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1. ABBREVIATIONS 
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2. RESUMEN 

La microglía es el macrófago residente y el fagocito profesional del sistema nervioso 

central. Son células muy ramificadas con procesos altamente móviles que les permiten 

monitorizar constantemente el parénquima cerebral. Las dos funciones microgliales 

fundamentales son la inflamación y la fagocitosis. Como célula inmune del cerebro, la 

microglía es la encargada de iniciar la respuesta inflamatoria, caracterizada por la liberación de 

citoquinas pro- y anti-inflamatorias. La inflamación es una respuesta protectora para el 

cerebro que puede convertirse en perjudicial si no es controlada, como ocurre en muchas 

enfermedades neurodegenerativas. Por este motivo, el papel de la microglía en las 

enfermedades neurodegenerativas ha sido ampliamente considerado perjudicial. Sin embargo, 

la microglía ejerce otras funciones más benignas como fagocito profesional del cerebro. 

La fagocitosis hace referencia al proceso mediante el que una célula se come a otra y 

está compuesta por tres fases: encontrar (“find-me”), engullir (“eat-me”) y digerir (“digest-

me”). La microglía puede fagocitar distintos tipos de material tanto en situaciones fisiológicas 

como patológicas, como sinapsis, restos de mielina y axones, y proteínas relacionadas con 

patologías como la beta amiloide (Aβ), modulando así la función cerebral y la homeostasis a 

varios niveles. En la presente tesis doctoral nos hemos centrado en la fagocitosis de células en 

proceso de apoptosis, o muerte celular programada. El reemplazamiento de células por otras 

nuevas es una parte central tanto del desarrollo embrionario como del mantenimiento diario 

de la homeostasis tisular. Por lo tanto la apoptosis es un proceso ubicuo en los organismos 

vivos. Los vastos números de células muertas demandan un sistema de limpieza eficiente del 

que se encarga la microglía a través de la fagocitosis de los restos celulares. La eliminación de 

células apoptóticas es muy importante, ya que si no son rápidamente fagocitadas,  

evolucionan a células necróticas secundarias, perdiendo la integridad de su membrana 

plasmática y liberando sus contenidos intracelulares tóxicos al medio extracelular. Esto podría 

tener consecuencias perjudiciales para el tejido circundante ya que se ha relacionado con la 

iniciación de la respuesta inflamatoria y con enfermedades autoinmunes. Por lo tanto, la 

rápida y eficiente eliminación de células muertas es crucial para el mantenimiento de la 

homeostasis tisular. Sin embargo, la fagocitosis microglial sigue siendo un proceso 

notoriamente desconocido, especialmente in vivo. 

La eficiencia fagocítica microglial ha sido estudiada recientemente en condiciones 

fisiológicas en el nicho neurogénico hipocampal, donde un gran porcentaje de las células 

recién nacidas muere por apoptosis. En estas condiciones, la fagocitosis microglial es muy 
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eficiente ya que la microglía está fagocitando hasta un 90% de estas células apoptóticas recién 

nacidas en un momento dado. Además, desde que la microglía encuentra una célula 

apoptótica hasta que la digiere por completo transcurre 1.5h, demostrando que la fagocitosis 

es un proceso muy rápido. Es más, en condiciones fisiológicas solo un pequeño porcentaje de 

la microglía está fagocitando, lo que sugiere que estas células poseen un potencial fagocítico 

mucho mayor que podría ser explotado en condiciones en las que haya un gran incremento del 

número de células apoptóticas, como en el cerebro enfermo. De cualquier forma, la fagocitosis 

microglial de células apoptóticas en condiciones patológicas sigue siendo desconocida en 

cuanto a su eficiencia, sus mecanismos de ejecución, sus consecuencias beneficiosas o 

perjudiciales y su impacto en la homeostasis del tejido cerebral. En la presente tesis doctoral, 

nuestro objetivo ha sido analizar la eficiencia de la fagocitosis microglial en diferentes 

condiciones patológicas, como son la epilepsia y sus procesos patológicos subyacentes, para 

comprender como cada uno de estos procesos patológicos afecta al comportamiento 

fagocítico microglial. 

Epilepsia es un término utilizado para describir un espectro de trastornos neurológicos 

caracterizados por convulsiones epilépticas (abrupta actividad neuronal anormal y 

sincronizada). La epilepsia es la tercera enfermedad crónica más común y afecta a entre 50 y 

65 millones de personas en todo el mundo. Además de las convulsiones, los pacientes 

experimentan con frecuencia complicaciones como discapacidad cognitiva y trastornos 

psiquiátricos como la depresión. La epilepsia puede ser controlada por la medicación pero hoy 

en día no existe cura. Además, alrededor del 30% de pacientes son farmacorresistentes o 

refractarios a los actuales tratamientos farmacológicos disponibles. Por lo tanto, la epilepsia 

representa un serio problema de salud pública global. Depende de la región cerebral donde se 

inicia, la epilepsia puede ser clasificada como focal o generalizada. Las convulsiones focales o 

parciales tienen su inicio en un área concreta del cerebro, mientras que en las convulsiones 

generalizadas está involucrado el cerebro completo. El lóbulo temporal es la región más 

epileptogénica del cerebro, por lo que la epilepsia del lóbulo temporal (ELT), un tipo de 

epilepsia focal, es el tipo más común de epilepsia. La epilepsia del lóbulo temporal mesial 

(ELTM) es uno de los tipos de epilepsia mejor caracterizados y también la forma más común de 

epilepsia farmacorresistente, lo que obliga a muchos pacientes a someterse a una operación 

para extraer el hipocampo epiléptico como única alternativa para dejar de sufrir convulsiones. 

La administración hipocampal de kainato (KA) constituye uno de los modelos más replicables 

de ELTM. El KA es un agonista de receptores de glutamato y su administración reproduce  las 

principales características histopatológicas y clínicas de la ELTM. Por otro lado, las 
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convulsiones generalizadas suelen estar provocadas por factores genéticos más a menudo que 

las focales. Dentro de este grupo están las epilepsias mioclónicas progresivas (EMPs), un grupo 

heterogéneo de trastornos hereditarios con una patogénesis muy desconocida y generalmente 

farmacorresitentes. La causa más común de EMP es la epilepsia mioclónica progresiva tipo 1 

(EMP1) o enfermedad de Unverricht-Lundborg, un trastorno hereditario autosómico recesivo 

causado por mutaciones que derivan en la pérdida de función del gen de la cistatina B (Cstb), 

un inhibidor de las cisteína proteasas.  

Los distintos tipos de epilepsia comparten características patológicas como la 

excitotoxicidad y la inflamación. La excitotoxicidad hace referencia a la muerte causada por 

una prolongada activación inducida por una liberación excesiva de glutamato. La inflamación 

se ha erigido durante los últimos años como posible causante de la patogénesis de la epilepsia, 

ya que muchas citoquinas son epileptogénicas. De hecho hay ensayos clínicos para combatir la 

epilepsia basados en la reducción de la producción de interleuquina-1β (IL-1β), una citoquina 

pro-inflamatoria clásica. Además, se ha visto que algunas señales fagocíticas de “find-me” que 

afectan a la motilidad basal y dirigida y sus receptores están sobreexpresados en modelos de 

epilepsia, como es el caso de la fractalquina y los receptores purinérgicos, que responden a 

adenosina trifosfato (ATP) y a sus metabolitos. Sin embargo, la eficiencia de la fagocitosis 

microglial durante epilepsia o durante sus procesos patológicos subyacentes, excitotoxicidad e 

inflamación, continúa siendo desconocida. 

El objetivo de esta tesis doctoral es analizar la eficiencia fagocítica microglial en estos 

dos modelos patológicos (ELTM y EPM1), estudiar los mecanismos que controlan la regulación 

de la fagocitosis durante epilepsia y analizar las posibles consecuencias negativas de un 

bloqueo fagocítico para la homeostasis del cerebro. 

Usando el giro dentado (GD) hipocampal como modelo, nuestro primer objetivo ha 

sido examinar la eficiencia fagocítica microglial en las condiciones patológicas que ocurren 

durante la epilepsia, excitotoxicidad e inflamación. Con este propósito hemos usado un 

modelo de excitotoxicidad in vitro utilizando cultivos organotípicos de hipocampo y modelos 

de inflamación aguda y crónica in vivo. También hemos estudiado la fagocitosis en un modelo 

farmacológico de ELTM inducido por administración intrahipocampal de KA in vivo. Todos los 

parámetros referentes a la eficiencia fagocítica microglial y a la apoptosis celular han sido 

directamente cuantificados en secciones de tejido tratadas mediante inmunofluorescencia y 

visualizadas con microscopía confocal. Además, hemos utilizando un nuevo set de parámetros 

desarrollado por nosotros para la cuantificación directa de estos procesos. En los modelos de 

excitotoxicidad e inflamación hemos observado una respuesta generalizada en la que la 



RESUMEN 

12 
 

microglía responde al incremento de células apoptóticas con un incremento en la fagocitosis 

microglial, es decir, la fagocitosis microglial está acoplada a la apoptosis (Ph/A coupling). Este 

acoplamiento se consigue mediante una combinación de tres estrategias diferentes: el 

reclutamiento de microglía fagocítica, el incremento del número de células apoptóticas que 

cada microglía fagocita (incremento de la capacidad fagocítica) y/o el incremento de los 

números de microglía. En cambio, en nuestro modelo farmacológico de ELTM in vivo la 

fagocitosis microglial está severamente impedida durante la fase aguda de la enfermedad (6h 

a 1 día después de la inyección de KA). Además, el bloqueo fagocítico no solo ocurre en el GD, 

sino también en otras áreas del hipocampo y de la corteza. Por último, el bloqueo fagocítico 

microglial no está compensado por otros tipos de células como astrocitos y neuroblastos, lo 

que convierte a la microglía en el fagocito más determinante en el hipocampo de los ratones 

ELTM a 1 día post inyección (1dpi). 

Nuestro segundo objetivo ha sido analizar cómo las convulsiones afectan al 

comportamiento fagocítico microglial. Para ello hemos investigado los potenciales 

mecanismos que subyacen al bloqueo fagocítico en el GD durante la fase aguda del ELTM. 

Como nuestros resultados muestran que un gran porcentaje de células apoptóticas no 

fagocitadas están a gran distancia del proceso microglial más cercano, hipotetizamos que 

podría haber un defecto en la motilidad microglial que estuviera causando el bloqueo 

fagocítico. Para analizar la motilidad de los procesos microgliales hemos utilizado un modelo 

ex vivo (rodajas agudas de ratones inyectados con KA) y un modelo in vivo (corteza cerebral 

situada sobre el hipocampo de ratones inyectados con KA) y hemos visualizado la microglía 

mediante microscopía de 2 fotones. El KA induce una bajada de la motilidad basal de la 

microglía a 1dpi en ambos modelos, lo que explica parcialmente el defecto en la fagocitosis 

microglial de células apoptóticas que observamos durante las convulsiones. Para saber si el KA 

afecta directamente a la fagocitosis microglial hemos determinado el efecto del KA en la 

fagocitosis en rodajas organotípicas de hipocampo y en cultivos primarios de microglía a los 

que añadimos células apoptóticas. El KA no provoca un bloqueo fagocítico de células 

apoptóticas en las rodajas, seguramente debido a que el KA no induce convulsiones en este 

modelo in vitro. Los resultados en los cultivos microgliales muestran que el KA provoca una 

pequeña reducción en el porcentaje de microglía fagocítica. En conjunto, estos resultados 

apuntan a que el fuerte bloqueo fagocítico microglial que observamos in vivo tras la inyección 

de KA no es debido a un efecto directo del KA sobre la microglía.  

Una molécula que podría actuar como mediadora entre las convulsiones y la microglía 

es el ATP extracelular, una señal de “find-me” bien conocida que es liberada por células 
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apoptóticas para atraer a la microglía. El ATP también es liberado durante convulsiones de 

forma masiva por neuronas y astrocitos. Debido a que el ATP extracelular es degradado muy 

rápidamente a sus metabolitos, hemos recurrido a un método indirecto para determinar la 

acción del ATP liberado durante convulsiones sobre la microglía in vitro. Dado que la microglía 

detecta el ATP a través de varios receptores ionotrópicos (P2X) y metabotrópicos (P2Y), hemos 

utilizado el brilliant blue G (BBG), un antagonista de amplio espectro de receptores P2X para 

analizar mediante técnicas electrofisiológicas si la liberación de ATP debido a las convulsiones 

afecta directamente a la microglía. En estas condiciones, la aplicación de BBG bloquea 

parcialmente las corrientes catiónicas entrantes en la microglía a través de los canales 

regulados por ATP, lo que demuestra que la microglía detecta las convulsiones vía ATP. Para 

determinar si la respuesta electrofisiológica microglial producida por el cóctel correlaciona con 

un bloqueo fagocítico, hemos analizado la fagocitosis microglial en rodajas organotípicas de 

hipocampo tratadas con el cóctel. Hemos observado que las convulsiones bloquean per se la 

fagocitosis microglial, lo que apunta al ATP como mediador del bloqueo fagocítico que 

observamos en ELTM in vivo. Por lo tanto, hipotetizamos que una liberación masiva de ATP por 

parte de neuronas y/o astrocitos durante las convulsiones interferiría con el ATP liberado por 

células apoptóticas, acabando con los microgradientes de ATP que guían a la microglía. Para 

probar esta hipótesis hemos analizado si el incremento de ATP induce un bloqueo fagocítico 

per se. Para ello hemos utilizado altas concentraciones de ATP en rodajas organotípicas de 

hipocampo y en el hipocampo in vivo. En estas condiciones, la eliminación de los gradientes de 

ATP bloquea la fagocitosis microglial in vitro e in vivo, sugiriendo que el ATP es un mecanismo 

subyacente clave en el bloqueo fagocítico microglial en nuestro modelo de ELTM y muy 

posiblemente en otros modelos de epilepsia. 

Nuestro tercer objetivo ha consistido en analizar si el bloqueo fagocítico microglial que 

ocurre durante el ELTM experimental tiene consecuencias nocivas para el tejido cerebral. 

Primero hemos analizado si el bloqueo fagocítico microglial induce una acumulación de células 

apoptóticas no fagocitadas en el hipocampo in vivo. Como la mayoría de las células 

apoptóticas a 1dpi están localizadas en la zona subgranular (ZSG), donde se encuentra el nicho 

neurogénico hipocampal, hemos estudiado el efecto de las convulsiones en la supervivencia de 

las células recién nacidas de 3 días de edad. Para ello hemos utilizado un paradigma de 

administración semi-acumulativa de BrdU antes de la inyección de KA y hemos cuantificado la 

cantidad de células BrdU positivas vivas y apoptóticas. Hemos observado que el incremento 

del número de células apoptóticas en ELTM es debido a la acumulación de células apoptóticas 

no fagocitadas en el hipocampo. Por otro lado, se ha visto que la fagocitosis microglial de 
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células apoptóticas es activamente anti-inflamatoria in vitro, por lo que hipotetizamos que el 

bloqueo fagocítico microglial podría correlacionar con el desarrollo de una respuesta 

inflamatoria. Con este propósito, hemos analizado la expresión de un panel de citoquinas pro- 

y anti-inflamatorias mediante RTqPCR en tejido hipocampal y microglía hipocampal aislada de 

ratones inyectados con KA. Las citoquinas inflamatorias están sobreexpresadas tanto a nivel 

tisular como en la microglía, siguiendo un patrón paralelo al del desarrollo del bloqueo 

fagocítico microglial a través del tiempo. Por lo tanto, estos resultados muestran que el perfil 

inflamatorio coincide con el perfil del bloqueo de la eficiencia fagocítica microglial en ELTM. 

Nuestro cuarto objetivo ha sido comprobar si el bloqueo fagocítico microglial que 

observamos en ELTM se da también en otros tipos de epilepsia. Para ello, hemos utilizado un 

modelo genético de epilepsia generalizada, EMP1, en el que hemos analizado la eficiencia 

fagocítica microglial in vivo en el GD de ratones Cstb KO a día postnatal 30 (DPN30), la edad en 

la que comienzan a sufrir convulsiones. Hemos observado que la microglía trata de equilibrar 

el incremento de la apoptosis proliferando, reclutando más microglía fagocítica y aumentando 

la capacidad fagocítica de cada célula, al contrario de lo que pasa en ELTM, donde la microglía 

se vuelve no fagocítica. Sin embargo, esta respuesta microglial insuficiente provoca un 

desacople de la fagocitosis y la apoptosis en los ratones Cstb KO, como ocurre en ELTM. Para 

conocer si el desacople microglial estaba compensado otras células en ratones EPM1 a DPN30, 

hemos cuantificado la fagocitosis astrocitaria. Nuestros resultados muestran que los astrocitos 

no fagocitan células apoptóticas en ratones Cstb KO, por lo que la microglía sigue siendo el 

fagocito más relevante en el hipocampo de estos ratones a DPN30, en concordancia con lo que 

observamos en ELTM. Por último, para comprender más a fondo los mecanismos que regulan 

la fagocitosis microglial en los ratones con EMP1, hemos analizado si el desacople fagocítico 

que vemos en los ratones Cstb KO es debido a las convulsiones o a la pérdida de Cstb per se. 

Para ello hemos analizado la fagocitosis en el DG de ratones Cstb KO a DPN14, edad que 

precede al comienzo de las convulsiones. Tal y como ocurre a DPN30, hay un intento fallido 

por parte de la microglía de compensar el incremento en el número de células apoptóticas. Por 

lo tanto, el desacople entre apoptosis y fagocitosis precede al comienzo de las convulsiones en 

ratones Cstb KO, apuntando al Cstb como posible regulador de la fagocitosis microglial. 

Además, ya que la microglía expresa altos niveles de Cstb, estos resultados sugieren que la 

microglía podría estar contribuyendo al desarrollo de la patología en EMP1. 

En conclusión, nuestros resultados demuestran que en el cerebro epiléptico la 

microglía no está simplemente reaccionando al daño neuronal sino que su función fagocítica 

básica está bloqueada. Teniendo en cuenta que la muerte neuronal y la inflamación son 
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aspectos importantes de todas las más importantes enfermedades neurodegenerativas como 

isquemia, Alzheimer, Parkinson y esclerosis múltiple, aumentar la fagocitosis microglial podría 

servir para controlar el daño tisular y la inflamación como nueva estrategia para acelerar la 

recuperación del cerebro. Además, hemos observado que la eficiencia fagocítica microglial 

afecta de forma crítica a las dinámicas de la apoptosis, hecho que aboga por el análisis 

rutinario la eficiencia fagocítica microglial en trastornos neurodegenerativos. 
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2. SUMMARY 

Microglia are the resident macrophages and professional phagocytes of the central 

nervous system (CNS). These highly motile cells constantly monitor the brain parenchyma 

fulfilling their two fundamental functions: inflammation and phagocytosis. Phagocytosis refers 

to the cellular process of eating and consists on three different stages: finding, engulfing, and 

digesting the phagocytic cargo, which are differentially regulated by “find-me”, “eat-me”, and 

“digest-me” signals, respectively. Microglia can phagocytose all kinds of cargo during 

physiological and pathological conditions. However, in this PhD thesis we have focused in the 

phagocytosis of cells undergoing apoptosis, or programmed cell death. Apoptosis is an 

ubiquitous process in organisms and an essential part of development and everyday tissue 

homeostasis. Importantly, if apoptotic cells are not rapidly phagocytosed they evolve to 

secondary necrotic cells, losing the integrity of their plasma membrane and spilling over their 

toxic intracellular contents, which might exert detrimental consequences for the surrounding 

tissue. Thus, the rapid and efficient clearance of apoptotic cells is crucial for the maintenance 

of tissue homeostasis.  

Importantly, the efficiency of microglial phagocytosis in physiological conditions has 

been recently established in the neurogenic cascade of the hippocampus, where a large 

percentage of the newborn cells undergo apoptosis and are efficiently phagocytosed by 

microglia. Moreover, only a small proportion of microglia are engaged in phagocytosis, 

suggesting that they hold a large phagocytic reservoir to face great increases in apoptotic cell 

numbers. However, microglial phagocytosis of apoptotic cells in pathological conditions in vivo 

remains unknown. In this PhD thesis, we will focus on the role of microglia in epilepsy. 

Epilepsy is a term used to describe a spectrum of neurological disorders characterized 

by spontaneous epileptic seizures. Epilepsy is the third most common chronic brain disorder, 

and seizures can be controlled but cannot be cured by medication. Importantly, about 30% of 

patients are pharmacoresistant. Thus, epilepsy is a significant health concern worldwide. 

According to the brain region where seizures initiate, they can be classified as focal or 

generalized. Mesial temporal lobe epilepsy (MTLE), a focal pharmacoresistant epilepsy, is one 

of the best-characterized and most frequent type of epilepsy. One of the most reliable MTLE 

models is the intrahippocampal administration of kainate (KA), a glutamate receptor agonist 

which mimics all the main histopathological and clinical features of MTLE. Generalized 

epilepsies include progressive myoclonus epilepsies (PMEs), pharmacoresistant epilepsies with 

a poorly understood pathogenesis. The most common cause of PME is epilepsy myoclonus 
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type 1 (EPM1), a genetic disorder caused by loss-of-function mutations in the cystatin B gene 

(Cstb), an inhibitor of cysteine proteases.  

These different types of epilepsies share two common pathological features, 

excitotoxicity and inflammation. Excitotoxicity refers to cell death caused by a prolonged 

activation due to excessive glutamate release. Inflammation is caused by the increased 

inflammatory mediator release during epilepsy, and has gained attention as a possible 

underlying contributor to the pathogenesis of seizures, as many cytokines are epileptogenic. 

Phagocytic “find-me” signals and their receptors, such as CX3CL1 and purinergic receptors, 

which respond to adenosine triphosphate (ATP) and its metabolites have also been found to 

be upregulated in epilepsy models. Nevertheless, microglial phagocytosis efficiency during 

epilepsy or during its underlying pathological processes, excitotoxicity and inflammation, 

remains unknown. Therefore, the goal of this PhD thesis has been to analyze microglial 

phagocytosis efficiency in these two pathological models, MTLE and EPM1. We have also 

assessed the mechanisms underlying the regulation of phagocytosis during epilepsy, as well as 

analyzing the possible detrimental consequences of a phagocytosis impairment for brain tissue 

homeostasis. 

Using the hippocampal DG to quantify phagocytosis, our first aim was to examine the 

microglial phagocytosis efficiency during excitotoxicity and inflammation. For this purpose, we 

used an in vitro excitotoxicity model using organotypic hippocampal slices, and acute and 

chronic inflammation models in vivo. We also assessed phagocytosis in a pharmacological 

model of MTLE in vivo, induced by intrahippocampal administration of KA. We show evidence 

of a widespread response of microglia to apoptotic challenge induced by excitotoxicity or 

inflammation in which microglial phagocytosis remains tightly coupled to apoptosis, i.e., a rise 

in apoptotic cell numbers is matched with an increase in microglial phagocytosis. Hence, in 

these conditions there is phagocytosis/apoptosis coupling (Ph/A coupling). We also show that 

this coupling is achieved by a combination of three different strategies: recruiting more 

microglial cells to be phagocytic, increasing the phagocytic capacity of each cell (the number of 

apoptotic cells each microglia engulfs), and/or increasing microglial numbers. Unexpectedly, 

microglial phagocytosis is severely impaired in our pharmacological model of MTLE in vivo 

during the acute phase of the disease (6h to 1 day after KA injection) in the DG and other areas 

of the hippocampus and in the cortex. Importantly, the microglial phagocytosis impairment is 

not compensated by other cell types (astrocytes, neuroblasts), which renders the impaired 

microglia the most determinant phagocyte in the hippocampus of MTLE mice at 1dpi. 
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Our second aim was to understand how seizures affect microglial behavior and thus, 

we investigated the potential mechanisms underlying the phagocytosis impairment in the DG 

during the acute phase of KA induced MTLE. Because many apoptotic cells were localized far 

away from microglia, we hypothesized that there could be a possible defect in microglial 

surveillance and/or targeting of apoptotic cells, caused by an impaired motility. Using live-

imaging in acute hippocampal slices from KA injected mice and in the cortex of KA injected 

mice in vivo, we show that KA induces a decrease in basal microglial motility 1 day after KA 

injection, which partially explains the defect in microglial phagocytosis of apoptotic cells 

observed after seizures. To further assess if KA was directly affecting microglial behavior, we  

determined the effect of KA on microglial phagocytosis in hippocampal slices and primary 

microglia fed with apoptotic cells. Importantly, KA does not impair microglial phagocytosis of 

apoptotic cells in hippocampal slices and induces a very small reduction in the percentage of 

phagocytic primary microglia. Therefore, the strong impairment of microglial phagocytosis that 

we observe in vivo after KA injection is unlikely due to a direct effect of KA on microglia.  

The extracellular ATP could be an alternative mediator between seizures and microglia. 

ATP is a well known “find-me” signal released by apoptotic cells and is also released during 

seizures, from neurons and astrocytes. Because extracellular ATP is very rapidly degraded into 

its metabolites, we resorted to indirectly determine the action of ATP released during seizures 

on microglia using acute hippocampal slices treated with a seizure inducing epileptogenic 

cocktail and a broad ionotropic purinergic receptor inhibitor. Electrophysiological 

measurements shows that the purinergic inhibitor partially blocks large inward currents in 

microglia, thus indicating that microglia sense seizures via ATP. To determine whether the 

cocktail induced electrophysiological microglial response correlated with a phagocytosis 

impairment, we assessed microglial phagocytosis using hippocampal organotypic slices treated 

with the epileptogenic cocktail. We show that seizures per se impair microglial phagocytosis, 

pointing towards ATP as the mediator of the phagocytosis impairment we observe in 

experimental MTLE in vivo. Thus, we hypothesized that a widespread release of ATP by 

neurons and/or astrocytes during seizures would interfere with the ATP released by apoptotic 

cells, disrupting ATP microgradients. To prove this hypothesis we disrupted ATP microgradients 

using high concentrations of ATP in hippocampal slices and in the hippocampus in vivo. In 

accordance, ATP greatly impairs microglial phagocytosis in vitro and in vivo suggesting that ATP 

is a main underlying cause of the early phagocytosis impairment in experimental MTLE.  

Our third aim was to assess whether the microglial phagocytosis impairment during 

pharmacologically induced MTLE would have detrimental consequences for the brain. Thus, 
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we first tested whether the phagocytosis impairment induced an accumulation of non-

phagocytosed apoptotic cells in the hippocampus in vivo. As the majority of apoptotic cells at 1 

day after KA are located in the SGZ, where new neurons are born, we studied the effect of 

seizures on the apoptosis and survival of 3 day old (3do) newborn cells using a semi-

cumulative BrdU administration paradigm before the KA injection. Importantly, the rise of 

apoptotic cell numbers in the SGZ induced by KA is largely due to accumulation of the non-

phagocytosed newborn cells that underwent apoptosis in physiological conditions. Thus, 

microglial phagocytosis impairment causes the accumulation of uncleared apoptotic cells in 

the hippocampus. Moreover, as microglial phagocytosis of apoptotic cells has previously been 

shown to be actively anti-inflammatory in vitro, we hypothesized that the microglial 

phagocytosis impairment could correlate with the development of an inflammatory response. 

For this purpose, we analyzed the expression of pro- and anti-inflammatory cytokines by 

RTqPCR in hippocampal tissue samples and in acutely isolated hippocampal microglia from KA 

injected mice. We show that inflammatory cytokines are upregulated both at the tissue level 

and in isolated microglia. Thus, the profile of inflammation coincides with the profile of the 

impaired phagocytosis efficiency in MTLE.  

Our fourth aim was to extend our observations on the microglial phagocytosis 

impairment to other types of epilepsy. Thus, we focused on a genetic model of epilepsy, EPM1. 

For this purpose, we assessed microglial phagocytosis efficiency in vivo in the DG of Cstb KO 

mice at the seizure onset age, postnatal day 30 (PND30). In these conditions, microglia try to 

balance the increase in apoptosis by proliferating, recruiting more phagocytic cells, and 

increasing the phagocytic capacity of each cell, contrary to what happens in MTLE, where 

microglia mainly become non-phagocytic. Nevertheless, the insufficient microglial response 

leads to a phagocytosis-apoptosis uncoupling in Cstb KO mice, resembling our results in MTLE. 

Moreover, microglial phagocytosis impairment is not compensated by astrocytes in PND30 

Cstb KO mice, similarly to what we observe in MTLE. To further understand the mechanisms 

regulating microglial phagocytosis, we assessed whether the phagocytosis-apoptosis 

uncoupling in Cstb KO mice was due to seizures or to the loss of Cstb per se by analyzing 

phagocytosis in the DG of Cstb KO mice at PND14, an age preceding seizure onset. We show a 

failed attempt by microglia to compensate the increase in apoptosis identical to the 

impairment in Cstb KO mice at PND30. Thus, these results demonstrate that the microglial 

phagocytosis impairment precedes seizure development in Cstb KO mice, pointing at Cstb as a 

possible regulator of microglial phagocytosis. Furthermore, as microglia expresses high levels 
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of Cstb, these results suggest that microglia might be contributing to the development of the 

pathology in EPM1. 

In conclusion, our results prove that in the epileptic brain microglia are not merely 

“reactive” to the neuronal damage but have their basal phagocytic function impaired. Because 

neuronal death and inflammation are hallmarks of all major neurodegenerative diseases, 

harnessing microglial phagocytosis may serve to control tissue damage and inflammation as a 

novel strategy to accelerate brain recovery. Moreover, these results demonstrate that the 

efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to 

routinely assess the microglial phagocytosis efficiency in neurodegenerative disorders. 
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3. INTRODUCTION 

3.1. INTRODUCTION TO MICROGLIA 

Microglia are the resident macrophages and professional phagocytes of the central 

nervous system (CNS). Moreover, they are the unique population of resident immune cells in 

the brain and thus, the major orchestrators of the innate immune response (Sierra et al., 

2013). Microglia are part of the glial cells, alongside with astrocytes, oligodendrocytes, and 

ependymal cells, and they account for 5–12% of the total glial cell population in the brain 

(Gomez-Nicola and Perry, 2015). First described by Pío del Río-Hortega in 1919 (Tremblay et 

al., 2015), microglia are highly ramified cells and are randomly distributed in close proximity 

with each other, but with little overlap between the processes of neighbouring cells (Graeber, 

2010). Microglia are broadly distributed through the brain (Lawson et al., 1990), although their 

density and morphology are region-specific, and they are more abundant in the gray than in 

the white matter (Lawson et al., 1990).  

During embryonic development, all glial cells except microglia originate from the 

ectodermal layer of the early embryo, one of the three primary germ layers. In contrast, 

microglia have a mesodermal origin and are generated in the yolk sac during embryogenesis at 

embryonic day 7.5 (E7.5) in the mouse, when hematopoietic stem cells in the yolk sac become 

primitive macrophages and then migrate into the developing CNS to become microglia (Aguzzi 

et al., 2013; Casano and Peri, 2015; Ginhoux and Prinz, 2015). Unlike other yolk sac- derived 

macrophages, microglia are not replaced during the postnatal period and later life by liver- or 

bone marrow-derived macrophages (Hoeffel et al., 2012).    

Thus, microglia belong to the monocyte-macrophage linage, and as such they play 

central roles to survey and regulate the microenvironment to support homeostasis during 

brain development and under normal and pathological conditions (Prinz and Priller, 2014). 

Nevertheless, microglia are not just brain macrophages, as shown by their cell-specific gene 

expression signatures, distinct ontogeny and differential functions, which are totally adapted 

to their environment (Butovsky et al., 2012; Gautier et al., 2012; Ginhoux et al., 2010; Kierdorf 

et al., 2013; Prinz and Priller, 2014; Schulz et al., 2012). We will cover the wide arrange of 

microglial functions in the next section. 
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3.2. MICROGLIAL FUNCTIONS 

As the most susceptible sensors of changes in the brain, microglia fulfill a wide range of 

functions (Ginhoux et al., 2013; Nayak et al., 2014). During develoment, microglia can promote 

either cell death or cell survival depending on the microenvironment and interactions with 

other cell types (Czeh et al., 2011; Hanisch and Kettenmann, 2007; Mallat and Chamak, 1994; 

Ueno et al., 2013). Moreover, microglia may play a role in regulating neurogenesis during 

development, although direct evidence is still missing (Antony et al., 2011; Cunningham et al., 

2013; Swinnen et al., 2013). However, during adulthood, microglia contribute to neurogenesis 

through the clearance of excessive newborn neurons by phagocytosis, both in the 

hippocampus (Sierra et al., 2010) and in the subventricular zone (Fourgeaud et al., 2016). 

Moreover, during pathological conditions such as aging and neurodegenerative diseases, 

microglial-derived pro-inflammatory cytokines are considered detrimental for adult 

neurogenesis, although the relative contribution of microglia versus other types of cells 

involved in the inflammatory response remains unknown (Sierra and Tremblay, 2014). 

Microglia may also be involved in developmental astrogliogenesis, due to the sequential 

appearance of microglia and astrocytes in the same regions during CNS development (Aquino 

et al., 1996; Fox et al., 2004; Kalman and Ajtai, 2001; Monier et al., 2006; Voigt, 1989), 

although the functional relationship between these cells has not been determined. 

Importantly, the production of pro-inflammatory mediators by neuroinflammatory microglia 

induces the appearance of reactive astrocytes, which lose the ability to promote neuronal 

survival, outgrowth, and synaptogenesis, and induce the death of neurons and 

oligodendrocytes (Liddelow et al., 2017). Microglia may also play a role in myelination by 

producing several growth factors that control proliferation and survival of oligodendrocytes 

and their precursors (Park et al., 2001). Moreover, there might also be a relationship between 

microglia and vasculogenesis, as microglia can be found in temporal and spatial association 

with developing vasculature (Imamoto and Leblond, 1978; Rezaie et al., 1997; Rezaie et al., 

2005), although the functional implications of co-localization have not been clearly defined to 

date (Arnold and Betsholtz, 2013). Furthermore, several studies suggest that microglia may 

also contribute to synapse formation (Coull et al., 2005; Parkhurst et al., 2013), maturation 

(Paolicelli et al., 2011; Zhan et al., 2014), function, and plasticity (Paloneva et al., 2000; 

Roumier et al., 2004; Roumier et al., 2008; Walker and Lue, 2013). Thus, new roles for 

microglia in the brain are emerging and will be further studied in the future.   

However, in this thesis we have focused in the two fundamental microglial functions, 

inflammation and phagocytosis, due to their central role in the response of microglia to 
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pathological conditions. We will also tackle microglial motility and proliferation, as they are 

essential for phagocytosis because they affect microglial surveillance capacities and are key 

features for exerting microglial functions in a localized manner. We will cover all these 

functions in more depth in the next sections. 

3.2.1. Motility  

One of the most characteristic features of microglia is the high motility if their 

processes. In the healthy adult brain, microglia are present as so-called ‘‘ramified microglia’’ 

with highly branched processes (Koizumi et al., 2013). The basic morphology of cortical 

microglia in physiological conditions, as described in mice, is generally represented in a 

complex branch order as follows: the first branch order, usually between seven and nine main 

processes, which extend directly from the cell soma; the second branch order are medium 

processes, which branch from the main processes to several shorter and thinner processes; 

and the third branch order fine processes, which are mostly devoid of expression of ionized 

calcium-binding adapter molecule 1 (Iba-1), a macrophage marker (Baron et al., 2014). Similar 

to the typical morphological properties of microglia in the healthy mouse cortex, microglia in 

the healthy zebrafish brain are also highly branched with dynamic processes, which end with 

stick-like or bulbous tips (Peri and Nusslein-Volhard, 2008; Sieger and Peri, 2013). 

Importantly, microglial processes are constantly and rapidly monitoring their 

immediate surroundings by extension and retraction (Davalos et al., 2005; Nimmerjahn et al., 

2005), and are morphologically plastic with considerable motility, presenting a similar rate of 

extension and retraction of around 1.5 µm/min (Nimmerjahn et al., 2005). In contrast, the 

small-shaped soma of microglial cells has been shown to remain still overtime, and only 5% of 

the cells move at 1–2 µm/h (Nimmerjahn et al., 2005). This constant movement of microglial 

processes while the soma remains stationary is called microglial motility (Hristovska and 

Pascual, 2015).  

Microglial motility can be classified into two modes: baseline surveillance, with 

apparently random non-directed process movements; and microglial chemotaxis, a response 

to cell or tissue damage, with highly targeted movements of microglial processes toward the 

injury site (Madry and Attwell, 2015). Interestingly, microglial baseline surveillance operates 

isotropically, with process extensions and retractions in all directions, whereas chemotaxis is 

anisotropic and involves process retraction on one side of the microglial cell and process 

extension on the other side (Madry and Attwell, 2015) (Figure 1). 
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Microglial cells are the most dynamic brain cells, as no other cells display such 

morphological plasticity in vivo.  The dynamism of microglial processes in vivo has also been 

confirmed in the mouse spinal cord and retinal explants (Davalos et al., 2005; Lee et al., 2008), 

and in the zebrafish embryo (Peri and Nusslein-Volhard, 2008). It has been suggested that 

these dynamic microglial prolongations entirely survey the brain every few hours (Nimmerjahn 

et al., 2005). This surveying capability of microglia is of paramount importance to rapidly 

register any environmental changes caused by cellular death, toxicity or injury in the brain, 

thus allowing them to rapidly act as required (Koizumi et al., 2013). 

3.2.1.1. Motility regulation  

Microglial motility requires cytoskeletal rearrangements, and therefore, microglia have 

high amounts of filamentous actin (Capani et al., 2001). Agents blocking actin polymerization 

such as cytochalasin B or latrunculin B inhibit both microglial baseline surveillance and 

chemotaxis in acute brain slices (Hines et al., 2009). Besides cytoskeleton rearrangement 

requirements, microglia are equipped with a rich repertoire of sensing receptors (Kettenmann 

et al., 2011), which allow them to respond to a variety of chemotactic triggers (Andreasson et 

al., 2016), such as the extracellular nucleotide adenosine triphosphate (ATP), 

neurotransmitters, and others (Madry and Attwell, 2015) (Figure 1).  

3.2.1.1.1. ATP 

A key regulator of microglial morphology and baseline dynamics identified in recent 

years is the extracellular nucleotide ATP, a neuro- and gliotransmitter. ATP is released by 

neurons and astrocytes into the extracellular space and is rapidly degraded by extracellular 

ectonucleotidases to adenosine 5’-diphosphate (ADP), adenosine monophosphate (AMP), and 

adenosine, and each of them signal to microglia on a plethora of promiscuous receptors: P2X 

receptors (ionotropic, activated by ATP), P2Y receptors (metabotropic, activated by ATP and 

ADP), and P1 receptors (metabotropic, activated by adenosine). Interestingly, disruption of 

ATP-dependent signalling in the presence of the ATP/ADP hydrolyzing enzyme apyrase 

decreases the basal motility of microglial processes in vivo (Davalos et al., 2005), while 

application of ATP increases basal motility and cell complexity in mouse retinal explants, an ex 

vivo model with minimal CNS damage (Fontainhas et al., 2011). ATP is also involved in 

microglial chemotaxis because focal applications of ATP cause a striking extension of microglial 

processes towards the source of ATP in vivo and in brain slices (Davalos et al., 2005; Dissing-

Olesen et al., 2014), while process outgrowth persists as long as ATP is applied (Dissing-Olesen 

et al., 2014). In addition, ATP critically mediates microglial chemotaxis towards sites of 
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increased neuronal activity in vivo (Eyo et al., 2014; Li et al., 2012). Therefore, ATP and its 

metabolites are key regulators of microglial motility (Figure 1).  

Importantly, the effects of ATP on microglial motility can be mediated through other 

mechanisms. In addition to inducing microglial chemotaxis, activation of P2Y purinergic 

receptors also elicits an outward K+ current in microglia in acute brain slices. This current can 

be blocked with the non-selective K+ channel antagonist quinine abolishing ATP chemotaxis, 

suggesting its importance in ATP/ADP-mediated microglial motility (Wu et al., 2007). 

Moreover, blocking volume-sensitive chloride channels prevents microglial chemotaxis in 

acute brain slices, while microglial baseline motility is unaffected (Hines et al., 2009). Volume 

regulation may be essential for microglial cell processes navigating through narrow 

extracellular spaces. Volume-sensitive chloride channels (and channels with similar 

pharmacology, like transmembrane channels pannexins (Dahl et al., 2013), also mediate ATP 

release from cells (Mitchell et al., 1998). Thus, ATP signalling can be modulated through these 

pathways. 

3.2.1.1.2. Neurotransmitters 

Another relevant signalling pathway regulating microglial process length and motility 

involves glutamate and gamma amynobutiric acid (GABA), the main excitatory and inhibitory 

neurotransmitters in the brain, respectively (Dissing-Olesen et al., 2014; Fontainhas et al., 

2011). Although initial studies failed to demonstrate any effect of local application of 

glutamate and GABA on microglial motility (Chen et al., 2010; Nimmerjahn et al., 2005; Wu and 

Zhuo, 2008), it has been found that glutamatergic and GABAergic neurotransmission modulate 

microglial morphology and motility in retinal explants: GABA application decrease microglial 

motility, whereas bicuculline, a competitive antagonist of GABAA receptors, increases both the 

size and basal velocity of microglial processes, although application of glutamate alone does 

not change any of the above parameters (Fontainhas et al., 2011). Increases in neuronal 

activity evoked by glutamate or its analogues N-methyl-D-aspartate (NMDA), α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid  (AMPA), or kainic acid (KA), or by blocking 

GABAergic inhibition, lead to microglial process extension and enhanced baseline motility, 

whereas block of AMPA receptors has the opposite effect (Dissing-Olesen et al., 2014; Eyo et 

al., 2014; Fontainhas et al., 2011; Nimmerjahn et al., 2005).  

However, recent studies suggest that glutamate and GABA do not exert a direct effect 

over microglial motility, but through the modulation of extracellular levels of ATP and its 

metabolites. Indeed, in microglia in acute brain slices or retinal explants, only extracellular 



INTRODUCTION 

30 
 

nucleotides such as ATP, ADP, and uridine diphosphate (UDP) evoke inward membrane 

currents through ionotropic P2X receptors and outward potassium currents via G protein-

coupled (P2Y) purinergic receptors (Arnoux et al., 2013; Avignone et al., 2008; Boucsein et al., 

2003; Fontainhas et al., 2011; Ulmann et al., 2013; Wu et al., 2007; Wu and Zhuo, 2008), 

whereas other neurotransmitters (glutamate, GABA, glycine, acetylcholine, dopamine, or 

noradrenaline) generate no current (Avignone et al., 2008; Boucsein et al., 2003; De Simoni et 

al., 2008; Eyo et al., 2014; Wu et al., 2007; Wu and Zhuo, 2008). These results are in agreement 

with the discovery that ionotropic glutamatergic receptors are not present on microglial 

processes and soma when assessed by immunofluorescence in retinal explants (Fontainhas et 

al., 2011). Thus, neuronal activity-evoked changes in microglial morphology and baseline 

motility are most likely not due to direct neurotransmitter signaling from active neurons to 

microglia, but rather are indirectly mediated by local rises of extracellular nucleotide 

concentrations (Figure 1).  

3.2.1.1.3. Other signals 

Besides neurotransmitters, there are other signals which can regulate microglial 

motility. One of such signals is the chemokine fractalkine (CXC3CL1), a chemotactic factor for 

microglia (Réaux-Le Goazigo et al., 2013).  In retinal explants, CX3CR1 knock-out leads to 

reduced microglial baseline surveillance and chemotaxis (Liang et al., 2009).  Thus, CXC3CL1 

signaling promotes microglial motility. Another potent inducer of microglial chemotaxis is the 

plasma protein fibrinogen, acting via its CD11b/CD18 receptor (integrin αMβ2) (Figure 1), in 

diseases with blood-brain barrier (BBB) disruption such as multiple sclerosis (MS), or small 

haemorrhages (Davalos et al., 2012), as shown in an in vivo model of MS and by injecting 

physiological concentrations of fibrinogen into the intact brain. Knocking out the binding motif 

of the CD11b/CD18 receptor led to smaller clusters of microglia around blood vessels, and 

reduced axonal damage (Davalos et al., 2012). In contrast to the few in vivo studies, numerous 

other chemoattractants have been shown to induce chemotaxis of cultured microglia in vitro, 

including various chemokines, tissue complement, and growth factors (Cross and Woodroofe, 

1999; Forstreuter et al., 2002; Nolte et al., 1996). 

The variety of signals regulating microglial motility confirms that a fine regulation of 

motility is of paramount importance, as it allows microglia to accurately sense their 

surroundings and rapidly respond to any relevant extracellular cues. Moving their processes or 

migrating if necessary, microglia will reach any area of the brain and locally exert their various 

functions as required. Importantly, microglial cell numbers can also greatly affect the rest of 
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their functions. Microglial population numbers are controlled by proliferation, a process which 

we will cover next. 

 

Figure 1. Microglial motility regulation. Microglial cells are the most dynamic brain cells, constantly and 
rapidly moving their processes to monitor their immediate surroundings. Microglial motility can be 
classified as baseline surveillance, with apparently random non-directed process movements; and 
microglial chemotaxis, a response to cell or tissue damage, with highly targeted movements of 
microglial processes toward the injury site. Ramified surveying microglia are equipped with a repertoire 
of sensing receptors to respond to a variety of chemotactic triggers. Purinergic receptors respond to 
ATP, a key regulator of microglial baseline surveillance. Focal applications of ATP induce chemotaxis 
towards the source of ATP, causing a directed extension of microglial processes. ATP also mediates 
microglial chemotaxis towards sites of increased neuronal activity in vivo, and mediates the effect of 
neurotransmitters Glu and GABA on microglial motility. The chemokine CXC3CL1 also modulates 
microglial baseline surveillance and chemotaxis. In addition, the plasma protein fibrinogen, acting via its 
CD11b/CD18 receptor (integrin αMβ2), is another potent inducer of microglial chemotaxis in diseases 
with BBB disruption. 

 

3.2.2. Proliferation 

Cell proliferation results in an increase of the number of cells, and is defined by the 

balance between cell divisions and cell loss. The goal of cell proliferation is double: first, it is a 

fundamental process to maintain cell populations, as it counteracts the effects of cell loss 

caused by cell death or differentiation; second, it is a key response to increase the numbers of 

a given cell population when needed. While other microglial responses have been widely 

studied, proliferation is still not well characterized (Shankaran et al., 2007). 

In the case of microglia, the homeostatic maintenance of the microglial population 

during an organism’s lifetime is achieved through proliferation. In the adult mice in 

physiological conditions there is a highly dynamic but tightly regulated control of microglial cell 

numbers (Askew et al., 2017). Microglia display a high proliferation rate which is temporally 
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and spatially coupled to microglial apoptosis, resulting in the maintenance of a relatively 

steady number of cells from early postnatal stages through to aging (Askew et al., 2017). 

Moreover, different brain regions show differences in microglial self-renewal rates which 

correlate with the proliferation of other CNS cells in the respective environment, albeit at a 

lower rate compared to that of other brain cells (Tay et al., 2017). Furthermore, the high 

microglial proliferation enables the microglial population to be formed without a contribution 

from circulating progenitors and it accounts for several rounds of renewal of the whole 

population during the organism’s lifetime (Askew et al., 2017).  

Microglia can also undergo proliferation and increase in numbers in response to injury 

(Grady et al., 2003; Graeber et al., 1988; Liu et al., 2001; Marlatt et al., 2014). Importantly, the 

expansion of the microglial population during neurodegeneration is almost exclusively 

dependent upon proliferation of resident cells (Gomez-Nicola et al., 2013; Gomez-Nicola and 

Perry, 2015; Li et al., 2013). Microglial proliferation has been shown to occur in many 

neurodegenerative diseases such as in different models of MS (Remington et al., 2007), in mice 

models and post-mortem samples from patients with Alzheimer’s disease (AD) (Gomez-Nicola 

et al., 2013; Gomez-Nicola, 2014; Kamphuis et al., 2012; Marlatt et al., 2014), in axonal lesion 

models (Dissing-Olesen et al., 2007), in ischemia (Zhang et al., 2009), and in epilepsy models 

(Nitecka et al., 1984). In a model of acute neurodegeneration (facial nerve axotomy), microglia 

quickly shift from the random proliferation observed in homeostatic circumstances toward 

selected clonal expansion leading to clusters of daughter cells (Tay et al., 2017). Furthermore, 

there is a dual mechanism of microglial cell removal for the restoration of the homeostatic 

microglial network after facial nerve axotomy: first, egress of excess microglia from the area of 

CNS pathology into nearby compartments and, second, their local cell death by apoptosis (Tay 

et al., 2017). Microglia also proliferate during neuroinflammation, and their numbers return to 

normal again via apoptosis once the inflammation is resolved (Stebbing et al., 2015). Inhibition 

of proliferation, coupled with inflammatory mediator production inhibition, has been found to 

be neuroprotective in a rat model of ischemia (Zhang et al., 2009), and the ablation of 

microglial proliferation in a stroke model has been shown to lead to a larger stroke lesion area 

and increased neuronal death (Lalancette-Hebert et al., 2007). Thus, these results point at 

proliferating resident microglia as crucial for a better outcome in cerebral ischemia (Cipriani et 

al., 2014). However, the beneficial or detrimental role of microglial proliferation in brain 

homeostasis in different pathologies in the short and long run still remains to be elucidated.  

Interestingly, multinucleated microglia, or cells with multiple nuclei sharing their 

cytoplasm, are related to both proliferation and inflammation. Microglial multinucleation 
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results from incomplete mitosis because it is caused by nucleokinesis without cytokinesis due 

to a failure of abscission, followed by reversal of the earlier stages of cytokinesis (Hornik et al., 

2014). Moreover, this unresolved nucleokinesis has been shown to be induced by 

inflammation in primary microglia in vitro (Lee et al., 1993; Suzumura et al., 1999). During 

chronic inflammation as a result of persistent infection or foreign bodies, macrophages can 

form multinucleated giant cells (MGCs) (McNally and Anderson, 2005; Quinn and Schepetkin, 

2009). MGCs derived from microglia have been implicated in a variety of brain pathologies. In 

particular, human immunodeficiency virus (HIV)-associated dementia is mediated by HIV-

infected microglia, which become MGCs, but how these infected multinucleate microglia cause 

dementia is unclear (Ghorpade et al., 2005; Nardacci et al., 2005). Microglia also form MGCs in 

the spinal cord of rats expressing a mutant Cu/Zn superoxide dismutase gene, modelling 

amyotrophic lateral sclerosis in humans (Fendrick et al. 2007). Amyloid-β (Aβ) related angiitis, 

is associated with an accumulation of microglia and MGCs containing intracellular deposits of 

Aβ (Melzer et al. 2012). Whether Aβ can induce microglia to form MGCs is unknown. In 

addition, MGCs derived from microglia accumulate in the brain with age (Hart et al. 2012). 

However, the function, dysfunction or lack of function of MGCs is unclear (McNally and 

Anderson 2011). Multinucleate microglia induced in vitro in a microglial cell line have been 

found to behave similarly to mononucleate microglia, but are larger and have a higher capacity 

to phagocytose large beads and cells (Hornik et al., 2014). Interestingly, multinucleate 

microglia have a disproportionately higher capacity to phagocytose the larger beads, and a 

substantially increased ability to phagocytose dead and live cells, relative to mononucleate 

microglia (Hornik et al., 2014). Nevertheless, the consequences of microglial multinucleation 

on their functions in vivo remain unknown. 

Thus, microglial proliferation is a process that can greatly affect the outcome of key 

microglial functions in a population level. One of such functions is inflammation, which we will 

cover next in more depth. 

3.2.3. Inflammation 

As the innate immune cells of the brain, one of the main roles of microglia is to initiate 

an inflammatory response. Inflammation is a protective response of the body to harmful 

stimuli (Ferrero-Miliani et al., 2007). The classical signs of inflammation are heat, pain, redness, 

swelling and loss of function. Inflammation is considered a mechanism of the innate immune 

system because it is a generic response given to any pathological stimulus. In contrast, the 

mechanisms of adaptive immunity are specific to each pathogen (Alberts et al., 2002). The 



INTRODUCTION 

34 
 

function of inflammation is to eliminate the initial cause of cell injury, clear out dead cells and 

tissues damaged from the original insult and the inflammatory process, and to initiate tissue 

repair (Lucas et al., 2006).  

Inflammation can be triggered by a variety of stimuli including pathogens, such as 

bacteria, fungi, parasites, and viruses (Nayak et al., 2014). Nevertheless, pathogens very rarely 

enter the brain parenchyma, thanks to the blood brain barrier, a highly selective 

semipermeable membrane formed by endothelial cells, which separates the circulating blood 

from the brain parenchyma (Pardridge, 2005). Thus, inflammation is more commonly induced 

by other triggers such as brain injury, disease associated proteins, environmental toxins, and 

uncontrolled death (Block and Hong, 2005).  

When subjected to an inflammatory stimulus, microglia respond by releasing a variety 

of soluble factors, such as pro- and anti-inflammatory cytokines, chemokines, complement 

proteins, free radicals, and trophic factors (Nayak et al., 2014). Among these, cytokines play a 

central role. Cytokines are a class of proteins which regulate inflammation, constituting a 

diverse group of pro- and anti-inflammatory factors modulating cellular activities such as 

growth, survival, differentiation, and neuronal excitability (Vilček, 2003). Cytokine binding to 

its receptors in neurons and glia triggers a cascade of signalling events that regulate various 

cellular functions such as cell adhesion, cytokine secretion, cell survival, apoptosis, 

angiogenesis, and proliferation (Devi, 2000). Importantly, microglia are not the only source of 

these cytokines, but they can also be released by astrocytes, oligodendrocytes, endothelial 

cells and even neurons (Benveniste, 1992; Cámara-Lemarroy et al., 2010; Watkins and Maier, 

2002). 

Cytokines are broadly categorized as pro-inflammatory or anti-inflammatory (Figure 2).  

3.2.3.1. Pro-inflammatory cytokines 

Pro-inflammatory cytokines play a role in initiating the inflammatory response. The 

most extensively studied pro-inflammatory cytokines are interleukin 1 beta (IL-1β), tumour 

necrosis factor α (TNFα), and interleukin 6 (IL-6) (Vezzani et al., 2011) (Figure 2). Brain 

inflammation has been reported in all acute and chronic neurodegenerative diseases, such as 

AD, Parkinson’s, stroke, MS, epilepsy, etc, and even in mood disorders (Amor et al., 2010; 

Vezzani et al., 2011). In these conditions, IL-1β, TNFα, and IL-6 are first expressed in microglia 

and astrocytes, and cytokine receptor expression is upregulated in microglia, astrocytes and 

neurons (Vezzani and Granata, 2005). Interestingly, there are other less known pro-

inflammatory cytokines, such as M-CSF (macrophage colony stimulating factor), which is 
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involved in the microglial phagocytosis impairment observed in brain tumours (Gabrusiewicz et 

al., 2011; Jinushi et al., 2007). 

Although the functions of many inflammatory mediators remain unknown, clear 

evidence exists for a detrimental role of pro-inflammatory cytokines in many brain 

pathologies. In fact IL-1β and TNFα are known to induce excitotoxicity, or cell death provoked 

by over-activation of glutamatergic receptors, by elevating intracellular and extracellular 

glutamate levels in human and rat primary neuron cultures in vitro (Ye et al., 2013). Moreover, 

the facilitatory role of TNFα in glutamate excitotoxicity is mediated by inhibition of astrocytic 

glutamate transporters, thus blocking glutamate re-uptake from the extracellular space 

(Pickering et al., 2005). Additionally, TNFα has direct effects on glutamate transmission, as it 

increases the expression of glutamatergic AMPA receptors on synapses (Pickering et al., 2005). 

As a result of regulating neuronal neurotransmitter functions IL-1β is epileptogenic (Vezzani et 

al., 2013b) as we will discuss later in ”Section 3.5. Pathological features of epilepsy”. 

Importantly, pro-inflammatory cytokines exert further detrimental effects when they diffuse 

into the bloodstream attracting leukocytes to the site of inflammation and upregulate the 

expression of cellular adhesion molecules, which are necessary for leukocytes to attach and 

migrate into the brain (Engelhardt, 2008), an invasion that can be potentially detrimental 

(Greve and Zink, 2009). Thus, prolonged pro-inflammatory cytokine release exerts detrimental 

effects during brain pathologies (Figure 2). 

3.2.3.2. Anti-inflammatory cytokines 

Anti-inflammatory cytokines are instrumental for controlling both the extent and the 

duration of tissue inflammation. They play a role in controlling the pro-inflammatory cytokine 

response (Opal and DePalo, 2000) and induce the resolution of the inflammatory processes, 

thus preventing the occurrence of detrimental effects associated with chronic inflammation 

(Vezzani et al., 2013b) (Figure 2). TGFβ is one of the best known anti-inflammatory cytokines 

(Ruocco et al., 1999). TGFβ production induces a potent intrinsic protective response during 

pathological conditions in the brain (Ruocco et al., 1999), and it has been suggested to protect 

neurons against apoptosis, excitotoxicity and possibly Aβ neurotoxicity (Vivien and Ali, 2006). 

However, anti-inflammatory cytokines can also exert detrimental effects. TGFβ has been linked 

to epileptogenesis (Vezzani et al., 2013b) and macrophage inhibitory cytokine 1 (MIC-1) is 

involved in the microglial phagocytosis impairment observed in brain tumours (Wu et al., 

2010). 
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Figure 2. Inflammation. Inflammation is a protective response of the body to harmful stimuli and it is 
initiated by microglia in the brain. When subjected to an inflammatory stimulus, microglia release pro- 
and anti-inflammatory cytokines. Importantly, microglia are not the only source of these cytokines, but 
they can also be released by astrocytes, oligodendrocytes, neurons, endothelial cells, perivascular and 
meningeal macrophages, and infiltrating immune cells. Pro-inflammatory cytokines (IL-1β, TNFα, IL-6, 
M-CSF) contribute to the development of acute inflammation, a fundamental response to protect the 
brain. However, pro-inflammatory cytokines can also contribute to the generation of an uncontrolled or 
prolonged inflammation that is potentially harmful, and if sustained long enough can result in chronic 
inflammation, a major cause of cellular damage. Anti-inflammatory cytokines (TGFβ, MIC-1) modulate 
the pro-inflammatory cytokine response controlling both the extent and the duration of tissue 
inflammation by resolving inflammatory processes, thus preventing the occurrence of detrimental 
effects associated with chronic inflammation.  

 

Overall, pro-inflammatory cytokines contribute to the development of acute 

inflammation, a fundamental response generated to protect the brain against harmful stimuli 

such as microbe or virus infections (Cherry et al., 2014). Nevertheless, these cytokines can also 

contribute to the generation of an uncontrolled or prolonged inflammation that is potentially 

harmful, and if sustained long enough can result in chronic inflammation, a major cause of 

cellular damage (Cherry et al., 2014) (Figure 2). This is particularly relevant in 

neurodegenerative diseases, where chronic inflammation is common (Frank-Cannon et al., 

2009). As the main releasers of inflammatory mediators in the brain, microglial involvement in 

neurodegenerative diseases has been extensively studied and widely considered detrimental 

(Ransohoff, 2016). Nevertheless, microglia exert other more benign function which has 

attracted less attention, as the brain professional phagocytes. 

3.2.4. Phagocytosis 

Phagocytosis refers to the cellular process of eating (Sierra et al., 2013). It describes 

the recognition, engulfment, and degradation of large (>0.5 μm), particulated organisms or 

structures (Mukherjee et al., 1997), and, is mostly performed by specialized, professional 

phagocytes: tissue macrophages, dendritic cells (DCs), and neutrophils. In the brain, microglia 
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are the professional phagocytes. Additionally, other cells such as astrocytes (Magnus et al., 

2002) and neuroblasts (Lu et al., 2011) can be recruited to perform phagocytosis, although 

they are not as efficient as microglia and can delay phagocytosis for several hours in vitro 

(Magnus et al., 2002; Parnaik et al., 2000). Together with inflammation, phagocytosis 

composes the first line of defence against pathogens by the innate immune system and also 

helps to initiate the more pathogen-specific adaptive immune response through antigen-

presentation to T lymphocytes (Litman et al., 2005).  

Phagocytosis comprises three different phases: “find-me”, the stage in which 

microglial processes find the phagocytic target; “eat-me”, the stage where a direct microglia-

target contact is established via a receptor-ligand interaction and recognition and engulfment 

take place; and “digest-me”, the stage in which the phagocytic cup closes forming the 

phagosome, which further evolves into a phagolysosome to execute the degradation of the 

target (Savill et al., 2002) (Figure 3). Importantly, microglial phagocytosis could be potentially 

modulated if changes occur in any of these three stages. The phagocytic phases and their 

regulators will be covered in more depth in the upcoming ”Section 3.3. Stages of apoptotic cell 

phagocytosis and mechanisms of regulation”.  

Importantly, microglia have been shown to phagocytose all kinds of cargo during 

physiological and pathological conditions, thus affecting brain function and homeostasis at 

many different levels. Microglial phagocytic targets include specific brain structures and 

molecules such as synapses, axonal and myelin debris, and pathology-related proteins such as 

Aβ (Sierra et al., 2013), and other targets shared with macrophages, such as microbes and 

dead cells (Diaz-Aparicio et al., 2016). 

3.2.4.1. Synaptic pruning 

During the development of the nervous system, more synapses form than are 

ultimately required, and remodelling is thus needed to achieve precise wiring of brain circuits. 

Synapse remodelling refers to the elimination (or “pruning”) of unnecessary synapses and the 

strengthening of remaining synapses (Zuchero and Barres, 2015). Microglia may play a role in 

shaping structural features of synaptic connections within neural circuits during development 

and following injury by phagocytosing pre- and post-synaptic components.  

Microglia constantly contacts synapses (Tremblay et al., 2010; Wake et al., 2009). In 

the postnatal hippocampus, specific presynaptic and postsynaptic proteins have been 

identified inside microglial processes following synaptic contacts (Paolicelli et al., 2011) and 

there is evidence of increased phagocytosis of synaptic debris by microglia after enhanced 
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developmental plasticity in the visual cortex (Tremblay et al., 2010). Moreover, there is direct, 

quantified evidence of microglia phagocytosing synapses (mostly, presynaptic elements) in the 

developing visual system (Schafer et al., 2012). These data support a novel role for microglia in 

monitoring synapses in the healthy developing brain (Sierra et al., 2013).  

Microglia-synapse interactions are also observed in several neurodegenerative 

diseases. In the ischemic cortex, microglia-synapse contacts become markedly prolonged 

(Wake et al., 2009), but only a minority of boutons disappear after being contacted by 

microglia and phagocytosis is not observed (Wake et al., 2009). Importantly, a reduction in the 

function and number of synapses is an early event in the pathogenesis of AD, Huntington’s 

disease, and other neurodegenerative diseases (Perry et al., 2010). C1q, the initiating protein 

of the classical complement cascade, and microglia have been found to mediate synapse loss 

in mouse models of early AD (Hong et al., 2016). Moreover, viral infection of adult 

hippocampal neurons induces complement mediated elimination of presynaptic terminals in a 

murine West Nile virus disease model (Vasek et al., 2016). Therefore, these and similar studies 

hint at a relationship between microglia and synaptic and cognitive defects in 

neurodegenerative diseases, but further investigation is needed to demonstrate a direct link 

and underlying mechanisms (Miyamoto et al., 2013). 

3.2.4.2. Amyloid β 

In addition to the uncertain role of microglial phagocytosis in synaptic pruning, 

microglia might also phagocytose Aβ deposits. Aβ is a small peptide produced by proteolytic 

cleavage from amyloid precursor protein (APP) by β- and γ-secretases. The most pathogenic 

form of Aβ forms fibrils, insoluble aggregates found in amyloid plaques in the brains of AD 

patients (Xu and Ikezu, 2009). Due to the location of microglia surrounding plaques in human 

and in mouse models of AD, microglia was proposed to phagocytose Aβ (Paresce et al., 1996). 

Indeed, microglia phagocytoses Aβ in vitro (Liu et al., 2012; Liu et al., 2005; Paresce et al., 

1996) and Aβ also induces a positive microglial chemotaxis in vivo (Huang et al., 2010; Meyer-

Luehmann et al., 2008), which can explain the positioning of microglia around plaques. 

Nevertheless, microglia has not been observed to phagocytose Aβ in vivo. Although Aβ 

internalization by microglia has been documented in  organotypic hippocampal slices (Hellwig 

et al., 2015) and in vivo (Bolmont et al., 2008), others report incomplete processing of Aβ 

(Grathwohl et al., 2009; Krabbe et al., 2013; Spangenberg and Green, 2017). In support of the 

latter, in APP mice, a model of AD, the size of the Aβ plaques remained constant and no 

evidence of phagocytosis or plaque clearance was obtained using multiphoton microscopy 

imaging (Meyer-Luehmann et al., 2008). In agreement, a detailed 3D reconstruction of 



INTRODUCTION 

39 
 

microglia and amyloid fibrils in APP mutated mice in vivo showed no Aβ within microglia 

(Stalder et al., 2001). In addition, depletion of microglia in three different AD mouse models 

has no effect on fibrillar or soluble Aβ accumulation, indicating that microglia are not 

responsible for Aβ clearance in these models (Grathwohl et al., 2009; Spangenberg and Green, 

2017). Furthermore, microglia from old mutant APP/presenilin 1 mice have a decreased 

expression of phagocytic genes and increased expression of pro-inflammatory cytokines (TNFα, 

IL-1β, IL-6), compared with wild type mice (Hickman et al., 2013). Moreover, the BBB is 

partially disturbed in AD patients, facilitating the extravasation of circulating monocytes (Lai 

and McLaurin, 2012). Macrophages have higher Aβ capacity intake than microglia in vitro (Lai 

and McLaurin, 2012), and ablation experiments have suggested that the Aβ burden is cleared 

by blood-borne macrophages, but not resident microglia (Simard et al., 2006). Hence, the role 

of microglia in Aβ phagocytosis in vivo is yet to be elucidated.  

3.2.4.3. Axonal and myelin debris 

Microglia have been shown to phagocytose axonal debris after nerve injury in the 

brain, where this debris is considered one of the obstacles for axonal outgrowth. Nevertheless, 

the phagocytosis of axonal debris has only been shown in vitro (Sierra et al., 2013). Indeed, in 

cortical rat explants where growing neurites were sectioned, debris was cleared by microglia 

(Jin and Yamashita, 2016; Tanaka et al., 2009). Additionally, in a compartmentalized co-culture 

model, different treatments induced axonal degeneration and microglia rapidly cleared the 

axonal debris (Hosmane et al., 2012). In both set ups, axonal debris (lacking myelin) had a 

detrimental effect on axon regrowth, which was prevented by microglial phagocytosis 

(Hosmane et al., 2012; Tanaka et al., 2009), suggesting that enhancing microglial phagocytosis 

could be a novel therapeutical tool in traumatic brain injuries.  

However, more attention has been put into the mechanisms of myelin debris 

clearance. In physiological conditions, myelin pieces are gradually released from aging myelin 

sheaths and are subsequently cleared by microglia (Safaiyan et al., 2016). With age, myelin 

fragmentation increases and leads to the formation of insoluble, lipofuscin-like lysosomal 

inclusions in microglia, contributing to microglial senescence and immune dysfunction in aging 

(Safaiyan et al., 2016). Myelin debris clearance is particularly important during MS and in spinal 

cord and nerve injuries. In spinal cord injury, the degeneration of the severed axons is followed 

by degradation of myelin and apoptosis of myelinating cells, oligodendrocytes (Crowe et al., 

1997). This provokes the accumulation of myelin debris (Stys et al., 2012), which interferes 

with axonal regeneration and repair, rendering myelin clearance mandatory for recovery 
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(Wang et al., 2002). However, contrary to the peripheral nervous system, myelin clearance 

after injury is very inefficient in the CNS, due to microglial poor phagocytosing capabilities 

together with poor or slow recruitment of macrophages (Gaudet et al., 2011). However, 

myelin debris is still observed in the human spinal cord years after the injury (Buss et al., 

2004). Microglia phagocytose myelin to some extent in mouse models of MS (Nielsen et al., 

2009). Importantly, a microglial phenotype supportive of remyelination has been described in 

a cuprizone induced mouse model of MS, where myelin-phagocytosing microglia express genes 

involved not only in phagocytosis but also in the activation, migration, proliferation, and 

differentiation of oligodendrocyte precursor cells (Olah et al., 2012). While it remains to be 

directly assessed whether myelin phagocytosis triggers this remyelination-supportive 

phenotype, this data suggests that the beneficial consequences of enhancing microglial 

phagocytosis of myelin may be two-fold: clearing myelin and facilitating remyelination (Sierra 

et al., 2013). 

3.2.4.4. Dead cells 

Besides specific brain structures and molecules, microglia engulf another type of 

phagocytic cargo throughout their whole lifespan, in both physiological and pathological 

conditions: dead cells. Next, apoptotic and necrotic cell death will be discussed. 

3.2.4.4.1. Apoptotic cells 

Apoptosis, or programmed cell death, is an ubiquitous process in organisms. The 

turnover of old cells to be replaced by new cells is a central part of both embryonic and 

postnatal development and of everyday tissue homeostasis (Arandjelovic and Ravichandran, 

2015). Apoptosis is thought to account for the majority of turnover cells in physiological 

conditions (Nagata et al., 2010). Brain development is a very wasteful process characterized by 

extensive neuronal apoptosis, which continues through adulthood in the neurogenic niches in 

healthy brain, where the majority of newborn neurons die long before reaching the mature 

neuron state (Sierra et al., 2010). Moreover, apoptosis is a key feature in most of the 

neurodegenerative diseases (Mattson, 2000).  

Apoptosis can occur via two main mechanisms: the extrinsic or the intrinsic pathway 

(Barber, 2001; Taylor et al., 2008). While the extrinsic pathway is activated by signalling 

through cell surface death receptors, the intrinsic pathway is activated by cellular death and 

mitochondrial damage (Reubold and Eschenburg, 2012). However, both pathways converge on 

the activation of the executioner caspases (caspases 3, 6 and 7), which induce the 

morphological and biochemical changes associated with apoptosis (Taylor et al., 2008). 
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Morphological changes include cellular shrinkage with cytoplasm condensation, cap-shaped 

chromatin masses lying against the nuclear membrane, nuclear condensation (pyknosis), 

nuclear fragmentation (karyorrhexis), and the subsequent formation of membrane-confined 

apoptotic bodies containing a variety of cytoplasmic organelles and nuclear fragments (Eidet et 

al., 2014; Krysko et al., 2008; Poon et al., 2014). Importantly, the integrity of the plasma 

membrane is maintained up to an advanced stage of the death process (Marín-Teva et al., 

2014). Biochemically, apoptosis is characterized by transient exposure of phosphatidylserine 

(PS), a phospholipid that resides in the inner side of the cytoplasmic membrane and is 

transiently translocated to the external surface during early apoptosis (Krysko et al., 2008). 

However, it has been proposed that the crucial feature of apoptosis in vivo is that it leads to 

the recognition and engulfment of intact cells or membrane-bound apoptotic bodies by 

phagocytes (Savill et al., 2002).  

3.2.4.4.2. Necrotic cells 

Death by necrosis is also an important component of many brain diseases. Necrosis 

remains an obscure process, and the molecular details of its execution are not well-known 

(Sierra et al., 2013). Necrosis is morphologically characterized by swelling of the organelles 

(endoplasmic reticulum, mitochondria) and the cytoplasm, followed by collapse of the plasma 

membrane and lysis of the cells (Krysko et al., 2008; Zong and Thompson, 2006), with spillover 

of cellular contents in the extracellular space (Savill et al., 2002). Two main forms have been 

recognized: accidental necrosis, an uncontrolled type of pathological cell death (Zong and 

Thompson, 2006), lacking underlying signalling events and occurring under extreme physic-

chemical conditions, such as abrupt anoxia, sudden shortage of nutrients, and exposure to 

heat or detergents (Krysko et al., 2008; Savill et al., 2002); and necrosis-like programmed cell 

death, such as necroptosis, well defined as a viral defence mechanism, allowing the cell to 

undergo “cellular suicide” in a caspase-independent fashion in the presence of viral caspase 

inhibitors (Vanden Berghe et al., 2014), and without chromatin condensation (Leist and 

Jaattela, 2001).  

3.2.4.4.3. Functional consequences of the phagocytosis of apoptotic cells 

The vast amounts of cell death that can occur during physiological or pathological 

conditions mandate an active and efficient cleanup system. Microglia are the cells in charge of 

phagocytosing these dead cells. If apoptotic cells are not rapidly phagocytosed, they evolve to 

secondary necrotic cells, losing the integrity of their plasma membrane and spilling over their 

intracellular contents (Poon et al., 2014). This has detrimental consequences for the 
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surrounding tissue, as the leakage of intracellular contents is toxic for the tissue and may be 

responsible for the initiation of inflammation (Poon et al., 2014) or autoimmune diseases 

(Nagata et al., 2010) (Figure 3). Importantly, injecting apoptotic cells in the inflamed 

peritoneum in vivo leads to their clearance by peripheral macrophages and induces an 

increase in anti-inflammatory cytokine production (Huynh et al., 2002). Moreover, in vitro 

clearance of apoptotic neutrophils by monocytes treated with bacterial lipopolysaccharides 

(LPS) actively suppresses the initiation of inflammatory and immune responses, in part through 

the release of anti-inflammatory cytokines (Byrne and Reen, 2002). The anti-inflammatory role 

of phagocytosis in microglia has only been explored in vitro and involves the release of anti-

inflamamtory cytokines such as TGFβ and trophic factors such as NGF (nerve growth factor) 

(De Simone et al., 2003; Fraser et al., 2010) that may potentially facilitate the functional 

recovery of the surrounding compromised neurons (Diaz-Aparicio et al., 2016). Thus, the rapid 

and efficient clearance of the cell corpses is crucial for the maintenance of tissue homeostasis. 

 

Figure 3. Phagocytosis of apoptotic cells and functional consequences. Phagocytosis refers to the 
cellular process of eating and it describes the recognition, engulfment, and degradation of large (>0.5 
μm), particulated organisms or structures. Apoptosis, or programmed cell death, is an ubiquitous 
process in organisms. Importantly, phagocytosis of apoptotic cells is actively anti-inflammatory in vitro. 
Nevertheless, if apoptotic cells are not rapidly phagocytosed they evolve to secondary necrotic cells, 
losing the integrity of their plasma membrane and spilling over their toxic intracellular contents, a 
process that could be harmful for the surrounding brain tissue and could also trigger an inflammatory 
response. Thus, the rapid and efficient clearance of the cell corpses is crucial for the maintenance of 
tissue homeostasis.  

 

Although the clearance of apoptotic cells has obvious implications for the correct 

functioning of the brain in health and disease, and is a well described process in peripheral 

inflammatory diseases, microglial phagocytosis of apoptotic cells remains a notoriously 

unexplored process in vivo, in terms of its efficiency in pathological conditions, its mechanisms 
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of execution, its beneficial or detrimental consequences, and its ultimate impact in maintaining 

tissue homeostasis (Sierra et al., 2013). The goal of this thesis is to analyze microglial 

phagocytosis and apoptosis in the brain in pathological conditions, focusing on epilepsy. 

Moreover, we also assessed the mechanisms regulating microglial phagocytosis and the effects 

of a phagocytosis impairment in the brain.  

 

3.3. STAGES OF APOPTOTIC CELL PHAGOCYTOSIS AND MECHANISMS OF 
REGULATION: “FIND-ME”, “EAT-ME”, AND “DIGEST-ME” 

In recent years significant progress has been made in understanding the steps involved 

in apoptotic cell clearance in vivo. First, apoptotic cells release “find-me” signals that attract 

microglia. Once microglia have reached the dead cells they recognize them via “eat-me” 

signals and proceed to engulf them, undergoing extensive cytoskeletal rearrangements 

(Arandjelovic and Ravichandran, 2015; Sierra et al., 2013). Finally, the “digest-me” stage takes 

place, where microglia close the phagocytic cup, forming the phagosome and then proceeding 

to the degradation of the apoptotic cells in the lysosomal compartment (Diaz-Aparicio et al., 

2016; Hochreiter-Hufford and Ravichandran, 2013; Sierra et al., 2013) (Figure 4).  

 

Figure 4. Three-step model of microglial phagocytosis. In physiological conditions, microglial processes 
are highly motile and respond to chemoattractant molecules released by damaged or apoptotic cells 
(“find-me” signals) such as fractalkine and the extracellular nucleotide ATP. Next, an engulfment 
synapse is formed between a series of microglial receptors and their ligands in the membrane of the 
apoptotic cell (“eat-me” signals), leading to the tethering and engulfing of the apoptotic cell in a 
phagosome. The phagosome becomes mature by fusing with lysosomes and other organelles, and the 
apoptotic cell is fully degraded in the phagolysosome in less than 2h. Adapted from (Sierra et al., 2013). 

 

3.3.1. “Find-me” stage 

Given their broad distribution throughout the brain and their highly motile processes, 

microglia can fortuitly encounter apoptotic cells and begin the phagocytic process. 
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Nevertheless, for an efficient clearance of apoptotic cells, microglia need to be guided to the 

target cells. Therefore, the release of “find-me” signals by apoptotic cells is critical to recruit 

microglia to the dying cells. Apoptotic cells can release several different “find-me” signals. 

These include the chemokine fractalkine, the lipids lysophosphatidylcholine (LPC) and 

sphingosine-1-phosphate (S1P), and extracellular nucleotides (ATP, UTP) (Arandjelovic and 

Ravichandran, 2015; Elliott et al., 2009; Gude et al., 2008; Lauber et al., 2003; Sierra et al., 

2013; Truman et al., 2008). 

CXC3CL1 is highly expressed in neurons, while its receptor, CX3CR1 is only expressed 

by microglia in the healthy brain (Eyo et al., 2016; Jung et al., 2000; Mizutani et al., 2012). In 

physiological condition CX3CL1 is tethered to the neuronal membrane, but when the cell 

undergoes apoptosis, CX3CL1 is cleaved releasing an extracellular soluble fragment that acts as 

a chemotactic factor for microglia (Noda et al., 2011; Sokolowski et al., 2014; Truman et al., 

2008).  Another “find-me” signal released by apoptotic cells is LPC (Lauber et al., 2003), a 

phospholipid which promotes microglial precursor entry into the brain in zebrafish embryos 

(Xu et al., 2016). The effects of S1P, another lipid secreted by apoptotic cells which stimulates 

chemotaxis (Gude et al., 2008), have not been studied on microglia yet (Hochreiter-Hufford 

and Ravichandran, 2013). 

Importantly, extracellular nucleotides have gained a lot of attention in the past years, 

due to their strong effect on microglia (Elliott et al., 2009). The extracellular nucleotides ATP 

and uridine 5’-triphosphate (UTP) are released by apoptotic cells to attract phagocytes (Elliott 

et al., 2009). One route through which nucleotides are released from apoptotic cells in vitro is 

through pannexin1 channels (Chekeni et al., 2010). Most ATP receptors are expressed by 

microglia (Crain et al., 2009; Domercq et al., 2013), and besides the already mentioned effects 

of ATP and its metabolites on microglial motility, they have also been found to regulate 

phagocytosis (Fang et al., 2009; Orr et al., 2009). Exposure of primary microglia to a high 

concentration of ATP or a P2X7 agonist induced a reduction of phagocytosis of fluorescent 

latex microbeads, while knockdown or blockade of P2X7 efficiently restored phagocytotic 

activity (Fang et al., 2009). Moreover, LPS-treated primary microglia showed a decrease in 

particle uptake when treated with agonists of A2A, a type of P1 receptor (Orr et al., 2009), 

suggesting that A2A stimulation may modulate substrate engulfment by activated microglia. 

Similarly, uridine diphosphate (UDP), the product of degradation of UTP by extracellular 

ectonucleotidases, acts on microglial P2Y6 receptors to facilitate phagocytosis of microspheres 

both in vitro and in vivo (Koizumi et al., 2007). Thus, extracellular nucleotides might also 

regulate microglial phagocytosis of apoptotic cells in vivo. 
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Once the phagocyte has reached the target a direct cell membrane contact is 

established via a receptor-ligand interaction and the “eat-me” stage of phagocytosis takes 

place (Sierra et al., 2013). 

3.3.2.  “Eat-me” stage 

The eating stage of phagocytosis involves the recognition and engulfment of the 

apoptotic cell by microglia (Sierra et al., 2013). Phagocytes are equipped with an array of 

receptors which enable them to recognize “eat-me” signals expressed by their targets and 

discriminate them from living cells (which express “don’t-eat-me” signals) (Ravichandran, 

2010; Savill et al., 2002). Some of these receptors serve to tether the phagocyte and the target 

together while others trigger internalization (Underhill and Goodridge, 2012). 

The receptors for apoptotic cell clearance belong to one main type: Apoptotic cells-

associated cellular patterns (ACAMPs). The main exponent of ACAMPs is PS, a cell membrane 

lipid of the inner layer which is exposed in the outer leaflet of the cell membrane during 

apoptosis. Detection of ACAMPs, is mediated directly by several receptors, including brain-

specific angiogenesis inhibitor 1 (BAI-1) (Armstrong and Ravichandran, 2011), and by bridging 

molecules such as milk fat globule-epidermal growth factor (MFG-E8). Another important 

receptor that signals internalization is triggering receptor expressed on myeloid cells-2 

(TREM2), preferentially expressed in microglia in the brain (Hickman and El Khoury, 2014; 

Hickman et al., 2013) whose signalling mechanisms are unknown, but TREM2-deficint mice and 

cells have shown that TREM2 is able to suppress inflammatory cytokine production (Ito and 

Hamerman, 2012; Takahashi et al., 2005; Wang et al., 2015; Zhong et al., 2015) and facilitate 

phagocytosis of latex beads by primary microglia (Takahashi et al., 2005) and apoptotic cells by 

BV2 microglial cell line (Kawabori et al., 2015). TREM2 is known to interact with the signalling 

adapter protein named DNAX-activation protein of 12 kD (DAP12) (Paloneva et al., 2002), 

mostly expressed by microglia in the brain (Hickman and El Khoury, 2014; Hickman et al., 

2013). However its ligand in apoptotic cells remains elusive. Several candidates have been 

proposed, namely, anionic oligosaccharides such as bacterial lipopolysaccharides (Daws et al., 

2014; Quan et al., 2008), lipoproteins like low density lipoprotein (LDL) and apolipoproteins 

like apolipoprotein E (ApoE) (Atagi et al., 2015; Yeh et al., 2016), extracellular nucleic acids 

(Kawabori et al., 2015), and heat shock protein 60 (Hsp60) (Stefano et al., 2009). Hsp60 is 

exposed in the surface of apoptotic cells (Goh et al., 2011) and increases the in vitro 

phagocytic activity of a microglial cell line enriched in TREM2 (Stefano et al., 2009). Other 

apoptotic cell phagocytosis receptor is Mer tyrosine kinase (MerTK), well known for its 

immunosuppressive signaling (Caberoy et al., 2012). Importantly, adult mice deficient in 
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microglial MerTK exhibit a marked accumulation of apoptotic cells specifically in the 

neurogenic regions of the CNS (Fourgeaud et al., 2016). Another apoptotic cell phagocytosis 

receptor is the G protein coupled receptor GPR34 (Preissler et al., 2015). Interestingly, 

microglia show reduced phagocytosis activity in both retina and acutely isolated cortical slices 

of GPR34-deficient mice (Preissler et al., 2015). 

In addition to the direct recognition of the targets by microglial cell membrane 

receptors, engulfment can also be triggered by soluble opsonins, molecules that bind to 

receptors signalling internalization in the microglia. Antibodies such as immunoglobulin G and 

proteins of the complement system such as C3b, bind to phagocyte Fc receptors and 

complement receptor 3 (CR3), respectively, and mediate phagocytosis (Underhill and 

Goodridge, 2012). The level of expression of the receptors involved in phagocytosis may 

change under different stimuli such as inflammation (Falsig et al., 2008) but it is not known 

whether they ultimately impact the efficiency of microglial phagocytosis.  

These receptors and their targets closely interact in what has been termed 

“engulfment synapse” or “phagocytic synapse” (Dustin, 2012; Ravichandran, 2010; Underhill 

and Goodridge, 2012). Similar in size (0.5 μm in diameter) and purpose (close cell–cell contact) 

to its immunological and neural counterparts, phagocytic synapses are specialized regions of 

the membrane where the apoptotic cell and the phagocyte interact through microclusters of 

receptors. In contrast to the immunological synapse and the synapses formed between 

neurons, phagocytic synapses are short-lived and last only a few minutes (Dustin, 2012). Once 

the contact is established, phagocytic synapses initiate a series of intracellular pathways that 

lead to the remodelling of the phagocyte cytoskeleton through actin polymerization and 

membrane composition, triggering the formation of pseudopodia that form a phagocytic cup 

engulfing the target (Lee et al., 2007). Of the complex process of signal transduction and 

formation of the phagocytic cup, very little is known in microglia. 

3.3.3. “Digest-me” stage 

The phagocytic cup closes up forming the phagosome around the target. To execute 

the degradation of the target, phagosomes go through a process of maturation in which they 

fuse sequentially with early and late endosomes, and lysosomes, to form phagolysosomes 

(Desjardins et al., 1994). These phagolysosomes contain hundreds of proteins, including 

hydrolases such as cathepsins to digest the target; and proton pumps such as vacuolar ATPases 

(vATPases) to acidify the medium (Garin et al., 2001). The acidic pH found in phagolysosomes 

(pH ≤ 5) is essential for the lysosomal degradation capabilities, as it is optimal for most 
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hydrolases. Interestingly, the signalling associated with the acidic Ph of lysosomes deactivates 

the generation of radicals from the oxidative burst (Li et al., 2010). Again, the process of 

phagosome formation and cargo degradation has been barely addressed in microglia. Live 

imaging showed that in the nematode C. elegans microglial vATPases are required for 

phagosome–lysosome fusions and consequently to degrade cargo (Peri and Nusslein-Volhard, 

2008). Further research is necessary to delineate the mechanisms of degradation of apoptotic 

cells by microglia.  

Moreover, the location where the actual degradation of the phagocytosed cargo 

occurs remains unexplored. Phagocytosis is commonly performed by terminal or en passant 

branches of ramified, surveillant microglia (Peri and Nusslein-Volhard, 2008; Sierra et al., 

2010). Interestingly, live imaging experiments show that phagosomal cups are retrogradely 

transported to the cell soma in the mouse neocortex (Nimmerjahn et al., 2005), and small 

puncta of apoptotic cell material are observed within branches of ramified microglia in fixed 

adult hippocampus, indirectly suggesting their transport (Sierra et al., 2010). Moreover, direct 

evidence of retrograde transport of cargo-containing phagosomes has been observed in 

C.elegans (Peri and Nusslein-Volhard, 2008). Collectively, these data indirectly suggest a yet 

unexplored role of the cytoskeleton in transporting the phagosome for the degradation of the 

engulfed apoptotic material. 

Thus, apoptotic cell phagocytosis can be regulated at many different stages. Changes 

in any of these phases could potentially affect phagocytic efficiency. Next, we will discuss 

microglial apoptotic cell phagocytosis in physiological conditions. 

 

3.4. MICROGLIAL PHAGOCYTOSIS OF APOPTOTIC CELLS IN PHYSIOLOGICAL 
CONDITIONS  

Apoptosis can be ubiquitously found throughout the whole lifespan in the neurogenic 

niches of the brain: the subventricular zone (SVZ), located throughout the lateral walls of the 

lateral ventricles, which generates interneurons populating the olfactory bulb; and the 

subgranular zone (SGZ) of the hippocampus, in which newborn cells integrate locally as mature 

granule cells in the granular zone of the dentate gyrus (DG). In physiological conditions a large 

percentage of these newborn cells undergo apoptosis in the SGZ (Sierra et al., 2010) (Figure 5). 

This constitutive apoptosis found in the DG constitutes a good model to establish the baseline 

of microglial phagocytosis of apoptotic cells in physiological conditions and thus, to assess the 
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changes in the efficiency of phagocytosis under different pathological conditions. In this thesis 

we will assess microglial phagocytosis in the hippocampal DG. 

Importantly, the physiological efficiency of microglial phagocytosis in the DG has been 

established before. Microglia are present in the SGZ and are physically intimate with all 

components of the adult hippocampal neurogenic cascade, which allows them to phagocytose 

the apoptotic newborn cells (Sierra et al., 2010). In fact, 90% of all newborn apoptotic cells are 

phagocytosed by microglia in the SGZ in physiological conditions as observed with 

immunofluorescence staining and confocal microscopy (Sierra et al., 2010). Moreover, the 

whole phagocytic process takes place very rapidly in physiological conditions, in under 1.5h 

(Sierra et al., 2010) (Figure 5). Importantly, aging does not alter microglial phagocytic efficiency 

(Sierra et al., 2010). Therefore, microglia are very efficient phagocytes in the healthy DG 

through the lifespan. Moreover, in physiological conditions only a small proportion of microglia 

are in the process of phagocytosing at a given time, suggesting that these cells hold a large 

phagocytic reservoir that could be summoned in conditions where apoptotic cell numbers 

greatly increase, such as in the diseased brain (Sierra et al., 2010). 

 

Figure 5. Microglial phagocytosis of apoptotic cells in physiological conditions. In the adult 
hippocampus, neuroprogenitor cells in the SGZ of the DG give rise to newborn neuroblasts. However, 
only a small subset of these cells integrates into the hippocampal circuitry as mature neurons, because 
the majority undergo death by apoptosis before becoming neuroblasts. Importantly, these apoptotic 
newborn cells are rapidly cleared out through phagocytosis by ramified microglia present in the adult 
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SGZ. The whole phagocytic process takes place very rapidly in physiological conditions, in under 1.5h, 
and is undeterred by increased age. Adapted from (Sierra et al., 2010). 

 

Nevertheless, the efficiency of microglial phagocytosis in vivo during pathological 

conditions remains unknown. In this PhD thesis, our objective has been to analyze microglial 

phagocytosis in epilepsy and in its underlying pathological events, excitotoxicity and 

inflammation, to understand how each specific pathological process might affect microglial 

phagocytosis.  

 

3.5. MICROGLIAL PHAGOCYTOSIS IN PATHOLOGICAL CONDITIONS: THE CASE 
OF EPILEPSY 

3.5.1. Introduction to epilepsy 

Epilepsy is a term used to describe a spectrum of neurological disorders characterized 

by spontaneous epileptic seizures, which are abrupt abnormal synchronized neuronal activities 

(Fisher et al., 2005; Savage, 2014). Epilepsy is the third most common chronic brain disorder, 

affecting between 50 and 65 million people globally (Thurman et al., 2011). Importantly, 

because of the reorganization of neural circuits and activities in the brain in response to 

seizures, patients frequently experience further complications such cognitive impairment, and 

psychiatric and mood disorders such as depression (Jensen, 2011). Moreover, patients with 

epilepsy have been reported to exhibit increased mortality of 2–10 years earlier than the 

general population (Gaitatzis et al., 2004). Thus, epilepsy is a significant health concern for the 

human population.  

Epilepsy presents thousands of etiologies of known risk factors (such as genetic risk 

factors) and unknown risk factors (Eyo et al., 2017). It may arise due to a brain infection, 

trauma, ischemia, tumor, neurodegenerative disease, or genetic predisposition (Ahl et al., 

2016). Importantly, epilepsy can be controlled but cannot be cured by medication (Rassendren 

and Audinat, 2016), and about 30% of patients are pharmacoresistant, or refractory to 

currently available pharmacological treatments (Schuele and Luders, 2008). Moreover, 

treatment is frequently associated with undesirable side effects. Thus, there is a strong need 

for developing new treatment strategies to ameliorate the progression and/or limit the 

detrimental consequences of the disease (Eyo et al., 2017). 

According to the brain region where seizures initiate, they can be classified as focal or 

generalized (Fisher et al., 2017). Focal or partial seizures are initiated from one area of 
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the brain and may induce a plethora of symptoms often correlated to the function or lack of 

function of that particular brain region (Ahl et al., 2016). Generalized seizures involve the 

whole brain at once and the patients experience disturbed consciousness and often tonic-

clonic muscle movements (Ahl et al., 2016), which implies rigidity and shaking of extremities.  

3.5.2. Focal epilepsies: Mesial temporal lobe epilepsy (MTLE) 

The temporal lobe is the most epileptogenic region of the human brain (Tatum, 2012) 

and thus, temporal lobe epilepsy (TLE), is the most common form of epilepsy (Crespel et al., 

2002). TLE is a group of disorders that predominantly involves dysregulation of hippocampal 

function caused by neuronal hyperexcitability (Schwartzkroin, 1986). Mesial temporal lobe 

epilepsy (MTLE) is one of the best-characterized types of epilepsy (Tatum, 2012) as well as the 

most common form of pharmacoresistant epilepsy (Duveau et al., 2016), and therefore many 

patients require resection of the epileptic hippocampus (Quirico-Santos et al., 2013). Human 

pathophysiological features of MTLE include unprovoked seizures and hippocampal sclerosis, 

including cell death, gliosis, inflammation, and granule cell dispersion (Babb et al., 1995; 

Bouilleret et al., 1999; Heinrich et al., 2006; Kralic et al., 2005; Nitta et al., 2008). Importantly, 

hippocampal sclerosis is thought to have a predominantly acquired causation (Shorvon, 2011), 

which implies that MTLE is mostly an acquired disease, secondary to other pathological 

situations such as brain injury (Cendes, 2005). 

Experimental epilepsy models have been developed primarily in rodents. The most 

ubiquitous models include chemically induced models using the glutamatergic agonist KA (Ben-

Ari and Lagowska, 1978) or pilocarpine, a muscarinic receptor agonist (Vezzani, 2009). Both 

chemoconvulsants induce hippocampal sclerosis and are recognized to mimic salient 

histopathological and clinical features of human MTLE.  

Pilocarpine is usually administered systemically though it is sometimes coupled with 

lithium pre-treatment to lower the threshold for seizure-induction (Eyo et al., 2017). In this 

model the homeostatic balance of neuronal excitation–inhibition is tipped toward increased 

excitability presumably at least in part by increase in glutamate release and sustained NMDA 

receptor activation (Priel and Albuquerque, 2002; Smolders et al., 1997). KA induces seizures 

via activation of KA glutamate receptor subtypes (Ben-Ari and Cossart, 2000) and AMPA 

receptors, as a partial agonist (Fritsch et al., 2014). KA can be administered either systemically 

or intracerebrally, via injection into the hippocampus or the amygdala (Levesque and Avoli, 

2013). Importantly, intrahippocampal KA is one of the best models to mimic MTLE as it 

replicates the major pathophysiological features of the disease, such as recurrent seizures and 
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hippocampal sclerosis, and shows similar electroencephalogram (EEG) histopathology and 

synaptic reorganization (Bouilleret et al., 1999). Moreover, intrahippocampal KA 

administration shows the lowest percentage of death among the different administration 

methods (Levesque and Avoli, 2013). Additionally, intrahippocampal KA administration is more 

replicable than systemic administration particularly in C57 mice (McKhann et al., 2003). 

Intrahippocampal KA leads to hypersynchronized excitatory neuronal activity which if 

prolonged, results in neuronal death (Eyo et al., 2017). Although a complex interplay of KA and 

non-KA glutamate receptors have been implicated in the mechanism of KA induced seizures, 

the cornu ammonis 3 (CA3) region of the hippocampus is recognized to be extremely 

susceptible due to a high density of specific kainate receptors in this region (Levesque and 

Avoli, 2013). Besides affecting the hippocampus, KA-induced MTLE also affects other regions of 

the brain like the ipsilateral cortex (Sierra et al., 2015). Due to its reliability and lower mortality 

rate than pilocarpine (Curia et al., 2008; Levesque and Avoli, 2013), we will use 

intrahippocampally administered KA to model MTLE. 

3.5.3. Generalized epilepsies: Progessive myoclonus epilepsy of Unverricht-
Lundborg type 

Generalized epilepsies are more likely to involve genetic factors than focal epilepsies 

(Ferraro et al., 2012). Among this group are progressive myoclonus epilepsies (PMEs), a 

heterogeneous group of inherited disorders with a poorly understood pathogenesis which are 

generally pharmacoresistant (Tegelberg et al., 2012). In this PhD thesis, we will focus on the 

most common cause of PME: Unverricht-Lundborg disease (epilepsy myoclonus type 1, EPM1), 

an autosomal recessively inherited disorder caused by loss-of-function mutations in the 

cystatin B gene (Cstb), which encodes an inhibitor of cysteine proteases (Joensuu et al., 2008; 

Lalioti et al., 1997; Pennacchio et al., 1996). These proteases include lysosomal cysteine 

cathepsins, which show an increased activity that has been related to EPM1 pathogenesis 

(Rinne et al., 2002). In particular, cathepsin B (CatB) shown to induce neuronal apoptosis in the 

context of neurodegenerative diseases (Gan et al., 2004; Kim et al., 2007; Kingham and Pocock, 

2001) has been specially linked to the pathogenesis of EPM1. Importantly, microglia is known 

to be a major source of CatB in the brain (Hayashi et al., 2013; von Bernhardi et al., 2015; 

Wendt et al., 2008). However, the precise role of Cstb and the mechanisms by which its loss 

leads to EPM1 remain poorly understood. Pathophysiological features of EPM1 include severe 

stimulus-sensitive myoclonus, a brief involuntary twitching of muscles, and generalized tonic-

clonic seizures, and other neurologic symptoms such as ataxia, lack of movement coordination, 
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and dysarthria, a motor disorder during speech, which appear as the disease progresses 

(Kalviainen et al., 2008; Koskiniemi et al., 1974; Norio and Koskiniemi, 1979). 

The Cstb-deficient, or Cstb knock-out (KO) mouse (Pennacchio et al., 1998) is a widely 

used model to study EPM1 (Franceschetti et al., 2007; Maher et al., 2014; Manninen et al., 

2014; Shannon et al., 2002; Tegelberg et al., 2012). These mice recapitulate the key clinical 

features of the disease, characteristic of EPM1 patients: the mice develop myoclonus by one 

month and progressive ataxia by six months of age (Pennacchio et al., 1998). Consistent with 

findings in human patients (Koskenkorva et al., 2012; Manninen et al., 2013; Mascalchi et al., 

2002), there is progressive atrophy, cortical thinning, and neuron and white matter loss in the 

brain of Cstb KO mice affecting particularly the cerebellum and the thalamocortical system 

(Koskenkorva et al., 2012; Manninen et al., 2013; Pennacchio et al., 1998; Tegelberg et al., 

2012). Interestingly, the earliest neuropathological finding in Cstb KO mice is the altered 

microglial morphology, at two weeks of age. This is followed by the activation of astrocytes, 

myoclonus, and progressive neuronal degeneration from one month onwards (Tegelberg et al., 

2012). Gene-expression profiling has revealed an upregulation of genes associated with 

immune-system processes in the cerebellum of Cstb KO mice at one month, and has led to the 

discovery of alterations in GABAergic signaling already at one week of age (Joensuu et al., 

2014). In detail, findings implying a diminished number of GABAergic pre- and postsynaptic 

terminals, decreased inhibition, and reduced ligand binding to GABAA receptors were 

identified in the cerebellum of Cstb KO mice (Joensuu et al., 2014). Thus, Cstb KO mice 

constitute a solid model of EPM1. 

In spite of the different ethiopathological origin, these different types of epilepsies 

share some common pathological features that we will assess next in more depth.  

3.5.4. Pathological features of epilepsy 

The hyperactivity of neural circuits that underlies epilepsy is thought to arise from an 

imbalance wherein excitatory neurotransmission predominantly through glutamatergic 

signalling is increased and inhibitory neurotransmission predominantly through GABA-ergic 

signalling is decreased (Dalby and Mody, 2001; Sharma et al., 2007). Due to the neuronal 

hyperactivity there is neuronal damage, and an exaggerated immune response (Ekdahl et al., 

2003; Kan et al., 2012; Legido and Katsetos, 2014; Ravizza et al., 2011), as microglia release 

pro- and antiinflammatory mediators during the acute innate immune response in the brain 

following seizures (Pernhorst et al., 2013). Moreover, astrocytes change their activity state and 

exhibit disturbed buffering capacity of ions and glutamate uptake (Crunelli et al., 2015). In 
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addition to the innate immune reaction, seizures may cause blood-brain barrier dysfunction 

and activation of vascular-associated and blood-derived immune cells (Legido and Katsetos, 

2014). 

Next, we will cover the excitotoxicity and inflammation processes happening during 

epilepsy in more depth. 

3.5.4.1. Excitotoxicity 

Excitotoxicity refers to cell death caused by a prolonged activation due to excessive 

glutamate release (Pickering et al., 2005). Excitotoxicity is common to many 

neurodegenerative diseases, such as epilepsy, ischemia, Parkinson’s, AD and MS (Dong et al., 

2009) can provoke death by apoptosis or necrosis, depending on its intensity (Bonfoco et al., 

1995). Excitotoxicity is a complex process which mainly affects neurons and oligodendrocytes 

(Matute et al., 2001; Wang and Qin, 2010), and it is normally initiated by activation of 

glutamatergic ionotropic channels, NMDA, AMPA and KA by endogenous excitotoxins (high 

concentrations of glutamate); or exogenous excitotoxins (glutamate agonists NMDA and KA). 

When glutamatergic receptors get over-activated by continuous stimulation, high levels 

of calcium ions (Ca2+) enter the cell (Jaiswal et al., 2009) and activate a number of enzymes 

which go on to damage the cytoskeleton, membrane, and DNA, finally provoking cell death 

(Orrenius et al., 2003). 

3.5.4.2. Inflammation 

Inflammation is an intrinsic feature in pharmacoresistant epilepsies of different 

etiology (Vezzani et al., 2011). In adult rats and mice, induction of recurrent short seizures or 

status epilepticus by chemoconvulsants or electrical stimulation triggers a rapid induction of 

inflammatory mediators in brain regions of seizure activity onset and propagation (Fabene et 

al., 2010; Vezzani et al., 2008; Yoshikawa et al., 2006) (Figure 6). Moreover, 

immunohistochemical studies on rodent brains after induction of status epilepticus 

demonstrate subsequent waves of inflammation during the epileptogenic process, involving 

various cell populations. After seizures, proinflammatory cytokines (IL-1β, TNFα, and IL-6) are 

expressed in microglia and astrocytes, and cytokine receptor expression is upregulated in 

microglia, astrocytes, and neurons (Vezzani and Granata, 2005). As in human epileptic brain 

specimens, brain tissue from rodents with experimental chronic TLE contains both astrocytes 

and microglia expressing inflammatory mediators (Crespel et al., 2002; Dube et al., 2010; 

Ravizza et al., 2008). Evidence for brain vessel inflammation associated with BBB breakdown is 

also prevalent (Fabene et al., 2008; Marchi et al., 2007; Ravizza et al., 2008). Thus, brain 



INTRODUCTION 

54 
 

inflammation induced by status epilepticus develops further during epileptogenesis and 

persists in chronic epileptic tissue, thereby supporting the idea that inflammation might be 

intrinsic to—and perhaps a biomarker of—the epileptogenic process (Dube et al., 2010; 

Majores et al., 2004). Importantly, an inhibitor of IL-1β is already undergoing clinical trials to 

be used as a treatment for epilepsy (Vezzani et al., 2010). 

In fact, inflammation has gained recognition as a crucial contributor to the 

etiopathogenesis of epilepsy, among several other CNS disorders (Vezzani et al., 2011). Despite 

the widespread acknowledgement of the glutamate and GABA imbalance during epilepsy, 

therapeutic antiepileptic strategies targeting these mechanisms have proved insufficient in a 

significant proportion of patients (Kwan and Brodie, 2006). Thus, the role for inflammation and 

inflammatory mediators has become increasingly appreciated and is a focus of current 

research (Choi and Koh, 2008; Vezzani et al., 2013a).  

Importantly, many inflammatory cytokines are known to be neurotoxic and involved in 

the epileptogenic process by promoting neuronal hyperexcitability during epilepsy (Vezzani et 

al., 2011) (Figure 6). 

Among pro-inflammatory cytokines, IL-1β exerts excitatory effects in various brain 

regions (Vezzani et al., 2013b). In particular, IL-1β reduces synaptically-mediated GABA 

inhibition in area CA3 of the hippocampus (Wang et al., 2000; Zeise et al., 1997) and increases 

CA1 neuron excitability by reducing NMDA channel- and voltage-gated calcium channel-

induced outward current (Zhang et al., 2010). This cytokine also potentiates NMDA receptor 

function in cultured hippocampal neurons (Lai et al., 2006; Viviani et al., 2003), by enhancing 

NMDA-mediated Ca2+ influx (Viviani et al., 2003). Thus, IL-1β contributes to excitotoxicity and 

epileptogenesis. 

Among anti-inflammatory cytokines, TGFβ is upregulated in many epileptogenic 

conditions (Szelényi, 2001), and is potentially involved in epileptogenesis. Serum albumin, the 

most abundant class of plasma protein in the blood, and an inducer of post-injury epilepsy 

(Weissberg et al., 2015) binds to the TGFβ receptor and activates TGFβ signalling when 

extravasated through a dysfunctional BBB, a hallmark of brain injuries and neurodegenerative 

diseases (Cacheaux et al., 2009; Ivens et al., 2007). Accordingly, transcriptome analysis shows a 

similar transcription modulation pattern in animals exposed to BBB dysfunction, serum-

derived albumin or following direct brain exposure to physiological levels of TGFβ (Vezzani et 

al., 2013b). In fact, TGFβ up-regulation is part of the inflammatory response in the 

hippocampus of rats undergoing status epilepticus (Aronica et al., 2000). Importantly, blocking 
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TGFβ signalling in an albumin induced model of epileptogenesis reversed inflammation and 

transcriptional patterns associated with activated glia and prevented the development of 

epileptiform activity (Vezzani et al., 2013b). However, the detailed mechanisms and cellular 

pathways bridging TGFβ signalling to seizures in different cell types within the neurovascular 

network are still a matter of investigation (Vezzani et al., 2013b). 

3.5.5. Microglial phagocytosis and epilepsy 

Importantly, phagocytic “find-me” signals and their receptors have been found to be 

upregulated in epilepsy models. CX3CL1 is upregulated in the serum and cerebrospinal fluid of 

epileptic patients as well as in a lithium-pilocarpine rat model (Ali et al., 2015). Furthermore, a 

corresponding increase in CX3CL1 receptor expression is detected between 1 and 6 h and 

begins to decline by 3 days following seizures (Ali et al., 2015; Yeo et al., 2011). However, 

following intrastriatal KA treatment, fractalkine receptor expression remained unchanged in 

microglia despite evident neuronal loss (Hughes et al., 2002). In addition to CX3CL1 signalling, 

purinergic signalling is now known to be critical in epileptogenesis. Purinergic receptors are 

upregulated on microglia following experimental seizures (Avignone et al., 2008) (Figure 6). 

P2X7 receptor shows an increased immunohistochemical expression in microglia in rats 24h 

after intraperitoneal KA injection (Rappold et al., 2006). Moreover, upregulation of P2X7 

among other P2X and P2Y receptors (P2Y6 and P2Y12) has been confirmed by quantitative 

polymerase chain reaction (qPCR) and functional electrophysiology in mice 24h after 

intraperitoneal KA injection (Avignone et al., 2008). In addition, microglial lysosomal proteases, 

CatB, D, and S increase following seizures in rats 2 days after systemic KA injection (Akahoshi 

et al., 2007; Banerjee et al., 2015). Together, these studies highlight the dramatic upregulation 

of microglial purinergic receptors, cytokines, and proteases following seizures (Eyo et al., 

2017). 

Nevertheless, microglial phagocytosis efficiency during epilepsy or during its 

underlying pathological processes, excitotoxicity and inflammation, remains unknown. The 

goal of this PhD thesis is to assess microglial phagocytic efficiency in all these pathological 

models. We will also determine the possible mechanisms that modulate phagocytosis during 

epilepsy, as well as analyzing the possible detrimental consequences of a phagocytosis 

impairment for brain tissue homeostasis. 
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Figure 6. Microglial functions in epilepsy. In the epileptic brain, seizures upregulate the expression of 
pro- and anti-inflammatory cytokines and their receptors in microglia. Many inflammatory cytokines are 
known to be neurotoxic and involved in the epileptogenic process by promoting neuronal 
hyperexcitability during epilepsy. Importantly, some phagocytic “find-me” signals and their receptors 
are upregulated in microglia during epilepsy. However, the efficiency and modulation of microglial 
apoptotic cell phagocytosis during epilepsy remains unknown.  
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4. HYPOTHESIS AND OBJECTIVES 

Microglial phagocytosis is very rapid and efficient in physiological conditions. Thus, we 

hypothesize that this efficiency could be maintained in pathological conditions where 

apoptotic cell numbers increase, such as excitotoxicity, acute and chronic inflammation, and 

pharmacologically induced epilepsy. Additionally, since microglial phagocytosis of apoptotic 

cells has been found to correlate with the induction of an anti-inflammatory response in 

microglia in vitro, we also hypothesize that microglial phagocytosis impairment would have 

detrimental consequences for the maintenance of tissue homeostasis. Additionally, analyzing 

the mechanisms driving a microglial phagocytosis impairment could open the venue to the 

generation of new therapies to harness microglial phagocytosis in disease. 

Aim 1. To test the efficiency of microglial phagocytosis in the diseased brain in 

different pathological conditions. For this purpose, we will use an in vitro model of 

excitotoxicity using hippocampal slice cultures, and in vivo models of acute and chronic 

inflammation and pharmacologically induced epilepsy by KA intrahipocampal injection. All 

parameters regarding microglial phagocytosis efficiency will be quantified by 

immunofluorescence in mouse tissue sections imaged by confocal microscopy.  

Aim 2. To analyze the mechanisms inducing a microglial phagocytosis impairment in 

a model of pharmacologically induced epilepsy. For this purpose we will test whether the 

phagocytosis impairment is due to deficits in microglial motility using 2-photon microscopy in 

acute hippocampal slices ex vivo and in the cortex of epileptic mice in vivo. We will also test 

whether the impairment is mediated by or due to a direct effect of KA on microglia using 

hippocampal slices and primary microglial cultures. Finally, we will test whether the 

impairment is mediated by ATP on microglia, in  vivo and in organotypic hippocampal slices.  

Aim 3. To analyze the effects of the microglial phagocytosis impairment during 

pharmacologically induced epilepsy. For this purpose we will test whether the phagocytosis 

impairment induces an accumulation of non-phagocytosed apoptotic cells in the hippocampus 

in vivo. We will also test whether the phagocytosis impairment correlates with an increase in 

tissue inflammation, using RTqPCR to analyze cytokine RNA expression from hippocampus 

homogenates and from FACS sorted hippocampal microglia.  

Aim 4. To analyze if the microglial phagocytosis impairment occurs in a model of 

genetic epilepsy. For this purpose we will test whether there is a microglial phagocytosis 

impairment in a model of genetic epilepsy (Cstb KO) in the hippocampus in vivo, before and 

after the onset of seizures. 
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5. EXPERIMENTAL PROCEDURES 

5.1. ANIMALS  

Mice were housed in 12:12h light cycle with ad libitum access to food and water. All 

procedures followed the European Directive 2010/63/EU, NIH guidelines, and Canadian 

Council on Animal Care guidelines, and were approved by the Ethics Committees of the 

University of the Basque Country EHU/UPV (Leioa, Spain; CEBA/205/2011, CEBA/206/2011, 

CEIAB/82/2011, CEIAB/105/2012), Bordeaux University (protocol number 5012094-A), and 

Southampton University (in accordance with U.K. Home Office licensing; project license 

30/3056); the Baylor College of Medicine Institutional Animal Care and Use Committee 

(Houston, TX, USA; AN- 5004); and the Animal Care Committee of Université Laval (protocol 

number 2013102-1). Unless otherwise stated, mice were 8 weeks old at the time of the KA 

injection. 

All experiments were performed in fms-EGFP (MacGreen) mice, except the analysis of 

tissue cytokines by reverse transcription quantitative polymerase chain reaction 

(RTqPCR) and the analysis of microglial motility, which were performed in C57BL/6 (Harlan, 

Boxmeer, the Netherlands) and CX3CR1GFP/+ mice, respectively. In both fms-EGFP (Sasmono et 

al., 2003; Sierra et al., 2007) and CX3CR1GFP/+ mice (Jung et al., 2000), all microglia express the 

green fluorescent reporter. Fms-EGFP mice express the green reporter under the colony 

stimulating factor 1 receptor (Csf1r) and CX3CR1GFP/+ mice have one allele of the CX3CR1 gene 

(fractalkine receptor) replaced by the GFP reporter gene. Analysis of phagocytosis by non-

professional phagocytes was done in POMC-EGFP mice (Overstreet et al., 2004) in which 

enhanced green fluorescent protein (EGFP) is expressed in newborn granule cells in the 

dentate gyrus (DG) under the transcriptional control of proopiomelanocortin (POMC); hGFAP-

GFP mice (Zhuo et al., 1997) in which GFP is expressed under the control of the astrocyte-

specific glial fibrillary acidic protein (GFAP) human promoter; and nestin-GFP mice (Encinas et 

al., 2006; Mignone et al., 2004), in which GFP is expressed under the regulatory elements of 

the intermediate filament nestin, expressed in neural stem and progenitor cells. Analysis of 

phagocytosis in a genetic model of epilepsy was done in Cstb KO mice, constitutive knock-outs 

(KO) of the cystatin B (Cstb) gene, which encodes an inhibitor of cysteine proteases. All mice 

used were in a C57BL/6 background, except experiments with fatty acid diets, which were 

performed in CD-1 Swiss mice. Omega 3 (Ω3) deficient (containing 6% fat in the form of 

sunflower oil, rich in linoleic acid) or omega 3 balanced (containing a mixture of different oils 

rich in alpha-linolenic acid) diets were given immediately after mating and through gestation 
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and lactation (Mingam et al., 2008); both diets were isocaloric and only their lipid composition 

was different, as shown in the following table. 

 

FATTY ACIDS Ω3 BALANCED DIET Ω3 DEFICIENT DIET 

16:0 22.6 7.3 

18:0 3.3 4.1 

other saturated FAs 1.8 1.6 

total saturated FAs 27.7 13.0 

16:1 Ω7 0.2 0.2 

18:1 Ω9 57.9 28.1 

18:1 Ω7 1.5 0.9 

other monounsaturated FAs 0.4 0.2 

total monounsaturated FAs 60.0 29.4 

18:2 Ω6 (LA) 10.6 57.4 

20:4 n Ω6 (AA) ND ND 

total Ω6 polyunsaturated FAs 10.7 57.4 

18:3 Ω3 (ALA) 1.6 0.2 

total Ω3 PUFAs 1.6 0.2 

total PUFAs 12.3 57.6 

Table 1. Fatty acid composition of the dietary lipids. Percentage (in weight) in saturated, 

monounsaturated, omega 6 (Ω6) polyunsaturated and omega 3 (Ω3) polyunsaturated fatty acids, as 

determined by gas chromatography. AA, arachidonic acid; ALA, α-linolenic acid; FAs, fatty acids; LA, 

linolenic acid; ND, not detected (under the limit for the detection by gas chromatography, <0.05%); 

PUFAs, polyunsaturated fatty acids. 

 

5.2. SURGICAL PROCEDURES 

5.2.1. Intrahippocampal injections 

Induction of epilepsy was achieved by intrahippocampal injection of kainic acid (KA, 

Sigma-Aldrich, St Louis, MO, USA) a kainate receptor agonist (Bouilleret et al., 1999). In brief, 

mice were intraperitoneally anesthetized with ketamine/xylazine (10/1 mg/kg) and received a 
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single dose of the analgesic buprenorphine (1mg/kg) subcutaneously. The hair over the scalp 

was shaved and povidone iodine was applied. The animal was positioned in the stereotaxic 

apparatus, and an incision was cut in the skin over the scalp to localize Bregma (intersection of 

the coronal suture and the sagittal suture). Next, a 0.6mm whole was drilled at coordinates 

taken from Bregma: anteroposterior (AP) -1.7mm, laterolateral (LL) -1.6mm. A pooled glass 

microcapillary was inserted at -1.9mm dorsoventral (DV), and 50nL of saline or KA (20mM) 

were delivered into the right hippocampus using a microinjector (Nanoject II, Drummond 

Scientific, Broomal, PA, USA). Adenosine triphosphate (ATP; 1µl; 10, 100mM; Sigma) and ATPγS 

(1µl; 100mM; Tocris) a non-degradable form of ATP, were injected directly into the DG as pH-

balanced solutions at coordinates AP -1.7mm, LL -1.4mm, DV -2.3mm. After waiting 2min to 

evade reflux, the microcapillary was retracted, and the mice sutured and maintained in a 

thermal blanket until recovered from anesthesia. 

5.2.2. EEG recordings 

Some saline and KA injected mice were implanted with platinum iridium, Teflon-coated 

deep electrodes (PlasticsOne, Roanoke, VA, USA) immediately after intrahippocampal 

injection. Four recording electrodes were positioned at -1.6mm AP, +1.8mm LL, -1.8mm DV 

(left hippocampus); -1.6mm AP, -1.8mm LL, -1.8mm DV (right hippocampus); -0.1mm AP, -

1.8mm LL, -2mm DV (right cortex): -0.1mm LL, +1.8mm LL, -2mm DV (left cortex). The 

reference electrode was placed at the frontal lobe at +0.1mm AP, +0.1mm LL, - 0.5mm DV, and 

the ground electrode was positioned over the cervical paraspinal area (Sierra et al., 2015). 

Four hours after implantation, every two days for the next week, and once a week for another 

7 weeks, mice were attached to a Nicolet video-electroencephalogram (vEEG) system (NicView 

5.71, CareFusion, San Diego, CA, USA), and were recorded in 4h sessions.  

 

5.3. CELL CULTURES 

5.3.1. Organotypic hippocampal slice cultures 

Organotypic hippocampal slice cultures were prepared as described previously (Vinet 

et al., 2012) with minor modifications. 7 day-old fms-EGFP pups were decapitated and the 

brains extracted and placed in cold Hank’s balanced salt solution (HBSS). Both hippocampi 

were dissected and cut into 350μm slices using a tissue chopper (McIlwain). Slices in good 

condition (with whole and visible DG and cornu ammonis (CA) and without cuts or damaged 

borders) were then selected and transferred to 0.4 μm culture plate inserts (Millipore), each 

https://en.wikipedia.org/wiki/Coronal_suture
https://en.wikipedia.org/wiki/Sagittal_suture
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containing 4 slices. These membranes were placed in six well plates, each well containing 1ml 

of fresh hippocampal organotypic culture medium. The medium consisted of 50% Neurobasal 

medium supplemented with 0.5% B27, 25% horse serum, 1% Glutamax, 1% 

penicillin/streptomycin (all from Gibco) and 1% glucose solution in HBSS. Culture medium was 

changed the first day after doing the culture and every 2 days afterwards. Slices were kept in 

culture for 7 days before performing the experiments. For induction of excitotoxicity, 

hippocampal slices were treated with media containing 50μM N-methyl-D-aspartic acid 

(NMDA), a glutamate agonist, and 10μM glycine, an NMDA receptor co-agonist, at in vitro day 

7 for 4h; another batch of slices were then placed in fresh culture medium for another 24h. For 

KA experiments, hippocampal slices were treated with media containing 1mM KA (Sigma) for 

6h. For ATP experiments, hippocampal slices were treated with media containing 300µM and 

1mM ATP (Sigma) for 4h. For experiments with the epileptogenic cocktail, hippocampal slices 

were treated for 1h with either vehicle (oxygenated (95% O2/5% CO2) artificial cerebrospinal 

fluid (ACSF), pH7.4, containing 124mM NaCl, 25mM NaHCO3, 1.25mM NaH2PO4, 2.5mM KCl, 

2.5mM CaCl2, 1.3mM MgCl2, and 10mM D-glucose) or proepileptogenic cocktail (oxygenated 

ACSF, with high K+ (8mM), low Mg2+ (0.25mM) and 4-aminopyridine (4-AP, 100µM)(Hsiao et al., 

2014). Propidium iodide (PI, 5µg/ml, Sigma) a marker of necrosis, was added to the cultures in 

the last hour of the treatment.  

5.3.2. NE-4C cell line 

NE-4C (American Type Culture Collection), a mouse neural stem cell line derived from 

the cortex of 9do tumour protein 53 (p53, a tumour suppressor gene) knock-out embryos was 

used for the phagocytic assay experiments. NE4C cells were grown as an adherent culture in 

Poly-L-lysine-coated (15µl/ml, Sigma) culture flasks covered with 10-15ml of medium. The 

medium consisted on Minimum Essential Medium (MEM, Gibco), supplemented with 1% 

Glutamax, 2,5% Fetal Bovine Serum (FBS) and 1% penicillin/streptomycin (all from Gibco). 

When confluency was reached, cells were trypsinized and replated at 1:4.  

5.3.3. Primary microglia cultures 

Primary microglia cultures were performed as previously described (Moussaud and 

Draheim, 2010). Postnatal day 0-1 (PND0-PND1) fms-EGFP mice pup brains were extracted and 

the meninges were removed in HBSS (Hyclone) under a magnifying scope. The olfactory bulb 

and cerebellum were discarded and the rest of the brain was then mechanically disrupted and 

enzymatically digested with papain (20U/ml, Sigma), a cysteine protease enzyme, and 

deoxyribonuclease (DNAse; 150U/µl, Invitrogen) for 15min at 37ºC. The homogenization was 
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helped by carefully pipetting throughout the process. The resulting cell suspension was then 

filtered through a 40µm nylon cell strainer (Fisher) and transferred to a 50ml Falcon tube 

quenched by 5ml of 20% FBS (Gibco) in HBSS. Afterwards, the cell suspension was centrifuged 

at 200g for 5min, the pellet was resuspended in 1ml Dulbecco’s Modified Eagle’s Medium/F12 

(DMEM/F12, Gibco) complemented with 10% FBS and 1% Penicillin-Streptomycin (Gibco), and 

plated in Poly-L-Lysine-coated (15µl/ml, Sigma) culture flasks with a density of two brains per 

flask. Medium was changed every 3-4 days and enriched with granulocyte-macrophage colony 

stimulating factor (5µg/ml GM-CSF, Sigma), which promotes microglial proliferation. After 

confluence (at 37°C, 5% CO2 for approximately 14 days), microglia cells were harvested by 

shaking at 100rpm, 37°C, for 4h. Isolated cells were counted and plated at a density of 

80.000cell/well on poly-L-lysine-coated glass coverslips resting in 24-well plates. Microglia 

were allowed to adhere for at least 24h before phagocytosis experiments.  

 

5.4. PHAGOCYTOSIS ASSAY 

Primary microglia cells were fed for 3h with NE-4C cells. NE-4C were previously labeled 

with the membrane marker CM-DiI (5µM; 10min at 37oC, 15min at 4oC; Invitrogen) and treated 

with staurosporine (STP, 10µM, 4h; Sigma) an inhibitor of protein kinases that induces 

apoptosis (Lawrie et al., 1997). This treatment resulted in 27.4% ± 8.5% of apoptotic and 1.2% 

± 0.9% of necrotic NE-4C cells, as determined by flow cytometry analysis with Annexin V 

(apoptosis marker) and PI (necrosis marker); and in 35.0% ± 6.1% of apoptotic cells with 

pyknotic/karyorrhectic nuclear morphology determined with 4',6-diamidino-2-phenylindole 

(DAPI) in immunofluorescent assays (data not shown). Apoptotic NE-4C cells were added to 

the microglial cultures in a 10:1 proportion approximately. For the KA treatment, microglia 

were pre-treated with 1mM KA (Sigma) for 2h before adding the apoptotic cells and remained 

present for the 3h of the phagocytosis assay, accounting for a total of 5h of KA treatment 

(Christensen et al., 2006).  

 

5.5. IMMUNOFLUORESCENCE 

5.5.1. Brain tissue sections and hippocampal organotypic cultures 

Mice were anesthetized with 2,5% avertine and transcardially perfused with 30ml of 

PBS followed by 30 ml of 4% paraformaldehyde (PFA). The brains were removed and postfixed 

with the same fixative for 3h at room temperature (RT), then washed in phosphate buffered 
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saline (PBS) and kept in cryoprotectant at -20oC. Six series of 50µm-thick sections per mouse 

brain hemisphere were sagitally cut using a Leica VT 1200S vibrating blade microtome (Leica 

Microsystems GmbH, Wetzlar, Germany). Hippocampal organotypic slices were fixed in 4% 

formaldehyde for 40 min and then stored in PBS at 4oC. Fluorescent immunostaining was 

carried out following standard procedures (Sierra et al., 2010). Free-floating vibratome 

sections or organotypic slices were incubated in permeabilization solution (0.3% Triton-X100, 

0.5% BSA in PBS; all from Sigma) containing 5% normal goat serum (NGS) for 1h at RT with 

gentle shaking, and then incubated overnight with the primary antibodies diluted in the 

permeabilization solution at 4oC. For BrdU (bromo-deoxyuridine) staining, an antigen retrieval 

protocol was performed on the sections, consisting on incubation in 2M HCl for 15min at 37oC 

and then washing with 0.1M sodium tetraborate for 10min at RT prior to staining with the 

primary antibodies. After overnight incubation with primary antibodies, brain sections were 

thoroughly washed with 0,3% triton in PBS. Next, the sections were incubated with 

fluorochrome-conjugated secondary antibodies and DAPI (5mg/ml; Sigma) diluted in the 

permeabilization solution for 2h at RT. After washing with PBS the sections and organotypic 

cultures were mounted on glass slides with DakoCytomation Fluorescent Mounting Medium 

(DakoCytomation, Carpinteria, CA).  

5.5.2. Primary microglial cultures 

Primary microglial cultures were fixed for 10min in 4% formaldehyde and then stored 

in PBS at 4oC. Coverslips with primary microglial cultures were blocked in 1% NGS (Sigma), 

0.2% Triton X-100 in PBS for 30min. The cells were then incubated with primary antibodies in 

0.2% Triton X-100 PBS for 1h at RT, washed in PBS and incubated in the secondary antibodies 

containing DAPI (5mg/ml) in the same solution for 1h at RT. Finally, cell containing coverslips 

were mounted on glass slides with DakoCytomation Fluorescent Mounting Medium. 

5.5.3. Antibodies 

The following antibodies were used: chicken anti-GFP (1:750; Aves Laboratories); 

mouse anti-NeuN (neuronal nuclei) (1:1000; EMD Millipore Corporation); rabbit anti-activated-

caspase-3 (1:100; Cell Signaling Technology); rabbit anti-cfos (1:1000; Santa Cruz 

Biotechnologies); rabbit anti-Ki67 (1:1000; Vector Laboratories); rabbit anti-Iba1 (1:1000; 

Wako Chemicals); rat anti-BrdU (1:300; AbD Serotec), rat anti-CD11b (1:200, Serotec). 

Secondary antibodies coupled to AlexaFluor 488, Rodhamine Red X, or AlexaFluor 647 were 

purchased from Molecular Probes or from Jackson Immunoresearch.  
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5.6. IMAGE ANALYSIS 

All fluorescence immunostaining images were collected using an Olympus Fluoview or 

a Leica SP8 laser scanning microscope using a 40X oil-immersion objective (in vivo experiments 

and  primary cultures) or a 60X oil-immersion objective (organotypic slice experiments) and a 

z-step of 0.7µm. All images were imported into Adobe Photoshop 7.0 (Adobe Systems 

Incorporated, San Jose, CA) in tiff format. Brightness, contrast, and background were adjusted 

equally for the entire image using the “brightness and contrast” and “levels” controls from the 

“image/adjustment” set of options without any further modification. 3D-rendering of 

phagocytic microglial cells was performed using ImageSurfer (NIH) or ImageJ (Fiji distribution). 

Quantitative analysis of apoptosis and phagocytosis was performed using unbiased stereology 

methods as previously described (Sierra et al., 2010). For mouse tissue sections, 2-3 20µm-

thick z-stacks located at random positions containing the DG were collected per hippocampal 

section, and a minimum of 6 sections per series were analyzed. For organotypic cultures, 3 

20µm-thick random z-stacks of the DG were collected per hippocampal slice. For primary 

cultures, over 10 random z-stacks were obtained per coverslip. 

 

5.7. PHAGOCYTOSIS ANALYSIS 

Apoptotic cells were defined based on their nuclear morphology after DAPI staining as 

cells in which the chromatin structure (euchromatin and heterochromatin) was lost and 

appeared condensed and/or fragmented (pyknosis/karyorrhexis); they also co-localized with 

activated-caspase-3, a well-known marker of apoptosis (Green and Llambi, 2015). Phagocytosis 

was defined as the formation of an enclosed, three-dimensional pouch of microglial processes 

surrounding an apoptotic cell. In tissue sections and organotypic cultures, the number of 

apoptotic cells, phagocytosed cells, BrdU+ cells, and microglia were estimated in the volume of 

the DG contained in the z-stack (determined by multiplying the thickness of the stack by the 

area of the DG at the center of the stack using ImageJ (Fiji)). To obtain the absolute numbers 

(in tissue sections), this density value was then multiplied by the volume of the septal 

hippocampus (spanning from -1mm to -2.5mm in the anteroposterior axes, from Bregma; 

approximately 6 slices in each of the 6 series), which was calculated using Fiji from a Zeiss 

Axiovert epifluorescent microscope images collected at 20X. In organotypic cultures, the 

number of apoptotic cells and microglia in the DG was given as a density, over a 200.000µm3 

volume (roughly, a 100x100µm2 area of 20µm of thickness). In primary cultures, the 

percentage of phagocytic microglia was defined as cells with pouches containing NE-4C nuclei 
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and/or CM-DiI particles. The following formulae were used to estimate microglial phagocytosis 

efficiency in tissue or organotypic cultures: 

 

Ph index: proportion of apoptotic cells completely engulfed by microglia 

Ph index = 
𝑎𝑝𝑜𝑃ℎ

𝑎𝑝𝑜𝑡𝑜𝑡  

where apoPh is the number of apoptotic cells phagocytosed and apotot is the total number of 

apoptotic cells. 

 

Ph capacity: proportion of microglia with one or more phagocytic pouches, each containing 

one apoptotic cell. 

Ph capacity = 
𝑚𝑔𝑃ℎ1+2 𝑥 𝑚𝑔𝑃ℎ2+3 𝑥 𝑚𝑔𝑃ℎ3…+𝑛  𝑥 𝑚𝑔𝑃ℎ𝑛

𝑚𝑔
 

where mgPhn is the proportion of microglia with n phagocytic pouches and mg is the number of 

microglial cells.  

 

Ph/A coupling: phagocytosis/apoptosis ratio. 

Ph/A coupling = 
𝑃ℎ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑥 𝑚𝑖𝑐𝑟𝑜𝑔𝑙𝑖𝑎

𝑎𝑝𝑜𝑡𝑜𝑡   

Where apotot is the total number of apoptotic cells. 

 

Clearance time: average time at the population level for an apoptotic cell to be eliminated by 

microglia. 

Clearance time =
𝑎𝑝𝑜𝑡𝑜𝑡(𝑡2)𝑥 ∆𝑡

∆𝐵𝑟𝑑𝑈
 

where apoPh is the number of apoptotic cells phagocytosed; Δt is the diference between the 

two time points analyzed and ΔBrdU is the change in the number of BrdU marked cells in those 

time points. 
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5.8. LIVE IMAGING 

5.8.1. Two-photon imaging on acute hippocampal slices 

Brain slices were obtained from CX3CR1GFP/+ mice aged 2 months old (mo) 1 day post-

injection (dpi) or 7dpi of KA or saline. As we previously described (Madore et al., 2013), 

animals were quickly anesthetized with isoflurane, their brains were extracted and 300 µm-

thick coronal slices were made using a Vibratome (VT1000S, Leica, Nanterre, France). Slices 

were then stored at RT (20 to 23°C) for one hour before imaging in an oxygenated ACSF 

containing 126mM NaCl, 2.0mM CaCl2, 2.0mM MgCl2, 2.5mM KCl, 1.25mM NaH2PO4, 26mM 

NaHCO3, 10mM glucose, 1mM ascorbic acid, 4mM sodium pyruvate, and saturated with 95% 

O2 and 5% CO2 (310 ± 5 mOsm). Slices were transferred to a recording chamber and perfused 

with oxygenated ACSF at a rate of 1-3ml/min and maintained at 25°C with an inline heater. 

Two-photon imaging was performed with a laser-scanning microscope Leica DMLFSA TCS SP2 

on an upright stand (Leica Microsystems, Mannheim, Germany) coupled to a femtosecond 

pulsed Ti:Sapphire laser (Mira 900, Coherent Laser Group, Santa Clara, CA, USA). The laser was 

tuned to the excitation wavelength for GFP (900 nm) and there was no photobleaching nor 

was there any evidence of cellular damage during extensive scanning to obtain time lapse 

images. The laser intensity was carefully monitored in all instances and kept comparable 

between all experiments. A HCX IR Apo L 25X NA 0.95 (Olympus) water-immersion objective 

lens was used. Imaging was done at depths in brain slices >50µm and up to 100µm. The mean 

depth for imaging lesions was 75µm. Voxel size was adjusted to 0.1x0.1µm and z-stacks were 

taken in 1µm steps. The mean scan time for z-stack was approximately 45s. 3D reconstruction 

of microglia, and automated assessment of the number of branches was performed using the 

“filament tracer program” (Matlab algorithm) of Imaris 7.6 (Bitplane AG), after correction for 

drift in x- and y-axis (Stackreg (Thevenaz et al., 1998) and Multistackreg (Busse) plugins, Fiji) 

and drift in z-axis ("correct 3D axis", Fiji module of Imaris 7.6). This allowed us to isolate each 

microglial process and to follow its length modification all along the recording period. In both 

saline- and KA-injected animals, we analyzed 4-5 cells (distributed through the hilus and the 

DG) per animal and 3-4 animals per group.  

5.8.2. Two-photon imaging on the living cortex  

Live imaging was performed using two-photon imaging as previously described 

(Tremblay et al., 2010). 2mo CX3CR1GFP/+ mice were injected with saline or KA as explained 

previously. 24h later, mice were anesthetized with isoflurane. The hair above the skull was 

shaved and ethanol and povidone iodine were applied to disinfect. Next, the skin was cut and 
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the skull above the motor cortex was exposed and cleaned with ethanol and ferric oxide, 

which dry the periosteum and allow its removal.  Then the skull was dried and glued to a thin 

metal plate and a small patch (1mm2) was carefully thinned to an approximately 20- to 30-mm 

thickness, using a high-speed dental drill (Osada Inc) and a microsurgical blade. Drilling was 

interrupted every 20 seconds, and sterile saline was applied on the skull to prevent heat-

induced damage. Next, the mice were placed under an Olympus two-photon microscope 

FV1000MPE equipped with a Ti:Sapphire laser (Mai Tai DeepSee; Spectra Physics) tuned to 920 

nm for transcranial imaging. A 25X water-immersion lens (1.05 N.A.; Olympus) was used 

throughout the imaging session. Z stacks taken 1μm apart were acquired every 1.5min for 13.5 

min (10 time frames). Microglial motility was analyzed using several plugins in Fiji. In brief, 

images were registered using the “Affine” algorithm of the “MultiStack” plugin and aligned by 

using the “Correct 3D drift” plugin (Parslow et al., 2014). Background was subtracted using a 

difference of Gaussians and bleaching was corrected using the “Histogram Matching” 

algorithm of the “Bleach Correction” plugin (Miura et al., 2014). The motility was automatically 

determined using a self-developed ImageJ macro that estimated the 3D length of previously 

selected processes, and calculated the motility as the absolute difference of length between 

two consecutive frames divided by the time interval (1.5min). For automatic measurement of 

the length process, each selected process was reoriented vertically in the xy plane and the 

intensity profiles of horizontal lines run through the length of the process were obtained in 

each z-slice.  

Intensity profiles were used to determine the x and z coordinates of the borders of the 

process in each line based on three parameters: background intensity, the difference between 

the maximum intensity and the pixels flanking the maxima, and the inflexion points of the 

intensity profiles. x and z coordinates of the borders were used to calculate the center of the 

process in each horizontal plane (xz planes). Then, the length of the 3D skeleton of the process 

in each time frame was calculated as the summation of the distances between each pair of 

center points located in consecutive xz planes. The following formulae were used to calculate 

the mean motility of a process: 

𝑧𝐶 =
𝑧𝑈 + 𝑧𝐵

2
 

Where zC, zU and zB are the coordinates of the center, the upper z-slice and the bottom z-slice 

containing the process, respectively. 

𝑥𝐶 =
𝑥𝑅 + 𝑥𝐿

2
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Where xC, xR and xL are the coordinates of the center, the right border and the left border of 

the process, respectively. If zc-slice was virtual (i.e., not an integer): 

𝑥𝑅 =
𝑥𝑅(𝑧𝑐−0.5)

+  𝑥𝑅(𝑧𝑐+0.5)

2
 

𝑥𝐿 =
𝑥𝐿(𝑧𝑐−0.5)

+  𝑥𝐿(𝑧𝑐+0.5)

2
 

Once the coordinates of the center of the vertically aligned process had been defined in the X 

and Z planes, its length was estimated: 

𝑙𝑒𝑛𝑔𝑡ℎ =  ∑ √(𝑦𝑖+1 − 𝑦𝑖)2 + (𝑥𝑐𝑦𝑖+1
− 𝑥𝑐𝑦𝑖

)2 + (𝑧𝑐𝑦𝑖+1
− 𝑧𝑐𝑦𝑖

)2

𝑦𝑛−1

𝑖=𝑦0

 

Where y0 and yn-1 are the y coordinates of the first and last horizontal lines, respectively, 

containing pixels with intensities above the background. Finally, the process motility was 

estimated: 

𝑚𝑜𝑡𝑖𝑙𝑖𝑡𝑦 =  
√(𝑙𝑒𝑛𝑔𝑡ℎ𝑓+1 −  𝑙𝑒𝑛𝑔𝑡ℎ𝑓)2

1.5
 

Where f is time frame, and 1.5 corresponds to the 1.5min of the time interval between 

consecutive frames. Mean motilities were used for analysis. Mean protraction and retraction 

of a process were calculated as the mean of the motilities from consecutive frames (f and f+1) 

where the length of the process was increased or decreased, respectively.  

 

5.9. ELECTROPHYSIOLOGY 

Hippocampal slices (300μm) were cut with a vibratome (Leica) from PND20-PND30 

fms-EGFP mice in oxygenated (95% O2/5% CO2) ACSF, pH7.4, that contained 124mM NaCl, 

25mM NaHCO3, 1.25mM NaH2PO4, 2.5mM KCl, 2.5mM CaCl2, 1.3mM MgCl2, and 10mM D-

glucose. Slices were allowed to recover for at least 1h and were then transferred to a 37°C 

chamber with continuous flow (1mL/min) of oxygenated ACSF. To induce epileptiform activity, 

cells were perfused with high K+ (8mM), low Mg2+ (0.25mM) and 4-aminopyridine (4-AP, 

100µM) (Hsiao et al., 2014). Extracellular field potential recordings were performed in the CA1 

pyramidal layer to monitor epileptiform activity, using glass electrodes (1MΩ) filled with ACSF. 

Epileptiform activity was induced both in the DG and CA1, but the amplitude of the spikes was 

considerably larger in CA1 and thus EGFP-expressing microglial cells were simultaneously 

patch-clamped recorded in this region in whole-cell configuration with recording pipettes (7-
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10MΩ) filled with a solution containing 135mM KCl, 4mM NaCl, 0.7mM CaCl2, 10mM BAPTA, 

10mM HEPES, 4mM Mg-ATP and 0.5mM Na2-GTP (pH 7.2). 

 

5.10. FACS SORTING 

For cytokine expression experiments, microglial cells were isolated from brains as 

described previously (Sierra et al., 2007). 2mo fms-EGFP mice were anesthetized, perfused 

with saline and decapitated in order to isolate the hippocampus. The hippocampi were then 

dissected and placed in enzymatic solution (116mM NaCl, 5.4mM KCl, 26mM NaHCO3, 1mM 

NaH2PO4, 1.5mM CaCl2, 1mM MgSO4, 0.5mM EDTA, 25mM glucose, 1mM L-cysteine) with 

papain (20U/ml) and DNAse I (150U/µl, Invitrogen) for digestion at 37°C for 15 min. 4 

hippocampi from saline or KA-injected mice were collected per replica, with a total of 4 

replicas. After homogenization, tissue clogs were removed by filtering the cell suspension 

through a 40µm nylon strainer to a 50ml Falcon tube containing 5ml of HBSS with 20% heat 

inactivated FBS, to stop the enzymatic reaction of papain. For further enrichment of microglia, 

myelin was removed by using a Percoll gradient. For this purpose, cells were centrifuged at 

200g for 5min and resuspended in 20% Solution of Isotonic Percoll (20% SIP; in HBSS), obtained 

from a previous stock of SIP (9 parts Percoll per 1 part PBS 10X). Then, each sample was 

layered with HBSS poured very slowly by fire-polished pipettes. Afterwards, gradients were 

centrifuged for 20min at 200g with minimum acceleration and no brake so the interphase was 

not disrupted. Then the myelin containing interphase was removed, cells were washed in HBSS 

by centrifuging at 200g for 5min and pellet was resuspended in 500µl of sorting buffer (25mM 

HEPES, 5mM EDTA, 1% BSA, in HBSS). Microglia cell sorting was performed by fluorescence 

activated cell sorting (FACS) using FACS Jazz (BD), in which the population of green fluorescent 

cells was selected, collected in Lysis Buffer (Qiagen) containing 0.7% 2-mercaptoethanol and 

stored at -80°C until processing.  

 

5.11. RNA ISOLATION AND RTqPCR 

5.11.1. RNA isolation and RT 

5.11.1.1. Hippocampus 

The right (injected) hippocampus of wild type (WT) mice was rapidly isolated 

immediately after intraaortic perfusion with cold PBS under tribromoethanol overdose, and 

stored at -80°C until processed. Total ribonucleic acid (RNA) was isolated using a roto-stator 
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homogenizer and Qiagen RNeasy Mini Kit (Alcobendas, Spain), following manufacturer’s 

instructions, including a DNAse treatment step to eliminate genomic deoxyribonucleic acid 

(DNA) residues. RNA was quantified in a Nanodrop 2000, and 1.5µg were retrotranscribed 

using random hexamers (Invitrogen) and Superscript III Reverse Transcriptase kit (Invitrogen), 

following manufacturer’s instructions in a Veriti Thermal Cycler (Applied Biosystems, 

Alcobendas, Spain).  

5.11.1.2. FACS sorted microglia 

RNA from FACS-sorted microglia was isolated by Rneasy Plus micro kit (Qiagen) 

according to the manufacturer instructions, and the RNA was retrotranscribed using an iScript 

advanced complementary DNA (cDNA) Synthesis Kit (Biorad) following manufacturer’s 

instructions in a Veriti Thermal Cycler. 

5.11.2. qPCR 

Quantitative Polymerase Chain Reaction (qPCR) was performed following MIQE 

guidelines (Minimal Information for Publication of Quantitative Real Time Experiments (Bustin 

et al., 2009)). Three replicates of 1.5µl of a 1:3 dilution of cDNA were amplified using Power 

SybrGreen (Biorad) for whole hippocampus experiments or SsoFast EvaGreen Supermix 

(Biorad) for FACS-sorted microglia experiments in a CFX96 Touch Real-Time PCR Detection 

System (Biorad). The amplification protocol for both enzymes was 3min 95oC, and 40 cycles of 

10sec at 95oC, 30sec at 60oC. Primers were designed to amplify exon-exon junctions using 

Primer Express (Applied Biosystems) or PrimerBlast (NIH) to avoid amplification of 

contaminating genomic DNA, and their specificity was assessed using melting curves and 

electrophoresis in 2% agarose gels.  

5.11.3. Primers 

Primers were designed using Primer express (Thermo Fisher Scientific). Primer 

sequences are listed in Table 2.  

For each set of primers, the amplification efficiency was calculated using a standard 

curve of 1:2 consecutive dilutions, and was used to calculate the relative amount using the 

following formula:  

∆∆𝐶𝑡 = (1 + 𝑒𝑓𝑓. 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒)exp (𝐶𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐶𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)/(1 +

𝑒𝑓𝑓. 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒)exp (𝐶𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐶𝑡 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)  
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GENE GENE BANK AMPLICON SIZE SEQUENCE 

Reference genes    

OAZ-1 NM_008753 51 Fwd  AGCGAGAGTTCTAGGGTTGCC 

   Rev  CCCCGGACCCAGGTTACTAC 

L27A BC086939 101 Fwd  TGTTGGAGGTGCCTGTGTTCT 

Rev  CATGCAGACAAGGAAGGATGC 

Cytokines    

IL-1β NM_008361 152 Fwd  CAACCAACAAGTGATATTCTCCATG 

Rev  GATCCACACTCTCCAGCTGCA 

IL-6 NM_031168 141 Fwd  GAGGATACCACTCCCAACAGACC  

Rev  AAGTGCATCATCGTTGTTCATACA 

TGFβ1 NM_011577 51 Fwd  GCAGTGGCTGAACCAAGGAG  

Rev  TGAGCGCTGAATCGAAAGC 

TNFα NM_013693 179 Fwd  CATCTTCTCAAAATTCGAGTGACAA 

Rev  TGGGAGTAGACAAGGTACAACCC 

CSF NM_007778 51 Fwd  GTCCTGCAGCAGTTGATCGA  

Rev  GGCAATCTGGCATGAAGTCTC 

MIC-1 NM_011819 52 Fwd  TCAGTCCAGAGGTGAGATTGGG  

Rev  TTGACGCGGAGTAGCAGCTG 

Table 2. Primer sequences. Primer sequences for cytokine expression analysis by qPCR.  

 

Two independent reference genes (or housekeeping genes) were compared: L27A, 

which encodes a ribosomal protein of the 60S subunit (Sierra et al., 2007) and OAZ-1, which 

encodes ornithine decarboxylase antizyme, a rate-limiting enzyme in the biosynthesis of 

polyamines and recently validated as reference gene in rat and human (Kwon et al., 2009). The 

expression of L27A and OAZ-1 remained constant independently of time and treatments (data 

not shown), validating their use as reference genes. In all experiments, the pattern of mRNA 

expression was similar using the assigned couple of reference genes, and in each experiment 

the reference gene that rendered lower intragroup variability was used for statistical analysis. 

 

5.12. STATISTICAL ANALYSIS 

SigmaPlot (San Jose, CA, USA) was used for statistical analysis. For the analysis of 

cytokine mRNA expression, a logarithmic transformation was performed to comply with 
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ANOVA assumptions (normality and homocedasticity) (Sierra et al., 2007). The analysis of 

cytokine and apoptotic cell expression was evaluated by 2-way ANOVA or the corresponding 

non-parametrical test (Kruskal-Wallis). When interaction between factors (time x treatment) 

was found, a 1-way ANOVA test of all groups was performed instead to determine the overall 

effect of each factor. In all cases, all-pairwise multiple comparisons (Holm-Sidak method or 

Tukey test) were used as a posthoc test to determine the significance between groups in each 

factor. Only p<0.05 is reported to be significant. Data is shown as mean ± SEM (standard error 

of the mean). 
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6. RESULTS  

6.1. MICROGLIAL PHAGOCYTOSIS IS COUPLED TO CELL APOPTOSIS IN 
PATHOLOGICAL CONDITIONS IN VITRO AND IN VIVO 

6.1.1. Microglial phagocytosis is coupled to cell apoptosis during excitotoxicity 
in vitro 

Microglial phagocytosis has been shown to be very efficient at eliminating apoptotic 

cells in the dentate gyrus (DG) in physiological conditions (Sierra et al., 2010) but this efficiency 

has never been tested in pathological conditions. Thus, to assess whether the phagocytosis 

efficiency was maintained in different conditions we exposed microglia to different 

pathological models both in vitro (in organotypic hippocampal slices and primary cultures) and 

in vivo.  

First, we investigated the response of microglial phagocytosis to excitotoxicity, one of 

the underlying pathological events occurring in epilepsy, were cell death is caused by excessive 

stimulation by neurotransmitters such as glutamate. For this purpose we used  N-methyl-D-

aspartate (NMDA), a glutamate agonist which causes excitotoxicity and seizures in vivo 

(Toscano et al., 2008), but only causes excitotoxicity in organotypic hippocampal slice cultures 

(Vinet et al., 2012) possibly due to the absence of the complete hippocampal circuit. 

Organotypic cultures are a useful approach for pharmacological studies as they partially 

preserve the structure and connectivity of the original tissue and maintain a physiological 

environment where all cell types are present (Gahwiler et al., 1997). Moreover, there is basal 

apoptotic death occurring in organotypic slices, which allowed us to establish the baseline of 

microglial phagocytosis in the DG this in vitro model. Thus, we induced excitotoxicity with a 4h 

treatment of NMDA (50µM) in postnatal organotypic hippocampal cultures of fms-EGFP mice, 

in which all microglia express the green fluorescent reporter (Sierra et al., 2007) (Figure 7). 

Apoptosis was determined by aberrant nuclear morphology, as visualized with the DNA dye 

DAPI, defined as pyknotic (condensed nuclei) and karyorrhectic (fragmented nuclei) cells. 

Necrosis was determined by retention of propidium iodide (PI), a DNA intercalating agent that 

is not extruded by cells with a disrupted cytoplasmic membrane, a hallmark of necrosis 

(Krishan, 1975). Microglial phagocytosis was assessed by the appearance of phagocytic 

pouches, i.e., apoptotic nuclei totally encircled by microglia (Figure 7A). In physiological 

conditions in vivo, microglia phagocytose apoptotic cells with pouches located at the tip of 

their processes in a “ball and chain” configuration or by en passant branches (Sierra et al., 

2010). Nevertheless, microglia present a less ramified and more hypertrophic morphology in 
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organotypic slices, where phagocytosis can be seen to be carried out by microglial somas, with 

the phagocytic pouches located close to the microglial nuclei (Figure 7A).  

The number of apoptotic cells increased significantly after 4 hours (4h) of NMDA 

treatment compared to non-treated controls and returned to basal levels 24h later, while the 

number of necrotic cells stayed unchanged (Figure 7B). The basal phagocytic index (Ph index), 

i.e., the proportion of apoptotic cells completely engulfed by microglia, was 13 ± 2% in control 

organotypic slices (Figure 7C) and remained stable in response to NMDA. Microglia responded 

to the increased number of apoptotic cells by rising their phagocytic capacity (Ph capacity), 

i.e., the proportion of microglia with one or more phagocytic pouches, each containing one 

apoptotic cell (Sierra et al., 2010), and there were more phagocytic microglia overall, some of 

them with up to 7 pouches (Figure 7D, E), while the number of microglia remained unchanged 

(Figure 7F). Thus, the increase of net phagocytosis (number of microglia multiplied by their 

phagocytic capacity) matched the increase in apoptosis, as determined by the 

phagocytosis/apoptosis coupling ratio (Ph/A coupling). The Ph/A coupling was similar between 

control and NMDA-treated slices (Figure 7G). Although the Ph coupling was maintained 

between the treatments indicating a balance between the change in phagocytosis and 

apoptosis, the Ph index showed that only 13 ± 2% of apoptotic cells were phagocytosed in 

controls, much less than in adults in physiological conditions (90-100%) (Sierra et al., 2010). 

Thus, to assess the effects of the tissue culturing on microglial phagocytosis we assessed the 

Ph index in postnatal day 7 (PND7) and PND14 mice (Figure 7H, I) the ages when organotypic 

cultures were made (PND7) and were used for experiments (PND14= PND7+7 days in vitro 

(DIV)). The Ph index was higher in the postnatal DG in vivo (60-70%; Figure 7I) at both ages 

comparing to the control organotypic slices. These data are evidence of changes induced by 

culturing the tissue. In summary, these results show that NMDA treatment increased apoptotic 

cell numbers in the DG and microglia responded increasing its Ph capacity proportionally, thus 

maintaining the apoptosis-microglial phagocytosis coupling. 
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Figure 7. Microglial phagocytosis is coupled to apoptosis during in vitro excitotoxicity. (A) 
Representative epifluorescence (whole hippocampus view in the upper panels) and confocal (remaining 
panels) images of the DG in hippocampal organotypic cultures treated with media (control; n=6), media 
with NMDA (50µM) for 4h (NMDA 4h; n=3), or media with NMDA 4h and fresh media for another 24h 
(NMDA 4h+24h; n=3). Normal or apoptotic (pyknotic/karyorrhectic) nuclear morphology was visualized 
with DAPI (white), microglia by the transgenic expression of fms-EGFP (cyan) and membrane 
permeability (characteristic of necrotic cells) by propidium iodide (PI, red). High magnification inserts 
show a phagocytosed secondary apoptotic cell (pyknotic, PI+; left panel, arrow); primary apoptotic cells 
(pyknotic, PI-), phagocytosed or not (arrow and arrow heads, respectively, central panel); and 
phagocytosed necrotic (non-pyknotic, PI+; red arrow, right panel). (B) Number of dead apoptotic 
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(primary and secondary together) and necrotic cells in 200,000µm3 of the DG in organotypic slices 
treated with NMDA. (C) Ph index in organotypic slices (% of apoptotic cells phagocytosed) treated with 
NMDA. (D) Weighted Ph capacity of microglia (in parts per unit, ppu). (E) Histogram showing the Ph 
capacity of microglia (in % of cells). (F) Number of microglial cells in 200,000µm3 of the DG. (G) Ph/A 
coupling (in fold-change) in organotypic slices treated with NMDA. (H) Representative confocal z-stack 
projections of the DG of the hippocampus at postnatal day 7 (PND7) and PND14 of fms-EGFP mice. 
Arrows show phagocytosed apoptotic cells. (I) Ph index in the DG at PND7 and 14 (in % of apoptotic 
cells; n=3-4 per group). Bars represent mean ± SEM. * indicates p<0.05, ** indicates p<0.01, and *** 
indicates p<0.001 by Holm-Sidak posthoc test (after one-way ANOVA was significant at p<0.05) (B-G) or 
by 1-tail Student´s t-test (I). Only significant effects are shown. Scale bars=1mm (A, upper pannel), 30µm 
(A, lower pannel), 50µm (H). z=16.8µm (H). 

 

6.1.2. Microglial phagocytosis is coupled to cell apoptosis during acute 
inflammation in vivo 

To further test microglial phagocytosis efficiency in vivo we used the hippocampal DG. 

Importantly, the baseline of microglial phagocytosis was established in the DG (Sierra et al., 

2010). The subgranular zone (SGZ) of the DG is one of the two regions of the brain where 

neurogenesis is found all throughout adulthood. In physiological conditions a large percentage 

of the newborn cells undergo apoptosis in the neurogenic cascade (Sierra et al., 2010). This 

constitutive apoptosis found in the DG allowed us to establish the baseline of microglial 

phagocytosis and thus, to assess the changes in the efficiency of apoptotic cell phagocytosis 

under different pathological conditions.  

We first investigated whether an exogenous inflammatory challenge known to activate 

the microglial inflammatory response interfered with microglial phagocytosis in the DG. 

Importantly, inflammation is another pathological feature of epilepsy (Vezzani et al., 2011). As 

the orchestrators of the innate immune response in the brain, microglia are the first cells to 

respond to infectious stimuli (Kettenmann et al., 2011). We induced acute neuroinflammation 

by peripheral (intraperitoneal, i.p.) administration of bacterial lipopolysaccharides (LPS) (1 

mg/kg). LPS stimulates microglia to express proinflammatory cytokines that peak at 3h and 

return to basal levels by 24h (Sierra et al., 2007). We previously found that at 8h of LPS 

treatment in 1 month old (mo) mice (Figure 8A), the Ph index remained stable (96 ± 2 vs 93 ± 

1% of apoptotic cells engulfed in control vs LPS, respectively (Sierra et al., 2010), even though 

there was a 242% ± 44% increase in apoptotic cells compared to control animals (Figure 8B) 

(Sierra et al., 2010). Microglia responded to the increase in apoptosis by proportionally raising 

their phagocytic capacity (Figure 8C), without increasing their number (Figure 8D). As a result, 

the Ph/A coupling ratio (Figure 8E) remained unchanged. Thus, these results indicate that in 
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the young adult DG the phagocytosis efficiency of microglia was maintained during acute 

inflammatory challenge.  

 

Figure 8. Microglial phagocytosis is coupled to apoptosis during acute inflammation in vivo. (A) 
Experimental design of C57BL/6 fms-EGFP 1mo mice injected systemically with LPS (1mg/kg; n=5) or 
vehicle (saline; n=4) 8h prior to sacrifice. (B) Number of apoptotic (pyknotic/karyorrhectic) cells per 
septal hippocampus. This graph is reprinted with permission of Elsevier from (Sierra et al., 2010). (C) 
Weighted Ph capacity of microglia (in parts per unit, ppu) in control and LPS mice. (D) Number of 
microglial cells per septal hippocampus in control and LPS mice. (E) Ph/A coupling in the 1mo mouse 
hippocampus (in fold change) during acute inflammatory challenge. Bars represent mean ± SEM. * 
indicates p<0.05 and ** indicates p<0.01 by 1-tail Student´s t-test.  

 

6.1.3. Microglial phagocytosis is coupled to cell apoptosis during chronic 
inflammation in vivo 

As microglia managed to maintain their phagocytosis efficiency during acute 

inflammation, we assessed whether a chronic inflammatory challenge would affect 

phagocytosis efficiency. In order to induce chronic inflammation we fed young mice during 

embryonic and postnatal development with a diet deficient in anti-inflammatory omega 3 (Ω3) 

polyunsaturated fatty acids (Mingam et al., 2008). Today’s western diets have excessive 

amounts of Ω6 polyunsaturated fatty acids and a very low Ω3/Ω6 ratio. This imbalance 

promotes the pathogenesis of many diseases, including inflammatory and autoimmune 

diseases, whereas increased levels of Ω3 exert immunosuppressive effects (Simopoulos, 2002). 

In order to study the effects of chronic inflammation on phagocytosis, we fed mice along 

gestation and postnatal development until PND21 with either a balanced (Ω3:Ω6, 1:5; Ω3 bal) 

or deficient (Ω3-Ω6, 1:15; Ω3 def) Ω3 diet (Figure 9A). Unlike what we observed in organotypic 

slices, the morphology of microglial phagocytosis was very similar to that found in 

physiological conditions in vivo, in which microglia phagocytose apoptotic cells in a “ball and 

chain” configuration or by en passant branches (Figure 9A). In Ω3 deficient mice there was an 

increase in apoptosis in the DG (Figure 9A, B), in accordance with data showing that Ω3 has an 

anti-apoptotic effect in different pathological conditions (Calandria et al., 2009; Sinha et al., 

2009).  
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Interestingly, the Ph index remained unaltered in Ω3 deficient mice compared to mice 

fed with an Ω3 balanced diet (Figure 9C). The increase in apoptosis was matched by a partial 

increase in the Ph capacity and an increase in the number of microglial cells (Figure 9D-F), 

ultimately resulting in the maintenance of the Ph/A coupling (Figure 9G). Thus, both after 

excitotoxic challenge in vitro and acute and chronic inflammatory challenge in vivo, both 

pathologies concurring in epilepsy, microglial phagocytosis remained tightly coupled to 

apoptosis. 

 

Figure 9. Microglial phagocytosis is coupled to apoptosis during chronic inflammation in vivo. (A) 
Experimental design and representative confocal z-stacks of the DG of PND21 Swiss mice fed during 
gestation and lactation until PND21 with a diet balanced (3 bal; n=7) or deficient (3 def; n=7) in Ω3 
polyunsaturated fatty acids. Microglia were labeled with ionized calcium-binding adapter molecule 1 
(Iba1, cyan) and apoptotic nuclei were detected by pyknosis/karyorrhexis (white, DAPI). Arrows point to 
apoptotic cells engulfed by microglia (M). Scale bars=50m; z=22.5m. (B) Number of apoptotic 
(pyknotic/karyorrhectic) cells per septal hippocampus in mice fed with balanced and deficient diets. 
(C) Ph index in the PND21 hippocampus (in % of apoptotic cells) in mice fed with balanced and 
deficient diets. (D) Weighted Ph capacity of microglia (in ppu) in PND21 mice. (E) Histogram showing the 
Ph capacity distribution of microglia (in % of cells) in PND21 mice. (F) Total number of microglial cells 
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(Iba1+) per septal hippocampus in PND21 mice. (G) Ph/A coupling in PND21 mice. Bars represent mean ± 
SEM. * indicates p<0.05 and ** indicates p<0.01 by 1-tail Student´s t-test.  

 

6.2. MICROGLIAL PHAGOCYTOSIS IMPAIRMENT IN VIVO IN A 
PHARMACOLOGICAL MODEL OF EPILEPSY: MESIAL TEMPORAL LOBE 
EPILEPSY (MTLE) 

6.2.1. Acute impairment of microglial phagocytosis following seizures in vivo 

6.2.1.1. Intrahippocampal injection of KA causes mesial temporal lobe epilepsy 
(MTLE) and an increase in dead cells in the hippocampus in vivo 

The above results suggest that microglia have a substantial reservoir for phagocytosis, 

as they could reach their maximum Ph capacity by recruiting up to 100% microglia to be 

phagocytic, by inducing each microglia to phagocytose more apoptotic cells, and/or by 

increasing the total number of microglia. To test this potential, we challenged microglia in an 

in vivo model of mesial temporal lobe epilepsy (MTLE), in which seizures concur with 

excitotoxicity and inflammation. MTLE is one of the best-characterized types of epilepsy 

(Tatum, 2012) and a type of focal epilepsy in which seizures originate in the hippocampus and 

related structures (Sharma et al., 2007). To model MTLE, we injected the glutamate analog 

kainic acid (KA) (Bouilleret et al., 1999). KA induces seizures via activation of two subtypes of 

ionotropic glutamate receptors: kainate receptors and AMPA receptors (as a partial agonist) 

(Fritsch et al., 2014) located presynaptically in GABAergic terminals (Cossart et al., 2001) and 

postsinaptically in glutamatergic neurons (Lerma, 2003). To mimick MTLE we injected KA 

(20mM, 50nL) intrahippocampally (Figure 10 and Figure R11). Intrahippocampal 

administration of KA induced an episode of prolonged continuous seizure activity (status 

epilepticus) that lasted 4-6h. All animals reached level 3-4 class seizures according to the 

Racine scale (Racine, 1972), and the development of spontaneous recurrent seizures was 

monitored for up to 7 weeks (Figure 10A) (Sierra et al., 2015). Apoptosis was most consistently 

induced in the septal hippocampus (spanning from -1mm to -2.5mm in the anteroposterior 

axis, from Bregma; data not shown), and thus quantifications were restricted to that area. We 

quantified the absolute number of apoptotic cells (determined by pyknosis/karyorrhexis 

and/or activated caspase 3 staining) along a time course from 6h post-injection (6hpi) to 7 days 

post-injection (dpi) (Figure 10B, C). In the DG apoptotic cells were mainly located in the SGZ at 

1dpi suggesting that the cells in the neurogenic cascade were the most affected by the KA 

triggered seizures at that time point. The number of apoptotic cells significantly increased 
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starting from 1dpi and up to 7dpi relative to controls (Figure 10C). Thus, KA generated seizures 

increased the number of dead cells mainly in the neurogenic niche of the DG. 

 

Figure 10. Intrahippocampal injection of KA causes MTLE seizures in vivo and an increase in apoptotic 
cell numbers in the subgranular zone (SGZ) of the hippocampus. (A) Hippocampal 
electroencephalographic (EEG) recordings of mice injected in the ipsilateral side (I) with KA (50nL, 
20mM) during status epilepticus (0 days post-injection, dpi) and during a spontaneous seizure occurring 
in the chronic phase of MTLE (49dpi). The contralateral hippocampus (C) is shown for comparison 
purposes. (B) Representative confocal z-stacks of saline (sal) and KA (1dpi) hippocampi labeled with 
DAPI (nuclear morphology, white), activated caspase 3 (act-casp3+, red, for apoptotic cells), and fms-
EGFP (cyan, microglia). (C) Number of apoptotic cells (pyknotic/karyorrhectic and act-casp3+) in the 
septal DG (n=3-9 per time point and treatment). Bars represent mean ± SEM. * indicates p<0.05, ** 
indicates p<0.01, and *** indicates p<0.001 by one-way ANOVA (C, where a significant interaction time 
x treatment was found) were significant at p<0.05. Scale bars=50m. z=25m (B). 

 

6.2.1.2. Microglial phagocytosis is acutely impaired in the hippocampus during 
MTLE seizures  

As microglial phagocytosis-apoptosis coupling was maintained in phagocytic challenges 

induced by excitotoxicity and acute and chronic inflammation, both processes concurring in 

epilepsy, we asked whether the increase in the number of apoptotic cells induced by seizures 

would also be matched by an increase in phagocytosis. Unexpectedly, we found limited 

evidence of phagocytosis, with many non-phagocytosed apoptotic cells located very close to 

microglia, which showed thickened processes (Figure 11A-C). In fact, the Ph index significantly 

dropped at 6hpi and 1dpi (Figure 11D). We further analyzed the characteristics of this 

phagocytosis impairment in the DG. We found a decreased Ph capacity in the KA injected mice 

at both 6hpi and 1dpi compared to controls, related to a smaller proportion of microglia with 

phagocytic pouches (Figure 11E, F). While no significant changes in total microglial numbers 

were found (Figure 11G), there was a significant decrease in the microglial density in the KA 

injected mice at 1dpi (Figure 11H), which can be attributed to the increase in the DG volume, 
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which is due to granule cell dispersion (Figure 11I), typical of both human and mouse MTLE 

(Haas and Frotscher, 2010). As a result of the decreased Ph capacity induced by KA, the Ph/A 

coupling ratio dramatically decreased at both time points (Figure 11J). In summary, in contrast 

to what we found in excitotoxicity and inflammation where the increase in apoptotic cell 

numbers was matched by a boost in microglial phagocytosis, we found a severe phagocytosis 

impairment in the KA induced apoptotic challenge as early as 6hpi. 

 

Figure 11. Microglial phagocytosis is acutely impaired in the hippocampus due to MTLE seizures in 
vivo. (A) Representative confocal image of a non-phagocytosed apoptotic (pyknotic and act-casp3+, 
arrowhead) cell in the SGZ (orthogonal projection, left; and 3D-rendered image, right) in the septal DG 
of mice treated with KA at 6 hpi. M, microglial cell body. (B) Representative 3D-rendered confocal z-
stack of apoptotic (pyknotic and act-casp3+) cells, phagocytosed (arrow) or not (arrowheads) in the 
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septal DG of mice treated with KA at 1dpi. M, microglial cell body. (C) Representative 3D-rendered 
confocal z-stack of apoptotic (pyknotic), non-phagocytosed cells (arrowheads) in the DG of mice treated 
with KA at 1dpi. The arrow points to a semi-engulfed apoptotic cell. M, microglial cell body. (D) Ph index 
of microglia (in % of apoptotic cells) in the septal DG 6h and 1d after sal/KA. (E) Weighted Ph capacity of 
microglia (in ppu) in the septal DG 6h and 1d after sal/KA. (F) Histogram showing the Ph capacity 
distribution of microglia (in % of cells) in the septal DG 6h and 1d after sal/KA. (G) Total number of 
microglial cells (fms-EGFP+) in the septal DG 6h and 1d after sal/KA. (H) Density of microglia (cells/mm3) 
in saline and KA-injected mice (n=3-5 per group). At 1dpi, KA induced a significant decrease in the 
density of microglia. (I) Volume of the septal dentate gyrus (mm3) in saline and KA-injected mice (n=3-5 
per group). The volume occupied by the dentate gyrus was assessed in the septal hippocampus 
(spanning from -1mm to -2.5mm in the anteroposterior axes, from Bregma) in control animals (injected 
with saline, pooled from different time points for robustness) or after injection of KA at 1, 3 and 7 dpi 
(no changes after 6hpi were found). (J) Ph/A coupling (in fold change) in the septal DG 6h and 1d after 
sal/KA. Bars represent mean ± SEM except in K, where they indicate the sum of cells in each distance 
slot. * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001 by Holm-Sidak posthoc test after 
two-way ANOVA (E-H, J), one-way ANOVA (D, where a significant interaction time x treatment was 
found) or Dunn´s posthoc test after Kruskal-Wallis (L) were significant at p<0.05. Scale bars=10µm (A-C). 
z=13.9µm (A), 14.1µm (B), 8.4µm (C).  

 

6.2.1.3. Microglial phagocytosis impairment is not compensated by other cell 
types in the hippocampus 

Because seizures impaired microglial phagocytosis we assessed whether other resident 

cells endowed with phagocytic potential could compensate the impairment. This could be 

achieved by the recruitment of astrocytes (Magnus et al., 2002) or neuroblasts (Lu et al., 

2011), which do not normally phagocytose hippocampal apoptotic cells in resting conditions 

(Sierra et al., 2010). To test this hypothesis, we used transgenic mice in which the expression 

of fluorescent reporters is controlled by cell-type specific promoters, i.e., hGFAP (human glial 

fibrillary acidic protein, for astrocytes), and POMC (proopiomelanocortin, which in the 

hippocampus is only expressed in neuroblasts) (Overstreet et al., 2004). We found that both 

cell types were engaged in phagocytosis after 1dpi of KA, but nonetheless, they only engulfed a 

small proportion of the apoptotic cells compared to microglia (Figure 12). Therefore, even at 

1dpi after KA when microglial phagocytosis of apoptotic cells accounted only for 10% of the 

apoptotic cells, microglia remained the most determinant phagocyte in the hippocampus. 
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Figure 12. Microglial phagocytosis impairment is not compensated by other cell types. (A) 
Representative orthogonal projection (upper panel) and 3D-rendered image (lower panel) of a confocal 
z-stack showing an apoptotic cell (pyknotic, white, DAPI) expressing activated-caspase 3 (act-casp3+, red) 
phagocytosed by a hGFAP+ astrocyte (A, green), nearby a microglial cell (Iba1+, cyan). Arrow, phagocytic 
pouch. (B) Representative orthogonal projection (upper panel) and 3D-rendered image (lower panel) of 
a confocal z-stack showing an apoptotic cell (pyknotic, white, DAPI) expressing activated-caspase 3 (act-
casp3+, red) phagocytosed by a POMC+ neuroblast (NB, yellow), nearby a microglial cell (Iba1+, cyan). 
Arrow, phagocytic pouch. (C) Ph index of microglia, astrocytes and neuroblasts (in %) at 1dpi after the 
injection of KA (n=3-4 per group). At 1dpi, the impaired microglia remained the major phagocytic cell in 
the hippocampus, as it engulfed a higher percentage of apoptotic cells. Bars represent mean ± SEM. 
Scale bars=10µm. z=11.9µm.  

 

6.2.1.4. Microglial phagocytosis is acutely impaired in the hippocampus and in the 
cortex during MTLE seizures  

To determine whether microglial phagocytosis was affected in areas other than the 

hippocampal DG we assessed the phagocytosis efficiency in nearby regions. Besides affecting 

the hippocampus, KA-induced MTLE also affects other regions of the brain like the ipsilateral 

cortex, which also develops seizures as early as 4hpi (Sierra et al., 2015). Accordingly, we found 

a consistently low Ph index in the cornu ammonis 1 (CA1) and CA3 regions of the 

hippocampus, as well as in the adjacent somatosensory cortex at 1dpi after KA (Figure 13). In 

these regions, apoptosis was undetectable in control conditions, and thus the basal Ph index 

could not be estimated. Therefore, the microglial phagocytosis impairment surpassed the 

limits of the DG and hippocampus during MTLE.  
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Figure 13. Microglial phagocytosis is acutely impaired in hippocampal CA and in the somatosensory 
cortex due to MTLE seizures in vivo. (A) Representative confocal z-stack projections of the CA1 and CA3 
regions of the hippocampus, and cortex (Cx) of 2mo fms-EGFP mice injected with saline (left panels) or 
KA (right panels) at 1dpi. Apoptotic cells (pyknotic, white, DAPI; arrowheads) are largely absent in 
control conditions but present in KA-treated mice in the three regions. Some apoptotic cells were 
phagocytosed (arrows) by microglia (fms-EGFP+, cyan) but most were not (arrowheads). (B) Density of 
apoptotic (pyknotic/karyorrhectic and act-casp3+) per mm3 (n=3 per region and treatment). (C) Ph index 
(in % of apoptotic cells) in the different brain regions after KA. nd, not detected; na, not applicable. Bars 
represent mean ± SEM. ** indicates p<0.01, and *** indicates p<0.001 by Student t-test. Scale 
bars=50µm. z=18.2µm (except in CA1 KA1dpi=20.3µm, CA3 sal 1dpi=17.5µm and Cx KA 1dpi=19.6µm). 
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6.2.2. Microglial phagocytosis impairment is related to reduced motility 

To understand how seizures were affecting microglial behaviour we investigated the 

potential mechanisms underlying the phagocytosis impairment in the DG during the acute 

phase of KA induced epilepsy. Such impairment occurred as early as 6hpi, before a significant 

increase in the number of apoptotic cells and decreased microglial density were detectable at 

1dpi (Figure 10C and Figure 11H). Interestingly, we observed that in the KA mice many non-

phagocytosed apoptotic cells were localized in direct apposition to a microglial process (Figure 

11A-C). While in control mice the average distance between an apoptotic cell and the closest 

microglial process was 1.3 ± 0.3 m, this was increased significantly at 6hpi and 1dpi following 

KA challenge (Figure 14A). In KA-treated mice at 1dpi 25% of non-phagocytosed apoptotic cells 

were 3-10 m away, and up to 15% were over 10m away from a microglial process (Figure 

14B). These results suggested two potential mechanisms for the phagocytosis impairment: a 

defect in recognition and phagocytosis initiation (which would result in apoptotic cells apposed 

to microglia but not phagocytosed); and a defect in microglial surveillance and/or targeting of 

apoptotic cells (which would result in far-off apoptotic cells).  

 

Figure 14. Distance between microglial processes and apoptotic cells increases during MTLE. (A) 
Average distance (d; in µm) between apoptotic nuclei and the closest (perpendicular) microglial process. 
Apoptotic cells were analyzed from 3 animals per group (n=6, 73, and 189 cells for control, KA 6hpi and 
KA 1dpi, respectively). (B) Histogram showing the distribution of the distance (in µm) of apoptotic cells 
(in %) to microglial processes in the septal DG 6h and 1d after sal/KA. KA. Bars represent mean ± SEM. * 
indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001 by Dunn´s posthoc test after Kruskal-
Wallis (A) were significant at p<0.05. 

 

We explored the possibility of a defect in microglial surveillance and/or targeting of 

apoptotic cells and reasoned that the impaired targeting could result from an impaired motility 

of the microglial processes (Figure 15), among other possible mechanisms. To assess the 

motility of microglial processes we resorted to an ex vivo approach using acute hippocampal 

slices and 2-photon microscopy. Acute brain slices were obtained from 2 mo CX3CR1-EGFP 
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mice, in which microglia express the green reporter (Sasmono et al., 2003; Sierra et al., 2007). 

Acute brain slices were prepared 1dpi after injection of KA or saline and were imaged in a 2-

photon microscope (Madore et al., 2013; Tremblay et al., 2010). As predicted, KA induced a 

22% decrease in basal microglial motility at 1dpi, mostly due to a decreased retraction of their 

processes (Figure 15A-C), which could lead to a decreased surveillance capacity. To further test 

the impairment of microglial motility, we imaged the living cerebral cortex overlying the 

hippocampus, where we had previously detected the phagocytosis impairment (Figure 12A). 2 

mo CX3CR1-EGFP mice were injected with either KA or sal and at 1dpi the cortex was imaged 

by 2-photon microscopy. In the living cortex of KA-injected mice, microglia showed a 37% 

decrease in their basal motility compared to saline-injected mice, which affected both the 

retraction and protraction (Figure 15D-F). Therefore, this reduced motility partially explained 

the defect in microglial phagocytosis of apoptotic cells observed after seizures. 

 

Figure 15. MTLE induced phagocytosis impairment is related to reduced motility. (A) Experimental 
design and representative projections of 2-photon microscopy images of microglia at time 0 (t0) (cyan) 
and 15min later (magenta) from the DG of acute hippocampal slices from control and KA-injected 
CX3CR1GFP/+ mice (1dpi). (B) Motility of microglial processes by 2-photon microscopy in acute slices from 
CX3CR1GFP/+ mice after in vivo injection of KA (1dpi; n=4-5 cells from 3-4 mice per group). (C) Retraction 
and protraction of microglial processes by 2-photon microscopy in acute slices from CX3CR1GFP/+ mice 
after in vivo injection of KA (1dpi). (D) Experimental design and representative projections of 2-photon 
images of microglia at t0 (cyan) and 13.5min (magenta) in the cortex of controls and KA-treated 
CX3CR1GFP/+ mice (1dpi). (E) Motility of microglial processes by 2-photon microscopy in the living cortex 
of CX3CR1GFP/+ mice after the injection of KA (1dpi; n=6 cells from 3 mice per group). (F) Retraction and 
protraction of microglial processes by 2-photon microscopy in the living cortex of CX3CR1GFP/+ mice after 
the injection of KA. Bars represent mean ± SEM. * indicates p<0.05, ** indicates p<0.01, and *** 
indicates p<0.001 by Student´s t-test (A, C, D). Scale bars=20m (A), 50µm (D). z=50m (A), 40m (D). 
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6.2.3. Microglial phagocytosis impairment is triggered by widespread atp 
release during seizures 

6.2.3.1. Microglial phagocytosis impairment is not directly mediated by KA on 
microglia 

KA could be acting directly on microglia to cause the observed phagocytosis 

impairment. As KA acts on neurons through both KA and AMPA receptors (Lerma, 2003), we 

assessed whether microglia expressed indeed any glutamate receptor in vivo, a matter under 

discussion (Beppu et al., 2013; Domercq et al., 2013; Eyo et al., 2014; Fontainhas et al., 2011; 

Kaindl et al., 2012; Wu and Zhuo, 2008). To assess the expression of these receptors in 

microglial cells in vivo we used reverse transcription quantitative polymerase chain reaction 

(RTqPCR) from fluorescence activated cell sorting (FACS)-sorted microglia. We found a residual 

expression of most ionotropic and metabotropic glutamate receptor subunits, which was 

unlikely sufficient to form functional receptors (Abiega et al., 2016), in agreement with 

previous studies that have shown the lack of functional receptors in microglia in acute 

hippocampal slices (Wu and Zhuo, 2008) or retinal explants (Fontainhas et al., 2011). To 

further assess if KA was directly affecting microglia we determined the effect of KA in 

organotypic slices and primary cultures (Figure 16). We tested the effect of KA (1mM) for 6h in 

hippocampal organotypic slices (Figure 16A-F), and found that apoptosis had a tendency to 

decrease that was not significant (Figure 16B). The Ph index remained unchanged (Figure 16C), 

while the Ph capacity decreased (Figure 16D) and microglial numbers remained stable (Figure 

16E). Consequently, the Ph/A coupling was maintained in KA treated organotypic hippocampal 

cultures (Figure 16F). Therefore, KA did not directly impair microglial phagocytosis of apoptotic 

cells, likely because KA did not induce seizures in vitro, at least in short treatments (6h in 

total). These results are in accordance with studies showing a lack of functional AMPA receptor 

in resting microglia in acute brain slices (Wu and Zhuo, 2008). Finally, we tested the direct 

effect of KA on microglia in an in vitro model of phagocytosis, in which primary cultures of 

microglia derived from PND0 mice were fed with NE-4C, a brain neuroectodermal stem cell 

line, previously treated with staurosporine to induce apoptosis. There, KA only produced a 

small but significant reduction in the percentage of phagocytic microglia (Figure 16G-I), in 

accordance with studies reporting that some AMPA and KA receptor subunits are expressed in 

cultured microglial cells (Hagino et al., 2004; Noda et al., 2000). Therefore, the strong 

impairment of microglial phagocytosis that we observed in vivo after KA injection was unlikely 

due to a direct effect of KA on microglia.  
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Figure 16. Phagocytosis impairment is not directly mediated by KA on microglia. (A) Experimental 
design and representative projections of confocal z-stacks of organotypic slices from fms-EGFP mice 
treated with vehicle (control) or KA (1mM) for 6h. Arrowheads, non-phagocytosed pyknotic cells; 
arrows, phagocytosed pyknotic cells. (B) Number of apoptotic cells (pyknotic/karyorrhectic) in the DG of 
organotypic slices treated with vehicle or KA (n=3 in controls, n=5 in KA). (C) Ph index (in % of apoptotic 
cells) in the DG of organotypic slices treated with vehicle or KA. (D) Weighted Ph capacity (in ppu) in the 
DG of organotypic slices treated with vehicle or KA. (E) Microglial density (in cells in 200000µm3) in the 
DG of organotypic slices treated with vehicle or KA. (F) Ph/A coupling (in fold-change) in the DG of 
organotypic slices treated with vehicle or KA. (G) Experimental design to test the effect of KA on 
microglial phagocytosis in primary cultures in vitro. Primary microglial cultures were pre-treated with KA 
(1mM) for 2h prior to adding apoptotic NE-4C cells (treated with 5M CM-DiI for 25min and 1M 
staurosporine for 4h). NE-4C cells were left in culture with microglia for another 3h in the presence or 
absence of KA. (H) Representative confocal z-stacks of fms-EGFP+ microglia phagocytosing apoptotic 
(pyknotic) CM-DiI+ NE-4C cells. Arrowheads, non-phagocytosed pyknotic cells; arrows, phagocytosed 
pyknotic CMDiI+ cells. (I) Percentage of phagocytic microglia in cultures (n=2 independent experiments in 
triplicate). Bars represent mean ± SEM. ** indicates p<0.01 by Student´s t-test (I). Scale bars= 30m (A, 
H). z=6.3m (C, G).  

 

6.2.3.2. Seizures trigger ATP-mediated microglial activation and phagocytosis 
impairment in vitro 

Because KA was not directly affecting microglia, we searched for an alternative 

mediator between seizures and microglia. The extracellular adenosine triphosphate (ATP) was 
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a strong candidate, as it is a well-known microglial chemoattractant (Davalos et al., 2005). 

Importantly, ATP is released by apoptotic cells to attract microglia (Elliott et al., 2009) but it is 

also released during seizures, either from neurons or from astrocytes (Dale and Frenguelli, 

2009; Santiago et al., 2011). In the extracellular space ATP is rapidly degraded by 

ectonucleotidases to adenosine diphosphate (ADP) and adenosine monophosphate (AMP) 

(Zimmermann, 1999). Therefore, direct methods for measuring extracellular ATP such as the 

luciferin-luciferase assay (Crouch et al., 1993) or extracellular measurements with 

microelectrode biosensors (Heinrich et al., 2012; Llaudet et al., 2003) are very complicated to 

perform in a mouse brain in vivo. Thus, we resorted to indirectly determine the action of ATP 

released during seizures on microglia in vitro. For this purpose we used acute hippocampal 

slices and organotypic hippocampal slices and treated them with a seizure inducing 

epileptogenic cocktail. The cocktail contained high K+ which increases the extracellular amount 

of K+ inducing cell depolarization (Rutecki et al., 1985), and low Mg2+, a physiological blocker of 

NMDA channels, which avoids their inactivation and induces seizures (Traub et al., 1994). The 

cocktail also contained 4-aminopyridine (4-AP), a non-selective blocker of voltage-dependent 

potassium channels, which acts inhibiting the uptake of extracellular potassium by astrocytes 

(Luhmann et al., 2000) (Figure 17 and Figure 18).  

First, we assessed whether the seizures induced by the epileptogenic cocktail were 

affecting microglia via ATP. Microglia senses ATP via a plethora of receptors such as P2X 

ionotropic receptors and P2Y metabotropic receptors (Domercq et al., 2013). Thus, we used 

brilliant blue G (BBG), a broad purinergic P2X receptor antagonist to assess whether the 

seizure induced release of ATP was directly affecting microglia. For this purpose we used 

PND20-30 acute hippocampal slices treated with either epileptogenic cocktail in the presence 

or absence of BBG (Figure 17). We recorded field recordings to register seizures and assessed 

microglial currents by patch-clamp. We observed that the cocktail induced a depolarizing 

response in microglia with a latency of 11 ± 2min (Figure 17A-D). Importantly, this result is in 

accordance with data showing that after K+ induced depolarization the maximum ATP release 

is reached in approximately 9min in rat hippocampal slices (Heinrich et al., 2012). 

Furthermore, we observed that when BBG was applied alongside the cocktail the large inward 

currents in microglia were partially blocked (Figure 17A-D), indicating a cationic current 

through ATP regulated channels. To assess if BBG was altering the cocktail-induced seizures, 

we recorded the field potential before and after BBG and found that BBG did not alter the 

frequency or amplitude of the epileptic discharges (Figure 17E-G). Due to the complexity and 

workload involved, the complete pharmacology to assess the individual effect of all ATP, ADP 
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and adenosine receptors on microglial phagocytosis will be completed in the future. Overall, 

this data demonstrated that microglia sense seizures via ATP. 

 

Figure 17. Seizures trigger ATP-mediated microglial activation. (A), Experimental design used to induce 
seizures in acute hippocampal slices with an epileptogenic cocktail that included high K+, low Mg2+ and 
4-aminopyridine (4-AP) in ACSF, in the presence or absence of the broad P2X receptor antagonist BBG 
(5M). (B) Seizure activity was recorded in CA1, where it had higher amplitude than in the DG. Top, 
extracellular recording (mV) and bottom, simultaneous microglia patch clamp recording (pA) before and 
after seizure induction in the absence or in the presence of BBG. (C) Patch-clamp currents (in pA) 
induced in microglia by the seizure activity after the epileptogenic cocktail in the absence (control, n=18 
cells) or presence of the P2X antagonist BBG (n=11 cells). (D) Latency (in minutes) of the currents 
induced in microglia by the seizure activity. (E) Extracellular recording of the seizure activity induced by 
the epileptogenic cocktail before and after the purinergic antagonist BBG was added in acute 
hippocampal slices. (F) Spike amplitude (in mV) induced by the epileptogenic cocktail. (G) Spike 
frequency (in Hz) induced by the epileptogenic cocktail. Bars represent mean ± SEM. * indicates p<0.05, 
** indicates p<0.01, and *** indicates p<0.001 by Student´s t-test (B). 

 

Finally, we determined whether the cocktail induced electrophysiological microglial 

response would correlate with a phagocytosis impairment. We treated hippocampal 

organotypic slices with the epileptogenic cocktail for 1h (Figure 18) and found that apoptotic 

cell numbers increased (Figure 18B). Similarly to what we observed in MTLE, the Ph index 

decreased (Figure 18C), while both the Ph capacity (Figure 18D, E) and microglia (Figure 18F) 

remained unchanged. Consequently, the Ph/A coupling was lost in the cocktail treated slices 

(Figure 18G). Thus, this data showed that seizures affected microglia via ATP, impairing 

microglial phagocytosis. These results further confirmed our in vivo data indicating that MTLE 



RESULTS 

99 
 

seizures per se impaired phagocytosis and pointed towards ATP as the mediator of this 

phagocytosis impairment. 

 

Figure 18. Microglial phagocytosis is acutely impaired in vitro due to seizures induced by a 
proepileptogenic coktail. (A) Experimental design and representative images of the DG of hippocampal 
organotypic slices treated with ACSF (control, n=3) or an epileptogenic cocktail (high K+, low Mg2+, 4-AP; 
n=3) for 1h. Normal or apoptotic (pyknotic/karyorrhectic) nuclear morphology was visualized with DAPI 
(white), microglia by the transgenic expression of fms-EGFP (cyan), and membrane permeability 
(characteristic of necrotic cells) by PI (red). High magnification inserts show details of phagocytosed 
apoptotic cells in the two conditions. Arrows, phagocytosed cells; arrowheads, non-phagocytosed cell. 
(B) Number of dead apoptotic cells in 200000µm3 of the DG in organotypic slices treated with the 
epileptogenic cocktail. (C) Ph index in organotypic slices (% of apoptotic cells phagocytosed) treated with 
the epileptogenic cocktail. Note that the Ph index in ACSF-treated slices is higher than in organotypic 
culture media-treated slices (Figure 7). (D) Weighted Ph capacity of microglia (in parts per unit, ppu). (E) 
Histogram showing the Ph capacity of microglia (in % of cells). (F) Number of microglial cells. (G) Ph/A 
coupling (in fold-change) in organotypic slices treated with the epileptogenic cocktail. Bars represent 
mean ± SEM. * indicates p<0.05 and ** p<0.01 by Student´s t-test. Scale bars=30µm. 

 

6.2.3.3. ATP impairs microglial phagocytosis in vitro 

Our results with epileptogenic cocktail treated organotypic slices pointed at seizure 

released ATP as one of the mechanisms underlying the microglial phagocytosis impairment. 
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Thus, we hypothesized that a widespread release of ATP by neurons and/or astrocytes during 

seizures would interfere with the ATP released by apoptotic cells, disrupting ATP 

microgradients. Indeed, it has been shown that disrupting ATP gradients by saturating the 

cortical tissue with a high concentration bath of ATP affects microglial motility through a 

decrease of the extension rate of microglia towards a laser-induced lesion (Davalos et al., 

2005). Therefore, we assessed whether an increase in ATP would induce a phagocytosis 

impairment per se. We tested the hypothesis that large concentrations of ATP would disrupt 

the local “find-me” gradients in hippocampal organotypic slices and impair phagocytosis 

(Figure 19). Bathing the slices in ATP (1mM) significantly increased the number of apoptotic 

cells in the slice (Figure 19A, B) but the Ph index was substantially decreased (Figure 19C), as a 

result of decreased Ph capacity (Figure 19D, E) and decreased microglial density (Figure 19F). 

Therefore, the increase in the number of apoptotic cells was possibly due both to direct 

neuronal death (Skaper et al., 2010; Wang et al., 2004) and to a block of microglial 

phagocytosis. We did not observe microglial apoptosis induced by ATP, but instead, microglia 

migrated towards the edges of the slice, an effect that we attribute to the chemotactic nature 

of ATP. Ultimately, the Ph/A coupling was lost (Figure 19G). Overall, these data indicated that 

ATP impaired microglial phagocytosis and suggested that ATP was the underlying cause of the 

early phagocytosis impairment in experimental MTLE.  
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Figure 19. ATP impairs microglial phagocytosis in hippocampal slices in vitro. (A) Experimental design 
and representative projections of confocal z-stacks of fms-EGFP hippocampal organotypic slices treated 
with vehicle (control) or ATP (300µM and 1mM) for 4h. Normal or apoptotic (pyknotic/karyorrhectic) 
nuclear morphology was visualized with DAPI (white) and microglia by the transgenic expression of fms-
EGFP (cyan). The high magnification inserts show single images of apoptotic cells phagocytosed by 
microglia (arrows) or not phagocytosed (arrowheads). (B) Number of apoptotic cells in a 200000m3 
volume containing the DG in organotypic slices treated with control medium or ATP (n=3 animals, 12 
slices per group). (C) Ph index in organotypic slices (in %) treated with control medium or ATP. (D) 
Weighted Ph capacity (in ppu) in organotypic slices treated with control medium or ATP. (E) Histogram 
showing the Ph capacity of microglia distribution (in % of cells) in organotypic slices treated with control 
medium or ATP. (F) Number of microglia in organotypic slices treated with control medium or ATP. (G) 
Ph/A coupling (in fold-change) in organotypic slices treated with control medium or ATP. Bars represent 
mean ± SEM. * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001 by Holm-Sidak posthoc 
test after one-way ANOVA (B-G) was significant at p<0.05. Scale bars=30m. z=6.3m. 
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6.2.3.4. ATP impairs microglial phagocytosis in vivo 

After proving that widespread ATP release impaired microglial phagocytosis in vitro we 

assessed the effect of both ATP and its non-degradable analog ATPS on microglial 

phagocytosis at 2hpi in vivo (Figure 20). We injected a relatively high dose (100mM) compared 

to conventional doses used in vitro, as in our organotypic slices experiments, to account for 

their diffusion through the whole hippocampus (spanning an area of several cubic mm). No 

signs of cell death or shrinkage to a potential osmosis imbalance were observed at the 

injection site in spite of the high osmolarity of the injected solutions (phosphate buffered 

saline (PBS): 286mmol/kg; ATP: 473mmol/kg; ATPS: 635mmol/kg), likely because of their 

diffusion over the hippocampal parenchyma. No changes in the volume of the DG were found 

(data not shown). ATP, but not ATPS, resulted in increased numbers of apoptotic cells in the 

DG (Figure 20A, B). Both treatments induced a significant reduction of the Ph index (Figure 

20C) and the Ph capacity (Figure 20D, E), without altering the number of microglia (Figure 

20F), ultimately resulting in a strong reduction of the Ph/A coupling (Figure 20G). Nonetheless 

apoptotic microglia could be occasionally observed in the ATP (126 ± 46 apoptotic microglia 

per septal hippocampus) but not in the ATPS- treated DG.  
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Figure 20. ATP impairs microglial phagocytosis in vivo. (A) Representative confocal z-stacks of saline, 
100mM ATP and 100mM ATPS (2hpi) DG labeled with DAPI (nuclear morphology, white), activated 
caspase 3 (act-casp3+, red, for apoptotic cells), and fms-EGFP (cyan, microglia). Arrow points to a 
phagocytosed apoptotic cell, whereas arrowheads point to non-phagocytosed apoptotic cells. Activated-
caspase 3 puncta within microglia are labeled with a round-ended arrow. (B) Experimental design 
(100mM of ATP and ATPS, 2h; n=3-4 per group) and number of apoptotic cells (pyknotic/karyorrhectic 
and act-casp3+) in the septal DG treated with ATP. (C) Ph index in the septal DG (in % of apoptotic cells) 
treated with ATP. (D) Weighted Ph capacity of hippocampal microglia (in ppu) in the septal DG treated 
with ATP. (E) Histogram showing the Ph capacity distribution of microglia (in % of cells) in the septal DG 
treated with ATP. (F) Total number of microglial cells (fms-EGFP+) in the septal DG treated with ATP. (G) 
Ph/A coupling (in fold change) in the septal DG treated with ATP. Bars represent mean ± SEM, * 
indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001 by Holm-Sidak posthoc test after one-
way ANOVA were significant at p<0.05. Scale bars=50m, z= 11.9m (control, ATP), 9.8m (ATPs). 
Inserts are single plane images of the corresponding confocal z-stacks. 

 

The 2h 100mM ATP treatment provoked a noticeable alteration in microglial 

morphology with processes retraction throughout the septal hippocampus, largely restricted 

to the DG (Figure 21A). The injected volume was larger than in the KA injections (1µl vs 50nL) 
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and thus the cortical damage was more apparent while the hippocampus was preserved 

(Figure 21A).  

 

Figure 21. Effect of ATP in vivo. (A) Tiled confocal z-stack of the injection site in ATP-injected mice 
(100mM, 2h). Nuclei are shown with DAPI (white) and microglia is visualized with fms-EGFP (cyan). 
Inserts show details of the cortex (A1, A2), CA3 (A3), DG (A4) and CA1 (A5). Scale bars=500µm (A, tiled 
image), 100µm (A, details). z=25.2µm (A, tiled image), 16.8µm (A, details). 

 

To disregard the possibility that changes in phagocytosis efficiency in ATP-treated mice 

were the result of reduced microglial viability, we performed a second experiment with 10mM 

(304mmol/kg) and 100mM ATP. It is also important to note that, as the average clearance time 

is 1.2-1.5h (Sierra et al., 2010), at 2hpi we could detect only a fraction of the cells that had 

impaired recognition, as the cells that started phagocytosis before the injection would still be 

in the process of degrading the apoptotic cell. Thus, we analyzed microglial phagocytosis at a 

later time point (4hpi) to allow microglia to either die or recover, and to let them further 

progress in the phagocytosis. In contrast, in this later time point degradation of the injected 

ATP by ectonucleotidases was more likely. At 4hpi, both 10 and 100mM ATP increased the 

number of apoptotic cells in the DG (Figure 22A, B) and as expected, the phagocytosis 

impairment indicated by the drop in the Ph index was more obvious in mice treated with the 

higher dose (Figure 22C). Following 100mM ATP, the Ph index dropped and the Ph capacity 

remained constant, indicating a recovery from the 2hpi likely because of a wash-out or 
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degradation of the injected ATP (Figure 22D, E). No changes in the volume of the DG were 

found (data not shown). The number of microglia decreased after the ATP 100mM treatment 

(Figure 22F), indicating the expected loss of viability. Microglial apoptosis was observed at 

100mM ATP (34 ± 16 apoptotic microglia per septal DG) but not at 10mM ATP. Furthermore, at 

10mM ATP the Ph index dropped and the Ph capacity increased but not sufficiently to 

counteract the increase in apoptosis. Moreover, microglial numbers were not affected (Figure 

22F). Ultimately, the Ph/A coupling was decreased (Figure 22G). Thus, the changes in 

phagocytosis efficiency in ATP-treated mice were not the result of reduced microglial viability. 

Overall, these results showed that ATP impaired microglial phagocytosis and pointed at this 

molecule as a main mechanism underlying MTLE induced phagocytosis impairment.  

 

Figure 22. ATP induced changes in phagocytosis efficiency are not the result of reduced microglial 
viability. (A), Representative confocal z-stack of the DG in mice injected with vehicle (control) or ATP (10 
or 100mM) at 4hpi. (B) Experimental design (10 and 100mM ATP, 4h; n=3-4 per group) and number of 
apoptotic cells (pyknotic/karyorrhectic and act-casp3+) in the septal DG treated with ATP. (C) Ph index in 
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the septal DG (in % of apoptotic cells) treated with ATP. (D) Weighted Ph capacity of hippocampal 
microglia (in ppu) in the septal DG treated with ATP. (E) Histogram showing the Ph capacity distribution 
of microglia (in % of cells) in the septal DG treated with ATP. (F) Total number of microglial cells (fms-
EGFP+) in the septal DG treated with ATP. (G) Ph/A coupling (in fold change) in the septal DG treated 
with ATP. Bars represent mean ± SEM, * indicates p<0.05, ** indicates p<0.01, and *** indicates 
p<0.001 by Holm-Sidak posthoc test after one-way ANOVA were significant at p<0.05. Scale bars=500µm 
(A, tiled image), 100µm (A, details). z=25.2µm (A, tiled image), 16.8µm (A, details). 

 

6.2.3.5. ATP induced phagocytosis impairment is unrelated to pannexin channel 
expression on apoptotic cells  

We finally tested the alternative hypothesis that impaired recognition in epileptic mice 

was due to a defective ATP signaling from apoptotic cells, possibly due to an altered expression 

of pannexin, a major route through which ATP is released (Chekeni et al., 2010) (Figure 23). 

However, we found a low expression of pannexin throughout the hippocampus and no 

expression in apoptotic cells, either phagocytosed or not, both in control or KA-treated mice 

(Figure 23). Thus, in the hippocampus apoptotic cells may signal to microglia via mechanisms 

unrelated to pannexin channels. Overall, the results obtained with ATPs (100mM, 2h) and ATP 

(10mM, 4h) in vivo confirmed our in vitro data and demonstrated that disrupting ATP 

gradients impaired microglial phagocytosis. 
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Figure 23. Expression of pannexin in the DG along the KA time course. Representative confocal z-stack 
projections of the DG in control (1 and 2 mo) and KA-injected mice from 6 hpi to 7 dpi showing the low 
expression of pannexin (magenta) in granule neurons (white, DAPI) and microglia (cyan, fms-EGFP) in 
the DG. Pannexin was expressed at low levels by granule neurons in control mice, and appeared in 
puncta on their surface along the time course after KA was injected (7-point stars), and could 
occasionally be diffusely expressed in microglia (5-point star at 6 hpi). Pannexin expression was largely 
absent in apoptotic cells, either phagocytosed (arrows) or non-phagocytosed (arrowheads) in control 
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and KA mice. We found some cases of non-phagocytosed apoptotic cells labelled with puncta of 
pannexin at 7 dpi (7-point star at 7 dpi). Scale bars = 20μm. z = 14.7μm. 

 

6.2.4. Seizures lead to the accumulation of non-phagocytosed apoptotic cells 
in vivo 

We then reasoned that the impairment in microglial phagocytosis should result in an 

accumulation of apoptotic cells. To directly test this hypothesis, we estimated the clearance 

time, of well-identified cell populations undergoing apoptosis. Our data showed that the 

majority of apoptotic cells at 1dpi after KA were located in the SGZ (Figure 10B), the niche 

where new neurons are born, in agreement with previous publications showing that seizures 

lead to apoptosis of newborn cells (Ekdahl et al., 2001; Ekdahl et al., 2003). Thus, we studied 

the effect of KA-induced seizures on the apoptosis and survival of newborn cells, and focused 

on their previously identified early (3 days old, do) and late (8do) critical periods of survival 

(Sierra et al., 2010; Tashiro et al., 2006) (Figure 24). In order to study the survival and 

apoptosis of the 3do and 8do newborn cell populations, a single injection of the thymidine 

analog bromo-deoxyuridine (BrdU, 150mg/kg) was administered 2 or 7 days prior to the 

injection of saline or KA, and mice were sacrificed 1 day later (KA 1dpi) (Figure 24A). 8do cells 

were naturally less abundant than 3do cells, reflecting the decreased survival of newborn cells. 

Unexpectedly, we found no significant changes in the number of 3 and 8do BrdU+ cells, 

indicating that KA did not affect their survival (Figure 24B).  

 

Figure 24. Survival of newborn cells 1dpi after KA. (A) Experimental design to test the effect of KA on 
3do (upper panel) and 8do (lower panel). (B) Number of BrdU+ cells per septal hippocampus in saline or 
KA injected mice (n=3-5 per group). Bars represent mean ± SEM. 

 

To increase the probability of observing apoptotic BrdU+ cells, we switched to a semi-

cumulative BrdU administration paradigm and focused on the early critical period (3d) (Figure 
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24). We administered BrdU every 2h for 6h (Figure 25A) 2 days prior to KA injection and 

quantified the number of live and apoptotic BrdU+ cells 1 day later (KA 1dpi) (Figure 25B, C). 

Again, we found no significant changes in the number of live BrdU+ cells (Figure 25D), but a 

seemingly contradictory significant increase in the number of apoptotic BrdU+ cells (Figure 

25E). To exclude the possibility that an (undetectable) loss of BrdU+ cells was compensated by 

their increased proliferation, we analyzed their reentry into the cell cycle by calculating the 

percentage of BrdU+ cells expressing Ki67. We found no evidence of increased proliferation of 

the 3do BrdU+ cell population due to KA injection, as the percentage of BrdU+ cells co-labeled 

with the proliferation marker Ki67 remained unchanged between control and KA-injected mice 

(Figure 25F and Figure 25H). Together, these results demonstrate that the increase of 

apoptotic 3do BrdU+ cells was not due to de novo apoptosis, but rather, to the accumulation of 

non-phagocytosed cells that were already undergoing apoptosis prior to the KA injection. 

Nonetheless, the apoptotic BrdU+ fraction significantly decreased in KA mice (Figure 25G), 

suggesting that apoptosis preferentially targeted cell populations other than the 3do cells in 

the KA-injected hippocampus. Thus, the rise in apoptotic cells in KA at 1dpi was due both to an 

accumulation of non-phagocytosed 3do cells and de novo apoptosis of other populations.  

For the 3do cells, we reasoned that if KA was not affecting their survival (as there was no 

change in the number of live BrdU+ cells), the total number of apoptotic BrdU+ cells (present 

and cleared) should be identical in both control and KA mice, and used this information to 

estimate the clearance time in KA mice. The number of cleared apoptotic cells, i.e., the 

number of apoptotic cells no longer present in the tissue and eliminated by phagocytosis, can 

be estimated using the clearance time formula (see Materials and Methods) and the estimated 

clearance time in physiological conditions of 1.5h (Sierra et al., 2010). To obtain the total 

number of apoptotic BrdU+ cells (present and cleared), we estimated the number of cleared 

BrdU+ apoptotic cells in saline mice and added it to the number of BrdU+ apoptotic cells 

present in saline mice (Figure 25I). To obtain the estimated number of cleared cells in KA mice, 

we then subtracted the number of BrdU+ apoptotic cells in KA mice from the above amount of 

total apoptotic BrdU+ cells. This subtraction allowed us to estimate a new clearance time of 

6.3h in KA mice (Figure 25I), which represents the average time at the population level 

required for an apoptotic cell to be eliminated by the dysfunctional microglia or the recruited 

astrocytes or neuroblasts. Furthermore, the decay in the Ph index predicted up to 52% of the 

variation in the number of apoptotic cells using a linear regression analysis (p<0.001) in all 

saline and KA mice used (6hpi and 1dpi) (Figure 25J), providing further evidence that the 

impairment in phagocytosis was linked to an accumulation of apoptotic cells.  
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Figure 25. Microglial phagocytosis impairment leads to delayed clearance of apoptotic cells at 1dpi. 
(A) Experimental design used to analyze the survival of 3do cells after the injection of saline (n=7) or KA 
(n=8) in mice. (B) Representative confocal z-stacks of the DG of control and KA-injected mice (1dpi). The 
damage induced by KA was evidenced by the presence of cells with abnormal nuclear morphology 
(DAPI, white), and the altered morphology of microglia (fms-EGFP+, cyan). (C) Representative confocal 
images of 3do apoptotic (pyknotic, DAPI, white) cells labeled with BrdU (red; arrows) in the SGZ of the 
hippocampus of saline and KA-injected mice at 1dpi. In the saline mouse, the BrdU+ apoptotic cell, next 
to a cluster of BrdU+ cells, was phagocytosed by a terminal branch of a nearby microglia (fms-EGFP, 
cyan), whose nucleus was also positive for BrdU. In the KA mouse, the apoptotic BrdU+ cell was not 
phagocytosed by microglia. A nearby apoptotic cell (BrdU-; arrowhead) was partially engulfed by 
microglia. (D) Total number of live 3do BrdU+ cells (non-apoptotic) in the septal hippocampus after 
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treatment with KA. (E) Total number of apoptotic 3do BrdU+ cells in the septal hippocampus after 
treatment with KA. (F) Percentage of 3do BrdU+ cells that reenter cell cycle, assessed by their co-labeling 
with the proliferation marker Ki67 after treatment with KA. (G) Percentage of apoptotic BrdU+ cells over 
total apoptotic cells in the septal hippocampus. (H) Representative projections of confocal z-stacks of 
the dentate gyrus of the hippocampus showing the co-localization between Ki67 (green) and BrdU (red), 
which had been injected 3 days before. (I) Estimated clearance of apoptotic cells in the septal 
hippocampus. The total number of apoptotic BrdU+ (from E) present in the tissue was added to the 
number of estimated apoptotic BrdU+ cells that had been cleared. In saline mice, this number was 
calculated using the clearance time formula shown in Methods with a clearance time of 1.5h (Sierra et 
al., 2010). As the total number of cells should be identical in saline and KA mice, the number of cleared 
apoptotic cells in KA mice was calculated as the difference between the total (in saline) and the number 
of present apoptotic cells (in KA). From here, we calculated a new clearance time using the same 
formula as in saline mice, of 6.3h. (J) Linear regression analysis of the relationship between apoptosis 
and phagocytosis (Ph index) in saline and KA-injected mice (6hpi and 1dpi). Bars show mean ± SEM. * 
indicates p<0.05, ** p<0.01, and *** p<0.001 by Student´s t-test (E, G). Scale bars=50m (B), 20m (C), 
50m (H). z=14m (B), 12.6m (C, sal), 15.4m (C, KA), 28.7m (H, saline), 25.2m (H, KA). 

 

Finally, we tested the effect of KA on apoptosis in young (2mo) and mature (6mo) 

animals, in which there are fewer neuroprogenitors and therefore fewer newborn cells 

(Encinas et al., 2011). Because in the SGZ, the vast majority of apoptotic cells are newborn cells 

(Sierra et al., 2010), we expected to see a reduction in SGZ apoptotic cells in older mice as a 

consequence of the reduced neurogenesis. After KA, both young and mature animals reached 

level 3-4 in the Racine scale and at 1dpi had a similar level and pattern of activation of the 

hippocampal circuitry (Figure 26A, B), as determined by staining with c-fos, an immediate early 

gene that has been used as an indirect marker of neuronal activation (Dragunow and Faull, 

1989). In addition, at 1dpi after KA microglial phagocytosis was similarly impaired in 2 and 6mo 

mice (Figure 26E), but as expected, there were fewer SGZ apoptotic cells in 6mo than in 2mo 

mice (Figure 26D). This difference in apoptosis between young and mature mice could be 

attributed to the reduced proliferation and neurogenesis found in mature animals, confirming 

our hypothesis that the rise of apoptotic cells in the SGZ induced by KA was largely due to 

accumulation of the non-phagocytosed newborn cells that underwent apoptosis in 

physiological conditions. 



RESULTS 

112 
 

 

Figure 26. Effect of KA on SGZ apoptosis in young (2mo) and mature (6mo) mice. (A) 
Experimental design used to compare SGZ apoptosis induced by KA at 1dpi in young (2mo) and 
mature (6mo) mice. (B) Representative epifluorescent tiling image of the hippocampus and 
surrounding cortex of 2 and 6mo mice injected with KA at 1dpi stained with the neuronal 
activation marker c-fos. The same pattern of expression was found in young and mature mice 
throughout the DG, CA2, CA1 and the above cortex. (C) Representative confocal z-stacks of the 
apoptotic (pyknotic, white; act-casp3+, red) cells in the SGZ of the hippocampus of 2mo and 
6mo mice injected with KA (1dpi). (D) Total number of apoptotic cells in the SGZ of 2 and 6mo 
mice treated with saline or KA (1dpi; n=4-5 per group). (E) Ph index in the hippocampus (in % 
of apoptotic cells) in control and KA-injected mice at 2 and 6mo (n=4-5 per group). Bars show 
mean ± SEM. * indicates p<0.05, ** p<0.01, and *** p<0.001 by Holm-Sidak posthoc test after 
one-way ANOVA (M) was significant at p<0.05. Scale bars=500m (B), 25m (C). z=25m (C).  

 

6.2.5. Microglial phagocytosis impairment correlates with inflammation 

As phagocytosis of apoptotic cells has previously been shown to be actively anti-

inflammatory in vitro (De Simone et al., 2003), we assessed whether the microglial 

phagocytosis impairment correlated with the development of an inflammatory response. We 

tested this hypothesis by analyzing the expression of a panel of pro- and anti-inflammatory 

cytokines by RTqPCR in hippocampal tissue samples and in acutely purified hippocampal 

microglia along the time course (6hpi to 4 months post-injection (mpi)) (Figure 27). At the 

tissue level, we found that pro-inflammatory interleukin 1 beta (IL-1) and interleukin 6 (IL-6) 

as well as anti-inflammatory macrophage inhibitory cytokine 1 (MIC-1) peaked at 1dpi and 

decreased afterwards up to 4mpi (Figure 27A), a pattern that mimicked the development of 

the phagocytosis impairment over time. In agreement, the average expression of these 
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cytokines as well as anti-inflammatory transforming growth factor TGF correlated with 

the Ph index over the 4mpi time course (Figure 27B). We next compared the expression of 

these cytokines in FACS-sorted microglia from KA-treated mice. At 1dpi, microglia from KA 

mice expressed the highest levels of the pro-inflammatory tumor necrosis factor alpha (TNF 

and IL-6 (IL-1 showed a strong tendency but was not significant), as well as macrophage 

colony stimulating factor (CSF), and low levels of the anti-inflammatory TGF (MIC-1 showed a 

strong tendency but was not significant) compared to microglia from control mice. At 7dpi, 

microglia from KA mice expressed higher levels of IL-1 and TNF, and lower levels of TGF 

(Figure 27C). These data demonstrated that the impaired microglia were in a pro-inflammatory 

state. 

 

Figure 27. Phagocytosis impairment correlates with inflammation in mouse MTLE. (A) RTqPCR 

quantification of a panel of pro- and anti-inflammatory cytokines in the hippocampus of mice injected 
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with saline or KA over a time course. Expression was normalized with the reference gene ribosomal 

protein L27A (L27A) and expressed as fold change (FC) over the saline injected mice (dashed line). Data 

are shown as mean ± SEM. * indicates p<0.05, ** indicates p<0.01, and *** indicates p<0.001 by Holm-

Sidak posthoc test compared to their respective time point controls, after one-way ANOVA was 

significant at p<0.05. The expression of the cytokines was linearized by a logarithmic transformation; 

only significant interactions are shown. (B) Linear regression analysis of the relationship between the 

average expression of tissue cytokines (IL-1, IL-6, MIC-1, TGF) and average Ph index in KA-injected 

mice along the time course. The Ph index explained a large percentage of the variation of the expression 

of these cytokines, although significance at p=0.05 was only reached for MIC-1 likely due to the small 

number of time points analyzed. (C) RTqPCR quantification of a panel of pro- and anti-inflammatory 

cytokines in FACS-sorted fms-EGFP+ microglia.  

 

6.3. MICROGLIAL PHAGOCYTOSIS-APOPTOSIS UNCOUPLING IN VIVO IN A 
GENETIC MODEL OF EPILEPSY: PROGRESSIVE MYOCLONUS EPILEPSY OF 
UNVERRICHT-LUNDBORG TYPE (EPM1) 

6.3.1. Microglial phagocytosis is severely uncoupled from apoptosis during 
seizures in vivo in a model of genetic epilepsy 

6.3.1.1. Microglial phagocytosis is uncoupled from apoptosis in cystatin B knock-
out mice, a model of progressive myoclonus epilepsy 

In summary, we have described that microglial phagocytosis and apoptosis can be 

either coupled (excitotoxicity in vitro and acute and chronic inflammation in vivo), or 

uncoupled (MTLE). To extend our observations on the microglial phagocytosis impairment to 

other types of epilepsy we focused on a genetic model of generalized epilepsy, Progressive 

Myoclonus Epilepsy of Unverricht-Lundborg type (EPM1). EPM1 is a hereditary 

neurodegenerative disorder characterized by severely incapacitating myoclonus, seizures and 

ataxia in which seizures arise from the whole brain at once. EPM1 is modeled in mice by 

constitutive knock-out (KO) of the cystatin B (Cstb) gene (Pennacchio et al., 1998). Cstb is an 

inhibitor of cysteine proteases such as cathepsin B (CatB), and is thought to play a role in 

protecting against proteases leaking from lysosomes (Turk et al., 2008). Based on our results 

on MTLE we expected to find a phagocytosis impairment in Cstb KO mice at the age of 

myoclonus and seizures onset at PND30 (Tegelberg et al., 2012) (Figure 28).  

At PND30, Cstb KO mice presented many apoptotic cells and hypertrophic microglia (Figure 

28A, B). Compared to wild type (WT) mice, we found that Cstb KO mice had an increase in the 

total number of apoptotic cells (Figure 28A-C) and a severe decrease in the Ph index, with only 
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15% of the apoptotic cells engulfed (Figure 28D). The Ph capacity increased in Cstb KO mice 

(Figure 28E, F), as well as the total number of microglia, compared to WT mice (Figure 28G). 

Nonetheless, the compensatory mechanisms in Cstb KO mice were insufficient to match the 

increase in apoptotic cells, thus provoking a loss of the phagocytosis-apoptosis coupling 

(Figure 28H). These results evidenced an attempt of microglia to balance the increase in 

apoptosis, contrary to what happens in MTLE, where microglia mainly become non-phagocytic. 

Nevertheless and similarly to the outcome we observed in MTLE, the insufficient microglial 

response led to an apoptosis-phagocytosis uncoupling in Cstb KO mice.  

 

Figure 28. Microglial phagocytosis is uncoupled from apoptosis in Cstb KO mice, a model of 
progressive myoclonus epilepsy. (A) Experimental design and representative confocal z-stacks of the DG 
of PND30 WT (n=4) and Cstb KO (n=4) mice (C57BL/6 background). Microglia were labeled with Iba1 
(cyan) and apoptotic nuclei were detected by pyknosis/karyorrhexis (white, DAPI). Arrowheads point to 
non-engulfed apoptotic cells and arrows point to apoptotic cells engulfed by microglia. (B) 
Representative confocal high magnification z-stack projections of miroglia from the DG of WT and Cstb 
KO mice at PND30. Arrowheads point to non-engufled apoptotic cells and arrows point to apoptotic cells 
engulfed by microglia. (C) Number of apoptotic (pyknotic/karyorrhectic) non-phagocytosed and 
phagocytosed cells per septal DG in PND30 WT and Cstb KO mice. (D) Ph index of microglia (in % of 
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apoptotic cells) in the septal DG of PND30 WT and Cstb KO mice. (E) Weighted Ph capacity of microglia 
(in ppu) in the septal DG of in PND30 WT and Cstb KO mice. (F) Histogram showing microglial Ph capacity 
distribution (in % of microglia) in the septal DG of in PND30 WT and Cstb KO mice. (G) Total number of 
non-phagocytic and phagocytic microglial cells (Iba1+) per septal DG in WT and Cstb KO mice at PND30. 
(H) Ph/A coupling (in fold change) in the septal DG of PND30 WT and Cstb KO mice. Bars represent mean 
± SEM. * indicates p<0.05 and ** indicates p<0.01 by 1-tail Student´s t-test. Scale bars=40µm (A), 20µm 
(B). z=7µm (A, B control), 3,5µm (B KO).  

 

6.3.1.2. Microglial proliferation and multinuclearity is increased in Cstb KO mice at 
PND30 in vivo 

As microglial numbers were increased in the DG of Cstb KO mice at PND30, we 

determined if this increase was due to microglial proliferation. For this purpose, we labeled the 

dividing cells using Ki67, a well-known marker of mitotic cells. In WT mice, Ki67 was expressed 

mainly in the SGZ (neuroprogenitors, presumably), whereas in Cstb KO mice it was more 

widespread throughout the DG including in microglia (Figure 29A). The percentage of 

proliferating (Ki67+) microglia was 0.8±0.5% in WT and increased to 8.3±1.1 in Cstb KO mice 

(Figure 29C). In addition, microglia showed thicker processes and enlarged somas in Cstb KO 

mice, mimicking what we observed at 3 and 7dpi in MTLE mice, where microglia had become 

multinucleated (Abiega et al., 2016). To assess whether the microglial morphology change was 

due to proliferation with an incomplete cytokinesis, we analyzed microglial multinuclearity in 

Cstb KO mice and quantified the percentage of cells with more than one nuclei (Figure 29B). 

Multinucleated cells were absent in WT mice but represented 13% of microglia in Cstb KO mice 

(Figure 29D). These results partially resembled our findings in MTLE at 3 and 7 dpi, where 

microglia proliferated and became multinucleated, but still had an impaired Ph capacity 

(Abiega et al., 2016).  
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Figure 29. Microglial proliferation and multinuclearity is increased in Cstb KO at PND30 mice 
in vivo. (A) Representative confocal z-stacks of PND30 WT (n=4) and Cstb KO (n=4) 
hippocampal DG labeled with DAPI (nuclear morphology, white), Ki67 (red, for proliferating 
cells), and cluster of differentiation molecule 11B (CD11b, cyan, microglia). Arrow, Ki67+ 

microglial nucleus. (B) Confocal z-stack high magnification inserts showing a bi-nucleated 
microglial cell (Cd11b+, cyan) undergoing division (KI67+, red) in PND30 Cstb KO mice. Arrows, 
Ki67+ microglial nuclei. (C) Microglial proliferation (in KI67 positive or negative microglial 
numbers per septal hippocampus) in the DG of PND30 WT and Cstb KO mice. (D) Microglial 
mutlinuclearity (number of microglia containing one or more nuclei per septal hippocampus) in 
the DG of PND30 WT and Cstb KO mice. Bars represent mean ± SEM. * indicates p<0.05 and ** 
indicates p<0.01 by 1-tail Student´s t-test. Scale bars=40µm (A), 20 µm (B). z= 7µm (A), 3,5µm 
(B).  

 

6.3.1.3. Microglial phagocytosis-apoptosis uncoupling is not compensated by 
astrocytes in Cstb KO mice at PND30 in vivo 

Because microglial phagocytosis was not efficient enough to maintain the 

phagocytosis-apoptosis coupling, we assessed whether astrocytes performed phagocytosis to 

compensate the microglial impairment. For this purpose, we labeled them with glial fibrillary 

acidic protein (GFAP) and assessed the astrocytic Ph index (Figure 30A). We found an obvious 

morphology change in astrocytes which showed thicker processes, in accordance to the 

previously reported astrocytosis observed in PND30 Cstb KO mice (Tegelberg et al., 2012). 

However, we found no phagocytosis by astrocytes, concluding that the microglial phagocytosis 
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impairment observed was not compensated by astrocytes. Thus, microglia remained the most 

relevant phagocyte in the hippocampus of Cstb KO mice at PND30, similarly to what occurred 

in MTLE.  

 

Figure 30. Microglial phagocytosis-apoptosis uncoupling is not compensated by astrocytic 
phagocytosis in PND30 Cstb KO mice in vivo. (A) Representative confocal z-stacks of PND30 WT and 
Cstb KO hippocampal DG labeled with DAPI (nuclear morphology, white), GFAP (magenta, astrocytes), 
and Iba1 (cyan, microglia). Cstb KO high magnification inserts show non-phagocytosed apoptotic cells 
(pyknotic, visualized with DAPI). Scale bars=40µm (A general views), 20 µm (A, high magnification 
inserts). z=7µm (A general views).  

 

6.3.1.4. Early hippocampal atrophy in PND30 Cstb KO mice in vivo 

Adult Cstb KO mice present several anatomical alterations including a region-specific 

neuronal loss in the primary somatosensory cortex at PND30 and regional atrophy and cortical 

thinning from P60 onward (Tegelberg et al., 2012). These anatomical changes can have a 

strong impact in the parameters we assess, as microglial and apoptotic total cell numbers and 

densities are influenced by changes in the DG volume. Thus, we assessed whether the 

hippocampus was affected in volume, cell density, or total cell numbers in Cstb KO mice at 

PND30 (Figure 31). We analyzed the septal and temporal regions of the DG separately, as they 

have different innervation (Thompson et al., 2008). We found no difference in the volume of 

the temporal DG, but the septal DG had a strong tendency to be smaller (P=0,052) (Figure 

31A). This reduction in the septal DG volume could be related to either a higher granule cell 

density (with cells more packed) or a decrease of total granule cell numbers. To test these 

alternatives, we quantified the number of nuclei inside randomly chosen 1260 µm3 volumes in 

the granular layer of the DG and found that there was no difference in the granule cell density 

in the septal DG of the Cstb KO mice (Figure 31B). Thus, the number of total granule cells 

decreased in the septal DG of the Cstb KO mice (Figure 31C). These results matched previous 
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data showing neuronal loss in the primary somatonsensory cortex at PND30 (Tegelberg et al., 

2012), and pointed at a possible defect in the development of the hippocampus in Cstb KO 

mice. 

 

Figure 31. Early hippocampal atrophy in Cstb KO mice at PND30 in vivo. (A) Hippocampal volume (in 
mm3) of the septal and temporal portions of the DG in PND30 WT and Cstb KO mice. (B) Granule cell 
density (in cells per mm3 in the septal hippocampus) in the DG of PND30 WT and Cstb KO mice. (C) Total 
granule cells (per septal hippocampus) in the DG of PND30 WT and Cstb KO mice. Bars represent mean ± 
SEM. * indicates p<0.05 and ** indicates p<0.01 by 1-tail Student´s t-test. a= p=0,052. 

 

6.3.2. Microglial phagocytosis-apoptosis uncoupling precedes seizure 
development in vivo in a model of genetic epilepsy 

6.3.2.1. Microglial phagocytosis-apoptosis uncoupling precedes seizure 
development in Cstb KO mice in vivo 

To further understand the mechanisms regulating microglial phagocytosis, we assessed 

whether the phagocytosis-apoptosis uncoupling in Cstb KO mice was due to the seizures or to 

the loss of Cstb per se. To test these alternatives, we analyzed phagocytosis in Cstb KO mice at 

PND14, age at which they show altered microglial morphology but have no seizures (Tegelberg 

et al., 2012). We found an increase in the total number of apoptotic cells, especially in non-

phagocytosed apoptotic cells in Cstb KO mice compared to WT mice (Figure 32A-E). We also 

found a decrease in the Ph index, with only 40% of the apoptotic cells engulfed in Cstb KO mice 

(Figure 32F). The Ph capacity increased in Cstb KO mice (Figure 32G, H), as well as the total 

number of microglia, especially phagocytic microglia (Figure 32I). Nevertheless, the 

compensatory mechanisms in Cstb KO mice at PND14 were insufficient to match the increase 

in apoptotic cells, thus provoking a loss of the phagocytosis-apoptosis coupling (Figure 32J). 

These results show a failed attempt by microglia to compensate the increase in apoptosis 

identical to the impairment in Cstb KO mice at PND30.  

To assess whether PND14 Cstb KO mice also presented a decreased hippocampus, we 

analyzed the volume of the septal and temporal regions of the DG (Figure 32K). Although the 

total hippocampal DG volume was maintained, we found that the temporal DG was larger in 
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PND14 Cstb KO mice, while the septal region was smaller compared to a WT mice. These 

differential volume changes in the two regions could be due to their different innervation 

(Thompson et al., 2008). The decrease in the septal DG volume in PND14 mice matched what 

we observed in PND30 mice and strongly suggested a possible defect in the development of 

the DG in Cstb KO mice. 

 

Figure 32. Microglial phagocytosis-apoptosis uncoupling precedes seizure development in Cstb KO 
mice in vivo. (A, B) Representative confocal z-stacks of the DG of PND14 WT (n=5) and PND14 Cstb KO 
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(n=5) mice (C57BL/6 background). Microglia were labeled with Iba1 (cyan) and apoptotic nuclei were 
detected by pyknosis/karyorrhexis (white, DAPI). Arrowheads point to non-engulfed apoptotic cells and 
arrows point to apoptotic cells engulfed by microglia. High magnification inserts show phagocytosed and 
non-phagocytosed nuclei. (C) Representative confocal z-stacks of apoptotic (pyknotic) cells 
phagocytosed (arrows) in the septal DG of PND14 WT KO mice. M, microglial soma; SGZ, subgranular 
zone. (D) Representative confocal z-stacks of apoptotic (pyknotic) cells non-phagocytosed (arrowheads) 
in the septal DG of PND14 Cstb KO mice. M, microglial soma; GZ, granular zone; mol, molecular layer. (E) 
Number of apoptotic (pyknotic/karyorrhectic) non-phagocytosed and phagocytosed cells per septal DG 
in PND14 WT and Cstb KO mice. (F) Ph index of microglia (in % of apoptotic cells) in the septal DG of 
PND14 WT and Cstb KO mice (G) Weighted Ph capacity of microglia (in ppu) in the septal DG of PND14 
WT and Cstb KO mice. (H) Histogram showing microglial Ph capacity distribution (in % of microglia) in 
the septal DG of PND14 WT and Cstb KO mice. (I) Total number of microglial non-phagocytic and 
phagocytic cells (Iba1+) per septal DG in PND14 WT and Cstb KO mice. (J) Ph/A coupling (in fold change) 
in the septal DG of PND14 WT and Cstb KO mice. (K) Hippocampal volume (in mm3) of the septal and 
temporal portions of the DG in PND14 WT and Cstb KO mice. Bars represent mean ± SEM. * indicates 
p<0.05 and ** indicates p<0.01 by 1-tail Student´s t-test. Scale bars=50µm (A, B general views), 5µm (A, 
B inserts), 10µm (C, D). z=18.9µm (A, B), 9.8µm (C1), 16.1µm (C2), 11.2µm (D1), 12.6µm (D2). 

 

Overall, these results demonstrate that the microglial phagocytosis impairment 

precedes seizure development in Cstb KO mice, pointing at Cstb as a possible regulator of 

microglial phagocytosis. Furthermore, these results suggest that microglia might be 

contributing to the development of the pathology in progressive myoclonus epilepsy.  
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7. DISCUSSION 

Apoptosis is an ubiquitous process occurring in the brain both in physiological and 

pathological conditions. The dead cells must be quickly removed to avoid the further toxic 

effects they exert in the tissue. Microglia are in charge of removing these apoptotic cells by a 

process named phagocytosis, which implies finding, engulfing, and degrading the dead cells 

(Sierra et al., 2013). Even though microglial phagocytosis is a critical process to maintain tissue 

homeostasis, it remains widely unknown. 

In this thesis we have assessed microglial phagocytosis in different pathological 

conditions using a novel set of parameters developed by us to quantify microglial phagocytosis 

both in vitro and in vivo. We have discovered a widespread response of microglia to apoptotic 

challenge induced by excitotoxicity or inflammation, in which microglia increase their 

phagocytic capacity proportionally to the increase in apoptosis. Thus, microglial phagocytosis 

and apoptosis are tightly coupled in these conditions (Figure 33).  

Unexpectedly, we have found that microglial phagocytosis is uncoupled from apoptosis 

in two epilepsy models in mice: an in vivo model of mesial temporal lobe epilepsy (MTLE) 

induced by kainate (KA) administration and a genetic model of progressive myoclonus epilepsy 

1 (EPM1) induced by genetic deletion of cystatin B (Cstb) (Figure 33). The mechanisms involved 

in the phagocytosis impairment and the similarities between both models will be discussed 

below. In addition, we have discovered that in MTLE the phagocytosis impairment induces a 

delayed clearance of apoptotic cells that leads to their accumulation, contributing to the 

damage of the tissue and correlating with the development of an inflammatory response. Our 

findings suggest that enhancing microglial phagocytosis could be a novel therapeutic strategy 

to control tissue damage and inflammation, and accelerate recovery in brain diseases. 

 

7.1. MICROGLIAL PHAGOCYTOSIS IS COUPLED TO APOPTOSIS IN HEALTH 
AND DISEASE 

7.1.1. Microglial phagocytosis is fast and efficient in physiological conditions  

In contrast to the long-standing assumption that phagocytosis is executed only by 

ameboid-shaped microglia (Kettenmann 2007), we initially found that in physiological 

conditions, phagocytosis is efficiently enacted by unchallenged, ramified, surveillant microglia 

(Sierra et al., 2010). We used the adult hippocampal neurogenic cascade as a model to study 

microglial phagocytosis in vivo, because newborn neurons continuously undergo apoptosis 
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throughout adulthood in the neurogenic niche of the DG (Sierra et al., 2010), which allowed us 

to establish the baseline of microglial phagocytosis. We previously found that in physiological 

conditions the vast majority of apoptotic newborn cells are in the process of being engulfed by 

microglia (Ph index > 90%) through a ball-and-chain mechanism and a short clearance time 

(under 1.5h) (Sierra et al., 2010). This short clearance time implies that only 5% of the 

apoptotic cells that undergo apoptosis in a 24h period are visualized, as the rest of them are 

already degraded by microglia and are therefore undetectable. This is evident in the adult 

hippocampal neurogenic niche, where the majority of newborn cells undergo apoptosis but 

nonetheless very few apoptotic newborn cells are found (Dayer et al., 2003; Sierra et al., 

2010). Thus, a speedy phagocytosis results in an underestimation of the total number of dead 

cells. 

7.1.2. Microglial phagocytosis is coupled to apoptosis in pathological 
conditions  

We have now studied the microglial response to phagocytic challenges induced by 

different pathological models and have found a generalized microglial response. When 

subjected to a phagocytic challenge induced by excitotoxicity in vitro or acute or chronic 

inflammation in vivo, microglia stood up to the increased apoptosis combining three different 

strategies: recruiting more phagocytic cells, increasing the phagocytic capacity of each cell, 

and/or increasing microglial numbers. The combination of these three adaptation strategies 

allowed microglia to boost their phagocytosis efficiency and match the apoptotic challenge, 

therefore maintaining the proportion between the change in phagocytosis and apoptosis. The 

phagocytosis-apoptosis coupling can be explained by the release and expression of “find-me” 

signals, such as adenosine triphosphate (ATP) and fractalkine (CXC3CL1) and “eat-me” signals, 

such as phosphatydilserine (PS) by the apoptotic cells (Sierra et al., 2013). Thanks to the 

different microglial phagocytic boosting strategies and the “find-me” and “eat-me” signals 

from apoptotic cells, the phagocytosis/apoptosis coupling was maintained in pathological 

conditions. 

7.1.3. Microglia have a large phagocytic reservoir 

We next assessed how much microglia phagocytosed in a given moment. In 

physiological conditions, the Ph index was normally around 90%, and two thirds of the total 

microglial cells remained non-phagocytic, while the remaining third was phagocytosing only 

one cell (Sierra 2010). Nevertheless, excitotoxicity and inflammation showed a shift from a 

majority of non-phagocytic microglia to a majority of phagocytic microglia, with a small 
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percentage of cells phagocytosing up to four apoptotic cells during in vivo acute inflammation 

(Sierra et al., 2010) and up to seven cells during excitotoxicity in organotypic slices. 

Nevertheless, more than 50% of microglial cells remained either non-phagocytic or 

phagocytosed only one cell in both pathologies, suggesting a large unexploited phagocytic 

capacity. Therefore, these data evidenced that microglia have an enormous reservoir for 

phagocytosis that could be reached by recruiting 100% of microglial cells to work at their 

maximum Ph capacity.  

 

7.2. SEIZURES INDUCE A MICROGLIAL PHAGOCYTOSIS-APOPTOSIS 
UNCOUPLING IN EPILEPSY  

Since microglia show a large phagocytic potential in both excitotoxicity and 

inflammation, pathologies which concur during epilepsy (Lee et al., 2008), we tested microglial 

phagocytosis in in vivo epilepsy. For this purpose, we used two different models: MTLE 

(induced by administration of KA), and EPM1 (induced by transgenic deletion of the Cstb 

gene).  

7.2.1. Microglial phagocytosis is uncoupled from apoptosis following seizures 
in vivo in a pharmacological and a genetic model of epilepsy 

There are many differences between MTLE and EPM1. MTLE is an acutely induced 

model of focal epilepsy. An adult mice is intrahippocampally injected with KA, which induces 

an episode of prolonged continuous seizure activity (status epilepticus) that starts at 4hpi and 

lasts 4-6h (Bouilleret et al., 1999). KA-injected mice develop chronic unprovoked seizures 

during several months (Sierra et al., 2015). In contrast, EPM1 is a chronic model of generalized 

epilepsy induced by transgenically knocking-out Cstb. These mice develop seizures starting at 1 

month-old (mo). We first compared microglial morphology in adult MTLE (2mo) and post-natal 

day 30 (PND30) EPM1 mice. We found that both MTLE and PND30 EPM1 mice showed a 

change in microglial morphology, with cells showing thickened ramifications compared to their 

respective controls. PND30 EPM1 showed a more dramatic microglial morphology, with cells 

showing thickened somas and processes and a subset displaying even larger somas. In our 

recent paper we observed that microglia in 4mo MTLE mice presented a morphology similar to 

microglia in PND30 EPM1 mice (Abiega et al., 2016), probably due to the fact that both are 

models of chronic epilepsy.  

We next examined apoptosis and phagocytosis in MTLE and PND30 EPM1 mice. In both 

cases seizures induced an increase in the number of apoptotic cells in the DG of the 
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hippocampus. To our surprise, in spite of their large phagocytic reservoir microglia failed to 

efficiently employ it to counteract the damage resulting from neuronal hyperactivity in both 

cases, thus resulting in a severe phagocytosis-apoptosis uncoupling. In MTLE, we found an 

impairment of microglial phagocytosis as early as 6 hours post-injection (hpi) and 1 day post-

injection (dpi) after KA, in the acute phase of the disease and during status epilepticus. 

Importantly, this impairment was not simply an inability of microglia to cope with too much 

apoptosis because it occurred as early as 6 hpi after KA, before any significant accumulation of 

apoptotic cells took place. Moreover, microglia dispatched this amount of apoptosis in other 

conditions (for instance, bacterial lipopolysaccharides (LPS) in 1 mo mice) (Abiega et al., 2016; 

Sierra et al., 2010). In MTLE mice, microglial numbers did not increase and these mice showed 

a decreased Ph capacity, which provoked a net loss of phagocytosis and a severe phagocytosis-

apoptosis uncoupling. PND30 EPM1 mice showed an increase in the total microglial numbers 

and a small increase in their Ph capacity, thus increasing the net phagocytosis. Nevertheless, 

this microglial phagocytic potentiation was insufficient to match the increase in apoptotic cell 

numbers in PND30 EPM1 mice, thus producing a phagocytosis-apoptosis uncoupling. 

Therefore, both pharmacologically and genetically induced seizures provoked a microglial 

phagocytosis-apoptosis uncoupling, but as a consequence of different microglial responses, 

showing a microglial phagocytosis impairment in MTLE and an insufficient phagocytic 

potentiation in PND30 EPM1 mice (Figure 33).  

7.2.2. Microglia remain the most determinant phagocytes during 
phagocytosis-apoptosis uncoupling in MTLE and EPM1 mice 

Since microglial phagocytosis was insufficient to balance the increased apoptotic cell 

numbers in both epilepsy models, additional phagocytosis performed by other phagocytes 

could have had a strong impact in the tissue. Microglia are the brain professional phagocytes, 

but other cell types can also perform phagocytosis, such as astrocytes (Magnus et al., 2002) or 

neuroblasts (Lu et al., 2011), which do not normally phagocytose hippocampal apoptotic cells 

in resting conditions (Sierra et al., 2010). These non-professional phagocytes delay 

phagocytosis for several hours (Parnaik et al., 2000) and engulf cells with much lower capacity 

(Magnus et al., 2002). Importantly, we observed that the MTLE-induced phagocytosis 

impairment was not compensated by recruiting neither astrocytes nor neuroblasts and PND30 

EPM1 mice showed a complete lack of astrocytic phagocytosis. Thus, the importance of the 

microglial phagocytic dysfunction during seizure induced phagocytosis-apoptosis uncoupling 

became critical to the brain parenchyma, as the impaired microglia remained by far the most 

determinant phagocyte in the hippocampus of both EPM1 and acute MTLE mice.  
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7.2.3. Microglial multinucleation in EPM1 mice 

Besides the changes in microglial morphology, we observed multinucleated microglia 

in PND30 EPM1 mice. Interestingly, we recently found that 3-7dpi after KA, MTLE mice also 

show multinucleated microglia, albeit in higher numbers than EPM1 (Abiega et al., 2016). 

Microglial multinucleation can be induced in vitro by inflammatory cytokines, resulting from 

incomplete cytokinesis (Hornik et al., 2014). We have observed that microglial multinucleation 

concurs with the development of an inflammatory response in MTLE mice (Abiega et al., 2016). 

In accordance, high expression of glial derived pro-inflammatory chemokines and cytokines 

have been reported in PND30 EPM1 mice (Joensuu et al., 2014), pointing at the possibility of 

inflammation inducing multinucleation in EPM1. Thus, the microglial multinucleation we 

observe in EPM1 could be a consequence of the inflammatory response that occurs during 

phagocytosis-apoptosis uncoupling in the hippocampus of PND30 EPM1 mice. 

7.2.4. Microglial phagocytosis-apoptosis uncoupling could be a widespread 
phenomenon in the epileptic brain  

KA-induced MTLE is known to affect other regions of the brain besides the DG, like the 

ipsilateral cortex, which also develops seizures as early as 4hpi (Sierra et al., 2015). Although 

the basal Ph index could not be quantified in these areas (as there is no apoptosis and 

therefore no phagocytosis of apoptotic cells in physiological conditions), we found that at 1dpi 

after KA microglial phagocytosis was as low in cornu ammonis 1 (CA1) and CA3 of the 

hippocampus and in the adjacent somatosensory cortex in MTLE as it was in the DG. Thus, our 

results showed that microglia responded to seizures with a similar phagocytosis impairment in 

different areas of the brain. We only studied microglial phagocytosis in the DG in PND30 EPM1 

mice, but other studies show that the subset of microglia with enlarged somas that we 

observed in the hippocampal DG of these mice was also present in many other brain regions 

such as the cortex and the cerebellum (Tegelberg et al., 2012). Thus, these data suggest a 

possible microglial phagocytic dysfunction beyond the hippocampus in EPM1 mice. Altogether, 

these results suggested that the microglial phagocytic malfunction could be a widespread 

response throughout the brain parenchyma in both MTLE and EPM1. 

Overall, our data on MTLE and PND30 EPM1 mice showed a severe microglial 

phagocytosis-apoptosis uncoupling in the DG of the hippocampus following seizures. The 

mechanisms underlying the uncoupling in each model will be discussed next.  
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7.3. MECHANISMS OF MICROGLIAL PHAGOCYTOSIS-APOPTOSIS 
UNCOUPLING IN MTLE 

7.3.1. Microglial phagocytosis impairment is unrelated to a direct effect of KA 
on microglia 

Since microglial phagocytosis was not impaired by inflammation nor by excitotoxicity 

per se, KA emerged as a possible microglial phagocytic modulator in MTLE. KA induces seizures 

via activation of KA and AMPA receptors (Fritsch et al., 2014), both of which are subtypes of 

ionotropic glutamate receptors. In our recent paper we showed that in vivo microglia 

expressed residual levels of ionotropic and metabotropic glutamate subunit mRNA, which are 

unlikely to form functional receptors (Abiega et al., 2016), in accordance with previous reports 

in microglia in acute hippocampal slices (Wu and Zhuo, 2008) and retinal explants (Fontainhas 

et al., 2011). In agreement, we showed that KA did not modulate microglial phagocytosis in 

organotypic cultures, in which it did not induce seizures. Interestingly it has been reported that 

some AMPA and KA receptor subunits are expressed in cultured microglial cells (Hagino et al., 

2004; Noda et al., 2000) and in addition KA has been shown to induce membrane ruffling and 

morphological alterations in cultured microglia (Christensen et al., 2006), which would explain 

our results in primary cultures treated with KA, where it had a very small effect on 

phagocytosis of apoptotic cells. Therefore, our results showed that KA was not responsible for 

the microglial phagocytosis impairment in the absence of seizures, which led us to search for 

alternative mediators between neuronal hyperactivity and microglia.  

7.3.2. Microglia sense seizures via ATP 

A possible mediator of the effects of neuronal activity on microglia was extracellular 

ATP, which is released by neurons and astrocytes as neuro- and gliotransmitter (Dale and 

Frenguelli, 2009; Santiago et al., 2011). ATP signals to microglia on a plethora of promiscuous 

P2X (ionotropic) and P2Y (metabotropic) receptors and is degraded by extracellular 

ectonucleotidases to adenosine. Importantly, microglia express all types of purinergic 

receptors (Crain et al., 2009; Domercq et al., 2013). In retinal explants and acute hippocampal 

slices, neuronal glutamate signalling via NMDA receptor activation leads to the release of ATP 

which in turn alters microglial motility and morphology (Dissing-Olesen et al., 2014; Eyo et al., 

2014; Fontainhas et al., 2011) and triggers microglial process convergence towards neuronal 

dendrites (Eyo et al., 2015). ATP is also released in large amounts during seizures in vivo and in 

vitro (Dale and Frenguelli, 2009; Santiago et al., 2011), and is rapidly degraded to adenosine 

diphosphate (ADP) and adenosine monophosphate (AMP) (Zimmermann, 1999), complicating 
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the use of in vivo direct methods for ATP measurement such as the luciferin-luciferase assay 

(Crouch et al., 1993) or microeletrode biosensors (Heinrich et al., 2012). Thus, we resorted to 

indirectly determine the action of ATP released during seizures on microglia in vitro by treating 

acute hippocampal slices with a seizure-inducing epileptogenic cocktail.   

We showed that in vitro microglia acutely sensed seizures, resulting in large inward 

currents that depended at least partially on P2X receptors, similar to those observed in 

oligodendrocytes in vitro during oxygen and glucose deprivation induced ischemia, where 

enhanced ATP signalling is deleterious to oligodendrocytes (Domercq et al., 2010). 

Interestingly, we observed a delayed microglial response (11 min latency time) which is 

consistent with the time it takes to reach the maximum ATP release evoked by depolarization 

in acute slices (Heinrich et al., 2012). Thus, these results pointed at ATP as the mediator 

between seizures and microglia. Next, we assessed whether the epileptogenic cocktail would 

induce a phagocytosis impairment in hippocampal organotypic slices treated with the seizure 

inducing epileptogenic cocktail. Indeed, we found that microglial phagocytosis was impaired, 

mimicking our in vivo results in our MTLE model. Overall, this data demonstrated that 

microglia sensed seizures via ATP.  

7.3.3. Disruption of ATP gradients impairs microglial phagocytosis 

In addition to being a neuro- and gliotransmitter, ATP is a well-known “find-me” signal 

released by apoptotic cells (Elliott et al., 2009; Sierra et al., 2013) and mediates the rapid 

attraction of microglial processes towards laser-induced injuries (Davalos et al., 2005). 

Therefore, we hypothesized that the KA-triggered microglial phagocytosis impairment was 

consistent with a seizure-related widespread release of ATP that disrupted “find-me” signalling 

gradients and turned microglia “blinded” to apoptotic cells. Thus, we decided to assess 

whether ATP would cause a microglial phagocytosis impairment per se in the hippocampal DG, 

both in vitro and in vivo. In vitro experiments were performed using hippocampal organotypic 

slices treated with 1mM of ATP. Live imaging has shown that 1mM ATP affects microglial 

motility in vivo when applied locally in the cortex using a micropipette (Davalos et al., 2005), 

which has also been observed in vitro in mouse retinal explants (Fontainhas et al., 2011). 1mM 

ATP has also been shown to decrease phagocytosis in vitro in rat primary cultures (Fang et al., 

2009). Treating organotypic slices with 1mM ATP for 4h severely impaired phagocytosis, 

mimicking the impairment observed in MTLE. Importantly, the high ATP concentration in the 

media did not induce microglial death, but provoked microglia to migrate towards the edges of 

the slices, in accordance with the strong chemotactic nature of ATP on microglia (Davalos et 

al., 2005). 
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To test the effect of ATP in vivo, we intrahippocampally injected 100mM ATP and 

100mM of the non-degradable ATPγS for 2h and 10mM and 100mM ATP for 4h. Although the 

injected maximum dose was relatively high (100mM) compared to conventional doses used in 

vitro or in local application during in vivo imaging, this concentrations had to account for the 

diffusion of ATP and ATPγS through the whole hippocampus (spanning a volume of several 

mm3). In addition, ectonucleotidase hydrolyzation of nucleotides occurs within a few hundred 

milliseconds in the extracellular space in rat brain slices (Cunha et al., 1998). Moreover, it has 

been shown that while ATP steady-state cytosolic concentration is high (5-10 mM), the 

extracellular concentration of ATP is very low (±10 nM), but CNS insults cause a pronounced 

release from damaged cells of mM concentrations of ATP (Trautmann, 2009). Thus, our use of 

mM ranges of ATP mimicked pathological ATP release concentrations in the brain, besides 

additionally compensating for its diffusion and degradation. At 2hpi of 100mM ATP and ATPγS 

microglial phagocytosis was severely impaired. Interestingly, ATP induced higher apoptotic cell 

numbers than ATPγS, possibly because the latter only affected ATP receptors, while the 

degradation of ATP into ADP and AMP would affect the whole plethora of purinergic receptors, 

having further toxic effects over surrounding cells (Robson et al., 2006). Overall, these data 

showed that in vivo ATP induced a severe microglial phagocytosis impairment that mimicked 

the results obtained in MTLE.  

7.3.4. ATP induced loss of microglial phagocytosis efficiency is unrelated to 
microglial viability 

To disregard the possibility that changes in phagocytosis efficiency in ATP-treated mice 

were the result of reduced microglial viability, we performed a second in vivo experiment 

injecting 10 and 100mM of ATP for 4h. As the average clearance time is 1.2-1.5h (Sierra et al., 

2010), at 2hpi we could detect only a fraction of the cells that had impaired recognition, as the 

cells that started phagocytosis before the injection would still be in the process of degrading 

the apoptotic cell. Thus, we analyzed microglial phagocytosis at a later time point (4hpi) to 

allow microglia to either die or recover, and to let them further progress in the degradation of 

ingested cells. In contrast, this later time point propitiated a further degradation of the 

injected ATP by ectonucleotidases. As we expected, ATP 100mM treatment induced a drop in 

the numbers of microglia, indicating a decrease of microglial viability. In addition the Ph/A 

coupling was lost. Nevertheless, in the 10mM ATP treatment microglia did not die and its 

numbers remained stable while the Ph/A coupling was lost, showing that the ATP induced 

changes in microglial phagocytosis efficiency were not due to the loss of microglial viability.  
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7.3.5. Pannexin expression is unrelated to microglial phagocytosis impairment 

Finally, we tested whether the impaired recognition in epileptic mice was due to a 

defective ATP signalling from apoptotic cells, possibly due to an altered expression of 

pannexin, one route through which ATP is released (Chekeni et al., 2010). The low expression 

of pannexin in hippocampal apoptotic cells pointed at an alternative signalling mechanism 

between apoptotic cells and microglia. Chemotherapeutic drugs have been shown to activate a 

pannexin independent pathway for ATP release from apoptotic Jurkat cells in the presence of a 

broad caspase inhibitor (Boyd-Tressler et al., 2014). Although this alternative ATP mechanism 

has not been studied in the brain yet, our results suggest that apoptotic cells might release 

ATP through similar pannexin independent mechanisms.  

7.3.6. Microglial phagocytosis impairment is related to reduced motility 

We observed a large proportion of microglia located far away from the apoptotic cells 

in MTLE mice at 6hpi and 1dpi, suggesting a reduction in surveillance capacity, which was in 

agreement with our hypothesis that seizures caused an ATP overflow that induced microglial 

blinding. The decreased surveillance could be related to a loss of microglial density in the DG of 

MTLE mice or, alternatively, it could result from decreased microglial motility. Interestingly, we 

found a lower microglial density in the DG of MTLE mice at 1dpi, but there were no changes in 

the total number of microglia. In fact, the reduction in microglial density was due to an obvious 

increase in the volume of the DG (Abiega et al., 2016). Nevertheless, we found a decreased 

overall motility of microglia in both acute hippocampal slices and in the living cortex of MTLE 

animals at 1dpi. The level of motility impairment observed in the cortex in vivo was higher 

than in the acute hippocampal slices, possibly because the released ATP was washed out 

during the slice preparation. Our results of motility impairment are to some extent in 

disagreement with a recent study in acute hippocampal slices, in which intraperitoneal KA 

injection produced no difference in microglial processes velocity but there was a puzzling 

increase in the area of the explored territory of each process 48h after the injection (Avignone 

et al., 2015). This occurred in spite of the increased purinergic signalling of microglia in this 

model (Avignone et al., 2008) and the well-established chemoattractant role of ATP in these 

lesions (Davalos et al., 2005). We speculate that at 2dpi the widespread release of ATP induced 

by the seizures would be more attenuated than at 1dpi, accounting for the dissimilar results on 

microglial motility. Overall, our data showed that the reduction in microglial motility was one 

of the cellular mechanisms underlying the defect in microglial phagocytosis in MTLE mice. 
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7.3.7. Additional mechanisms in microglial phagocytosis impairment 

In addition to the defect in motility, we observed a large proportion of non-

phagocytosed apoptotic cells localized in direct apposition to microglial processes in MTLE, 

which led us to speculate that there could be an additional defect in the apoptotic cell 

recognition and phagocytosis initiation. In fact, we found that microglia downregulated the 

expression of several receptors involved in phagocytosis, such as triggering receptor expressed 

on myeloid cells 2 (TREM2) (Kawabori et al., 2015), complement receptor 3 (CR3) (Noda and 

Suzumura, 2012), Mer tyrosine kinase (MerTK) (Caberoy et al., 2012), and the G protein 

coupled receptor GPR34 (Preissler et al., 2015) at 1dpi KA (Abiega et al., 2016). Therefore, the 

seizure-induced phagocytosis impairment is a complex phenomenon that likely implies other 

mechanisms in addition to the ATP widespread release. For instance, seizures affect many 

other signalling molecules released by neurons that control microglial function, such as CX3CL1 

(Paolicelli et al., 2014; Xu et al., 2012) or endocannabinoids (Alger, 2014; Bisogno and Di 

Marzo, 2010). CX3CL1 is upregulated in the serum and cerebrospinal fluid of epileptic patients 

as well as in a lithium-pilocarpine rat model (Ali et al., 2015), and an increase in CX3CL1 

receptor expression is detected between 1 and 6h and begins to decline by 3 days following 

seizures (Ali et al., 2015; Yeo et al., 2011). However, following intrastriatal KA treatment, 

fractalkine receptor expression remained unchanged in microglia despite evident neuronal loss 

(Hughes et al., 2002). In addition, status epilepticus triggers an early energy depletion at the 

seizure focus followed by a series of metabolic alterations in the long term (Otahal et al., 2014) 

that affect the mitochondrial function (Zsurka and Kunz, 2015), on which phagocytosis heavily 

relies, at least in macrophages (Park et al., 2011). Microglial motility and injury response also 

depend on energy sources, as these functions are early reduced in postmortem mouse tissue 

(Dibaj et al., 2010). Therefore some of these mechanisms are likely to play additional roles in 

regulating microglial phagocytosis efficiency at different stages of the disease. 

7.4. MECHANISMS OF MICROGLIAL PHAGOCYTOSIS-APOPTOSIS 
UNCOUPLING IN EPM1 

7.4.1. Microglial phagocytosis-apoptosis uncoupling is unrelated to seizures in 
EPM1 mice 

To understand whether the phagocytosis-apoptosis uncoupling we observed in EPM1 

mice was related to seizures, we assessed EPM1 mice at PND14, an age that precedes seizure 

onset. Importantly, even though PND14 mice do not have seizures, electrophysiological 

recordings of PND7 Cstb KO cerebellar Purkinje cells have revealed a shift towards decreased 
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inhibition due to reduced GABAergic signalling (Joensuu et al., 2014). These results suggest 

that Cstb KO mice could have an altered connectivity well before the age of seizure onset, 

leading to their hyperexcitable phenotype and possibly affecting microglial function. From 

PND14 on, microglia were found to show increased immunostaining by F4/80 (a murine 

macrophage antibody) in the DG compared to WT mice (Tegelberg et al., 2012). To our 

surprise, we observed that EPM1 mice already showed a microglial phagocytosis-apoptosis 

uncoupling at PND14. PND14 EPM1 mice did not show changes in microglial morphology, 

differently to what we observed in PND30 mice. Nevertheless, PND14 mice microglia 

proliferated and increased their Ph capacity, consequentially increasing the net phagocytosis, 

similar to PND30 mice. Furthermore, the microglial phagocytic potentiation in EPM1 mice was 

insufficient to match the increase in apoptotic cell numbers at PND14, similar to what occurred 

at PND30 (Figure 33). Importantly, the phagocytosis-apoptosis uncoupling was more severe at 

PND30, which was probably due to the additional impairment induced by seizures. Thus, 

microglial phagocytosis showed a very similar behavior both before and after seizure onset, 

which suggested that the phagocytosis-apoptosis uncoupling in EPM1 mice was not caused by 

seizures. 

7.4.2. Effects of the lack of cystatin B on microglial phagocytosis 

Because seizures were not the sole cause of microglial phagocytic uncoupling found in 

EPM1 mice, we speculate that the lack of Cstb may be directly related to the phagocytosis 

impairment. Cstb, also known as stefin B, is a member of the cystatins, a type of lysosomal 

cysteine protease inhibitors (Abrahamson et al., 2003; Turk et al., 2008; Turk et al., 2012), 

whose main function is the intracellular and extracellular regulation of the extralysosomal 

activities of cathepsins, a type of lysosomal cysteine proteases (Stoka et al., 2016). Among 

them, the pathogenesis of EPM1 mice has been largely linked to cathepsin B (CatB). Microglia 

is known to be a major source of CatB in the brain (Hayashi et al., 2013; von Bernhardi et al., 

2015; Wendt et al., 2008) which has been shown to be neurotoxic, inducing neuronal 

apoptosis in the context of neurodegenerative diseases (Gan et al., 2004; Kim et al., 2007; 

Kingham and Pocock, 2001). Upon induction of apoptosis by an intracellular stimuli, cathepsins 

leak out from lysosomes and the lack of Cstb regulation starts a biochemical cascade that leads 

to mitochondrial membrane permeabilization, caspase activation, and apoptosis (Stoka et al., 

2016). Besides, neuroinflammation has also been pointed as a possible contributor to EPM1 

pathophysiology (Korber et al., 2016).  

Although the effects of Cstb and CatB and their connection to microglia have been 

studied regarding the neurodegeneration and pathophysiology of EPM1, the effects of the lack 
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of Cstb over microglial phagocytosis are largely unknown. Interestingly, cystatins in immune 

cells have been reported to participate in many processes including phagocytosis, expression 

of cytokines, and release of nitric oxide, thus suggesting that cystatins play a significant role in 

the immune response (Okuneva et al., 2015; Turk et al., 2008; Verdot et al., 1996). In the 

present thesis we have not had the time to analyze the mechanisms underlying the microglial 

phagocytosis uncoupling in EPM1 mice, which we intend to do in the future. Nonetheless, we 

speculate that the lack of Cstb could affect either the finding, engulfing, and/or degradation 

stages of microglial phagocytosis.  

Several mechanisms could underlie a potential deficit in the finding stage of 

phagocytosis. For instance, EPM1 mice have been reported to have a diminished number of 

GABAergic terminals and reduced ligand binding to GABAA receptors in the cerebellum 

(Joensuu et al., 2014), and have also been shown to have an increased neuronal excitability 

when treated with KA (Franceschetti et al., 2007). This latent hyperexcitability could 

potentially affect microglial phagocytosis in EPM1 mice by partially disrupting “find-me” signals 

in the brain parenchyma. Interestingly, microglia in EPM1 mice have also been shown to have 

an elevated chemotaxis for ATP (Okuneva et al., 2015) and an overexpression of chemotaxis 

related genes (Korber et al., 2016). Our results are in agreement with this data, as we found 

that microglia phagocytosed more cells in EPM1 mice than in WT mice, even though it was not 

enough to maintain the phagocytosis-apoptosis coupling. Another major “find-me” signal 

regulated by Cstb that could potentially affect apoptotic cell engulfment is CX3CL1. CX3CL1 

neutralization or the deficiency of its receptor has been shown to prevent microglia from 

finding apoptotic cells (Sokolowski et al., 2014). The cleavage of fractalkine by CatS provokes 

its detachment from the membrane into a soluble form (Clark and Malcangio, 2012). 

Therefore, the lack of regulation of CatS in EPM1 mice could provoke a massive release of the 

soluble CX3CL1 fraction which could alter the CX3CL1 microgradients, possibly blinding 

microglia to this signal.  

Cstb could also also affect mechanisms modulating microglial engulfment. For 

instance, a study carried in yeast showed that Cstb binds a number of cytoplasmic proteins 

that are involved in the regulation of cytoskeletal functions (Di Giaimo et al., 2002). 

Accordingly, PND7 cultured cerebellar granule cells of Cstb KO mice have been shown to 

differentially express cytoskeleton related genes (Joensuu et al., 2014). These changes could 

also occur in microglia and impair phagocytosis, as a properly functioning cytoskeleton is key 

for the correct engulfment and posterior intracellular transport of the phagosomes. 
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Finally, Cstb could affect the degradation of the ingested apoptotic cells. Cstb is a 

cytosolic inhibitor of cathepsins (Stoka et al., 2016) and thus, it does not regulate the 

intralysosomal function of cathepsisns, which suggests that Cstb does not directly affect the 

degradation stage of phagocytosis in EPM1 mice. Nevertheless, P7 cultured cerebellar granule 

cells of Cstb KO mice have also been shown to differentially express intracellular transport 

genes (Joensuu et al., 2014), which could possibly happen in microglia as well, affecting their 

intracellular transport of organelles involved in the degradation of phagocytosed cells. 

Overall, the mechanisms underlying the microglial phagocytosis-apoptosis uncoupling 

in EPM1 mice remain unknown. Moreover, it is important to note that Cstb is not the only 

cystatin regulating CatB or CatS (Bromme et al., 1991) and other cystatins could be 

compensating for the lack of Cstb in this pathways, such as cystatin C (Paraoan et al., 2009; Sun 

et al., 2008). Future experiments will be carried out to elucidate the specific role of Cstb on 

microglial phagocytosis.  

 

7.5. MICROGLIAL PHAGOCYTOSIS IMPAIRMENT HAS DETRIMENTAL 
CONSEQUENCES FOR THE BRAIN 

7.5.1. Microglial phagocytosis impairment correlates with the development of 
an inflammatory response in MTLE  

We finally analyzed the functional consequences of the microglial phagocytosis 

impairment in the pharmacological model of MTLE. Phagocytosis is a vital process for the 

tissue. First, it prevents the apoptotic cells from losing membrane integrity and the subsequent 

leakage of potentially toxic intracellular contents into the surrounding parenchyma 

(Arandjelovic and Ravichandran, 2015). These intracellular contents engage receptors for 

damage associated molecular patterns and contribute to immune responses to self antigens 

(Arandjelovic and Ravichandran, 2015). Accordingly, defects in the clearance of apoptotic cells 

by macrophages have been attributed to the onset of persistent inflammatory disorders and 

autoimmunity (Lauber et al., 2004). In addition, clearance of apoptotic cells by phagocytes 

actively suppresses the initiation of inflammatory and immune responses, in part through the 

release of anti-inflammatory cytokines (Byrne and Reen, 2002; Huynh et al., 2002), thus 

preventing an immune response against the processed proteins of the apoptotic debris. 

Because microglial phagocytosis was severely impaired in MTLE, we hypothesized that this 

should result in an accumulation of apoptotic cells and that it could correlate with the 

development of an inflammatory response.  
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Importantly, a strong body of in vitro data on macrophages and microglia has shown 

that phagocytosis of apoptotic cells is actively anti-inflammatory (Sierra et al., 2013). The anti-

inflammatory role of phagocytosis in microglia in vitro has been shown to involve the release 

of anti-inflammatory cytokines such as transforming growth factor beta (TGFβ) and trophic 

factors such as nerve growth factor (NGF) (De Simone et al., 2003; Fraser et al., 2010) that may 

potentially facilitate the functional recovery of the surrounding compromised neurons. 

Therefore, an impairment in phagocytosis would release the brake imposed on the 

inflammatory response. As we expected, impairment of microglial phagocytosis correlated 

with the expression of pro- and anti-inflammatory cytokines in hippocampal tissue, although 

the signal/s which initiate this response in the epileptic brain remain to be determined. As we 

have shown that inflammation per se did not impair phagocytosis, this data suggest that the 

impairment of phagocytosis could lead to the development of an inflammatory response 

(Figure 33). Importantly, we observed that the same hippocampal microglial population that 

exhibited impaired phagocytosis also had a strong pro-inflammatory profile. Increased 

expression of pro-inflammatory cytokines has already been observed in experimental and 

human MTLE tissue (Kan et al., 2012; Vezzani et al., 1999; Vezzani et al., 2011b). Because pro-

inflammatory interleukin 1 beta (IL-1β) enhances NMDA excitatory currents, it is speculated to 

contribute to the development of chronic seizures (Kleen and Holmes, 2010), and drugs 

designed to prevent IL-1β activation and signalling are currently in clinical trials to prevent 

epileptogenesis (Vezzani et al., 2011a). Our data strongly support that this inflammation may 

at least in part originate from the microglial phagocytosis impairment, but whether this 

dysfunction contributes to seizures remains to be determined (Diaz-Aparicio et al., 2016).  

7.5.2. Microglial phagocytosis impairment induces a delayed clearance of 
apoptotic cells in MTLE 

We hypothesized that the microglial phagocytosis impairment would lead to an 

accumulation of non-phagocytosed apoptotic cells. To analyze the clearance of apoptotic cells, 

we estimated the clearance time of well identified cell populations undergoing apoptosis in 

the adult neurogenic cascade in the subgranular zone (SGZ) of the DG. In fact, the majority of 

newborn cells undergo apoptosis within the first 1–4 days of cell birth, in what is called the 

early critical period of survival, a cell death that continues in a lesser scale in the late critical 

period of survival (1-3 weeks) (Sierra et al., 2010; Tashiro et al., 2006). As our data showed that 

the majority of apoptotic cells were located in the SGZ at 1dpi after KA, we studied the effect 

of KA-induced seizures on the apoptosis and survival of 3do and 8do newborn cells by labeling 

them with the proliferative marker BrdU. Comparing both the 3do an 8do populations, we 
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found that KA did not affect the survival of the newborn cells. Thus, we assessed survival and 

apoptosis of the 3do population of newborn cells and found no changes in the survival of these 

cells but a puzzling increase in the numbers of apoptotic 3do cells. Moreover, this increase in 

apoptotic 3do cells was not due to an increase in their proliferation. Importantly, we found 

that the increased number of 3do apoptotic cells found in the SGZ neurogenic niche after KA 

injection was not due to de novo apoptosis of this population induced by KA but instead was 

related to an accumulation of 3do newborn cells that undergo apoptosis under physiological 

conditions and are not phagocytosed by the impaired microglia (Figure 33). Thus, the 

impairment of phagocytosis during MTLE led to an overestimation of the number of apoptotic 

cells induced by KA and an increased apoptotic clearance time of 6.3h.  

Therefore, we demonstrated that the efficiency of phagocytosis determined apoptosis 

dynamics in epilepsy and possibly in other brain diseases as well. Moreover, the accumulation 

of non-phagocytosed apoptotic cells in the brain parenchyma is of critical importance, as these 

cells could evolve into secondary necrotic cells that lose membrane integrity and start leaking 

out intracellular contents (Savill et al., 2002), contributing to the damage of the surrounding 

tissue. In fact, recent data provided direct evidence of the beneficial effects of microglial 

phagocytosis, as transgenic silencing of the phagocytic receptor TREM2 impaired microglial 

phagocytosis in vitro and exacerbated ischemic damage in experimental stroke (Kawabori et 

al., 2015). Therefore, the detrimental features associated with microglial 

phagocytosis/apoptosis uncoupling such as inflammation,  and accumulation of apoptotic cells, 

could exacerbate the pathology in brain diseases (Diaz-Aparicio et al., 2016). 

 

7.6. MICROGLIAL PHAGOCYTOSIS MODULATION AS A NOVEL THERAPEUTIC 
TOOL IN NEURODEGENERATION AND BRAIN INJURY 

To this day, most therapies aimed at treating neurodegenerative diseases have 

focused on preventing neuronal death. For example, some strategies have aimed at inhibiting 

caspases, the enzymes responsible for executing apoptosis (Troy and Jean, 2015); eliminating 

amyloid beta (Aβ) plaques in Alzheimer’s disease (AD); or repressing the oxidative injury 

caused by ischemia (Patel, 2016). While the results in animal models are promising, many of 

these candidate strategies have failed in human clinical trials (Ginsberg, 2007; Snow et al., 

2010). We suggest that in addition to reducing neuronal damage and death, a complementary 

therapeutical strategy could involve enhancing the “self-cleaning” mechanisms of the brain, 

such as microglial phagocytosis.  



DISCUSSION 

140 
 

Similar to what we have reported in epilepsy in this thesis (Abiega et al., 2016), it is 

possible that microglial phagocytosis is impaired in other brain diseases (Diaz-Aparicio et al., 

2016). Inflammation and/or neuronal death are hallmarks of many other neurodegenerative 

and neurological disorders, such as Alzheimer´s and Parkinson´s disease, multiple sclerosis, 

ischemia/stroke, and mood disorders (Cappellano et al., 2013; Ransohoff, 2016). Because we 

have observed that the phagocytosis impairment induced the delayed clearance of apoptotic 

cells and the development of an inflammatory response, we speculate that the increase in 

apoptosis and the pro-inflammatory profile classically described in neurological and 

neurodegenerative diseases could be the consequence of an undetected phagocytosis 

impairment. Therefore, modulating microglial phagocytosis could be key in the treatment of 

brain injury and neurodegenerative diseases. Moreover, the comprehension of the 

mechanisms that regulate phagocytosis, such as “find-me” signals coming from damaged 

neurons or apoptotic cells, or phagocytic receptors in microglia, will be crucial for the 

development of new therapies based on the modulation of microglial phagocytosis. Novel 

pharmacological approaches aimed at enhancing or restoring microglial phagocytosis 

efficiency would accelerate the clearance of apoptotic cells and promote an anti-inflammatory 

response. We propose that the modulation of microglial phagocytosis is a novel and yet 

unexplored therapy to accelerate functional brain recovery from neurodegenerative and 

neurological diseases (Diaz-Aparicio et al., 2016).  
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Figure 33. Microglial phagocytosis/apoptosis coupling in health and disease. In physiological conditions 
as well as during excitotoxicity and inflammation, microglial phagocytosis is tightly coupled to apoptosis 
due to “find-me” signals released by apoptotic cells, such as ATP. Microglia display a combination of 
three adaptation strategies to boost their phagocytosis efficiency: recruit more phagocytic cells, 
increase the phagocytic capacity per cell, and/or increase the number of cells. In contrast, a model of KA 
induced MTLE provokes seizures that lead to a widespread release of ATP, among other possible signals, 
and interfere with the ability of microglia to find, recognize and engulf apoptotic cells, resulting in their 
delayed clearance. Because phagocytosis is actively anti-inflammatory, the phagocytosis impairment 
was associated with the production of pro-inflammatory, epileptogenic cytokines. Moreover, 
constitutive KO of Cstb induced seizures at PND30 and microglial phagocytosis impairment as early as 
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PND14, even though microglial numbers and Ph capacity increased. The mechanisms inducing the Ph/A 
uncoupling in Cstb KO mice remain unknown. Adapted from (Abiega et al., 2016). 
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8. CONCLUSIONS 

1. MICROGLIAL PHAGOCYTOSIS IS COUPLED TO APOPTOSIS IN PHYSIOLOGICAL AND 

PATHOLOGICAL CONDITIONS 

 Microglial phagocytosis is coupled to cell apoptosis during excitotoxicity in vitro because 

the Ph capacity increases proportionally to the increase in apoptosis. 

 Microglial phagocytosis is coupled to cell apoptosis during acute inflammation in vivo 

because the Ph capacity increases proportionally to the increase in apoptosis. 

 Microglial phagocytosis is coupled to cell apoptosis during chronic inflammation in vivo 

because microglial numbers and the Ph capacity increase proportionally to the increase in 

apoptosis. 

 Microglia have a large phagocytic reservoir because they can boost their phagocytic 

potential by combining three adaptation strategies: recruit more phagocytic cells, increase 

the Ph capacity per cell and/or increase the numbers of microglia. 

 

2.  SEIZURES INDUCE A MICROGLIAL PHAGOCYTOSIS-APOPTOSIS UNCOUPLING IN EPILEPSY 

 Microglial phagocytosis is uncoupled from apoptosis following seizures in vivo in a 

pharmacological (MTLE) and a genetic (EPM1) model of epilepsy because MTLE microglia 

become non-phagocytic and EPM1 microglia increase their microglial numbers and Ph 

capacity in a way that is not proportional to the increase in apoptosis. 

 Microglia remain the most determinant phagocytes during phagocytosis-apoptosis 

uncoupling in MTLE and EPM1 mice. 

 Microglia become multinucleated in EPM1 mice. 

 Microglial phagocytosis-apoptosis uncoupling could be a widespread phenomenon in the 

epileptic brain.  

 

3. MICROGLIA SENSE SEIZURES VIA ATP 

 Microglial phagocytosis impairment is unrelated to a direct effect of KA on microglia. 

 Microglia respond to ATP released during seizures via purinergic receptors. 

 

4. DISRUPTION OF ATP GRADIENTS IMPAIRS MICROGLIAL PHAGOCYTOSIS 

 ATP overload impairs microglial phagocytosis in vitro and in vivo. 

 ATP induced phagocytosis impairment is unrelated to microglial viability. 

 Pannexin expression is unrelated to microglial phagocytosis impairment. 
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5. MICROGLIAL PHAGOCYTOSIS IMPAIRMENT IS RELATED TO REDUCED MOTILITY IN MTLE 

 KA induced seizures cause a reduction in microglial motility ex vivo and in vivo.  

 

6. MICROGLIAL PHAGOCYTOSIS-APOPTOSIS UNCOUPLING IS UNRELATED TO SEIZURES IN 

EPM1 MICE 

 Microglial phagocytosis-apoptosis uncoupling precedes the onset of seizures in EPM1 

mice, suggesting that Cstb might modulate microglial phagocytosis. 

 

7. MICROGLIAL PHAGOCYTOSIS IMPAIRMENT HAS DETRIMENTAL CONSEQUENCES FOR THE 

BRAIN 

 Microglial phagocytosis impairment correlates with the development of an inflammatory 

response in MTLE.  

 Microglial phagocytosis impairment induces a delayed clearance of apoptotic cells in 

MTLE. 

 Microglial phagocytosis efficiency critically affects the dynamics of apoptosis, which urges 

to routinely assess the microglial phagocytosis efficiency in neurodegenerative disorders. 

 Since neuronal death and inflammation are hallmarks of all major neurodegenerative 

diseases, harnessing microglial phagocytosis may serve to control tissue damage and 

inflammation as a novel strategy to accelerate brain recovery. 
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