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Abstract

Despite several decades of effort, our understanding of the way lis-

teners process speech is still lacking, especially in the presence of

real-world adversities. In addition to being a fundamental scientific

problem, a better understanding of the mechanisms of human speech

perception could benefit a variety of applications from hearing pros-

thetics to automatic recognition systems. One way to gain a better

understanding of the human speech code is through the analysis of

characteristic misperceptions. Past work has largely taken a macro-

scopic view by trying to model average intelligibility across a variety

of adverse conditions. While certainly useful, these models operate

on a level too coarse to provide insights into the underlying auditory

processing mechanisms. The analysis of individual perception errors

is likely to be much more informative in this regard. The main chal-

lenge in analysing misperceptions on an utterance-by-utterance basis

whether collected in the lab or from everyday conversations is the

inherent variability in perception, which often results in large differ-

ences in listener responses to the same physical stimuli. Some stimuli,

however, elicit the same erroneous response from the majority of lis-

teners. These consistent misperceptions are of great interest as they

provide a solid basis for the analysis of target-confusion error pat-

terns, as well as valuable diagnostic stimuli for the next generation

of intelligibility models which aim to provide utterance-level predic-

tions of listener responses. This dissertation presents the elicitation

of a large-scale corpus of consistent misperceptions and its analysis

from multiple perspectives. In Chapter 2 we present the corpus and

its elicitation process. Our lab-based collection involved over 170 lis-

teners screening over 300 000 speech tokens presented in 5 distinct



masker types chosen for their diversity. We also detail the adap-

tive token pruning and post processing steps used to maximise the

yield of the collection, which resulted in over 3200 consistent mis-

perceptions. In Chapter 3 we conduct a signal-independent analysis

of the collected corpus. Phonetic transcriptions of the target word

and majority confusion are aligned using a method sensitive to both

stress and syllable structure. Using this method confusions can be

analysed in terms of phone- and syllable-level factors, in addition to

word-level characteristics. Through this analysis, we validate several

trends reported in naturalistic misperception studies including lexi-

cal stress, phonetic similarity neighbourhood and word position, on a

corpus with many fewer reliability issues compared to corpora derived

from anecdotal collections. While naturalistic studies tend to explain

confusion patterns in terms of the target word and the identity of its

constituent phonemes, we show that the type of adversity (in our case

masker type) has a great effect on the error patterns observed and that

misperceptions are better understood in terms of the speech-masker

interaction. In Chapter 4 we present a signal-dependent analysis of

misperceptions using the glimpse decoding framework. Using as input

the speech-noise mixture and an a priori segregation mask identify-

ing coherent spectro-temporal regions, the glimpse decoder performs

a joint search over the model and segregation space to return the most

likely word-segregation pair. In this chapter, we present two distinct

approaches to analysing misperceptions based on glimpse decoding.

First, we evaluate the decoder’s performance in explaining the mis-

perceptions in our corpus and classify well-explained confusions based

on the eliciting speech-masker interaction. We find that while a con-

siderable subset of confusions can be traced to complex speech-noise

interactions, many confusions arise due to acoustic similarity. An im-

portant finding of this analysis is that many confusions involve the

misallocation of one or more speech fragments from the masker to the

target or vice-versa. This motivates the second approach, where we

use the decoder to force-align the speech fragments in the mixture to



the reported confusion. Through this analysis, we find that in speech-

based maskers only a small percentage of cases can be attributed to

energetic masking, while misperceptions often involve the misalloca-

tion of masker glimpses to the target. In chapter 5 we introduce signal

modifications to the confusion-eliciting stimuli and reevaluate listen-

ers percepts to determine the origin of the confusion. Modifications

were selected to provide release either from energetic or from infor-

mational masking and involve SNR modification, signal resynthesis

in target glimpses, and modification of target fundamental frequency.

Based on the modification that was successful in revealing the tar-

get to the listeners we hypothesised the type of masking that caused

the original confusion. The glimpse resynthesis condition proved to

be the most successful modification in separating energetic and infor-

mational masking cases. Shifts in fundamental frequency had little

effect on the elicited confusions. A relatively high release from mask-

ing was observed for the noise-based maskers in the resynthesis con-

dition, suggesting that confusions in these conditions are not strictly

due to simultaneous masking. Through the analysis of consistent mis-

perceptions, this thesis attempts to extend the microscopic approach

beyond modelling nonsense syllable confusions. We present an ini-

tial attempt at modelling word-level misperceptions from a glimpsing

perspective. The understanding gained from constructing increasingly

accurate end-to-end models of auditory perception will undoubtedly

benefit speech and hearing related applications across the board.
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Chapter 1

Introduction

1.1 Understanding speech perception

Communicating through speech is one of the most outstanding and unique feats

of mankind. Yet the way listeners process speech, especially in less than ideal sce-

narios, remains an open scientific question. Our lack of understanding of speech

perception is perhaps best illustrated by the fact that while we can construct

systems that approach or even outperform listeners on other auditory tasks, for

example, speaker identification [Hautamaki et al., 2010; Kahn et al., 2011], we

have yet to propose a speech recognition system that achieves a performance suit-

able for practical applications, even in constrained speech tasks and especially in

cases where the speech is degraded [Barker et al., 2015; Meyer et al., 2007]. While

advances are made continuously — recent years have shown a jump in recognition

rates with the introduction of Deep Neural Networks [Dahl et al., 2012; Hinton

et al., 2012] — recognition rates for Automatic Speech Recognition (ASR) sys-

tems are still shy of human performance. One advantage of understanding how

speech perception works in humans is that it can help bridge the human-machine

gap in speech recognition and may result in successful commercial systems. A

better understanding of human speech perception could also benefit other prac-

tical applications such as hearing prosthetics and speech transmission systems.

Commercial benefits notwithstanding, understanding human auditory percep-

tion is a valid scientific endeavour in its own right. There has been a consider-
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able research focus in understanding speech perception starting from the 1950’s.

Early work focused on the phonetic level, trying to identify unique acoustic cues

for each phonetic segment or determine the smallest perceptual unit. Liberman

et al. [1952] found the same noise-burst can be perceived as /p/ or /k/ depending

on the adjacent vowel, which contradicts the notion of a one-to-one correspon-

dence between acoustic cues and perceived segments. The smallest perceptual

unit has been the subject of an ongoing debate. Cooper [1974] found that it

was impossible to separate the formant patterns of the vowel /i/ and the conso-

nant /d/ in the CV /di/. When trying to divide the two phones, listeners either

responded with /di/ or a non-speech sound suggesting that the syllable cannot

be split into smaller segments perceptually. Savin and Bever [1970] report that

listeners detect syllable targets faster than phoneme targets, and argue that the

syllable is the primary unit of perception. In other experiments [Cutler et al.,

1987; Mills, 1980], however, phonemes were recognised faster than syllables.

Later, the emphasis shifted from the perception of phones to that of entire

words. One of the most consistent findings regarding word recognition is that

listeners consider and select from multiple word hypotheses while receiving the

acoustic input, rather then waiting until the end of the word to make a decision.

Parallel activation of words has been shown through priming studies [Goldinger

et al., 1989; Shillcock, 1990; Zwitserlood, 1989]. Word onsets consistent with

multiple words or embedded words have been used as both intra-modal and cross-

modal primes, which ease the recognition of semantically related words. Using

eye-tracking [Allopenna et al., 1998; Tanenhaus et al., 1995], researchers have

shown that subjects are slower at focusing on the target object when multiple

objects are on display that partially match the acoustic input. Gating studies

[Grosjean, 1980; Warren and Marslen-Wilson, 1987], in which increasing chunks

of the target word are presented, have shown that listeners rule out compet-

ing words based on acoustic-phonetic detail before word offset. Several models of

spoken word recognition — both theoretical and computational — have been pro-

posed in order to provide a unified explanation of the behavioural findings [Luce

and Pisoni, 1998; Marslen-Wilson and Welsh, 1978; McClelland and Elman, 1986;

Norris, 1994]. There is agreement among these models in the activation and com-

petition of word candidates. However, they differ in their input representation,
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as well as the assumptions and implementation details behind activation and

competition [Weber and Scharenborg, 2012].

Another line of research focuses on the physiology of hearing. Models of

peripheral auditory processing have been developed to simulate the cochlear re-

sponse to an incoming sound source or speech signal [Allen, 1985; Delgutte, 1986;

Ghitza, 1992]. Less is known about the more central processing taking place in

the auditory cortex. Studies on brain lesions have shown that damage to certain

brain regions, such as Broca’s and Wernicke’s area, are associated with problems

in speech production and perception respectively. More recently, emerging brain

imaging techniques have allowed the examination of the brain during speech per-

ception. Electroencephalography (EEG) studies have measured event-related po-

tentials in response to violations of semantic [Kutas et al., 1980] and syntactic [Os-

terhout and Holcomb, 1992] expectations. Techniques such as positron-emission

tomography (PET) and functional magnetic resonance imaging (fMRI) have also

been used to study central auditory processing. These studies have established

the role of the left inferior frontal lobe in semantic and syntactic processing, as

well as the role of the right hemisphere in understanding context, figurative mean-

ing and processing prosodic information [Bookheimer, 2002]. While increasingly

detailed information is available on the areas responsible for certain functions,

given the complexity and plasticity of the brain it is hard to draw conclusions on

the exact processing mechanisms that occur in the activated brain regions.

A third approach aims to understand speech perception through its errors. A

perception error is when a listener misperceives an utterance which was articu-

lated clearly and correctly, possibly due to an internal or external disturbance.

Errors in the perception process can be highly informative about the underlying

mechanisms taking place. The first collection of misperceptions dates back to

the end of the 19th century with the work of Meringer [Meringer, 1908; Meringer

et al., 1895] based on a collection of 47 slips in German. He reports the robustness

of the stressed vowel and finds that consonants are more error prone then vowels.

Later, several such ‘slip of the ear’ studies [Bond, 1999b; Browman, 1980; Garnes

and Bond, 1980; Labov, 2011; Tang and Nevins, 2012] were carried out, analysing

speech misperception corpora compiled from anecdotal reports of ‘slips’ in every-

day conversations. Most often these analyses involve the manual or automatic
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alignment of the target and misperceived word and examination of segmental

error patterns. Garnes and Bond [1980] published a collection of approximately

1000 misperceptions. They confirmed the robustness of the stressed vowel and

showed the relevance of misperceptions to several other linguistic phenomena.

From her collection of 200 misperceptions, Browman [1980] created CVC syllabic

composites for stressed and unstressed syllables in monosyllabic and polysyllabic

words. She found that error rates decreased from initial through medial to final

syllables in polysyllabic words and onset through nucleus to coda position in syl-

lables. She also reported lower error rates in the stressed syllable. By merging the

above corpora to their own extensive collection [Tang, 2015; Tang and Nevins,

2012] created a large-scale corpus of naturalistic word misperceptions. They used

an automatic alignment algorithm [Needleman and Wunsch, 1970] to align the

segments of the target and confused word, which they modified slightly to align

by syllables. They investigated factors starting at the phonetic level up to the

word level, such as phonetic identity, stress, word position, adjacency, word fre-

quency and neighbourhood density. Their results suggest that salient segments

like the stressed syllable, vowels or consonants with high sonority are more likely

to be correctly perceived.

The main argument in favour of the above studies is their ecological validity.

However, several concerns have been raised about the reliability of the collec-

tion process. Cutler [1982] question the validity of speech error data in general,

citing issues such as uncontrolled sampling, with only the most memorable slips

reported, or potential confounds, such as mispronunciation or the listener recov-

ering the meaning from context and not reporting the misperception.

In addition to collections of misperceptions ‘in the wild’, misperceptions have

been collected in the laboratory. Different types of adverse conditions have been

used to elicit misperceptions in the lab, including fast speech [Vitevich, 2002],

faint speech [Cutler and Butterfield, 1992] as well as noise [Cooke, 2009; Tóth

et al., 2015]. Laboratory collection allows for better control over potential con-

founds, such as the homogeneity and hearing status of the listener population or

external disturbances such as noise and reverberation. It is also more reproducible

as the misperception-inducing stimulus can be recorded. The work in this thesis

falls under this third approach, focusing on analysing a large-scale collection of

4



Chapter 1

noise-induced word misperceptions.

1.2 Speech perception in noise

With the increasingly widespread use of communication systems such as the tele-

phone, the intelligibility and quality of speech over a transmission channel with

noise and other possible distortions became an increasingly important research

problem. While subjective listening tests provide the most direct and accurate

way of quantifying intelligibility, these can be costly and time-consuming. In-

stead, Fletcher and Galt [1950] pioneered a new approach, creating the first

method to predict speech intelligibility. Their work was later published by French

and Steinberg [1947] and the calculations further refined by Kryter [1962] into

the articulation index (AI). A standardised measure of intelligibility, the speech

intelligibility index (SII) [ANSI, 1997] also evolved from this approach. AI based

metrics were devised to handle additive noise. Later, the speech transmission

index (STI) [Steeneken and Houtgast, 1980] was proposed to predict intelligi-

bility for convolutional noise such as reverberation and other non-linear distor-

tions by quantifying the reduction of speech modulations at each modulation

frequency. The above intelligibility models make use of the long-term speech

spectrum and consequently are not well suited for measuring intelligibility in

time-varying maskers. To address this issue, several models have been proposed

that calculate intelligibility in short temporal windows which are subsequently

averaged [Rhebergen et al., 2005; Taal et al., 2010]. While objective intelligibility

models match listener intelligibility for a variety of adverse conditions increas-

ingly well, they provide no information on the type of confusions listeners make,

or their cause.

More recently an alternative approach has been proposed which aims to model

listener responses on a more fine-grained level. This approach, labelled ‘micro-

scopic’ [Cooke, 2006], can be understood in several sense of the word [Jürgens,

2010]. First, instead of trying to provide a global intelligibility estimate, it aims to

establish a mapping between the acoustic stimulus and the resulting percept for

each individual utterance. Phatak and Allen [2007] and Phatak et al. [2008] stud-

ied listeners’ confusions patterns of CVs in speech-shaped and white noise, aiming
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to identify the auditory events corresponding to each phone. Li et al. [2010] used

a three-dimensional deep search method to control the available speech cues in

time, frequency and level by time truncation, high/low-pass filtering and noise

masking to identify the relevant events for stop consonants. Varnet [2013] used

the classification image technique to show that the second formant transition is

key to be able to distinguish phones /b/ and /d/ in noise. Listeners were asked

to identify one of the two signals, while random noise was added to each trial

for a large number of trials. Relevant speech cues were identified by creating a

correlation map between the noise field and the responses.

Another approach to ‘microscopic’ modelling is to create an end-to-end model

of the auditory system, usually by connecting an auditory model front-end to a

pattern recognition back-end, thus ‘mimicking’ peripheral and central auditory

processing. This approach was first used by Ghitza [1994] as a means to evalu-

ate the performance of auditory models. He compared the distribution of error

patterns of the auditory model of interest connected to a Hidden Markov Model

back-end to those of human subjects on a diagnostic rhyme test. Another example

of this approach was proposed by Holube and Kollmeier [1996] who connected

the auditory model proposed by Dau et al. [1996] to a dynamic time-warping

recogniser, in order to predict recognition scores for normal hearing and hearing

impaired listeners, also on a rhyme test. They found that their approach pro-

duced intelligibility results comparable to the AI or STI. However they did not

analyse confusion patterns on a phone level. Jürgens and Brand [2009] extended

the above approach by investigating different perceptual distance measures for

the recogniser and evaluating model predictions on a phoneme level instead of

overall intelligibility. Using a spectro-temporal excitation pattern as input, Cooke

[2006] applied missing data speech recognition treating only time-frequency re-

gions of high local SNR (i.e. glimpses) as speech evidence to identify consonants

in a range of fluctuating maskers. The glimpsing model was found to be a good

predictor of average intelligibility, but model predictions differed substantially

from listeners’ responses on a microscopic level.

Such functional models of the auditory system promise insights into human

speech perception. However there are several issues involved. For example Zaar

and Dau [2015] showed that listeners themselves are a considerable source of vari-
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ability in their study of sources of variability in consonant perception. Focusing

on consistent confusions — stimuli to which the majority of listeners respond with

the same mistake — can reduce this variability. These cases can serve as valuable

diagnostic stimuli for such ‘microscopic’ models as argued by Cooke [2009].

As shown above, most microscopic modelling approaches so far focus on phone

level confusions. Also, when a stimulus elicits highly variable listener responses, it

is unclear what the output of the model should be. To address these issues, in this

work we aim to analyse a large-scale corpus of consistent word misperceptions. By

focusing on misperceptions at the word as opposed to the phone level, we factor in

some of the top-down processes that undoubtedly play a role in speech perception.

In addition, by focusing the analysis on consistent confusions, listener variability

is greatly reduced. Through both a signal dependent and independent analysis of

confusions, this work aims to provide a first step towards a model that is capable

of explaining listener misperceptions on an utterance-by-utterance basis.
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Chapter 2

Elicitation of word

misperceptions in noise

2.1 Introduction

1 The development and testing of intelligibility models requires appropriate psy-

choacoustic data from listeners. Data used to test and evaluate macroscopic intel-

ligibility models is often elicited using matrix-style sentences with a predictable

syntactic structure presented in a closed-set task [Hagerman, 1982; Wagener et al.,

2003]. Models are then fit based on listeners’ average word recognition rates across

the condition of interest.

Evaluating microscopic models of speech intelligibility is much less straight-

forward because of the variability present in individual listener responses. The

distribution of responses to the same physical stimuli can show a significant spread

across listeners. In addition, even the same listener can respond differently when

presented with the exact same stimulus a second time [Zaar and Dau, 2015]. In

the past, several methods have been introduced to capture response variability,

including the confusion matrix [Miller and Nicely, 1955] or the confusion pattern

[Allen, 2005; Phatak and Allen, 2007]. The confusion pattern — a tool repre-

senting the evolution of the response distribution for a single consonant across

SNR values — was introduced by Allen [2005]. In theory, these methods could

1A version of this chapter has been published in JASA-EL.
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be used to represent the variability stemming from across-listener differences as

well [Zaar and Dau, 2015].

However, while these methods can work for nonsense syllable confusions in

closed-set tasks, where the number of response alternatives is limited, it is unclear

how these methods would generalise to higher-level linguistic units (e.g. words),

where the number of response alternatives is much larger, especially in an open-

set paradigm. One reason why microscopic investigations have been restricted to

nonsense syllable confusions so far could be the lack of clear procedure through

which microscopic models providing word-level predictions could be validated.

Consistent confusions — cases where a given stimulus elicits the same erro-

neous response from a large listener group — provide an attractive option for

the development and testing of microscopic models. For these misperceptions,

individual variability is minimised; thus they provide a clear target for micro-

scopic models to aim for. In this chapter, we present our approach to collecting

a large-scale dataset of robust, noise-induced word misperceptions in Spanish. In

addition, we outline the measures we took to increase token finding efficiency and

maximise the number of useful confusions.

In their seminal paper, Miller and Nicely [1955] noted that one of the reasons

that individual phone confusions received little attention compared to average

intelligibility prediction up to that point, could be the cost involved in collecting

perceptual data suitable for such an investigation. Analysing perceptual con-

fusions at the phone-level requires a considerable amount of data because the

empirical probability of each possible phone confusion needs to be estimated.

Further, as confusions of higher level speech units are investigated, the number

of factors that could potentially impact the percept increases. Consequently, a

large-scale confusions corpus is advantageous because it can provide statistical

backing for the trends observed for a larger number of factors and interactions.

Considering the above, researchers have been continuously seeking more effi-

cient ways of collection to increase the size of their datasets. Labov [2011] dis-

tributed pre-printed collection cards among linguistics faculty and sent frequent

email reminders to jot down any misperceptions encountered during the day.

Their collection process yielded around 870 misperceptions. Tang and Nevins

[2012] assigned the collection of 5-10 confusions a week to linguistics students
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enrolled in a course on speech misperceptions. Over the course of two years, their

collection process resulted in 2857 misperceptions. To further increase the size

of their corpus, Tang [2015] added available naturalistic collections to their own,

standardising them into a single format.

A recent method — Web-based crowdsourcing — allows the scaling of the

above approach even further. With the widespread use of the Internet, it has

become possible to conduct perception experiments online, through the browser

and headphones of the user, instead of in a formal lab setting. Such crowdsourced

perception experiments have the potential to supply data from a large and varied

sample of the population efficiently with a low financial investment. Several

successful experiments conducted online in a variety of disciplines indicate the

viability of this approach [Blin et al., 2008; Honing, 2006; Koekemoer et al.,

2010].

Though certainly promising, there are also several drawbacks to the web-based

crowdsourcing approach. First, the success of the collection depends on partici-

pants being aware of the experiment and interested enough to take part. Second,

confounding factors such as the presentation quality and acoustic environment,

as well as the language proficiency and hearing status of the listener are a lot

more difficult to control compared to a laboratory setting

Cooke et al. [2011] evaluated the crowdsourcing approach by conducting a

collection of consistent word misperceptions both online and in the lab. In an

effort to separate listeners contributing low-quality data, online listeners under-

went both an objective and a subjective assessment via test tokens and an online

questionnaire. While Cooke et al. [2011] found that most consistent mispercep-

tions were supplied by the formal group (129 exemplars), online listeners who

met both subjective and objective criteria also contributed a significant amount

of confusions (85 exemplars), demonstrating that crowdsourcing with the appro-

priate control measures is a viable method of collection. Interestingly, only about

a quarter of confusions collected in the lab overlapped with the ones collected

online, suggesting that some of the online confusions are due to adversities not

present in a formal setting, such as a low-quality audio chain. Cooke et al. [2011]

proposed that crowdsourcing could operate as a filter to preselect tokens which

can later be retested under laboratory conditions. Considering that the formal
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collection method yielded the highest number of consistent confusions and that

data collected this way supports stronger scientific claims, we have opted to con-

duct the collection directly in the lab.

In this study, we aim to use a range of masker types with varying charac-

teristics, as we suspect that maskers with different properties could elicit dif-

ferent types of misperceptions. In particular, we selected maskers that differ in

their informational and modulation content. As our primary goal is generating

many confusions and considering that confusions are most likely to arise from the

phonological neighbourhood of the target word, we selected target words with

a neighbourhood that is not the sparsest. Marian et al. [2012] have shown in

their cross-linguistic study of phonological neighbourhood, that Spanish had the

sparest neighbourhoods on average among the five languages studied, namely

English, Dutch, French and German. In addition, the number of phonologi-

cal neighbours diminished with word length. Thus we opted to use 1-3 syllable

words as target utterances, to avoid words which — due to lack of competition

— would potentially not generate any confusions. In the following, we present

the details of our collection experiment.

2.2 Corpus elicitation

2.2.1 Speech material

Four talkers, two male and two female, were recorded reading a word list contain-

ing 3968 of the most frequent Spanish words of up to three syllables. Talkers were

trained to avoid list intonation. Recordings took place in a sound-attenuated stu-

dio using an AKG 4500 microphone and RME Fireface 800 analogue-to-digital

interface. The resulting recordings were manually segmented and downsampled

to 16 kHz. Some 15 753 items remained after removal of 119 mispronounced or

noise-contaminated items.
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Masker Speech Stationary SNR range (dB)
SSN Speech shaped noise x x -7 to -4

BMN1 Speech modulated noise x X -13 to -7
BMN3 3-talker babble modulated noise x X -8 to -3
BAB4 4-talker natural babble X X -3 to +1
BAB8 8-talker natural babble X X -4 to +1

Table 2.1: Maskers used in the experiment. The column headed ‘Speech’ indicates
those maskers containing natural speech signals.

2.2.2 Maskers

With the goal of promoting word misperceptions due to both energetic and in-

formational masking, five maskers were used with varying modulation and in-

formation content (Table 2.1). One masker was stationary (SSN) while the rest

differed in their depth of temporal modulation. In two cases (BAB4 and BAB8)

maskers were composed of natural speech material, while for BMN1 and BMN3

the envelope of competing speech and 3-talker babble was used to modulate a

speech-shaped noise carrier. Speech-plus-noise stimuli were presented to listeners

at SNRs within the masker-specific ranges shown in the table. These values were

chosen based on previous work [Cooke, 2009] and pilot tests as likely to elicit con-

sistent misperceptions. All 5 maskers were generated using the speech material

described in 2.2.1.

2.2.3 Participants

A total of 172 listeners provided responses to words in noise. Listeners were

native monolingual Spanish or bilingual Spanish-Basque speakers studying at the

University of the Basque Country in Vitoria, Spain (mean age 22 years, s.d. 4.8).

Apart from three listeners from Spanish-speaking countries in South America, all

participants were born in the Basque Country. Listeners gave written consent for

anonymous use of their responses and were paid for their participation.

2.2.4 Adaptive stimulus pruning

Since consistent word confusions are quite rare, even in noise, the elicitation proce-

dure employed adaptive token pruning techniques to decide which speech-in-noise
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tokens were worth pursuing and to rapidly identify tokens which were unlikely to

result in confusions and remove them from presentation. Corpus elicitation made

use of a heuristics-based pruning technique designed to remove stimuli deemed

unlikely to result in consistent misperceptions. The number of identical mis-

perceptions for each stimulus was monitored online and an automated decision

made following presentation as to whether to remove the stimulus from further

consideration. Stimuli were pruned if any of the following conditions held:

• L1 listeners in a row identified the stimuli correctly in the first N presen-

tations, or L2 listeners in a row identified the stimuli correctly after N

presentations

• the responses of the first L3 listeners were all different

• the token had been presented Nmax times, at which point it was marked

as exhausted

Tokens were discarded in the first two cases. Parameter values L1 = 2, L2 = 3,

L3 = 4, N = 8, Nmax = 15 were chosen after pilot studies demonstrated their

efficiency in maximising token turnover without discarding potentially-interesting

items. For each pruned stimulus a replacement was generated online using the

same SNR, masker type and speaker as the pruned stimulus. The replacement

word and masker fragment were chosen at random. Note that while the prun-

ing procedure might inadvertently remove a potential misperception some of the

time, these losses are outweighed by the efficiency gains in discovering misper-

ceptions. Indeed, subsequent analysis indicated that adaptive pruning enabled a

near-tripling of the rate of discovery of consistent misperceptions.

2.2.5 Procedure

Over the course of two non-contiguous sessions lasting approximately one hour

each, listeners identified blocks of 100 words in each of 20 conditions made up

from all combinations of the four talkers and five maskers. Within each block,

the target talker and masker type were held constant, and words were mixed

with noise in a descending sequence of SNRs. For the first 5 stimuli, the SNR
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decreased linearly from +30 dB to the upper SNR value shown in Table 2.1 to

accustomise the listener to the target talker and masker type. For the remaining

95 stimuli the SNR was set randomly in the ranges corresponding to the masker

type and presented in decreasing order of SNR, the goal being to explore a range

of SNRs without large jumps between stimuli. As a consequence of pruning, the

sequence of stimuli presented to each participant was assembled online and hence

differed from listener to listener. The masker led and lagged the speech by 200 ms

and 20 ms linear ramps were applied to the mixed token prior to presentation.

Participants heard stimuli through Sennheiser HD 380 pro headphones at 75 ±
1.5 dB(A) while seated in a sound-attenuating booth. Listeners were instructed

to type a single word in response to each stimulus although on a small proportion

of occasions (1.1%) listeners typed more than one word. Listeners typed their

responses into a textfield in a custom Java applet.

2.2.6 Postprocessing

Listeners’ responses were subject to a number of post-processing steps designed

to maximise the number of useful misperceptions. First, since on many occasions

participants omitted stress marks or the diacritic in ñ, such words were identified

and replaced whenever unambiguously possible (e.g., ‘máximo’ [maximum] for

‘maximo’, ‘baño’ [bath] for ‘bano’). Second, words with orthographic errors (e.g.,

‘abestruz’) but which resulted in a phoneme sequence identical to a unique ex-

isting word (e.g., ‘avestruz’ [ostrich]) were corrected. Finally, homophones (e.g.,

‘hola’ [hello] and ‘ola’ [wave]) were replaced by the most frequent form. These

steps were performed automatically using a combination of the GNU spell checker

aspell, a rule-based Spanish semi-phonemic transcriber HAPLO, and the CREA

Spanish word frequency list published by the Spanish Royal Language Academy

[REAL, 2008]. Semi-phonemic (i.e., intermediate between broad and narrow)

transcriptions were used since Spanish plosive realisations differ in a largely sys-

tematic manner according to the phonetic context. Further, words contrasting

in the lateral versus central approximants (‘L’, ‘j’) were treated as homophones

since most Spanish speakers do not distinguish them.

To complement semi-phonemic transcriptions, syllable boundaries and stress
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Table 2.2: Counts of consistent misperceptions per test condition.

Speaker Gender Masker Totals %
SSN BMN1 BMN3 BAB4 BAB8

S1 M 176 222 223 128 119 868 27.00
S2 F 143 200 192 193 151 879 27.34
S3 F 122 171 159 137 64 653 20.31
S4 M 184 201 170 149 111 815 25.35
Totals 625 794 744 607 445 3215 100.00
% 19.44 24.70 23.14 18.88 13.84 100.00

were obtained using TIP [Hernández-Figueroa et al., 2013], a Spanish word syl-

labification tool based on morphological analysis. Syllable boundaries are marked

with a period, while ‘!’ denotes the start of the stressed syllable. In addition,

the phoneme alignment between target and misperception was computed using

dynamic programming with a constraint that enforced alignment of consonants

to consonants and vowels to vowels. Alignment costs for insertions and deletions

were set to 7, while substitutions had a cost of 10.

2.3 Corpus description

Some 308 152 responses were collected during the elicitation process. In all, 53 039

individual speech-in-noise tokens were generated, of which 9288 survived pruning

and were heard by at least 15 listeners. Of these, a minimal level of listener agree-

ment of 6 listeners was applied in order to produce the final corpus. Some 3215

misperceptions meet this criterion and jointly make up the corpus of consistent

misperceptions.

Table 2.2 summarises the number of misperceptions obtained in each test

condition. All speaker/masker combinations contributed substantial numbers of

misperceptions to the corpus, with somewhat more resulting from the two babble

modulated noise conditions.

Figure 2.1 visualises counts of misperceptions as a function of phoneme align-

ment distance and consistency (expressed as the proportion of listeners reporting

the same misperception), plotted separately for each of the five masker types.

This plot suggests that while simple misalignments are frequent – 45% of misper-
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Figure 2.1: Counts of misperceptions as a function of consistency and phoneme
alignment distance for each masker.

ceptions involve the insertion, deletion or substitution of a single phoneme – more

complex confusions are also present. Highly-consistent complex misperceptions

are less common. However, for the two natural babble maskers, and especially

for the 4-talker case, such misperceptions exist, possibly due to the recruitment

of phonetic material from speech-based maskers. We explore this issue further in

subsequent chapters.

The corpus contains a substantial number of near-bimodal cases: on 189 oc-

casions the number of listeners reporting the majority misperception differs from

the second most frequent response (which might be the target) by two, 110 differ

by one, while in 26 cases they are equally consistent.

2.4 Discussion

Studies investigating perception errors either rely on misperceptions collected

from everyday conversations or confusions elicited in the lab. Both approaches,

however, present certain disadvantages. Issues with anecdotal collections include

uncontrolled sampling, the inability to record the acoustic environment for anal-

ysis and the many possible confounding factors associated with a naturalistic
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setting. At the same time, experimental collections are often criticised for their

lack of ecological validity. Consistent confusions present an interesting compro-

mise between the two approaches. On the one hand, they can be elicited in a

controlled laboratory environment and stimuli can be recorded for analysis and

replication. On the other hand, the likelihood of listeners responding to a given

stimulus with the same error in an open-set task is vanishingly small, suggesting

that these misperceptions are characteristic of the speech perception process in

general.

In this chapter, we have presented our approach to the collection of a corpus

of consistent word misperceptions in Spanish. Through a listener cohort of con-

siderable size, as well a set of heuristics aimed at maximising the confusion yield,

a large-scale collection of consistent misperceptions was achieved. The methodol-

ogy presented in this chapter has since been replicated in English [Marxer et al.,

2016] and, on a smaller scale, in Dutch [Scharenborg et al., 2014].

The adaptive token pruning process led to a significant increase in token

finding efficiency. While it is possible that the pruning process removed some

tokens which would have otherwise lead to a consistent confusion, the overall gain

in token finding efficiency justifies this approach. The parameters of the pruning

were determined empirically in pilot studies. While other heuristics could also

be considered, adding further criteria to the token pruning process would most

likely lead to diminishing returns.

All talkers and maskers contributed a significant number of confusions. It

has been shown that intelligibility amongst talkers varies considerably, even for

healthy native speakers [Barker and Cooke, 2007]. This could explain why one of

the female talkers contributed noticeably fewer confusions compared to the rest.

While all maskers contributed a substantial amount of confusions, the SNR ranges

conducive to generating misperceptions were quite different for each masker. In

line with previous studies [Brungart, 2001; Festen and Plomp, 1990], we found

that speech modulated noise was the least effective masker (requiring the lowest

SNR range), while babble maskers were the most effective.

Understandably, many confusions are similar to the target, differing in only

one or two phone edits. At the same time, Figure 2.1 illustrates that a consid-

erable amount of complex cases are included in the corpus as well. These cases
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are presumably the most interesting, since a high target-confusion edit distance

could suggest that these misperceptions arise from a complex interplay between

the masker and the target. In the next chapter, we start our analysis of the

consistent confusions corpus from a signal-independent perspective. The corpus

can be found at http://laslab.org/resources/confusions and is released under the

Creative Commons CC BY licence.
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Table 2.3: Example corpus entry for the word “baño” [bath] in 4-talker babble
noise, misperceived by 10 out of 15 listeners as “España” [Spain].

Field Description Example

ID integer used to identify the speech wave-
form corresponding to the entry

35877

Length speech signal length in samples 8003
Masker one of [SSN, BMN1, BMN3, BAB4,

BAB8]
BAB4

Onset starting location of the masker fragment
within the masker waveform; along with
the Length field this can be used to ex-
tract the masker waveform

562883

SNR signal-to-noise ratio in dB -0.545
Speaker one of [s1, s2, s3, s4] s2
Target orthographic representation of target

word
baño

Raw raw responses prior to post-processing,
one per listener

espana|baño|espana|
espana|baño|bano|
espana|españa . . .

Responses responses following post-processing, col-
lected into groups; nonwords are identi-
fied with an asterisk; the first entry is the
majority misperception

españa|baño|
espainia*| baino*

N-Listeners number of listeners who heard the token 15
Counts for each processed response, in decreasing

order
10 3 1 1

Confusion most frequently-reported response españa
Consistency number of listeners reporting majority

misperception
10

Target-X-
Sampa

sequence of phonemes corresponding to
the target in X-SAMPA notation with syl-
lable boundaries and stress marked

! b a . J o

Target-IPA sequence of phonemes corresponding to
the target in IPA notation with syllable
boundaries and stress marked

! b a . ñ o

Target-
frequency

normalised frequency (number of occur-
rences per 106 word-forms) of target word
according to word-frequency list CREA
[REAL, 2008]

44.64

Confusion-X-
Sampa

as for Target-X-Sampa e s ! p a . J a

Confusion-IPA as for Target-IPA e s ! p a . ñ a
Confusion-
frequency

as for Target frequency 525.66

Phoneme-
distance

alignment distance computed using dy-
namic programming string alignment

34
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ID Target Confusion TargetIPA ConfusionIPA Masker Cons. (%)
487 ladrones ladrón l a ! D R o . n e s l a ! D R o n BAB8 73
512 cobro joven ! k o . B R o ! x o . B e n BAB8 47
538 último últimos ! u l . t i . m o ! u l . t i . m o s BAB8 53
543 doblar leche d o ! B l a R ! l e . Ù e BAB4 60
556 estamos cristal e s ! t a . m o s k R i s ! t a l BAB4 67
583 ésta esto ! e s . t a ! e s . t o BMN3 40
588 nombrar sembrar n o m ! b R a R s e m ! b R a R BAB8 40
589 escuche escucha e s ! k u . Ù e e s ! k u . Ù a BMN3 80
599 jurar curar x u ! R a R k u ! R a R BAB8 40
609 echo mucho ! e . Ù o ! m u . Ù o BMN3 40
619 gancho ancho ! g a ñ . Ù o ! a ñ . Ù o BMN3 47
627 caliente calientes k a ! l je n . t e k a ! l je n . t e s BAB4 53
629 casi casa ! k a . s i ! k a . s a BAB4 87
633 intenta atenta i n ! t e n . t a a ! t e n . t a BAB4 67
640 muerta muerte ! m we R . t a ! m we R . t e BAB8 47
645 valen vale ! b a . l e n ! b a . l e BAB4 60
652 vena pena ! b e . n a ! p e . n a BAB4 73
662 odian odio ! o . D ja n ! o . D jo BAB4 40
673 poco coco ! p o . k o ! k o . k o BAB4 47
704 caros picaros ! k a . R o s p i ! k a . R o s BAB4 80
731 dirige manzana d i ! R i . x e m a n ! T a . n a BAB4 53
732 puntas apuntas ! p u n . t a s a ! p u n . t a s BAB8 40
737 pocos poco ! p o . k o s ! p o . k o BMN3 47
759 suenan suenas ! s we . n a n ! s we . n a s BAB8 67
770 borde bordes ! b o R . D e ! b o R . D e s BAB4 47
779 mancha escarcha ! m a ñ . Ù a e s ! k a R . Ù a BAB4 47
783 blusa estaré ! b l u . s a e s . t a ! R e BAB4 53
791 llegamos digamos J e ! G a . m o s d i ! G a . m o s BAB4 40
800 sobrio soja ! s o . B R jo ! s o . x a BAB4 53
807 iras vidas ! i . R a s ! b i . D a s BMN3 47
808 permiso estaré p e R ! m i . s o e s . t a ! R e BAB4 53
811 primos chicos ! p R i . m o s ! Ù i . k o s BAB4 67
814 puras curas ! p u . R a s ! k u . R a s BMN3 40
818 base básico ! b a . s e ! b a . s i . k o BAB4 80
847 muslo musgo ! m u z . l o ! m u z . G o BMN3 60
875 vestido vestir b e s ! t i . D o b e s ! t i R BMN3 47
876 perdona perdón p e R ! D o . n a p e R ! D o n BMN3 73
881 decente decir d e ! T e n . t e d e ! T i R BMN3 40
888 parezca pared p a ! R e T . k a p a ! R e D BMN3 80
890 huella cuello ! we . J a ! k we . J o BMN3 80
915 sangra sangre ! s a N . g R a ! s a N . g R e BMN3 73
916 cuido ruido ! k wi . D o ! r wi . D o BMN3 47
921 visto vistos ! b i s . t o ! b i s . t o s BAB8 40
929 rápida rápidos ! r a . p i . D a ! r a . p i . D o s BAB8 73
931 centros centro ! T e n . t R o s ! T e n . t R o BMN3 60
932 vieron hierro ! b je . R o n ! je . r o BMN3 47

Table 2.4: Examples of the Spanish confusions corpus. Columns correspond to con-
fusion ID number, orthographic and phonetic transcriptions of the target and misper-
ceived word, as well as the percentage of listeners who reported the majority confu-
sion. Further examples are provided in Appendix A.
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Signal-independent analysis of

misperceptions

3.1 Introduction

The ultimate goal of microscopic intelligibility modelling is to predict listener

responses to speech stimuli in adverse conditions at the utterance level. The

exact way in which the adversity masks, distorts or otherwise interferes with the

given speech signal will determine the acoustic evidence available to listeners and

will shape their percept to a large extent. Thus, to allow for such fine-grained

predictions, the input to microscopic models is often some sort of signal-level

representation of the degraded stimulus. While sensory information is clearly

central to the perception process, signal-independent factors have also been known

to play a role [Benḱı, 2002]. For example, lexical characteristics, such as word

frequency, familiarity and phonological neighbourhood density have been shown

to influence perception [Boothroyd and Nittrouer, 1988; Felty et al., 2013; Luce

and Pisoni, 1998]. In addition, asymmetric confusions of consonants such as /v/-

/D/ [Miller and Nicely, 1955] and /T/-/f/ [Miller and Nicely, 1955; Tang and

Nevins, 2012] could indicate the existence of perceptual biases at the phone level.

When facing uncertainty resulting from adverse conditions, listeners might

rely on these signal-independent factors even more. Both Boothroyd and Nit-

trouer [1988] and later Benḱı [2002] have shown that the recognition of mono-
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syllabic words in noise is more accurate than that of nonsense syllables. Using

a phonetically balanced set of words and nonsense syllables, they demonstrated

that phones in nonsense syllables are perceived largely independently, while the

perception of monosyllabic words benefits from a clear contextual advantage. In

contrast, in their study of speech recognition under a processing load, Mattys

et al. [2009] found that interfering noise with a substantial energetic masking

component hinders access to lexical representations and caused listeners to fall

back on acoustic cues for recognition.

The aim of this chapter was to investigate how noise-induced misperceptions

are affected by factors independent from the particular speech-noise interaction.

Using a custom procedure exploiting the robustness of the stressed vowel, we

aligned the phonetic transcriptions of the target and misperceived word, which

allowed us to investigate the effects of signal-independent factors on mispercep-

tions across multiple levels of speech units. We also evaluated how the type of

masker used for elicitation affected the resulting misperceptions, and contrasted

our findings to the trends reported in previous naturalistic and experimental mis-

perception studies.

The approach of the present chapter is comparable to previous studies analysing

misperceptions collected in the wild [Bond, 1999b; Browman, 1980; Tang, 2015;

Tang and Nevins, 2012]. When the collection of confusions is compiled from

anecdotal reports, recordings of the utterance and its acoustic environment are

often unavailable. This constrains studies investigating slips of the ear to a signal-

independent analysis, which often involves contrasting the characteristics of the

intended and perceived utterance and identifying the changes between them. In

order to achieve this, typically, these studies align the phonetic transcriptions of

the target and the misperceived word, either manually or via an algorithm. This

step permits the analysis of perceptual error patterns below the word level.

Previous research has investigated misperceptions in the laboratory as well.

Miller and Nicely [1955] were the first to advocate a more detailed examination

of individual perception errors, as they argue that listener confusions are far

from random and that the confusion patterns for each speech sound — which up

to that point have been masked by the focus on global error rates — are highly

informative about the underlying perception process. Their seminal work inspired
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many further studies investigating consonant and vowel confusions [Dubno and

Levitt, 1981; Gordon-Salant, 1986; Pickett, 1957]. While most of the experimental

work has been done on nonsense syllables, word based misperception studies are

also starting to emerge [Felty et al., 2013]. We start by giving a brief overview of

the results of both naturalistic and experimental misperception studies organised

according to the level of speech unit under investigation and proceed to detail

our results following the same sequence.

3.2 Related work

3.2.1 Phone-level

The first studies on nonsense syllable perception were conducted by Fletcher and

colleagues in Bell Labs almost a century ago [Fletcher and Galt, 1950]. With

the rise of telephony, characterising the telephone’s transmission channel both

in terms of intelligibility and quality, became an important research problem.

While the first studies measuring the intelligibility of speech transmitted over

the telephone involved conversational speech, Fletcher soon realised that speech

context decreases the efficiency of testing and increases the variability of phone

errors, since listeners can take advantage of context to recover the target utter-

ance. Instead, they chose to focus on how the perception of nonsense syllables

and individual phones was affected by channel degradations. Through this work,

Fletcher [1953] showed that the probability of accurately perceiving a nonsense

syllable is roughly equal to the probability of correctly perceiving each individual

phone in the syllable across speech levels.

Fletcher and colleges also investigated the spectral distribution of speech cues,

by evaluating listeners’ performance to nonsense syllables presented through a

series of narrowband filters. Through introducing a non-linear transformation

called the articulation index, they succeeded in making the contribution of each

frequency band to the wideband articulation score additive.1 An implicit as-

1Fletcher defined articulation as the probability of correctly transcribing phonemes and
syllables which can be unmeaningful. The term intelligibility was used to describe listeners’
performances on recognising words and sentences in adverse conditions.
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sumption in this model is that the phonetic features present in each band are

detected independently. The articulation index links the channel properties to

the articulation score and has been shown to be accurate across a range of channel

configurations.

While Fletcher already distinguished between consonant, vowel and syllable

error rates, Miller and Nicely [1955] were the first to analyse error patterns in

terms of consonant identity. They presented 16 English consonants preceding

the vowel /a/ in high- and low-pass filtering conditions, as well as white noise

masking. Consonant confusions were analysed along five articulatory feature di-

mensions, namely voicing, nasality, frication, duration and place of articulation.

The amount of information transmitted by each articulatory feature was evalu-

ated by calculating the mutual information between stimulus and response for

each feature separately. They found that the selected articulatory features were

perceived largely independently with voicing and nasality most accurately trans-

mitted across all conditions, while place of articulation was most susceptible to

errors, especially in the low-pass filtering and noise masking conditions.

Dubno and Levitt [1981], on the other hand, argued that features relevant

for perception are acoustic rather than articulatory, as the former are grounded

in physical properties of the speech signal. They proposed to explain consonant

confusions in terms of the acoustic similarity between the presented and reported

utterance. Similarity was evaluated along eleven acoustic parameters that have

been shown to be relevant for perception in prior studies [Cooper et al., 1952;

Delattre et al., 1955; Liberman et al., 1954]. The stimuli consisted of CV and VC

nonsense syllables, constructed by combining consonants with vowels /a/,/i/ and

/u/. Nonsense syllables were presented across five distinct speech levels, ranging

from 20 to 52 dB SPL in both quiet and cafeteria noise, with a signal-to-noise

ratio of 5 dB. While a few variables stood out as important, such as consonant

duration, energy and consonant-to-noise ratio, no single set of acoustic parameters

could be identified that accurately predicted confusion rates across all syllables

and experimental conditions.

Along similar lines, Gordon-Salant [1986] also tried to determine whether

perceptual confusions are better explained using articulatory or acoustic features

without imposing any a priori framework. She formed CVs by pairing English
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word-initial consonants with vowels /a/,/i/ and /u/ and presented them in twelve

talker babble at 12, 6 and 0 dB SNR. Using multidimensional scaling, consonant

confusion matrices were converted to perceptual distances in five dimensions.

Though the articulatory feature best corresponding to each dimension could be

identified, consonants did not form clusters around articulatory feature values in

the perceptual domain. While acoustic parameters exhibited moderate to strong

correlations with consonant coordinates in the perceptual space, the relative im-

portance of acoustic cues varied greatly across noise and vowel context.

Later, in a series of studies, Allen and colleagues also aimed to determine

the acoustic correlates of perceptual events that define consonants [Allen, 2005;

Phatak and Allen, 2007; Phatak et al., 2008]. Phatak and Allen [2007] found that

while vowels are uniformly masked by speech-shaped noise, consonants cluster

into three sets with low, high and intermediate recognition scores. They found

that high-scoring consonants — mainly consisting of fricatives and plosives —

had considerable energy in the high-frequency regions and were not confused

with consonants from the other two groups, while consonants in the low scoring

group were often confused with intermediate scoring consonants but not vice-

versa. They also found voicing confusions to be highly asymmetric, in favour of

voiced consonants.

In an effort to replicate the original findings of Miller and Nicely [1955], Phatak

et al. [2008] also analysed confusion patterns in a white noise masker. To deter-

mine whether the discrepancies in confusion patterns between their earlier study

[Phatak and Allen, 2007] and Miller’s original work stem from procedural dif-

ferences or can be attributed to the different maskers used, Phatak et al. [2008]

followed Miller’s original experimental procedure as close as possible. Overall,

Phatak et al. [2008] were successful in reproducing the findings of Miller and

Nicely [1955], and concluded that the differences in confusion patterns compared

to their earlier study [Phatak and Allen, 2007] can be attributed to the differ-

ences in the spectral distribution of energy between the two maskers. However,

the asymmetric voicing confusions in favour of voiced fricatives, observed in both

Phatak and Allen [2007] and Phatak et al. [2008] were not present in the study of

Miller and Nicely [1955]. As similar results were reported in Grant and Walden

[1996], this seems unlikely to be due to the stimuli or procedures used in the
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studies by Phatak et al. [2008]. They argued that the reason for not observing

such errors in the original study could be familiarity with the talker’s voice, as

the listeners in Miller and Nicely [1955] also served as the talkers.

One of the main innovations of the study by Miller and Nicely [1955] was

approaching perceptual confusions from an information theoretical perspective,

by evaluating the amount of information transmitted by each phonetic feature.

Christiansen and Greenberg [2012] extended this approach by not only evaluating

how consonant features are spectrally distributed, but also how featural cues

are integrated across frequency. They presented 11 Danish consonants through

narrowband slits, centred around 750 Hz, 1500 Hz and 3000 Hz, either individually

or in combination. They measured the increase in information transmitted, as a

function of the number of the slits used, as well as their combination. They found

that voicing and manner cues are distributed redundantly across the spectrum,

and the benefit of adding the third slit was only marginal. In contrast, place

had largely independent cues in each slit. Thus, the recognition of place cues

improved substantially with the addition of each frequency band.

As the basic unit of misperception in naturalistic studies is the word, less

emphasis has been given to phone-level analyses of slips of the ear. Also, most

naturalistic collections are too limited in size to provide enough statistical power

to support such an analysis. That said, Bond [1999b] provided several observa-

tions at the phone level. For example, they reported that manner of articulation

tends to be conserved between the intended and perceived consonant. In addi-

tion, they showed several examples of confusions involving the consonant /t/.

However, these observations were not systematic and were not backed up by

statistics. Nevertheless, several important trends started to emerge, later con-

firmed by larger datasets, such as the perceptual robustness of vowels and the

stressed syllable.

Tang [2015] conducted a systematic investigation of confusions at the phone

level, exploiting his large-scale collection of over 5000 misperceptions. Confirm-

ing results of prior studies [Bond, 1999b; Meringer, 1908], he found that segments

with higher acoustic energy such as stressed syllables, vowels and voiced conso-

nants, have lower error rates. Similar to Gordon-Salant [1986], Tang [2015] also

evaluated how perceptual distances relate to phonetic distances. By convert-
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ing phoneme confusion matrices to perceptual distances via Shepard’s metric

[Shepard, 1972] and applying multidimensional scaling and hierarchical cluster-

ing techniques, he compared clusters of speech sounds in phonetic and perceptual

space. Tang [2015] found that while consonants form perceptual clusters around

phonetic feature values such as frication, voicing, and nasality, there was only a

modest correlation between perceptual and phonetic distances overall.

3.2.2 Syllable-level

While most early confusion studies employed a forced-choice task [Dubno and

Levitt, 1981; Gordon-Salant, 1986; Miller and Nicely, 1955], later investigations

switched to an open-set paradigm and used CVC syllables which allowed the ex-

amination of consonant position effects [Benḱı, 2003; Woods et al., 2010]. Benḱı

[2003] presented a phonetically balanced set of CVCs to native listeners at four

different signal-to-noise ratios. He obtained similar results as Miller and Nicely

[1955] as well as Pickett [1957], in terms of the proportion of information trans-

mitted, and confirmed that voicing and manner features were more accurately

transmitted than place. Benḱı [2003] also found that all three articulatory fea-

tures were more accurately perceived in the onset position relative to coda, across

all SNR conditions. Further, consonant deletions were more frequent in coda po-

sition, especially for sonorants and voiced stops. He concluded that consonants

in the onset position had a perceptual advantage over coda.

Woods et al. [2010] also conducted a study of CVC confusions in speech-

shaped noise. Reference level SNRs corresponding to roughly 65% recognition

accuracy were determined for each consonant, in both onset and coda position

prior to presentation. Psychometric functions were evaluated at reference level

SNR, as well as 6 dB above and below reference, for each consonant and position.

Reference level SNR values varied by more than 40 dB across consonant identity.

A lower average reference SNR for onset position relative to coda indicated an ini-

tial consonant advantage, consistent with Benḱı [2003]. In addition, Woods et al.

[2010] reported that vowel identity significantly influenced consonant identifica-

tion and that consonant confusions had a tendency to cluster around the same

manner and voicing values with the exception of nasal-liquid and sibilant-affricate
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clusters.

Browman [1980] examined how word and syllable position affected segmental

error rates using her collection of 200 slips of the ear. In agreement with the

experimental studies above, she found lower error rates in onset position with

respect to coda in monosyllabic words. However, this trend is reversed in poly-

syllabic words where error rates progressively diminished from the initial to the

final position, both within-syllable and within-word. In line with the findings of

Garnes and Bond [1980], she found that stressed syllables were less error prone

compared to unstressed ones. While the observations of Browman [1980] lacked

statistical backing, Tang [2015] replicated the analysis on his extensive corpus

and confirmed that the trends reported by Browman [1980] were significant.

3.2.3 Word-level

As most laboratory studies have tried to identify perceptually relevant speech

cues by analysing nonsense syllable confusions, less emphasis has been placed

on word-level misperceptions, where lexical factors also come into play. In or-

der to quantify lexical advantage, Benḱı [2003] compared the recognition of CVC

words with CVC nonsense syllables. 120 stimuli of both words and nonsense

syllables were presented to native listeners with normal hearing across four dif-

ferent SNRs. They found that the phonemes of nonsense syllables were perceived

independently, while valid lexical items eased the recognition of the word-final

consonant. This effect, however, was modulated by neighbourhood density, as

listeners experienced a greater benefit when the neighbourhood of the stimu-

lus word was sparse. Luce and Pisoni [1998] conducted a series of experiments,

involving perceptual identification and lexical decision tasks to test the effects

of word frequency and neighbourhood confusability on word recognition. They

found that high-frequency words with sparse, low-frequency neighbourhoods sup-

ported better word identification. They reported that high density and frequency

neighbourhoods also resulted in slower processing times for clean speech. Based

on these findings they proposed the neighbourhood probability rule 1 and subse-

1The neighborhood probability rule is defined as p(ID) = F (W )p(s)

F (W )p(W )+
∑N

j=1 F (Nj)p(Nj)
where

p(ID) is the probability of identifying word W , p(W ) is the perceptual probability of W based
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quently the neighbourhood activation model. Felty et al. [2013] presented a lab-

based study of word misperceptions with target words sampled randomly from

the Hoosier Mental Lexicon [Nusbaum et al., 1984], instead of constraining the

stimuli to monosyllabic words. They compared targets and misperceptions across

word length (measured in both the number of phones and syllables) and word fre-

quency and evaluated the phonetic distance between targets and confusions. On

average, they found misperceptions to be shorter and higher in frequency com-

pared to target words. In addition, they reported that the word frequencies of

targets and misperceptions are correlated, a finding also observed in naturalistic

collections [Tang, 2015].

Conversely, as the basic units of slips of the ear are words, almost all natu-

ralistic studies investigated misperceptions across lexical factors. Using a rather

small (88 sample) subset of the corpus collected by Garnes and Bond [1980],

Vitevich [2002] compared misperceptions and target words across several vari-

ables, including word length, familiarity, frequency, neighbourhood density and

neighbourhood frequency. He found no significant differences between targets and

misperceptions for any of the above variables. However, when comparing slip of

the ear tokens (i.e. both target and misperceived words) to words randomly se-

lected from the lexicon, he found that slip of the ear tokens had denser, higher

frequency neighbourhoods. Bond [1999a] investigated the effects of morphology

on misperceptions. She found that listeners perceived morphologically complex

forms as simple, rather than the other way around. Further, they found that

errors mostly involved inflectional instead of derivational affixes.

From the overview above, it is clear that significant factors influencing misper-

ceptions can be identified across various levels of speech units. In the upcoming

sections, we follow the same bottom-up progression for the analysis of our Span-

ish misperception corpus, starting with factors at the phone level. We start our

analysis by detailing the alignment algorithm.

on the stimulus, F (W ) denotes the word frequency of W , p(Nj) is the perceptual probability
of the jth neighbour of word W and F (Nj) denotes the word frequency of the jth neighbour.
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3.3 Stress-based syllable and phoneme alignment

In order to be able to analyse confusion patterns below the word level, the

phonetic transcriptions of the intended and misperceived utterance need to be

aligned. Early naturalistic studies relied on manual alignment of target-confusion

pairs. However, this approach lacks objectivity and is impractical for large-scale

collections, which have become increasingly available. The alternative is to per-

form the alignment of segments automatically. A number of algorithms have been

proposed in the past for the alignment of phone sequences. Covington [1996] used

a depth-first search to align broad phonetic transcriptions of cognate pairs. Their

algorithm is based on binary articulatory features and emphasises aligning seg-

ments of comparable syllabicity, distinguishing between three broad categories:

consonants, vowels and glides. Somers [1999] proposed an algorithm similar to

that of Covington [1996] to compare children’s articulations to those of an adult

model. However, he employed narrow instead of broad phonetic transcriptions

and used the stressed vowel as an anchor point for the alignment. Kondrak [2003]

used dynamic programming string alignment to align pairs of historical cognates

based on multivalued articulatory features.

All three of the alignment algorithms above are feature-based. However, this

approach can result in circularity, as noted by Tang and Nevins [2012]. If the

algorithm imposes a priori constraints on the alignment, it can potentially bias

the results. On the other hand, using a phonetically-blind procedure with no

restrictions can lead to highly unlikely alignments. For example, blind align-

ment of the word ‘intentar’ to ‘patentar’ might map /i/ to /p/ and /n/ to /a/.

Thus, when selecting the alignment algorithm, the trade-off between generating

plausible alignments and introducing bias needs to be carefully considered.

Tang and Nevins [2012] used an algorithm by Needleman and Wunsch [1970]

originally intended for DNA sequence alignment. While they placed no con-

straints on the alignment of consonants, each vowel was replaced by an anchor

symbol to bias the algorithm to align by syllables and avoid mapping vowels to

consonants.

We propose an alignment method that is sensitive to both stress and syllable

structure. Alignment is achieved in two steps. First, the syllables of the tar-
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get and misperceived word are aligned using lexical stress as an anchor point.

Then, the phonetic1 transcriptions of matched syllables are aligned according to

syllable constituency, linking intended and perceived syllable segments in onset,

nucleus and coda positions. Figure 3.1 and Figure 3.2 provide two examples of

the alignment procedure. The first example corresponds to an onset and nu-

cleus substitution in the stressed syllable, while the unstressed syllable remains

unchanged. In the second, more complex example, only the stressed nucleus sur-

vives while the rest of the phones undergo a substitution and an entire syllable

is inserted.

There are situations, however, where stress-based alignment is suboptimal,

for example in cases where listeners report a salient word from a speech based

masker in its entirety, and the target word has no impact whatsoever on the

listener’s percept. Cases where target and misperception share the same root but

the stress in the misperception has shifted due to morphological variation also

result in stress-based alignments that are not ideal. In order to make sure that

our analysis is based on correct alignments we use the following heuristic:

1. if the stressed vowel is conserved between the target and the misperceived

word we assume stress-based alignment is applicable. (As the stressed vowel

is the most robust segment of the word, the odds of this occurring by chance

are quite small).

2. cases where the stressed vowel is not conserved are screened manually and

classified into:

(a) stressed-based alignment applicable even though stressed vowel un-

dergoes a substitution. Figure 3.1 provides an example of such a case.

Even though the vowel of the stressed syllable undergoes a substitu-

tion, stress based alignment is clearly applicable given that the second

syllable remains unchanged.

(b) stress-based alignment is not applicable. One example of such a case

from the corpus would be the confusion ‘muchacho’[boy]-‘mucho’[many].

1In reality transcriptions are semi-phonemic. In the following we will use the term phonetic
for simplicity.
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Target Confusion
! l e . ña ! n i . ña

onset nucleus coda onset nucleus coda stress
l e - n i - 1
ñ a - ñ a - 0

(a)

! l e . N a 7→ ! n i . N a

none

N a 7→ N a

nucleus

none

a 7→ a

onset

none

N 7→ N

sub

l e 7→ n i

nucleus

sub

e 7→ i

onset

sub

l 7→ n

(b)

Figure 3.1: Example of the stress-based alignment procedure for target misperception
pairs ‘leña’[firewood]–‘niña’[girl]. Panel a and b provide the alignment in matrix and
tree form respectively. Rows of the matrix corresponds to the aligned syllables while
columns show syllable constituency for target word and misperception.
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Target Confusion
! k u . B R o e s ! p u . m a

onset nucleus coda onset nucleus coda stress
- - - - e s 0
k u - p u - 1

B R o - m a - 0

(a)

! k u . B R o 7→ e s ! p u . m a

sub

B R o 7→ m a

nucleus

sub

o 7→ a

onset

sub

B R 7→ m

sub

k u 7→ p u

nucleus

none

u 7→ u

onset

sub

k 7→ p

ins

es

coda

ins

s

nucleus

ins

e

(b)

Figure 3.2: Example of the stress-based alignment procedure for a more complex
case: ‘cubro’[I cover]–‘espuma’[foam]. Only the stressed vowel is conserved, while
we observe a syllable insertion and the mapping of a consonant cluster to a single
consonant.
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For this example the stress based alignment would align syllables [Ù

a] and [m u] which is incorrect: [m u ! Ù a . Ù o]7→ [! m u . Ù o],

where ‘.’ denotes syllable boundaries and ‘!’ marks the beginning of

the stressed syllable.

1) and 2.a) are then combined and form the set of misperceptions of interest

for this study.

3.4 Statistical methodology

The goal of the current analysis is to understand how different factors and their

interactions affect the error patterns observed in misperceptions across multi-

ple segmental levels. Since aligned segments can fall into one of four categories

(i.e. substitution, deletion, insertion or unchanged) our outcome variable is of a

categorical nature. While ANOVA has been used to judge the significance of cate-

gorical outcomes converted to proportions in the past, it has been shown that this

can lead to spurious results [Jaeger, 2008]. More recently, the use of Generalised

Linear Models with mixed effects was advocated in psycholinguistic research for

analysing categorical data [Baayen, 2008]. As we assess the probability of each

type of error separately, the outcome variable can be expressed as a linear combi-

nation of the predictors after applying the logit link (logit(p) = ln( p
1−p)) function

corresponding to binary outcomes. As the quantity p
1−p is otherwise referred to as

odds, each model coefficient β expresses the change in log-odds of the given type

of error when the corresponding predictor is present. Thus positive coefficients

are associated with an increase in log-odds and consequently likelihood, while

negative coefficients correspond to a decrease in likelihood.

3.5 Outcome of stress-based alignment

Stress based alignment was applicable in 3082 cases corresponding to nearly 96%

of the corpus. The 133 cases where the alignment was not applicable are listed

in Appendix B. Misperceptions in the latter category are further classified based

on the reason they defy stress based alignment. 72 cases correspond to overrides,
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where a salient word was reported from the babble, while in 17 cases there is

a shift in the stressed syllable due to morphology. In 44 cases the stress based

alignment was suboptimal for another reason. The following analysis is focused

on the 96% of the confusions in the corpus which lend themselves to stress based

alignment.

Applying the proposed stress-based procedure to the 3082 target-misperception

pairs resulted in 7215 syllabic and 17 602 phonetic aligned segments. One-to-

many and many-to-one mappings of consonant clusters with no apparent conso-

nant match can result in alignment ambiguity (see example of ‘cubro’–‘espuma’

in Figure 4.1 panels a and b). As these cases constitute a tiny fraction of the

total number of aligned phonetic segments (1.04%), they are omitted from the

analysis. The comparison of aligned segments, both at the phone and syllable

level, can produce one of four possible segmental outcomes. The target segment

can remain unchanged (none), undergo a substitution (sub) or deletion (del), or a

segment not originally present in the target can be inserted (ins). In the following

analysis, we not only evaluate segmental error rates, defined as the proportion

of errors over all occurrences [(nsub + ndel + nins)/(nsub + ndel + nins + nnone)]

across variables of interest, but also show the distribution of aligned segments in

terms of the four possible outcomes above. The next section details the trends in

perceptual error patterns at the phone level.

3.6 Effects of consonant identity

3.6.1 Results

Past studies [Cutler et al., 2004; Miller and Nicely, 1955; Phatak and Allen,

2007; Woods et al., 2010] investigating noise-induced misperceptions in nonsense

syllables have demonstrated that consonants vary in terms of intelligibility and

confusion patterns. This section analyses consonant errors patterns in the Spanish

misperceptions corpus.

Figure 3.3 shows the distribution of consonant outcomes across the levels

of articulatory features voicing, manner and place. Error rates showed signif-

icant differences across the levels of all three features. Regarding manner of
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Figure 3.3: Distribution of outcomes for each articulatory feature. Proportions are
normalised on the number of times a given feature was present in the target word
(nnone + nsub + ndel). Bar widths are proportional to the square root of counts in
each bin. For each feature, levels are ordered from most robust to most error prone
from left to right.
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Figure 3.4: Percentages of single and combined articulatory feature errors in con-
sonant substitutions. M, P and V stand for single feature errors manner, place and
voicing respectively, while errors with a ‘+’ indicate combined feature errors.

articulation, affricates had the smallest error rate (7%), followed by fricatives

(33%), stops (41%), taps/trills (46%), approximants (48%) and nasals (50%).

Differences in error rate were significant between affricates, fricatives, stops and

taps/trills [χ2
min(1) = 11.08, p < .001], while differences between taps/trills, ap-

proximants and nasals were not significant [pmin = 0.19]. Regarding place of

articulation, palatal consonants had the least amount of errors (23%), followed

by bilabial (39%), dental (41%), velar (43%), alveolar (44%) and labiodental

(52%) consonants. Bilabial, dental, velar and alveolar consonants produced a

similar error rate [pmin = 0.22], while the differences in error rates were signif-

icant between palatal and bilabial [χ2(1) = 27.38, p < .001], as well as alveolar

and labiodental [χ2(1) = 4.33, p = 0.03] consonants. We found voiced con-

sonants to be significantly more error prone (48%) than voiceless ones (33%)

[χ2(1) = 236.09, p < .001].

Figure 3.4 shows the types of articulatory feature errors listeners make in con-

sonant substitutions. Combined feature error manner and place (P+M) (23%) fol-

lowed by single feature errors of place (P) (22%) and manner (M) (17%) occurred

most frequently. Consonant substitutions involving a voicing (V) error [M+P+V

39



Chapter 3

02040608010
0

12
0

o
n

se
t

 

 

0

10
0

20
0

30
0

40
0

co
d

a

 

 

no
ne

su
b

de
l

in
s

no
ne

su
b

de
l

in
s

b
d

f
g

k

k

l

l

m

m

n

n

t

t

p

p
r

x

x

z
s

s

ñ

ñ

D

D

N
T

T

G

G
Ù

B

B

R

R
J

F
ig
u
re

3
.5
:

D
is

tr
ib

u
ti

o
n

o
f

o
u

tc
o
m

es
fo

r
co

n
so

n
a
n

ts
in

o
n

se
t

a
n

d
co

d
a

po
si

ti
o
n

re
sp

ec
ti

ve
ly

.
D

u
e

to
S

pa
n

is
h

p
h
o
n

o
ta

ct
ic

s
fe

w
er

co
n

so
n

a
n

ts
a
re

a
ll

o
w

ed
in

co
d
a

po
si

ti
o
n

co
m

pa
re

d
to

o
n

se
t.

40



Chapter 3

(15%), V (9%), M+V (8%), P+V (4%)] were the least common. Significant differ-

ences were found between the error rates of single feature place and manner errors

[χ2(1) = 11.95, p < .001], M+P+V and V categories [χ2(1) = 24.96, p < .001], as

well as M+V and P+V [χ2(1) = 29.82, p < .001] while the differences between

the other adjacent categories were not significant [pmin = .23].

Figure 3.5 shows the distribution of outcomes across consonant identity and

syllable position. The most robust consonants include the voiceless palatal af-

fricate /Ù/ with (3%) error rate, followed by sibilant fricatives /z/ (7%) and /s/

(18%), the voiceless dental plosive /t/ (22%) and the voiced palatal nasal /ñ/

(21%). On the other end of the spectrum, voiced plosives /b/ (49%), /d/ (53%)

and /g/ (61%) were amongst the most error prone. Comparing consonants of

the same identity in onset and coda position we find quite large differences, for

example /s/ (5%-26%),/D/ (52% -93%) or /ñ/ with (24% -15%) which suggests

an interaction between consonant identity and syllable position.

The substitutions in Figure 3.5 for each consonant are further broken down

using confusion matrices for both onset and coda position in Figure 3.6 and Fig-

ure 3.7 respectively. In onset position, consonants were substituted quite freely:

on average 9.4 response alternatives scored over 2% and 11.4 over 1%. Neverthe-

less, several confusion clusters can be identified. Voiceless plosives /p/,/t/,/k/

are often substituted amongst each other. Plosives also show asymmetric voicing

errors in the direction of voiced-voiceless. Asymmetric confusions can be observed

for fricatives as well: /f/,/s/ and /x/ are most often confused with /k/ and /p/

and /T/ with /t/. Spanish phonotactics allows for fewer consonants in coda posi-

tion relative to onset. In coda, consonants are most often misperceived as /s/,/n/

or /R/,which at least in part can be attributed to inflectional morphology as these

phones serve as suffixes.
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Figure 3.6: Confusion matrix of phone substitutions in onset position. Here as in
Figure 3.7, square area corresponds to proportion of cases as each row is normalised.
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Figure 3.7: Confusion matrix of phone substitutions in coda position.
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3.6.2 Interim discussion

Our findings at the phone level showed many similarities with confusion patterns

reported in nonsense-syllable perception studies [Dubno and Levitt, 1981; Miller

and Nicely, 1955; Phatak and Allen, 2007; Woods et al., 2010]. In their investiga-

tion of CVC confusions in speech-shaped noise, Woods et al. [2010] reported that

in onset position, sibilants and affricates were most recognisable even in adverse

SNRs, followed by liquids, plosives, nasals and non-sibilant fricatives. Phatak

and Allen [2007] found that consonants could be categorised into high- /s,S,z,Z,t/,

low- /f,T,v,D,b,m/ and intermediate-scoring /n,p,g,k,d/ groups in their study of

CV recognition in speech-shaped noise. In agreement with both these studies,

our data showed that the voiceless palatal affricate /Ù/, sibilant fricatives /s,z/,

as well as the voiceless plosive /t/ had the lowest error rate. There was agreement

on the other end of the spectrum as well. Non-sibilant fricatives /f/ and /T/, the

voiced plosive /b/ and approximant /D/ displayed the highest error rates in our

data. These consonants had above average baseline SNRs in Woods et al. [2010]

and were also categorised as low-scoring in Phatak and Allen [2007]. An excep-

tion was /m/, which was classified as low-scoring for both the above studies, yet

was among the more robust consonants (26% error rate) in our case. The above

studies also reported that voiceless consonants were less error prone than voiced

ones, a finding which was supported by our data as well.

Feature errors in consonant substitutions found in our corpus also matched

those in prior experimental studies. In line with our findings, Woods et al. [2010]

reported that single feature place errors were most frequent, followed by combined

feature manner and place errors, single feature manner errors and finally errors

involving voicing. While Dubno and Levitt [1981] presented voiced and unvoiced

consonants separately, they found the same ordering of manner and place errors as

in our corpus. Our findings in terms of consonant substitutions also showed agree-

ments with the above studies. Woods et al. [2010] reported that intra-manner

confusions are common for unvoiced plosives and nasals. Phatak and Allen [2007]

reported that low-scoring consonants get confused with intermediate-scoring con-

sonants but not vice-versa, which matched with some of the asymmetric confu-

sions we observed, for voiceless plosives and non-sibilant fricatives /b/,/f/,/T/.
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As seen above, many segmental confusion patterns reported in experimental

studies in response to nonsense syllable stimuli were similar to those stemming

from word-level misperceptions. These results support the hypothesis that mis-

perceptions are — at least to some extent — acoustically driven, as word level

factors did not completely override the confusion patterns observed in nonsense

syllable confusions.

At the same time, fewer similarities could be found with trends reported in

naturalistic misperception studies at the phone level. For example, contrary to

our findings, Tang [2015] reported that voiced consonants were less error prone

than voiceless ones. We found differences in the error rates of manner categories

as well. Tang [2015] reported that liquids and glides had the smallest error rate

followed by nasals, fricatives and stops and finally affricates, with an error rate

almost twice as high as the adjacent category. Tang [2015] argued that these

findings could be explained in terms of sonority. As the validity of the concept

of sonority has been called into question [Ohala and Kawasaki-Fukumori, 1997],

Parker [2002] proposed a sonority scale grounded in acoustic correlates, most

notably intensity. He proposed the following sonority hierarchy of consonants:

Glide > Liquid > Nasal > Fricative > Affricate > Stop (where > indicates ‘more

sonorous than’). After discounting affricates as outliers, Tang [2015] found that

the error rates of consonant manner groups roughly matched the sonority scale.

Sonority could also account for the robustness of voiced consonants compared

to voiceless ones. While higher acoustic energy resulting in more accurately

perceived segments is a sensible explanation, our results, as well as the above-

mentioned noise-induced nonsense-syllable studies did not support this claim. We

will return to examine this discrepancy in Section 3.9 in more detail.

Despite the above differences, our results showed agreements with the findings

of Tang [2015] in terms of place of articulation errors. Tang [2015] reported that

error rates increased significantly from coronal through dorsal to labial segments.

They argued that these findings were well explained by the featurally underspec-

ified lexicon model proposed by Lahiri and Reetz [2002]. This model postulates

that listeners handle the inherent variability (e.g. between dialects, speakers)

of the speech signal by storing featurally underspecified representations in the

mental lexicon. The phonological features extracted from the speech signal are
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then mapped to the features stored in the lexicon with three possible outcomes:

match, mismatch or no-mismatch. Lahiri and Reetz [2002] argued that labial and

dorsal features are stored in the lexicon while coronals are underspecified, thus

the probability of perceiving a labial or dorsal segment as coronal is higher than

the other way around as it produces a no-mismatch. By collapsing the place of

articulation into categories labial [bilabial, labiodental], coronal [dental, alveo-

lar] and dorsal [palatal, velar], we saw that both dorsal and labial segments are

perceived as coronal segments 36% of the time. However, coronals are perceived

almost half as frequently as dorsal (19%) or labial (16%) segments. Thus, our

data also seems to support the underspecification hypothesis.

3.7 Word-structure effects

3.7.1 Results

In this section, we investigated the effects of word-structure related and supraseg-

mental factors on misperceptions, focusing on segmental position and lexical

stress. Syllable position within-word [initial, medial, final] and phone position

within syllable (i.e. syllable constituency) [onset, nucleus, coda] were combined

into a single factor with the following levels for simplicity: initial onset, medial

onset, medial nucleus, medial coda and final coda. Figure 3.8 plots the outcomes

across position for unstressed and stressed syllables in the upper and lower panel

respectively. In order to determine the effect of position, stress and their in-

teraction on the distribution of errors, we fitted three distinct logistic regression

models, predicting the probability of observing each error type (i.e. substitutions,

deletions and insertions) separately. The significance values of these two predic-

tor variables and their interaction were assessed using likelihood ratio tests. We

found that the best model included predictors Position and Stress as well as their

interaction, for all three types of errors [χ2
min = 369,p < .001]. As the algorithm

anchors the alignment on the stressed syllable, deletions and insertions are not

possible in the stressed nucleus position (see lower panel of Figure 3.8).

Starting with the effects of stress, we find that insertions [β = −1.08, p < .001]

and deletions [β = −1.31, p < .001] are less prevalent in stressed syllables com-
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Figure 3.8: Segmental outcomes across factors Position and Stress. The top and
bottom panels show the distribution of outcomes in unstressed and stressed syllables
respectively. Outcome proportions are normalised on the total number of sent phones
i.e. nnone + nsub + ndel. Bar widths are proportional to the square root of counts in
each bin. The top and bottom labels across the x-axis corresponding to within word
and within syllable position and jointly describe the levels of the factor position (e.g.
initial onset)
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pared to unstressed ones. The effect of stress on substitutions is less straightfor-

ward and depends on word position.

Regarding word position, we find that deletions are most common in word-

final coda [β = 2.05, p < .001], and are less pronounced in initial and medial

positions. Insertions are also most frequent in coda position, both word-medial

[β = .92, p < .001] and final [β = .92, p < .001]. Substitutions are most prevalent

in nucleus [β = .34, p < .001] and onset position, with no significant difference

between initial and medial onset [β = .19, p = .06].

Regarding the interaction between stress and word position, stress diminishes

the proportion of deletions across all positions, except for word-medial coda [β =

1.43, p < .001]. The same is true for insertions except for both medial [β =

1.50, p < .001] and final [β = .94, p < .001] coda. Significantly fewer substitutions

occur in the nucleus position for stressed syllables [β = −2.16, p < .001] compared

to unstressed ones, while the proportion of substitutions increases in word-initial

[β = .48, p < .001] and final position [β = 1.53, p < .001].

Our alignment algorithm also allows for treating syllables instead of phones

as the primary segmental unit. This way we can investigate the distribution

of outcomes on a syllable level. In this context, insertion and deletion refer to

the insertion and deletion of an entire syllable, while substitution refers to any

change occurring within the syllable. Figure 3.9 shows the distribution of syllable

outcomes as a function of position relative to the stressed syllable. Due to the

stress-based alignment, insertions and deletion are not possible in the stressed

syllable position (see Figure 3.9 right panel). We found that pre-stressed position

had a significantly smaller error rate (55%) compared to post-stressed position

(79%) [χ2(1) = 276.75,p < .001].

3.7.2 Interim discussion

The robustness of the stressed syllable is one of the most prevalent findings of

studies investigating slips of the ear [Browman, 1980; Garnes and Bond, 1980;

Tang, 2015]. Pisoni [1981] argued that in order to understand speech, listeners

take advantage of salient and reliable portions of the acoustic signal — such

as the stressed syllable — which can activate other sources of knowledge (e.g.
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Figure 3.9: Entire syllable changes across position relative to the stressed syllable.
The distribution of outcomes in pre- and post stressed syllables are shown in the left
panel, while the stressed syllable’s outcome distribution is shown on the right. As the
alignment is anchored on the stressed syllable, substitution is the only possible error
type in the stressed position.

lexical) that further aid the perception process. Our findings also supported the

robustness of the stressed syllable. While the probability of errors was lower

in the stressed syllable in general, we found that deletions are the least likely to

occur. Tang and Nevins [2012] report a similar result in their analysis of phonetic

adjacency: two adjacent vowels diminish the likelihood of a consonant deletion.

These findings suggest that in salient acoustic environments such as adjacent

vowels or the stressed syllable, listeners are unlikely to miss the presence of a

phone entirely.

We observed high error rates in both word-initial and final positions. This

is in contrast to previous naturalistic studies, such as Browman [1980] and Tang

[2015] who reported lowest error rates for word-final syllables followed by word-

medial and initial, and found that within-syllable, onset position was the most

error-prone. Bond [1999b] also observed that word-initial consonant substitu-

tions occurred twice as often as in any other position. One possibility is that this

disparity is attributable to cross-linguistic differences in misperception corpora.

Spanish is a highly inflected language, unlike English in which the above natu-

ralistic corpora have been collected. This difference could be responsible for the

higher error rates in word-medial and final positions for Spanish misperceptions.

To investigate whether these differences were in fact due to a morphological effect,
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Figure 3.10: The left panel shows the distribution of outcomes in word-initial onset
and word-final coda for the entire set of confusions. Th right panel shows the distri-
bution of outcomes in the same positions with the morphological cases filtered out.

we have removed confusions where the target and the reported word are morpho-

logical variants. We flagged target-confusion pairs as morphological variants if

they shared the same lexeme. Lexeme information was obtained from the ESPAL

database [Duchon et al., 2013] and ambiguous cases were categorised manually.

Figure 3.10 plots the distribution of outcomes for initial onset and final coda

position for the entire set of misperceptions (left panel), and with the morpho-

logical cases removed (right panel). Without the morphological cases, error rates

showed a similar tendency to the findings of naturalistic studies reported above.

We observed a relatively high error rate in word-medial coda, especially in

terms of insertions and deletions. This could be partly due to morphological

variation, often resulting in changes in the suffix, e.g. “probado” [proven; /p R o !

B a . D o/] confused with “probar” [to test; /p R o ! B a R/]. This could also happen

in conjunction with other changes to the word, for example “probado” [proven;

/p R o ! B a . D o/] misperceived as “robar” [to steal; /r o ! B a R/]. Another

reason for high word-medial error rates could be the syllable boundary shift when

a consonant is deleted in a cluster, as in the confusion between “cambia” [to

change; /! k a m . b ja/] and “cama” [bed; /! k a . m a/].
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Figure 3.11: Histogram of confusion-target phoneme length difference. The dashed
vertical line corresponds to the sample mean.

3.8 Word-level effects

3.8.1 Results

At the topmost level of our analysis, we investigated the effects of word-level fac-

tors on misperceptions. Starting with length, we found that misperceived words

[M = 5.11, SD = 1.28] were slightly shorter than targets [M = 5.25, SD = 1.20],

as evidenced by a paired sample t-test [t(2147) = 6.00, p < .001]. Figure 3.11

plots the histogram of word length difference measured as the number of phones

between misperceptions and target words. The distribution is skewed to the right

with a skewness of 0.34 and is significantly different from normal [p < .001], shown

by a D’Agostino-Pearson test.

Target-confusion pairs were also evaluated in terms of phonetic similarity.

Similarity was measured using a simple distance metric — the Levenshtein dis-

tance — as in Felty et al. [2013], where each edit is equally penalised. Figure 3.12

shows the mean edit distance as a function of target word length with a solid line

and the mean normalised edit distance with a dashed line. We found that the

absolute number of errors per word increased with target word length, while the

number of errors normalised on the length of the target word decreased.

As previous work has shown that high-frequency words exhibit many process-
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Figure 3.12: Levenshtein distance (solid line) and normalised Levenshtein distance
(dashed line) across target word length. Error bars correspond to ±1 standard error.

ing advantages [Scarborough et al., 1977; Stanners et al., 1975; Whaley, 1978], it is

possible that when in doubt, listeners err on the side of high-frequency words. We

found a significant difference in the lexical frequencies of target [M = 1.25, SD =

0.63] and confused words [M = 1.62, SD = 0.73] [t(2139) = −18.83, p < .001].

Figure 3.13 plots the histogram of word frequency difference between mispercep-

tions and target words. The distribution is skewed to the left with a skewness

of −0.14, and is also significantly different from normal [p = .007]. In addition,

the frequencies1 of intended and misperceived words show a weak correlation

[r = 0.19, p < .001].

The neighbourhood similarity structure of the target word could also affect

confusion patterns. Phonological neighbourhood is often described by the num-

ber and frequency of the lexical items phonetically similar to the target word.

Here, we used the common definition of phonological neighbourhood for sim-

plicity, namely the set of words which differ from the target in a single phone

edit. We found no significant difference between the neighbourhood frequency of

intended [M = 1.04, SD = 0.56] and misperceived [M = 1.069, SD = 0.57]

words [t(2139) = −1.468, p = 0.14]. However, we find that neighbourhood

1Word frequency was measured on a log-scale using log10(f + 1) where f is the raw metric
expressed as number of occurrences of the given word per million.
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Figure 3.13: Histogram of difference in word frequency between perceived and in-
tended words. The dashed vertical line gives the sample mean.

density is higher for confusions [M = 21.02, SD = 16.67] compared to targets

[M = 19.31, SD = 16.36] [t(2139) = −4.87, p < .001].

Across the same variables, we also evaluated the differences between words

from the list of targets in the elicitation experiment that contributed consistent

confusions to those that did not. During the elicitation process, words were se-

lected from the list randomly and mixed with the masker at the appropriate SNR

to form the stimuli presented to listeners. Out of the 3968 words used in the orig-

inal word set, 1856 words contributed at least one consistent misperception while

2112 words did not. We found no significant difference between the length of

words resulting [M = 5.52, SD = 1.33] and not resulting [M = 5.60, SD = 1.41]

in confusions [t(3939.9) = −1.93, p = .053]. Words not contributing any con-

fusions had significantly higher frequencies [M = 1.41, SD = 0.66] compared

to words that elicited at least one consistent confusion [M = 1.30, SD = 0.63]

[t(3929.8) = −5.25, p < .001]. Words contributing confusions had both higher

neighbourhood density [M = 18.03, SD = 15.42] and neighbourhood frequency

[M = 1.02, SD = 0.56] compared to words contributing no confusions which

had the following neighbourhood density [M = 16.61, SD = 15.07] and neigh-

bourhood frequency values [M = 0.96, SD = 0.57]. The differences between the

two group means were significant for both neighbourhood density [t(3869.5) =
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2.93, p < .001] and neighbourhood frequency [t(3916) = 3.58, p < .001].

3.8.2 Interim discussion

As research on spoken word recognition — including misperception studies —

has been mostly focused on monosyllable words [Benḱı, 2003; Luce and Pisoni,

1998; Pollack et al., 1960], few analyses discussed the effects of word length.

It is possible that longer words are subject to more lexical competition, as the

number of potential embeddings increases with word length, especially in Spanish

which has fewer phonemes (25) compared to English (44) and also longer average

word length [Maddieson and Disner, 1984]. On the other hand, Pitt and Samuel

[2006] argued that longer words will be more accurately perceived since they

receive less competition from neighbours and accumulating phonological evidence

supports stronger lexical activations. Pitt and Samuel [2006] used the Ganong

[1980] paradigm to test this hypothesis.1 In their experiment, listeners were asked

to identify the final phone in words that ended in /s/ or /S/. Stimuli were either

monosyllable (e.g., miss, wish) or trisyllabic words (e.g., arthritis, abolish) with

word-final consonants selected from an eight step /s/-/S/ phonetic continuum.

Pitt and Samuel [2006] reported that longer words generated a stronger lexical

shift, further increased by an early uniqueness point. They concluded that length

is an important variable in spoken word recognition which can influence lexical

activation.

In line with the findings of Pitt and Samuel [2006], Felty et al. [2013] also

reported that longer words were more accurately perceived in their study. Tang

[2015] reported the same result. While we found that the mean word length was

higher for words that did not contribute confusions, the result failed to reach

significance. It is possible that failure to observe this effect was due to limiting

the target words to maximum three syllables in the elicitation experiment.

Felty et al. [2013] also compared targets and misperceptions in terms of phone

and syllable length. In more than 70% of the cases, the target and the misper-

ceived word shared the same number of syllables, supporting the idea that listen-

1Listeners’ tendency to interpret acoustically ambiguous phonemes consistent with the lex-
ical context is referred to as the Ganong [1980] effect.
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ers narrow down the initial list of word candidates using global information such

as syllable structure, instead of a strict left-to-right decoding [Savin and Bever,

1970]. In addition, Felty et al. [2013] found that confusions were more likely to

have fewer or the same number of phones as the target. In order to test whether

shorter words were indeed stronger competitors with respect to longer words, they

conducted a Monte Carlo simulation to verify whether this pattern arose due to

chance. All of the 10 000 simulation runs produced a word length difference that

was closer to zero compared to the observed difference, which allowed the authors

to conclude that the length difference between the target and the misperceived

word cannot be attributed to chance. Finally, they found that neither the num-

ber nor the proportion of phone errors was constant, as the number of errors

increased with word length, while the proportion of errors normalised on length

decreased.

As in Felty et al. [2013], we also found confusions to be shorter than targets

and found similar results in terms of the number and proportion of errors with

respect to word length. However, instead of attributing shorter confusions to

listener bias, perhaps this trend is related to the confusion inducing adversity.

Shorter confusions could result from the deletion of target material due to the

energetic masking proprieties of noise. In Chapter 5 we return to this issue and

show that irrespective of the type of masker used, confusions primarily due to

energetic masking tend to be shorter than targets.

In the past, many misperception studies have investigated word frequency ef-

fects [Benḱı, 2003; Felty et al., 2013; Luce and Pisoni, 1998; Pollack et al., 1959;

Tang, 2015; Vitevich, 2002]. However, findings are not consistent, as certain stud-

ies report that misperceptions are higher in frequency compared to targets [Benḱı,

2003; Felty et al., 2013; Luce and Pisoni, 1998], while others find no significant

differences between the two groups.[Pollack et al., 1959; Tang, 2015; Vitevich,

2002]. For example, Tang [2015] observed that in their compilation of slip of

the ear corpora, the direction of the frequency effect depends on the sub-corpora

analysed, and found no significant differences overall. Further, they argued that

misperceptions in Felty et al. [2013] appeared to be higher in frequency due to a

confound with word length, as shorter words are also higher in frequency [Zipf,

1935]. Both Tang [2015] and Felty et al. [2013] agreed, however, that the frequen-
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cies of the target and misperceived words were significantly correlated. Similar to

Felty et al. [2013] we found that misperceptions had higher frequencies compared

to targets and observed a significant correlation between target and misperceived

words as well.

We found that words contributing consistent confusions had lower word fre-

quency, higher neighbourhood density and higher neighbourhood frequency com-

pared to those that did not. Thus, our findings matched the predictions of the

neighbourhood probability rule proposed by Luce and Pisoni [1998], namely that

low-frequency words with high neighbourhood density and frequency are more

easily misperceived.

Luce and Pisoni [1998] argued that in addition to lexical frequency, the recog-

nition of a given word will also be influenced by its phonological neighbourhood

structure. Virtually all models of spoken word recognition agree that the in-

coming speech signal activates multiple lexical candidates which subsequently

compete for recognition [Weber and Scharenborg, 2012]. These word candidates

are likely to share a similar acoustic-phonetic representation, as they were acti-

vated by the same speech input. Thus, Luce and Pisoni [1998] hypothesised that

words are organised according to acoustic-phonetic similarity in the mental lexi-

con and that the number and frequency of words similar to the target will affect

its recognition. In order to investigate the effects of phonological neighbourhood,

Luce and Pisoni [1998] conducted a series of perceptual identification and au-

ditory lexical decision tasks. They found that high-frequency words are easier

to recognise and resulted in faster reaction times in a sparse neighbourhood of

low-frequency words than the other way around. While the original study [Luce

and Pisoni, 1998] employed monosyllabic words, Vitevitch et al. [2008] found that

similar effects hold for polysyllabic words.

3.9 Effects of Masker type

3.9.1 Results

One aim of the present analysis was to evaluate the effects of masker type on the

misperceptions generated. Figure 3.14 shows the distribution of outcomes across
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Figure 3.14: Distribution of outcomes across masker type.

the five maskers used. Discounting insertions, the outcomes did not show sig-

nificant differences across masker type [χ2(8) = 11.91, p = .15]. When including

insertions however, the difference becomes significant [χ2(12) = 232.63, p < .001],

confirming the visual impression that speech-based maskers (BAB4 and BAB8)

contribute a significantly larger proportion of insertions compared to speech-

shaped noise and its amplitude modulated variants.

Figure 3.15 plots the phonetic similarity of target-misperception pairs across

masker type. We found that misperceptions stemming from noise-based maskers

were more similar to the target than those originating from speech-based ones,

with similarity measured using the Levenshtein distance. Masker type had a sig-

nificant effect on target-confusion edit distance, as shown by a one-way ANOVA

[F (4, 2143) = 18.76, p < .001]. Post-hoc comparisons using the Tukey HSD

test indicated that there was no significant difference in mean edit distance be-

tween the two speech-based maskers [MBAB4 = 2.51, SDBAB4 = 1.52;MBAB8 =

2.33, SDBAB8 = 1.33] and the three noise based maskers [MSSN = 2.02, SDSSN =

1.01;MBMN1 = 1.94, SDBMN1 = 1.01;MBMN3 = 1.94, SDBMN3 = 1.04]. How-

ever, there was a significant difference in mean edit distance for all pairwise

comparisons between speech and noise based maskers.

We found that maskers affected the distribution of phone error rates as well.

Figure 3.16 shows an association plot between consonant identity and masker

type, split according to noise and speech based maskers. The association plot

[Cohen, 1980; Friendly, 2000] is often used to better understand the relationships

between two categorical variables, once the association has been established via
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Figure 3.15: Mean edit distance (Levenshtein) across masker type. Error bars corre-
spond to ±1 standard error.

the χ2 test. Association plots visualise the deviation from expected cell frequen-

cies under independence. The height of each cell (signed) is proportional to the

Pearson residual, and the width is proportional to the square root of the ex-

pected counts, resulting in the area of each cell being proportional to the raw

residuals. Shading highlights the residuals that deviate most from independence

with solid colour corresponding to residuals individually significant at approxi-

mately the 0.05 level. The association plot in Figure 3.16 shows that phones with

high-frequency cues such as /Ù/,/s/ and /t/ were less error prone in noise-based

maskers than speech based ones. On the other hand liquids, approximants, as

well as the nasal /n/ and plosives /p/ and /b/ are more error prone in noise

based maskers.

3.9.2 Interim discussion

In the past, most studies investigating noise-induced misperceptions used a sin-

gle type of masker. However, through comparisons across studies using different

masker types, it has become increasingly apparent that the error distributions of

58



Chapter 3

−9

−2

−1

 0

 1

 2

12

Pearson
residuals:

p−value =
< 2.22e−16

Masker

C
o

n
so

n
an

ts

Speech based Noise based

b
d

f
g

k
l

m
n

t
p

r
x

z
s

ñ
D

N
T

G
Ù

B
R

J

Figure 3.16: Association plot for consonant error rate across phonetic identity and
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speech sounds are greatly affected by the type of masker used. Here we compared

the effects of masker type on phone error rates within a single study. In particu-

lar, we found several key differences between misperceptions elicited by maskers

constructed from speech and by maskers constructed from speech-shaped noise.

Insertions were more common in speech-based maskers compared to maskers

constructed from speech-shaped noise. In addition, misperceptions stemming

from speech-based maskers were more dissimilar to the target compared to the

ones collected in noise-based maskers. One possible explanation for both of these

observations is that in speech-based maskers, listeners can incorporate fragments

from the background talkers into their resulting percept. In the next chapter,

through a signal-dependent analysis of confusions, we will investigate the role

misallocation plays in misperceptions in detail and demonstrate that listeners

can indeed recruit background speech fragments when forming misperceptions.

As mentioned above, masker type affected the distribution of phone error

rates, as the speech cues suffering the most degradation depended on the charac-

teristics of the masker. For example, most of the energy in speech-shaped noise

is concentrated between 500 Hz and 2 kHz. Consequently, fricatives occupying

the high frequencies will stand out from the average masker level in this region.

Phatak and Allen [2007] reported a boost of 10 dB in the SNR spectrum above

6 kHz in their CV misperception study using speech-shaped noise. Accordingly,

they found that phones with high-frequency cues such as affricates, sibilant frica-

tives, and unvoiced plosives were most accurately perceived. A later study by

Woods et al. [2010] investigating nonsense syllable confusions in speech-shaped

noise also found similar results.

Conversely, in studies employing white noise, the perceptual advantage of

consonants involving high-frequency cues was not observed. Miller and Nicely

[1955] reported that features voicing and nasality were much less affected by

white noise masking than frication or place of articulation. Similarly, Phatak

et al. [2008] found that nasals constitute the lowest error consonant group in

white noise, while sibilants and affricates were in the mid-to-high error group.

When contrasting her findings to prior studies Gordon-Salant [1986] also noted

that confusion patterns are dependent on the noise condition. Our results were

in line with the findings above. As shown in Figure 3.16 maskers constructed
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from speech-shaped noise were less effective at masking consonants with high-

frequency cues /Ù/,/t/ and /s/ compared to babble noise. At the same time,

voiced consonants were more robust in speech based maskers.

These results highlight a key limitation of naturalistic studies. As in anec-

dotal collections, the error inducing adversity is not recorded, so the variability

stemming from different types of adverse conditions is not apparent. The above

findings suggest that the salience of speech sounds depends heavily on the char-

acteristics of the adversity accompanying it.

3.10 General discussion

In this chapter, we conducted a signal-independent analysis of confusion patterns,

investigating the effects of factors related to the target utterance which could

potentially influence the listeners’ percepts, across multiple levels of speech units.

In addition, we examined the effects of the type of masker used for elicitation on

the resulting misperceptions.

Among articulatory features voicing, manner and place, we found consonant

confusions involving place errors to be most common, followed by errors involving

manner and voicing. This trend has been reported consistently in both natural-

istic [Bird, 1998; Garnes and Bond, 1980; Tang, 2015] and experimental [Benḱı,

2003; Christiansen and Greenberg, 2012; Dubno and Levitt, 1981; Miller and

Nicely, 1955; Woods et al., 2010] confusion studies. The fact that place confu-

sions are so prevalent under a variety of different conditions suggests that place

cues are inherently vulnerable. This could be explained by their lack of cross-

spectral redundancy, in contrast with manner and voicing cues which have been

shown to be more redundant and also more robust [Christiansen and Greenberg,

2012].

Overall, our findings suggested that consonants with significant high-frequency

components were most accurately perceived. This contrasts with the results of

Tang [2015], who found that consonant error rates can be explained in terms of

sonority, with the most sonorous consonants being the least error prone. At the

same time, our findings were in line with noise-induced misperception studies

[Phatak and Allen, 2007; Woods et al., 2010], where the energy of the masker
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used for elicitation had a similar spectral distribution. A closer examination of

consonant error rates for speech- and speech-shaped noise-based maskers sug-

gested that the high-frequency consonant advantage was only present for the

noise-based maskers. This could also explain the above discrepancy of confusion

patterns between naturalistic and experimental studies. It is not unreasonable to

assume that misperceptions in slips of the ear corpora were collected in settings

where the acoustic environment is more similar to the babble maskers used in

this study (e.g. social gatherings [Cutler, 1982]) with respect to the noise-based

ones. These findings highlight that in most cases the salience of a given phone is

highly dependent on the adversities present, an aspect of perceptual confusions

often overlooked by naturalistic studies.

In over 96% of the corpus, the vowel of the stressed syllable between the

target and misperception was conserved. Overwhelming evidence supports the

robustness of the stressed syllable and in particular, the stressed syllable nucleus

[Browman, 1980; Garnes and Bond, 1980; Meringer et al., 1895; Tang, 2015].

As prior lab-based confusion studies either involved monosyllable words [Benḱı,

2003; Pollack et al., 1959] or did not investigate confusion patterns below the

word level [Felty et al., 2013], our study provides the first experimental support

for these naturalistic findings.

Word-initial onset and word-final coda positions were the most error prone.

These results seemingly contradict previous studies, which reported progressively

decreasing error rates from onset to coda and word-initial to word-final position

[Browman, 1980; Tang, 2015]. However, when removing confusions involving mor-

phological variation, we obtained similar trends across word position as reported

by the studies above. This suggests that the increased error rate in word-final

position can be explained by morphological inflexions which occur frequently in

the Spanish language. This hypothesis is further supported by the fact that a

high proportion of deletions and insertions could be observed in coda position,

potentially corresponding to a variation in the suffix.

We found that confusions were shorter, higher frequency words compared to

target words, in accordance with Felty et al. [2013]. However, these two findings

are potentially dependent, as Zipf [1935] has shown that shorter words are also

higher in frequency. One possible explanation of these findings is that noise-
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masking has a tendency to delete phonetic material from the target, which re-

sults in shorter confusions relative to targets overall. In chapter 5 we examine

this argument in more detail. While misperception studies often compare the

characteristics of the target and the confused word, the examination of the prop-

erties of words that contributed consistent confusions to words that did not, was

also highly informative. In particular, we found that our results matched the

predictions of the neighbourhood probability rule proposed by Luce and Pisoni

[1998], as low-frequency words with dense, high-frequency neighbourhoods were

more likely misperceived.

In light of the profusion of factors that govern speech perception, it is not sur-

prising that most experimental investigations approached the problem by focusing

on nonsense syllable confusions, thus excluding the effects of suprasegmental and

lexical factors. While naturalistic studies usually investigate misperceptions at

higher level speech units, these analyses are also often limited to examining a

handful of factors. A few investigations [Tang, 2015; Tang and Nevins, 2012]

including our current study, have begun to explore the effects of factors across

multiple levels of speech units in a single collection. However, even these large-

scale studies are unable to encompass all the possible factors and interactions that

are known to affect speech perception. Consequently, the questions of how the

factors at various levels interact to affect the percept of the listener and what rel-

ative importance can be associated to each level, remain largely unaddressed. An

added difficulty is that listeners are unlikely to use fixed perceptual strategies,

and possibly vary their approach depending on the adverse condition [Mattys

et al., 2009]. Further work is needed to explore the interactions that exist among

factors at varying levels of speech units and the way in which listeners integrate

acoustic cues with lexical knowledge to recognise speech in adverse conditions.

In this chapter, we have explored how signal-independent factors affect mis-

perceptions. However, when trying to understand how perceptual errors arise,

signal-dependent factors also need to be taken into account. The analysis of er-

ror patterns across masker type in this chapter already provided an indication

that confusion patters are greatly affected by the type of adversity giving rise to

them. In the next chapter, we attempt to explain misperceptions from a signal-

dependent perspective.
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Signal-dependent analysis of

misperceptions

4.1 Introduction

While there has been a longstanding interest in devising models which provide

predictions of average intelligibility for a variety of adverse conditions [Chris-

tiansen et al., 2010; Taal et al., 2010], recently a more in-depth investigation

of perceptual errors has received increasing attention [Cooke, 2006; Holube and

Kollmeier, 1996; Jürgens and Brand, 2009; Li et al., 2010; Zaar and Dau, 2015].

However, perhaps due to its novelty, this microscopic approach has been under-

stood in multiple different ways. Some studies [Jürgens and Brand, 2009; Zaar

and Dau, 2015] define the approach as investigating error rates and confusion

patterns of elementary speech units such as phones instead of quantifying intelli-

gibility on the sentence and word level. Others placed the emphasis on analysing

each stimulus-response pair individually, by establishing a mapping between the

listeners’ reported percepts and the spectro-temporal characteristics of the elic-

iting waveform [Li et al., 2010; Phatak and Allen, 2007] . Finally, end-to-end

models of speech perception, providing utterance level predictions of listener re-

sponses given the input mixture, have also been referred to as microscopic [Cooke,

2006; Holube and Kollmeier, 1996; Jürgens and Brand, 2009].

The analysis in the previous chapter can be considered microscopic according
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to the first definition. We have shown how segmental, suprasegmental, lexical and

morphological factors affected confusion patterns across multiple levels of speech

units. On its own, however, such a signal-independent analysis is insufficient to

adequately explain the cause of each individual misperception. Listeners’ percepts

will, in large part, be determined by the spectro-temporal details of the stimulus

waveform, and differences — even across different exemplars of the same utterance

and noise type — can result in significant perceptual variability.

In a recent study, Zaar and Dau [2015] aimed to quantify the relative impor-

tance of sources of variability in consonant perception. They presented 15 Danish

consonants paired with the vowel /i/ spoken by two native talkers to eight normal

hearing listeners. Stimuli were presented across six SNR conditions ranging from

-15 dB to 12 dB, as well as a quiet condition. Pronunciation variation across and

within talkers, acoustic differences between time-shifted exemplars of the noise-

masker and listener-related differences were all considered as potential sources of

perceptual variability. Conditions were compared using the perceptual distance

measure proposed by Scheidiger and Allen [2013], where each set of responses was

coded as a vector with a dimensionality equal to the number of response alter-

natives (i.e. the number of consonants used in the experiment). The perceptual

distance between conditions was then quantified using the normalised angular

distance between two vectors. They found that the largest amount of variability

could be attributed to across- followed by within-talker articulatory differences.

Surprisingly, different time-shifted exemplars of the same stationary masker also

resulted in significant perceptual variability. While within-listener differences

proved to be the smallest source of variability, across listener differences were

also large, similar in magnitude to talker-related variability.

In our current study, we control for listener-related variability by constrain-

ing the analysis to misperceptions consistently reported across a large listener

group. However, the variability stemming from waveform-level characteristics

of the speech-noise interaction remains. Consequently, this chapter presents a

signal-dependent investigation of misperceptions, in line with the two later defi-

nitions of the microscopic approach. We show that the glimpse decoder [Barker

et al., 2005] — a human-inspired noise robust speech recognition framework —

can serve both as a tool to determine the time-frequency regions in the mix-
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ture listeners treated as speech evidence given their reported percept, as well

as the potential basis for a microscopic model of speech perception. First, we

treat the decoder as a microscopic model and evaluate the percentage of listener

confusions well-explained by the decoder in an open-set paradigm. As a byprod-

uct of the recognition process, the decoder returns the set of glimpses — salient

spectro-temporal regions corresponding to a single source — that best support

the confusion. By evaluating the origin of each glimpse, we can determine the

amount of masker material incorporated into each misperception, and classify

well-explained confusions based on the type of masker interference involved. Us-

ing an unmodified speech recogniser, we also evaluate the number of confusions

due to acoustic similarity. Then, we invert the process by conditioning the decod-

ing on the misperceived word, in order to determine the set of glimpses that best

explain each confusion through forced alignment. By determining the spectro-

temporal regions that best support the listener’s percept, we investigate the role

misallocation of speech fragments plays in generating misperceptions in babble

maskers.

In sum, this chapter aims to conduct a signal-dependent analysis, in order

to explain misperceptions based on the type of masker interference giving rise to

them. We start by giving a brief outline of the different ways unwanted sources

can impede the correct identification of an utterance.

Extraneous sources can interfere with the perception of the target message at

multiple stages of auditory processing, starting at the auditory periphery. Upon

reaching the listener’s ear, signals stemming from various sources in the acoustic

scene combine additively. Instead of the entire mixture, however, the listener is

more often interested in inferring the properties of a single constituent source.

This problem is fundamentally ill-posed, as many source configurations can give

rise to the same mixture signal. Weaker target cues occupying the same spectro-

temporal region as a more energetic masker component can become undetectable.

This is exacerbated by the fact that the ear applies pseudo-logarithmic compres-

sion, which can make the contribution of the weaker signal to the resulting nerve

excitation even more insignificant. As a result, masked target components are

often effectively missing, and listeners are forced to reconstruct the target mes-

sage based on partial evidence. This phenomenon is known as energetic masking

67



Chapter 4

[Pollack, 1975].

However, in several masking conditions, the intelligibility loss exceeds that

which would be expected from overlapping excitation patterns alone. Almost a

century ago, Wegel and Lane [1924] had already made the distinction between

masking due to signals exciting the same region in the basilar membrane and

masking resulting from ‘conflicting sensations in the brain’. Later, in their study

of spondee identification in multiple masking conditions, Carhart et al. [1969]

also noted that listeners experienced excess masking when speech signals were

included in the masker complex. They argued that this added masking effect

resulted from listeners facing the additional task of correctly allocating signal

components before they can recognise the target message. This phenomenon,

known as ‘informational masking’ [Pollack, 1975], is often used to label the com-

pound effect of all processes that result in intelligibility loss beyond energetic

masking. Informational masking has been linked to several processes beyond the

auditory periphery such as perceptual grouping [Bregman, 1990], source segre-

gation [Brungart and Simpson, 2002; Brungart et al., 2006], auditory selective

attention [Cherry, 1953] and cognitive load [Mattys and Wiget, 2011]. (How-

ever, since none of the above processes involve overlapping patterns of excitation,

Tanner [1958] noted that the term masking can be somewhat misleading in this

case.)

In order to understand their relative contributions to the overall masking

effect and the underlying processes involved, researchers have tried to isolate

energetic and informational masking through multiple experimental paradigms

[Bronkhorst and Plomp, 1988; Festen and Plomp, 1990; Hirsh, 1950; Rhebergen

et al., 2005; Versfeld and Dreschler, 2002] (for a brief overview see Chapter 5).

Through this work, misallocation of signal components has emerged as an integral

constituent of informational masking for both speech and non-speech stimuli. As

such, when applying modifications that perceptually segregate the target from the

background sources, the amount of informational masking can be greatly reduced.

For example, Neff [1995] has shown that introducing manipulations that promote

perceptual segregation of the target results in better identification performance in

a tone detection context. Four types of manipulations were selected based on low-

level auditory grouping cues identified by Bregman [1990]. Two manipulations

68



Chapter 4

used target tones with shorter durations — 10 and 100 ms targets in a 200

ms masker tone. The third manipulation involved changes in signal quality, by

employing a narrow band noise target instead of a tone. The fourth condition

separated the target and masker signal dichotically. These modifications resulted

in a release from masking of up to 25 dB. However, Neff [1995] also found that

as the number of masking components increased, the unmasking resulting from

the modifications diminished, since the increasing number of tones in the masker

complex shifted the type of masking from mainly informational to energetic,

where perceptual segregation provides less benefit.

Perceptual segregation reduces the amount of informational masking in a

speech context as well. For example, Festen and Plomp [1990] observed that

competing speech from a talker of the opposing gender results in less masking

relative to the same-sex condition. Brungart [2001] also studied the factors that

influenced the listener’s percept when listening to speech in the presence of a

single competing talker. They found that in a single competing talker scenario,

the effect of masker interference can largely be attributable to energetic masking.

Similar to Festen and Plomp [1990] they reported that the voice characteristics

of the competing talker had a significant effect, with less masking produced when

the competing speaker was of opposing gender compared to a competing talker of

the same-sex. Contrary to masking by speech-shaped or speech-modulated noise,

the recognition performance in the presence of a single competing talker did not

decrease monotonically with decreasing SNR. In fact, recognition plateaued be-

tween 0 and 9 dB. In some cases, even an increase in performance can be observed

with lower SNR, because level differences help listeners segregate one voice from

the other, even if the target voice is presented at the lower speech level.

In a later study, Brungart et al. [2006] has also shown that in a competing

talker scenario, the intelligibility loss is primarily attributable to informational

masking, more specifically to the inability to correctly segregate target infor-

mation from the competing speech fragments. By resynthesising the mixture

exclusively in regions dominated by the target, listeners achieved near perfect

intelligibility compared to only around 50% 20% and 10% recognition scores in

the single, two and four competing talker conditions respectively.

To illustrate how energetic masking and misallocation of speech fragments
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Target−plus−masker: acostumbrar

Target: habraTarget: habra a b r a

Masker: 4−talker babble
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Figure 4.1: An example robust misperception. Upper: Auditory spectrogram of a
speech-in-babble mixture (see 4.1 for details). Lower: target and masker waveforms
with phonemic content of target and each individual talker in the babble masker.

can lead to misperceptions and intelligibility loss, consider the following example

from our corpus in Figure 4.1. The target word “habrá” [there will be; /abra/]

is reported as “acostumbrar” [to get used to; /akostumbrar/] by 9 listeners when

presented in 4-talker babble at a signal-to-noise ratio (SNR) of −0.8 dB. Phoneme

transcriptions for the target word and the four individual babble tracks are also

shown. While the sequence /bra/ is shared by the target and confusion, it is

evident that additional processes are needed to explain the misperception. First,

there is some evidence for the incorporation of babble segments corresponding

to /o/, /st/, /m/, and later /r/ in temporal locations which are consistent with

their inserted positions in the perceived word /akostumbrar/. In these cases, it is

possible that some part of the segment is energetically-dominant in the mixture

during the relevant intervals. Second, elements of the initial /a/ of the target
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word may have been sufficiently masked to render its identity uncertain. Finally,

for the initial segments /ak/, while there is no equivalent segment in the babble,

segments with vowel and voiceless plosive characteristics occur at the right place.

Here, listeners may be using lexical information to hypothesise “acostumbrar” in

the absence of a lexical candidate congruent with the acoustic evidence. Thus, it

is plausible that the confusion arises through an interplay of energetic masking,

the incorporation (i.e. misallocation) of phonetic detail from the masker, and the

failure to include certain details from the target itself.

Despite these challenges, in everyday life listeners can comprehend speech

and hold conversations across a variety of multi-source environments, many of

which would stump state-of-the-art recognition systems. How are listeners able

to achieve this feat? Given the complexity of auditory perception, most psy-

cholinguistic research has focused on uncovering the mechanisms involved in un-

derstanding a single isolated talker. However, listeners are undoubtedly equipped

with a set of additional perceptual strategies allowing them to maintain intelligi-

bility despite the adversities present.

It has been suggested that listeners take advantage of glimpses — salient

spectro-temporal regions stemming from a single source — in order to sustain

comprehension in adverse conditions [Buss et al., 2004; Cooke, 2006; Miller and

Licklider, 1950]. Listeners’ ability to piece together salient target regions into a

coherent percept has been evaluated for temporal, spectral and spectro-temporal

glimpses. By multiplying speech with a square wave with a given frequency and

duty cycle, multiple studies have measured listener performance when presented

with glimpses of the entire undistorted speech spectrum. In a recent study, in

addition to the effects of the interruption parameters, Wang and Humes [2010]

also analysed whether linguistic factors affect glimpse integration. Target words

were divided into lexically easy and lexically hard based on their word frequency

and neighbourhood similarity structure following Luce and Pisoni [1998]. In ad-

dition, effects of talker gender and presentation level were examined. Wang and

Humes [2010] reported that the proportion of speech glimpsing, as well as lexical

difficulty, had the largest impact on recognition. They also found a significant

interaction with lexically easy words requiring less acoustic information to be

recognised relative to hard words. Glimpse integration has been investigated
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across frequency as well. Warren et al. [1995] measured listeners performance

in response to bandpass filtered sentences using narrowband slits. Using 1/3

octave-bands and 1/20 octave bands with centre frequencies ranging from 370 to

6000 Hz in two consecutive experiments, Warren et al. [1995] found that intelli-

gibility remains surprisingly high, with up to 95% and 77% respectively for the

band centred around 1500 Hz. Finally, glimpse integration has also been analysed

for spectro-temporally complex distributions, which are closer to the ones occur-

ring as a result of natural fluctuations in target and masker energy. Howard-Jones

and Rosen [1993] filtered pink noise into either 2,4,8 or 16 bands and amplitude-

modulated neighbouring bands synchronously or with a 180◦ phase shift, resulting

in coherent glimpses of the target spectrum or a glimpse distribution resembling

a checkerboard with varying square size. Speech reception thresholds were im-

proved in the synchronous condition by 23 dB compared to the unmodulated case.

However, unmasking in the asynchronous condition was only evident for the case

of two bands. At the same time, Buss et al. [2004], using amplitude modulated

speech in a steady state masker, found that listeners are able to integrate asyn-

chronous glimpses even when filtered into 16 narrow bands. A recent study by

Ozmeral et al. [2012] argued that the lack of benefit provided by asynchronous

narrowband glimpses is not perceptually-driven, but due to the peripheral spread

of masking occurring for narrowband filters. By eliminating this effect via a di-

chotic presentation of even and odd frequency bands, they found significantly

greater masking release compared to the diotic condition. However, performance

still declined as the number of bands increased, suggesting that listeners inability

to take advantage of narrowband asynchronous glimpses cannot be attributed to

masking spread alone. Other studies have also supplied evidence in favour of

the glimpsing hypothesis. The study by Brungart et al. [2006] mentioned above,

involving resynthesis of speech exclusively in regions dominated by the target has

demonstrated that enough information exists in target glimpses to support the

correct identification of the target. Finally, glimpse proportion — the area of

spectro-temporal plane glimpsing with respect to the entire mixture — has been

successfully used as a predictor of speech intelligibility for both stationary and

fluctuating maskers [Tang et al., 2016].

Two key properties of speech that allow recognition based on target glimpses
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are sparseness and redundancy. Speech remains intelligible when reduced to three

frequency modulated sinusoids following the formant frequencies (i.e. sine wave

speech [Bailey et al., 1977; Remez et al., 1981]) or four amplitude modulated

frequency channels excited by noise (i.e. cochlear implant speech [Shannon et al.,

1995]). In addition, speech is a sparse signal highly modulated in both time

and frequency. High-energy regions such as vowel harmonics or high-frequency

bursts alternate with regions of lower energy or complete silence, such as the

pause before the onset of a plosive. Sparsity can provide listeners with glimpsing

opportunities even when the global SNR is quite adverse.

The glimpsing model of speech perception in noise provides an explanation

to how listeners can maintain intelligibility when facing partial speech evidence.

However, in the presence of interfering speech-like sources, listeners need to cor-

rectly segregate target components prior to recognition. In order to accomplish

this, Bregman [1990] argues that listeners rely on both source and schema driven

processes. It has been suggested that listeners perform bottom-up grouping of

coherent spectro-temporal regions exploiting cues such as co-modulation across

frequency bands, common onset, location and fundamental frequency for voiced

regions. At the same time, there is evidence of listeners relying on top-down

processes as well [Remez et al., 1981; Scheffers, 1983].

Over the last few decades, ASR research has put considerable effort into recog-

nising speech in non-ideal conditions. For automatic recognition systems, non-

stationary maskers such as competing speech have proved to be the most chal-

lenging scenarios. While some of the proposed methods are incompatible with

human auditory processing, as they rely on multiple microphones [Hori et al.,

2017; Sullivan and Stern, 1993] or use non-auditory features [Ali et al., 2014],

other approaches — in light of listeners’ high performance — seek inspiration

from human speech perception. One such approach, the glimpse decoder, is

based on a glimpsing model of speech perception and — similar to listeners —

integrates both source and model driven processes. Introduced by Barker et al.

[2005], the glimpse decoder is a modified statistical speech recognition framework

originally intended for decoding speech in the presence of non-stationary maskers.

For our purposes, the advantage of such a listener-inspired approach is that it can

also serve as a computational model of speech perception. In this chapter we will
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use glimpse decoding as our microscopic modelling approach, both in terms of

providing predictions to individual listener responses, as well as determining the

spectro-temporal regions listeners most likely treated as target evidence. In the

following section, we start by giving a brief outline of glimpse decoding theory.

4.2 Glimpse decoding

4.2.1 Theory

Glimpse decoding is based on the missing data speech recognition framework

introduced by Cooke et al. [1994, 2001]. Instead of trying to extract the target

signal from the mixture prior to recognition, the missing data approach bases

recognition on glimpses of the target, where the signal is largely uncorrupted by

the masker and speech separation is superfluous. Non-glimpsing regions in the

mixture are either treated as missing or used as an upper bound for speech energy.

The missing data approach requires:

1. identification of time-frequency regions in the mixture dominated by target

energy

2. modification of the recognition algorithm to handle missing data

The conventional speech recognition problem can be formulated by finding

the most likely word sequence W given the series of observation vectors X corre-

sponding to the clean speech source.

Ŵ = argmax
W

P (W |X) (4.1)

When the observations are corrupted by noise, the problem becomes:

Ŵ = argmax
W

P (W |Y) (4.2)

where Y represents the series of observation vectors corresponding to the noise

mixture. Each observation vector y can be partitioned into reliable components

dominated by target energy yr and unreliable components dominated by the
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masker yu. When used as a robust speech recognition technique, reliable and

unreliable regions in the mixture need to be estimated, for example by using

primitive auditory grouping cues [Bregman, 1990]. Here, as we use glimpse de-

coding as a microscopic modelling approach, we can assume a priori knowledge

of each source in the mixture, and target glimpses can be precisely determined.

Once each input feature vector is separated into reliable and unreliable compo-

nents, the recognition algorithm needs to be modified to handle missing data.

In a traditional HMM-based recogniser, each speech unit (e.g. word, triphone,

etc . . . ) is modelled by an HMM with a given number of states. Each state rep-

resents the learned feature distribution of a particular segment of the modelled

speech unit. When these feature distributions are approximated using multivari-

ate Gaussian mixtures, the output probability of feature vector y stemming from

state C can be computed in the following way:

f(y|C) =
M∑
k=1

P (k|C)f(y|k, C) (4.3)

where P (k|C) denotes the coefficients of the Gaussian mixtures. In a noisy mix-

ture signal Y , where unreliable feature values yu are dominated by masker energy,

we would like to base the decision solely on the marginal distribution of reliable

components f(yr|C). This can be achieved by integrating over the unreliable

components:

f(yr|C) =

∫
f(yu, yr|C)dyu (4.4)

Exploiting the independence of mixture components this can be written as:

f(yr|C) =
M∑
k=1

P (k|C)f(yr|k, C)

∫
f(yu|k, C)dyu (4.5)

Thus, recognition can be based entirely on reliable target information by integrat-

ing over unreliable feature values [Ahmad and Tresp, 1993]. In certain cases, such

as band limited speech, it is appropriate to treat unreliable regions as entirely

missing, since they carry no information about the target signal. In the case of

noise masking however, the feature values of masker dominated regions can serve
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as an upper bound for the underlying target values. Missing data approaches

exploit the fact that the value of target feature is between zero and the observed

value and the integral can be evaluated using the multivariate error function:

∫
f(yu|k, C)dyu =

1

2

[
erf

(
xhigh,u − µu,k√

2σu,k

)
− erf

(
xlow,u − µu,k√

2σu,k

)]
(4.6)

where xhigh,u and xlow,u correspond to the upper and lower bound of speech

energy in the unreliable regions. Missing data recognition serves as the basis

of glimpse decoding. However, instead of partitioning the mixture into reliable

and unreliable components prior to recognition, glimpse decoding extends the

search into the segregation space, seeking the most likely model-segregation pair

simultaneously. To illustrate the connection between missing data recognition

and glimpse decoding, consider the spectro-temporal representation of a mixture

signal consisting of T frames of F frequency components. Each time-frequency

“pixel” of the mixture can either stem from the target or one of the masking

sources or both in some cases. In theory, we could simply find the most likely

model-segregation pair by applying the missing data approach to the 2T×F pos-

sible segregation hypotheses. Of course, this brute-force approach is impractical,

considering that the recognition of a single hypothesis is already computationally

expensive. Instead, in the following section, we show the series of steps Barker

et al. [2005] took to make the computation feasible.

The glimpse decoding problem can be formulated as a simultaneous search

over the model and the segregation space for the most likely utterance-segregation

hypothesis given the noisy mixture:

Ŵ , Ŝ = argmax
W,S

P (W,S|Y) (4.7)

As noted above, the search over all possible segregations of a given input

mixture is computationally-complex. However, many of these segregations can be

ruled out as improbable, since the majority neighbouring spectro-temporal pixels

are likely to stem from the same source. By partitioning the time-frequency plane

into coherent regions (or glimpses) corresponding to each source in the mix, the

size of the segregation space can be drastically reduced. Introducing the set of a
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priori glimpses G, equation 4.7 becomes

Ŵ , Ŝ = argmax
W,S∈P(G)

P (W,S|Y,G) (4.8)

where S is understood as the set of partitions – i.e., members of the powerset of

glimpses, P(G) – of the observations into those belonging to the target speech

and those belonging to the masker. Note that while the spectro-temporal plane

is partitioned a priori, the segregation corresponding to the target word is deter-

mined through the decoding process (contrary to missing data recognition where

target glimpses need to be identified a priori). In practice, this can be achieved

by taking advantage of the primitive grouping processes introduced by Bregman

[1990] such as harmonicity, common onset and offset or location. Again for our

modelling approach, we have a priori knowledge of the each mixture component

so the set of glimpses corresponding to each source can be determined exactly.

Figure 4.2 illustrates how once the a priori glimpses have been determined

glimpse decoding can be thought of as applying missing data recognition to each

possible segregation hypothesis. While the introduction of the a priori glimpse

set dramatically reduces the size of the search space, the number of possible

segregations is still exponential in the number of glimpses. As the number of

glimpses is expected to increase linearly with the length of the utterance, the

associated complexity can still become prohibitive.

When using a hidden Hidden-Markov model implementation, Barker et al.

[2005] proposed a method exploiting the Markovian assumption to share much of

the computation, instead of decoding each segregation hypothesis independently.

To illustrate this method, consider two segregation hypotheses that are identical

until time T, where they differ in whether glimpse N is allocated to the target

or one of the masker sources. As the decoding proceeds from left to right, the

computation can be shared up until time T, at which point the computation can

be split into two branches, allocating glimpse N to either the target or one of

the masker sources. When the end of the glimpse is reached, the likelihood score

corresponding to the two segregation hypotheses can be compared. Since under

this implementation we consider that the Markovian assumption holds, namely

that future states only depend on the current state, a decision can be made on
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Figure 4.2: Illustrating the connection between missing data recognition and glimpse
decoding. Glimpse decoding is equivalent to applying missing data recognition to each
possible segregation hypothesis. Figure reproduced from Barker et al. [2005]

the origin of glimpse N and the lower scoring branch can be eliminated. With

this method, at any given moment the number of concurrent computations will

be exponential in the number of active glimpses at time T. It is important to

note that while this last step reduces computation, the results are equivalent to

the optimal approach of considering each hypothesis independently. While the

segregation model was introduced to make the computation feasible, it is of great

interest in our current approach as it highlights the spectro-temporal regions in

the mixture supporting each word-hypothesis. In the next section, we supply the

implementation details of the glimpse decoder.
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4.2.2 Implementation

Figure 4.3 outlines the glimpse decoding process. In stage I, we compute an audi-

tory representation of the input mixture. During stage II, prior knowledge of the

target speech and masker components is used to generate the entire glimpse set.

In stage III, the decoder performs a joint search over the model and segregation

space to return the most likely word-segregation pair. These three stages are

detailed in the section below.

4.2.2.1 Stage I: Input representation

The target speech and masker waveform are scaled to the presentation-level SNR

to obtain the mixture eliciting the consistent confusion. The mixture is then fed

into an auditory model which outputs a spectro-temporal representation of the

auditory nerve excitation generated by the stimulus. This ‘auditory ratemap’

representation is computed by passing the mixture signal through a bank of 39

gammatone filters with centre frequencies between 50–8000 Hz equally-spaced on

an ERB-rate scale. The instantaneous Hilbert envelope is extracted at the output

of each filter, which is subsequently temporally-smoothed, log-compressed and

downsampled at 100 Hz. This auditory spectrogram serves as one of the inputs

to the glimpse decoder (corresponding to the noisy observation Y).

4.2.2.2 Stage II: A priori glimpse generation

A member of the set of a priori glimpses G is defined as a connected spectro-

temporal region (with 8-connectivity) originating from a single source, with a

positive local SNR throughout the region. For the noise-based maskers (SSN,

BMN1, BMN3) the mixture y is a sum of two sources, the target and the noise-

masker. For speech- based maskers the mixture y is the sum of N sources:

y =
N∑
i=1

si (4.9)

where si is the waveform corresponding to talker i and N is the total number

of talkers in mixture y, including the target and each babble component (i.e.,
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target speech

competing voices

+ auditory model

auditory ratemap•

II a priori glimpses

glimpse generation
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glimpse
decoding

most likely assignment
listener confusion

Figure 4.3: Overview of the glimpse decoding process. I: computation of auditory
ratemap; II: generation of a priori glimpses; III: joint search of the model and segre-
gation space for the most likely hypothesis. The glimpses shown in black come from
the target (presented) word while those in grey come from the background babble.
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N = 1 + Nbabble where Nbabble is either 4 or 8 in the current study). For a given

source j in the mixture, we compute separate ratemaps for sj and the sum of

the remaining N − 1 signals. The ratemaps are then compared to identify the

spectro-temporal regions where the jth source is dominant, i.e.

gRM(sj) > gRM

( N∑
i=1,i 6=j

si

)
(4.10)

where the function gRM maps a time-domain signal to the auditory represen-

tation defined in Section 4.2.2.1, and where the comparison is done for each

time-frequency ‘pixel’. A glimpse of a given source is then defined as a connected

spectro-temporal region satisfying the inequality above. This process is repeated

for each of the sources in y. The set of fragments obtained for each source are

combined to form G — the set of fragments input to the decoder.

G = GT ∪GM (4.11)

where

GM =

Nbabble⋃
i=1

GMi
(4.12)

GT denotes glimpses originating in the target source and GMi
those stemming

from the ith babble component. Tiny glimpses which are unlikely to be used by

listeners are eliminated from G (in the current study an area threshold of 6 time-

frequency pixels is used). An example is shown in the second panel of Figure 4.3.

Black glimpses correspond to the target word while those in grey come from

one of the background sources. Regions in white correspond to spectro-temporal

locations where none of the sources are dominant.

4.2.2.3 Stage III: Glimpse decoding

With the auditory ratemap representation and the predetermined set of glimpses

as input, the decoder outputs the most likely word-model and its correspond-

ing segregation. The decoder’s acoustic models are speaker-independent 3-state

triphone models trained on over 12 000 instances of Spanish word utterances us-

ing the same speech material as in the corpus collection described in Section 2.
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10-component Gaussian mixtures, with model- and state-level tying, are used to

represent the feature distribution of each state.

4.3 Automatic confusion categorisation

4.3.1 Category membership criteria

When decoder predictions match listener responses reasonably well, we can de-

termine the type of masker interference eliciting the confusion. By examining

whether each glimpse in the returned segregation originated in the target or

masker source, we can determine the amount of masker involvement in each con-

fusion. This way, misperceptions can be placed on a continuum based on the

amount of masker information incorporated into the percept. On one end of the

spectrum, it is possible that confusions are best explained using target glimpses

alone. In these cases, the amount of information contained in the target glimpses

was insufficient to support the correct identification of the utterance. We refer

to these cases as reinterpretations since the listener is forced to generate a new

word hypothesis by reinterpreting the partial target evidence available. While

maskers such as SSN, BMN1 and BMN3 might elicit this type of confusion, it is

also possible that competing speech glimpses can be successfully excluded from

the material used to determine the confusion, due to insufficient similarity with

the target glimpses in properties such as F0 or formant continuity. On the other

end of the spectrum, it is possible that listeners based their response on glimpses

stemming from the masker entirely. One can envisage confusions where an acous-

tically salient word stemming from one of the babble components ‘hijacked’ the

listener’s attention and was reported in its entirety instead of the target. These

are referred to as overrides, and require the masker to contain speech material.

Intermediate cases, where the confusion makes use of glimpses of both target

and masker are referred to as blends. Here, low-level auditory grouping processes

probably failed, resulting in incorrect allocation of target and masker glimpses.

These confusions are of great interest as the grouping of target and masker ma-

terial into a single coherent precept probably requires special circumstances. In

sum, the amount of masker information incorporated into the percept forms the
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basis of the categorisation scheme.

When the confusion is highly dissimilar to the target, we can assume that the

masker interference played a key role in forming the misperception. However, a

significant portion of the corpus consists of misperceptions where the target and

confused word are highly similar, differing in one or two phone edits. In these

cases, confusions are most likely explained by the acoustic similarity between the

two words, with perhaps some uncertainty contributed by the masker. Finally,

some confusions might be attributed to the signal-independent factors reviewed

in the previous chapter or other factors we have not considered here. These

confusions are labelled as unexplained.

We introduce the following criteria for confusion categorisation. If the con-

fused word is ranked in the top three candidates by the baseline recogniser in

response to the noise mixture, confusions are classified as due to acoustic sim-

ilarity. If confusions are ranked within the top 20 candidates by the glimpse

decoder and halve their rank compared to baseline, they are classified as well-

explained by the decoder, as they likely originate in the speech-noise interaction.

This latter criterion is added to classify confusions as well-explained only if they

are significantly better explained by decoder instead of acoustic similarity. Well-

explained confusions are then further categorised based on the ontology defined

above. Confusions are classified as reinterpretations if more than 90 % of the

material originates from the target, overrides if it is less than 10 % and otherwise

as blends.

4.3.2 Results

1344 confusions (≈ 42 %) from our corpus can be explained based on the above

ontology using glimpse decoding or acoustic similarity, while 1903 cases remain

unexplained (this figure includes 683 out-of-vocabulary items). Table 4.1 provides

a breakdown by masker type. Clearly, the number of confusions in each category

depends on the eliciting masker type. Speech-based maskers are more conducive

to generating confusions with masker involvement, which is understandable since

in these cases speech information can be recruited from the masker. Overrides

occur exclusively in BAB4. Further, the frequency of reinterpretations for the
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Reinterpret. Override Blend Acoustic sim. Unexplained
SSN 19 (6.2) 0 2 (2.1) 211 (22.9) 400 (21.0)

BMN1 134 (43.4) 0 14 (14.9) 232 (25.1) 414 (21.8)
BMN3 69 (22.3) 0 9 (9.6) 268 (29.1) 409 (21.5)
BAB4 42 (13.5) 19 37 (39.4) 116 (12.6) 403 (21.2)
BAB8 45 (14.5) 0 32 (34.0) 95 (10.3) 277 (14.6)

sum 309 19 94 922 1903

Table 4.1: Counts and percentages of masker types inducing each confusion cate-
gory.

noise-based maskers appears to vary with the depth of amplitude modulation

present in the masker (i.e., most for BMN1, least for SSN). The unexplained

cases are equally-distributed across masker types apart from a slight reduction

for BAB8.

Figures 4.4-4.6 provide an example for each type of well-explained confusion

from our ontology. Figure 4.4 shows a reinterpretation. The target word ‘piscina’

[‘swimming pool’], when mixed with BMN3 at −4.11 dB, is reported as ‘distinto’

[‘distinct’] by seven of 15 listeners (other responses include ‘destino’, ‘estino’,

‘distintos’ and ‘instinto’). Figures 4.5 illustrates a blend. The target is ‘muda’

[‘mute’] mixed with BAB4 at −2.81 dB, for which 11 listeners reported ‘muchas’

[‘lots’]. Figure 4.6 shows an override, where the target ‘vuestra’ [‘yours’] mixed

with BAB4 at −2.45 dB is reported as ‘manzana’ [‘apple’] by 9 listeners. For all

three examples, the first row shows the phonetic transcriptions of the target and

confusion. The second row displays the mixture in the auditory representation

used. The x-axis shows the temporal location of phones constituting the target

word, determined using the baseline recogniser by force-aligning the HMM state

sequence to the target word in clean. Glimpses originating from different back-

ground talkers are shown with distinct colours; target glimpses are marked in

red. The word utterances corresponding to each talker in the mix are also shown.

The glimpses that the decoder selects as part of the best segregation hypothesis

for listeners reported word are shown with a thick black border. The glimpses

included in the most likely segregation clearly illustrate the masker involvement

for the blend and override example.

The third row shows the likelihood evolution of the top 6 word candidates
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/pisTina/ 7→ /distinto/

Cochleogram, glimpse mask and most likely segregation
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Figure 4.4: Reinterpretation example. The second row shows the auditory represen-
tation used, as well as target and masker glimpses. Log energy values are coded using
the lightness dimension, glimpses from different words are distinguished by hue and
the segregation hypothesis corresponding to the confusion is shown with a solid border.
Vertical lines indicate phone boundaries. Likelihood scores for the top 6 candidates
are shown in each 10 ms time frame. The bottom row details the consistency of the
majority confusion, masker type, SNR and other responses.
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/muDa/ 7→ /mutSas/

Cochleogram, glimpse mask and most likely segregation
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Figure 4.5: Blend example. Details as for Figure 4.4.
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/bwestRa/ 7→ /manTana/

Cochleogram, glimpse mask and most likely segregation
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selected by the decoder. For the reinterpretation example, the decoder correctly

predicts listeners’ confusion, as it is ranked number one after decoding. Note

that the target glimpses correspond to the speech fragment /stI/ as shown on the

x-axis. This syllable is present in all listener responses. Word activations for the

top 6 candidates show a boost in likelihood for those 4 cases containing /stI/ at

around frames 55-57. For the blend case, listeners appear to recruit glimpses from

both ‘muda’ and the syllable /tSas/ from ‘luchas’ [‘struggles’] in the babble (shown

in blue) to form the confusion. Note that in this case the original target (‘muda’)

is highest ranked after glimpse decoding, while the percept reported by listeners

‘muchas’ is ranked 4th. For the override example, activation of ‘manzana’ shows

a steep increase in likelihood near the end of the mixture since this word occurs in

the latter part of the masker. Here too, the decoder prediction matches listener

responses.

Figure 4.7 shows all the confusions in the corpus at a glance as ranked by the

baseline recogniser. The x-axis shows the rank of the confused word when the

target word is presented to the recogniser in the clean condition. This can be seen

as a measure of acoustic similarity between the target and the confusion. Thus, if

in response to the target word in clean, the confusion is ranked highly, it is likely

that the two words are acoustically similar. The fact that the density of points

increases towards the left of the figure shows that the likelihood of a confusion

increases with acoustic similarity. The y-axis shows the rank of the confused

word determined by the baseline recogniser in response to the mixture. Coloured

markers show confusions well-explained by the decoder, with red marking rein-

terpretations, orange marking blends and blue marking overrides. The shape of

the marker indicates the masker type. Acoustic similarity cases are shown in

black dots, while unexplained cases are shown as grey. Well-explained confusions

– which by definition must rank in the top 20 and show a halving of rank – have a

wide range of ranks in noise prior to the application of glimpse decoding. Indeed,

the mean rank of the reported confusion in noise is 1767, demonstrating that any

attempt to explain confusions without somehow separating target and masker

components is unlikely to be successful in most cases.
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Figure 4.7: Confusions plotted according to their rank in quiet and noise. Confu-
sions well-explained by the decoder are shown with coloured markers; confusions cor-
responding to acoustic similarity (AS) are marked with black dots; unexplained cases
are shown in grey dots; out of vocabulary cases are omitted. The masker type induc-
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visual separation. To avoid clutter, the masker type in which the confusion occurred
is depicted only for reinterpretations, blends and overrides. A small jitter has been
added in both dimensions to reduce overplotting.
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4.3.3 Interim discussion

A significant fraction of consistent listener confusions could be accounted for by

our proposed classification scheme. Nevertheless, many misperceptions remain

unexplained, suggesting that our confusion ontology needs to be expanded to

take into account other possible causes. One possible direction of future work

could be to integrate the signal-independent factors identified in the previous

chapter into the model.

While all the maskers in our analysis gave rise to confusions, their quantity

and category show some dependency on masker type. Two determining factors of

the masker in this aspect seem to be temporal modulation, allowing for glimps-

ing opportunities, and the presence of speech information in the masker from

which listeners can recruit. Unsurprisingly, blends and overrides appear almost

exclusively in babble maskers. Overrides, in particular, require low-order bab-

ble and are universally caused by the BAB4 masker. Their rarity results from a

design decision to avoid using even lower-order babble (e.g., 1- or 2-talker), as

from a speech perception perspective these cases are the least interesting. When

constructed from many voices (e.g. BAB8) salient words did not emerge, most

likely due to the smaller, more fragmented masker glimpses. In studying the way

speech and noise interact at a fine-grained level, blends and reinterpretations are

of more interest than overrides, and the corpus contains sufficient numbers of both

types to support further development of end-to-end models of speech perception.

Understandably the majority of reinterpretations were elicited from noise-based

maskers, with the modulation depth of the masker conducive to generating rein-

terpretations. Blends, on the other hand, require maskers with informational

content, and both speech-based maskers (BAB4 and BAB8) seem to contribute

an approximately equal amount.

Several studies investigating speech perception in multi-talker scenarios have

postulated that listeners erroneously reporting masker words is indicative of in-

formational masking, while randomly distributed errors are associated with pri-

marily energetic masking conditions [Brungart, 2001; Brungart et al., 2006; Kidd

et al., 2016]. While such errors are present in our analysis as well (i.e. overrides),

we have shown that the recruitment of material from the masker is not limited
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to lexical items, as listeners can recruit phonemic and sub-phonemic cues as well,

and blend them with target glimpses to form a consistent percept. From a speech

perception perspective, confusions stemming from misallocation of low-level sig-

nal components are the most interesting. While it is possible that severe energetic

masking results in randomly distributed error patterns, we have shown that —

at least when the stimulus supports a consistent percept — the error responses

are not random and tend to build on the phonetic fragments of the target which

are glimpsed. In the next section, we analyse how misallocations can lead to

misperceptions in speech-based maskers in more detail.

4.4 Quantifying misallocation

4.4.1 Babble subset

This section presents an in-depth analysis of the role misallocations plays in gen-

erating misperceptions. We restrict the analysis to speech-based maskers where

these types of confusions are most likely to arise, with a special focus on the

BAB4 masker.

Masker N mean SNR (dB) SNR range (dB)
4-talker babble (BAB4) 610 -0.66 -3 to +1
8-talker babble (BAB8) 447 -0.51 -4 to +1

Table 4.2: Details of babble maskers.

4.4.2 Selecting Ŝ through forced alignment

In the previous section, we have shown how the glimpse decoder performs a

joint search over the model and segregation space to find the most likely model-

segregation pair given the set of a priori glimpses and the noisy input mixture.

Ŵ , Ŝ = argmax
W,S∈P(G)

P (W,S|Y, G) (4.13)

Instead of a joint search, in this section we will condition the decoding of the

misperceived word, restricting the search to the segregation space. In other words,

91



Chapter 4

we use the glimpse decoder to find the set of glimpses that best support the

percept reported by listeners through forced-alignment. In a conventional HMM

recogniser, forced-alignment consists of finding the most likely state sequence Q

given the utterance W and the sequence of acoustic feature vectors X.

Q̂ = argmax
Q

P (Q|W,X) (4.14)

In our case we look for the most likely HMM state sequence Q̂ and segregation

given W , G and Y :

Ŝ, Q̂ = argmax
S,Q

P (Q,S|W,Y, G) (4.15)

Thus, in addition to the noise-mixture Y and glimpse set G, the majority con-

fusion W will also serve as input to the forced alignment process. Figure 4.8

demonstrates how the decoding process is modified to obtain the segregation

hypothesis Ŝ best supporting each confusion.

4.4.3 Target and masker proportion

Since – from stage II – we know the origin of each glimpse in G (target or masker),

we also know the origin of each glimpse in the best segregation Ŝ. Thus, we can

quantify the amount of misallocation leading to each misperception. In order to

do so, we introduce the metrics TP and MP , which quantify the proportion of

target and masker glimpses incorporated into each misperception. The Target

Proportion (TP) is defined as:

TP = fA(Ŝ ∩GT )/fA(GT ) (4.16)

where the function fA computes the total number of spectro-temporal pixels in

the ratemap representation for a given set of glimpses. TP denotes the total area

of target glimpses included in the most likely segregation hypothesis Ŝ divided

by the total area of available target glimpses in the input set G. The Masker
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forced
alignment

listener confusion

III

most likely assignment

Figure 4.8: Identification of time-frequency glimpses contributing to listeners’ mis-
perceptions. Stages I and II are identical to Figure 4.3 and are omitted. Stage III:
forced alignment of glimpses given the listener confusion. The glimpses shown in
black come from the target (presented) word while those in grey come from the back-
ground babble.

Proportion (MP) is defined similarly:

MP = fA(Ŝ ∩GM)/fA(GM) (4.17)

With the above metrics, we can quantify the different types of allocation errors

listeners make. A misallocation can occur in one of two ways: either a masker

glimpse is considered part of the speech hypothesis (Type I error) or vice-versa,

an available target glimpse is excluded from the speech evidence (Type II). MP

quantifies the amount of Type I allocation errors while 1 − TP quantifies Type

II errors.

4.4.4 Results

The left panel of Figure 4.9 compares the two maskers in terms of the proportion of

the spectro-temporal area covered by target glimpses. BAB4 produces a little less
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Figure 4.9: Boxplots showing glimpse properties for speech-based maskers. Left:
Proportion of the target escaping masking; middle: total (target+masker) glimpse
counts; right: mean glimpse spectro-temporal area.

energetic masking than BAB8 [t(936.02) = 9.79, p < .001] in spite of its slightly

more adverse mean SNR (Table 4.2). As shown in the central panel of Figure 4.9,

the number of glimpses in G (i.e., from both target and masker combined) is

substantially higher for BAB8 [t(838.83) = −38.64, p < .001]. On the other hand

the mean glimpse area (right column) is higher for BAB4 [t(942.77) = 60.37,

p < .001]. Thus, we can characterise BAB4 as producing a smaller number of

larger glimpses, and vice versa for BAB8. This difference seems likely to affect

the types of allocation errors listeners make.

Figure 4.10 shows masker and target proportions, MP and TP , for each

confusion, along with marginal densities for both maskers. To ease analysis,

the scatterplot has been partitioned into regions corresponding to the different

misallocation error types introduced above. Table 4.3 defines these unequal-sized

quadrants and details the counts and proportions of confusions that fall into each.

More specifically

Q1 covers those cases where very few Type I or II misallocation errors occur:

over 95% of available target glimpses are used, and fewer than 5% of masker

glimpses are deemed by the decoder to contribute to the confusion.
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Q2 represents confusions which have little masker involvement but some loss

of available target glimpses (i.e., predominantly Type II errors). Nearly all

confusions of this type stem from the BAB4 masker.

Q3 is the region where most of the available target glimpses are used but are

accompanied by varying amounts of masker glimpses (i.e., predominantly

Type I errors). Here, both masker types elicit similar numbers of misper-

ceptions.

Q4 contains the bulk of confusions and represents a combination of Type I and

II errors, with some loss of information from the target and inclusion of

masker glimpses.

TP MP BAB4 BAB8 Type

Q1 > .95 < .05 42 (7%) 4 (0.9%) None
Q2 ≤ .95 < .05 81 (13%) 3 (0.7%) Type II
Q3 > .95 ≥ .05 116 (19%) 100 (22%) Type I
Q4 ≤ .95 ≥ .05 371 (61%) 340 (76%) Type I & II

Table 4.3: Counts and proportions of confusions by error type.

The distribution of well-explained confusions in Figure 4.7 suggests a corre-

lation between the phonetic distance between target and confusion and masker

involvement. To verify this, correlations were computed between the masker

proportion MP and phonetic alignment distance. Alignment distance is com-

puted through dynamic programming-based string alignment between the pho-

netic transcriptions of the target and confused word using penalties of (7,7,10) for

insertions, deletions and substitutions respectively. These penalties were selected

so that a substitution has a lower penalty than a deletion plus an insertion. A

significant positive correlation was found for BAB4 [r(608) = .39, p < .001] but

not for BAB8 [p = .19] between phonetic alignment distance and masker involve-

ment. It is clear from Table 4.3 that BAB4 is the most diverse, in terms of the

types of allocation errors involved. In the remainder of this chapter, we focus

entirely on misperceptions due to BAB4.

Figure 4.11 shows the distribution of target and masker proportions, MP

and TP , for the 610 confusions stemming from BAB4. In around 150 cases, (a
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Figure 4.10: Masker (MP) and Target Proportions (TP) for each individual con-
fusion. The scatterplot is partitioned according to types of allocation error into four
quadrants whose boundaries are marked with dotted lines. Marginal densities are also
shown. A slight jitter has been added for confusions with TP ∼ 0 and TP ∼ 1.

quarter of the total) nearly all of the available target glimpses are used in the

misperception, according to the decoder, while half of the confusions make use

of at least 80% of the target glimpses. However, about 100 misperceptions use

no material from the target at all, corresponding to the override cases shown in

the previous section. On average, misperceptions make use of 13% of masker

glimpses, and in only 2% of cases is more than a third of masker material used.

This is not surprising since the masker consists of 4 talkers in parallel, any one

of which could in principle contribute sufficient phonetic information to create a
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Figure 4.11: Distribution of target and masker proportions across confusions for the
BAB4 masker

confusion.

The proportion of time-frequency pixels taken up by the glimpses in the most

likely segregation Ŝ relative to the area of the target glimpses is shown in Fig. 4.12.

On average the best hypothesis incorporates 23% more of the spectro-temporal

plane than occupied by target glimpses, suggesting that the decoder frequently

makes use of a substantial amount of information from the background babble.

Figure 4.13 shows a similar scatter plot as Figure 4.10 for the BAB4 subset,

except in addition to target and masker proportion, we also encode three classes

of phoneme distance, using a classification scheme similar to that of earlier slips

of the ear studies [Bond, 1999b; Garnes and Bond, 1980]. Single cases are those

involving the deletion, insertion, or substitution of a single phoneme segment (e.g.,
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Figure 4.12: Distribution of the area of glimpses in Ŝ relative to the area of
glimpses in GT for BAB4 confusions

socios 7→ sucios); dual cases correspond to changes involving a pair of segments

(e.g., sección 7→ disección); all others are denoted complex (e.g., antes 7→ alcohol).

While single cases tend to involve high values of target proportion, there remains a

substantial number of cases where the target proportion is reduced. Conversely,

complex cases typically correspond to low values of TP, but again there is a

significant spread. In many such cases, the misperception appears to be due to

the masker material overriding the target signal entirely (TP = 0). Similarly, the

amount of masker involved for all three classes is highly-variable across tokens.

These findings suggest that while phoneme distance is correlated with target and

masker proportion across the corpus, this kind of segmental metric alone is a

poor predictor of the involvement of target and masker glimpses for any given

misperceived token.

4.4.5 Interim discussion

Misallocation of signal components can play a key role in the intelligibility loss

resulting from listening to speech in the presence of other talkers. The aim of

the above analysis was to determine the extent to which misallocations played a

role in generating misperceptions in babble noise, by finding the set of glimpses

that listeners most likely treated as evidence for their reported percept. In their
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Figure 4.13: Joint distribution of target and masker proportion for BAB4 confu-
sions, along with target-confusion phoneme distance class.

analysis aimed at isolating the energetic masking effects of competing background

talkers, Brungart et al. [2006] argued that segregation errors can involve incor-

porating material from the masker into their percept or ignoring relevant infor-

mation from the target. In the current Chapter, we have introduced metrics to

quantify the degree to which these two types of segregation errors are involved

in the formation of each misperception. The absence of points around MP ≈ 0

in Figure 4.10 indicates that most misperceptions stemming from the two babble

conditions incorporated material from the masker. In fact, 88% of the confu-

sions involved a Type I misallocation with 20% being exclusively Type I. As

virtually all confusions stemming from BAB8 involved a Type I misallocation,

the abundance of small masker fragments contributed by eight talkers might be
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easier to incorporate, especially in an inflected language such as Spanish. At

the extreme of Type I misallocation, a cluster of values near TP = 0 are best

explained by entirely using masker glimpses. These confusions probably resulted

from the listener reporting a word from one of the background talkers and cor-

respond to the ‘override’ category defined in the previous section. These cases

also seem to stem almost exclusively from BAB4. The larger average glimpse

size in this masker probably allowed for entire salient words to emerge from the

background. Fewer confusions involved strictly type II misallocations, and these

cases also originated predominantly from BAB4. Misperceptions involving nei-

ther type I nor type II errors may have resulted from energetic masking, perhaps

in combination with phonetic similarity. A key finding of the current analysis was

the remarkable paucity of this type of misperception which involves no masker

glimpses. Again, almost all such cases arose from the BAB4 masker, perhaps

since its larger glimpses were more effective at masking phonetic information in

the target.

The amount of information borrowed from the masker does not need to be

large. We found that on average less than one fifth of the babble masker was

incorporated into the misperceptions in the four-talker case, which is reasonable

considering that the material contributed by either talker could form the basis of

an entire utterance. Nevertheless, misallocating one or more masker glimpses to

the interpreted percept, particularly when these glimpses are relatively large as

in the BAB4 case, is likely to affect the final outcome for listeners, with a larger

phonetic distance from the target word resulting from the inclusion of larger

quantities of BAB4 material.

Phoneme distance between the target and confused word explains some pro-

portion of the misallocation effect, but the spread of individual cases is too wide

for a segmental metric such as this to be a robust predictor. This is likely to

be caused by the strictly temporal nature of the segmental metric. In contrast,

the glimpse decoder took into account the spectro-temporal decomposition of the

signal. It is possible that more sophisticated forms of alignment, which take into

account the segmental constituents of the babble itself (as shown in Fig. 4.1) may

lead to better predictions.
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4.5 General discussion

In this chapter, we conducted a microscopic investigation of speech mispercep-

tions, by coupling an auditory representation to a multi-source decoder based on

the glimpsing model of speech perception. Prior studies implementing a similar

approach [Cooke, 2006; Holube and Kollmeier, 1996; Jürgens and Brand, 2009;

Zaar and Dau, 2017] have focused exclusively on the prediction of nonsense syl-

lable confusions. Here, we attempted to explain word-level misperceptions from

a glimpsing perspective.

In the first part of the chapter, we used the glimpse decoder in addition to an

unmodified speech recogniser to sort misperceptions based on whether they were

caused by acoustic similarity or a more complex interplay between the target and

masker signal. The latter cases, which were well-explained by the decoder, were

placed on a continuum based on the amount of masker material incorporated

into the percept and classified into reinterpretations, blends and overrides. In

the second part of the chapter, we used the glimpse decoder to force align the

glimpses in the mixture to the percept reported by listeners in order to quantify

the amount of allocation errors involved in each misperception.

In the literature, informational masking is often defined as the masker com-

ponent contributing to intelligibility loss beyond energetic masking. While this

definition is often useful, it conceals the many underlying processes which jointly

result in the informational masking effect. Previous work suggested that infor-

mational masking can be separated into two major components. On the one

hand, it seems that informational masking is closely linked to top-down auditory

attention. It has been shown that familiarity with the voice of the target talker

[Brungart, 2001; Freyman et al., 2004], as well as knowledge about when [Vargh-

ese et al., 2012] and where [Kidd et al., 2005] to listen, can provide a substantial

release from informational masking. In addition, the analyses of listener errors

in maskers with an informational masking component often showed that many

mistakes correspond to listeners reporting words from the masker rather than

the target [Brungart et al., 2006; Kidd et al., 2016]. This suggests that in these

cases, listeners were either unable to correctly select or to sustain attention on

the appropriate speech stream. On the other hand, studies involving non-native
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and time-reversed speech [Rhebergen et al., 2005] have shown that the the masker

does not necessarily need to be composed of intelligible speech to produce an in-

formational masking effect. Bottom-up auditory grouping cues such as common

onset, amplitude modulation and harmonicity have been shown to impact the

perception of speech sounds [Darwin, 1981, 1984]. These grouping cues are likely

to affect how different signals in the mixture are segregated prior to the forma-

tion of auditory streams and objects which the listener can selectively attend to.

Errors in this segregation process can also lead to intelligibility loss and probably

constitute a crucial component of the informational masking effect.

We have shown how misallocation of low-level speech fragments can generate

errors, either by incorporating speech fragments from the background voices into

the percept or distracting from vital target glimpses. At the same time, we

also observed several misperceptions where a salient word in the background was

reported in its entirety. Thus, the findings in our above analysis support the

notion that errors in speech segregation and selective auditory attention both

contribute to the informational masking effect.

Even though the glimpse decoder proved to be an invaluable tool in explain-

ing the cause of misperceptions in our corpus — in large part through providing

the spectro-temporal segregation best-explaining listeners’ percepts — it could

be argued that glimpse decoding has been less successful from a microscopic mod-

elling standpoint. Only 13% percent of the confusions were well-explained by the

decoder according to our criteria, which could question the validity of glimpse de-

coding as a microscopic modelling approach. However, despite this apparent lack

of performance, we argue that glimpse decoding is, in fact, a promising micro-

scopic modelling approach. Prior models of microscopic speech perception have

been largely evaluated using nonsense-syllable stimuli in a closed-set paradigm.

The approach presented here is a first attempt to the author’s knowledge to model

listener misperceptions at a word level. This is a significantly more challenging

task. First, the number of response alternatives is immensely larger for words

compared to nonsense syllables, especially in an open-set task. Second, many

of the factors influencing speech perception, including the ones presented in the

above chapter such as word position, stress, lexical frequency, as well as factors

related to phonological neighbourhood apply only to words. In order to provide
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accurate predictions of listeners’ percepts, these factors would need to be incorpo-

rated into the model. In addition, many other well-known auditory mechanisms,

such as forward masking or fragment grouping based on harmonicity and other

bottom-up cues were also absent from the model. In light of the above, it is per-

haps surprising that the decoder was able to explain so many confusions based on

the acoustics alone. Future work could extend the model by incorporating these

factors. For example, the trends uncovered in the signal-independent analysis

could be added to the model as prior probabilities. The emergence of consistent

confusion corpora in multiple languages [Marxer et al., 2016; Scharenborg et al.,

2014] is already available and can provide ample diagnostic material, supporting

the further testing and development of microscopic models.

Consistent confusions require specific configurations of the speech and masker

signal to arise. Changing the SNR or some other aspect of the stimulus will

potentially alter the listener’s original percept. In the next chapter, we explore

the effects signal modifications have on a set of consistent confusions, with the

aim of separating confusions caused by energetic and informational masking.
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Determining the origin of

confusions through signal

modifications

5.1 Introduction

In previous chapters we have shown that consistent confusions can most often

be explained by the underlying speech-masker interaction. The interference from

the masker — whether by obscuring vital target cues through energetic masking,

inducing segregation errors or both — can shift listeners’ percepts away from

the target to another word hypothesis which they deem more plausible. This

raises the question: what aspect of the speech-masker interaction caused the

confusion and how does the confusion eliciting stimulus need to be modified to

allow listeners to correctly identify the intended utterance.

The goal of the present chapter was to determine whether confusions origi-

nated from energetic or informational masking using a follow-up perceptual ex-

periment. Starting from the original confusion-inducing stimuli, we introduced

signal modifications selected for their diverse masking release properties and sub-

sequently re-evaluated listeners’ percepts. By determining which modifications

were successful in allowing listeners to correctly identify the target word across dif-

ferent masking conditions, we could hypothesise the type of masking that caused
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the misperceptions in the first place.

Several studies in the literature followed a similar methodology of re-evaluating

listener responses after applying signal modifications to the original stimuli. Li

et al. [2010] applied signal modifications in 3 dimensions: time truncation, spec-

tral filtering and noise masking, in an effort to triangulate the position of stop

consonant cues. They showed that stops are characterised by a short burst, fol-

lowed by the second formant transition, though the latter is not necessary for

the perception of /ta/ and /ka/. Similar to the current study, Cooke [2009]

confirmed the feasibility of a large-scale collection of consistent confusions by

measuring the rate at which such confusions occur and also applied signal modi-

fications to uncover their cause. Cooke [2009] found relatively few confusions to

result from energetic masking, suggesting that the majority of confusions arose

from more complex speech-masker interactions. Varnet [2013] aimed to uncover

the spectro-temporal location of perceptual cues relevant in distinguishing be-

tween syllables /aba/ and /ada/ using a slightly different approach. Instead of

introducing systematic signal modifications, they applied the classification image

technique, which involves establishing a correlation map between each individual

noise field and the corresponding listener response. By presenting a large number

of stimuli (over 5000 noise exemplars for each target syllable), they identified the

spectro-temporal regions and masker levels which resulted in a perceptual differ-

ence. Using this technique, they confirmed the result of Liberman et al. [1954],

namely that the second formant transition is key in distinguishing between con-

sonants /b/ and /d/.

When trying to understand how the presence of a masker signal can alter a lis-

tener’s percept, one of the main questions is whether the confusion was caused by

energetic or informational masking. In the past, several experimental paradigms

have been introduced in an effort to isolate the masking contribution of the en-

ergetic and the informational components of the interfering signal. Speech mod-

ulated noise has been used instead of speech-shaped noise to obtain a better

approximation of the energetic masking effects of competing speech, by matching

not only the long-term spectrum but also the broadband intensity fluctuations of

the speech envelope [Festen and Plomp, 1990; Versfeld and Dreschler, 2002]. For

example, Festen and Plomp [1990] compared speech modulated noise to steady
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state noise and competing speech, in order to determine the release from mask-

ing due to masker fluctuations for listeners with normal hearing and sensorineural

hearing loss. They showed that listeners with hearing loss do not benefit from

the same unmasking caused by masker fluctuations as normal hearing listeners

do.

While speech-modulated noise does contain temporal modulations, it has

many fewer modulations in frequency compared to real speech, which can provide

listeners with additional glimpsing opportunities. Time-reversed speech, which

has a spectro-temporal profile similar to normal speech, has also been used as a

masker and is expected to produce similar energetic masking effects while remain-

ing unintelligible. However, there are also several drawbacks to this approach.

First, time reversal introduces important changes to the speech envelope. For

example, plosives — which are characterised by a sudden onset and a gradual

decay — when reversed result in abrupt offsets, which can cause a large amount

of forward masking. Second, not all informational masking effects can be at-

tributed solely to the intelligibility of the masking signal, as time-reversed speech

can also have a significant informational masking component. Rhebergen et al.

[2005] used normal and time-reversed speech as a distractor in both a foreign

language and listeners’ native language. As foreign speech is unintelligible when

presented in both a forward and backwards direction, the authors argued that

the differences in masking could be attributed to the forward masking effect.

They found that the non-native speech masker when time-reversed resulted in

speech reception thresholds (SRTs) 2 dB higher compared to when presented in

the forward direction. For native speech, they found that the difference in speech

reception thresholds (SRT) between time-reversed and normal presentation was

around 4.4 dB, the combined result of a release from informational masking due

to intelligibility and an increase in forward masking. In addition, they found

that SRTs were 3.6 dB higher for native versus non-native time-reversed speech.

The fact that both native and foreign speech is unintelligible when time reversed

suggests that the masker does not necessarily have to be intelligible to produce

informational masking.

Other studies have exploited binaural effects in order to try to isolate the

energetic and informational components of the masker. Spatial separation has
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been known to result in masking release independent of the type of masker used

[Bronkhorst and Plomp, 1988; Hirsh, 1950; Peissig, 1997]. However, Freyman

et al. [1999] found that this unmasking is greatly reduced in a reverberant con-

dition for a steady-state masker. By adding a single simulated reflection, the

masking release of a spatial separation of 60° was reduced from 8 dB to 1 dB or

less, compared to the anechoic condition. While they observed a reduction of

unmasking of similar magnitude from 14 dB to 9 dB between the two conditions

when the masker signal was a female competing talker, the benefit of spatial sep-

aration was present in both the anechoic and the reverberant condition. Freyman

et al. [1999] concluded that when the masker has an informational component,

spatial separation, whether actual or perceived, can provide additional segrega-

tion cues which listeners can take advantage of.

Brungart and Simpson [2002] used a hybrid monaural-dichotic paradigm to

separate informational and energetic masking effects. By presenting the target in

a single ear and maskers in both ears, they investigated within-ear and across-ear

speech segregation. They found that listeners had little difficulty in segregating

the target when the masker was absent or was steady-state noise in the unattended

ear. However, when speech and speech-like signals — such as time-reversed speech

— were presented across ear, listeners’ ability to segregate the target in the

attended ear was seriously degraded, suggesting that within-ear and across-ear

segregation is difficult to perform simultaneously. This highlights that correct

segregation of the target talker from similar masking signals relies on limited

attentional resources.

Informational and energetic masking effects have also been separated using

more elaborate signal processing techniques. Arbogast et al. [2002] isolated these

two components of the masker using cochlear implant simulation. They reduced

spectral overlap between target and masker signals by allocating different fre-

quency bands for each, thus minimising the energetic masking component. They

confirmed that spatial separation provides the biggest benefit for informational

masking release. A 90° separation produced an 18 dB advantage over the non-

separated condition for a different-band speech masker expected to produce only

informational masking, compared to a 7 dB gain for the same-band noise masker

expected to mainly result in energetic masking. Brungart et al. [2006] approached
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the problem from the opposite direction, by eliminating the informational mask-

ing component. By resynthesising the mixture signal only in the spectro-temporal

regions that exceeded a local SNR threshold, only target information surviving

energetic masking remained. They found that eliminating the regions dominated

by the masker resulted in intelligibility improvements ranging from 50% to 90%

compared to the unsegregated condition depending on the number of talkers. The

resynthesis condition resulted in almost 100% intelligibility, suggesting that for

the conditions tested — namely 1,2 and 3 competing talkers — loss of intelligi-

bility is entirely attributable to informational masking.

All of the techniques mentioned above were designed to provide release from

either informational or energetic masking effects. Kidd et al. [2016] proposed to

apply several of the above techniques including same- and different-sex talkers,

spatial separation and time-reversal in conjunction with glimpse resynthesis to

better understand the how these modifications affect the energetic and informa-

tional component of the masker.

The resynthesis condition served as a control for energetic masking. Based on

listeners’ performances in the resynthesis condition, Kidd et al. [2016] concluded

that the amount of energetic masking produced by each modification, including

the unmodified condition was about the same. Consequently, they confirmed that

all modifications i.e. different sex talkers, spatial separation and time-reversal

produced a substantial release from informational masking. They also found that

time-reversal resulted in the smallest release from energetic masking. Finally,

large individual differences were observed in listeners’ ability to take advantage

of the cues provided by the masking release conditions.

Brungart et al. [2013] studied listeners’ performance in a variety of listening

tasks with differing levels of complexity with a single competing talker or a con-

tinuous noise masker present. In line with previous findings, they reported that

listeners perform better in simple tasks in the competing talker condition contain-

ing unrelated speech, than in a continuous noise condition when the amount of

energetic masking produced by the two conditions is similar. However, Brungart

et al. [2013] argued that this comes with the cost of allocating additional cognitive

resources in order to be able to segregate the target from the speech based masker,

which is more difficult compared to when the masker is noise-based. In a series of
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listening tasks of increasing complexity, Brungart et al. [2013] showed that with

increasing task complexity, the performance of listeners showed a sharper decline

for the competing talker relative to the continuous masker condition. Their re-

sults seem to confirm the hypothesis that understanding the target utterance in

a speech-based masker requires more cognitive resources.

Our goal in the present Chapter is to determine the extent to which energetic

and informational masking effects are responsible for generating misperceptions

across the five masker types used in our corpus. Inspired by some of the studies

above, we used signal modifications that specifically target release from either

the energetic or the informational component of the masker, and evaluate the

contribution of each component based on listeners responses. Modifications in-

volved a simple increase SNR, glimpse resynthesis and shifting of the target F0.

We present the details of the modifications in the following section.

5.2 Modifying speech-in-noise confusions

5.2.1 Control condition

Our first experimental condition involved presenting the confusion inducing stim-

uli as in the original elicitation experiment, with no modifications. This condition

allowed us to select the subset of tokens for analysis which successfully reproduced

the original confusion with the same consistency as in the original collection. This

allowed us to ensure that the changes in the percepts reported by listeners were

indeed caused by the introduced modifications. At the same time, this condi-

tion provided a means to measure the rate at which consistent confusions can be

reproduced for a different listener cohort.

5.2.2 SNR increase

The first modification employed was a 3 dB increase in SNR. For a single com-

peting talker where the masking effect is expected to be primarily informational,

Brungart [2001] has shown that listener performance is relatively constant in

a range from -12 to 0 dB, while performance for speech-shaped noise increases

110



Chapter 5

manipulation condition(s)

none original (control)
SNR increase SNR increased by 3 dB
F0 shift -1, 1, 2, 3 semitones
Glimpse resynthesis target glimpses alone

target glimpses+low-level noise

Table 5.1: Experimental conditions

monotonically in the same range. As our misperceptions were largely collected in

a similar SNR range, we expected a 3 dB increase to primarily result in a release

from energetic masking. Thus, we hypothesised that if listeners respond with

fewer instances of the prior confusion and more of the correct target word follow-

ing this manipulation, the original confusion was probably caused by energetic

masking.

5.2.3 Resynthesis from glimpses

One way to assess the extent to which listeners are utilising information from the

masker in reporting a confused percept is to resynthesise just those parts of the

target signal that are deemed to survive energetic masking. In this way, no parts

of the masker are presented to the listener. We hypothesised that if listeners

continue to report the original confusion following resynthesis, the misperception

is probably caused by energetic masking. Listeners reporting the correct target

word instead implies that sufficient information exists in the target glimpses for

correct identification. We interpret this as a consequence of removing the infor-

mational masking effect of those parts of the stimulus not belonging to the target,

a form of release from informational masking. A third possible outcome is that

listeners report something other than the original confusion or the target word.

Resynthesis from glimpses is performed by first determining target glimpses

— spectro-temporal regions in an auditory representation where the target word

is more energetic than the masker [Cooke, 2006] — then passing the speech-

plus-masker signal through a zero-phase gammatone filterbank, selectively gating

glimpsed regions in each frequency channel, and summing across channels. The

zero-phase filterbank ensures that the resynthesised signal possesses the same
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phase structure as the original signal, and is implemented following Weintraub

[1985], by filtering the signal, time-reversing the output, filtering the signal for a

second time, and time-reversing the output again. Two experimental conditions

were tested, one in which glimpses alone are presented (3rd panel, Figure 5.1),

the other where a speech-shaped noise is added at 12 dB SNR to the un-glimpsed

spectro-temporal regions (4th panel, Figure 5.1). This latter condition was used

to mask possible artefacts caused by the discontinuities that appear when resyn-

thesising speech from the target glimpses.

5.2.4 F0 shift

In the previous chapter, we have shown that confusions might result from allo-

cating parts of the masker to the speech hypothesis. One way in which this is

thought to be catalysed in listeners is via similarity in F0 between target and

masker. For instance, it is more difficult to identify simultaneously-presented

vowels if they have the same F0 [Bird and Darwin, 1998; Scheffers, 1983]. An-

other study by Brungart [2001] showed that speech masked by the same talker is

the least intelligible, followed by same sex and opposing-sex talkers. By modify-

ing the F0 difference between the target and masker, we hypothesised that any

confusions that reverted to the correct target word are dominated by informa-

tional masking. Four conditions were tested, corresponding to shifting the F0 of

any voiced regions of the target word by −1, +1, +2 and +3 semitones. Larger

shifts were avoided, as they tended to change the perceived gender of the male

target talkers. We chose to manipulate the F0 of the target word since unlike the

masker, it has at most a single F0. STRAIGHT [Kawahara et al., 1999] was used

to achieve F0 shifts. Figure 5.2 depicts the F0 shift cases.

5.3 Perception experiment

5.3.1 Stimuli

A subset of 800 tokens was selected from the Spanish Confusions corpus presented

in Chapter 2. As the goal of this chapter is to introduce signal modifications
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original

+3dB SNR

glimpse resynthesis

glimpse resynthesis with noise

Figure 5.1: Auditory spectrograms showing the original speech-in-noise token (tar-
get word “habrá”, majority confusion “acostumbrar”) and some of the experimental
manipulations described in the text.
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f0 shift −1 semitones

f0 shift +1 semitones

f0 shift +2 semitones

f0 shift +3 semitones

Figure 5.2: Auditory spectrograms showing the F0 manipulations (target word
“habrá”, majority confusion “acostumbrar”)
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which undo the effects of the masker interference, we tried to avoid selecting

a subset where the majority of confusions originated in acoustic similarity. In

order to achieve this, confusions were selected randomly after excluding those

cases which differed from the target in the insertion, deletion or substitution

of a single phoneme, as such cases had a higher probability of being caused by

acoustic similarity, especially in an inflected language like Spanish (e.g., gender:

“guapa/guapo”; number: ”casa/casas”; person/tense: “veré/verá”). Tokens se-

lected for the current experiment were balanced across the four talkers and five

masker types. Tokens were presented in the 8 conditions listed in Table 5.1 based

on the manipulations described in Section 5.2.

5.3.2 Listeners

72 monolingual Spanish or bilingual Spanish-Basque adults (age: µ = 26 σ =

4.6) took part in the experiment after screening for hearing loss at 20 dB HL.

Participants gave written consent and were paid for their participation.

5.3.3 Procedure

Of the 6400 unique stimuli (800 tokens x 8 manipulations), each listener screened

1600 stimuli in total in two 1 hr sessions, separated by a break of at least an hour.

The 3 dB increase, control and two resynthesis conditions were screened in the first

session, and those involving F0 shifts in the second session. The experiment was

conducted using custom MATLAB software in a sound-attenuated studio booth

over Sennheiser HD 380 Pro headphones. Listeners were instructed to identify

a single word after hearing each stimulus exactly once and to type in their first

impression. Stimuli were blocked by target talker and masker type, resulting in

20 blocks of 40 stimuli in each session. Prior to each block listeners heard four

practice stimuli at a high SNR to familiarise themselves with the voice of the

target talker and masker type (for the conditions where the masker was present).

Block order was randomised first on speaker followed by masker, so that blocks

of the same target speaker were presented successively, in order to minimise the

switching between target talkers. The order of stimulus presentation in each block

was randomised. Each individual stimulus (i.e. token-condition combination) was
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heard by at least 15 listeners. Except for the SNR increase condition, presentation

level SNRs were maintained for the remaining modifications. For the F0 shift

conditions, the presentation level SNR was set after the F0 modification was

applied to the target voice. In the glimpse resynthesis condition, the glimpse

threshold was set to 0 dB. Consequently, regions with a positive local SNR were

considered glimpses.

5.4 Modification conditions

5.4.1 Results

5.4.1.1 Test-retest rate

The majority confusion in the unmodified condition matched the majority re-

sponse in the original experiment in 636 cases (79.5%) of the sub-corpus used in

this study. To ensure that the subsequent analyses are based on highly-robust

confusions, we additionally insisted upon a minimum listener agreement of 40%

as in Chapter 2, which reduced the number of tokens to 505 (63%). The remain-

ing analyses are based on this subset. We employed the following terminology

to describe the relationship between the original confusion and the majority re-

sponse elicited by the modified stimulus: listeners either maintain the original

confusion, revert to the correct target word, or produce other responses.

5.4.1.2 SNR increase

Following a 3 dB increase in the target relative to the masker, listeners maintain

the original confusion in 339 cases (67.1%), revert to the correct target in

127 (25.2%) cases, and produce other responses to the remaining 39 (7.7%)

tokens. Figure 5.3 shows the breakdown of these responses across masker type.

It is evident that the largest proportion of reversions to the correct target word

occurred for the SSN (36%) and BMN3 (33%) maskers. The response categories

differed significantly across masker type for the SNR increase condition [χ2(8, N =

505) = 28.98, p < .001]. In a series of follow-up χ2 tests, we found that after

applying Bonferroni adjustment to the significance criteria, differences in response
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categories were significant between BMN1 and SSN [χ2(8, N = 219) = 20.30, p <

.001], as well as BMN1 and BMN3 [χ2(8, N = 217) = 16.43, p < .001], while all

other contrasts failed to reach significance at the .005 level.
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Figure 5.3: Percentages of maintain, revert and other responses per masker
type for the SNR increase condition.

5.4.1.3 Glimpse resynthesis

Figure 5.4 shows the distribution of maintain, revert, and other responses

following glimpse resynthesis with and without low-level noise, as a function of

masker type. Here we see a striking difference between pure energetic maskers

(SSN, BMN1, BMN3) and those which contain speech, and hence also have an in-

formational masking component (BAB4, BAB8). The former group had a larger

proportion of cases where the original confusion is maintained, while babble-

based maskers lead to many revert cases. In order to determine the signif-

icant associations between resynthesis condition, masker and response type, a

hierarchical log-linear analysis [Agresti, 2006] was conducted. A backward elim-

ination procedure was used to select the best model. The model was assessed

with the likelihood ratio chi-square test, which tests the difference between the

observed counts and those predicted by the model. Thus, non-significant p values

are associated with good models. The best model [G2(12) = 4.27, p = .98] in-

cluded significant interactions between masker and response type [partial χ2(8) =

212.00, p < .001], as well as response type and resynthesis condition [partial
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Figure 5.4: Percentages of maintain, revert and other responses per masker
type for the glimpse resynthesis conditions.

χ2(2) = 10.61, p < .01] and the corresponding main effects, out of which masker

[partial χ2(4) = 14.15, p < .01] and response type [partial χ2(2) = 44.03, p < .001]

were significant while resynthesis condition was not [partial χ2(1) = 0, p = 1].

The former significant interaction supported the differences of response categories

across masker type mentioned above. The latter indicated that the distribution

of responses are significantly different for the two resynthesis conditions, possibly

since the conditions with noise in the gaps seemed to contribute slightly more

maintain responses. However, a Cramer’s V value of 0.1 confirms the visual

impression, that the effect is indeed very small.

118



Chapter 5

50

60

70

80

90

100
F0 shift −1 semitone

%
 c

as
es

50

60

70

80

90

100
F0 shift +1 semitone

%
 c

as
es

50

60

70

80

90

100
F0 shift +2 semitones

%
 c

as
es

SSN BMN1 BMN3 BAB4 BAB8
50

60

70

80

90

100
F0 shift +3 semitones

%
 c

as
es

 

 

maintain
revert
other

Figure 5.5: Distribution of responses as a function of F0 shift. Note the change in
axis range.
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5.4.1.4 F0 shifts

Figure 5.5 shows the responses for the F0 shift cases. Overall, just over half

of the 505 robust tokens (274; 54%) were unaffected by shifts in F0. In the

remaining 231 cases at least one of the shifts had an effect. We used a log-linear

analysis as for the resynthesis conditions to determine associations of masker,

response type and the amount of F0 shift. The best model [G2(45) = 38.11, p =

.76] included a significant interaction between masker and response type [partial

χ2(8) = 90.65, p < .001] and the corresponding main effects for masker [partial

χ2(4) = 28.29, p < .001] and response type [partial χ2(2) = 1691.45, p < .001].

The factor F0 shift was not included in the best fitting model, indicating no

significant main or interactive effects. These results show that the number of

maintain, revert and other responses did not differ significantly as a function

of F0 shift. However, the differences in responses across masker type as shown in

Figure 5.5 were found significant with the largest numbers of revert responses

seen for the SSN and BMN3 maskers. Intriguingly, this is the same pattern as

observed in the SNR increase case.

5.4.2 Interim discussion

In Section 5.2 we hypothesised that the condition involving a +3 dB increase in

SNR would primarily result in a release from energetic masking. This hypothesis

is supported by the fact that the largest release from masking in this condition

was observed for the two of the three noise-based maskers (SSN and BMN3) with

the least amount of modulation. This increase in SNR was probably sufficient

to uncover target glimpses critical to the comprehension of the utterance for the

cases where listeners were able to recover the target. On the other hand, BMN1

showed the smallest proportion of revert cases in this condition, possibly since

a 3 dB increase in SNR is not enough to bridge the gap between noise and speech

energy in the masked regions caused by the large temporal modulations of speech

modulated noise. This is in accordance with Eisenberg et al. [1995], who reported

a steeper increase in keyword recognition performance in sentences with increasing

SNR for the steady state masker compared to amplitude modulated noise in a

±2 dB range around the SRT value. Coincidentally, in their study these ranges
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corresponded to -8 to -4 dB for the steady state masker and -12 to -8 dB for the

amplitude modulated masker, which roughly match the SNR ranges used in our

original experiment for these two maskers. At the same time, the SNR increase

condition also resulted in a considerable amount of revert cases for speech-

based maskers as well. It is unclear whether these cases can be attributed to a

release from energetic masking, as the level differences between the target speech

and background talkers could provide listeners with additional segregation cues.

Brungart [2001] found that level differences between target and masker voices can

support identification, even when the target is presented at a lower speech level.

The glimpse resynthesis condition provided a clearer separation between infor-

mational and energetic masking effects. We hypothesised that for the resynthesis

conditions, revert and maintain responses correspond to confusions caused by

informational and energetic masking respectively. This hypothesis was supported

by the distribution of response types across maskers, as shown in Section 5.4.1.3.

The release from masking provided by this modification was significantly larger

for babble maskers relative to maskers constructed from speech-based noise. Con-

sistent with the literature [Brungart, 2001; Brungart et al., 2006; Freyman et al.,

2004; Roman et al., 2003], our results in the glimpse reynthesis condition sug-

gested that the dominant form of masking is informational in a multi-talker sce-

nario. Specifically, these findings are in line with Brungart et al. [2006], who

found near perfect recognition scores for speech masked with up to 4 competing

talkers, after applying a similar resynthesis with a 0 dB glimpse threshold. While

our results indicate that a small proportion of confusions in babble were caused

by energetic masking, Brungart et al. [2006] noted that due to the restricted

response alternatives in their study the effects of energetic masking might have

been somewhat underestimated.

The glimpse resynthesis condition also resulted in an appreciable proportion of

revert cases in noise-based maskers. Since in the resynthesis conditions listen-

ers had access to the exact same target glimpses as in the control condition — the

only difference being the presence or the absence of the masker in the unglimpsed

regions — these confusions cannot be explained by simultaneous energetic mask-

ing. One possibility is that these cases were originally caused by forward masking

[Oxenham, 2001; Plack and Oxenham, 1998] — the saturation of inner hair cells
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following the onset of nerve firing, causing the inner hair cells to be unable to

respond to stimuli for a short interval after masker offset — which is absent in

the resynthesis condition. Another explanation is that with the noise removed,

listeners experience less cognitive load resulting in better identification. A similar

result was reported in Brungart et al. [2006], who found that, though substan-

tially less beneficial compared to the multi-talker condition, glimpse resynthesis

still provided a masking release of 2-5 dB in a steady-state and modulated noise

masker condition.

One of the resynthesis conditions involved adding a low-level noise in the

spectro-temporal regions where the target was not glimpsing, in order to mask

the artefacts caused by the discontinuities resulting from resynthesising speech

in disjoint target glimpses. By eliminating these artefacts, we expected this con-

dition to result in more revert cases. Instead, even the low-level masking noise

(12 dB SNR) added in the time-frequency gaps resulted in a slight increase in

maintain responses for all maskers. As this masker could not have impacted the

target glimpses directly, again, the slight increase in maintain responses could

be explained by forward masking or increased cognitive load due to the presence

of low-level noise. Another explanation is that the presence of even a low-level

noise is required to perceive the original confusions because at least in part, it

was influenced by the phonemic restoration effect [Warren et al., 1970].

Among the modifications considered, F0 manipulations had the smallest effect

on the confusions, in agreement with Cooke [2009] who also found that F0 changes

had little impact on the original percept. Contrary to expectations, we did not

find evidence that F0 manipulations provide more release from informational

masking compared to energetic masking. Instead, F0 modifications resulted in

the most revert cases for maskers SSN and BMN3. As forward masking exhibits

a sharper tuning curve than simultaneous masking [Moore and Glasberg, 1986],

it is possible that shifts in F0 resulted in a release from forward masking for some

of these cases.
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Figure 5.6: Normalised glimpse proportion for response types pooled across condi-
tions and maskers. Error bars indicate standard error of the mean.

5.5 Glimpse proportion and word length differ-

ences

5.5.1 Results

5.5.1.1 Glimpse proportion

We speculated that the amount of spectro-temporal plane glimpsing or the target

glimpse proportion (GP), is a good predictor of the response categories observed.

Since average GP is highly variable across modifications (e.g. SNR increase results

in a higher GP compared to the other conditions) and masker type, we subtract

the mean GP calculated for each masker and condition from the GP of each

corresponding stimulus. This modified GP-metric differed significantly between

the three response categories [F (2, 3532) = 22.06, p < .001], a post hoc Tukey

test revealing it to be significantly lower [p < .001] for other responses then for

revert and maintain cases, which did not differ significantly.
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Figure 5.7: Distribution of word length difference measured in number of phones
between confusion and target for maintain, revert and other cases in the glimpse
resynthesis condition. The vertical dotted line shows the sample mean.

5.5.1.2 Target-confusion length difference

While we expected energetic masking to primarily result in the deletion of target

speech fragments, as shown in the previous chapter, maskers with informational

content can both delete and contribute phonetic material to the listener’s per-

cept. It is possible that this asymmetry appears in the resulting misperceptions.

Thus, we hypothesised that confusions stemming from energetic masking would,

on average, be shorter then their respective targets, while confusions stemming

from informational masking are expected to have a more centred distribution of

word length difference. Using the glimpse resynthesis condition, we separated

confusions caused by energetic (maintain) and informational (revert) masking

based on listeners’ responses and evaluated the word length difference in phones

between the transcriptions of the target word and the misperception.

Figure 5.7 shows that the distribution of confusion-target word length differ-

ence for maintain and revert cases largely matches our predictions: misper-

ceptions caused by energetic masking tend to be shorter than the corresponding

target word [t(152) = −10.91, p < .001] while for misperceptions caused by infor-

mational masking we can make no such claim [t(231) = 0.344, p = .70] .
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Figure 5.8: Distribution of word length difference between confusion and target
across masker type. The vertical dotted line indicates the sample mean.

Figure 5.8 plots the distributions of confusion-target word length difference

across masker type. For noise-based maskers, which are expected to result in

mostly energetic masking, confusions are significantly shorter than targets as

shown by a one sample t-test. [tSSN(104) = −7.64, p < .001; tBMN1(113) =

−3.11, p < .001; tBMN3(102) = −4.29, p < .001]. For speech-based maskers,

which primarily result in informational masking, distributions are again centred

around zero [tBAB4(104) = 0.95, p = .34; tBAB8(113) = 0.79, p = .42].

Finally Figure 5.9 shows the distribution of phoneme length difference across

the responses elicited in the glimpse resynthesis condition and masker type.

5.5.2 Interim discussion

We hypothesised that the proportion of spectro-temporal plane glimpsing nor-

malised on the given condition and masker type would be a good predictor of

listeners’ responses. Interestingly, we found that the normalised glimpse propor-

tion of revert and maintain cases did not differ significantly, and had a higher

than average normalised GP value. On the other hand, cases in the other
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category had a GP value significantly lower than average.

It is clear why revert cases, where listeners succeed in recovering the target

message corresponded to high normalised GP values. The fact that the nor-

malised GP values of maintain responses were similarly high is more intrigu-

ing. One possibility is that consistent confusions also require a certain amount

of salient target fragments to support a common percept across listeners, even

though the identified target fragments might be reinterpreted as another word or
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blended with masker material. The lower GP could result in higher uncertainty

and consequently more guessing on the part of the listeners, resulting in other

responses, which in most cases were not consistent. This claim is supported by

the fact that the three response types also differed significantly in consistency

[F (2, 3532) = 217.26, p < .001], with other responses having significantly lower

consistency [p < .001] then revert and maintain responses, which did not have

any significant differences between them.

While energetic masking resulted in the deletion of target speech, misallocat-

ing fragments from background talkers can add phonetic material to the percept.

Consequently, we hypothesised that confusions stemming from energetic maskers

would be shorter then targets, while informational maskers can both contribute

or eliminate material, so we expected distributions of word-length difference to

be more centred. Our hypothesis was confirmed both regarding the distribution

of the word length difference for the response alternatives in the glimpse resyn-

thesis condition, as well as across maskers. Shorter confusions relative to targets

were observed for the maintain responses in the glimpse resynthesis condition

corresponding to the energetic masking cases.

In the glimpse resynthesis condition, maintain responses corresponding to

the energetic masking cases resulted in shorter confusions compared to targets.

While speech-based maskers tend to have a zero centred word-length difference

distribution, for the few maintain cases they do contribute the confusions are

shorter then targets [t(12) = −3.41, p = .005], providing further evidence that

these cases stem from energetic masking. Likewise, revert cases stemming

from noise based maskers — with the exception of SSN — result in a centred

distribution.

5.6 General discussion

Multiple studies in the past have tried to identify the perceptual cues relevant for

the identification of a particular sound, by introducing systematic modifications

to the stimuli and subsequently reevaluating listeners’ percepts [Cooke, 2009;

Li et al., 2010; Varnet, 2013]. However, most of these studies are limited in

scope to nonsense syllable perception. Following the work of Cooke [2009], in
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this study, we aimed to identify the role energetic and informational masking

played in generating confusions using this approach. Stimuli were presented in

four types of conditions: a control condition, as well as conditions involving

an increase in SNR, glimpse resynthesis and modification of target fundamental

frequency. Modifications were selected to provide release either from energetic

or informational masking, in order to separate confusions based on the type of

masker interference causing them.

We found that for almost 80% of tokens the majority listener response matched

the consistent confusion reported in the original experiment and 60% of the cases

had at least the same threshold for consistency (40%). The fact that the ma-

jority of consistent confusions could be replicated across different listener groups

provides further evidence that these cases are characteristic of general speech

processing mechanisms and the given listener population.

The glimpse resynthesis condition caused most confusions to revert in speech-

based maskers indicating that the vast majority of these misperceptions are

caused by informational masking. These findings are in line with the results

reported by Brungart et al. [2006], who found the effects of energetic masking to

be minimal in speech-on-speech masking using a similar glimpse resynthesis tech-

nique. At the same time, the resynthesis condition also generated a substantial

proportion of reverts in the noise masking conditions, suggesting that these con-

fusions result from non-simultaneous masking. One possible explanation is that

these confusions originate from forward masking. The increase in cognitive load

associated with the presence of noise could also contribute to these confusions.

Surprisingly, maintain and revert responses across maskers and conditions

had similar normalised glimpse proportions, as we would have expected revert

cases to score highest on this metric. However, other cases scored lower com-

pared to the two groups above. It seems possible that other cases correspond to

a higher degree of listener uncertainty, potentially resulting from the lower pro-

portion of available target glimpses. This hypothesis is further supported by the

fact that in general, other responses also showed lower consistency compared

to maintain and revert cases.

Finally, the processes through which energetic and informational masking in-

terfere with the target utterance are reflected in confusion word-forms. Energetic
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masking cases primarily resulted in the deletion of phonetic material in the target,

as evidenced by the word length difference between target and confusion. At the

same time, informational masking can also contribute material which resulted in

a more centred distribution for the same metric.

One unexpected finding of the above analysis was the relatively small impact

F0 modifications had on the resulting misperceptions. This is in contrast with

several previous studies, which have found that F0 differences between target and

background voices improved intelligibility of the target, both regarding the recog-

nition of isolated vowels [Assmann and Summerfield, 1990; Culling and Darwin,

1993; Scheffers, 1983] and in terms of sentences [Brokx and Nooteboom, 1982;

Darwin and Hukin, 2000]. A possible explanation for this discrepancy is that F0

differences help listeners in tracking the source of interest over time, as in sen-

tence recognition context, making it easier for them to sustain their attention on

the target stream. On the other hand, our results suggests that differences in F0

do not interfere with grouping smaller speech fragments from the masker to the

target. In line with our findings, in his original study of English misperceptions,

Cooke [2009] also found little effect of F0 changes overall.

Apart from the F0 modification condition — which had the smallest impact

on confusions — for the remaining conditions, signal modifications were not intro-

duced incrementally. Future work in this direction could employ gradual shifts,

which would allow us to witness the evolution of the percept on a fine-grained

level. While this approach has been applied to nonsense syllable confusions [Li

et al., 2010], identifying the boundaries of perceptual categories for word-level mis-

perceptions could further our understanding of the mechanisms through which

misperceptions are formed.
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Conclusions

In this thesis, we presented the elicitation of a corpus of consistent word misper-

ceptions and its analysis from a microscopic perspective. Consistent confusions

are an interesting speech perception phenomenon which are characteristic misper-

ceptions of a listener population, and can serve as valuable diagnostic stimuli for

microscopic intelligibility models. Most existing research on microscopic speech

intelligibility modelling has focused exclusively on nonsense syllable confusions.

Together with the study by Cooke [2009], this work represents one of the first

attempts to explain word-level misperceptions using a microscopic modelling ap-

proach.

The elicitation of a large-scale corpus of consistent word misperceptions was

presented in Chapter 2. 172 Spanish listeners participated in the elicitation ex-

periment, responding to over 50 000 unique speech-in-noise tokens presented in an

open-set task. Stimuli were constructed using four talkers and five distinct masker

types mixed at SNR ranges favourable for confusion elicitation. Overall, 300 000

responses were collected. Online token pruning heuristics and a series of post-

processing steps were applied to maximise the number of useful confusions. After

applying an across-listener consistency criterion of 40%, the final corpus consisted

of over 3200 robust word misperceptions. This experiment has demonstrated the

feasibility of collecting a large-scale corpus of robust word misperceptions in a

lab setting. The adaptive token pruning process was a key component of the col-

lection process, allowing for a roughly three-fold increase in consistent confusion

finding efficiency.
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In Chapter 3 we examined the confusions collected in Chapter 2 from a signal-

independent perspective. In this analysis, we explored how the characteristics

of the target word and its constituent phones affected the confusion patterns

observed. We also evaluated the overall effect of masker type on the resulting

misperceptions. Past studies have proposed various methods to align the phonetic

transcriptions of the target and misperceived word in order to identify sub-lexical

confusion patterns. However, there are certain drawbacks associated with most of

these approaches, including the potential for circularity or suboptimal alignments.

To address these limitations, we proposed a novel alignment method based on

syllable constituency and lexical stress, which takes advantage of the robustness

of the stressed syllable nucleus, which has been well documented in the literature.

We investigated the effects of factors on perceptual confusion patterns across

multiple levels of speech units, starting from articulatory features, through sub-

lexical factors including word-position and stress to lexical characteristics. In

line with prior experimental and naturalistic studies, we found that place cues

were most vulnerable, followed by articulatory features manner and voicing. We

found consonants with high-frequency energy to be especially robust, consistent

with multiple laboratory collections, but contrary to naturalistic reports. Further

examination suggested that the high-frequency advantage was mostly present for

maskers constructed from speech-shaped noise, where these consonants stand out

from the average masker level. In babble noise, high-frequency consonants were

less accurately perceived, possibly since babble noise can contribute similar high-

frequency consonant fragments which could result in a potential confusion. We

confirmed the results of prior naturalistic studies regarding the robustness of the

stressed syllables and the progressively decreasing segment error rates from word-

initial to word-final position — after accounting for morphological effects. The

agreement of these results across languages could indicate that these trends are

not language specific, but are characteristic of common word recognition mech-

anisms. We found that words not contributing any confusions had higher word

frequency, as well as a lower neighbourhood density and frequency, compared to

words that did, providing support for the neighbourhood probability rule pro-

posed by Luce and Pisoni [1998].

Finally, by investigating the effects of the masker type used for elicitation, we
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found that confusions stemming from babble maskers had a higher proportion of

insertion errors and a higher edit distance from the target compared to confusions

stemming from noise-based maskers. These results provided a first indication that

in maskers constructed from speech, listeners could be forming misperceptions by

borrowing phonetic material from the background talkers.

In Chapter 4 we conducted a signal-dependent analysis of misperceptions

from a microscopic modelling perspective. Using the glimpse decoder introduced

by Barker et al. [2005], we conducted an automatic classification of confusions

based on their cause. Confusions were classified as either stemming from acoustic

similarity or originating from the speech-noise interaction. These latter cases

were further classified into reinterpretations, blends and overrides, based on the

amount of masker material incorporated into the confusion. The involvement

of the masker could be measured as the proportion of spectro-temporal ‘area’

corresponding to the masker glimpses in the segregation hypothesis that best

supported the misperceived word. Using this classification procedure we were able

to explain 40% of the misperceptions in our corpus. In addition, we illustrated

how misperceptions could be formed through the misallocation of low-level speech

fragments.

In the second part of the chapter, we investigated the role misallocation plays

in the generation of misperceptions in more detail. By supplying the decoder with

the majority confusion reported by listeners, we could constrain the search to the

segregation space, effectively force-aligning the glimpses to the precept reported

by listeners. In order to quantify the amount of masker involvement for each

confusion, we defined metrics target and masker proportion, corresponding to

the area of target glimpses included in the most likely segregation over the total

area of target fragments (likewise for masker proportion). Using these metrics,

we quantified the amount of allocation errors involved in each misperception in

speech-based maskers. Our findings suggested that most confusions in babble

involved misallocations to some degree. Our study confirmed the notion that the

misallocation of low-level speech fragments is a major component of informational

masking.

In order to better understand which aspect of the target-masker interaction

resulted in the misperception, in Chapter 5, we asked the question, how does the
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confusion eliciting stimulus need to be modified for listeners to correctly identify

the target? We introduced a series of signal modifications to a subset of the con-

fusion eliciting tokens and presented them to listeners in a follow-up perceptual

experiment. The selected modifications aimed to provide a release from either

energetic or informational masking and involved a 3 dB increase in SNR, speech

resynthesis in the target glimpses and shifting the F0 of the target word. The

stimuli used in the original experiment were also presented to listeners as a con-

trol condition. We found that the majority confusion in the follow-up experiment

matched the original confusion roughly 80% of the time. When applying the same

consistency criterion (40%) as in the original experiment, we obtained a retest

rate of 63%. These results suggested that consistent confusions can be repli-

cated across different samples of the listener population. Listeners’ responses to

the modified stimuli were classified into three categories corresponding to main-

taining the confusion in the original experiment, reverting to the target word or

forming a new percept. As expected, the SNR increase condition resulted in a

release primarily from energetic masking, with most revert cases occurring for

maskers SSN and BMN3. BMN1 had the smallest proportion of reverts, possi-

bly because of a 3 dB increase is insufficient to uncover masked regions due to

the large temporal modulations of this masker. A substantial amount of revert

cases were also observed for babble maskers in this condition, suggesting that an

increase in SNR might also help the correct segregation of the target word. The

glimpse resynthesis condition provided a clear separation of confusions caused

by energetic and informational masking. This modification caused the majority

of misperceptions stemming from speech based maskers to revert to the target,

suggesting that these cases originated from informational masking. At the same

time, this glimpse resynthesis also caused a substantial proportion of reverts for

the noise-based maskers. This suggested that not all confusions stemming from

noise-based maskers are caused by simultaneous masking. In line with the find-

ings of Cooke [2009], the four conditions involving F0 modifications affected the

smallest proportion of confusions. Shifting the fundamental frequency of the

target did not cause a large proportion of reverts for the speech-based masker,

suggesting that a mismatch in F0 is not prohibitive for listeners when grouping

speech fragments to form a percept.
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In this thesis, we presented a signal-dependent and signal-independent analy-

sis of misperceptions as separate approaches. Further investigations could merge

the two approaches, possibly by incorporating the signal-independent factors

identified in Chapter 3 into a microscopic speech perception model.

In sum, speech misperceptions have the potential to help us understand the

processes involved in human speech perception. Consistent misperceptions are

especially helpful in this regard, eliminating the variability stemming from indi-

vidual differences, which in turn, makes it easier to analyse confusion patterns

at higher levels of speech units such as the word. Striving to create end-to-end

models of auditory perception not only promises better understanding of the

underlying processes, but also has the potential to revolutionise technologies re-

lated to speech and hearing. As long as listeners outperform machines in speech

recognition, insights into human speech processing have the capacity to improve

recognition rates. Further, a detailed understanding of the errors listeners make

across adverse conditions will undoubtedly benefit hearing prosthetics. Although

still in its infancy, microscopic modelling may well help us gain an increasingly

accurate understanding of human speech perception in the future.
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Appendix A

Examples from the confusions

corpus
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ID Target Confusion TargetIPA ConfusionIPA Masker Cons.(%)

1181 cruza bruja ! k R u . T a ! b R u . x a BAB4 40
1189 suelta suelo ! s we l . t a ! s we . l o BAB4 40
1214 mamá escama m a ! m a e s ! k a . m a BAB4 53
1269 pájaros paja ! p a . x a . R o s ! p a . x a BAB4 53
1275 cómodo como ! k o . m o . D o ! k o . m o SSN 47
1277 escuchen escucha e s ! k u . Ù e n e s ! k u . Ù a SSN 87
1288 harás gas a ! R a s ! g a s SSN 40
1291 visita caros b i ! s i . t a ! k a . R o s BAB4 60
1305 brilla envidia ! b R i . J a e m ! b i . D ja BAB4 47
1309 muelle traje ! m we . J e ! t R a . x e BAB4 40
1319 vino chicos ! b i . n o ! Ù i . k o s BAB4 60
1331 pesos besos ! p e . s o s ! b e . s o s SSN 93
1340 hacemos acentos a ! T e . m o s a ! T e n . t o s SSN 47
1344 vaya baño ! b a . J a ! b a . ñ o SSN 47
1351 juré puré x u ! R e p u ! R e SSN 60
1360 corto corta ! k o R . t o ! k o R . t a SSN 47
1382 plumas lunes ! p l u . m a s ! l u . n e s SSN 47
1401 verán verano b e ! R a n b e ! R a . n o SSN 60
1419 sab́ıan sab́ıa s a ! B i . a n s a ! B i . a SSN 87
1439 debajo llevar d e ! B a . x o J e ! B a R SSN 40
1447 doblar burlar d o ! B l a R b u R ! l a R SSN 67
1448 queŕıan queŕıas k e ! R i . a n k e ! R i . a s BAB8 47
1452 paré pared p a ! R e p a ! R e D SSN 47
1460 raro rara ! r a . R o ! r a . R a BAB8 40
1477 estudio estudios e s ! t u . D jo e s ! t u . D jo s BAB8 60
1496 falla fallo ! f a . J a ! f a . J o SSN 47
1519 cuántas cuatro ! k wa n . t a s ! k wa . t R o SSN 53
1526 primer primero p R i ! m e R p R i ! m e . R o SSN 60
1531 drogas flores ! d R o . G a s ! f l o . R e s SSN 47
1539 viv́ı vivir b i ! B i b i ! B i R BMN1 47
1542 sabŕıa sab́ıa s a ! B R i . a s a ! B i . a SSN 47
1564 nacido nativo n a ! T i . D o n a ! t i . B o BMN1 40
1576 ganado ganar g a ! n a . D o g a ! n a R BMN1 47
1583 obtener contener o B . t e ! n e R k o n . t e ! n e R BMN3 60
1589 buques bunque ! b u . k e s ! b u N . k e BMN1 73
1595 viv́ı vivir b i ! B i b i ! B i R BMN3 67
1596 contento intento k o n ! t e n . t o i n ! t e n . t o BMN1 40
1597 privado primero p R i ! B a . D o p R i ! m e . R o BMN1 47
1604 pienses piensas ! p je n . s e s ! p je n . s a s BMN1 80
1617 entera entero e n ! t e . R a e n ! t e . R o BMN1 67
1623 mueven mueve ! m we . B e n ! m we . B e BMN1 40

Table 1: Examples of the Spanish confusions corpus. Columns correspond to confu-
sion ID number, orthographic and phonetic transcriptions of the target and misper-
ceived word, as well as the percentage of listeners who reported the majority confu-
sion.
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ID Target Confusion TargetIPA ConfusionIPA Masker Cons.(%)

14588 si sigo ! s i ! s i . G o BAB4 53
14589 casi casa ! k a . s i ! k a . s a BAB4 73
14606 hermanos hermano e R ! m a . n o s e R ! m a . n o BMN3 73
14613 casada casarse k a ! s a . D a k a ! s a R . s e BAB4 40
14619 salid salir s a ! l i D s a ! l i R BMN1 67
14623 honrar comprar o n ! r a R k o m ! p R a R BMN1 47
14626 haćıas haćıa a ! T i . a s a ! T i . a BAB4 60
14630 besa pesa ! b e . s a ! p e . s a BAB4 53
14644 jura cura ! x u . R a ! k u . R a BAB4 60
14654 vista pista ! b i s . t a ! p i s . t a BAB4 73
14695 honrar comprar o n ! r a R k o m ! p R a R SSN 53
14696 ida vida ! i . D a ! b i . D a SSN 47
14710 preciso piso p R e ! T i . s o ! p i . s o SSN 53
14715 gordos cortos ! g o R . D o s ! k o R . t o s SSN 53
14724 local tocar l o ! k a l t o ! k a R BMN3 67
14758 juntas puntas ! x u n . t a s ! p u n . t a s SSN 53
14766 dado cantar ! d a . D o k a n ! t a R BMN1 47
14771 vulgar buscar b u l ! G a R b u s ! k a R BAB8 53
14789 bajas bajos ! b a . x a s ! b a . x o s BAB8 47
14839 jura cura ! x u . R a ! k u . R a SSN 47
14848 humana humano u ! m a . n a u ! m a . n o SSN 60
14871 desnudo desnuda d e z ! n u . D o d e z ! n u . D a BAB8 40
14889 gatos datos ! g a . t o s ! d a . t o s BAB4 60
14913 loca locas ! l o . k a ! l o . k a s BAB4 47
14917 t́ıa magia ! t i . a ! m a . x ja BAB4 40
14924 viva manzana ! b i . B a m a n ! T a . n a BAB4 60
14926 disparen dispare d i s ! p a . R e n d i s ! p a . R e BMN1 93
14932 cortan corta ! k o R . t a n ! k o R . t a BMN1 60
14940 fumo humo ! f u . m o ! u . m o BAB4 80
14957 marina gallina m a ! R i . n a g a ! J i . n a BMN3 47
14959 enseñar siempre e n . s e ! ñ a R ! s je m . p R e BMN3 40
14983 sordo solo ! s o R . D o ! s o . l o BMN1 60
15011 tráfico trágico ! t R a . f i . k o ! t R a . x i . k o BMN3 60
15016 fieles quieres ! f je . l e s ! k je . R e s BMN3 47
15020 buen bueno ! b we n ! b we . n o BMN3 80
15025 honor color o ! n o R k o ! l o R BMN3 40
15029 usado usar u ! s a . D o u ! s a R BMN3 87
15098 danza lanza ! d a n . T a ! l a n . T a BMN1 40
15117 rancho gancho ! r a ñ . Ù o ! g a ñ . Ù o SSN 40
15131 trabaja trabajo t R a ! B a . x a t R a ! B a . x o SSN 60
15148 leyes celos ! l e . J e s ! T e . l o s BAB4 67

Table 2: Examples of the Spanish confusions corpus. Columns correspond to confu-
sion ID number, orthographic and phonetic transcriptions of the target and misper-
ceived word, as well as the percentage of listeners who reported the majority confu-
sion.
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ID Target Confusion TargetIPA ConfusionIPA Masker Cons.(%)

45071 huelen vuelve ! we . l e n ! b we l . B e BMN1 67
45110 clara claro ! k l a . R a ! k l a . R o BAB8 47
45117 bajan baja ! b a . x a n ! b a . x a BMN3 47
45133 coger mujer k o ! x e R m u ! x e R BMN3 53
45135 escuche escucha e s ! k u . Ù e e s ! k u . Ù a BMN3 60
45138 nuclear leal n u . k l e ! a R l e ! a l BMN3 47
45225 peón león p e ! o n l e ! o n BMN1 73
45226 tiendas piernas ! t je n . d a s ! p je R . n a s BMN1 40
45231 cuestión gestión k we s ! t jo n x e s ! t jo n BMN3 53
45250 dejado dejar d e ! x a . D o d e ! x a R BMN3 47
45256 robo ropa ! r o . B o ! r o . p a BMN3 47
45260 parecen pared p a ! R e . T e n p a ! R e D BMN3 47
45263 vosotros nosotros b o ! s o . t R o s n o ! s o . t R o s BMN3 100
45266 talla calla ! t a . J a ! k a . J a BAB4 60
45274 dejad dejar d e ! x a D d e ! x a R BAB4 53
45320 murieron morir m u ! R je . R o n m o ! R i R BMN3 40
45334 preciosa precioso p R e ! T jo . s a p R e ! T jo . s o BAB8 40
45347 sede ser ! s e . D e ! s e R SSN 73
45356 importan importa i m ! p o R . t a n i m ! p o R . t a SSN 47
45362 nuestra nuestro ! n we s . t R a ! n we s . t R o SSN 73
45400 sueña sueños ! s we . ñ a ! s we . ñ o s BAB4 80
45428 hablaba hablar a ! B l a . B a a ! B l a R BMN3 40
45444 ir pis ! i R ! p i s BMN1 40
45449 taxis ducharse ! t a . k s i s d u ! Ù a R . s e BAB4 73
45451 cuerdas puerta ! k we R . D a s ! p we R . t a BAB4 73
45456 boca ropa ! b o . k a ! r o . p a BAB4 40
45467 falda falta ! f a l . d a ! f a l . t a BAB4 67
45479 justos músculos ! x u s . t o s ! m u s . k u . l o s SSN 40
45509 chico chica ! Ù i . k o ! Ù i . k a BAB8 47
45522 salsa salsas ! s a l . s a ! s a l . s a s BAB8 53
45524 bueno control ! b we . n o k o n ! t R o l BAB8 40
45560 pasen pase ! p a . s e n ! p a . s e BMN3 40
45571 dejé tejer d e ! x e t e ! x e R BMN3 53
45634 frasco casco ! f R a s . k o ! k a s . k o BAB4 53
45639 valla bailas ! b a . J a ! b aI . l a s BAB4 53
45640 sentar cantar s e n ! t a R k a n ! t a R BAB4 40
45662 quiere quiero ! k je . R e ! k je . R o BAB4 60
45663 sucio formas ! s u . T jo ! f o R . m a s BAB4 47
45690 formal fumar f o R ! m a l f u ! m a R SSN 60
45697 menos niños ! m e . n o s ! n i . ñ o s SSN 60
45707 probado robado p R o ! B a . D o r o ! B a . D o BAB4 53

Table 3: Examples of the Spanish confusions corpus. Columns correspond to confu-
sion ID number, orthographic and phonetic transcriptions of the target and misper-
ceived word, as well as the percentage of listeners who reported the majority confu-
sion.
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Appendix B

Confusions defying stress-based

alignment
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ID Target Confusion

38012 antes alcohol
11124 fila entramos
40089 puntos manzana
30603 siglo alcohol
1924 locura leche
14520 cerdo entramos
47593 crió alcohol
24464 guardan pozo
8981 réır años
22144 guardias olor
543 doblar leche

39398 sabrá choca
27816 grito alcohol
18626 creó duchas
16971 vuestra manzana
13331 nombres leche
1291 visita caros
808 permiso estaré
783 blusa estaré
731 dirige manzana

34701 pluma cartera
28930 progreso chicos
21668 para leche
20906 sacan alcohol
1878 sab́ıa entramos
16207 entienden acción
15996 mitad leche
8966 golfo autobús
48579 tribunal leche
48196 comienzo fresca
46949 fotos acción
46539 dime manzana
41679 ocurre pensión
3669 multa tensión
32353 gruñón manzana
2972 llegando fumas

ID Target Confusion

23171 cuento mensaje
23148 salimos mensaje
22479 horrible leche
18825 valió ropas
18631 sentir cachas
17551 fuente chicos
45663 sucio formas
42186 ola chico
35049 medias traje
21654 basta partir
9836 ángel adjetivo
8468 sentó pared
7788 novia vacas
7647 súper entramos
46100 teńıan acción
46068 aunque cama
45524 bueno control
43983 romṕı formas
4227 interior gustas
4186 pulmón baños
38007 rubio formas
376 encuentra rubias
3742 son solemos
37364 imán muchas
34699 noticia formas
34692 células atención
31291 preguntas comer
30547 deseas pozo
25131 juré formas
24131 remo duchas
17277 ped́ı aplasta
16197 murió celos
15150 éste ducha
10857 litros comen
22158 nunca jabón
16605 urgencias ropa

Table 4: Cases where stress based alignment is not applicable due to listeners re-
porting a salient word from the background. Confusions can be located in the online
corpus resource using the ID number.
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ID Target Confusion

28492 viaja viajar
44259 corta cortar
43306 robo robar
36699 molesto molestar
30173 busco buscaron
21099 personal persona
11640 conducta conductor
20328 idea ideal
43987 sabes saber
7484 espacial espacio
3664 ésta estar
33607 filtro filtrar
26051 debéis debes
14142 robo robar
13244 asusta asustar
11575 vengar venga
10089 acerca acercar

Table 5: Cases where stress based alignment is not applicable due to shift in stress
caused by morphological variation.
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ID Target Confusion

41520 sector insecto
290 muchacho mucho

27529 circo ciudad
19735 ŕıo frio
8465 nueve duchas
35096 seres seis
26870 peces pegamos
38178 médicos niños
33605 sopa soplar
30590 privada triste
43045 precio empezar
30731 óır huir
25861 vago vaćıo
17692 forman hoy
26165 cobarde escoba
40569 haćıa cama
38987 auto audición
38738 belleza invierno
287 cañón rayo

25680 niña escritor
2528 venda joven
24598 mago no

ID Target Confusion

17955 llegan tierra
7096 fe feliz
45890 logramos lobos
42480 verá primavera
42460 números niños
37217 robado ropa
35682 desgracia queso
33363 cambien camping
31654 pegó auto
30414 rotas rodillas
28670 muñeca muy
25499 acepta acertar
25242 yegua idioma
23420 burla pueblo
20090 sincero enfadado
16078 polićıa infierno
14959 enseñar siempre
14917 t́ıa magia
13810 volv́ı serie
12918 tierno viaje
10651 cubro jabón
14371 sincero cama

Table 6: Cases where stress based alignment is not applicable due to other reasons.
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J. R. Benḱı. Effects of signal-independent factors in speech perception. In Pro-

ceedings of the 28th annual meeting of the Berkeley Linguistics Society, pages

63–74, 2002. 23
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