
 

 

 

Quantitative analyses in basic, translational and 

clinical biomedical research: metabolism, vaccine 

design and preterm delivery prediction 

 

Iker Malaina 

 

PhD Thesis 

 

 

 

 

Department of Physiology 

University of the Basque Country (UPV/EHU) 

Bilbao, Spring 2017 



 

 

 

 

 

 

 

 

 

Tome II 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

Contents of Tome II 

 

 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   2 

Dynamic properties of calcium-activated chloride  

currents in Xenopus laevis oocytes . . . . . . . . . . . . . . . . . . . . . . . . . .    3 

On the dynamics of the adenylate energy system:  

homeostasis vs homeorhesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

A combinatorial approach to the design of vaccines . . . . . . . . . . . .  35 

Montevideo units vs autoregressive models on  

preterm labor detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   67 

 



 

1 
 

 

 

Introduction 

 

 

 With the purpose of facilitating the consultation of methods, tables and other 

supplementary data, in this tome we include the four articles in which this thesis is 

based, thus complementing Tome I.   

  



1Scientific RepoRts | 7:41791 | DOI: 10.1038/srep41791

www.nature.com/scientificreports

Dynamic properties of calcium-
activated chloride currents in 
Xenopus laevis oocytes
Ildefonso M. De la Fuente1,2, Iker Malaina2, Alberto Pérez-Samartín3, María Dolores Boyano4, 
Gorka Pérez-Yarza4, Carlos Bringas4, Álvaro Villarroel5, María Fedetz6, Rogelio Arellano7, 
Jesus M. Cortes4,8,9 & Luis Martínez2

Chloride is the most abundant permeable anion in the cell, and numerous studies in the last two 
decades highlight the great importance and broad physiological role of chloride currents mediated 
anion transport. They participate in a multiplicity of key processes, as for instance, the regulation of 
electrical excitability, apoptosis, cell cycle, epithelial secretion and neuronal excitability. In addition, 
dysfunction of Cl− channels is involved in a variety of human diseases such as epilepsy, osteoporosis 
and different cancer types. Historically, chloride channels have been of less interest than the cation 
channels. In fact, there seems to be practically no quantitative studies of the dynamics of chloride 
currents. Here, for the first time, we have quantitatively studied experimental calcium-activated 
chloride fluxes belonging to Xenopus laevis oocytes, and the main results show that the experimental 
Cl− currents present an informational structure characterized by highly organized data sequences, long-
term memory properties and inherent “crossover” dynamics in which persistent correlations arise at 
short time intervals, while anti-persistent behaviors become dominant in long time intervals. Our work 
sheds some light on the understanding of the informational properties of ion currents, a key element to 
elucidate the physiological functional coupling with the integrative dynamics of metabolic processes.

Chloride (Cl−) is thought to be the most abundant free anion in the cell1, and its movement through the cellular 
membranes is mainly mediated by Cl− channels, which seem to be widespread in nearly all cellular organisms, 
from bacteria to mammals2,3.

Chloride-conducting anion channels are localized both in the plasma membrane and in intracellular orga-
nelles such as the endoplasmic reticulum, the Golgi apparatus, the nucleus, the mitochondria, the lysosomes, the 
endosomes and the cell vesicles4–7. They participate in a multiplicity of key functions like, for instance, the stabili-
zation of the membrane potential, the regulation of cell volume and electrical excitability, and the acidification of 
intracellular organelles4,8. In addition, different studies have recognized the Cl− channels’ contributions to apop-
tosis9, signal transduction10, cell cycle11, cell adhesion and motility12, among other complex cellular processes.

Intracellular chloride currents also play important roles in a variety of physiological processes13, including 
epithelial secretion14, neuronal excitability15, repolarization of the cardiac action potential16, modulation of light 
responses17 and olfactory transduction18. It can be noted that, under physiological conditions, certain types of 
Cl− channels participate in the regulation of the action potentials and synaptic responses, which are important 
for learning and memory19. In fact, dramatic changes in intracellular Cl− currents occur both during development 
and in response to synaptic activity20,21.
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At a protein metabolism level, there are numerous examples of proteins whose activity is dependent on, or 
regulated by Cl− 22–24. For instance, the Na+-K+-2Cl− cotransporter NKCC1 is activated by low intracellular Cl− 
via a Cl−-sensitive protein kinase25.

The importance of chloride channels was also evidenced through studies of human diseases. In fact, the dys-
function of certain types of chloride channels is involved in a variety of diseases such as epilepsy, male infertility, 
cystic fibrosis, myotonia, lysosomal storage disease, deafness, kidney stones, and osteoporosis1,26,27.

Moreover, different oncogenic processes such as the high rate of proliferation, active migration, and invasive-
ness of malignant cells into normal tissue have been shown to require the involvement of determined chloride 
channel activity in a variety of cancer types22,23.

In general, some chloride channels are activated only by voltage i.e., voltage-gated, while others are acti-
vated by various ions e.g., H+ (pH), or Ca2+, or by the phosphorylation of intracellular residues by several 
protein kinases4,28. Based on these and other characteristics, chloride channels have been classified into five 
main functional groups: (i) extracellular ligand-gated channels, (ii) calcium-activated chloride channels, (iii) 
volume-regulated anion channels, (iv) cAMP-PKA activated channels, and (v) voltage-gated chloride channels29.

Calcium-activated chloride channels (CaCCs) are a key family of chloride channels that regulate the flow of 
chloride and other monovalent anions across cellular membranes in response to intracellular calcium levels30. 
These channels are ubiquitously expressed, in both excitable and non-excitable cells31.

Currents mediated by CaCCs were first observed in 1981 in Rana pipiens eggs where the injection of Ca2+ 
initiated a transient shift to positive membrane potentials in a Cl−-dependent manner32. Later studies in Xenopus 
laevis oocytes and salamander photoreceptors characterized these calcium-activated chloride currents33,34.

The relationship between chloride currents and intracellular calcium fluctuations gives CaCCs a crucial role in 
many cellular processes, and numerous studies show the great importance and broad physiological role of these 
channels35.

Historically, chloride channels have been less studied than cation channels. Considerable progress has been 
made in the knowledge of their molecular structures and functions30, but there seems to be practically no quan-
titative studies of the dynamics of chloride currents. On the contrary, there are a significant number of studies 
made from the perspective of systems biology on free cations such as calcium. For instance, from the perspective 
of systems biology, different studies have shown that information might be encoded in the amplitude, the fre-
quency, the duration, the waveform or the timing of the calcium oscillations36,37. Moreover, the mutual informa-
tion method was used to calculate the amount of information transferred through a calcium signaling channel38 
and long-term correlations were also observed in calcium-activated potassium channels39.

Here, we present a pioneer quantitative study of the dynamic properties of the chloride currents belonging 
to calcium-activated chloride channels (CaCCs) of Xenopus laevis oocytes, analyzed under different external pH 
environments (acid, neutral and basic). Xenopus oocytes have long been a model system for studying CaCCs 
because these channels are the predominant channels expressed at extremely high levels (0.5 mA/cm2)40.

The calcium-activated chloride currents were measured by the patch-clamp technique and the experimental 
series were analyzed by means of non-linear approaches. Our main result shows that the currents present a struc-
ture characterized by highly organized data sequences, long-term memory and inherent “crossover” dynamics 
with transitions from persistent to anti-persistent behaviors. In this dynamic structure, short memory time peri-
ods with a mean of 7.6 seconds arise from the experimental data, which correspond to non-trivial correlations 
that encompass around 4,000 experimental chloride values.

In this paper, for the first time, we have addressed essential aspects of calcium-activated chloride channels 
(CaCCs), and the informational properties herein analyzed seem to be intrinsic characteristics of the dynamics 
involved in these physiological ion currents.

Results
In order to study some of the dynamic properties of the chloride channels we have recorded calcium-activated 
chloride currents in Xenopus laevis oocytes, which have been evoked by serum under different external pH 
stimuli (pH = 0.5, pH = 0.7 and pH = 0.9). Thus, we had 21 time series in total, each one of them formed by 
130,000 discrete data points. Figure 1 shows three representative experimental signals obtained by means of the 
patch-clamp technique, under three different pH conditions, Ringer’s solution at pH 5.0, 7.0 and 9.0 (acid, neutral 
and basic pH).

To confirm that oscillations monitored in Xenopus oocytes by application of Fetal Bovine Serum corresponded 
with Ca2+-dependent Cl− currents, three different experiments were performed. First, oocytes generating oscilla-
tions were voltage-clamped at 4 different voltages (either −60, −40, −20 or at 0 mV). As it is illustrated in Fig. 2a, 
currents reversed near to −20 mV, in accordance with the reversal potential of Cl− in oocytes. Second, the reversal 
potential observed was shifted toward more positive potentials when the external Cl− concentration was reduced, 
this is shown in Fig. 2b. In this case, oocytes were held to either −30 mV (first column) or 0 mV (second column), 
while they were superfused with solutions containing 100%, 50% or 0% of Cl− (NaCl was substituted proportion-
ally by Na2SO4 in Ringer solution and, osmolarity compensated adding sucrose). It is clear that reversal potential 
is close to −30 mV in 100% Cl−, while in 0% Cl− oscillations continued being in inward direction at 0 mV, indicat-
ing that reversal potential in this condition is more positive. An intermediate case occurs with 50% Cl− solution, 
where the shift in reversal potential by reducing external Cl− is predicted by the Nernst equation. And finally, it 
was demonstrated that Cl− currents were Ca2+-dependent. Intraoocyte injection of the calcium chelator ethyl-
ene glycol-bis(2-aminoethylether)N,N,N’,N’,-tetraacetic acid (EGTA) abolished completely oscillatory currents, 
according to Ca2+-dependent Cl− currents.

First, to test for the presence of long-term correlations in the experimental chloride data we have used the 
root-mean square (rms) fluctuation F(l). For uncorrelated data, the exponent α for the relationship F(l) ~ lα is 
equal to 0.5; in contrast α > 0.5 indicates the presence of positive long-range correlations and α < 0.5 implies 
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long-term anti-correlations. According to this method, we have divided the 130,000 data points of each time 
series in 6 non-overlapping windows with k = 5, performing the rms fluctuation method on every window for 
each of the 21 experimental chloride series and fitting F(l) within the range l = 1, …, lmax (see Methods for more 
details). The values of lmax were systematically increased in 100 points, which correspond to 1 second, and the 
reliability of the rms correlation exponent α was calculated by means of the R2 parameter, which measures the 
goodness fit (also called the coefficient of determination).

Second, in order to discern whether the experimental Cl− currents exhibit non-trivial correlations, we have 
fixed a threshold criterion of R2 ≥ 0.99. The obtained α values were calculated for every window on each time 
series, and the results ranged between 0.75 and 1, being 0.927 ± 0.048 (mean ± SD) the global mean α of all the 
experimental chloride series. These non-trivial correlations encompassed between 1,500 and 6,500 evoked chlo-
ride values (mean of 3,809.5 ± 1,298.8), which correspond to periods of time ranging between 3 and 13 seconds 
(mean of 7.66 ± 2.6). Boundary times where achieved on the series n17 (experiment 6, pH = 7.0) and n2 (exper-
iment 1, pH = 7.0) respectively. The mean rms correlation coefficients (α), as well as the number of evoked chlo-
ride values under the non-trivial correlation regimen (N), with their respective correlation times (Tc) for all the 
experimental series are given in Table 1. Figure 3 shows an example of rms fluctuation analysis applied to three 
calcium-activated chloride responses of the same oocyte (n1, n2 and n3 time series belonging to the experiment 
1) for their Tc times on a single window. In all three cases, the obtained α values were significantly different to 0.5, 
and for at least 10, 13 and 12 seconds respectively, the evoked chloride dynamics presented non-trivial long-term 
correlations. Alternatively, long term correlations were also observed by calculating the autocorrelation function 
from the time series (Supplementary Information).

Next, we have studied the long-range correlations for α ≥ 0.6. The analysis showed exponents ranging between 
0.6008 and 0.9718, which respectively correspond to the time series n1 (pH = 5.0, lmax = 2,200) and n17 (pH = 7.0, 

Figure 1. Calcium-activated chloride currents in Xenopus laevis oocyte. Three prototype experimental 
Cl− currents obtained from the same cell at different conditions: (a) pH 5.0 (n10), (b) pH 7.0 (n11), (c) pH 9.0 
(n12). Each chloride time series has 130,000 points (sampling interval 2 milliseconds), which correspond to a 
period of time of 260,000 milliseconds duration. The vertical axis (Φ) corresponds to the measures of currents 
in nanoampers (nA).
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lmax = 1,200). The global average α was 0.774 ± 0.108. All the means of α values, R2 adjustments, and the lmax are 
given in Table 2. It can be observed that the values of α decrease slowly as lmax increases. This behavior is illus-
trated in Fig. 4a, where the average α for the 21 time series, as a function of lmax, are represented; all the corre-
sponding values of the Fig. 4 are displayed on Table 3.

Figure 2. Ca2+-dependent Cl− current validation. (a) Xenopus oocyte held at either −60, −40, −20 or 0 mV. 
Reversal potential of oscillatory currents corresponded to a value close to −23 mV. (b) Oscillatory current 
reversal potential were dependent on external Cl− concentration, traces show currents in oocytes held at  
−30 mV or 0 mV in 3 different solutions containing 100%, 50% or 0% Cl−, reversal potential shifted toward 
more positive potentials as external Cl− concentration decreased. (c) Cytoplasmic injection of EGTA, a Ca2+ 
chelator, completely eliminated the oscillatory Cl− current.

Experiment Stimulus Number α N Tc

1

pH5.0 n1 0.9137 ± 0.051 5,000 10

pH7.0 n2 0.9286 ± 0.009 6,500 13

pH9.0 n3 0.9118 ± 0.053 6,000 12

2

pH5.0 n4 0.9339 ± 0.035 4,500 9

pH7.0 n5 0.9177 ± 0.031 5,000 10

pH9.0 n6 0.9182 ± 0.056 5,000 10

3

pH5.0 n7 0.9226 ± 0.032 3,500 7

pH7.0 n8 0.9002 ± 0.041 5,500 11

pH9.0 n9 0.9471 ± 0.078 3,500 7

4

pH5.0 n10 0.9364 ± 0.030 3,500 7

pH7.0 n11 0.9300 ± 0.037 4,000 8

pH9.0 n12 0.9295 ± 0.050 2,500 5

5

pH5.0 n13 0.9301 ± 0.036 4,000 8

pH7.0 n14 0.9199 ± 0.083 4,000 8

pH9.0 n15 0.9096 ± 0.096 2,000 4

6

pH5.0 n16 0.9420 ± 0.049 3,000 6

pH7.0 n17 0.9480 ± 0.062 1,500 3

pH9.0 n18 0.9372 ± 0.049 3,000 6

7

pH5.0 n19 0.9372 ± 0.023 2,500 5

pH7.0 n20 0.9208 ± 0.021 2,500 5

pH9.0 n21 0.9433 ± 0.043 3,500 7

Table 1.  The first column shows the number of the experiment, each one corresponding to a single oocyte. 
The second column contains the pH stimuli applied to each specific experiment. The third one shows the 
number assigned to each obtained chloride series. The rest of the data corresponds to the values of mean rms 
correlation coefficient (α), number of concentration measurements under the correlation regimen (N), and 
regime correlation time in seconds for non-trivial correlations (Tc).
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In addition, we have observed a critical transition around lmax = 28 seconds, where the behavior of the Cl− cur-
rents changes from positive to negative correlations (Fig. 4b). It can be observed that as lmax increases, all the α 
exponent values decreased, and for the maximum window length (lmax = 40, corresponding to 20,000 time 
points), the α values were lower than 0.5 (α = −0.051 ± 0.283) indicating anti-correlations in all cases; concretely, 
α values ranged between −0.885 and 0.349, which belong to n2 (experiment1, pH = 7.0) and n7 time series 
(experiment 3, pH = 5.0) respectively.

Finally, we performed a rms fluctuation analysis without the separation of the data in shorter windows, thus 
considering all the points for each experimental time series, observing anti-correlations for all the cases 
(α = −0.01 ± 0.1).

Moreover, we have examined whether the chloride currents are described by a fractional Gaussian noise (fGn) 
or a fractional Brownian motion (fBm) by calculating the slope of the Power Spectral Density plot41. The signal 
exhibits power law scaling if the relationship between its Fourier spectrum and the frequency is approximated 
asymptotically by S(f) ≈ S(f0)/fβ, where S(f0) and β are constant values. If −1 < β < 1 the signal corresponds to an 
fGn. In particular, when β = 0, the power spectrum is flat, as is the case for white noise in which the time series is 
composed of a sequence of independent random values. If 1 < β < 3 the signal corresponds to a fBm. The analysis 
of the Power Spectral Density plot revealed that the experimental series are characterized by a power-law scaling 
with β ranging within 1.507 and 2.991, which suggests that all the series are described by fBm (β values are given 
in Table 4).

Additionally, an analysis of the classical descriptive statistics of the experimental data has been included in the 
Supplementary Information).

Next, we have checked whether the chloride time series show persistent or anti-persistent long-term mem-
ory by calculating the Hurst exponent. Although several tools exist for estimating the long-term memory from 

Figure 3. Root mean square fluctuation analysis applied to experiment 1 on a single window. Log-log plot 
of the rms fluctuation F versus l step. The red points depict the results of the original data for each value of l, 
while the black lines represent the regression lines. (a) α = 0.88 (n1), (b) α = 0.92 (n2) and (c) α = 0.83 (n3). 
Corresponding (respectively) R2 adjustment coefficients were 0.9915, 0.9921 and 0.9976. The high values of α 
and R2 indicate non-trivial long-term correlations for each chloride time series during 10, 13 and 12 seconds 
respectively.

257



www.nature.com/scientificreports/

6Scientific RepoRts | 7:41791 | DOI: 10.1038/srep41791

fBm time series, one of the most reliable methods is the bridge detrended Scaled Windowed Variance analysis 
(bdSWV) (see Methods for more details). After bdSWV analysis, the resulting Hurst exponents had a mean value 
of 0.191 ± 0.101, implying long-range memory and an anti-persistence effect in all the experimental data sets 
(Table 4). In addition, an ANOVA test revealed that Hurst exponent values were significantly different for time 
series corresponding to pH = 9.0 in comparison to pH = 7.0 (p-value = 10−5) and pH = 5.0 (p-value = 10−4), but 
no significant distinction was found between pH = 7.0 and pH = 5.0 (p-value = 0.42). Notice that the obtained 
values of H are very low, showing a high degree of anti-persistence (strong trend-reversing), so that an increasing 
trend in the experimental data values will tend markedly to be followed by a decreasing trend, or a decrease on 
average will be followed by a robustly increasing trend.

In order to estimate the significance of our results, we have performed a shuffling procedure that defines the 
null-hypothesis. If the original time series exhibits a memory structure (H ≠ 0.5), after the shuffling such struc-
ture will disappear, thus re-applying a new Hurst analysis on the shuffled data should provide values of H close to 
0.5. According to this procedure, for each experimental time series (21 in total), we performed a thousand ran-
dom permutations, which allowed building the null-hypothesis of no correlations. In total, we generated 21,000 
random series from the original data belonging to the seven experiments with Xenopus laevis oocytes. After 
shuffling, the results show a mean Hurst exponent of 0.499 ± 0.01, indicating the absence of long-term memory 
i.e., the informational memory structures in all shuffled series was completely lost. Notice that after shuffling, the 
series became Gaussian white noise (fGn series with β = − . ± .0 0006 0 004, and for this case the use of bdSWV 
is not justified. Instead, Dispersion Analysis is the most recommendable tool for this kind of series41,42 (for more 
details see Methods).

Figure 5a illustrates the regression lines of a bdSWV process applied to an example of experimental series 
giving H = 0.104 (experiment 5, n13, pH = 5.0), which indicates a strong anti-persistent memory. After randomly 
permuting all the 130,000 points contained in this time series n13, the Dispersion Analysis gave H = 0.492, which 
indicates a breakdown for the long-term memory (Fig. 5b). In Fig. 5c, we represent 100 Hurst exponent values 
corresponding to 100 shuffled series, obtained from shuffling the experimental data. It can be observed that, after 
shuffling, the long-term memory disappears completely in all the time series (H = 0.498 ± 0.01). For illustration 
purposes, Fig. 5c shows, rather than the 21,000 obtained values of Hurst exponent, only 100 of them. The infor-
mational memory structures in all shuffled series were completely broken-down, and therefore, the memory 
structure that characterizes the experimental data could not be found by chance. Finally, in order to calculate the 
values of Hurst exponent from short data periods, we used the Detrended Fluctuation Analysis (DFA), because 
the bdSWV is recommended for data sizes greater than 212, whilst for data sets with less than 28 points bdSWV 
has been shown to be unreliable43. The DFA analysis showed that for time periods ranging between 2 and 5 sec-
onds all the experimental time series exhibit persistent behavior with H > 0.5 being the global mean of 
H = 0.697 ± 0.11, which indicates that the properties of persistent memory dominate at short time intervals of the 
calcium-activated chloride currents in Xenopus laevis oocytes.

Experiment Stimulus Number α R2 max lmax

1

pH5.0 n1 0.7094 ± 0.100 0.8896 ± 0.070 2,200

pH7.0 n2 0.7587 ± 0.092 0.8844 ± 0.120 2,200

pH9.0 n3 0.7145 ± 0.080 0.8730 ± 0.107 2,300

2

pH5.0 n4 0.7245 ± 0.093 0.8955 ± 0.085 2,200

pH7.0 n5 0.7638 ± 0.107 0.9243 ± 0.084 2,000

pH9.0 n6 0.7390 ± 0.103 0.9085 ± 0.059 2,000

3

pH5.0 n7 0.7974 ± 0.089 0.9430 ± 0.084 1,300

pH7.0 n8 0.7614 ± 0.081 0.9315 ± 0.066 2,000

pH9.0 n9 0.8474 ± 0.133 0.9721 ± 0.033 1,500

4

pH5.0 n10 0.7918 ± 0.111 0.9288 ± 0.099 1,400

pH7.0 n11 0.7543 ± 0.128 0.8913 ± 0.113 1,600

pH9.0 n12 0.7406 ± 0.142 0.9309 ± 0.050 1,500

5

pH5.0 n13 0.7905 ± 0.110 0.9313 ± 0.077 1,500

pH7.0 n14 0.7792 ± 0.111 0.9551 ± 0.028 1,800

pH9.0 n15 0.8190 ± 0.136 0.9784 ± 0.034 1,000

6

pH5.0 n16 0.8550 ± 0.119 0.9675 ± 0.061 1,200

pH7.0 n17 0.8734 ± 0.138 0.9836 ± 0.030 900

pH9.0 n18 0.7264 ± 0.079 0.9206 ± 0.051 2,000

7

pH5.0 n19 0.7262 ± 0.067 0.9142 ± 0.048 1,300

pH7.0 n20 0.7837 ± 0.066 0.9435 ± 0.054 900

pH9.0 n21 0.8137 ± 0.107 0.9549 ± 0.055 1,500

Table 2.  The first column shows the number of the experiment, each one corresponding to a single 
oocyte. The second column contains the pH stimuli applied to each specific experiment. The third one shows 
the number assigned to each obtained Cl− series. The rest of the data corresponds to the values of mean rms 
correlation coefficient (α), coefficient of adjustment (R2), and maximum regime correlation points (max lmax).
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Figure 4. Long-term correlations across different windows lengths. (a) Global average α versus different 
values of lmax (varying from 1 to 24 seconds). (b) α as a function of lmax (varying from 25 to 40 seconds). The 
error bars represent the standard deviation at each step. It can be observed that all Cl− time series change from 
positive to negative correlation near lmax = 28 seconds.

lmax (sec) α lmax (sec) α

1 0.967 ± 0.04 21 0.647 ± 0.18

2 0.970 ± 0.03 22 0.624 ± 0.18

3 0.966 ± 0.03 23 0.600 ± 0.18

4 0.959 ± 0.04 24 0.577 ± 0.18

5 0.950 ± 0.04 25 0.553 ± 0.18

6 0.939 ± 0.05 26 0.528 ± 0.18

7 0.928 ± 0.06 27 0.502 ± 0.18

8 0.915 ± 0.06 28 0.474 ± 0.18

9 0.901 ± 0.07 29 0.446 ± 0.19

10 0.885 ± 0.08 30 0.416 ± 0.19

11 0.868 ± 0.09 31 0.385 ± 0.20

12 0.849 ± 0.10 32 0.351 ± 0.21

13 0.830 ± 0.11 33 0.316 ± 0.22

14 0.808 ± 0.13 34 0.278 ± 0.23

15 0.786 ± 0.14 35 0.238 ± 0.24

16 0.764 ± 0.15 36 0.193 ± 0.25

17 0.741 ± 0.16 37 0.146 ± 0.26

18 0.717 ± 0.17 38 0.094 ± 0.27

19 0.693 ± 0.17 39 0.034 ± 0.27

20 0.670 ± 0.18 40 −0.051 ± 0.28

Table 3.  The first and third columns represent different values of lmax, ranging from 1 to 40 seconds. The 
second and forth columns show the values of global mean rms correlation coefficients (α) for each lmax values.
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Discussion
Chloride (Cl−) thought to be the most abundant permeable anion in the cell; it participates in a wide variety of 
important local and systemic physiological processes, while also being involved in a variety of human diseases. 
Historically, chloride anions have been of less interest than most other free cations. In fact, many molecular 
aspects of the chloride channels have been well studied, but the characterization of their dynamic properties is 
still unknown.

Experiment Stimulus Number β H

1

pH5.0 n1 2.0248 0.2455 ± 0.0012

pH7.0 n2 1.9723 0.1744 ± 0.0016

pH9.0 n3 2.3749 0.0950 ± 0.0019

2

pH5.0 n4 1.8460 0.2501 ± 0.0009

pH7.0 n5 1.6835 0.3521 ± 0.0007

pH9.0 n6 1.5669 0.1076 ± 0.0017

3

pH5.0 n7 1.8741 0.1830 ± 0.0012

pH7.0 n8 1.5075 0.2681 ± 0.0010

pH9.0 n9 1.7512 0.1071 ± 0.0015

4

pH5.0 n10 1.5834 0.2962 ± 0.0012

pH7.0 n11 1.6043 0.3174 ± 0.0011

pH9.0 n12 1.9086 0.0616 ± 0.0023

5

pH5.0 n13 2.0533 0.1040 ± 0.0019

pH7.0 n14 2.0738 0.1725 ± 0.0016

pH9.0 n15 1.8572 0.0589 ± 0.0022

6

pH5.0 n16 2.3889 0.3339 ± 0.0009

pH7.0 n17 2.4520 0.2949 ± 0.0011

pH9.0 n18 2.1698 0.0526 ± 0.0022

7

pH5.0 n19 2.8441 0.2174 ± 0.0016

pH7.0 n20 2.5817 0.2718 ± 0.0013

pH9.0 n21 2.9913 0.0621 ± 0.0026

Table 4.  The first column shows the number of the experiment, each one corresponding to a single oocyte. 
The second column contains the pH stimuli applied to each experiment. The third one shows the number 
assigned to each obtained chloride series. The rest of the data corresponds to the values of Power Spectral 
Density slope (β) and Hurst exponent (H) calculated by the bdSWV method.

Figure 5. Hurst exponents obtained by the bdSWV analysis. (a) The slope of a log-log plot of the SD n( ) 
versus the window size for a bdWSV applied to an evoked chloride series (n13, experiment 5, pH = 5.0) gives 
H = 0.104, indicating the presence of long-term memory. (b) The slope of a log-log plot of the SD(n) versus the 
window size for a Dispersion Analysis applied to shuffled time series obtained by randomly permuting all the 
130,000 time points for each Cl− time series (n13). After shuffling, H was close to 0.5, indicating the 
disappearance of the memory structure. (c) In red, Hurst exponent values of all the experimental chloride time 
series; in blue, 100 Hurst exponent values obtained from shuffled series.
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Here, we have quantitatively studied experimental Ca2+-dependent Cl− currents belonging to Xenopus laevis 
oocytes, which have been evoked by serum under different external pH environments. These Cl− currents were 
measured by the patch-clamp technique and the data series have been mainly analyzed by means of non-linear 
dynamic tools.

First, we have applied an analysis based on the root mean square fluctuation and the results revealed 
non-trivial correlations in all experimental time series. The α exponent has a mean of 0.927 (R2 ≥ 0.99) and these 
strong long-range correlations encompasses concentration values between 1,500 and 6,500, which correspond to 
time periods ranging between 3 and 13 seconds (with a mean of 7.66 sec). Therefore, the chloride currents present 
a dynamical structure characterized by long range correlations, and this occurred independently of the experi-
mental condition (here defined by the pH of the cellular external medium).

In addition, transitions from negative to positive correlations were found in the Ca2+-dependent Cl− data. 
Positive long-range correlations arise in short time intervals while negative correlations become dominant over 
longer ones. This dynamic behavior has been observed in all experimental chloride series.

Moreover, we have calculated the slope of the Power Spectral Density plot concluding that the Cl− data sets 
can be categorized as fractional Brownian motion i.e., non-stationary series with time-dependent variance.

To test the presence of persistent or anti-persistent memory properties for long time intervals in the exper-
imental data, we have applied the bridge detrended Scaled Windowed Variance analysis, a specific method to 
obtain Hurst exponent values in fBm signals. We have found that the Hurst exponents satisfy 0.05 < H < 0.35, 
indicating the existence of anti-persistent long-term memory during long time intervals, in all the series. Values 
of H < 0.5 have been interpreted as a characteristic for “trend-reversing”, which means that a decreasing trend 
in the past usually implies an increasing trend (on average) in the future and vice versa, an increase over a set of 
values in the past is likely to be followed by a decrease in the future.

Our obtained Hurst exponent values are very small (H = 0.191 ± 0.101), which shows a high degree of nega-
tive dependence between experimental values, indicating strong “trend-reversing”. The strength of this reversion 
tendency increases as H approaches 0; consequently, when the evoked calcium values spike in one direction, there 
is a very strong probability that they will subsequently revert back. This important anti-persistent property indi-
cates a self-correcting effect in the experimental data, which describes a situation where tendencies to increase or 
decrease will tend to reverse themselves.

The high reliability of our Hurst analysis for long time intervals was tested by applying a shuffling procedure 
(21,000 shuffled time series in total), showing that the Hurst exponent values measured from the original experi-
mental series (H  = 0.191 ± 0.101) were significantly different from the ones obtained after shuffling 
(H = 0.498 ± 0.01), implying that the correlation structure in all shuffled series was completely broken-down, and 
therefore, the memory structure that characterizes the original experimental data could not be found by chance.

Finally, in agreement with the observed transitions from negative to positive correlations in the rms fluc-
tuation analysis, we have verified that persistent memory properties arise for short time intervals in all the 
experimental data sets, while anti-persistent behaviors become dominant in longer intervals. This “crossover 
phenomenon”, a dynamical property characterized by transitions from persistent to anti-persistent behaviors at a 
physiological level, seems to show a highly complex regulation of the intracellular chloride currents which exhibit 
persistence at short time scales (i.e., a trend to increasing in the past will likely be followed by an increasing trend 
in the future and, vice versa, a trend to decreasing in the past will likely be followed by a decreasing trend in the 
future), while strong anti-persistence arises in long time scales (when the chloride currents present a determinate 
trend in the past, there is a high probability to subsequently revert back); this “trend-reversing” behavior suggest 
that, at long time intervals, the intracellular chloride dynamics are bounded, and reflects the consequences of an 
inherent self-correcting effect in the system44. Similar crossover phenomena have also been observed in some 
other numerical and experimental physiological processes44.

Long-term memory properties found in the calcium-activated chloride behaviors might be related to the 
dynamic metabolic memory recently proposed to exist in the Cellular Metabolic Structure (CMS in short)45,46. 
At a systemic level, cells seem to display a CMS, which behaves as a very complex decentralized information pro-
cessing system with the capacity to store metabolic memory. According to this framework, the CMS exhibits an 
essential dynamic informational mechanism by which Hopfield-like attractor dynamics regulate the enzymatic 
activities. These attractors have the capacity to store functional catalytic patterns that can be correctly recovered 
by specific input stimuli. The Hopfield-like metabolic dynamics are stable and can be maintained as a long-term 
functional memory45,46.

Moreover, since the beginning of the neuronal network modeling of associative memory, the connectivity 
matrix in the Hopfield network was assumed to result from a long-term memory learning process, occurring over 
a much slower time scale than neuronal dynamics47–49. Therefore, it is well accepted that the attractors emerging 
in neuronal dynamics described by Hopfield networks are the result of a long-term memory process. Besides, 
extensive physiological recordings of neuronal processes have revealed the presence of long range correlations in 
plasticity dynamics for measured synaptic weights. For instance, long tails in the synaptic distribution of weights 
have been interpreted as short-term memory in neural dynamics50.

These studies and others support the thesis that neuronal dynamics exhibit both long-term and short-term 
memory, and the same may happen with the metabolic processes. In fact, long-term correlations (mimicking 
short-term memory in neuronal systems) have also been analyzed in different metabolic processes not belong-
ing to the neuronal lineage. One of the most studied is the calcium-activated potassium channels, existing in 
Leydig cells51, kidney Vero cells52 and human bronchial epithelial cells53. Other biochemical processes also pres-
ent long-term correlations for example, the intracellular transport pathway of Chlamydomonas reinhardtii54, the 
NADPH series of mouse liver cells55, and the mitochondrial membrane potential of cardiomyocytes56. Similar 
to what happens in the brain, we believe that the observed long-term memory in the calcium-activated chloride 
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responses might correspond to the short-term memory of the metabolic system involved in these physiological 
dynamics, and in accordance with our analysis for the non-trivial correlation regimes, this short-term memory 
could correspond to times around 7 seconds.

In brief, here, we have addressed some essential aspects of calcium- activated chloride currents, in which the 
concentration dynamics are strongly conditioned by previous concentration measurements over time. Indeed, 
non-trivial correlations were observed within time-windows of 4,000 experimental concentration values, which 
correspond approximately to time memory periods with a mean of 7.6 seconds. The analyzed experimental series 
exhibit fractional Brownian motion, with an informational structure characterized by highly organized data 
sequences, memory properties and inherent “crossover” dynamics, in which persistent behaviors exist within 
short time intervals, while anti-persistent dynamics become dominant within long time intervals. In addition, 
the anti-persistent behavior that encompasses all the points of the time series suggests self-correcting effects in 
the experimental data. These properties seem to be intrinsic characteristics of the dynamics involved in these 
physiological processes.

Our work opens up new perspectives for quantitative analysis of the dynamics involved in the dysfunction of 
calcium-activated chloride channels and sheds some light on the understanding of the informational properties 
of intracellular signals, a key element to elucidate the physiological functional coupling of the cell with the inte-
grative dynamics of metabolic processes.

Methods
Calcium-activated chloride currents in Xenopus laevis oocytes. Adult Xenopus laevis frogs were 
obtained from Blades Biological (Cowden, Kent, UK). Oocytes at stage V were plucked from the ovaries and 
defolliculated by collagenase treatment (type 1, Sigma-Aldrich Quimica, S.A., Madrid, Spain) at 80–630 units/ml 
in frog Ringer’s solution (115 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 5 mM HEPES at pH 7.0) for 20 min in order to 
remove the surrounding follicular and epithelial cell layers. Oocytes were maintained at 18 °C in sterile unsupple-
mented modified Barth’s medium containing (mM): 88 NaCl, 0.2 KCl, 2.4 NaHCO3, 0.33 Ca(NO3)2, 0.41 CaCl2, 
0.82 MgSO4, 0.88 KH2PO4, 2.7 Na2HPO4, with gentamicin 70 μg/ml and adjusted to pH 7.4.

Xenopus oocytes have long been a model system for the study of calcium-activated chloride currents because 
they express extremely high levels of chloride channels whose activation depends on Ca2+ 40.

For this activation we have used Fetal Bovine Serum (FBS). Serum is known to promote oscillations due to 
alterations of Ca2+ concentrations in the cytoplasm, which, as a consequence, evoke Cl− movements across the 
oocyte membrane57 through different calcium-activated chloride channels. According to this procedure, FBS 
(Sigma-Aldrich) diluted 1:1000 in Ringer’s solution was used for the oocytes’ perfusion to achieve the generation 
of chloride currents oscillations. The membrane was usually voltage clamped at −60 mV, and in the experiments, 
three different pH conditions were considered, Ringer’s solution at pH 5.0, 7.0 and 9.0. The sampling interval time 
scale in the experiments was 2 milliseconds.

All the procedures followed the guidelines of regulation 1201/2005 of Ministerio de Agricultura, Pesca y 
Alimentacion and the experimental protocols were approved by the University of the Basque Country (UPV/
EHU) ethics committee (code: CEBA/8/2009).

Root mean square fluctuation. An important measure for quantifying long-range correlations in time 
series is the root mean square (rms) fluctuation58, a technique initially developed for random walk studies59. 
Before calculating it, we define the move-step length at time point i; here, for the evoked calcium-activated chlo-
ride time series, it simply corresponds to electrical current variations, i.e., uk(i) ≡ Φ(i + k) − Φ(i) which are given 
in nanoampers (nA). Without loss of generality, hereon, we denote for a fixed k, uk(i) ≡ u(i). Next, defining the 
net displacement after l steps as

∑≡
=

y l u i( ) ( ),
(1)i

l

1

the rms fluctuation of the average displacement is given by:

≡ ∆ − ∆F l y l y l( ) ( ) ( ) , (2)
2 2

where Δy(l) ≡ y(l + l0) − y(l0), and brackets denote average over all possible values of l0. Thus, F(l) is defined as the 
square root of the difference between the average of the square of Δy(l) minus the square of its average.

For many processes, F(l) scales asymptotically with l, i.e., F(l) ~ lα 58, and the relationship can be observed by 
representing F as a function of l in a log-log plot, fitting F(l) in the range l = 1, …, lmax. Here, three important 
regimes can be distinguished, depending on the exponent α (rms correlation coefficient)58; when α = 0.5 the 
random walk is time uncorrelated and no memory exists. Markov processes initially decay exponentially with l, 
but also give α = 0.5 for sufficiently large l. If α > 0.5, it indicates the presence of positive long-range correlations 
and α < 0.5 implies long-term anti-correlations.

When the method is applied directly to large data sets, there is a risk of concluding that there are no correla-
tions from long-term correlated data. To avoid this issue, data can be subdivided into smaller windows. In our 
case, the chloride data consisted of 130,000 time points, which we divided into 6 non-overlapping windows of 
20,000 points each, leaving the last 10,000 values out of the analysis. The final α was calculated averaging over the 
6 individual values of α, each one calculated within a different window. To estimate the duration of the long-term 
correlation regime (Tc), we increased lmax systematically until the value of R2 (the goodness fit in the log-log scale) 
was smaller than 0.99.

3012



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7:41791 | DOI: 10.1038/srep41791

Hurst exponent Scaled Windowed Variance Analysis. The calculation of the Hurst exponent is a clas-
sical method to detect long-term memory in time series introduced by the hydrologist H.E. Hurst in 1951 to study 
the annual discharges of the Nile River60. Afterwards, this method was developed by Mandelbrot in order to apply 
it to different dynamic processes61.

The Hurst exponent, H, is referred to as the index of long-range dependence, which characterizes how the 
variance depends on a time interval, and also provides information about autocorrelations. The H exponent is 
also related to the fractal dimension for self-affine series62, and for one-dimensional series, H = 2 − D, where D is 
the fractal dimension and satisfies 1 < D < 263.

The Hurst exponent H satisfies 0 ≤ H ≤ 1. For a random process with independent increments, H is 0.5. When 
H differs from 0.5, the process is properly fractional and indicates the existence of long-term memory, in which 
future events have long-term correlations with past events. If H > 0.5, it indicates a biased random process which 
exhibits persistent behavior. In this case, for several previous transitions, an increment on the average value 
implies an increasing trend in the future. Conversely, a previously decreasing trend for a sequence of values 
usually implies a decrease for a similar sequence. Anti-persistent behavior is obtained for 0 ≤ H < 0.5; in this 
case, a previously decreasing trend implies a probable increasing trend in the future and vice versa, an increase 
in the past is usually followed by a decrease in the future41,53. Persistent behavior carries out a superdiffusion, 
which is faster than in a normal random walk; and, conversely, anti-persistent behavior carries out an abnormal 
diffusion that is slower than in a normal random walk. In some dynamic processes a transition from persistent to 
anti-persistent correlation regimes over different time scales, which is known as a “crossover phenomenon”, may 
emerge44.

Two fundamental classes of fractal time series are fractional Brownian motion (fBm) and fractional Gaussian 
noise (fGn). The fBm is a continuous-time Gaussian process BH(t) with t ≥ 0 such that it satisfies BH(0) = 0 with 
probability 1, the expectation E[BH(t)] is 0 for every t, and the covariance function is given 
by = + − −E B t B t t t t t[ ( ) ( )] ( )H H H H H

1 2
1
2 1

2
2
2

1 2
2  for every t1, t2 in +R , where the parameter H is the Hurst 

exponent. The fractional Gaussian noise (fGn) is the process WH(t), with t ≥ 0, obtained from the fBm increments 
for discrete time, that is, WH(t) = BH(t + 1) − BH(t).

The two main, most robust methods to calculate the Hurst exponent are the Dispersion Analysis applied on 
fractional Gaussian noise (fGn) and Scaled Windowed Variance Analysis for fBm signals41.

The Scaled Windowed Variance Analysis (SWVA) is a reliable method for the estimation of the Hurst expo-
nent (H) that has been thoroughly tested on fractional Brownian motion (fBm) signals43. In particular, we have 
used the bridge detrended Scaled Windowed Variance analysis (bdSWV) for the study of calcium-signal time 
series41. To define the SWVA method, let the time series signal be represented by xt, with t = 1, …, N, time points. 
Next, the following steps are carried out for each one of the window sizes n = 2, 4, …, N/2, N (if N is not a power 
of 2, then n takes the values 2, 4, …, 2k, where k is the integer part of log2N):

(1) Partition of the data points in N/n adjacent non-overlapping windows {W1, …, WN/n} of size n, where 
Wi = {x(i−1)·n+1, … xi·n}. If N is not a power of 2 and N is not divisible by n, then the last remaining points 
are ignored for this value of n. For instance, if N = 31 and n = 4, the first 28 points are partitioned into seven 
windows.

(2) Subtraction of the line between the first and last points in the n-th window.
(3) For each i = 1, …, N/n, calculation of the standard deviation SDi of the points in each window, by using the 

formula

∑=
−
−= − ⋅ +

⋅SD x x
n

( )
1

,
(3)i t i n

i n t i
( 1) 1

2

where xi is the average in the window Wi.
(4) Evaluation of the average SD n( ) of the N/n standard deviations corresponding to equation (3).
(5) Observation of the range of the window sizes n over which the regression line of log(SD n( )) versus log(n) 

gives a good fit (usually some initial and end points are excluded).
(6) In this range, the slope of the regression line gives the estimation of the Hurst coefficient H.

Here, to calculate SWVA, we have made use of the program bdSWV, available on the web of the Fractal 
Analysis Programs of the National Simulation Resource64.

Dispersion Analysis. The Dispersion Analysis (DA) method is applied for the estimation of the Hurst expo-
nent (H) on fractional Gaussian noise (fGn)42.

For different bins of length n, with n varying from 2 to N/2, one can define the standard deviation SD(n) of 
the series formed by the mean of the n consecutive values of the original series xi. That is, SD(n) is the standard 
deviation of the series yn,i, where

=
+ … +

.+ −ìy
x x

n (4)n i
i n

,
( 1)

Now, the relation between log(SD(n)) and log(n) is approximately linear:

= ⋅ −SD n SD n( ) (1) , (5)H 1

with slope H-1, where H is the Hurst coefficient and SD(1) the standard deviation calculated on the first window.
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Detrended Fluctuation Analysis. Detrended Fluctuation Analysis (DFA) is a method that allows for the 
detection of long-memory processes on non-stationary time series that can be used properly for small data sizes65.

The method is summarized as follows: first, given the time series y(t) we obtain a signal profile by computing 
the cumulative sum

∑= −
=

x k y i y( ) ( ( ) ),
(6)i

k

1

of the time series. Then, the obtained time series is divided into boxes of equal length n. Next, the local trend xn(k) 
in each box is subtracted and the fluctuations of this detrended and integrated signal is calculated by

∑= −=F n
n

x k x k( ) 1 [ ( ) ( )] ,
(7)k

N
n1

2

This computation is repeated over all box sizes obtaining a relationship between fluctuations F(n) and box 
sizes n. A linear relationship on a log-log graph indicates the presence of scaling, and under such conditions, 
fluctuations can be characterized by a scaling exponent γ, related to the Hurst exponent66. Mainly, if 0 < γ < 0.5, 
the process is anti-correlated and exhibits anti-persistent behavior, which can be modeled by fGn with H = γ. 
When 0.5 < γ < 1, the process exhibits positive correlations and persistent behavior which can be modeled by fGn 
with H = γ, and for a random process with independent increments, γ is 0.5 (H = γ). Other scenarios also can 
be considered in DFA66. Besides, we would like to highlight some of the recent progress in nonlinear time series 
analysis67–71.

Use of experimental cells. Xenopus laevis frogs (Guy Pluck, Xenopus Express, France) were anaesthe-
tized by hypothermia. Ovary lobules (4–8) were surgically removed under sterile conditions. After surgery, frogs 
were sutured, and allowed to recover and then returned to housing. No further oocytes were taken for at least 2 
months. All the procedures followed the guidelines of regulation 1201/2005 of Ministerio de Agricultura, Pesca 
y Alimentacion and the experimental protocols were approved by the University of the Basque Country (UPV/ 
EHU) ethics committee (code: CEBA/8/2009).
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Abstract

Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures
and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic
status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under
growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in
the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a
wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved
in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate
energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed
phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and
(IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed
differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly
considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy
dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic
oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore,
the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides
a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate
energy system, which is a fundamental element for unveiling the dynamics of cellular life.
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Introduction

Living cells are essentially highly evolved dynamic reactive

structures, in which the most complex known molecules are

synthesized and destroyed by means of a sophisticated metabolic

network characterized by hundreds to thousands of biochemical

reactions, densely integrated, shaping one of the most complex

dynamic systems in nature [1,2].

Energy is the fundamental element for the viability of the

cellular metabolic network. All cells demand a large amount of

energy to keep the entropy low in order to ensure their self-

organized enzymatic functions and to maintain their complex

biomolecular structures. For instance, during growth conditions it

has been observed that in microbial cells the protein synthesis

accounts for 75% of the total energy, and the cost of DNA

replication accounts for 2% of the energy [3,4].

Although different nucleosides can bind to three phosphates

which may serve to store biochemical energy i.e., GTP, (d)CTP,

(d)TTP and (d)UTP [5], there exists a consensus that adenosine 59-

triphosphate (ATP) is the principal molecule for storing and

transferring energy in cells. All organisms, from the simplest

bacteria to human cells, use ATP (Mg-ATP) as their major energy

source for metabolic reactions [6–8], and the levels of ATP, ADP

and AMP reflect roughly the energetic status of the cell [7]. ATP is

originated from different classes of metabolic reactions, mainly

substrate-level phosphorylation, cellular respiration, photophos-

phorylation and fermentation, and it is used by enzymes and

structural proteins in all main cytological processes, i.e., motility,

cell division, biosynthetic reactions, cell cycle, allosteric regula-

tions, and fast synaptic modulation [7–9].

In the living cell, practically all bioenergetic processes are

coupled with each other via adenosine nucleotides, which are

consumed or regenerated by the different enzymatic reactions. In

fact, the most important regulatory elements involved in the

coupling of catabolic and anabolic reactions are ATP, ADP and

AMP [7]. The adenosine nucleotides are not only tied to the

metabolic pathways involved in the cell’s energetic system but also
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act as allosteric control of numerous regulatory enzymes allowing

that changes in ATP, ADP and AMP levels can practically

regulate the functional activity of the overall multienzymatic

network of cell [10–13].

A characteristic of the temporal evolution of ATP, ADP and

AMP concentrations is their complexity [14]. Extensive experi-

mental studies have shown that metabolism exhibits extremely

large and complex fluctuations in the concentrations of individual

adenosine nucleotides, which are anything but stationary [14–16].

In fact, under normal conditions inside the cell, the time evolution

of the adenosine-59-triphosphate is subjected to marked variations

presenting transitions between quasi-steady states and oscillatory

behaviors [15,16]. For instance, complex ATP rhythms were

reported to occur in: myxomycetes [17,18], neurons [19], yeast

[16], embrionary cells [20,21], myocytes [22], islet b-cells [23,24],

keratinocytes [25], hepatocytes [26], red blood cells [27] and L

and MEL cells [28]. Many of these oscillations have clearly non-

periodic behaviors [19,26], and ADP and AMP also exhibit

complex oscillatory patterns [29–31]. In addition to ATP ultradian

oscillations, specific circadian rhythms have also been reported,

which occur with a period close to 24 hours (the exogenous period

of the Earth’s rotation) [27,32,33].

Oscillatory behavior is a very common phenomenon in the

temporal dynamics of the concentration for practically all cell

metabolites. Indeed, during the last four decades, the studies of

biochemical dynamical behaviors, both in prokaryotic and

eukaryotic organisms, have shown that in cellular conditions

spontaneous molecular oscillations emerge in most of the

fundamental metabolic processes. For instance, specific biochem-

ical oscillations were reported to occur in: free fatty acids [34],

NAD(P)H concentration [35], biosynthesis of phospholipids [36],

cyclic AMP concentration [37], actin polymerization [38], ERK/

MAPK metabolism [39], mRNA levels [31], intracellular free

amino acid pools [40], cytokinins [41], cyclins [42], transcription

of cyclins [43], gene expression [44–47], microtubule polymeriza-

tion [48], membrane receptor activities [49], membrane potential

[50,51], intracellular pH [52], respiratory metabolism [53],

glycolysis [54], intracellular calcium concentration [55], metabo-

lism of carbohydrates [56], beta-oxidation of fatty acids [57],

metabolism of mRNA [58], tRNA [59], proteolysis [60], urea

cycle [61], Krebs cycle [62], mitochondrial metabolic processes

[63], nuclear translocation of the transcription factor [64], amino

acid transports [65], peroxidase-oxidase reactions [66], protein

kinase activities [67] and photosynthetic reactions [68]. In

addition, experimental observations in Saccharomyces cerevisiae
during continuous culture have shown that the majority of

metabolome also shows oscillatory dynamics [69].

Persistent properties in oscillatory behaviours have also been

observed in other studies, e.g., DNA sequences [70–71], NADPH

series [72], K+ channel activity [73], biochemical processes

[74,75], physiological time series [76,77], and neural electrical

activity [78,79].

Likewise, it has been observed that genomic activity shows

oscillatory behavior. For instance, under nutrient-limited condi-

tions yeast cells have at least 60% of all gene expressions oscillating

with an approximate period of 300 min [80]. Other experimental

observations have shown that practically the entire transcriptome

exhibits low-amplitude oscillatory behavior [81] and this phenom-

enon has been described as a genomewide oscillation [47,81–83].

At a global metabolic level, experimental studies have shown

that the cellular metabolic system resembles a complex multi-

oscillator system [69,81,83], what allows for interpretation that the

cell is a complex metabolic network in which multiple autonomous

oscillatory and quasi-stationary activity patterns simultaneously

emerge [84–89].

Cells are open dynamic systems [90,91], and when they are

exposed to unbalanced conditions, such as metabolic stress,

physiological processes produce drastic variations both in the

concentration of the adenosine nucleotides [15,16,92,93] and in

their molecular turnovers [94]. Tissues such as skeletal and cardiac

muscles must sustain very large-scale changes in ATP turnover

rate during equally large changes in work. In many skeletal

muscles, these changes can exceed 100-fold [95].

The ratio of ATP, ADP and AMP is functionally more

important than the absolute concentration of ATP. Different

ratios have been used as a way to test the metabolic pathways

which produce and consume ATP. In 1967, Atkinson proposed a

simple index to measure the energy status of the cell, defined as

AEC = ([ATP] +0.5[ADP])/([ATP] + [ADP] + [AMP]) [96].

The AEC is a scalar index ranging between 0 and 1. When all

adenine nucleotide pool is in form of AMP the energy charge

(AEC) is zero, and the system is completely discharged (zero

concentrations of ATP and ADP). With only ADP, the energy

charge is 0.5. If all adenine nucleotide pool is in form of ATP the

AEC is 1.

The first experimental testing of this equation showed that

(despite of extremely large fluctuations in the adenosine nucleotide

concentrations), many organisms under optimal growth conditions

maintained their AEC within narrow physiological values,

between AEC = 0.7 and AEC = 0.95, stabilizing in many cases at

a value close to 0.9. Atkinson and coauthors concluded that for

these values of AEC, the major ATP-producing reactions are in

balance with the major ATP-consuming reactions; for very

unfavorable conditions the AEC drops off provoking cells to die

[97–101].

During the last four decades, extensive biochemical studies have

shown that the narrow margin of the AEC values is preserved in a

wide variety of organisms, both eukaryotes and prokaryotes. For

instance, AEC values between 0.7 and 0.95 have been reported to

occur in cyanobacteria [102,103], mollicutes (mycoplasmas) [104],

different bacteria both gram positive and gram negative as

Dinoroseobacter shibae [105], Streptococcus lactis [106], Bacillus
licheniformis [107], Thermoactinomyces vulgaris [108], Escherichia
coli [109], Myxococcus xanthus [110] and Myxococcus Coralloides
[111], different eukaryotic cells as zooplankton [112], algae [113],

yeast [114], neurons [115,116], erythrocytes [117], astrocytes

[118], platelets [119], spermatozoa [120], embryonic kidney cells

(HEK) [121], skeletal muscle [122], liver tissue [123], fungi [124],

different microorganisms of mangrove soils and water (fungi,

bacteria and algae) [125] and plants [126–128].

Studies of different species of plants, over long periods of time,

have demonstrated a close relationship between AEC and cellular

growth, e.g. leaf tissue collected bimonthly from Spartina patens,
S. cynosuroides, S. alterniflora and Distichlis spicata showed that

the adenylate energy charge peaked in spring and summer at

0.78–0.85 and then declined in late summer and early fall [129].

In the case of organisms better adapted to cold, such as winter

wheat cells (Triticum aestivum) that are cultivated from September

to December in the Northern Hemisphere, the ATP levels were

shown to decrease gradually when the cells were exposed to

various low temperature stresses (ice encasement at 21uC);

however, even after 5 weeks of icing when cell viability was

severely reduced, AEC values remained high, about 0.8 [130].

There is a long history of quantitative modelling of ATP

production and turnover, dating back to Sel’kov’s model on

glycolytic energy production from 1968 [131], later developed by

Goldbeter [132], as well as by Heinrich and Rapoport [133]. In
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this context, Sel’kov also published a kinetic model of cell energy

metabolism with autocatalytic reaction sequences for glycolysis

and glycogenolysis in which oscillations of the adenylate energy

charge were observed [134].

However, the first adenylate energy system was developed by

Reich and Sel’kov in 1974 [135]. This system was modeled with

first-order kinetics by using ordinary differential equations.

Here, in order to further understanding of the elements that

determine the cellular energy status of cells we present a

computational model conformed by some key essential parts of

the adenylate energy system. Specifically, the model incorporates

(I) the main synthesis process of ATP for cell from ADP (ATP

synthase), (II) the catalyzed phosphotransfer reaction for intercon-

version of adenine nucleotides (ATP, ADP and AMP) (adenylate

kinase), (III) the enzymatic hydrolysis of ATP yielding ADP (kinase

and ATPase reactions) and (IV) the enzymatic hydrolysis of ATP

providing AMP (enzymatic processes of synthetases). The meta-

bolic model has been analyzed by using a system of delay

differential equations in which the enzymatic rate equations and

all the physiological kinetic parameters have been explicitly

considered and experimentally tested in vitro by other groups.

We have used a system of delay-differential equations fundamen-

tally to model the asynchronous metabolite supplies to the

enzymes.

The numerical analysis shows that the AEC can perform

transitions between oscillations and steady state patterns in a

stabilized way, similar to what happens in the prevailing

conditions inside the cell. The max and min values of the

oscillations range within a physiological window validated by

experimental data.

We finally suggest that rather than a permanent physiological

stable state (homeostasis), the living systems seem to be character-

ized by changing energy dynamics (homeorhesis).

Methods

Cells require a permanent generation of energy flow to keep the

functionality of its complex metabolic structure which integrates a

large ensemble of enzymatic processes, interconnected by a

network of substrate fluxes and regulatory signals [4].

To understand some elements that determine the energy status

of cells we have studied the dynamics of the main biochemical

reactions interconverting ATP, ADP and AMP. Specifically, we

have developed a model for the basic structure of the adenylate

energy system which represents the fundamental biochemical

reactions interconverting ATP, ADP and AMP coupled to the

main fluxes of adenine nucleotides involved in catabolic and

anabolic processes (Figure 1).

The essential metabolic processes incorporated into the

adenylate energy model are the following:

I. First, we have assumed the oxidative phosphorylation as the

main synthesis source of ATP in the cell.

As is well known, the enzymatic oxidation of nutrients generates

a flow of electrons to O2 through protein complexes located in the

mitochondrial inner membrane in eukaryotes, and in the cell

intermembrane space in prokaryotes, that leads to the pumping of

protons out of the matrix. The resulting uneven distribution of

protons generates a pH gradient that creates a proton-motive

force. This proton gradient is converted into phosphoryl transfer

potential by ATP synthase which uses the energy stored in the

electrochemical gradient to drive the synthesis of ATP from ADP

and phosphate (Pi) [7]. Thus, oxidative phosphorylation is the

culmination of a series of complex enzymatic transformations

whose final phase is carried out by ATP synthase.

Experimental studies in non-pathologic cells have shown that

ATP synthase generates the vast majority of cellular energy in the

form of ATP (more than 90% in human cells) [136]; consequently,

it is one of the central enzymes in energy metabolism for most

cellular organisms, both prokaryotes and eukaryotes. This

sophisticated rotatory macromolecular machine is embedded in

the inner membrane of the mitochondria, the thylakoid membrane

of chloroplasts, and the plasma membrane of bacteria [137].

The overall reaction sequence for the ATP synthase is:

ADPzPiznHz
inter-membrane ? ATPzH2OznHz

matrix ð1Þ

where n indicates the H+/ATP ratio with values between 2 and 4

which have been reported as a function of the organelle under

study [138].

II. Besides the oxidative phosphorylation, we have also

considered that in optimal growth conditions a small part of

ATP is generated through substrate-level phosphorylation [7].

III. Another essential metabolic process for cellular energy is the

catalyzed phosphotransfer reaction performed by the enzyme

adenylate kinase, which is required for interconversion of adenine

nucleotides.

Almost since its discovery, about 60 years ago, adenylate kinase

(phosphotransferase with a phosphate group as acceptor) has been

considered to be a key enzyme in energy metabolism for all

organisms [139–140]. This enzyme catalyzes the following

reversible reaction for the interconversion of ATP, ADP and

AMP:

2Mg2z:ADP/?Mg2z:ATPzAMP ð2Þ

Adenylate kinase catalyzes the interconversion of the adenine

nucleotides and so it is an important factor in the regulation of the

Figure 1. Elemental biochemical processes involved in the
energy status of cells. The synthesis sources of ATP are coupled to
energy-consumption processes through a network of enzymatic
reactions which, interconverting ATP, ADP and AMP, shapes a
permanent cycle of synthesis-degradation for the adenine nucleotides.
This dynamic functional structure defines the elemental processes of
the adenylate energy network, a thermodynamically open system able
to accept, store, and supply energy to cells.
doi:10.1371/journal.pone.0108676.g001
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adenine nucleotide ratios in different intracellular compartments,

i.e. it contributes to regulate the adenylate energy charge in cells.

The equilibrium will be shifted to the left or right depending on

the relative concentrations of the adenine nucleotides. In contrast,

ATP synthase catalyzes the de novo synthesis of the vast majority

of ATP from ADP and Pi [136].

IV. The next catalytic process that we have considered

corresponds to the enzymes implied in the hydrolysis of ATP to

form ADP and orthophosphate (Pi). The chemical energy that is

stored in the high-energy phosphoanhydridic bonds in ATP is

released, ADP being a product of its catalytic activity.

The basic reaction sequence for the enzymatic process is:

SbszATP ? Sbs(P)zADP ð3Þ

where Sbs and Sbs(P) are the substrate and the product of the

catalytic process, respectively. In this kind of metabolic reaction

different groups of enzymes are involved, mainly kinases and

ATPases. Particularly, kinases catalyze the transfer of a phosphoryl

group from ATP to a different class of specific molecules, which

may be also a protein. By adding phosphate groups to substrate

proteins, the kinases enzymes shape the activity, localization and

overall function of many proteins and pathways, which orchestrate

the activity of almost all cellular processes. Up to 30% of all

human proteins may be modified by a kinase activity, and they

regulate the majority of cellular pathways, especially those

involved in signal transduction [141]. These enzymes are

fundamental for the functional regulation of the cellular metabolic

network and they constitute one of the largest and most diverse

gene families. The human genome contains about 500 protein

kinase genes and they constitute about 2% of all human genes

[141].

V. Finally, we have taken into account the ligase enzymes that

catalyze the joining of smaller molecules to make larger ones,

coupling the breakdown of a pyrophosphate bond in ATP to

provide AMP and pyrophosphate as main products.

The basic reaction sequence for the ligases is:

AzBzATP ? A-BzAMPzPPi ð4Þ

The enzymes belonging to the family of ligases involve different

groups as DNA ligases, aminoacyl tRNA synthetases, ubiquitin

ligase, etc. They are very important catalytic machines for

anabolic processes and for the molecular architecture of the cell.

Most ligases are mainly implied in the protein synthesis consuming

a large part of the cellular ATP. Thus, for microbial cells, the

protein synthesis accounts for 75% of the total energy during

growth conditions [3,4].

Protein synthesis uses energy mainly from ATP at several stages

such as the attachment of amino acids to transfer RNA, and the

movement of mRNA through ribosomes, resulting in the

attachment of new amino acids to the chain. In these processes,

aminoacyl tRNA synthetases constitute an essential enzyme super-

family, providing fidelity of the translation process of mRNA to

proteins in living cells and catalyzing the esterification of specific

amino acids and their corresponding tRNAs. They are common to

all classes of organisms and are of utmost importance for all cells

[142]. In the present model we have considered aminoacyl tRNA

synthetase as a representative enzyme of the ligases group.

Figure 2 schematically shows the enzymatic processes of the

ATP consuming-generating system. First, a permanent input of

nutrients is considered to be the primary energy source. In the

final phase of oxidative phosphorylation, the ATP synthase uses

the energy stored in the proton gradient, generated by the

enzymatic oxidation of nutrients, to drive the synthesis of ATP

from ADP and phosphate (Pi). The flow of protons thus behaves

like a gear that turns the rotary engine of ATP synthase. Likewise,

a small part of ATP is also incorporated into the system via

substrate-level phosphorylation. The ATP synthesized is funda-

mentally consumed by two different enzymatic reactions: (i) the

ligase processes which provide the system with AMP molecules

and (ii) the kinase and ATPase reactions which mainly generate

ADP. The interconversion of ATP, ADP and AMP is performed

by the enzyme adenylate kinase, which regenerates them

according to the dynamic needs of the system.

The ATP consuming-generating system is open and conse-

quently some AMP molecules are de novo biosynthesized [143];

whilst a part of AMP does not continue in the reactive system due

to its hydrolysis, forming adenine and ribose 5-phosphate [144].

Finally, according to experimental observations, we have consid-

ered that a very small part of ATP does not remain in the system,

but is drained out from the cell [145–149].

We want to emphasize that the biochemical energy system

depicted in Figure 2 represents some key essential parts of the

adenylate energy system (see for more details the end of the

‘‘Model Section’’), which constitute a thermodynamically open

system able to accept, store, and supply energy to cells.

This metabolic network of crucial biochemical processes for the

cell can be rewritten in a simplified way to gain a better

understanding about the dynamic behavior of the model:

ADPzPi ?
W1

ATPzH2O ð5Þ

ATPzAMP ?
W2

2ADP ð6Þ

2ADP ?
W3

ATPzAMP ð7Þ

ATP ?
W4

ADPzPi ð8Þ

ATP ?
W5

AMPzPPi ð9Þ

?
v1

ATP ?
v2

ð10Þ

?
v3

AMP ?
v4

ð11Þ

where Fi (i = 1–5) are the rates of the enzymatically-catalyzed

reactions (5) to (9), v1 is the rate of the ATP input into the system

by substrate-level phosphorylation, v2 is the rate of the ATP output

from the cell [145–149], being v2~k2 ATP½ �, v3 is the rate of the

biosynthesis de novo of AMP and v4 is the rate of the sink of AMP,

being v4~k4 AMP½ �. The reversible adenylate kinase reaction (2)

has been described by its corresponding reactions (6) and (7) linked

by a control parameter (see below for more details) allowing to

move the reactive process to either of the two reactions according
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to the physiological needs of the system, i.e. the synthesis or the

consumption of ATP or ADP. According to the stoichiometry of

this set of chemical equations, there is a net consumption of ATP

in the system, which can be regulated by reactions (6), (8), (9) and

(10), as well as a production of AMP, which is regulated by steps

(7), (9) and (11).

Although the kinetic behavior in vivo of most enzymes is

unknown, in vitro studies can provide both adequate kinetic

parameters and enzymatic rate functions. We have used this

strategy to implement the dynamical model of the adenylate

energy system. Thus, for ATP synthase we have assumed

Michaelis–Menten kinetics with competitive inhibition by the

product [150]. An iso-random Bi Bi mechanism has been reported

for adenylate kinase kinetics [151–152]. We have also considered

that a fraction of the adenylate kinases exhibit the balance shifted

to the left and simultaneously the rest of the adenylate kinase

macromolecules present a balance shifted to the right, depending

their catalytic activities on the system demand. For the kinase

family we have selected phosphofructokinase, whose rate equation

was developed in the framework of concerted transition theory of

Monod and Changeux [153,154], and finally, for the ligase family

we have chosen threonyl-tRNA synthetase, which shows Michae-

lis–Menten kinetics [155].

The time-evolution of the ATP consuming-generating system

(Figure 2) can be described by the following three differential

equations:

da

dt
~v1zls1W1{D’s2W2zD’’s3W3{s4W4{s5W5{v2,

db

dt
~{ls1W1zD’s2W2{D’’s3W3zs4W4,

dc

dt
~v3{D’s2W2zD’’s3W3zs5W5{v4 ð12Þ

where the variables a, b and c denote the ATP, ADP and AMP

concentrations respectively, s1,…s5 correspond to the maximum

rates of the reactions (5) – (9), respectively, the nutrients are

injected at a constant rate and l is a control parameter related to

the energy level stored in the proton gradient generated by the

enzymatic oxidation of input nutrients. D0 and D00 are also control

parameters in the system regulating adenylate kinase activity

towards the synthesis or the consumption of ADP, respectively,

with D’~2-D’’.
The enzymatic rate functions are the following:

W1~
b

bzKm,1 1z
a

KI ,1

� � ð13Þ

W2~
ac

K2zKATP
m,2 czKAMP

m,2 azac
ð14Þ

W3~
b2

K3z2KADP
m,3 bzb2

ð15Þ

W4~
a 1zað Þ 1zbð Þ2

L4z 1zað Þ2 1zbð Þ2
ð16Þ

W5~
a

Km,5za
ð17Þ

where Km,1,KATP
m,2 , KAMP

m,2 , KADP
m,3 and Km,5 are the Michaelis

constants for each respective enzyme, KI,1 is the dissociation

constant of the ADP-ATP synthase complex, K2 and K3 are

kinetic parameters of the adenylate kinase, a and b in Eq. (16) are

divided by 1 mM so that this equation is dimensionally homoge-

neous, and L4 is the allosteric constant of phosphofructokinase.

More details about the kinetic parameters and experimental

references are given in Table 1.

Figure 2. The Adenylate energy system. Oxidative phosphoryla-
tion and substrate-level phosphorylation generate ATP which is
degraded by kinases (also ATPases) and ligases yielding ADP and
AMP, respectively. The three adenine nucleotides are catalytically
interconverted by adenylate kinase according to the needs of the
metabolic system. AMP is also subjected to processes of synthesis-
degradation, some AMP molecules are de novo biosynthesized, and a
part of AMP is hydrolyzed. According to experimental observations, a
very small number of ATP molecules may not remain in the adenylate
reactive structure. The system (thermodynamically open) needs a
permanent input of nutrients as primary energy source and a
consequent output of metabolic waste. The biochemical energy system
depicted in the figure represents some key essential parts of the
adenylate energy system.
doi:10.1371/journal.pone.0108676.g002
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These equations are simplified expressions, but they are

particularly useful in the analysis of models of dynamic behavior

[154]. For simplification, we do not consider orthophosphate

molecules, nor the H2O involved in the reaction (5), which has

been omitted because the solvent has a standard state of 1M.

To study the system dynamics, the model here described has

been analyzed by means of a system of delay differential equations

accounting for the delays in the supplies of adenine nucleotides to

the specific enzymes involved in the biochemical model.

Generally in the cellular metabolic networks the enzymatic

processes are not coupled instantaneously between them. The

metabolic internal medium is a complex, crowded environment

[156], where the dynamic behavior of intracellular metabolites is

controlled by a wide mixture of specific interactions and physical

constraints mainly imposed by the viscosity of the cellular plasma,

mass transport across membranes and variations in the diffusion

times which are dependent on the physiological cellular context

[157–160].

For example, there is a time-running from the instant in which

ATP molecules are produced in the mitochondria until they come

to the place where they are used by the target enzymes. Sometimes

the spatial separations may involve long intracellular macroscopic

distances. As a result of these intracellular phenomena (transport

across membranes, diffusion, long macroscopic distances, interac-

tions with the internal molecular crowded, etc.), the supply of

metabolites to the enzymes (substrates and regulatory molecules)

occurs in different time scales, and with different delays.

Time scales in biochemical systems mean an asynchronous

temporal structure characterized by different magnitudes of

metabolite supply delays associated to specific enzymatic process-

es.

Moreover, experimental studies have shown that metabolism

exhibits complex oscillations in the concentrations of individual

adenine nucleotides, with periods from seconds to several minutes

[15,16], which shape a complex temporal structure for intracel-

lular ATP/ADP/AMP concentrations. The phase shifts in this

temporal structure also originate delays in the supplies of

substrates and regulatory molecules to the specific enzymes

[161–165].

Consequently, metabolic reactions involving ATP/ADP/AMP

may occur at different characteristic time scales, ranging from

seconds to minutes, originating a temporal structure for intracel-

lular ATP/ADP/AMP concentrations within the cell.

Dynamic processes with delay cannot be modeled using systems

of ordinary differential equations. The different time scales can be

considered with delay differential equations, which are not

ordinary differential equations. In these systems, some dependent

variables can be evaluated in terms of (t- ri) where ri are the delays

and t the time, and consequently the metabolite supplies to the

enzymes (substrates and regulatory molecules) are not instanta-

neous; other dependent variables may be evaluated in terms of t

(ri = 0), if metabolite supplies are considered instantaneous.

According to these regards, we have analyzed our system with

three delayed variables a(t-r1), b(t-r2) and c(t-r3). r1 models the

delay in the supply of ATP to its specific enzymes; r2 does the same

for ADP and r3 for AMP. Nevertheless, we have assumed that

ATP concentration (a(t)) in the equation corresponding to ATP

synthase (Eq (18)) is not delayed, as this product formation can be

considered instantaneous with respect to the competitive inhibition

of the enzyme by the same ATP. Likewise, since the adenylate

kinase enzyme is reversible, the ADP formed from ATP and AMP

in the reaction (6) is used by the reaction (7) in the same place, and

therefore, we have also considered that ADP concentration (b (t)) is

not delayed in this process (Eq (20)).

Therefore, the adenylate energy system exhibits several time

scales and we have used the system of delay-differential equations

to model the asynchronous metabolite supplies to the enzymes. In

some processes it can be considered that the substrate or

regulatory molecules instantly reach the enzyme and in other

processes there are delays for substrate supplies to them.

According to these kinds of dependent variables in the system,

the enzymatic rate functions are written as follows:

W1~
b(t{r2)

b(t{r2)zKm,1 1z
a(t)

KI ,1

� � ð18Þ

W2~
a(t{r1)c(t{r3)

K2zKATP
m,2 c(t{r3)zKAMP

m,2 a(t{r1)za(t{r1)c(t{r3)
ð19Þ

W3~
b(t)2

K3z2KADP
m,3 b(t)zb(t)2

ð20Þ

W4~
a(t{r1) 1za(t{r1)ð Þ 1zb(t{r2)ð Þ2

L4z 1za(t{r1)ð Þ2 1zb(t{r2)ð Þ2
ð21Þ

W5~
a(t{r1)

Km,5za(t{r1)
ð22Þ

Our differential equations system with delay (12) takes the

following particular form, up to a permutation of the indexes of

the variables:

Table 1. Values of the kinetic parameters used to simulate
some of the dynamics of the adenylate energy system.

Parameter Value Reference

s1 7.14 mmol s21 [166]

Km,1 30 mmol [150]

KI,1 25 mmol [150]

s2 800 mmol s21 [167]

K2 71000 mmol2 [151]

KATP
m,2

25 mmol [151]

KAMP
m,2

110 mmol [151]

s3 800 mmol s21 [168]

K3 1360 mmol2 [152]

KADP
m,3

29 mmol [152]

s4 100 mmol s21 [132]

L4 106 [169]

s5 0.43 mmol s21 [155]

Km,5 100 mmol [155]

doi:10.1371/journal.pone.0108676.t001
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y’1(t)~f1(y1(t{r1),y1(t),:::,yj(t{rj),yj(t),yjz1(t),:::,yn(t))

..

.

y’n(t)~fn(y1(t{r1),y1(t),:::,yj(t{rj),yj(t),yjz1(t),:::,yn(t))

8>><
>>:

ð23Þ

where the dependent variable is a n-dimensional vector of the

form y~(y1, � � � ,yn), t being the independent variable. In system

(23), the derivatives of y1, � � � ,yn, evaluated in t, are related to the

variables y1, � � � ,yj , where each yi with iƒj appears evaluated in

t{ri, being ri the corresponding delay, and might appear

evaluated also in t, and the derivatives are also related to the

variables yjz1, � � � ,yn evaluated in t.

Unlike ODE systems, in delayed differential equations, in order

to determine a particular solution, it is necessary to give the initial

solution in the interval t0, t0zd½ � with d~ max r1,:::,rj

� �
. That

involves the consideration, in the solution of the system, of the

function f0 t0, t0zd½ �?Rn called initial function. It can be

observed therefore that infinite degrees of freedom exist in the

determination of the particular solutions.

Since in our system simple oscillatory behavior of period 1

emerges from numerical integration, an acceptable approximation

to the initial function is a periodic solution.

In the system described by (23), it is possible to take the initial

function f0 equal to any y tð Þ and, in particular, it can be a periodic

function.

With this type of systems, it is possible to take into account

dynamic behaviours related to parametric variations linked to the

independent variable. The parametric variations ri affect the

independent variable; they represent time delays and can be

related to the domains of the initial functions.

Table 1 shows the values of the kinetic parameters involved in

the system chosen to run the model. All of these values have been

obtained from in vitro experiments reported in the scientific

literature and they are within the range of the values published in

the enzyme database Brenda (http://www.brenda-enzymes.info/).

For these values, the preliminary integral solutions of the

differential equations system (12) show a simple oscillatory

behavior of period 1 and as an approximation we have assumed

that the initial functions present simple harmonic oscillations in the

following form:

a0(t)~CzD sin (2p=P), ð24Þ

b0(t)~EzF sin (2p=P), ð25Þ

c0(t)~GzH sin (2p=P), ð26Þ

with C = 6 mmol, D = 2 mmol, E = 4 mmol, F = 1 mmol, G = 7 mmol,
H = 3 mmol and P = 200 s. The other parameter values used were

v1 = 35|1023 mmol s21, k2 = 9|1025 s21, v3 = 1.4 mmol s21,

k4 = 0.69 s21, D0 = 1.98, r1 = 5 s, r2 = 27 s and r3 = 50 s.

In this paper, we have studied the dynamic behavior of the

system under two parametric scenarios:

- In Scenario I, l is the control parameter, which is related to

the energy level stored in the proton gradient generated by the

enzymatic oxidation of input nutrients. This scenario represents

the main analysis of the paper, and the values used for the kinetic

parameters involved in the model are those set out above.

- In Scenario II, the delay r2 is the control parameter, model-

fing the time constants for the time delays of ADP, with

v1 = 3|1023 mmol s21, k2 = 2|1024 s21, v3 = 2.1 mmol s21,

l = 1.09, r1 = 3 s, and all other parameters as indicated in

Scenario I.

The extracellular ATP concentration [145–149] is considerably

much lower than its intracellular concentration [147], which

makes accurate quantification of extracellular levels of ATP an

extremely difficult task. Therefore, k2 (v2 = k2 [ATP]) must be a

sufficiently small value. The values of k2 here used have been:

961025 s21 in Scenario I and 261024 s21 in Scenario II. If we

now take an intermediate value for the ATP concentration,

10 nmol for example, the following data are obtained:

v2 = 961027 mmol s21 under Scenario I, and 261026 mmol s21

under Scenario II, which are significantly lower than the values

considered for v1 (the rate of the ATP input into the system by

substrate-level phosphorylation): 3.561022 mmol s21 under Sce-

nario I, and 3.061023 mmol s21 under Scenario II.

In this paper, we have studied the bifurcation analysis for the

two control parameters (l and r2) here considered (Scenarios I and

II, resp.). Further future studies, beyond the scope of the present

work, might consider including other control parameters to

understand how the stability of the solutions change along

parameters space. Furthermore, the presence of ‘‘molecular noise’’

might also be included as a possibility to achieve non-periodic

variability in the ATP/ADP/AMP oscillations.

An important feature of metabolism is the wide range of time

scales in which cellular processes occur.

Generally enzymatic reactions take place at high speed e. g.,

carbonic anhydrase has a turnover number (kcat) of 400,000 to

600,000 s21 [170] and the turnover number for RNA polymerase

II is less rapid, about 0.16 s21[171].

However, many cellular processes occur on a time scale of

minutes. For instance, studies in glucose-limited cultures by up-

and downshifts of the dilution rate in Escherichia coli K-12 have

shown time delays of minutes in the metabolic mechanisms

involved in the dynamics of the adenylate energy charge exhibiting

drastic changes within 2 min after the nutrients dilution [109].

Intracellular concentrations of the adenine nucleotides and

inorganic phosphate may present sustained oscillations in the

concentrations of the adenine nucleotides with periods around a

minute which can originate large temporal variations in the

supplies of these substrates and regulatory molecules to the specific

enzymes [30]. In addition to the temporal oscillations, sustained

chemical redox waves (NAD(P)H2 NAD(P)+) are a rather general

feature of some cells [90] which may exhibit qualitative changes

with wavefronts traveling in opposite directions within <2 min

after the start [172].

It is also known that ATP can evoke fast currents by activation

of different purinergic receptors expressed in the plasma mem-

branes of many cells [173]. However, ATP exposure for several

minutes can lead to the formation of a high conductance pore

permeable for ions and molecules up to 900 Da [174,175]. The

activation of some kinases, such as MAPK, occurs with a time

scale of minutes [176,177]. Furthermore fructose-2,6-bisphosphate

levels are also regulated through cyclic-AMP-based signalling,

which occurs on the timescale of minutes [178].

According to these experimental observations, we have

analyzed the dynamic behavior of the adenylate system taking

into account both instantaneous substrate input conditions and

delay times for metabolite supplies, between 1 to 120 seconds,

which covers a wide range of cellular physiological processes.

The numerical integration of the system was performed with the

package ODE Workbench, developed by Dr. Aguirregabiria
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which is part of the Physics Academic Software. Internally this

package uses a Dormand-Prince method of order 5 to integrate

differential equations (http://archives.math.utk.edu/software/

msdos/diff.equations/ode_workbench/.html).

The use of differential equations in the study of metabolic

processes is widespread nowadays and different biochemical

regulation processes have been quantitatively analyzed using time

delayed simulations, e.g., in the phosphorylation–dephosphoryla-

tion pathways [179], in the endocrine metabolism [180], in the

Lactose Operon [181], in the regulation of metabolic pathways

[182], in cell signaling pathways [183], and in metabolic networks

[184].

Finally, we want to again emphasize that our model only

represents some key essential parts of the adenylate energy system.

As has previously been indicated, each living cell is essentially a

sophisticated metabolic network characterized by hundreds to

thousands of biochemical reactions, densely integrated, shaping

one of the most complex dynamic systems in nature. The cellular

metabolic network functionally integrates all their catalytic

processes as a whole. For instance, in a cellular eukaryotic

organism the systemic metabolic network includes the enzymatic

reactions linked to the plasma membrane, the catabolic and

anabolic processes of cytoplasm, the metabolism developed by

organelles and subcellular structures, the processes of cell

signaling, the adenylate energy system, the metabolism of the

nuclear membrane and the nucleoplasm, the enzymatic processes

for genetic expression, etc.

A fundamental property of this cellular metabolic network is

their modularity. Metabolism is organized in a modular fashion

and the emergence of modules is a genuine characteristic of the

functional metabolic organization in all cells [185,186].

Energy is the essential element for the viability of the cellular

metabolic network, and practically all bioenergetic processes are

coupled with each other via adenosine nucleotides, which are

consumed or regenerated by the different enzymatic reactions of

the network.

The adenosine nucleotides also act as allosteric control of

numerous regulatory enzymes allowing that changes in ATP, ADP

and AMP levels can practically regulate the functional activity of

the overall metabolic network of cell [10–13].

Accordingly, the cellular energetic system is an integral part of

the systemic metabolic network and also shapes a super-complex

dynamical system which consists of thousands of biochemical

reactions.

In addition, the cellular energy system is involved as well in the

set of catabolic and anabolic reactions of the systemic metabolism

exhibiting specific processes, e.g., the oxidative phosphorylation,

the glycolytic metabolism and other catalytic reactions of

substrate-level phosphorylation, the regulatory modular sub-

networks of adenosine nucleotide signals, the AMPK system

Figure 3. Numerical analysis for the model of the adenylate energy system. a–c: (cf. Scenario I in text) In y-axis we are plotting the max and
the min of the different variables a, b and c. For situations with no oscillations (stable fixed point colored in solid black lines) the max and the min are
coincident. For situations with oscillations, the max and the min of the oscillations are plotted separately; in blue we are coloring the max of the
oscillation, in red, its minimum value. l is the control parameter. The numerical integration shows simple solutions. For small l values (0:9ƒlv1) the
adenine nucleotide concentrations present different stable steady states which lose stability at a Hopf bifurcation at l,1. For lw1, the attractor is a
stable limit cycle. d–f: (Scenario II) The delay r2 is the control parameter. The numerical bifurcation analysis reveals that the temporal structure is
complex, emerging 5 Hopf bifurcations as well as a secondary bifurcation of Neimark-Sacker type. Two pairs of Hopf bifurcations are connected in the
parameter space. A third supercritical Hopf bifurcation occurs at r2,71.94, rapidly followed by another Hopf bifurcation, subcritical, at r2,72.83. This
marks the beginning of the region where the system is multi-stable. The last Hopf bifurcation, born at r2,72.83, which is subcritical exhibiting the
presence of several Torus bifurcations, occurs on a branch of limit cycles when a pair of complex-conjugated Floquet multipliers, leave the unit circle.
Branches of stable (resp. unstable) steady states are represented by solid (resp. dashed) black lines; branches of stable (resp. unstable) limit cycles are
represented by the max of the oscillation in blue and the minimum in red and by solid (resp. dashed). Hopf bifurcation points are black dots labeled
H; Torus bifurcation points are blue dots labeled TR. The bifurcation parameters l (Scenario I) and r2 (Scenario II) are represented on the horizontal
axis. The max and min values of each variable are represented on the vertical axis.
doi:10.1371/journal.pone.0108676.g003
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which acts as a metabolic master switch, the degradation processes

of the adenosine nucleotides, the allosteric and covalent modula-

tions of enzymes involved in bioenergetic processes, the role of

AMP, AMPK and adenylate kinase in nucleotide-based metabolic

signaling, the principles of dissipative self-organization of the

bioenergetic processes and the significance of metabolic oscilla-

tions in the adenosine nucleotide propagation inside the cell.

Results

To understand the dynamics of the main enzymatic reactions

interconverting the adenine nucleotides we have analyzed a

biochemical model for the adenylate energy system using the

system of delay differential equations (12) to account for the

asynchronous conditions inside the cell.

Scenario I
Scenario I represents the fundamental analysis of the paper,

being l the main control parameter, which models the energy level

stored in the proton gradient generated by the enzymatic

oxidation of input nutrients, and therefore, represents the

modifying factor for the ATP synthesis in the system due to

substrate intake.

The numerical integration illustrated in Figure 3a-c shows that

the temporal structure of the biochemical model is simpler than

Scenario II (see below). At small l values, for 0:9ƒlv1the

adenine nucleotide concentrations display a family of stable steady

states (notice that l = 0.9 represents a 10% reduction of the ATP

synthesis). These steady states lose stability at a Hopf bifurcation

detected numerically for l,1 which corresponds to a normal

activity of ATP synthase with a maximum rate of 7.14 mmol s21

[166]. For values of l bigger than 1 the attractor of the system is a

stable limit cycle (therefore, the Hopf bifurcation is supercritical).

Concretely, the amplitude of adenine nucleotide oscillations

augments as l increases, e. g., for l = 1.02, which represents a

2% of increment in ATP synthesis, the adenine nucleotides exhibit

new oscillations with amplitude values of 2.36 mmol (ATP), 2.21

mmol (ADP) and 0.24 mmol (AMP). With an 8% of increase in the

ATP synthesis (l = 1.08) the amplitudes show higher values,

namely 4.47 mmol (ATP), 4.41 mmol (ADP) and 0.5 mmol (AMP).

Figure 4. Dynamical solutions of Scenario I. For l = 1.02 (normal activity for the ATP synthesis), periodic oscillations emerge. (a) ATP
concentrations. (b) ADP concentrations. (c) AMP concentrations. (d) The Gibbs free energy change for ATP hydrolysis to ADP. (e) The total adenine
nucleotide (TAN) pool. It can be observed that ATP and ADP oscillate in anti-phase (the ATP maximum concentration corresponds to the ADP
minimum concentration). Likewise, it is noted that the total adenine nucleotide pool shows very small amplitude of only 0.27 mmol and a period
around 65 s. (f) ATP transitions between different periodic oscillations and a steady state pattern for several values of l(0.97, 1.08, 1.02, 0.97). Maxima
and minima values per oscillation are shown in y-axis.
doi:10.1371/journal.pone.0108676.g004
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Finally, when activity reaches a 10% increase (l = 1.1) the three

dependent variables of the metabolic system oscillate with higher

amplitude concentrations: 4.92 mmol, 4.84 mmol and 0.55 mmol,
respectively.

Figure 4 shows three time series belonging to ATP, ADP and

AMP (panels a, b and c, respectively), for l = 1.02. The largest

oscillation values correspond to ATP (max = 9.79 mmol and

min = 7.43 mmol) followed by ADP (max = 3.32 mmol and

min = 1.01 mmol) and finally, AMP which oscillates with a low

relative amplitude (max = 1.82 mmol and min = 1.58 mmol). We

have also observed that ATP oscillates in anti-phase with ADP and

consequently the maximum concentration of ATP corresponds to

the minimum concentration of ADP.

In most metabolic processes, ATP (Mg-ATP) is the main energy

source for biochemical reactions and its hydrolysis to ADP or

AMP releases a large amount of energy. To this respect, we have

estimated the Gibbs free energy change for ATP hydrolysis (to

ADP) under an emergent oscillatory condition of the system,

applying the known equation DG
0

reaction~DG
00
reactionzRT ln (b=a).

The change of the standard Gibbs free energy for this reaction was

previously evaluated by Alberty and co-workers [187] obtaining a

value of 232 kJmol21 under standard conditions of 298 K, 1 bar

pressure, pH 7, 0.25 M ionic strength and the presence of 1 mM

Mg2+ ions forming the ATP.Mg2+ complex, which has different

thermodynamic properties than free ATP and, it is closer to

physiological conditions.

Under these conditions, Figure 4d shows the values of Gibbs

free energy change of ATP hydrolysis for l = 1.02 which

corresponds to a normal activity for ATP synthesis. The resulting

values for the oscillatory pattern were more negative than the

standard value with a maximum and a minimum of 2

37.64 kJmol21and 233.99 kJmol21, meaning that the hydrolysis

of ATP releases a large amount of free energy that can be captured

and spontaneously used to drive other energetically unfavorable

reactions in metabolism.

The total of adenine nucleotides is another relevant element in

the study of cellular metabolic processes. Different experimental

observations have shown that changes in the size levels of the

adenine nucleotide pool occur under different physiological

conditions [188]. We have estimated the total adenine nucleotide

(TAN) pool as [ATP] + [ADP] + [AMP], and Figure 4e shows for

l = 1.02 an emergent oscillatory behavior for TAN with a

maximum of 12.61 mmol and a minimum of 12.34 mmol, i.e., a

little amplitude of only 0.27 mmol and a period of 65 sec.

Likewise, we have observed that the sum of ATP and ADP

concentrations exhibits very small range. So, for l = 1.02, the

amplitude is 93 nmol and for l = 1.1 it is 202 nmol (data not

shown in the Figure).

Figure 4f illustrates ATP transitions between different periodic

oscillations and a steady state pattern for several values of l(0.97,

1.08, 1.02, 0.97).

Next, to analyze the dynamics of the energetic status of the

system we have calculated the energy charge level. Figure 5 shows

different oscillatory patterns for AEC. For l = 1.02 the AEC

periodically oscillates with a low relative amplitude of 0.09

(max = 0.813 and min = 0.723) (Figure 5a). At higher values of

ATP synthesis (an increment of 8%) larger oscillations emerge

(max = 0.867 and min = 0.668) (Figure 5b).

Finally, Figure 5c illustrates AEC transitions between different

periodic oscillations and steady state patterns for several arbitrary

values of l (0.92, 1, 1.03, 1.06, 1.04, 1, 1.03, 1.02, 0.9) and

arbitrary integration times. All the oscillatory patterns for the

energy charge maintain the AEC average within narrow

physiological values between 0.7 and 0.9.

Figure 5. Emergence of oscillations in the AEC (Scenario I). Different oscillatory behavior appears when varying l, the modifying factor for the
ATP synthesis. (a) For l = 1.02 (normal activity of ATP synthesis) the AEC periodically oscillates with a very low relative amplitude of 0.090. (b) At
higher values of ATP synthesis (l = 1.08) large oscillations emerge with a amplitude of 0.199. (c) AEC transitions between different periodic oscillations
and steady state patterns for several values of l (0.92, 1, 1.03, 1.06, 1.04, 1, 1.03, 1.02, 0.9).
doi:10.1371/journal.pone.0108676.g005
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Figure 6 shows a robustness analysis of the system in which the

values of the adenylate energy charge (AEC) do not substantially

change when l, the main control parameter, is heavily modified (a

50% of its value) indicating that AEC is strongly buffered.

Thus, at small l values, for 0:7ƒlƒ0:99, the AEC displays a

family of stable steady states and the AEC values range from 0.752

to 0.779 (notice that l = 0.7 represents a 30% reduction of the

ATP synthesis). These steady states lose stability at a Hopf

bifurcation for l,1 and the AEC exhibits oscillatory behaviors of

period 1, being the average between the maximum and minimum

of AEC = 0.769. Notice that l = 1 corresponds to an optimal

activity of ATP synthase with a maximum rate of 7.14 mmols21

[166].

As expected, the maximum and minimum per period get bigger

as l increases, and for l = 1.2 the AEC maximum per oscillation

reaches 0.896 and the AECdecreases to 0.769 (l = 1.2 represents a

20% increase in activity of the optimal ATP synthesis).

This robustness analysis of the system for a perturbation of 50%

in the l values show that in the stable steady states the AEC values

range from 0.752 to 0.779 and in the stable periodic behaviors the

AEC average between the maximum and minimum per period

ranges from 0.768 to 0.756.

At very small l values, for lƒ0:45, the AEC exhibits values

below 0.6, which are gradually descending up to reach very small

energy values, when the system finally collapsed (Figure 7) [97–

101].

During decades, experimental studies have shown that when

yeast cells are harvested, starved and then supplemented they

exhibit significant metabolic oscillations.

Following these observations, we have compared our results

with a classical study for oscillations of the intracellular adenine

nucleotides in a population of intact cells belonging to the yeast

Saccharomyces cerevisiae [30]. These cells were quenched 5 min

after adding 3 mM-KCN and 20 mM-glucose at time intervals of

5 s. Figure 8a shows the dynamics of adenine nucleotide

concentrations experimentally obtained, exhibiting AEC rhythms

between 0.6 and 0.9 values (in the first and second oscillation) and

a period of around 50 s. In addition, Richard and colleagues

attempted to fit a sinusoidal curve through the experimental points

[30]. Figure 8b shows an AEC oscillatory pattern at high values of

ATP synthesis (l = 1.1), max = 0.873, min = 0.656 and a period of

65 s.

Scenario II
In this second Scenario we have considered r2 as the control

parameter, modeling time delays for ADP.

The numerical bifurcation analysis reveals that the temporal

structure of the system (12) is complex, with several Hopf

bifurcations emerging as well as secondary bifurcations of

Neimark-Sacker type (torus), along two branches of limit cycles

(Figure 3 d–f).

Concretely, using the numerical continuation package DDE-

Biftools [189], we find 5 Hopf bifurcations. Two pairs of Hopf

bifurcations are connected in parameter space, that is, the branch

of limit cycles born at one, ends at the other, and the fifth Hopf

bifurcation gives a branch that extends up to the upper limit of the

interval considered, that is, r2 = 120 s.

Gradually increasing r2 from 1 s, we find that the branch of

stable steady states that exists at r2 = 1 s destabilizes at a first Hopf

bifurcation occurring at r2,20.12 s. This Hopf bifurcation is

supercritical, which means that the emanating family of limit

cycles is stable; this family remains stable until it disappears

through the second (also supercritical) Hopf bifurcation at

r2,37.04 s, which allows the family of steady states to re-stabilize;

it remains stable until a third supercritical Hopf bifurcation occurs

at r2,71.94 s, rapidly followed by another Hopf bifurcation,

subcritical, at r2,72.83 s.

This marks the beginning of the region where the system is

multi-stable, with one stable steady state and (at least) one stable

limit cycle. The last Hopf bifurcation, terminating the branch of

limit cycle born at r2,72.83 s, is subcritical.

The reason for the complex integral solutions in the Scenario II

is the presence of several torus bifurcations detected along both

branches of limit cycles in the region of r2 between 71 s and 110 s.

We recall that a Torus bifurcation occurs on a branch of limit

cycles when a pair of complex-conjugated Floquet multipliers,

leave the unit circle (in the complex plane). This corresponds to

the fact that this branch of limit cycles becomes unstable and the

stable solution starts winding on an invariant torus, periodic or

quasi-periodic. We detect four Torus bifurcations, corresponding

to the appearance and disappearance of multi-frequency oscilla-

tions, at the following values of r2: r2,73.22 s, r2,74.66 s,

r2,85.66 s, and r2,106.06 s. Note the following additional details

about the Figure 3 d–f we made: branches of stable (resp.

unstable) steady states are represented by solid (resp. dashed)

black lines; branches of stable (resp. unstable) limit cycles are

represented by the max of the oscillation in blue and the minimum

in red and by solid (resp. dashed). Hopf bifurcation points are

represented with black dots labeled H; Torus bifurcation points

with blue dots labeled TR. The horizontal axis corresponds to the

Figure 6. Robustness analysis for the adenylate energy charge
(AEC) across different modeling conditions. In y-axis we have
plotted the max and the min of the AEC. For situations with no
oscillations stable fixed are point colored in solid black lines. In x-axis
we have plotted the l control parameter, which models the energy
level stored in the proton gradient generated by the enzymatic
oxidation of input nutrients. From left to right, we can see that the
system has a fixed point solution which is stable for l,1 (black solid
line) and becomes unstable for l.1 (black dashed line), i.e., there is a
Hopf bifurcation (H) at l,1. For l.1, the limit cycle solution becomes
stable, in magenta (blue) we have colored the max (min) of the
oscillations. In red, we are coloring the average AEC value of the
oscillations. For l,1, the AEC values range from 0.752 and 0.779, and
for l.1, the AEC average value between the maximum and minimum
per period range from 0.768 to 0.756. At very small l values, for lƒ0:45
the AEC exhibits values below 0.6 (Figure 7). The AEC does not
substantially change during the simulations indicating that it is strongly
buffered against the changes of the main control parameter of the
system.
doi:10.1371/journal.pone.0108676.g006
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bifurcation parameters: l (Scenario I) and r2 (Scenario II). The

vertical axis corresponds to the dependent variable’s maxima

along various computed branches.

Figure 9 illustrates several examples of oscillatory patterns for

the adenylate energy charge under different delay times. For

r2 = 37 s the AEC periodically oscillates (Figure 9a). Increasing r2

up to 72 s (Fig. 9b) and up to 94 s (Fig. 9c) there exist complex

AEC oscillatory patterns. Finally, AEC transitions between

different oscillatory behavior and steady state patterns are

observed for several r2 values (Figure 9d–e): (d) 50 s, 27 s, 30 s,

32 s, 33 s, 72 s, 52 s, (e) 50 s, 27 s, 30 s, 32 s, 34 s, 36 s, 33 s, 36 s,

38 s, 40 s. These r2 values and the respective integration times

have been arbitrarily taken.

Discussion

Energy is the fundamental element to maintain the turnover of

the bio-molecular structures and the functional metabolic viability

of all unicellular organisms.

The concentration levels of ATP, ADP and AMP reflect roughly

the energetic status of cells, and a determined ratio between them

was proposed by Atkinson as the adenylate energy charge (AEC)

[96]. Under growth conditions, organisms seem to maintain their

AEC within narrow physiological values, despite of extremely

large fluctuations in the adenine nucleotide concentrations [96–

101]. Intensive experimental studies have shown that the AEC

ratio is preserved in a wide variety of organisms, both eukaryotes

and prokaryotes (for details see Introduction section).

In order to understand some elements that determine the

cellular energy status of cells we have analyzed a biochemical

model conformed by some key essential parts of the adenylate

energy system using a system of delay differential equations (12) in

which the enzymatic rate equations of the main processes and all

the corresponding physiological kinetic parameters have been

explicitly considered and tested experimentally in vitro by other

groups. We have used delay-differential equations to model the

asynchronous metabolite supplies to the enzymes (substrates and

regulatory molecules).

From the model results, the main conclusions are the following:

I. The adenylate energy system exhibits complex dynamics, with

steady states and oscillations including multi-stability and multi-

frequency oscillations. The integral solutions are stable, and

therefore the adenine nucleotide concentrations (dependent

variables of the system) can perform transitions between different

kinds of oscillatory behavior and steady state patterns in a

stabilized way, which is similar to that in the prevailing conditions

inside the cell [15,16].

II. The model is in agreement with previous experimental

observations [15,16,30], showing oscillatory solutions for adenine

nucleotides under different ATP synthesis conditions, at standard

enzymatic concentrations, and for different ADP delay times.

III. In all the numerical results, the order of concentration ratios

between the adenine nucleotides is maintained in a way that the

highest concentration values correspond to ATP, followed by ADP

and AMP which displays the lowest values, in agreement with the

experimental data obtained by other authors [30,109].

IV. During the oscillatory patterns, ATP and ADP exhibit anti-

phase oscillations (the maxima of ATP correspond with the

minima of ADP) also experimentally observed in [30].

V. As a consequence of the rhythmic metabolic behavior, the

total adenine nucleotide pool exhibits oscillatory patterns (see

experimental examples of this phenomenon in [188,190], as well

as the Gibbs free energy change for ATP hydrolysis (see [30]). In

agreement with these results, we have found that the oscillation for

the Gibbs free energy has a maximum and minimum values per

period of 237.64 kJmol21 and 233.99 kJmol21, the same order

Figure 7. AEC dynamics under low production of ATP. AEC values as a function of time. At very small l values (l&0:45), which represents a
strong reduction of the ATP synthesis due to low substrate intake, the dynamic of the adenylate energy system shows a steady state behavior that
slowly starts to descend, in a monotone way, up to reach the lowest energy values (AEC ,0.59) at which the steady state loses stability and oscillatory
patterns emerge with a decreasing trend. Finally, when the maximum of the energy charge oscillations reaches a very small value (AEC ,0.28) the
adenylate system suddenly collapses after 12,000 seconds of temporal evolution.
doi:10.1371/journal.pone.0108676.g007
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of magnitude as in experimental observations (about 250 kJmol21

in rat hepatocytes) [191].

VI. The adenylate energy charge shows transitions between

oscillatory behaviors and steady state patterns in a stabilized way.

We have compared an integral solution of our model with a

classical study of intracellular concentrations for adenine nucleo-

tides in a population of intact cells belonging to the yeast

Saccharomyces cerevisiae and the model fits well with these data

[30].

VII. The adenylate energy charge (AEC) does not substantially

change during the simulations, indicating that is strongly buffered

against the perturbations, in agreement with experimental data

[97–101].

We want to remark that we have observed oscillatory patterns in

the AEC, in the sum of ATP plus ADP and in the total adenine

nucleotide pool but with very low amplitude, what might make

difficult the experimental observation with traditional methods.

In fact, it is not clear yet what methodologies are the most

appropriate to monitor the values of adenine nucleotides [192].

Although bioluminescence assays and high-performance liquid

chromatography are the ones most commonly used for most of the

studies [151,192], these procedures are discontinuous and do not

allow to observe real-time variations at short temporal periods.

Moreover, adenosine nucleoside levels are critically dependent on

sample manipulation and extraction by traditional methods. It has

been demonstrated that even short lapses in sample preparation

(2 min) can dramatically affect results [193].

It has been assumed for a long time that the temporal evolution

of ATP, ADP and AMP concentrations present permanent steady

state solutions and that, consequently, cells maintain the AEC as a

constant magnitude (homeostasis). But this conservation is hard to

be fulfilled for open systems.

Recently, the use of nanobiosensors has shown to be able to

perform real-time-resolved measurements of intracellular ATP in

intact cells; the ATP concentration is indeed oscillating, either

showing a rhythmic behavior or more complex dynamics with

variations over time, but importantly, the ATP concentration is

never constant [15,16].

As a consequence of our analysis we suggest that the

appropriate notion to describe the temporal behavior of ATP,

ADP and AMP concentrations is homeorhesis i.e. the non-linear

dynamics of the adenylate energy system shape in the phase space

permanent transitions between different kinds of attractors

including steady states (in cellular conditions correspond to

quasi-steady states) and oscillating attractors, which represent the

sets of the asymptotic solutions followed by the adenine nucleotide

variables.

Homeorhesis is substantially different to homeostasis, which

basically implies the ability of the system to maintain the adenine

nucleotide concentrations in a constant state.

The concept of homeostasis was first suggested by the

physiologist Walter Cannon [194] in 1932, but its roots are found

back to the French physiologist Claude Bernard who argued that

an alleged constancy of the internal medium for any organism

results from regulatory processes in biological systems [195,196].

For a long time, the notable idea by Claude Bernard of constancy

in the internal medium has paved the route of how cellular

processes behaved. However, this constancy seems to be apparent.

In mid-twentieth century, the term homeorhesis was suggested to

be a substitute of homeostasis by the prominent biologist Conrad

Waddington [197,198] to describe those systems which return

back to a specific dynamics after being perturbed by the external

environment, thus opposite to homeostasis, in which the system

returns back to a fixed state. Later, that concept of homeorhesis was

mathematically applied in distinct biological studies [199–204].

Rather than a permanent physiological stable state (homeostasis),
living systems seem to be characterized by changing energy

dynamics (homeorhesis).
In our numerical study, the temporal dynamics for the

concentrations of ATP, ADP and AMP are determined by the

adenylate energy system, and these adenosine nucleotide dynamics

present complex transitions across time evolution suggesting the

existence of homeorhesis.

In addition, we have observed that the values of the AEC do not

substantially change during the simulations indicating that is

strongly buffered against the perturbations. Recall that the AEC

represents a particular functional relationship between the

concentrations of adenine nucleotides.

As indicated in the introduction section, intensive experimental

measurements under growth cellular conditions have shown that

AEC values between 0.7 and 0.95 are invariantly maintained in

practically all classes of cells which seems to represent a common

key feature to all cellular organisms.

Hence, there appear to be two essential elements in determining

the cellular energy level: first, the adenylate energy system

originates complex transitions over time in the adenosine

nucleotide concentrations so that there is no homeostasis for

energy; second, it emerges a permanent relationship among the

Figure 8. Experimental vs numerical results of AEC oscillations.
Figure 7a illustrates a classical study of the intracellular adenine
nucleotides in a population of intact cells belonging to the yeast
Saccharomyces cerevisiae [30] which exhibits AEC rhythms, with
max = 0.9, min = 0.6 and a period around 50 s. The authors fitted the
experimental points to a sinusoidal curve. Figure 7b shows AEC
oscillations belonging to our model at high values of ATP synthesis
(l = 1.1), with max = 0.873, min = 0.656 and a period of 65 s.
doi:10.1371/journal.pone.0108676.g008
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dynamics of adenine nucleotide concentrations (AEC values

between 0.7 and 0.95), which seems to be strictly fulfilled during

all the metabolic transformations that occur during the cell cycle.

These facts make possible to suppose that the cell is an open

system where a given magnitude for energy is not conserved but

there exists a functional restriction on the possible values that can

adopt the adenine nucleotide concentrations.

At least, there seems to be a determinate function relating the

adenine nucleotide values which appears to be invariant to all

metabolic transformations occurring along the cell cycle. This

invariant function, which it would define the real cellular energy

state, might possibly have a complex attractor in the phase space

since complex dynamic transitions in the adenine nucleotide

concentrations have been observed in vivo [16], but these

hypotheses need deserve further investigation.

Our interpretation to explain the essential elements of the

cellular energy charge is that, in addition to the dynamical system

which originates the complex transitions in the adenosine

nucleotides, there exists an invariant of the energy function which

restricts the values that adenylate pool dynamics can take, and the

equation of Atkinson is the manifestation of that invariant

function.

The main biological significance of the invariant energy

function would be that under growth cellular conditions, the

adenylate pool must be highly phosphorylated keeping the rate of

adenylate energy production similar to the rate of adenylate

energy expenditure.

Cell is a complex non-linearly open system where there is not a

specific energy value which is conserved, but rather dynamic forms

of change for energy. Unicellular organisms need energy to

accomplish the fundamental tasks of the cell metabolism: today, in

the post-genomic era, the understanding of the elemental

principles and quantitative laws that govern the adenylate energy

system is crucial to elucidate some of the fundamental dynamics of

cellular life.
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Abstract We present two new problems of combinatorial optimization and discuss
their applications to the computational design of vaccines. In the shortest λ-superstring
problem, given a family S1, . . . , Sk of strings over a finite alphabet, a set T of “tar-
get” strings over that alphabet, and an integer λ, the task is to find a string of minimum
length containing, for each i , at least λ target strings as substrings of Si . In the shortest
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University of Primorska, UP FAMNIT, Glagoljaška 8, 6000 Koper, Slovenia
e-mail: martin.milanic@upr.si

P. Medvedev
Department of Computer Science and Engineering, The Pennsylvania State University,
State College, USA
e-mail: pashadag@cse.psu.edu

12335



1328 L. Martínez et al.

λ-cover superstring problem, given a collection X1, . . . , Xn of finite sets of strings
over a finite alphabet and an integer λ, the task is to find a string of minimum length
containing, for each i , at least λ elements of Xi as substrings. The two problems are
polynomially equivalent, and the shortest λ-cover superstring problem is a common
generalization of two well known combinatorial optimization problems, the shortest
common superstring problem and the set cover problem. We present two approaches to
obtain exact or approximate solutions to the shortest λ-superstring and λ-cover super-
string problems: one based on integer programming, and a hill-climbing algorithm.
An application is given to the computational design of vaccines and the algorithms
are applied to experimental data taken from patients infected by H5N1 and HIV-1.

Keywords Vaccine design · Combinatorial Optimization · Integer programming ·
Hill-climbing · Shortest common superstring problem · Set cover problem

Mathematics Subject Classification 68Q25 · 68W32 · 90C90 · 90C59 · 90C90 ·
92C40 · 92C50 · 92D20

1 Introduction

Cellular organisms are complex metabolic structures shaped by sophisticated biochem-
ical networks with hundreds of thousands of enzymatic reactions (Jeong et al. 2000)
in which chaotic patterns (Goldbeter 1997), persistent behaviors (Audit et al. 2004;
De la Fuente 1998; Kazachenko et al. 2007) and other dynamic properties emerge
(Allegrini et al. 1998; De la Fuente et al. 2009). In particular, important combinatorial
problems arise in the analysis of sequences of nucleotides and amino acids in which
computational complexity impose limitations in the effectiveness of the algorithms
and the techniques that can be used (Jones and Pevzner 2004; Medvedev et al. 2007).

The computational design of vaccines remains an important open problem with
immediate applications to human health. In response to the presence of a virus, the
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A combinatorial approach to the design of vaccines 1329

immune system develops proteins called antibodies which bind to parts of the virus
called antigens. The antibody binds to one or more surface amino acid sequences of
the antigen, called epitopes. Epitopes can be linear (consisting of consecutive amino
acids in the primary structure of the antigen) or conformational (the amino acids are
not consecutive in the sequence but are co-located on the folded structure). Once
the immune system develops an antibody for a virus, it is “memorized” and used
to neutralize any future viruses with the same epitopes. This forms the idea behind
vaccines, which are developed to mimic the epitopes of viruses. Unfortunately, viruses
can mutate and the sequence of the epitopes can change, avoiding antibody detection.

The problem of designing a vaccine can thus be formulated combinatorially as
choosing an amino acid sequence that would contain epitopes that would maximize
the efficiency of the antibodies against actual viruses. Some epitopes occur more
frequently than others in natural viral populations; therefore, a common approach is
to maximize the coverage of the epitopes appearing in the vaccine given a limit on
its length, in the sense that the more frequent epitopes are more likely to be included.
Different techniques are applied to solve the problem: For instance, Nickle et al. (2007)
based their method in the search of the sequence at the center of tree followed by the
addition of a set of epitopes (COT+), Fischer et al. (2006) used genetic algorithms,
Toussaint et al. (2008) used integer linear programming, Kirovski et al. (2007) used
a probabilistic least-constraining most-constrained algorithm, Jojic et al. (2005) used
a probabilistic model for maximizing coverage of a vaccine construct and Giles and
Ross (2011) used a three-round consensus.

However, current optimization problem formulations do not capture several biolog-
ical constraints. A synthetic peptide (i.e. vaccine) needs to be biologically viable: it
has to be cleaved, transported, and presented all in the correct manner. Unfortunately,
not enough is understood to be able to predict this viability as a function of the peptide
sequence. Delivery methods (i.e. via vector) further impose constraints on the length.
Recently, Kulkarni et al. (2013) argued that the notion of coverage that is optimized
may not be the correct one and that including certain immunodominant epitopes may
actually diminish the development of more protective antibodies. Without extensive
in vivo validation, it therefore remains unclear what needs to be optimized.

The main motivation of this paper is to introduce a new criterion in the design
of vaccines which complements the criterion of getting high coverage. We estab-
lish a combinatorial condition imposing a determined level of balance by each viral
sequence, which guarantees that all viral sequences cover at least a minimum number
of epitopes. We will show that this restriction has an interesting consequence that the
frequencies of the epitopes in the vaccine are high. This leads to the desirable condition
that frequent epitopes are more likely to be covered in the vaccine. Additionally, we
show that this combinatorial condition guarantees a better distribution of the covered
epitopes among the target strings, helping thus to fight the ability of viruses to escape
the immunological diversity.

We introduce two new combinatorial optimization problems that integrate this new
criterion. In the shortest λ-superstring problem, we are given a family S1, . . . , Sk

of strings over a finite alphabet, a set T of “target” strings over the same alphabet,
an integer λ, and the task is to find a λ-superstring of minimum length, where a λ-
superstring is a string containing, for each i , at least λ target strings as substrings
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of Si . In biological terms, the {Si } are the set of known viral amino acid sequences,
T is the set of epitopes, and the λ-superstring is the desired vaccine. The parameter
λ specifies a lower bound on the number of different epitopes that the vaccine must
cover in each viral sequence. A second formulation is the shortest λ-cover superstring
problem, where we are given a collection X1, . . . , Xn of finite sets of strings over a
finite alphabet and an integer λ. The task is to find a λ-cover superstring of minimum
length, where a λ-cover superstring is a string containing, for each i , at least λ elements
of Xi as substrings. Here, each Xi represent the set of epitopes that are present in a given
viral sequence. While we show that the two problems are polynomially equivalent,
each formulation lends itself to different types of algorithms for solving it.

In Sect. 2, we give a formal definition of the shortest λ-superstring problem, together
with some bounds for its optimal value, and a discussion about coverage. In Sect. 3,
we turn our attention to the shortest λ-cover superstring problem. We establish poly-
nomial equivalence of the two problems, as well as hardness results: the two problems
are NP-hard, and also hard to approximate. We then present two approaches to obtain
exact or approximate solutions to the shortest λ-superstring and λ-cover superstring
problems. In Sect. 4 we describe an exact algorithm for the shortest λ-cover superstring
problem based on integer linear programming. In Sect. 5, we present a randomized
hill-climbing algorithm for the shortest λ-superstring problem—a heuristic local opti-
mization approach that produces approximate solutions to the problem. In Sect. 6,
we apply our techniques to a practical setting: obtaining vaccines for different values
of λ for a set of 123 patients infected with H5N1 and for two sets of 169 and 166
patients, respectively, infected with HIV-1. In this setting, we model a vaccine as a
λ-superstring, with the set T of target strings being the set of epitopes (see Sect. 2
for more details). We consider two scenarios: a simple one in which we take as the
set of epitopes all sequences of amino acids of a given length, for which we use the
hill-climbing algorithm, and a more complex and realistic scenario in which we select
the set of epitopes from the HIV Molecular Immunology Database, for which we use
the integer programming algorithm.

2 The shortest λ-superstring problem

In this paper A will denote a finite alphabet. We denote by A∗ the set A∗ = ⋃∞
n=1 An ∪

{ε} of all finite strings over A, where ε denotes the empty string. The set A∗ is a
semigroup with the operation + of concatenation, where (s1, . . . , sn)+(t1, . . . , tm) =
(s1, . . . , sn, t1, . . . , tm). A string s = (s1, . . . , sn) is said to be of length n, and we will
denote by l(s) the length of s. A string s = (s1, . . . , sm) is said to be a substring of
another string t = (t1, . . . , tn) if there exists an index u in {1, . . . , n − m + 1} such
that tu+i−1 = si for every i in {1, . . . , m}. In other words, s is a substring of t if t can
be written as t = u + s + w for some strings u and w over A. The words string and
sequence will be used interchangeably.

The following is the central definition of our paper.

Definition 2.1 Let S1, . . . , Sk be in A∗, let T ⊂ A∗ be a set of target strings, and
let λ ∈ N. A λ-superstring for (S1, . . . , Sk, T ) is a string v ∈ A∗ such that for every
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i ∈ {1, . . . , k}, at least λ different target strings are common substrings of both Si

and v.

More formally, denoting by CS(s, t) the set of all common substrings of two strings
s and t, a λ-superstring for (S1, . . . , Sk, T ) is a string v ∈ A∗ such that

|CS(Si , v) ∩ T | ≥ λ for all i = 1, . . . , k.

Definition 2.2 If s = (s1, . . . , sn), t = (t1, . . . , tm) are in A∗, the degree of overlap-
ping of s and t is

ov(s, t) = max{i ∈ {0, 1, . . . , min{m, n}} | sn−i+ j = t j for j = 1, . . . , i}.

We can define an operation of overlapping sum +′ in A∗ by

(s1, . . . , sn) +′ (t1, . . . , tm) = (s1, . . . , sn−ov(s,t)) + (t1, . . . , tm).

Remark 1 Unlike the case of concatenation, the set A∗ with the overlapping sum is
not a semigroup, because associativity does not hold. For instance, if S1 = S3 = a and
S2 = S4 = b, then ((S1+′ S2)+′ S3)+′ S4 = abab, while (S1+′ S2)+′(S3+′ S4) = ab.
Therefore, for k strings S1, . . . , Sk with k ≥ 3, we define their overlapping sum
inductively as S1 +′ · · · +′ Sk = (S1 +′ · · · +′ Sk−1) +′ Sk .

Example 1 1. If S1 = · · · = Sk and T = A� (for some � ∈ N), then S1 is a λ-
superstring for (S1, . . . , Sk, T ), where λ is the number of different substrings of
S1 of length �.

2. Again, let T = A� for some � ∈ N. Then, S = S1 +′ . . . +′ Sk is a λ-
superstring for (S1, . . . , Sk, T ), where λ = min{α1, . . . , αk}, and αi is the number
of different substrings of Si of length �. The length of S is n = ∑k

i=1 l(Si ) −
∑k−1

i=1 ov(Si , Si+1).

The following example is a more interesting one.

Example 2 Let A = {0, 1}, T = A3, and

S1 = 0110101111, S2 = 0010111100, S3 = 1001001000, S4 = 1101000000,

S5 = 1000011011.

Then:

1. 1010 is a 1-superstring for (S1, . . . , S5, T ) of length 4.
2. 00101 is a 2-superstring for (S1, . . . , S5, T ) of length 5.
3. 0001011 is a 3-superstring for (S1, . . . , S5, T ) of length 7.
4. 110001011 is a 4-superstring for (S1, . . . , S5, T ) of length 9.

Obviously, for the given Si ’s and T , it is not possible to find examples with λ ≥ 5,
because S3 has only four different substrings of length 3.
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1332 L. Martínez et al.

Consider the following combinatorial optimization problem:

Shortest λ- Superstring.
Instance: Strings S1, . . . , Sk over a finite alphabet A, a finite set T ⊂ A∗ of

target strings, a coverage requirement λ ∈ N .
Task: Find a λ-superstring for (S1, . . . , Sk, T ) of minimum length.

A similar problem for λ = 1 and for a set T of strings of the same length was
considered by Holley et al. (1991). They were interested in finding a smallest set of
strings in T that contain at least one substring from each Si .

The Shortest λ- Superstring problem is a minimization problem, with the set of
feasible solutions given by all λ-superstrings for (S1, . . . , Sk, T ). Clearly, the problem
defined with an instance (S1, . . . , Sk, T , λ) is feasible if and only if at least λ different
substrings of each Si belong to T . Since this condition can be efficiently tested, we
will assume in the rest of the paper that the input instances are always feasible, that
is, they are such that they admit a λ-superstring.

Clearly, if λ1 ≤ λ2 then every λ2-superstring for (S1, . . . , Sk, T ) is also a λ1-
superstring. Consequently, denoting by α(S1, . . . , Sk, T ; λ) the minimum length of a
λ-superstring for (S1, . . . , Sk, T ), it holds that

α(S1, . . . , Sk, T ; λ1) ≤ α(S1, . . . , Sk, T ; λ2) ,

that is, the optimal solution value to the problem is a non-decreasing function of the
coverage requirement λ.

Before continuing with our mathematical treatment of the problem, let us pause
for a moment to mention an application of the Shortest λ- Superstring problem
to vaccine design. In such applications, the alphabet A is the set of 20 amino acids,
the input strings S1, . . . , Sk represent the relevant protein sequences, and the set T of
target strings is the set of epitopes. Every feasible solution to the problem (that is, a
λ-superstring) represents a possible vaccine, where λ specifies a lower bound on the
number of different epitopes that the vaccine must cover in each sequence. An optimal
solution v to the problem represents a shortest vaccine for a given λ.

There is a tradeoff between the optimal solution value and λ. On the one hand,
higher value of λ corresponds to a better vaccine since it covers a larger number of
epitopes in each sequence. On the other hand, the vaccine can only be effective if it is
not too large. (A too large vaccine would develop an autoimmune response.) Hence,
in the vaccine design applications, the shortest λ-superstring problem will typically
be solved several times, for different values of λ. Among all obtained (optimal or
approximate) solutions, the ones achieving better epitope coverage will generally be
preferred (typically, this will correspond to larger values of λ). If λ is high enough,
then there is a good chance that other (non-tested) sequences will also have a good
percentage of epitopes covered by the same vaccine. Ideally, the value of λ should
be set to the minimum value required to develop immunogenicity. However, due to
the fact that the set of tested sequences is a subset of a bigger population, such a
value of λ is not uniquely defined but should be determined experimentally. At the
same time, of course, other biological considerations have to be taken into account
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when determining the feasibility of a particular candidate vaccine represented by a
λ-superstring.

Let us now return to the mathematical treatment of the problem. We have the
following trivial upper bound for α(S1, . . . , Sk, T ; λ) (of course, implicitly assuming,
as we previously said, that the instance admits a λ-superstring):

Proposition 2.3 α(S1, . . . , Sk, T ; λ) ≤ kλτ , where τ denotes the maximum length
of a target string.

In the particular case when T = A� and no target string appears more than once in
any Si we have the following improved upper bound for α(S1, . . . , Sk, T ; λ):

Proposition 2.4 α(S1, . . . , Sk, A�; λ) ≤ k(� + λ − 1).

Definition 2.5 For given strings S1, . . . , Sk and a target string t ∈ T , we define the
frequency of t in {S1, . . . , Sk} to be f(t) = |{i | t is a substring of Si }|.
Remark 2 Observe that, in the definition of f(t) we count only the number of strings Si

covering t, independently of the number of times that t can be expressed as a substring
of a given Si .

Definition 2.6 If v is a λ-superstring for (S1, . . . , Sk, T ), we define the coverage of
v to be

c(v) =
∑

t∈T : t substring of v f(t)
∑

t∈T : t substring of some Si
f(t)

.

Remark 3 The notion of coverage which is usually given in the literature is equivalent
to the one just introduced. If we consider, for each epitope t, the relative frequency
rf(t) of t as the quotient f(t)/k, then rf(t) measures how well conserved t is among
the strings S1, . . . , Sk , and the coverage is usually defined as the quotient of the sum
of the rf(t) for the epitopes t in the vaccine over the sum of the rf(t) for the epitopes
in the union of the Si . This quotient is the same as in the previous definition once we
cancel out k.

Remark 4 Obviously, 0 ≤ c(v) ≤ 1 holds. Sometimes it is interesting to express c(v)

as a percentage, multiplying it by 100. This is done, in particular, in the design of
vaccines, where the substrings in T are the epitopes, and it is usual in the literature to
express the coverage as the percentage of epitopes covered by the vaccine.

In the particular case when the set of target strings is A� and the strings S1, . . . , Sk

are all of the same length, say m, good properties of λ-superstrings with respect to the
coverage c(v) can be proved, in the sense that, when λ goes to m −�+1, the coverage
c(v) goes to 1.

Proposition 2.7 Let T = A� and S1, . . . , Sk ∈ Am for some positive integers �, m.
Then, the coverage of every λ-superstring v satisfies c(v) ≥ λ

m−�+1 .
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Proof On the one hand,

∑

t∈T : t substring of v

f(t) =
k∑

i=1

|{t ∈ T : t common substring of v and Si }| ≥ λk.

On the other hand,

∑

t∈T :t substring of some Si

f(t) =
k∑

i=1

|{t ∈ T : t substring of Si }| ≤ k(m − � + 1).

��

Remark 5 The lower bound for c(v) showed in the previous proposition is a very
conservative one (although it can be tight for some examples), and making a good
choice of a λ-superstring, one can obtain coverages better than the ones predicted by
that bound, as one can see, for example, in Table 1 (in Sect. 5).

Remark 6 Similar reasoning as the one above can also be used to obtain lower bounds
for c(v) in the case when T = A� but S1, . . . , Sk are of different lengths, say
m1, . . . , mk .

The bound in this case is:

c(v) ≥ λk
∑

i (mi − � + 1)
.

This bound is, again, very conservative, as it can be seen in Table 3 (in Sect. 6), where
we obtain values of c(v) much bigger than the ones given by the bound.

Remark 7 As we have shown in Proposition 2.7 and in the previous remark after
that, λ-superstrings have high levels of coverage as λ increases. Observe that, for
a fixed value of λ, there may be two substrings of the same length and the same
level of coverage, one of them being a λ-superstring and the other not. Let us give
an instance of this situation. In Example 2 we gave λ-superstrings for λ from 1 to
4 for A = {0, 1}, T = A3 and 5 strings S1, . . . , S5. In particular, we presented the
2-superstring s = 00101. The distribution of the number of target strings which are
substrings of both of s and Si for i = 1, . . . , 5 is (2, 3, 2, 2, 2), and the coverage of s
is 11/27. (As a matter of fact, 11/27 is the maximum coverage attainable by a string
of length 5 for this choice of A, T and S1, . . . , S5.) The string s′ = 01001 has also
length 5 and coverage 11/27, but it is not a 2-superstring; in fact, the distribution of the
number of target strings is (1, 3, 3, 2, 2) in this case, which is not as balanced as the
previous one. This is precisely the advantage of obtaining λ-superstrings for bigger λ:
a more balanced distribution of target strings.
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3 Computational complexity aspects

In this section we will derive hardness results for the Shortest λ- Superstring and
Shortest λ- Cover Superstring problems. The two problems are computationally
difficult: not only are they NP-hard, they are also hard to approximate. We will first
show that the two problems are polynomially equivalent. Next, we will show that the
Shortest λ- Cover Superstring problem generalizes two well known combina-
torial optimization problems: the shortest common superstring problem and the set
cover problem. For background on computational complexity, see, e.g., Ausiello et al.
(1999), and Garey and Johnson (1979).

We now formally introduce the Shortest λ- Cover Superstring problem, using
the following extension of the notion of a λ-superstring.

Definition 3.1 Let X1, . . . , Xn ⊆ A∗ be a collection of finite sets of strings over a
finite alphabet A, and let λ ∈ N. A λ-cover superstring for (X1, . . . , Xn) is a string
v ∈ A∗ such that for every i , at least λ elements of Xi are substrings of v.

Shortest λ- Cover Superstring.
Instance: A collection X1, . . . , Xn ⊆ A∗ of finite sets of strings over a finite

alphabet A, a coverage requirement λ ∈ N.
Task: Find a λ-cover superstring for (X1, . . . , Xn) of minimum length.

More formally, the requirement of the Shortest λ- Cover Superstring problem
is to find v ∈ A∗ minimizing l(v) such that for all i ∈ {1, . . . , n}, it holds that

|{s ∈ Xi : s is a substring of v}| ≥ λ.

Before we prove the equivalence of the Shortest λ- Superstring and the Short-
est λ- Cover Superstring problems, let us define formally what kind of equiva-
lence we have in mind. Given an optimization problem Π and an instance I , let us
denote by FΠ(I ) the set of feasible solutions of Π given I .

Definition 3.2 Given two minimization problems Π1 and Π2, we say that Π1 is poly-
nomially reducible to Π2 if every instance I1 to Π1 can be mapped in polynomial time
to an instance I2 to Π2 such that the following two conditions hold:

1. FΠ1(I1) = FΠ2(I2),
2. f1(x) = f2(x) for all x ∈ FΠ1(I1), where fi is the objective function of Πi , for

i = 1, 2.

Moreover, two minimization problems Π1 and Π2 are polynomially equivalent if each
of them is polynomially reducible to the other one.

We now prove that the Shortest λ- Superstring and the Shortest λ- Cover
Superstring problems are polynomially equivalent, in this strong sense defined
above. We split the proof into two propositions, each proving polynomial reducibility
in one direction.

Proposition 3.3 The Shortest λ- Superstring problem is polynomially reducible
to the Shortest λ- Cover Superstring problem.
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Proof Let I = (A, S1, . . . , Sk, T , λ) be an instance to the Shortest λ- Superstring
problem. We describe a polynomial time transformation of I to an equivalent instance
I ′ = (A′, X1, . . . , Xn, λ′) of the Shortest λ- Cover Superstring problem:

– Set n = k, λ′ = λ and A′ = A.
– For each i ∈ {1, . . . , n}, define Xi as the set of all target strings t ∈ T that are

substrings of Si .

Clearly, I ′ can be computed from I in polynomial time. Now let us argue that the
sets of feasible solutions of both problems (given the corresponding input instances)
are the same. First, suppose that v ∈ A∗ is a feasible solution to the Shortest
λ- Superstring problem given I . Then, for each i ∈ {1, . . . , n}, at least λ different
target strings are common substrings of both Si and v. Hence, for each i , there exists
a subset Ti ⊆ T of cardinality at least λ such that every member of Ti is a substring of
both Si and v. In particular, Ti ⊆ Xi and every member of Ti is a substring of v. Hence,
v is a feasible solution to the Shortest λ- Cover Superstring problem given I ′.

Conversely, suppose that v ∈ A∗ is a feasible solution to the Shortest λ- Cover
Superstring problem given I ′. Then, for each i ∈ {1, . . . , n}, there exists a subset
Ti ⊆ Xi of cardinality at least λ all the members of which are substrings of v. Every
member of Ti is, by the definition of Xi , a member of T and a substring of Si . Hence,
at least λ different target strings are common substrings of both Si and v, and v is a
feasible solution to the Shortest λ- Superstring problem given I . Since condition
(2) from the definition of polynomial reducibility follows directly from the definitions
of the two problems, the proof is complete. ��
Proposition 3.4 The Shortest λ- Cover Superstring problem is polynomially
reducible to the Shortest λ- Superstring problem.

Proof Let I = (A, X1, . . . , Xn, λ) be an instance to the Shortest λ- Cover Super
string problem. We describe a polynomial time transformation of I to an equivalent
instance I ′ = (A′, S1, . . . , Sk, T , λ′) of the Shortest λ- Superstring problem:

– Set k = n, A′ = A ∪ {∗} where ∗ �∈ A, and λ′ = λ.
– For each i ∈ {1, . . . , n}, let Xi = {xi

1, . . . , xi
ni

}. Construct a string Si as the
concatenation of all strings in Xi separated by ∗:

Si = xi
1 + ∗ + xi

2 + ∗ + · · · + ∗ + xi
ni

.

– Set T = ∪n
i=1 Xi .

Clearly, I ′ can be computed from I in polynomial time. Now let us argue that the
sets of feasible solutions of both problems (given the corresponding input instances)
are the same. Suppose that v ∈ A∗ is a feasible solution to the Shortest λ- Cover
Superstring problem given I . Consider an arbitrary index i ∈ {1, . . . , k}. By the
assumption on v, there exists a subset Ti ⊆ Xi of cardinality at least λ all the members
of which are substrings of v. Let t ∈ Ti . Since Ti ⊆ Xi , we have t = xi

j for some
j ∈ {1, . . . , ni }. Consequently t is a substring of Si . Moreover, by construction of T ,
we also have t ∈ T . In particular, Ti is a set of λ strings from T all of which are common
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substrings of Si and v. Since A ⊆ A′, we have v ∈ (A′)∗, and hence we conclude that
v is a feasible solution to the Shortest λ- Superstring problem given I ′.

Conversely, suppose that v ∈ (A′)∗ is a feasible solution to the Shortest λ-
Superstring problem given I ′. Notice that symbol ∗ does not appear in any string
from T . Consider an arbitrary index i ∈ {1, . . . , n}. Then, there exists a set Ti ⊆ T
consisting of at least λ common substrings of both Si and v. By the above observation,
no member of Ti contains symbol ∗, and hence Ti ⊆ A∗. In particular, due to the
structure of Si , for every string t ∈ Ti there exists an index j ∈ {1, . . . , ni } such that
t = xi

j ∈ Xi . Thus, Ti is a subset of Xi of cardinality at least λ all the members of
which are substrings of v, which means that v is a feasible solution to the Shortest
λ- Cover Superstring problem given I .

Again, condition (2) from the definition of polynomial reducibility follows directly
from the definitions of the two problems, and the proof is complete. ��

Propositions 3.3 and 3.4 imply the following.

Theorem 3.5 The Shortest λ Superstring and Shortest λ- Cover Super-
string problems are polynomially equivalent.

Hence, every hardness result for the Shortest λ- Cover Superstring problem
will immediately imply the analogous hardness result for the Shortest λ Super-
string problem.

We now relate the Shortest λ- Cover Superstring to the well known Shortest
Common Superstring problem:

Shortest Common Superstring (SCS).
Instance: A finite set S ⊆ A∗ of strings over an alphabet A.
Task: Find a shortest string t ∈ A∗ that contains each of the input strings

s ∈ S as a substring.

The SCS problem is NP-hard (Gallant et al. 1980; Garey and Johnson 1979), and
also APX-hard (Blum et al. 1994), which implies that a polynomial-time approxima-
tion scheme for this problem is unlikely. We now show that these hardness results
for the SCS problem carry over to the Shortest λ- Cover Superstring problem.
Even though we will strengthen this result in Theorem 3.9, we keep the short proof of
Proposition 3.6, as it shows that the SCS problem is a special case of the Shortest
λ- Cover Superstring problem.

Proposition 3.6 The Shortest λ- Cover Superstring problem is NP-hard, and
also APX-hard.

Proof Given an instance I = (A, S) to the SCS problem, consider the instance I ′ =
(A, X1, λ) where X1 = S, and λ = |S| to the shortest λ-cover superstring problem.
Then, a string v ∈ A∗ is a feasible solution to the shortest λ-cover superstring problem
given I ′ if and only if it is a common superstring of all strings in S.

The result follows. ��
Corollary 3.7 The Shortest λ- Superstring problem is NP-hard, and also APX-
hard.
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Proposition 3.6 and its corollary imply that the Shortest λ- Superstring problem
does not admit a PTAS (polynomial time approximation scheme) unless P = NP. We
now strengthen Proposition 3.6, by showing that for some absolute constant c > 0,
there is no polynomial time algorithm approximating the Shortest λ- Superstring
and Shortest λ- Cover Superstring problems within a factor of c ln n, unless
P = NP. To do this, we make a reduction from the Set Cover problem (Garey and
Johnson 1979).

Set Cover.
Instance: A set-system C = (U,F), where U is a finite ground set

and F is a collection of subsets of U .
Task: Find a minimum size subcollection F ′ ⊆ F such that

every element u ∈ U appears in some set in F ′.

The decision version of the Set Cover problem is NP-complete (Garey and John-
son 1979). Moreover, Alon et al. obtained the following inapproximability result:

Theorem 3.8 (Alon et al. 2006) There exists a constant c > 0.2267 such that there
is no polynomial time algorithm approximating the set cover problem within a factor
of c ln |U |, unless P = NP.

Using this result, we now derive an analogous result for the Shortest λ- Cover
Superstring problem, even for the case of the binary alphabet A = {0, 1} and λ = 1.

Theorem 3.9 There exists a constant c > 0.2267 such that there is no polynomial
time algorithm approximating the Shortest λ- Cover Superstring problem within
a factor of c ln n unless P = NP, even for the case of the binary alphabet A = {0, 1}
and λ = 1.

Proof Let c be the constant from Theorem 3.8. Suppose that there exists a polynomial
time algorithm A approximating the shortest λ-cover superstring problem over the
binary alphabet and λ = 1 within a factor of c ln n.

We will construct a polynomial time algorithm A′ approximating the set cover
problem within a factor of c ln |U |. The conclusion will then follow from Theorem 3.8.

Let C = (U,F) be an instance to the set cover problem with U = {u1, . . . , un} and
F = {F1, . . . , Fk}. To every set Fj ∈ F we associate a binary string S j , as follows:

S j = 0 j + 1 + 0k− j + 1k− j + 0 + 1 j for all j = 1, . . . , k ,

where a j for a ∈ {0, 1} and j ∈ N denotes the string s of length j with si = a for all
i = 1, . . . , j . Notice that each of the strings S j is of length 2k + 2, and for every two
strings Si and S j with i �= j , we have ov(Si , S j ) = 0.

We set I = (A, X1, . . . , Xn, λ) where A = {0, 1}, λ = 1 and

Xi = {S j | ui ∈ Fj }

for each i ∈ {1, . . . , n}.
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The algorithm A′ proceeds in three steps:

1. Compute I = ({0, 1}, X1, . . . , Xn, 1) as specified above.
2. Run the approximation algorithm A for the shortest λ-cover superstring problem

on instance I . Let v denote the obtained λ-cover superstring for (X1, . . . , Xn, 1).
3. For each i = 1, . . . , n, find a substring S j of v such that S j ∈ Xi , and let S denote

the set of all these strings. Output F ′ = {Fj | S j ∈ S}.
It is clear that A′ runs in polynomial time. Moreover, every element ui ∈ U appears
in some set in F ′. (Indeed, if ui ∈ U then there exists some S j ∈ S such that S j ∈ Xi .
Hence ui ∈ Fj ∈ F ′.) Thus, F ′ is a feasible solution to the set cover problem given
C.

Let us first observe that, since no two strings S j have a nontrivial overlap, we have

l(v) ≥
∑

s∈S

l(s) = (2k + 2)|S| = (2k + 2)|F ′|. (1)

Next, if vopt is an optimal solution to the shortest λ-cover superstring problem given
I , then the assumption on A implies that

l(v) ≤ c ln n · l(vopt). (2)

Consider an optimal solution Fopt = {Fi1, . . . , Fi p } to the set cover problem given
C. Let v∗ be the string defined by concatenating all the strings corresponding to sets
in Fopt, that is, v∗ = Si1 + Si2 + · · · + Si p . We have l(v∗) = (2k + 2)|Fopt|, and
consequently

l(vopt) ≤ (2k + 2)|Fopt|. (3)

Finally, putting all these observations together, we can bound the size of F ′ from above
as follows:

|F ′| ≤ 1

(2k + 2)
· l(v) (by (1))

≤ 1

(2k + 2)
· c ln n · l(vopt) (by (2))

≤ 1

(2k + 2)
· c ln n · (2k + 2)|Fopt| (by (3))

= c ln n · |Fopt| (by (3)).

Hence, algorithm A′ approximates the set cover problem within a factor of c ln |U |.
By Theorem 3.8, this is only possible if P = NP. This completes the proof. ��

Corollary 3.10 There exists a constant c > 0.2267 such that there is no polynomial
time algorithm approximating the Shortest λ- Superstring problem within a factor
of c ln k, unless P = NP.
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4 An integer programming approach

In this section, we describe how to solve the Shortest λ- Cover Superstring
problem using integer programming (IP). (For background on integer programming,
see, e.g., Schrijver 1986.) Our approach is to model the problem as a generalization of
the generalized Traveling Salesman Problem introduced in Henry-Labordere (1969),
Saksena (1970), and Srivastava et al. (1969), in which the set of vertices of a given
complete directed edge-weighted graph is divided into clusters and the objective is to
find a minimum-cost tour passing through one node from each cluster.

Let (A, X1, . . . , Xn, λ) be an instance of the Shortest λ- Cover Superstring
problem. We construct a complete directed edge-weighted graph D = (V, E, w),
called the distance graph, as follows:

– The vertex set V is the set of all input strings, together with a new vertex s∗:

V = ∪n
i=1 Xi ∪ {s∗} ,

– For every two distinct vertices s, t ∈ V \{s∗}, add the arc (s, t) to E and assign
to it the weight ws,t = l(s) − ov(s, t). (This quantity will also be denoted by
dist(s, t).) Clearly, the weights are well defined and non-negative.

– For every vertex s ∈ V \{s∗}, add the arc (s, s∗) to E and assign to it weight
ws,s∗ = l(s).

– For every vertex s ∈ V \{s∗}, add the arc (s∗, s) to E and assign to it weight
ws∗,s = 0.

As the following proposition shows, the Shortest λ- Cover Superstring prob-
lem is equivalent to that of finding in G a directed cycle C through s∗ of minimum
total length subject to the constraint that for every set Xi , at least λ strings from Xi

appear as vertices of C .

Proposition 4.1 Suppose that v is an optimal solution to the Shortest λ- Cover
Superstring problem on the instance (A, X1, . . . , Xn, λ), and let S be the set of
strings from ∪n

i=1 Xi that are substrings of v. Let (s1, . . . , sk) be the order of the
strings from S as they appear in v for the first time. Then, C := (s∗, s1, . . . , sk) is a
directed cycle in G of total length at most l(v) and such that for every set Xi , at least
λ strings from Xi appear as vertices of C.

Conversely, suppose that C = (s∗, s1, . . . , sk) is a directed cycle through s∗ in G
such that for every set Xi , at least λ strings from Xi appear as vertices of C. Then,
v = s1 +′ . . . +′ sk is a feasible solution to the Shortest λ- Cover Superstring
problem such that l(v) = w(C).

Proof Let C := (s∗, s1, . . . , sk) where (s1, . . . , sk) is the order of the strings from S
as they appear in v for the first time. Then, the length of C is equal to

w(C) = ws∗,s1 +
k−1∑

j=1

ws j ,s j+1 + wsk ,s∗ = 0 +
k−1∑

j=1

dist(s j , s j+1) + l(sk)

= l(s1 +′ . . . +′ sk) ≤ l(v).
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Since v is a feasible solution to the Shortest λ- Cover Superstring problem, for
every set Xi , at least λ strings from Xi appear as substrings of v, and hence they also
appear as vertices of C .

The other direction can be verified similarly. ��
Hence, we seek a directed cycle C in G through vertex s∗ that contains at least λ

vertices from each set Xi , of minimal total length.
Define the variables

xi j =
{

1, if arc (i, j) is in C;
0, otherwise.

where (i, j) ranges over all ordered pairs of distinct elements of V , and

yi =
{

1, if vertex i is in C;
0, otherwise.

where i ranges over all elements of V .
Consider the following integer program

min
∑

i, j wi j xi j

s.t. ys∗ = 1
∑

i∈V : i �= j
xi j = y j ∀ j ∈ V

∑

j∈V : j �=i
xi j = yi ∀i ∈ V (4)

∑

i∈X j

yi ≥ λ ∀ j ∈ {1, . . . , n}

0 ≤ xi j ≤ 1, xi j integer

0 ≤ yi ≤ 1, yi integer

There is a bijective correspondence between the set of feasible solutions of this integer
program and the set of subgraphs of G that consist of one or more vertex-disjoint
directed cycles, called subtours, such that s∗ is contained in one of them. Due to
Proposition 4.1, we are only interested in solutions that consist of a single directed
cycle. There are several ways to eliminate the subtours. One possibility is to use the so-
called Miller–Tucker–Zemlin (MTZ) formulation (Miller et al. 1960) (see also Pataki
2003), adding extra variables ui (i ∈ V ) and the constraints

us∗ = 1

2 ≤ ui ≤ |V | ∀i �= s∗ (5)

ui − u j + 1 ≤ (|V | − 1)(1 − xi j ) ∀i �= s∗,∀ j �= s∗, j �= i

It indeed excludes subtours, as: (1) the last constraint for (i, j) forces u j ≥ ui + 1,
when xi j = 1, and (2) if a feasible solution of (4)–(5) contained more than one subtour,
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then at least one of these would not contain node s∗, and along this subtour the ui

values would have to increase to infinity.
Another way to exclude subtours is by adding to the original set of constraints the

family of subtour (or subtour elimination) constraints

∑

i∈S, j∈S

xi j ≤ |S| − 1 (S � supp(y), |S| > 1), (6)

where supp(y) = {i ∈ V | yi = 1} is the support of y. (As the subtour inequality
for supp(y)\S is a linear combination of the inequality for S and of the constraints∑

i xi j = y j and
∑

j xi j = yi , it is enough to use the subtour inequalities with S having
size at most |supp(y)|/2.) These constraints are not linear since they depend on the val-
ues of y-variables. However, given an optimal solution (x, y) to the current IP formu-
lation, we may add one or more constraints of the form (6) and solve the so obtained IP.

Following the approach of Pataki (2003), one can combine the MTZ and subtour
formulations to obtain the ease of use of the first and some of the strength of the second.
Denoting by maxrounds a non-negative integer parameter describing how much we
want to strengthen the MTZ formulation and by maxconstraints an upper bound
for the number of constraints we will add in each round, we obtain a “cutting-plane
algorithm”, Algorithm 1. The pseudocode is shown below.

5 A hill-climbing algorithm

We have developed a hill-climbing algorithm to find short λ-superstrings for given
strings S1, . . . , Sk , a given set T of target strings, and a given parameter λ. As in the
formulation of the Shortestλ- Superstring problem, we have set the length of the λ-
superstring as a function to minimize. We first select randomly an initial λ-superstring
by taking the overlapping sum v = v1 +′ . . . +′ vk , where each vi is likewise an over-
lapping sum of λ consecutive different substrings of Si from T , where the search for
these strings begins at a randomly chosen initial point of string Si (and continues at the
beginning of the string, if necessary; here, if one target string appears more than once
in an Si we consider only one of them, randomly chosen, and then consecutive means
consecutive with respect to the linear ordering of the target strings appearing in one
Si ). This, of course, will result in a λ-superstring. Next, several transformations of two
kinds are made to this initial candidate to λ-superstring. In the transformations of the
first kind, a substring vi, j is deleted from v. In the transformations of the second kind,
each substring vi, j is changed for every possible substring of S1 +′ . . . +′ Sk from T
that is not already a substring of v. Changes of the first kind and of the second kind are
applied consecutively to v (but each one of them only to v, that is, they are not com-
posed). If for one of them we continue having a λ-superstring and the length of the new
λ-superstring v′ diminishes, then we replace v with v′ and repeat again the sequence of
substitutions. If, on the other hand, none of the changes diminishes the length of the λ-
superstring, then we record the λ-superstring obtained and we choose again randomly
a λ-superstring v and repeat the process from the beginning. We do this for a prefixed
number n of times and, finally, we take the shortest of the n λ-superstrings obtained.
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Algorithm 1: Integer programming approach to Shortest λ- Cover Super-
string.

Input: An instance (A, X1, . . . , Xn , λ) to the Shortest λ- Cover Superstring problem.
Output: A shortest λ-cover superstring for (X1, . . . , Xn ).

Compute the distance graph D = (V, E, w).1
Set k = 1, and let the current IP formulation be as follows:2

min
∑

i, j

wi j xi j

s.t. ys∗ = 1
∑

i∈V : i �= j

xi j = y j ∀ j ∈ V

∑

j∈V : j �=i

xi j = yi ∀i ∈ V

∑

i∈X j

yi ≥ λ ∀ j ∈ {1, . . . , n}

0 ≤ xi j ≤ 1, xi j integer

0 ≤ yi ≤ 1, yi integer

while k ≤ maxrounds do3
Solve the IP over the current formulation. Assume that the optimal solution consists of r subtours S1, . . . , Sr .4
if r = 1 then5

The current (optimal) solution (x∗, y∗) is optimal. Let C∗ = (s∗, s1, . . . , s�) denote the corresponding6
directed cycle.
return v = s1 +′ . . . +′ s�7

else8
Add to the formulation at most maxconstraints subtour constraints, in which S is the union of several Si9
sets and |S| ≤ |supp(y)|/2.
Set k = k + 1.10

Solve to optimality the mixed integer program obtained from the current IP formulation by adding to it the11
following constraints:

us∗ = 1

2 ≤ ui ≤ |V | ∀i �= s∗

ui − u j + 1 ≤ (|V | − 1)(1 − xi j ) ∀i �= s∗, ∀ j �= s∗

Let (x∗, y∗) denote the obtained optimal solution, and let C∗ = (s∗, s1, . . . , s�) denote the corresponding directed12
cycle.
return v = s1 +′ . . . +′ s�13

Below (Algorithm 2) is the pseudocode of the algorithm just described.
We have made numerical simulations to test our hill-climbing algorithm. We have

generated several sets of 50 sequences of length 50 each with symbols on an alphabet
of cardinality 20. For the set T of target strings we took the set of all strings of
length � = 5. We have used the hill-climbing algorithm to produce λ-superstrings
for all possible values of λ, that is, for λ = 1, . . . , 46. The sets of sequences were
generated of the following way: first, we generated a random root sequence of length
50 and, after that, we generated for each α = 1, . . . , 9 a set of 50 sequences of
length 50 by constructing first three variations of the root sequence; each variation
was constructed from the root sequence by taking mutations in some position with
probability of mutation in each position of α/100. When a mutation was made in a
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Algorithm 2: A randomized hill-climbing algorithm
Input: S1, . . . , Sk ,T , λ.
Output: A λ-superstring for (S1, . . . , Sk ,T ).

Set C = 1, A = ∅;1
Choose randomly initial points m1, . . . , mk such that mi ∈ {1, . . . , l(Si )};2
Take v = v1 +′ . . . +′ vk , with vi = vi,1 +′ . . . +′ vi,λ where vi,1, . . . , vi,λ are λ different consecutive substrings3
of Si belonging to T , where the search for the vi, j ’s begins in position mi and, if necessary, continues at the
beginning of Si ;
repeat4

Set improvedSolutionFound = false;5
Set list Ep = list of elements of T in v;6
while list Ep �= empty list do7

v′ = v with the first element of listEp deleted;8
if v′ is a λ-superstring for (S1, . . . , Sk ,T ) then9

v = v′;10
improvedSolutionFound = true;11
Set list Ep = empty list;12

if list Ep �= empty list then13
Remove the first element from listEp;14

if improvedSolutionFound == false then15
Set list Ep = list of elements of T in v16
while list Ep �= empty list do17

list NewEp = the set of strings T ∈ T that are substrings of S1 +′ . . . +′ Sk18
while list NewEp �= empty list do19

v′ = v with the first element of listEp substituted by the first element of listNewEp;20
if v′ is a λ-superstring for (S1, . . . , Sk ,T ) and l(v′) < l(v) then21

v = v′;22
improvedSolutionFound = true;23
Set list Ep = empty list;24
Set list NewEp = empty list;25

if list NewEp �= empty list then26
Remove the first element from listNewEp;27

if list Ep �= empty list then28
Remove the first element from listEp;29

if improvedSolutionFound == false then30
Add v to A;31
C = C + 1;32

until C > n;33
return the vaccine in A of minimum length.34

position, a different symbol was selected with a uniform distribution of probability.
Then, to construct each one of the 50 sequences, first one of the three variations was
randomly selected and, after that, a new process of mutations was developed again in
the way just described. In Table 1 the lengths of the obtained λ-superstrings and their
coverages (in parentheses) are shown for λ in the range from 1 to 46 and for α in the
range from 1 to 9. These lengths and coverages are shown in Fig. 1a and b, respectively.
For every α there is first a slow increase in the length of the λ-superstrings and a rapid
increase in the coverage. As λ grows, the increase in the length is accelerated, and
the increase in the coverage is decelerated, obtaining a good tradeoff between small
lengths and high coverage for medium values of λ around λ = 30. As we will see in
Sect. 6, this phenomenon of good performance for intermediate values of λ seems to
happen also when experimental data are considered.
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Fig. 1 Length l and coverage c of the λ-superstrings for the numerical simulations

6 Numerical computations on experimental data

In this section we describe an application of the integer programming algorithm and
of the hill-climbing algorithm introduced in the previous two sections to obtain opti-
mal and feasible λ-superstrings, respectively, for sets of strings S1, . . . , Sk obtained
experimentally and taken from biological sequence databases.

6.1 Hill-climbing algorithm for hemagglutinin

Giles and Ross (2011) succeeded in designing and elaborating a vaccine which pro-
tected mice and ferrets against clade 2 H5N1 by using their computationally optimized
broadly reactive antigen (COBRA) system. In the design of their vaccine they used
129 input sequences from human clade 2 infections. We used 123 of such sequences to
test our algorithms. The reason for not using all of them is that, although of course not
all of them have the same length (in fact, it would be very unusual if all had the same
length), six of them had significantly smaller length than the rest of the sequences, and
hence we didn’t include them in our calculations so that we can work with high values
of the parameter λ. We include inTable 2 the GenBank (2013) IDs of the sequences
corresponding to the hemagglutinin (HA) genes. We ran our hill-climbing for that set
of sequences with 10,000 iterations for values of the parameter λ taken in steps of 10
from λ = 10 to λ = 500, by taking an alphabet A of cardinality 20 representing the
amino acids and taking T = A10 as the set of target strings. In Table 3 the lengths of
the λ-superstrings obtained and their coverages are shown. These lengths and cover-
ages are plotted in Fig. 2a and b, respectively. As shown in the figures and in the table,
the performance of the λ-superstrings is better for small and medium values of λ, in
the sense that for relatively small λ, say of about 360, the length of the λ-superstrings
(the candidate vaccine) is relatively small and it keeps below the average length of the
hemagglutinin, which is 559.9 for the set of 123 sequences, and at the same time the
coverage is high, being over the 73 % of the epitopes. As λ increases, the performance
of the λ-superstring is not so good, because although the coverage increases, which is
desirable, also the length increases considerably, and this can be problematic, as we
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Table 2 GenBank IDs of the sequences for the hemagglutinin

EU146737 EU146688 CY014203 CY014457 EU015407 FJ492886 FJ492881
EU146753 EU146713 CY014205 CY014518 EU015408 EF200512 HM114537

EU146745 EU146697 CY014206 CY014510 EU015409 EF200513 FJ492880

EU146793 EU146705 CY014207 CY014481 EU015410 DQ464377

EU146755 EU146729 CY014209 CY014489 EU015411 EU095023

EU146785 EF541394 CY014210 CY014497 EU015412 EU095024

CY014272 EU146777 CY014211 CY014177 EU015413 EU146867

CY014280 EU146801 CY014212 CY014529 EU015414 EU146868

CY014288 EU146809 CY014213 CY014543 EU015416 DQ371928

CY014296 EU146817 CY014311 CY017662 CY062439 DQ371929

CY014303 EU146825 CY014368 CY017670 DQ435202 EF624256

CY014477 EU146632 CY014376 CY017678 EU146870 DQ835313

CY014433 CY014197 CY014384 CY017688 EU146876 FJ492882

CY014465 CY014160 CY014393 CY017638 EU146877 FJ492884

EU146648 CY014198 CY014401 CY017646 EU146869 DQ371930

EU146640 CY014199 CY014409 CY017654 EU146878 EU263981

EU146656 CY014200 CY014417 EU015403 EF619982 FJ492879

EU146664 CY014201 CY014425 EU015404 EF619989 FJ492885

EU146672 CY014204 CY014441 EU015405 EF619990 AB462295

EU146681 CY014202 CY014449 EU015406 EF619998 EF137706

said in Sect. 2. Nonetheless, even for a value of λ = 490 the length is less than twice
the average length of the protein and the coverage is over 95 %.

6.2 Hill-climbing algorithm with addition of frequent epitopes for Nef and Gag

Now we will do a comparative study with the results obtained by Nickle et al. (2007). In
that paper they considered, for the Nef and Gag proteins in HIV-1, all 9mer peptides in
a 169-sequence dataset taken from GenBank (2013) as basic pieces to test the obtained
coverages. Their method was based in calculating first a center of tree sequence (COT)
derived from a phylogenetic analysis of different strains followed by a second stage
when they add several frequent 9-amino acid sequences (9mers). For the addition of
frequent 9mers and for the subsequent calculation of the coverages they considered,
as we said before, the set of all sequences of length 9. They constructed sequences
of different lengths with relatively high coverages, and they emphasized the case
when their sequences had three-genes length, because beyond that value the increase
in coverage was lower with respect to increase in length. They obtained sequences
of three-genes length with a coverage of 62 % in the Nef protein and of 82 % in
the Gag protein. By using our λ-superstrings we have obtained, for the same set of
169 sequences (shown in Table 4) in the case of Nef protein and for a subset of 166
sequences (shown in Table 5) in the case of Gag protein, the same level of coverage after
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Table 3 Length and coverage of the λ-superstrings for hemagglutinin with 10,000 repetitions

λ = 10 : 19 (0.018) λ = 210 : 263 (0.417) λ = 410 : 729 (0.835)
λ = 20 : 29 (0.036) λ = 220 : 273 (0.434) λ = 420 : 773 (0.837)

λ = 30 : 39 (0.054) λ = 230 : 298 (0.453) λ = 430 : 790 (0.854)

λ = 40 : 49 (0.073) λ = 240 : 319 (0.493) λ = 440 : 820 (0.872)

λ = 50 : 64 (0.099) λ = 250 : 337 (0.514) λ = 450 : 861 (0.884)

λ = 60 : 79 (0.125) λ = 260 : 356 (0.534) λ = 460 : 914 (0.906)

λ = 70 : 89 (0.143) λ = 270 : 370 (0.558) λ = 470 : 973 (0.929)

λ = 80 : 99 (0.161) λ = 280 : 390 (0.585) λ = 480 : 1,031 (0.937)

λ = 90 : 109 (0.179) λ = 290 : 406 (0.609) λ = 490 : 1,095 (0.953)

λ = 100 : 119 (0.198) λ = 300 : 422 (0.62) λ = 500 : 1,153 (0.958)

λ = 110 : 129 (0.215) λ = 310 : 436 (0.64)

λ = 120 : 139 (0.234) λ = 320 : 461 (0.679)

λ = 130 : 156 (0.252) λ = 330 : 483 (0.698)

λ = 140 : 166 (0.27) λ = 340 : 504 (0.717)

λ = 150 : 176 (0.288) λ = 350 : 523 (0.71)

λ = 160 : 190 (0.311) λ = 360 : 545 (0.735)

λ = 170 : 210 (0.338) λ = 370 : 574 (0.774)

λ = 180 : 226 (0.353) λ = 380 : 600 (0.785)

λ = 190 : 242 (0.381) λ = 390 : 650 (0.807)

λ = 200 : 252 (0.399) λ = 400 : 691 (0.826)

(b)(a)

Fig. 2 Length l and coverage c of the λ-superstrings for hemagglutinin

rounding to an integer value (61.75 % for Nef and 81.59 % for Gag). The procedure
that Nickle et al. followed was to obtain first a “center of the tree” sequence and, after
that, adding a set of frequent epitopes until the desired length is obtained.

We used a similar two stages method in which we first computed a λ-superstring
that played the role of the center of the tree in Nickle et al.’s method, followed by a
second stage in which we added the most frequent epitopes in a way that they overlap
well with the epitopes present in the λ-superstring.
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We first calculated, for a given λ, and considering as the set of epitopes all the sub-
sequences of length 9, a λ-superstring following the hill-climbing algorithm described
in Sect. 5. Then, we ranked the set of epitopes attending at both the frequency of the
epitopes and the level of overlapping of the epitopes in the set Tv of epitopes in the
λ-superstring. More specifically, we assigned to each epitope e not in Tv the fitness

φ(e) = p · r f (e) + 1 − p

18|Tv| ·
∑

e′∈Tv

(ov(e, e′) + ov(e′, e)),

where r f (e) is the relative frequency of the epitope and p is a parameter which
determines the ponderation in the fitness of the high frequency with respect to the
level of overlapping with the epitopes in Tv . The constant 18 is introduced in the
equation defining the fitness to normalize each sum of two bilateral overlappings so
that the quotient is between 0 and 1. After doing the ranking, we sorted the epitopes
not in Tv in descending order with respect to φ(e) and we did, for different values of
n, the following procedure until we reached the desired length of three-genes length:
We added to the initial λ-superstring the first n epitopes with higher fitness and then
we applied the usual greedy algorithm to find an approximation to a shortest common
superstring of the obtained set of epitopes (see, e.g., Tarhio and Ukkonen 1988). A
heuristic study suggested that, for the problem of the Nef protein studied by Nickle
et al., a value of p = 0.99 was appropriate for λ = 45. We run the hill-climbing
algorithm with 10,000 iterations and added frequent epitopes as described above 30
times and we took the solution with the biggest coverage, which was 61.75.

The found solution, of length 621, was:
YTPGPGTRFPLTFGWCFKLVPVDPEEVGFPVKPQVPLRPMTYKAAVDLSHFLQNYTPGPGTRYPLTFGWCFKLVPVEPD

QNYTPGPGVRYPLTFGWPTVRERMRRAEPAAEGVGAVSRDLERHGAITSSNTAATNADCAWLERPMTYKAALDLSHFLR

EKGGLEGLIHSQKRQDILDLWIYHTQGYFPAADGVGAASRDLEKHGMDDPEREVLEWRFDSRLAFHHVARELHPEYYKD

CFKLVPVEPEKIEEANEGENNSLLHPMSLHGMEDPEKEVLVWKFDSRLVPVEPEKVEEANEGENNCLLHPMSQHMGGKW

SKRSVEKANEGENNAACAWLEAQEDEEVGFPVRPQVPLRPMTYKGALDLSHFLKEAREKHPEYYKRQEILDLWVYHTQG

YFPDWMGGKWSKSSITSSNTAANNADCAWLEAQEEEEVGFPVRPMTYKGAVDLSHFLKEKGGLEGLVYSQRRQDILDLW

VYHNSLLHPMSQHGMDDPEKEVLMWKFDSRLAFHHMARELHPEYYKNCLLHPMSLHGMDDPEKGGLEGLIYSQKRQDIL

DLWVYNTQGYFPDWQNYTPGPGIRYPLTFGWPAVRERMRRAEPAADGVGAVSRDLEKHGAITSSNTAT

We analyzed how well this solution captures the well-conserved regions of the
sequence population. O’Neill et al. (2006, Fig. 1) studied the frequency of the amino
acids at each position in Nef protein of HIV-1. They noted that 63 residues were very
well conserved at 99 %. Those 63 residues were scattered through the protein and the
maximum number of consecutive ones is 5. To analyze longer series of consecutive
residues, we studied the ones conserved at 90 %, and we found in O’Neill et al.’s
table 144 such residues distributed in 12 groups of a single residue, 5 groups of two
consecutive ones, 7 groups of length 3, 5 groups of length 4, one group of length 5,
two groups of lengths 6, 7 and 8, respectively, and one group of lengths 9, 12 and 13,
respectively. All those 39 sequences appear as subsequences of our solution.

One can wonder how much the value of 62 % for the coverage can be improved.
The following general bound for the coverage is trivial to prove. In it, S1, . . . , Sk, f(t)
and c(v) are as in Definition 2.6, and T = A�.
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Proposition 6.1 If (ti )1≤i≤n is a list of the elements in A� with f(ti ) ≥ f(ti+1) ∀i and
v ∈ Am, then

c(v) ≤
∑m−l+1

i=1 f(ti )
∑n

i=1 f(ti )
.

In our calculations we took the length of a gene for the Nef protein to be 207, because
the mean of the lengths of the 169 sequences is 207.11. Hence, the length for a three-
genes length Nef protein is 621, and the previous proposition shows that the coverage
for such a sequence of length 621 corresponding to l = 9, k = 169 and S1, . . . , S169
obtained from the mentioned GenBank (2013) sequences is 67.8. This, of course,
doesn’t mean that a coverage of 67.8 can be found by using other methods, because
to obtain that value it should occur that 613 sequences in T = A� with the highest
frequencies can be assembled in such a way that each one of them overlaps with the
following one in 8 positions, and this situation is very unlikely in the general case
when the number of sequences is big.

We did a similar analysis for the Gag protein. We analyzed 166 of the 169 sequences
considered by Nickle et al. We did not use a nonfunctional gag protein gene and
two very short sequences which we excluded because, as we told in the previous
subsection, λ-superstrings are interesting only when the length of the sequence is big
enough with respect to λ. For Gag, we applied the procedure described above with
p = 0.999, λ = 50 for 1,000 iterations and repeated the whole process 30 times and
we took the solution with the biggest coverage, which was 81.59, for a three-genes
length. The solution that we found, of length 1,495, was:

MGARASVLSGGQLDRWEKIRLRPGGKKKYKLKHIVWQEQIGWMTNNPPIPVGELYPLASLRSLFGNDPLSQGSEELRSL

YNTVATLYCVHQRIEIKDTKEALEKIEEEQNKTLRAEQASQDVKNWMTETLLVQNANPDCKTILKALGPAATLEEMMTA

CQGVGGPSHKARVLAEAMSQATGSEELKSLFNTVATLYCVHQKIDVKDTKEALEWDRLHPVQAGPVAPGQNYPIVQNIQ

GQMVHQAISPRTLNAWVKVIEEKAFSPEVIPMFSALSEGATPNSATIMMQKGNFRNQRKTVKCFNCGKKGCWKCGKEGH

QMKDCLRAEQASQEVKNWMTMGARASILSGGKLDKWELRSLYNTIATLYCVHQRIEVKDTKEALDKIEEEQNKSKKKAQ

QAAAGTGNSSEGCRQILGQLQPSLQTGNNSQVSQNYPIVQNMQGQMVHQALSPRTLNAWVKVVEEKAFSPEVIPMFTAL

SEGATPQDLNTMLNTVGGHQAAMQMLKETINEEAAEWDRVHPVHAGPLHPVHAGPIAPGQIREPRGSDIAGTTSTLQEQ

IGWMTSNPPIPVGEIYKRWIILGLNKIVRMYSPTSILDIKQGPKEPFRDYVDRFYKTLRAEQATQEVKNWMTETLLVQN

SNPDCKTILKALGPGATLEEMMTFLQSRPEPSAPPEESFRPGGKKKYRLKHLVWASRELERFALNPGLLETSEGCRQIL

EQLQPALQGQMVHQAGPIAPGQMREPIKCFNCGKEGHIAKNCRAPRKRGCWKCGKEGHIARNCRAPRKKKYRLKHIVWA

SPTSILDIRQGGPSHKARILAEAMSQVTNPACQGVGGPGHKARVLAEAMSQVTNSATVMMQRGNFRNQRKIVKCFNCGK

EGHLAEAMSQMTSTLQEQIAWMTNNPPIPVGDIYKRWIIEVRDTKEALDKIVRMYSPVSILDIRQGPKEPFRASVLSGG

KLDRWEKIRLRPGGKKQYKLKHIVWASRELERFAVNPGLLETSGGCRQILEQLQPSLQTGSEELKSLYNTVATVNPGLL

ETAEGCRQILGQLQPALQTGSEELRSLFNTVATVLSGGELDKWEKIRLRPGGRKKAQQAAADTGNSSQVSQNYPIVQNL

QGQMVHQPISPRTLNAFLGKIWPSYKGRPGNFLQSRPEPTAPPEESFRFGEETATPVEEEQNKSKKKAQQTAASLYNTI

AVLYCVHQKIEVKDTKEEAAEWDRLHPVHAGPVAPGQMREPRGSDIAGTTSNLQEQIGWMTHNPPIPVGEIYKRWIIMG

LNKIVRMYSPISILDIMMQRGNFKNQRKNCRAPRKKGCWKCGREGHQMKDCTERQANFLGKIWPSHKGRPGNFLQNRPE

PTAPPAESFRFGEETTTPPQKQEPIDKELYPLASLKSLFGNDPSFGEETTTPSQKQEPIDKKYQLKHIVWASLFNTVAV

LYCVHQRIDVKDTKELYPLTSLRSLFGNDPSSQVTNSATIMMQRGNFRASVLSGGELDRWEKIRLRPGGKKRY

In this case, the obtained coverage is also close to the upper bound given by Propo-
sition 6.1, which is 85.4.
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1354 L. Martínez et al.

6.3 Integer programming algorithm for Nef

An optimal solution to the integer programming problem derived in Sect. 4, extended
with the MZT formulation, provides an optimal solution to the Shortest λ- Cover
Superstring problem. Thus, the (IP) approach could in principle give better solutions
that the hill-climbing method from Sect. 5. However, denoting t = |T |, notice that the
derived IP has t2 + 3t + 2 variables (of which t2 + 2t + 1 are integer-valued and t + 1
are real-valued), and 3t2 + 7t + 4 + n linear constraints (recall that n is the number of
collections of input strings). Therefore, this limits the applicability of the IP approach
to our biological setting if the set of epitopes is given by T = A�, with |A| = 20 and
� ∈ {9, 10} (as was done in Subsects. 6.1 and 6.2), as it would amount to a number of
variables and constraints exceeding 1023. Nevertheless, the approach can be useful if
the set of epitopes consists of several hundreds of epitopes.

We implemented in Java (2013) our integer programming model described in Sect. 4
(extended with the MZT formulation) using IBM® ILOG® CPLEX® Optimization
Studio (2013), and applied it to a set of epitopes for the Nef protein in HIV-1 taken
from the HIV Molecular Immunology Database (2013). We applied the algorithm to
the 346 distinct epitopes found using that database for the set of 169 sequences men-
tioned in the previous section for λ ranging between 1 and 20. We thus have t = 346,
n = 169, and the resulting IPs (one for each value of λ) had 120,756 variables and
361,743 constraints. For λ = 20 we obtained the following 20-superstring of length
131:

FLKEKGGLDGLWLEAQEEEEVGFPVRPQVPLRPMTYKAAVDLSHFLKEKGGLEGLIYSQKRQDILDLWVYHTQGYFPD

WQNYTPGPGIRYTPGPGVRYPLTFGWCFKLVPVWKFDSRLAFHHVARELHPEY

A comparative study of the integer programming algorithm with the hill-climbing
one is feasible only for relatively small values of λ: for big values of λ and big sets of
epitopes the integer programming algorithm is not effective because of the required
usage of memory and computation time. In order to compare the performance of the
integer programming algorithm to the one of the hill-climbing algorithm, we have
calculated the length of the λ-superstring for λ ranging from 1 to 20 for the following
algorithms:

1. We took a random selection of epitopes until we obtained a λ-superstring, and then
we did the overlapping sum of the epitopes. This process was repeated 106 times,
and then the shortest one was selected.

2. The hill-climbing algorithm presented in Sect. 5 was applied 105 times.
3. The optimal integer programming algorithm presented in Sect. 4 and implemented

as described above was used.

The lengths of the λ-superstrings are showed in Table 6 and in Fig. 3. As expected,
the hill-climbing algorithm and the integer programming algorithm both outperformed
notably the brute force algorithm consisting in a random concatenation of epitopes.
Obviously, the optimal solution given by the integer programming algorithm was
shorter than the suboptimal solution given by the hill-climbing algorithm. Although
for small values of λ the lengths of the three solutions are practically the same, when λ

123 62



A combinatorial approach to the design of vaccines 1355

Fig. 3 Length l of the λ-superstrings as a function of λ for a random concatenation of epitopes (dashed-
dotted), the hill-climbing algorithm (dashed) and the integer programming algorithm (solid line)

increases the lengths of the λ-superstrings obtained with the three algorithms diverge.
Thus, for λ = 20, the length of the suboptimal solution found by the hill-climbing
algorithm is 45 % of the length of the one found by the brute force algorithm, and the
length of the optimal solution found by the integer programming algorithm is 19 % of
the length of the one found by the brute force algorithm.

7 Conclusion and future work

In this paper we have introduced two new problems of combinatorial optimization, and
presented an application of these problems to the computational design of vaccines.
When applied to this biological problem, even suboptimal solutions have relatively
small lengths and good levels of coverage and, at the same time, due to the combi-
natorial properties which define them, present an adequate balance of epitopes over
the selected sample strings. We have presented two approaches to give optimal and
suboptimal solutions to the problem: one based on a hill-climbing method, which
produces suboptimal solutions, and one based on integer programming, which pro-
duces optimal solutions. Although this latter approach could in principle give better
solutions, nonetheless it is not effective when the set of target strings is formed by
all the substrings of a given length. Since it is sensible to restrict the set of epitopes
attending to biological criteria, one future line of research that we will follow consists
of studying more closely the case when we restrict our set of epitopes to a smaller

12363
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number, biologically significant and at the same time affordable for using the integer
programming approach.

Another future line of research lies in constructing a λ-superstring v of about one-
gene length with λ as big as possible, and where the set T is taken to be A� for a set A
of cardinality 20 and a small fixed value of �. This strategy of taking for T the complete
set A� of small sequences could hopefully produce good candidates for immunogenic
synthetic proteins. The λ-superstring v should satisfy, of course, additional conditions
such that, for instance, the relative order of elements in T is, to the extent it is possible,
the same in v and in the sequences S1, . . . , Sk , or that the fold of the associated protein
is preserved. In this setting the elements of T are not, strictly speaking, epitopes, but
they are instead elementary pieces for a construction of the synthetic protein.

A third future line of research consists in formulating mathematically restrictions
other than the level of coverage that could be biologically significant in the elicitation
of an immune response. We recognize that the ultimate test of the efficacy of any
algorithm is the in vivo design and validation of a vaccine, without which it is hard
to predict the biological impact. We hope that, nevertheless, this work presents an
alternate approach to vaccine design that can be evaluated more biologically in future
projects.
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1 Introduction 

Preterm labor is a very serious complication in pregnancy that has a substantial per-

sonal and economical impact. According to the World Health Organization, the diffi-

culties resulting from preterm birth lead to the death of one million children every 

year, and, only in the United States, the annual cost associated with premature labor 

has been reported to be of at least 26.2 billion USD [1]. It is therefore of utmost im-

portance to be able to forecast the cases of premature delivery as soon as possible.  

 

In order to detect threatened preterm birth, obstetrical emergency units normally 

carry out a vaginal fibronectine determination, a vaginal ultrasound, a systemic and 

obstetric examination, a blood analysis and an external cardiotocography (CTG). 

Although premature delivery has been associated with positive results on fibronectine 

test [2], short cervix length [3] and a high value on Bishop score [4], many cases still 

go undetected and a new approach seems necessary. 

 

Over the last decades, measuring uterine and cervical electrical activity has become 

the object of many research studies due to its capacity to give a better insight into the 

pregnant uterus and the process of labor [5,6,7], but neither the results based on exter-

nal tocodynamometry nor the ones based on uterine electromyography [8,9] have 

been able to provide a solution. On one hand, external tocodynanometry, which is 

generally used to monitor uterine activity and to determine the response to tocolytic 

therapy, is limited by a lack of quantitative assessment of uterine contractions and by 

the provision of only a single measure of global (rather than topographic) uterine 

pressure [10]. Indeed, this technique has been shown to have a relatively low predic-

tive accuracy for preterm delivery [11,12,13,14]. On the other hand, several studies 

have attempted to correlate between uterine electromyography and term or preterm 

labor, but their success has been limited [15,16,17,18,19,20,21]. Nonetheless, current 

efforts to forecast preterm delivery have not been successful enough to have positive 

predictive values or sensitivities, that make the predictions clinically useful [22]. 

 

In this paper, we have used autoregressive (AR) models to estimate the immediacy 

of labor based on the tocograms of women with suspected threatened premature de-

livery. Besides extending the use of this technique to women with gestational ages 

comprehended between 35 and 37 weeks, we have compared this approach with the 

classical method to quantify uterine activity, that is, the calculation of Montevideo 

Units [23,24]. We have observed that AR models outperform significantly the fore-

casting capacity of this technique, suggesting its use on tocograms to improve the 

current methodology of preterm birth detection. 
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2 Methodology 

2.1 Sample acquisition and processing 

2.1.1 General considerations. In Cruces University Hospital (Basque Country), 

suspected threatened premature delivery (STPD) was considered when a pregnant 

woman with a gestational age comprehended between 24.0 and 37.0 weeks was ad-

mitted to the obstetrical emergency unit, because of any of the following causes: a) 

self-reported regular uterine contractions, b) intermittent abdominal pain after exclud-

ing other pathological conditions, or c) self-reported expulsion of amniotic fluid. Ges-

tational age was established based on last menstrual period (LMP) and vaginal ultra-

sound. Our STPD protocol included medical history, systemic and obstetric examina-

tion, blood analysis, vaginal fibronectine determination, vaginal ultrasound and exter-

nal cardiotocogram (CTG). At least 30 minutes of CTG were recorded (indistinctively 

by Philips Avalon FM30, Philips Avalon FM20, Hewlett Packard Vidria 50XM and 

Hewlett Packard 50IP cardiotocographs). 

 

2.1.2 Our study. From the 1643 women consulting because of STPD in the study 

period (2010-2013), 1617 ended in premature labor (before 37.0 weeks) where 36 had 

a term delivery. Of those ending in preterm delivery, 423 concluded by a cesarean 

section. 

 

Two specific populations were considered for this study:  

a) The delayed group, constituted by all those women whose labor occurred 

more than seven days after the initial consultation (n=123).  

b) The anticipated group, constituted by a subset of those women whose deliv-

ery occurred in the following seven days since their visit. This group was composed 

by 480 women selected by means of a simple random sampling procedure without 

replacement (i.e., by randomly choosing a set of unrepeated individuals from a larger 

population).  

 

34 cases in the delayed group (27.6%) and 152 cases in the anticipated group 

(31.6%) were excluded from the study because of missing data precluding the analy-

sis (mainly unavailable CTG, or labor date). Thus, our population was reduced to 89 

cases for the delayed group, and 328 cases for the anticipated group.  

 

Contraction parameters including contraction frequency, duration, baseline uterine 

tone, and relaxation time were analyzed using standard definitions [23]. The ampli-

tude of the contractions used to calculate Montevideo units (MVUs) was determined 

based on the peak of the contraction [24], and this score was calculated considering 

the fragment with highest uterine activity of the CTG. 

 

Cardiotocograms were scanned and later processed by Engauge Digitizer 4.0. To 

maintain the original proportions, the Cartesian coordinate system origin was placed 
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on the first square, that is, the one on the south-west of the recording, and the length 

of a square (which corresponds to 30 seconds of measurement) was considered the 

unit. Then, the data were discretized to obtain approximately 2000 values, taking one 

point every 0.0291457 units.  

 

This study was approved by our center investigation board (CEIC-E16/13). 

 

2.2 Autoregressive (AR) models.  

We define a model as Autoregressive when a variable Yt can be explained by its pre-

vious p observations, adding an error term. We describe an AR model of order p 

(AR(p)) as: 

                                               

 

being φ0 a constant, φi (for i=1,…,p) the coefficients of the previous p variables 

and at the error term. 

 

3 Results 

In order to study the existence of significant differences on uterine activity depending 

on the immediacy of labor, 417 cases of suspected threatened premature delivery 

(STDP) with gestational ages comprehended between 24.0 and 37.0 weeks were col-

lected and analyzed. These cases were subdivided into two groups, depending on the 

number of days between the STPD diagnose and the labor date: women who gave 

birth seven or more days after their visit (delayed group, n=89), and women who gave 

birth during the seven days that followed their visit (anticipated group, n=328). Then, 

the tocograms were transformed on time series of approximately 2000 time points by 

a digitizing program.  

 

First, we estimated the Montevideo Units [24](MVU), a classical method for quan-

tifying uterine activity. In practice, these units are calculated by adding the uterine 

pressure of all the contractions above baseline tone in a ten minute period. For ade-

quate labor, more than 200 Montevideo Units are considered necessary. In our study, 

MVUs were calculated selecting the ten minute period of maximum activity, and a 

contraction was considered when the pressure of a wave increased at least 20 mmHg 

above baseline. The result of this calculation for the delayed group was 87.81±84.49  

(mean±SD) while for the anticipated group was 94.13±95.45. The distributions of 

MVU values are illustrated in Figure 1 by a box plot. In order to test if significant 

differences between groups existed, a test to compare the distributions of both groups 

was performed. To select the appropriate test, we checked if the MVU values fol-

lowed a normal distribution by a Kolmogorov-Smirnov normality test. The hypothesis 

of normality was rejected, so we performed a non-parametric test (Wilcoxon rank sum 

test) to compare both groups, obtaining a p-value of 0.8035. This result implies that 

we cannot reject that the MVUs of the anticipated and the delayed group come from 

continuous distributions with equal medians. Then, we calculated the percentages of 

women with more than 200 MVUs, a threshold related to adequate delivery, to check 
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whether the proportions in both groups were significantly distinct or not. The results 

were 12.35% for the delayed group and 14.32% for the anticipated group, indicating 

that the relative number of cases ready for adequate labor according to the MVUs was 

very similar between both groups. Thus, MVUs were unable to discern between the 

cases whose labor resulted in seven days or less and the ones who delivered later. 

 

 
 

Fig 1. Box plot of the Montevideo Units for delayed and anticipated labor groups. Box plot 

illustration of the distributions of the MVU values calculated for the delayed and the anticipated 

labor groups. The blue boxes represent the distribution of the central 50% of the values and the 

red lines represent the medians. The rest of the values are represented by the arms, or in the 

case of atypical values, by red crosses. As it can be observed in the figure, there were no signif-

icant differences between the distributions of the values of the delayed and the anticipated labor 

groups. 

Next, we calculated the autoregressive approximation. As has been shown in a pre-

vious work [25], the best model within the ARIMA family in order to model 

tocograms to discern between preterm cases depending on labor immediacy is the 

AR(2) (in fact, both φ1 and φ2 have been demonstrated to be significantly different 

between these groups, for gestational ages between 24.0 and 35.0). Thus, we estimat-

ed the first parameter φ1 by maximum likelihood for the 417 time series obtained 

from the tocograms. The results for the delayed group were φ1=1.61±0.16, while for 

the anticipated group were φ1=1.49±0.21, with a p-value of 4·10
-8

 on the rank sum 

test. This indicates a remarkably different behavior between both groups on the auto-

regressive coefficient, and improves the results from [25], where the p-value was 

1·10
-5

. 

 

Then, we calculated the sensitivity, specificity, positive predictive value (PPV) and 

negative predictive value (NPV) of the autoregressive coefficient used as a predictor. 

To calculate this statistical measure, we had to fix a threshold to discriminate between 

both groups, which in the case of φ1 was set to 1.547 (following the best accuracy 
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criterion, i.e., the one with the highest  
                       

 
). Considering the value of 

the indicator as a test to confirm preterm labor in less than seven days, a positive out-

come was associated to φ1 values above the threshold, and negative outcome was 

associated to values below 1.547. Thus, we determined that the sensitivity of the test 

(
                        

                                                  
) was 0.764, while the specificity 

(
                        

                                                  
) was 0.585. The positive predictive 

value (
                        

                                                  
) was 0.33, while the negative 

predictive value (
                        

                                                  
) was 0.901. To illus-

trate the effect of varying the threshold on the sensitivity and the specificity, in Figure 

2, the receiver operating characteristic (ROC) curve for φ1 is represented.  

 

 
 

Fig 2. ROC curve of the first coefficient of the AR(2) approximation. The Y axis represents 

the sensitivity, while de X axes represents 1- specificity. Dots above the black line indicate 

good balance between sensitivity and specificity. 

Finally, we calculated these predictive parameters for the Montevideo Units used 

as a preterm labor immediacy predictor. The threshold was set to 90, where a positive 

outcome was associated to values above 90, and a negative outcome was associated to 

values below 90. In this case, the sensitivity was 0.461, the specificity was 0.543, the 

PPV was 0.215, and the NPV was 0.788. These values were compared with the auto-

regressive predictive parameters, and it was observed that the AR parameters were on 

average, 0.144±0.11 higher than the MVUs ones.  
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4 Discussion 

In this paper, in order to evaluate some predictive techniques for preterm labor detec-

tion, 417 tocograms of women suspected of threatened premature delivery were ana-

lyzed. The CTGs were divided into two groups depending on the remaining time until 

labor, and then the Montevideo Units and the autoregressive parameters of these time 

series were estimated and compared. 

First, we calculated the MVUs and observed that there were no significant differ-

ences between the values of women who delivered in seven days or less since their 

CTG recording, and the values of women who delivered later. Moreover, we observed 

that the number of cases related to adequate labor, that is, with more than 200 MVUs, 

was very similar between both groups, highlighting the inaccuracy of this method. 

Second, the tocograms were modeled by autoregressive models of second order, 

and the parameters of both groups were compared. In this case, the delayed and the 

anticipated populations presented a considerably different distribution of φ1 values, 

with a p-value of 4·10
-8

 on the Wilcoxon rank test. This indicates that autoregressive 

parameters are sensitive to labor immediacy for women with gestational ages under 

37.0 weeks.  

Finally, we estimated the classical predictive parameters (i.e., sensitivity, specifici-

ty, positive predictive value and negative predictive value) of the AR model and the 

MVUs. It can be observed that the estimation of preterm delivery immediacy by the 

autoregressive coefficient outperformed the estimation by MVUs in all of these pa-

rameters. 

In conclusion, in this article we have confirmed that the use of autoregressive coef-

ficients to detect preterm labor [25] can be extended to women with gestational ages 

between 35.0 and 37.0 weeks. In addition, we have evaluated the forecasting capacity 

of both the autoregressive approach, and the classical measure used to quantify uter-

ine contractions, i.e., the Montevideo Units. We have observed that the autoregressive 

coefficient achieved higher predictive parameters than the MVU approach, which 

suggests that its use on hospitals could improve preterm labor detection. 
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