.0, 128.7, 128.6, 128.2, 124.7, 119.4, 92.7 (C-1), 78.0 

(C-3), 75.5 (CBn), 70.9 (C-5), 70.2 (C-4), 62.7 (C-2), 62.4 (C-6), 37.9 (CH2Lev), 29.8 

(CH3Lev), 28.0 (CH2Lev) ppm. β-anomer: 
1
H NMR (500 MHz, CDCl3) δ = 8.02 – 8.00 

(m, 2H, aromatic), 7.56 – 7.53 (m, 1H, aromatic), 7.39 – 7.30 (m, 7H, aromatic), 7.25 – 

7.22 (m, 2H, aromatic), 7.12 – 7.09 (m, 1H, aromatic), 6.75 – 6.74 (m, 2H, aromatic), 

5.60 (bs, 1H, H-1), 5.17 (t, J = 9.7 Hz, 1H, H-4), 4.85 (d, J = 11.3 Hz, 1H, CH2Ph), 4.74 

(d, J = 11.3 Hz, 1H, CH2Ph), 4.49 (dd, J = 12.4, 2.2 Hz, 1H, H-6a), 4.32 (dd, J = 12.3, 

6.2 Hz, 1H, H-6b), 3.79 – 3.75 (m, 2H, H-2, H-5), 3.60 – 3.56 (m, 1H, H-3), 2.74 – 2.62 

(m, 2H, CH2Lev), 2.54 – 2.48 (m, 1H, CH2Lev), 2.44 – 2.38 (m, 1H, CH2Lev), 2.12 (s, 3H, 

CH3Lev) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 206.2, 171.7, 166.2, 143.1, 137.5, 133.2, 

129.9, 129.8, 128.9, 128.8, 128.6, 128.5, 128.26, 128.2, 124.6, 119.3, 95.5 (C-1), 80.3 

(C-3), 75.4 (CBn), 73.3 (CF3), 70.0 (C-4), 65.1 (C-5, C-2), 62.7 (C-6), 37.9 (CH2Lev), 

29.8 (CH3Lev), 28.0 (CH2Lev) ppm. 

 

 

5.6.3.1 Synthesis of the glucosamine non-reducing end building block  

2-Azido-3,4-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy -β-D-glucopyranose (67): 

The compound 61 (2.91 g, 5.92 mmol) was dissolved in 1M borane in THF (30 mL) and 

catalytic amount of copper triflate was added (214 mg, 0.59 mmol). The reaction was 

stirred for 2h at room temperature and was cooled and quenched by addition of 

triethylamine and MeOH. The crude was concentrated and purified by column 

chromatography on silica gel (hexane/EtOAc; 9/1 to 8/2) to afford compound 67 (2.5 g, 

85%). [α]D
20 

= -22.3° (c = 1, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ 7.47 – 7.27 (m, 

10H, aromatic), 4.92 (d, J = 10.8 Hz, 1H, CH2Ph), 4.88 (d, J = 11.0 Hz, 1H, CH2Ph), 

4.83 (d, J = 10.8 Hz, 1H, CH2Ph), 4.68 (d, J = 11.0 Hz, 1H, CH2Ph), 4.58 (d, J = 7.7 

Hz, 1H, H-1), 3.85 (dd, J = 11.9, 2.8 Hz, 1H, H-6a), 3.76 – 3.68 (m, 1H, H-6b), 3.60 (t, 

J = 9.3 Hz, 1H, H-4), 3.45 (t, J = 9.4 Hz, 1H, H-3), 3.39 – 3.31 (m, 2H, H-2, H-5), 1.94 

– 1.84 (bs, 1H, OH),  0.98 (s, 9H, CH3TBS), 0.20 (s, 3H, CH3TBS), 0.19 (s, 3H, CH3TBS) 

ppm; 
13

C NMR (126 MHz, CDCl3) δ = 138.15, 137.96, 128.62, 128.57, 128.12, 128.08, 

127.96, 97.21 (C-1), 82.95 (C-3), 77.63 (C-4), 75.56 (C-5), 75.49 (CBn), 75.13 (CBn), 

68.97 (C-2), 62.11 (C-6), 25.71 (CH3TBS), 18.07 (Cq), -4.13 (CH3TBS), -5.00 (CH3TBS) 

ppm. 
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2-Azido-6-O-benzoyl-3,4-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-β-D-

glucopyranose (68): The compound 67 (1.35 g, 2.70 mmol) was dissolved in dry  

CH2Cl2 (27 mL) and benzoyl chloride (0.62 mL, 5.4 mmol), pyrdine (3 mL) and DMAP 

(270 mg, 0.27 mmol) were added at 0 °C. The reaction was stirred for 2 hours and was 

quenched by addittion of MeOH. The reaction crude was dissolved with  CH2Cl2 and 

was washed with 1M HCl, NaHCO3 solution and brine. The organic phase was dried 

over anhydrous MgSO4 and concentrated. The crude was purified by column 

chromatography (hexane/EtOAc, 1:0 to 9:1) to afford compound 68 (1.63 g, quant). 

[α]D
20 

= +6.5° (c = 0.5, CHCl3); 
 1

H NMR (500 MHz, CDCl3) δ 8.06 – 7.97 (m, 2H, 

aromatic), 7.58 (ddt, J = 8.8, 7.2, 1.3 Hz, 1H, aromatic), 7.48 – 7.26 (m, 12H, aromatic), 

4.95 (d, J = 10.7 Hz, 1H, CH2Ph), 4.90 (d, J = 10.9 Hz, 1H, CH2Ph), 4.82 (d, J = 10.7 

Hz, 1H, CH2Ph), 4.67 – 4.60 (m, 3H, CH2Ph, H-6), 4.59 (d, J = 7.6 Hz, H-1), 4.40 (dd, J 

= 11.8, 5.9 Hz, 1H, H-6), 3.65 (ddd, J = 9.8, 5.9, 2.1 Hz, 1H, H-5), 3.59 (dd, J = 9.8, 8.4 

Hz, 1H, H-4), 3.47 (dd, J = 10.0, 8.4 Hz, 1H, H-3), 3.40 (dd, J = 9.9, 7.6 Hz, 1H, H-2), 

0.92 (s, 9H, CH3TBS), 0.15 (s, 3H, CH3TBS), 0.13 (s, 3H, CH3TBS) ppm; 
13

C NMR (126 

MHz, CDCl3) δ = 166.26, 138.05, 137.66, 133.20, 130.04, 129.83, 128.65, 128.46, 

128.24, 128.18, 128.16, 128.08, 97.33 (C-1), 83.15 (C-3), 77.90 (C-4), 75.72 (CBn), 

75.24 (CBn), 73.50 (C-5), 68.94 (C-2), 63.67 (C-6), 25.71 (CH3TBS), 18.08  (Cq), -4.18 

(CH3TBS), -5.06 (CH3TBS) ppm. 

2-Azido-6-O-benzoyl-3,4-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy–α/β-D-

glucopyranosyl trichloroacetimidate (70): The compound 68 (181 mg, 0.299 mmol) 

was dissolved in dry THF (1.5 mL), TBAF (0.33 mL) and acetic acid (18 µL) were 

added at 0 °C. After 3h, the reaction was diluted with EtOAc and washed with saturated 

NaHCO3 aq solution, water and brine. The organic phase was dried under anhydrous 

MgSO4 and concentrated. The crude product was used in the next reaction without 

further purification. The hemiacetal 69 was dissolved in dry CH2Cl2 (3 mL), 

trichloroacetonitrile (0.36 mL) and DBU (9 µL) were added at 0 °C. The reaction 

mixture was stirred overnight at room temperature, concentrated and purified by column 

chromatography (hexane/EtOAc; 9/1 to 7/3 containing 5% of triethylamine) to obtain 

compound 70 (120 mg, 0.190 mmol) as an α/β (7/3) mixture . α-anomer 
1
H NMR (500 

MHz, CDCl3) δ 8.74 (s, 1H, NH), 7.99 (dd, J = 8.3, 1.4 Hz, 2H, aromatic), 7.61 – 7.54 

(m, 1H, aromatic), 7.48 – 7.21 (m, 12H, aromatic), 6.45 (d, J = 3.5 Hz, 1H, H-1), 4.97 
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(s, 2H, CH2Ph), 4.91 (d, J = 10.7 Hz, 1H, CH2Ph), 4.66 (d, J = 10.7 Hz, 1H, CH2Ph), 

4.57 (dd, J = 12.2, 2.2 Hz, 1H, H-6a), 4.49 (dd, J = 12.2, 4.1 Hz, 1H, H-6b), 4.20 (ddd, 

J = 10.1, 4.0, 2.1 Hz, 1H, H-4), 4.11 (dd, J = 10.3, 8.9 Hz, 1H, H-3), 3.81 (dd, J = 10.2, 

8.9 Hz, 1H, H-5), 3.74 (dd, J = 10.2, 3.6 Hz, 1H, H-2) ppm.
13

C NMR (126 MHz, 

CDCl3) δ = 166.13, 161.11, 160.86, 137.69, 137.55, 137.25, 133.32, 133.25, 130.01, 

129.90, 129.86, 129.80, 128.77, 128.74, 128.72, 128.70, 128.55, 128.52, 128.40, 

128.37, 128.34, 128.30, 128.26, 128.24, 96.89, 94.74, 83.33, 80.46, 77.78, 77.26, 75.99, 

75.94, 75.66, 75.35, 74.22, 72.15, 65.97, 63.36, 62.98, 62.78 ppm. 

 

4.6.4 Synthesis of Galactosamine Building Block  

1,3,4,6-Tetra-O-acetyl-2-deoxy-2-p-methoxyphenylimino-D-galactopyranose (72): 

To a solution of D-galactosamine hydrochloride (10 g, 46.4 mmol) in NaOH 1M 

(47mL), p-anisaldehyde (5.6 mL) was added. After stirred for 30 min (a white solid was 

formed) and was stored in the freezer for 2h. The solid was filtered and was washed 

with cold water and diethyl ether and dried in high vacuum overnight. The white solid 

was dissolved in pyridine (75 mL) and acetic anhydride (42 mL) was added at 0 °C and 

was stirred for 24 h. The reaction mixture was poured into ice-water mixture. The solid 

formed was filtered, washed with cold water and diethyl ether and dried to obtain 72 as 

a white solid (9.6 g, 44 % in 2 steps). 
1
H NMR (500 MHz, CDCl3) δ 8.20 (s, 1H, imine), 

7.67 – 7.65 (m, 2H, aromatic), 6.92 – 6.91 (m, 2H, aromatic), 5.93 – 5.91 (d, J = 8.2Hz, 

H-1), 5.46 – 5.45 (m, 1H, H-4), 5.26– 5.23 (dd, J = 9.9, 3.2 Hz, H-3), 4.22 – 4.14 (m, H-

6, H-5), 3.84 (s, 3H, CH3-PMP), 3.62 – 3.59 (m, 1H, H-2), 2.17 (s, 3H, CH3Ac), 2.05 (s, 

3H, CH3Ac), 2.02 (s, 3H, CH3Ac), 1.88 (s, 3H, CH3Ac) ppm; 
13

C NMR (126 MHz, CDCl3) 

δ 170.52, 170.21, 169.77, 168.83, 164.56, 162.34, 130.29, 128.56, 114.14, 93.63, 71.87, 

71.67, 68.93, 66.07, 61.44, 55.51, 20.88, 20.81, 20.79, 20.62 ppm. HRMS (ESI): m/z 

calcd. for C22H27NO10 [M+H]
+
 466.1708, found 466.1692. 

1,3,4,6-Tetra-O-acetyl-2-amino-2-deoxy-D-galactopyranose (73): The compound 72 

(5.0 g, 10.8 mmol) was dissolved in hot acetone (57 mL) and HCl 5N (2.4 mL) was 

added dropwise. A white solid was formed and the reaction was kept at 0 °C for 2h. The 

solid was filtered and washed with cold diethyl ether to obtain the compound 73 (3.5 g, 

94%). [α]D
20 

= + 14.6° (c = 0.5, MeOH), 
1
H NMR (500 MHz, CD3OD) δ 5.92 – 5.90 (d, 

J = 8.6 Hz, 1H, H-1), 5.44 – 5.43 (m, 1H, H-4), 5.31 – 5.28 (dd, J = 11.1, 2.5 Hz, H-3), 
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4.29 – 4.27 (t, J = 3.4 Hz, 1H, H-5), 4.19 – 4.10 (m, 2H, H-6), 3.65 – 3.61 (dd, J = 8.8, 

11.1 Hz, H-2), 2.21 (s, 3H, CH3Ac), 2.15 (s, 3H, CH3Ac), 2.07 (s, 3H, CH3Ac), 2.02 (s, 

3H, CH3Ac) ppm; 
13

C NMR (126 MHz, CD3OD) δ 171.98, 171.67, 171.15, 170.07, 

91.90, 73.08, 70.64, 67.22, 62.24, 51.45, 20.70, 20.60, 20.49, 20.36 ppm. HRMS (ESI): 

m/z calcd. for C14H21NO9 [M+H]
+ 

348.1289, found 348.1279. 

 

1,3,4,6-Tetra-O-acetyl-2-deoxy-2-trichloroacetamidate-D-galactopyranose (74): The 

compound 73 (4.55 g, 13.1 mmol) was dissolved in dry CH2Cl2 (56 mL), triethylamine 

(3.65 mL, 26.2 mmol) and trichloroacetyl chloride (1.9 mL, 17.03 mmol) were added at 

0 °C. After 3h of stirring at room temperature, the solution was diluted with CH2Cl2 and 

was washed with water and saturated NaHCO3 aq solution. The organic extracts were 

dried over anhydrous MgSO4, filtered, concentrated and purified by column 

chromatography using hexane: EtOAc (9: 1 to 7: 3) to obtain the compound 74 (5.9 g, 

91%). 
1
H NMR (500 MHz, CDCl3) δ 6.94 – 6.89 (d, J = 9.5 Hz, 1H, NHTCA), 5.87 – 

5.83 (d, J = 8.8 Hz, 1H, H-1), 5.42 – 5.39 (dd, J = 3.4, 1.2 Hz, 1H, H-4), 5.28 – 5.23 

(dd, J = 11.3, 3.3 Hz, 1H, H-3), 4.47 – 4.40 (m, 1H, H-5), 4.21 – 4.11 (m, 2H, H-6), 

4.07 – 4.03 (m, 1H, H-2), 2.21 – 2.18 (s, 3H), 2.14 – 2.12 (s, 3H, CH3Ac), 2.07 – 2.05 (s, 

3H, CH3Ac), 2.03 – 2.00 (s, 3H, CH3Ac) ppm; 
13

C NMR (126 MHz, CDCl3) δ 170.80, 

170.61, 170.20, 169.60, 162.51, 92.51, 72.30, 69.91, 66.45, 61.41, 51.87, 20.90, 20.81, 

20.76, 20.65 ppm. HRMS (ESI): m/z  calcd. for C16H20Cl3NO10 [M+Na]
+ 

514.0045, 

found 514.0070. 

 

1-O-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranose 

(75): Compound 74 (8.33 g, 16.90 mmol) was dissolved in DMF (180 mL) and 

hydrazine acetate (1.90 g, 20.63 mmol) was added. After stirring for 3 h at room 

temperature, the reaction mixture was diluted with EtOAc (400 mL) and washed with 

1M HCl aq solution (50 mL). The aqueous phase was extracted with EtOAc (2x100 

mL) and the combined organic layers were dried over anhydrous MgSO4, filtered and 

concentrated to give hemiacetal as an oil. Without further purification this intermediate 

compound was dissolved in DMF (57 mL), imidazole (2.30 g, 33.72 mmol) and tert-

butyldimethylsilyl chloride (3.05 g, 20.23 mmol) were added at room temperature. After 

the mixture was stirred for 3 h, water (60 mL) was added and the solution was diluted 

with EtOAc (300 mL). The aqueous phase was extracted with EtOAc (2x200 mL) and 
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the combined organic extracts were washed with 1M HCl, water, saturated NaHCO3 aq 

solution and brine. The organic extracts were dried over anhydrous MgSO4, filtered, and 

concentrated. The crude residue (8.20 g, 14.52 mmol) was dissolved in MeOH (35 mL) 

and 3.8 mL of a 0.25M methanolic sodium methoxide solution was added at room 

temperature. After 2 h, the reaction mixture was diluted with methanol (50 mL) and 

neutralized by addition of Amberlite
®
 IR-120(H). The solution was filtered and 

concentrated to yield 75 (6.35 g, 86 %) as a colorless foam. [α]D
20 

+ 11.1 (c 0.13, 

MeOH), 
1
H NMR (500 MHz, CD3OD) δ 4.80 (d, J = 8.1 Hz, H-1), 3.94 – 3.90 (m, 1H, 

H-2), 3.88 (d, J = 2.97 Hz,1H, H-4), 3.80 - 3.76 (m, 2H, H-6, H-3), 3.71 (dd, J = 6.2, 

11.1 Hz, 1H, H-6), 3.51 (t, J = 6.2 Hz, 1H, H-5), 0.89 (s, 9H, CH3TBS), 0.14 (s, 3H, 

SiCH3TBS), 0.12 (s, 3H, SiCH3TBS) ppm; 
13

C NMR (126 MHz, CD3OD) δ 97.47, 76.60, 

71.96, 69.65, 62.11, 58.50, 26.24, -3.83, -4.98 ppm. HRMS (ESI) m/z: [M+Na]
+ 

Calcd. 

for C14H26Cl3NO6SiNa 460.0493, Found 460.0497. 

 

4,6-Benzylidene-1-O-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranose (76): A solution of 75 (2.88 g, 6.57 mmol) in acetonitrile (45 mL) was 

treated with benzaldehyde dimethyl acetal (2.6 mL, 17.75 mmol) and catalytic amount 

of 10-camphorsulfonic acid (305 mg, 1.31 mmol). After stirring for1 h at room 

temperature, the reaction mixture was diluted with EtOAc (100 mL) and washed with 

saturated NaHCO3 aq solution, water and brine (100 mL each). The organic layer was 

dried over MgSO4, filtered, and concentrated. The crude residue was purified by flash 

silica gel chromatography (hexane/EtOAc, 7/3 to 1/1) to yield 76 (2.56 g, 4.56 mmol, 

93%). [α]D
20 

 +5.4 (c 1, CHCl3), 
1
H NMR (500 MHz, CDCl3) δ 7.54 – 7.49 (m, 2H, 

aromatic), 7.41 – 7.35 (m, 2H, aromatic), 6.83 (d, J = 7.6 Hz, 1H, NH), 5.57 (s, 1H, 

Hacetal), 4.97 (dd, J = 7.9, 1.7 Hz, 1H, H-1), 4.28 (dd, J = 12.4, 1.3 Hz, 1H, H-6), 4.21 (d, 

J = 3.3 Hz, 1H, H-4), 4.10 – 4.03 (m, 2H, H-6, H-3), 3.86 – 3.78 (m, 1H, H-2), 3.52 – 

3.49 (m, 1H, H-5), 0.91 (s, 9H, CH3TBS), 0.19 (s, 3H, SiCH3TBS), 0.13 (s, 3H, SiCH3TBS) 

ppm; 
13

C NMR (126 MHz, CDCl3) δ 162.6, 137.6, 129.5, 128.5, 126.6, 101.5, 95.4, 

75.1, 69.8, 69.4, 66.8, 58.7, 58.6, 25.9, 18.1, -3.8, -4.5 ppm. HRMS (ESI) m/z: [M+Na]
+ 

 

Calcd. for C21H30Cl3NO6Na 548.0800; Found 548.0797. 

 

4,6-Benzylidene-1-O-tert-butyldimethylsilyl-2-deoxy-3-O-levulinoyl-2-

trichloroacetamido-β-D-galactopyranose (77): To a solution of 76 (2.56 g, 4.58 

mmol) in dry CH2Cl2 (7.3 mL), EDC·HCl (1.39 g, 7.28 mmol), DMAP (415 mg, 3.39 
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mmol) and levulinic acid (0.74 mL, 7.28 mmol) were added at 0 °C and after stirring for 

10 min was allowed to warm up to room temperature. After 3h, TLC analysis indicated 

complete conversion of the starting material. The reaction mixture was diluted with 

CH2Cl2 (100 mL) and washed with saturated NaHCO3 aq solution, water and brine (50 

mL each). The organic layer was dried over anhydrous MgSO4, filtered, and 

concentrated. The crude was purified by flash chromatography (hexane/EtOAc, 6/4) to 

obtain 77 (2.8 g, 92%). [α]D
20

=
 
+21.0 (c 1, CHCl3), 

1
H NMR (500 MHz, CDCl3) δ 7.54 

–7.36 (m, 5H, aromatic), 6.69 (d, J = 8.5Hz, NH), 5.53 (s, 1H, PhCH), 5.28 (dd, J = 

3.5Hz, 11.3Hz, 1H, H-3), 5.02 (d, J = 7.8Hz, 1H, H-1), 4.29 (m, 2H, H-4, H-6), 4.17 

(m, 1H, H-2), 4.06 (dd, J = 1.6, 12.4Hz, 1H, H-6), 3.53 (d, J = 1Hz, 1H, H-5), 2.71 – 

2.56 (m, 4H, CH2Lev), 2.05 (s, 3H, CH3Lev), 0.89 (s, 9H, CH3TBS), 0.18 (s, 3H, 

SiCH3TBS), 0.13 (s, 3H, SiCH3TBS) ppm; 
13

C NMR (126 MHz, CDCl3) δ 206.5, 172.6, 

161.8, 137.8, 129.3, 128.4, 126. 6, 101.2, 95.8, 77.4, 77.2, 76.9, 73.3, 70.3, 69.4, 66.6, 

55.0, 37.9, 29.8, 28.2, 25.9, 18.1, -3.8, -4.5 ppm. HRMS (ESI) m/z: [M+NH4]
+ 

Calcd. 

for C26H36Cl3NO8NH4 641.1614; Found 641.1652. 

 

6-O-Benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-3-O-levulinoyl-2-

trichloroacetamido-β-D-galactopyranose (78): To a solution of 77 (6.0 g, 9.6 mmol) 

in dry CH2Cl2 (35 mL) with 4 Å molecular sieves, triethylsilane (7.6 mL, 48 mmol) and 

trifluoroacetic acid (3.7 mL, 48 mmol) were added at 0 °C and was stirred for 2h. The 

reaction mixture was then allowed to warm up to room temperature and stirred for 1h. 

The reaction was quenched by addition of triethylamine (6.7 mL) and concentrated. The 

oily residue was purified by flash column chromatography (toluene/ EtOAc, 8/2 to 6/4) 

to obtain the desired product 78 as a colorless solid (4.2 g, 69%). [α]D
20

= -0.8 (c 0.5, 

CHCl3) 
1
H NMR (500 MHz, CDCl3) δ 7.37 – 7.27 (m, 5H, aromatic), 6.67 (d, J = 8.9 

Hz, 1H, NH), 5. 08 (dd, J = 11.2, 3.0 Hz, 1H, H-3), 4.88 (d, J = 7.9 Hz, 1H, H-1), 4.58 

(s, 2H, CH2Ph), 4.19 – 4.11 (m, 2H, H-5, H-2), 3.81 – 3.76 (m, 1H, H-6), 3.75 – 3.69 

(m, 2H, H-6, H-4), 2.77 – 2.72 (m, 2H, CH2Lev), 2.65 – 2.51 (m, 2H, CH2Lev), 2.19 (s, 

3H, CH3Lev), 0.87 (s, 9H, CH3TBS), 0.14 (s, 3H, SiCH3TBS), 0.10 (s, 3H, SiCH3TBS) ppm; 

13
C NMR (126 MHz, CDCl3) δ 207.6 (Cq), 172.4 (Cq), 161.9 (Cq), 137.9 (Cq), 128.6, 

128.0, 127.8 (Caromatic), 96.1 (C-1), 92.7(Cq), 73.9 (CH2Ph), 73.5 (C-4), 72.7 (C-3), 

69.6 (C-6), 67.3 (C-5), 55.0 (C-2), 38.2 (CH2Lev), 30.0 (Me), 28.3 (CH2Lev), 25.8 

(CH3TBS), 18.0 (Cq), -3.9 (CH3TBS), -5.0 (CH3TBS) ppm. HRMS (ESI) m/z: [M+Na]
+ 

Calcd. for C26H38Cl3NO8Na 648.1324; Found 648.1330. 
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4-O-Benzoyl-6-O-benzyl-1-O-tert.-butyldimethylsilyl-2-deoxy-3-O-levulinyl-2-

trichloroacetamido-D-galactopyranose (79): To a solution of 78 (3.76 g, 6.01 mmol) 

in dry CH2Cl2 (18 mL), benzoyl chloride (0.84 mL, 6.01 mmol) and pyridine (1.67 mL, 

1.64 mmol) were added at 0 °C. The reaction was stirred for 3h and was diluted with 

CH2Cl2 and was washed with HCl 1M solution, water, saturated NaHCO3 aq solution, 

water, dried over anhydrous MgSO4, and conentrated. The crude was purified by 

column chromatography (hexane/ EtOAc, 8/2) to obtain (4.2 g, 96%). [α]D
20 

= +74.3 ° 

(c = 0.5, CHCl3), 
1
H NMR (500 MHz, CDCl3) δ 8.12 – 8.07 (m, 2H, aromatic), 7.63 – 

7.58 (m, 1H, aromatic), 7.51 – 7.47 (m, 2H, aromatic), 7.23 – 7.18 (m, 5H, aromatic), 

6.80 (d, J = 8.9 Hz, 1H, NH), 5.72 (dd, J = 3.4, 1.2 Hz, 1H, H-4), 5.34 (dd, J = 11.4, 3.4 

Hz, 1H, H-3), 5.00 (d, J = 7.9 Hz, 1H, H-1), 4.49 (d, J = 11.9 Hz, 1H, CH2Ph), 4.39 (d, 

J = 11.9 Hz, 1H, CH2Ph), 4.20 – 4.11 (ddd, J = 11.3, 9.0, 7.9 Hz, 1H, H-2), 4.01 (ddd, J 

= 6.4, 6.3, 1.3 Hz, 1H, H-5), 3.59 (m, 2H, H-6), 2.70 – 2.38 (m, 4H, CH2Lev), 2.04 (s, 

3H, CH3Lev), 0.91 (s, 9H, CH3TBS), 0.19 (s, 3H, SiCH3TBS), 0.15 (s, 3H, SiCH3TBS). 
13

C 

NMR (126 MHz, CDCl3) δ 206.31, 172.24, 165.80, 162.04, 137.66, 133.62 (C 

aromatic), 130.07 (C aromatic), 129.41 (C aromatic), 128.73, 128.44 (C aromatic), 

127.78 (C aromatic), 96.23 (C-1), 92.58 (Cq), 73.68 (CH2Ph), 72.72 (C-5), 70.35 (C-3), 

68.07 (C-6), 67.93 (C-4), 55.61 (C-2), 37.89 (CH2Lev), 29.68 (CH3Lev), 28.05 

(CH2Lev), 25.79 (TBS), 18.04 (Cq), -3.86 (TBS), -4.79 (TBS). HRMS (ESI): m/z  

calcd. for C21H30Cl3NO10 [M+Na]
+ 

752.1587, found 752.1612. 

 

4-O-Acetyl-6-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-3-O-levulinoyl-2-

trichloroacetamido-β-D-galactopyranose (80): A solution of compound 78 (136 mg, 

0.22 mmol) in pyridine (0.5 mL, 6.12 mmol) was cooled to 0 ºC and acetic anhydride 

(0.29 mL, 3.07 mmol) was added dropwise. The reaction was allowed to warm up to 

room temperature and stirred overnight. The solution was diluted with EtOAc (30 mL) 

and washed with 1M HCl solution, water, saturated CuSO4 aq solution, and water (10 

mL each). The organic phase was dried over anhydrous MgSO4, concentrated and 

purified by flash chromatography (hexane/EtOAc, 8/2 to 6/4) to obtain 80 (92 mg, 

82%). [α]D
20 

-9.3 (c 0.5, CHCl3); 
1
H NMR (500 MHz, CDCl3) δ 7.40 – 7.25 (m, 5H, 

aromatic), 6.68 (d, J = 8.9 Hz, 1H, NH), 5.46 (dd, J = 3.1, 1.3 Hz, 1H, H-4), 5.20 (dd, J 

= 11.4, 3.3 Hz, 1H, H-3), 4.88 (d, J = 7.9 Hz, 1H, H-1), 4.54 (d, J = 11.9 Hz, 1H, 

CH2Ph), 4.43 (d, J = 11.9 Hz, 1H, CH2Ph), 4.14 – 3.98 (m, 1H, H-2), 3.91 – 3.79 (m, 

1H, H-5), 3.61 – 3.42 (m, 2H, H-6), 2.83 – 2.70 (m, 1H, CH2Lev), 2.67 – 2.37 (m, 3H, 
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CH2Lev), 2.16 (s, 3H, CH3Lev), 2.08 (s, 3H, CH3Ac), 0.88 (s, 9H, CH3TBS), 0.14 (s, 3H, 

SiCH3TBS), 0.11 (s, 3H, SiCH3TBS) ppm; 
13

C NMR (126 MHz, CDCl3) δ 206.2 (Cq), 

172.4 (Cq), 170.3 (Cq), 162.0 (Cq), 137.7 (Cq), 128.6, 128.0, 96.2 (C-1), 92.6 (Cq, 

TCA), 73.7 (C-6), 72.5 (C-5), 70.2 (C-3), 67.9 (C-6), 67.3 (C-4), 55.3 (C-2), 37.9 

(CH2Lev), 29.9 (CH3Lev), 27.9 (CH2Lev), 25.8 (TBS), 20.9 (CH3Ac), 18.0 (TBS), -3.9 

(TBS), -5.0 (TBS) ppm. HRMS (ESI) m/z:  [M+NH4]
+ 

calcd. for C28H40Cl3NO9Si NH4 

685.1876; Found 685.1887. 

 

4-O-Benzoyl-6-O-benzyl-2-deoxy-3-O-levulinoyl-2-trichloroacetamido-α-D-

galactopyranosyl trichloroacetimidate (81): To a solution of 79 (310 mg, 0.42 mmol) 

in THF (2.1 mL), acetic acid (26 µL, 0.46 mmol) and TBAF (0.46 mL of 1M THF 

solution, 0.46 mmol) were added at 0 °C. The reaction was allowed to warm up to room 

temperature and stirred until TLC analysis indicated disappearance of starting material 

(2h). Then, the crude was diluted with EtOAc (30 mL) and was washed with saturated 

aqueous NaHCO3 solution (10 mL). The aqueous phase was extracted with EtOAc 

(3x10 mL), the combined organic phases were washed with water, brine, dried over 

MgSO4 and concentrated to use in the next reaction without further purification. The 

crude was dissolved in CH2Cl2 (4 mL), trichloroacetonitrile (0.63 mL, 6.3 mmol) and 

DBU (6 µL, 0.042 mmol) were added at 0 °C. After 2h, TLC analysis indicated the 

complete conversion of the starting material. The reaction crude was concentrated and 

purified by column chromatography (hexane/EtOAc, 7/3containing 5% of 

triethylamine) to obtain compound 6 (249 mg, 78%). 
1
H NMR (500 MHz, CDCl3) δ 

8.82 (s, 1H, NH), 8.12 – 8.05 (m, 2H, aromatic), 7.66 – 7.60 (m, 1H, aromatic), 7.53 – 

7.46 (m, 2H, aromatic), 7.23 – 7.13 (m, 5H, aromatic), 7.01 (d, J = 8.6 Hz, 1H, 

NHTCA),6.62 (d, J = 3.5 Hz, 1H, H-1), 5.90 – 5.86 (m, 1H, H-4), 5.53 (dd, J = 11.4, 

3.1 Hz, 1H, H-3), 4.78 (ddd, J = 11.8, 8.6, 3.5 Hz, 1H, H-2), 4.49 – 4.44 (m, 2H, H-5, 

CH2Ph), 4.36 (d, J = 11.8 Hz, 1H, CH2Ph), 3.64 – 3.53 (m, 2H, H-6), 2.77 – 2.67 (m, 

1H, CH2Lev), 2.64 – 2.41 (m, 3H, CH2Lev), 2.10 (s, 3H, CH3Lev) ppm.
13

C NMR (126 

MHz, CDCl3) from HSQC ed. experiment δ 133.9 (C aromatic), 129.9 (C aromatic), 

128.7, 128.0 (C aromatic), 94.5 (C-1), 73.6 (CH2Ph), 70.8 (C-5), 68.5 (C-3), 67.5 (C-4), 

67.2 (C-6), 50.3 (C-2), 37.7 (CH2Lev), 29.6 (CH3Lev), 28.0 (CH2Lev) ppm.  
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4-O-Acetyl-6-O-benzyl-2-deoxy-3-O-levulinoyl-2-trichloroacetamido-α-D-

galactopyranosyl trichloroacetimidate (82): Compound 80 (4.55 g, 6.8 mmol) was 

dissolved in THF (34 mL), acetic acid (0.42 mL, 7.48 mmol) and TBAF (7.5 mL of 1M 

THF solution, 7.50 mmol) were added at 0 °C. The reaction mixture was allowed to 

warm up to room temperature and was stirred overnight. The solution was partitioned 

between EtOAc (50 mL) and saturated NaHCO3 aq solution. The aqueous phase was 

extracted with EtOAc (3x30 mL), the combined organic phases were washed with 

water, brine and dried over anhydrous MgSO4. The reaction crude was concentrated and 

purified by column chromatography (hexane/ EtOAc, 8/2 to 1/1) to obtain the 

corresponding hemiacetal (3.4 g, 90%).
1
H NMR (500 MHz, CDCl3) as a mixture α/β 

(8.5/1.5) δ 7.37 – 7.26 (m, 5H, aromatic), 7.09 (d, J = 8.5 Hz, 0.15H, NHβ), 6.92 (d, J = 

9.3 Hz, 0.85H, NHα), 5.44 – 5.42 (m, 0.15H, H-4β), 5.41 – 5.39 (m, 0.85H, H-4α), 5.38 

(d, J = 2.7 Hz,  0.85H, H-1, H-1α), 5.29 (dd, J = 11.2, 3.2 Hz, 0.85H, H-3α), 5.11 (dd, J 

= 11.2, 3.3 Hz, 0.15H, H-3β), 4.70 (d, J = 8.2Hz, 0.15H, H-1β), 4.55 (d, J = 11.9 Hz, 

1H, CH2Ph), 4.50 – 4.42 (m, 1.85H, CH2Ph, H-2, H-2α), 4.41 – 4.36 (m, 0.85H, H-5α), 

4.09 – 4.04 (m, 0.2H, H-2β), 3.82 – 3.80 (m, 0.15H, H-5β), 3.58 (dd, J = 9.5, 6.2 Hz, H-

6aβ), 3.54 – 3.48 (m, 1H, H-6bβ, H-6aα), 3.45 (dd, J = 9.8, 4.9 Hz, 0.85H, H-6bα ), 2.77 

– 2.69 (m, 1H, CH2Lev), 2.67 – 2.51 (m, 2H, CH2Lev), 2.48 – 2.40 (m, 1H, CH2Lev), 2.16 

(s, 0.47H, CH3Levβ), 2.15(s, 2.24H, CH3Levα), 2.11 (s, 2.24H, CH3Acα) 2.09 (s, 0.47H, 

CH3Acβ) ppm; 
13

C NMR (126 MHz, CDCl3) δ 206.5, 172.5, 170.4, 162.2, 137.2, 128.6, 

128.2, 128.1, 92.3, 91.6 (C-1), 73.7 (CH2Ph), 68.7 (C-3), 68.6 (C-6), 68.1, 68.0, 50.3 

(C-2), 37.8 (CH2Lev), 29.8 (CH3Lev), 27.9 (CH2Lev), 27.9 (CH2Lev), 20.8 (CH3Ac) ppm. 

The hemiacetal (1.5 g, 2.7 mmol) was dissolved in dry CH2Cl2 (27 mL), 

trichloroacetonitrile (4.06 mL, 40.55 mmol) and catalytic amount of DBU (40 µL) were 

added at 0 °C. The reaction was gradually warmed up to room temperatureand stirred 

for 2 h until TLC analysis showed complete consumption of the starting material. The 

reaction mixture was concentrated and purified by column chromatography 

(hexane/EtOAc, 9/1 to 7/3containing 5% of triethylamine) to obtain compound 82 (1.6 

g, 85%). 
1
H NMR (500 MHz, CDCl3) δ 8.78 (s, 1H, OCNHCl3), 7.35 – 7.24 (m, 5H, 

aromatic), 6.91 (d, J = 8.7 Hz, 1H, NH), 6.50 (d, J = 3.5 Hz, 1H, H-1), 5.61 (dd, J = 3.1, 

1.4 Hz, 1H, H-4), 5.40 (dd, J = 11.4, 3.1 Hz, 1H, H-3), 4.71 – 4.65 (m, 1H, H-2), 4.53 

(d, J = 11.9 Hz, 1H, CH2Ph), 4.40 (d, J = 11.8 Hz, 1H, CH2Ph), 4.36 – 4.31 (m, 1H, H-

5), 3.56 (dd, J = 9.6, 5.6 Hz, 1H, H-6a), 3.48 (dd, J = 9.6, 7.4 Hz, 1H, H-6b), 2.81 – 2.73 

(m, 1H, CH2Lev), 2.68 – 2.55 (m, 2H, CH2Lev), 2.52 – 2.44 (m, 1H, CH2Lev), 2.17 (s, 3H, 
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CH3Lev), 2.10 (s, 3H, CH3Ac) ppm; 
13

C NMR (126 MHz, CDCl3) δ 206.1, 172.9, 170.0, 

162.4, 160.3, 137.4, 128.6, 128.1, 128.0, 94.6, 92.0, 90.8, 73.6, 70.7, 68.5, 67.1, 67.1, 

50.1, 37.8, 29.8, 27.9, 20.8 ppm. HRMS (ESI) m/z: [M+Na]
+  

Calcd. for 

C24H26Cl6N2O9Na 718.9667; Found 718.9703. 

 

5.7 EVALUATION OF GLYCOSYL DONORS FOR THE SYNTHESIS OF HS 

OLIGOSACCHARIDES IN SOLUTION 

 

5.7.1 Glycosylation of the linker 

 

4-((Benzyl(5-hydroxypentyl)carbamoyloxy)methyl)benzyl benzoate (83): To a 

cooled solution (0ºC) of 7 (958 mg, 1.91 mmol) in dry CH2Cl2 (6 mL), pyridine (0.46 

mL, 5.73 mmol) and benzoyl chloride (0.33 mL, 2.87 mmol) were added and the 

solution was stirred overnight. The mixture was diluted with EtOAc and washed with 

1M HCl, saturated NaHCO3 aq solution and water. The organic phase was dried over 

anhydrous MgSO4, filtered and concentrated. The residue was purified by column 

chromatography (CH2Cl2/hexane, 1/1) to afford the benzoylated intermediate (1.09 g, 

95%). 
1
H NMR (500 MHz, CDCl3, 323K) δ 8.10-8.09 (2H, d, J = 7.6Hz, aromatic), 

7.57-7.24 (12H, m, aromatic), 5.38 (2H, s, CH2), 5.21 (2H, s, CH2), 4.52 (2H, s, CH2), 

3.57 (2H, s, CH2), 1.67 - 1.50 (5H, m, CH2, TDS), 1.32 (2H, m, CH2), 0.91 (3H, s), 0.90 

(3H, s), 0.86 (6H, s, TDS), 0.09 (6H, s, TDS); 
13

C NMR (126 MHz, CDCl3, 323K) δ 

166.28, 156.42, 138.02, 137.09, 135.84, 132.91, 130.28, 129.67, 128.47, 128.31, 

128.21, 128.00, 127.64, 127.22, 66.74, 66.31, 62.57, 50.49, 47.27, 46.41, 34.30, 32.44, 

27.75, 25.19, 23.18, 20.39, 18.49, -3.39; HRMS (ESI): Calcd for C36H49NO5SiNa 

[M+Na]
+
 626.3278, found 626.3289. HF·pyridine complex (5 mL) was added to a 

cooled solution (0ºC) of the benzoylated intermediate (1.3 g, 2.15 mmol) in dry THF (5 

mL). The mixture was stirred overnight then diluted with EtOAc and solid NaHCO3 

was added. The reaction mixture was then filtered and washed with saturated NaHCO3 

aq solution and water. The organic phase was dried over anhydrous MgSO4, filtered and 

concentrated. The residue was purified by column chromatography (hexane/EtOAc, 7/3) 

to afford 83 (675 mg, 68%). 
1
H NMR (500 MHz, CDCl3, 323K) δ 8.07-8.06 (2H, d, J = 

7.6Hz, aromatic), 7.52 - 7.20 (12H, m, aromatic), 5.34 (2H, ps), 5.18 (2H, ps), 4.49 (2H, 

ps), 3.54 (2H, ps), 3.26 (2H, ps), 2.44 (1H, s), 1.52 (4H, ps), 1.30 (2H, ps); 
13

C NMR 

(126 MHz, CDCl3) δ 166.05 (qC), 156.12 (qC), 137.68 (qC), 136.71, 135.64, 132.71, 
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129.94 (qC), 129.38, 128.83, 128.24, 128.08, 127.94, 127.79, 127.00, 66.54, 66.04, 

62.06, 50.24, 46.92, 32.02, 27.44, 22.75; HRMS (ESI): Calcd for C28H31NO5Na 

[M+Na]
+
 484.2100, found 484.2061. 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(3-O-benzyl-2-O-benzoyl-4-O-

levulinoyl-6-O-tert-butyldiphenylsilyl--L-idopyranosyloxy)pentyl) carbamate (84): 

The reaction was carried out according to general procedure B using idopyranosyl donor 

25 (106 mg, 0.132 mmol), linker acceptor 83 (50 mg, 0.108 mmol), and 

trifluoromethanesulfonic acid (TfOH) (2.83 µL, 0.03 mmol) were added and the 

reaction mixture was allowed to warm to room temperature. The residue was purified by 

column chromatography (hexane/EtOAc, 95/5 to 1/1) to afford 84 (100 mg, 80%). 
1
H 

NMR (500 MHz, CDCl3) δ 8.08 - 7.14 (34H, m, aromatic) , 5.35 (2H, ps), 5.19- .18 

(3H, m, H-2, CH2), 5.09 (1H, ps, H-4), 4.97 (1H, ps, H-1), 4.81 (1H, d, J = 11.8Hz, 

CH2Ph ), 4.72 (1H, d, J = 11.8Hz, CH2Ph), 4.48 - 4.41 (m,3H, H-5, CH2), 3.91 (1H, t, 

H-3), 3.83 - 3.72 (3H, m, H-6, CH2), 3.39 - 3.37(1H, m), 3.21 - 3.14 (2H, m), 2.56 - 

2.53 (2H; m, CH2(Lev)), 2.44 - 2.41 (2H; m, CH2(Lev)), 2.04 (3H, s, CH3(Lev)), 1.68 - 

1.49 (5H, m), 1.33 - 1.25 (2H, m), 1.05 (9H, s, (CH3)3C ); 
13

C NMR (125 MHz, CDCl3) 

δ 205.73, 171.96, 166.35, 165.23, 156.60, 156.03 (qC), 137.90, 137.01, 136.88, 135.58, 

135.54, 133.33, 133.14, 133.01, 130.04, 129.76, 129.69, 129.66, 129.06, 128.50, 

128.38, 128.34, 128.26, 128.19, 127.99, 127.70, 127.65, 127.55, 127.42, 127.20, 

127.06, 97.90 (C-1), 73.28 (C-3), 72.13 (CH2Ph), 68.29 (C-2), 67.80, 67.56 (C-4), 

66.72, 66.35 (C-5), 62.66 (C-6), 50.51, 50.20, 47.20, 46.20, 37.76, 29.59, 29.07, 27.98, 

27.86, 27.52, 26.72, 23.37, 19.10; HRMS (ESI): Calcd for C69H75NO13SiNa [M+Na]
+
 

1176.4906, found 1176.4854: [α]D
20

 = -1.07º (c = 0.8). 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-6-O-

dimethylthexylsilyl-4-O-levulinoyl-α-L-idopyranosyloxy)pentyl) carbamate (85): 

The reaction was carried out according to general procedure B using linker acceptor 83 

(100 mg, 0.217 mmol), thiophenyl donor 26 (230 mg, 0.326 mmol) and trimethylsilyl 

triflate (TMSOTf) (0.25 eq, 2.83 μL, 0.03 mmol). The product was obtained as a 

colourless syrup (183 mg, 80%). 
1
H NMR (500 MHz, CDCl3) δ 8.10 – 8.04 (m, 4H, 

aromatic), 7.59 – 7.52 (m, 2H, aromatic), 7.46 – 7.09 (m, 18H, aromatic),  5.35 (s, 2H, 

CH2-PhBz), 5.20 – 5.13 (m, 3H, H-2, CH2-PhCarba), 5.04 – 5.00 (m, 1H, H-4), 4.95 (bs, 

1H, H-1), 4.81 – 4.75 (m, 1H, CH2Ph), 4.70 (d, J = 11.8 Hz, 1H, CH2Ph), 4.47 (d, J = 
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14.1 Hz, 2H, CH2-PhN), 4.36 – 4.29 (m, 1H, H-5), 3.89 – 3.86 (m, 1H, H-3), 3.80 – 

3.67 (m, 3H, H-6, OCH2Linker), 3.46 – 3.34 (m, 1H, OCH2Linker), 3.25 – 3.11 (m, 2H, 

NCH2Linker), 2.68 – 2.53 (m, 3H, CH2Lev), 2.50 – 2.42 (m, 1H, CH2Lev), 2.08 (s, 3H, 

CH3Lev), 1.66 – 1.46 (m, 5H, CH2Linker, CHthexyl), 1.37 – 1.25 (m, 2H, CH2Linker), 0.86 (d, 

J = 7.0 Hz, 6H, CH3thexyl), 0.83 (s, 6H, CH3thexyl), 0.11 (s, 3H, CH3Si), 0.09 (s, 3H, 

CH3Si).ppm; 
13

C NMR (126 MHz, CDCl3) δ 206.0, 172.2, 166.5, 165.4, 156.2, 138.1, 

137.1, 135.9, 135.8, 133.5, 133.2, 130.2, 129.9, 129.8, 128.7, 128.55, 128.5, 128.4, 

128.3, 128.2, 127.9, 127.7, 127.6, 127.2, 98.1 (C-1), 73.5 (C-3), 72.3 (CBn), 68.5 (C-2), 

67.9, 67.8 (C-4, OCH2Linker), 66.9 (CH2-PhCarba), 66.6 (C-5), 66.5 (CH2-PhBz), 61.8 

(CHthexyl), 50.4 (CH2-PhN), 46.4 (NCH2Linker), 37.9 (CH2Lev), 34.2 (CHthexyl), 29.8 

(CH3Lev), 29.3 (CH2Linker), 28.0 (CH2Lev), 25.2 (Cqthexyl), 23.6 (CH2Linker), 20.4, 20.3, 

18.7, 18.6 (CH3thexyl), -3.4, -3.5 (CH3Si); HRMS (ESI): m/z calcd. for C61H75NO13Si 

[M+Na]
+
 1080.4900, found: 1080.4887. 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-O-

levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (86): The 

reaction was carried out according to general procedure B using linker acceptor 83 (100 

mg, 0.217 mmol), thiophenyl donor 27 (218 mg, 0.326 mmol) and trimethylsilyl triflate 

(TMSOTf) (0.25 eq., 2.83 μL, 0.03 mmol). The product was obtained as colourless 

syrup (175 mg, 79%). 
1
H NMR (500 MHz, CDCl3) δ 8.12 – 8.00 (m, 4H, aromatic), 

7.60 – 7.52 (m, 2H, aromatic), 7.48 – 7.33 (m, 9H, aromatic), 7.30 – 7.10 (m, 9H, 

aromatic), 6.85 – 6.76 (m, 4H, aromaticPMP), 5.34 (s, 2H, CH2-PhBz), 5.21 – 5.12 (m, 

3H, H-2, CH2-PhCarba), 5.09 (s, 1H, H-4), 4.98 (d, J = 9.1 Hz, 1H, H-1), 4.85 – 4.79 (m, 

1H, CH2Ph), 4.72 – 4.62 (m, 2H, H-5, CH2Ph), 4.46 (d, J = 16.2 Hz, 2H, CH2-PhN), 

4.11 (dd, J = 11.9, 4.7 Hz, 1H, H-6a), 4.02 (d, J = 4.0 Hz, 1H, H-6b), 3.87 (s, 1H, H-3), 

3.80 – 3.74 (m, 4H, CH3PMP, OCH2Linker), 3.49 – 3.36 (m, 1H, OCH2Linker), 3.21 – 3.15 

(m, 2H, NCH2Linker), 2.63 – 2.49 (m, 3H, CH2Lev), 2.43 – 2.39  (m, 1H, CH2Lev), 2.07 (s, 

3H, CH3Lev), 1.72 – 1.52 (m, 4H, CH2Linker), 1.38 – 1.27 (m, 2H, CH2Linker) ppm; 
13

C 

NMR (126 MHz, CDCl3) δ = 205.9, 172.1, 166.5, 165.1, 156.1, 154.1, 152.7, 133.2 – 

127.1 (Carom), 116.6 – 114.5 (CaromPMP), 98.1 (C-1), 73.0 (C-3), 72.1 (CBn), 68.7 (C-4), 

67.9 (OCH2Linker), 67.7 (C-6), 67.5 (C-2), 66.7 (CH2PhCarba), 66.4 (CH2PhBz), 64.5 (C-5), 

54.7 (CH3PMP), 50.4 (CH2-PhN), 46.2 (NCH2Linker), 37.8 (CH2Lev), 29.8 (CH3Lev), 29.1 – 

23.5 (CH2Lev, CH2Linker) ppm; HRMS (ESI): m/z calcd. for  C60H63NO14 [M+Na]
+
: 

1044.4141, found: 1044.4147.  
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3,6-di-O-benzyl-4-O-

levulinoyl-α-L-idopyranosyloxy)pentyl) carbamate (87): The reaction was carried out 

according to general procedure B using linker acceptor 83 (100 mg, 0.217 mmol) and 

thiophenyl donor 35 (213 mg, 0.326 mmol). NIS (1.5 eq, 73 mg, 0.33 mmol) and 

TMSOTf (0.25 eq, 9.8 μL, 0.054 mmol) were added at -20 °C. The product was 

obtained as colourless syrup (179 mg, 82%). 
1
H NMR (500 MHz, CDCl3) δ = 8.09 – 

8.05 (m, 4H, aromatic), 7.59 – 7.52 (m, 2H, aromatic), 7.49 – 7.11 (m, 23H, aromatic), 

5.35 (s, 2H, CH2-PhBz), 5.20 – 5.14 (m, 3H, H-2, CH2-Phcarba), 5.04 – 5.01 (m, 1H, H-4), 

4.98 – 4.93 (m, 1H, H-1), 4.83 – 4.76 (m, 1H, CH2Ph), 4.68 (d, J = 11.8 Hz, 1H, 

CH2Ph), 4.58 (d, J = 11.9 Hz, 1H, CH2Ph), 4.54 – 4.49 (m, 2H, H-5, CH2Ph), 4.46 (d, J 

= 15.0 Hz, 2H, CH2-PhN), 3.85 – 3.82 (m, 1H, H-3), 3.80 – 3.70 (m, 1H, OCH2Linker), 

3.65 (dd, J = 10.0, 6.7 Hz, 1H, H-6a), 3.60 (dd, J = 10.0, 5.6 Hz, H-6b), 3.47 – 3.36 (m, 

1H, OCH2Linker), 3.21 – 3.10 (m, 2H, NCH2Linker), 2.63 – 2.49 (m, 3H, CH2Lev), 2.43 – 

2.39  (m, 1H, CH2Lev), 2.07 (s, 3H, CH3Lev), 1.67 – 1.42 (m, 4H, CH2Linker), 1.36 – 1.28 

(m, 2H, CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 206.1, 172.1, 166.5, 165.4, 

156.8, 156.2, 138.2, 138.0, 137.2, 135.8, 133.5, 133.2, 130.2, 130.0, 129.9, 129.8, 

129.8, 128.7, 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 128.2, 127.9, 127.9, 127.8, 

127.7, 127.6, 127.4, 127.2, 98.2 (C-1), 73.5 (CBn), 73.3 (C-3), 72.2 (CBn), 69.2 (C-6), 

68.0 (OCH2Linker), 67.9 (C-2, C-4), 66.9 (CH2-PhCarba), 66.5 (CH2-PhBz), 65.0 (C-5), 

50.6, 50.3 (CH2-PhN), 47.4, 46.3 (NCH2Linker), 37.9 (CH2Lev), 29.8 (CH3Lev), 29.3 

(CH2Linker), 28.0 (CH2Lev), 27.6, 23.6 (CH2Linker) ppm; MALDI-TOF: m/z calcd for 

C60H63NO13 [M+Na]
+ 

1028.42, found 1028.39, HRMS (ESI): m/z calcd. for C60H63NO13 

[M+Na]
+
: 1028.4192, found: 1028.4195.    

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-O-

levulinoyl-6-O-p-methoxybenzyl-α-L-idopyranosyloxy)pentyl) carbamate (88): The 

reaction was carried out according to general procedure B using linker acceptor 83 (100 

mg, 0.217 mmol) and thiophenyl donor 36 (222 mg, 0.326 mmol). NIS (1.5 eq., 73 mg, 

0.33 mmol) and TMSOTf (0.25 eq., 2.83 μL, 0.03 mmol) were added at -20 °C. The 

product was obtained as colourless syrup (157 mg, 70%). 
1
H NMR (500 MHz, CDCl3) δ 

8.11 – 8.03 (m, 4H, aromatic), 7.58 – 7.53 (m, 2H, aromatic), 7.46 – 7.21 (m, 20H, 

aromatic), 6.85 (d, J = 8.1 Hz, 2H, aromaticPMB), 5.35 (s, 2H, CH2-PhBz), 5.22 – 5.11 

(m, 3H, H-2, CH2-PhCarba), 5.03 – 5.00 (m, 1H, H-4), 4.94 (d, J = 6.2 Hz, 1H, H-1), 4.79 
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(d, J = 11.6 Hz, 1H, CH2Ph), 4.67 (d, J = 11.8 Hz, 1H, CH2Ph), 4.53 – 4.39 (m, 

5H,CH2PMB, CH2-PhN, H-5), 3.82 (td, J = 2.8, 1.3 Hz, 1H, H-3), 3.77 (s, 3H, CH3PMB), 

3.76  – 3.69 (m, 1H,  OCH2Linker), 3.64 – 3.54 (m, 2H, H-6), 3.47 – 3.35 (m, 1H, 

OCH2Linker), 3.24 – 3.08 (m, 2H, NCH2Linker), 2.66 – 2.43 (m, 3H, CH2Lev), 2.42 – 2.32 

(m, 1H, CH2Lev), 2.08 (s, 3H, CH3Lev), 1.58 – 1.45 (m, 4H, CH2Linker), 1.36 – 1.25 (m, 

2H, CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 206.1, 172.1, 166.5, 165.4, 159.3, 

156.8, 156.2, 138.0, 137.1, 135.9, 133.5, 133.2, 130.3, 130.2, 130.0, 129.9, 129.8, 

129.5, 128.8, 128.7, 128.6, 128.5, 128.4, 128.4, 128.2, 128.2, 127.9, 127.7, 127.6, 

127.4, 127.2, 113.8 (CaromaticPMB), 98.2 (C-1), 73.2, 72.1, 68.7, 68.0, 67.9, 66.9, 66.5, 

64.9, 55.4 (CH3PMB), 50.7, 50.3 (CH2-PhN), 47.4, 46.4 (NCH2Linker), 37.9 (CH2Lev), 29.8 

(CH3Lev), 29.3 (CH2Linker), 28.0 (CH2Lev), 27.6 (CH2Linker), 23.6 (CH2Linker) ppm. HRMS 

(ESI): m/z calcd. for C61H65NO14 [M+NH4]
+
: 1053.4743 found: 1053.4774. 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(6-O-acetyl-2-O-benzoyl-3-O-

benzyl-4-O-levulinoyl-α-L-idopyranosyloxy)pentyl) carbamate (89): The reaction 

was carried out according to general procedure B using linker acceptor 83 (20 mg, 0.041 

mmol) and thiophenyl donor 37 (30 mg, 0.050 mmol). NIS (17 mg, 0.075 mmol) and 

TfOH (41 μL of 0.1 M solution in CH2Cl2) were added at -20 °C. The residue was 

purified by preparative thin layer chromatography (hexane/EtOAc, 6/4) to afford 43 (21 

mg, 52%). 
1
H NMR (500 MHz, CDCl3)  = 8.14 – 8.02 (m, 4H, aromatic), 7.62 – 7.08 

(m, 20H, aromatic), 5.35 (s, 2H, CH2-PhBz), 5.24 – 5.08 (m, 3H, H-2, CH2-PhCarba), 4.99 

– 4.90 (m, 2H, H-1, H-4), 4.87 – 4.74 (m, 1H, CH2Ph), 4.67 (d, J = 11.6 Hz, 1H, 

CH2Ph), 4.56 – 4.40 (m, 3H, H-5, CH2-PhN), 4.30 – 4.08 (m, 2H, H-6), 3.86 – 3.80 (m, 

1H, H-3), 3.79 – 3.64 (m, 1H, OCH2Linker), 3.50 – 3.34 (m, 1H, OCH2Linker), 3.30 – 3.10 

(m, 2H, NCH2Linker), 2.70 – 2.51 (m, 3H, CH2Lev), 2.50 – 2.39 (m, 1H, CH2Lev), 2.09 (s, 

3H, CH3Lev), 2.07 – 1.99 (m, 3H, CH3Ac), 1.70 – 1.45 (m, 4H, CH2Linker), 1.40 – 1.20 (m, 

2H, CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3)  = 205.8, 172.0, 170.5, 166.4, 165.2, 

156.6, 137.9, 137.7, 137.0, 136.9, 135.7, 133.5, 133.0, 130.1, 129.8, 129.7, 129.5, 

128.5, 128.4, 128.2, 128.0, 127.7, 127.5, 127.3, 127.2, 127.1, 97.9 (C-1), 72.8 (C-3), 

72.1 (CBn), 67.9 (CH2Linker), 67.4 (C-4), 67.2 (C-2), 66.7 (CH2-Phcarba), 66.3 (CH2-PhBz), 

63.7 (C-5), 62.8 (C-6), 50.5, 50.2 (CH2-PhN), 47.2, 46.2 (NCH2Linker), 37.8 (CH2Lev), 

29.6 (CH3Lev), 29.1 (CH2Linker), 27.9 (CH2Lev), 27.5 (CH2Linker), 23.5 (CH2Linker), 20.7 

(CH3Ac) ppm; LRMS (MALDI-TOF): Calcd for C55H59NO14 [M+Na]
+
 981.04, found 

980.85. HRMS (ESI): m/z calcd for C55H59NO14 [M+Na]
+
 980.3828, found 980.3755. 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-O-

levulinoyl-6-O-tri-iso-propylsiloxymethyl-α-L-idopyranosyloxy)pentyl) carbamate 

(90): The reaction was carried out according to general procedure B using linker 

acceptor 83 (75 mg, 0.16 mmol) and thiophenyl donor 38 (100 mg, 0.133 mmol). NIS 

(45 mg, 0.20 mmol) and TfOH (1.1 μL, 0.013 mmol) were added at -20 °C. The residue 

was purified by preparative TLC (hexane/EtOAc, 7/3) to afford 42 (131 mg, 91%). 
1
H 

NMR (500 MHz, CDCl3)  = 8.12 – 8.02 (m, 4H, aromatic), 7.61 – 7.10 (m, 20H, 

aromatic), 5.39 – 5.32 (s, 2H, CH2-PhBz), 5.23 – 5.12 (m, 3H, H-2, CH2-PhCarba), 5.02 – 

4.97 (m, 1H, H-4), 4.96 – 4.88 (m, 3H, H-1, CH2TOM), 4.83 – 4.74 (m, 1H, CH2Ph), 4.68 

(d, J = 11.8 Hz, 1H, CH2Ph), 4.53 – 4.40 (m, 3H, H-5, CH2-PhN), 3.87 – 3.80 (m, 1H, 

H-3), 3.80 – 3.68 (m, 3H, H-6, OCH2Linker), 3.46 – 3.33 (m, 1H, OCH2Linker), 3.28 – 3.10 

(m, 2H, NCH2Linker), 2.69 – 2.52 (m, 3H, CH2Lev), 2.51 – 2.40 (m, 1H, CH2Lev), 2.08 (s, 

3H, CH3Lev), 1.70 – 1.40 (m, 4H, CH2Linker), 1.40 – 1.20 (m, 2H, CH2Linker), 1.15 - 1.00 

(m, 21H, 6CH3TOM, 3CHTOM) ppm; 
13

C NMR (126 MHz, CDCl3)  = 205.8, 172.0, 

166.4, 165.3, 156.6, 137.9, 137.8, 137.0, 136.9, 135.7, 133.4, 133.0, 130.1, 129.8, 

129.7, 128.5, 128.4, 128.4, 128.3, 128.2, 128.0, 127.7, 127.6, 127.5, 127.4, 127.3, 

127.2, 127.1, 97.9 (C-1), 90.1 (CH2TOM), 73.0 (C-3), 71.9 (CBn), 67.8 (C-4, CH2Linker), 

67.7 (C-2), 66.7 (CH2-PhCarba), 66.6 (C-6), 66.3 (CH2-PhBz), 64.8 (C-5), 50.5, 50.2 

(CH2-PhN), 47.2, 46.2 (NCH2Linker), 37.8 (CH2Lev), 29.6 (CH3Lev), 29.3, 29.1 (CH2Linker), 

27.9 (CH2Lev), 27.5 (CH2Linker), 23.4 (CH2Linker), 17.8 (CH3TOM), 11.9 (CHTOM) ppm. 

LRMS (MALDI-TOF): Calcd for C63H79NO14Si [M+Na]
+
 1125.37, found 1125.00. 

HRMS (ESI): m/z calcd for C63H79NO14Si [M+Na]
+
 1124.5167, found 1124.5140. 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(methyl (2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-α-L-idopyranosyloxy)uronate)pentyl) carbamate (91): . The 

glycosylation was carried out according to general procedure B using: 

Conditions 1. Linker acceptor 83 (35 mg, 0.076 mmol) and thiophenyl donor 43 (55 mg, 

0.093 mmol). NIS (21 mg, 0.093 mmol) and TMSOTf (1.6 µL, 0.008 mmol) were 

added at 0 °C. The crude was purified by column chromatography using hexane/EtOAc 

(7/3) to obtain compound 91 as a white solid (40 mg, 55%).  

Conditions 2. Linker acceptor 83 (30 mg, 0.051 mmol) and thiophenyl donor 43 (19 mg, 

0.042 mmol). NIS (28 mg, 0.123 mmol) and TMSOTf (1.5 µL, 0.008 mmol) were 
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added at room temperature. The crude was purified by column chromatography using 

hexane/ EtOAc (7/3) to obtain compound 91 (26 mg, 66 %). 

Conditions 3. Linker acceptor 83 (35 mg, 0.073 mmol) and n-pentenyl donor thiophenyl 

donor 57 (50 mg, 0.088 mmol), NIS (49 mg, 0.219 mmol) and TMSOTf (2.3 µL, 0.015 

mmol) were added at 0 °C. The crude was purified by column chromatography using 

hexane/EtOAc (7/3) to obtain compound 91 (47 mg, 69 %). 
1
H NMR (500 MHz, 

CDCl3) δ 8.07 – 7.19 (m, 24H, aromatic), 5.35 (s, 2H, CH2-PhBz), 5.26 (m, 1H, H-4), 

5.19 – 5.15 (m, 3H, H-2, CH2-PhCarba), 5.12 (bs, 1H, H-1), 4.93 (bs, 1H, H-5), 4.82 (d, J 

=11.8 Hz, 1H, CH2Ph), 4.72 (d, J = 11.8 Hz, 1H, CH2Ph), 4.47 (d, J = 12.4 Hz, 2H, 

CH2-PhN), 3.89 (m, 1H, H-3), 3.79 (s, 3H, CH3), 3.79 – 3.73 (m, 1H, OCH2Linker), 3.50 

– 3.40 (m, 1H, OCH2Linker), 3.25 – 3.12 (m, 2H, NCH2Linker), 2.63 – 2.61 (m, 2H, 

CH2Lev), 2.50 – 2.37 (m, 2H, CH2Lev), 2.08 (s, 3H, CH3Lev), 1.60 – 1.51 (m, 4H, 

CH2Linker), 1.30 – 1.26 (m, 2H, CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3) δ 205.9, 

171.6, 169.1, 166.5, 165.3, 156.7, 156.2, 138.0, 137.6, 137.1, 137.0, 135.9, 133.6, 

133.1, 130.2, 129.9, 129.8, 129.6, 128.6, 128.5, 128.4, 128.1, 127.8, 127.6, 127.3, 

127.2, 98.5 (C-1), 72.5 (C-3), 72.2 (CH2Ph), 68.7 (OCH2Linker), 68.2 (C-4), 67.0 (C-2), 

66.9 (CH2-PhCarba), 66.5 (CH2-PhBz), 66.0 (C-5), 52.6 (CH3COOMe), 50.6, 50.3 (CH2-

PhN), 47.3, 46.3 (NCH2Linker), 37.8 (CH2Lev), 29.7 (CH3Lev), 29.2 (CH2Linker), 28.0 

(CH2Lev), 27.62 (CH2Linker), 23.4 (CH2Linker) ppm; HRMS (ESI): m/z calcd for 

C54H57NO14 [M+Na]
+
 966.3677, found 966.3693. 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-((3-O-benzyl-2-O-benzoyl-4-O-

levulinoyl--L-idopyranosyloxy)uronate)pentyl) carbamate (92): To a cooled 

solution (0 ºC) of 15 (76 mg, 0.065 mmol) in dry THF (3 mL), HF·pyridine complex 

(0.3 mL) was added and the solution was stirred overnight. The mixture was diluted 

with EtOAc and solid NaHCO3 was added, filtered and washed with saturated NaHCO3 

aq solution and water. The organic phase was dried over anhydrous MgSO4, filtered and 

concentrated. The crude was used in the next step without purification. To a solution of 

the crude intermediate in acetonitrile/water (1/1 v/v, 1 mL), TEMPO (2 mg, 0.013 

mmol) and BAIB (46 mg, 0.143 mmol) were added and the reaction mixture was stirred 

for 4h. The reaction mixture was quenched by the addition of 1M Na2SO3 (0.7 mL). The 

aqueous layer was acidified with 1M HCl, and extracted with CH2Cl2 (3X). The 

combined organic layers were dried over anhydrous MgSO4 and concentrated. The 

residue was purified by flash column chromatography (hexane/ EtOAc/HOAc 19/80/1 
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to 0/99/1) to obtain compound 20 as oil (51 mg, 84%). 
1
H NMR (500 MHz, CDCl3) δ 

8.07 - 7.13 (m, 24H, aromatic), 5.35 – 5.32 (3H, m, H-4, CH2 linker), 5.18 - 5.09 (4H, 

m, H-1, H-2, CH2 linker), 4.97 - 4.94 (1H, m, H-5), 4.81 - 4.44 (6H, m), 3.91 (1H, s, H-

3), 3.74 - 3.71 (1H, m), 3.52 - 3.46 (1H, m), 3.21 - 3.15 (2H, m), 2.67 - 2.62 (2H, m), 

2.51 - 2.42 (2H, m), 2.09 (3H, s), 1.63 - 1.49 (4H, m), 1.32 - 1.27 (2H, m); 
13

C NMR 

(126 MHz, CDCl3) δ 206.70, 171.52, 170.10, 166.44, 165.14, 156.68 (C carbamate), 

156.18 (C carbamate), 137.75, 137.39, 136.75, 135.73, 133.56, 133.06, 130.01, 129.79, 

129.67, 129.32, 128.52, 128.44, 128.36, 128.27, 128.04, 127.76, 127.48, 127.27, 

127.08, 98.46 (C-1), 72.28 (C-3), 72.14 (CH2Ph), 68.72, 67.85 (C-4), 66.86, 66.76, 

66.38 (C-2), 65.71 (C-5), 50.53, 50.22, 47.11, 46.15, 37.76, 29.55, 28.96, 27.88, 27.32, 

23.29; LRMS (ESI): Calcd for C53H55NO14Na [M+Na]
+
 952.36, found 952.32; [α]D

20
 = 

+2.9º (c = 1.15). 

 

5.7.2 Disaccharide synthesis 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-

benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-3-O-benzyl-2-O-benzoyl-6-O-

tert-butyldiphenylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (101):. The 

compound 84 (125 mg, 108 mmol) was delevulinated using hydrazine acetate (19 mg, 

216 µmol) in CH2Cl2/MeOH (2.7 mL / 0.27 mL). When TLC (hexane/EtOAc, 2/1) 

showed complete conversion, the reaction was diluted with CH2Cl2 (50 mL) and washed 

twice with 1M HCl (100 mL), saturated NaHCO3 aq solution (100 mL), and brine (100 

mL). The organic phase was dried over MgSO4 and concentrated. The crude was 

purified by column chromatography using hexane/EtOAc (8/2) to obtain compound 93 

(97 mg, 85%). 
1
H NMR (500 MHz, CDCl3) δ = 8.13 – 7.20 (m, 34H, aromatic), 5.40 (s, 

2H, CH2-PhBz), 5.31 – 5.22 (m, 3H, H-2, CH2-PhCarba), 5.02 (s, 1H, H-1), 4.89 (d, J = 

11.8 Hz, 1H, CH2Ph), 4.69 (d, J = 11.8 Hz, 1H, CH2Ph), 4.54 – 4.51 (m, 2H, CH2-

PhN), 4.39 (m, 1H, H-5), 3.99 – 3.98 (m, 2H, H-6), 3.90 – 3.83 (m, 3H, H-3, H-4, 

OCH2Linker), 3.46 – 3.44 (m, 1H, OCH2Linker), 3.28 – 3.21 (m, 2H, NCH2Linker), 2.79 (bs, 

1H, OH), 1.68 – 1.56 (m, 4H, CH2Linker), 1.37 – 1.29 (m, 2H, CH2Linker), 1.13 (9H, s, 

(CH3)3C) ppm. The glycosylation reaction was carried out according to general 

procedure C using idose acceptor 93 (20 mg, 0.019 mmol), azido glucose donor 65 (17 

mg, 0.026 mmol) and TMSOTf (0.25 eq., 47 µL of 0.1 M solution). The reaction 
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mixture was purified by column chromatography using hexane/ EtOAc (8/2) to obtain 

compound 101 (12 mg, 42%). 
1
H NMR (500 MHz, CDCl3) δ = 8.14 – 8.06 (m, 5H, 

aromatic), 7.97 – 7.94 (m, 2H, aromatic), 7.75 – 7.68 (m, 4H, aromatic), 7.51 – 7.13 (m, 

34H, aromatic), 5.35 (s, 2H, CH2-PhBz), 5.20 – 5.12 (m, 3H, H-2, CH2-PhCarba) , 5.09 – 

5.03 (m, 2H, H-1, H-4´), 4.87 (d, J = 11.5 Hz, 1H, CH2Ph), 4.81 (d, J = 3.7 Hz, 1H, H-

1´), 4.74 (d, J = 11.5 Hz, CH2Ph), 4.48 – 4.42 (m, 2H, CH2-PhN), 4.35 –  4.28 (m, 3H, 

H-5, CH2Ph), 4.18 – 4.14 (m, 1H, H-3), 4.07 (d, J = 3.0 Hz, 2H, H-6´), 3.96 – 3.87 (m, 

3H, H-6, H-5´), 3.84 – 3.80 (m, 1H, H-4), 3.75 – 3.69 (m, 1H, OCH2Linker), 3.66 (t, J = 

9.7Hz, 1H, H-3´), 3.35 (dd, J = 10.0, 3.8 Hz, 2H, H-2´, OCH2Linker) , 3.21 – 3.10 (m, 2H, 

NCH2Linker), 2.64 - 2.60 (m, 2H, CH2Lev) , 2.47 – 2.40 (m, 1H, CH2Lev), 2.36 – 2.30 (m, 

1H, CH2Lev), 2.09 (s, 3H, CH3Lev), 1.59 – 1.46 (m, 4H, CH2Linker), 1.30 – 1.19 (m, 2H, 

CH2Linker), 1.06 (s, 9H, (CH3)3C) ppm. 
13

C NMR (126 MHz, CDCl3) δ = 206.0, 171.4, 

166.5, 166.1, 165.8, 156.7, 156.2, 138.0, 137.5, 135.9, 135.8, 135.7, 133.3, 133.2, 

133.1, 133.0, 130.2, 130.1, 130.0, 130.0, 129.9, 129.8, 128.7, 128.6, 128.5, 128.4, 

128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.2, 98.5 (C-1), 97.6 (C-1´), 78.6 (C-3´), 

75.1 (CBn), 74.3 (C-4), 73.5 (C-3), 72.6 (CBn), 70.4 (C-4´), 69.9 (C-2), 68.9 (C-5´), 68.5 

(C-5), 67.9 (OCH2Linker), 66.9 (CH2-PhCarba), 66.5 (CH2-PhBz), 63.7 (C-6), 63.6 (C-2´), 

62.3 (C-6´), 50.6, 50.3 (CH2-PhN), 47.4, 46.4 (NCH2Linker), 37.9 (CH2Lev), 37.8 

(CH2Lev), 29.8 (CH3Lev), 29.5 (CH2Linker), 29.2 (CH2Linker), 28.2, 28.1, 27.9 (CH2Lev), 27.7 

(CH2Linker), 27.0, 26.9 (CH3Lev), 23.6, 23.5 (CH2Linker), 19.3, 19.2 ppm (CH3)3) ppm; 

HRMS (ESI): m/z calcd for C89H94N4O18Si [M+Na]
+
 1558.6261, found 1558.6282. 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-

benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-3-O-benzyl-2-O-benzoyl-6-O-

dimethylthexylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (102): The compound 

85 (150 mg, 142 µmol) was delevulinated using hydrazine acetate (20 mg, 212 µmol) in 

CH2Cl2/methanol (4:1, 2.5 mL). When TLC (hexane / EtOAc, 2:1) showed completed 

conversion, the mixture was concentrated and the residue was purified by column 

chromatography (hexane EtOAc 1/0 to 7/3) to afford the glycosyl acceptor 94 (125 mg, 

91%). 
1
H NMR (500 MHz, CDCl3) δ 8.11 – 7.98 (m, 4H, aromatic), 7.61 – 7.52 (m, 2H, 

aromatic), 7.48 – 7.11 (m, 18H, aromatic), 5.36 (s, 2H, CH2-PhBz), 5.25 – 5.12 (m, 3H, 

H-2, CH2-PhCarba), 4.95 – 4.90 (bs, 1H, H-1), 4.82 (d, J = 11.7 Hz, 1H, CH2Ph), 4.63 (d, 

J = 11.7 Hz, 1H, CH2Ph), 4.48 (d, J = 11.3 Hz, 2H, CH2-PhN), 4.28 – 4.20 (m, 1H, H-

5), 3.88 – 3.80 (m, 4H, H-6, H-3, H-4), 3.80 – 3.72 (m, 1H, OCH2Linker), 3.48 – 3.35 (m, 
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1H, OCH2Linker), 3.28 – 3.13 (m, 2H, NCH2Linker), 2.86 (bs, 1H, OH), 1.68 – 1.47 (m, 

5H, CHthexyl, CH2Linker), 1.42 – 1.24 (m, 2H, CH2Linker), 0.89 (d, J = 7.0 Hz, 6H, 

CH3thexyl), 0.87 (s, 6H, CH3thexyl), 0.14, 0.13 (2s, CH3Si);
 
δ

13 
C(126 MHz, CDCl3): 166.5, 

165.3, 156.7, 156.2, 138.1, 137.0, 135.8, 133.5, 133.2, 130.2, 129.9, 129.8, 129.6, 

128.6, 128.5, 128.5, 128.4, 128.4, 128.1, 128.1, 127.9, 127.8, 127.7, 127.4, 127.2, 98.5, 

75.6, 71.9, 68.5, 67.9, 67.6, 66.9, 66.5, 63.2, 50.7, 50.4, 47.4, 46.3, 34.2, 29.3, 28.1, 

27.7, 25.2, 23.6, 20.4, 18.7, 18.6 ppm. HRMS (ESI): m/z calcd. for C56H73N2O11Si 

[M+NH4]
+
 977.4978, found 977.5001. The glycosylation reaction was carried out 

according to general procedure C using idose acceptor 94 (46 mg, 48 µmol) and azido 

glucose donor 65 (43 mg, 67 µmol) and TMSOTf (0.25 eq., 2.16 μL, 12 µmol). The 

product was obtained as colourless syrup 102 (35 mg, 51%). 
1
H NMR (500 MHz, 

CDCl3) δ 8.17 – 7.97 (m, 6H, aromatic), 7.62 – 7.05 (m, 28H, aromatic), 5.35 (s, 2H, 

CH2-PhBz), 5.25 – 5.10 (m, 4H, H-2, H-4´, CH2-PhCarba), 5.04 (bs, 1H, H-1), 4.89 (d, J = 

3.7 Hz, 1H, H-1´), 4.85 – 4.79 (m, 1H, CH2Ph), 4.72 (d, J = 11.6 Hz, 1H, CH2Ph), 4.51 

– 4.34 (m, 5H, CH2-PhN, CH2Ph, H-6a´), 4.30 (dd, J = 12.3, 4.6 Hz, 1H, H-6b´), 4.25 – 

4.10 (m, 3H, H-3, H-5, H-5´), 3.94 – 3.84 (m, 3H, H-6, H-4), 3.83 – 3.70 (m, H-3´, 

OCH2Linker), 3.47 – 3.33 (m, 2H, H-2´, OCH2Linker), 3.26 – 3.06 (m, 2H, OCH2-Linker), 

2.77 – 2.58 (m, 2H, CH2Lev), 2.57 – 2.46 (m, 1H, CH2Lev), 2.43 – 2.31 (m, 1H, CH2Lev), 

2.11 (s, 3H, CH3Lev), 1.68 – 1.46 (m, 5H, CHthexyl, CH2Linker), 1.34 – 1.23 (m, 2H, 

CH2Linker), 0.97 – 0.81 (m, 12H, CH3thexyl), 0.16 (s, 3H, CH3-Si), 0.14 (s, 3H, CH3-Si) 

ppm. 
13

C NMR (126 MHz, CDCl3) δ =  207.1, 206.1, 171.6, 166.5, 166.2, 165.7, 156.8, 

156.2, 138.0, 137.5, 137.1, 135.9, 133.3, 133.3, 133.2, 130.2, 130.1, 129.9, 129.8, 

128.7, 128.5, 128.4, 128.4, 128.1, 128.0, 127.9, 127.8, 127.4, 127.2, 98.5 (C-1), 97.5 

(C-1´), 78.3 (C-3´), 75.1 (CBn), 73.7 (C-4), 73.6 (C-3), 72.7 (CBn), 70.7, 70.3 (C-2, C-

4´), 69.0, 68.9 (C-5, C-5´), 68.1 (OCH2Linker), 66.9 (CH2-PhBz), 66.5 (CH2-PhBz), 63.6 

(C-2´), 62.7 (C-6´), 62.5 (C-6), 50.7, 50.4 (CH2-PhN), 47.4, 46.4 (NCH2Linker), 37.9 

(CH2Lev), 34.2 (CHthexyl), 29.8 (CH3Lev), 29.3, 28.2 (CH2Linker), 28.0, 27.7 (CH2Lev, 

CH2Linker), 25.3 (Cqthexyl), 23.6 (CH2Linker), 20.5, 20.5, 18.7 (CH3thexyl), -3.1, -3.3 (CH3-

Si) ppm; HRMS (ESI): m/z calcd. for C81H94N4O18Si [M+Na]
+
: 1461.6225, found: 

1461.6293.  
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-

benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-3-O-benzyl-2-O-benzoyl-6-O-

p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (103): The compound 86 

(110 mg, 107 µmol) was delevulinated with hydrazine acetate (20 mg, 212 µmol) in 

CH2Cl2/methanol (4:1, 2.5 mL). When TLC (hexane/EtOAc, 2/1) showed complete 

conversion, the reaction was diluted with CH2Cl2 (50 mL) and washed twice with 1M 

HCl (100 mL), saturated NaHCO3 aq solution (100 mL), and brine (100 mL). The 

organic phase was dried over MgSO4 and concentrated. The residue was purified by 

column chromatography (hexane/EtOAc 1/0 to 7/3) to afford the glycosyl acceptor 95 

(88 mg, 90%). 
1
H NMR (500 MHz, CDCl3) δ 8.20 – 7.97 (m, 4H, aromatic), 7.70 – 7.52 

(m, 2H, aromatic), 7.49 – 7.11 (m, 18H, aromatic), 6.91 – 6.76 (m, 4H, aromaticPMP), 

5.34 (s, 2H, CH2-PhBz), 5.25 (s, 1H, H-2), 5.16 (d, J = 18.7 Hz, 2H, CH2-PhCarba), 4.96 

(d, J = 7.6 Hz, 1H, H-1), 4.84 (dd, J = 11.3, 2.4 Hz, 1H, CH2Ph), 4.62 (d, J = 13.2 Hz, 

2H, CH2Ph, H-5), 4.47 (d, J = 12.8 Hz, 2H, CH2-PhN), 4.16 (s, 2H, H-6), 3.92 – 3.76 

(m, 3H, H-4, H-3, OCH2Linker), 3.75 (s, 3H, CH3PMP), 3.55 – 3.36 (m, 1H, OCH2Linker), 

3.30 – 3.11 (m, 2H, NCH2Linker), 2.61 (bs, 1H, OH), 1.59 (s, 4H, CH2Linker), 1.33 (s, 2H 

CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3): 166.6, 165.2, 154.2, 153.0, 138.1, 138.1, 

138.0, 137.2, 137.1, 135.9, 133.8, 133.2, 130.2, 129.9, 129.5, 129.4, 128.8, 128.7, 

128.6, 128.5, 128.5, 128.4, 128.2, 127.9, 127.8, 127.4, 127.4, 127.2, 115.7, 114.8, 98.5, 

75.1, 71.9, 68.6, 68.1, 68.0, 67.6, 66.9, 66.5, 66.0, 55.8, 50.3, 47.3, 46.3, 29.3, 23.6 

ppm. HRMS (ESI): m/z calcd. for C55H57NO12 [M+NH4]
+
: 941.4219, found: 941.4220. 

The glycosylation reaction was carried out according to general procedure C using idose 

acceptor 95 (60 mg, 65 µmol), azido glucose donor 65 (58 mg, 91 µmol) and TMSOTf 

(0.25 eq., 2.89 μL, 16 µmol). The product 103 was obtained as colourless syrup (60 mg, 

65%). 
1
H NMR (500 MHz, CDCl3) δ 8.23 – 8.16 (m, 2H, aromatic), 8.08 – 8.05 (m, 2H, 

aromatic), 8.03 – 7.97 (m, 2H, aromatic), 7.63 – 7.10 (m, 28H, aromatic), 6.92 – 6.75 

(m, 4H, aromaticPMP), 5.35 (s, 2H, CH2-PhBz), 5.25 – 5.11 (m, 3H, CH2-PhCarba, H-2), 

5.05 – 4.99 (m, 2H,  H-1, H-4´), 4.88 (d, J = 11.8 Hz, CH2Ph), 4.82 (d, J = 3.2 Hz, 1H, 

H-1´), 4.69 (d, J = 12.6Hz, CH2Ph), 4.65 – 4.58 (m, 1H, H-5), 4.47 (d, J = 12.2 Hz, 2H, 

CH2-PhN), 4.35 – 4.23 (m, 4H, H-6a´, H-6a, CH2Ph), 4.19 – 4.04 (m, 3H, H-6b´, H-6b, 

H-3), 4.08 – 4.03 (m, 1H, H-5´), 3.97 – 3.93 (m, 1H, H-4), 3.81 – 3.68 (m, 5H, H-3´, 

OCH2Linker, CH3PMP), 3.47 – 3.38 (m, 1H, OCH2Linker), 3.34 (dd, J = 10.1, 3.5 Hz, 1H, H-

2´), 3.25 – 3.11 (m, 2H,  NCH2Linker), 2.67 – 2.53 (m, 2H, CH2Lev), 2.40 – 2.23 (m, 2H, 

CH2Lev), 2.09 (s, 3H, CH3Lev), 1.59 – 1.46 (m, 4H, CH2Linker), 1.37 – 1.24 (m, 2H, 
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CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 206.1, 171.6, 166.5, 166.2, 165.9, 

154.3, 152.4, 137.8, 137.5, 135.9, 133.5, 133.2, 133.2, 130.2, 130.0, 129.9, 129.9, 

129.8, 128.7, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.2, 115.4, 114.9 (CaromPMP), 

98.6 (C-1), 96.7 (C-1´), 78.3 (C-3´), 75.1 (CBn), 72.2 (CBn), 72.1 (C-4), 71.8 (C-3), 70.6 

(C-4´), 69.0 (C-2, C-5´), 68.1 (OCH2Linker), 66.9 (CH2-PhCarba), 66.7 (CH2-PhBz), 66.5 

(C-6), 65.4 (C-5), 63.5 (C-2´), 62.6 (C-6´), 55.8 (CH3PMP), 50.7, 50.4 (CH2-PhN), 47.4, 

46.4 (NCH2Linker), 37.9 (CH2Lev), 29.8 (CH3Lev), 28.1, 27.9 (CH2Linker), 27.7 (CH2Lev), 

23.6 (CH2Linker) ppm; HRMS (ESI): m/z calcd. for C80H82N4O19 [M+NH4]
+
: 1420.5912, 

found: 1420.5927.  

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-

benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-

a-L-idopyranosyloxy)pentyl) carbamate (104): The compound 87 (145 mg, 0.144 

mmol) was delevulinated with hydrazine acetate (20 mg, 212 µmol) in CH2Cl2/MeOH 

(4:1, 2.5 mL). When TLC (hexane/EtOAc, 2/1) showed completed conversion, the 

mixture was concentrated and the residue was purified by column chromatography 

(hexane/EtOAc, 1/0 to 7/3) to afford the glycosyl acceptor 96 (119 mg, 91%). 
1
H NMR 

(500 MHz, CDCl3) δ 8.09 – 8.05 (m, 2H, aromatic), 8.04 – 7.98 (m, 2H, aromatic), 7.61 

– 7.52 (m, 2H, aromatic), 7.48 – 7.11 (m, 23H, aromatic), 5.35 (s, 2H, CH2-PhBz), 5.22 

(bs, 1H, H-2), 5.20 – 5.13 (d, J = 16.2 Hz, 2H, CH2-PhCarba), 4.95 (d, J = 6.7 Hz, 1H, H-

1), 4.86 – 4.78 (m, 1H, CH2Ph), 4.61 (m, 3H, CH2Ph), 4.51 – 4.35 (m, 3H, CH2-PhN, 

H-5), 3.85 – 3.70 (m, 4H, H-3, H-4, H-6), 3.46 – 3.36 (m, 1H, OCH2Linker), 3.27 – 3.09 

(m, 2H, NCH2Linker), 2.77 (bs, 1H, OH), 1.67 – 1.47 (m, 4H, CH2Linker), 1.38 – 1.28 (m, 

2H, CH2Linker); 
13

C NMR (126 MHz, CDCl3) δ = 166.5, 165.3, 138.2, 138.0, 135.9, 

133.6, 133.2, 130.2, 129.9, 129.8, 129.6, 128.7, 128.7, 128.6, 128.5, 128.4, 128.2, 

127.9, 127.8, 127.8, 127.8, 127.7, 127.4, 127.2, 98.6, 75.3, 73.7, 71.9, 70.5, 68.2, 68.1, 

66.9, 66.5, 66.3, 53.6, 50.7, 50.3, 47.4, 46.4, 29.3, 28.1, 27.6, 23.6 ppm. HRMS (ESI): 

m/z calcd. for C55H57NO11 [M+NH4]
+
: 925.4270, found 925.4261. The glycosylation 

reaction was carried out according to general procedure C using idose acceptor 96 (57 

mg, 63 µmol), azido glucose donor 65 (58 mg, 88 µmol) and TMSOTf (0.25 eq., 2.84 

μL, 16 µmol). The product 104 was obtained as colourless syrup (45 mg, 51%). 
1
H 

NMR (500 MHz, CDCl3) δ 8.17 – 8.13 (m, 2H, aromatic), 8.09 – 8.05 (m, 2H, 

aromatic), 8.02 – 7.98 (m, 2H, aromatic), 7.59 – 7.09 (m, 33H, aromatic), 5.35 (s, 2H, 

CH2-PhBz), 5.23 – 5.12 (m, 3H, CH2-PhCarba, H-2), 5.08 (t, J = 9.7 Hz, 1H, H-4´), 5.00 
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(bs, 1H, H-1), 4.85 (d, J = 11.7 Hz, 1H, CH2Ph), 4.81 (d, J = 3.6 Hz, 1H, H-1´), 4.69 (d, 

J = 11.7 Hz, 1H, CH2Ph), 4.52 (s, 2H, CH2Ph), 4.49 – 4.39 (m, 3H, CH2-PhN, H-5), 

4.34 (dd, J = 12.2, 2.4 Hz, 1H, H-6a´), 4.31 (d, J = 11.0 Hz, 1H, CH2Ph), 4.27 (d, J = 

10.9 Hz, 1H, CH2Ph), 4.21 (dd, J = 12.3, 5.0 Hz, 1H, H-6b´), 4.17 – 4.08 (m, 2H, H-5, 

H-3), 3.82 – 3.79 (m, 1H, H-4), 3.79 – 3.70 (m, 4H, H-6ab, H-3´, OCH2Linker), 3.46 – 

3.38 (m, 1H, OCH2Linker), 3.36 (dd, J = 10.1, 3.5 Hz, 1H, H-2´), 3.25 – 3.10 (m, 2H, 

NCH2Linker), 2.74 – 2.57 (m, 2H, CH2Lev), 2.53 – 2.45 (m, 1H, CH2Lev), 2.41 – 2.32 (m, 

1H, CH2Lev ), 2.12 (s, 3H, CH3Lev), 1.58 – 1.43 (m, 4H, CH2Linker), 1.35 – 1.24 (m, 2H, 

CH2Linker); 
13

C NMR (126 MHz, CDCl3) δ = 206.1, 171.6, 166.5, 166.2, 165.8, 156.8, 

156.2, 138.1, 138.0, 137.9, 137.5, 137.0, 135.9, 133.4, 133.2, 130.2, 130.1, 130.0, 

129.9, 129.8, 128.7, 128.5, 128.4, 128.4, 128.2, 128.0, 128.0, 128.0, 127.8, 127.8, 

127.6, 127.4, 127.2, 98.5 (C-1), 97.7 (C-1´), 78.4 (C-3´), 75.0 (CBn), 74.1 (C-4), 73.4 

(CBn), 72.8 (C-3), 72.4 (CBn), 70.7 (C-4´), 69.4 (C-6), 69.3 (C-2), 69.1 (C-5), 68.1 

(OCH2Linker), 66.9 (CH2-PhCarba), 66.5 (CH2-PhBz), 66.3 (C-5), 63.6 (C-2´), 62.7 (C-6´), 

50.7, 50.4 (CH2-PhN), 47.4, 46.3 (NCH2Linker), 37.9 (CH2Lev), 29.8 (CH3Lev), 29.3 

(CH2Linker), 28.0 (CH2Lev), 27.7, 23.6 (CH2Linker). HRMS (ESI): m/z calcd. for 

C80H82N4O18 [M+Na]
+
: 1409.5516, found: 1409.5499. 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-

benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-3-O-benzyl-2-O-benzoyl-6-O-

p-methoxybenzyl-α-L-idopyranosyloxy)pentyl) carbamate (105): The compound 88 

(110 mg, 106 µmol) was delevulinated using hydrazine acetate (20 mg, 212 µmol) in 

CH2Cl2/methanol (4:1, 2.5 mL). When TLC (hexane/EtOAc, 2/1) showed complete 

conversion, the reaction was diluted with CH2Cl2 (50 mL) and washed twice with 1M 

HCl (100 mL), saturated NaHCO3 aq solution (100 mL), and brine (100 mL). The 

organic phase was dried over MgSO4 and concentrated. The residue was purified by 

column chromatography (hexane/EtOAc, 1/0 to 7/3) to afford the glycosyl acceptor 97 

(85 mg, 86%). 
1
H NMR (500 MHz, CDCl3) δ 8.10 – 8.04 (m, 2H, aromatic), 8.03 – 7.99 

(m, 2H, aromatic), 7.65 – 7.50 (m, 2H, aromatic), 7.49 – 7.36 (m, 7H, aromatic), 7.36 – 

7.19 (m, 12H, aromatic), 7.14 (d, J = 7.1 Hz, 1H, aromatic), 6.86 (d, J = 8.0 Hz, 2H, 

aromaticPMB), 5.34 (s, 2H, CH2-PhBz), 5.21 (s, 1H, H-2), 5.17 (d, J = 17.2 Hz, 2H, CH2-

PhCarba), 4.94 (d, J = 6.3 Hz, 1H, H-1), 4.81 (d, J = 11.0 Hz, 1H, CH2Ph), 4.60 (d, J = 

11.7 Hz, 1H, CH2Ph), 4.52 (s, 2H, CH2PMB), 4.50 – 4.43 (m, 2H, CH2-PhN), 4.39 (bs, 

1H, H-5), 3.82 – 3.75 (m, 5H, H-3, H-4, CH3PMB), 3.71 (d, J = 5.4 Hz, 2H, H-6ab), 3.41 
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(d, J = 19.8 Hz, 1H, OCH2Linker), 3.28 – 3.10 (m, 2H, NCH2Linker), 2.80 (bs, 1H, OH), 

1.54 (m, 4H, CH2Linker), 1.32 (m, 2H, CH2Linker).
 13

C NMR (126 MHz, CDCl3): 166.6, 

165.3, 159.4, 138.1, 133.6, 133.2, 130.2, 130.2, 129.9, 129.8, 129.4, 128.7, 128.5, 

128.4, 128.2, 127.9, 127.8, 127.8, 127.5, 127.3, 113.9, 98.6, 75.4, 73.4, 71.9, 70.2, 68.2, 

68.0, 66.9, 66.5, 66.3, 55.4, 50.7, 50.4, 47.4, 46.3, 29.3, 23.6. HRMS (ESI): m/z calcd. 

for C56H59NO12 [M+NH4]
+
: 960.3929, found: 960.3662. The glycosylation reaction was 

carried out according to general procedure C using idose acceptor 97 (62 mg, 66 µmol), 

azido glucose donor 65 (59 mg, 92 µmol) and TMSOTf (0.25 eq., 3.0 μL, 16.5 µmol). 

The product 105 was obtained as colourless syrup (57 mg, 61%). 
1
H NMR (500 MHz, 

CDCl3) δ 8.21 – 8.13 (m, 2H, aromatic), 8.09 – 8.05 (m, 2H, aromatic), 8.03 – 7.99 (m, 

2H, aromatic), 6.84 (d, J = 8.3 Hz, 1H, aromaticPMB), 5.35 (s, 2H, CH2-PhBz), 5.22 – 

5.13 (m, 3H, H-2, CH2-PhCarba), 5.09 (t, J = 9.7 Hz, 1H, H-4´ ), 4.99 (bs, 1H, H-1), 4.85 

(d, J = 12.0 Hz, 1H, CH2Ph), 4.82 (d, J = 3.6 Hz, 1H, H-1´), 4.69 (d, J = 11.7 Hz, 1H, 

CH2Ph), 4.50 – 4.38 (m, 5H, CH2-PhN, H-5, CH2PMB), 4.38 – 4.21 (m, 4H, H-6ab´, 

CH2Ph), 4.17 – 4.13 (m, 1H, H-5´), 4.11 (t, J = 3.3 Hz, 1H, H-3), 3.82 – 3.79 (m, 1H, 

H-4), 3.78 – 3.68 (m, 7H, H-6ab, H-3´, CH3PMB, OCH2Linker), 3.47 – 3.38 (m, 1H, 

OCH2Linker), 3.36 (dd, J = 10.1, 3.6 Hz, 1H, H-2´), 3.26 – 3.10 (m, 2H, NCH2Linker), 2.75 

– 2.59 (m, 2H, CH2Lev), 2.56 – 2.47 (m, 1H, CH2Lev), 2.42 – 2.33 (m, 1H, CH2Lev), 2.12 

(s, 3H, CH3Lev), 1.60 – 1.45 (m, 4H, CH2Linker), 1.37 – 1.28 (m, 2H, CH2Linker) ppm; 
13

C 

NMR (126 MHz, CDCl3) δ = 206.2, 171.6, 166.5, 166.2, 165.8, 159.3, 156.7, 156.2, 

137.9, 137.5, 135.9, 133.4, 133.2, 130.2, 130.0, 130.0, 129.9, 129.8, 129.8, 129.3, 

128.7, 128.6, 128.6, 128.5, 128.4, 128.4, 128.2, 128.0, 128.0, 127.8, 127.4, 127.2, 113.9 

(CaromaticPMB), 98.5 (C-1), 97.6 (C-1´), 78.4 (C-3´), 75.0 (CBn), 74.0 (C-4), 73.1 

(CH2PMB), 72.8 (C-3), 72.3 (CBn), 70.7 (C-4´), 69.3 (C-6, C-2), 69.1 (C-5´), 68.0 

(OCH2Linker), 66.9 (CH2-PhCarba), 66.5 (CH2-PhBz), 66.3 (C-5), 63.6 (C-2´), 62.7 (C-6´), 

55.3 (CH3PMB), 50.6, 50.4 (CH2-PhN), 47.4, 46.3 (NCH2Linker), 37.9 (CH2Lev), 29.8 

(CH3Lev), 29.2 (CH2Linker), 28.0 (CH2Lev), 27.6, 23.5 (CH2Linker) ppm; HRMS (ESI): m/z 

calcd. for C81H84N4O19 [M+NH4]
+
: 1439.5622, found: 1439.5650. 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-

benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-O-

tri-iso-propylsiloxymethyl-α-L-idopyranosyloxy)pentyl) carbamate (106): The 

compound 89 (31 mg, 0.028 mmol) was delevulinated with hydrazine acetate (5 mg, 57 

µmol) in CH2Cl2/MeOH (9:1, 1 mL). When TLC (hexane / EtOAc, 2:1) showed 
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completed conversion (2h), the mixture was concentrated and the residue was purified 

by column chromatography (hexane/EtOAc 1/0 to 7/3) to afford the idose acceptor 98 

(20 mg, 71% ). 
1
H NMR (500 MHz, CDCl3)  8.12 – 7.98 (m, 4H), 7.64 – 7.10 (m, 

20H), 5.35 (s, 2H), 5.24 – 5.12 (m, 3H), 4.99 – 4.88 (m, 3H), 4.85 – 4.77 (m, 1H), 4.62 

(d, J = 11.8 Hz, 1H), 4.53 – 4.43 (m, 2H), 4.43 – 4.36 (m, 1H), 3.91 – 3.68 (m, 5H), 

3.47 – 3.32 (m, 1H), 3.28 – 3.10 (m, 2H), 2.75 (d, J = 8.6 Hz, 1H), 1.72 – 1.44 (m, 4H), 

1.40 – 1.20 (m, 2H), 1.17 – 0.99 (m, 21H); 
13

C NMR (126 MHz, CDCl3)  166.4, 165.2, 

156.1, 137.9, 137.1, 136.9, 135.7, 133.4, 133.0, 130.1, 129.8, 129.7, 129.4, 128.5, 

128.4, 128.3, 128.2, 128.0, 127.8, 127.6, 127.5, 127.3, 127.2, 127.1, 98.5, 90.1, 75.2, 

71.7, 68.1, 67.8, 67.6, 66.7, 66.4, 66.1, 50.5, 50.2, 47.2, 46.2, 29.7, 29.1, 28.0, 27.5, 

23.4, 17.8, 12.0. HRMS (ESI): m/z calcd for C58H73NO12Si [M+Na]
+
 1026.4800, found 

1026.4738. The glycosylation reaction was carried out according to general procedure C 

using idose acceptor 98 (20 mg, 20 µmol), azido glucose donor 65 (16 mg, 24 µmol) 

and TMSOTf (0.10 eq., 20 μL of 0.1 M solution). The residue was purified by 

preparative TLC (hexane/ EtOAc, 6/4) to afford 106 (15 mg, 50%). 
1
H NMR (500 

MHz, CDCl3)  8.20 – 7.96 (m, 6H, aromatic), 7.64 – 7.06 (m, 28H, aromatic), 5.35 (s, 

2H, CH2-PhBz), 5.24 – 5.08 (m, 4H, CH2-PhCarba, H-2, H-4´), 5.00 – 4.89 (m, 3H, 

CH2TOM, H-1), 4.85 – 4.80 (m, 2H, H-1´, CH2Ph), 4.69 (d, J = 11.6 Hz, 1H, CH2Ph), 

4.52 – 4.43 (m, 2H, CH2-PhN), 4.42 – 4.21 (m, 2H, H-6´, H-5, CH2Ph), 4.19 – 4.13 (m, 

1H, H-5´), 4.11 – 4.06 (m, 1H, H-3), 3.94 – 3.80 (m, 3H, H-6, H-4), 3.80 – 3.68 (m, 2H, 

H-3´, OCH2Linker), 3.45 – 3.32 (m, 2H, H-2´, OCH2Linker), 3.28 – 3.06 (m, 2H, 

NCH2Linker), 2.73 – 2.57 (m, 2H, CH2Lev), 2.55 – 2.43 (m, 1H, CH2Lev), 2.42 – 2.28 (m, 

1H, CH2Lev), 2.10 (s, 3H, CH3Lev), 1.75 – 1.40 (m, 4H, CH2Linker), 1.40 – 1.20 (m, 2H, 

CH2Linker), 1.15 – 0.95 (m, 21H, 6CH3TOM, 3CHTOM); 
13

C NMR (126 MHz, CDCl3)  

205.9, 171.4, 166.4, 166.1, 165.7, 156.6, 156.1, 137.8, 137.4, 136.9, 135.7, 133.2, 

133.0, 130.1, 129.8, 129.8, 129.7, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 

127.7, 127.2, 127.1, 98.3 (C-1), 97.3 (C-1´), 89.9 (CH2TOM), 78.3 (C-3´), 74.9 (CBn), 

73.5 (C-4), 72.8 (C-3), 72.2 (CBn), 70.5, 69.4 (C-2, C-4´), 68.9 (C-5´), 67.9 (OCH2Linker), 

66.7 (CH2-PhCarba), 66.4 (C-5, CH2-PhBz), 66.3 (C-6), 63.4 (C-2´), 62.5 (C-6´), 50.5, 

50.2 (CH2-PhN), 47.2, 46.2 (NCH2Linker), 37.8 (CH2Lev), 29.7 (CH3Lev) , 29.1 – 27.5 

(CH2Lev, CH2Linker), 23.4 (CH2Linker), 18.0, 17.8 (CH3TOM), 11.9 (CHTOM) ppm; LRMS 

(MALDI-TOF): m/z calcd for C83H98N4O19Si [M+Na]
+
 1506.65, found 1505.33, HRMS 

(ESI): m/z calcd. for C83H98N4O19Si [M+Na]
+
: 1506.6487, found: 1506.6523. 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-

benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-6-O-acetyl-2-O-benzoyl-3-O-

benzyl-α-L-idopyranosyloxy)pentyl) carbamate (107): The compound 90 (31 mg, 

0.028 mmol) was delevulinated with hydrazine acetate (5 mg, 57 µmol) in 

CH2Cl2/MeOH (9:1, 1 mL). When TLC (hexane / EtOAc, 2/1) showed completed 

conversion (2h), the mixture was concentrated and the residue was purified by column 

chromatography (hexane/EtOAc, 1/0 to 6/4) to afford the idose acceptor 99 (20 mg, 

91%). 
1
H NMR (500 MHz, CDCl3)  8.12 – 7.94 (m, 4H, aromatic), 7.66 – 7.06 (m, 

20H, aromatic), 5.35 (s, 2H, CH2-PhBz), 5.26 – 5.10 (m, 3H, H-2, CH2-PhCarba), 4.96 – 

4.88 (d, J = 7.2 Hz, 1H, H-1), 4.87 – 4.78 (m, 1H, CH2Ph), 4.62 (d, J = 11.8 Hz, 1H, 

CH2Ph), 4.54 – 4.39 (m, 3H, H-5, CH2-PhN), 4.35 (dd, J = 11.6, 7.5 Hz, 1H, H-6a), 

4.27 (dd, J = 11.3, 4.5 Hz, 1H, H-6b), 3.85 – 3.79 (bs, 1H, H-3), 3.79 – 3.65 (m, 2H, H-

4, OCH2Linker), 3.51 – 3.34 (m, 1H, OCH2Linker), 3.31 – 3.10 (m, 2H, NCH2Linker), 2.08 – 

2.00 (m, 3H, CH3Ac), 1.72 – 1.44 (m, 4H, CH2Linker), 1.44 – 1.16 (m, 2H, CH2Linker); 
13

C 

NMR (125 MHz, CDCl3)  170.7, 166.4, 165.0, 156.1, 137.9, 137.7, 137.0, 136.9, 

135.8, 133.6, 133.0, 130.1, 129.7, 129.1, 128.6, 128.5, 128.4, 128.3, 128.3, 128.0, 

127.8, 127.6, 127.3, 127.3, 127.1, 98.2 (C-1), 74.8 (C-3), 71.8 (CBn), 67.9 (OCH2Linker), 

67.7 (C-2), 67.1 (C-4), 66.8 (CH2-PhCarba) , 66.3 (CH2-PhBz), 65.4 (C-5), 63.7 (C-6), 

50.5, 50.2 (CH2-PhN), 47.2, 46.2 (NCH2Linker), 29.1, 28.0, 27.5, 23.5 (CH2Linker), 20.8 

(CH3Ac). The glycosylation reaction was carried out according to general procedure C 

using idose acceptor 99 (123 mg, 128 µmol), azido glucose donor 65 (115 mg, 179 

µmol) and TMSOTf (7 μL, 32 µmol). The product 107 was obtained as  α/β mixture (25 

mg, 15%,). Selected characteristic NMR signals: 
1
H NMR (500 MHz, CDCl3)  5.29 – 

5.25 (m, 3H, H-1´α, CH2-PhCarba), 4.98 (d, J = 3.5 Hz, 1H, H-1β), 4.91 – 4.83 (m, 2H, 

H-1α), 4.67 – 4.57 (m, 3 H, H-1´β, CH2-Bn) ppm; 
13

C NMR (126 MHz, CDCl3) δ 97.9 

(C-1α, JC,H = 171 Hz), 97.8 (C-1α, JC,H = 172 Hz), 96.3 (C-1´β, JC,H = 162 Hz), 91.9 (C-

1´α, JC,H = 171 Hz); HRMS (ESI): m/z calcd for C75H78N4O19 [M+Na]
+
 1361.5152, 

found 1361.5129.  

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-3-O-benzyl-

6-O-benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-

-L-idopyranosyloxy)uronate)pentyl) carbamate (108): The compound 91 (169 mg, 

0.179 mmol) was delevulinated using hydrazine acetate (24 mg, 0.27 mmol) in dry 

CH2Cl2/MeOH (4.5 mL/0.45 mL). The crude was purified by columm chromatography 
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(hexane/EtOAc, 6/4) to afford the idose acceptor 100 (128 mg, 85%). 
1
H NMR (500 

MHz, CDCl3)  =  8.12 – 7.95 (m, 4H, aromatic), 7.64 – 7.10 (m, 20H, aromatic), 5.35 

(s, 2H, CH2-PhBz), 5.24 – 5.16 (m, 3H, H-2, CH2-PhCarba), 5.12 (bs, 1H, H-1), 4.90 (m, 

1H, H-5), 4.82 (m, 1H, CH2Ph), 4.64 (d, 1H, J = 11.6 Hz, CH2Ph), 4.47 (d, J = 11.4Hz, 

2H, CH2-PhN), 4.11 (bs, 1H, H-4), 3.87 (m, 1H, H-3), 3.82 (s, 3H, CH3COOMe), 3.78 – 

3.73 (m, 1H, CH2Linker), 3.51 – 3.45 (m, 1H, CH2Linker), 3.24 – 3.14 (m, 2H, CH2Linker), 

2.80 (bs, 1H, OH), 1.64 – 1.43 (m, 4H, CH2Linker), 1.40 – 1.24 (m, 2H, CH2Linker) ppm. 

13
C NMR (125 MHz, CDCl3)  = 170.0, 166.3, 165.0, 156.0, 137.8, 137.5, 137.0, 135.7, 

133.7, 133.0, 130.0, 129.7, 129.7, 129.0, 128.6, 128.5, 128.4, 128.3, 128.0, 127.8, 

127.7, 127.6, 127.3, 127.2, 127.1, 98.7, 74.3, 71.8, 68.7, 68.2, 67.6, 67.3, 66.8, 66.3, 

52.4, 50.5, 50.2, 47.2, 46.1, 29.7, 29.1, 27.9, 27.5, 23.3 ppm. The glycosylation reaction 

was carried out according to general procedure C using: 

Conditions 1: idose acceptor 100 (56 mg, 0.066 mmol) and azido glucose donor 66 (62 

mg, 0.093 mmol). TMSOTf (0.6 µL, 0.003 mmol) was added at 0 °C. The reaction 

mixture was purified by flash column chromatography using hexane: EtOAc (8:2) to 

obtain compound 52 (26 mg, 32%). 

Conditions 2: The glycosylation reaction was carried out according to general procedure 

C using acceptor 100 (40 mg, 0.047 mmol) and azido glucose donor 65 (42 mg, 0.065 

mmol). TMSOTf (0.6 µL, 0.003 mmol) was added at 0 °C. The reaction mixture was 

purified by flash column chromatography using toluene/EtOAc (6/4), following by 

preparative TLC eluting with hexane/EtOAc (6/4) to obtain compound 108 (30 mg, 

48%). 
1
H NMR (500 MHz, CDCl3) δ 8.22 – 8.17 (m, 2H, aromatic), 8.10 – 8.02 (m, 4H, 

aromatic), 7.11 (m, 28H, aromatic), 5.36 (s, 2H, CH2-PhBz), 5.21 – 5.13 (m, 5H, H-1, H-

2, H-4´, CH2-PhCarba), 4.92 (d, J = 11.5Hz, CH2Ph), 4.87 (s, 1H, H-5), 4.77 (d, J = 3.10 

Hz, H-1´), 4.74 (d, J = 11.5 Hz, CH2Ph), 4.61 (dd, J = 1.8, 12.4Hz, 1H, H-6´a), 4.48 (d, 

J = 10.8 Hz, 2H, CH2-PhN), 4.28 (dd, J = 1.8, 12.4 Hz, 1H, H-6´b), 4.20 – 4.17 (m, 1H, 

H-4), 4.16 – 4.11 (m, 1H, H-5´), 4.09 – 4.06 (m, 2H, H-3, CH2Ph), 4.02 (d, J = 10.8 Hz, 

1H, CH2Ph), 3.82 (s, 3H, CH3COOMe), 3.77 – 3.74 (m, 1H, OCH2Linker), 3.62 (t, J = 9.4 

Hz, H-3´), 3.55 – 3.42 (m, 1H, OCH2Linker), 3.30 (dd, J = 3.1, 9.9 Hz, H-2´), 3.24 – 3.17 

(m, 2H, NCH2Linker), 2.69 – 2.66 (m, 2H, CH2Lev), 2.57 – 2.42 (m, 2H, CH2Lev), 2.11 (s, 

3H, CH3Lev), 1.63 – 1.51 (m, 4H, CH2Linker), 1.31 – 1.27 (m, 2H, CH2Linker) ppm; 
13

C 

NMR (126 MHz, CDCl3) δ 205.9, 171.1, 169.6, 166.3, 166.0, 165.4, 156.5, 156.0, 

137.8, 137.7, 137.4, 137.2, 136.9, 136.9, 136.8, 136.8, 135.6, 133.3, 132.9, 132.9, 
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130.0, 129.8, 129.6, 129.6, 128.5, 128.4, 128.3, 128.2, 127.9, 127.8, 127.7, 127.6, 

127.2, 127.2, 127.0, 99.1 (C-1), 99.0 (C-1), 77.9 (C-3´), 76.0 (C-4), 74.5 (CH2Ph), 72.6 

(C-3), 72.2 (CH2Ph), 70.1 (C-4´), 68.9 (C-5´), 68.5 (CH2Linker), 68.0 (C-2), 67.2 (C-5), 

66.7 (CH2-PhCarba), 66.3 (CH2-PhBz), 63.2 (C-2´), 61.8 (C-6), 52.3 (CH3COOMe), 50.4, 

50.1 (CH2-PhN), 47.1, 46.0 (NCH2-Linker), 37.7 (CH2Linker), 29.6 (CH3Lev), 29.0 

(CH2Linker), 27.8 (CH2Lev, CH2Linker), 27.4 (CH2Linker) , 23.3 (CH2Linker) ppm; LRMS 

(MALDI-TOF): Calcd for C74H76N4O19 [M+Na]
+
 1348.40, found 1347.78. HRMS 

(ESI): m/z calcd for C74H76N4O19 [M+Na]
+
 1347.5001, found 1347.4924.  

 

5.7.2.1 Evaluation of n-pentenyl orthoesters as of L-iduronic acid donors 

 

tert-Butyldimethylsilyl 2-azido-3,6-di-O-benzyl-2-deoxy-D-glucopyranose (109): To 

a solution of tert-butyldimethylsilyl 2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-β-

D-glucopyranoside (61) (180 mg, 0.36 mmol) in dry CH2Cl2, triethylsilane (0.34 mL, 

2.17 mmol) and trifluoroacetic acid (0.17 mL, 2.17 mmol) were added at 0 °C. After 2 

hours, the reaction was quenched with triethylamine and concentrated. The crude was 

purified by column chromatography (hexane/EtOAc, 9/1 to 7/3) to obtain 53 (140 mg, 

78%). 
1
H NMR (500 MHz, CDCl3)  7.44 – 7.28 (m, 10H, aromatic), 4.93 (d, J = 11.4 

Hz, 1H, CH2Ph), 4.78 (d, J = 11.4 Hz, 1H, CH2Ph), 4.64 – 4.52 (m, 3H, CH2Ph, H-1), 

3.73 (d, J = 4.7 Hz, 2H, H-6), 3.65 (dd, J = 8.8, 9.5 Hz, 1H, H-4), 3.46 – 3.39 (m, 1H, 

H-5), 3.33 (dd, J = 7.6, 10.0 Hz, 1H, H-2), 3.23 (dd, J = 8.7, 9.9 Hz, 1H, H-3), 2.90 – 

2.50 (bs, 1H, OH), 0.96 (s, 9H, CH3TBS), 0.19 (s, 6H, CH3TBS); 
13

C NMR (125 MHz, 

CDCl3)  138.2, 137.8, 128.6, 128.4, 128.0, 127.9, 127.7, 127.6, 97.2 (C-1), 82.3 (C-3), 

74.9 (CBn), 74.0 (C-5), 73.7 (CBn), 71.9 (C-4), 70.3 (C-6), 68.1 (C-2), 25.6 (CH3TBS), -

4.3 (SiCH3), -5.3 (SiCH3) ppm; HRMS (ESI): m/z calcd for C26H37N3O5Si [M+Na]
+ 

522.2400, found 522.2388.  

 

Dimethylthexylsilyl 2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy-D-glucopyranose 

(110): EtSH (0.25 mL, 3.3 mmol) and catalytic pTsOH (35 mg) were added to a 

solution of  dimethylthexylsilyl 2-azido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-α,β-D-

glucopyranose (350 mg, 0.66 mmol) in dry CH2Cl2 (8 mL). After stirring for 3 h under 

argon, the mixture was neutralized with solid NaHCO3, diluted with CH2Cl2, washed 

with water, dried over anhydrous MgSO4 and concentrated to dryness. The purification 

of the residue was carried out by column chromatography (hexane/EtOAc, 8/2) to yield 
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dimethylthexylsilyl 2-azido-3-O-benzyl-2-deoxy-α,β-D-glucopyranose (271 mg, 94%). 

1
H NMR (500 MHz, CDCl3) δ 7.41 – 7.28 (m, 5H, aromatic), 4.95 (d, J = 11.4 Hz, 1H, 

CH2Ph), 4.72 (d, J = 11.4 Hz, 1H, CH2Ph), 4.55 (d, J = 7.5 Hz, 1H, H-1), 3.81 (dd, J = 

11.8, 3.6 Hz, 1H, H-6a), 3.73 (dd, J = 11.8, 4.8 Hz, 1H, H-6b), 3.56 (dd, J = 9.7, 8.7 Hz, 

1H, H-4), 3.27 (m, 2H, H-2, H-5), 3.21 (m, 1H, H-3), 1.68 (m, 1H, CHthexyl), 0.92 – 0.90 

(2s, 12H, CH3thexyl), 0.21 and 0.20 (2s, 6H, Si(CH3)2).
 13

C NMR (126 MHz, CDCl3) δ = 

138.2, 128.8, 128.2, 128.1, 97.2, 82.6, 75.2, 75.1, 70.6 68.6, 62.6, 34.0, 24.9, 20.1, 20.0, 

18.60, 18.5, -1.9, -3.1. BzCN (76 mg, 0.58 mmol) and catalytic amount of Et3N were 

added to a cooled (-40 °C) solution of dimethylthexylsilyl 2-azido-3-O-benzyl-2-deoxy-

α,β-D-glucopyranose (250 mg, 0.57 mmol) in dry CH3CN (11 mL). After 4h, MeOH 

was added and the mixture was allowed to reach room temperature. The solvent was 

concentrated, and the residue was dissolved in MeOH and concentrated to dryness. The 

purification was carried out by flash column chromatography (hexane/ EtOAc, 9/1) to 

afford 54 (250 mg, 80%). 
1
H NMR (500 MHz, CDCl3) δ 8.05 – 8.03 (m, 2H, aromatic), 

7.59 – 7.55 (m, 1H, aromatic), 7.47 – 7.42 (m, 2H, aromatic), 7.40 – 7.30 (m, 5H, 

aromatic), 4.97 (d, J = 11.4 Hz, 1H, CH2Ph), 4.74 (d, J = 11.4 Hz, 1H, CH2Ph), 4.57 – 

4.56 (m, 3H, H-6ab, H-1), 3.56 – 3.50 (m, 2H, H-4, H-5), 3.32 (dd, J = 9.9, 7.6 Hz, 1H, 

H-2), 3.26 – 3.22 (m, 1H, H-3), 2.52 (bs, OH), 1.67 – 1.61 (m, 1H, CHthexyl), 0.88 – 0.86 

(3s, 12H, CH3thexyl), 0.18 – 0.16 (2s, 6H, Si(CH3)2); 
13

C NMR (126 MHz, CDCl3) δ 

207.2, 166.9, 133.4, 129.9, 128.9, 128.5, 128.3, 97.3 (C-1), 82.3 (C-3), 75.3 (CBn), 74.0, 

70.4 (C-4, C-5), 68.5 (C-2), 63.9 (C-6), 34.0 (CHthexyl), 20.1, 20.0, 18.6, 18.5 (CH3thexyl), 

-2.0, -3.1 (Si(CH3)2); HRMS (ESI): m/z calcd for C28H39N3O6Si [M+Na]
+
 564.2506, 

found 564.2471. 

 

tert-Butyldimethylsilyl 2-azido-3,6-di-O-benzyl-2-deoxy-4-O-(methyl (2,4-di-O-

acetyl-3-O-benzyl--L-idopyranosyl)uronate)-D-glucopyranose (111): The reaction 

was carried out according to general procedure B using acceptor 109 (32 mg, 0.064 

mmol) and n-pentenyl donor 49 (222 mg, 0.326 mmol). NIS (22 mg, 0.097 mmol) and 

TMSOTf (2.3 µL, 0.013 mmol) were added at 0 °C and the mixture was stirred for 2h. 

The crude was concentrated and analysis by UPLC-MS showed 40% formation of the 

desired disaccharide (Calcd for C44H57N3O13SiNa: 886.37, found 886.29) and 20 % of a 

disaccharide lacking one acetyl group (Calcd for C42H55N3O12SiNa: 844.36, found 

844.28). The crude was dissolved in dry pyridine (1 mL), acetic anhydride (0.5 mL) was 

added at 0 °C and the reaction was stirred overnight. EtOH was added and the reaction 
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mixture was concentrated. The crude was purified by column chromatography 

hexane/EtOAc (8/2) to obtain 56 (27 mg). 
1
H NMR (500 MHz, CDCl3) δ = 7.40 – 7.19 

(m, 15H, aromatic), 5.21 (bs, 1H, H-1´), 5.08 – 5.04 (m, 1H), 5.02 (d, J = 2.3 Hz, 1H), 

4.87 – 4.83 (m, 1H), 4.72 – 4.68 (m, 3H, CH2Ph), 4.60 (d, J = 12.3Hz, 1H, CH2Ph), 

4.53 – 4.47 (m, 3H, CH2Ph, H-1), 4.00 (t, J = 9.5 Hz, 1H), 3.82 – 3.79 (m, 1H), 3.72 

(dd, J = 11.2, 3.8 Hz, 1H, H-6a), 3.67 (dd, J = 11.4, 2.3 Hz, 1H, H-6b), 3.38 (m, 5H, 

CH3COOMe), 3.21 (t, J = 9.6Hz, 1H), 2.01 and 2.00 (2s, 6H, CH3Ac), 0.93 (s, 9H, 

CH3TBS), 0.15 (s, 3H, SiCH3), 0.14 (s, 3H, SiCH3) ppm; 
13

C NMR (126 MHz, CDCl3) δ 

170.2, 169.9, 168.7, 138.3, 138.2, 137.5, 128.6, 128.4, 128.3, 128.2, 128.1, 127.6, 

127.6, 127.4, 97.5 (C-1), 97.4 (C-1´), 81.0, 75.4, 74.5 (CBn), 74.1, 73.3 (CBn), 72.6 

(CBn), 72.5, 68.9, 68.2 (C-6), 68.0, 67.2, 66.4, 52.2 (CH3COOMe), 25.7 (CH3TBS), 21.1, 

20.9 (CH3Ac), 18.1 (CqTBS), -4.1, -5.1 (Si(CH3)2) ppm; HRMS (ESI): m/z calcd for 

C44H57N3NaO13Si [M+Na]
+
 886.3553, found 886.3527. 

 

Dimethylthexylsilyl 2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy-4-O-(methyl (3-O-

benzyl-2,4-di-O-levulinoyl--L-idopyranosyl)uronate)-D-glucopyranose (112): The 

reaction was carried out according to general procedure B using acceptor 110 (21 mg 

0.039 mmol) and n-pentenyl donor 50 (29 mg, 0.051 mmol), NIS (12 mg, 0.055 mmol) 

and TMSOTf (1.33µL, 0.010 mmol) were added at 0 °C and the mixture was stirred for 

2h. The crude was concentrated and the conversion to disaccharide 57 was determinated 

by LCMS to be 30%. (Calcd for C52H67N3O16SiNH4
+
: 1040.43, found 1040.42). 

 

Dimethylthexylsilyl 2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy-4-O-(methyl (2,4-di-

O-benzoyl-3-O-benzyl--L-idopyranosyl)uronate)-D-glucopyranose (113): The 

reaction was carried out according to general procedure B using acceptor 109 (45 mg, 

0.083 mmol) and n-pentenyl donor 51 (76 mg, 0.083 mmol). NIS (56 mg, 0.249 mmol) 

and TMSOTf (3 µL, 0.016 mmol) were added at 0 °C and the mixture was stirred for 

2h. The crude was concentrated and was purified by column chromatography hexane/ 

EtOAc (7/3) to obtain 113 (73 mg, 85%). [α]D
20 

= -33.6° (c = 1, CHCl3), 
1
H NMR (500 

MHz, CDCl3) δ  = 8.06 – 7.95 (m, 4H, aromatic), 7.67 – 7.62 (m, 2H, aromatic), 7.57 – 

7.48 (m, 2H, aromatic), 7.44 – 7.17 (m, 15H, aromatic), 7.01 – 7.95 (m, 2H, aromatic), 

5.41 – 5.37 (m, 2H, H-1´, H-4´) , 5.22 – 5.15  (m, 2H, H-5´, H-2´), 4.89 – 4.82 (m, 3H, 

CH2Ph, H-6), 4.74 (d, J = 10.9 Hz, CH2Ph), 4.70 (d, J = 10.9Hz, CH2Ph), 4.54 (d, J = 

7.2 Hz, 1H, H-1), 4.42 (dd, J = 11.9, 6.1 Hz, 1H, H-6), 4.14 – 4.11 (m, 1H, H-3´), 3.98 
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(dd, J = 9.8, 8.6 Hz, 1H, H-4), 3.69 – 3.63 (m, 1H, H-5), 3.40 – 3.30 (m, 5H, CH3COOMe, 

H-2, H-3), 1.64 – 1.58 (m, 1H, CHthexyl), 0.85  – 0.83 (12H, CH3thexyl), 0.14 - 0.11 (6H, 

Si(CH3)2) ppm; 
13

C NMR (126 MHz, CDCl3) δ = 168.8, 166.1, 165.6, 165.4, 138.1, 

137.4, 133.6, 133.3, 133.1, 130.1, 130.0, 129.9, 129.4, 128.9, 128.6, 128.4, 128.4, 

128.3, 128.2, 127.7, 127.5, 97.8 (JC1´-H1´ = 171 Hz, C-1´), 97.2 (JC1-H1 = 160 Hz, C-1), 

81.1 (C-3), 75.2 (C-4), 74.8 (CBn), 73.8 (C-5), 73.0 (CBn), 72.9 (C-3´), 69.1 (C-2), 68.5 

(C-4´), 67.7 (C-2´), 67.1 (C-5´), 63.2 (C-6), 52.3 (CH3COOMe), 34.0 (CHthexyl), 20.1, 20.0, 

18.6, 18.5 (CH3thexyl), -2.0, -3.2 (Si(CH3)2) ppm; HRMS (ESI): m/z calcd for 

C56H63N3O14Si [M+Na]
+ 

1052.3977, found 1052.3912.  

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-6-O-benzoyl-

3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl--L-

idopyranosyloxy)uronate)pentyl) carbamate (114): To a solution of 108 (94 mg, 

0.071 mmol) in dry CH2Cl2/MeOH (25 mL/2.5 mL), hydrazine acetate (9 mg, 0.106 

mmol) was added. The reaction was stirred for 3h and the crude was concentrated and 

purified using hexane/EtOAc (6/4) to obtain 114 as a white solid (70 mg, 80%). 
1
H 

NMR (500 MHz, CDCl3) δ 8.20 – 8.15 (m, 2H, aromatic), 8.10 – 8.00 (m, 4H, 

aromatic), 7.58 – 7.15 (m, 28H, aromatic), 5.36 (s, 2H, CH2-PhBz), 5.19 – 5.16 (m, 4H, 

H-1, H-2, CH2-PhCarba), 4.88 – 4.82 (m, 4H, H-5, H-1´, H-6a, CH2Ph), 4.74 (d, 1H, 

CH2Ph), 4.47 – 4.45 (m, 3H, CH2Ph, H-6b), 4.36 (d, 1H, CH2Ph), 4.16 – 4.13 (m, 3H, 

CH2Ph, H-3, H-4), 4.04 – 4.02 (m, 1H, H-5´), 3.83 (s, 3H, CH3COOMe), 3.78 – 3.75 (m, 

1H, OCH2Linker), 3.54 – 3.46 (m, 3H, H-3´, H-4´, OCH2Linker), 3.23 – 3.13 (m, 3H, H-2´, 

NCH2Linker), 3.04 (bs, 1H, OH), 1.63 – 1.50 (m, 4H, CH2Linker), 1.31 – 1.25 (m, 2H, 

CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3) δ 169.9, 167.5, 166.5, 165.6, 156.7, 156.2, 

137.9, 137.7, 133.5, 133.1, 130.1, 129.9, 129.8, 129.5, 128.8, 128.6, 128.5, 128.4, 

128.1, 128.0, 127.9, 127.4, 127.2, 99.4 (C-1´), 99.2 (C-1), 79.3 (C-3´), 75.7 (C-4), 75.0 

(CH2Ph), 73.2 (C-3), 72.4 (CH2Ph), 71.4 (C-4´), 70.5 (C-5´), 68.7 (CH2Linker), 68.0 (C-

2), 67.5 (C-5), 66.9 (CH2-PhCarba), 66.5 (CH2-PhBz), 63.2 (C-2´), 63.1 (C-6´), 52.4 

(CH3COOMe), 50.6, 50.3 (CH2-PhN), 47.3 (NCH2Linker), 46.3 (CH2Linker), 29.2 (CH2Linker), 

27.63 (CH2Linker), 23.5 (CH2Linker) ppm. HRMS (ESI): m/z calcd for C69H70N4O17 

[M+Na]
+
 1249.4634, found 1249.4623. 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-6-O-benzoyl-

3-O-benzyl-2-deoxy-4-O-(methyl (2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-L-

idopyranosyl)uronate)-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl--L-

idopyranosyloxy)uronate)pentyl) carbamate (115): The glycosylation was carried out 

according to general procedure B using:  

Conditions 1. Acceptor 114 (35 mg, 0.028 mmol) and thiophenyl donor 43 (21 mg, 

0.034 mmol), NIS (19 mg, 0.085 mmol) and TMSOTf (1.5 µL, 0.006 mmol) were 

added at room temperature. The crude was purified by column chromatography using 

hexane/EtOAc (7/3) to obtain compound 115 (16 mg, 34 %).  

Conditions 2. To a solution of acceptor 114 (64 mg, 0.052 mmol) and donor 57 (36 mg, 

0.062 mmol), NIS (35 mg, 0.156 mmol) and TMSOTf (1.8 µL, 0.01 mmol) were added 

at 0 °C. The crude was purified by column chromatography using hexane/EtOAc (7/3) 

to obtain compound 115 (40 mg, 45%). 
1
H NMR (500 MHz, CDCl3) δ 8.12 – 8.00 (m, 

8H, aromatic), 7.57 – 7.13 (m, 36H, aromatic), 5.44 (d, J = 3.6Hz, 1H, H-1´´), 5.35 (s, 

2H, CH2-PhBz), 5.20 – 5.16 (m, 5H, H-1, H-2´´, H-4´´, CH2-PhCarba), 5.09 (s, 1H, H-2), 

4.88 (d, J = 11.4Hz, 1H, CH2Ph), 4.83 – 4.70 (m, 7H, H-6a, H-5´´, H-1´, H-5, CH2Ph), 

4.48 – 4.45 (m, 3H, H-6b, CH2-PhN), 4.41 (d, J = 10.4Hz, 4H, CH2Ph), 4.13 – 4.09 (m, 

1H, H-3), 4.03 – 3.89 (m, 5H, H-4´, H-5´, H-3´´, H-4, CH2Ph) , 3.78 – 3.70 (m, 1H, 

OCH2Linker), 3.68 (s, 3H, CH3COOMe), 3.55 – 3.46 (m, 2H, H-3´, OCH2Linker), 3.42 (s, 3H, 

CH3COOMe), 3.27 (dd, J = 10.3, 3.4Hz, 1H, H-2´), 3.24 – 3.11 (m, 2H, NCH2Linker), 2.59 

(t, J = 6.6 Hz, 2H, CH2Lev), 2.38 (t, J = 6.6 Hz, 2H, CH2Lev), 2.09 (s, 3H, CH3Lev), 1.58 – 

1.43 (m, 4H, CH2Linker), 1.35 – 1.24 (m, 2H, CH2Linker) ppm; 
13

C NMR (126 MHz, 

CDCl3) δ 205.8, 171.6, 169.8, 168.7, 166.5, 166.1, 165.7, 165.1, 156.7, 156.2, 138.0, 

137.7, 137.3, 137.0, 135.8, 133.6, 133.5, 133.1, 133.0, 130.2, 130.0, 129.8, 129.3, 

128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.5, 127.3, 127.2, 99.1 (C-1, 

JC1-H1 = 171 Hz), 98.9 (C-1´, JC1´-H1´ = 169 Hz), 98.1 (C-1´´, JC1´´-H1´´ = 171 Hz), 78.6 

(H-3´), 75.7, 75.6 (C-4, C-4´), 74.6 (CH2Ph), 74.3 (C-3), 73.4 (CH2Ph), 72.8 (C-3´´), 

72.4, 70.2 (C-5´), 69.8 (C-2´´), 68.6 (CH2Linker), 68.3 (C-2, C-4´´), 67.6 (C-5), 66.9 

(CH2-Phcarba), 66.5 (CH2-PhBz), 63.8 (C-2´), 62.2 (C-6), 52.4 (CH3COOMe), 52.0 

(CH3COOMe), 50.6, 50.3 (CH2-PhN), 47.3 , 46.3 (NCH2Linker), 37.7 (CH2Lev), 29.7 

(CH3Lev), 29.2 (CH2Linker), 28.1 (CH2Linker), 27.8 (CH2Linker, CH3Lev), 27.6 (CH2Linker), 

23.5 (CH2Linker) ppm; HRMS (ESI): m/z calcd for C95H96N4O26 [M+Na]
+
 1731.6205, 

found 1731.6274.  
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5.8 EVALUATION OF DONORS IN THE SOLID PHASE SYNTHESIS OF HS 

PRECURSORS 

 

5.8.1 Initial studies: trisaccharide solid phase synthesis using idose TBPDS. 

 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-tert-butyldiphenylsilyl-α-L-idopyranosyloxy)pentyl) carbamate 

(SP-116): Linker SP-9 (SP-9PS0.2, SP-9PS0.4, SP-9TENT0.2 and SP-9TENT0.4, 100 mg, 0.22 

mmol/g) was glycosylated in one cycle with thioglycoside 25 (2 eq), NIS (2.5 eq) and 

catalytic amount of TMSOTf according to general procedure G. The conversion was 

determined by analytical NaOMe cleavage: 

1. Resin SP-116PS0.2: UPLC-MS (ESI): 85% as compound 117(m/z: C49H57NO9Si 

[M+Na]
+
 854.37 found 854.35). 

2. Resin SP-116PS0.4: UPLC-MS (ESI): 95% as compound 117(m/z: C49H57NO9Si 

[M+Na]
+
 854.37 found 854.35). 

3. ResinSP-116TENT0.2: No activation 

4. Resin SP-116TENT0.4: UPLC-MS (ESI): 30% as compound 117(m/z: C49H57NO9Si 

[M+Na]
+
 854.37 found 854.35). 

 

Figure 5.1. UPLC-MS chromatogram of analytical cleavage data conversion of linker SP-9 

(cleaved as 10 retention time (tr) at 1.9 min., m/z calcd for C21H27NO4 [M+Na]
+
 380.18 found 

380.16) to the monosaccharide SP-116 (cleaved as 118 (tr) at 4.4 min., peak C (m/z calcd for 

C49H57NO9Si [M+Na]
+
 854.37 found 854.35). 
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4-(Hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-

6-O-tert-butyldiphenylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (116): 

Compound 116 was obtained according to cleavage Procedure F.  MALDI-TOF MS 

analysis showed complete retention of all protecting groups. MALDI-TOF MS: Calcd 

for C62H71NO12SiNa [M+Na]
+
 1072.46, found 1072.70. 

 

 

Figure 5.2. Maldi-Tof MS for glycoconjugate 116. 

The resin SP-116 (100mg/0.22 mmol/g) was transformed to Resin bound 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-6-O-tert-

butyldiphenylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (SP-118) using general 

procedure H in 3 cycles with 2 eq of hydrazine acetate. 

 

4-(Hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-6-O-tert-

butyldiphenylsilyl--L-idopyranosyloxy)pentyl) carbamate (118): Compound 118 

was obtained according to cleavage Procedure F. MALDI-TOF MS analysis showed 

complete cleavage of the levulinyl protecting group. MALDI-TOF MS: Calcd for 

C57H65NO10SiNa [M+Na]
+
 974.43, found 975.25.  

 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-(4-O-(2-azido-6-O-benzoyl-3-

O-benzyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-

O-tert-butyldiphenylsilyl-α-L-idopyranosyloxy)pentyl] carbamate (SP-119): The 

reaction was performed according to general procedure G using five cycles on resin SP-

118 (0.500 g, 0.1 mmol) with thricloroacetimidate 65 (5 x 5 eq, 320 mg, 0.5 mmol) and 
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TMSOTf (5 µL, 0.025 mmol). The conversion was determined by analytical NaOMe 

cleavage. UPLC-MS (ESI): (cycle1) not analyzed, (cycle 2) 54%, (cycle 3) 67%, (cycle 

4) 78%, (cycle 5) 82% as compound 120 (m/z: [M+NH4]
+
 calcd for C62H72N4O13Si 

1126.52 found, 1126.32).  

 

Figure 5.1. UPLC-MS chromatogram of analytical cleavage data for conversion of 

monosaccharide SP-118 (average retention time=4.39 min) to the disaccharide SP-119 (average 

retention time=4.81 min) derivative. 

 

4-(Acetoxymethyl)benzyl N-benzyl N-(5-(2-O-acetyl-3-O-benzyl-4-O-(4,6-O-di-

acetyl-2-azido-3-O-benzyl-2-deoxy--D-glucopyranosyl)-6-O-tert-

butyldiphenylsilyl--L-idopyranosyloxy)pentyl) carbamate (121): Compound 121 

was obtained from SP-119 in 45% overall yield after preparative cleavage according to 

Procedure D and purification. The intermediate (6 mg, 0.005 mmol) was taken up in 

CH2Cl2 (1.5 mL) and treated with pyridine (0.1 mL, 1.3 mmol), acetic anhydride (0.1 

mL, 1.0 mmol), and a catalytic amount of DMAP. After 12 hours, the reaction mixture 

was diluted with CH2Cl2 and successively washed with saturated CuSO4 aq solution and 

Cycle 5

Cycle 4

Cycle 3

Cycle 2
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water. The organic phase was then dried over anhydrous MgSO4, filtered and 

concentrated. Preparative TLC (hexane/EtOAc, 7/3) afforded compound 121 as a white 

solid (6 mg, 93% yield). 
1
H NMR (500 MHz, CDCl3)  7.77-7.10 (25H, m), 5.22-5.11 

(2H, m), 5.08 (2H, s), 5.01 (1H, dd, J=9.7 Hz), 4.96-4.92 (1H, m), 4.91 (1H, d, J=3.6 

Hz), 4.87-4.82 (1H, m), 4.80 (1H, d, J=11.7 Hz), 4.76 (1H, d, J=11.1 Hz), 4.65 (1H, d, 

J=11.8 Hz), 4.55 (1H, d, J=11.0 Hz), 4.50-4.42 (2H, m), 4.28-4.23 (1H, m), 3.99 (1H, 

dd, J=4.5, 12.4 Hz), 3.92-3.79 (5H, m), 3.78-3.72 (1H, m), 3.69-3.59 (3H, m), 3.40 (1H, 

dd, J=3.6, 10.2 Hz), 3.36-3.26 (1H, m), 3.26-3.10 (2H, m), 2.09 (6H, s), 1.94 (3H, s), 

1.88 (3H, s), 1.70-1.45 (4H, m), 1.35-1.20 (2H, m), 1.04 (9H, s); 
13

C NMR (125 MHz, 

CDCl3)  170.84, 170.49, 170.05, 169.27, 156.60, 156.06, 137.75, 137.38, 136.89, 

135.62, 135.46, 133.14, 132.97, 129.89, 129.83, 128.53, 128.35, 127.99, 127.79, 

127.64, 127.35, 127.28, 127.09, 97.84, 95.91, 77.99, 74.94, 72.25, 72.06, 71.44, 69.71, 

68.51, 67.87, 67.59, 66.74, 65.97, 63.34, 63.03, 61.70, 50.51, 50.19, 47.19, 46.19, 

29.69, 29.08, 26.79, 23.40, 20.99, 20.82, 20.66, 20.59, 19.14.; HRMS (ESI): Calcd for 

C71H84N4O17SiNa [M+Na]
+
 1315.5498, found 1315.5516. 

The resin SP-119 (100mg/0.22 mmol/g) was transformed to Resin bound 4-

(hydroxymethyl)benzyl N-benzyl N-[5-(4-O-(2-azido-6-O-benzoyl-3-O-benzyl-2-

deoxy-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-O-tert-butyldiphenylsilyl-α-L-

idopyranosyloxy)pentyl] carbamate (SP-122) using general procedure H in 3 cycles 

with 2 equiv. of hydrazine acetate. 

 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-tert-butyldiphenylsilyl-α-L-idopyranosyl)-(14)-(2-azido-6-O-

benzoyl-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-(14)-2-O-benzoyl-3-O-benzyl-

6-O-tert-butyldiphenylsilyl-α-L-idopyranosyloxy)pentyl] carbamate (SP-123): The 

reaction was performed according to general procedure G using four cycles on resin SP-

122 (150 mg, 0.03 mmol) with trichloroacetimidate 28 (5 equiv, 128 mg, 0.15 mmol) 

and TMSOTf (2 μL, 0.007 mmol). The conversion was determined by analytical NaOMe 

cleavage. UPLC-MS (ESI): (cycle 1) 41%, (cycle 2) 45%, (cycle 3) 50%, (cycle 4) 53% 

as compound 124 (m/z:  [M+NH4]
+
 calcd for C90H106N5O18Si2 1600.71 found 1600.50.  
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Figure 5.2. UPLC-MS chromatogram of analytical cleavage data for conversion of disaccharide 

SP-122 (average retention time tr=4.39 min) to trisaccharide SP-123 (average retention time 

tr=6.68 min) derivative. 

 

4-(Acetoxymethyl)benzyl N-benzyl N-(5-(2-O-acetyl-3-O-benzyl-4-O-(6-O-acetyl-2-

azido-3-O-benzyl-4-O-(2,4-di-O-acetyl-3-O-benzyl-6-O-tert-butyldiphenylsilyl--L-

idopyranosyl)-2-deoxy--D-glucopyranosyl)-6-O-tert-butyldiphenylsilyl--L-

idopyranosyloxy)pentyl) carbamate (125): Compound 125 was obtained in 10% 

overall yield by preparative cleavage (Procedure D) and purification from SP-123. The 

crude product (4 mg, 0.002 mmol) was taken up in CH2Cl2 (1.5 mL) and treated with 

pyridine (0.1 mL, 1.3 mmol), acetic anhydride (0.1 mL, 1.0 mmol), and catalytic 

amount of DMAP. After 12 hours, the reaction mixture was diluted with CH2Cl2 and 

successively washed with saturated CuSO4 aq solution and water. The organic phase 

was then dried over anhydrous MgSO4, filtered and concentrated. Preparative TLC 

(hexane/ EtOAc, 7/3) afforded compound 125 as a white solid (4 mg, 95% yield). 
1
H 

NMR (500 MHz, CDCl3)  7.74-7.09 (44H, m), 5.21-5.11 (2H, m), 5.08 (2H, s), 5.02-

4.98 (2H, m), 4.95-4.81 (5H, m), 4.79-4.60 (4H, m), 4.55-4.41 (4H, m), 4.22-4.00 (4H, 

Cycle 4

Cycle 3

Cycle 2

Cycle 1
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m), 3.94-3.80 (3H, m), 3.80-3.73 (3H, m), 3.73-3.57 (5H, m), 3.37-3.08 (4H, m), 2.09 

(3H, s), 2.03 (3H, s), 1.98 (3H, s), 1.92 (3H, s), 1.90 (3H, s), 1.70-1.40 (4H, m), 1.35-

1.20 (2H, m), 1.06 (9H, s), 1.01 (9H, s); 
13

C NMR shift values taken from HSQC  

135.56, 135.51, 129.85, 129.69, 128.32, 127.90, 127.85, 127.82, 97.90, 97.77, 96.81, 

79.16, 75.40, 75.33, 74.30, 73.23, 72.79, 72.48, 72.34, 69.79, 68.95, 68.51, 68.42, 

67.78, 67.55, 66.69, 66.63, 66.57, 65.88, 63.84, 63.74, 63.36, 62.40, 62.16, 61.82, 

61.87, 50.33, 47.16, 46.07, 29.57, 29.19, 26.94, 26.87, 23.00, 21.17, 21.12, 21.01; 

HRMS (ESI): Calcd for C102H120N4O23Si2Na [M+Na]
+
 1847.7780, found 1847.7733. 

 

4.8.2 Solid phase synthesis of HS precursor trisaccharide using n-pentenyl 

orthoester of iduronic acid as glycosyl donors  

Resin bound 4-(hydroxymethyl)benzyl N-benzyl-(5-(methyl (2-O-benzoyl-3-O-

benzyl-4-O-levulinoyl--L-idopyranosyloxy)uronate)pentyl) carbamate (SP-126): 

The reaction was performed according to general procedure G employing: 

Conditions 1: Resin SP-9 (200 mg, 0.22 mmol/g), donor 44 (120 mg, 0.20 mmol), NIS 

(58 mg, 0.26 mmol) and TMSOTf (1.4 μL, 0.008 mmol) in dry CH2Cl2 (2 mL) at room 

temperature.  

Conditions 2: Resin SP-9 (250 mg, 0.2 mmol/g), donor 43 (200 mg, 0.15 mmol) and 

TMSOTf (1.1 μL, 0.006 mmol) in dry CH2Cl2 (2 mL) at -40 °C.  

Conditions 3: Resin SP-9 (160 mg, 0.2 mmol/g), donor 57 (94 mg, 0.16 mmol) and 

TMSOTf (1.2 μL, 0.007 mmol) in dry CH2Cl2 (2 mL) at 0°C  

 The conversion of every glycosylation reaction was determined after analytical NaOMe 

cleavage: 1. 84%, 2. 87%, 3. 85%. LCMS (ESI) m/z: tr at 5.10 min as compound 127, 

calcd for C34H41NO10-[Na]
+
: 646.3, found 646.2; tr at 5.79 min as compound 127+Me, 

calcd for C35H43NO10-[Na]
+
: 660.3, found 660.2.  
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Figure 5.5. UPLC-MS chromatogram of analytical cleavage data for conversion of linker SP-9 

(tr= 4.81 min) to the monosaccharide SP-126 (tr= 5.10 min as 127 and tr = 5.79 min as 127+Me 

derivative). 

 The resin SP-126 (94 mg / 0.22 mmol/g) was transformed to resin bound 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(methyl (2-O-benzoyl-3-O-benzyl--L-

idopyranosyloxy)uronate)pentyl) carbamate (SP-128) using general procedure H. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-3-O-

benzyl-6-O-benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-O-

benzyl--L-idopyranosyloxy)uronate)pentyl) carbamate (SP-129): The reaction was 

performed according to general procedure G using: 

Conditions 1: 1 cycle on resin SP-128 (250 mg / 0.44 mmol/g) with trichloroacetimidate 

65 (1 x 3 equiv., 192 mg) and TMSOTf (1.8 µL, 0.01 mmol) in dry CH2Cl2 (1.4 mL) at 

-40 °C. Conversion was determined after analytical sodium methoxide cleavage: 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-3-O-benzyl-6-O-benzoyl-

2-deoxy-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl--

idopyranosyloxy)uronate)pentyl) carbamate (130). Conversion: 21%, LCMS (ESI) m/z: 

at retention time 5.86 min calcd for C47H56N4O14-[NH4]
+
: 918.38, found: 918.36. 

1.

2.

3.
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 Conditions 2: 4 cycles of glycosylation were performed on resin SP-128 (155 mg / 0.22 

mmol/g) with trichloroacetimidate 65 (3 x 5 eq., 65 mg, 0.16 mmol) and TMSOTf (68 

µL of 0.1M solution of TMSOTf) in dry CH2Cl2 (1.2 mL) at -20 °C. Conversion was 

determined after analytical dibutyltin oxide cleavage as 4-(hydroxymethyl)benzyl N-

benzyl N-(5-(methyl (4-O-(2-azido-3-O-benzyl-6-O-benzoyl-2-deoxy-α-D-

glucopyranosyl)-2-O-benzoyl-3-O-benzyl--idopyranosyloxy)uronate)pentyl) 

carbamate (131). Conversion 84%, LCMS (ESI) m/z: at tr 11.96 min calcd for 

C67H72N4O18-[NH4]
+
: 1238.4, found 1238.3.  

 

Figure 5.6. UPLC-MS chromatogram of analytical cleavage data for conversion of 

monosaccharide SP-128 to the disaccharide SP-129. Bu2SnO cleavage produces minor amounts 

of partially deproctected intermediates: for monosaccharide acceptor 127 (retention times = 6.41 

(127), 7.05 (127+Me), 8.45 min (127+Me+Bz)) and for disaccharide product 131 (11.96 min) 

and 131-.  

The resin SP-129 (135 mg/0.22 mmol/g) was transformed to resin bound 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-3-O-benzyl-6-O-benzoyl-

2-deoxy-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl--

idopyranosyloxy)uronate)pentyl) carbamate (SP-132) using general procedure H. 
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Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-3-O-

benzyl-6-O-benzoyl-2-deoxy-4-O-(methyl (2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-

-L-idopyranosyl)uronate)-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl--L-

idopyranosyloxy)uronate)pentyl) carbamate (SP-133): The reaction was performed 

according to general procedure G using 3 cycles on resin SP-132 (127 mg / 0.22 

mmol/g) with donor 57 (79 mg, 0.14 mmol) and TMSOTf (56 µL of 0.1M solution of 

TMSOTf in CH2Cl2) in dry CH2Cl2 (0.96 mL) at -20 °C. Conversion was determined 

after analytical dibutyltin oxide mediated cleavage: 4-(Hydroxymethyl)benzyl N-benzyl 

N-(5-(methyl (4-O-(2-azido-3-O-benzyl-6-O-benzoyl-2-deoxy-4-O-(methyl (2-O-

benzoyl-3-O-benzyl-4-O-levulinoyl--L-idopyranosyl)uronate)-α-D-glucopyranosyl)-2-

O-benzoyl-3-O-benzyl--L-idopyranosyloxy)uronate)pentyl) carbamate (134). 

Conversion: 76%, LCMS (ESI) m/z: at retention time (tr) 13.35 min, calcd for 

C88H92N4O25-[NH4]
+
: 1622.6, found 1622.4. 

 

Figure 5.7. UPLC-MS data for conversion disaccharide SP-132 to the trisaccharide SP-133. 

Bu2SnO cleavage affords to partially deprotected intermediates: for acceptor 131(retention time 

= 10.50min (78-Bz), 11.89 min (78)), for 134 only product (retention time = 13.35 min (134)). 

CCycle 1

Cycle 2

Cycle 3
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The resin SP-133 (125 mg, 0.2 mmol/g) was swollen in dry CH2Cl2 (2mL), dry MeOH 

(1mL) and dibutyltin oxide (123 mg) was added. The reaction mixture was heated in the 

microwave for 10 min at 120°C. The resin was washed 3 times with a mixture of 

CH2Cl2: MeOH (1:1) and 3 times with MeOH. This cleavage was repeated until no 

further release of compound from the resin was observed and employing a large excess 

of dibutyltin oxide (820 mg) in the last cleavage cycle. The crude was dissolved in 

MeOH and filtered and was taken up in CH2Cl2 (0.2 mL) and treated with pyridine (0.9 

mL, 0.52 mmol), benzoyl chloride (1.2 mL, 0.26 mmol), and a catalytic amount of 

DMAP. After 12 hours, the reaction mixture was diluted with CH2Cl2 and successively 

washed with saturated CuSO4 aq solution and water. The organic phase was then dried 

over anhydrous MgSO4, filtered and concentrated. Column chromatography followed 

by preparative TLC (hexane/ EtOAc, 7/3) afforded compound 115 as a white solid (3.7 

mg, 8% overall yield).  

 

5.8.3 Solid phase synthesis of HS trisaccharide precursor using L- idopyranosyl 

donors  

 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(6-O-acetyl-2-O-benzoyl-3-O-

benzyl-4-O-levulinoyl--L-idopyranosyloxy)pentyl) carbamate (SP-135): Reaction 

was performed according to general procedure G using resin SP-9 (100 mg / 0.44 

mmol/g), thioglycoside 37 (3 eq, 73 mg, 0.12 mmol). NIS (36 mg, 0.16 mmol) and 

TfOH (44 µL of 0.1 M solution in CH2Cl2) were added at -20 °C. Conversion was 

determined after analytical NaOMe cleavage: 4-(hydroxymethyl)benzyl N-benzyl N-(5-

(3-O-benzyl-α-L-idopyranosyloxy)pentyl) carbamate (136). Conversion: 96%, UPLC-

MS (ESI) m/z: calcd C34H43N43O9-[NH4]
+
: 627.29, found 627.30.  

The resin SP-135 (100mg/0.44 mmol/g) was transformed to resin bound 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(6-O-acetyl-2-O-benzoyl-3-O-benzyl-α-L-

idopyranosyloxy)pentyl) carbamate (SP-137) using general procedure H. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(6-O-acetyl-4-O-(2-azido-6-

O-benzoyl-3-O-benzyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-

O-benzyl--L-idopyranosyloxy)pentyl) carbamate (SP-138): The reaction was 
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performed according to general procedure G using 1 cycle on resin SP-137 (100 mg / 

0.44 mmol/g) with trichloroacetimidate 65 (1 x 3 eq., 80 mg) and TMSOTf (1.8 µL, 

0.01 mmol) at -40 °C. Conversion was determinate after analytical sodium methoxide 

cleavage: 4-(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-2-deoxy-

α-D-glucopyranosyl)-3-O-benzyl--L-idopyranosyloxy)pentyl) carbamate (139). 

Conversion: 22%, LCMS (ESI) m/z: calcd C47H58N4O13-[NH4]
+
: 904.40, found 904.37. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-6-

O-dimethylthexylsilyl-4-O-levulinoyl-α-L-idopyranosyloxy)pentyl) carbamate (SP-

140): Reaction was performed according to general procedure G using resin SP-9 (150 

mg / 0.44 mmol/g, 66 µmol), thioglycoside 26 (5 eq., 116 mg, 0.165 mmol), NIS (6.5 

eq., 48 mg, 0.215 mmol) and TMSOTf (33 µL, 0.1M solution in CH2Cl2). Conversion 

was determined after analytical NaOMe cleavage as 4-(hydroxymethyl)benzyl N-benzyl 

N-(5-(3-O-benzyl-6-O-dimethylthexylsilyl-α-L-idopyranosyloxy)pentyl) carbamate 

(141). Conversion: >95%, LCMS (ESI) m/z: calcd for C42H61N1O9Si-[NH4]
+
: 769.44, 

found: 769.25.  

The resin SP-140 (150 mg / 0.44 mmol/g, 66 µmol) was transformed to resin bound 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-6-O-

dimethylthexylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (SP-142) using general 

procedure H. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-6-O-benzoyl-3-

O-benzyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-

O-dimethylthexylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (SP-143): Reaction 

was performed according to general procedure G using 3 cycles on resin SP-142 (150 

mg / 0.44 mmol/g, 66 µmol) and trichloroacetimidate 65 (3 x 3 eq., 64 mg, 0.198 

mmol). TMSOTf (33 µL, 0.1 M solution in CH2Cl2) was added at -20 °C. Conversion 

was determined after analytical NaOMe cleavage: 4-(hydroxymethyl)benzyl N-benzyl 

N-(5-(4-O-(2-azido-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-3-O-benzyl-6-O-

dimethylthexylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (144). Conversion 77%, 

UPLC-MS (ESI) m/z: calcd for C55H76N4O13Si-[NH4]
+
: 1046.55, found 1046.69.  

The resin SP-143 (150 mg / 0.44 mmol/g, 66 µmol) was transformed to resin bound 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-6-O-benzoyl-3-O-benzyl-2-
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deoxy-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-O-dimethylthexylsilyl-α-L-

idopyranosyloxy)pentyl) carbamate (SP-145) using general procedure H. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-6-O-benzoyl-4-

O-(2-O-benzoyl-3-O-benzyl-6-O-dimethylthexylsilyl-α-L-idopyranosyl)-3-O-benzyl-

2-deoxy-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-O-dimethylthexylsilyl-α-L-

idopyranosyloxy)pentyl) carbamate (SP-146): Reaction was performed according to 

general procedure G using 3 cycles on resin SP-145 (70 mg / 0.44 mmol/g, 31 µmol), 

trichloroacetimidate 29 (4 x 3 eq., 70 mg, 92 µmol) and TMSOTf (31 µL, 0.1M solution 

in CH2Cl2). Conversion was determined after analytical NaOMe cleavage 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-4-O-(3-O-benzyl-6-O-

dimethylthexylsilyl-α-L-idopyranosyl)-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-3-O-

benzyl-6-O-dimethylthexylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (147). 

Conversion 77%, LCMS (ESI): m/z calcd for C55H76N4O13Si-[NH4]
+
: 1046.55, found 

1046.69. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (SP-

148): Reaction was performed according to general procedure G using resin SP-9 (200 

mg / 0.44 mmol/g, 88 µmol), thioglycoside 27 (5 eq., 295 mg, 0.44 mmol), NIS (6.5 eq., 

128 mg, 0.572 mmol) and TMSOTf (88 µL, 0.1 M solution in CH2Cl2). Conversion was 

determined after analytical NaOMe cleavage as 4-(hydroxymethyl)benzyl N-benzyl N-

(5-(3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (149). 

Conversion >95%, LCMS (ESI) m/z: calcd for C41H49NO10-[NH4]
+
: 733.37, found 

733.26. 

 The resin SP-148 (200 mg / 0.44 mmol/g, 88 µmol) was transformed to resin bound 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (SP-150) using general 

procedure E. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-6-O-benzoyl-3-

O-benzyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-

O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (SP-151): The 

reactions were performed according to general procedure G using: 
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Conditions 1: 4 cycles of glycosylation were performed on resin SP-150 (200 mg / 0.44 

mmol/g, 88 µmol) with trichloroacetimidate 65 (3 eq., 169 mg, 0.264 mmol) and 

TMSOTf (44 µL, 0.1 M solution in CH2Cl2).  

Conditions 2: 2 cycles of glycosylation were performed on resin SP-150 (120 mg / 0.44 

mmol/g, 52.8 µmol) with trichloroacetimidate 65 (6 eq., 203 mg, 0.317 mmol) and 

TMSOTf (44 µL, 0.1 M solution in CH2Cl2).  

Conditions 3: 1 cycle of glycosylation were performed on resin SP-150 (120 mg / 0.44 

mmol/g, 52.8 µmol) with trichloroacetimidate 65 (12 eq., 406 mg, 0.633 mmol) and 

TMSOTf (52 µL, 0.1 M solution in CH2Cl2).  

Conditions 4: 2 cycles of glycosylation were performed on resin SP-150 (200 mg / 0.44 

mmol/g, 88 µmol) with trifluoroacetimidate 66 (6 eq., 353 mg, 0.528 mmol) and 

TMSOTf (88 µL, 0.1 M solution in CH2Cl2).  

Conditions 5: 1 cycle of glycosylation was performed on resin SP-150 (120 mg / 0.44 

mmol/g, 52.8 µmol) with trichloroacetimidate 65 (12 eq., 406 mg, 0.364 mmol) and 1 

cycle (6 eq., 203 mg, 0.317 mmol) and TMSOTf (44 µL, 0.1 M solution in CH2Cl2). 

Conditions 6: 3 cycles  of glycosylation were performed on resin SP-150 (200 mg/0.22 

mmol/g, 44 µmol) with trichloroacetimidate 65 (3 x 6 eq., 170 mg, 0.264 mmol) and 

TMSOTf (44 µL, 0.1 M solution in CH2Cl2).  

The conversions were determined after analytical NaOMe cleavage: 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-2-deoxy-α-D-

glucopyranosyl)-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) 

carbamate (152). Conversions: 1. 80%, 2. 85%, 3. 68%, 4. 71%, 5. 85%, 6. 90%. LCMS 

(ESI) m/z: calcd for C54H64N4O14-[Na]
+
: 1015.43, found: 1015.29.  

The resin SP-151 (340 mg / 0.22 mmol/g, 74.8 µmol) was transformed to resin bound 4-

(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-6-O-benzoyl-3-O-benzyl-2-

deoxy-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyloxy)pentyl) carbamate (SP-153) using general procedure H. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-4-O-(2-O-

benzoyl-3-O-benzyl-4-O-levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-6-O-

benzoyl-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (SP-154): The reaction was 

performed according to general procedure G using 2 cycles on resin SP-153 (200 mg / 
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0.44 mmol/g, 88 µmol) with trichloroacetimidate 30 (2 x 6 eq., 388 mg, 528 µmol) and 

TMSOTf (88 µL, 0.1 M solution in CH2Cl2). Conversion was determined after 

analytical NaOMe cleavage: 4-(hydroxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-4-

O-(3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-3-O-benzyl-2-deoxy-α-D-

glucopyranosyl)-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) 

carbamate (155). Conversion 94%, LCMS (ESI) m/z: calcd for C74H86N4O20-[NH4]
+
: 

1368.62, found: 1368.20. 

4-(Acetoxymethyl)benzyl N-benzyl N-(5-(2-O-acetyl-4-O-(6-O-acetyl-2-azido-4-O-

(2,4-di-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-3-O-benzyl-

2-deoxy-α-D-glucopyranosyl)-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyloxy)pentyl) carbamate (156): Monosaccharide formation was performed 

according to general procedure G using resin SP-9 (1.18 g / 0.22 mmol/g, 260 µmol), 

thioglycoside 27 (5 eq., 870 mg, 1.29 mmol), NIS (6 eq., 350 mg, 1.56 mmol) and 

TMSOTf (5 µL, 30 µmol). After capping and delevulination disacccharide formation 

was performed according to general procedure G using 3 cycles on resin SP-150 (180 

mg (198 mg)/ 0.22 mmol/g, 40 µmol) with trichloroacetimidate 65 (3 x 6 eq., 152 mg, 

238 µmol) and TMSOTf (79 µL, 0.1 M solution in CH2Cl2). After capping and 

delevulination disacccharide formation was performed according to general procedure 

D using 2 cycles on resin SP-154 (180 mg (198 mg)/ 0.44 mmol/g, 40 µmol) with 

trichloroacetimidate 30 (2 x 6 eq., 171 mg, 237 µmol) and TMSOTf (79 µL, 0.1 M 

solution in CH2Cl2). The resin SP-154 (175 mg, resin after cleavage 136 mg, 299 

µmmol) was swollen in 4 mL dry CH2Cl2 and then treated with 0.25 M NaOMe solution 

(1 mL) for 5 min at 55 under microwave irradiation. Then, the resin was washed with 2 

x 5 mL CH2Cl2/MeOH (1:1) and 2 x 5 mL MeOH. This procedure was repeated until 

TLC control (CH2Cl2/MeOH, 98:2) showed no further compound cleavage (8 cycles). 

The washing solutions were pooled and neutralized with Amberlite
®
 IR-120(H). After 

concentration, crude 155  was acetylated Ac2O and a catalytic amount of DMAP in 

pyridine overnight at room temperature. The reaction mixture was diluted with CH2Cl2 

(50 mL) and the organic layer was washed with 1 M HCl (2x), saturated CuSO4 aq 

solution (50 mL), water and brine. After concentration the crude product was purified 

by column chromatography on silica gel using hexane/acetone. The product 156 was 

obtained as colourless syrup (34 mg, 72%). 
1
H NMR (500 MHz, CDCl3) δ = 7.37 – 7.28 

(m, 14H, aromatic), 7.26 – 7.20 (m, 10H, aromatic), 7.14 – 6.95 (m, 6H, aromaticPMP), 
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6.85 – 6.73 (m, 2H, aromatic-PMP), 5.19 – 5.09 (m, 2H, CH2-PhCarba), 5.08 (s, 2H, CH2-

PhAc), 4.99 – 4.96 (m, 1H, H-2), 4.98 – 4.90 (m, 3H, H-4´´, H-1´, H-1´´), 4.86 – 4.78 

(m, 4H, H-2´´, H-1, CH2Ph), 4.74 – 4.58 (m, 4H, CH2Ph), 4.57 – 4.51 (m, 2H, H-5, H-

5´´), 4.50 – 4.43 (m, 2H, CH2-PhN), 4.31 (dd, J = 12.3, 2.1 Hz, 1H, H-6´), 4.20 – 4.15 

(m, 1H, H-6´´),  4.11 – 4.04 (m, 2H, H-6´´, H-6´), 3.96 – 3.85 (m, 3H, H-3, H-4, H-5´), 

3.85 – 3.77 (m, 2H, H-3´, H-4´), 3.76 – 3.65 (m, 10H, H-3´´, H-6, OCH2Linker, 

2xCH3PMP), 3.45 – 3.34 (m, 1H, OCH2Linker), 3.32 (dd, J = 9.6, 3.6 Hz, 1H, H-2´), 3.25 – 

3.13 (m, 2H, CH2NLinker), 2.11 (s, 3H, CH3Ac), 2.09 (s, 3H, CH3Ac), 2.01 (s, 3H, CH3Ac), 

1.99 (s, 3H, CH3Ac), 1.97 (s, 3H, CH3Ac), 1.67 – 1.47 (m, 4H, CH2Linker), 1.38 – 1.24 (m, 

2H, CH2Linker) ppm. 
13

C NMR (126 MHz, CDCl3) δ = 171.0, 170.6, 170.3, 170.3, 169.6, 

154.2, 154.1, 152.6, 152.3, 138.0, 137.8, 137.8, 137.5, 128.7, 128.6, 128.5, 128.5, 

128.4, 128.3, 128.2, 128.2, 128.1, 127.9, 127.8, 127.8, 127.7, 127.4, 127.2, 115.4, 

115.4, 115.0, 114.6 (CaromaticPMP), 98.2 (JC,H = 170 Hz, C-1), 98.0 (JC,H = 169 Hz, C-1´´), 

95.9 (JC,H = 171 Hz, C-1´), 78.9 (C-3´), 75.2 (CBn), 74.7 (C-4´), 73.1 (C-3´´), 72.6 (CBn), 

72.2 (CBn), 71.5 (C-3), 70.4 (C-4), 69.9 (C-5´), 68.2 (C-2), 68.1 (C-2´´, OCH2Linker), 67.6 

(C-4´´), 66.9 (CH2-Phcarba), 66.7 (C-6, C-6´´), 66.1 (CH2-PhAc), 65.4, 65.3 (C-5, C-5´´), 

64.0 (C-2´), 62.3 (C-6´), 55.8 (CH3PMP), 55.7 (CH3PMP), 50.6, 50.3 (CH2-PhN), 47.4, 

46.3 (NCH2Linker), 29.3, 28.1, 27.6, 23.5 (CH2Linker), 21.1, 21.0, 21.0, 20.9 (CH3Ac) ppm; 

HRMS (ESI): m/z  calcd. for C84H96N4O25 [M+Na]
+
 1583.6256, found: 1583.6265.  
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5.8.4 Solid phase synthesis of HS hexasaccharide precursor 

 

Scheme 5.1.  Solid-phase assembly of a heparin sulfate oligosaccharide precursor. a) 24, 

20% TMSOTf, -20 °C to r.t; b) NaOMe (cat), MeOH, MW; c) hydrazine acetate, CH2Cl2: 

MeOH (4:1); d) 65, 20% TMSOTf, -20 °C to r.t; e) 30, 20% TMSOTf, -20 °C to r.t; f) 41, 20% 

TMSOTf, -20 °C to r.t; g) Ac2O, pyridine, 0 °C to r.t. 

 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (SP-

148): Linker SP-9 (340 mg, 0.22 mmol/g, 75 µmol) was glycosylated in one cycle with 

thioglycoside 24 (5 equiv, 251 mg, 0.37 mmol), NIS (6 equiv, 101 mg, 0.45 mmol) and 

TMSOTf (150 µL of 0.1M solution in dry CH2Cl2, 15 µmol) according to general 

procedure G. The conversion was determined by analytical NaOMe cleavage. UPLC-

MS (ESI):  99% as compound 149 (m/z:  [M+Na]
+
 calcd for C41H49NO10Na 738.32, 

found 738.30). 
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Figure 5.8. UPLC-MS chromatogram of analytical cleavage data conversion of linker SP-9 to 

the monosaccharide SP-148 (as 149, retention time (tr) at 5.20 min., peak B (m/z calcd for 

C41H49NO10 [M+Na]
+
 738.32 found 738.30)), unidentified peak: peak A (no mass detectable). 

SP-150 

 The resin SP-148 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-(5-(2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) 

carbamate SP-150 using general procedure H. 

 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-(4-O-(2-azido-6-O-benzoyl-3-

O-benzyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-

O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl] carbamate (SP-151): The reaction 

was performed according to general procedure G using two cycles on resin SP-150 (340 

mg, 0.075 mmol) with thricloroacetimidate 65 (3 x 6 equiv, 289 mg, 0.45 mmol) and 

TMSOTf (150 µL of 0.1 M solution in dry CH2Cl2, 15 µmol). The conversion was 

determined by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle1), n.a, (cycle 2) 

85% as compound 152 (m/z: [M+NH4]
+
 calcd for C54H64N4O14Na 1010.48 found, 

1010.21).  

Figure 5.9. UPLC-MS chromatogram of analytical cleavage data conversion of monosaccharide 

SP-148 (cleaved as 149 retention time (tr) at 5.14 min., peak B (calcd for C41H49NO10 [M+Na]
+
 

738.32 found 738.29)) to the disaccharide SP-151 (cleaved as 152 (tr) at 5.55 min., peak C (m/z 

calcd for C54H64NO14 [M+Na]
+
 1015.43 found), unidentified peak: peak A (no mass detectable). 

 

A

B

A

B

C
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SP-153 

The resin SP-151 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-(5-(4-O-(2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate 

SP-153 using general procedure H. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(14)-(2-azido-6-O-

benzoyl-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-(14)-2-O-benzoyl-3-O-benzyl-

6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl] carbamate (SP-154): The 

reaction was performed according to general procedure G using three cycles on resin 

SP-153 (335 mg, 0.074 mmol) with trichloroacetimidate 30 (6 equiv, 320 mg, 0.44 

mmol) and TMSOTf (150 µL of 0.1M solution in dry CH2Cl2, 15 µmol). The 

conversion was determined by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle1) 

na, (cycle 2) 93% as compound 155 (m/z:  [M+NH4]
+
 calcd for C73H84N4O20NH4 

1368.62 found 1368.16).  

Figure 5.10. UPLC-MS chromatogram of analytical cleavage data conversion of disaccharide 

SP-153 (tr at 5.58 min., peak C (as S-20, m/z calcd for C54H64NO14 [M+NH4]
+
 1010.47 found 

1010.69)) to the trisaccharide SP-154 (as 155, tr at 6.18 min., peak D (m/z calcd for C73H84N4O20 

[M+NH4]
+
 1368.62 found 1368.16)); A (no detectable mass), peak B (unreacted 

monosaccharide cleaved as S-19, tr at 5.18 min. (calcd for C41H49NO10 [M+NH4]
+
 733.37 found 

733.29). 

SP-156 

The resin SP-154 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-[5-((2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(14)-(2-

azido-6-O-benzoyl-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-(14)-2-O-benzoyl-3-O-

benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl] carbamate SP-156 using 

general procedure H. 

A

B
C

D
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Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-azido-6-O-benzoyl-3-O-

benzyl-2-deoxy-4-levulinoyl-α-D-glucopyranosyl)-(14)-(2-O-benzoyl-3-O-benzyl-

6-O-p-methoxyphenyl-α-L-idopyranosyl)-(14)-(2-azido-6-O-benzoyl-3-O-benzyl-

2-deoxy-α-D-glucopyranosyl)-(14)-2-O-benzoyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyloxy)pentyl] carbamate (SP-157): Tetrasaccharide 

formation was performed according to general procedure G using three cycles on resin 

SP-156 (397 mg) with trichloroacetimidate 65 (3 x 6 equiv, 288 mg, 0.45 mmol) and 

TMSOTf (150 µL of 0.1M solution in dry CH2Cl2, 0.015 mmol). The conversion was 

determined by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle 1) 28%; (cycle 2) 

63%; (cycle 3) 78% as compound 158 (m/z: [M+NH4]
+
 calcd for C73H84N4O20 NH4 

1645.72 found 1645.57).  

Figure 5.11. UPLC-MS chromatogram of analytical cleavage data conversion of trisaccharide 

SP-156 (tr at 11.61 min., peak F (as 155, m/z calcd for C73H84N4O20 [M+NH4]
+
 1368.62 found 

1368.42)) to the tetrasaccharide SP-157 (tr at 11.72 min., peak G (as 158, m/z calcd for 

C73H84N4O20 [M+NH4]
+
 1645.72 found 1645.57)); A (no detectable mass), peak B (tr = 4.17 

min., m/z calcd for C21H27NO4 [M+Na]
+
 380.18 found 380.14)), peak C (as 149, m/z calcd for 

C41H49NO10 [M+NH4]
+
 733.37 found 733.25), peak D (as 152, m/z  calcd for C54H64NO14 

[M+Na]
+
 1015.43 found 1015.34), peak E (deletion sequence, tr at 10.54 min. (m/z calcd for 

C61H71NO16 [M+NH4]
+
 1091.51 found 1091.36)). Traces 1-3 correspond to analytical cleavage 

after 1, 2 and 3 cycles of glycosylation, respectively. 
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B C D E
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SP-157A 

The resin SP-157 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-[5-((2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-(14)-(2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(14)-(2-azido-6-O-

benzoyl-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-(14)-2-O-benzoyl-3-O-benzyl-6-

O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl] carbamate SP-157A using general 

procedure H. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(14)-(2-azido-6-O-

benzoyl-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-(14)-(2-O-benzoyl-3-O-benzyl-

6-O-p-methoxyphenyl-α-L-idopyranosyl)-(14)-(2-azido-6-O-benzoyl-3-O-benzyl-

2-deoxy-α-D-glucopyranosyl)-(14)-2-O-benzoyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyloxy)pentyl] carbamate (SP-159): Pentasaccharide 

synthesis was performed according to general procedure G using three cycles on resin 

SP-157A with trichloroacetimidate 30 (3 x 6 equiv, 324 mg, 0.45 mmol) and TMSOTf 

(150 µL of 0.1M solution in dry CH2Cl2, 0.015 mmol). The conversion was determined 

by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle 1) 62%; (cycle 2) 72%, (cycle 

3) 76% as compound 160 (m/z: [M+2NH4]
2+

 calcd for C107H123N7O30 NH4 1010.94 

found 1010.84).  

Figure 5.12. UPLC-MS chromatogram of analytical cleavage data conversion of 

tetrasaccharide SP-157A (tr at 11.69 min., peak C (as 158, m/z calcd for C73H84N4O20 

A

BC
D

1.

2.

3.
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[M+NH4]
+
 1645.72 found 1645.52)) to the pentasaccharide SP-159 (as 160, tr at 12.79 

min., peak D (m/z calcd for C107H123N7O30 [M+2NH4]
2+

 1010.94 found 1010.84)); A (no 

detectable mass), peak B (as 155, tr = 11.57 min., m/z calcd for C73H84N4O20 [M+NH4]
+
 

1368.62 found 1368.42)). 

SP-159A 

The resin SP-159 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-[5-((2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(14)-(2-

azido-6-O-benzoyl-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-(14)-(2-O-benzoyl-3-

O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(14)-(2-azido-6-O-benzoyl-3-O-

benzyl-2-deoxy-α-D-glucopyranosyl)-(14)-2-O-benzoyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyloxy)pentyl] carbamate SP-159A using general 

procedure H. 

 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-azido-6-O-benzoyl-3,4-di-

O-benzyl-2-deoxy-α-D-glucopyranosyl(-(14)-(2-O-benzoyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(14)-(2-azido-6-O-benzoyl-3-O-benzyl-2-

deoxy-α-D-glucopyranosyl)-(14)-(2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-

α-L-idopyranosyl)-(14)-(2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy-α-D-

glucopyranosyl)-(14)-2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyloxy)pentyl] carbamate (SP-161): Hexasaccharide synthesis was 

performed according to general procedure G using three cycles on resin SP-159A with 

trichloroacetimidate 41 (3 x 6 equiv, 284 mg, 0.45 mmol) and TMSOTf (150 µL of 0.1 

M solution in dry CH2Cl2, 0.015 mmol). The conversion was determined by analytical 

NaOMe cleavage. UPLC-MS (ESI): (cycle 1) 46%; (cycle 2) 92%, (cycle 3) 92% as 

compound 162 (m/z: [M+2NH4]
2+

 calcd for C127H144N10O34 NH4 1194.52, found 

1194.48). 
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Figure 5.13. UPLC-MS chromatogram of analytical cleavage data conversion of 

pentasaccharide SP-159A (tr at 12.81 min., peak D (as 160, m/z calcd for C107H123N7O30 

[M+2NH4]
2+

 1010.94 found 1010.92)) to the hexasaccharide SP-161 (as 162, tr at 14.19 min., 

peak E (m/z calcd for C127H144N10O34 [M+2NH4]
2+

 1194.52 found 1194.48)); peak A (no 

detectable mass), peak B (as 155, m/z calcd for C73H84N4O20 [M+NH4]
+
 1368.62 found 

1368.60)) and peak C (as 158, m/z calcd for C73H84N4O20 [M+NH4]
+
 1645.72 found 1645.63). 

 

4-(Acetoxymethyl)benzyl N-benzyl N-[5-((6-O-acetyl-2-azido-3,4-di-O-benzyl-2-

deoxy-α-D-glucopyranosyl(-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-

α-L-idopyranosyl)-(14)-(6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α-D-

glucopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyl)-(14)-(6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α-D-

glucopyranosyl)-(14)-2-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyloxy)pentyl] carbamate (163): The resin SP-161 (392 mg of resin, resin 

after cleavage 257 mg; 0.056 mmol) was swollen in dry CH2Cl2 (4 mL) and quantitative 

cleavage was performed according to general procedure D using 12 cycles of 

NaOMe/MeOH (500 µL). The crude was treated with additional amount of 0.25M 

NaOMe solution until UPLC-MS shows complete deprotection to intermediate 162 (See 

Figure 4.14). Acetylation was performed overnight at room temperature using acetic 

anhydride (3 mL) and a catalytic amount of DMAP in pyridine (4 mL). The reaction 

mixture was diluted with CH2Cl2 (50 mL), and the organic layer was washed with 1M 

HCl (2x), saturated CuSO4 aq solution (50 mL), water and brine. The crude product was 

purified by column chromatography (hexane/ acetone; 9/1 to 1/1) and by preparative 

A

BC
D1.
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HPLC (eluents: 20mM NH4HCO3/MeCN; gradient: 10% (5 min) - 99% (in 30 min) – 

99% (isocratic) was obtained compound 163 (17 mg, 11% over 14 steps, 85% in each 

step).
 1

H NMR (500 MHz, CDCl3) δ 7.40 – 7.27 (m, 27H, aromatic), 7.26 – 7.19 (m, 

7H), 7.19 – 7.08 (m, 10H, aromatic), 6.86 – 6.64 (m, 12H, aromatic), 5.15 (d, J = 20.7 

Hz, 1H, CH2-PhCarba), 5.08 (s, 2H, CH2-PhAc), 5.00 – 4.87 (m, 7H, 2xH-1Ido, 3xH-1Azido, 

H-2Ido, CH2Ph ), 4.87 – 4.71 (m, 8H, 2xH-2Ido, H-1Ido, 5xCH2Ph), 4.70 – 4.57 (m, 6H, 

3xCH2Ph), 4.57 – 4.52 (m, 2H, 1xCH2Ph, H-5Ido), 4.50 – 4.42 (m, 5H, CH2Ph, 2xH-5Ido, 

CH2-PhN), 4.29 – 4.22 (m, 2H, 2x H-6Azido), 4.19 – 4.14 (m, 1H, H-6Ido ), 4.13 – 4.04 

(m, 4H, 3x H-6Azido , H-6Ido), 4.01 – 3.94 (m, 3H, 2x H-6Ido, H-6Azido), 3.94 – 3.73 (m, 

16H, , 2x H-6Ido, 3xH-5Azido, 3xH-3Ido, 3xH-3Azido, 2xH-4Azido, 3xH-4Ido), 3.73 – 3.67 (m, 

10H, CH2O, 3x CH3PMP), 3.47 (dd, J = 10.0, 8.7 Hz, 1H, H-4Azido), 3.35 (bs, 1H, CH2O), 

3.32 (dd, J = 9.7, 3.7 Hz, 1H, H-2Azido), 3.26 – 3.12 (m, 4H, 2xH-2Azido, CH2N), 2.11 (s, 

3H, CH3Ac), 2.09 (s, 3H, CH3Ac), 2.07 (s, 3H, CH3Ac), 2.04 (s, 3H, CH3Ac), 1.96 (d, J = 

1.9 Hz, 9H, CH3Ac) 1.63 – 1.47 (m, 4H, CH2Linker), 1.37 – 1.26 (m, 2H, CH2Linker).
13

C 

NMR (126 MHz, CDCl3) from HSQC experiment δ = 128.2, 128.0, 127. 8, 115.22, 

115.15, 114.69, 97.96 (C-1Ido, JCH = 170.0 Hz), 97.95 (C-1Ido, JCH = 170.0 Hz), 97.9 (C-

1Ido, JCH = 170.0 Hz), 95.8 (3xC-1Azido, JCH = 170.0 Hz), 81.2, 78.9, 78.4, 77.8, 75.3, 

75.12, 75.05, 74.9, 74.8, 72.8, 72.1, 71.7, 70.5, 69.8, 69.6, 68.63 (C-2Ido), 68.56 (C-2Ido), 

68.1 (C-2Ido), 67.9(CH2OLinker), 66.77(CH2PhCarba), 66.76 (C-6Ido), 66.5 (C-5Ido), 66.0 

(CH2PhAc), 65.99(2xC-6Ido), 65.3 (C-5Ido), 63.7 (C-2Azido), 63.2 (C-2Azido), 62.5 (C-

6Azido), 62.2(2xC-6Azido), 55.68 (CH3PMP), 50.42 (CH2PhN), 46.18 (CH2NLinker), 

29.30(CH2Linker), 23.02(CH2Linker), 20.84(CH3Ac), 20.80(CH3Ac), 20.70(CH3Ac); HRMS 

(ESI) m/z: [M+2NH4]
2+

 calcd. for C141H158N10O41(NH4)2 1341.5631, found: 1341.5605. 
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Figure 5.14. UPLC-MS data for the synthesis of hexasaccharide 163. 1) Chromatogram 

of the reaction crude after acetylation; 2) chromatogram of 10 after column 

chromatography (tr = 15.36 min, m/z calcd for C121H137N7O37 [M+2NH4]
2+

 1157.98 

found 1157.95, tr = 16.51 min, m/z calcd for C141H158N10O41 [M+2NH4]
2+

 1341.56 found 

1341.55); 3) chromatogram of 163 after preparative HPLC purification (tr = 16.49 min, 

m/z calcd for C141H158N10O41 [M+2NH4]
2+

 1341.56 found 1341.55).  

 

5.9 TOWARDS SOLID PHASE SYNTHESIS OF DERMATAN SULFATE 

5.9.1 Initial attemps on solid phase: disaccharide synthesis. 

Resin-Bound 4-(hydroxymethyl)benzyl N-benzyl-N-[5-(4-O-benzoyl-6-O-benzyl-2-

deoxy-3-O-levulinoyl-2-trichloroacetamido-β-D-

galactopyranosyloxy)pentyl]carbamate (SP-163): The reaction was performed 

according to general procedure G employing one cycle on resin SP-9 (110 mg, 0.22 

mmol/g, 0.024 mmol) with trichloroacetimidate donor 81 (1 x 5 eq., 0.121 mmol) and 

TMSOTf (3 µL, 0.016 mmol). The conversion was determined after analytical NaOMe 

cleavage. Conversion: 97%; UPLC-MS (ESI): 67% as compound 165 (m/z [M+H]
+
  

Calcd for C36H43Cl3N2O9H 753.20, found 752.91) and 30% as compound 166 (m/z 

[M+H]
+
 Calcd for C34H44N2O8H  609.30, found 609.25). The partial loss of 

trichloroacetamide could be avoided when cleavage reaction was carried out at 40C 

instead of 55C.  

 

1.

2.

3.
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4-(hydroxymethyl)benzyl N-benzyl-N-[5-(3,4-O-diacetyl-6-O-benzyl-2-deoxy-3-O-

levulinoyl-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate (168): 

The resin SP-163 (96 mg, 0.018 mmol) was swollen in dry CH2Cl2 (3 mL) and 

quantitative cleavage was performed according to general procedure D using 4 cycles of 

NaOMe/MeOH (750 µL). The crude (29 mg) was acetylated overnight at room 

temperature using acetic anhydride and catalytic amount of DMAP in pyridine. The 

reaction mixture was diluted with CH2Cl2, and the organic layer was washed with 1M 

HCl, saturated CuSO4 aq solution, water and brine. After concentration the crude 

product was purified by preparative TLC to obtain compound 168 (14 mg, 88% yield); 

1
H NMR (500 MHz, CDCl3, 298 K, mixture of rotamers) δ 7.39 – 7.14 (m, 14H, 

aromatic), 6.90 – 6.82 (d, J = 8.5 Hz, 0.5H, NHTCArota), 6.69 – 6.62 (d, J = 8.8 Hz, 

0.4H, NHTCArotb), 5.48 – 5.44 (dd, J = 3.3 Hz, 1H, H-4), 5.27 (t, J = 11.3 Hz, 1H, H-

3), 5.17 – 5.04 (m, 4H, 2 CH2linker), 4.65 (d, J = 8.3 Hz, 0.5H, H-1rota), 4.60 (d, J = 8.3 

Hz, 0.5H, H-1rotb), 4.55 (d, J = 11.8Hz, CH2Ph), 4.47 – 4.42 (m, 3H, CH2-PhN, 

CH2Ph), 4.10 – 4.06 (m, 1H, H-2), 3.92 – 3.82 (m, 2H, OCH2linker, H-5), 3.60 – 3.56 

(dd, J = 9.5, 5.9 Hz, 1H, H-6a), 3.53 – 3.49 (dd, J = 9.5, 7.0 Hz, 1H, H-6b), 3.48 – 3.34 

(m, 1H, OCH2Linker), 3.29 – 3.11 (m, 2H, NCH2Linker), 2.13 – 2.09 (bs, 3H, CH3Ac), 2.07 

(s, 3H, CH3Ac), 1.99 (s, 3H, CH3Ac), 1.63 – 1.48 (m, 4H, CH2Linker), 1.35 – 1.20 (m, 2H, 

CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3, 25 °C, mixture of rotamers) δ 170.50 

(Cq), 170.23 (Cq), 162.09 (Cq), 156.31 (Cq), 137.95 (Cq), 137.64 (Cq), 137.01 (Cq), 

135.82 (Cq), 128.71, 128.62, 128.47, 128.19, 128.09, 128.05, 127.97, 127.48, 127.30, 

101.09 (C-1), 100.94 (C-1), 92.60 (Cq), 73.76 (CH2Ph), 72.47 (C-5), 70.14 (OCH2Linker), 

70.00 (OCH2Linker), 69.89 (C-3), 67.68 (C-6), 67.30 (C-4), 66.93 (CH2Linker), 66.13 

(CH2Linker), 53.41 (C-2), 50.68 (CH2Linker), 50.48 (CH2Linker), 47.35 (CH2Linker), 46.26 

(CH2Linker), 29.26, 28.96, 28.00, 27.33, 23.27 (CH2Linker), 21.17 (CH3), 20.82 (CH3), 

20.68 (CH3) ppm. HRMS (ESI): m/z calcd. for C42H49Cl3N2O12 [M+Na]
+ 

901.2238, 

found 901.2220. 

SP-167 

The resin SP-163 was transformed to resin-bound 4-(hydroxymethyl)benzyl N-benzyl-

N-[5-(4-O-benzoyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-D-

galactopyranosyloxy)pentyl]carbamate SP-167 using general procedure H. 
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Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-benzoyl-6-O-

benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate 

(SP-169): Disaccharide formation was performed according to general procedure G 

using 2 cycles on resin SP-182 (0.390 g, 0.087 mmol) with trichloroacetimidate donor 

30 (5 equiv, 0.315 g, 0.44 mmol) and TMSOTf (3 µL, 0.017 mmol). The conversion 

was determined by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle 1) 74%; (cycle 

2) 97% as compound 170 (m/z [M+NH4]
+
 calcd for C56H65Cl3N2O15 NH4 1128.34, 

found 1127.93. 

4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyl)-(13)-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranosyloxy)pentyl]carbamate (170): 

 The resin SP-169 (203 mg, resin after cleavage 165 mg, 0.036 mmol) was swollen in 

dry CH2Cl2 (2 mL) and quantitative cleavage was performed according to general 

procedure F using 8 cycles of NaOMe/MeOH (200 µL). The crude was purified by 

columm chromatography CH2Cl2/MeOH (94/6) to obtain compound 170 of α/β (9/1) 

mixture (30 mg, 75% overall yield). α-isomer: 
1
H NMR (500 MHz, CD3OD) δ 7.48 – 

7.21 (m, 21H, aromatic), 7.19 –7.11 (m, 1H, aromatic), 6.95 – 6.72 (m, 4H, 

aromaticPMP), 5.20 – 5.08 (m, 2H, CH2-PhCarba), 4.97 (s, 1H, H-1´), 4.75 – 4.72 (d, J = 

11.5 Hz, 1H, CH2Ph), 4.63 – 4.44 (m, 9H, H-5´, H-1, CH2-PhN, CH2Ph, CH2Ph, 

1HCH2Ph), 4.21 – 4.06 (m, 4H, H-2, H-5, H-6´), 3.90 – 3.79 (m, 4H, H-3, H-4´, H-2´, 

H-6), 3.72 – 3.67 (m, 6H, H-3, CH3PMP, H-6, H-4, OCH2Linker), 3.65 (m, 1H, H-3´), 3.41 

(bs, 1H,OCH2Linker) , 3.26 – 3.12 (m, 2H, NCH2Linker), 1.62 – 1.41 (m, 4H, CH2Linker), 

1.38 – 1.30 (m, 2H, CH2Linker). 
13

C NMR (126 MHz, CD3OD, selected from HSQC) δ 

164.31, 158.46, 157.93, 155.54, 154.21, 142.73, 139.60, 139.29, 137.06, 129.61, 

129.50, 129.39, 129.11, 128.97, 128.88, 128.77, 128.68, 128.36, 128.13, 116.48 (CPMP), 

115.70 (CPMP), 104.70 (C-1´), 102.40 (C-1), 94.39 (Cq, TCA), 80.73 (C-4), 78.54 (C-

3´), 75.07, 74.44, 73.15, 70.79, 70.51, 69.98, 69.76, 69.35, 69.05, 68.26 (CH2linker), 

68.18 (C-2´), 66.90, 64.91, 56.12 (Me), 54.85 (C-2), 51.55, 51.36, 47.59, 28.96, 28.45, 

24.35, 23.53 ppm.  
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5.9.2 Solution synthesis of dermatan sulfate disaccharide. 

4-[(Phenylcarboxy)methyl]benzyl N-Benzyl-N-[5-((4-O-Benzoyl-6-O-benzyl-2-

deoxy-3-O-levulinoyl-2-trichloroacetamido-β-D-

galactopyranosyl)oxy)pentyl]carbamate (172): Linker 83 (92 mg, 0.20 mmol) was 

dissolved in dry CH2Cl2 (1 mL) and was added to a solution of the donor 81 (190 mg, 

0.25 mmol) in dry CH2Cl2 containing activated 4 Å molecular sieves. The mixture was 

cooled until -20 °C and catalytic amount of TMSOTf (5 µL, 0.030 mmol, 0.15 eq.) was 

added. After stirring for 10 min. at -20 ºC, the reaction was allowed to reach room 

temperature. After 1h, the reaction was quenched by addition of triethylamine and 

concentrated. The residue was purified by column chromatography (hexane/ EtOAc, 9/1 

to 7/3) to afford compound 4-[(phenylcarboxy)methyl]benzyl N-Benzyl-N-[5-((4-O-

Benzoyl-6-O-benzyl-2-deoxy-3-O-levulinoyl-2-trichloroacetamido-D-

galactopyranosyl)oxy)pentyl]carbamate 172 (184 mg, 87%). 
1
H NMR (500 MHz, 

CDCl3, 50 °C) δ 8.08 (d, J = 8.1 Hz, 4H, aromatic), 7.57 (m, 2H, aromatic), 7.49 – 7.15 

(m, 18H, aromatic), 6.80 (bd, 1H, NH), 5.73 – 5.70 (m, 1H, H-4), 5.43 (dd, J = 11.3, 3.1 

Hz, 1H, H-3), 5.36 (s, 2H, CH2-PhBz), 5.18 (s, 2H, CH2-PhCarba), 4.79 (d, J = 8.0 Hz, 1H, 

H-1), 4.49 (m, 3H, CH2Ph, CH2-PhN), 4.42 (d, J = 11.9 Hz, 1H, CH2Ph), 4.13 – 4.05 

(m, 1H, H-2), 3.97 (t, J = 6.3 Hz, 1H, H-5), 3.89 (s, 1H, OCH2Linker), 3.66 – 3.57 (m, 

1H, H-6), 3.49 (s, 1H, OCH2Linker), 3.23 (s, 2H, NCH2Linker), 2.70 – 2.63 (m, 1H, 

CH2Lev), 2.60 – 2.37 (m, 3H, CH2Lev), 2.03 (s, 3H, CH3Lev), 1.63 – 1.50 (m, 4H, 

CH2Linker), 1.38 – 1.29 (m, 2H, CH2Linker) ppm. 
13

C NMR (500 MHz, CDCl3, from 

HSQCed. experiment) δ  133.4 – 127.2, 100.7 (C-1), 73.6 (CBn), 72.6 (C-5), 70.02 (C-3, 

OCH2Linker), 67.8 (C-4, C-6), 66.9 (CH2-PhCarba), 66.4 (CH2-PhBz), 53.8 (C-2), 47.2, 46.2 

(NCH2Linker), 37.8 (CH2Lev), 29.6 (CH3Lev), 28.9 (CH2Linker), 27.9 (CH2Lev), 23.3 

(CH2Linker) ppm.  

 

4-[(Phenylcarboxy)methyl]benzyl N-Benzyl-N-[5-((4-O-Acetyl-6-O-benzyl-2-deoxy-

3-O-levulinoyl-2-trichloroacetamido-β-D-galactopyranosyl)oxy)pentyl]carbamate 

(173): The linker 83 (26 mg, 0.057 mmol) and the trichloroacetimidate donor 82 (60 

mg, 0.085 mmol) were dissolved in dry CH2Cl2 (0.85 mL) in the presence of activated 4 

Å molecular sieves. After 20 min. stirring at -20 °C, catalytic amount of TMSOTf (1µL, 

8 µmol) was added. The reaction was allowed to reach room temperature and stirred for 

90 min. The reaction was quenched by addition of triethylamine and concentrated. The 
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reaction crude was purified by column chromatography (hexane/ EtOAc, 9/1 to 7/3) to 

afford compound 173 (50 mg, 85%). 
1
H NMR (500 MHz, CDCl3; mixture of rotamers) 

δ 8.10 – 8.02 (d, J = 7.6 Hz, 2H, aromatic), 7.60 – 7.52 (t, J = 7.4 Hz, 1H, aromatic), 

7.50 – 7.21 (m, 15H, aromatic), 7.15 (d, J = 7.6Hz, 1H, aromatic), 7.00 (d, J = 8.7 Hz, 

0.6 H, NH), 6.77 (d, J = 8.7 Hz, 0.4H, NH), 5.44 (d, J = 3.2 Hz, 1H, H-4), 5.39 – 5.33 

(m, 2H, CH2-PhBz), 5.32 – 5.26 (m, 1H, H-3), 5.19 – 5.14 (m, 2H, CH2-PhCarba), 4.73 – 

4.63 (m, 1H, H-1), 4.54 (d, J = 11.9 Hz, 1H, CH2Ph), 4.51 – 4.45 (m, 2H, CH2-PhN), 

4.42 (d, J = 12.0 Hz, 1H, CH2Ph), 4.11 – 4.00 (m, 1H, H-2), 3.93 – 3.78 (m, 2H, H-5, 

OCH2Linker), 3.62 – 3.33 (m, 3H, H-6, OCH2Linker), 3.28 – 3.11 (m, 2H, NCH2Linker), 2.78 

– 2.71 (m, 1H, CH2Lev), 2.66 – 2.52 (m, 2H, CH2Lev), 2.46 – 2.39 (m, 1H, CH2Lev), 

2.14 (s, 3H, CH3Lev), 2.06 (s, 3H, CH3Ac), 1.60 – 1.42 (m, 4H, CH2Linker), 1.36 – 1.28 

(m, 2H, CH2Linker) ppm. 
13

C NMR (126 MHz, CDCl3; mixture of rotamers) δ 206.19, 

172.17, 170.23, 166.58, 162.17, 137.91, 137.62, 135.89, 133.22, 130.17, 129.83, 

128.68, 128.58, 128.53, 128.38, 128.16, 128.05, 127.99, 127.45, 127.28, 100.86, 100.73 

(C-1), 92.58 (Cq, TCA), 73.68 (CBn), 72.32 (C-5), 70.06 (C-3), 69.88 (OCH2Linker), 

67.63 (C-6), 67.27 (C-4), 66.94 (CH2-PhCarba), 66.49 (CH2-PhBz), 53.42 (C-2), 50.64, 

50.46 (CH2-PhN), 47.32, 46.23 (NCH2Linker), 37.87 (CH2Lev), 29.81 (CH3Lev), 28.97 

(CH2Linker), 27.90 (CH2Lev), 27.35, 23.27 (CH2Linker), 20.82 (CH3PMP) ppm. HRMS (ESI): 

m/z calcd. for C50H55Cl3N2O13 [M+Na]
+  

1019.2662, found 1019.2644 

 

4-[(Phenylcarboxy)methyl]benzyl N-Benzyl-N-[5-((4-O-Benzoyl-6-O-benzyl-2-

deoxy-2-trichloroacetamido-β-D-galactopyranosyl)oxy)pentyl]carbamate (174): 

The compound 172 (175 mg, 0.165 mmol) was dissolved in CH2Cl2/ MeOH (9:1, 4.4 

mL), hydrazine acetate (30 mg, 0.33 mmol) was added at room temperature and the 

reaction was stirred for 2 hours. The crude was concentrated and purified by column 

chromatography (hexane/EtOAc, 6/4) to obtain the acceptor 174 as a white foam (137 

mg, 87%). 
1
H NMR (500 MHz, CDCl3; mixture of rotamers) δ 8.12 – 8.09 (m, 4H, 

aromatic), 7.65 – 7.56 (m, 2H, aromatic), 7.49 – 7.39 (m, 7H, aromatic), 7.35 – 7.20 (m, 

11H, aromatic), 7.20 (d, 0.5H, NH), 6.97 (d, J = 5.6 Hz, 0.5H, NH), 5.68 – 5.66 (m, 1H, 

H-4), 5.42 – 5.35 (m, 2H, CH2-PhBz), 5.25 – 5.15 (m, 2H, CH2-PhCarba), 4.84 (d, J = 8.3 

Hz, 1H, H-1), 4.56 – 4.49 (m, 3H, CH2-PhN, CH2Ph), 4.47 – 4.39 (m, 2H, CH2Ph, H-3), 

3.99 – 3.88 (m, 2H, H-5, OCH2Linker), 3.86 – 3.76 (m, 1H, H-2), 3.68 – 3.62 (m, 2H, H-

6), 3.58 – 3.44 (m, 1H, OCH2Linker), 3.32 – 3.17 (m, 2H, NCH2Linker), 3.06 (s, 1H, OH), 

1.67 – 1.48 (m, 4H, CH2Linker), 1.42 – 1.30 (m, 2H, CH2Linker) ppm. 
13

C NMR (126 MHz, 
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CDCl3; mixture of rotamers) δ 166.76, 162.72, 162.56, 156.76, 156.27, 137.89, 137.66, 

137.08, 136.90, 135.91, 133.59, 133.22, 130.13, 129.82, 129.73, 129.33, 128.94, 

128.68, 128.60, 128.52, 128.48, 128.39, 128.31, 128.17, 128.00, 127.90, 127.87, 

127.81, 127.78, 127.46, 127.43, 127.26, 100.09 (C-1), 92.58 (Cq, TCA), 73.74 (CBn), 

72.86 (C-5), 70.56 (C-4), 70.04 (OCH2Linker), 69.56, 69.42 (C-3), 68.28 (C-6), 66.95 

(CH2-PhCarba), 66.48 (CH2-PhBz), 57.16 (C-2), 50.62, 50.40 (CH2Ph-N), 47.29, 46.23 

(NCH2Linker), 29.33, 29.16, 28.02, 27.43, 23.35 (CH2Linker) ppm. HRMS (ESI): m/z calcd. 

for C50H51Cl3N2O11 [M+NH4]
+  

978.2897, found 978.2964 

 

4-[(Phenylcarboxy)methyl]benzyl N-Benzyl-N-[5-((4-O-Acetyl-6-O-benzyl-2-deoxy-

-2-trichloroacetamido-β-D-galactopyranosyl)oxy)pentyl]carbamate (175): 

Hydrazine acetate (84 mg, 0.094 mmol) was added to a solution of compound 173 (50 

mg, 0.047 mmol) in CH2Cl2/ MeOH (9/1, 1.4 mL), at room temperature and the reaction 

was stirred for 2 hours. The crude was concentrated and purified by column 

chromatography (hexane/EtOAc, 8/2) to obtain the compound 175 (37 mg, 87%). 
1
H 

NMR (500 MHz, CDCl3, 323K) δ 8.10 – 8.06 (m, 2H, aromatic), 7.58 – 7.53 (m, 1H, 

aromatic), 7.47 – 7.15 (m, 16H, aromatic), 6.99 – 6.75 (bd, 1H, NH), 5.40 – 5.38 (m, 

1H, H-4), 5.37 (s, 2H, CH2-PhBz), 5.18 (s, 2H, CH2-PhCarba), 4.73 – 4.69 (d, J = 8.2 Hz, 

1H, H-1), 4.55 (d, J = 12.0 Hz, 1H, CH2Ph), 4.50 – 4.45 (m, 3H, CH2-PhN, H-3), 4.32 – 

4.26 (m, 1H, CH2Linker), 3.90 – 3.78 (m, 2H, OCH2Linker, H-5), 3.66 – 3.62 (m, 1H,  H-2), 

3.61 – 3.53 (m, 2H, H-6), 3.49 – 3.40 (bs, 1H, OCH2Linker), 3.30 – 3.15 (bs, 2H, 

NCH2Linker), 2.77 – 2.71 (bs, 1H, OH), 2.08 (s, 3H, CH3Ac), 1.60 – 1.44 (m, 4H, 

CH2Linker), 1.35 – 1.30 (s, 2H, CH2Linker) ppm. 
13

C NMR (126 MHz, CDCl3, 50 °C) δ 

171.28, 166.58, 162.74, 138.10, 137.97, 137.18, 136.13, 133.18, 133.14, 130.45, 

129.90, 129.86, 128.72, 128.62, 128.56, 128.41, 128.25, 128.01, 127.50, 100.17 (C-1), 

92.79 (Cq, TCA), 73.86 (CBn), 72.85 (C-5), 70.14 (C-4), 70.00 (OCH2Linker), 69.61 (C-

3), 68.40 (C-6), 67.02 (CH2-PhCarba), 66.52 (CH2-PhBz), 57.27 (C-2), 50.74 (CH2-PhN), 

29.84, 29.31, 23.46 (CH2Linker), 20.82 (CH3Ac). HRMS (ESI): m/z calcd. for 

C45H49Cl3N2O11 [M+Na]
+  

921.2294, found 921.2294. 
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4-[(Phenylcarboxy)methyl]benzyl N-Benzyl-N-[5-((3-O-(2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-(p-methoxyphenyl)-α/β-L-idopyranosyl)-4-O-Benzoyl-6-O-benzyl-

2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)oxy)pentyl]carbamate (176):  

Method 1: Compound 174 (27 mg, 0.028 mmol) and the trichloroacetimidate donor 30 

(25 mg, 0.025 mmol) were dissolved in dry CH2Cl2 (0.3 mL) in the presence of 

powdered 4 Å molecular sieves. The mixture was cooled to -20 °C and catalytic amount 

of TMSOTf (0.8 µL, 4.2 µmol) was added. The reaction mixture was allowed to reach 

room temperature and stirred for 90 min. The reaction was quenched by addition of 

triethylamine, concentrated and purified by preparative TLC (hexane/EtOAc, 8/2) to 

afford compound 176: α-anomer (28 mg, 65%) and β-anomer (3 mg, 7%).  

Method 2: The acceptor 174 (10 mg, 0.016 mmol) and trichloroacetimidate donor 30 

(14 mg, 0.019 mmol) were dissolved in dry CH2Cl2 (0.2 mL) in the presence of 

activated 4 Å molecular sieves and activators (Yb(OTf)3 or Cu(OTf)2, 0.5 eq) were 

added at 0 °C. The reaction was stirred for 2 hours at room temperature and was 

quenched by addition of triethylamine. The reaction was analyzed by UPLC-MS and 

10% of the β-isomer was also detected. 

Method 3: The acceptor 174 (10 mg, 0.010 mmol) and thioglycoside donor 27 (10 mg, 

0.015 mmol) were dissolved in dry CH2Cl2 (0.2 mL) in the presence of powdered 4 Å 

molecular sieves. NIS (3 mg, 0.015 mmol) and TMSOTf (0.2 eq.; 30 µL of a solution 

0.1M) added at -20 °C. The reaction was stirred for 2 hours at room temperature and 

was quenched by addition of triethylamine. The reaction was analyzed by UPLC-MS 

and 10% of the β-isomer was also detected. 

α-anomer: 
1
H NMR (500 MHz, CDCl3; mixture of rotamers) δ 8.12 – 8.01 (m, 4H, 

aromatic), 7.97 (d, J = 7.4 Hz, 2H, aromatic), 7.58  – 7.48 (m, 3H, aromatic), 7.46 – 

7.11 (m, 27H, aromatic, NH), 7.07 (dd, J = 7.4, 1.9 Hz, 2H, aromatic), 6.93 – 6.89 (m, 

2H, aromaticPMP), 6.82 – 6.77 (m, 2H, aromaticPMP), 5.97  – 5.93 (m, 1H, H-4), 5.38  – 

5.32 (m, 2H, CH2-PhBz), 5.20 – 5.10 (m, 3H, CH2-PhCarba, H-1´), 5.06 (ps, 1H, H-4´), 

5.04 – 4.99 (m, 2H, H-2´, H-1), 4.92 (t, J = 5.5 Hz, 1H, H-5´), 4.73 – 4.67 (m, 1H, H-3), 

4.48 (bs, 2H, CH2-PhN), 4.41 (d, J = 12.6 Hz, 1H, CH2Ph), 4.32 (d, J = 12.6 Hz, 1H, 

CH2Ph), 4.20 – 4.15 (m, 1H, H-6´), 4.03 (dd, J = 9.8, 4.7 Hz, 1H, H-6´), 4.00 – 3.95 (m, 

1H, H-5), 3.95 – 3.81 (m, 2H, H-2, OCH2Linker), 3.76 (s, 3H, CH3PMP), 3.66 (ps, 1H, H-

3´), 3.62 – 3.58 (m, 2H, H-6), 3.53 – 3.40 (m, 1H, OCH2Linker), 3.29 – 3.13 (m, 2H, 
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NCH2Linker), 2.58 – 2.41 (m, 3H, CH2Lev), 2.34 - 2.26 (m, 1H, CH2Lev), 2.02 (s, 3H, 

CH3Lev), 1.60 – 1.44 (m, 4H, CH2Linker), 1.37 – 1.28 (m, 2H, CH2Linker) ppm; 
13

C NMR 

(126 MHz, CDCl3; mixture of rotamers) δ 205.98, 171.97,166.56, 165.74, 164.90, 

162.22, 162.15, 156.78, 156.28, 154.05, 153.18, 137.96, 137.73, 137.14, 136.94, 

135.89, 133.59, 133.22, 130.11, 129.88, 129.85, 129.46, 129.20, 128.69, 128.54, 

128.47, 128.42, 128.27, 128.23, 127.90, 127.77, 127.63, 127.45, 127.28, 115.79, 114.69 

(CPMP), 100.12 (C-1´, JC1´,H1´= 170.0 Hz), 99.34 (C-1, JC1,H1= 163.0 Hz), 92.40 (Cq, 

TCA), 73.88 (C-3), 73.78 (CBn), 73.50 (C-5), 72.47 (C-3´), 71.91 (CBn), 70.41 (C-4), 

70.20 (OCH2Linker), 68.95 (C-6), 67.90 (C-6´), 67.76 (C-4´, C-2´), 66.96 (CH2-PhCarba), 

66.51 (CH2-PhBz), 65.38 (C-5´), 56.93 (C-2), 55.87 (CH3PMP), 50.67, 50.43 (CH2Ph), 

47.33, 46.24 (NCH2Linker), 37.92 (CH2Lev), 29.74 (CH3Lev), 29.34, 29.13 (CH2Linker), 

28.00 (CH2Lev), 27.46 (CH2Linker), 23.50, 23.36 (CH2Linker) ppm. HRMS (ESI): m/z calcd. 

for C82H83Cl3N2O20 [M+Na]
+ 

1543.4497, found 1543.4458. 

β-anomer:
 1

H NMR (500 MHz, CDCl3) δ 8.08 – 8.04 (d, J = 7.7 Hz, 1H, 2H, aromatic), 

8.03 – 8.00 (d, J = 7.6 Hz, 2H, aromatic), 7.91 – 7.84 (d, J = 7.2 Hz, 2H, aromatic), 7.57 

– 7.10 (m, 28H, aromatic), 6.88 – 6.78 (m, 4H, aromaticPMP), 5.80 – 5.76 (m, 1H), 5.35 

– 5.33 (ps, 2H, CH2-PhBz), 5.28 – 5.22 (d, J = 1.6 Hz, 1H, H-1´), 5.21 – 5.08 (m, 3H, 

CH2-PhCarba), 5.00 – 4.91 (m, 2H), 4.83 – 4.75 (ps, 1H), 4.74 – 4.67 (d, J = 11.3 Hz, 

1H), 4.55 – 4.33 (m, 6H, CH2-PhN), 4.20 – 4.15 (m, 1H), 4.02 – 3.95 (m, 2H), 3.93 – 

3.83 (m, 2H), 3.81 – 3.72 (m, 2H, CH3), 3.67 – 3.56 (m, 2H), 3.50 – 3.38 (m, 1H, 

OCH2Linker), 3.27 – 3.12 (m, 2H, CH2Linker), 2.53 – 2.43 (m, 1H, CH2Lev), 2.35 – 2.24 (m, 

3H, CH2Lev), 2.07 – 1.98 (s, 1H), 1.96 (s, 3H, CH3Lev), 1.55 – 1.44 (m, 4H, CH2Linker), 

1.38 – 1.27 (m, 2H, CH2Linker). HRMS (ESI): m/z calcd. for C82H83Cl3N2O20 [M+Na]
+  

1543.4497, found 1543.4463. 

4-[(Phenylcarboxy)methyl]benzyl N-Benzyl-N-[5-((2-O-benzoyl-3-O-benzyl-4-O-

levulinoyl-6-O-(p-methoxyphenyl)-α-L-idopyranosyl)-(13)-4-O-Acetyl-6-O-

benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)oxy)pentyl]carbamate 

(177): To a solution of acceptor 175 (150 mg, 0.166 mmol) and idose 

trichloroacetimidate 30 (173 mg, 0.24 mmol) in dry CH2Cl2 (2 mL) with activated 4 Å 

molecular sieves, TMSOTf (5 µL, 27.6 µmol) was added at -20 °C. After 10 min, the 

reaction was allowed to reach room temperature and stirred for 90 min. The reaction 

mixture was quenched by addition of triethylamine and the crude product was purified 

by column chromatography (hexane/EtOAc, 6/4 to 8/ 2) to obtain compound 177 (206 
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mg, 85%). [α]D
20 

= + 1.8° (c = 0.5, CHCl3); 
1
H NMR (500 MHz, CDCl3; mixture of 

rotamers) δ 8.08 – 8.06 (m, 2H, aromatic), 8.02 – 8.00 (m, 2H, aromatic), 7.58 – 7.54 

(m, 2H, aromatic), 7.45 – 7.22 (m, 22H, aromatic), 7.18 – 7.09 (m, 2H, aromatic, NH), 

6.90 – 6.87 (m, 2H, aromaticPMP), 6.79 – 6.77 (m, 2H, aromaticPMP), 5.67 (d, 1H, H-4), 

5.36 – 5.32 (m, 2H, CH2-PhBz), 5.21 – 5.06 (m, 5H, H-1´, CH2-PhCarba , H-2´, H-4´), 

4.94 (d, J = 7.8 Hz, 1H, H-1), 4.86 – 4.83 (m, 1H, H-5´), 4.76 – 4.69 (m, 2H, CH2Ph), 

4.63 – 4.55 (m, 1H, H-3), 4.53 – 4.43 (m, 4H, CH2-PhN, CH2Ph), 4.19 – 4.13 (m, 1H, 

H-6´), 4.03 – 3.98 (m, 1H, H-6´), 3.91 – 3.83 (m, 2H, H-5, OCH2Linker), 3.80 – 3.78 (m, 

1H, H-3´), 3.76 – 3.64 (m, 4H, CH3PMP, H-2) , 3.56 – 3.35 (m, 3H, H-6, OCH2Linker), 

3.26 – 3.11 (m , 2H, CH2Linker), 2.56 – 2.43 (m, 3H, CH2Lev), 2.37 – 2.28 (m, 1H, 

CH2Lev), 2.03 (s, 3H, CH3Lev), 1.74 (s, 3H, CH3Ac), 1.58 – 1.42 (m, 4H, CH2Linker), 1.35 – 

1.26 (m, 2H, CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3; mixture of rotamers) δ 

205.97, 172.07, 170.17, 166.54, 164.98, 162.22, 162.13, 156.74, 156.25, 154.05, 

153.14, 137.93, 137.88, 137.82, 137.10, 136.92, 135.89, 133.64 (Cq), 133.20, 130.19, 

129.90, 129.83, 129.43, 128.67, 128.60, 128.53, 128.51, 128.46, 128.40, 128.30, 

128.19, 127.95, 127.89, 127.83, 127.45, 127.25, 115.79 (CPMP), 114.66 (CPMP), 100.10 

(C-1´), 99.19 (C-1), 92.39 (Cq, TCA), 73.73 (CBn), 73.65, 73.56 (C-3), 73.39 (C-3´), 

73.12 (C-5), 72.75 (CBn), 70.18 (OCH2Linker), 69.65 (C-4), 68.72 (C-6), 67.92 (C-4´, C-

6´), 67.77 (C-2´), 66.94 (CH2-PhCarba), 66.49 (CH2-PhBz), 65.26 (C-5´), 56.67 (C-2), 

55.83 (CH3PMP), 50.65, 50.42 (CH2-PhN), 47.34, 46.24 (NCH2Linker), 37.90 (CH2Lev), 

29.73 (CH3Lev), 29.29, 29.00, 28.00 (CH2Lev), 27.40, 23.53 (CH2Linker), 23.31 (CH2Linker), 

20.40 (CH3Ac) ppm. HRMS (ESI): m/z calcd. for C77H81Cl3N2O20 [M+Na]
+  

1481.4340, 

found 1481.4324. 

4-[(Phenylcarboxy)methyl]benzyl N-Benzyl-N-[5-((2-O-benzoyl-3-O-benzyl-4-O-

levulinoyl-α-L-idopyranosyl)-(13)-4-O-Acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyl)oxy)pentyl]carbamate (178): The 

compound 177 (97 mg, 0.066 mmol) was dissolved in acetonitrile/water (4/ 1, 2.4 mL) 

and CAN (160 mg, 0.291 mmol) was added at 0 °C and was stirred for 10 min. The 

reaction was quenched by adding solid NaHCO3  and was washed with saturated 

NaHCO3 aq solution, water and brine. The crude produces was purified by column 

chromatography (hexane/EtOAc, 7/3 to 2/8) to obtain the title compound as a white 

solid (89 mg, 82%).[α]D
20 

= + 7.3° (c = 0.5, CHCl3); 
1
H NMR (500 MHz, CDCl3, 25°C, 

mixture of rotamers) δ 8.09 – 8.05 (m, 2H, aromatic), 8.05 – 7.99 (m, 2H, aromatic), 
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7.61 – 7.53 (m, 2H, aromatic), 7.49 – 7.19 (m, 23H, aromatic, NH), 7.18 – 7.09 (d, 1H, 

aromatic), 6.96 – 6.86 (d, J = 7.1 Hz, 0.4H, NH), 5.60 – 5.55 (d, J = 3.2 Hz, 1H, H-4), 

5.40 – 5.31 (d, J = 12.1 Hz, 2H, CH2-PhBz), 5.23 – 5.05 (m, 4H, CH2-PhCarba, H-1´, H-

2´), 5.01 – 4.97 (s, 1H, H-4´), 4.96 – 4.91 (d, J = 8.2 Hz, 1H, H-1), 4.77 – 4.70 (d, J = 

11.7 Hz, 1H, CH2Ph), 4.69 – 4.63 (d, J = 11.5 Hz, 1H, CH2Ph), 4.62 – 4.53 (t, J = 13.3 

Hz, 1H, H-3), 4.53 – 4.42 (m, 4H, CH2-PhN, CH2Ph), 4.39 – 4.32 (t, J = 7.0 Hz, 1H, H-

5´), 3.94 – 3.81 (m, 2H, OCH2Linker, H-5), 3.80 – 3.78 (m, 1H, H-3´), 3.77 – 3.69 (m, 

2H, H-6´), 3.68 – 3.58 (m, 1H, H-2), 3.55 – 3.50 (dd, J = 10.0, 6.1 Hz, H-6),  3.50 – 

3.35 (m, 2H, H-6, OCH2Linker), 3.26 – 3.11 (m, 2H, NCH2Linker), 2.68 – 2.45 (m, 3H, 

CH2Lev), 2.39 – 2.26 (m, 1H, CH2Lev), 2.06 (s, 3H, CH3Lev), 1.76 (s, 3H, CH3Ac), 2.13 – 

2.02 (s, 1H), 1.61 – 1.41 (m, 4H, CH2Linker), 1.34 – 1.28 (m, 2H, CH2Linker) ppm; 
13

C 

NMR (126 MHz, CDCl3; 25°C, mixture of rotamers) δ 206.19, 172.39, 171.27, 166.55, 

165.04, 162.37, 156.75, 156.27, 137.91, 137.85, 137.78, 137.09, 136.87, 135.89, 

133.67, 133.21, 130.18, 129.90, 129.83, 129.39, 128.68, 128.61, 128.53, 128.45, 

128.39, 128.17, 128.07, 128.00, 127.93, 127.91, 127.45, 127.24, 100.99 (C-1´), 99.15 

(C-1), 92.34 (cq, TCA), 74.99 (C-3), 73.77 (CBn), 73.27, 73.15 (C-3´), 72.80 (C-5), 

72.64 (CBn), 70.28 (OCH2Linker), 70.20 (C-4), 68.53 (C-6), 67.82 (C-4), 67.66 (C-2´), 

66.93 (CH2-PhCarba), 66.76 (C-5´), 66.48 (CH2-PhBz), 62.01 (C-6´), 56.57 (C-2), 50.64, 

50.43 (CH2-PhN), 47.35, 46.21 (NCH2Linker), 37.94 (CH2Lev), 29.74 (CH3Lev), 29.26, 

28.90 (CH2Linker), 27.99 (CH2Lev), 27.35, 23.60, 23.27 (CH2Linker), 20.60 (CH3Ac) ppm. 

LRMS (ESI): m/z calcd. for C70H75Cl3N2O19 [M+NH4]
+ 

1370.4, found 1370.2. 

 

4-(hydroxymethyl)benzyl N-benzyl N-[5-((3-O-benzyl-α-L-idopyranosiduronic 

acid)-(13)-4-O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranosyloxy)pentyl]carbamate (179): The compound 178 (107 mg, 0.079 

mol) was dissolved in a mixture acetonitrile/ water (1/1, 1.6 mL), TEMPO (3 mg, 0.019 

mmol) and BAIB (63 mg, 0.195 mmol) were added at 0 °C and the mixture was stirred 

overnight at room temperature. The reaction mixture was partitioned between EtOAc 

and 1M Na2S2O4 aq solution, and the organic phase was washed with brine. The crude 

product was purified by column chromatography (hexane/EtOAc, 6/4 to 4/6 containing 

1% of acetic acid). 
1
H NMR (500 MHz, CDCl3; mixture of rotamers) δ 8.09 – 8.08 (m, 

2H, aromatic), 8.02 – 7.97 (m, 2H, aromatic), 7.59 – 7.52 (m, 2H, aromatic), 7.50 – 7.23 

(m, 24H, aromatic, NH), 7.17 – 7.15 (m, 1H, aromatic), 7.13 – 7.07 (bs, 0.4H, NH), 

6.35 – 5.85 (bs, 1H, OH), 5.53 – 5.50 (d, J = 3.4Hz, 1H, H-4), 5.40 – 5.33 (m, 3H, CH2-
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PhBz, H-5´), 5.31 – 5.27 (d, J = 9.3Hz, 1H, H-1´), 5.24 – 5.09 (m, 4H, CH2-Phcarba, H-2´, 

H-4´), 4.91 – 4.82 (m, 1H, H-1), 4.81 – 4.70 (m, 2H, CH2Ph), 4.63 – 4.55 (m, 1H, H-3), 

4.53 – 4.43 (m, 4H, CH2-PhN, CH2Ph), 3.91 – 3.73 (m, 4H, H-2, OCH2Linker, H-3´, H-5), 

3.57 – 3.34 (m, 3H, H-6), 3.31 – 3.11 (m, 2H, NCH2Linker), 2.58 – 2.47 (m, 2H, CH2Lev), 

2.44 – 2.35 (m, 1H, CH2Lev), 2.34 – 2.19 (m, 1H. CH2Lev), 2.06 – 2.00 (m, 3H, CH3Lev), 

1.73 – 1.64 (m, 3H, CH3Ac), 1.61 – 1.43 (m, 4H, CH2Linker), 1.37 – 1.27 (m, 2H, 

CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3; mixture of rotamers) δ 206.8, 176.0, 

171.6, 170.7, 170.5, 166.6, 164.8, 162.4, 162.2, 156.4, 137.8, 137.6, 136.8, 135.9, 

133.7, 133.2, 130.2, 129.9, 129.8, 129.2, 128.7, 128.6, 128.5, 128.5, 128.5, 128.4, 

128.2, 128.0, 128.0, 127.9, 127.5, 127.3, 100.7 (C-1´), 99.5 (C-1), 92.5 (Cq, TCA), 73.7 

(CBn), 72.8 (CBn), 72.2 (C-3), 72.1 (C-5´), 70.1 (OCH2Linker), 69.3 (C-4), 68.5 (C-6), 

67.9, 67.8 (C-2´), 67.0 (CH2-Phcarba), 66.5 (CH2-PhBz), 66.2 (C-4´), 56.2 (C-2), 50.6, 

50.5 (CH2-PhN), 47.4, 46.2 (NCH2Linker), 37.8 (CH2Lev), 29.6 (CH3Lev), 29.2, 28.9 

(CH2Linker), 28.0 (CH2Lev), 27.3, 23.4 (CH2Linker), 20.3 (CH3Ac) ppm. The compound was 

dissolved in methanol (0.5 mL) and sodium methoxide (1 mL) was added at 0°C and 

was stirred overnight. The reaction crude was quenched with Amberlite
®
 IR-120(H) and 

was purified by Sephadex
®
 LH-20 (CH2Cl2/MeOH, 2/1) to obtain compound (58 mg, 

70% over 2steps). 
1
H NMR (500 MHz, CD3OD; mixture of rotamers) δ 7.46 – 7.40 (d, J 

= 7.5 Hz, 2H, aromatic), 7.39 – 7.19 (m, 16H, aromatic), 7.19 – 7.12 (d, J = 7.2 Hz, 1H, 

aromatic), 5.20 – 5.00 (m, 3H, CH2-PhLinker, H-1´), 4.94 – 4.82 (m, 1H, H-5´, under H2O 

signal), 4.75 – 4.67 (d, J = 11.3 Hz, 1H, CH2Ph), 4.65 – 4.49 (m, 6H, H-1, CH2Ph, CH2-

Phcarba), 4.50 – 4.44 (s, 2H, CH2-PhN), 4.25 – 4.17 (t, J = 9.5 Hz, 1H, H-2), 4.14 – 4.05 

(s, 1H, H-4´), 4.04 – 3.96 (m, 1H, H-4), 3.93 – 3.75 (m, 3H, H-2´, H-3, OCH2Linker), 

3.74 – 3.64 (m, 4H, H-3´, H-6, H-5), 3.50 – 3.37 (m, 1H, OCH2Linker), 3.26 – 3.12 (m, 

2H, NCH2Linker), 1.57 – 1.41 (m, 4H, CH2Linker), 1.36 – 1.21 (m, 2H, CH2Linker) ppm.
 13

C 

NMR (126 MHz, CD3OD; mixture of rotamers) δ 164.28, 158.39, 157.89, 142.68, 

139.57, 139.09, 137.01, 129.58, 129.46, 129.42, 129.38, 129.06, 128.86, 128.76, 

128.69, 128.65, 128.33, 128.10, 104.93 (C-1´), 102.38 (C-1), 94.36 (Cq, TCA), 81.54 

(C-3´), 77.63 (C-3), 75.00 (C-5), 74.36 (CBn), 72.92 (CBn), 70.64 (C-6), 70.51 

(OCH2Linker), 70.04 (C-5´, C-4´), 69.69 (C-4), 68.19 (CH2-PhLinker), 67.38 (C-2´), 64.88 

(CH2-Phcarba), 54.79 (C-2), 51.53, 51.33 (CH2-PhN), 48.37, 47.56 (NCH2Linker), 30.30, 

28.94, 28.43, 24.32 (CH2Linker) ppm. HRMS (ESI): m/z calcd. for C49H57Cl3N2O15 

[M+NH4]
+ 

1041.2717, found 1041.2715. 
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4-(hydroxymethyl)benzyl N-benzyl N-[5-((3-O-benzyl-2,4-di-O-sodium sulfonato-α-

L-idopyranosyluronate)-(13)-6-O-benzyl-2-deoxy-4-O-sodium sulfonato-2-

trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate (180): The 

compound 179 (59 mg, 0.058 mmol) and the sulfur trioxide pyridine complex (5eq per 

OH group, 185 mg, 1.16 mmol) were dissolved in dry pyridine (3.5 mL) and heated at 

60 °C for 15 min using microwave irradiation. Additional amount of sulfur trioxide 

pyridine complex (46 mg, 0.29 mmol) was added and stirred for 30 min. at the same 

conditions. The reaction vessel was cooled and triethylamine (500 µL), MeOH (1mL) 

and CH2Cl2 (1mL) were added. The solution was layered on the top of a Sephadex
®

 LH-

20 chromatography column wich was eluted with CH2Cl2/MeOH (1/1) to obtain the 

product as triethylamonium salt. The residue was converted into the sodium salt 180 by 

elution from a column of Dowex 50WX2-Na
+
 with MeOH (61 mg, 73%). 

1
H NMR (500 

MHz, CD3OD) δ 7.55 – 7.08 (m, 19H, aromatic), 5.37 (s, 1H, H-1´), 5.30 (s, 1H, H-5´), 

5.15 (m, 2H, CH2-Ph), 5.04 – 4.98 (m, 2H, CH2-PhCarba), 4.96 – 4.93 (m, 1H, H-4), 4.77 

– 4.70 (m, 2H, H-4´, CH2Ph), 4.63 (d, J = 12.0 Hz, 1H, CH2Ph), 4.59 (s, 1H, H-3´), 4.56 

(s, 2H, CH2Ph), 4.49 (s, 2H, CH2-PhN), 4.44 – 4.38 (m, 2H, H-1, H-2´), 4.18 (t, J = 9.4 

Hz, 1H, H-2), 4.00 (dd, J = 11.1, 2.7 Hz, 1H, H-3), 3.91 (d, J = 5.5 Hz, 1H, H-6), 3.85 – 

3.74 (m, 2H, H-5, OCH2Linker), 3.51 – 3.39 (m, 1H, OCH2Linker), 3.27 – 3.19 (m, 2H, 

NCH2Linker), 3.17 (q, Et3N), 1.58 – 1.43 (m, 4H, CH2Linker), 1.27 (t, Et3N), 1.36 – 1.21 

(m, 2H, CH2linker).
13

C NMR (126 MHz, CD3OD, selected data from HSQC 

experiment) δ 128.4 – 127.5 (Caromatic), 102.5 (C-1´), 102.0 (C-1), 80.9 (C-3), 75.5 

(C-4), 74.7 (C-2´), 74.3 (C-5), 73.0 (CBn), 72.0 (C-4´), 71.4 (CBn), 70.7 (C-6), 70.3 (C-

3´), 69.6 (OCH2Linker), 69.0 (CH2-PhCarba), 67.5 (C-5´), 53.0 (C-2), 50.2 (CH2-PhN), 46.4 

(NCH2Linker), 29.1, 27.5 (CH2Linker), 23.2 (CH2Linker) ppm.  
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5.9.3 Solid-Phase synthesis of DS tetrasaccharide and octasaccharide precursors. 

 

Scheme 5.2. Assembly of a DS tetrasaccharide precursor 190 and octasaccharide precursor 201. 

a) 82, 15% TMSOTf, -20 °C to rt; b) NaOMe (cat), MeOH, 40 °C, MW; c) hydrazine acetate, 

CH2Cl2: MeOH (4:1); d) 30, 20% TMSOTf, -20 °C to rt; e) 41, 20% TMSOTf, -20 °C to rt; f) 

Ac2O, pyridine, 0 °C to rt. 
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Resin-Bound 4-(hydroxymethyl)benzyl N-benzyl-N-[5-(4-O-acetyl-6-O-benzyl-2-

deoxy-3-O-levulinoyl-2-trichloroacetamido-β-D-

galactopyranosyloxy)pentyl]carbamate (SP-181): The reaction was performed 

according to general procedure G employing one cycle on resin SP-9 (480 mg, 0.22 

mmol/g, 0.106 mmol) with trichloroacetimidate donor 82 (1 x 5 eq., 369 mg, 0.53 

mmol) and TMSOTf (3 µL, 0.016 mmol). The conversion was determined after 

analytical NaOMe cleavage. Conversion: 97%; UPLC-MS (ESI): 67% as compound 

165 (m/z[M+H]
+
  Calcd for C36H43Cl3N2O9H 753.20, found 752.91) and 30% as 

compound 166 (m/z [M+H]
+
 Calcd for C34H44N2O8H  609.30, found 609.25). The 

partial loss of trichloroacetamide could be avoided when the cleavage reaction was 

carried out at 40C instead of 55C.  

Figure 5.15. UPLC-MS chromatograms of analytical cleavage conversion of linker SP-9 

(retention time (tr) at 4.09 min., peak A (m/z calcd for C21H27NO4[M+H]
+
 358.19 found 358.24)) 

to monosaccharide SP-181 (tr at 4.37 min., peak C (165, m/z calcd for C36H43Cl3N2O9 

[M+NH4]
+
 770.20 found 770.06); peak B (166, tr at 4.75 min. m/z calcd for C34H44N2O8[M+H]

+
 

609.30 found 609.25)). Trace 1: analytical cleavage at 55 °C; trace 2: analytical cleavage at 40 

°C. 

SP-182 

The resin SP-181 was transformed to resin-bound 4-(hydroxymethyl)benzyl N-benzyl-

N-[5-(4-O-benzoyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-D-

galactopyranosyloxy)pentyl]carbamate SP-2 using general procedure F. 

A

B

C

1.

2.
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Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-

benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate 

(SP-183): Disaccharide formation was performed according to general procedure G 

using 2 cycles on resin SP-182 (0.390 g, 0.087 mmol) with trichloroacetimidate donor 

30 (5 equiv, 0.315 g, 0.44 mmol) and TMSOTf (3 µL, 0.017 mmol). The conversion 

was determined by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle 1) n.a (not 

analyzed); (cycle 2) 99% as compound 170 (m/z [M+NH4]
+
 calcd for C56H65Cl3N2O15 

NH4 1128.34, found 1127.93. 

Figure 5.16. UPLC-MS chromatograms of analytical cleavage conversion of monosaccharide 

SP-181 (tr at 4.80 min. (peak B: compound 149, m/z calcd for C36H43Cl3N2O9 [M+NH4]
+
 770.20 

found 770.06)) to disaccharide SP-183 (tr at 5.44 min., peak C (170, m/z calcd for 

C56H65Cl3N2O15 [M+NH4]
+
 1128.34 found 1128.27. Peak A (no mass detectable). 

SP-184 

The resin SP-183 was transformed to resin-bound resin bound 4-(hydroxymethyl)benzyl 

N-benzyl N-[5-((2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-

(13)-4-O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-D-

galactopyranosyloxy)pentyl]carbamate SP-184 using general procedure F. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((4-O-acetyl-6-O-benzyl-2-

deoxy-3-O-levulinoyl-2-trichloroacetamido-D-galactopyranosyl)-(14)-(2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-

O-benzyl-2-deoxy-2-trichloroacetamido-D-galactopyranosyloxy)pentyl]carbamate 

(SP-185): Trisaccharide formation was performed according to general procedure G 

using 2 cycles on resin SP-184 (378 mg, 0.083 mmol) with trichloroacetimidate donor 

82 (5 equiv, 0.290 g, 0.415 mmol) and TMSOTf (3 µL). The conversion was 

determined by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle 1) n.a (not 

A

B

C
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analyzed); (cycle 2) 97%, as compound 186 (m/z [M+NH4]
+
 calcd for 

C71H81Cl6N3O20NH4 1523.35, found 1523.31).  

Figure 5.17. UPLC-MS chromatograms of analytical cleavage conversion of disaccharide SP-

184 (tr at 5.46 min. (peak A, as 170, m/z calcd for C56H65Cl3N2O15 [M+NH4]
+
 1128.34 found 

1128.31)) to trisaccharide SP-185 (tr at 5.78 min., peak C (as 186, m/z calcd for C71H81Cl6N3O20 

[M+NH4]
+
 1523.35 found 1523.31)). Peak B (as 186-TCA, m/z calcd for C69H82Cl3N3O19 

[M+H]
+
 1362.42 found 1362.41), peak D (as 186+Bn, m/z calcd for C78H87Cl6N3O20 [M+NH4]

+
 

1613.44 found 1613.41). 

SP-187 

The resin SP-185 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-[5-((4-O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-

(14)-(2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-

acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranosyloxy)pentyl]carbamate SP-187 using general procedure F. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-

benzyl-2-deoxy-2-trichloroacetamido-D-galactopyranosyl)-(14)-(2-O-benzoyl-3-

O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-2-

deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl] carbamate (SP-188): 

Linker SP-9 (500 mg, 0.22 mmol/g, 0.11 mmol) was glycosylated in 1 cycle according 

to general procedure A with trichloroacetimidate donor 82 (5 equiv, 384 mg 0.55 mmol) 

and TMSOTf (3 µL, 0.022 mmol). The conversion was determined by analytical 

NaOMe cleavage. UPLC-MS (ESI): (cycle 1) 98%, 94% as compound 165 (m/z for 

C36H43Cl3N2O9 [M+NH4]
+
 770.20, found 770.20 and 4% as compound 166 (m/z for 

C34H44N2O8 [M+H]
+
 609.30, found 609.25; (cycle 2) n.a (not analyzed). After capping 

and delevulination following procedure B, disaccharide formation SP-183 was 

performed according to general procedure G using 2 cycles on resin SP-182 (490 mg, 

A
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0.11 mmol)  with trichloroacetimidate donor 2 (3 equiv, 521 mg, 0.72 mmol) and 

TMSOTf (2 µL, 0.011 mmol). The conversion was determined by analytical NaOMe 

cleavage. UPLC-MS (ESI): (cycle 1) n.a (not analyzed); (cycle 2) 99% as compound 

170 (m/z [M+NH4]
+
 calcd for C56H65Cl3N2O15NH4  1128.34, found 1127.93. After 

capping and delevulination, trisaccharide formation SP-185 was performed according to 

general procedure G using 2 cycles on resin SP-184 (480 mg, 0.11 mmol) with 

trichloroacetimidate donor 82 (3 equiv, 230 mg, 0.33 mmol) and TMSOTf (3 µL, 0.016 

mmol). The conversion was determined by analytical NaOMe cleavage. UPLC-MS 

(ESI): (cycle 1) n.a (not analyzed); (cycle 2) 95%, 74% as compound 186 (m/z for 

[M+NH4]
+
 calcd C71H81Cl6N3O20NH4 1523.35, found 1523.31) and 21% as 186-TCA 

(m/z [M+H]
+
 calcd for C69H82Cl3N3O19H 1362.42, found 1362.35). After capping and 

delevulination, procedure H was applied consecutively to synthesized the 

tetrasaccharide SP-188 on resin SP-187 (400 mg, 0.088 mmol) using 

trichloroacetimidate donor 41 (3 equiv, 186 mg, 0.26 mmol) and TMSOTf (25 µL of 

0.1M solution in CH2Cl2). The conversion was determined by analytical NaOMe 

cleavage. UPLC-MS (ESI): (cycle 1) n.a (not analyzed); (cycle 2) 97%, 71% as 

compound 189+Bz with one remaining Bz group (m/z [M+2NH4]
2+

 calcd for 

C105H113Cl6N3O27(NH4)2 1046.78, found 1046.78), 19% as 189 (m/z [M+NH4]
+
 calcd 

for C98H109Cl6N3O26 NH4 1971.54, found 1971.47) and 6% as 189+Bz+Bn (m/z 

[M+NH4]
+
 calcd for C98H109Cl6N3O26 NH4 1971.54, found 1971.47). 

Figure 5.18 UPLC-MS analysis of tetrasaccharide SP-188 synthesis. (1) UPLC-MS 

chromatogram from analytical cleavage of monosaccharide SP-181 (tr at 4.75 min., peak A 

(cleaved as 165, m/z calcd for C36H43Cl3N2O9 [M+NH4]
+
 770.20 found 770.06). (2) UPLC-MS 
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chromatogram from analytical cleavage of disaccharide SP-183 (tr at 5.39 min., peak B (cleaved 

as 170, m/z calcd for C56H65Cl3N2O15 [M+NH4]
+
 1128.34 found 1128.27). (3) UPLC-MS 

chromatogram from analytical cleavage conversion of trisaccharide SP-185 (tr at 5.72 min., 

peak D (cleaved as 186, m/z calcd for C71H81Cl6N3O20 [M+NH4]
+
 1523.35 found 1523.24); tr at 

5.51 min., peak C (cleaved as 186-TCA, m/z calcd for C69H82Cl3N3O19 [M+H]
+
 1362.42 found 

1362.35). (4) UPLC-MS chromatogram of analytical cleavage conversion of trisaccharide SP-

187 (cleaved as 186, tr at 5.72 min.) to tetrasaccharide SP-188 (tr at 6.56 min., peak E (cleaved 

as 189, m/z calcd for C98H109Cl6N3O26 [M+NH4]
+
 1971.54 found 1971.47); tr at 6.80 min., peak 

F (cleaved as 189+Bz, m/z calcd for C105H113Cl6N3O27 [M+NH4]
2+

 1046.78 found 1046.78) and 

tr at 6.98 min., peak G (cleaved as 189+Bz+Bn, m/z calcd for C112H119Cl6N3O27 [M+2NH4]
2+

 

1091.80 found 1091.81). 

 

4-(Acetoxymethyl)benzyl N-benzyl-N-[5-((2-O-acetyl-3,4-di-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate (190): The resin SP-

188 (580 mg of resin) was swollen in dry CH2Cl2 (5 mL) and quantitative cleavage was 

performed according to general procedure C using 8 cycles of NaOMe/MeOH (500µL). 

The crude was treated with additional amount of 0.25 M NaOMe solution until UPLC-

MS showed the deprotection of all acyl groups (189). Acetylation reaction was 

performed overnight at room temperature using acetic anhydride (0.25 mL) and 

catalytic amount of DMAP in pyridine (0.5 mL). The reaction mixture was diluted with 

CH2Cl2, and the organic layer was washed with 1M HCl, saturated CuSO4 aq solution, 

water and brine. The organic layer was dried over anhydrous MgSO4, filtered and 

concentrated.The crude product was purified by column chromatography 

(hexane/acetone; 8/2 to 1/1) and preparative HPLC (C-18 (250x21.20 mm, 5 µm); flow 

rate 10 mL·min
-1

; eluents: 20mM NH4CO3 in water/MeCN; gradient: initial 10% 

water/90% MeCN; 30 min: 1% water/99% MeCN to obtain compound 190 (71 mg, 

resin after cleavage 340 mg; 45% overall yield; 92% for each step).
 1

H NMR (500 MHz, 

CDCl3) δ 7.40 – 7.14 (m, 34H, aromatic), 7.10 (d, J = 7.5 Hz, 1H, NH), 6.92 (d, J = 7.4 

Hz, 1H, NH), 6.89 (d, J = 9.0 Hz, 2H, aromaticPMP), 6.84 – 6.70 (m, 6H, aromaticPMP), 

5.56 (dd, J = 16.1, 3.3 Hz, 2H, H-4GalNAc), 5.21 – 5.14 (m, 2H, CH2Phcarba), 5.11 – 5.05 

(m, 2H, CH2PhAc), 4.98 – 4.92 (m, 2H, 2xH-1Ido), 4.92 – 4.89 (m, 1H, H-2Ido), 4.86 – 



Experimental part 

 

237 

 

4.80 (m, 3H, 2xH-1GalN, H-2Ido), 4.68 – 4.62 (m, 2H, H-5Ido, CH2Ph), 4.59 – 4.53 (m, 

3H, H-5Ido, CH2Ph), 4.56 – 4.45 (m, 7H, CH2Ph, CH2PhN), 4.45 – 4.39 (m, 2H, CH2Ph, 

H-3GalNAc), 4.39 – 4.32 (m, 3H, CH2Ph, H-3GalNAc), 4.21 (dd, J = 10.2, 7.6 Hz, 1H, H-

6Ido), 4.18 – 4.12 (m, 2H, H-6Ido, H-3Idocap), 3.94 (dd, J = 10.2, 4.7 Hz, 1H,  H-6 Ido), 3.92 

– 3.80 (m, 2H, H-6 Ido, OCH2Linker), 3.79 – 3.71 (m, 9H, H-5GalNAc, 2xH-2GalNAc, 

2xCH3PMP), 3.69 (t, J = 3.4 Hz, 1H, H-3Ido), 3.64 (t, J = 6.0 Hz, 1H, H-5GalNAc), 3.61 – 

3.58 (m, 1H, H-4Idocapp), 3.57 – 3.53 (m, 1H, H-4Ido), 3.52 – 3.35 (m, 3H, H-6GalNAc, 

OCH2Linker), 3.29 (dd, J = 9.5, 5.7 Hz, 1H, H-6 GalNAc), 3.26 – 3.09 (m, 3H, H-6GalNAc, 

NCH2Linker), 2.09 (s, 3H, CH3Ac), 1.99 – 1.98 (2s, 6H, CH3Ac), 1.75 (s, 3H, CH3Ac), 1.70 

(s, 3H, CH3Ac), 1.58 – 1.43 (m, 4H, CH2Linker), 1.35 – 1.26 (m, 2H, CH2Linker) ppm. δ
13

C 

(126 MHz, CDCl3): 171.0, 170.1, 169.9, 169.7, 169.6, 162.0, 161.8, 154.2, 154.1, 153.2, 

153.0, 138.3, 138.0, 138.0, 137.7, 137.6, 128.7, 128.6, 128.5, 128.5, 128.4, 128.3, 

128.2, 128.0, 128.0, 127.9, 127.9, 127.8, 127.5, 127.3, 116.5, 115.8, 114.7, 101.1 (C-

1GalNAc), 100.2 (C-1Ido), 100.1 (C-1Ido), 99.6 (C-1GalNAc), 92.7 (Cq, TCA), 92.3 (Cq, 

TCA), 76.3 (C-4Idocapp), 73.8 (C-3GalNAc), 73.7 (CBn), 73.6 (CBn), 73.3 (C-4Ido), 73.3 (C-

3GalNAc), 72.9 (C-5GalNAc), 72.6 (C-5GalNAc), 72.6 (CBn), 72.3 (C-3Ido), 70.0 (OCH2Linker), 

69.7, 69.7 (C-4GalNAc), 68.9 (C-6GalNAc),, 68.6 (C-6GalNAc), 68.5 (C-2Ido), 68.3 (C-6Ido), 

68.0 (C-2Ido), 67.9 (C-6Ido), 67.2 (C-5Ido), 66.9 (CH2Phcarba), 66.1 (CH2PhAc), 66.0 (C-

5Ido), 56.5 (C-2GalNAc), 56.4 (C-2GalNAc), 55.9 (CH3PMP), 50.7, 50.5 (CH2PhN), 47.4, 46.3 

(NCH2Linker), 29.2, 29.1, 29.1, 28.0, 27.4 (CH2Linker), 23.4, 22.8 (CH2Linker), 21.2, 21.1, 

21.1, 20.4, 20.3 (CH3Ac) ppm. HRMS (ESI) m/z: [M+NH4]
+
 Calcd for 

C108H119Cl6N3O31NH4 2181.6297; Found 2182.6685. 
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Figure 5.19. UPLC-MS data for the synthesis of tetrasaccharide 190. (1) chromatogram of the 

crude 189 from preparative cleavage, (2) chromatogram after acetylation reaction 190, (3) 

chromatogram after preparative HPLC purification of 190. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O- p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-

benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-benzoyl-

3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-

2-deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl] carbamate (SP-

191): Tetrasaccharide formation was performed according to general procedure G using 

2 cycles on resin SP-187 (372 mg, 0.082 mmol)  with trichloroacetimidate donor 30 (5 

equiv, 296 mg, 0.41 mmol) and TMSOTf (3 µL, 0.016 mmol). The conversion was 

determined by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle 1) 86%; (cycle 2) 

98% as compound 192 (m/z [M+NH4]
+
 calcd for C91H103Cl6N3O26 NH4 1881.49 found 

1881.46).  

1.

2.

3.
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Figure 5.20. UPLC-MS chromatogram of analytical cleavage conversion of trisaccharide SP-

187 (cleaved as 186, tr at 5.79 min., peak A (m/z calcd for C71H81Cl6N3O20 [M+NH4]
+
 1523.35 

found 1523.33)) to tetrasaccharide SP-191 (cleaved as 192; tr at 6.20 min., peak B (m/z calcd for 

C91H103Cl6N3O26 [M+NH4]
+
 1881.49 found 1881.46)). Peak C (as 192+Bn, tr at 6.55 min. for 

m/z C98H109Cl6N3O26 [M+NH4]
+
 1971.54 found 1971.51).  

SP-191A 

The resin SP-191 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-[5-((2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-

acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-

benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl] carbamate  SP-

191A using general procedure F. 

 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((4-O-acetyl-6-O-benzyl-2-

deoxy-3-levulinoyl-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-

O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-

O-benzyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranosyloxy)pentyl]carbamate (SP-193): Pentasaccharide formation was 

performed according to general procedure G using 2 cycles on resin SP-191A (370 mg, 

0.081 mmol) with trichloroacetimidate donor 82 (5 equiv, 283 mg, 0.41 mmol) and 

TMSOTf (3 µL, 0.016 mmol). The conversion was determined by analytical NaOMe 

cleavage. UPLC-MS (ESI): (cycle 1) n.a; (cycle 2) full conversion as compound S-16 

(m/z [M+2NH4]
2+

 calcd for C106H119Cl9N4O3(NH4)2 1147.25 found 1147.23). 

1.

2.
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Figure 5.21. UPLC-MS chromatogram of analytical cleavage of pentasaccharide SP-193 

synthesis (tr at 6.35 min., peak C (as 194, tr at 6.35 min m/z calcd for C106H119Cl9N4O31 

[M+2NH4]
2+

 1147.25 found 1147.23)); peak B (cleaved as 194-TCA, at 6.25 min m/z calcd for 

C104H120Cl6N4O30 [M+H+NH4]
2+ 

1066.80 found 1066.78)); peak D (as 194+Bn, tr at 6.55 min. 

for m/z C113H125Cl9N4O31 [M+2NH4]
2+ 

1192.27 found 1192.25). Unidentified: peak A (no mass 

detectable). 

 The resin SP-193 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-[5-((4-O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-

(14)-(2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-

O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-

O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-

O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate 

SP-193A using general procedure H. 

 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-6-O- p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-

benzyl-2-deoxy-2-trichloroacetamido- β-D-galactopyranosyl)-(14)-(2-O-benzoyl-

3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-

benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-benzoyl-

3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-

2-deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate (SP-

195): Hexasaccharide formation was performed according to general procedure G using 

2 cycles on resin SP-194A (367 mg, 0.081 mmol)  with trichloroacetimidate donor 30 

(5 equiv, 290 mg, 0.40 mmol) and TMSOTf (3 µL, 0.016 mmol). The conversion was 

determined by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle 1) n.a; (cycle 2) 

90% as compound 196 m/z [M+2NH4]
2+

 calcd for C126H141Cl9N4O37(NH4)2 1326.32 

found 1326.26).  
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Figure 5.22. UPLC-MS chromatogram of analytical cleavage data of hexasaccharide SP-195. 

Conversion of pentasaccharide SP-193A (tr at 6.51 min., peak B (as 194, m/z calcd for 

C106H119Cl9N4O31 [M+2NH4]
2+

 1147.25 found 1147.20) to the hexasaccharide SP-195 (as 196, tr 

at 6.79 min., peak C (m/z calcd for C126H141Cl9N4O37 [M+2NH4]
2+

 1326.32 found 1326.26)); 

peak D (as 196+Bn, tr at 6.96 min. m/z calcd for C133H147Cl9N4O37 [M+2NH4]
2+

 1371.34 found 

1371.28). Unidentified: peak A (no mass detectable). 

SP-195A 

The resin SP-195 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-[5-((2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-

acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-

benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-benzoyl-3-O-

benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-2-

deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate SP-195A using 

general procedure H. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((4-O-acetyl-6-O-benzyl-2-

deoxy-3-levulinoyl 2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-

O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-

O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-

benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-

O-benzyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranosyloxy)pentyl]carbamate (SP-197): Heptasaccharide formation was 

performed according to general procedure G using 2 cycles on resin SP-195A (364 mg, 

0.080 mmol) with trichloroacetimidate donor 82 (5 equiv, 290 mg, 0.40 mmol) and 

TMSOTf (3 µL, 0.016 mmol). The conversion was determined by analytical NaOMe 
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cleavage. UPLC-MS (ESI): (cycle 1) 94%; (cycle 2) full conversion as compound 198 

(m/z[M+2NH4]
2+

 calcd for C141H157Cl12N5O42(NH4)2  1523.82 found 1523.65).  

Figure 5.23. UPLC-MS chromatogram of analytical cleavage data conversion of 

hexasaccharide SP-195A (tr at 13.50 min., peak A (as 196, m/z calcd for C126H141Cl9N4O37 

[M+2NH4]
2+

 1326.32 found 1326.26) to the heptasaccharide SP-197 (as S-198, tr at 13.93 min., 

peak C (m/z calcd for C141H157Cl12N5O42 [M+2NH4]
2+

 1523.82 found 1523.65)); peak B (as 198-

TCA, tr at 5.18 min. m/z calcd for C139H158Cl9N5O41 [M+NH4+H]
2+

 1443.40 found 1443.19), 

peak D (as 198+Bn, tr at 14.51 min. (m/z calcd for C148H163Cl12N5O42 [M+2NH4]
2+

 1568.85, 

found 1568.66). (1) cycle 1, (2) cycle 2. 

SP-197A 

The resin SP-197 was transformed to resin bound 4-(hydroxymethyl)benzyl N-benzyl 

N-[5-((4-O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-

(14)-(2-O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-

O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-

O-benzoyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-

O-benzyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-benzoyl-3-

O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-2-

deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate 197A using 

general procedure H. 

Resin bound 4-(hydroxymethyl)benzyl N-benzyl N-[5-((2-O-benzoyl-3,4-di-O-

benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-

deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-benzoyl-3-O-

benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-

deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-benzoyl-3-O-
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benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-

deoxy-2-trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-benzoyl-3-O-

benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-2-

deoxy-2-trichloroacetamido-β-D-galactopyranosyloxy)pentyl]carbamate (SP-199): 

Octasaccharide formation was performed according to general procedure G using 2 

cycles on resin SP-197A (358 mg, 0.080 mmol) with trichloroacetimidate donor 41 (5 

equiv, 281 mg, 0.40 mmol) and TMSOTf (2.8 µL, 0.016 mmol). The conversion was 

determined by analytical NaOMe cleavage. UPLC-MS (ESI): (cycle 1) n.a; (cycle 2) 

97% as compound 200 (m/z: [M+2NH4]
2+

 calcd for C141H157Cl12N5O42 NH4 1523.82 

found 1523.65).  

Figure 5.24. UPLC-MS analysis of analytical cleavage data conversion of heptasaccharide SP-

197A (198, tr at 14.09 min., peak A (m/z calcd for C141H157Cl12N5O42 [M+2NH4]
2+

 1523.82 

found 1523.65) to the octasaccharide SP-199 (as 200, tr at 15.36 min., peak B (m/z calcd for 

C168H185Cl12N5O48 [M+2NH4]
2+

 1747.90 found 1747.98); peak C (as 200+Bz, tr at 15.84 min. 

m/z calcd for C175H189Cl12N5O49 [M+2NH4]
2+

 1443.40 found 1443.19), peak D (as 200+Bz+Bn, 

tr at 16.18 min. (m/z calcd for C182H195Cl12N5O49 [M+2NH4]
2+

 1844.96, found 1845.04).  

4-(Acetoxymethyl)benzyl N-benzyl-N-[5-((2-O-acetyl-3,4-di-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyloxy)pentyl] carbamate (201): The resin 

SP-199 (570 mg of resin, resin after cleavage 340 mg; 0.075 mmol) was swollen in dry 

CH2Cl2 (5mL) and quantitative cleavage was performed according to general procedure 

C using 8 cycles of NaOMe/MeOH (500µL). The crude was treated with additional 

A

B

C

D
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amount of 0.25 M NaOMe solution until UPLC-MS showed the deprotection of all acyl 

groups affording intermediate 200 (see Figure 5.25). Acetylation was performed 

overnight at room temperature with acetic anhydride (0.25 mL) and a catalytic amount 

of DMAP in pyridine (0.5 mL). The reaction mixture was diluted with CH2Cl2, and the 

organic layer was washed with 1M HCl, saturated CuSO4 aq solution, water and brine. 

The organic layer was dried over MgSO4 and the crude product was purified by column 

chromatography (hexane/EtOAc; 7/3 to 1/1) and preparative HPLC (column: C-18 

(21.2x250 mm 5 µm); flow rate 10 mL·min
-1

; eluents: 20mM NH4CO3 in water/MeCN; 

gradient: initial 10% water/90% MeCN; 30 min: 1% water/99% MeCN to obtain 

compound 201 (27 mg, 9.4% overall yield) and 201+Bn (16 mg, 5.6%).
 1

H NMR (500 

MHz, CDCl3) δ 7.35 – 7.13 (m, 59H, aromatic), 7.06 (bs, 1H, NH), 6.94 – 6.86 (m, 8H, 

aromaticPMP, NH), 6.85 – 6.72 (m, 10H, aromaticPMP), 5.59 – 5.52 (m, 4H, 4xH-4GalNAc), 

5.19 – 5.04 (m, 4H, CH2-PhCarba, CH2-PhAc), 4.98 – 4.91 (m, 4H, 4xH-1Ido), 4.91 – 4.88 

(s, 1H, H-2Ido), 4.84 – 4.76 (m, 7H, 4xH-1GalNAc, 3x H-2Ido), 4.67 – 4.60 (m, 4H, 2xH-

5Ido, CH2Ph), 4.58 – 4.25 (m, 24 H, CH2PhN, 8xCH2Ph, 4xH-3GalNAc, 2xH-5Ido, CH2Ph), 

4.23 – 4.11 (m, 7H, 3xH-3Ido, 2xH-6Ido), 3.96 – 3.84 (m, 5H, 2xH-6Ido, OCH2Linker), 3.83 

– 3.71 (m, 17H, 4CH3PMP, 4xH-2GalN, H-5GalNAc), 3.69 (t, J = 3.4 Hz, 1H, H-3Ido), 3.65 – 

3.55 (m, 6H, 3xH-5GalNAc, 3xH-4Ido), 3.55 – 3.51 (bs, 1H, H-4Idocapp), 3.51 – 3.33 (m, 

3H, H-6GalNAc, OCH2Linker), 3.32 – 3.08 (m, 8H, CH2NLinker, 3xH-6GalN), 2.12 (1s, 3H, 

CH3Ac), 2.01 – 1.95 (s, 12H, CH3Ac), 1.74 (s, 3H, CH3Ac), 1.69 (s, 3H, CH3Ac), 1.59 – 

1.58 (2s, 6H, CH3Ac), 1.55 – 1.44 (m, 4H, CH2Linker), 1.35 – 1.28 (m, 2H, CH2Linker) ppm; 

δ
13

C (126 MHz, CDCl3): 173.0, 170.1, 169.8, 169.7, 169.6, 169.5, 162.1, 162.0, 156.7, 

156.2, 154.0, 153.9, 153.0, 152.9, 138.2, 138.2, 137.9, 137.6, 137.6, 137.4, 136.9, 

135.7, 131.0, 128.6, 128.6, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 128.1, 128.0, 

127.9, 127.9, 127.8, 127.8, 127.4, 127.2, 116.2 (CPMP), 115.5 (CPMP), 114.6 (CPMP), 

114.5 (CPMP), 101.6 (C-1GalN, JCH = 162.0 Hz), 101.4 (C-1GalN, JCH = 162.0 Hz) , 99.9 

(4xC-1Ido, JCH = 172.0 Hz, C-1GalNAc, JCH = 160.0 Hz), 92.8, 92.5 (2x), 92.5 (Cq, TCA), 

76.5 (C-4Ido), 73.7 (CBn, C-3GalNAc), 73.6 (C-3GalNAc), 73.3 (C-4Ido), 73.1 (C-5GalNAc, C-

4Ido), 72.8 (C-2GalNAc), 72.5 (CBn), 72.3, 72.2 (C-3Ido), 69.9 (OCH2Linker), 69.6, 69.4 (C-

4GalNAc), 68.8, 68.5, 68.4, 68.3, 68.2 (C-6GalNAc, C-2Ido), 67.9 (C-6Ido), 67.7 (C-2Ido), 66.9 

(CH2PhCarba, C-5Ido), 66.1 (CH2PhAc, C-2Ido), 56.0, 55.9, 55.8 (CH3PMP), 50.6, 50.4 

(CH2PhN), 47.3, 46.3 (NCH2Linker), 29.4, 29.4, 29.2, 29.1, 28.0, 27.4, 23.3, 22.8, 21.1, 

21.0, 20.4, 20.3, 20.2 ppm; HRMS (ESI) m/z: [M+2Na]
2+

 calcd for 

C186H203Cl12N5O57Na2 1941.9593, found 1941.9615. 
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Figure 5.25. UPLC-MS data for the synthesis of octasaccharide 201. 1) chromatogram after 

quantitative cleavage (unidentified peak, tr = 15.24 min, m/z 1808.47; as 200 (tr = 15.39 min, 

m/z calcd for C168H185Cl12N5O48 [M+2NH4]
2+

 1747.95 found 1747.97); as 200+Bn (tr = 15.77 

min, m/z calcd for C175H191Cl12N5O48 [M+2NH4]
2+

 1792.98 found 1792.95). 2) chromatogram 

after acetylation (unidentified peak, tr = 15.95 min, m/z 1885.64); as 201 (tr = 16.27 min, m/z 

calcd for C186H203Cl12N5O57 [M+2NH4]
2+

 1937.01 found 1936.97); as 201+Bn (tr = 16.59 min, 

m/z calcd for C193H209Cl12N5O57 [M+2NH4]
2+

 1982.02 found 1981.97). 

 

Figure 5.26. UPLC-MS data for the synthesis of octasaccharide 201. 1) Chromatogram after 

preparative HPLC column of pure compound 201. 2) Chromatogram after preparative HPLC 

column of compound 201+Bn.  

 

 

 

 

1.

2.

1.

2.

1.
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5.9.4 Deprotection schemes for DS tetra and octasaccharides. 

4-(Acetoxymethyl)benzyl N-benzyl-N-[5-((2,4-di-O-acetyl-3-O-benzyl-α-L-

idopyranosyl)-(13)-(2-acetamido-4-O-acetyl-6-O-benzyl-2-deoxy-β-D-

galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-α-L-idopyranosyl)-(13)-2-

acetamido-4-O-acetyl-6-O-benzyl-2-deoxy-2-β-D-

galactopyranosyloxy)pentyl]carbamate (206): The compound 202 (46 mg, 0.022 

mmol) was dissolved in dry toluene (0.5 mL) and tributyltinhydride (63 mg, 58 µL) and 

AIBN (72 µL of a solution 0.06 M) were added at room temperature. The reaction was 

stirred in the microwave for 4h at 80 °C, additional amount of tributyltinhydride (27 

µL) and AIBN (60 µL of a solution 0.06 M) were added and stirred for 2h more. 

Finally, additional amount of tributyltinhydride (63 mg, 58 µL) and AIBN (72 µL of a 

solution 0.06 M) were added at room temperature and stirred for 2h more. The reaction 

crude was washed with hexane (5 x 10mL) to obtain 38 mg of compound 4-

(acetoxymethyl)benzyl N-benzyl-N-[5-((2,4-di-O-acetyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-(2-acetamido-4-O-acetyl-6-O-benzyl-2-

deoxy-β-D-galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-α-

L-idopyranosyl)-(13)-2-acetamido-4-O-acetyl-6-O-benzyl-2-deoxy-2-β-D-

galactopyranosyloxy)pentyl]carbamate. 
1
H NMR (500 MHz, CDCl3) δ 7.36 – 7.15 (m, 

29H, aromatic), 6.89 – 6.83 (m, 4H, aromatic), 6.82 – 6.75 (m, 4H, aromatic), 6.15 (d, J 

= 6.7 Hz, NH), 6.02 (d, J = 7.3 Hz, NH), 5.65 (d, J = 7.3 Hz, NH), 5.51 (dd, J = 12.4, 

3.0 Hz, 2H, H-4GalNAc), 5.18 – 5.05 (m, 5H, CH2-PhBz, CH2-Phcarba, H-1GalNAc), 5.01 (bs, 

1H, H-4Ido2), 4.99 – 4.89 (m, 2H, H-1GalNAc, H-1Ido), 4.85 – 4.81 (m, 2H,  H-2Ido, H-2Ido), 

4.79 (bs, 1H, H-1GalNac), 4.74 – 4.71 (m, 1H, H-5Ido2), 4.67 – 4.44 (m, 12H, CH2Ph, 

CH2-PhN, 1HCH2Ph, H-3GalNac, H-5Ido), 4.38 – 4.35 (d,  J = 10.3 Hz, 1H, CH2Ph), 4.17 

– 4.08 (m, 3H, H-6Ido, H-4Ido), 3.99 – 3.94 (m, 2H, H-6GalNac), 3.91 – 3.85 (m, 1H, 

OCH2Linker), 3.84 – 3.80 (t, J = 6.1Hz, 1H, H-5GalNac), 3.77 – 3.66 (m, 9H, 2xH-3Ido, H-

5 GalNac,  2xCH3PMP), 3.53 – 3.46 (m, 2H, H-6GalNac), 3.45 – 3.13 (m, 7H, H-2GalNac, 

OCH2Linker, H-6GalNac, NCH2Linker), 2.09 (s, 3H, CH3Ac), 2.06 – 1.98 (3s, 9H, CH3Ac),  

2.50 –2.43 (bs, 3H, CH3NHAc), 1.76 (s, 3H, CH3Ac, 1.73 – 1.68 (bs, 3H, CH3NHAc), 1.61 

(s, 3H, CH3Ac), 1.57 –1.45 (m, 4H, CH2Linker), 1.38 – 1.27 (m, 2H, CH2Linker) ppm. This 

compound (0.015g, 78µmol) was dissolved in acetonitrile/water (4/1, 1 mL) and CAN 

(5eq x OH, 0.043 g) was added at 0 °C and was stirred for 30 minutes. The crude was 

diluted with EtOAc and was washed with water and brine. The organic phase was dried 
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over MgSO4 and concentrated. The crude was purified by preparative HPLC (gradient: 

initial - 5min: 60% water, 40% acetonitrile; 5 – 45 min. (30% to 70% of ACN); 45 min 

– 55 min. (70% to 99% of acetonitrile) to obtain 206 (6 mg, 54%). 
1
H NMR (500 MHz, 

CDCl3) δ 7.36 – 7.15 (m, 29H, aromatic), 6.09 (d, J = 7.4 Hz, NH, 0.45H), 5.93 (d, J = 

6.8 Hz, NH, 0.73H), 5.46 – 5.43 (dd, J = 12.1, 3.4 Hz, 2H, H-4GalNAc), 5.17 – 5.08 (m, 

5H, CH2-PhBz, CH2-Phcarba, H-1GalNAc), 4.98 – 4.85 (m, 4H, H-1 GalNAc, H-1Ido1, H-2Ido2, 

H-4Ido2), 4.84 – 4.78 (m, 2H, H-2Ido1, H-1Ido2), 4.65 – 4.40 (m, 11H, 2xH-3GalNAc, CH2-

PhN, 3xCH2Ph, CH2Ph), 4.37 – 4.32 (d, J = 11.5Hz, 1H, CH2Ph), 4.29 – 4.25 (m, 1H, 

H-5Ido2), 4.18 – 4.13 (m, 1H, H-5Ido1), 4.06 – 4.02 (bs, 1H, H-3Ido1), 3.92 – 3.55 (m, 9H, 

2xH-5GalNAc, H-3Ido2, H-4Ido1, 2xH-6Ido1, OCH2Linker), 3.52 – 3.40 (m, 3H, OCH2Linker, H-

6GalNac), 3.38 – 3.14 (m, 6H, H-6 GalNac, 2xH-2GalNac, NCH2Linker), 2.79 – 2.62 (bs, 1H, 

OH), 2.58 – 2.45 (bs, 1H, OH), 2.09 – 2.08 (s, 6H, CH3), 2.05 (s, 3H, CH3), 2.03 (s, 3H, 

CH3), 2.00 (s, 3H, CH3), 1.91 – 1.85 (s, 3H, CH3), 1.75 (s, 3H, CH3), 1.61 (s, 3H, CH3), 

1.58 – 1.46 (m, 4H, CH2Linker), 1.33 – 1.28 (m, 2H, CH2Linker); 
13

C NMR (126 MHz, 

CDCl3) δ 171.86, 171.32, 170.95, 170.64, 169.96, 169.70, 156.29, 155.81, 138.34, 

137.94, 137.75, 136.92, 135.82, 128.71, 128.59, 128.52, 128.49, 128.37, 128.14, 

128.07, 128.03, 127.96, 127.93, 127.90, 127.83, 127.49, 127.28, 101.41 (C-1GalNac, JCH 

= 164 Hz), 100.86 (C-1Ido, JCH = 171 Hz), 100.36 (C-1Ido, JCH = 171 Hz), 99.7 (C-

1GalNac, JCH = 165 Hz), 76.64 (C-4Ido), 75.76, 75.31(C-3GalNAc), 73.70 (CBn), 73.29  (C-

4Ido), 72.67, 72.56 (C-5GalNac, C-3Ido), 72.42 (C-3Ido), 72.26 (CBn), 70.43, 70.31 (C-

4GalNac), 70.11 (OCH2Linker), 68.76, 68.60 (C-6GalNac), 67.81, 67.72 (C-2Ido), 67.52 (C-

4Ido2), 67.30 (C-5Ido), 66.94 (CH2-Phcarba), 66.61 (C-5Ido), 66.10 (CH2-PhBz), 62.17, 62.07 

(C-6Ido), 56.13 (C-2GalNac), 50.46 (CH2-PhN), 47.51 (NCH2Linker), 29.84, 29.23, 27.97, 

27.43 (CH2Linker), 23.66 (CH3), 23.57(CH3), 23.25 (CH2Linker), 21.30, 21.15, 21.08, 

21.04, 20.74, 20.42 (CH3) ppm. 

 

4-(Acetoxymethyl)benzyl N-benzyl-N-[5-((2-O-acetyl-3,4-di-O-benzyl-α-L-

idopyranosyl)-(13)-(2-4-O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranosyl)-(14)-(2-acetamido-O-acetyl-3-O-benzyl-α-L-idopyranosyl)-

(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-
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galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranosyloxy)pentyl] carbamate (210): The compound 201 (28 mg, 0.0062 

mmol) was dissolved in toluene (0.5 mL), tributyltin hydride (0.094 mmol, 25 µL) and 

catalytic amount of AIBN (42 µL of a 30 mM stock solution in toluene) were added. 

The reaction was heated in the microwave at 80 °C for 2h adding more amount of 

tributyltin hydride until no intermediates were observed by UPLC-MS. The reaction 

mixture was concentrated and was stirred with hexane for 1h. The product was filtered 

and dried in the vacuum pump (22 mg, 90%).
1
H NMR (500 MHz, CDCl3) δ 7.36 – 7.15 

(m, 54H, aromatic), 6.92 – 6.84 (m, 6H, aromaticPMP, 2xNH) 6.88 – 6.76 (m, 10H, 

aromaticPMP), 6.04 (d, J = 7.1Hz, NH), 5.74 – 5.58 (m, 3H, NH), 5.52 – 5.46 (m, 4H, 

4xH-4GalNAc), 5.18 – 5.08 (m, CH2-PhCarba, CH2-PhAc), 5.03 – 4.89 (m, 5H, 4H-1GalNAc, 

H-1Ido), 4.88 – 4.87 (m, 1H, H-2Idocapp), 4.84 – 4.74 (m, 6H, 3xH-2Ido, 3xH-1Ido), 4.61 – 

4.33 (m, 28H, CH2PhN, 9xCH2Bn, 4xH-5Ido, 4xH-3GalNAc), 4.15 – 4.09 (m, 7H, 3xH-

3Ido, 4xH-6Ido), 3.99 – 3.85 (m, 5H, 4xH-6Ido, OCH2Linker), 3.84 – 3.80 (m, 1H, H-

5GalNac), 3.76 – 3.68 (m, 20H, CH3PMP, 3xH-4Ido, 3xH-5GalNAc, H-3Idocapp),  3.62 – 3.59 

(m, 1H, H-4Idocapp), 3.50 – 3.48 (m, 2H, H-6GalNAc), 3.46 – 3.14 (m, 13H, 3xH-6GalNac, 

4xH-2GalNAc, CH2NLinker, OCH2Linker), 2.09 (s, 3H, CH3), 2.04 – 2.02 (m, 12H, 4xCH3), 

1.88 – 1.81 (m, 6H, 2xCH3), 1.76 (s, 3H, CH3), 1.69 (s, 3H, CH3), 1.66 (s, 3H, CH3), 

1.65 – 1.63 (m, 9H, 3xCH3), 1.58 - 1.50 (m, 4H, CH2Linker), 1.35 – 1.28 (m, 2H, 

CH2Linker) ppm; 
13

C NMR (126 MHz, CDCl3) δ 170.89, 170.82, 170.20, 169.97, 169.95, 

169.77, 154.04, 153.92, 153.17, 153.07, 138.43, 138.39, 137.97, 137.93, 137.87, 

137.78, 135.78, 128.69, 128.52, 128.45, 128.34, 128.29, 128.13, 128.08, 127.98, 

127.94, 127.87, 127.82, 127.75, 127.46, 127.26 (Caromatic), 115.75, 115.69, 114.73, 

114.64 (CaromaticPMP), 101.43 (C-1GalNAc), 100.13 (C-1Ido), 99.84 (C-1Ido), 75.44 (C-4Ido), 

74.42, 74.36 (C-3GalNAc), 73.88, 73.61 (CBn), 73.05, 72.97 (C-5GalNAc, C-3Ido, C-4Ido), 

72.60 72.54 (C-5GalNAc), 72.45, 72.39 (CBn), 70.08, 70.01, 69.91, 69.85, 69.80 (C-

4GalNAc, OCH2Linker), 69.02 (C-6GalNAc), 68.82 (C-6GalNAc, C-2Ido), 68.21, 68.13, 68.10 (C-

2Ido), 67.63, 67.29, 67.21 (C-6Ido), 66.92 (CH2-PhCarba), 66.75 (C-5Ido), 66.10 (CH2PhAc), 

65.70, 65.66 (C-5Ido), 55.84 (CH3PMP), 55.72 (4xH-2GalNAc), 50.59, 50.42 (CH2PhN), 

47.48, 45.70 (NCH2Linker), 29.82, 29.25, 27.97, 26.97 (CH2Linker), 23.52 (CH3), 23.38 

(CH3), 23.29 (CH3, CH2Linker), 21.31 (CH3), 21.26 (CH3), 21.20 (CH3), 21.13 (CH3), 

20.55 (CH3), 20.39 (CH3), 20.30 (CH3) ppm. MS (ESI): m/z calcd. for C186H215N5O57 

[M+2NH4]
2+

 1733.2, found: 1732.9. This compound (22 mg, 0.006 mmol) was 
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dissolved in acetonitrile/ water (4/1, 1.25 mL) and cerium ammonium nitrate (70 mg, 

0.128 mmol) was added at 0 °C. The reaction was stirred for 90 min and it was diluted 

with EtOAc and washed with water, saturated NaHCO3 aq solution and brine. The 

reaction crude was dried over anhydrous MgSO4 and concentrated. The crude was 

purified by Sephadex
®
 LH-20 CH2Cl2/MeOH (1/1) and preparative HPLC (column: C-

18 (diameter, 21.2x250 mm 5 µm); flow rate 10 mL·min
-1

; eluents: 20mM NH4CO3 in 

water/MeCN; gradient: initial 10% water/90% MeCN; 30 min: 1% water/99% MeCN to 

obtain compound 210 (6 mg, 32%).
1
H NMR (500 MHz, CDCl3) δ 7.36 – 7.15 (m, 54H, 

aromatic), 6.08 – 6.06 (d, 0.6H, NH), 5.90 – 5.85 (m, 3H, NH), 5.66 – 5.65 (d, 0.4H, 

NH), 5.48 – 5.37 (m, 4H, 4xH-4GalNAc), 5.20 – 5.03 (m, 7H, CH2-PhCarba, CH2-PhAc, 

3xH-1GalNAc), 4.98 – 4.75 (m, 9H, H-1GalNAc, 4xH-1Ido, 4x H-2Ido), 4.65 – 4.32 (m, 24H, 

4xH-3GalNAc, 9xCH2Ph, CH2PhN), 4.17 – 4.10 (m, 4H, 4xH-5Ido), 4.07 – 4.00 (m, 3H, 

3xH-3Ido), 3.92 – 3.80 (m, 3H, H-6Ido, OCH2Linker,H-5GalNAc), 3.80 – 3.64 (m, 11H, 1xH-

3Ido, 3xH-5GalNAc, 3x H-6Ido, H-6Ido), 3.62 – 3.57 (m, 3H, 3xH-4Ido), 3.57 – 3.42 (m, 5H, 

H-4Ido, H-6GalNAc, OCH2Linker), 3.13 (m, 11H, 4xH-2GalNAc, H-6GalNAc, OCH2Linker, 

NCH2Linker), 2.77 – 2.45 (bs, 4H, OH), 2.09 (s, 3H, CH3), 2.05 – 2.01 (m, 12H, CH3), 

1.98 (s, 3H, CH3), 1.96 – 1.92 (2s, 6H, CH3), 1.91 – 1.78 (m, 6H, CH3), 1.75 (s, 3H, 

CH3), 1.67 – 1.63 (2s, 6H, CH3Me), 1.58 – 1.42 (m, 4H, CH2Linker), 1.36 – 1.28 (m, 2H, 

CH2Linker) ppm; δ
13

C(126 MHz, CDCl3; selected from HSQCed.): 171.72, 171.55, 

170.84, 169.97, 138.29, 137.92, 137.77, 137.67, 128.70 – 127.27 (Caromatic), 101.47, 

101.42, 101.36 (C-1GalNAc), 100.80 (C-1Ido), 100.39 (C-1 GalNAc), 76.27 (C-4Ido), 75.32, 

75.22 (C-3GalNAc), 74.07 (C-4Ido), 73.69 (CBn),  73.40 (C-3Ido), 72.90, 72.67, 72.64 (CBn), 

72.52 (C-3Ido), 72.49 (C-5GalNAc), 72.37 (C-5GalNAc), 72.28 (CBn), 70.40 (C-4GalNAc), 

70.24 (C-4GalNAc), 70.11 (C-4GalNAc, OCH2Linker), 69.0 (C-2Ido), 68.73, 68.67, 68.60 (C-

6GalNAc), 68.4 (C-5Ido), 67.9, 67.8 (C-2Ido), 67.34 (C-5Ido), 67.29 (C-5Ido), 66.94 (CH2-

PhCarba), 66.10 (CH2PhAc), 62.61, 62.14, 62.07, 62.03 (C-6Ido), 56.11, 55.98 (C-2GalNAc), 

50.45 (NCH2Linker), 47.49, 46.10 (NCH2Linker), 29.49, 29.30, 27.41, 27.24 (CH2Linker), 

23.61, 23.55 (CH3), 23.15, 22.82 (CH2Linker), 21.25, 21.20, 21.14, 20.73, 20.55, 20.49 

(CH3) ppm. LRMS (ESI): m/z calcd. for C158H191N5O53 [M+2NH4]
2+

 1521.12, found: 

1521.10. 
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Selected NMR Spectra 
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4.5 Linker Synthesis and glycosylation trials on solid support 

N-Benzyl-5-((2,3-dimethylbutan-2-yl)dimethylsilyloxy)pentan-1-amine (2): 
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4-(Hydroxymethyl)benzyl 2,2,2-trichloroethyl carbonate (4): 
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4-(((2,2,2-Trichloroethoxy)carbonyloxy)methyl)benzyl N-benzyl N-(5-((2,3-

dimethylbutan-2-yl)dimethylsilyloxy)pentyl) carbamate (6): 
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4-(Hydroxymethyl)benzyl N-benzyl N-(5-((2,3-dimethylbutan-2- 

yl)dimethylsilyloxy)pentyl) carbamate (7): 
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4-(Hydroxymethyl)benzyl N-benzyl N-(5-hydroxypentyl) carbamate (10): 
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4-(Hydroxymethyl)benzyl N-benzyl N-(5-(3,4,6-tri-O-benzyl--D-

mannopyranosyloxy)pentyl) carbamate (13): 
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5-Aminopentyl -D-mannopyranoside (14): 
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4.6 Building blocks synthesis 

4.6.1 Synthesis of Idose Building Block 

2-O-Benzoyl-3-O-benzyl-6-O-dimethylthexylsilyl-4-O-levulinoyl--L-idopyranosyl 

trichloroacetimidate (29): 
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2-O-Benzoyl-3-O-benzyl-4-O-levulinoyl-6-O-p-methoxyphenyl-/β-L-idopyranosyl 

trichloroacetimidate (30): 
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Phenyl 2-O-benzoyl-3,6-di-O-benzyl-4-O-levulinoyl-1-thio--L-idopyranoside (35): 

 

 

 

 
 

 

 



Appendix 
 

263 

 

Phenyl 2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-6-O-para-methoxybenzyl-1-thio--L-

idopyranoside (36): 
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Phenyl 6-O-acetyl-2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-1-thio-α-L-idopyranoside 

(37): 
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Phenyl 2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-1-thio-6-O-tri-iso-propylsiloxymethyl-

α-L-idopyranoside (38): 
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4.6.1.1 Synthesis of the Ido non-reducing end building block 

Phenyl 2-O-benzoyl-3,4-di-O-benzyl-6-O-p-methoxyphenyl-1-thio-α-L-idopyranoside 

(39): 
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2-O-benzoyl-3,4-di-O-benzyl-6-O-p-methoxyphenyl-α/β-L-idopyranosyl 

trichloroacetimidate (41): 
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4.6.2 Synthesis of L-iduronic acid (IdoA) building blocks 

Methyl (2-O-benzoyl-3-O-benzyl-4-O-levulinoyl-α/β-L-idopyranosyluronate) 

trichloroacetimidate (44): 
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Methyl (4-O-acetyl-3-O-benzyl-[1,2-O-(1-pent-4-enyloxyethylidene)]-β-L-

idopyranuronate (52): 
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Methyl (3-O-benzyl-4-O-levulinoyl-[1,2-O-(1-pent-4-enyloxylevulinylidene)]-β-L-

idopyranuronate (53): 
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Methyl (4-O-benzoyl-3-O-benzyl-[1,2-O-(1-pent-4-enyloxybenzylidene)]-β-L-

idopyranuronate (54): 
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Methyl (3-O-benzyl-[1,2-O-(1-pent-4-enyloxybenzylidene)]-β-L-threo-hex-4-

enopyranuronate (55): 
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Methyl (3-O-benzyl-4-O-levulinoyl-[1,2-O-(1-pent-4-enyloxybenzylidene)]-β-L-

idopyranuronate (57): 
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4.6.3 Synthesis of 2-azido-D-glucopyranose (Glc) building blocks 

2-Azido-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-β-D-glucopyranose (62): 
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2-Azido-6-O-benzoyl-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-β-D-

glucopyranose (63): 
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2-Azido-6-O-benzoyl-3-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-4-O-levulinoyl-

β-D-glucopyranose (64): 
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2-Azido-6-O-benzoyl-3-O-benzyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl 

trichloroacetimidate (65): 
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2-Azido-6-O-benzoyl-3-O-benzyl-2-deoxy-4-O-levulinoyl--D-glucopyranosyl N-

phenyl trifluoroacetimidate (66): 

 

α-anomer: 
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β-anomer: 
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4.6.3.1 Synthesis of the Non-Reducing End Building Block of Glucosamine 

2-Azido-3,4-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy -β-D-glucopyranose (67): 
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2-Azido-6-O-benzoyl-3,4-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-β-D-

glucopyranose (68): 
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2-Azido-6-O-benzoyl-3,4-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy–α-D-

glucopyranosyl trichloroacetimidate (70): 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 
 

283 

 

 

 

4.6.4 Synthesis of galactosamine building blocks 

1,3,4,6-Tetra-O-acetyl-2-deoxy-2-p-methoxyphenylimino-D-galactopyranose (72): 
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1,3,4,6-Tetra-O-acetyl-2-amino-2-deoxy-D-galactopyranose (73): 
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1,3,4,6-Tetra-O-acetyl-2-deoxy-2-trichloroacetamidate-D-galactopyranose (74): 
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1-O-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido-β-D-galactopyranose 

(75): 
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4,6-Benzylidene-1-O-tert-butyldimethylsilyl-2-deoxy-2-trichloroacetamido-β-D-

galactopyranose (76): 
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4,6-Benzylidene-1-O-tert-butyldimethylsilyl-2-deoxy-3-O-levulinoyl-2-

trichloroacetamido-β-D-galactopyranose (77): 
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6-O-Benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-3-O-levulinoyl-2-trichloroacetamido-

β-D-galactopyranose (78): 
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4-O-Benzoyl-6-O-benzyl-1-O-tert.-butyldimethylsilyl-2-deoxy-3-O-levulinyl-2-

trichloroacetamido-D-galactopyranose (79): 
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4-O-Acetyl-6-O-benzyl-1-O-tert-butyldimethylsilyl-2-deoxy-3-O-levulinoyl-2-

trichloroacetamido-β-D-galactopyranose (80): 
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4-O-Benzoyl-6-O-benzyl-2-deoxy-3-O-levulinoyl-2-trichloroacetamido-α-d-

galactopyranosyl trichloroacetimidate (81): 
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4-O-Acetyl-6-O-benzyl-2-deoxy-3-O-levulinoyl-2-trichloroacetamido-α-D-

galactopyranosyl trichloroacetimidate (82): 
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4.7.1 Glycosylation of the linker 

 

4-((Benzyl(5-hydroxypentyl)carbamoyloxy)methyl)benzyl benzoate (83): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(3-O-benzyl-2-O-benzoyl-4-O-

levulinoyl-6-O-tert-butyldiphenylsilyl--L-idopyranosyloxy)pentyl) carbamate (84): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-6-O-

dimethylthexylsilyl-4-O-levulinoyl-α-L-idopyranosyloxy)pentyl) carbamate (85): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-O-

levulinoyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (86): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3,6-di-O-benzyl-4-O-

levulinoyl-α-L-idopyranosyloxy)pentyl) carbamate (87): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-O-

levulinoyl-6-O-para-methoxybenzyl-α-L-idopyranosyloxy)pentyl) carbamate (88): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(6-O-acetyl-2-O-benzoyl-3-O-benzyl-4-

O-levulinoyl-α-L-idopyranosyloxy)pentyl) carbamate (89): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-4-O-

levulinoyl-6-O-tri-iso-propylsiloxymethyl-α-L-idopyranosyloxy)pentyl) carbamate (90): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(methyl (2-O-benzoyl-3-O-benzyl-4-O-

levulinoyl-α-L-idopyranosyloxy)uronate)pentyl) carbamate (91): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-((3-O-benzyl-2-O-benzoyl-4-O-

levulinoyl--L-idopyranosyloxy)uronate)pentyl) carbamate (92): 
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4.7.2 Disaccharide synthesis 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-benzoyl-

2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-3-O-benzyl-2-O-benzoyl-6-O-tert-

butyldiphenylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (101): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-benzoyl-

2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-3-O-benzyl-2-O-benzoyl-6-O-

dimethylthexylsilyl-α-L-idopyranosyloxy)pentyl) carbamate (102): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-benzoyl-

2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-3-O-benzyl-2-O-benzoyl-6-O-p-

methoxyphenyl-α-L-idopyranosyloxy)pentyl) carbamate (103): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-benzoyl-

2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-3,6-di-O-benzyl-2-O-benzoyl-α-L-

idopyranosyloxy)pentyl) carbamate (104): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-benzoyl-

2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-3-O-benzyl-2-O-benzoyl-6-O-p-

methoxybenzyl-α-L-idopyranosyloxy)pentyl) carbamate (105): 
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-benzoyl-

2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-6-O-tri-iso-

propylsiloxymethyl-α-L-idopyranosyloxy)pentyl) carbamate (106): 

 

 
 

 



Appendix 
 

310 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(4-O-(2-azido-3-O-benzyl-6-O-benzoyl-

2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-6-O-acetyl-2-O-benzoyl-3-O-benzyl-α-L-

idopyranosyloxy)pentyl) carbamate (107): 

 

 

 

JC´,H´= 171 Hz

JC´,H´= 162Hz

JC,H= 172Hz

JC,H= 171 Hz
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4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-3-O-benzyl-6-O-

benzoyl-2-deoxy-4-O-levulinoyl-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-α-L-

idopyranosyloxy)uronate)pentyl) carbamate (108): 
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tert-Butyldimethylsilyl 2-azido-3,6-di-O-benzyl-2-deoxy-D-glucopyranose (109): 
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Dimethylthexylsilyl 2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy-D-glucopyranose (110): 

 

 
 

 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-6-O-benzoyl-3-

O-benzyl-2-deoxy-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-α-L-

idopyranosyloxy)uronate)pentyl) carbamate (55): 
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Tert-Butyldimethylsilyl 2-azido-3,6-di-O-benzyl-2-deoxy-4-O-(methyl (2,4-di-O-

acetyl-3-O-benzyl-α-L-idopyranosyl)uronate)-D-glucopyranose (111): 
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Dimethylthexylsilyl 2-azido-6-O-benzoyl-3-O-benzyl-2-deoxy-4-O-(methyl (2,4-di-O-

benzoyl-3-O-benzyl-α-L-idopyranosyl)uronate)-D-glucopyranose (113): 

 

 
 

 

 

4-(Phenylcarboxymethyl)benzyl N-benzyl N-(5-(methyl (4-O-(2-azido-6-O-benzoyl-3-

O-benzyl-2-deoxy-4-O-(methyl(2,4-di-O-benzoyl-3-O-benzyl-D-L-
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idopyranosyl)uronate)-α-D-glucopyranosyl)-2-O-benzoyl-3-O-benzyl-D-L-

idopyranosyloxy)uronate)pentyl) carbamate (115): 

 
 

 
 

 
1
H NMR data of compound 115 cleaved from the resin: 
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HSQC edited and HSQC-J coupled NMR (500MHz, CDCl3) of compound 115. 

 

4-(Hydroxymethyl)benzyl N-benzyl N-(5-(2-O-benzoyl-3-O-benzyl-6-O-tert-

butyldiphenylsilyl--L-idopyranosyloxy)pentyl) carbamate (118): 
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4-(Acetoxymethyl)benzyl N-benzyl N-(5-(2-O-acetyl-3-O-benzyl-4-O-(4,6-O-di-acetyl-

2-azido-3-O-benzyl-2-deoxy--D-glucopyranosyl)-6-O-tert-butyldiphenylsilyl--L-

idopyranosyloxy)pentyl) carbamate (121): 
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4-(Acetoxymethyl)benzyl N-benzyl N-(5-(2-O-acetyl-3-O-benzyl-4-O-(6-O-acetyl-2-

azido-3-O-benzyl-4-O-(2,4-di-O-acetyl-3-O-benzyl-6-O-tert-butyldiphenylsilyl--L-

idopyranosyl)-2-deoxy--D-glucopyranosyl)-6-O-tert-butyldiphenylsilyl--L-

idopyranosyloxy)pentyl) carbamate (125): 

 

 
 

 
COSY spectrum of compound 125 
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HSQC spectrum of compound 125 
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4-(Acetoxymethyl)benzyl N-benzyl N-(5-(2-O-acetyl-4-O-(6-O-acetyl-2-azido-4-O-

(2,4-di-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-3-O-benzyl-2-

deoxy--D-glucopyranosyl)-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyloxy)pentyl) carbamate (156): 
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JC´,H´ = 171 Hz

JC,H = 170 Hz

JC´´,H´´ = 169 Hz

 
HSQC edited and HSQC-J coupled NMR (500MHz, CDCl3) of compound 156. 
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4-(Acetoxymethyl)benzyl N-benzyl N-[5-((6-O-acetyl-2-azido-3,4-di-O-benzyl-2-

deoxy-α-D-glucopyranosyl(-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-

idopyranosyl)-(14)-(6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-

(14)-(2-O-acetyl-3-O-benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyl)-(14)-(6-O-

acetyl-2-azido-3-O-benzyl-2-deoxy-α-D-glucopyranosyl)-(14)-2-O-acetyl-3-O-

benzyl-6-O-p-methoxyphenyl-α-L-idopyranosyloxy)pentyl] carbamate (163): 
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HSQC edited and HSQC-J coupled NMR (500MHz, CDCl3) of compound 163. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6xJC,H =170 Hz
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4-(Acetoxymethyl)benzyl N-benzyl-N-[5-((2-O-acetyl-3,4-di-O-benzyl-6-O-p-

methoxyphenyl-α-l-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-d-galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-l-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-d-galactopyranosyloxy)pentyl]carbamate (190): 
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HSQC edited and HSQC-J coupled NMR (500MHz, CDCl3) of compound 190. 
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4-(Acetoxymethyl)benzyl N-benzyl-N-[5-((2-O-acetyl-3,4-di-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-(4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyl)-(14)-(2-O-acetyl-3-O-benzyl-6-O-p-

methoxyphenyl-α-L-idopyranosyl)-(13)-4-O-acetyl-6-O-benzyl-2-deoxy-2-

trichloroacetamido-β-D-galactopyranosyloxy)pentyl] carbamate (201): 
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HSQC edited and HSQC-J coupled NMR (500MHz, CDCl3) of compound 201.


