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Abstract 

 Language comprehension is incremental, involving the integration of formal and 

conceptual information from different words, together with the need to resolve conflicting 

cues when unexpected information occurs. However, despite the extensive amount of 

findings regarding how the brain deals with these information, two essential and still open 

questions are 1whether the neural circuit(s) for coding syntactic and semantic information 

embedded in our linguistic code are the same or different, and 2whether the possible 

interaction(s) between these two different types of information leaves a trace in the brain 

response. 

 The current thesis seeks to segregate the neuro-anatomical substrates of these 

processes by taking advantage of the Spanish agreement system. This system comprised 

those procedural mechanisms concerning the regular assignment of the number [singular, 

plural], person [first, second and third] and/or gender [feminine, masculine] information, 

associated with different sentence constituents. Experimental manipulations concerning 

different agreement features and the elements involved in an agreement relation, allowed us 

to characterize the neural network underlying agreement processing. This thesis comprised 

five experiments: while experiments I and II explored nominal dependencies in local as well 

as non-local relations, experiments III, IV and V explored subject-verb relations in a more 

complex sentence context. To distinguish between purely syntactic mechanisms and those 

where semantic and syntactic factors would interact during language comprehension, 

different types of agreement relations and/or agreement features were manipulated in well- 

and ill-formed constructions. The interaction effect between the different factors included in 

each experiment was always the critical comparison. 

 In general, our results include firstly a functional dissociation between well-formed 

and ill-formed constructions: while ill-formed constructions recruited a bilateral distributed 

fronto-parietal network associated to conflict monitoring operations, not language specific, 

well-formed constructions recruited a left lateralized fronto-temporo-parietal network that 
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seems to be specifically related to different aspects of phrase and sentence processing. 

Secondly, there was an anterior to posterior functional gradient associated to the middle and 

superior temporal cortex that consistently appears across experiments. Specifically, while 

the posterior portion of the left MTG-STG seems to be related to the storage and retrieval of 

lexical and morpho-syntactic information, the anterior portion of this region was related to 

syntactic-combinatorial building mechanisms. Critically, in the most anterior part of the left 

temporal cortex, corresponding with the middle and superior temporal pole, form-to-

meaning mapping processes seems to be represented. Thirdly, the response of the left 

temporal cortex appears to be controlled by left inferior frontal regions (LIFG). Finally, left 

parietal regions such as the angular gyrus showed increased activation for those 

manipulations involving semantic factors (e.g., conceptual gender and Unagreement 

constructions), highlighting its crucial role in the processing of different types of semantic 

information (e.g., conceptual integration and semantic-discourse integration). Overall, these 

findings highlight the sensitivity of the agreement system to syntactic and semantic factors 

embedded into an agreement relation, opening new windows to the study of agreement 

computation and language comprehension.  
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Laburpena 

Hizkuntzaren ulermena areagotzen doa, izan ere, beharrezkoa da hitz ezberdinen 

formari eta kontzeptuari buruzko informazioa bateratu eta, aldi berean, bat-bateko 

informazioa jasotzen denean kontrajarriak diren pistak ebaztea. Alabaina, aurkikuntza ugarik 

garunak informazio hori nola erabiltzen duen erakutsi duten arren, bi galdera erantzun gabe 

daude oraindik. Bata, kode linguistikoaren informazio sintaktikoa eta semantikoa 

kodifikatzeko zirkuitu neural berbera(k) erabiltzen diren ala ez, eta bestea, bi informazio 

ezberdin horien artean egon litezkeen interakzioek (bat edo gehiago) garunaren erantzunean 

eraginik ote duten. 

Tesi honen helburua prozesu horien substratu neuro-anatomikoak banantzea da, 

horretarako gaztelaniaren komunztadura sistemaz baliatuta. Sistema horren prozedurazko 

mekanismoek zenbakiari [singularra, plurala], pertsonari [lehenengoa, bigarrena, 

hirugarrena] edo/eta generoari [femininoa, maskulinoa] buruzko informazioa era 

erregularrean ematen dute, esaldiaren bestelako osagaiei lotuta dagoena. Komunztadura-

osagaien manipulazio esperimentalen eta komunztadura-harremanaren osagaien manipulazio 

esperimentalari esker, komunztaduraren prozesamenduaren atzean dagoen sare neuralaren 

ezaugarriak zehaztu ditzakegu. Tesi honetarako bost esperimentu egin ziren; I eta II 

esperimentuek lotura lokal eta ez lokaletako izenen menpekotasunak aztertu dituzte; eta III, 

IV eta V esperimentuek esaldi konplexuagoetan subjektuaren eta aditzaren arteko erlazioa 

aztertu dute. Hizkuntza ulertzerakoan parte har lezaketen alderdi semantiko eta sintaktikoak,  

guztiz sintaktikoak diren mekanismoetatik bereizteko, egitura zuzen eta akastunetan 

komunztadura lotura motak edo/eta komunztaduraren osagaiak manipulatu ziren. 

Esperimentu bakoitzean aurkitutako alderdien arteko elkarreraginak alderatzea izan da beti 

punturik erabakigarriena. 

Lortutako emaitzek lehenik, egitura zuzen eta akastunen artean ezberdintasun 

funtzionala dagoela erakutsi dute. Egitura akastunek, arazoak kontrolatzeko, eragiketei 

lotutako sare aurre-parietalaren banaketa aldebikoa sortzen duten bitartean, hizkuntzak 

vii 

 



berezkoak ez dituen egitura zuzenek ezkerraldean kokaturiko sare aurre-parietala osatzen 

dute. Badirudi, azken horiek perpaus eta esaldien prozesamenduko alderdiekin zehazki 

erlazionatuta daudela. Bigarrenik, esperimentuetan behin eta berriro erdiko eta gaineko 

kortex tenporalari loturik dagoen aurretik atzerako gradiente funtzionala agertu zen. 

Emaitzen arabera, ezker MTG-STGaren (Midal eta Superior Temporal Gyrus) atzealdeak 

zehazki informazio lexikal eta morfosintaktikoa gordetzearekin eta berreskuratzearekin du 

zerikusia, eta aurrealdeak, aldiz, sintaktiko-konbinatorialak eraikitzeko mekanismoekin. 

Ezker kortex tenporalaren gunerik aurreratuenean (erdiko eta gaineko polo tenporalari 

dagokiona), formatik esanahirako mapping prozesuak irudikatzen direla ikusi da. 

Hirugarrenik, ezker kortex tenporalaren erantzuna ezkerreko azpiko eremu frontalek 

kontrolatzen dute (LIFG). Azkenik, ezkerreko eremu parietalek, tartean giro angularrak, 

aktibazio handiago erakutsi zuten aldagai semantikoarekin lotutako manipulazioetan (adib., 

genero kontzeptuala eta komunztadurarik gabeko egiturak). Horrek argi uzten du informazio 

semantikoa prozesatzerakoan funtsezko funtzioa betetzen duela (esaterako, kontzeptuak 

integratzea eta diskurtso semantikoa integratzea). Orokorrean, aurkikuntza horiek 

komunztadura sisteman eragiten duten alderdi sintaktiko eta semantikoen garrantzia 

azpimarratzen dute, eta horrek komunztadura konputazionalari eta hizkuntza ulermenari 

buruzko ikerketan ateak irekitzen ditu. 
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Resumen en castellano 

Una vez nos insertamos en el mundo de las palabras, nos acostumbramos a procesar 

información lingüística de forma automática. Este proceso, ya sea por vía auditiva (a través 

del lenguaje oral) o visual (a través del lenguaje escrito), permite transmitir información (ej.: 

ideas, conceptos o intenciones) entre individuos, a través de la aplicación de reglas 

gramaticales pre-establecidas y aprendidas. Esta característica es común a todas las lenguas 

y dialectos existentes en la actualidad, independientemente de la gran variabilidad 

estructural presente entre ellas. Estas reglas y los mecanismos que controlan la forma en que 

estas reglas operan se denominan Sintaxis, permitiendo la construcción de frases y/o 

oraciones (por ejemplo: "El Señor de las Moscas" en lugar de "de las señor el moscas") 

(Chomsky, 1955a, 1955b, 1995; Petersson & Hagoort, 2012; Radford, 1997, 2004). De igual 

forma, el significado de las palabras y los mecanismos que controlan la forma en que la 

representación ortográfica o fonológica de una palabra, es correlacionada con su referente en 

el mundo externo (por ejemplo: "El Señor de las Moscas", una novela famosa de William 

Golding), se denomina Semántica (Carnap, 1948; Chierchia & McConnell-Ginet, 2000; 

Chomsky, 1955b; Dapretto & Bookheimer, 1999; Lyons, 1995).  

La distinción entre procesos sintácticos y semánticos y su implicación en 

mecanismos generales de comprensión, han sido el foco de atención de muchas 

investigaciones en los últimos años (Binder & Desai, 2011; Binder et al., 2009; Crosson et 

al., 1999; Graves et al., 2010; Humphries et al., 2006, 2007; Kuperberg, 2007; Kuperberg et 

al., 2000; Kuperberg et al., 2003; Kuperberg, West, et al., 2008; Lau et al., 2013; Zhang, Y. 

et al., 2013; Zhang, Y. et al., 2010). Sin embargo, a pesar de la gran cantidad de evidencias 

experimentales que tratan de explicar cómo el cerebro procesa los diferentes aspectos, 

sintácticos y semánticos, contenidos dentro de la información lingüística, las regiones 

neurales involucradas en dichos procesos y la dinámica funcional que se establece entre 

ellas, es aún un tema controvertido. A pesar de estas contradicciones, a partir de las 

evidencias experimentales derivadas de estos estudios, se han postulado distintos modelos 

cognitivos que tratan de desentrañar las distintas etapas de este proceso. En especial, 

intentan distinguir entre mecanismos de naturaleza puramente sintáctica y aquellos que 
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requieren de una integración sintáctico-semántica, necesarios durante la comprensión de 

información lingüística. Son varios los modelos postulados a este respecto y a la vez 

disímiles los supuestos en que se sustentan y las predicciones que se derivan de los mismos. 

El procesamiento de la concordancia gramatical entre los elementos que forman la 

frase (como por ejemplo: el sujeto y el verbo o el artículo y el sustantivo), constituye una 

herramienta clave para dilucidar cómo nuestro cerebro lidia con los diferentes aspectos 

contenidos dentro de la información lingüística. La concordancia gramatical pone de 

manifiesto relaciones de dependencia entre diferentes constituyentes de la oración. Estas 

relaciones operan, generalmente, a través de categorías morfológicas, que indican de forma 

redundante, la persona (primera, segunda y tercera), el número (singular, plural) y/o el 

género (femenino, masculino) asociados con distintos constituyentes gramaticales (p. ej.: 

sustantivos, pronombres, verbos, artículos y adjetivos). Los tipos de constituyentes que 

intervienen en una determinada relación gramatical, dan lugar a dos tipos diferentes de 

concordancia: concordancia nominal (entre artículo y sustantivo, sustantivo y adjetivo, entre 

otros) y concordancia verbal (entre sujeto y verbo). 

En general, el procesamiento de la concordancia gramatical requiere de mecanismos 

cognitivos complejos, que nos permiten entender de quien se está hablando, quien está 

realizando la acción o quién es el objeto de dicha acción, de ahí su papel primordial en la 

comprensión de frases y oraciones. Los diferentes tipos de relaciones de concordancia, así 

como también las categorías morfológicas involucradas en estas relaciones, influyen en 

menor o mayor grado sobre el proceso de comprensión. Por este motivo, manipulaciones 

concernientes al tipo de relación de concordancia, o al tipo de categoría morfológica 

implicada en dicha relación, permitirán desentrañar los mecanismos neuro-cognitivos 

subyacentes al procesamiento de la concordancia gramatical. 

En los últimos años el número de estudios dedicados a la caracterización de estos 

mecanismos ha ido en aumento. A los estudios pioneros sobre esta temática, centrados en 

evidencias conductuales, se han sumado estudios que han tratado de caracterizar la dinámica 

espacio-temporal del procesamiento de la concordancia utilizando técnicas de neuroimagen 
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(electrofisiología y resonancia magnética funcional). Las investigaciones realizadas se han 

basado fundamentalmente en la comparación entre construcciones gramaticales donde los 

distintos constituyentes muestran los mismos marcadores morfológicos (construcciones 

gramaticalmente correctas) y construcciones que incluyen incongruencias gramaticales, que 

pueden resultar en violaciones sintácticas (por ejemplo: “el mesa”) o no (por ejemplo: 

“Unagreement” en el español). Sin embargo, a pesar de que algunos estudios han 

documentado la implicación de algunas regiones cerebrales, la correspondencia entre dichas 

regiones y los procesos cognitivos subyacentes, está aún por dilucidar. A día de hoy no 

existe ningún modelo neuro-anatómico que caracterice el proceso de concordancia. 

La presente tesis tiene como objetivo investigar las bases neurales de la concordancia 

gramatical, haciendo énfasis en la distinción entre mecanismos puramente sintácticos (como 

puede ser la evaluación de la concordancia a partir de marcadores morfosintácticos) y 

mecanismos que requieren de una integración sintáctico-semántica. Para ello, hemos 

incluido como parte del trabajo de tesis cinco experimentos, cada uno de los cuales se 

describe en un capítulo. Los experimentos difieren en el tipo de relación de dependencia 

manipulada en cada caso (nominal o verbal), así como también en el tipo de categoría(s) 

morfológica(s) usada(s) para manipular la gramaticalidad (género, número o persona). Los 

cinco experimentos están dirigidos a responder esta pregunta teórica desde un punto de vista 

neuro-anatómico, investigando las regiones cerebrales involucradas en dichos procesos, así 

como también las relaciones funcionales que se establecen entre ellas. La tarea de los 

participantes en todos los estudios fue realizar un juicio de gramaticalidad dado un set de 

oraciones o pares de palabras que podían ser gramaticalmente correctas o no. Este factor 

intentamos mantenerlo constante para evitar posibles efectos relacionados con la tarea 

experimental.  

A continuación se presenta un resumen metodológico de cada uno de dichos estudios (ver 

Tabla 1.1): 

Estudio I: “Is our brain sensitive to gender-marking cues during the computation of local 

agreement relations?” 
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Este experimento investiga los mecanismos sintácticos involucrados en el 

procesamiento de la concordancia nominal desde una perspectiva neuro-anatómica. Para ello 

manipulamos la congruencia gramatical, utilizando parejas artículo-sustantivo (parejas 

congruentes o incongruentes), en las que el sustantivo podía presentar la marca morfológica 

de género transparente (“-a” femenino ó “-o” masculino: sustantivos transparentes como 

“mesa” o “faro”) o no (sustantivos con marcas opacas como “reloj” o “lápiz”). Los factores 

semánticos involucrados en el procesamiento de la concordancia fueron silenciados 

utilizando sustantivos con género gramatical donde las relaciones de concordancia son 

establecidas mediante marcadores morfosintácticos. Este tipo de manipulación nos permitió 

distinguir aquellas regiones involucradas en el procesamiento de relaciones de concordancia 

de naturaleza sintáctica, donde la integración sintáctico-semántica no juega un papel 

fundamental. 

Estudio II: “Parietal circuit distinguishing between living and non-living entities: an fMRI 

study of gender agreement processing.” 

Este estudio fue diseñado para investigar a) cómo la información semántica 

contribuye al establecimiento de relaciones de concordancia gramatical, b) si esta 

información semántica interactúa con el procesamiento de la información morfosintáctica y 

c) si esta(s) posible(s) interacción(es) entre la información conceptual y formal, dejan una 

huella en la respuesta neural. Para ello, manipulamos la concordancia de género entre 

sustantivos y adjetivos, utilizando oraciones de cuatro palabras. Los sustantivos en español 

poseen la peculiaridad de exhibir dos tipos diferentes de género: el género conceptual 

[fenómeno intrínseco de la representación semántica de la palabra] y el género formal 

[fenómeno sintáctico expresado a través de marcadores morfológicos y/o presente en la 

representación léxica]. Además, manipulamos el tipo de género de los sustantivos con el fin 

de potenciar la interacción entre los factores semánticos y sintácticos, durante el 

procesamiento de la concordancia. Este diseño nos permitió segregar mecanismos 

subyacentes al procesamiento de la concordancia gramatical. Específicamente, dentro de la 

red neural involucrada en dicho proceso, distinguimos aquellas regiones funcionalmente 

sensibles a factores semánticos y sintácticos. 
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Estudio III: “Nominal and verbal agreement: Two sides of the same coin.” 

En los dos primeros estudios investigamos los procesos neuro-cognitivos implicados 

en el procesamiento de la concordancia gramatical, teniendo en cuenta solamente relaciones 

de concordancia nominal, entre artículo y sustantivo o entre sustantivo y adjetivo. En el 

experimento 4 investigamos si los mecanismos subyacentes al procesamiento de la 

concordancia nominal y verbal son similares. En este caso, la concordancia de número fue 

manipulada en parejas de artículo – sustantivo y sujeto – verbo. Este diseño nos permitió 

determinar que la concordancia gramatical, sea nominal o verbal, involucra 

fundamentalmente las mismas regiones cerebrales. Sin embargo, los mecanismos 

subyacentes a este proceso, son lo suficientemente sensibles, como para distinguir entre los 

dos tipos de concordancia.  

Estudio IV: “Who is doing what? Left temporal involvement for verbal agreement 

processing.” 

En los experimentos V y VI investigamos la concordancia entre el sujeto y el verbo. 

La concordancia entre sujeto y verbo implica extraer información gramatical, que 

posteriormente es asignada a diferentes representaciones semántico-pragmáticas sobre el 

tipo de participantes (1era persona = participante, 2da = destinatario, 3era = no participante) y 

su numerosidad (una sola entidad versus un grupo). En este estudio investigamos la 

concordancia entre sujeto y verbo mediante la comparación de violaciones gramaticales de 

concordancia de persona y de número. Las oraciones gramaticalmente incorrectas se 

contrastaron con oraciones gramaticalmente correctas, para determinar si las regiones 

cerebrales involucradas en el procesamiento de ambas categorías morfológicas eran o no las 

mismas. Este estudio nos permitió distinguir regiones cerebrales que muestran sensibilidad 

al tipo de categoría morfológica involucrada en una relación de concordancia. Regiones 

anteriores del giro temporal medial izquierdo mostraron respuestas significativas cuando las 

oraciones contenían una violación de persona. Sin embargo, estas regiones no mostraron 

sensibilidad para violaciones gramaticales de número. 
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Estudio V: “Where agreement merges with disagreement: fMRI evidence of subject-verb 

integration.” 

En el presente estudio nos centramos en el procesamiento de la concordancia 

gramatical de persona entre sujeto y verbo. En este caso comparamos incongruencias 

gramaticales de persona que pueden resultar en oraciones gramaticalmente incorrectas con 

otras, que por el contrario, resultan en oraciones gramaticalmente correctas. Para esto 

sacamos provecho de una característica específica de la lengua española, el fenómeno de 

“Unagreement” (por ejemplo: Los Pintores3p.pl. trajimos1p.pl....). La comprensión de este tipo 

de construcciones gramaticales implica un cambio en la interpretación semántica del sujeto 

(pasando de la tercera persona a primera persona), lo que posibilita que la frase “Los 

pintores” sea re-interpretada como “Nosotros los pintores”. Este diseño nos permitió 

distinguir entre las regiones cerebrales encargadas de la evaluación de la concordancia 

morfosintáctica (involucradas en el procesamiento de la violación de persona y del 

“Unagreement”) y aquellas encargadas de la integración sintáctico-semántico (involucradas 

en el procesamiento de las oraciones gramaticalmente correctas que presentan un patrón 

típico de concordancia y del “Unagreement”). El procesamiento de la concordancia del 

“Unagreement” evidenció la implicación de regiones parietales asociadas a la integración 

sintáctica-semántica. 
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Tabla I. Resumen metodológico de cada uno de los estudios contenidos en la presente tesis.  

Estudios 
Tipo de 

estímulo 

Tipo de Concordancia 

(Dependencia) 

Categoría 

morfológica 

manipulada 

Diseño Experimental 

Estudio I 
Pares de 

palabras 

Nominal (Artículo – 

Sustantivo) 

Género Gramaticalidad x Transparencia 

Estudio II 
Oraciones de 4 

palabras 

Nominal (Sustantivo – 

Adjetivo) 

Género Gramaticalidad x Tipo de Género [Conceptual – Formal] 

Estudio III 

Pares de 

palabras 

Nominal (Artículo – 

Sustantivo) 

Verbal (Sujeto – Verbo) 

Número Gramaticalidad x Tipo de Dependencia 

Estudio IV 
Oraciones de 8 

a 10 palabras 

Verbal (Sujeto – Verbo) Número –  

Persona 

Gramaticalidad x Tipo Violación [Número – Persona] 

Estudio V 
Oraciones de 8 

a 10 palabras 

Verbal (Sujeto – Verbo) Persona 

Unagreement 

Gramaticalidad x Tipo de Violación [Persona – 

Unagreement] 
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Los estudios anteriormente descritos han tratado de caracterizar las bases neurales del 

procesamiento de la concordancia gramatical, poniendo especial atención a la distinción entre 

mecanismos sintácticos y semánticos. Los principales resultados derivados de estos estudios se 

resumen a continuación.  

 En primer lugar, encontramos una disociación funcional entre construcciones 

gramaticales correctas e incorrectas. Por un lado, el procesamiento de construcciones 

gramaticalmente incorrectas involucró una red neural fronto-parietal bilateral, que fue 

asociada a operaciones no específicas del lenguaje, previamente relacionadas al control y 

monitoreo de posibles conflictos entre la señal de entrada y la conducta correspondiente a 

la realización de la tarea. Por otro lado, el procesamiento de construcciones 

gramaticalmente correctas activó una red neural fronto-temporo-parietal, lateralizada al 

hemisferio izquierdo. Esta red fue relacionada con procesos específicos del lenguaje, 

previamente asociados a diferentes aspectos del procesamiento de frases y/o oraciones.  

 En segundo lugar, las manipulaciones experimentales utilizadas evidenciaron un 

gradiente funcional antero-posterior, asociado a la corteza temporal medial y superior, 

incluyendo el polo temporal. Específicamente, la parte posterior del giro temporal medial 

y superior, izquierdo, parece estar relacionada con el almacenamiento y la recuperación 

de información léxica y morfosintáctica. Mientras que la porción anterior de esta región, 

mostró relación con los mecanismos de construcción sintáctica y procesos de 

combinación morfosintácticos. Además, la parte más anterior de la corteza temporal 

izquierda, incluyendo el polo temporal medial y superior, mostró incrementos en su 

activación asociados a procesos de integración sintáctico-semántico.  

 En tercer lugar, la respuesta de la corteza temporal izquierda parece estar controlada por 

regiones frontales, específicamente por el giro frontal inferior izquierdo. Todos los 

experimentos contenidos en la presente tesis, evidencian un acoplamiento funcional de 

las regiones temporales y frontales. El gradiente funcional que muestra la región temporal 

medial y superior izquierda replica el gradiente funcional previamente descrito para el 

giro frontal inferior izquierdo.  
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 En cuarto lugar, regiones parietales izquierdas, como el giro angular, mostraron mayor 

sensibilidad a aquellas manipulaciones que implicaron modulaciones de factores 

semánticos (por ejemplo: género conceptual y construcciones complejas como el 

Unagreement), evidenciando el papel primordial que esta región tiene en el tratamiento 

de diferentes tipos de información semántica (por ejemplo: procesos de integración 

conceptual o procesos de integración semántico-discursiva).  

 Por último, el patrón de respuesta de las regiones frontales, temporales y parietales, del 

hemisferio izquierdo, subyacentes al procesamiento de frases y/o oraciones, evidenció 

incongruencias en relación a los modelos teóricos (neuro-anátomicos y neuro-cognitivos) 

que tratan de explicar cómo este proceso tiene lugar. Los resultados derivados de estos 

siete estudios están en desacuerdo con la diferenciación entre rutas ventrales y dorsales 

asociadas a mecanismos sintácticos y/o semánticos respectivamente. La red neural 

resultante de estos estudios ha mostrado muchas regularidades. Sin embargo, también ha 

evidenciado su carácter peculiar, mostrando variaciones en función del tipo de relación 

de dependencia involucrada, el tipo de categoría morfológica manipulada, así como 

también el patrón de gramaticalidad.  

Finalmente en el capítulo de discusión general proponemos un modelo neuro-anatómico, 

que da cuenta de los resultados obtenidos en los diferentes estudios, poniendo énfasis en la 

distinción entre factores sintácticos y semánticos subyacentes al proceso de evaluación de la 

concordancia.   
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Chapter 1. 
General Introduction  
 

When we are reading a text such as “...como si sobre sus cabezas hubiera caído la 

gota de agua que forman las estalactitas...” (literally: “…as if on their headsplural hadsingular 

fallen [the drop of water]1
singular that formplural stalactites…”) (Lezama Lima in Paradiso, 

page 486-487) with apparent incongruities between different sentence constituents, we 

become aware of the constant computation of grammatical relations (i.e., agreement) that is 

necessary to combine the different words and grasp the idea that the author wants to convey. 

The influence of this phenomenon on the existing languages varies over a very wide range, 

from languages where this phenomenon is highly present to languages where it is almost 

absent (see Corbett, 2006 for an extensive revision of the variability of this phenomenon 

across languages). However, independently of the intrinsic complexity and the structural 

diversity across languages (Miyagawa, 2010; Miyagawa et al., 2014), the basic core of all 

these systems falls on the common need to transfer information between individuals (e.g., 

ideas, concepts, intentions, etc.), following some specific rules.  

These rules and the mechanisms controlling the way in which these rules operate, 

structuring words into phrases and sentences (e.g., “flies the of lord” versus “lord of the 

flies”), have been defined as Syntax (Chomsky, 1955a, 1955b, 1995; Petersson & Hagoort, 

2012; Radford, 1997, 2004). In the same way, the meaning of each specific word and the 

mechanisms controlling the way in which the orthographic or the phonological 

representation of a word is mapped with its referent in the external world (e.g., “Lord of the 

flies2”, a famous novel by William Golding) have been defined as Semantics (Carnap, 1948; 

Chierchia & McConnell-Ginet, 2000; Chomsky, 1955b; Dapretto & Bookheimer, 1999; 

1 The brackets comprise the noun-phrase structure. 
2 Out of context, it is a semantically incongruent sentence. 
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Lyons, 1995). The distinction between syntactic and semantic processes and their specific 

roles guiding language comprehension has been the focus of many investigations in the last 

seventy years (Binder & Desai, 2011; Binder et al., 2009; Crosson et al., 1999; Graves et al., 

2010; Humphries et al., 2006, 2007; Kuperberg, 2007; Kuperberg et al., 2000; Kuperberg et 

al., 2003; Kuperberg et al., 2007; Kuperberg et al., 2006; Kuperberg, Sitnikova, et al., 2008; 

Lau et al., 2013; Zhang, Y. et al., 2013; Zhang, Y. et al., 2010). However, despite the 

extensive amount of evidence on how the brain deals with this kind of information, three 

essential and still open questions are 1does the brain have a circuit specialized in the 

computation of the grammatical relations among words, 2whether this neural circuit, if it is 

indeed found, is fine-tuned to the syntactic or semantic signals embedded in our linguistic 

code, and 3whether the interaction between these two different types of information leaves a 

trace in the brain response. 

A convenient arena to study these questions is offered by the Spanish agreement 

system (see MacWhinney et al., 1989, for a discussion of the importance of agreement cues 

across languages). How could the investigation of this phenomenon contribute to distinguish 

between purely syntactic mechanisms and those where semantic and syntactic factors 

interact during language comprehension? The agreement phenomenon, as the example by 

Lezama Lima illustrates, is apparently nourished by different formal (e.g., the numerosity of 

the different sentence constituents – singular or plural –) and conceptual information that is 

encoded in the same linguistic representation. The mapping of these apparently divergent 

signals into a coherent meaning is an automatic process that develops in less than a second. 

However, during this second, different mechanisms can be temporally distinguished 

(Friederici, 1995, 2004, 2011; Molinaro, Barber, et al., 2011). Thus, taking advantage of the 

diversity of the Spanish agreement system it is possible to tune down some of these factors 

and, as a consequence, boost others, allowing us to disentangle the different mechanisms 

sub-serving the agreement processing. The neuro-cognitive characterization of the 

agreement phenomenon constitutes the broad goal of this thesis. Each one of the 

experimental chapters will address different aspects of this phenomenon underneath the 

common prism of the neuroimaging techniques. 
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Before looking at this phenomenon from a neuro-cognitive perspective, we want to 

offer some key concepts about agreement, putting more emphasis on the Spanish agreement 

system, which is the focus of this thesis.  

1.1 Agreement 

Agreement, one of the pillars of language structure was defined by Steele in1978 as 

follows:  

“The term agreement commonly refers to some systematic covariance 

between a semantic or formal property of one element (the controller) and a 

formal property of another (the target)...” (Steele, 1978 page 610).  

According to this concept, the critical role of agreement computation is to highlight 

the mutual dependence between different sentential elements. The establishment of these 

relations is carried out through agreement features (a certain property of an element, 

according to the concept of Steele, 1978), the basic building blocks of this process. 

Agreement features have been defined as partial descriptions of linguistic objects directly 

involved in agreement computation, whose function is to capture regularities between 

sentential/phrasal elements by signaling referents and their roles to the reader/hearer 

(Corbett, 2003, 2006). For instance, in Spanish, agreement features are morpho-syntactic3 

categories that signal the person, number, and gender (but also see Corbett, 2006 for 

differences across languages) information associated with different sentence constituents 

(Mancini et al., 2013a, 2013b). These agreement features express their morpho-syntactic 

values (e.g., in Spanish: number [singular, plural], person [first, second and third] and 

gender [feminine, masculine]) according to language specific rules. Getting back to the 

agreement concept, an agreement relation involves a controller and a target. The controller 

element specifies the feature value it imposes on the target. The values of a morpho-

3 Agreement features having a role in both syntax and morphology. 
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syntactic feature may be selected according to contextual or formal criteria (semantic or 

formal properties, according to the concept of Steele, 1978). 

Thus, agreement comprises those operations concerning the regular assignment of 

agreement feature values, driving the agreement information flow required for the proper 

interpretation of a sentence/phrase. However, the devices used to signal these systematic 

relations among words differ across languages (see MacWhinney et al., 1989, for a 

discussion of the importance of agreement cues across languages). For example, languages 

such as Japanese identify participants in the event, their roles (e.g., agent, patient) and their 

attributes (e.g., definiteness) through discourse-based devices such as topic-marking, i.e. by 

morphologically marking the element that represents the topic of the sentence. On the other 

hand, Romance languages like Spanish or French efficiently rely on agreement and 

agreement features: the gender, number and person information carried by nouns is 

displayed in several other sentence parts. As exemplified in (1) below, in Spanish, nouns 

must agree in gender and number with determiners, adjectives and pronouns, in local as well 

as non-local relations and similarly, verbs must agree in number and person with predicative 

subjects, objects and pronouns.  

(1) Los3.pl.masc
4

 libros3.pl.masc que ella3.sg.fem. quiere3.sg. son3.pl. míos3.pl.masc. 

The books3.pl.masc that she3.sg.fem wants3.sg are3.pl mine. 

However, what makes the Spanish agreement system so special to disentangle the 

operation of syntactic and semantic processes? The key of this question relies on how these 

morpho-syntactic features are structured and accessed in Spanish, which determines how 

agreement information is processed in a given dependency (see Molinaro, Barber, et al., 

2011 for an extensive review of agreement processing)5. From a linguistic perspective, in 

4 Most agreement feature values are glossed with a symbol built from a subset of the following three elements: 
an Arabic number expressing the person feature value (1, 2, or 3), an abbreviation expressing the number 
feature value (sing. singular, or pl. plural), and a different abbreviation expressing the gender feature value 
(masc. masculine, or fem. feminine). 
5 These authors demonstrated that agreement processing is sensitive to both the type of morpho-syntactic 
feature and the type of sentence constituent involved in the resolution of an agreement relation. 
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Spanish it is possible to distinguish between two different types of grammatical relations: 

verbal and nominal agreement (agreement and concord, according to some theoretical 

frameworks, Pollard & Sag, 1994; Wechsler, 2009; Wechsler, 2011; Wechsler & Zlatić, 

2000; Wechsler & Zlatić, 2003). They occur in different syntactic domains and involve 

different features and different interpretive properties (i.e., the semantic-pragmatic 

information concerning the argument referent). Thus, verbal agreement usually involves 

subject-verb dependencies (henceforth, subject-verb or verbal agreement), while nominal 

agreement takes place in the noun-phrase (NP) domain, i.e. within the same constituent. 

Moreover, subject-verb agreement usually involves only one (i.e., only the verb such as 

Duerme3.sg, Sleeps) or two elements, that is, the verb and its argument(s) (e.g., El gato3.sg 

duerme3.sg [The cat sleeps]6), while nominal agreement generally applies to several different 

elements in several syntactic positions, which can be in a local as well as a non-local relation 

with the lexical head: determiners, adjectives and nouns (e.g., Lafem.sg casa fem.sg rojafem.sg que 

estaba abandonada fem.sg fue vendida fem.sg. [The red house that was abandoned was sold]). 

Also, different features are usually involved: in Spanish, subject-verb agreement involves 

person and number features, while number and gender are implicated in nominal agreement. 

Finally, the analysis of the two types of configurations implies the decoding of the 

underlying syntactic and semantic representations that significantly differ in complexity. On 

the one hand, analysis of a subject-verb agreement relation implies not only the extraction of 

morpho-syntactic information from the input, but also the projection of a complex 

representation in which the subject noun is associated with a specific role (e.g., agent, 

patient) in the unfolding of an event, e.g. él [he] in the dancing event described in Él baila 

[He dances]. In contrast, the interpretation of a nominal agreement structure in isolation, 

such as “la casa” [the house] simply implies matching a noun with its real-world referent, 

without building any thematic representation. As is evident from these examples, the 

morpho-syntactic expression of a given feature is closely related to its corresponding 

interpretative properties. This relationship drives the interpretation of the feature and hence 

6 Literally translated into English. 
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impacts the comprehension processes in a different way (but see Mancini et al., 2013a, 

2013b; Sigurdsson, 2004, 2009; 2011 for different proposals). 

The Spanish agreement system comprises a variety of canonical and non-canonical 

options (i.e., differing not only in their morpho-syntactic and semantic-pragmatic values, but 

also in the way in which these two factors interact) where it is possible to distinguish many 

different, but interlacing, factors embedded in the computation of an agreement relation: 

syntactic, morphological, semantic, and pragmatic7. The current thesis takes advantage of 

the diversity and richness of the Spanish agreement system, in order to characterize the 

different mechanisms (e.g., the evaluation of the morpho-syntactic subject-verb consistency 

and the semantic integration process) supporting successful comprehension of written 

phrase/sentences from a neuro-anatomical point of view. This diversity will allow us to 

experimentally manipulate different factors (i.e., type of dependency and type of feature) 

giving us the opportunity to characterize not only the mechanisms underlying general 

agreement processing, but also the possible interaction(s) between semantic and syntactic 

factors constraining the interpretation of an agreement relation. However, before getting into 

the main questions, I would like to address some general topics relevant to the purpose of 

the current investigation.  

The following section gives a brief overview over the structure of the three different 

morpho-syntactic features (Gender, Number and Person) used by the Spanish agreement 

system. They have been organized as follows. First, a general description of the features is 

exposed, including examples that illustrate how the features express their values across 

languages. Then, some details about how these features are represented in Spanish are 

reported comprising all grammatically canonical and non-canonical cases. Finally, a 

description on how each morpho-syntactic feature operates in the Spanish agreement system 

is presented including its corresponding semantic-pragmatic interpretation properties. 

7 Regarding this point Corbett (2003) Corbett (2003) claims that “Agreement is increasingly recognized as of 
interest not just for syntax, semantics, and morphology, but also for acquisition, psycholinguistics and 
computational applications” (Corbett, 2003, p. 109). 
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1.2 Agreement Features 

Gender. The morpho-syntactic category of Gender provides a classification of nouns 

based on a two- (or sometimes three-) way system that comprises feminine and masculine 

entities. According to the review of Corbett (1991), where more than 200 languages were 

extensively explored, the gender system of a given language exhibits often two or more 

classes of nouns. In Romance language, such as Spanish or Italian, this classification 

comprises a class where the gender corresponds to the biological sex distinction. In contrast, 

in language such as Qafar, the gender classification is based on phonological and 

morphological criteria without any conceptual information.  

Interestingly, the Spanish gender system distinguishes between two types of nouns. 

On the one hand, most nouns referring to animate entities are assigned to one of two genders 

– masculine or feminine – depending on the biological sex of the referent (the conceptual 

system, according to Corbett, 1991). On the other hand, nouns referring to inanimate entities 

or abstract concepts are also assigned to one of two genders, but since their referents are not 

endowed with a sex, the assignment follows morphological and/or phonological criteria, 

such as whether the noun ends in “–a” or “–o” (i.e., transparent nouns, Akhutina et al., 1999; 

Bates et al., 1995): Nouns ending in “–o” are usually masculine, while nouns ending in “–a” 

are usually feminine (the formal system, according to Corbett, 1991 with conceptual gender 

nouns also following this regularity in most of the cases (abuelomasc./abuelafem. 

[grandfather/grandmother]). However, this syntactic rule has numerous exceptions. For 

instance, there are some irregular nouns ending in “–o” or “–a” that are classified as 

feminine or masculine respectively, which is the opposite gender value that its 

corresponding ending predict (e.g., mano [hand] or día [day]). In addition, there are many 

opaque nouns whose ending (“–l”, “–z”, “–j”, “–e”, “–n”) does not contain information 

about the morphological gender value (e.g., relojmasc. [watch] or vejezfem. [eld]).  

Regarding how gender agreement relations are established in Spanish, nouns must 

redundantly agree in gender with determiners, adjectives, pronouns and verbs, in local as 

well as non-local relations. For instance, in a headline such as in (2) below, the 
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morphological gender value of a transparent and formal subject-noun controls the gender 

value of the following adjectives (i.e., “calificado” is an adjective derived from a participle 

form of a verb). The feature gender value of the subject-noun “artículo” is morphologically 

signaled by the canonical ending of the masculine gender marker. Although this is a highly 

canonical example, Spanish gender agreement system is as diverse as the gender types 

explained above. Examples (3) and (4) illustrate this variability. In these cases, the 

morphological gender value of an opaque subject-noun controls the gender value of the 

target elements (i.e., in this case, these elements correspond to a reduce object passive 

relative clause), which vary between the masculine and the feminine forms. Specifically, in 

(3) below, the feminine form of “editorial” is refers to a publishing house. However, it is 

also plausible to find the masculine form of “editorial” (as exemplified in (3) below), which 

refers to an anonymous article published in the newspaper. The relation between form and 

meaning, at least in this particular case, seems to be critical to the interpretation of such 

grammatical relation, and consecutively crucial to the comprehension process. 

 

(2) Artículomasc. calificadomasc. de conservadormasc.. 

Paper qualified as conservative.  

(3) Editorialfem. calificadafem. de conservadorafem..  

Publisher qualified as conservative. 

(4) Editorialmasc. calificadomasc. de conservadormasc.. 

Editoral qualified as conservative. 

Number. The morpho-syntactic category of Number classifies pronominal and 

nominal argument according to the cardinality of the referent (Mancini et al., 2013a, 2013b). 

Some languages such as Spanish, Italian or English have a basic system with a singular-

plural distinction. While singular refers to a single entity, plural refers to more than one real-

world entities (e.g., casasing./casaspl. [house/houses]). Although, according to Corbett 
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(2000), there are at least four different number systems. For instance, in Upper Sorbian three 

different categories can be distinguish, singular, dual and plural, where dual refers to only 

two distinct real-world referents. It is also possible to find languages with more complex 

systems, where four or five morphological number values can be distinguished. In most of 

the modern languages, nouns are frequently morphologically marked for number. However, 

some languages such as Classical Chinese or Kawi do not have plural forms of nouns or 

pronouns (Corbett, 2000). In these cases, number feature values can be indicated by 

quantifiers or by conjoining pronouns (according to Becher & Oka, 1974; cite taken from 

Corbett, 2000). Indeed, it is also possible to find languages with a verbal number system, 

marking the number of events rather than the number of individuals (Corbett, 2000, 2006). 

For instance, the examples (5) and (6) used by Corbett (2000, p. 246) illustrates this 

phenomenon in Chadic. In this example, the number of events is signaled in the verb. In 

both cases the subject (“Naa” [I]) is singular and the object (“su” [them]) is plural. However, 

in the latter case (example 6 below) the plural verb (a”aikee) indicates that the number mark 

of the sending-event involved more than one time or more than one place (as example (6) 

illustrates).  

(5) Naa aikee su … 

I sent them  at the same time to same place. 

(6) Naa a”aikeepl. su … 

I sentpl. them  at the different times to same place. 

   at the same time to different places. 

   at the different times to different places. 

Specifically, Spanish nouns adhering to a binary system can be usually associated 

with singular and plural number forms (Corbett, 2000). In most of the cases, the plural form 

of the nouns are morphologically marked by adding an “–s” at the end of the word (e.g., 

abuelosing./abuelospl. [grandfather/grandfathers]). However, despite this regularity, there is a 

group of Spanish nouns, generally abstracts, which are lexically marked for number. They 
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are only singular (e.g., salud [health] or honestidad [honesty]) or plural (e.g., añicos 

[smithereens] or víveres [provisions]). In Spanish, as in many others languages, it is possible 

to semantically categorize the nouns as countable or uncountable (count-mass distinction in 

Corbett, 2000). While the countable nouns refer to entities that have a singular and a plural 

form (manzanaspl./manzanasing. [apples/apple]), the uncountable ones refer to entities that 

have only the singular form (azúcarsing. [sugar]). The uncountable nouns frequently 

correspond with things that are too small or too amorphous to be counted. Regarding 

Spanish number agreement, at least in its canonical form, nouns must agree in number with 

determiners, demonstratives, adjectives, verbs, possessives, and pronouns, in local as well as 

non-local relations. All these sentence constituents should also be morphologically marked 

for number (e.g., determiners (elsing./lospl. [the/the]), demonstratives (estesing./estospl. 

[this/these]), possessives (míosing./miospl. [my/mine), adjectives (blancosing./blancospl. 

[white/white]) and verbs (baila3p.sing./bailan3p.sing. [dances/dance]).  

Person. According to Corbett (2006), Person is not only a morphological inherent 

feature of the pronouns, but also a contextual feature of the verbs. This morpho-syntactic 

feature reflects the basic structure of a speech act relative to the speaker (Benveniste, 1966; 

Mancini et al., 2013a, 2013b; Siewierska, 2004), pointing out the relation between a given 

argument and its discourse role (Speas, 2004a, 2004b). Most modern languages involve a 

three-way distinction of speaker, hearer and third party, distinguishing between first, second 

and third person (Siewierska, 2004). A first person pronoun or a first person verb are 

typically linked to the presence of a speaker; similarly, second person is associated with an 

addressee, while third person invokes the individual(s) being talked about by the speaker 

and addressee, hence non-participant(s) in discourse (Benveniste, 1966; Harley & Ritter, 

2002). Despite this generalization, according to Siewierska (2004) who compares the 

structure of the morphological category of person across 700 languages, there are at least 

four different person paradigms which did not distinguish between the three person feature 

values: 1) the first and the second persons may be homophonous and distinguished from the 

third [1=2≠3]; b) the second and the third persons may be homophonous and distinguished 

from the first [2=3≠1]; c) the first and the third persons may be homophonous and 
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distinguished from the second [1=3≠2] and d) the same value may be used for all the three 

persons [1=2=3] (see Siewierska, 2004 for more details about the structure of person 

paradigms, page 75-119). 

Regarding how Spanish person agreement operates, the systematic covariance of 

person feature between different sentence constituents is exemplified in (7) and (8) below. 

This example illustrates the typical person agreement relation in which the person feature of 

the subject-noun controls the person information of the verb and the following pronouns.  

(7) Tú2p. repasabas2p. cada día la materia escolar.  

You reviewed every day the school subject.  

(8) [Los estudiantes]3p. repasaban3p. cada día la materia escolar. Por eso, ellos3p. 

obtenían3p. buenos resultados. 

The students reviewed every day the school subject. That is why, they got good 

results. 

The following table presents a summary of the information concerning the morpho-

syntactic expression of gender, number and person according to Spanish agreement system. 

A distinction between formal and conceptual gender is included due to its difference in 

terms of the morpho-syntactic and interpretive values set by the Spanish agreement system.  
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Table 1.1. Summary of the morpho-syntactic and semantic-pragmatic values corresponding 

to three different features (Gender, Number and Person). The assignment of the feature 

values was carried out according to a binary system. 

Features 
Expression 

(Example) 

Morpho-syntactic 

values 

Semantic-pragmatic 

values 

Formal Gender 

Feminine 

(La Mesa) 
[+feminine, -masculine] [-Feminine, -Masculine] 

Masculine 

(El Libro) 
[-feminine, +masculine] [-Feminine, -Masculine] 

Conceptual Gender 

Feminine 

(La Abuela) 
[+feminine, -masculine]  [+Female, -Male]] 

Masculine 

(El Abuelo) 
[-feminine, +masculine]  [-Female, +Male] 

Number 

Singular 

(La Mesa) 
[+singular, -plural] [+One, -Many] 

Plural 

(Las Mesas) 
[-singular, +plural] [-One, +Many] 

Person 

1rst 

(Yo bailo) 
[+1rst, -2nd] [+Speaker, -Addressee] 

2nd 

(Tú bailas) 
[-1rst, +2nd] [-Speaker, +Addressee] 

3rd 

(Él baila) 
[-1rst, -2nd] [-Speaker, -Addressee] 
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1.3 Linguistic Theoretical Frameworks of Agreement 

From a theoretical point of view, two divergent perspectives can be identified trying 

to explain how agreement processing occurs. On the one hand, under a strictly syntactic 

approach, syntactic operations are regarded as modular machinery which control a finite set 

of formal procedures through a unique operation, called Agree (Chomsky, 1955a, 1995, 

2000, 2001). According to this approach, this process is unidirectional and asymmetrical, in 

the sense that the first element of a sentence controls the information flow to the next 

element that inherits the feature value of the previous one. This theory suggested that the 

interaction between syntactic and semantic information occurs only at the output level, after 

the syntactic building-up processes. In processing terms, this theoretical framework 

proposes that the system would extract the morpho-syntactic feature value from the 

controller without differentiating among person, number, and gender (i.e., without 

inflection, such as person, number and gender features on determiners, adjectives and 

verbs). This proposal implies a unified account of verbal and nominal agreement. In verbal 

agreement, a noun phrase (e.g., el gato [the cat]) enters the process with valued person and 

number features (3rd person, singular number), which will be properly copied by Agree onto 

the unvalued verb (e.g., el duerme [he sleeps]). This perspective suggests that nominal 

agreement does not require any specialized mechanism compared to verbal agreement 

(Carstens, 2000, 2001). According to this proposal, initially Agree operation would be blind 

to the discourse and thematic functions of the sentential/phrasal elements involved in an 

agreement dependency. 

On the other hand, a lexicalist approach proposes that the word meaning could 

modulate our formal linguistic code (Pollard & Sag, 1994; Wechsler, 2009; Wechsler, 2011; 

Wechsler & Zlatić, 2000; Wechsler & Zlatić, 2003). For these authors, features’ values are 

stored in the lexicon and assigned directly from semantics, implying that syntactic and 

semantic information equally contribute and also interact during the comprehension process. 

These authors emphasize the intrinsic differences characterizing nominal and verbal 

grammatical relations. In their view, there exist two different types of features: index 
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features, which contain semantic information concerning the referent of a noun, and concord 

features (i.e., purely morpho-syntactic features). Crucially, each type of feature is accessed 

by different sets of syntactic processes (Wechsler & Zlatić, 2003). Index features, with 

referential properties, permit the identification of an argument referent: whether it is a male 

or female individual, a single entity or a multitude, a speaker, an addressee or a non-

participant. In contrast, concord features do not involve referential indices, but only morpho-

syntactic properties: first, second or third person morphology, singular or plural, masculine 

or feminine gender marking. According to this theoretical framework, this distinction gives 

rise to two grammatically different processes: concord agreement, which applies to subject-

verb and anaphor-antecedent agreement, and nominal agreement, which operates within 

noun phrases and relies on their set of morpho-syntactic features. Compatible features 

between the members of index and concord relations are then unified.  

These two divergent theoretical frameworks have a marked influence on the 

subsequent neuro-cognitive investigations regarding the phrase/sentence comprehension 

processing. The vast majority of these studies have evaluated the veracity of the different 

assumptions comprised in these two theories. The symmetry, the directionality, the 

sequentiality, and/or the influence of lexico-semantic aspects over the processing of formal 

information, have been used as critical points to contrast or to corroborate the linguistic 

theoretical accounts. This debate has also permeated the neuro-cognitive models of sentence 

comprehension, with proposals extensively pervaded by the strictly syntactic approach and 

proposals clearly guided by the lexicalist account. On the one hand, the neuro-cognitive 

model suggested by Friederici (Friederici, 2011, 2012) illustrates the first case; whereas on 

the other hand the Memory, Unification and Control Model (MUC) provided by Hagoort 

(Hagoort, 2003a, 2005, 2013) illustrates the second case.  

So far, the previous sections provided an overview of the insights gained from the 

linguistic theoretical aspects of agreement, with a special focus on how syntactic and 

semantic factors might mediate the interpretation of an agreement relation and therefore the 

comprehension process. The following sections attempt to provide a description of the 

mechanisms underlying agreement processing from a neuro-cognitive point of view. 
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1.4 Neuro-cognitive Mechanisms Underlying Agreement Processing: ERP Evidence 

In the second half of the 19th century psycholinguistics studies were mainly prompted 

by the introduction of behavioral analyses (i.e., difference in decision times and error rates 

between experimental conditions) as measures reflecting how a (a) certain cognitive 

mechanism(s) is(are) implicated during the processing of linguistic inputs. Empirical 

evidence derived from behavioral studies laid the bedrock of the pioneer neuro-cognitive 

models of language comprehension and production (for some comments about this topic see 

Box 1.1). Since the overarching aim of this thesis is to disentangle the neural correlates of 

agreement processing, we will not devote special attention to behavioral findings in this 

general section. Those major behavioral findings relevant to some of the experiments 

included in this thesis will be presented and discussed in the corresponding experimental 

chapter. Keeping this in mind, we will organize the subsequent sections as follows. Firstly, 

we will present the major electrophysiological findings focusing on the chronology of the 

different processing stages of agreement computation. Secondly, we will discuss the main 

experimental evidence concerning how agreement processing is mapped onto the brain 

circuits. Finally, we will return to the most relevant neuro-anatomical models that have been 

put forward in this regard.  

One of the most extensively used experimental techniques with high temporal 

resolution is that of Event-Related Brain Potentials (ERPs). This electrophysiological 

method measures small changes (occurring about <=1 ms) in the electrical activity of the 

post-synaptic neurons, time-locked with a sensory stimulus or a cognitive event (Handy, 

2005; Rugg & Coles, 1995; Rugg et al., 1986). As a consequence, it allows the 

characterization of the temporal dynamics of a given neuro-cognitive mechanism. In 

particular, agreement processing has been extensively studied using ERPs. The combination 

of behavioral and ERP data have provided a critical inflection point in the agreement 

literature. The vast majority of these studies investigated agreement comprehension 

processing by comparing well-formed with ill-formed constructions – which present 

agreement feature mismatches – (see Friederici, 2011, 2012; Friederici et al., 2003; 

Molinaro, Barber, et al., 2011 for some revisions of this topic). For instance, De Vincenzi et 
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al. (2003) contrasted semantic and syntactic subject-verb agreement violations in Italian 

combining ERPs and reading-time data. The electrophysiological and the behavioral results 

reported by these authors converge, suggesting that the two types of agreement violations – 

semantic and syntactic – differed in their temporal dynamics. Both techniques showed that 

the detection of a syntactic violation is faster than the semantic violation. ERP responses 

allowed authors to temporally characterize the processing of syntactic and semantic 

agreement violation. While syntactic anomalies elicited a left anterior negativity effect 

followed by a conspicuous positive effect occurring around 600 ms, semantic anomalies 

elicited a negative effect that started later than the negative component associated with 

syntactic anomalies. 

This new approach allowed researchers to disentangle agreement comprehension 

processing in a fine-grained way. In general terms, the empirical ERP evidence highlighted 

that in agreement comprehension three8 distinct processing stages can be functionally 

distinguished (see Molinaro, Barber, et al., 2011 for a review). Each one of these stages 

responds to different agreement manipulations. Specifically, in an earlier time interval 

(between 300 and 500 ms) two effects have been reported. The first is a negative effect with 

a typical left anterior topographical distribution (Left Anterior Negativity, LAN; Barber & 

Carreiras, 2005; Friederici, 1995; Friederici et al., 1996; Hagoort et al., 2003; Munte et al., 

1993; Zhang, Y. et al., 2010) that has been associated with the detection of morpho-syntactic 

violations (Friederici, 2011, 2012; Molinaro, Barber, et al., 2011; Silva-Pereyra & Carreiras, 

2007). The LAN effect differs from a more posteriorly distributed effect found in a similar 

time interval, the N400 component (Clements-Stephens et al., 2012; Kutas & Federmeier, 

2000; Kutas & Hillyard, 1983). This negative effect is usually thought to reflect lexical-

semantic processing difficulties, as well as contextual and world-knowledge predictability 

(Hagoort et al., 2004; Kutas & Hillyard, 1984; Molinaro et al., 2012; Molinaro et al., 2010).  

8 Among others language related components such as ELAN and sLAN that appear to be very inconsistent, 
varying as a function of the task, the type of stimuli, the stimulation modality and the experimental 
manipulation (Bornkessel-Schlesewsky & Schlesewsky, 2009; Friederici, 1995; Friederici et al., 1996). 
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In a subsequent temporal interval, agreement mismatch-related processing has 

normally been found to give rise to a positive deflection, arising about 600 ms post-stimulus 

onset (P600) (Barber & Carreiras, 2005; Mancini et al., 2011a, 2011b; Silva-Pereyra & 

Carreiras, 2007). Several lines of evidence have indicated that the P600 is related to 

integration efforts between the presently-processed elements and the previous context, based 

on both semantic and syntactic information (Friederici, 2011; Kaan et al., 2000; Kim, A. & 

Osterhout, 2005; Kolk et al., 2003; Kuperberg et al., 2007), re-analysis processes (Barber & 

Carreiras, 2005; Carreiras et al., 2004; Molinaro, Barber, et al., 2011), or access to 

discourse-related information (Brouwer et al., 2012; Kaan & Swaab, 2003). From a domain-

general perspective, the P600 has been functionally interpreted as indexing conflict-

monitoring processes aimed at detecting errors, and triggering corrective actions when there 

is a mismatch between the predicted and the observed event (van de Meerendonk et al., 

2011; van de Meerendonk et al., 2009; van de Meerendonk et al., 2010). 

The functional distinctions between these three ERP components (Figure 1, LAN – 

N400 – P600) have been extensively discussed in the last 20 years. In general terms, based 

on this functional distinction some authors have suggested that agreement comprehension 

comprised three distinct processing phases (Mancini et al., 2013a, 2013b; and see Molinaro, 

Barber, et al., 2011 for a review of this topic):  

I) Feature consistency checking. During this stage, the feature consistency (i.e. 

consistency in the person, number and/or gender values) between different 

elements is evaluated at the morpho-syntactic level. This operation has been 

associated with the LAN effect (Barber & Carreiras, 2005; Friederici, 1995; 

Friederici et al., 1996; Hagoort et al., 2003; Munte et al., 1993). 

II) Integration of incoming information [i.e., Form-to-meaning mapping; (see 

Bianchi, 2006; Sigurdsson, 2004, 2009, 2011) or Semantic or Syntactic 

Unification according to Hagoort (Hagoort, 2003a, 2005, 2013)]. During this 

stage the formal properties of a sentence/phrasal constituent is linked to its 

meaning in order to assign an interpretation to the agreement dependency. 
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This operation has been associated with the N400 effect (see Lau et al., 2008 

for a review of this topic) or with the early phase of the P600 component 

(Brouwer et al., 2012; Brouwer & Hoeks, 2013; Hoeks & Brouwer, 2014; 

Molinaro, Barber, et al., 2011).  

III) Reanalysis/repair processing [i.e., Control according to (Hagoort, 2005, 

2013) or Conflict monitoring resolution in the functional Magnetic Resonance 

Imaging (fMRI) literature (van de Meerendonk et al., 2011; van de 

Meerendonk et al., 2009; van de Meerendonk et al., 2010)]. If during the 

processing of an agreement relation a conflict between the expected and the 

perceived input is detected the system should trigger a mechanism responsible 

for the implementation of attentive mechanisms that permit the detection of 

possible behavioral mistakes and if it is possible repair the error (cf. van de 

Meerendonk et al., 2009 for a review of conflict-monitoring mechanisms in 

language processing). This operation has been typically associated with the 

P600 effect (van de Meerendonk et al., 2011; van de Meerendonk et al., 2009; 

van de Meerendonk et al., 2010). 

Indeed, the temporal characterization of agreement processing enabled researchers to 

propose strong claims such as those suggested by Molinaro, Barber, et al. (2011): “The 

product of agreement computation is the syntactic structure of the message, but this product 

could be achieved by also accessing non-syntactic cognitive representations” Molinaro, 

Barber, et al. (2011, p. 927). However, despite the large amount of empirical evidence 

supporting this generalization, there are also ERPs and behavioral findings that are difficult 

to reconcile with this perspective. For instance, these three ERP components (LAN – N400 

– P600) have also been correlated with a variety of tasks involving different experimental 

manipulations (Bornkessel-Schlesewsky & Schlesewsky, 2009). Table 1.1 illustrates this 

controversial scenario. This disagreement concerns mainly the N400 and the P600 effects 

(see Table 1.1) questioning the functional-specificity of these language-related neural 

responses. A potential solution to address this issue has been offered by neuroimaging 

techniques. Having information about the neural network(s) (i.e., not only the brain regions, 
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but also the functional relations between them) underlying a given cognitive mechanism 

could be critical to better understand the comprehension process. 

 

 

 

Figure 1.1. Illustration of the latency and topographic distribution of the typical ERP 

components associated with agreement operations. Taken from (Molinaro, Barber, et al., 

2011, p. 915).  
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Box 1.19. Behavioral approach. Most of the behavioral literature on agreement addressed 

how agreement information is accessed and retrieved during language production (Berg, 

1998; Bock et al., 2001; Bock & Miller, 1991; Vigliocco et al., 1996; Vigliocco & Franck, 

1999; Vigliocco & Hartsuiker, 2002; Vigliocco et al., 2002). Behavioral evidence on 

agreement processing in comprehension is very scarce and not very conclusive (e.g., 

Blackwell, 1996; Gibson & Pearlmutter, 2000; Gibson et al., 1999; Hagoort et al., 1993; 

Osterhout & Mobley, 1995; Pearlmutter, 2000; Pearlmutter et al., 1999; Pearlmutter & 

Mendelsohn, 1999).  

One of the most used paradigms to evaluate how agreement information is computed during 

the comprehension process has been the acceptability judgment task (see Carreiras et al., 

1993; Carreiras & Gernsbacher, 1992; Garnham, 1981, 1984; Garnham & Oakhill, 1985 for 

a different approach). In this approach, participants are required to judge whether sentences 

are well-formed. Manipulations regarding the acceptability of the sentences included either 

syntactic or semantic mismatches between different sentential elements, so that sentences 

could be grammatical or ungrammatical (see examples (1) and (2) below). Despite the 

variability in the methodological approaches used by these studies (i.e., different languages, 

tasks and experimental manipulations), changes in response times and error rates suggest 

that readers are sensitive to agreement information (Kail et al., 2010; Nicol et al., 1997; 

Pearlmutter, 2000; Pearlmutter et al., 1999; Pearlmutter & Mendelsohn, 1999). 

(1) Syntactic violations: *[The boy]sing. arepl. throwing the ball. (Hagoort et al., 1993; 

Osterhout & Mobley, 1995; Pearlmutter, 2000; Pearlmutter et al., 1999; Pearlmutter & 

Mendelsohn, 1999). 

(2) Apparent but not real violations: [The key]sing. to [the cabinets]pl. wassing. rusty from 

many years of disuse. (Nicol et al., 1997; Pearlmutter, 2000; Pearlmutter et al., 1999; 

Pearlmutter & Mendelsohn, 1999).In this particular case the distance between the subject-

noun and the agreeing verb was manipulated including a prepositional phrase with 

inconsistent number values.  

9 The boxes included in the manuscript provide some additional information relevant to the topic in question. 
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Table 1.1. ERP components typically associated to language processing and the functional domains that they have been related 

to. Modified from Bornkessel-Schlesewsky and Schlesewsky (2009, p. 296, Table 16.1 in the original document).  

Component

Gramm. 
Relations

Thematic 
roles

Linking Word order Semantic 
interpretation

ELAN √

LAN √ √ √

sLAN √ √

SCR NEG √

N400 √ √ √ √ √ √

P345 √ √

P600 √ √ √ √ √ √ √ √ √

Domains of occurrence

Sentence-level composition

Lexical 
factors

Morpho-
syntactic 
factors

Word-level 
composition

Constituent 
structure

Well-
formedness Complexity

Working 
memory
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1.5 Neuro-anatomical Bases of Agreement Processing 

In the last few years, the neuro-anatomical mechanisms of sentence comprehension 

have also been investigated using functional neuroimaging techniques to disentangle 

syntactic and semantic processing correlates in the brain. A coupling between inferior-

frontal and temporal regions in the left hemisphere has been consistently associated with 

different mechanisms underlying sentence processing (see Figure 1.2 for an illustration of 

these neural regions; Friederici, 2011, 2012; Hagoort, 2013, 2014; Kuperberg, Sitnikova, et 

al., 2008; Pallier et al., 2011). Each one of these two critical zones has been parcellated 

combining cytoarchitectonical and functional criteria (see Friederici, 2011 for a revision of 

this topic). However, the findings related to the functional clusterization and characterization 

of each critical node within this circuit is far from conclusive.  

 

 

Figure 1.2. Illustration of the fronto-temporal circuit associated with the processing of 

sentences. This circuit encompasses areas surrounding the sylvian sulcus. The line graphs 

represented in the right part of the figure illustrate the sensitivity of these regions to the 

processing of sentential constructions (i.e., these areas results from the comparison between 
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meaningful sentences and sequences of unrelated words). TP: temporal pole; aSTS: anterior 

part of the superior temporal sulcus; pSTS: posterior part of the superior temporal sulcus; 

TPJ: temporo-parietal junction; IFGorb: pars orbitalis within the inferior frontal gyrus; 

IFGtri: pars triangularis within the inferior frontal gyrus. Adapted from Pallier et al. (2011, 

p. 2526; Figure 2). Original figure caption: “Brain regions showing a significant increase in 

activation with constituent size. (A) fMRI results from the normal-prose group who read 

sequences with actual French words (group analysis thresholded at T > 4.5, P < 0.05 FWE, 

spatial extent > 10). (B) Areas in blue show a significant constituent size effect in the 

jabberwocky group listening to delexicalized stimuli, whereas regions in red show a 

significant group by constituent size interaction (reflecting a stronger effect of constituent 

size in normal prose than in jabberwocky) (maps thresholded at T > 3.2, P < 0.001 

uncorrected, spatial extent > 50). (C) Amplitude of activations across conditions in the six 

regions of interest (error bars represent ± 1 SEM). Conditions c01 to c12 are organized 

according to a logarithmic scale of constituent size, thus a line on this graph indicates a 

logarithmic increase of activation. The fitting lines are from a regression analysis including 

linear and logarithmic predictors.” 

 

For instance, semantic operations (e.g., storage, activation and lexico-semantic 

retrieval) have been mapped in the anterior part of the superior and middle temporal cortex 

(STG-MTG) (Kuperberg, Sitnikova, et al., 2008) as well as in the most posterior part of this 

region (Acheson & Hagoort, 2014; Baggio & Hagoort, 2011; Hagoort, 2003a; Lau et al., 

2008). Similarly, the characterization of the neural representation of syntactic building 

operations within the left temporal lobe is highly inconsistent (see Bornkessel-Schlesewsky 

& Schlesewsky, 2013 for a review) but also see (Rogalsky & Hickok, 2009). In contrast, as 

far as the inferior frontal gyrus is concerned, the situation seems to be more consistent. 

Empirical findings concerning the specific functional role of each node within this region in 

the analysis of semantic and syntactic information are highly convergent. In general, the pars 

opercularis, within the IFG appears to underlie syntactic processes (phrase structure building 

(Friederici, 2012; Grodzinsky & Friederici, 2006) and/or syntactic complexity processing 
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(see Grodzinsky, 2000 for a syntactic movement manipulation), whereas the pars 

triangularis and orbitalis seem to be involved in the processing of semantic-related 

information (see Friederici, 2011; 2012 for a revision of this topic).  

Only a few fMRI studies have investigated agreement processing (Kuperberg et al., 

2003; Kuperberg, Sitnikova, et al., 2008; Newman et al., 2003; Ni et al., 2000). Although 

manipulations have always involved grammatical violations between different sentence 

constituents (e.g., subjects and verbs), contradictory conclusions have been reported across 

these studies. For instance, Ni et al. (2000) investigated whether the brain distinguishes 

between the processing of grammatical information and meaning. Participants listened to 

sentences that were either grammatically correct or contained a verb finiteness violation 

(e.g., “Trees can grew…”) or a semantic violation (e.g., “Trees can eat…”). A dissociation 

between syntactic and semantic processing was found: while the former violations increased 

activity in the left inferior frontal gyrus, the latter activated several other regions in both 

hemispheres including the middle and superior frontal gyrus and the superior temporal and 

parietal regions. 

On the other hand, a study by Newman et al. (2003) attempt to specify the 

contribution of the inferior frontal cortex during syntactic and semantic processing of 

sentences using a grammaticality judgment task. They compared sentences with number 

mismatches between the subject and the second verb of a coordinated structure (e.g., “The 

lady praises the sister and meet the artist in the night”) against sentences including an extra 

verb (e.g., “The woman thanked the barber and paid the receptionist knew at the desk”). In 

this study, syntactic violations triggered significant activity in the pars opercularis within the 

inferior frontal gyrus, whereas semantic violations induced significant response in the pars 

triangularis. Additionally, they observed increased activation in the left posterior temporal 

region for both types of processing. Nonetheless, since the nature of the violations used, 

which involve the extra verb, is difficult to determine, the activation observed in this study 

may not exclusively reflect subject-verb processing difficulties. 
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With the same goal, Kuperberg et al. (2003) carried out an fMRI study in which they 

presented participants with three different type of sentences: grammatically correct (e.g., 

“We couldn’t sleep at night because the baby would cry.”), finiteness anomaly (e.g., 

“...because the baby would cries.”), or pragmatic violation (e.g., “...because the baby would 

remember.”). These authors found that, relative to the grammatically correct sentences, 

similar neural regions are recruited by morpho-syntactic and pragmatic information, but 

with different activation patterns. In a follow-up study these authors reported similar results 

(Kuperberg, Sitnikova, et al., 2008). The design used was the same, however they added a 

distinction between two different types of semantically anomalous sentences: real-world 

pragmatic violations (e.g., “Every morning at breakfast the boys would plant the flowers.”) 

and animacy semantic-thematic violations (e.g., “Every morning at breakfast the eggs would 

eat toast and jam.”). The common neuro-anatomical network recruited by both, finiteness 

and animacy semantic-thematic violations, relative to grammatically correct sentences 

included a widespread bilateral fronto-parieto-temporal response. Some of these regions 

exhibited more activity in response to the finiteness violations than to the animacy semantic-

thematic violations (left inferior parietal lobule, bilateral anterior cingulate cortex and 

medial frontal gyrus). In this study, the authors introduced the idea that this fronto-parietal 

network could reflect the detection of conflict monitoring processes that would prevent 

comprehension errors (Kolk et al., 2003; Kuperberg, Sitnikova, et al., 2008; Vissers et al., 

2006). However, since they provided no explanation as to why the recruitment of this 

monitoring network is not triggered by animacy semantic-thematic violations, this 

hypothesis was only partially borne out. 

Overall, these controversial results illustrate the idea that the regions implicated in 

the processing of agreement computation and its specific role in sentence comprehension are 

still uncertain. Different factors can be identified that potentially contribute to these 

discrepancies. Firstly, although in the case of the four previous studies detailed above, the 

violations always involved the verb; different aspects of verb inflection and sentence 

structure have been manipulated to create anomalies across studies. While the finiteness of 

the verb following the modal auxiliary was violated both in the Ni et al. (2000) and 
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Kuperberg et al. (2003) studies, Newman et al. (2003) introduced a number mismatch 

between the subject and the second verb of a coordinate structure. It follows that differences 

in the nature of the subject-verb grammatical violation may generate the involvement of 

divergent neural regions concerned with different aspects of sentence processing.  

Secondly, limitations and differences in the experimental designs adopted can be 

found. For instance, in the Ni et al. (2000) design, different types of violations (syntactic and 

semantic) were presented to participants in separate scanning sessions, which may have 

caused a high degree of sentence structure predictability. This may have resulted in the 

adoption of different violation detection strategies compared to the strategies developed in 

designs such as the Kuperberg et al. (2003) and Newman et al. (2003) studies, in which 

sentence structure is less predictable. Thirdly, the material presentation modality differs 

across studies: while in the study by Kuperberg et al. (2003) sentences were presented 

visually and word by word, in the Newman et al. (2003) study all the words were projected 

simultaneously. In contrast, Ni et al. (2000) used auditory presentation.  

Finally, methodological differences concerning the fMRI analysis can also be found 

across studies in the way the comparisons between experimental conditions were carried out. 

For instance, while in Kuperberg et al. (2003) and Newman et al. (2003) the baseline for 

comparisons was always provided by linguistic material (correct version of the anomalous 

sentence), Ni et al. (2000) contrasted sentences with a non-linguistic baseline task (pitch 

judgment). In addition, only in the Kuperberg et al. (2003) studies the comparisons between 

anomalous and well-formed sentences were carried out considering both directions. This 

made possible to highlight the neural networks involved in the processing of grammatically 

correct sentences. 

Based on this conflicting scenario, more recently, Nieuwland et al. (2012) 

investigated the cortical networks involved in the processing of Basque case violations 

between object and verb. In this study, participants read sentences that contained case 

violations, number agreement violations, semantic anomalies, or syntactically and 

semantically correct control sentences. These fMRI findings showed that agreement 
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violation processing stimulates an extensive network of brain regions in both hemispheres 

beyond the inferior frontal gyrus. Nevertheless, in contrast with previous studies, the left and 

right anterior inferior frontal gyrus was only sensitive to semantic violations. In addition, 

case and number violations recruited a largely overlapping neural circuit. These two 

different types of violations elicited activity increases in a set of parietal regions including 

the posterior cingulate, the precuneus, the left and right inferior parietal lobules and the right 

middle frontal gyrus. Besides this commonalities, number violations (i.e., relative to case 

violations) elicited activity increases in the left middle frontal gyrus (Nieuwland et al. 2012). 

This study suggested that whereas syntactic and semantic operations are segregated in the 

brain, case and number violations shared similar neural circuits. However, critically, the 

results emerging from this study did not provide a significant insight into how the brain 

process agreement information. Their findings seem to be highly biased by the contribution 

of domain-general operations probably related to task difficulty effects (i.e., including 

mainly parietal and prefrontal regions). By removing these effects it would be possible to 

find differential activity between case and number violations, in inferior frontal and also 

temporal regions. 

Summarizing, despite the variability pointed out in the available information on 

agreement processing, it is also possible to find some significant commonalities. Firstly, the 

computation of agreement information consistently engaged a left lateralized fronto-

temporal network, where the pars triangularis and opercularis within the IFG and the middle 

temporal gyrus seem to be crucial nodes. Secondly, the processing of anomalous 

constructions (relative to the processing of well-formed phrases/sentences) implies changes 

in the neural responses of some specific regions within this network, suggesting the 

involvement of different neuro-cognitive mechanisms. 

1.6 Neuro-cognitive Models of Sentence Processing 

To our knowledge, there are currently no existing neuro-cognitive frameworks that 

explicitly describe the neural circuitry associated to agreement operations. However, in the 

last decade several neuro-cognitive models have been proposed trying to integrate the 
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available empirical evidence on sentence processing (Bornkessel-Schlesewsky & 

Schlesewsky, 2013; Friederici, 2011; Friederici & Alter, 2004; Hagoort, 2003a, 2005, 2013; 

Hagoort & Indefrey, 2014). All these models are aimed at evaluating how the brain 

processes and integrates different linguistic information during the on-line comprehension of 

phrases and sentences. In particular, there are three recent proposals that deserve to be 

highlighted since they raise, albeit indirectly, questions related with agreement processing. 

Each one of these models is detailed in depth in the next paragraphs. 

The Memory, Unification and Control model (MUC, Figure 1.3 A) was proposed by 

Hagoort (Hagoort, 2003a, 2005) following a lexicalist perspective (see the epigraph 

Linguistic Theoretical Frameworks of Agreement, page 24). In this model, each word in the 

mental lexicon is associated with its morphological, phonological, morpho-syntactic – 

including its structural frame(s) – and lexico-semantic representations. According to this 

author, the posterior portion of the left temporal cortex subserves the storage, access and 

retrieval processes, i.e. Memory Component. Information extracted from the memory system 

is successively integrated in the so-called "unification workspace" situated in the LIFG, i.e. 

Unification Component. Here, an anterior-ventral to posterior-dorsal unification gradient is 

found, with BA47 and BA45 contributing to semantic processing, BA45 and BA44 being 

involved in syntactic processing, while BA44 and BA6 seem to be involved in phonological 

unification. Crucially, Hagoort (Hagoort, 2003a, 2005) points to the syntactic unification 

area as the neural substrate supporting the checking of agreement features between elements 

of an agreement relation. Finally, a network of areas consisting of the anterior cingulate 

cortex and the dorsolateral prefrontal cortex serves the control function necessary for 

monitoring processes, i.e. Control Component. More recently, Hagoort (Hagoort, 2013, 

2014) revisited this theoretical proposal in order to improve the fitting between this model 

and the new empirical data collected on sentence processing (see also Hagoort & Indefrey, 

2014). This new account differs from the previous one in four main points. Firstly, this 

author proposed the left IFG as a central hub not specific to language but responsible for the 

unification of different language-related information. According to this view, what is crucial 

for the proper interpretation of a given phrase/sentence is the functional relationship 
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between the domain-general inferior frontal system and the other nodes of this network. In 

accordance with this new perspective, this functional coupling will be constrained by the 

anatomical connections between these perisylvian regions (Figure 1.3 B). Secondly, this 

author extended the network specialized for the processing of linguistic information 

including temporal and parietal regions. In this new account, both parietal and temporal 

regions subserve the Memory Component responsible for decoding different types of 

information (i.e., morphological/phonological, lexical, semantic and syntactic). Thirdly, the 

functional sub-division proposed for the posterior temporal and parietal areas parallels, in 

this new account, the functional gradient that has been consistently observed in the left IFG. 

The recruitment of one specific node within these areas would be dependent on the 

information required to decode the input. Finally, this new approach highlighted that the 

functional dynamics established within this left-lateralized network is critical for the 

processing of linguistic material: the functional interconnections between these three 

components are the fingerprint of the language specific system. 

 

 

Figure 1.3. Illustration of the three components included in the MUC model. A) The 

Memory component (left temporal cortex) is represented in yellow, the Unification 

component (left inferior frontal gyrus) is represented in blue and the Control component (left 

dorsolateral prefrontal cortex) is represented in grey. Adapted from Hagoort (2005, p. 421, 

Figure 6). B) Illustration of the connectivity pattern between frontal and temporal/parietal 

A) B)
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regions described by Hagoort (2014). Notice that this pattern takes into account the 

functional gradient characterizing frontal, temporal and parietal regions. Pars opercularis 

(oper.), pars triangularis (tri.) and pars orbitalis (orbi.), SPL/IPL: superior parietal 

lobule/inferior parietal lobule; AG: angular gyrus; pSTG: posterior superior temporal gyrus; 

sup. pMTG: superior posterior middle temporal gyrus; inf. pMTG: inferior posterior middle 

temporal gyrus; pITG: posterior inferior temporal gyrus. Taken from Hagoort (2014, p. 139, 

Figure 3). 

 

Based on the experimental findings regarding auditory sentence comprehension, 

Friederici (Friederici, 2011, 2012) proposed a very different neuro-anatomical framework. 

This model suggested a functional dissociation between two dorsal and ventral pathways, 

both functionally divided into two different sub-pathways constrained by anatomical and 

functional criteria (see Figure 1.4 for a schematic representation of this model). This model 

proposed that the ventral pathway I is responsible for semantic processing via ventral 

connections between the middle and posterior superior and middle temporal gyri 

(STG/MTG) (sometimes extending into the anterior temporal cortex) and the IFG (BA 

45/47), while the ventral pathway II is responsible for initial local structure building 

processes via anterior STG to left frontal operculum projections. According to this model, 

whereas these two ventral streams work in parallel computing semantic and syntactic 

relations, the dorsal streams are associated with subsequent higher-order processes. On the 

one hand, the dorsal pathway I was proposed as a mediator between sensory and motor 

functions. This pathway connects temporal and premotor regions via the inferior parietal 

cortex. On the other hand, the dorsal pathway II was proposed as a top-down stream 

involved in assigning grammatical relations. According to this framework, this pathway 

connects inferior frontal (BA 44) and temporal regions (posterior STS/STG) that are 

especially enhanced during the processing of complex structures. In addition, Friederici 

(2011) proposed that the different nodes of this fronto-temporal network are sequentially 

recruited during the acoustic processing of a sentence, following four critical stages: 1) 

acoustic phonological processes around 100 ms after acoustic stimulation [the primary 

40 

 



Chapter 1. General Introduction 

auditory cortex and the planum temporale], 2) initial local structure building processes 

around 120-200 ms [ventral pathway II], 3) the establishment of semantic [ventral pathway 

I] and syntactic [dorsal pathway II] relations between 300 and 500 ms and 4) syntactic and 

semantic integration processes around 600 ms [posterior STG and the basal ganglia] (see 

Friederici, 2011, p. 1385). 

 

 

Figure 1.4. Illustration of the dorsal and ventral functional pathways described by Friederici 

(Friederici, 2011, 2012). Taken from (Friederici, 2012, p. 263, Figure 1). Original figure 

caption: “The cortical language circuit (schematic view of the left hemisphere). The major 

gyri involved in language processing are color coded. In the frontal cortex, four language-

related regions are labeled: three cytoarchitectonically defined Brodmann areas (BA 47, 45, 

44), the premotor cortex (PMC) and the ventrally located frontal operculum (FOP). In the 

temporal and parietal cortex the following regions are labeled: the primary auditory cortex 

(PAC), the anterior (a) and posterior (p) portions of the superior temporal gyrus (STG) and 

sulcus (STS), the middle temporal gyrus (MTG) and the inferior parietal cortex (IPC). The 

solid black lines schematically indicate the direct pathways between these regions. The 

broken black line indicates an indirect connection between the pSTG/STS and the PMC 

mediated by the IPC. The arrows indicate the assumed major direction of the information 

flow between these regions…”. 
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Finally, Bornkessel-Schlesewsky and Schlesewsky (2013) proposed a new 

framework of sentence comprehension trying to conciliate the two previous proposals with 

the empirical evidence across languages. Critically, the general hierarchical organization of 

the sentence processing previously described by Friederici (Friederici, 2011, 2012) has 

remained in this new proposal. However, in contrast to the previous model, these authors 

proposed that a functional dissociation between syntactic and lexico-semantic processing 

would be supported by a less articulated network consisting of a dorsal and a ventral 

pathway (Figure 1.5). Specifically, this approach points to the anterior portion of the left 

temporal gyrus in the ventral stream as the area responsible for the unification of actor-event 

schemata, i.e., the unification of conceptual information extracted from the elements of a 

relation, such as for example a subject-verb relation. Such information concerns the event 

and its participant, i.e., “who does what” in the sentence, while syntactic combinatorial 

operations (i.e., merging a noun and a verb within the same syntactic frame) are supported 

by the dorsal pathway, which connects posterior temporal and parietal areas. The output of 

the dorsal and ventral streams are eventually integrated and evaluated by left inferior frontal 

regions, in line with the working memory and cognitive control functions associated with 

this area (Novick et al., 2005; 2005; Thompson-Schill et al., 1997). Therefore, according to 

this proposal, left-inferior frontal areas should be involved in the evaluation of the 

grammaticality of a subject-verb or determiner-noun agreement relation. Crucially, however, 

these authors do not provide any hypotheses concerning whether the neuro-cognitive and 

neuro-anatomical mechanisms underlying the different kinds of agreement constructions 

would be similar or not. 
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Figure 1.5. Illustration of the dorsal and ventral routes proposed by Bornkessel-

Schlesewsky and Schlesewsky (2013). Taken from Bornkessel-Schlesewsky and 

Schlesewsky (2013, p. 64, Figure 1). 

 

In general terms, these neuro-anatomical models converge in three main aspects. 

Firstly, all these models include a Memory-related Hub from which the underlying morpho-

syntactic and lexico-semantic representations associated with the input can be accessed and 

retrieved. Secondly, they have incorporated an Integration Hub that combines the incoming 

signals with previously encountered information, to ensure the establishment of relations 

among different sentence constituents. It is noteworthy that all these models coincide in 

portraying these relations as variable in nature (i.e., syntactic, lexico-semantic, semantic-

pragmatic). Finally, these authors agree on the presence of a Monitoring Hub responsible for 

preventing behavioral mistakes. Notably, all these proposals alluded to the cooperation 
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between these “hubs” as a key piece for the on-line processing of linguistic inputs. 

However, as we have illustrated above, despite the theoretical commonalities among them, 

these models hold significant differences that translate into very dissimilar predictions. 

Table 1.2 summarized the most significant factors contributing to these discrepancies. 

Crucially, none of these existing neuro-cognitive models of sentence comprehension 

explicitly describes the neural circuitry associated to agreement operations. In addition, only 

scarce evidence on subject-verb agreement processing has been taken into account in these 

proposals. This overall picture about the neuro-anatomical models of sentence processing 

will enable the reader to follow the main thread of this thesis. In the following sections we 

will consider both the similarities and the differences between these models in order to find 

a place for our experimental data. 

1.7 Outline 

Following this brief overview of the most recent insights into the neuro-cognition of 

agreement processing, this manuscript is subdivided into twelve chapters. In the Chapter 2 

we will diverge from the main thread to summarize the technical aspects of the 

neuroimaging method required to comprehend the following sections. Chapters 3 to 7 

present the methodological details and the main results of each experiment and some 

important considerations concerning the respective results. These five chapters are 

independent from one another. The specific goal(s) of each experimental chapter (from 3 to 

7) are detailed in Table 1.3, including the critical experimental manipulations. In general 

terms, the five experimental chapters are organized according to their syntactic and semantic 

complexity, i.e. from simpler to more complex syntactic structures (i.e., from nominal and 

within-constituent agreement to verbal agreement) and from simpler to more semantically 

complex agreement features (i.e., from determiner-noun transparent gender relations to 

subject-verb person grammatical relations). The main findings derived from these studies 

will be discussed at the end of each chapter, paying particular attention to explain how our 

data contributes to improving the theoretical frameworks and neuro-anatomical models on 

agreement comprehension.  
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Following the experimental part, the Discussion section in Chapter 8 provides some 

general considerations arising from the combination of all the experiments performed (i.e., 

the regularities and singularities across the experiments). In addition, this chapter discusses 

possible future directions concerning agreement processing. Finally, Chapter 9 includes 

critical conclusions derived from the main results. This chapter is followed by a list of the 

references discussed in the manuscript. 
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Table 1.2. Different features characterizing the three revisited neuro-anatomical models of sentence processing. 
 

 
Neuro-anaotomical Models of Sentence Processing 

Hagoort et al. (2003; 2005; 
2012; 2013; 2014) 

Friederici (2011, 2013) 
Bornkessel-Schlesewsky & Schlesewsky 

(2013) 

Linguistic Framework Clearly framed within lexicalist 
approaches. 

Clearly framed within syntacto-centric 
approaches. 

Framed within a lexicalist approaches. 

Highly cross-linguistically motivated. 

Considers a hierarchy between sentences 
constituents. 

Sequentiality 

Parallel processing is one of the 
most notable properties 

characterizing this model. 

But it also involves sequential 
operations. 

Highly sequential. 

Involves sequential but also parallel operations. 

Distinguishes between time dependent 
(syntactic) and time independent (semantic) 

processes. 

Modality-specificity 

It is based on visual evidence, 
but assumes that the systems 
should be equally represented 

across modalities. 

Mainly auditory Mainly auditory 

Functionality They differ in the cognitive functions associated with each node/region of the model. 

Domain-specificity 

Proposes a close relationship 
between one language-specific 
system and two domain-general 

systems. 

Mainly driven by language-specific 
operations. 

It proposes that language-specific and domain-
general functions go hand in hand during 

sentence processing.  

It is the first model questioning the language 
specificity of the left IFG. 

 



 

Complexity 

Dissociates the neuro-
anatomical regions underlying 
the Memory, Unification and 

Control components. 

Distinguishes between 
semantic, syntactic and 

phonological nodes within each 
component. 

It distinguishes between a dorsal and a 
ventral route, each subdivided into two 

sub-pathways. 

It links these different pathways with 
semantic, syntactic and phonological 

operations. 

From a neuro-cognitive point of view, it 
distinguishes between a dorsal (time 

dependent) and a ventral (time independent) 
stream, which are realized by various neuro-

anatomical pathways. 

It is the first model considering parietal regions 
within a sentence processing network. 

Regional parcellation 
based on components 

Divided into three neuro-
functional components 

(Memory, Unification and 
Control). 

Considers the left IFG as a 
critical domain-general hub. 

Considers parietal regions as 
language-specific nodes. 

The limits between functional 
components remain unclear. 

Encloses a frontal hub whose function is to 
control language-specific operations. 

Even so, the limits between functional 
components remain unclear. 

Distributive vs. 
functional specialization 

It follows a network based 
approach but the functionality 

of the nodes is highly localized. 

It follows a network based approach but 
the functionality of the nodes is highly 

localized. 

It pinpoints the posterior MTG/STG as 
a node showing an interaction between 

syntactic and semantic factors. 

It follows a network based approach and the 
functionality of the nodes is clearly 

distributive. 

Finding a place for 
agreement operations: 
the best candidates for 

each model 

It proposes BA44 within the left 
IFG as the node responsible for 

syntactic unification.  

It considers this node sub-
serves the checking of 

agreement features.  

It proposes a complex network where 
the building of relations among sentence 

constituents is sub-served by different 
inferior frontal and temporal regions. 

It suggests that a coupling between the 
posterior STG and the IFG sub-serves 

verb-argument relations. 

It considers syntactic combinatorial operations 
are supported by posterior temporal and 

parietal areas. 

It proposes the left IFG as the node responsible 
for the evaluation of grammatical 

consistencies. 
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Table 1.3. Specific goal(s) per chapter including a very brief description of the critical experimental manipulations. 
 

Experiments Experimental manipulations Main Goals 

Experiment I 

2 x 2 factorial design including Gender Agreement 
Congruency and Gender Transparency as factors. 

Congruency was manipulated using pairs of determiners 
and nouns. 

To investigate a) which brain regions are sensitive to gender 
agreement within a noun phrase; b) whether the brain processes 

transparent and opaque nouns in a same way or differently; and c) 
whether and how different types of gender-marking cues modulate 

the neural mechanisms underlying agreement processing. 

Experiment II 

2 x 2 factorial design including Gender Agreement 
Congruency and Type of Gender [Formal and Conceptual] 

as factors. The congruency was manipulated between nouns 
and adjectives using four word sentences. 

To investigate a) whether agreement processing system uses 
conceptual information concerning the noun gender properties 

during the establishment of gender agreement relations and if so, b) 
where is this possible interaction between formal and conceptual 

information mapped in the brain. 

Experiment III 
2 x 2 factorial design including Number Agreement 

Congruency and Type of Dependency [Determiner-Noun 
and Subject-Verb pairs] as factors. 

To investigate whether the neural substrates of subject-verb and 
nominal agreement processing differ as a function of the different 

syntactic domains and interpretive properties in the processing of a 
common agreement feature, i.e. number. 

Experiment IV 

One way design including grammatically correct sentences 
and sentences which included a person or a number 

mismatch. The congruency was manipulated between 
subjects and verbs using eight to ten word sentences. 

To evaluate a) whether two different morpho-syntactic features such 
as person and number differ as a function of its interpretive 
properties and more importantly b) to establish where is this 

difference, if it is indeed found, mapped in the brain. 

Experiment V 

One way design including grammatically correct sentences, 
sentences which included a person mismatch that result in a 

grammatical violation and sentences which included a 
person mismatch that result in a grammatical construction 
[Unagreement]. The congruency was manipulated between 

subjects and verbs using eight to ten word sentences. 

To isolate the neural substrates involved in agreement computation, 
with a special focus on both the evaluation of morpho-syntactic 

feature consistency and semantic integration complexity. 

 



 

Chapter 2. 
Methodological Considerations 
 

Neuroimaging Techniques with special interest in fMRI 

Cognitive processes can be characterized according to their temporal dynamics (i.e., 

“when”) and the neural region(s) underlying these processes (i.e., “where”). There is a 

variety of techniques and methodological approaches which enable researchers to make 

inferences about these two dimensions. These techniques differ in terms of their spatial and 

temporal resolution (see Jaiswal, 2015; Mehta & Parasuraman, 2013; Meyer-Lindenberg, 

2010, for some details about the temporal and the spatial resolution across techniques). In 

particular, language processing and more specifically agreement processing has been 

extensively explored combining behavioral and electrophysiological techniques (see 

Molinaro, Barber, et al., 2011 for a review of the ERPs evidence regarding agreement 

processing). As we previously discussed in the Introduction, the high temporal resolution of 

the electrophysiological methods (e.g., ERPs Handy, 2005; Rugg & Coles, 1995) provides 

valuable information about when a particular cognitive process has occurred. However, the 

spatial resolution of this technique is relatively low. Therefore, ERP methods alone cannot 

provide complete evidence for a comprehensive account of the neural representation of a 

certain cognitive process such as agreement.  

One of the most extensively used neuroimaging techniques with high spatial 

resolution is the functional Magnetic Resonance Imaging (see Box 2.1 for some historical 

remarks). It provides information about the level of blood oxygenation in the brain with a 

spatial resolution about 2-3 mm. The high spatial resolution of the fMRI in conjunction with 

some specific experimental manipulations could allow us to complete the picture and 

characterize neuro-anatomically the cognitive mechanisms underlying agreement 

processing. Nonetheless, only few studies have explored agreement processing using fMRI 
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and, more importantly, the evidence derived from these investigations is highly 

contradictory. Critically, no research to date has investigated how different types of 

agreement relations and different types of morpho-syntactic features are processed in the 

brain. In addition, only few experimental findings regarding agreement processing have 

been taken into account in the existing neuro-anatomical models of sentence comprehension 

processing. 

Given the relevance of the neuroimaging techniques, especially fMRI, to the purpose 

of the current thesis, this section provides some useful methodological information to better 

understand the following chapters. We will start with a brief overview about fMRI, 

including the main concepts and implications. After that, we will explain in more details the 

physics bases of this technique and some remarkable aspects on the biological mechanisms 

underlying fMRI. 

fMRI. This technique is a specialized MRI application (see Box 2.2 for some details 

about the physics of the MRI) for studying non-invasively brain functions in human 

subjects. It measures changes in the level of deoxygenated- and oxygenated-hemoglobin 

molecules presented in the blood. A ratio of deoxygenated- and oxygenated-hemoglobin was 

called “blood-oxygen-level-dependent” (BOLD) response (Ogawa, Lee, Kay, et al., 1990; 

Ogawa, Lee, Nayak, et al., 1990; Ogawa et al., 1998; Ogawa et al., 1993; Ogawa et al., 

1992). Critically, deoxygenated-hemoglobin and oxygenated-hemoglobin are associated 

with different magnetic properties. While oxygenated-hemoglobin is diamagnetic and 

therefore has no effect on the local magnetic field, deoxygenated-hemoglobin is 

paramagnetic and thereby disturbs the homogeneity of the magnetic field. The 

neurophysiological basis of the BOLD signal relies into this physic difference. Changes of 

the BOLD response in a certain neural region reflect changes of blood flow, volume, and 

level of oxygenation following neuronal activity (Huettel, 2004, 2012; Huettel, McKeown, 

et al., 2004; Huettel, Obembe, et al., 2004; Huettel, Song, et al., 2004). The relationship 

between these physiological responses has been called neurovascular coupling (Bonvento et 

al., 2002; Dirnagl, 1997; Rosengarten et al., 2001; Villringer, 1997).  
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Box 2.1. Historical antecedents of 

MRI: This technique was discovery 

by two physicists, Felix Bloch and 

Edward Mills Purcell. They called 

Nuclear Magnetic Resonance 

Imaging based on its early 

implication in the nuclear chemistry. 

These two physicists shared a Nobel 

Prize in Physics in 1952 for this 

discovery. Twenty four years after in 

Nottingham (specifically in Sir Peter 

Mansfield’s lab), this technique 

would allow for a 2D image of a 

human finger. On 1977, Raymond Damadian obtained the first MRI scan of a human body 

(see the Figure I for a schematic draw of the first MRI scanner).  

 

Several biophysics models try to explain the metabolic mechanism of the 

neurovascular coupling (Boas et al., 2008; Buxton, 2012; Buxton, Uludag, et al., 2004; 

Buxton, Uludağ, et al., 2004; Devonshire et al., 2012; Logothetis, 2002; Logothetis et al., 

2001; Uludağ et al., 2004). However, none of these completely explain all the metabolic 

aspects behind the BOLD signal. One of the most intuitive and simplified interpretation of 

this signal has been offered by Jueptner and Weiller (1995). These authors suggested that 

local neuronal activity requires an increased local metabolism with an increased need for 

glucose and oxygen. This is achieved by a local increase in blood flow and concomitant 

increase in blood volume, supplying the extra glucose and oxygenated-hemoglobin needed. 

The amount of oxygenated-hemoglobin delivered is greater than the amount of oxygen 

extracted, giving a local increase in oxygenated-hemoglobin and thus a local decrease in the 

concentration of deoxygenated-hemoglobin (but see also Kim, S. G. & Ogawa, 2012, Figure 

Figure I. Illustration taken from the US Patent and Trademark 
Office [patent no. 3789832, filed 17 March 1972, issued 5 February 
1974], which represents the first MRI scanner designed and 
patented by Raymond Damadian and colleagues. 
http://www.nature.com/ijo/journal/v32/n7s/fig_tab/ijo2008242ft.ht
ml  
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2.1 illustrates the metabolic changes behind increases in the BOLD signal). In line with this 

proposal, it has been shown that fMRI results are very consistent with more direct brain 

mapping techniques such as intracranial evoked potentials and electrocortical mapping 

(Bizzi et al., 2008). Interestingly, it has been also shown that fMRI activations correlates 

with increases in neural activity and intracortical processing in a given cortical region 

(Bartels et al., 2008; Logothetis et al., 2001; Logothetis & Pfeuffer, 2004; Nir et al., 2008; 

Nir et al., 2007). Nonetheless, despite the empirical evidence supporting this theoretical 

model, there are still many controversies regarding the relationship between the 

hemodynamic responses and the underlying neural activity.  

Independently of the neurovascular mechanisms controlling the local blood flow, the 

blood volume, and the balance between the oxygenated-hemoglobin and the deoxygenated-

hemoglobin, the relationship between these three factors give rise to two different types of 

BOLD responses: the prolonged positive response and the prolonged negative response 

(Kim, S. G. & Ogawa, 2012). While the prolonged positive response emerges where the 

stimulus-induced signal are higher than the baseline signal (i.e., activation), the prolonged 

negative response appears where the baseline signal are higher than the stimulus-induced 

signal (i.e., deactivation). According with previous studies, the emergence of these two types 

of responses and their corresponding physiological basis depends on where we are looking 

for (i.e., the brain regions) and the process we are trying to characterize (Bianciardi et al., 

2011; Harel et al., 2002; Huber et al., 2014; Kim, S. G. & Ogawa, 2012; Kuperberg et al., 

2003). In the case of language comprehension, the vast majority of studies have focused on 

the prolonged positive responses. However, in the last years the investigations about neuro-

cognition have paid more attention to the sustained negative bold response and its meaning 

for different cognitive mechanisms, such as the ones underlying the motor and the visual 

responses (Bianciardi et al., 2011; Kuperberg et al., 2003; Pasley et al., 2007; Stefanovic et 

al., 2004). It could be therefore essential for the characterization of the agreement 

phenomenon to consider both types of responses into account. Thus, throughout the current 

thesis it is possible to find references to positive and/or negative responses. Both of them 

will be considered as significant and as a consequence will be discussed. 
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Figure 2.1. Change in the vascular responses associated to increases in the neural activity. 

Taken from Kim, S. G. and Ogawa (2012). The expected changes associated to the BOLD 

signal are also represented. 
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Box 2.2. Physics of MRI: Magnetic resonance imaging (MRI) is a non-invasive imaging 

technique that uses non-ionizing radiation to create 3D high spatially detailed images 

(typically between 1.0 and 3.5 mm) of the biological tissues. A MRI scanner uses 

electromagnets to create a static and uniform magnetic field of high strength (1.5 and 3 

Tesla are the most frequently use for clinical and research purpose).  

This technique is based on 

the physical properties of 

the hydrogen nuclei which 

are part of the molecules of 

water abundantly found in 

the biological tissues. The 

nucleus of a hydrogen atom 

consists of a single proton that spins around its own axis inducing a magnetic field. This 

magnetic field is characterized by a certain direction and size (called magnetic moment, see 

Figure II).  

The static field, by itself, does not produce an MR signal. To obtain the 3D images, the MRI 

scanner required also a series of changing magnetic gradients and oscillating 

electromagnetic fields. These oscillating electromagnetic fields require radiofrequency 

coils that generate magnetic pulses. Turning the radiofrequency pulse on, changes the 

magnetization alignment of protons within the magnetic field. When the pulse is turned off, 

the protons relax to their original equilibrium alignment, which releases energy that is 

detected by the coils (MR signal).  

Spatial resolution is provided by the changing magnetic gradients. The strength of each 

gradient changes linearly along a single spatial dimension. Thus, three mutually orthogonal 

gradients are required to localize a signal in three spatial dimensions. Specific manipulations 

regarding the timing of the radiofrequency pulses and the delays before detecting the MRI 

signal entails the detection of subtle changes in brain anatomy.  

 

Figure II. Representation of a hydrogen nucleus. Notice that it is aligned with the 
external magnetic field to which has been subjected. Taken from 
http://www.schoolphysics.co.uk/. 
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Chapter 3. 
Experiment I 
 

Is our brain sensitive to gender-marking cues during the computation of local 

agreement relations? 

Chapter 1 provided the most significant psycholinguistic and neuro-physiological 

findings concerning agreement processing. It addressed how syntactic, lexico/semantic and 

semantic/pragmatic information embedded in our linguistic code might modulate the 

establishment of grammatical relations. Hence, this chapter pointed out the contradictory 

scenario behind this operation and the different linguistic and neuro-cognitive theoretical 

frameworks as well. Given the lack of a comprehensive approach that might fit all the 

empirical findings, and the need for more empirical evidence, the following experimental 

studies aim to uncover the mechanisms sub-serving agreement processing.  

As mentioned in the Introduction, taking advantage of the Spanish agreement 

system’s diversity, it is possible to tune down some of these mechanisms and, as a 

consequence, boost others. Thus, first of all, in the current chapter we will describe the 

neuro-anatomical network underlying the establishment of local syntactic relations (i.e., 

formal gender agreement), tuning down possible confounding factors (i.e., semantic and 

pragmatic factors) that might affect agreement processing. To do that, we will directly 

contrast congruent and incongruent determiner-noun pairs in a context where the 

establishment of a gender agreement relation relies on orthographical/morpho-phonological 

and/or lexical information. The comparison between transparent and opaque nouns will 

allow us to investigate whether boosting the access to the lexical representation of a given 

word could impact the functioning of this agreement network.  
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This chapter is divided into four sections10. Section 3.1 illustrates the major findings 

on the processing of syntactic gender agreement emphasizing its neuro-anatomical 

representation. Section 3.2 describes the methodological details concerning the experimental 

design and the data analysis. Finally, while section 3.3 presents the main results, in section 

3.4 the main conclusions emerging from this experiment are outlined and debated. 

3.1 Overview 

The Spanish formal gender agreement system offers interesting opportunities to 

investigate to what extend the establishment of grammatical relations would be affected by 

form-based (i.e., orthographical, morphological and/or phonological) and/or lexical 

information. As explained in the first chapter, this system is not conceptual in nature and 

therefore cannot be derived from the biological sex of the referent (i.e., it is independent on 

the meaning). The nouns within this category can be classified as two main groups, typified 

by different gender-to-ending regularities (Bates et al., 1995; Harris, 1991). The first group, 

transparent nouns, includes those nouns whose ending has a regular correspondence with a 

specific gender class (“–a” for feminine and “–o” for masculine, e.g., libromas. [book]; 

lunafem. [moon]). The second group, opaque nouns, includes those nouns whose ending is 

not informative of the gender class to which a given noun belongs (e.g., lápizmasc. [pencil]; 

vejezfem. [elderly]).  

In Spanish, nouns are typically preceded by their corresponding definite determiners 

(singular forms: “–la” for feminine and “–el” for masculine, e.g., elmas. libromas. [the book]; 

lafem. lunafem. [the moon] and plural forms: “–las” for feminine and “–los” for masculine, 

e.g., losmas. librosmas. [the books]; lasfem. lunasfem. [the moons]). These two sentential 

elements should always be grammatically congruent. Investigating how local relations 

between determiners and nouns are established could provide valuable information about 

how agreement operates within noun-phrase domain. Although several empirical findings 

concerning this phenomenon are available (Afonso et al., 2013; Barber & Carreiras, 2003, 

2005; Carreiras et al., 2010; Faussart et al., 1999; Hagoort & Brown, 1999; Hagoort et al., 

10 All the experimental chapters follow the same subdivision into four different sections. 
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2003; Molinaro et al., 2013; Molinaro, Vespignani, et al., 2008; Wicha et al., 2003; Wicha et 

al., 2004), several questions still remain unclear. How does our brain manage different 

gender-marking cues during the computation of agreement relations? Does the brain 

integrate the form-based and the lexical cues embedded in the nouns during agreement 

processing? The comparison between grammatical and ungrammatical determiner-noun 

pairs will be the starting point of the current thesis, seeking to identify the brain regions 

sensitive to local agreement information. Afterwards, by turning the spotlight on the gender-

to-ending regularities characterizing transparent and opaque nouns, we will be also able to 

investigate how our brain manages different gender-related cues during agreement 

computation.  

There have been several studies exploring how gender related information is 

represented and accessed during the processing of nouns (Bates et al., 1996; Bates et al., 

1995; Cacciari et al., 2011; Cacciari & Padovani, 2007; Caffarra & Barber, 2015; Caffarra et 

al., 2014; Caffarra et al., 2015; De Martino et al., 2011; Gollan & Frost, 2001; Hernandez et 

al., 2004; Padovani et al., 2005; Schiller et al., 2003b). The vast majority of these studies 

have taken advantage of the different gender-to-ending rules characterizing transparent and 

opaque nouns. Despite the variability in the methodological approaches (i.e., different tasks, 

languages and stimulation modality) adopted by these studies, a major claim has been 

derived from the comparison between transparent and opaque nouns (Bates et al., 1995; see 

De Martino et al., 2011 for a comparison across tasks in both comprehension and 

production; and see also Gollan & Frost, 2001; Hernandez et al., 2004; Holmes & Segui, 

2004, 2006; Padovani et al., 2005): the form-based gender-marking cues might affect the 

processing of a given noun, even in those tasks where participants have not been required to 

explicitly identify the gender (but see Bates et al., 1996; De Martino et al., 2011; Gollan & 

Frost, 2001 [Experiment 1]; Padovani et al., 2005). Generally, transparent nouns are 

classified more rapidly and accurately as masculine or feminine than opaque nouns (Afonso 

et al., 2013; Bates et al., 1996; Bates et al., 1995; Desrochers et al., 1989; Gollan & Frost, 

2001 [Experiment 1]). Some of these studies have also demonstrated differences in the 

magnitude of the gender-marking regularity effect as a function of the task requirements: the 
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less explicit the task, the fewer chances to find a behavioral advantage for transparent nouns 

(De Martino et al., 2011; Holmes & Segui, 2004, 2006). 

For instance, Gollan and Frost (2001 [Experiment 1A]) manipulated the gender-to-

ending regularities in Hebrew using a gender decision task. They included three different 

groups of nouns: irregular gender-unmarked, regular gender-marked and regular gender-

unmarked nouns. These authors reported a facilitation effect related to the marked-nouns 

(i.e., lower response times and lower error rates) and suggested that the correlation between 

the gender values and the morphological gender cues (available only for the gender-marked 

nouns) can mediate the access to gender information (see also Caffarra & Barber, 2015; 

Caffarra et al., 2014; Caffarra et al., 2015 for similar ERP results). Interestingly, similar 

results have been reported using a lexical decision task in French (Colé et al., 2003). These 

authors contrasted transparent (e.g., briquet [lighter], the “-et” termination in French predicts 

masculine grammatical gender in 100% of cases) and opaque (e.g., style [style], the “-le” 

termination in French predicts masculine grammatical gender in 52% of cases) nouns with 

high and low lexical frequency. The results of this study replicated the lexical word 

frequency effect expected for this type of task: higher lexical response times for low 

frequency words than for high frequency words. However, these authors also revealed an 

interaction between the lexical frequency and the transparency of the nouns suggesting that 

gender information has an impact on lexical access. Lexical response times were shorter for 

transparent nouns than for opaque nouns only in the case of low frequency nouns. 

The empirical evidence in this respect is not limited to behavioral findings. Previous 

neuroimaging studies have also demonstrated how gender-marking cues might affect the 

processing of a given noun (Hammer et al., 2007; Heim, 2008; Heim et al., 2005; Heim et 

al., 2006; Heim et al., 2010; Hernandez et al., 2004; Indefrey & Levelt, 2004; Miceli et al., 

2002; Padovani et al., 2005). These studies have consistently showed that the processing of 

transparent and opaque nouns produces different brain responses. For instance, Hernandez et 

al. (2004) compared the brain response associated with Spanish opaque and transparent 

nouns using a gender decision task. These authors reported significant activation increases in 

different frontal regions for opaque nouns including the left pars opercularis within the IFG, 
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the left precentral gyrus, the right and left insula and the right and left anterior cingulate 

cortex. Based on previous evidence, they argued that classifying opaque nouns as feminine 

or masculine requires increased demands (i.e., with respect to transparent nouns) on 

language-related regions previously associated with articulation, phonological and 

morphological processing, as well as domain-general regions such as the anterior cingulate 

cortex, previously related to task difficulty effects (see Padovani et al., 2005 for similar 

results in Italian).  

Interestingly, Heim (2008) revisited the available functional neuroimaging literature 

on syntactic gender processing and provided an extensive review of this topic. This author 

also proposed a neuro-anatomical model of syntactic gender processing that emphasizes the 

left pars opercularis and triangularis within the inferior frontal gyrus (BA44 – 45 according 

to Brodmann) as critical nodes involved in different stages of gender processing. 

Specifically, this author predicts that while BA44 mediates the extraction of gender features 

when gender is morphologically encoded, the engagement of BA45 would be dependent on 

the task requirements. Activity in BA45 has been found only when the task explicitly 

includes the retrieval of the gender morpho-syntactic feature (e.g., gender decision after 

generation of the corresponding determiner). Interestingly, this model also predicts that 

when no morphological cue is available (i.e., as in the case of opaque nouns), gender 

information is retrieved from the lexicon, which according to this author, should be mapped 

in the middle part of the left MTG. Importantly, the neuro-anatomical circuit underlying 

syntactic gender processing included in this framework, fits within a previously described 

sentence processing model proposed by Friederici (Friederici, 2011, 2012; Friederici & 

Kotz, 2003). However, Heim’s proposal (2008) has attempted to explain how the gender 

information is accessed and retrieved, but it does not provide clear information on whether 

the availability of different gender cues might affect syntax-related operations.  

In contrast to the large number of studies investigating how gender information is 

accessed and retrieved, the number of studies exploring how gender cues might affect the 

establishment of grammatical relations is markedly low (Afonso et al., 2013; Akhutina et al., 

1999; Caffarra & Barber, 2015; Caffarra et al., 2014; Caffarra et al., 2015; Faussart et al., 
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1999; Gollan & Frost, 2001). But, more importantly, results derived from these studies are 

far from conclusive. In this regard, there are some behavioral and ERPs studies which 

quantitatively explored whether the transparency of the nouns affects agreement operations 

exploring the interaction between gender-marking and congruency pattern (determiner-noun 

and posesive pronoun-noun in Spanish: Afonso et al., 2013; adjective-noun in Russian: 

Akhutina et al., 1999; determiner-noun in Spanish: Caffarra & Barber, 2015; Caffarra et al., 

2014; noun-adjective in Hebrew: Gollan & Frost, 2001; determiner-noun in French: Holmes 

& Segui, 2004)11. The vast majority of these studies have consistently reported differences 

between transparent and opaque nouns as the literature on gender processing predicts. 

However, concerning the interaction between transparency and agreement pattern, 

contradictory results emerge from these studies: while some of them have demonstrated that 

gender information has no influence on the establishment of grammatical relations (Caffarra 

& Barber, 2015; Caffarra et al., 2014; Caffarra et al., 2015; Hohlfeld et al., 2004), other 

studies have suggested precisely the opposite (Akhutina et al., 1999; Holmes & Segui, 2004; 

Taft & Meunier, 1998).  

For instance, on the one hand, Holmes and Segui (2004) qualitatively assessed 

whether comprehension relies on lexical and sub-lexical gender cues available in French 

grammar (for similar results see also Bates et al., 1996 [Experiment 3, in Italian]; Colé et al., 

2003 [Experiment 3, in French]; Hillert & Bates, 1996 [in German]; Radeau & van Berkum, 

1996; van Berkum, 1996 [in Dutch]). In French, apart from the gender-to-ending rules 

explained above, if the noun begins with a vowel the preceding determiner varied from its 

full form (feminine [“la”] or masculine [“le”]) to a reduced form (“–l´”) that provides no 

indication of gender. Thus, these authors manipulated the predictability of the gender value 

information using not only the noun ending regularities, but also this initial phoneme rule. 

They contrasted determiner-noun word pairs that could be either grammatically correct or 

not while participants performed a grammaticality judgment task (see Experiment 1, 

11 Previous studies have investigated how gender information is processed during tasks in which participants 
are required to retrieve a gender-marked determiner from different visually presented objects (Janssen & 
Caramazza, 2003; Lemhöfer et al., 2006; Schiller & Caramazza, 2003; Schriefers et al., 2002, 2005). 
Nonetheless, we will not consider these studies, given that the neuro-cognitive mechanisms involved in this 
type of task might differ from those recruited during the comprehension of phrases/sentences. 
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“Verification of Grammatical and Ungrammatical Phrases”). In this task, the nouns used 

could begin with either a vowel or a consonant, and end with either a gender-typical or a 

gender-neutral suffix. These authors reported different results according to the congruency 

of its grammatical pattern. For grammatical word-pairs, transparent nouns preceded by its 

corresponding gender-marking determiner were classified more quickly than opaque nouns. 

In addition, response times were faster for those pairs where the gender information was 

redundant (i.e., gender cues were available in both determiner and noun) than for pairs 

where only the noun contained information about the gender value. Similar but larger effects 

were found for ungrammatical word-pairs. Critically, the response differences between 

grammatical and ungrammatical word-pairs were higher for transparent than for opaque 

nouns in both factors (gender-to-ending regularity and initial phoneme). These authors 

replicated the main results of this experiment using a different paradigm in which the same 

factors were manipulated in determiner-noun-adjective phrases (see Experiment 2 in Holmes 

& Segui, 2004). 

Following similar experimental procedure, Caffarra et al. (2014) compared ERP 

responses elicited by grammatically correct and incorrect written Spanish determiner-noun 

pairs. These authors also manipulated the gender-marking regularity of the nouns: half of 

them were transparent and the other half were opaque. In order to investigate how each brain 

hemisphere contributes to gender agreement processing, these authors used a visual-half 

field presentation paradigm. Determiners were always presented centrally, followed by a 

noun displayed on the left or on the right visual field. While for the left hemisphere – right 

visual field –, main effects of transparency and agreement congruency were found in two 

critical time windows (350-500 ms and 500-750 ms), for the right hemisphere – left visual 

field –, only a main effect of agreement congruency emerged between 350 and 500 ms. 

Interestingly, after 500 ms the right lateralized effect of agreement congruency continued to 

be significant only for transparent nouns. Planned comparisons demonstrated that the main 

effect of transparency was directed by increases of the negative effect associated with 

transparent nouns. According to these authors, the orthographical/morpho-phonological 

gender mark available only in the case of transparent nouns seems to be processed as early 
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as 350 ms. Despite this fact, no significant interaction between transparency and agreement 

congruency was reported12, suggesting that the gender-marking regularities do not modulate 

the computation of local grammatical relations, at least not in the first stages of the noun-

phrase agreement processing (see also Caffarra & Barber, 2015 [determiner-noun pairs in 

Spanish included in a complex sentence context]; Caffarra et al., 2015 [determiner-noun 

pairs in Italian included in a complex sentence context] for similar results in sentence 

context).  

Regarding gender agreement computation, some fMRI studies have indicated that 

morpho-syntactic gender violations produce significant responses in the left inferior frontal 

cortex (Carreiras et al. 2010; Hammer et al. 2007). In particular, Hammer et al. (2007) found 

increased activation in left inferior frontal areas when morpho-syntactic gender agreement 

between pronouns and antecedents was violated (see also Hammer et al., 2006 for similar 

results). In the same line, Carreiras et al. (2010) showed the engagement of the left inferior 

frontal areas when participants are asked to read determiner-noun pairs with gender 

agreement violations. Interestingly, these results align with the previously described neuro-

anatomical model of syntactic gender processing proposed by Heim (2008). This author 

suggested a link between the neural representation of gender agreement and gender retrieval: 

the access and retrieval of gender-related information of a given noun may require the 

generation of a morphological gender cue, such as a gender-marked determiner (alternative 

3 in the neuro-anatomical model proposed by Bates et al., 1995; Faussart et al., 1999; Heim, 

2008). However, so far there is no direct evidence supporting this claim13.  

12 Different methodological factors can be identified that potentially contribute to the lack of significant 
interaction. For instance, as we mentioned in the introduction section, Caffarra et al. (2014) used a visual-half 
field presentation approach. This could be one of the most important factors which may have a deeper impact 
on their results. This type of paradigm is highly valuable for elucidating the contribution of each brain 
hemisphere in a certain cognitive function. However, it might induce atypical inter-hemispheric dynamics 
(e.g., a delay in the neural response of the ipsilateral hemisphere might produce a drift in the response pattern 
of the contralateral one), especially in those task where the coupling between the right and left hemisphere 
could be critical (Vigneau et al., 2011 for an extensive revision of the right hemisphere contribution during 
sentences processing). Further investigations must be aimed at disentangling this inconsistency.  
13 There are previous findings demonstrating participants can recover the gender feature value of a given 
opaque noun – during a gender decision task – through the production of the corresponding gender-marked 
determiner (Miceli et al., 2002). This strategy was related to increases in the brain response of inferior frontal 
regions.  
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Importantly, no fMRI studies have been carried out to investigate whether the 

processing of different gender-related cues embedded in nouns affects the computation of 

agreement dependencies. The present fMRI study seeks to investigate how local relations 

between determiners and nouns are established based on form-based (i.e., orthographical, 

and/or morpho-phonological) and/or lexical gender cues. By combining behavioural and 

fMRI data here we investigated a) which brain regions are sensitive to gender agreement 

within a noun phrase; b) whether the brain processes transparent and opaque nouns in a 

same way or differently; and c) whether and how different types of gender-marking cues 

modulate the neural mechanisms underlying agreement processing. In the current 

experiment we investigated the effects of Gender-marking (Transparent Nouns vs. Opaque 

Nouns) and Gender Congruency (Gender Match vs. Gender Mismatch) using Spanish 

determiner-noun pairs. The construction of a noun phrase representation requires the access 

to morpho-syntactic information in both types of pairs (i.e., determiner + transparent noun 

[elmasc. libromasc.] and determiner + opaque noun [elmasc. lapizmasc.]). Moreover, the morpho-

syntactic integration of this type of grammatical construction implies the association of the 

linguistic stimulus (El libro/El lápiz) to a referent in the external world. However, different 

sources of gender information are available depending on the transparency of the nouns 

(Bates et al., 1995; Gollan & Frost, 2001; Heim, 2008). Gender information in transparent 

nouns could be accessed based on both form-based and lexical cues. In contrast, gender 

information in opaque nouns cannot be derived from form-based cues since their ending 

does not predict the gender values (i.e., whether the noun is feminine or masculine), but 

relies exclusively on lexical cues. Thus, in order to reveal how these sources of gender 

information might affect the morpho-syntactic integration processing in a within-constituent 

domain, we tested the main effects and possible interactions. 

Regarding the processing of grammatical relations, a distinction between the neural 

networks involved in the processing of congruent and incongruent determiner-noun pairs 

(i.e., a main effect of Gender Congruency) is expected. While congruent determiner-noun 

pairs should activate regions related to the morpho-syntactic integration processing, 

incongruent determiner-noun pairs should activate mostly regions related to the monitoring 
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of conflicting information. There are no clear predictions for the regions underlying the 

morpho-syntactic integration processing in a within-constituent domain. According to 

previous evidence the pars opercularis within the left IFG seems to be the most plausible 

candidate for this functional role (Carreiras et al. 2010; Hammer et al. 2007). As we 

commented above, previous studies have been demonstrated a significant increase in the 

response pattern of this frontal region associated with ungrammatical relative to grammatical 

constructions (Carreiras et al. 2010; Hammer et al. 2007). As far as the regions involved in 

the conflict-monitoring operations are concerned, previous evidence points to the anterior 

cingulate cortex as the core area of this system (Carter & van Veen, 2007; Taylor et al., 

2007; van de Meerendonk et al., 2011; van de Meerendonk et al., 2009; van de Meerendonk 

et al., 2010). These studies have suggested a coupling between the anterior cingulate cortex, 

dorsolateral prefrontal regions and superior parietal areas (Kuperberg et al., 2003; 2008; 

Nieuwland et al., 2012). This network would be in charge of preventing behavioral mistakes 

by monitoring the occurrence of conflicting information (for a discussion of this topic see 

van de Meerendonk et al., 2011; van de Meerendonk et al., 2009; van de Meerendonk et al., 

2010).  

Concerning the gender-marking manipulation we expect differences in the neural 

correlates underlying the processing of transparent and opaque nouns (i.e., main effect of 

Gender-marking), as previous studies suggested (see Heim, 2008 for a review of this topic; 

Hernandez et al., 2004; see also Padovani et al., 2005). According to the neuro-anatomical 

model proposed by Heim (2008), these differences would cover regions such as the left IFG 

(pars opercularis and triangularis) and the middle temporal gyrus (see also Indefrey & 

Levelt, 2004). Finally, if the form-based information available for transparent nouns does 

not modulate the establishment of grammatical relations, we should expect no interactions 

between Gender Congruency and Gender-marking. If this is so, similar neural circuits 

should result from the contrast Gender Mismatch versus Gender Match for both types of 

configurations (determiner + transparent noun and determiner + opaque noun). In contrast, if 

the coding of form-based gender-marking cues affects the agreement processing, we should 

expect a significant interaction between Gender Congruency and Gender-marking. The left 
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IFG has the potential to showcase this interaction, since this region is a critical node for both 

agreement processing and the access/retrieval of gender-related information. However, 

crucially, this issue has not yet been addressed using fMRI. Hence, no clear prediction can 

be made as to where this interaction, if present, should emerge. 

3.2 Materials and Methods 

Participants. Fifty three healthy participants took part in the current study as paid 

volunteers. All were highly proficient speakers of Spanish and all gave informed consent as 

stipulated in the ethics approval procedure of the BCBL14 Research Ethics Committee. They 

all have right-handed dominance, normal or corrected to normal vision and no history of 

psychiatric, neurological disease or learning disabilities. Participants were assessed for 

handedness through an abridged Spanish version of the Edinburgh Handedness Inventory 

(Oldfield, 1971). They were also asked about claustrophobia, or any other criteria that could 

exclude them from participating in an fMRI experiment15. After the experimental session, 

the quality of the fMRI data of each individual was explored using the Artifact Repair 

toolbox (Gabrieli Cognitive NeuroScience Lab; 

http://cibsr.stanford.edu/tools/ArtRepair/ArtRepair.htm). Those subjects whose fMRI data 

exhibited more than 40 % of the scan-to-scan motion estimation higher than 1 mm were 

excluded from following statistical analysis16. After these exploratory analyses, a total of 

forty seven participants (eleven females), age ranging from 18 to 42 years (mean = 23.1, 

standard deviation = 6.0), were used to make population inference. 

Stimuli and experimental procedure. In the current experiment, participants took part 

in a single scanner session comprising an event-related 2 x 2 factorial within-subject design, 

which consisted in a serial presentation of 120 Spanish determiner-noun pairs. The gender 

agreement between determiners and nouns was manipulated, resulting in grammatical and 

ungrammatical associations (with a proportion of 1:1). The nouns selected could be either 

14 Basque Center on Cognition, Brain and Language  
15 The selection criteria were the same for all the experiments. Thus, these details about the sample will not be 
included in the next experimental chapters.  
16 These exploratory analyses were similarly applied in the other four experiments. 
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transparent or opaque (with a proportion of 1:1). Transparent nouns refer to those nouns 

morphologically marked for gender using the Spanish canonical suffixes “–o” for masculine 

and “–a” for feminine. Opaque nouns refer to nouns that end with non-canonical suffixes 

(e.g., “–e”, “–n”, “–l”, “–d”, “–z”). The resulting 2 x 2 factorial design comprised Gender-

marking [Transparent Nouns and Opaque Nouns] and Gender Congruency [Gender Match 

and Gender Mismatch] as factors (see examples (9) and (10) below). Two different 

stimulation lists were created with the same nouns. They appeared in association with the 

feminine/singular determiner “–la” in one list and in association with the masculine/singular 

determiner “–el” in the other list. Thus, the same noun was presented in both conditions, 

Gender Match and Gender Mismatch in different lists. These two lists were counterbalanced 

between participants in such a way that participants saw all nouns once.  

(9) Transparent Nouns 

(a) Gender Match: e.g., Lafem.sing. películafem.sing. [The film] 

(b) Gender Mismatch: e.g., * Elmasc.sing. películafem.sing. [The film] 

(10) Opaque Nouns 

(a) Gender Match: e.g., Lafem.sing. catástrofefem.sing. [The catastrophe] 

(b) Gender Mismatch: e.g., * Elfem.sing. catástrofefem.sing. [The catastrophe] 

All the nouns included in the current design referred to inanimate and concrete 

entities (e.g., mesa [table] or balón [ball]) [mean of concreteness = 5.51 (±0.75)], in such a 

way that only formal gender information and not conceptual information concerning the 

biological sex of the referent was present. In each condition, half of the nouns referred to 

masculine entities, while the other half to feminine entities. In Spanish, opaque nouns 

constitute a highly restricted subset of the total nouns in the lexicon (Anderson, 1961; 

Eddington, 2004). Thus, all the opaque and transparent nouns included in the current 

experiment were selected from the lower side of the whole lexical frequency distribution 

[mean = 36.85 per million, SD = 34.53]. The length of the opaque and transparent nouns 
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was also controlled, with a maximum of 8 and a minimum of 4 letters [opaque: mean = 5.20, 

SD = 0.91; transparent: mean = 5.60, SD = 1.65]. All the lexical measures considered were 

extracted from the Spanish ESPaL database (Duchon et al., 2013). In addition, in order to 

avoid possible interaction effects between gender and number agreement features, different 

parameters regarding the number agreement information were also controlled. Only the 

singular form of the determiners and the nouns was included. All determiner-noun word 

pairs agreed in number (see Appendix 1 for a list of the stimuli used).  

Each trial consisted of a visual presentation of determiner-noun pairs. Word pairs 

were displayed during 300 ms in white capital letters on a black background. Participants 

were instructed to answer as quickly and as accurately as possible whether the word pair was 

grammatically acceptable or not, by pressing one of two different buttons. They had two 

seconds to respond after the offset of each stimulus. During this time a visual cue was 

displayed indicating when participants had to respond. In order to optimize the sampling of 

the BOLD response, an inter-stimulus interval was included. During this period a fixation 

point (“+”) was presented with different durations across trials, varying between 2 and 8 

seconds. This baseline period allows us to counteract possible expectation effects, which 

might influence the brain response. In addition, this procedure is also useful to improve the 

estimation of the time course of the BOLD response associated to each experimental 

condition.  

MRI acquisition. The experiment was performed on a 3-T Siemens TrioTrim 

scanner, using a standard thirty two-channel phased-array surface coil (Siemens, Erlangen, 

Germany), which provided a high spatial resolution and signal-to-noise ratio. Functional 

event-related scans consisting of 454 echoplanar images were acquired using a T2*-

weighted gradient-echo pulse sequence with the parameters described in Appendix 2A. The 

first six volumes of each functional run were discarded to insure the steady state tissue 

magnetization17. In addition, a MPRAGE T1-weighted structural image (1 x 1 x 1 mm 

resolution) was acquired with the following parameters: TE = 2.97 ms, TR = 2530 ms, flip 

angle = 7° and FOV = 256 x 256 x 160 mm3. This yielded 176 contiguous 1 mm thick slices.  

17 Same procedure was used in all the experiments. 
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FMRI data analysis. Functional data were analyzed using SPM8 and related 

toolboxes (http://www.fil.ion.ucl.ac.uk/spm). Raw functional scans were slice-time 

corrected taking the middle slice as reference, spatially realigned, unwarped, coregistered 

with the anatomical T1 (Collignon et al., 1995) and normalized to the MNI space using the 

unified normalization segmentation procedure. Normalized images were then smoothed 

using an isotropic 8mm Gaussian kernel. Resulting time series from each voxel were high-

pass filtered (128s cut-off period) (see Box 3.1 for a schematic representation of the fMRI 

pre-processing pipeline). 

Statistical parametric maps were generated with univariate general linear models, 

using for each stimulus type a regressor obtained by convolving the canonical hemodynamic 

response function with delta functions at stimulus onsets, and also including the six motion-

correction parameters as regressors. The stimuli onsets included five different components. 

The first four corresponded to each experimental condition (Transparent Gender Mismatch 

[Tr_MM], Transparent Gender Match [Tr_M], Opaque Gender Mismatch [Op_MM], 

Opaque Gender Match [Op_M]). The last one corresponded to the fixation cross and it was 

modeled as a single regressor, independently of the experimental conditions. The next 

Parameters of the GLM were estimated with a robust regression18 using weighted-least-

squares that also corrected for temporal autocorrelation in the data (Diedrichsen & 

Shadmehr, 2005; http://www.bangor.ac.uk/~pss412/imaging/robustWLS.html).  

A pair-wise contrast comparing activity to each experimental condition relative to 

the fixation baseline was performed. Resulting statistical parametric maps were then 

submitted into a second level 2x2 factorial design (i.e., in SPM, Flexible Factorial Design), 

using Gender-marking and Gender Congruency as within-subject factors. This analysis 

18 The head movement of the participant is one of the most common sources of fMRI data noise, but other 
factors such as physiological responses or motion related to behavioural motor responses can also produce 
artefactual signals. While some pre-processing steps of the data analysis (e.g., realignment procedure) attempt 
to resolve the effects of this noise in the estimation of the BOLD signal, significant residual effects often 
remain in the data. The robust regression using weighted-least-squares is an algorithm that estimates the 
variance of the noise for each volume included in the functional time series. These variance parameters are 
used to obtain a weighted least-squares estimate of the regression parameters of a linear model, resulting in a 
significant increase of the model sensitivity to detect emerging activation sources (Diedrichsen & Shadmehr, 
2005). 
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allows us to determine possible main effects and interactions. These effects were also 

included in the statistical model. This model considers the variability between different 

subjects as a source of variance. Population-level inferences were tested adjusting the 

statistical threshold in such a way that only those peaks or clusters with a p-value corrected 

for multiple comparisons with family wise error (FWE; Nichols and Hayasaka 2003) and/or 

false discovery rate (FDR; Genovese, Lazar, and Nichols 2002) were consider as significant 

– i.e., combining the probability values and the required number of activated voxels within 

each cluster. All local maxima were reported in the results tables as MNI coordinates (Evans 

et al., 1993). 
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Figure 3.1. Schematic representation of the fMRI pre-processing pipeline. This general procedure 
will be similarly applied in all the experimental chapters.  
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3.3 Results 

Behavioural results. Statistical analyses of the behavioral responses were performed 

following the 2x2 factorial design. Because of technical problems with the response 

recording devices the behavioral data of eigth participants were lost. Furthermore, 

participants whose mean RTs and/or error rates exceed two standard deviations – above or 

below – from the mean of the group were excluded from the subsequent analyses19. 

Following these criteria four participants were also excluded, thus a total of forty one 

participants were considered in the analyses of the behavioral results. Mean RTs and error 

rates for each experimental condition are presented in Table 3.1, with the corresponding 

standard error between parentheses.  

 

Table 3.1. Error rates and mean decision times (in ms) for both agreement patterns (match 
and mismatch) in the two types of nouns (transparent and opaque) with the corresponding 
standard error between parentheses. 

Match Mismatch Match Mismatch

714.85 (26.92) 809.42 (32.29) 4.31 (0.49) 8.62 (1.16)

689.30 (26.83) 825.00 (34.96) 3.23 (0.66) 6.66 (0.96)

Transparent

Opaque

Mean decision times Error rates

 

For RTs, a significant main effect of Gender Congruency was found [F(1,40) = 

84.27, p < 0.005]. Additionally, a significant interaction between Gender-marking and 

Gender Congruency emerged from this analysis [F(1, 40) = 9.84, p < 0.005], suggesting that 

the congruency differential effect (i.e., difference between Gender Mismatch and Gender 

Match) was different for transparent and opaque nouns. In order to test the source of this 

interaction, the experimental conditions were contrasted in a pair-wise manner. Planned 

comparisons demonstrated that the Gender Mismatch condition was harder (i.e., higher RTs 

19 The same procedure was used in the other four experiments. However, the threshold applied to clean the data 
varied between 2.0 and 2.5 depending on the variability of the sample included in each study. 
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and error rates) than the Gender Match condition, for both transparent [t(40) = 7.83, p < 

0.001] and opaque nouns [t(40) = 8.90, p < 0.001]. However, the effect was larger for 

opaque than for transparent nouns [t(40) = 3.14, p < 0.005]. Additionally, the error rates 

analysis showed a main effect of Gender Congruency [F(1, 40) = 13.49, p < 0.001]: the 

percentage of error rates was larger for Gender Mismatch than for Gender Match condition. 

In addition, there was a main effect of Gender-marking [F(1, 40) = 7.92, p < 0.01], 

indicating that the percentage of errors was larger for transparent than for opaque nouns. The 

interaction between these two factors did not reach the significance threshold.  

fMRI results: Congruency effect (Difference between Gender Mismatch and Gender 

Match conditions). We extracted the main effect of Gender Congruency to characterize the 

functional neuro-anatomical network involved in the processing of grammatical relations. 

The significant effects included regions with higher responses for the Gender Mismatch 

condition than for Gender Match condition and regions that exhibited the opposite pattern, 

i.e. higher activation for Gender Match than for Gender Mismatch. Significant response 

increases in occipital, frontal and parietal regions in both hemispheres emerged from the 

contrast Gender Mismatch > Gender Match. This response pattern also comprised regions 

exhibiting bilateral activation such as the middle and medial superior frontal gyrus, the 

anterior cingulate, the pre- and postcentral gyrus, the supplementary motor area and the 

lingual gyrus. This contrast also showed significant left lateralized parietal responses 

including regions such as the angular gyrus and the posterior cingulate cortex. Interestingly, 

the statistical activation map resulting from this contrast comprised also the right insula and 

the right dorsal striatum including the putamen and the caudate nuclei (see Table 3.2 and 

Figure 3.2 for more details).  

On the other hand, the contrast Gender Match > Gender Mismatch resulted in a 

bilateral response pattern. This pattern included brain regions such as the pars opercularis 

and triangularis, within the inferior frontal gyrus, the superior frontal gyrus, the middle 

cingulate cortex, the anterior part of the supplementary motor area and the inferior and 

superior parietal gyrus. This contrast, Gender Match > Gender Mismatch, also showed 

significant response increases in the left posterior middle temporal gyrus –extended into the 
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middle occipital cortex– and the right superior temporal gyrus (see Table 3.3 and Figure 3.2 

for a detailed list of regions and its response pattern). 

Table 3.2. Significant activation clusters resulting from the contrast 
Mismatch > Match, including both Types of Nouns (Transparent and 
Opaque). 

Peak 
level

Cluster 
level

Z Vx

Medial Orbitofrontal -4  52  -2 5.69 653
Middle Frontal Gyrus -26  24  50 6.42 839
Ant Cingulate -6 38 -6 4.56
Paracentralobule -6 -22  60 5.92 269
Precentral Gyrus -42  -6  32 4.55 231
Postcentral Gyrus -44 -16  34 4.39
Angular Gyrus -48 -66  42 5.27 528
Precuneus -4 -48  10 6.71 1439
Post Cingulate -8 -40  26 6.11
Sup Occipital/Cuneus -16 -82  28 5.78
Lingual -4 -74  -2 5.12 317

Medial Sup Frontal Gyrus 10  52   2 6.88 653
Middle Frontal Gyrus 26  54   6 5.14
Precentral Gyrus 50  12  42 5.24 279
Insula 34  -2  16 6.14 280
Caudate 14  14  12 4.69
Putamen 26   8  10 4.56
Supp Motor Area 2 -16  68 4.47 269
Lingual 8 -70  -4 4.49 317

x,y,z {mm} = Coordinates in MNI space of local maxima. Z = Z scores. Vx = Number 
of voxels significantly activated inside the cluster belonging to each local 
maximum.  Z scores and Vx are reported in bold if they are significant at the cluster 
level after FWE or FDR correction, if indicated in bold and underline are significant 
at the peak level after FWE or FDR correction. Post: Posterior; Ant: Anterior; Sup: 
Superior; Supp: Suplementary.

Right 

Hemisp. Region x,y,z {mm}

Left 
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Figure 3.2. Statistical parametric map emerging from the main effect of Gender Congruency 
was projected on the MNI single-subject T1 image. The two tails of the F-contrast were 
represented with different colors: Gender Mismatch > Gender Match in blue and Gender 
Match > Gender Mismatch in red-yelow. All clusters depicted were statistically significant 
with a p-value corrected for multiple comparisons. The sagittal view represented in the right 
part of the figure display the axial slices used to represent the significant activated clusters. 
The numbers in this sagittal view correspond with the numbers located in the upper and left 
side of each axial slice. Hemisp: Hemisphere; IFG: Inferior frontal gyrus; Oper: Opercularis; 
Tri: Triangularis; Midd: Middle; Inf: Inferior; Post: Posterior; Sup: Superior.  
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Table 3.3. Significant activation clusters resulting from the contrast Match > 
Mismatch, including both Types of Nouns (Transparent and Opaque). 

Peak 
level

Cluster 
level

Z Vx

Oper Inf Frontal Gyrus -48  14  22 4.36 359
Tri Inf Frontal Gyrus -41 16 30 3.61
Sup Frontal Gyrus -24  -4  72 6.06 264
Supp Motor Area -10 14  68 4.85
Inf Parietal Gyrus -50 -28  50 4.52 193
Post Middle Temporal -38 -64 16 4.40 319
Middle Occipital -42 -70  14 6.2

Oper Inf Frontal Gyrus 44  10  22 4.75 196
Middle Frontal Gyrus / IFG 36  -2  60 5.28 513
Sup Frontal Gyrus 22   2  66 6.26 922
Supp Motor Area 10 16  68 5.74
Middle Cingulate 10 12 34 5.26
Sup Parietal Gyrus 16 -48  56 5.18 158
Sup Temporal Gyrus 66 -36  14 5.05 221
Calcarine 12 -78  18 4.86 132

x,y,z {mm} = Coordinates in MNI space of local maxima. Z = Z scores. Vx = Number of 
voxels significantly activated inside the cluster belonging to each local maximum.  Z 
scores and Vx are reported in bold if they are significant at the cluster level after FWE 
or FDR correction, if indicated in bold and underline are significant at the peak level 
after FWE or FDR correction. Sup: Superior; Ant: Anterior; Inf: Inferior; Supp: 
Suplementary; Tri: Triangular; Oper: Opercular.

Right 

Left 

Hemisp. Region x,y,z {mm}

 

 

fMRI results: Transparency effect (Difference between Transparent and Opaque 

Nouns). In order to explore whether transparent and opaque nouns would trigger different 

brain activation patterns, we extracted the main effect of Gender-marking. Several clusters 

in the two hemispheres were identified, showing a significant main effect. Similarly to the 

Gender Congruency effect, the main effect of Gender-marking included regions with higher 

responses for transparent than for opaque nouns and regions that exhibited the opposite 

pattern (i.e., higher response for opaque than for transparent nouns). On the one hand, 

opaque nouns compared to transparent nouns produced increased responses in a widespread 

fronto-parieto-temporal network, bilaterally distributed (see Figure 3.3). This neuro-

anatomical network included regions such as, the pars opercularis and triangularis within the 
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inferior frontal gyrus, the insula, the medial part of the superior frontal gyrus, the posterior 

part of the middle temporal gyrus, the hippocampus (including the parahippocampal region), 

the fusiform gyrus and the thalamus (see Table 3.4 for a detailed list of regions). On the 

other hand, transparent nouns compared to opaque nouns produced increased responses in a 

more restricted left lateralized network (Figure 3.3). This network included parietal regions, 

such as the left supramarginal and the left angular gyri, and occipital regions such as the left 

superior and middle occipital, the cuneus and the calcarine sulcus (see Table 3.5 for more 

details). 

fMRI results: Interaction between Gender Congruency and Gender-marking. 

Importantly, the main goal of the present study was to investigate whether agreement 

processing could be modulated by the morphological and/or the lexical information 

embedded in our linguistic code. Thus, with this aim we tested the interaction between 

Gender Congruency and Gender-marking. Interestingly, we found significant interaction 

effects in five different left lateralized clusters including the supramarginal and the angular 

gyri, the hippocampus, the posterior part of the MTG/STG and the pars triangularis within 

the IFG. However, planned comparisons revealed that the patterns of response resulting 

from each of these areas were different depending on the gender-to-ending regularities 

(Figure 3.4). Specifically, for Transparent Nouns, the hippocampus, the pars triangularis 

within the IFG and the posterior MTG/STG exhibited higher response for Gender Mismatch 

than for Gender Match. In contrast, for Opaque Nouns the neural responses of these two 

regions were more conspicuous for the Gender Match than for the Gender Mismatch 

condition. Interestingly, neural responses in the parietal areas (i.e., the angular and the 

supramarginal giri) were similarly modulated: the difference between Gender Mismatch and 

Gender Match conditions was only significant for Opaque Nouns. While activity in the 

angular gyrus was maximally enhanced by the Gender Match condition, it was the Gender 

Mismatch condition which produced the greatest activity in the supramarginal gyrus (Figure 

3.4 and Table 3.6).  
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Table 3.4. Significant activation clusters resulting from the contrast Opaque 
Nouns > Transparent Nouns, including both grammatical patterns (Mismatch 
and Match). 

Peak 
level

Cluster 
level

Z Vx

Oper Inf Frontal Gyrus -44  14  10 7.55 2921
Insula -36  20   8 7.17
Medial Sup Frontal Gyrus -6  48  20 5.88 3446
Sup Frontal Gyrus -20   4  48 4.92 303
Precentral -28 -16  56 4.73
Paracentralobule -12 -38  72 4.64 284
Thalamus -4 -24   6 4.7 299
Post Middle Temporal -58  -8 -10 4.56 176
Fusiform -36 -38 -16 7.44 341
ParaHippocampal -22 -28 -16 5.29
Lingual -12 -40  -8 5.04
Hippocampus -22 -22 -10 6.65

Tri Inf Frontal Gyrus 40  38   6 6.93 1871
Insula 36   4  14 6.69
Oper Inf Frontal Gyrus 50  16  20 5.86
Meiddle Frontal Gyrus 28  22  38 5.95 3446
Middle Cingulate 10  22  40 5.85
Supp Motor Area 2   6  58 5.69 438
Sup Parietal Gyrus 20 -58  62 6.15 629
Postcentral 34 -42  62 5.52
Thalamus 4 -24   4 6.33 299
Sup Temporal Gyrus 62 -32  16 5.93 1803
Precentral 54  -2  48 5.9
Lingual 6 -68   6 4.93 481
Calcarine 10 -80   8 4.16

x,y,z {mm} = Coordinates in MNI space of local maxima. Z = Z scores. Vx = Number of 
voxels significantly activated inside the cluster belonging to each local maximum.  Z 
scores and Vx are reported in bold if they are significant at the cluster level after FWE 
or FDR correction, if indicated in bold and underline are significant at the peak level 
after FWE or FDR correction. Sup: Superior; Post: Posterior; Inf: Inferior; Supp: 
Suplementary; Tri: Triangular; Oper: Opercular.

Right 

Left 

Hemisp. Region x,y,z {mm}
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Figure 3.3. Statistical parametric map emerging from the main effect of Transparency was 
projected on the MNI single-subject T1 image. The two tails of the F-contrast were 
represented with different colors: Transparent Nouns > Opaque Nouns in blue and Opaque 
Nouns > Transparent Nouns in red-yelow. All clusters depicted were statistically significant 
with a p-value corrected for multiple comparisons. The sagittal view represented in the right 
part of the figure display the axial slices used to represent the significant activated clusters. 
The numbers in this sagittal view correspond with the numbers located in the upper and left 
side of each axial slice. Hemisp: Hemisphere; IFG: Inferior frontal gyrus; Oper: Opercularis; 
Tri: Triangularis; Midd: Middle; Inf: Inferior; Post: Posterior; Sup: Superior. 
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Table 3.5. Significant activation clusters resulting from the contrast 
Transparent Nouns > Opaque Nouns, including both grammatical 
patterns (Mismatch and Match). 

Peak 
level

Cluster 
level

Z Vx

Supp Motor Area  -4  16  64 5.15 237
SupraMarginal -44 -44  32 5.5 689
Angular Gyrus -60 -58  30 4.76
Middle Occipital -44 -72  36 4.29
Sup Occipital -12 -86  22 6.33 189
Sup Occipital -18 -86  12 6.14
Calcarine -22 -60  14 6.3 220
Precuneus -20 -50  14 4.57

Supp Motor Area 6  18  64 5.3 237
Cuneus 8 -72  36 3.75 220
Middle Occipital 40 -66  26 5.51 221

x,y,z {mm} = Coordinates in MNI space of local maxima. Z = Z scores. Vx = 
Number of voxels significantly activated inside the cluster belonging to each 
local maximum.  Z scores and Vx are reported in bold if they are significant at 
the cluster level after FWE or FDR correction, if indicated in bold and underline 
are significant at the peak level after FWE or FDR correction. Sup: Superior;  
Supp: Suplementary.

Left 

Right 

Hemisp. Region x,y,z {mm}
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Figure 3.4. Statistical parametric map emerging from the interaction effects between Gender 
Congruency and Gender-marking were projected on the MNI single-subject T1 image. The sagittal 
view represented in the upper part of the figure display the significant activated clusters. The 
lowercase letters signalling each cluster correspond with each neural region represented in the bar 
graphs. The bar graphs (lowest part) display the contrast estimates and 90% of confidence intervals 
at the maximum peaks representative of the clusters resulting from the interaction effect.   
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Table 3.6. Significant activation clusters resulting from the interaction effects 
between Gender-marking and Gender Congruency. 

 

3.4 Discussion 

Taken toghether, the current findings suggested that a specific brain circuit responds 

according to the agreement congruency between determiners and nouns and more 

importantly, that the gender-marking regularities fine-tune the neural response of some 

specific nodes within this circuit. Regarding the first question (i.e., which brain regions are 

sensitive to gender agreement within a noun phrase), we showed the critical role of the pars 

opercularis and triangularis within the left IFG and the posterior part of the left MTG/STG 

during gender agreement computation. But, critically, we also demonstrated that this circuit 

is not circumscribed to these regions. Bilateral areas such as the superior parietal cortex, the 

anterior cingulate cortex and the superior frontal gyrus exhibited higher responses for 

incongruent than for congruent items (Figure 3.2). Concerning the second question (i.e., 

does the brain process transparent and opaque nouns in a same way or differently), we 

Peak 
level

Cluster 
level Tansparent Opaque

Z Vx Z Z

Tri Inf Frontal Gyrus -48  20  10 5.58 276 +4.11 -6.09

Post MTG/STG -62 -26  -2 4.17 316 +5.43 -4.22

Hippocampus -28 -34 -12 3.24 26 +5.27 -3.32

Supramarginal Gyrus -64 -30 28 3.61 59 n.s +4.9

Angular Gyrus -52 -66 38 4.18 80 n.s +6.64

x,y,z {mm} = Coordinates in MNI space of local maxima. Z = Z scores. Vx = Number of voxels
significantly activated inside the cluster belonging to each local maximum. Z scores and Vx are
reported in bold if they are significant at the cluster level after FWE or FDR correction, if indicated in
bold and underline are significant at the peak level after FWE or FDR correction. The sign of the Z
scores indicates the direction of each interaction. The positive sign indicates that the neural
response for the Mismatch condition was higher than for the Match condition. Whereas the
negative sign indicates the opossite pattern, higher neural response for Match than for Mismatch.
Tri: Triangularis; Inf: Inferior; Post: Posterior; MTG/STG: Middle and superior temporal gyrus;Trans:
Transparent.

Region (Left 
Hemisp.) x,y,z {mm}

Interaction Simple effects
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isolated the brain regions engaged in the processing of transparent nouns from those 

recruited by opaque nouns. While the network related to transparent nouns is circumscribed 

to occipital and adjacent parietal areas in the left hemisphere, the network associated to 

opaque nouns spread to temporal, parietal and frontal regions bilaterally distributed (Figure 

3.3). Finally, with regard to the third question (i.e., whether and how different types of 

gender-marking cues modulate the neural mechanisms underlying agreement processing), 

the current experimental design allowed us to isolate those regions involved in the 

processing of gender agreement that are also sensitive to gender-marking regularities. 

Specifically, significant interaction effects between Gender Congruency and Gender-

marking emerged in five left-lateralized clusters, including the pars triangularis within the 

IFG, the posterior part of the MTG/STG, the hippocampus, the angular and the 

supramarginal gyri (Figure 3.4). Critically, behavioral data goes in line with the fMRI 

results: the subjects classified determiner-noun pairs as grammatically correct more easily 

and accurately (i.e., shorter decision times and lower error rates) than incongruent pairs (for 

similar behavioral results see Akhutina et al., 1999 [adjective-nouns in Russian]; Caffarra et 

al., 2014 [determiner-nouns in Spanish]; Gollan & Frost, 2001 [noun-adjectives in Hebrew]; 

Holmes & Segui, 2004 [determiner-nouns in French]). This differentiation was evident for 

both transparent and opaque nouns. However, regarding the RTs, the difference between 

incongruent and congruent items was larger for opaque than for transparent nouns, as 

indicated by the significant interaction between Gender Congruency and Gender-marking. 

Overall, the current results constitute a critical piece of evidence suggesting that the neural 

substrates of agreement processing could be constrained by the available morpho-syntactic 

cues (i.e., form-based and/or lexical information embedded in the nouns). From now on, the 

next paragraphs will be focused on discussing the relevance of these three main findings.  

In order to establish commonalities and singularities across experimental chapters, it 

is important to be clear about the main findings provided by each study. Thus, we 

summarize the main behavioral and neuro-anatomical results in the Table S1. To facilitate 

the comparison across the studies, this table will be updated at the end of each experimental 

chapter. 
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Table S1. Main Findings 

Behavioral results 

Neuro-anatomical results 

Grammaticality effects 
Effects related with the critical 

manipulation 

Experiment I 
(determiner-
noun pairs) 

Main effect of Agreement 
Congruency: Subjects classified 

determiner-noun pairs as grammatically 
correct more easily and accurately than 
incongruent pairs. This differentiation 
was evident for both transparent and 

opaque nouns. 

Interaction effect: Regarding RT, this 
effect was larger for opaque than for 

transparent nouns. 

Gender Mismatch relative to Gender Match: 
the dorsal striatum, the middle and medial 

superior frontal gyrus, the orbito-frontal cortex, 
the pre- and post-central gyrus, as well as the 

anterior cingulate cortex. 

Gender Match as compared to Gender 
Mismatch: the pars opercularis and triangularis 
within the left IFG and the posterior part of the 

left MTG/STG. 

Significant interaction effects between 
Gender Congruency and Gender-marking 
emerged in five left-lateralized clusters:  

 Pars triangularis within the IFG 
 Posterior part of the MTG/STG 
 Hippocampus 
 Angular Gyrus 
 Supramarginal Gyrus 

Experiment II    

Experiment III    

Experiment IV    

Experiment V    
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Which brain regions are sensitive to gender agreement within a noun phrase [Main 

effect of Gender Congruency]? In line with our hypothesis and in consonance with previous 

fMRI evidence, we demonstrated a clear distinction between the neural circuits involved in 

the processing of gender congruent and incongruent items. Namely, while a bilateral 

widespread fronto-parietal network was recruited for Gender Mismatch relative to Gender 

Match condition, a more circumscribed fronto-temporal network was engaged for Gender 

Match as compared to Gender Mismatch (but see also Bambini et al., 2011; Carreiras et al., 

2010; Hammer et al., 2007; Hammer et al., 2011; Kerns et al., 2004; Kuperberg et al., 2003; 

Kuperberg, Sitnikova, et al., 2008; Molinaro et al., 2013; Ni et al., 2000; Novick et al., 2005; 

van de Meerendonk et al., 2011; van de Meerendonk et al., 2009; Ye & Zhou, 2009). In the 

former case, the circuit engaged by ungrammatical constructions included cortical and 

subcortical regions such as the dorsal striatum (see Box 3.1 for some relevant considerations 

about the involvement of this region during the processing of linguistic information), the 

middle and medial superior frontal gyrus, the pre- and post-central gyrus, the anterior and 

middle cingulate cortices, as well as the inferior and superior parietal cortices20. In the latter 

case, the pars opercularis and triangularis within the left IFG and the posterior part of the left 

MTG/STG were distinguished as critical areas for the processing of grammatically correct 

associations. These results suggested that when incongruent information (e.g., a grammatical 

gender violation) is detected, the system certainly shoots up different mechanisms in an 

attempt to solve the conflicting cues. Combining the current results with what previous 

findings suggest, it is possible to advance some hypotheses about the role of some of these 

regions. Specifically, we will focus on the three distinct neuro-cognitive mechanisms that 

can be differentiated within agreement comprehension processing (see Molinaro, Barber, et 

al., 2011 for a review): I) feature consistency checking; II) integration of incoming 

information and III) reanalysis/repair processing or control monitoring resolution (see 

20The anterior and middle cingulate cortices, as well as the inferior and superior parietal cortices, exhibited 
negative response (de-activation) compared to the fixation baseline condition, with greater de-activation for 
mismatching than matching constructions. These areas are sensitive to the presence of morpho-syntactic 
mismatches. Using different tasks (i.e., language related or not), previous studies have showed similar de-
activation pattern in these regions. These effects have been frequently associated with the functioning of the 
default mode network (i.e., regions exhibiting high resting baseline responses) (Gusnard & Raichle, 2001; 
Kuperberg et al., 2003; Kuperberg, Sitnikova, et al., 2008; Lutcke & Frahm, 2008; Pardo et al., 1990; Raichle 
et al., 2001; Sohn et al., 2007). 
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Chapter 1, Neuro-cognitive Mechanisms Underlying Agreement Processing: ERP Evidence 

for more details). 

Firstly, our results demonstrate that each type of grammatical construction evokes 

differentiated responses in the left middle frontal gyrus. This frontal region showed similar 

effects for transparent and opaque nouns, with higher activation for incongruent than for 

congruent items. In spite of the strong debate about the role of the left IFG during language 

processing, far less attention has been paid to other regions within the frontal lobe. However, 

the recruitment of the middle frontal gyrus by phrases/sentences with syntactic incongruities 

has been consistently reported (Folia et al., 2009; Kuperberg et al., 2003; Kuperberg, 

Sitnikova, et al., 2008; Newman et al., 2003; Nieuwland et al., 2007). Interestingly, the 

response of this area has remained invariant when the processing of different types of 

morpho-syntactic features has been compared (Folia et al., 2009 [gender mismatch between 

pronouns and antecedents in Dutch]; Kuperberg et al., 2003; Kuperberg, Sitnikova, et al., 

2008 [finitness violations in English]; Newman et al., 2003 [finiteness violations in 

English]; Nieuwland et al., 2012 [verb-object violations in Basque]). Based on these 

previous findings, it is possible to hypothesize that activity in this region could be reflecting 

morpho-syntactic feature checking mechanisms equally enhanced regardless of the 

transparency of the nouns. Supporting this hypothesis, previous electrophysiological studies 

which investigated gender agreement processing consistently reported a LAN effect with 

higher amplitudes for gender incongruent than for well-formed constructions independently 

of their transparency (Barber & Carreiras, 2005; Barber et al., 2004; Caffarra & Barber, 

2015; Caffarra et al., 2014; Caffarra et al., 2015; Deutsch & Bentin, 2001; Martin-Loeches 

et al., 2006; Molinaro, Kim, et al., 2008). In particular, this early electrophysiological 

response has been consistently related with the early detection of morpho-syntactic 

mismatches, especially in those manipulations where the access to morpho-syntactic feature 

values is crucial for the assignment of syntactic roles (Barber & Carreiras, 2005; Friederici, 

2011; Friederici et al., 1996; Hagoort et al., 2003; Molinaro, Barber, et al., 2011; Munte et 

al., 1993; Silva-Pereyra & Carreiras, 2007).  
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In contrast to this argument, some authors have argued that the middle frontal gyrus 

response could reflect the involvement of domain-general working memory mechanisms 

(see Katsuki & Constantinidis, 2012a; 2012b for the involvement of the dorsolateral 

prefrontal regions in working memory processes) that might be triggered by the evaluation 

of the morpho-syntactic consistency. Consistently with this idea, previous studies have 

reported the activation of this frontal region in association with more general aspects of 

language processing such as verbal fluency (Abrahams et al., 2003) and cross-modal 

interference effects (see Ye & Zhou, 2009 for the activation of this region in a visual Stroop 

congruency task). In line with this hypothesis, activity in this frontal region mirrors the 

behavioral differences emerging between congruent and incongruent items – i.e., the larger 

the reaction times, the greater the neural response in this area. Unfortunately, based on the 

current fMRI data it is not possible to discern between these divergence points of view. 

Nonetheless, demonstrating that in addition to the IFG, other regions in the frontal lobe 

significantly contribute to the processing of linguistic material may be crucial, not only for 

basic language research, but also for the investigation of clinical populations. Indeed, it 

could be critical for further neuro-cognitive models of sentence processing to investigate in a 

more exhaustive way the role of this region. Hence, we will return to this debate in the next 

experimental chapters.  

Secondly, in consonance with previous evidence, we identified the pars opercularis 

and triangularis within the left IFG and the posterior part of the left MTG/STG 

distinguishing between incongruent and congruent items. These regions have been 

previously identified as crucial epicenter of the language-specific network (Friederici, 2011, 

2012; Hagoort, 2005, 2013, 2014; Price, C. J., 2010, 2012). A harmonic engagement 

between these left-lateralized perisylvian regions seems to be critical for decoding linguistic 

information, not only in the context of sentence comprehension but also in the context of 

single word processing (Friederici, 2002; Friederici & Alter, 2004; Friederici & Kotz, 2003; 

Friederici et al., 2003; Grodzinsky & Friederici, 2006; Jefferies, 2013; Lau et al., 2008; 

Molinaro et al., 2013; Novick et al., 2005; Petersson et al., 2012; Petersson & Hagoort, 

2012; Rodd et al., 2010; Zhu et al., 2012). However, despite the huge amount of evidence 
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concerning this topic, it has not been possible to reach a consensus about the functions 

carried out by each of these areas during sentence processing (Bornkessel-Schlesewsky & 

Schlesewsky, 2013; Friederici, 2011, 2012; Hagoort, 2003a, 2005; 2013 for three different 

perspectives about this topic). In this particular case, where the syntactic gender consistency 

was manipulated between determiners and nouns, the harmonic engagement of these regions 

could be mediating the operations behind the integration of the two syntactic elements in a 

noun-phrase structure (Brouwer et al., 2012; Brouwer & Hoeks, 2013; Hagoort & Indefrey, 

2014; Lau et al., 2008; Molinaro et al., 2013; Molinaro et al., 2015). While the MTG/STG 

seems to underlie the mechanistic procedures required for decoding the inputs (e.g., the 

access/retrieval of the morpho-syntactic and lexical information, the structure building 

processing and the form-to-meaning mapping), the IFG seems to reflect a processing cost 

that shoot up when the system tries to integrate different sources of information (Baggio & 

Hagoort, 2011; Hagoort, 2013; see Hagoort, 2014 for a discussion of this topic; Hagoort & 

Indefrey, 2014). 

Finally, regarding the third processing stage, the anterior cingulate cortex has been 

pointed out as the neural epicenter of an amodal conflict-monitoring system responsible for 

distinguishing between a conflict associated with the input signal and a processing error (Du 

et al., 2013; Olichney et al., 2010; van de Meerendonk et al., 2011; van de Meerendonk et 

al., 2009; van de Meerendonk et al., 2010; Vissers et al., 2006; Ye & Zhou, 2009). In line 

with our predictions and in consonance with previous evidence, this system seems to be 

reinforced after the detection of conflicting information such as the gender agreement 

violation included in the current design. Interestingly, a close relationship between this 

system and attentional mechanisms has been previously demonstrated, suggesting that such 

attentional mechanisms are biased by this conflict-monitoring system through bottom-up 

control processes (van de Meerendonk et al., 2011; van de Meerendonk et al., 2009; van de 

Meerendonk et al., 2010). Supporting this theory, the current differential congruency effect 

(i.e., difference between Gender Mismatch and Gender Match conditions) encompassed 

regions previously related with attentional mechanisms (Corbetta & Shulman, 2011 for a 

review of this topic). For instance, incongruent items produced increments in regions such as 
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the medial superior frontal gyrus, the insula, the middle and posterior cingulate cortex, as 

well as the inferior and superior parietal gyrus. This hypothesis finds support in the 

behavioural results: greater neural responses of these regions were found associated with the 

Gender Mismatch condition which is harder to process (i.e., stimuli that produced more 

errors and longer reaction times) (for similar behavioral results see Akhutina et al., 1999 

[adjective-nouns in Russian]; Caffarra et al., 2014 [determiner-nouns in Spanish]; Gollan & 

Frost, 2001 [noun-adjectives in Hebrew]; Holmes & Segui, 2004 [determiner-nouns in 

French]). 

Does the brain process transparent and opaque nouns in the same way or differently 

[Main effect of Gender-marking]? Regarding the neural network sensitive to gender-to-

ending regularities, the current fMRI results demonstrated a dissociation between 

transparent and opaque nouns. Interestingly and in accordance with previous evidence, the 

statistical parametric map obtained from the main effect of Gender-marking revealed a 

bilateral pattern of activation including temporal, parietal and frontal regions (Heim, 2008; 

Hernandez et al., 2004; Miceli et al., 2002; Padovani et al., 2005). From a theoretical 

perspective, transparent and opaque nouns differ in terms of gender values predictability 

(i.e., whether the noun is feminine or masculine): while the gender information of 

transparent nouns could be accessed based on both morphological and lexical cues, the 

gender information of opaque nouns relies exclusively on lexical information. The 

differences in the neural responses characterizing transparent and opaque nouns provide 

conclusive evidence suggesting that the system could be fine-tuned depending on the 

available gender-related information sources. 

On the one hand, Opaque Nouns compared to Transparent Nouns produced 

increased responses in a widespread bilaterally distributed fronto-parieto-temporal network. 

Interestingly, this network included regions such as the pars opercularis and triangularis 

within the IFG, the insula, the medial part of the superior frontal gyrus, the posterior part of 

the middle temporal gyrus, the angular gyrus, the hippocampus (including the 

parahippocampal region), the fusiform gyrus and the thalamus. On the other hand, we found 

higher neural responses for Transparent Nouns than for Opaque Nouns in left occipito-
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parietal regions. These areas included the supramarginal gyrus, the superior and middle 

occipital cortices, the cuneus and the calcarine sulcus. The difference concerning the 

hemispheric lateralization characterizing transparent and opaque nouns is very salient: while 

the left hemisphere is more sensitive to transparent nouns (i.e., in comparison with opaque 

nouns), opaque nouns (i.e., relative to the transparent ones) recruit regions in both 

hemispheres (for some empirical evidence showing typical syntactic gender processing in 

patients with damage in the left hemisphere see Badecker et al., 1995; Cacciari & Cubelli, 

2003; but see also Friedmann & Biran, 2003 for contradictory results; Laiacona et al., 2001; 

Luzzatti & De Bleser, 1999).  

As far as the processing of opaque nouns is concerned, our data parallel the neural 

responses that have been previously observed in other fMRI studies that pointed out the 

critical role of the left IFG in controlling syntactic gender processing. However, our data 

extend this finding by suggesting that there is a coupling between the inferior frontal gyrus 

and other parietal and temporal regions during the access/retrieval of gender information. 

This empirical finding supports what is predicted by the neuro-cognitive model proposed by 

Heim (2008). Accordingly, some authors highlighted the posterior portion of the middle 

temporal gyrus as a hub for lemma selection and retrieval processes (Bemis & Pylkkänen, 

2011, 2012a; Brennan & Pylkkanen, 2012; Gold et al., 2006; Indefrey & Levelt, 2004; 

Levelt, 2001; Levelt et al., 1999; Pylkkänen et al., 2014; Pylkkänen et al., 2002; Rissman et 

al., 2003). For instance, Choi et al. (2015) demonstrated that the transcranial magnetic 

stimulation of the posterior part of the left middle temporal gyrus selectively produced a 

reduction in the response times in a lexical decision task (see also Braun et al., 2015; 

Hernandez et al., 2015).  

Concerning the processing of transparent nouns, increases in the activation of left 

occipito-temporal regions have been previously reported for Spanish determiner-noun pairs 

(Molinaro et al., 2013). This study measured the magnetoencephalographic activity of 

transparent nouns which appeared in association with their corresponding gender-marked 

determiners (see Dikker et al., 2010 for a different form-based effect in these posterior 

regions). Based on a large body of empirical evidence, the involvement of these areas was 
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considered as reflecting morphological decomposition processing (Božić & Marslen-Wilson, 

2013; Božić et al., 2013; Gold & Rastle, 2007; Lewis et al., 2011; Solomyak & Marantz, 

2010). Interestingly, in the current experiment, the recruitment of these regions by 

transparent nouns is coupled with an increase in the neural response of the supramarginal 

gyrus. Activity in this parietal region has been strongly linked to phonological 

decomposition and grapheme-to-phoneme processes (Booth et al., 2004; Buchsbaum & 

D'Esposito, 2008; Church et al., 2008; Obleser & Kotz, 2009; Petersen & Posner, 2012; 

Prabhakaran et al., 2006; Raizada & Poldrack, 2007; Seghier et al., 2004; Sharp et al., 2010; 

Sliwinska et al., 2012; Zevin & McCandliss, 2005). The selective engagement of these 

occipito-temporal and parietal regions by transparent nouns (i.e., relative to opaque ones) 

might reflect a processing cost associated with decoding the morpho-phonological 

information. It is plausible to hypothesize that this process could mediate the access-retrieval 

of the gender morpho-syntactic feature values required to compute agreement dependencies 

(Braun et al., 2015).  

Crucially, this is the first time that such increased neural activity is reported for 

transparent as compared to opaque nouns. Probably it is the combination of gender-marking 

and agreement congruency that boosts the morphological-phonological decoding of 

transparent nouns. The gender morpho-syntactic information of the determiners might 

enhance expectations concerning not only the gender morpho-syntactic values of the nouns, 

but also the presence of a given morpho-phonological gender mark (i.e., canonical Spanish 

suffixes) (DeLong et al., 2005 for a discussion about this topic). This goes in line with 

Cafarra et al. (Caffarra & Barber, 2015; Caffarra et al., 2014; Caffarra et al., 2015) who 

reported greater negative ERP responses for transparent as compared to opaque nouns. This 

negativity emerged in the left hemisphere as early as 300 ms, similarly to the early 

supramarginal phonological involvement (at around 200 ms) found by Sliwinska et al. 

(2012) in a TMS study (see also Božić et al., 2007; Marslen-Wilson & Tyler, 2007; 

Rolheiser et al., 2011 for relevant functional and anatomical connectivity results). In 

summary, both the hemispheric differential contributions and the distinctions regarding the 

areas involved in the processing of transparent and opaque nouns point in the same 
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direccion: the access-retrieval of gender morpho-syntactic values required to compute the 

agreement relation relies on different sources of information, depending on the transparency 

of the nouns. 

Is our brain sensitive to gender-marking cues during the computation of determiner-

noun agreement relations [Interaction effect]? With regard to this issue, the interaction 

between Gender Congruency and Gender-marking revealed a functional coupling between 

the pars triangularis within the left IFG, the hippocampus and the posterior part of the 

left MTG/STG. The neural activity of these areas follows the same pattern across 

conditions: the differences between congruent and incongruent items for transparent and 

opaque nouns were significant in these three regions. In the former case – transparent nouns 

–, incongruent determiner-noun pairs exhibited greater response than congruent pairs, 

whereas in the latter case – opaque nouns –, it was the congruent condition which produced 

the more conspicuous signal. In contrast with the huge amount of previous studies that have 

demonstrated the engagement of this left fronto-temporal activity during sentence 

comprehension, there is only few empirical evidence reporting this coupling during 

grammatical gender processing (see Heim, 2008 for a review of this topic; see also Miceli et 

al., 2002; Padovani et al., 2005).  

The interaction effect emerging in these areas could be reflecting a lexical processing 

cost that differently affects the decoding of gender features and the building of local 

syntactic units (i.e., noun phrases) in transparent and opaque nouns. Interestingly, the 

difference between conditions emerging in this region could be explained based on the MUC 

model of sentence processing (Hagoort, 2003a, 2005, 2013). This neuro-cognitive 

perspective highlighted the posterior part of the left MTG as a hub underlying the 

access/retrieval of the information stored in the mental lexicon. According to this author, 

each word in the mental lexicon is associated not only with its lexical representation but also 

with its syntactic structural frame(s). In accordance with Levelt et al. (1999), it is plausible 

to hypothesize that in the mental lexicon this information is organized following some 

hierarchical principles: the deeper the lexical representation of a given noun, the greater the 

processing cost over this temporal region. The divergence in the congruency differential 
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response found for transparent and opaque nouns could be explained by the hierarchical 

organization of the lexicon. Activity in these particular regions seem to be sensitive to both 

the building of the local syntactic unit (i.e., as the difference between congruent and 

incongruent items suggest) and the “lexical load” distinguishing transparent and opaque 

nouns. It is important to stress that the middle temporal regions have been functionally 

related with the hippocampus, a region exhibiting an interaction between Gender-marking 

and Gender Congruency. The similarities in the response patterns showed by the 

hippocampus and the posterior MTG/STG constitute a critical piece of evidence supporting 

the contribution of these regions during the access/retrieval of gender-related information 

(see Duncan et al., 2012 for a discussion about the hippocampus functioning, see also Box 

3.2 for some important findings regarding this issue).  

In addition to this fronto-temporal coupling, the interaction effect also showed that 

the engagement of the supramarginal and the angular gyri depends on both Gender-

marking and Gender Congruency factors. While in the case of transparent nouns the neural 

responses for incongruent and congruent determiner-noun pairs did not differ in amplitude, 

in the case of opaque nouns, the incongruent items produced greater responses than the 

congruent ones. As mentioned above, the functional characterization of parietal regions 

during sentence processing has received much less attention than the investigations 

concerning the role played by inferior frontal and temporal areas. This situation becomes 

critical when we review the literature on agreement computation. Regarding this issue, some 

neuro-anatomical models of sentence processing include parietal areas as crucial nodes 

within this network. However, similarly to the contradictions regarding the functional role 

associated with frontal and temporal areas, different functions have been related with 

parietal regions. For instance, Hagoort and colleagues (Hagoort, 2013; Hagoort & Indefrey, 

2014) defined parietal regions as critical nodes engaged for the access/retrieval of different 

types of linguistic information (e.g., morphological, phonological, lexico-semantic and/or 

syntactic information). In contrast, Bornkessel-Schlesewsky and Schlesewsky (2013) 

highlighted the critical role played by parietal areas during syntactic combinatorial 

operations. These authors also pointed that during this process, a close relationship between 
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parietal and posterior temporal regions is boosted. Crucially, according to the current data, 

both theoretical accounts seem to be plausible. Activity in parietal regions seems to depend 

on both Gender Congruency and Gender-marking, suggesting that these areas are sensitive 

to syntactic combinatorial and lexical processes. During the establishment of local 

grammatical relations, opaque nouns appear to impose a processing cost over the integration 

of the morpho-syntactic information. This could be affected by a differential “lexical load” 

distinguishing between transparent and opaque nouns. It is important to stress that this is the 

first time the engagement of parietal regions has been reported during agreement 

computation as a function of different lexical and morpho-syntactic factors. 

Interim conclusions. To sum up, the current fMRI study demonstrated the 

preferential role of different left-lateralized perisylvian regions in the establishment of 

syntactic gender agreement. Crucially, these data illustrated how our brain is sensitive to 

gender-marking cues during the computation of determiner-noun agreement relations: 

different gender-related signals associated with nouns may affect the neural circuits involved 

during the computation of local agreement dependencies. According to the present findings, 

when gender orthographical/morpho-phonological cues are available (i.e., as in the case of 

transparent nouns), both form-based and lexical information are used to establish 

grammatical relations. The circuits underlying these mechanisms involve regions associated 

with morpho-phonological decomposition (i.e., occipito-temporal and parietal regions 

exhibiting a main effect of Gender-marking) but also regions associated with lexical 

processing (i.e., activity in temporo-frontal and parietal regions depending on both Gender-

marking and Gender Congruency). In contrast, when no form-based cues are available (i.e., 

as in the case of opaque nouns), gender information is retrieved from the lexicon. These 

processes seem to be mediated by a functional coupling between the posterior part of the 

MTG/STG, the pars triangularis within the IFG and the hippocampus. In addition, parietal 

areas seem to be critical for the processing of opaque nouns. Activity in these cortical 

regions could be mediating the fronto-temporal loop (i.e., posterior MTG/STG – pars 

triangularis within the IFG) enhanced by the integration of different information sources. It 

is important to highlight that this is the first time that such clear synchrony between 
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posterior MTG/STG, pars triangularis within the IFG and parietal regions has been observed 

during agreement computation. Critically, these results underpin the previous neuro-

anatomical models proposed in the context of both syntactic gender processing (see Heim, 

2008) and sentence comprehension (Bornkessel-Schlesewsky & Schlesewsky, 2013; 

Friederici, 2011, 2012; Hagoort, 2003a, 2005, 2013). But, more importantly, they provide 

valuable information regarding the role this left-lateralized perisylvian circuit plays during 

agreement computation. Further studies are required to determine how differences 

associated with the experimental design, the task and the stimulation material could produce 

a fine-tuning of this circuit.   
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Box 3.1. Basal ganglia response associated with the processing of incongruent items. 

It is important to point out the involvement of the dorsal striatum (i.e., the basal 

ganglia included the striatum (caudate nucleus and putamen), the globus pallidus, the 

substantia nigra, the nucleus accumbens, and the sub-thalamic nucleus), specifically the 

putamen and the caudate nuclei, during the current grammaticality judgment task. In line 

with previous evidence, these sub-cortical regions exhibited higher neural responses for 

incongruent than for congruent items (Fiebach et al., 2002; Kuperberg et al., 2000; 

Kuperberg et al., 2003; Kuperberg, Sitnikova, et al., 2008; Ni et al., 2000; Price, C. J. et al., 

1997). In particular, previous studies have reported the implications of these sub-cortical 

regions during language acquisition, as well as their involvement in developmental language 

disorders (Copland, 2003; Mestres-Missé et al., 2014; Mestres-Missé et al., 2008; Mestres-

Missé et al., 2012; Mueller et al., 2014; Nadeau & Crosson, 1997; van der Lely & Pinker, 

2014).  

Supporting these studies, it has been also demonstrated that the arcuate fasciculus, 

which anatomically links the superior posterior temporal cortex and the inferior frontal 

gyrus, has branch connecting with the basal ganglia (Leh, Chakravarty, et al., 2007; Leh, 

Ptito, et al., 2007; Teichmann et al., 2015). However, there is a debate about whether these 

sub-cortical regions directly support language-specific processes or whether they are 

implicated in domain-general functions such as executive functions, working memory or 

attentional control processes, directly linked to language comprehension and production 

(Kotz & Schmidt-Kassow, 2015; Kotz & Schwartze, 2010; Kotz et al., 2009).  

Based on empirical evidence from clinical populations, Kotz and Schmidt-Kassow 

(2015) suggested that syntactic processing impairments resulting from basal ganglia 

damages might be a consequence of a more generalized temporal processing deficit. 

According to these authors, the involvement of the dorsal striatum might be related with 

domain-general mechanisms triggered by the detection of unexpected information. 

Nonetheless, the possible connections between this sub-cortical region and the conflict-

monitoring system need to be further investigated.   
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Box 3.2. Is the hippocampus involved during the processing of syntactic errors? 

Some authors have proposed that the hippocampus computes the correspondence 

between the expected and the encountered signals (Duncan et al., 2012; Hasselmo et al., 

1995; Kumaran, 2008; Kumaran & Maguire, 2005, 2006, 2007; Lisman & Grace, 2005). In 

line with this claim, Duncan et al. (2012) labeled one specific sub-region within the 

hippocampus (i.e., CA1) as a mismatch/match detector.  

However, the role this region plays in language comprehension has received much 

less attention than its general involvement in memory functions. Specifically, an extensive 

body of research has pinpointed a causal relation between hippocampal damage and 

vocabulary acquisition and declarative memory deficits (Bayley & Squire, 2002; Maguire et 

al., 2001; O'Kane et al., 2005; O'Kane et al., 2004; Schmolck et al., 2002). Indeed, patients 

with hippocampal impairment showed problems for the on-line comprehension of sentences 

(see Duff & Brown-Schmidt, 2012 for a revision of this topic; see alsoDuff & Kurczek, 

2013; Kurczek, 2014; Kurczek et al., 2013). Specifically, Kurczek et al. (2013) 

demonstrated that hippocampus damage disrupts the pronoun referential processing (e.g., 

“Melissa is playing violin for Debbie/Danny… She[target] is …”) during sentence 

comprehension, suggesting its critical role in maintaining and integrating language 

information.  

Interestingly, Ullman and colleagues (Ullman, 1999, 2004; Ullman et al., 1997) 

proposed that a declarative memory system sub-served by medial temporal regions 

(including the hippocampus) underlies lexical processing (i.e., learning, storage and 

retrieval) (see also Lum et al., 2012; Lum et al., 2015). Empirical evidence from clinical 

populations has showed that impairments in this declarative system worsen performance 

converting irregular verbs (i.e., relative to regular verbs) to their past tense forms (Ullman, 

1999, 2004; Ullman et al., 1997).  
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Experiment II 
 

Parietal circuit distinguishing between living and non-living entities: an fMRI study of 

gender agreement processing. 

4.1 Overview 

In the previous experimental chapter, we showed that agreement processing is 

modulated by the form-based and the lexical information embedded in our linguistic code. 

This effect was tested manipulating the congruency pattern between transparent or opaque 

nouns and their corresponding Spanish canonical determiners. Interestingly, the Spanish 

gender agreement system, also offers the opportunity to evaluate whether semantic factors 

modulate agreement operations. As mentioned in the Introduction, in addition to the formal 

gender system (i.e., where the assignment of the gender values follows formal rules [i.e., 

orthographical, morphological and phonological]) explored in the previous experiment, in 

Spanish it is possible to distinguish a conceptual system (Corbett, 1991). The nouns 

corresponding with this category are mostly animate entities and the assignment of the 

gender values – masculine or feminine – depends on the biological sex of the referent. 

However, interestingly, both the formal and the conceptual gender system share the same 

termination rule: nouns ending in “–o” are usually masculine, while nouns ending in “–a” 

are usually feminine. Despite the significant increase in the knowledge of agreement 

processing, it is still not clear whether and how conceptual information mediates the 

establishment of grammatical relations. The vast majority of studies have explored the 

formal and conceptual factors separately, assuming there is no interaction between them. 
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The current study is aimed at shedding light into this issue, by comparing the neural network 

underlying the Spanish formal and conceptual gender agreement system.  

Only few behavioral/ERP studies have investigated whether semantic factors could 

modulate syntactic processes during language comprehension (Barber et al., 2004; Deutsch 

& Bentin, 2001; Gunter et al., 2000; Schiller et al., 2003a; Xu et al., 2013). Interestingly, 

although similar manipulations have been used across these studies, the results are different 

and even contradictory. For instance, on the one side, Schiller et al. (2003b) compared ERP 

responses elicited by German mono-morphemic written nouns conceptually marked for 

gender to nouns that were not. In this study, participants were required to classify each word 

according to their grammatical gender, linking each noun with its corresponding masculine 

or feminine determiner. Both, behavioral (decision times) and ERP (mean peak latency of 

the N2 component) results showed that the processing of conceptually gender marked nouns 

was faster than syntactic gender nouns, suggesting that semantic factors can influence 

grammatical gender processing (see also Vigliocco & Franck, 1999 for contrasting 

conceptual and formal gender in production). In consonance with this study, Deutsch and 

Bentin (2001) combined ERP and eye tracking results in a more complex sentence context 

and tested the interaction between syntactic and semantic factors during agreement 

processing. Each sentence began with a main clause of three to four words followed by a 

sentential object complement (e.g., “The woman saw that the boy[subject] had fallen[target word] 

into the pool”). The gender agreement congruency was manipulated within the object-

complement clause between the subject and the predicate. In addition, the animacy (animate 

or inanimate) of the subject (e.g., the boy/the diamond) was also a critical factor. These 

authors found a significant interaction effect between animacy and agreement congruency in 

a time window between 250 and 550 ms which comprised the N400 component (Experiment 

2). The amplitude modulation of the N400 component by the incongruent conditions was 

only significant for animate subject-nouns. This interaction was replicated focusing on the 

first-pass duration resulting from the eye-tracking experiment (Experiment 1). Based on 

these results, these authors argued that syntactic and semantic factors might be processed 
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simultaneously, but also they might interact with each other depending upon the context 

(Deutsch & Bentin, 2001). 

However, on the other side, Barber et al. (2004) compared Spanish conceptually 

marked gender nouns with nouns that were arbitrarily marked for gender. In order to 

measure possible interactions between formal and conceptual factors, they also manipulated 

the gender grammatical congruency between the subject nouns and the predicative 

adjectives in a grammaticality judgment task, leading to two different types of constructions: 

well-formed and ill-formed sentences. Comparing ERP waveforms associated with 

congruent and incongruent sentences, both conceptual and formal gender produced a 

biphasic LAN-P600 effect typically reported for agreement processing. Interestingly, these 

authors reported a significant main effect of gender type: conceptual gender nouns elicited 

higher anterior response than formal gender nouns in a time window from 450 to 700 ms, 

suggesting that conceptual information would trigger different underlying mechanisms. 

However, the interaction between agreement congruency and gender type was not 

significant (for contrasting ERP results see Silva-Pereyra et al., 2012).  

Different factors can be identified that potentially contribute to the different findings 

reported by the studies described above, such as the type of task (i.e., a grammaticality 

judgment task in Barber et al. (2004) vs. a gender decision task in Schiller et al. (2003b)), 

and possible differences in the way results are reported. For instance, since Barber et al. 

(2004) exclusively reported results concerning the amplitude differences, it is difficult to 

determine the possible source of the null interaction effect. Significant interactions effects 

could appear in terms of peak latencies, topographical distributions or even in terms of 

behavioral performance as the ones reported in the previous study of Schiller et al. (2003b). 

As we detailed in the Overview section of the previous chapter (Chapter 3, Is our 

brain sensitive to gender-marking cues during the computation of local agreement 

relations?), the investigation on gender processing has not restricted to behavioral and ERP 

studies. This research topic has been also addressed using fMRI methods (Folia et al., 2009; 

Hammer et al., 2007; Heim, 2008; Heim et al., 2005; Heim et al., 2006; Heim et al., 2010; 

99 

 



Iliana Quiñones, 2015 

Hernandez et al., 2004; Indefrey & Levelt, 2004; Miceli et al., 2002; Padovani et al., 2005). 

Indeed, the empirical findings derived from these investigations have been outlined in a 

neuro-anatomical model of gender processing (Heim, 2008, see Chapter 3 for a detailed 

description of this model). However, crucially, this proposal lacks information regarding 

different types of gender: formal and conceptual systems might engage different neural 

regions. Concerning how the brain integrates conceptual and/or formal information during 

agreement comprehension, the empirical evidence is significantly scarce and currently 

inconclusive (see Hammer et al., 2007; Hammer et al., 2011 for two fMRI studies about 

anaphoric references). The vast majority of these studies have examined this issue 

comparing well-formed sentences with sentences including semantic and/or syntactic 

incongruities (Folia et al., 2009; Huang et al., 2012; Kuperberg et al., 2000; Kuperberg et al., 

2003; Kuperberg, Sitnikova, et al., 2008; Newman et al., 2003; Ni et al., 2000; Nieuwland et 

al., 2012). In general terms, syntactic anomalous constructions typically recruited the middle 

frontal gyrus, as well as some parietal areas such as the inferior parietal gyrus, the precuneus 

and the posterior/anterior cingulate cortices (Folia et al., 2009; Kuperberg et al., 2003; 

Kuperberg, Sitnikova, et al., 2008). In contrast, a coupling between the inferior frontal gyrus 

and different middle and superior temporal21 regions in the left hemisphere has been 

consistently observed for semantic violation relative to well-formed sentences (Friederici, 

2011, 2012; Hagoort, 2013, 2014; Hofmann et al., 2007; Hofmann et al., 2003; Kuperberg, 

Sitnikova, et al., 2008; Pallier et al., 2011). Interestingly, similar results have been reported 

by Molinaro et al. (2015). These authors evaluated the dynamics of the semantic 

combinatorial network as a function of the typicality of the relation between a concept and 

an attribute (e.g., wet rain [prototypical semantic combination]; dry rain [atypical but 

composable semantic combination]). Importantly, these authors demonstrated that atypical 

relative to prototypical combinations enhanced a functional coupling between the anterior 

temporal cortex and the angular gyrus (see Jefferies, 2013; Lau et al., 2008; Pascual et al., 

21 Previous studies have investigated the role played by the IFG and the superior temporal gyrus in the left 
hemisphere during gender processing using aphasic patients with brain lesions (Hofmann et al., 2007; 
Hofmann et al., 2003). These authors claims that while the engagement of the LIFG is critical for phonological 
tasks, the left superior temporal gyrus seems to be an essential hub for the integration of different information 
sources (i.e., the integration of phonological and lexical cues) (but see Hagoort, 2003b; Hagoort, 2013, 2014; 
Hagoort & Indefrey, 2014 for a different perspective).  
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2015 for convergent results). Consistently with these findings, Price, A. R. et al. (2015) 

demonstrated the engagement of the angular gyrus during adjective-noun conceptual 

combinatorial processing in both typical and pathological populations. Crucially, these 

authors also showed that atrophy of the angular gyrus results in impaired conceptual 

combination. Taken together, these findings revealed how the brain processes semantic 

relations during language comprehension. However, how the brain leads with conceptual 

factors during the building of a syntactic structure has not yet been examined in depth. 

The present study was designed to investigate a) whether agreement processing uses 

the conceptual information concerning the noun gender properties during the establishment 

of gender agreement relations and if so, b) where is this possible interaction between 

conceptual and formal information mapped in the brain. In the current study Gender 

Congruency [Gender Match and Gender Mismatch] was manipulated between subject nouns 

and predicative adjectives including both Gender Systems [Conceptual and Formal]. To 

avoid possible lexical and/or morphological confounds that could be influencing the 

appearance of an interaction effect, we controlled the gender predictability of conceptual and 

formal nouns by selecting nouns whose gender was morphologically marked by either “–a” 

or “–o” [feminine or masculine]. In addition, the nouns were selected and matched on 

lexical frequency, number of lexical neighbors and length (Duchon et al., 2013). Finally, the 

intrinsic variability of these lexical variables was also controlled incorporating the three 

scores of each item as regressors in the statistical approaches implemented.  

From a neuro-anatomical perspective, we expect a neural distinction between 

grammatical and ungrammatical constructions: while congruent sentences should activate a 

left lateralized fronto-temporal circuit, ungrammatical constructions should activate a 

bilateral fronto-parietal network. If conceptual and formal gender agreement systems rely on 

similar mechanisms, we would expect no interaction between Gender Congruency and 

Gender Systems. In that case, the processing of correct sentences should give rise to an 

overlapping fronto-temporal network regardless of the gender type of the noun. Similarly, 

the detection of a grammatical violation should trigger the activation of similar fronto-

parietal activation pattern, with no modulation based on the type of gender agreement. In 
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contrast if during agreement computation word meaning interacts with syntactic 

information, we would expect a distinctive activation pattern associated to each gender 

system. According with previous fMRI findings (see Molinaro et al., 2013 for convergent 

MEG findings; see also Molinaro et al., 2015; Price, A. R. et al., 2015), this neural 

distinction could involve left parietal regions including the angular gyrus. Supporting this 

hypothesis, Binder et al. (2009) highlights the crucial role of this highly heteromodal 

associative parietal region as part as a domain-general semantic network. The link between 

parietal regions and the left-lateralized language-specific fronto-temporal network (e.g.; the 

inferior, middle and superior temporal regions and also the pars triangularis and orbitalis 

within the left inferior frontal gyrus) has been supported by previous anatomical 

connectivity findings (Catani et al., 2012; Catani & Mesulam, 2008; Catani & Thiebaut de 

Schotten, 2008; Thiebaut de Schotten et al., 2012). However, no existing evidence explains 

how these two functional segregated networks interact during agreement processing. 

4.2 Materials and Methods 

Participants. Fifty three healthy paid volunteers gave written informed consent to 

participate in this study. After the quality checking of the data, a total of forty nine 

participants (thirty females), with ages ranging from 22 to 42 years (mean = 28.6, standard 

deviation = 4.8), were used to estimate the group effects. 

Stimuli and experimental procedure. Each subject participated in a single functional 

run consisting of an event-related 2 x 2 factorial within-subject design. Each trial consisted 

in a word-by-word visual presentation of four words’ sentences that could be grammatically 

acceptable or not. Words were displayed during 300 ms in white capital letters on a black 

background. In order to optimize the sampling of the BOLD response, an inter-stimulus 

interval was included between successive sentences. During this period a fixation point 

(“+”) was presented with different durations across trials, varying between 2 and 8 seconds. 

This baseline period also allows us to counteract possible expectation effects, which might 

influence the brain response and also to estimate the time course of the BOLD response 

associated to the critical word. After each sentence a visual cue indicated participants to 
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distinguish whether the sentence was grammatically acceptable or not pressing one of two 

different buttons. 

The stimuli consisted of 160 sentences, which included 120 critical items and 40 

fillers. Each sentence contained a subject noun followed by a verb, which was always 

followed by a predicative adjective. The gender of the adjective (the critical word) was 

manipulated to produce agreement or disagreement with the subject noun. While half of the 

sentences included a gender agreement violation between the subject noun and the 

predicative adjective, the other half consisted of well-formed sentences. In addition, we also 

manipulated the gender type of the subject by including nouns with conceptual (e.g., abuela 

[grandmother]) and grammatical (e.g., teoría [theory]) gender, in the proportion 1:1. The 

resulting 2 x 2 factorial design comprised the Gender Type of the subject noun [Conceptual 

Gender and Formal Gender] and the Gender Congruency between subjects and predicative 

adjectives [Gender Match and Gender Mismatch] as factors (see examples (11) and (12) 

below).  

(11) Conceptual Gender  

(a) Gender Match: e.g., La abuela era sabia ([The grandmother]masc.sing. was 
wise masc.sing.) 

(b) Gender Mismatch: e.g., *La abuela era sabio ([The grandmother]masc.sing. 

was wise fem.sing.) 

(12) Formal Gender  

(a) Gender Match: e.g., La teoría era exacta ([The theory]fem.sing. was 
accurate fem.sing.) 

(b) Gender Mismatch: e.g., * La teoría era exacto ([The theory]fem.sing. was 
accurate masc.sing.) 

All subject nouns and predicative adjectives included in the critical sentences are 

morphologically marked for gender using the Spanish canonical suffixes “–o” for masculine 

and “–a” for feminine. In order to avoid strategies related to the morphological 
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decomposition of nouns and adjectives (i.e., participants would attend only to the suffixes in 

order to determine whether there is a gender grammatical violation or not), in filler 

sentences we kept the noun type constant but we included opaque predicative adjectives, i.e. 

adjectives that end with non-canonical suffixes (e.g., “–e”, “–n”, “–l”). In addition to gender 

agreement, in Spanish it is mandatory that subject nouns and adjectives also agree in 

number. In order to avoid possible interactions between gender and number agreement 

features, the number agreement was also controlled: a) all the subjects nouns and adjectives 

agreed in number; b) all subject nouns and adjectives were morphologically marked for 

number with the canonical Spanish plural suffix (“–s”) and c) half of the nouns were 

presented in their singular form, and the other half in their plural form. All nouns and 

adjectives were of medium lexical frequency [nouns: mean = 38.37 per million, SD = 54.25; 

adjectives: mean = 22.67 per million, SD = 61.65] and 4 to 9 letters long [nouns: mean = 

5.69, SD = 0.91; adjectives: mean = 6.41, SD = 1.65] (see also Table 4.1) according to the 

Spanish ESPaL database (http://www.bcbl.eu/databases/espal/) (Duchon et al., 2013) (see 

Appendix 3 for a list of the stimuli used). 

 

Table 4.1. Mean of the frequency, length and neighbors of the critical word (predicative 
adjectives) per condition. Mean values for conceptual and formal gender in the two 
congruency patterns (match and mismatch) were included, with its corresponding 
standard deviation between parentheses. 

Mismatch Match Mismatch Match

Log (frequency) 2.2828 (1.33) 2.5208 (1.54) 1.6333 (1.84) 1.9732 (1.72)

Length 5.5667 (0.63) 5.4333 (0.86) 7.9231 (2.13) 7.5385 (1.70)

Lev Neighbors 1.5433 (0.25) 1.5 (0.36) 1.9981 (0.62) 1.8538 (0.52)

Formal Gender Conceptual Gender
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MRI acquisition. The current experiment was performed on the same scanner than 

Experiment I. Functional event-related scan consisted of 544 echoplanar images were 

acquired following the T2*-weighted gradient-echo pulse sequence described in Appendix 

2B. In addition, a MPRAGE T1-weighted structural image was acquired using the same 

sequence.  

FMRI data analysis. Functional data were analyzed using the same pipeline applied 

in Experiment I. However, here we inserted an additional step after the normalization 

procedure. At this point, global effects were removed using a voxel-level linear model of the 

global signal proposed by Macey et al. (2004). Detrending fMRI time series were then 

smoothed and high-pass filtered. 

Statistical parametric maps were generated by modeling univariate general linear 

model, using for each stimulus type a regressor obtained by convolving the canonical 

hemodynamic response function with delta functions at stimulus onsets, and also including 

the six motion-correction parameters as regressors. The stimuli onsets include five different 

components. The first one corresponded to the onset of each sentence trial and was modelled 

as a single regressor, independently of the experimental conditions. The next four 

corresponded to each experimental condition (Incongruent Formal Gender [IGG], 

Congruent Formal Gender [CGG], Incongruent Conceptual Gender [ICG] and Congruent 

Conceptual Gender [CCG]) and lasted from the onset of the critical adjective. In addition, 

we also included in the design matrix three different features of the stimuli used: the 

frequency, the length and the Levenshtein’s distance of each critical word. Similarly to the 

previous experiment, parameters of the GLM were estimated with a robust regression using 

weighted-least-squares (Diedrichsen & Shadmehr, 2005). Those trials associated to incorrect 

behavioral responses were removed from its corresponding condition.  

Contrast images for each of the four conditions compared to the fixation baseline 

were submitted into a second level 2x2 ANOVA using the Gender Type (Conceptual and 

Formal) and the Gender Congruency (Match and Mismatch) as factors. This analysis would 

allow us to determine possible main effects and interactions. Population-level inferences 
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were tested using a threshold of p < 0.001 uncorrected with a voxel extent higher than 100 

such that only those peaks or clusters with a p-value corrected for multiple comparisons with 

family wise error (FWE; Nichols & Hayasaka, 2003) and/or false discovery rate (FDR; 

Genovese et al., 2002) were consider as significant. All local maxima were reported in the 

results tables as MNI coordinates (Evans et al., 1993).  

A very similar whole brain approach was used in the previous chapter in order to 

neuro-anatomically characterize the neural regions involved in the establishment of nominal 

agreement relations. However, this procedure does not give any information concerning the 

temporal dynamic of the areas within this agreement network. For this reason, in addition to 

the classical whole brain analysis, in the current experiment we also estimated the time 

course of the hemodynamic response function (HRF) in a group of Regions of Interest 

(ROI). Using these ROIs the spatially unsmoothed time series were extracted using the same 

design matrices described above for the whole brain analysis. To estimate the HRF for each 

critical event a Finite Impulse Response [FIR] (Burock & Dale, 2000; Dale, 1999) model 

was used (http://marsbar.sourceforge.net/download.html). The FIR was characterized by its 

maximum peak of amplitude and the latency corresponding to the location of this maximum. 

This approach allows us to distinguish whether the temporal characterization of the brain 

response for each ROI complement in some way the information extracted from the direct 

comparison between conditions. These analyses also increment the statistical power of each 

comparison reducing the dimensionality of the problem. The ROIs used were built in MNI 

space combining a functional and an anatomical criteria such that all voxels: a) were 

included in the group-level effect of the contrast Mismatch vs. Match [main effect of Gender 

Congruency]; b) were connected to a local t maxima; and c) were included in one AAL 

structural ROI. Repeated measured analyses of variance were preformed independently over 

the log transformation of amplitude and latency parameters estimated for each type of 

stimuli following the same statistical design described above for the whole brain analysis. 
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4.3 Results 

Behavioral results. Mean decision times and error rates for each condition are 

presented in Table 4.2, with the corresponding standard error between parentheses. Trials 

with incorrect responses and/or reaction times below or above 2.5 standard deviations from 

the mean were excluded from the latency analysis. Percentage of correct responses was 

above 96 % for all experimental conditions, indicating that participants judged the well-

formed sentences as grammatically acceptable in contrast to the sentences with a gender 

agreement violation. 2x2 ANOVAs on mean decision times and error rates were performed 

using Gender Type (Conceptual and Formal) and Gender Congruency (Match and 

Mismatch) as factors. These analyses showed no significant effects among the experimental 

conditions, neither for accuracy nor for decision times (p > 0.05).  

These null effects could be reflecting the wrap-up effect previously described for 

sentence processing: participants require longer decision times to respond when the critical 

event is located at the end of the sentences (Gibson et al., 2005; Hagoort, 2003b; Hyönä et 

al., 2002; Igoa et al., 1998; Just & Carpenter, 1980; Silva et al., 2014). Previous studies have 

showed different behavioral and ERP effects for the processing of sentences including 

violations in the last word in compared with sentences including violations in intermediate 

positions (Hagoort, 2003b; Hagoort & Brown, 1999; Weber & Lavric, 2008). This effect 

seems to reflect a sum of different neuro-cognitive mechanisms triggered by a retrospective 

processing of the whole sentence (Hagoort, 2003b; Silva et al., 2014). 
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Table 4.2. Error rates (in %) and mean decision times (in ms) for conceptual and 
grammatical gender in the two types of sentences (match and mismatch) with standard 
error between parentheses. 

 

 

FMRI data: Congruency effect (Gender Match vs. Gender Mismatch). To 

characterize the neural circuit underlying agreement computation processes that should be 

operating for both types of gender (Formal Gender and Conceptual Gender) we extracted 

the main effect of Gender Congruency (Gender Match vs. Gender Mismatch) from the 2x2 

Factorial design. The significant effects included regions with higher responses for the 

Gender Mismatch condition than for the Gender Match condition and regions that exhibited 

the opposite pattern, i.e. higher activation for Gender Match than for Gender Mismatch 

condition. On the one hand, significant activation increases emerged from the Gender 

Mismatch > Gender Match contrast, including regions such as the right and left insula, the 

left pars orbitalis, opercularis and triangularis within the IFG, the left precentral, the left 

supplementary motor area, and the left inferior parietal. On the other hand, the contrast 

Gender Match > Gender Mismatch produced higher brain response in regions such as the 

angular gyrus, anterior cingulate cortex, precuneus, middle temporal gyrus (MTG) and 

orbitofrontal cortex bilaterally and the left occipital and left superior frontal cortex (see 

Table 4.3 for a detailed list of regions and Figure 4.1 and 4.2 for a representation of its 

response pattern [activation or de-activation with respect to the fixation baseline]). Note that 

the hemodynamic response functions of these regions exhibited different patterns. The left 

anterior cingulate cortex, the left middle temporal gyrus and the left pars opercularis – 

Match Mismatch Match Mismatch

648.79 (35.18) 613.56 (30.60) 2.04 (0.62) 3.22 (0.62)

639.33 (33.88) 638.10 (31.73) 2.69 (0.63) 2.26 (0.49)

Conceptual

Grammatical

Mean decision times Error rates
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within the IFG –, exhibited significant congruency effects between 2.5 and 5.0 seconds, 

whereas others regions such as the pars triangularis within the IFG, the middle frontal gyrus 

and the medial superior frontal gyrus exhibited sustained – i.e., between 2.5 and 12.5 

seconds – significant differences between congruent and incongruent items (for more details 

see Figure 4.2). 

FMRI data: Interaction between Agreement Congruency and Gender Type. In order 

to investigate whether the brain regions involved in gender agreement processing vary as a 

function of the gender type (Conceptual and Formal Gender) we explored the interaction 

effect resulting from the 2x2 factorial design. Interestingly, we observed significant 

interaction effects in two different clusters including the left inferior parietal gyrus and the 

left angular gyrus (Figure 4.3 and Table 4.4). Significant differential effects emerging from 

the contrast Mismatch vs. Match in both regions were found only for Conceptual Gender. 

No significant differential effect was found in these regions for Formal Gender. Note that 

the hemodynamic response functions of these two parietal clusters are very similar; both 

exhibited an increment in the response pattern between 2.5 and 7.5 seconds with a maximum 

peak around 5.0 seconds. The interaction effects reported for these regions were only 

evident when the amplitudes of the maximum peaks were analysed. 
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Figure 4.1. Statistical parametric map emerging from the main effect of Gender Congruency 

was projected on the MNI single-subject T1 image. The two tails of the F-contrast were 

represented with different colors: Gender Mismatch > Gender Match in green and Gender 

Match > Gender Mismatch in red-yellow. All clusters depicted were statistically significant 

with a p-value corrected for multiple comparisons. MM: Gender Mismatch; M: Gender 

Match.   

Left hemisphere 

Ventral 

Dorsal 

Right hemisphere 

Anterior Posterior 

Ventral Dorsal 

MM > M 
M > MM 
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Figure 4.2. Time courses of the HRFs of those regions resulting from the main effect of 
Gender Congruency. Gender Mismatch and Gender Match are represented with different 
colors. The vertical dotted lines signal the maximum amplitude peaks and the latency 
corresponding to the location of this maximum.  

111 

 



Iliana Quiñones, 2015 

 

Table 4.3. Significant activation clusters resulting from the main effect of 
Congruency (Match > Mismatch and Mismatch > Match) for conceptual and 
grammatical gender. 

 

  

Peak level Cluster 
level

T No. Vox

Inferior Parietal Gyrus -58 -46  38 4.35 1562
Supramarginal Gyrus -52 -46 38 3.88

Angular Gyrus -33 -50 38 3.13
Middle Frontal Gyrus -40  50   2 3.81 2384

Pars Triangularis (IFG) -52  20  30 3.75
Pars Orbitalis (IFG) -38 46 0 3.72

Pars Opercularis (IFG) -54 8 24 3.54

Inferior Parietal Gyrus  50 -34  58 5.23 2717
Angular Gyrus 40 -48 40 3.79

Supramarginal Gyrus 54 -38 42 3.42
Precentral Gyrus  38 -12  58 4.24
Postcentral Gyrus  28 -36  68 4.06

Superior Frontal -12  54  36 3.14 83
Orbitofrontal Medial  -4  46 -12 4.23 633

Superior Frontal Medial  -6  52   6 2.49
Precuneus  -6 -56  14 4.35 867

Middle Occipital -44 -74  34 3.22 167
Inferior Occipital -26 -94  -8 4.79 651

Middle Temporal Pole -52  10 -26 2.92 62
Superior Temporal Pole -42  20 -24 2.83
Middle Temporal Gyrus -56   2 -26 2.68

Superior Frontal Medial   2  56  16 2.69 83
Anterior Cingulate   8  48  24 2.93

Middle Temporal Gyrus  52   0 -24 2.91 214
Precuneus   6 -56  18 3.42 867
Calcarine  22 -96  -4 3.75 699

Inferior Occipital  32 -88  -8 3.53
Middle Occipital  34 -86  12 3.13

R

Only those clusters with an effect corrected with FWE or FDR criteria were considered as 
significant and it was included in the table. x,y,z {mm}= Coordinates in MNI space of local 
maxima. T = T scores. No.Vox. = Number of voxels significantly activated inside the cluster 
belonging to each local maximum. T scores at the peak level are reported in bold if they are 
significant after FWE correction. 

Contrast Region x,y,z {mm}

Match > 
Mismatch

Hemisp

R

LMismatch > 
Match

L
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Figure 4.3. Statistical parametric map emerging from the interaction effects between Gender 
Congruency and Gender Type were projected on the MNI single-subject T1 image. The 
sagittal and axial views represented in the upper part of the figure display the significant 
activated clusters. The bar graphs display the contrast estimates and 90% of confidence 
intervals at the maximum peaks representative of the two clusters resulting from the 
interaction effect. Time courses of the HRFs are represented in the lowest part of the figure. 
Each condition is represented with different colors. The vertical dotted lines signal the 
maximum amplitude peaks and the latency corresponding to the location of this maximum. 
MM: Mismatch; M: Match. CG: Conceptual Gender; FG: Formal Gender.   
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Table 4.4. Interaction between Congruency Pattern (Match and 
Mismatch) and Type of Gender (Conceptual and Formal). 

Inferior Parietal (L) -46 -56  48 4.12 -56 -46 40 5.76 506

Angular Gyrus (L) -40 -62 40 3.05 -42 -54 44 4.57 65

Match vs. Mismatch for 
Conceptual GenderInteraction 

Only those clusters with a significant interaction effect (p<0.001 uncorrected) 
were resported. x,y,z {mm}= Coordinates in MNI space of local maxima. Vx = 
Number of voxels significantly activated inside the cluster belonging to each 
local maximum. T = T scores. T scores are reported in bold if they are 
significant at the peak level after FWE or FDR correction. 

T No. 
Vox. T No. 

Vox.
x,y,z 

{mm}

Region
x,y,z 

{mm}

998

 

 

4.4 Discussion 

As we pointed out in the Overview section, it remains unclear whether and how the 

conceptual knowledge associated to certain grammatical elements affects the building of a 

syntactic structure. The empirical evidence with regard to this phenomenon is scarce and 

even contradictory, making difficult to draw any theoretical conclusion. The current study 

was designed to investigate a) whether the building of a syntactic structure hinges on the 

conceptual information embedded in our linguistic code and if so b) where is this 

dependency mapped in the brain. To examine this, we took advantage of the Spanish gender 

agreement system, where it is possible to distinguish two different gender types depending 

on the animacy of the nouns – i.e., conceptual (mostly living entities) and formal (mostly 

non-living entities). Interestingly, the assignment of the gender values – masculine or 

feminine – in both gender types follows the same morpho-phonological rule (i.e., regardless 

of their animacy, nouns ending in “–a” are usually feminine and nouns ending in “–o” are 

usually masculine). This property allowed us to determine how our brain processes 

agreement information distinguishing between merely syntactic dependencies – e.g., formal 

gender agreement in Spanish – and more complex agreement relations, where the interplay 
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between form-based and conceptual signals could be an important constraint – e.g., 

conceptual gender agreement in Spanish. Critically, it also enabled us to explore the possible 

interactions between these formal and conceptual factors, controlling the syntactic 

complexity of the grammatical units. 

In consonance with the previous experimental chapter (Chapter 3), the current 

findings revealed that a specific brain circuit responds according to the gender agreement 

congruency between determiners and nouns. The pars opercularis and triangularis within the 

left IFG, the left middle frontal gyrus, as well as the left MTG/STG emerged as critical hubs 

for the computation of grammatical relations. In addition, we also demonstrated that others 

fronto-parietal areas in both hemispheres (e.g., the superior parietal cortex, the anterior 

cingulate cortex and the superior and middle frontal gyri) are actively engaged in 

contributing to this operation. The response patterns of these regions varied as a function of 

the congruency between the different elements involved in such grammatical relations. This 

empirical finding indicated that the neural circuit responsible for agreement operations is not 

circumscribed to the left prerisylvian regions that have traditionally been the key focus of 

the sentence processing literature (Friederici, 2011, 2012; Friederici & Gierhan, 2013; 

Hagoort, 2003a, 2005). However, even more important is the result concerning the 

interaction between conceptual and formal information during the establishment of local 

grammatical relations. Regarding this question, we isolated a parietal cluster in the left 

hemisphere which included part of the angular gyrus and the inferior parietal cortex showing 

a significant interaction between Congruency Pattern (Match and Mismatch) and Type of 

Gender (Conceptual and Formal). These two parietal areas exhibited greater response for 

incongruent than for congruent items (i.e., Mismatch > Match contrast). However, crucially, 

this difference was only significant for Conceptual Gender. In addition, the methodological 

approach used here enabled to better characterize the neural circuit underlying agreement 

operations providing chronological details about its functioning.  

Taken together the current results (Table 1S shows an updated summary of the 

principal results enabling a comparison between the findings derived from Experiment I and 

II) provide crucial evidence concerning how our brain deals with agreement information. 
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The interplay between one of the main hubs of the domain-general semantic network (i.e., 

the angular gyrus and adjacent areas) and the neural circuit involved in agreement 

computation suggests that for the processing of grammatical relations a complex circuit, 

which include language-specific and domain-general areas, is boosted. The fine-tuning of 

this system seems to be constrained by the available conceptual and/or formal information. 

From now on, the next paragraphs will be focused on discussing the relevance of these main 

findings. 
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Table S1. Main Findings 

Behavioral results 

Neuro-anatomical results 

Grammaticality effects 
Effects related with the critical 

manipulation 

Experiment I 
(determiner-
noun pairs) 

Main effect of Agreement 
Congruency: Subjects classified 

determiner-noun pairs as grammatically 
correct more easily and accurately than 
incongruent pairs. This differentiation 
was evident for both transparent and 

opaque nouns. 

Interaction effect: Regarding RT, this 
effect was larger for opaque than for 

transparent nouns. 

Gender Mismatch relative to Gender Match: 
the dorsal striatum, the middle and medial 

superior frontal gyrus, the medial orbito-frontal 
cortex, the pre- and post-central gyrus, as well 

as the anterior cingulate cortex. 

Gender Match as compared to Gender 
Mismatch: the pars opercularis and triangularis 
within the left IFG and the posterior part of the 

left MTG/STG. 

Significant interaction effects between 
Gender Congruency and Gender-marking 
emerged in five left-lateralized clusters:  

 Pars triangularis within the IFG 
 Posterior part of the MTG/STG 
 Hippocampus 
 Angular Gyrus 
 Supramarginal Gyrus 

Experiment II Null effects for RT and error rates. 

Gender Mismatch relative to Gender Match: 
the pars triangularis, orbitalis and opercularis 

within the left IFG, the middle frontal gyrus, as 
well as the inferior parietal gyrus and the 

supramarginal and the angular gyri. 

Gender Match as compared to Gender 
Mismatch: the medial superior frontal gyrus, the 

medial orbito-frontal cortex, the anterior 
cingulate cortex, as well as the anterior part of 
the left MTG/STG and the superior and middle 

temporal pole. 

Significant interaction effects between 
Gender Congruency and Type of Gender 
emerged in two left-lateralized clusters:  

 Inferior Parietal 
 Angular Gyrus 

 



 

Experiment III    

Experiment IV    

Experiment V    
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Interplay between a left lateralized prerisylvian circuit and a bilateral fronto-

parietal network. Critically, the computation of agreement dependencies, an essential 

operation required to comprehend phrases or sentences has been neglected for a long time, 

especially if we talk about neurocognition. Despite of the scarcity of empirical evidence, all 

the studies relating to this topic share an important result: the brain areas involved in 

computing agreement relations concur with the regions pinpointed as crucial nodes of the 

network underlying sentence comprehension. The IFG and the anterior and posterior MTG-

STG, essential nodes within the left lateralized perisylvian circuit responsible for decoding 

linguistic inputs, have also been identified as critical areas recruited during agreement 

computation (Kuperberg et al., 2000; Kuperberg et al., 2003; Kuperberg, Sitnikova, et al., 

2008; Newman et al., 2003; Ni et al., 2000; Nieuwland et al., 2012). The current results 

nicely support this claim, but critically, they also fit well with recent theoretical models that 

have proposed that the processing of linguistic material is not circumscribed to this 

language-specific circuit (Hagoort, 2013, 2014; Hagoort & Indefrey, 2014). In contrast, the 

need to consider the interplay between this circuit and other domain-general networks has 

become increasingly apparent.  

Regarding this point, the current results reveal that while regions such as the IFG 

(i.e., encompassing the pars opercularis and triangularis), the middle frontal gyrus and the 

superior parietal cortex exhibited higher responses for the ill-formed constructions than for 

their correct counterpart, other areas such as the anterior cingulate cortex, the superior 

frontal gyrus, the medial orbito-frontal cortex, the precuneus, as well as well as the anterior 

part of the left MTG/STG and the superior and middle temporal poles showed the opposite 

pattern. Consistent with what we proposed in the previous chapter, these results indicate that 

during the building of a syntactic structure at least two different functional modules can be 

identified: 1) a left lateralized language-specific perisylvian network – i.e., including regions 

such as the IFG, the middle frontal gyrus22 and the middle and superior temporal cortices – 

and 2) a domain-general module responsible for the monitoring of conflicting signals – i.e., 

comprising areas such as the anterior cingulate cortex, the superior frontal gyrus and the 

superior parietal gyrus.  

22 See the Discussion of the previous chapter for two plausible hypotheses about the role of this region. 
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Interestingly, the estimation of the FIR models carried out in this experiment sustains 

this assertion showing that these two systems could be distinguished based on their response 

patterns. The neural responses characterizing these circuits have different polarities: while 

the perisylvian circuit exhibited positive responses, the conflict-monitoring system showed 

negative responses. While we do not have a clear physiological explanation for these 

negative responses, they cannot be ignored. As has been previously argued, these 

deactivation patterns could be reflecting a functional relationship between these regions and 

the default mode network (Greicius et al., 2003; Greicius et al., 2009; Gusnard & Raichle, 

2001; Koshino et al., 2014; Raichle, 2015; Raichle et al., 2001; Raichle & Snyder, 2007; 

Shulman et al., 1997; Uddin et al., 2009; Utevsky et al., 2014). This analysis also 

demonstrated that except for the temporal areas, the brain regions involved in agreement 

processing were more strongly recruited for ill-formed constructions than for grammatically 

correct sentences. This pattern fits well with previous work and suggests that dealing with 

grammatical violations implies additional processing costs in comparison with the 

integration of congruent information (Mancini et al., 2011a; Molinaro, Barber, et al., 2011; 

Molinaro, Vespignani, et al., 2008; Molinaro, Vespignani, et al., 2011). In addition, the 

methodological approach adopted here demonstrated that all these regions showed similar 

temporal dynamics with maximum differences around five seconds. However, critically, for 

the medial superior frontal gyrus, the pars triangularis within the IFG and the middle frontal 

gyrus, a second conspicuous peak was observed between 10 and 12 seconds. This pattern of 

responses concurs with a previous TMS study that demonstrated the involvement of the IFG 

during sentence comprehension in early (i.e., first fixation) and late (i.e., total reading times 

and regressive eye movements) processing measures (Acheson & Hagoort, 2013).  

The similarities found between these three segregated nodes within the frontal lobe 

indicate that despite these two processing modules – i.e., the language-specific perisylvian 

system and the domain-general conflict monitoring system – have different roles, they 

operate hand in hand in order to properly interpret the agreement relation. Future research 

should be directed at characterizing the interaction between these two systems focusing on 
1the functional dynamics typifying each area within these networks and 2the anatomical 

connections sustaining this interplay. 
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Disentangling the left-lateralized language-specific perisylvian circuit. Importantly, 

as the theoretical models of sentence processing proposed, within the language-specific left 

lateralized perisylvian circuit it is possible to distinguish regions with different roles 

(Bornkessel-Schlesewsky & Schlesewsky, 2013; Friederici, 2011, 2012; Friederici & 

Gierhan, 2013; Hagoort, 2005, 2013, 2014). Consistently, all these models proposed the left 

IFG as one of the central hubs of this network, which encompassed three different functional 

nodes – i.e., the pars opercularis, triangularis and orbitalis. While the left pars opercularis 

has been associated with a cost during the building of local syntactic structure, the left pars 

triangularis and orbitalis has been related with a processing cost triggered by the 

combination of semantic information (Carreiras et al., 2012; Goucha & Friederici, 2015; 

Hammer et al., 2007; Kuperberg, 2007; Kuperberg et al., 2003; Kuperberg, Sitnikova, et al., 

2008; Nieuwland et al., 2012; Santi & Grodzinsky, 2012). In this particular case, the 

engagement of the IFG responds to the gender morpho-syntactic mismatch typifying the 

incongruent items [*el mesa/ themasc. tablefem.]. Here, the difference between incongruent 

and congruent constructions was circumscribed to the pars triangularis and opercularis 

within the left IFG. Interestingly, the methodological approach used here temporally 

distinguished between these two sub-regions: while in the pars opercularis a maximum 

difference was observed between three and five seconds, in the pars triangularis the 

difference between the mismatch and the match condition was evident until 12 seconds. The 

temporal distinction characterizing the pars opercularis and triangularis could not be 

explained by the gender type or the congruency pattern, since their brain responses across 

conditions were similar. Crucially, the differences in their temporal patterns could be 

indicating that the left IFG fulfill a variety of functions during agreement comprehension. 

As previous authors have proposed, this region seems to control the information flow 

between the other nodes of this language-specific network (Molinaro et al., 2015). The pars 

opercularis could be controlling the morpho-syntactic feature checking operations, whereas 

the pars triangularis could be controlling the lexico-semantic correspondence between the 

different sentence elements and the subsequent lexico-semantic integration processes. 
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In addition, as expected, differently from the IFG, temporal areas – i.e., 

encompassing the anterior part of the MTG/STG and the superior and middle temporal 

poles – showed higher activation for the congruent items relative to the incongruent ones. 

This finding is in accordance with the results reported in the previous chapter. Nonetheless, 

the main role this area play here seems to be different. In the previous experiment, the 

congruent items evoked higher responses in the posterior portion of the MTG/STG than the 

incongruent ones. This activity was associated with the access/retrieval of the morpho-

syntactic and lexico/semantic information required for the building of a syntactic structure 

(Baggio & Hagoort, 2011; Hagoort, 2013; see Hagoort, 2014 for a discussion of this topic; 

and see also Hagoort & Indefrey, 2014). However, in the current experiment the temporal 

region resulting significant from the contrast Match vs. Mismatch included the anterior 

portion of the MTG/STG extended into the temporal pole. Different interpretations have 

been postulated concerning the role played by these anterior temporal areas. On the one 

hand, it has been argued that a ventral pathway, which connects the anterior part of the 

temporal cortex and the pars opercularis within the left IFG, sub-serves the building of local 

syntactic structures (Friederici, 2011, 2012). On the other hand, the response of this area has 

been also related with the integration of different types of conceptual information (Baron, S. 

G. et al., 2010; Bornkessel-Schlesewsky & Schlesewsky, 2013; Brennan et al., 2012; 

Brennan & Pylkkanen, 2012; Molinaro et al., 2015). However, these interpretations come 

from the sentence processing literature, where the response of this area is greater for 

syntactic or semantic violations rather than syntactically and/or semantically plausible 

constructions. As the results of the first two experiments [Experiment I and II] have 

demonstrated, when agreement is isolated from other sentential processes, the temporal 

areas exhibit higher responses for congruent than for incongruent constructions. This 

activation pattern points out that the function played by this area during agreement 

processing may not necessary correspond with the interpretations concerning sentence 

comprehension. During the processing of sentences, different mechanisms are boosted that 

may blur the mechanisms underlying the integration of local agreement information. In this 

case the anterior part of the MTG/STG could be reflecting the mapping between the formal 

and the conceptual information required to properly integrate the agreement relation. As 
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previous fMRI evidence suggests, regarding the conceptual combinatorial processing, more 

critical than the neural response of this anterior temporal region per se, are the functional 

connections this area have with others heteromodal associative hubs (see Molinaro et al., 

2015 for a link between the anterior MTG/STG and the angular gyrus). To characterize the 

functional connectivity pattern established between the different nodes of this network may 

be essential in assessing this hypothesis.  

The role of the angular gyrus and adjacent areas during agreement processing. 

Critically, this is the first fMRI study directly exploring how the conceptual and the formal 

information embedded in the same linguistic representation is taken into account in order to 

interpret grammatical relations. Our data provides clear findings indicating that the 

recruitment of the angular gyrus and adjacent areas is crucial for the comprehension of 

linguistic material. In line with our predictions, the left angular gyrus extended into the left 

inferior parietal cortex showed higher congruency differential effects (i.e., Mismatch - 

Match) for conceptual gender (e.g., *abuelomasc. sabiafem./abuelomasc. sabiomasc. [grandfather 

wise]) as compared to formal gender (e.g., *faromasc. altafem./faromasc. altomasc. [lighthouse 

tall]). This empirical evidence goes in line with previous studies demonstrating the 

involvement of parietal areas during language processing (see Hagoort, 2013; 2014 for a 

recent theoretical proposal). However, combining these two dimensions – i.e., conceptual 

and formal features – within the same linguistic representation constitutes a new fMRI 

approach that enables strongest conclusions. Using this type of manipulation it is possible to 

identify the neural correlates of semantic processing without the confounding mechanisms 

triggered by the computation of meaningless constructions.  

Interestingly, the angular gyrus has been linked not only with language-specific (e.g., 

single word processing; semantic processing and sentence/discourse comprehension), but 

also with domain-general functions (e.g., number processing, attention and spatial 

recognition, memory retrieval, conflict resolution, default mode network, episodic-memory 

and theory-of mind) (see Binder & Desai, 2011; Binder et al., 2009; Seghier, 2013; Seghier 

et al., 2010 for similar proposals). Taking into account the variety of cognitive functions the 

angular gyrus has been associated with, Seghier (2013) in a recent review postulated that 
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this area constitutes “a cross-modal integrative hub that gives sense and meaning to an 

event within a contextualized environment, based on prior expectations and knowledge, and 

toward an intended action” (Seghier, 2013, p. 52). Likewise, Binder and Desai (2011) 

suggested that this parietal area is a heteromodal integrative hub responsible for the retrieval 

of conceptual representations of events, which include interlinked entities defined by their 

spatial and temporal configurations. The top-down and bottom-up connections existing 

between the angular gyrus and multiple fronto-temporal (e.g., the middle, superior and 

inferior frontal gyri, and the middle temporal gurys) and medial (e.g., the hippocampus, the 

caudate, and the precuneus) regions support these two proposals (see Seghier, 2013 for a 

review of this topic).  

In consonance with these two accounts, the engagement of this left parietal cluster 

for the comprehension of grammatical relations points out an interfacing between a left-

lateralized language-specific perisylvian circuit and a central hub of the highly heteromodal 

semantic associative system. The empirical evidence resulting from the current study 

indicates that the language system recruits this parietal area in order to access the concepts 

required for the proper interpretation of such grammatical relations. This hypothesis is 

underpinned by previous fMRI evidence, which demonstrated a functional coupling between 

the left angular gyrus and the anterior part of the left MTG/STG boosted by the 

comprehension of atypical but composable semantic combination (e.g., “dry rain”) 

(Molinaro et al., 2015). These authors interpreted this coupling as a processing cost 

triggered by the building of a complex conceptual combination (see also Bemis & 

Pylkkänen, 2011, 2012a, 2012b; Hammer et al., 2007; Hammer et al., 2005). These findings 

fit nicely with previous experiments showing a functional dependency between dorsal and 

ventral fiber tracts and the comprehension of syntactic dependencies (for concomitant DTI 

results see Bonner et al., 2013; and see also Griffiths et al., 2012; Wilson et al., 2011). 

Further works should be directed to 1isolate the neural region(s) through which these two 

systems communicate with each other and 2identify which is the switch that controls this 

interfacing. 
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Interim conclusions. During the comprehension of phrases or sentences multiple 

neural mechanisms operate in a coordinated and agreed fashion. In line with most of the 

theoretical models of sentence processing, the present fMRI study demonstrated that the 

building of a syntactic structure recruits a left-lateralized perisylvian circuit typically 

associated with language-specific functions (Friederici, 2011, 2012; Friederici & Gierhan, 

2013; Hagoort, 2005, 2013, 2014; Hagoort & Indefrey, 2014). However, our data suggest 

that concurrently, a domain-general conflict monitoring system bilaterally distributed is also 

engaged during this process. Nonetheless, these two systems play different roles; a clear 

interfacing between them was pointed out. Crucially, the main contribution of this study was 

the parietal involvement during the access and retrieval of conceptual information associated 

with the different grammatical elements. The interplay between these three functionally 

segregated systems during the computation of grammatical relations is a key piece of 

evidence for the better understanding of the neural dynamics supporting language 

comprehension.  

In the context of agreement comprehension and even more specifically in the context 

of gender agreement processing, the outcomes of the current study are pivotal. According 

with our results, during the comprehension of nominal agreement relations the formal and 

conceptual information are taken into account. Nevertheless, more than a serial processing 

of these two types of information, our data indicate that the interaction between these 

dimensions is essential for the proper interpretation of grammatical relations. At a more 

general level, the current empirical evidence also impacts on the theoretical models of 

sentence comprehension questioning the functional semantic-syntactic distinction between 

the ventral and dorsal pathway(s) (for a different argument see Friederici, 2011, 2012). The 

processing of conceptual and formal information might involve a functional nexus between 

these neuro-anatomically different pathways (Griffiths et al., 2012; Wilson et al., 2011). It is 

essential for further investigations to address this question in order to integrate the current 

findings into new theoretical proposals.  
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Chapter 5. 
Experiment III 
 

Nominal and verbal agreement: Two sides of the same coin. 

5.1 Overview 

The previous two experiments evaluated the neuro-anatomical correlates sub-serving 

the establishment of nominal grammatical relations (i.e., determiner-nouns [Experiment I] 

and noun-adjectives [Experiment II]). However, as pointed out in the Introduction (Chapter 

1, Agreement), an essential and still open question is how the brain process different types of 

grammatical configurations (e.g., determiner-noun and subject-verb). Does the brain use the 

same or different mechanisms for coding nominal and subject-verb agreement? Importantly, 

no research to date has investigated whether nominal and verbal agreement follow similar 

comprehension processes.  

Regarding the electrophysiological correlates of nominal and verbal agreement, two 

previous studies investigated agreement processing separately in determiner-noun (Barber & 

Carreiras, 2005) and in subject-verb (Silva-Pereyra & Carreiras, 2007) configurations. 

Interestingly, these studies showed different effects for verbal and nominal agreement across 

experiments. On the one hand, Silva-Pereyra and Carreiras (2007) examined subject-verb 

agreement processing by comparing number mismatch and number match constructions. In 

accordance with the current electrophysiological literature on agreement processing, they 

reported a biphasic LAN/P600 effect with higher amplitude for number mismatch than for 

number match. On the other hand, Barber and Carreiras (2005) explored the processing of 

number agreement in determiner-noun pairs and found a LAN/N400 effect followed by a P3 

effect. The early LAN effect was interpreted by these authors as reflecting the failure in the 

integration of the two words during the syntactic build-up of the noun-phrase structure, 
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whereas they suggested a relationship between the N400-like effect and lexical integration 

processes associated to the word matching that participants have to carry out in order to 

perform the task. Critically, from a neuro-anatomical perspective, as mentioned above a few 

studies have investigated the effects of agreement on the BOLD signal (Carreiras et al., 

2010; Hammer et al., 2007; Hernandez et al., 2004; Miceli et al., 2002; Nieuwland et al., 

2012). In particular, Carreiras et al. (2010) investigated agreement in the processing of word 

pairs, either determiner-noun or noun-adjective Spanish items. They reported increased 

BOLD activity in the left premotor and left inferior frontal areas for the processing of 

number agreement violations as compared to the agreement baseline. On the other hand, 

Nieuwland et al. (2012) reported increase of activation in parietal and dorsolateral prefrontal 

regions using sentences in Basque with subject-verb number agreement violations. These 

findings were taken as evidence for the increased syntactic demands of the mismatch 

conditions compared to the grammatical control. Despite these ERP and fMRI findings, 

where different effects have been reported across experiments, it is difficult to reach a clear 

conclusion about whether verbal and nominal agreement operations are using the same or 

different processing mechanisms. Critically, no ERP or fMRI study has yet directly 

compared verbal and nominal agreement within-participants in the same experiment. In the 

current neuro-cognitive literature on language processing no hypothesis is formulated 

concerning a possible dissociation of nominal and verbal agreement in comprehension.  

Thus, verbal and nominal agreement needs to be investigated using the same 

experimental procedure with the same participants. This is the aim of the present study, in 

which number violations will be created within both nominal and subject-verb agreement 

structures, to examine the neural substrates associated with their processing. Specifically, by 

comparing number matching patterns (e.g., determiner-noun: elsg. anillosg. [the ring]; 

subject-verb: ellasg. bailasg. [she dances] and mismatching (e.g., determiner-noun: *lospl. 

anillosg. [the ring]; subject-verb: *ellaspl. bailasg. [*they dances]), we hope to gain insight 

into feature-consistency and integration procedures as well as into the repair/reanalysis 

operations that finding a number anomaly triggers in both nominal and subject-verb 

agreement structures. It is important to highlight that the main goal of the present study was 

to investigate the brain regions involved in number agreement computation in two different 
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constructions, and not to look at the processing differences between verb and noun 

processing per se. Since nouns and verbs differ in many dimensions, we did not contrast 

them directly23 (for a review see Vigliocco et al., 2011). In the following, we proceed to 

detail our predictions emphasizing the distinction between different mechanisms supporting 

the establishment of an agreement relation. 

As explained in the introductory section (Chapter1, Linguistic Theoretical 

Framework of Agreement), from a theoretical perspective the processing of a noun-phrase 

structure implies matching a noun with its real-world referent based on its morphological 

markers, without building any thematic representations. However, the analysis of a subject-

verb structure implies not only the extraction of morpho-syntactic markers from the input, 

but also the projection of a complex representation in which the subject noun is associated to 

a specific role. On the one hand, if the two types of agreement operate with similar 

mechanisms, comprehending an instance of nominal or verbal agreement should not make 

any difference to the processor. In this case, the processing of the two types of agreement is 

expected to recruit overlapping neural networks related to feature checking, syntactic 

integration and interpretation, as well as conflict-monitoring operations. On the other hand, 

different checking operations might be shaped because of the different syntactic domains 

and features that the two types of agreement encompass. In addition, differences between the 

two patterns may also arise from the different interpretive outcomes that the syntactic 

integration of these two types of structures produces. In parallel to these language-specific 

operations, differences concerning the conflict-monitoring operations could also emerge. 

From a neuro-anatomical perspective, the differences between the two dependencies can 

emerge in qualitative and/or quantitative terms. In the former case, the difference should be 

reflected in the engagement of distinct neural networks that support the two types of 

agreement, while in the latter, greater or lesser neural responses within the same network 

would be found.  

23 It should be noticed that a direct comparison between a noun and a verb – e.g., “anillo” and “baila” – 
would have been inappropriate, since they are two inherently different lexical categories. As such, their 
analysis implies accessing different types of grammatical and referential information. While nouns refer to 
entities, verbs denote actions or states that can develop in specific time frames (tense information), 
progressively or punctually (aspect information), by means of agents or patients (thematic roles).  
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5.2 Materials and Methods 

Participants. After the quality checking of the data, a total of 32 (19 females) 

undergraduate students, with ages ranging from 18 and 37 years, participated in the current 

study.  

Stimuli and experimental procedure. The present experimental design manipulated 

number agreement (number match vs. number mismatch) and type of word pairs 

(determiner-noun pairs vs. subject-verb pairs) in a 2x2 factorial within-subject design. The 

stimuli consisted of 128 word pairs divided in four experimental conditions (in the 

proportion of 1:1:1:1): determiner-noun agreement pairs; determiner-number violation pairs; 

subject-verb agreement pairs and subject-verb violation pairs (see examples below). These 

word pairs were made up of a determiner article plus a noun (such as in (13a) and (13b) 

below), or a personal pronoun plus an inflected verb (such as in (14a) and (14b) below). All 

the nouns included in the determiner-noun word pairs were selected such that their 

corresponding plural form incorporates a morphological mark (in Spanish the canonical 

suffixes “-s” or “-es”). All four conditions contained 32 word pairs each. In every condition, 

half of the nouns or verbs were presented in their singular form, and the other half in their 

plural form. All nouns and verbs were of medium lexical frequency [nouns: mean = 38.37 

per million, SD = 54.25; verbs: mean = 22.67 per million, SD = 61.65] and 4 to 9 letters 

long [nouns: mean = 5.69, SD = 0.91; verbs: mean = 6.41, SD = 1.65] according to the 

Spanish ESPaL database (Duchon et al., 2013). In addition to number agreement, in Spanish 

it is mandatory that determiners and nouns also agree in grammatical gender. To avoid 

possible gender effects, the grammatical gender agreement was strictly controlled: a) all 

nouns used are inanimate nouns; b) all the word pairs agree in gender; c) all nouns are 

morphologically marked for gender, that is, they end with the canonical suffixes in Spanish 

for gender (“–o” for masculine and “–a” for feminine). All the subject-verb word pairs used 

in the present study were constructed such that a third person plural subject is followed by a 

third person plural verb. 

(13) Determiner-Noun word pairs 

130 

 



Chapter 5. Experiment III. 

(a) Number Match: e.g., Elsg. anillosg. [The ring] 

(b) Number Mismatch: e.g., *Lospl. anillosg. [The ring] 

(14) Subject-Verb word pairs 

(a) Number Match: e.g., Ellasg. bailasg. [She dances] 

(b) Number Mismatch: e.g., *Ellaspl. bailasg. [They dance] 

Two lists of 128 experimental word pairs were generated depending on the 

agreement manipulation. Assignment of word pairs to the agreement conditions (Number 

Match – Number Mismatch) in each list was counterbalanced across participants. Thus, each 

pair occurred twice across subjects, once in the match condition and once in the mismatch 

condition, so that each participant only saw one form of each pair during the experiment (see 

Appendix 4 for the list of all the stimuli per condition).  

In each trial, participants were visually presented with two words at the same time. 

As described in the materials, the pairs of words could be article-noun (e.g., El anillo [The 

ring]) or subject-verb word pairs (e.g., Élsg. bailasg. [He dances]), which could match or 

mismatch in number agreement (e.g., Match: Elsg. anillosg. [The ring] vs. Élsg. bailasg. [He 

dances]; Mismatch: *Lospl. anillosg. [*The ring] vs. *Ellospl. bailasg. [*They dances]). 

Participants were instructed to judge the grammaticality of each pair by pressing either one 

of two buttons (YES: grammatical; NO: ungrammatical). Specifically, each trial began with 

a cross “+” as a visual cue, presented for a variable time between a minimum of 2000 msec. 

and a maximum of 8000 msec. (mean = 6870 msec.; SD = 1840 msec.), followed by the two 

words for 300 msec., followed by a blank screen for 2000 msec. The inter-stimulus interval 

was varied in order to counteract expectation effects that might diminish or change 

participants’ strategies. In addition, varying these times also helped to ensure that brain 

activity was sampled at different points of the BOLD response. An event-related design was 

used in which a different randomization of trials was used for each participant. 
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Image Acquisition. Scanning was done on the same scanner than the two previous 

experiments. In all subjects 480 BOLD-contrast-weighted echoplanar images were taken in 

one run using the parameters described in Appendix 2C. After the functional run, a T1-

weighted anatomical volume image was acquired from all participants following the 

parameters described in Experiment 1. 

Functional Data Analysis. Functional data were analyzed using the same procedure 

described in Experiment 1. After that, at the subject level, statistical parametric maps were 

generated by modeling a univariate general linear model, using for each stimulus type a 

regressor obtained by convolving the canonical hemodynamic response function with delta 

functions at stimulus onsets, and also including the six motion-correction parameters as 

regressors. Following the same procedure used in the previous experimental chapters, robust 

regressions using weighted-least-squares were used to estimate the parameters of the GLM 

(Diedrichsen & Shadmehr, 2005). A pair-wise contrast comparing activity to each phrase 

type relative to the fixation baseline was then submitted into a second level design analysis 

to enable population inferences. A 2x2 Factorial design was performed with Agreement 

Pattern (Number Match vs. Number Mismatch) and Type of Word Pairs (Determiner-noun 

pairs vs. Subject-verb pairs) as factors, looking for the main effects and possible 

interactions. Those local maxima with a p-value corrected for multiple comparisons with 

family wise error (FWE: Nichols & Hayasaka, 2003) and/or false discovery rate (FDR: 

Genovese et al., 2002) and those local maxima that reach the FWE criteria at the cluster 

level were considered as significant and reported in the tables of results. Subsequently, in 

order to determine whether number agreement computation (tested by the contrast Mismatch 

vs. Match) engages a common neural circuitry for the two types of construction 

(Determiner-Noun pairs and Subject-Verb pairs), we tested the conjunction null hypothesis 

[both tails of the comparison Mismatch vs. Match for Determiner-Noun pairs & Mismatch 

vs. Match for Subject-Verb pairs] (Friston et al., 2005; Nichols et al., 2005). This test allows 

us to isolate those regions where both effects were significantly present and did not differ in 

magnitude (Results concerning this analysis are included in the Supplementary Material).  

In order to disentangle whether differential effects (Mismatch vs. Match) between 

nominal and subject-verb agreement are related to language-specific or to general attentional 
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mechanisms associated to increases of the task difficulty, two additional analyses were 

carried out. On the one hand, a series of correlation analyses between the behavioral 

measures (RT and error rates) and the BOLD responses corresponding to those regions that 

exhibited a significant interaction effect were conducted as an exploratory approach. This 

analysis allows us to explore whether the response of the critical neural regions is modulated 

by task difficulty. On the other hand, a series of causal mediation analyses24 was performed 

in order to corroborate the previous correlation results in a more deterministic way. This 

analysis allows us to determine the causal relationship of the differential effects between 

nominal and subject-verb agreement at the neural level and the task difficulty effect arising 

from the behavioral results. This mediation analysis quantifies the extent to which the 

treatment [critical manipulation: Mismatch vs. Match in Determiner-Noun pairs and 

Mismatch vs. Match in Subject-Verb pairs] affects the outcome [interaction effect at the 

neural response level] through the mediator(s) [behavioural measures: RT and error rates] 

(Baron, R. M. & Kenny, 1986; Carreiras et al., 2014; Imai, Keele, & Tingley, 2010; Imai, 

Keele, & Yamamoto, 2010; MacKinnon, 2008; Tingley et al., 2013)  

Two different statistical models were tested for each neural region independently: a) 

the mediator model, where the behavioral measures are influenced by the manipulation of 

the treatment, with this relationship mediating the causal effect between the treatment and 

the brain response; and b) the response model, where the behavioral measures and the 

critical manipulation act as predictors of the brain response (dependent variable). For each 

model we estimated the average causal mediation effect (a particular mechanism acting 

through the mediator of interest [Average Causal Mediation effect: ACME]) and the direct 

effect (which includes all other possible mechanisms [Average Direct Effect: ADE]). To 

improve the statistical power of these estimations, both measures (ACME and ADE) were 

expressed as a population average estimated through 1000 bootstrap random samples 

extracted from the data. 

24 The series of causal mediation analyses was estimated using a hierarchical multilevel regression model 
where all repeated measures will be the first hierarchical level and subjects the second one. 
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5.3 Results 

Behavioural results. Mean reaction times (RT) and error rates for each condition are 

presented in Table 5.1, with the corresponding standard error between parentheses. The data 

was explored and cleaned following the procedure described in Experiment 1. 2x2 ANOVAs 

on mean response times and error rates were performed using Agreement Pattern (Number 

Match and Number Mismatch) and Type of Word Pair (Determiner-noun pairs and Subject-

verb pairs) as factors.  

 

Table 5.1. Percentage of error and mean decision times (in ms) for both agreement 

patterns (match and mismatch) in the two types of word pairs (determiner-noun and 

subject-verb) with standard error between parentheses. 

Mismatch Match Mismatch Match

890.66 (34.61) 683.92 (26.25) 17.86 (1.81) 6.36 (1.05)
987.66 (36.81) 862.71 (31.74) 23.5 (1.55) 12.5 (1.19)

Determiner-Noun
Subject-Verb

Mean reaction times Error rates

 

For RTs, a significant main effect of Type of Word Pair [F(1,31) = 119.70, p<.0001], 

was found indicating that reaction times were faster in the Determiner-noun pairs than in the 

Subject-verb noun pairs. The main effect of Agreement Pattern was also significant [F(1,31) 

= 102.70, p<.0001] suggesting that grammaticality judgment in the Number Match condition 

was faster than the Number Mismatch. Importantly, the interaction between these two 

factors was also significant [F(1,21) = 18.30, p<.0001]. However, the pairwise comparisons 

for the variable of interest (agreement) showed that Number Match was faster than Number 

Mismatch both in the determiner-noun pairs [t (31) = 10.28, p<.001], and in the verb-noun 

pairs [t (31) = 7.05, p<.001]. Regarding the error rate analysis, an analogous pattern was 

found. The 2x2 ANOVA showed a main effect of Type of Word Pair [F(1,31) = 29.69, 

p<.001], indicating that the percentage of errors was larger in the Subject-verb pairs than in 

the Determiner-noun pairs. The main effect of Agreement Pattern was also significant 

134 

 



Chapter 5. Experiment III. 

[F(1,31)= 61.83, p<.001], indicating that the percentage of errors was larger in the Number 

Mismatch condition than in the Number Match condition. The interaction was not significant 

[F(1,31) = 0.46, p<.83].  

FMRI data: All phrases vs. the baseline condition. To characterize the functional 

neuro-anatomical network that was recruited by the processing of different types of word 

pairs, independently of their grammatical pattern, we extracted the effect of all the stimuli 

used from the 2x2 Factorial design (Type of Word Pair: Determiner-noun pairs and Subject-

verb pairs; Agreement Pattern: Number Match and Number Mismatch), comparing all the 

word pairs with the fixation point condition. The F-statistical parametric map resulting from 

the main effect is displayed in Figure 1, overlaid on the surface of the MNI single-subject T1 

image.  

This analysis reveals the significant response of a widespread fronto-parieto-

temporal network bilaterally distributed (Figure 5.1A). This network includes brain regions 

such as the left pars opercularis and triangularis within the IFG, as well as the anterior and 

posterior part of the left middle temporal cortex, the left superior temporal sulcus, the 

superior parietal gyrus and the basal nuclei (the right pallidum, the right and left thalamus 

and the right and left putamen), previously related to language processing. Additionally, the 

left and right fusiform gyrus and the left and right inferior, middle and superior occipital 

cortex, associated to early stages of visual word perception, showed significant activation 

for all phrases compared to the baseline condition. Also, regions involved in the planning 

and execution of motor behavioral responses, such as the supplementary motor area and the 

precentral and postcentral cortex in both hemispheres exhibited a higher activation (see 

Table 5.2).  

A similar bilateral network was found when we tested the effect of the Determiner-

noun pairs and the Subject-verb pairs independently (Determiner-noun agreement pairs + 

Determiner-noun violation pairs vs. Fixation baseline; Subject-verb agreement pairs + 

Subject-verb violation pairs vs. Fixation baseline), suggesting that some of these neuro-

anatomical regions are recruited independently of the type of construction involved (Figure 

5.1B). 
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FMRI data: Grammaticality effect (Number Match vs. Number Mismatch condition). 

To characterize the neural correlates corresponding to commons procedures across the two 

configurations (Subject-verb pairs and Determiner-noun pairs) we extracted the main effect 

of Agreement Pattern (Number Match vs. Number Mismatch) from the 2x2 Factorial design. 

This effect allows us to dissociate between those processes evoked independently of the 

grammatical constructions (e.g., syntactic integration, feature checking, conflict-monitoring 

and reanalysis) from those dependent of the types of structures (e.g., semantic integration 

and/or conceptual processing). The significant effects included regions with higher 

responses for the Number Mismatch condition than the Number Match condition and regions 

that exhibited the opposite pattern, i.e. higher activation for Number Match than Number 

Mismatch condition.  

On the one hand, significant activation increases emerged from the Number 

Mismatch > Number Match contrast, including regions such as the right and left insula, the 

left pars orbitalis, opercularis and triangularis within the IFG, the left precentral, the left 

supplementary motor area, and the left inferior parietal (see Table 5.3 and Figure 5.2 and 5.3 

for details). On the other hand, the contrast Number Match > Number Mismatch produced 

higher brain activation in regions such as the angular gyrus, precuneus, middle temporal 

gyrus (MTG) and orbitofrontal cortex bilaterally and the left occipital and left superior 

frontal cortex (see Table 5.3 and Figure 5.2 and 5.3, see also Box 5.1 for the results of the 

conjunction null hypothesis). 

FMRI data: Interaction between Type of Word Pairs and Agreement Pattern. 

Importantly, the main goal of the present study was to investigate the brain areas involved in 

number agreement computation in two different constructions (nominal and subject-verb 

agreement). Thus, with this aim we tested the interaction between the Type of Word Pairs 

(Determiner-noun and Subject-verb pairs) and the Agreement Pattern (Number Mismatch 

and Number Match). Interestingly, we found significant interaction effects in three different 

clusters (Figure 5.4 and Table 5.4). On the one hand, a significant differential effect 

emerging from the contrast mismatch vs. match in the left frontal lobule including voxels in 

the precentral cortex and voxels in the pars opercularis within the IFG was found only for 

determiner-noun pairs. No significant differential effect was found in this region for subject-
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verb pairs. On the other hand, the contrast match vs. mismatch showed significant response 

for determiner-noun pairs in the left temporal cortex (including voxels in the superior 

temporal and in the middle temporal cortex) and in the parietal lobule (including voxels in 

the right and left precuneus/cuneus). In contrast, no significant effects emerge from this 

contrast for subject-verb pairs. 

 

Figure 5.1. Significant activation clusters resulting from three different contrasts were 
projected on the MNI single-subject T1 image (sagittal slices). All clusters depicted at 
p<0.001 corrected for multiple comparisons. A) Contrast between each type of word pair 
including the two types of dependencies – Determiner-noun and Subject-verb pairs – and the 
two types of agreement patterns – Match and Mismatch – and the fixation baseline 
condition. B) The contrast between determiner-noun pairs (i.e., including both agreement 
patterns) and the fixation baseline condition was represented on the right side, whereas the 
contrast between subject-verb pairs (i.e., including both agreement patterns) and the fixation 
baseline condition was represented in the left side. 1: x = -56; 2: x = -46; 3: x = -36; 4: x = 
34; 5: x = 44; 6: x = 54.  

A)         All Phrases vs. Baseline
Left hemisphere

Right hemisphere

B)    Determiner-Noun pairs vs. Baseline Subject-Verb pairs vs. Baseline

Superior  

Inferior

Posterior                Anterior

1 2 3 4 5 6

F values (p values < 0.001 corr)
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Table 5.2. Brain activation resulting from the comparison between all the 
critical items and the fixation baseline. This contrast includes both types of 
word pairs (Determiner-noun and Subject-verb) and both types of agreement 
patterns (Match and Mismatch). 

Peak level Cluster 
level

F No. Vox
Occipital_Sup 26 -70 32 56.89
Occipital_Mid 27 -91 8 52.42
Calcarine  16 -66  10 127.95 30904
Fusiform 35 -59 -13 67.93
Temporal_Inf 42 -73 -6 70.39 260
Temporal_Sup  54 -38  14 23.64
SupraMarginal  46 -34  44 27.12 178
Parietal_Sup 28 -55 51 71.54
Insula  32  20   4 62.64 853
Putamen  32  14  -2 39.03
Pallidum 17 7 -1 36.98
Thalamus 19 -27 1 28.97
Frontal_Inf_Oper  44   8  28 59.67 1571
Precentral  28  -4  52 38.72
Frontal_Mid  40  -4  58 38.66

Calcarine -14 -72   6 120.50 107
Occipital_Mid -42 -76  36 20.33
Occipital_Sup -20 -76 29 89.84
Occipital_Inf -35 -80 -4 101.12
Lingual -18 -62 -4 44.57 30904
Fusiform -35 -64 -12 89.17
Hippocampus -21 -29 -3 27.16
Temporal_Mid -56 -6 -10 50.40
Putamen -28 14 -2 29.10
Thalamus -10 -18 5 55.06
Temporal_Mid -53 -45 13 60.02
Temporal_Sup -58  -4  -8 42.83
Temporal_Pole_Sup -54  12 -18 36.85
Cuneus -10 -78 26 43.72
Parietal_Sup -23 -59 50 61.98
Supp_Motor_Area  -6  10  48 110.92
Postcentral -56 -18 24 27.06
Precentral -40 -5 49 84.12
Frontal_Inf_Tri -40 30 10 30.94
Frontal_Inf_Oper -48 7 17 76.54
Insula -38 -4 14 25.25

Only those clusters with an effect corrected with FWE criterium were
considered as significant. x,y,z {mm}= Coordinates in MNI space of local
maxima. F = F scores. No.Vox. = Number of voxels significantly activated
inside the cluster belonging to each local maximum. T-test values are reported
in bold if they are significant at the peak level after FWE correction. All local
maxima were reported as MNI coordinates (Evans et al., 1993).                                                                                                            

Hemisphere

Right

Left

Region x,y,z {mm}
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Figure 5.2. Statistical results emerging from the comparison between Mismatch and Match 
conditions (main effect of Agreement Pattern) were projected on the MNI single-subject T1 
image (axial slices). All clusters depicted at p<0.001 corrected for multiple comparisons. 
Mismatch > Match is represented in yellow and Match > Mismatch is represented in blue.  
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3
2
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6
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Anterior  
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Left Right

Match vs. Mismatch
Mismatch vs. Match

Grammaticality effect
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Figure 5.3. The bar graphs display the contrast estimates and 90% of confidence intervals at different maximum peaks 
representative of the significant activated clusters in the A) Mismatch > Match and B) Match > Mismatch contrasts. DN: 
Determiner-noun pairs; SV: Subject-verb pairs; M: Match; MM: Mismatch; Orb: Orbitalis; Tri: Triangularis; Mid: 
Middle; Inf: Inferior; Supp: Supplementary. 1: z = -17; 2: z = -14; 3: z = -11; 4: z = 5; 5: z = 24; 6: z = 27; 7: z = 30; 8: z 
= 60. 
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Table 5.3. Brain activation resulting from the main of Agreement Pattern 
(Mismatch > Match and Match < Mismatch) including both types of word 
pairs (Determiner-noun and Subject-verb). 

Peak level Cluster 
level

T No. Vox

Insula_R  32  26  -2 4.70 338
Putamen_R  28  20   4 3.37

Parietal_Inf_L -36 -42  42 4.11 360
Insula_L -28  24   0 5.42 2172
Frontal_Inf_Oper_L -50  10  26 4.48
Frontal_Inf_Orb_L -42  20  -4 4.07
Frontal_Inf_Tri_L -40  14  28 3.93
Precentral_L -46  -2  48 4.83
Supp_Motor_Area_L  -6   4  62 5.16 581

Occipital_Inf_R 32 -92 -10 5.24 279
Temporal_Mid_R  58 -12 -22 4.85 420
Temporal_Pole_Mid_R 44 12 -30 3.94
Angular_R  46 -72  36 4.73 766
Cingulum_Mid_R   2 -36  40 5.78 2473
Precuneus_R   8 -52  38 5.04
Frontal_Med_Orb_R   6  28 -12 4.69 1355
Cingulum_Ant_R 2 56 -4 3.86

Occipital_Mid_L -26 -96  -4 5.19 218
Lingual_L -34 -90 -12 4.49
Precuneus_L   0 -52  36 5.00
Ant_Temporal_Mid_L -60 -8 -16 4.84 183
Ant_Temporal_Inf_L -60 -20 -24 3.85
ParaHippocampal_L -22 -18 -26 5.03 1227
Angular_L -44 -66  48 4.14 692
Frontal_Sup_L -24  38  46 5.19 363
Frontal_Mid_L -24  30  54 4.71
Rectus_L  -4  46 -18 4.26 1355
Frontal_Med_Orb_L  -6  36 -12 5.57
Cingulum_Ant_L -4 50 8 3.80

Match > 
Mismatch

Only those clusters with an effect corrected with FWE or FDR criteria were
considered as significant and it was included in the table. x,y,z {mm}=
Coordinates in MNI space of local maxima. T = T scores. No.Vox. = Number of
voxels significantly activated inside the cluster belonging to each local
maximum. T scores at the peak level are reported in bold if they are significant
after FWE correction. 

Contrast Region x,y,z {mm}

Mismatch > 
Match
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Box 5.1. Commonalities between nominal and verbal agreement processing. 

Clusters resulting from the conjunction analysis 

 

Brain regions resulting from the conjunction null hypothesis (both tails of the contrast: 
Mismatch vs. Match & Mismatch vs. Match). 

Peak level Cluster 
level

T No. Vox

Occipital_Mid_L -38 -76  40 3.63 78
Occipital_Mid_L -42 -76  36 3.52
Occipital_Mid_L -26 -96  -4 3.49 57
Occipital_Inf_L -22 -98  -6 3.4
ParaHippocampal_L -22 -18 -24 3.46 38
Frontal_Sup_L -24  38  46 3.38 45
Rectus_L  -6  32 -14 3.62 57
Frontal_Med_Orb_L  -4  28 -12 3.3
Frontal_Sup_Med_R   6  58  38 3.35 23
Angular_R  48 -72  32 3.13 20
Angular_R  52 -68  32 2.75

Match > 
Mismatch

Mismatch > 
Match

Only those clusters with an effect corrected with FWE criteria were considered as 
significant and it was included in the table. x,y,z {mm}= Coordinates in MNI space of 
local maxima. T = T scores. No.Vox. = Number of voxels significantly activated inside 
the cluster belonging to each local maximum. 

Contrast Region x,y,z {mm}

Supp_Motor_Area_L  -8  12  52 3.12 24

  

Statistical results 
derived from the 
conjunction analysis. 
Clusters identified as 
showing significant 
effects (i.e., p<0.001 
corrected for multiple 
comparisons) were 
projected on the 
surface of the MNI 
single-subject T1 
image. The two tails of 
this contrasts were 
explored 
independently 
(Mismatch > Match 
and Match > 
Mismatch). 1: z = -14; 
2: z = -11; 3: z = 11; 4: 
z = 38; 5: z = 60. 
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Table 5.4. Interaction between Type of Word Pairs (Determiner-Noun and Subject-
Verb) and Agreement Pattern (Mismatch and Match). 

Frontal_Inf_Oper - 
Precentral (L)

-46  0  24 3.26 114 -48 6 30 5.37 114

Precuneus-Cuneus 
(L/R)

  -8 -72  30 4.65 1409 14 -52 36 5.69 1373

Temporal_Mid - 
Temporal_Sup (L)

-56 -6 -10 3.73 112 -58 -6 -14 5.32 112

Only those clusters with a significant interaction effect (p<0.001 uncorrected) were resported.
x,y,z {mm}= Coordinates in MNI space of local maxima. Vx = Number of voxels significantly
activated inside the cluster belonging to each local maximum. T = T scores. T scores are
reported in bold if they are significant at the peak level after FWE or FDR correction. 

T No. 
Vox. T No. 

Vox.
x,y,z 

{mm}

Region
x,y,z 

{mm} T No. 
Vox.

Mismatch vs. Match in 
Determiner-Noun 

pairs
x,y,z 

{mm}

Match vs. Mismatch in 
Determiner-Noun 

pairs

Interaction 
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Figure 5.4. Significant clusters resulting from the interaction between the type of word pair 

and the type of agreement pattern were projected on the MNI single-subject T1 image. A) 
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The three significant clusters (p<0.001 corrected for multiple comparisons) were projected 

on the MNI single-subject T1 image (left side). The colours represent the tail of the 

interaction regarding the agreement pattern: Mismatch > Match (yellow) and Match > 

Mismatch (blue). The bar graphs (right side) display the contrast estimates and 90% of 

confidence intervals. B) Series of correlation analyses between the magnitudes of the neural 

response and the behavioural results for each condition. The left and the right panels 

represent the probability values and the correlation coefficients respectively. PS: Phrase 

structure; DN: Determiner-noun pairs; SV: Subject-verb pairs; M: Match; MM: Mismatch; 

L_IFG: Left inferior frontal gyrus; L_Prec: Left precuneus; R_Prec: Right precuneus; 

L_MTG: Left middle temporal gyrus. 

 

In order to determine whether this interaction effect between the Type of Word Pair 

(Determiner-noun and Subject-verb pairs) and the Agreement Pattern (Number Mismatch 

and Number Match) are related to general attentional mechanisms associated to increases of 

the task difficulty for subject-verb agreement, we carried out two further analyses: 1) a 

series of correlation analyses and 2) a series of causal mediation analyses. The correlation 

analyses between the neural responses associated to each cluster exhibiting significant 

interaction effects and the corresponding behavioral effects were not significant (p > 0.6; R2 

< 0.2) either for RT and error rates (see Figure 5.4B).  

In the case of the mediation analyses, both models (the mediator model and the 

response model) were tested for the three clusters (left inferior frontal, left temporal and 

precuneus-cuneus). These analyses allow us to identify the potential effect of the task 

difficulty over the causal pathway between the treatment [critical manipulation: Mismatch 

vs. Match in Determiner-Noun pairs and Mismatch vs. Match in Subject-Verb pairs] and the 

brain response [interaction effect at the neural response level]. The mediator model is 

represented by the semi-circle in the causal diagram (Box 5.2), where the causal effect of the 

treatment on the outcome is transmitted through an intermediate variable or a mediator 

[behavioral measures: RT or error rates]. The response model is represented by the triangle, 

where the behavioral measures and the critical manipulation act as predictors of the brain 
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response. The effects of RT and error rates as mediator variables were estimated separately, 

represented by the black and the grey lines respectively. However, similar results emerged 

for the two analyses. The causal response effect between the treatment and the brain 

response outcome was significant for the three clusters. In contrast, no significant direct 

effect was found between the behavioral measures and the brain response outcome. 

Similarly, for the three clusters, the mediator model effects considering the RT as a mediator 

variable between treatment and neural response were not significant (p > 0.05). These results 

suggest that the interaction effect between the Type of Word Pair and the Agreement Pattern 

found at the neural level are not biased by the task difficulty. 
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Box 5.2. Causal diagrams for the three 

regions exhibiting the interaction effects. 

A) Causal diagram for the Pars Opercularis 

within the left inferior frontal gyrus.  

B) Causal diagram for the anterior part of 

the left middle temporal gyrus.  

C) Causal diagram for the precunues-

cuneus.  

For each region two causal models were 

tested (response model and mediator 

model). These models are represented in the 

same diagram: while the triangle represents 

the response model, the semi-circle 

represents the mediator model. Dotted lines 

represent those causal relations that not 

reach the predefined significance threshold 

and the solid arrows represent those with a 

p-value below 0.01 corrected for multiple 

comparisons. The grey color represents the 

estimations using the error rates as the 

mediator variable and the black color 

represents the estimations using the RT as 

the mediator variable. 
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5.4 Discussion 

The main purpose of the current study was to investigate whether the neural 

substrates underlying number agreement processing in determiner-noun and subject-verb 

agreement differ as a function of the different syntactic domains and interpretive properties 

characterizing these two dependencies. The distinction between these two types of 

agreement patterns was measured using the differential response between correct 

grammatical and ungrammatical word pairs. It is important to stress that the experimental 

design and procedure adopted in this study, where the processing of nominal and verbal 

agreement configurations were included in the same experimental design, allowed us to 

characterize the neural network underlying number agreement operations. But more 

importantly, this procedure allowed us to distinguish between those common circuits that 

exhibited a similar pattern of activation across the two types of agreement construction (i.e., 

the main effect of Agreement Pattern and the conjunction analysis]) from those that showed 

a differential effect between them (i.e., the interaction between Agreement Pattern and 

Types of Word Pair). 

Overall, the word pairs used in the current design produce the activation of a 

widespread left lateralized fronto-parieto-temporal network, similarly activated for both 

determiner-noun nominal and subject-verb agreement. In consonance with the previous two 

experiments (chapters 3 and 4), this fronto-parieto-temporal network included cortical and 

sub-cortical regions. This network includes cortical regions such as the left pars opercularis, 

triangularis and orbitalis within the IFG, as well as the anterior and posterior part of the left 

middle and superior temporal cortex [STG/MTG], the supramarginal cortex and the inferior 

and superior parietal gyrus, typically related to different stages of language processing. 

Interestingly, the word pairs used here elicited bilateral significant BOLD responses in sub-

cortical regions, including areas such as the thalamus and the basal ganglia (putamen and 

pallidum). The comparison between these data and previous studies available in the 

agreement processing literature suggests that the presentation of nominal and subject-verb 

agreement word pairs elicits patterns of activation similar to those produced by the reading 
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of these two types of agreement relations in larger sentential contexts (see Friederici, 2011 

for a review; see also van Berkum et al., 1999).  

Regarding the distinction between the neural regions that exhibited similar response 

patterns for both subject-verb agreement and determiner-noun concord, from those that 

showed different sensitivity for these two types of dependencies, a widespread fronto-

parieto-temporal network emerges from the main effect of Agreement Pattern, 

independently of the Type of Word Pair25. This effect includes regions that exhibited higher 

activation for number mismatch than for number match and also regions that exhibited the 

opposite pattern, higher response for number match than for number mismatch. 

Interestingly, these significant neural responses capture the effects that were similarly 

present for both nominal and subject-verb agreement, and no effects were uniquely 

associated to only one of the two agreement relations (subject-verb and determiner-noun).  

However, it is important to stress that although the processing of determiner-noun 

and subject-verb agreement drew upon largely overlapping neural circuits, some important 

differences were found. Significant interactions between the type of dependency and the 

agreement pattern emerged in a subset of those regions exhibiting the main effect: a) the left 

and right precuneus-cuneus, b) the left anterior part of the MTG-STG and c) the left pars 

opercularis within the IFG. These interactions were driven by different activation patterns 

between determiner-noun and subject-verb agreement both in the match vs. mismatch and in 

the mismatch vs. match contrasts. Critically, these interactions effects emerging at the neural 

level replicated the interaction effect found for the response times. In the following 

paragraphs we discuss how these main effects and interactions resulting from the current 

design fit with previous evidence concerning agreement processing, emphasizing the three 

25 In addition to the main effect we have estimated the conjunction analysis in order to establish those regions 
that equally responded to both types of constructions, nominal and subject-verb agreement. The conjunction 
null hypothesis was implemented in order to identify those regions significantly activated for two different 
contrasts (i.e., common regions), with no significant difference between the amplitude of the signal (Friston, 
2005), testing in a very restrictive way the following alternatives: H0 = At least one effect present; H1= All 
effects present. This approach showed that whereas the left inferior and middle occipital cortex, the left 
parahippocampal gyrus, the left superior and superior medial frontal gyrus, the right medial orbitofrontal 
cortex and the right angular gyrus exhibited higher responses for number match than for number mismatch, 
only the left anterior and medial portion of SMA showed higher response for number mismatch than number 
match in both concord and subject-verb agreement. 
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different circuits where the interactions emerged (see Table 1S for an interim summary of 

the main results and a comparison across the experiments).  
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Table S1. Main Findings 

Behavioral results 

Neuro-anatomical results 

Grammaticality effects 
Effects related with the critical 

manipulation 

Experiment I 
(determiner-
noun pairs) 

Main effect of Agreement 
Congruency: Subjects classified 

determiner-noun pairs as grammatically 
correct more easily and accurately than 
incongruent pairs. This differentiation 
was evident for both transparent and 

opaque nouns. 

Interaction effect: Regarding RT, this 
effect was larger for opaque than for 

transparent nouns. 

Gender Mismatch relative to Gender Match: 
the dorsal striatum, the middle and medial 

superior frontal gyrus, the medial orbito-frontal 
cortex, the pre- and post-central gyrus, as well 

as the anterior cingulate cortex. 

Gender Match as compared to Gender 
Mismatch: the pars opercularis and triangularis 
within the left IFG and the posterior part of the 

left MTG/STG. 

Significant interaction effects between 
Gender Congruency and Gender-marking 
emerged in five left-lateralized clusters:  

 Pars triangularis within the IFG 
 Posterior part of the MTG/STG 
 Hippocampus 
 Angular Gyrus 
 Supramarginal Gyrus 

Experiment II Null effects for RT and error rates. 

Gender Mismatch relative to Gender Match: 
the pars triangularis, orbitalis and opercularis 

within the left IFG, the middle frontal gyrus, as 
well as the inferior parietal gyrus and the 

supramarginal and the angular gyri. 

Gender Match as compared to Gender 
Mismatch: the middle and medial superior 
frontal gyrus, the medial orbito-frontal 

cortex, the anterior cingulate cortex, as well as 
the anterior part of the left MTG/STG and the 

superior and middle temporal pole. 

Significant interaction effects between 
Gender Congruency and Type of Gender 
emerged in two left-lateralized clusters:  

 Inferior Parietal 
 Angular Gyrus 
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Experiment III 

Main effect of Agreement 
Congruency: Subjects classified word 

pairs as grammatically correct more 
easily and accurately than incongruent 

pairs. This Left angular 
gyrusdifferentiation was evident for both 
determiner-noun and subject-verb pairs.  

Interaction effect: Regarding RT, this 
effect was larger for determiner-noun 

pairs than for subject-verb pairs. 

Number Mismatch relative to Number Match: 
the right and left insula, the pars orbitalis, 

opercularis and triangularis within the left IFG, 
the pre- and post-central gyrus, as well as the 

inferior parietal cortex. 

Number Match as compared to Number 
Mismatch: the middle and superior frontal 

gyrus, the anterior cingulate cortex, the medial 
orbito-frontal cortex, as well as the anterior part 

of the MTG/ITG. 

Significant interaction effects between 
Number Congruency and Type of Word 

Pair emerged in three left-lateralized 
clusters:  

 Left pars opercularis within the 
IFG 

 Left anterior part of the 
MTG/STG 

 Left and right precuneus/Cuneus 

Experiment IV    

Experiment V    
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Conflict-monitoring system. Firstly, a bilateral widespread network results from the 

contrast Number Match > Number Mismatch, including regions such as the anterior and 

middle cingulate cortex, the precuneus-cuneus, the dorsal part of the middle frontal gyrus 

and the angular gyrus. It is not surprising that different kinds of agreement dependency share 

this pattern of response. The increases in the activation of the dorsal part of the middle 

frontal gyrus often covaries with significant increases in the de-activation patterns of the 

anterior cingulate cortex (the hub of the conflict monitoring system, Carter & van Veen, 

2007; Taylor et al., 2007) and the angular gyrus (the sub-region associated with the default 

mode network, (see Seghier et al., 2012 for a revision of this topic). The coupling between 

these regions probably reflects the engagement of conflict monitoring mechanisms and the 

subsequent re-analysis and repair processes triggered by the grammatical error detection, a 

common process taking place for both types of dependencies. As we extensively explained 

in Chapter 3, the involvement of this monitoring system in the processing of mismatches26 is 

consistent with previous evidence (Bambini et al., 2011; Kerns et al., 2004; Kuperberg et al., 

2003; Kuperberg, Sitnikova, et al., 2008; Lauro et al., 2008; Ni et al., 2000; Novick et al., 

2005; van de Meerendonk et al., 2011; van de Meerendonk et al., 2009; van de Meerendonk 

et al., 2010; Ye & Zhou, 2009) and may subserve the generation of the P600 effect typically 

reported for this type of manipulations (Aron & Poldrack, 2006; Du et al., 2013; Mancini et 

al., 2011a, 2011b; Molinaro, Barber, et al., 2011; Olichney et al., 2010; Silva-Pereyra & 

Carreiras, 2007). This amodal monitoring system, probably working in parallel to the 

language-specific machinery, seems to be enhanced whenever an inconsistency is detected, 

independently of its nature, in order to prevent behavioral mistakes.  

As mentioned above, in spite of these commonalities between determiner-noun and 

subject-verb number agreement processing, some important differences were also found in a 

particular node of this network. Specifically, a significant interaction between type of 

dependency and grammaticality emerged in the bilateral precuneus-cuneus. The differential 

26 These regions exhibited negative responses patterns (de-activation) compared to the fixation baseline 
condition, with greater de-activation for mismatching than matching constructions. Note that in the anterior 
cingulate cortex, one of the core regions of this monitoring system, no significant responses were found 
associated with the match conditions in both nominal and subject-verb agreement. 
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effect [difference between match and mismatch] found here at the neural level was higher 

for determiner-noun pairs than for subject-verb pairs. Importantly, the differential effect in 

this node for subject-verb dependencies did not reach the statistical threshold. Interestingly, 

the differential effect at the behavioral level was also higher for determiner-noun pairs than 

for subject-verb pairs, which could suggest a direct link between the interaction found in this 

parietal region and the behavioral results. However, when causal mediation analyses were 

performed to determine whether these interaction effects27 were driven by the task related 

mechanisms, no significant relation was found between treatments and predictors.  

In sum, the current set of data shows that general conflict-monitoring processes are 

at work in the computation of grammatical relations such as nominal and subject-verb 

agreement. However, in contrast with our hypothesis, they show that in spite of their general 

nature, such fundamental processes appear to be modulated by the type of grammatical 

relation, at least for the two agreement patterns considered in our experiment: determiner-

noun concord and subject-verb agreement. This modulation could be related to general task-

related mechanisms affecting the two types of dependencies in different ways. Recently, 

Zhang, S. and Li (2012) explored how the precuneus resting state connectivity pattern could 

explain the functional heterogeneity of this region. Using k-means algorithm, these authors 

corroborated the existence of three different functional sub-regions: dorsal-anterior, dorsal-

posterior and ventral. Interestingly, the ventral sub-region, which contains the significant 

activation cluster found in the current study, showed positive connectivity with other regions 

resulting from the Match vs. Mismatch contrast, the orbito-frontal cortex, the rectus, the 

anterior, middle and posterior cingulate cortex and the angular gyrus, as well as some nuclei 

of the basal ganglia and the middle frontal gyrus. These authors extensively discuss the 

engagement of this ventral sub-region as part as the default mode network and its 

involvement in task related mechanisms. However, its specific role is still unknown. Further 

studies should aim to functionally characterize each node within this amodal network, 

establishing how this network interacts with language specific mechanisms. 

27 The mediation analyses were performed for the three clusters where the interaction effect emerged between 
the type of dependency and the agreement pattern, but no significant mediation effects were found. 
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Anterior part of the left middle temporal gyrus. In addition to this monitoring system, 

we found increase of activation in the anterior portions of the left MTG-STG extended to the 

middle and superior temporal pole, for number match in both agreement dependencies. The 

posterior portion of this region and the adjacent areas corresponding to the posterior part of 

the left MTG-STG exhibited similar responses for the four conditions included in the present 

design (the 2 Agreement Pattern and the 2 Types of Word Pairs). Critically, in line with our 

hypothesis, in addition to the main effect presented in the anterior part of the left MTG-STG, 

we also found a significant interaction effect between the type of dependency (determiner-

noun concord and subject-verb agreement) and the type of agreement pattern (match and 

mismatch) in the same region. This interaction was restricted to the anterior portion of the 

left MTG-STG, whereas no significant interaction was found in the middle and superior 

temporal pole. This interaction was driven by different activation patterns between nominal 

and subject-verb agreement in the Match > Mismatch contrast: while the differential 

activation for subject-verb pairs in the Match > Mismatch contrast did not reach the 

statistical threshold, this differential activation was very strong in the determiner-noun pair.  

Summarizing the response pattern in the left temporal area, a posterior to anterior 

functional gradient emerged from our results: a) the posterior portion of the left MTG-STG 

did not (Hagoort, 2003a) distinguish between determiner-noun and subject-verb 

dependencies or even between incongruent and congruent trials; b) the anterior part of the 

left MTG-STG distinguished between determiner-noun and subject-verb dependencies, 

showing significant differential [differences between Match and Mismatch conditions] 

response only for determiner-noun pairs and c) the left middle and superior temporal pole 

exhibited greater responses for congruent than incongruent trials independently of the type 

of dependency. This pattern of activation in the left temporal cortex is in line with previous 

evidence showing that the involvement of this region seems to be extended to different 

domains of language processing (Baldo et al., 2012; Binder et al., 2011; Visser et al., 2012; 

Visser & Lambon Ralph, 2011; Wei et al., 2012). Previous evidence supports a posterior- to- 

anterior functional gradient within this anatomical region, proposing a distinction between 

syntactic and semantic processes (Friederici, 2011, 2012; Pallier et al., 2011).  
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However, as detailed in the Introduction, the specific role of each functional sub-

region is still under dispute (see Friederici, 2011 for a revision of this topic). The inclusion 

of both nominal and subject-verb agreement in the same experimental design has allowed us 

to gain valuable insights into this debate. The processing of these two different types of 

dependencies implies the detection of local relations among constituents to construct 

syntactic structures (i.e., syntactic building processing). This process implies the retrieval of 

lexical and morpho-syntactic information from the elements forming both types of 

dependencies. Despite the difference in the nature of these two types of information, our 

results point to the posterior part of the MTG-STG as the major candidate to mediate these 

common operations, as no differential response emerged in this region from the mismatch 

vs. match contrast. This idea is consistent with previous results (Acheson & Hagoort, 2013; 

Baggio & Hagoort, 2011; Hagoort, 2003a) and corroborates the claim advanced by Hagoort 

(2003a) in the MUC model of sentence processing about the critical role of the left posterior 

temporal cortex during the storage and retrieval of lexico-syntactic information.  

Subsequently, this lexical and morpho-syntactic information is sent to the anterior 

part of the MTG-STG, where plausible syntactic units are formed by means of a looping 

operation that takes incoming material and merges it with previously analyzed stimuli 

incrementally. Importantly, this recursive operation equally applies to subject-verb and 

determiner-noun patterns, but different outcomes are generated depending on the 

grammaticality of the patterns (see Figure 3, middle panel). While the building of noun-verb 

pairs produces a similar response whether the two constituents match in number or not, the 

construction of a determiner-noun relation does not, with the mismatching pair generating a 

significant reduction in the response pattern of this region, leading to the observed 

interaction between Type of Word Pairs and Agreement Pattern. A possible explanation for 

this difference between the two types of agreement resides in the nature of these two 

relations. As pointed out in the Introduction, given the essentially syntactic nature of 

determiner-noun relations, the reading of a number mismatch in such a configuration can 

block subsequent analysis steps, preventing this pair from receiving an interpretation. In 

contrast, the reading of a number mismatch within a subject-verb configuration yields an 
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equivalent activation pattern compared to a matching pair, suggesting that a dependency can 

be successfully built regardless of the mismatch.  

The engagement of this anterior temporal region in the building of the syntactic 

structure underlying a linguistic input is consistent with previous ERP and neuro-anatomical 

findings. In their ERP study, Barber and Carreiras (2005) investigated the processing of 

determiner-noun agreement patterns both in isolated word pairs and in sentential contexts 

and showed that the electrophysiological response to a number violation could be modulated 

by the presence (or absence) of a richer linguistic context. Specifically, when embedded in a 

sentential context, determiner-noun number anomalies engendered the classical biphasic 

LAN/P600 pattern. In contrast, when presented in isolation, determiner-noun number 

anomalies generated a composite LAN/N400/P600 pattern. While LAN effects can be 

attributed to the detection of a number mismatch between the two elements, regardless of the 

linguistic context in which they are presented, the presence of N400 effects for isolated 

presentation only was associated by the authors to difficulties in integrating the lexical and 

conceptual features of the words. It is therefore possible that the anterior portion of the 

MTG-STG contributes to the generation of the N400 effect associated with the processing of 

number anomalies between determiner and noun in isolated word pairs, although this 

hypothesis requires further evidence (see Lau et al., 2008 for a revision of the N400 

generators).  Moreover, Brennan et al. (2012) recently demonstrated anterior temporal lobe 

involvement (including portions of the MTG and STG) in syntactic structure building. These 

authors reported a positive correlation between the anterior temporal response and the 

amount of syntactic nodes needed to integrate each word into the input being processed 

during the passive listening of a story fragment (see Methods in Brennan et al., 2012). 

After this syntactic building process, the system seems to recognize that while the 

grammatical word pairs for both types of dependencies can be further mapped to a 

congruent semantic representation, the number violation included in the mismatch 

conditions blocks such mapping process. These processes seem to be working in both 

nominal and subject-verb agreement. In the case of a noun-phrase structure this process 

implies matching a noun with its real-world referent, without building any thematic 
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representation, whereas the processing of a subject-verb structure implies the projection of a 

complex representation in which the subject noun is associated to a specific role in the event 

being described. Despite this difference, the two dependencies did not differ in terms of 

differential activation found in the left middle and superior temporal pole, suggesting an 

equivalent processing disruption. 

It is worth noticing that the posterior to anterior functional gradient within the left 

temporal cortex that we report here points to the involvement of this region in multiple 

domains of linguistic processing. More specifically, our results suggest that it is not possible 

to distinguish between a syntactic and a semantic specialization of this region, since the 

patterns of activation found in this area can be related to several processes, including 

retrieval of morpho-syntactic and lexical information from the input, as well as structure 

building and form-to-meaning mapping mechanisms. Evidence consistent with this multi-

functional hypothesis has been recently reported by (see the Methods section in Brennan et 

al., 2012; and Pallier et al., 2011) , who observed a functional distinction within the 

temporal lobe during sentence processing. Specifically, while posterior temporal areas 

demonstrated similar correlation patterns between normal prose and jabberwocky sentences, 

the temporal pole evidenced sensitivity only to complete (or nearly complete) sentences in 

normal prose stimuli but not in jabberwocky ones. The authors therefore took these data as 

suggestive of the key role that the temporal pole may be playing in linking form to meaning 

during sentence processing (see also Brennan et al., 2012). Moreover, Turken and Dronkers 

(2011) using anatomical and functional connectivity, demonstrated that these different 

regions within the temporal lobe are part of an interconnected network which also comprises 

frontal and parietal areas (see also Griffiths et al., 2012). More recently, Molinaro et al. 

(2013), compared magneto-encephalographic responses associated with determiner-noun 

matching and mismatching patterns, including both gender and number agreement 

violations. These authors found a left temporal response between 200 and 400 ms with some 

functional differences emerging at different time intervals. While posterior temporal regions 

were activated around 220 ms, the response of the left temporal pole (the more anterior part 

of the left temporal cortex) was elicited around 400 ms after the stimulus onset (Molinaro et 
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al., 2013). Further studies combining the high temporal resolution of the magneto-

encephalographic recording and the high spatial resolution of the fMRI techniques would be 

the keystone to corroborate this theory and reconcile the contradictory evidence about the 

role of the temporal regions during phrase and sentence comprehension. 

Left inferior frontal gyrus. A left lateralized fronto-parietal network emerges from 

the contrast Number Mismatch > Number Match independently of the type of dependency. 

This network includes regions such as the LIFG [pars triangularis, orbitalis and opercularis], 

the left insula and the left inferior parietal cortex. However, in spite of this main effect, we 

also found a significant interaction between the type of dependency (determiner-noun 

concord and subject-verb agreement) and the type of agreement pattern (match and 

mismatch) in the pars opercularis within the LIFG including the frontal operculum, a critical 

node of this network. 

Regarding the main effect, there are two different explanations for this common 

activation. First, from a language-specific perspective, the large differential activation in the 

LIFG resulting from the Mismatch vs. Match contrast for both nominal and subject-verb 

agreement is consistent with evidence that points to the critical role of this region in the 

processing of different language-relevant information. For instance, while the pars 

opercularis, within the IFG appears to underlie syntactic processes, the pars triangularis and 

orbitalis seem to be involved in the processing of semantic-related information (see 

Friederici, 2011 for a revision of this topic; 2012). More specifically, activation of the left 

pars opercularis and the frontal operculum have been consistently reported in the presence of 

phrase structure violations and have therefore been linked to different stages of syntactic 

processing such as phrase structure building (Friederici, 2012; Grodzinsky & Friederici, 

2006) and/or syntactic complexity processing (see Grodzinsky, 2000 for a syntactic 

movement manipulation).  

Second, from a more domain-general perspective, it may be that the left inferior 

frontal response reflects the involvement of cognitive control functions (see Novick et al., 

2005 for a discussion about the role of the LIFG in cognitive control), probably engaged 
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when the system is confronted with conflicting cues such as the ones we are considering 

here (i.e., determiner-noun and subject-verb number agreement violations). In line with this 

hypothesis, the inferior frontal cortex, including the anterior insula, has been related to 

cognitive mechanisms shared by different types of tasks, language-specific or not, such as 

response inhibition, task switching and attentional interference control (Aron et al., 2003; 

Aron & Poldrack, 2006; 2004; Levy, B. J. & Wagner, 2011; Michael et al., 2006; see also 

Wager & Barrett, 2004; Wager et al., 2007; 2005). In this respect, the coupling found here 

between the left inferior frontal and inferior parietal regions may also be considered as a key 

piece of evidence sustaining this idea. The modulation of the parietal cortex activation by 

attention mechanisms has been previously demonstrated (see Corbetta & Shulman, 2002 for 

a review about the role of the parietal regions as part as the attentional network; and also see 

Ravizza et al., 2004). 

Based on this second hypothesis, it is plausible to expect a parallelism between the 

predominant activation of this left fronto-parietal network for the mismatch condition and 

the behavioral results. Interestingly, the behavioral data showed that the mismatch 

conditions, for both nominal and subject-verb agreement, were more difficult to detect 

compared to their correct counterpart. However, following this perspective we would also 

expect a distinction between nominal and subject-verb agreement in some of these regions, 

based on the interaction found at the behavioral level. In addition to the main effect of 

agreement pattern found for the RT and the error rates, our results show that readers are 

more accurate and need less time to evaluate the well-formedness of a concord dependency, 

compared to a relation that is built on a more complex syntactic structure that encompasses 

different levels of analysis, such as subject-verb agreement. A closer look at the RT pattern 

shows that the processing penalty generated by the evaluation of a determiner-noun number 

mismatch (relative to its match counterpart) is significantly greater than the cost generated 

by the evaluation of a subject-verb number anomaly (207 ms vs. 125 ms, respectively). As 

the interaction in the pars opercularis within the LIFG reflects, the impossibility of 

constructing a reliable phrase structure in the concord violation pairs could block subsequent 

interpretative steps, making the evaluation of the ungrammaticality of the pattern difficult 

160 

 



Chapter 5. Experiment III. 

and leading to a greater difference between mismatch and match for determiner-noun pairs 

than for subject-verb agreement28.  

In line with this idea, Molinaro et al. (2013) distinguished between two different 

stages related to the processing of number agreement relations: an earlier stage starting 

around 220 ms involving left anterior temporal regions, and a later stage starting around 300 

ms involving the pars opercularis within the inferior frontal cortex. These authors suggested 

that the left temporal activity would reflect initial compositional operations, whereas the 

subsequent left inferior frontal response would be involved in more general and high-level 

mechanism related with task resolution. This interpretation is also compatible with a recent 

proposal by Bornkessel-Schlesewsky & Schlesewsky (2013), according to which, activation 

in these left inferior frontal areas would reflect the involvement of more general top-down 

processes that link linguistic processing to behavior, such as in the evaluation of the 

grammaticality of a sentence. 

It is feasible to find a merger between the involvement of the pars opercularis/frontal 

operculum, within the LIFG, during the processing of local structural dependencies 

(Friederici et al., 2006); and its role coordinating syntactic operations in a more controlled 

mode (see Bornkessel-Schlesewsky & Schlesewsky, 2013 for an in-depth discussion; and 

see also Friederici, 2011). Recent evidence has demonstrated that within the LIFG two 

functional sub-regions coexist (Fedorenko, Nieto-Castanon, et al., 2012; Fedorenko et al., 

2013), one specifically engaged in language processing (e.g., sentence processing) and 

another that is recruited by different domain-general mechanisms (e.g., arithmetic, spatial 

and verbal working memory and cognitive control). This evidence could reconcile the two 

contradictory points of view about the role of the LIFG, suggesting that this region could be 

the junction between a language specific system and an amodal control monitoring system.  

28 The difference between concord and subject-verb agreement pairs that we found in this study, and the 
interpretation that we give to it, seem to be supported also by language acquisition data showing that Spanish 
speaking children tend to learn determiner-noun pairs such as “el anillo” as single items, that is including the 
determiner in the lexical representation of the noun (Demuth, 2007). Under this account, a number violation 
such as “los anillo” would not be considered entirely syntactic, but also lexical in nature. This would account 
for the greater differential activation found for concord pairs in left inferior frontal and temporo-parietal areas. 
While we found this alternative interpretation appealing and relevant for the purposes of our study, we believe 
that a broader discussion of this issue would be beyond the scope of the current study. 
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Interim conclusions. In sum, the data discussed here show that two different but 

closely related systems seem to be working in parallel during the processing of nominal and 

subject-verb agreement: a) a bilateral fronto-parietal monitoring system not language 

specific and b) a left fronto-temporal system that seems to be specifically related to different 

aspects of phrase and sentence processing (see Figure 4). Consistently with existing neuro-

cognitive models of sentence comprehension (Bornkessel-Schlesewsky & Schlesewsky, 

2013; Friederici, 2011, 2012; Hagoort, 2005, 2013, 2014; Hagoort & Indefrey, 2014), the 

experimental evidence reported in the current study pointed out the crucial role of the left 

frontal and temporal regions in the establishment of relations among words. Critically, 

however, the comparison between verbal and nominal agreement allowed us to isolate 

neural substrates supporting the operations involved in agreement comprehension, which 

have not been described in previous models. Our data show that the processing of verbal and 

nominal agreement relies on common mechanisms, as shown by the overlapping brain 

activation networks. However, at the same time, brain activation in some critical areas is 

modulated by the specific type of agreement. These differential strengths of activation may 

be accounted for by some specific linguistic differences between them. The major difference 

between these two dependencies was found in the anterior portion of the left MTG-STG, 

which we relate to syntactic-combinatorial building mechanisms apparently controlled by 

the pars opercularis within the LIFG. In contrast, lexical and morpho-syntactic information, 

represented in the posterior portion of the left MTG-STG, seems to feed into this syntactic 

building machinery, with no difference between subject-verb and nominal agreement. The 

subsequent form-to-meaning mapping processes take place in the most anterior part of the 

left temporal cortex, corresponding with the middle and superior temporal pole. In contrast 

to the proposal by Bornkessel-Schlesewsky & Schlesewsky (2013), we do not find the 

involvement of parietal regions in the processing of these two types of relations (but see 

Results section in Chapter 4 and 7). Further investigation is needed to shed light onto the 

functional role of parietal regions in sentence comprehension. 

Overall, the current findings demonstrate that the coupling between the frontal and 

temporal regions typically supporting language processing is flexible enough to show 
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sensitivity to the fine-grained combinatorial mechanisms that underlie nominal and subject-

verb agreement. Crucially, this property represents an aspect of language processing that 

needs to be taken into account in the elaboration of a comprehensive neuro-cognitive 

framework. So far, none of the current neuro-cognitive models can account for the current 

set of results; determiner noun and subject-verb agreement recruit the same brain circuits, 

but with some functional specificities depending on the type of dependency involved.  
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Chapter 6. 
Experiment IV 
 

“Who does what”: Left anterior temporal involvement for verbal agreement 

processing. 

Chapters 3 and 4 examined the neural substrates of nominal agreement, trying to 

disentangle the contribution of formal and conceptual factors during the establishment of 

local grammatical relations. These two chapters provided significant insights into this topic, 

pointing out the critical contribution of different frontal, temporal and parietal regions 

during agreement comprehension. In addition, Chapter 5 provided empirical evidence for the 

brain’s sensitivity to the type of dependency involved in an agreement relation, and 

highlighted the similarities and differences between subject-verb and determiner-noun 

dependencies.  

The next two chapters will focus on the study of subject-verb agreement relations. 

As mentioned above, subject-verb agreement plays a crucial role in the multifaceted process 

of language comprehension because it indicates “who does what” in the sentence. Critically, 

doing this requires careful unpacking of the linguistic input so that information about 

participants and their role in discourse is extracted from morpho-syntactic cues (Mancini et 

al., 2013a, 2013b). For this reason, in Chapter 6 and 7 we will investigate the subject-verb 

agreement phenomenon in a more complex sentence context. Specifically, in the current 

chapter (Chapter 6) we will 1evaluate whether two different morpho-syntactic features such 

as person and number differ as a function of its interpretive properties and more importantly 

we will 2establish where this difference, if it is indeed found, is mapped in the brain. In this 

study we will directly contrast grammatical sentences with sentences containing subject-

verb person and number agreement mismatches.  
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6.1 Overview 

As has already been pointed out throughout this thesis, the dissociation between form 

and meaning (cf. Hagoort, 2005) has taken center stage in the neuro-cognitive literature on 

sentence comprehension. However, the neuro-cognitive mechanisms through which form 

and meaning are linked during agreement processing have received far less attention. The 

vast majority of studies exploring this phenomenon have treated form-to-meaning mapping 

as an issue essentially limited to case and thematic role assignment (Bornkessel & 

Schlesewsky, 2006). This has led to potentially neglect and obscure finer-grained 

interpretive mechanisms that can be of great relevance for the characterization of agreement 

processing mechanisms in the brain. Critically, here we will investigate agreement between 

subject and verb by comparing person and number anomalies, a paradigm that has proved to 

be effective to highlight behavioral and electrophysiological differences in the elaboration of 

different aspects of agreement interpretation (Mancini et al., 2011a; Mancini et al., 2014). 

But why will we explore this phenomenon through the comparison between different types 

of morpho-syntactic features? Feature-specific mechanisms for the extraction and the 

mapping of the morpho-syntactic information onto higher-level semantic-discourse 

representations are not considered in the neuro-cognitive models of sentence processing 

described above (see Chapter 1, Neuro-cognitive models of sentence processing), despite the 

relevance of such mechanisms for an in-depth functional characterization of the language 

network (but see Carreiras et al., 2010; Molinaro et al., 2013 for a comparison between 

number and gender). Moreover, which neural mechanisms each unit supports is still an open 

question, since across models substantial differences are found concerning the brain regions 

recruited during agreement processing, as reviewed below. Crucially, in this study, we seek 

to fill this gap by uncovering the neuro-anatomical substrates involved in the construction of 

person and number representations.  

Different theoretical linguistic frameworks suggest that form-to-meaning mapping 

should not be regarded as a monolithic operation, but as a composite process through which 

the structural relation identified in the input and the information extracted from a single 

morpheme in the verb (e.g., “–amos”, in celebramos [we celebrate]) is interfaced separately 
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with cardinality and discourse role representations (see Chapter 1, Agreement features). 

Theoretical analyses lend support to this view and describe the qualitatively different types 

of form-to-meaning mapping that underlies person and number interpretation. In particular, 

the intrinsically different information conveyed by the two features (person and number) 

determines their autonomous representation in the hierarchical syntactic tree, which in turn 

determines qualitatively distinct connections with higher-level representations where spatial, 

temporal and participant coordinates are encoded (Bianchi, 2006; Mancini et al., 2013a, 

2013b; Sigurdsson, 2004). Because of its direct link to discourse, person is claimed to 

occupy a higher node in syntactic structure compared to number (Bianchi, 2006; Mancini et 

al., 2013a, 2013b; Shlonsky, 1989; Sigurdsson, 2004). This link has clear interpretive 

relevance, as it makes it possible to associate each morphological realization of person (1st, 

2nd or 3rd) with a specific participant (speaker, addressee, non-participant), leading to the 

assignment of a discourse role. In contrast, no such linking to discourse is required for 

number: the number information extracted from verb is mapped onto the cardinality 

representation invoked by the subject argument (Chomsky, 1995, 2000), independently from 

the discourse role of this argument (Mancini et al., 2013a, 2013b; Mancini et al., 2014).  

In line with this hypothesis, recent experimental studies have showed that the same 

formal relation – subject-verb agreement – can yield distinct behavioral and 

electrophysiological responses as a function of the feature involved (see Molinaro, Barber, 

et al., 2011 for a review). A self-paced reading study in Italian (Mancini et al., 2014) 

evidenced significantly higher reading times for person violations compared to number 

violations, a finding that can be accounted for by taking into account the different structural 

and interpretive properties that characterize the two features. Nonetheless, despite these 

differences, person and number have something in common: during the processing of an 

agreement relation, the parser checks the consistency of subject and verb morpho-syntactic 

values. Thus, the two types of agreement undergo similar feature-checking mechanisms. 

This hypothesis is confirmed by an ERP study in Spanish (Mancini et al., 2011a), which 

reported both similar and different electrophysiological patterns for person and number-

anomalous sentences. In both cases, a similar positive deflection was found about 600 
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milliseconds post-stimulus onset (P600) when comparing anomalous sentences with their 

grammatical counterpart. However, the early components exhibited qualitative differences 

between the two types of anomalies: while person violations gave rise to N400 effects, 

number agreement anomalies elicited a LAN effect. Importantly, the authors pointed out that 

the negative effect elicited by person anomalies could be the result of a superimposition of 

LAN and N400 effects, as suggested by the failure to find a difference between the two 

violations in frontal scalp areas in the 300-500 ms window, and by the similar latency and 

onset of the two topographically different negativities. While the similar left-anterior 

negative effect would evidence the presence of shared feature-checking mechanisms, the 

different posterior negative effect can be taken to reflect the different mapping procedures 

that the interpretation of the two features requires, i.e. the different higher-order 

representations to which morpho-syntactic values are mapped. 

From a language architecture perspective, the findings described above seem to point 

to a language processing system that a) functionally dissociates checking and interpretation; 

and b) employs feature-based mapping procedures to assign an interpretation to the 

agreement dependency (see Bianchi, 2006; Sigurdsson, 2004, 2009). A testing ground for 

this hypothesis is to investigate whether person and number agreement recruit different 

and/or overlapping neural regions, as a result of the similar checking and different mapping 

mechanisms they undergo during processing. To test this goal in the current fMRI 

experiment person and number processing will be directly contrasted using a grammaticality 

judgment task. By contrasting correct agreement with both person and number violations, 

we aim to identify the neural network involved in the building and interpretation of 

agreement dependencies. The results derived from the previous experimental chapters point 

to cortical areas that are part of the language network, such as the LIFG and the MTG, as 

primarily involved in the agreement comprehension processes. Within this network, the 

finding of differential responses for person and number violations would provide evidence 

for the presence of feature-specific mechanisms at work in the building and interpretation of 

a sentential relation, in line with theoretical analyses that posit distinct structural and 

interpretive requirements for person and number features (Bianchi, 2006; Mancini et al., 
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2013a, 2013b; Sigurdsson, 2004, 2009). Based on this, one could expect to find a 

dissociation 1) in areas that are thought to support the extraction of morpho-syntactic 

information to build syntactic structure (Hagoort, 2005; Pallier et al., 2011) and 2) in areas 

supporting the mapping between morpho-syntactic and semantic-discourse information, 

whereby person is linked to discourse roles and number to cardinality representations.  

In the former case, we expect a difference between person and number to emerge in 

quantitative terms, because of the additional syntactic structure to be projected at the 

discourse level to represent person information. The projection of this additional node for 

person could arguably generate greater cognitive costs compared to number, and so greater 

activation in the posterior portion of the MTG/STS (Hagoort, 2005; Lau et al., 2008; Pallier 

et al., 2011). As for mapping mechanisms, a qualitative difference could arise between 

person and number. While the interpretation of person requires discourse roles to be 

assigned, the interpretation of number does not. Hence, differential patterns of activation 

could be expected in areas that have been associated with the computation of the 

propositional meaning of a sentence, such as the aMTG/STG (Bornkessel-Schlesewsky & 

Schlesewsky, 2013; Lau et al., 2013; Lau et al., 2008) and the pars triangularis/orbitalis of 

the IFG (Friederici, 2011). 

The contrast between the two violations and correct sentences will permit the 

identification of the neural substrates involved in the checking of feature consistency 

between subject and verb. Based on the ERP results reported by Mancini et al. (2011a), the 

reading of anomalous subject-verb relations (regardless of the feature manipulated) could 

engage areas associated with the detection of morpho-syntactic mismatches. As the previous 

chapters suggest, the left middle frontal gyrus could be a potential candidate for the feature-

checking operations. If person and number agreement share similar feature-checking 

mechanisms, the superimposition of the Person Agreement Violations > Standard 

Agreement and the Number Agreement Violation > Standard Agreement contrasts should 

evidence common response patterns in this frontal area.  

Similarly, the attentive mechanisms involved in the monitoring of the match between 

the expected and the perceived linguistic event in both person and number violations should 
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lead to the recruitment of conflict-monitoring areas, including the dorso-lateral pre-frontal 

cortex and the anterior cingulate cortex. Previous work on the processing of agreement and 

other morpho-syntactic dependencies has consistently demonstrated the involvement of this 

network as a result of a (task-driven) mismatch detection process (and see also Kuperberg et 

al., 2003; Kuperberg, Sitnikova, et al., 2008; Newman et al., 2003; Ni et al., 2000; 

Nieuwland et al., 2012; van de Meerendonk et al., 2009 for a review).  

6.2 Materials and Methods 

Participants. A total of twenty one healthy volunteers (nine females and twelve 

males), with ages ranging from 17 to 35 years (mean = 22.62, standard deviation = 4.43), 

gave written informed consent to participate in this study.  

Stimuli and experimental procedure. The experimental material consisted of 120 

sentences divided into three experimental conditions (in the proportion of 1:1:1), as 

illustrated in (15), (16) and (17) below. All sentences contained a lexical subject followed by 

a past tense verb (the critical word), which was always followed by at least two words. The 

Standard Agreement condition presented a plural subject, while the Number Agreement 

Violation and the Person Agreement Violation conditions both contained a singular subject. 

The Number Agreement Violation condition was followed by a plural verb, while the Person 

Agreement Violation condition was followed by second person singular verb. However, the 

length of the critical word was balanced across the three experimental conditions: Standard 

Agreement: mean length = 9.66, SD = 2.5; Person Agreement Violation: mean = 9.38, SD = 

2.34; Number Agreement Violation: mean = 9.66, SD = 2.34. Planned statistical 

comparisons showed no differences across conditions. In order to maintain the same number 

of acceptable and unacceptable sentences across the whole set of materials and avoid 

expectations concerning the morphological form of the verb, 120 filler sentences with a 

similar sentence structure, but including different types of feature syntactic mismatches, 

were added to the experimental sentences so that half of the sentences were grammatically 

correct and the other half incorrect. In addition, half of the sentences had plural subjects and 

the other half singular subjects. The experimental material was randomly assigned to three 
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different lists according to a Latin Square design, so that each subject could see only one 

version of the same sentence.  

(15) Person Agreement Violation 

*29El turista llevaste un sombrero muy grande.  

The tourist wore a very big hat. 

The tourists3.sg wore2.sg a hat very big. 

(16) Number Agreement Violation 

*El turista llevaron un sombrero muy grande.  

The tourist wore a very big hat. 

The tourists3.sg wore3.pl a hat very big. 

(17) Standard Agreement 

Los turistas llevaron un sombrero muy grande.  

The tourist wore a very big hat. 

The tourists3.pl wore3.pl a hat very big. 

Participants were tested individually in a silent room. They were seated in front of a 

computer monitor, on which sentences were visually presented word by word. Words were 

displayed in white letters on a dark background. Each word was presented for 500 ms, 

followed by a 300 ms blank screen. Sentence order was randomized and, after each 

sentence, participants were asked to evaluate its acceptability by pressing the relative 

YES/NO button on a response pad. 

Image acquisition. Experiment was performed on the same scanner and coil used in 

the previous experiments. Two functional event-related scan consisted of 625 echoplanar 

images were acquired using a T2*-weighted gradient-echo pulse sequence with the 

29 *The asterisk indicates a grammatical violation 
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parameters detailed in Appendix 2D. In the structural session, a MPRAGE T1-weighted 

structural image was acquired with the parameters described in Experiment I.  

Functional data analysis. Data processing and statistical analysis per subject were 

performed following the same procedure used in Experiment 1. A pair-wise contrast 

comparing activity to each phrase type relative to every other phrase type was performed. 

Resulting contrast images were then entered into a second level design analysis to enable 

population inferences. Additionally, contrast images for each of the three experimental 

conditions (Person Agreement Violations, Number Agreement Violations and Standard 

Agreement) compared to the fixation baseline were submitted into a second level One Way 

ANOVA. This analysis allows us to determine whether differences between experimental 

conditions were due to activation or deactivation with respect to the fixation baseline 

condition. Population-level inferences were tested using a threshold of p < 0.001 

uncorrected with a voxel extent higher than 100 such that only those peaks or clusters with a 

p-value corrected for multiple comparisons with family wise error (FWE; Nichols & 

Hayasaka, 2003) and/or false discovery rate (FDR; Genovese et al., 2002) were consider as 

significant. All local maxima were reported in the results tables as MNI coordinates (Evans 

et al., 1993). 

6.3 Results 

Behavioural results. Percentage of correct response (Hits) and mean reaction times 

(RT) for Standard Agreement, Number Agreement Violation and Person Agreement 

Violation are presented in Table 6.1, with the corresponding standard error between 

parentheses. One way ANOVA with the accuracy of the three conditions (Standard 

Agreement, Number Agreement Violation and Person Agreement Violation) as factor was 

performed. For all experimental conditions percentage of correct responses was above 90 % 

and the ANOVA showed no significant difference among the three conditions (F (1, 20) = 

0.14, p = 0.98, ε = 0. 83), indicating that the participants properly judged the sentences as 

acceptable or not independently of its grammaticality. 
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Additionally, to detect possible difference between the times of processing required 

for each type of sentences an additional one way ANOVA on mean response times was 

performed using the conditions (Standard Agreement, Number Agreement Violation and 

Person Agreement Violation) as factor. This analysis showed a significant main effect of 

condition (F (1, 20) = 6.78, p < 0.01, ε = 0.71). To disentangle this effect planned 

comparisons were performed to compare the means. This analysis revealed that the detection 

of Person Agreement Violation (t (20) = -2.60, p < 0.01) and Number Agreement Violation (t 

(20) = -2.86, p < 0.01) was faster (lower RT) than the detection of grammatically acceptable 

sentences, reflecting the additional time required for the syntactic-semantic integration 

processes triggered by grammatical sentences relative to the grammatical error detection 

processes evoked by ill-formed constructions. There were no significant differences between 

the two types of syntactic feature violations (t (20) = 0.75, p = 0.46). 

 

Table 6.1. Percentage of correct response and mean decision 
times (in ms) for the three types of constructions with standard 
error between parenthesis. 

 

All Sentences versus the fixation baseline. To characterize the functional neuro-

anatomical network that was recruited by the processing of sentences independently of the 

experimental manipulation we compared all sentences with the fixation baseline condition. 

The statistical parametric map resulting from this contrast is displayed on the surface of the 

MNI single-subject T1 image. All sentences versus the fixation baseline revealed significant 

activation of a widespread fronto-parieto-temporal network bilaterally distributed, but with a 

Hits

629.32 (38.06) 90.37 (1.80)

558.49 (34.25) 91.13 (2.31)

568.03 (35.38) 90.00 (2.68)

Standard Agreement

Number Agreement Violation

Person Agreement Violation

RT
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strongly left lateralization (see Table 6.2 and Figure 6.1). This network includes brain areas 

associated to different stages of sentence processing such as the left pars opercularis and 

triangularis within the inferior frontal gyrus, the anterior and posterior part of the left middle 

temporal cortex, the left superior temporal pole, the left and right fusiform gyrus, the left 

and right inferior and middle occipital cortex, as well as the supplementary motor area and 

the precentral and postcentral cortex in both hemispheres (see Table 6.2 for a detailed list of 

the regions resulting from this contrast). 

 

 

Figure 6.1. Statistical parametric map resulting from the contrast All Sentences (Person 

Agreement Violation + Number Agreement Violation + Standard Agreement) vs. Fixation 

are overlaid on the surface of the MNI single-subject T1 image. The lower part of the figure 

shows a more detailed anatomical localization of the maximum peaks of activation using the 

sagittal and axial sections of the MNI single-subject T1 image. L: left; R: right; A: Anterior; 

P: Posterior; I: Inferior; S: Superior. 
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Table 6.2. Significant activation clusters resulting from the contrast All 
Sentences versus the fixation baseline. 

 
  

x,y,z {mm} Z Vx

Inferior Frontal Gyrus (BA45 - Tri) -46  28  16 4,06 196
Insula (BA47) -30  26   0 5,25 227
Precentral (BA6) -50   2  48 6,04 2272
Postcentral (BA40) -54  -6  46 5,41 2272
Supplementary Motor Area (BA32/6)  -4  12  50 6,2 1339
Anterior  Middle Temporal (BA21) -56 -10 -12 5,37 3156
Inferior Occipital (BA37) -44 -66 -10 6,01 3156
Middle Occipital (BA37) -28 -90   2 5,82 3156

Insula (BA47)  34  24   2 4,64 223
Precentral (BA6)  38  -6  64 4,5 483
Postcentral (BA3)  42 -26  46 4,67 483
Inf Parietal (BA40)  30 -46  52 4,4 363
Middle Temporal (BA21)  42 -70   2 4,98 1284
Inferior Occipital (BA18)  28 -86  -2 5,83 1284
Middle Occipital (BA18)  36 -90   6 6,73 1284
Superior Occipital (BA19)  28 -62  36 5,06 363

Right

x,y,z {mm} = Coordinates of the local maxima. Z = Z scores. Vx = Number of
voxels significantly activated inside the cluster belonging to each local
maximum. Z scores and Vx are reported in bold if they are significant at the
peak level after FWE or FDR correction (p<.05), if indicated underline are
significant at p<.001 uncorrected. All others are significant at the cluster level
after FWE or FDR correction (p<.05). Tri: Pars Triangularis. BA: Brodmann Area.

Hemisphere Region

 All Sentences > 
Fixation

Left
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Dissociation between ungrammatical and grammatical sentences. To highlight the 

neural regions involved in the analysis of subject-verb agreement dependencies the Standard 

Agreement > [Person Agreement Violation + Number Agreement Violation] contrast was 

carried out. The resulting statistic parametric map included regions with higher responses for 

grammatically correct sentences than for ungrammatical constructions, revealing a 

significant increase of activation in left temporal and frontal regions. The frontal activation 

patch comprised two inferior frontal regions (pars triangularis and pars orbitalis) and the 

precentral cortex, while temporal areas included the anterior and posterior part of the left 

middle temporal gyrus (see Table 6.3 and Figure 6.2 [in purple]). In addition, significant 

increases of activation for the ungrammatical relative to grammatical constructions were 

observed in the middle frontal gyrus, the middle cingulate cortex and the precuneus. All 

these neural regions showed a similar activation pattern in both cerebral hemispheres. In 

addition, we also found significant increases of activation in the supramarginal, the inferior 

parietal and the middle temporal gyrus exclusively in the right hemisphere (see Table 6.4 

and Fig. 6.2). 

Table 6.3. Brain activation resulting from the comparison between 
grammatical and ungrammatical constructions. 

 

x,y,z {mm} Z Vx

Inferior Frontal Gyrus (BA45 - Tri) -56  24  14 5,63 2785
Inferior Frontal Gyrus (BA47/38 - Orb) -48  34  -6 4,61 2785
Superior Frontal Gyrus (BA9)  -8  50  44 4,66 456
Middle Temporal Pole (BA38) -46  16 -28 5.12 971
Superior Temporal Pole (BA38) -46  16 -21 3,37 971
Anterior Middle Temporal Gyrus (BA20) -56 -10 -16 4,67 971
Posterior Middle Temporal Gyrus (BA22) -58 -38  4 5,1 1155
Posterior Middle Temporal Gyrus (BA21) -52 -54  12 4,78 1155

x,y,z {mm} = Coordinates of local maxima. Z = Z scores. Vx = Number of voxels
significantly activated inside the cluster belonging to each local maximum. The regions
reported are significant at the cluster level after FWE or FDR correction (p<.05). Z scores
and Vx are reported in bold if they are significant at the peak level after FWE or FDR
correction (p<.05). Tri: Pars Triangularis; Orb: Pars Orbitalis; BA: Brodmann Area.

Left

Region

Standard Agreement 
> Violations

Hemisphere
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Figure 6.2. Statistical parametric map resulting from the contrasts Anomalous Sentences 

(Person Agreement Violation + Number Agreement Violation) vs. Standard Agreement are 

overlaid on the surface of the MNI single-subject T1 image. The right tale of the t-test was 

represented in yellow, while the left tale (Standard Agreement vs. Anomalous Sentences) 

was represented in violet. The lower part of the figure shows a more detailed anatomical 

localization of the maximum peaks of activation using the sagittal and axial sections of the 

MNI single-subject T1 image. L: left; R: right; A: Anterior; P: Posterior; I: Inferior; S: 

Superior. 

 

 

RL

L
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P

x = 39, z = -29         x = 39, z = 5  x = 53, z = -7         
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Table 6.4. Brain activation resulting from the comparison between ungrammatical and grammatical constructions.

x,y,z {mm} Z Vx x,y,z {mm} Z Vx x,y,z {mm} Z Vx
Middle Frontal Gyrus (BA45) -40  46  22 4.26 459 -40  32  36 3.21 626
Middle Frontal Gyrus (BA46) -32  44  34 4.24 190 -32  46  34 4.68 459 -32  44  34 3.97 626
Middle Frontal Gyrus (BA44) -40  22  40 3.56 190 -44  22  36 4.33 459
Middle Frontal Gyrus (BA10) -34  54   6 4.02 109
Middle Cingulate (BA23)  -2 -16  32 3.49 164
Inferior Parietal (BA40) -42 -46  58 4.31 238 -48 -48  56 2.8 118
Superior Parietal (BA40) -36 -54  58 3.19 118
Paracentral  10 -32  52 4.43 1195
Postcentral (BA40) -42 -44  62 3.23 118
Precuneus (BA7) -4 -62  58 5.38 2261 -6 -66  50 5.14 1195 -10 -62  44 4.62 2770

Middle Frontal Gyrus (BA46)  40  52   8 3.2 232
Middle Frontal Gyrus (BA45)  36  46  18 4.2 232
Middle Frontal Gyrus (BA48) 32  18  56 3.37 325
Middle Frontal Gyrus (BA8)  28  18  58 3.71 290 24  16  52 3.07 325
Middle Frontal Gyrus (BA9)  32  38  40 4.42 290  30  38  40 3.98 243
Medial Superior Frontal Gyrus (BA32) 2  34  34 4.89 408
Anterior Cingulate (BA11) 6  40  26 4.36 408
Middle Cingulate 6 -36  52 5.07 2261 8 -22  38 4.06 396
Supplementary Motor Area (BA8)  14  14  60 4.18 325
Inferior Parietal (BA40) 42 -56  52 5.3 873  56 -42  50 4.25 438  48 -44  52 3.95 689
Supramarginal Gyrus (BA40) 56 -34  46 4.42 873  58 -36  44 4.19 438  52 -32  42 4.33 689
Middle Cingulate (BA23)  2 -12  40 3.41 164
Precuneus (BA5) 8 -58  58 5.4 2261  8 -60  56 4.69 2770
Middle Temporal (BA21) 54 -44  -6 4.58 458 68 -24 -12 3.82 468
Caudate (BA11)  14  18  -8 3.75 112

Right

x,y,z {mm} = Coordinates of local maxima. Z = Z scores. Vx = Number of voxels significantly activated inside the cluster belonging to each 
local maximum. The regions reported are significant at the cluster level after FWE or FDR correction (p<.05). Z scores and Vx are
reported in bold if they are significant at the peak level after FWE or FDR correction (p<.05). Hemisp. = Hemisphere. BA: Brodmann Area.

Person Agreement 
Violation > Standard 

Agreement

Violations > Standard 
Agreement

Number Agreement 
Violation > Standard 

AgreementRegionHemisp.

Left
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Interestingly, when contrasting each type of anomalous sentences (Person Agreement 

Violation and Number Agreement Violation) with grammatical constructions (Standard 

Agreement) a similar fronto-parieto-temporal network was found for both contrasts (see 

Table 6.4 and Figure 6.3). In particular, the superimposition of the significant neural 

activations of these contrasts (Person Agreement Violation versus Standard Agreement and 

Number Agreement Violation versus Standard Agreement) demonstrated that the activation 

of the right and left middle frontal gyrus, the right and left inferior parietal region, the right 

and left middle cingulate cortex, the right and left precuneus, the right supramarginal and the 

right middle temporal gyrus are common to both types of violations. Figure 6.3 shows this 

comparison, where the common response for both contrasts is represented in yellow, the 

specific response for Person Agreement Violation is represented in red and the response for 

Number Agreement Violation is represented in green. Note that the response patterns of 

these regions with respect to the fixation are different: while the left anterior cingulate 

cortex, the right middle temporal and the right middle frontal gyrus exhibited negative 

response (de-activation) compared to the fixation baseline condition, with greater de-

activation for matching than mismatching constructions, the rest of the regions exhibited 

positive response respect to the fixation with higher amplitude for anomalous sentences (see 

the bar graph in the left-hand side of the Figure 6.3 B). 
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Figure 6.3. Superimposition of the significant activation clusters resulting from the contrasts 

Person Agreement Violation vs. Standard Agreement and Number Agreement Violation vs. 

Standard Agreement. Statistical parametric maps were projected on the surface of the MNI 

single-subject T1 image. Yellow voxels represent significant activated voxels in both 

contrasts. Bar graph in (B) displays the contrast estimates and 90% of confidence intervals 

for the three experimental conditions compared to the fixation baseline (SA: Standard 

Agreement; NAV: Number Agreement Violation; PAV: Person Agreement Violation) at 

different maximum peaks, representative of the significant activated clusters. The three 

experimental conditions are represented in (B) with different colours (Standard Agreement 

in blue; Number Agreement Violation in green; Person Agreement Violations in red). The 

right-hand side of (B) show a more detailed anatomical localization of the maximum peaks 

of activation using the sagittal and axial sections of the MNI single-subject T1 image. L: 

left; R: right. 

Distinguishing between Person and Number Agreement Violations. Person 

Agreement Violation relative to Number Agreement Violation evoked significant (p<0.001 

corrected for multiple comparisons) increases of activation in the anterior and posterior part 

of the left middle temporal gyrus (see Table 6.5 and Figure 6.4). However, as can be 

observed in Figure 6.4, the response pattern of these two regions with respect to the baseline 

differs: while the anterior part of the middle temporal gyrus is sensitive only to Person 

Agreement Violation, the posterior portion is sensitive to both Person Agreement Violation 

and Number Agreement Violation, although with higher amplitude for Person Agreement 

Violation. In addition, this contrast also revealed significant (p<0.001 uncorrected) 

responses in the pars triangularis and orbitalis within the left IFG, with neural responses 

being more conspicuous for Person Agreement Violation than for Number Agreement 

Violation (see Table 6.5 and Figure 6.4). Importantly, non-significant response was found 

from the other tail of this contrast (i.e., Number Agreement Violation > Person Agreement 

Violation).  
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Figure 6.4. Significant activation clusters resulting from the contrast Person Agreement 

Violation vs. Number Agreement Violation are represented in red. Statistical parametric map 

was overlaid on the surface (A) of the MNI single-subject T1 image. Bar graph in (B) displays 

the contrast estimates and 90% of confidence intervals for the two anomalous sentences 

compared to the fixation baseline (NAV: Number Agreement Violation; PAV: Person 

Agreement Violations) at the two significant activated clusters. The two experimental 

conditions are represented in (B) with different colours (Number Agreement Violation in 

green; Person Agreement Violations in red). The right-hand side of (B) show a more 

detailed anatomical localization of the maximum peaks of activation using the sagittal and 

axial sections of the MNI single-subject T1 image. The asterisks in the upper part of the bars 

indicate that the comparison between each condition and the fixation baseline was 

statistically significant. L: left; R: right; n.s.: non-significant t-test. 

 

Table 6.5. Brain activation resulting from the comparison between Person 
Agreement Violations and Number Agreement Violations. 

 

x,y,z {mm} Z Vx

Inferior Frontal Gyrus (BA45 - Tri) -58 20 16 3.31 192
Inferior Frontal Gyrus (BA47/38 - Orb) -48 22 -10 3.65 161
Superior Temporal Pole (BA38) -46  16 -20 3,41 89
Middle Temporal Pole (BA38) -50 12 -24 3.85 89
Anterior Middle Temporal (BA21) -52   6 -26 4,09 89
Posterior Middle Temporal (BA20/21/22) -56 -46   6 3,72 62

x,y,z {mm} = Coordinates in MNI space of local maxima. Z = Z scores. Vx = Number of voxels
significantly activated inside the cluster belonging to each local maximum. Z scores and Vx
are reported in bold if they are significant at the peak level after FWE or FDR correction
(p<.05), if indicated underline are significant at p<.001 uncorrected. All others are significant
at the cluster level after FWE or FDR correction (p<.05). Tri: Pars Triangularis; Orb: Pars
Orbitalis; BA: Brodmann Area.

Left

Person Agreement 
Violation > Number 

Agreement ViolationRegionHemisphere
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6.4 Discussion 

The goal of the current study was to 1evaluate whether two different morpho-

syntactic features such as person and number differ as a function of its interpretive 

properties and more importantly 2investigate where is this difference, if it is indeed found, 

mapped in the brain. As comprehension mechanisms can be best highlighted when the 

system is forced to deal with mistakes (Mancini et al., 2011a; Wagers et al., 2009; Wagers & 

Phillips, 2009), we manipulated subject-verb agreement relations so that the establishment 

of discourse roles and cardinality representations could be disrupted, by creating person and 

number agreement violations. In consonance with the previous experimental chapters, the 

comparison between correct and incorrect agreement dependencies gave us the possibility to 

disentangle neural substrates associated with the building and interpretation of congruent 

relations from those associated with the analysis of ungrammatical agreement. Specifically, 

the comprehension of grammatical sentences (Standard Agreement > Agreement Violations 

contrast) recruited a network that included the aMTG, the pMTG and the LIFG, while 

sensitivity to ungrammatical sentences (Agreement Violations > Standard Agreement) 

emerged in a widespread bilateral fronto-parietal network.  

The direct contrast between Person Agreement Violation and Number Agreement 

Violation permitted the uncovering of finer-grained mechanisms related with the 

establishment of agreement relations. A clear dissociation between person and number 

violations emerged in the pMTG and in the aMTG, as well as in the pars orbitalis and 

triangularis of the LIFG, although with a less strict threshold (see Figure 6.4). A closer 

inspection reveals that the regions where the Person-Number dissociation is found belong to 

the fronto-temporal network recruited by the comprehension of correct agreement, 

suggesting that the areas, arguably involved in the building and interpretation of sentential 

relations, operate in a feature-specific fashion. In contrast, the failure to find a dissociation 

between person and number violations in areas sensitive to the processing of ungrammatical 

constructions, such as middle frontal and parietal regions, together with the common 

responses evidenced by the contrast between the two violations and correct agreement 

(Person/Number Agreement Violations > Standard Agreement), seems to imply that 
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consistency checking and conflict monitoring mechanisms operate in a feature-insensitive 

manner.  

Critically, this pattern of results (see Table 1S for an updated interim summary of the 

main results and a comparison across the experiments) enables us to associate the main 

components of sentence processing – structure building, checking and interpretation – to 

specific neuro-anatomical regions, and to outline a more precise map of linguistic functions 

in the brain, as discussed below in detail. 
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Table S1. Main Findings 

Behavioral results 

Neuro-anatomical results 

Grammaticality effects 
Effects related with the critical 

manipulation 

Experiment I 
(determiner-
noun pairs) 

Main effect of Agreement 
Congruency: Subjects classified 

determiner-noun pairs as grammatically 
correct more easily and accurately than 
incongruent pairs. This differentiation 
was evident for both transparent and 

opaque nouns. 

Interaction effect: Regarding RT, this 
effect was larger for opaque than for 

transparent nouns. 

Gender Mismatch relative to Gender Match: 
the dorsal striatum, the middle and medial 

superior frontal gyrus, the medial orbito-frontal 
cortex, the pre- and post-central gyrus, as well 

as the anterior cingulate cortex. 

Gender Match as compared to Gender 
Mismatch: the pars opercularis and triangularis 
within the left IFG and the posterior part of the 

left MTG/STG. 

Significant interaction effects between 
Gender Congruency and Gender-marking 
emerged in five left-lateralized clusters:  

 Pars triangularis within the IFG 
 Posterior part of the MTG/STG 
 Hippocampus 
 Angular Gyrus 
 Supramarginal Gyrus 

Experiment II Null effects for RT and error rates. 

Gender Mismatch relative to Gender Match: 
the pars triangularis, orbitalis and opercularis 

within the left IFG, the middle frontal gyrus, as 
well as the inferior parietal gyrus and the 

supramarginal and the angular gyri. 

Gender Match as compared to Gender 
Mismatch: the middle and medial superior 
frontal gyrus, the medial orbito-frontal 

cortex, the anterior cingulate cortex, as well as 
the anterior part of the left MTG/STG and the 

superior and middle temporal pole. 

Significant interaction effects between 
Gender Congruency and Type of Gender 
emerged in two left-lateralized clusters:  

 Inferior Parietal 
 Angular Gyrus 
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Experiment III 

Main effect of Agreement 
Congruency: Subjects classified word 

pairs as grammatically correct more 
easily and accurately than incongruent 

pairs. This Left angular 
gyrusdifferentiation was evident for both 
determiner-noun and subject-verb pairs.  

Interaction effect: Regarding RT, this 
effect was larger for determiner-noun 

pairs than for subject-verb pairs. 

Number Mismatch relative to Number Match: 
the right and left insula, the pars orbitalis, 

opercularis and triangularis within the left IFG, 
the pre- and post-central gyrus, as well as the 

inferior parietal cortex. 

Number Match as compared to Number 
Mismatch: the middle and superior frontal 

gyrus, the anterior cingulate cortex, the medial 
orbito-frontal cortex, as well as the anterior part 

of the MTG/ITG. 

Significant interaction effects between 
Number Congruency and Type of Word 

Pair emerged in three left-lateralized 
clusters:  

 Left pars opercularis within the 
IFG 

 Left anterior part of the 
MTG/STG 

 Left and right precuneus/Cuneus 

Experiment IV 

Main effect of Agreement 
Congruency: Subjects classified word 
pairs as grammatically incorrect more 
easily and accurately than congruent 

items. This differentiation was evident 
for both person and number agreement 

violations. 

Ungrammatical relative to Grammatical 
sentences: the medial superior frontal gyrus, the 
middle frontal gyrus, the postcentral gyrus, the 
middle cingulate cortex, as well as the inferior 

and superior parietal cortices. 

Grammatical relative to Ungrammatical 
sentences: the pars orbitalis and triangularis 

within the left IFG, the superior frontal gyrus, as 
well as the posterior and anterior portions of the 
left MTG/STG and the superior temporal pole. 

Significant differences between Number 
and Person Agreement Violation emerged 

in four left-lateralized clusters:  

 Left pars orbitalis within the IFG 
 Left pars triangularis within the 

IFG 
 Left anterior part of the 

MTG/STG 
 Left posterior part of the 

MTG/STG 

Experiment V    
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Structure building: the role of the pMTG. A significant involvement of the pMTG 

was found for the Standard Agreement > Agreement Violations contrast, suggesting the 

sensitivity of this area to well-formed agreement configurations. However, pMTG 

involvement was not limited to correct-agreement sentences: when contrasting the two 

incorrect conditions (Person > Number Agreement Violation contrast), Person Agreement 

Violation condition was found to generate a greater response in this area than Number 

Agreement Violation, suggesting differential sensitivity to the type of information 

manipulated in verbal morphology. As reviewed above, functional interpretations on the 

involvement of the pMTG in language processing range from proposals advancing its role in 

the extraction of morphological information to build syntactic structure (Pallier et al., 2011) 

or in the retrieval of syntactic frames from semantic memory (Hagoort, 2005), to views 

emphasizing the centrality of this region in mechanisms at the syntax-semantics interface, 

such as the analysis of verb-argument relations (Bornkessel-Schlesewsky & Schlesewsky, 

2013; Bornkessel et al., 2005; Friederici, 2011). The current set of data allows us to 

distinguish between the two proposals. 

While the activation for correct verbs that is found in the pMTG could be equally 

accounted for under proposals that claim a role of this region in lexical access processes, 

(Hagoort, 2003a, 2005, 2013), as well as under positions that argue for pMTG involvement 

in the analyses of verb-argument relations (Bornkessel-Schlesewsky & Schlesewsky, 2013; 

Friederici, 2011, 2012), the same cannot be said for the differential activation profile 

evidenced by the Person > Number Agreement Violation contrast. The verb-argument 

relation hypothesis would predict activation for person, but not for number agreement 

anomalies in the pMTG: while the interpretation of person agreement implies the mapping 

of morpho-syntactic information onto specific roles (i.e. discourse roles), no role assignment 

is involved for the interpretation of number agreement. In other words, the activation 

patterns that emerge from the comparison between the two violations disconfirm the verb-

argument hypothesis.  
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A better frame for the discussion of these data is provided by studies and models that 

assume pMTG involvement in the extraction of information from the input to build syntactic 

structure (Hagoort, 2005; Hickock & Poeppel, 2007; Lau et al., 2008; Libertus & Needham, 

2010; Molinaro et al., 2015; Pallier et al., 2011). In this respect, the quantitative dissociation 

found between person and number would result from their different underlying structural 

representations (Bianchi, 2006; Lu et al., 2011; Mancini et al., 2011a; Sigurdsson, 2009). 

While the extraction of person information from verbal morphology implies projecting 

nodes at the morpho-syntactic and discourse level, the extraction of number information 

does not, leading to differential processing costs. The information extracted from the input 

in the pMTG could be made available to further regions in the network, thanks to ventral 

and dorsal connections to anterior portions of the temporal cortex and left frontal areas 

(Bornkessel-Schlesewsky & Schlesewsky, 2013; Dronkers et al., 2004; Griffiths et al., 2012; 

Hagoort, 2013; Molinaro et al., 2015; Papoutsi et al., 2011; Saur et al., 2008; Wilson et al., 

2012), where subsequent analysis steps could be carried out, as described below.  

Assignment of interpretively relevant roles: the role of the aMTG. In line with our 

predictions and in accordance with the previous experimental chapters, the comparison 

between Standard Agreement and Agreement Violations revealed the activation of a large 

portion of the aMTG for agreeing verbs. Moreover, the comparison between person and 

number violations revealed a remarkable asymmetry between the two features, with the 

former producing a significant increase of activation in this area, but not the latter. As 

reviewed above, activity in this region has been associated with the building of local 

syntactic structure, thanks to the ventral pathway connecting the anterior portion of the 

temporal cortex and the frontal operculum (Friederici, 2011, 2012). Another interpretation 

attributes the aMTG a critical role in the integration of different types of information to 

derive the propositional meaning of a sentence (Bornkessel-Schlesewsky & Schlesewsky, 

2013), a claim that connects with a larger literature on the role of this region in semantic 

memory and conceptual combination (cf. Baron, S. G. et al., 2010; Molinaro et al., 2015; 

Patterson et al., 2007). Crucially, the current set of data allows us to distinguish between 

these two proposals. Clearly, the finding of different patterns of activation for grammatical 
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and ungrammatical sentences in this region does not argue in favor of the local syntactic 

structure building hypothesis: in this case one would have expected the three contrasts to 

give rise to equivalent responses in this area, since the three types of sentences are 

characterized by the same local syntactic structure (regardless of morpho-syntactic 

consistency). On the contrary, aMTG increased activation that we report for the Standard 

Agreement > Agreement Violations contrast is in line with previous data on agreement 

processing by Kuperberg et al. (Kuperberg et al., 2003; Kuperberg, Sitnikova, et al., 2008), 

who have reported aMTG involvement in the processing of grammatical sentences (see also 

the Results section in Chapter 3, 4 and 5), and more in general with claims advancing the 

role of this region in the elaboration of higher-level information (Bornkessel-Schlesewsky & 

Schlesewsky, 2013; Lau et al., 2008; Molinaro et al., 2015; Pallier et al., 2011). Under this 

assumption, the finding of a significant response in this area for person, but not for number 

anomalies, give us an important insight into the type of mechanisms supported by this area. 

Specifically, our data point to a critical role of aMTG in the assignment of interpretively 

relevant roles, which, in our case, correspond to discourse roles. While identifying and 

assigning a discourse role to the subject argument is crucial for the derivation of the 

overarching meaning of the sentence, the identification of whether this argument refers to a 

single entity or a multitude of entities is not, hence the qualitatively different response for 

the two violations. Critically, such an interpretation meshes well with results obtained in the 

ERP study by Mancini et al. (2011a), who reported an N400 effect for Person Agreement 

Violation relative to Standard Agreement. Indeed, it is possible that the anterior portion of 

the left middle temporal gyrus is involved in the generation of this negative component (cf. 

Lau et al., 2013; Lau et al., 2008), although further investigation is certainly needed to 

validate this hypothesis. 

Evaluation of subject-verb morpho-syntactic fit: interplay between domain-general 

and domain-specific processes in frontal areas. In frontal areas, the analysis of grammatical 

(relative to agreement violations) and ungrammatical sentences (relative to their correct 

counterpart) revealed an interesting clear-cut dissociation between regions selectively 

involved in the analysis of congruent sentences, as opposed to regions sensitive to the 

presence of agreement inconsistencies. A significant response for grammatical sentences 
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(relative to ungrammatical ones) was present in LIFG areas, including the pars triangularis 

and orbitalis (see Figure. 6.2), in line with results from the previous agreement processing 

studies that report a significant response of this area to grammatical agreement (Kuperberg 

et al., 2003; Kuperberg, Sitnikova, et al., 2008; see also Results section in Chapter 1 for 

similar results). Current neuro-cognitive models advance contrasting hypotheses on the role 

played by frontal areas in sentence comprehension, ranging from domain-specific to 

domain-general functions (Bornkessel-Schlesewsky & Schlesewsky, 2013; Friederici, 2011, 

2012; Friederici & Gierhan, 2013; Grodzinsky & Friederici, 2006; Hagoort, 2003a, 2005, 

2013; Lau et al., 2008; Novick et al., 2005; Thompson-Schill et al., 2005).  

Importantly, a clearer understanding of the sentence-level processes supported by 

these two regions can be gained from the comparison between person and number 

violations. Although with a less strict threshold, the two anomalies differ in the pars orbitalis 

and triangularis of the LIFG, where Person Agreement Violation gave rise to a greater 

response compared to Number Agreement Violation, thus mirroring the activation profile 

found in the aMTG and the pMTG. It is possible that activity in the anterior portion of the 

LIFG thus reflects a constant and incremental evaluation of the semantic-discourse fit of the 

elements being processed, that is the matching between subject and verb in terms of 

morpho-syntactic values, to evaluate whether the two elements can be integrated in a 

meaningful conceptual representation. Such a response profile is compatible with views 

proposing that more anterior regions of the LIFG are involved in the analysis of meaning at 

the sentence level (Friederici, 2011, 2012; Friederici & Gierhan, 2013; Hagoort, 2005; and 

Vigneau et al., 2006 for an extensive review). In this respect, the greater response that we 

find for person could be attributed to the greater relevance for propositional meaning that 

this feature has, because of the interpretively relevant roles that it assigns. Crucially, this 

interpretation suggests a tight functional connection existing between the aMTG and inferior 

frontal regions, which appears to be corroborated neuro-anatomically by the presence of a 

ventral pathway connecting anterior temporal to inferior frontal regions (cf. Friederici, 

2011). Critically, a recent study has demonstrated the presence of a significant coupling 
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between anterior temporal regions and IFG during semantic processing (Molinaro et al., 

2015). 

A different scenario is found in the left middle frontal gyrus, which was found to 

respond more to incorrect agreement stimuli (regardless of the feature manipulated). These 

data appear in line with those reported in the previous experimental chapters (see Discussion 

section of Chapter 3) and more in general with studies manipulating the morpho-syntactic fit 

between sentence parts [e.g., gender mismatch between pronouns and antecedents in Dutch 

(Folia et al., 2009); finiteness violations in English (Kuperberg et al., 2003; Kuperberg, 

Sitnikova, et al., 2008); verb-object violations in Basque (Nieuwland et al., 2012)]. A 

number of studies point to a critical role of the middle frontal gyrus in domain-general 

verbal working memory mechanisms (Katsuki & Constantinidis, 2012a, 2012b; Rogalsky & 

Hickok, 2011). In the context of the current experiment, middle frontal areas could support 

working memory mechanisms aimed at comparing incoming verbal information with 

previously analyzed information, such as the one contained in the subject argument (see 

Discussion in Chapter 7 for a similar argument). Importantly, these memory mechanisms 

could be tightly involved in morpho-syntactic consistency checking operations that are 

assumed to take place during agreement processing. This interpretation appears to be in line 

with the ERP data reported by Mancini et al. (2011a), in which a common left-anterior 

negative effect was found for the two violations, suggesting the presence of a common 

feature checking operation for the two types of agreement. Critically, studies investigating 

the processing of mismatches in domains other than language syntax, such as music syntax, 

have localized the source of early negative effects in middle frontal gyrus (Maess et al., 

2001) and have thus proposed that this region supports general mechanisms involved in 

checking consistency across the stimuli (see Koelsch, 2005; Koelsch et al., 2005; Koelsch et 

al., 2004 for a discussion on the interaction between musical and linguistic processing). 

A further remark concerns the dissociation that emerges in the frontal lobe between 

inferior frontal areas – selectively activated by the processing of correct dependencies – and 

middle frontal regions, which show sensitivity to the presence of a mismatch between 

subject and verb. This division has been already discussed in the extant neuro-cognitive 
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literature, especially in relation to the debate concerning the domain-general vs. language-

specific function of frontal areas. One relevant position maintains that LIFG role is neither 

strictly domain-general nor strictly language-specific (Fedorenko, Duncan, et al., 2012). 

Indeed, handling of both types of processing is ensured by the presence of functionally 

complementary sub-regions: while LIFG is specifically engaged in linguistic processing, its 

surrounding areas appear to be broadly engaged in a variety of tasks across different 

domains. The current set of data is compatible with this proposal and contributes to 

characterizing the nature of the mechanisms that each sub-region supports. In particular, this 

dissociation could reflect the interplay between language-specific mechanisms that 

incrementally integrate linguistic information coming from temporal areas, and domain-

general processes that ensure the detection of possible mismatches between the perceived 

and the expected input. 

Conflict monitoring system triggered during agreement processing. There is yet 

another aspect of the set of data showed here that deserves to be discussed, namely the 

activation profile emerged in bilateral fronto-parietal areas, including the anterior and 

middle cingulated cortex, the inferior parietal cortex and the precuneus. As we extensively 

discussed in the previous chapters, activity in these areas has been consistently associated 

with task-related conflict-monitoring operations aimed at monitoring the match between the 

expected and the perceived stimulus (Botvinick et al., 2004; Ye & Zhou, 2009). These could 

precisely be the mechanisms that led to the involvement of these regions in our experiment, 

during which participants were required to evaluate sentence grammaticality. Importantly, 

this finding is consistent with further sentence processing studies that required the 

evaluation of the morpho-syntactic fit in a variety of dependencies (Folia et al., 2009; 

Kuperberg et al., 2003; Kuperberg, Sitnikova, et al., 2008; Nieuwland et al., 2012). Further 

corroboration for this interpretation comes from the fact that both person and number 

agreement violations elicit a P600 (cf. Mancini et al., 2011a), an effect that has been linked 

to conflict-monitoring mechanisms (see van de Meerendonk et al., 2011; van de 

Meerendonk et al., 2009 for a discussion) and whose sources have been related to the 

anterior cingulate cortex (Du et al., 2013; Olichney et al., 2010).  

193 

 



Iliana Quiñones, 2015 

Interim conclusions. In sum, two main findings result from this study. Firstly, we had 

hypothesized that the on-line building of agreement comprehension relied on the application 

of mechanisms that distinctly mapped morpho-syntactic information onto discourse and 

cardinality representations, and that this dissociation could be reflected at a neural level. The 

current results confirmed our hypothesis and showed that the comprehension of an 

agreement dependency hinges on composite, feature-sensitive mechanisms of extraction and 

mapping in which the nodes of the agreement network are differentially involved. Secondly, 

the observation of the neural response to person and number agreement violations allowed 

us to associate the main components of agreement processing to their neuro-anatomical 

seats, thus adding up to current views on the neuro-cognition of language. On the one side, 

we have been able to localize processes related to the extraction of the representation 

underlying agreement features in the posterior portion of the middle temporal cortex, where 

differential sensitivity to the type of information manipulated in verbal morphology is found. 

This is of great relevance, as it gives us the opportunity to disentangle the processing of 

person and number from a perspective that could not be approached with either 

electrophysiological or behavioral techniques. On the other side, we pinpointed the neural 

substrates supporting the assignment of interpretively relevant roles in the anterior portion of 

the left middle temporal gyrus. In particular, this takes on great relevance both for the neuro-

cognitive and theoretical study of agreement and sentence processing, suggesting the need i) 

to widen the range of interpretively relevant features and dependencies, to which person 

agreement is to be added (besides case and thematic roles), and ii) to design models that 

accommodate feature-based mapping procedures. Moreover, we could envisage the role of 

inferior and middle frontal areas in sentence processing by appealing to a tight interplay 

between language-specific and domain-general functions, which crucially evaluate and 

regulate subject-verb integration at the morpho-syntactic and semantic-discourse level. 

Lastly, we identified a center in fronto-parietal areas that regulates attentive mechanisms in 

order to monitor conflicts between the expected and the perceived input. Critically, future 

work will have to test the possibility to extend the assumptions made above to further 

features, syntactic contexts and different types of sentential relations.  
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Chapter 7. 
Experiment V 
 

Where agreement merges with disagreement: fMRI evidence of subject-verb 

integration. 

7.1 Overview 

The previous experiment (Chapter 6) investigated the neuro-cognitive mechanisms 

of subject-verb agreement comprehension by comparing ungrammatical sentences which 

present agreement feature mismatches with correct sentences, such as in (18) and (19) 

below. Despite the huge amount of studies using this approach to explore different aspects 

of sentence processing, it critically confounds the neurophysiological routines involved in 

agreement comprehension with the ones triggered by the detection of syntactically ill-

formed constructions. 

(18) *El pintor trajiste los cuadros a la galería  Person Mismatch 

*The painter3.sg brought2.sg the paintings to the gallery  

(19) Los pintores trajeron los cuadros a la galería Standard Agreement 
The painters3.pl brought3.pl the paintings to the gallery 

Critically, a new perspective in understanding these mechanisms is possible if we 

take advantage of “legal” agreement mismatches (i.e., agreement mismatches that are 

nevertheless grammatically correct) that are available in some languages. One such case is 

Unagreement in Spanish, an agreement pattern characterized by the presence of a morpho-
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syntactic person mismatch between the subject and the verb (Höhn, 2012; Mancini et al., 

2013b; Mancini et al., 2011b). In (20) below, despite the fact that a third person plural 

subject is followed by a first person plural verb, a well-formed grammatical Spanish 

sentence is generated. This morpho-syntactic mismatch is overcome by assigning to the 3rd 

person subject argument a 1st person plural interpretation (from “The painters” to “We 

painters”). From the point of view of the discourse representation of the sentence, this 

person shift for the subject implies a covert integration operation through which the speaker 

underlying the 1st person plural verb is included in the group of individuals referred to by the 

subject argument (from “they” to “they + myself”). In contrast, no such integration operation 

can be performed in (18), where the non-participant status of the subject form (“he/she”) is 

incompatible with the addressee role invoked by the 2nd person verb (“you”).  

(20) Los pintores trajimos los cuadros a la galería  Unagreement 

The painters3.pl brought1.pl the paintings to the gallery 

The uniqueness of the Unagreement pattern in (20) resides in the fact that it shares 

properties with both Standard Agreement (i.e., grammaticality) and Person Mismatch (i.e., 

morpho-syntactic mismatch), but at the same time it differs from both (as illustrated in Table 

7.1). On the one hand, Unagreement shares a subject-verb morpho-syntactic mismatch with 

person violations but differs from them because it can be successfully integrated. Thus, both 

person violations and Unagreement should trigger processing difficulties in the evaluation of 

the morpho-syntactic consistency of subject and verb, independently of the grammaticality 

of the utterance. On the other hand, Unagreement shares grammaticality with Standard 

Agreement, but unlike this, it requires additional semantic-discourse analyses to overcome 

the morpho-syntactic incongruity and to perform the person shift (from “they” to “they + 

myself”, a process referred to as “person anchoring” by Mancini et al., 2013b). From the 

perspective of sentence processing, the “grammatical mismatch” status of Unagreement 

offers therefore the opportunity to isolate the neural mechanisms supporting successful 

semantic integration that characterize correct sentences, from those underlying the 

evaluation of the morpho-syntactic subject-verb consistency. Importantly, these two 
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processing steps cannot be disentangled using traditional contrasts between correct and 

agreement-anomalous sentences because of the impossibility of integrating two utterly 

mismatching values into a common and meaningful semantic representation. Therefore, in 

the current experimental chapter we have improved on the methodological limitations 

mentioned above, using an event-related design in which the experimental manipulation 

always concerns a simple local subject-verb agreement configuration (e.g., “Los pintores 

trajeron/Los pintores trajimos/*El pintor trajiste”). This type of manipulation therefore 

permits a cleaner observation of agreement processing, without the potential contamination 

from other confounds. In addition, we take advantage of the “intermediate” status of 

Unagreement between Standard Agreement and person violation. 

 

Table 7.1. Increased processing (+) sensitive to the different linguistic properties of 
the subject-verb agreement constructions for each experimental condition. 

Process Def. Agreem. Unagreem. Person Mism.

Grammatical Error Detection − − +

Morphosyntactic Mismatch Detection − + +

Semantic-Discourse Integration + ++ −

 

Taken into account the advantage of this type of grammatical construction, Mancini 

et al. (2011b) used Unagreement sentences and compared them to default agreement and ill-

formed patterns (see examples 1, 2 and 3). These authors found an N400 component for both 

the Unagreement and the person mismatch conditions compared to default agreement. 

However, while the negativity elicited by the Unagreement extended between 350 and 750 

ms mainly in the left posterior electrodes, the person mismatch elicited a widely distributed 

and larger negative effect between 350 and 500 ms that was evident also in bilateral frontal 

and posterior scalp regions. Mancini et al. (2011b) also reported that in contrast to 

Unagreement, person violations generated a P600 effect widely distributed over the scalp.  
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As for the N400 effect, the differences found in the timing and the topographic 

distribution of the Unagreement and person mismatch effects could reflect a functional 

dissociation between the two conditions after around 350 ms. Mancini et al (2011b) consider 

that the N400 could be associated in both conditions with the violation of the expectation 

about the morpho-syntactic verb feature, triggering semantic-pragmatic difficulties in the 

composition of the speech act participant representation. Nonetheless, these authors note that 

while in the case of person mismatch the speech participants underlying subject and verb 

cannot be integrated into one unitary discourse representation, integration clearly occurs in 

Unagreement. Here, the first person plural interpretation results from including a speaker 

within the group referred to by “The painters”. This functional dissociation possibly implies 

the engagement of different neural generators (underlying the topographically and 

temporally dissociable N400 effects) that are respectively recruited by the reading of 

grammatical (Unagreement) and ungrammatical (person violations) mismatches (Mancini et 

al., 2011b). From a neuro-anatomical perspective, Lau et al. (2008) indicate the anterior 

temporal cortex and the angular gyrus as crucial areas for the integration of incoming 

information into contextual and syntactic representations (see Bemis and Pylkkanen, 2012 

for experimental evidence). Thus, these two neuro-anatomical regions are plausible 

candidates responsible for the successful integration that takes place in Unagreement 

sentences. On the other hand, the subsequent positive effect for person mismatch has been  

attributed to re-analysis operations taking place when ungrammatical information is being 

processed (Barber and Carreiras, 2005; Bornkessel and Schlesewsky, 2006; Friederici, 

2012), while the absence of the P600 effect for Unagreement was taken to indicate that no 

reanalysis operation was triggered, since the sentence is grammatical. Thus, Unagreement 

and default agreement sentences undergo the same processes in this later phase.  

However, the proposed early (starting ~350 ms) dissociation between the 

neurophysiological processes elicited by person violations and Unagreement is not 

completely supported by the ERP data. In fact, the main difference between the negative 

effects elicited by those two conditions (compared to default agreement) is reflected in the 

amplitude of the 300-500 ms effect (larger for person violations compared to Unagreement; 
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see amplitude-topography interaction for ERPs discussed by McCarthy and Wood, 1985). 

Thus, it could be argued that the same initial process is at work for both Unagreement and 

person violations (involving the same neural network) and that this process is more taxed by 

encountering person violations. Unfortunately, electroencephalographic measures suffer 

from low spatial resolution at the brain level, thus limiting possible inferences about the 

extent of the brain networks underlying a specific scalp-measured effect. However, defining 

whether different or similar neurophysiological processes are initially elicited by person 

violations and Unagreement is crucial, since the early stages of processing are the ones 

reflecting core agreement computations30 (Molinaro et al., 2013).  

The present study capitalizes on the Mancini et al. (2011b) design, to finely detail the 

neural networks involved in different aspects of subject-verb agreement comprehension 

using the high spatial resolution of fMRI. This experimental paradigm attempts to isolate the 

neural substrates involved in agreement computation, with a special focus on both the 

evaluation of morpho-syntactic feature consistency and semantic integration complexity. In 

light of the fMRI and ERP data discussed in the previous experimental chapters, we expect a 

dissociation between the neural networks involved in the processing of correct grammatical 

sentences and the networks involved in the processing of anomalous sentences with a person 

mismatch. Based on the previous experiment (Chapter 6), we predict that grammatical 

sentences (Standard Agreement and Unagreement) in comparison to anomalous 

constructions should lead to increased activity within an extended left fronto-temporal 

network, including the anterior and posterior middle temporal gyrus and the inferior and 

middle frontal gyri (Kuperberg et al., 2003; Kuperberg, Sitnikova, et al., 2008). For the 

processing of grammatically anomalous constructions with a person violation, relative to 

grammatical ones (Standard Agreement and Unagreement), we expect predominant 

activation of the anterior cingulate cortex and parietal areas, brain regions previously related 

3 In natural language (when each word is perceived/read every ~350 ms), comprehension of Unagreement constructions is 
not as penalized as Person Mismatch comprehension (see Mancini et al., under review). This means that native Spanish 
speakers automatically acknowledge the grammaticality of Unagreement constructions before 500 ms post-stimulus onset. 
As a consequence, this suggests that differential processes would be at work in the 300-500 ms time interval. 
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to conflict-monitoring operations (Kolk et al., 2003; Kuperberg, Sitnikova, et al., 2008; van 

de Meerendonk et al., 2011; Vissers et al., 2006). 

More importantly, the present experimental design allows fine-grained 

discrimination of brain regions that are critically involved in core agreement processing. In 

fact, we should be able to report some region(s) associated to subject-verb morpho-syntactic 

mismatch detection showing increased activation for both Unagreement and Person 

Mismatch, irrespective of sentence grammaticality. Previous findings point to the pars 

opercularis (within the left inferior frontal gyrus) and the anterior part of the left superior 

temporal gyrus as possible candidates for the processing of syntactic mismatches (Friederici, 

2011; Hagoort, 2005). 

Moreover, as indicated above, the successful integration of different speech roles in 

Unagreement sentences (speaker and non-participants) should involve the activation of areas 

related to semantic integration processes, reflecting the increased semantic-discourse 

complexity of these constructions compared to Standard Agreement. In this sense, the 

angular gyrus and the anterior middle temporal gyrus could be plausible candidates, and 

increased activation for the Unagreement compared to the other two conditions would 

confirm this. Among these two candidates, the angular gyrus could critically serve complex 

semantic integration operations (Bemis & Pylkkänen, 2012a) (see also the Discussion 

section of Chapter 4). This would be supported by the neuro-anatomical localization of this 

region in the parietal cortex and its anatomical connectivity with different subsystems, 

including parietal (e.g., precuneus), temporal (e.g., inferior, middle and posterior temporal 

regions) and frontal networks (e.g., inferior frontal gyrus at the level of areas BA44 and 

BA45) (Catani et al., 2012; Catani & Mesulam, 2008; Catani & Thiebaut de Schotten, 2008; 

Thiebaut de Schotten et al., 2012). Recent meta-analyses have indeed emphasized the crucial 

role of the angular gyrus in the processing of different types of semantic complexity. Binder 

et al. (2009) proposed that this brain structure “occupies a position at the top of a processing 

hierarchy underlying concept retrieval and conceptual integration, thus suggesting that the 

angular gyrus mediates fluent conceptual combination, such as sentence comprehension, 

discourse, problem solving, and planning” (Binder et al., 2009, page 2776). 
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7.2 Materials and Methods 

Participants. Twenty-five healthy subjects participated as paid volunteers in the 

study. After the quality checking of the data, a total of twenty-one participants (nine 

females), with ages ranging from 17 to 35 years (mean = 22.62, standard deviation = 4.43), 

were used to estimate the group effects. 

Stimuli and experimental design. Each subject participated in a single session 

consisting of two pseudo-randomized repetitions of an event-related design functional scan. 

Each scan consisted in a serial presentation of sentences grammatically acceptable or 

ungrammatical. Sentences were visually presented word by word and after each sentence a 

cue was shown instructing the participant to make a grammaticality judgment by pressing 

one of two different buttons (a go/go paradigm) (Fig. 7.1). Words were displayed in white 

letters on a black background. Each word was presented for 300 ms, followed by a 500 ms 

blank screen. In order to optimize the design statistical efficiency, a fixation point (“+”) 

between successive sentences were presented in different (“jittered”) durations across trials 

(1.87, 3.56, 4.96 seconds, in the proportion of 57:28:15) (Dale, 1999).  

The stimulation set consisted of 120 sentences which included three different 

conditions (in the proportion of 1:1:1): Standard Agreement, Unagreement and Person 

Mismatch (see Figure 7.1 A). All sentences contained a lexical subject followed by a past 

tense verb (the critical word), which was always followed by at least two words. The two 

grammatical conditions included a plural subject, i.e. the Standard Agreement and the 

Unagreement, whereas the ungrammatical condition (Person Mismatch) contained a 

singular subject. In the Standard Agreement condition the third person plural subject is 

followed by a third person plural verb, while in the Unagreement condition the third person 

plural subject could be followed by both a first and a second person plural verb. Meanwhile, 

the Person Mismatch condition contained a third person singular subject followed by a 

second singular verb. The choice of past tense verbal forms was mainly motivated by the 

need to keep the length of the critical word balanced across conditions (Standard 

Agreement: mean length = 9.66, SD = 2.5; Unagreement: mean length = 9.39, SD = 2.34; 
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Person Mismatch: mean length = 9.38, SD = 2.34), which could not be done with other verb 

tenses.  

 

Figure 7.1. Schematic representation of an experimental trial. 

In order to balance the proportion of acceptable/unacceptable sentences and avoid 

expectations concerning the morphological form of the verb, 120 filler sentences with a 

similar sentence structure were added to the material. Ungrammatical sentences contained 

both person and number mismatches between subject and verb. Importantly, since 

unacceptable experimental sentences (Person Mismatch condition) always involved a third 

person singular subject followed by a second person singular verb, incorrect fillers 

comprised both a third person singular subject followed by a third person plural verb (40 

sentences, e.g., “*El pintor3.sg trajeron3.pl un cuadro…”), and a third person plural subject 

followed by a third person singular verb (40 sentences, e.g., “*Los pintores3.pl trajo3.sg un 

cuadro…”). Forty additional correct fillers of the type “El pintor3.sg trajo3.sg un cuadro…” 

were also added to balance the overall number of correct and incorrect sentences. This was 

in order to avoid expectations concerning the morphological form of the verb, especially for 

the ungrammatical sentences (for a similar design see Mancini et al., 2011b). 
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Despite the fact that the Unagreement pattern represents a marked agreement 

construction compared to the full agreement counterpart, its frequency of use is very high, 

above all in spoken Spanish. Due to the lack of an adequate corpus of spoken Spanish from 

which to draw the frequency of this pattern, previous studies of our lab assessed the 

acceptability of this type of construction (Mancini et al., 2011b; Pérez et al., 2012). They 

tested a group of native speakers of Spanish using a naturalness judgment task. The task was 

to read all of the sentences in the three experimental conditions (i.e., Unagreement, Standard 

Agreement and Person Agreement Violation) and judge how natural each of them sounded 

on the basis of a 1-to-7 point scale. These participants reported awareness only of the Person 

Mismatch manipulations; while they rated Unagreement and Standard Agreement sentences 

as being equally natural. 

Image acquisition and functional data analysis. The acquisition of the functional and 

the structural images and also the pre-processing of the data were carried out following the 

same procedure used in Experiment IV (Chapter 6). Statistical parametric maps were 

generated by modeling univariate general linear model, using for each stimulus type a 

regressor obtained by convolving the canonical hemodynamic response function with delta 

functions at stimulus onsets31, and also including the six motion-correction parameters as 

regressors. The GLM were estimated using a robust regression (see previous experimental 

chapters for similar procedures). A pair-wise contrast comparing activity to each phrase type 

relative to every other phrase type was performed (Unagreement > Standard Agreement, 

Person Mismatch > Standard Agreement, Standard Agreement > Person Mismatch, 

Unagreement > Person Mismatch and Person Mismatch > Unagreement). Resulting 

contrast images were then entered into a second level design analysis to enable population 

inferences. Additionally, contrast images for each of the three conditions compared to the 

fixation baseline were submitted into a second level One Way ANOVA (Standard 

Agreement, Unagreement and Person Mismatch). This analysis would allow us to determine 

31 The stimuli onsets include six different components. The first one corresponded to the onset of each sentence 
trial and was modelled as a single regressor, independently of the experimental conditions. The next four 
corresponded to each experimental condition (Full Agreement, Unagreement, Person Mismatch and Fillers) 
and lasted from the onset of the critical verb. In the last component the response time was included, lasting 
from the onset of the response mark.   
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whether differences between experimental conditions were due to activation or deactivation 

with respect to the fixation baseline condition. Population-level inferences were tested using 

the SPM8 random effects model that estimated the second level t statistic at each voxel. 

Those peaks or clusters with a p-value corrected for multiple comparisons with family wise 

error (FWE; Nichols & Hayasaka, 2003) and/or false discovery rate (FDR; Genovese et al., 

2002) were reported in the tables of results. All local maxima were reported as MNI 

coordinates (Evans et al., 1993). 

7.3 Results 

Behavioral results. Percentage of correct response and mean reaction times (RT) for 

Standard Agreement, Unagreement and Person Mismatch are presented in Table 7.2, with 

the corresponding standard error between parentheses. Percentage of correct responses was 

above 85 % for all experimental conditions, indicating that the participants judged the 

sentences corresponding to the Standard Agreement and Unagreement conditions as 

grammatically acceptable in contrast to the Person Mismatch sentences that were judged as 

grammatically unacceptable.  

Table 7.2. Percentage of correct response and mean decision times (in 
ms) for the three types of sentences with standard error between 
parentheses.

Hits

629.32 (38.06) 90.37 (1.80)

664.28 (39.29) 87.50 (1.60)

568.03 (34.53) 90.00 (2.68)

Standard Agreement

Unagreement

Person Agreement Violation

RT

 

One way ANOVAs on mean response times and accuracy were performed using the 

conditions (Standard Agreement, Unagreement and Person Mismatch) as factor. This 

analysis showed no significant difference in accuracy among the three conditions. However, 

for RTs, a significant main effect of condition was found (F (2, 40) = 9.11, p < 0.001, ε = 
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0.99). In consonant with the previous experiment (Chapter 6), planned comparisons 

demonstrated that the detection of Person Mismatch was faster (lower RT) than the 

detection of grammatically acceptable sentences, including Standard Agreement (t (20) = 

2.60, p < 0.05) and Unagreement (t (20) = 4.48, p < 0.001) conditions. This result is 

consistent with previous ones (Kuperberg et al., 2003; Mancini et al., 2011a, 2011b; Nevins 

et al., 2007; Nieuwland et al., 2012) and may reflect the additional time required for the 

syntactic-semantic integration processes triggered by grammatical sentences relative to the 

grammatical error detection processes evoked by ill-formed constructions (see Molinaro et 

al., 2013 for a discussion of this behavioral pattern of results). It is important to note that 

although Unagreement processing entails more processing difficulties in constructing 

sentence meaning than the Standard Agreement pattern, the time required to judge the 

grammaticality of these two conditions was not statistically different (t (20) = 1.50 , p > 

0.05).  

All Sentences versus Fixation. To characterize the functional neuro-anatomical 

network that was recruited by the processing of sentences, independently of the 

experimental manipulation, we performed a One-Way ANOVA comparing each sentence 

type with the fixation point condition. The statistical parametric map resulting from the main 

effect is displayed in Figure 7.2, overlaid on the surface of the MNI single-subject T1 image 

(for more details see Box 7.1 that shows the comparison between each sentence type and the 

fixation baseline condition) and reveals the significant response of a widespread fronto-

parieto-temporal network bilaterally distributed but with a strong left lateralization (Figure 

7.2). This network includes brain regions such as the left pars opercularis, triangularis and 

orbitalis within the inferior frontal gyrus, as well as the anterior and posterior part of the left 

middle temporal cortex, the left superior temporal sulcus, the supramarginal cortex, the 

inferior parietal gyrus and the angular gyrus, typically related to different stages of language 

processing. Additionally, the left and right fusiform gyrus and the left and right inferior and 

middle occipital cortex, associated to early stages of visual word perception, showed 

significant activation for all sentences compared to the baseline condition. Also, regions 

involved in the planning and execution of motor behavioral responses, such as the 
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supplementary motor area and the precentral and postcentral cortex in both hemispheres 

exhibited a higher response pattern in this comparison. 

 

 

Figure 7.2. Significant activation clusters resulting from the contrast All sentences vs. 

Fixation baseline were projected on the surface of the MNI single-subject T1 image. All clusters 

depicted at p<0.05 corrected for multiple comparisons. L: left; R: right; A: Anterior; P: 

Posterior; I: Inferior; S: Superior; FB: Fixation baseline.  
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Person Mismatch versus Grammatical Sentences. To dissociate the neural correlates 

corresponding to morpho-syntactic mismatch detection and conflict-monitoring from those 

related to the integration of meaningful information, we compared the response pattern 

between Person Mismatch and the grammatical sentences (Standard Agreement and 

Unagreement). A significant increase of activation for the Person Mismatch relative to the 

Standard Agreement condition was observed in a bilateral fronto-parietal network (see Table 

7.3 and Figure 7.3). This network included the middle frontal gyrus, the anterior and middle 

cingulate cortices, the inferior parietal cortex and the cuneus/precuneus. All these neural 

regions showed a similar activation pattern in both cerebral hemispheres. In addition, we 

found a significant increase of activation for the supramarginal gyrus exclusively in the right 

hemisphere. Furthermore, significant difference in the response pattern of the rectus within 

the ventro-medial orbitofrontal cortex was found, although this region exhibited deactivation 

when the three types of sentences were compared to the fixation baseline condition. In the 

 

 

B)            Unagreement > FB 

C)            Person Mismatch > FB 

 

A)           Standard Agreement > 
FB 
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Box 7.1. Significant activation clusters 

resulting from the contrast Default Agreement 

vs. Fixation baseline (A), Unagreement vs. 

Fixation baseline (B) and Person Mismatch 

vs. Fixation baseline (C). Statistical 

parametric maps were projected on the surface 

of the MNI single-subject T1 image. All 

clusters depicted at p<0.05 corrected for 

multiple comparisons. L: left; R: right; FB: 

Fixation baseline. 

Note that similar results emerge from the three 

types of sentences independently of their 

grammaticality. 
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same way, the recruitment of a similar pattern of activation was found when comparing 

Person Mismatch and Unagreement (see Table 7.3). 

Grammatical Sentences versus Person Mismatch. The Standard Agreement relative 

to Person Mismatch condition showed a significant increase of activation with a left 

hemisphere lateralization, including temporal and frontal regions (see Table 7.3 and Figure 

7.4 A). The frontal activation patch comprised inferior frontal regions (pars triangularis and 

pars orbitalis) and the precentral/postcentral cortex. The increase of activation in the 

temporal areas recruited by Standard Agreement included the superior temporal gyrus, 

anterior and posterior part of the middle temporal gyrus and the inferior temporal gyrus, as 

well as the fusiform area and the lingual cortex. 

 

Figure 7.3. Significant activation clusters resulting from the contrast Person Mismatch vs. 

Standard Agreement are represented in red. Statistical maps were overlaid on the surface 

(left panel) of the MNI single-subject T1 image. The bar graph in the right panel displays the 

contrast estimates and 90% of confidence intervals for the three experimental conditions 

compared to the fixation baseline (SA: Standard Agreement; U: Unagreement; PM: Person 

Mismatch) at different maximum peaks representative of the significant activated clusters. 

The three experimental conditions are represented in the right panel with different colors 

(Standard Agreement in blue; Unagreement in green; Person Mismatch in red). L: left 

hemisphere; R: right hemisphere. 
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Table 7.3. Brain activation for each critical pair-wise comparison.

x,y,z {mm} Z Vx x,y,z {mm} Z Vx x,y,z {mm} Z Vx x,y,z {mm} Z Vx x,y,z {mm} Z Vx

L Inf Frontal Tri (BA45) -52  28  10 3.55 128 -46  30   4 4.77 1353
L Inf Frontal Tri (BA48) -46  16  30 4.01 1353
L Inf Frontal Orb (BA47) -49 30 -4 3.12 1353
L Rectus  -8  26 -14 4.91 426  -4  46 -18 4.31 281
L Med Frontal Orb  -4  50 -12 4.77 426
L Sup Med Frontal   -2  34  34 4.89 406 -10  54  32 4.82 330
L Mid Frontal (BA44) -44  22  36 4.33 459 -42  18  40 3.78 173
L Mid Frontal (BA45) -40  46  22 4.26 459
L Mid Frontal (BA46) -32  46  34 4.68 459 -30  56  22 4.77 602
L Ant Cingulate  -4  36   8 4.04 583
L Inf Parietal -42 -46  58 4.31 225
L Postcentral -60   2  20 3.94 125
L Precentral (BA6) -54   0  26 2.87 125 -34   2  58 3.22 107
L Precentral (BA9) -34  10  44 3.1 107
L Precuneus  -6 -66  50 5.14 1171
L Angular -40 -56  28 3.51 74
L Sup Temporal -44 -36  20 3.4 283
L Mid Temporal P -42  14 -32 4.36 415
L Ant Mid Temporal -62  -4 -20 4.76 221 -58 -12 -18 3.97 415
L Post Mid Temporal -44 -48  14 4.21 283 -54 -50  14 3.8 259
L Inf Temporal -56  -4 -26 3.7 221
L Lingual -14 -82  -8 4.26 272
L Fusiform -32 -74 -10 3.74 272
R Rectus   4  26 -18 3.96 281
R Sup Frontal  12  32  38 5.07 89
R Mid Frontal (BA45)  40  42   6 3.86 622
R Paracentral Lobule  10 -32  52 4.43 1171
R Ant Cingulate   6  40  26 4.36 406   6  42   2 4.46 583
R Inf Parietal  56 -42  50 4.25 434
R Supramarginal  58 -36  44 4.19 434  58 -32  48 4.75 754
R Mid Cingulate  10 -26  38 4.61 1614
R Precuneus   6 -54  66 4.27 1614
x,y,z {mm} = Coordinates in MNI space of local maxima. Z = Z scores. Vx = Number of voxels significantly activated inside the cluster belonging to each 
local maximum. Z scores and Vx are reported in bold if they are significant at the peak level after FWE or FDR correction (p<.05), if indicated by
underline they are significant at p<.001 uncorrected. All others are significant at the cluster level after FWE or FDR correction (p<.05). Inf: Inferior; Tri:
Triangularis; Orb: Orbitalis; Med: Medial ; Sup: Superior; Mid: Middle; Ant: Anterior; L: Left; R: Right.

Standard Agreement 
> Person Mismatch

Unagreement > 
Person Mismatch

Unagreement > 
Standard AgreementRegion

Person Mismatch > 
Standard Agreement

Person Mismatch > 
Unagreement
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Figure 7.4. Significant 
activation clusters resulting 
from the contrast Standard 
Agreement vs. Person 
Mismatch (A) and 
Unagreement vs. Person 
Mismatch (B). Statistical 
maps were projected on the 
surface (A) of the MNI 
single-subject T1 image. The 
bar graph in (B) displays the 
contrast estimates and 90% 
of confidence intervals for 
the three experimental 
conditions compared to the 
fixation baseline (SA: 
Standard Agreement; U: 
Unagreement; PM: Person 
Mismatch) at different 
maximum peaks 
representative of the 
significant activated clusters. 
The three experimental 
conditions are represented 
with different colors 
(Standard Agreement in blue; 
Unagreement in green; 
Person Mismatch in red). L: 
left; R: right; Mid: middle; 
Ant: anterior; Post: posterior. 
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Chapter 7. Experiment V. 

Similarly to the Standard Agreement versus Person Mismatch contrast presented 

above, when comparing Unagreement and Person Mismatch (see Table 7.3 and Fig. 7.4 B), 

the activation of a similar fronto-temporal network was found, highlighting that the 

processing of grammatical sentences, whether fully agreeing or “unagreeing”, involves akin 

neural substrates. This was confirmed by the comparison between the pattern of activation 

evoked by Unagreement and Standard Agreement with the fixation point, from which the 

engagement of analogous neural substrates emerged. Box 7.1 (A and B) summarize this 

result. Note that the activation pattern evoked by Unagreement and Standard Agreement was 

restricted to the left hemisphere, contrary to the activation pattern elicited by Person 

Mismatch that comprised regions in both hemispheres. Interestingly, if we observe the 

activation pattern of the Unagreement and Full Agreement sentences compared to the 

Person Mismatch (bar graph in the right side of Figure 7.4) we can note differences between 

Unagreement and Standard Agreement in the pars orbitalis and the most anterior part of the 

middle temporal cortex. These regions appear to be more activated by the Unagreement 

sentences.  

Unagreement versus Standard Agreement. The Unagreement response compared to 

Standard Agreement evoked significant increases of activation in the left angular gyrus, the 

left middle frontal and the right superior frontal cortex (see Table 7.3 and Figure 7.5 A). 

Within this network it is possible to detect the regions involved in morpho-syntactic 

mismatch detection and also regions recruited by the increased semantic complexity of the 

Unagreement construction. To disentangle between these different qualitative processes, we 

superimposed this response (Unagreement versus Standard Agreement) on the Person 

Mismatch versus Standard Agreement contrast (Figure 7.5 B, where the common response is 

represented in yellow). The posterior part of the left middle frontal gyrus is commonly 

activated by both Unagreement and Person Mismatch, suggesting that this region is 

involved in morpho-syntactic mismatch detection (see Table 7.1). 

On the other hand, the left angular gyrus is specifically activated by the 

Unagreement sentences (represented in green in Figure 7.5 B). The mean of the contrast 

estimates between subjects for each condition (Standard Agreement, Unagreement and 
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Person Mismatch) in both regions (the left angular gyrus and the left middle frontal cortex) 

are shown on the right side of the Figure 7.5. The engagement of the angular gyrus in 

subject-verb agreement comprehension is a relatively novel finding (see the Discussion 

section of the current chapter and also the Discussion section of the Chapter 4). When we 

explored the single-subject activation response of this region we observed a large variability 

in the activation pattern across participants.  

 

 

Figure 7.5. A) Significant activation clusters resulting from the contrast Unagreement vs. 
Standard Agreement. B) Superimposition of the significant activation clusters resulting from 
the contrasts Person Mismatch vs. Standard Agreement and Unagreement vs. Standard 
Agreement. Statistical maps were projected on the surface of the MNI single-subject T1 
image. Yellow voxels represent significant activated voxels in both contrasts. The bar graph 
in the right side of the image displays the contrast estimates (Unagreement vs. Standard 
Agreement) and 90% of confidence intervals for the three experimental conditions compared 
to the fixation baseline (SA: Standard Agreement; U: Unagreement; PM: Person Mismatch) 
at different maximum peaks, representative of the significant activated clusters. The three 
experimental conditions are represented in the bar graph with different colors (Standard 
Agreement in blue; Unagreement in green; Person Mismatch in red). Mid: middle. Note that 
only Unagreement condition statistically differs from the fixation baseline condition. 
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In an attempt to clarify this finding and explore the behavioral consequence of this 

activation variability, we estimated the correlation between the signal change in this region 

and the corresponding reaction time and percentage of accuracy per condition (Standard 

Agreement, Unagreement and Person Mismatch). Remarkably, a significant correlation was 

obtained between the activation pattern of the left angular gyrus and the performance scores 

of the Unagreement grammaticality judgment (see Fig. 6.6). Participants with greater 

activation in left angular gyrus showed faster reaction time (β = -0.0003 [t(19) = -2.17, p < 

0.05], R2 = 0.20, adjusted R2 = 0.16, F(1, 19) = 4.69, p <0.05) and higher percentage of 

accuracy (β = 0.011 [t(19) = 2.82, p < 0.01], R2 = 0.30, adjusted R2 = 0.26, F(1, 19) = 7.96, p 

< 0.01). The recruitment of this region thus seems critical for the successful integration of 

the Unagreement pattern: the activation pattern of the left angular gyrus does not show any 

relation with the behavioral measures associated to the other two conditions.  

 

Figure 7.6. Correlation analysis between the behavioral measures (decision times and 

percentage of correct responses) and the signal change of the left angular gyrus. 

7.4 Discussion 

The main goal of the present study was to dissociate the neuro-anatomical substrates 

of the different processing steps involved in subject-verb agreement comprehension in 

Spanish by taking advantage of the Unagreement construction. First of all, in line with our 

predictions, we isolated the brain network involved in subject-verb morpho-syntactic 

Mean of signal change within the left angular gyrus

Decision times (ms) Correct Response (%)

213 

 



Iliana Quiñones, 2015 

integration from the ones related to conflict-monitoring triggered by the detection of 

agreement grammatical errors. On the one hand, all sentences types (Unagreement, Standard 

Agreement and Person Mismatch relative to baseline) evoked increase of activation in a left 

lateralized fronto-temporal network, with higher activation for grammatical than anomalous 

sentences (grammatical sentences relative to Person Mismatch). This network includes the 

inferior frontal gyrus, the precentral/postcentral cortex, the superior temporal cortex, anterior 

and posterior part of the middle temporal gyrus and the inferior temporal gyrus, as well as 

the fusiform area and the lingual cortex. On the other hand, an additional bilateral fronto-

parietal network was recruited exclusively by the Person Mismatch condition (Person 

Mismatch relative to baseline; Person Mismatch relative to grammatical sentences), 

including the anterior part of the middle frontal gyrus, the rectus, the anterior and middle 

cingulate cortices, the inferior parietal cortex and the cuneus/precuneus. 

The engagement of this bilateral fronto-parietal network associated to anomalous 

sentences has been previously reported, not only in the context of subject-verb agreement 

computation (Kuperberg et al., 2003; Kuperberg, Sitnikova, et al., 2008; Ni et al., 2000), but 

also related to the processing of other aspects of language perception (Bambini et al., 2011; 

Kerns et al., 2004; Lauro et al., 2008; Novick et al., 2005; van de Meerendonk et al., 2011; 

van de Meerendonk et al., 2009; van de Meerendonk et al., 2010; Ye & Zhou, 2009). As we 

previously discussed, the response of this network may reflect the engagement of the 

conflict monitoring system, probably triggered by the grammatical subject-verb agreement 

error (for instance, “The painter3.sg brought2.sg”) (for alternative viewpoints see the 

Discussion Section of Kuperberg, Sitnikova, et al., 2008). The involvement of this 

monitoring system in the processing of the Person Mismatch condition is consistent with 

Mancini et al. (2011b). Their ERP results demonstrated a clear distinction in the 

electrophysiological responses associated to ungrammatical and grammatical sentences: 

only Person Mismatch evoked the P600 component.  

As indicated above, the three conditions (Standard Agreement, Unagreement and 

Person Mismatch) recruit a left lateralized fronto-temporal network irrespective of their 

grammaticality. However, some regions within this network exhibited a different sensitivity 
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to grammatical than anomalous sentences (see Figure 7.4). In fact, while the pars opercularis 

and the pars orbitalis within the inferior frontal gyrus respond similarly to both grammatical 

and ungrammatical sentences, the pars triangularis and the precentral/postcentral cortex 

dissociate between grammatical and ungrammatical conditions, with Standard Agreement 

and Unagreement generating greater activation compared to Person Mismatch. A similar 

dissociation was found in the temporal regions. In fact, while the anterior and posterior part 

of the middle temporal gyrus and the inferior temporal cortex exhibited a greater response 

for grammatical sentences than ungrammatical ones, in the superior temporal cortex a 

similar increased response was found for the three conditions, irrespective of the 

grammaticality of the sentence. 

As we previously pointed out, this left fronto-temporal network has been the focus of 

attention of the sentence comprehension research community during the last decade (see 

Bornkessel-Schlesewsky & Schlesewsky, 2013; Friederici, 2011 for two recent and 

divergence points of view). Different theoretical frameworks have hypothesized about the 

specific role played by each node of this network during sentence processing (see Chapter 1 

for an extensive discussion about this topic). Taking the current data in isolation, we cannot 

elucidate which of these proposals fits better with our data. For instance, the activation of 

the left inferior frontal gyrus for all the sentence types independently of grammaticality is 

compatible with the most recent model of sentence comprehension proposed by Bornkessel-

Schlesewsky and Schlesewsky (2013). This perspective suggests that the functional role of 

the frontal regions (including the inferior frontal gyrus) is not specifically related to 

language per se, but serves to integrate different linguistic information with behavior, due to 

its role in cognitive control mechanisms (in an experimental context this would be reflected 

in the task responses). This idea is highly appealing and consistent with previous evidence 

(for an extensive revision of this topic see Bornkessel-Schlesewsky & Schlesewsky, 2013). 

However, the higher activation level of the pars triangularis exhibited by grammatical 

sentences (Standard Agreement and Unagreement) as compared to ungrammatical ones 

(Person Mismatch) fits well with the model proposed by Friederici and colleagues 

(Friederici, 2011, 2012; Friederici & Gierhan, 2013), suggesting that this inferior frontal 
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sub-region is part of a (larger) semantic network (see Newhart et al., 2012 for a double 

dissociation between working memory/cognitive control mechanisms and sentence 

processing in the inferior frontal gyrus).  

However, crucially, the experimental design used here can shed light on the neural 

correlates of two different processing stages underlying agreement computation: a) the 

evaluation of subject-verb morpho-syntactic consistency recruits the posterior part of the left 

middle frontal gyrus and b) discourse-semantic integration processes critically rely on the 

involvement of the left angular gyrus as part of the more domain-general semantic network. 

In the following paragraphs we will detail these two major points (see Table S1 for an 

updated summary of the results and a comparison across the experiments). 
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Table S1. Main Findings 

Behavioral results 

Neuro-anatomical results 

Grammaticality effects 
Effects related with the critical 

manipulation 

Experiment I 
(determiner-
noun pairs) 

Main effect of Agreement 
Congruency: Subjects classified 

determiner-noun pairs as grammatically 
correct more easily and accurately than 
incongruent pairs. This differentiation 
was evident for both transparent and 

opaque nouns. 

Interaction effect: Regarding RT, this 
effect was larger for opaque than for 

transparent nouns. 

Gender Mismatch relative to Gender Match: 
the dorsal striatum, the middle and medial 

superior frontal gyrus, the medial orbito-frontal 
cortex, the pre- and post-central gyrus, as well 

as the anterior cingulate cortex. 

Gender Match as compared to Gender 
Mismatch: the pars opercularis and triangularis 
within the left IFG and the posterior part of the 

left MTG/STG. 

Significant interaction effects between 
Gender Congruency and Gender-marking 
emerged in five left-lateralized clusters:  

 Pars triangularis within the IFG 
 Posterior part of the MTG/STG 
 Hippocampus 
 Angular Gyrus 
 Supramarginal Gyrus 

Experiment II Null effects for RT and error rates. 

Gender Mismatch relative to Gender Match: 
the pars triangularis, orbitalis and opercularis 

within the left IFG, the middle frontal gyrus, as 
well as the inferior parietal gyrus and the 

supramarginal and the angular gyri. 

Gender Match as compared to Gender 
Mismatch: the middle and medial superior 
frontal gyrus, the medial orbito-frontal 

cortex, the anterior cingulate cortex, as well as 
the anterior part of the left MTG/STG and the 

superior and middle temporal pole. 

Significant interaction effects between 
Gender Congruency and Type of Gender 
emerged in two left-lateralized clusters:  

 Inferior Parietal 
 Angular Gyrus 
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Experiment III 

Main effect of Agreement 
Congruency: Subjects classified word 

pairs as grammatically correct more 
easily and accurately than incongruent 

pairs. This Left angular 
gyrusdifferentiation was evident for both 
determiner-noun and subject-verb pairs.  

Interaction effect: Regarding RT, this 
effect was larger for determiner-noun 

pairs than for subject-verb pairs. 

Number Mismatch relative to Number Match: 
the right and left insula, the pars orbitalis, 

opercularis and triangularis within the left IFG, 
the pre- and post-central gyrus, as well as the 

inferior parietal cortex. 

Number Match as compared to Number 
Mismatch: the middle and superior frontal 

gyrus, the anterior cingulate cortex, the medial 
orbito-frontal cortex, as well as the anterior part 

of the MTG/ITG. 

Significant interaction effects between 
Number Congruency and Type of Word 

Pair emerged in three left-lateralized 
clusters:  

 Left pars opercularis within the 
IFG 

 Left anterior part of the 
MTG/STG 

 Left and right precuneus/Cuneus 

Experiment IV 

Main effect of Agreement 
Congruency: Subjects classified word 
pairs as grammatically incorrect more 
easily and accurately than congruent 

items. This differentiation was evident 
for both person and number agreement 

violations. 

Ungrammatical relative to Grammatical 
sentences: the medial superior frontal gyrus, the 
middle frontal gyrus, the postcentral gyrus, the 
middle cingulate cortex, as well as the inferior 

and superior parietal cortices. 

Grammatical relative to Ungrammatical 
sentences: the pars orbitalis and triangularis 

within the left IFG, the superior frontal gyrus, as 
well as the posterior and anterior portions of the 
left MTG/STG and the superior temporal pole. 

Significant differences between Number 
and Person Agreement Violation emerged 

in four left-lateralized clusters:  

 Left pars orbitalis within the IFG 
 Left pars triangularis within the 

IFG 
 Left anterior part of the 

MTG/STG 
 Left posterior part of the 

MTG/STG 

Experiment V 

Main effect of Agreement 
Congruency: Subjects classified word 
pairs as grammatically incorrect more 
easily and accurately than congruent 

items.  

Ungrammatical relative to Grammatical 
sentences: the medial superior frontal gyrus, the 

middle frontal gyrus, the anterior cingulate 
cortex, as well as the inferior parietal cortex. 

Grammatical relative to Ungrammatical 
sentences: the pars orbitalis and triangularis 

within the left IFG, the superior frontal gyrus, 
the medial orbito-frontal cortex, the pre- and 
post-central gyri, as well as the posterior and 

anterior portions of the left MTG/STG. 

The commonalities between Person 
Mismatch and Unagreement emerged in: 

 Left middle frontal gyrus 

The differences between Unagreement 
and Standard Agreement emerged in: 

 Left angular gyrus 

 

 



Chapter 7. Experiment V. 

Morpho-syntactic detection processing. One of the main results of the present study 

is the dissociation found in the middle frontal cortex, where a differential response is shown 

for the two morpho-syntactic subject-verb mismatches (Unagreement and Person 

Mismatch). On the one hand, in a posterior portion of the middle frontal gyrus we found 

activation for both Person Mismatch and Unagreement. On the other hand, a more anterior 

part of the middle frontal cortex responds only to Person Mismatch (see Figure 6.3). 

Importantly, both types of stimuli involve a person mismatch, although with a different 

grammatical status.  

The similarity in the activation pattern of Person Mismatch and Unagreement 

sentences is consistent with the results obtained in the ERP experiment showing that both 

Person Mismatch and Unagreement evoke a posterior negative effect between 300 and 500 

ms compared to Standard Agreement sentences (Mancini et al., 2011b). It is therefore 

possible that the posterior portion of the middle frontal gyrus contributes to the generation of 

this early negative component, although this hypothesis requires further evidence. As we 

discussed in the previous chapters, this finding is consistent with previous fMRI results from 

a variety of languages and agreement dependencies (see Results and Discussion sections in 

Chapters 3, 4, 5 and 6).  

As debated in the Discussion section of the Chapter 3 (Experiment I), there are two 

different points of view that can explain this common activation in the posterior part of the 

middle frontal cortex recruited by Person Mismatch and Unagreement. First (from a more 

domain-general perspective), it may be that this common activation reflects the involvement 

of more general working memory mechanisms (see Katsuki & Constantinidis, 2012a; 2012b 

for the involvement of the dorsolateral prefrontal regions in working memory processes) 

associated to the evaluation of the morpho-syntactic relation between the person feature of 

the (subsequently presented) subject (“El pintor/The painter3sg.”) and verb 

(“trajiste/brought2sg.”). In this sense, Murray and Ranganath (2007) explored the functional 

brain activity during a sequential encoding of word pairs while participants either made a 

semantic judgment related to the second word or a semantic judgment that involved a 

comparison between the second word and the previous word. This experiment demonstrated 
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activity increases of dorsolateral prefrontal regions during relational compared with item-

specific encoding, suggesting that this frontal region play a critical role for building 

relationships between items during on-line processing (see also Blumenfeld & Ranganath, 

2006; Murray & Ranganath, 2007). This idea is consistent with previous studies that have 

reported the activation of this frontal region in association with more general aspects of 

language processing: verbal fluency tasks (Abrahams et al., 2003) and visual Stroop 

congruency tasks (Ye & Zhou, 2009). 

As the second plausible explanation (from a more language-specific domain), this 

sub-region within the middle frontal gyrus would be crucially engaged in checking the 

morpho-syntactic match between two sentence constituents, irrespective of its 

grammaticality. Several models of sentence comprehension consider morpho-syntactic 

checking as an initial critical step for building up the syntactic structure of a sentence that 

depends on agreement relations (Friederici, 2011, 2012; Friederici & Gierhan, 2013). The 

low temporal resolution of fMRI does not clarify the chronology of the brain regions 

involved in the processing of these two experimental conditions (Person Mismatch and 

Unagreement): thus, we cannot temporally determine if the posterior part of the left middle 

frontal gyrus is activated earlier compared to the other brain regions that are significantly 

activated for these conditions. Nonetheless, the fact that Unagreement and Person Mismatch 

only share the morpho-syntactic subject-verb incongruency (Unagreement differs from 

person violations because it can be successfully integrated) supports the idea that this 

common brain activation for the two conditions would reflect processes involved in the 

evaluation of morpho-syntax consistency. 

These two apparently different perspectives are not necessarily exclusive. On reading 

Unagreement and Person Mismatch sentences, the system detects the presence of a morpho-

syntactic mismatch between subject and verb, a process that is reflected in the common 

activation of the posterior portion of the middle frontal cortex. However, the system 

subsequently recognizes that while Unagreement verbal and nominal information can be 

further integrated, the person feature violation included in the Person Mismatch condition 

cannot be integrated into the current sentence context. The posterior part of the middle 
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frontal cortex can mediate the processing of agreement computation via a) afferent 

connections providing information to regulate the detection of a morpho-syntactic mismatch, 

and b) efferent projections sending such information to regions involved in subsequent 

processing stages for resolving the grammaticality of the sentence (see Xiang et al., 2010 for 

a functional connectivity study; an also see Yeterian et al., 2012, for a description of the 

anatomical connectivity of this frontal region in the primate brain). Despite the fact that this 

hypothesis needs further investigation (for instance, to establish the directionality of the 

information flow between the different nodes within this fronto-parieto-temporal network), 

the activation of the left middle frontal gyrus associated to sentences with morpho-syntactic 

incongruities points to the important role of this region during sentence comprehension and 

more specifically in the processing of agreement computation, probably as part as a more 

general (not-language specific) hub. 

Additional discourse-semantic integration processing. According to the feature 

anchoring hypothesis (Mancini et al., 2013a, 2013b), successful integration of the different 

speech roles in Unagreement sentences (speaker and non-participants) requires the 

activation of regions related to semantic integration processes, to overcome the feature 

mismatch between subject and verb (“Los pintores trajimos/The painters3.pl brought1.pl”). 

Based on previous findings, we identified the angular gyrus and the anterior temporal cortex 

as plausible candidates for this processing stage. Our experimental design has allowed us to 

discriminate between these two neuro-anatomical candidates: a) The anterior part of the left 

middle temporal gyrus and the left anterior temporal cortex exhibited a greater response to 

grammatical sentences compared to the anomalous ones without differences between 

Unagreement and Standard Agreement; b) The left angular gyrus is selectively activated 

only by Unagreement sentences (both for Unagreement relative to Standard Agreement and 

for Unagreement, Person Mismatch and Standard Agreement relative to the baseline 

condition); c) Participants with greater activation in the left angular gyrus showed faster 

reaction time and a higher percentage of accuracy. These results suggest that both the left 

angular gyrus and anterior temporal regions mediate semantic-integration processes during 

the computation of subject-verb agreement. However, only the left angular gyrus is activated 
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for the more semantically complex condition that can be successfully integrated [i.e., in the 

case of Unagreement, where the person value of the referent shifts from third to first person 

plural (from “they” to “they + myself”)].  

Language-related neuroimaging findings have pointed to the involvement of this 

region during semantic processing (see reviews in Binder et al., 2009; Lau et al., 2008; 

Price, C. J., 2012; Seghier, 2013; Seghier et al., 2010; Vigneau et al., 2006), particularly in 

tasks that require concept retrieval and conceptual integration (Bemis & Pylkkänen, 2012a), 

as well as sentence integration into discourse (Bambini et al., 2011; Kuperberg et al., 2003; 

Kuperberg, Sitnikova, et al., 2008; Luke et al., 2002; Menenti et al., 2009). These findings 

have been replicated across multiple studies with different semantic tasks and stimuli (for 

meta-analysis reviews, see Binder & Desai, 2011; Binder et al., 2009; Vigneau et al., 2006). 

For instance, Binder et al. (2009) found that the most consistent semantic activation across 

120 functional neuroimaging studies was located within the left angular gyrus, strengthening 

the heteromodal character of this region. Using magnetoencephalography, Bemis and 

Pylkkänen (2012a) measured neural activity elicited by the comprehension of adjective-

noun pairs to highlight the neural substrates involved in basic linguistic composition across 

different modalities (auditory and visual). Interestingly, they found significant angular gyrus 

activation for compositional (e.g., red-boat) vs. non-compositional stimuli (e.g., xlq-boat) in 

both modalities, and interpreted this result as evidence for the crucial role of this region in 

conceptual integration processes32. 

At the sentence level, Kuperberg et al. (2006) found activity increases in the left and 

right angular gyri in association with reading sentences that were partially related to their 

preceding contexts, relative to highly related or unrelated sentences. In their study, 

participants were asked to evaluate the semantic relation between subsequent sentences. 

These authors found that the greater the difficulty in judging the semantic relationship 

32 It is important to note that the functional interpretation of this magnetoencephalography result is mediated by 
the temporality of the effects, based on the available models of sentence comprehension that assume initial 
syntactic composition followed by later semantic combinatorial operations. These authors found that the 
increased left anterior temporal cortex activity always preceded increased left angular gyrus activity in both 
auditory and visual modality (Bemis & Pylkkänen, 2012a, pp. 10-11). 
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between sentences, the greater the activity of the angular gyrus (the effect only emerged for 

intermediate semantic relation, Kuperberg et al., 2006). Similarly, Nieuwland et al. (2007) 

manipulated the referential ambiguity between a pronoun and its referent in a sentence 

comprehension paradigm (e.g., *Ronald told Frank that he had a positive attitude towards 

life/*Rose told Emily that he...): the right and left angular gyrus were strongly activated with 

higher amplitude for referential ambiguities than referential anomalies. These findings 

highlight the specificity of the angular gyrus in dealing with high-level discourse 

representation. Interestingly, similar activity increases of the angular gyrus have been also 

found in fMRI studies that explored the neuro-anatomical correlates of metaphor processing 

(Bambini et al., 2011; Mashal et al., 2007; Shibata et al., 2012), which requires accessing a 

metaphorical meaning that extends beyond the literal meaning expressed by the linguistic 

input. This additional semantic processing recalls the additional semantic resources required 

to interpret Unagreement patterns: in fact, comprehension of both metaphors and 

Unagreement requires integrating the subject and verb forms at a higher conceptual level, 

overcoming the literal (discordant) meaning. Finally, neurological lesions in the angular 

gyrus have been previously associated with difficulties in processing complex sentences 

such as “It was the niece that the father kicked” (Dronkers et al., 2004; Newhart et al., 

2012). Thus, it appears that the angular gyrus plays a crucial role in the processing of 

semantic complexity, whatever its source (both within sentences and beyond the sentence 

processing domain). In the present study we additionally show that this region is activated 

even when an agreement-relevant morpho-syntactic scenario is the source of semantic 

complexity. Possible replications of our findings could therefore have strong implications 

for neuro-anatomical models of sentence processing. 

Taking into account these coherent findings, it seems plausible that neuro-cognitive 

models of sentence comprehension should take this parietal region as a key node for 

semantic integration processing. Currently, no existing neuro-cognitive models of sentence 

comprehension have considered parietal regions as mediating semantic functions (but see 

Binder & Desai, 2011; Binder et al., 2009 for a neuro-anatomical model of semantic 

processing). For instance, Bornkessel-Schlesewsky and Schlesewsky (2013) proposed that 
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parietal regions are part of a dorsal pathway that mediates different aspects of syntactic 

processing: time-dependent segmentation, constituent combination into well-formed 

syntactic structure, and assessment of the elements in this structure in action-related terms. 

On the other hand, these authors pointed to the anterior middle temporal cortex as a key 

region mediating semantic integration processes. In contrast, Friederici (2011) argued that 

the role of inferior parietal regions as part as a dorsal stream (“dorsal pathway II mediating 

syntactic operations dealing with complex sentence structures”) is an open issue and 

suggests phonological working memory storage as the most likely function of these regions. 

This author considers that semantic processing engages the middle and posterior superior 

temporal gyrus, as well as BA 45/47 within the inferior frontal gyrus (“ventral pathway I”).  

In this sense, the correlation between the behavioral results and the angular gyrus 

activity is a crucial piece of evidence: participants with greater activation in this region were 

more efficient (faster and more accurate) in the Unagreement grammaticality judgment. The 

neural response pattern of this region with respect to the baseline condition varied between 

participants: only the participants who exhibited activation in the angular gyrus during the 

Unagreement grammaticality judgment showed high task performance, while the ones 

exhibiting either no activation or deactivation showed lower performance. This inter-subject 

variability in the functional recruitment of parietal neural regions during reading processes 

has been previously reported (Bolger, Hornickel, et al., 2008; Bolger, Minas, et al., 2008; 

Levy, J. et al., 2009; Seghier et al., 2008), and may reflect their association with the 

Standard network (see Seghier, 2013 for a review). The fact that only the angular gyrus 

shows task-related modulation, as opposed to the frontal regions that did not show such 

variability, casts doubts on the theoretical proposal of Bornkessel-Schlesewsky and 

Schlesewsky (2013) indicating that only frontal regions are involved in domain-general 

cognitive control. The present correlation between the activation pattern for the angular 

gyrus and its relation with behavioral measures suggests that this parietal region influences 

the observed behavior of the participants in the experimental task.  

Interim conclusions. Taken together, the present findings suggest that different brain 

networks are involved in language comprehension depending on i) the grammaticality of the 
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sentence (Unagreement/Standard Agreement vs. Person Mismatch) and the subsequent 

possibility of integrating morpho-syntactic information at a semantic-discourse level; and ii) 

overcoming (or not) an apparent morpho-syntactic mismatch (Person Mismatch vs. 

Unagreement). Many accounts of subject-verb agreement fMRI findings derive from studies 

on the processing of feature mismatches and the results have provided a very fragmented 

scenario. Here, we used an experimental design that allowed us to distinguish the fine-

grained neural circuitry within a fronto-temporal-parietal network recruited by different 

aspects of subject-verb agreement computation. The results indicate that the evaluation of 

morpho-syntactic subject-verb match correlates with activity in the posterior part of the left 

middle frontal gyrus, while syntactic-semantic integration is pursued by an extended left 

fronto-temporal network. Additional semantic complexity due to the re-interpretation of 

speech-act participants at the discourse level was observed to increase activity in the left 

angular gyrus. Overall, the present findings point out the central role of activity and 

interactivity between the classic fronto-temporal network and two additional nodes: the 

posterior part of the left middle frontal gyrus and the left angular gyrus.  
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Chapter 8. 
General Discussion 
 

Before concluding, I would like to come back to the phrase that opens the current 

thesis: “When we are reading a text such as “...como si sobre sus cabezas hubiera caído la 

gota de agua que forman las estalactitas...”(literally: “…as if on their headspluralhadsingular 

fallen [the drop of water] singular that formplural stalactites…”) (Lezama Lima in Paradiso, 

page 486-487) with apparent incongruities between different sentence constituents, we 

become aware of the constant computation of grammatical relations (i.e., agreement) that is 

necessary to combine the different words and grasp the idea that the author wants to 

convey.” Using this statement we tried to point out “the what”, “the why” and “the how” of 

the current dissertation. What is the main subject of this document, what is the motivation 

for investigating this topic and how will it be explored to provide new empirical evidence 

that can be translated into novel claims?  

In the current modern society, we are constantly exposed to written linguistic 

material – e.g., from basic thinks like signage systems to more complex material like poetry. 

The comprehension of this type of stimulus is an automatic process essential for our daily 

life. Nevertheless, the more automatic a process is, the less aware we are of the cost 

associated with the process. Despite its automaticity, sentence comprehension is a very 

complex and costly neural process that encompasses different mechanisms. One of these 

critical mechanisms is the computation of agreement dependencies. The investigation of this 

phenomenon from a neuro-cognitive perspective has been overlooked, maybe due to its 

intrinsic variability across languages or the complexity to isolate it from other mechanisms 

underlying sentences comprehension. This is the reason – i.e., “the why”– why we chose 

agreement as “the what” of this dissertation. The richness this phenomenon has in Spanish 

was what made the Spanish Agreement System the perfect tool to isolate the neural circuit 

specialized in the establishment of grammatical relations – i.e., “the how”. These three 
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points – i.e., “the what”, “the why” and “the how” – were the central focus of the Chapter 

1. Specifically, we started by critically reviewing the main linguistic theories about 

agreement and the most relevant empirical neuro-cognitive evidence concerning this topic. 

In addition, since the significance agreement comprehension has for the sentence processing 

literature, we also included in this section some theoretical details about the most recent 

neuro-anatomical models proposed on this theme. Critically, this part tried to put forward 

the main unresolved questions regarding agreement processing, emphasizing the lack of 

consensus in the existing empirical evidence. 

Three principal goals were pinpointed in the Introduction section: 1does the brain 

have a circuit specialized in the computation of grammatical relations among words, 
2whether this neural circuit, if indeed found, is fine-tuned depending on syntactic or 

semantic signals embedded in our linguistic code, and 3whether the interaction between 

these two different types of information leaves a trace in the brain response. In order to 

address these questions, five independent experiments were designed and organized 

according to the syntactic and semantic complexity characterizing the grammatical 

dependency (or dependencies) manipulated in each case (from Chapter 3 to Chapter 7). 

Thus, these three general questions were the guiding thread connecting these studies. Each 

one of these experimental chapters included a discussion section, where the main results 

were contrasted with the previous evidence and the major claims were extensively debated. 

In this final chapter, we will focus on the commonalities and differences emerging across the 

five experiments. Establishing commonalities and differences across experiments we will be 

able to better characterize the neural circuit underlying the comprehension of agreement 

relations. The starting point of this comparison will be the Table 1S, which set out with an 

illustration of the main behavioral and fMRI findings resulting from each one of these five 

experiments. The commonalities and differences per main result were represented using a 

color code: while the commonalities were coded with similar colors, the differences were 

coded with different colors. 
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Table S1. Main Findings 

Behavioral results 

Neuro-anatomical results 

Grammaticality effects 
Effects related with the critical 

manipulation 

Experiment I 
(determiner-
noun pairs) 

Main effect of Agreement 
Congruency: Subjects classified 

determiner-noun pairs as grammatically 
correct more easily and accurately than 
incongruent pairs. This differentiation 
was evident for both transparent and 

opaque nouns. 

Interaction effect: Regarding RT, this 
effect was larger for opaque than for 

transparent nouns. 

Gender Mismatch relative to Gender Match: 
the dorsal striatum, the middle and medial 

superior frontal gyrus, the medial orbito-frontal 
cortex, the pre- and post-central gyrus, as well 

as the anterior cingulate cortex. 

Gender Match as compared to Gender 
Mismatch: the pars opercularis and triangularis 
within the left IFG and the posterior part of the 

left MTG/STG. 

Significant interaction effects between 
Gender Congruency and Gender-marking 
emerged in five left-lateralized clusters:  

 Pars triangularis within the IFG 
 Posterior part of the MTG/STG 
 Hippocampus 
 Angular Gyrus 
 Supramarginal Gyrus 

Experiment II Null effects for RT and error rates. 

Gender Mismatch relative to Gender Match: 
the pars triangularis, orbitalis and opercularis 

within the left IFG, the middle frontal gyrus, as 
well as the inferior parietal gyrus and the 

supramarginal and the angular gyri. 

Gender Match as compared to Gender 
Mismatch: the middle and medial superior 
frontal gyrus, the medial orbito-frontal 

cortex, the anterior cingulate cortex, as well as 
the anterior part of the left MTG/STG and the 

superior and middle temporal pole. 

Significant interaction effects between 
Gender Congruency and Type of Gender 
emerged in two left-lateralized clusters:  

 Inferior Parietal 
 Angular Gyrus 
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Experiment III 

Main effect of Agreement 
Congruency: Subjects classified word 

pairs as grammatically correct more 
easily and accurately than incongruent 

pairs. This differentiation was evident for 
both determiner-noun and subject-verb 

pairs.  

Interaction effect: Regarding RT, this 
effect was larger for determiner-noun 

pairs than for subject-verb pairs. 

Number Mismatch relative to Number Match: 
the right and left insula, the pars orbitalis, 

opercularis and triangularis within the left IFG, 
the pre- and post-central gyrus, as well as the 

inferior parietal cortex. 

Number Match as compared to Number 
Mismatch: the middle and superior frontal 

gyrus, the anterior cingulate cortex, the medial 
orbito-frontal cortex, as well as the anterior part 

of the MTG/ITG. 

Significant interaction effects between 
Number Congruency and Type of Word 

Pair emerged in three left-lateralized 
clusters:  

 Left pars opercularis within the 
IFG 

 Left anterior part of the 
MTG/STG 

 Left and right precuneus/cuneus 

Experiment IV 

Main effect of Agreement 
Congruency: Subjects classified word 
pairs as grammatically incorrect more 
easily and accurately than congruent 

items. This differentiation was evident 
for both person and number agreement 

violations. 

Ungrammatical relative to Grammatical 
sentences: the medial superior frontal gyrus, the 
middle frontal gyrus, the postcentral gyrus, the 
middle cingulate cortex, as well as the inferior 

and superior parietal cortices. 

Grammatical relative to Ungrammatical 
sentences: the pars orbitalis and triangularis 

within the left IFG, the superior frontal gyrus, as 
well as the posterior and anterior portions of the 
left MTG/STG and the superior temporal pole. 

Significant differences between Number 
and Person Agreement Violation emerged 

in four left-lateralized clusters:  

 Left pars orbitalis within the IFG 
 Left pars triangularis within the 

IFG 
 Left anterior part of the 

MTG/STG 
 Left posterior part of the 

MTG/STG 

Experiment V 

Main effect of Agreement 
Congruency: Subjects classified word 
pairs as grammatically incorrect more 
easily and accurately than congruent 

items.  

Ungrammatical relative to Grammatical 
sentences: the medial superior frontal gyrus, the 

middle frontal gyrus, the anterior cingulate 
cortex, as well as the inferior parietal cortex. 

Grammatical relative to Ungrammatical 
sentences: the pars orbitalis and triangularis 

within the left IFG, the superior frontal gyrus, 
the medial orbito-frontal cortex, the pre- and 
post-central gyri, as well as the posterior and 

anterior portions of the left MTG/STG. 

The commonalities between Person 
Mismatch and Unagreement emerged in: 

 Left middle frontal gyrus 

The differences between Unagreement 
and Standard Agreement emerged in: 

 Left angular gyrus 
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With respect to the first question (i.e., does the brain have a circuit specialized in 

the computation of grammatical relations among words?), the five experiments 

consistently revealed a functional dissociation between a bilateral distributed fronto-parietal 

network that was associated to amodal conflict-monitoring operations, and a left-lateralized 

fronto-temporal network that seems to be specifically related to different aspects of phrase 

and sentence processing (see Table 1S for the results listed in the column Grammaticality 

effects). We take this finding to suggest that for the comprehension of grammatical relations 

a complex system, which includes language-specific and domain-general circuits, is boosted. 

Specifically, in line with previous ERPs and fMRI findings, we identified the 

anterior cingulate cortex as a critical epicenter of the conflict-monitoring system aimed at 

control the consistency between the expected and the perceived signal (Botvinick et al., 

2004; van de Meerendonk et al., 2011; van de Meerendonk et al., 2009; van de Meerendonk 

et al., 2010; Ye & Zhou, 2009). Irrespectively of the experiment, this region exhibited higher 

response for incongruent than for congruent items, suggesting that the detection of 

grammatical incongruities between two different sentence elements boost the response of 

this system (see Figure 8.1). According to our data, apart from the anterior cingulate cortex, 

we consistently found a bilateral fronto-parietal network that seems to be related with the 

same mechanism. This network includes areas such as the superior and medial frontal gyri, 

the superior parietal cortex and the precuneus/cuneus. However, in contrast with the anterior 

cingulate cortex, the response of this network was related with the difficulty of the task: the 

larger the reaction times were, the greater the neural response in these areas. Interestingly, 

this finding goes in line with previous empirical evidence which identified these areas as 

crucial nodes for task-dependent attentional mechanisms. In consonance with this result, as 

we outlined in Chapter 3, previous studies have suggested that attentional mechanisms are 

biased by this conflict-monitoring system through bottom-up control mechanisms (van de 

Meerendonk et al., 2011; van de Meerendonk et al., 2009; van de Meerendonk et al., 2010). 

Interestingly, with regard to this bilateral network, we identified a clear difference across 

experiments: while the BOLD response in the experiments I, IV and V were positive, the 

BOLD response in the experiments II and III were negative. Throughout the document, we 

provided some plausible hypothesis for this difference; nonetheless it could be interestingly 
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for further studies to identify the specific factors modulating the neural response of this 

circuit. 

 

 

Figure 8.1. Left anterior cingulate activation resulting from the combination of the five 

experiments was projected on the MNI single-subject T1 image (sagittal view). Red dotted 

lines represent the maximum peak of response. Note that brain activity in this region is 

extended from the most anterior and ventral part to the most posterior portion.  

 

In parallel, we isolated a left-lateralized fronto-temporal network that also showed 

high sensitivity to the congruency pattern (see Table 1S for the results listed in the column 

Grammaticality effects). This network encompassed the left pars opercularis, triangularis 

and orbitalis within the IFG, the left MTG/STG and the middle frontal gyrus. As we have 

pointed out throughout this document, all the classical neurobiological models of language 

have considered the interplay between the IFG and the MTG/STG as critical for the 

processing of linguistic material (see Bornkessel-Schlesewsky & Schlesewsky, 2013; 

Friederici, 2011 for two recent and divergence points of view). Nonetheless, despite the 

Left anterior cingulateactivation
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huge amount of empirical evidence concerning this topic (for contradictory perspectives see 

Bornkessel-Schlesewsky & Schlesewsky, 2013; Friederici, 2011, 2012; Friederici & 

Gierhan, 2013; Hagoort, 2005, 2013, 2014), the specific role played by these areas during 

language comprehension and more specifically during agreement processing still remains an 

unsettled issue (Fedorenko et al., 2011; Fedorenko, Duncan, et al., 2012; Fedorenko & 

Thompson-Schill, 2014). Similarly, the engagement of other frontal areas, such as the 

middle frontal gyrus, during the comprehension of linguistic material is a controversial issue 

(see Friederici, 2011; Friederici, 2012; Friederici & Gierhan, 2013; and Hagoort, 2005; 

Hagoort, 2013; 2014 for contradictory points of view). The vast majority of neurobiological 

models of sentence processing do not consider this region as part of this system. With 

respect to the response of this left-lateralized fronto-temporal network, three critical 

similarities were identified from our studies. 

 The pars orbitalis, triangularis and opercularis within the left inferior frontal 

gyrus were recruited for the processing of congruent and incongruent constructions. 

However, the neural responses of these areas were dependent on the congruency between 

the different elements involved in the corresponding grammatical relation (see Figure 8.2A).  

 The left temporal cortex consistently exhibited greater response for 

grammatically correct constructions than for the ungrammatical ones (see Figure 8.2B). This 

temporal region encompassed the anterior, the middle and the posterior portions of the left 

MTG/STG and the temporal pole.  

 A region within the left middle frontal gyrus showed marked sensitivity (i.e., 

greater neural responses) to morpho-syntactic mismatches independently of the grammatical 

pattern (see Table 1S for the results derived from the Experiment V and Figure 8.2C). Based 

on previous findings, we associated this neural activity with morpho-syntactic feature 

checking mechanisms that should be enhanced for incongruent items. 

Overall, the recruitment of these three different nodes and more importantly the 

interfacing between them, seem to be crucial for the comprehension of grammatical relations 

independently of their semantic or syntactic complexity. Critically, these areas showed 
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similar responses for different types of agreement dependencies (i.e., nominal agreement as 

for the experiments I and II and verbal agreement as for the experiments III, IV and V), 

different morpho-syntactic features (i.e., gender agreement as for the experiments I and II, 

number agreement as for the experiments III and IV and person agreement as for the 

experiments IV and V) and different contexts (i.e., word-pairs as for the experiments I and 

III and sentence context as for the experiments II, IV and V).  
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A) Left inferior frontal activation

B) Left middle temporal activation

C) Left middle frontal activation

p value < 0.001 corr.

Figure 8.2. Brain activations of the left 

inferior frontal gyrus (A), the left middle 

temporal gyrus (B) and the left middle frontal 

gyrus (C) resulting from the combination of 

the five experiments was projected on the 

MNI single-subject T1 image (sagittal view). 

Red dotted lines represent the maximum peak 

of response. Note that brain activity in these 

areas is markedly distributed, especially for 

the middle temporal gyrus where the 

significant response is extended from the most 

anterior part (i.e., including the temporal pole) 

to the most posterior portion.  
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Regarding the second and third questions (i.e., 2whether this neural circuit is fine-

tuned depending on syntactic or semantic signals embedded in our linguistic code and 
3whether the interaction between these two different types of information leaves a trace in 

the brain response), the present studies provide crucial evidence suggesting that the neural 

circuit underlying agreement comprehension is flexible enough to consider and integrate the 

formal and conceptual signals characterizing the different sentential elements. With regard 

to this point, in contrast with the regularities in the neural responses of the regions 

associated with the conflict-monitoring system or the activity in the middle frontal gyrus, the 

neural responses of the left IFG and the left MTG/STG varied as a function of the different 

factors manipulated in each experiment (see Table 1S for the results listed in the column 

Effects related with the critical manipulation). However, the flexibility of this circuit is not 

circumscribed to variations in the responses of the different nodes within this left-lateralized 

perisylvian network. In contrast, when the integration between formal and conceptual 

signals is required to properly interpret an agreement relation, the system seems to recruit 

additional parietal nodes (see Table 1S for the results of the experiments II and V). Based on 

the pattern of response exhibiting by these areas and establishing a link between our results 

and previous findings, we associated each one of these nodes with the different processing 

stages that have been related to agreement computation (see Chapter 1, Neuro-cognitive 

Mechanisms Underlying Agreement Processing). In the following we will go through the 

main results regarding the singularities across experiments. 

 As far as the responses of the left IFG, our data parallel the empirical 

evidence that have been previously observed in other fMRI studies (Hagoort, 2005, 2013, 

2014). A functional anterior-ventral to posterior-dorsal gradient was found within the left 

inferior frontal gyrus. However, in contrast with previous claims and in line with our data, 

this gradient distinguishes between two different functionally-defined clusters, the pars 

opercularis in the anterior-ventral part, and the pars triangularis/orbitalis in the posterior-

dorsal part. While the pars opercularis seems to be involved in coordinating syntactic 

processes, the orbital/triangular part of the left IFG seems to support semantic operations.  
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 Critically, in line with previous neurobiological models of sentence 

processing, a posterior to anterior functional gradient emerged for the left middle/superior 

temporal gyrus (Friederici, 2011, 2012; Friederici & Gierhan, 2013; but see Hagoort, 2005; 

Hagoort, 2013; 2014 for contrasting approaches). However, in the context of agreement 

comprehension this is the first study demonstrating this gradient. Specifically, while the 

posterior part of the MTG/STG seems to be related with the storage and retrieval of lexical 

and morpho-syntactic information (see Table 1S for the results of the experiments I), the 

anterior portion of this region appears to reflect syntactic-combinatorial building 

mechanisms. On the other hand, activity in the temporal pole was associated with the 

mapping between form and meaning, especially boosted during the assignment of 

interpretively discourse relevant roles (see Table 1S for the results of the experiments IV). 

 Left parietal regions such as the angular gyrus and adjacent inferior parietal 

areas showed increased activation for those manipulations involving lexico-semantic factors 

(see Table 1S for the results of the experiments I, II and V and Figure 8.3). As we 

highlighted in previous chapters, the angular gyrus has been postulated as a central hub of 

the highly heteromodal conceptual associative system (Binder & Desai, 2011; Binder et al., 

2009; Bonner et al., 2013; Price, A. R. et al., 2015; Seghier, 2013; Seghier et al., 2010). The 

engagement of this left parietal cluster for the comprehension of grammatical relations was 

taken as a critical finding reflecting how the agreement system is fine-tuned depending on 

the available conceptual information (see the Discussion sections of the Chapter 3, 4 and 7 

for more details).  

In sum, the data discussed here show that two different but closely related systems 

seem to be working in parallel during the processing of agreement: a) a bilateral fronto-

parietal conflict-monitoring system not language specific and b) a left fronto-temporal 

system that seems to be specifically related to different aspects of agreement processing 

Within this fronto-temporal system, a functional coupling between the left MTG/STG and 

the left IFG seems to be crucial for the comprehension of grammatical relations. In addition 

to this core system, parietal areas are enhanced when the integration of different formal and 

lexico-semantic signals are required.  
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Figure 8.3. Left angular gyrus activation resulting from the combination of the experiments 

I, II and V was projected on the MNI single-subject T1 image (sagittal view). Red dotted 

lines represent the maximum peak of response.  

 

To what extent the present findings impact on the linguistic theoretical frameworks of 

agreement?  

In Chapter 1 (Linguistic Theoretical Frameworks of Agreement) we described two 

divergent theoretical perspectives of agreement highlighting the differences between them: 

the strictly syntactic approach (Chomsky, 1955a, 1995, 2000, 2001) and the lexicalist 

approach (Pollard & Sag, 1994; Wechsler, 2009; Wechsler, 2011; Wechsler & Zlatić, 2000; 

Wechsler & Zlatić, 2003). The debate revolved around three main questions: 1) whether the 

interaction between syntactic and semantic information modulated the comprehension of 

agreement; 2) whether the agreement system relies on the type of morpho-syntactic features 

and 3) whether the comprehension of nominal and verbal agreement entail different neuro-

cognitive operations. In addition we pointed out how these two frameworks have influenced 

Left angular gyrus activation
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the neuro-cognitive investigations regarding sentence comprehension and more specifically 

agreement processing.  

With respect to the first question, our data suggest that during the comprehension of 

an agreement relation, the formal and conceptual signals equally contribute and also interact 

during the comprehension process (see Table 1S for the results of the experiments I, II and 

V). As demonstrated in the Experiment II, even in the case of Conceptual Gender (e.g., El 

abuelo es sabio), where it is possible to integrate the noun and the predicative adjective 

based on the formal information, the conceptual knowledge modulate the syntactic-structure 

building process. Crucially, in accordance with the lexicalist approach, we interpreted this 

result as relevant for arguing that the agreement system needs to assign semantic 

interpretations to the formal structure, in order to comprehend this type of grammatical 

relations (Pollard & Sag, 1994; Wechsler, 2009; Wechsler, 2011; Wechsler & Zlatić, 2000; 

Wechsler & Zlatić, 2003). However, given the poor temporal resolution of the fMRI data, 

we cannot rule out the alternative hypothesis proposed by the strictly syntactic approach 

(Chomsky, 1955a, 1995, 2000, 2001): the interaction between syntactic and semantic 

information occurs after the syntactic building-up processes. This point should be addressed 

in further studies in order to determine when the interaction between conceptual and formal 

properties occurs. 

As far as the processing of different types of morpho-syntactic features, the results of 

the Experiment IV revealed that agreement comprehension operates in a feature-specific 

fashion, in which the nodes of the language network are differentially involved. The direct 

contrast between person and number violations showed significant differences in the anterior 

and posterior part of the left middle temporal gyrus, as well as in pars orbitalis and 

triangularis of the inferior frontal gyrus. In this case, the MTG-IFG coupling differentiating 

between person and number violation was related with the feature-sensitive mechanism of 

form-to-meaning mapping. This interpretation had disagreed with the strictly syntactic 

approach (Chomsky, 1955a, 1995, 2000, 2001) which emphasized that the morpho-syntactic 

feature values are extracted from the controller without differentiating among person, 

number, and gender. Nonetheless, as previously mentioned (Chapter 6, Experiment IV), we 
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cannot discard that the computation of different features is a late process preceded by an 

early “agree” computation blind to feature modulation. 

Critically, regarding the third question, the comparison between verbal and nominal 

agreement included in the Experiment III, shows that the processing of these two types of 

dependencies relies on common mechanisms, as shown by the overlapping activated 

networks. However, at the same time, brain activation in some critical areas was modulated 

by the specific type of agreement. The major difference between these two dependencies 

was found in the anterior portion of the left MTG-STG and the pars opercularis within the 

left IFG. The findings derived from this study were taken to suggest that these two 

theoretical frameworks are not mutually exclusive. In accordance with Chomsky (2000, 

2001), the computation of nominal and subject-verb agreement implies similar 

computational processes supported by an overlapping neural network, as evidenced by the 

failure to find qualitative differences between the two patterns. However, in partial 

agreement with Wechsler and Zlatić (2003), some nodes within this network show 

differences between nominal and subject-verb agreement, although this difference is 

quantitative in nature and may reflect the structural difference between them (within-

constituent vs. sentence-level structure), and not the type of features involved (index and 

concord features). 

To what extent the present findings impact on the neuro-cognitive models of sentence 

processing? 

In line with the previous neurobiological models of sentences processing, our study 

has differentiated between three different components: a Memory-related Hub – i.e., from 

which the underlying morpho-syntactic and lexico-semantic representations associated with 

the input can be accessed and retrieved –, an Integration Hub – i.e., which combines the 

incoming signals with previously encountered information –, and a Monitoring Hub – i.e., 

responsible for preventing behavioral mistakes. Crucially, the present findings provide 

valuable information describing how these components operate during the establishment of 

an agreement relation. The discussion sections included in each experimental chapter 
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extensively debated the similarities and the differences between our results and the 

theoretical models of sentence processing. Overall, according with our data, agreement 

comprehension is underpinned by neural regions that have been traditionally related with 

sentence processing. However, the functionality of each node within the agreement circuit 

and its involvement within each component does not always match with what the theoretical 

models of sentence processing propose. In order to generalize our results, it could be 

important for future works to explore how this agreement network operates in sentence 

production. This could facilitate the comparison between our proposals and the currently 

available theoretical neurobiological models of sentences processing. 

General conclusions: Nuero-anatomical basis of agreement processing. 

Through this document we will briefly lay out what we consider the most important 

insights of the neurobiology of agreement comprehension. By combining the data provided 

by the present fMRI study with previous evidence it is possible to characterize the neural 

mechanisms underlying agreement comprehension in a fine-grained way. A summary of our 

proposal is illustrated in Figure 8.4. This proposal summarizes the main claims of the 

current dissertation. It is based on the specific functional role each neuro-anatomical region 

within these circuits was related to. Importantly, as the discussion sections of each 

experimental chapter, the currently available empirical ERP evidence on agreement 

comprehension was consider as the started point of this proposal (see Molinaro, Barber, et 

al., 2011 for a review). This assumption implies a distinction between three functionally 

distinct processing stages: I) Feature consistency checking; II) Integration of incoming 

information and III) Conflict-monitoring resolution (see Chapter 1, Neuro-cognitive 

Mechanisms Underlying Agreement Processing). Therefore, following this distinction we 

postulated the most plausible candidate(s) for each one of these operations.  

Our results provide the first neuro-cognitive approach of agreement comprehension 

serving to identify the core neural areas behind this process and open important windows for 

future studies. Crucially, this study showed that agreement comprehension relies on neural 

mechanisms that transcend the linguistic domain. We broadly demonstrated that the 
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interfacing between different language-specific and domain-general neural systems is 

essential for the proper interpretation of grammatical relations. Interestingly, we also 

segregated within this network the areas related with semantic and syntactic operations. 

Importantly, the close relationship between these two domains was also disclosed. In sum, 

this dissertation provides valuable empirical data that represents a turning point in the 

characterization of the neurobiology of agreement, opening new windows to the study of 

agreement computation and language comprehension.  
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Figure 8.4. Neural circuit underlying agreement comprehension. This figure summarizes the 

main claims resulting from the previous five experimental chapters. The three black boxes 

represent the processing stages previously proposed for agreement comprehension: I) 

Feature consistency checking; II) Integration of incoming information and III) Conflict-

monitoring resolution. The grey boxes encompass the neural regions postulated as the most 

plausible candidates for each one of these processes. MTG: Middle temporal gyrus; IFG: 

Inferior frontal gyrus; AG: Angular gyrus; MFG: Middle frontal gyrus. 
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Chapter 11. 
Appendices 
 

Appendix 1. Word pairs used in the Experiment I (Chapter 3) including information about 

the gender-marking (transparent [1] or opaque [2]), the agreement congruency pattern 

(Match [4] or Mismatch [1]) and the gender values (masculine [1] or feminine [2]). 

 

Transparent - 
Opaque

Agreement 
Pattern

 Masculine - 
Femenine

1 4 1 el dedo
1 4 1 el lago
1 4 1 el sótano
1 4 1 el carro
1 4 1 el labio
1 4 1 el olfato
1 4 1 el lavabo
1 4 1 el escudo
1 4 1 el techo
1 4 1 el cráneo
1 4 1 el vídeo
1 4 1 el hígado
1 4 1 el metro
1 4 1 el rebaño
1 4 1 el trofeo
1 4 2 la costa
1 4 2 la hierba
1 4 2 la deuda
1 4 2 la pasta
1 4 2 la sopa
1 4 2 la rama
1 4 2 la película
1 4 2 la cola
1 4 2 la pierna
1 4 2 la misa
1 4 2 la risa
1 4 2 la oreja
1 4 2 la pista
1 4 2 la meta
1 4 2 la navaja
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Transparent - 
Opaque

Agreement 
Pattern

 Masculine - 
Femenine

1 1 1 la luto
1 1 1 la vidrio
1 1 1 la banco
1 1 1 la piano
1 1 1 la circo
1 1 1 la hielo
1 1 1 la rayo
1 1 1 la beso
1 1 1 la torneo
1 1 1 la martillo
1 1 1 la átomo
1 1 1 la núcleo
1 1 1 la tejado
1 1 1 la coco
1 1 1 la arco
1 1 2 el página
1 1 2 el espada
1 1 2 el gama
1 1 2 el regla
1 1 2 el cúpula
1 1 2 el ventana
1 1 2 el franja
1 1 2 el boda
1 1 2 el colcha
1 1 2 el miopía
1 1 2 el plata
1 1 2 el luna
1 1 2 el playa
1 1 2 el taza
1 1 2 el selva
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Transparent - 
Opaque

Agreement 
Pattern

 Masculine - 
Femenine

2 4 1 el parque
2 4 1 el puente
2 4 1 el ascensor
2 4 1 el portal
2 4 1 el camión
2 4 1 el taxi
2 4 1 el bigote
2 4 1 el examen
2 4 1 el salón
2 4 1 el tren
2 4 1 el paisaje
2 4 1 el cristal
2 4 1 el bosque
2 4 1 el ordenador
2 4 1 el avión
2 4 2 la navegación
2 4 2 la serpiente
2 4 2 la raíz
2 4 2 la catástrofe
2 4 2 la nube
2 4 2 la electricidad
2 4 2 la miel
2 4 2 la invasión
2 4 2 la pensión
2 4 2 la llave
2 4 2 la cruz
2 4 2 la fiebre
2 4 2 la nave
2 4 2 la prisión
2 4 2 la canción
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Transparent - 
Opaque

Agreement 
Pattern

 Masculine - 
Femenine

2 1 1 la reloj
2 1 1 la alcohol
2 1 1 la jardín
2 1 1 la hotel
2 1 1 la norte
2 1 1 la club
2 1 1 la cine
2 1 1 la corazón
2 1 1 la papel
2 1 1 la país
2 1 1 la cadáver
2 1 1 la rincón
2 1 1 la balón
2 1 1 la hospital
2 1 1 la hogar
2 1 2 el flor
2 1 2 el nación
2 1 2 el tesis
2 1 2 el universidad
2 1 2 el región
2 1 2 el oscuridad
2 1 2 el fuente
2 1 2 el cárcel
2 1 2 el nariz
2 1 2 el publicidad
2 1 2 el reunión
2 1 2 el pared
2 1 2 el unidad
2 1 2 el carne
2 1 2 el mitad
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Appendix 2. MRI sequences used for the recording of the data.  

 

Parameters Values Parameters Values

Field of view (Read) 192 mm Field of view (Read) 192 mm
Field of view (Phase) 100% Field of view (Phase) 100%
Base resolution 64 pixels Base resolution 64 pixels
Phase resolution 100% Phase resolution 100%
Echo time (TE) 30 ms Echo time (TE) 30 ms
Repetition time (TR) 2.0 s Repetition time (TR) 2.5 s
Time gap No Time gap No
Flip angle 90° Flip angle 90°
Slices number 32 Slices number 32
Orientation Axial Orientation Axial
Slice thickness 3 mm Slice thickness 3 mm
In plane resolution 3 x 3 mm In plane resolution 3 x 3 mm
Distance factor 25% Distance factor 25%

Parameters Values Parameters Values
Field of view (Read) 192 mm Field of view (Read) 192 mm
Field of view (Phase) 100% Field of view (Phase) 100%
Base resolution 64 pixels Base resolution 64 pixels
Phase resolution 100% Phase resolution 100%
Echo time (TE) 30 ms Echo time (TE) 30 ms
Repetition time (TR) 2.0 s Repetition time (TR) 2.0 s
Time gap No Time gap No
Flip angle 90° Flip angle 78°
Slices number 32 Slices number 32
Orientation Axial Orientation Axial
Slice thickness 3 mm Slice thickness 3 mm
In plane resolution 3 x 3 mm In plane resolution 3 x 3 mm
Distance factor 25% Distance factor 25%

Appendix 2A. Description of the T2*-weighted 
sequence's parameters used to record the 
functional images in Experiment I.

Appendix 2B. Description of the T2*-weighted 
sequence's parameters used to record the 
functional images in Experiment II.

Appendix 2C. Description of the T2*-weighted 
sequence's parameters used to record the 
functional images in Experiment III.

Appendix 2D. Description of the T2*-weighted 
sequence's parameters used to record the 
functional images in Experiment IV and V.
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Appendix 3. Sentences used in the Experiment II including information about the agreement 

system (Formal [1] or Conceptual [2]), the agreement congruency pattern (Match [4] or 

Mismatch [1]) and the gender values (masculine [1] or feminine [2]).  

 

 

  

Formal - 
Conceptual

Agreement 
Pattern

 Masculine - 
Femenine

1 4 1 El suelo está plano.
1 4 1 El título estaba oculto.
1 4 1 El mundo será justo.
1 4 1 El caso era cierto.
1 4 1 El pelo estaba teñido.
1 4 1 El faro es alto.
1 4 1 El fuego está flojo.
1 4 1 El llanto fue amargo.
1 4 1 El bocado es tierno.
1 4 1 El estilo era maduro.
1 4 1 El pueblo era bélico.
1 4 1 El sonido parecía lejano.
1 4 1 El arroyo estuvo helado.
1 4 1 El libro era único.
1 4 1 El ruido fue brusco.
1 4 2 La cabeza era menuda.
1 4 2 La pieza es hueca.
1 4 2 La lucha fue fiera.
1 4 2 La vida es sana.
1 4 2 La senda era recta.
1 4 2 La basura era nociva.
1 4 2 La teoría era exacta.
1 4 2 La prosa fue aguda.
1 4 2 La piedra era áspera.
1 4 2 La visita fue rápida.
1 4 2 La guerra fue mítica.
1 4 2 La lluvia era escasa.
1 4 2 La bolsa fue usada.
1 4 2 La madera estaba blanda.
1 4 2 La droga era tóxica.
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Formal - 
Conceptual

Agreement 
Pattern

 Masculine - 
Femenine

1 1 1 El jugo está fría.
1 1 1 El museo es bella.
1 1 1 El vuelo fue larga.
1 1 1 El dibujo es bonita.
1 1 1 El velero es ligera.
1 1 1 El cuero es falsa.
1 1 1 El juicio fue severa.
1 1 1 El deseo era mutua.
1 1 1 El teatro es lujosa.
1 1 1 El piso será pagada.
1 1 1 El coro está sola.
1 1 1 El cielo está clara.
1 1 1 El empleo era penosa.
1 1 1 El equipo está completa.
1 1 1 El charco estaba espesa.
1 1 2 La cena está malo.
1 1 2 La tarea es arduo.
1 1 2 La época fue grato.
1 1 2 La comida estuvo jugoso.
1 1 2 La sombra era oscuro.
1 1 2 La prensa era pésimo.
1 1 2 La cocina estaba limpio.
1 1 2 La norma era tonto.
1 1 2 La dama era culto.
1 1 2 La copa estaba tapado.
1 1 2 La altura será idóneo.
1 1 2 La renta era digno.
1 1 2 La falda era negro.
1 1 2 La papaya está fresco.
1 1 2 La leña está seco.
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Formal - 
Conceptual

Agreement 
Pattern

 Masculine - 
Femenine

2 4 1 El novio está nervioso.
2 4 1 El casero era austero.
2 4 1 El soltero era gracioso.
2 4 1 El granjero es minucioso.
2 4 1 El filólogo estaba informado.
2 4 1 El pastelero es tranquilo.
2 4 1 El tendero estaba delgado.
2 4 1 El decano es honrado.
2 4 1 El sobrino parece antipático.
2 4 1 El cuñado es quisquilloso.
2 4 1 El peluquero estaba insatisfecho.
2 4 1 El biólogo parece avispado.
2 4 1 El tío es bueno.
2 4 1 El alumno parecía aplicado.
2 4 1 El primo parece pesado.
2 4 2 La vendedora era desinteresada.
2 4 2 La locutora parece persuasiva.
2 4 2 La abuela era sabia.
2 4 2 La empleada parecía íntegra.
2 4 2 La filósofa es excéntrica.
2 4 2 La científica parece ambiciosa.
2 4 2 La conductora era precavida.
2 4 2 La camarera parecía efectiva.
2 4 2 La compañera era risueña.
2 4 2 La alcaldesa es justa.
2 4 2 La jugadora es alta.
2 4 2 La profesora parecía abatida.
2 4 2 La doctora era famosa.
2 4 2 La amiga es sincera.
2 4 2 La ministra era estricta.
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Formal - 
Conceptual

Agreement 
Pattern

 Masculine - 
Femenine

2 1 1 El cocinero es exquisita.
2 1 1 El suegro parecía testaruda.
2 1 1 El becario estaba atenta.
2 1 1 El ahijado era caprichosa.
2 1 1 El muchacho es hermosa.
2 1 1 El modisto era virtuosa.
2 1 1 El carnicero era chismosa.
2 1 1 El panadero era despistada.
2 1 1 El psicólogo era activa.
2 1 1 El esposo era considerada.
2 1 1 El chico era atrevida.
2 1 1 El viudo parecía apenada.
2 1 1 El enfermero era cariñosa.
2 1 1 El tesorero era sensata.
2 1 1 El discípulo era perezosa.
2 1 2 La vecina era malo.
2 1 2 La nieta estaba enfermo.
2 1 2 La escultora es prolífico.
2 1 2 La fotógrafa era creativo.
2 1 2 La funcionaria era serio.
2 1 2 La ejecutiva era agresivo.
2 1 2 La pintora era osado.
2 1 2 La diputada era corrupto.
2 1 2 La maestra parecía ilustrado.
2 1 2 La abogada parece listo.
2 1 2 La secretaria es orgulloso.
2 1 2 La escritora era conocido.
2 1 2 La niña estaba contento.
2 1 2 La hija era pequeño.
2 1 2 La directora estaba sereno.
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Formal - 
Conceptual

Agreement 
Pattern

 Masculine - 
Femenine

3 4 1 El humo era gris.
3 4 1 El trato fue hostil.
3 4 1 El paseo fue breve.
3 4 1 El peso era grande.
3 4 1 El hecho es real.
3 4 1 El vaso es frágil.
3 4 1 El dato fue útil.
3 4 1 El pecado fue venial.
3 4 1 El verdugo será implacable.
3 4 1 El regalo fue ideal.
3 4 1 Los textos eran formales.
3 4 1 Los pactos fueron audaces.
3 4 1 Los himnos eran alegres.
3 4 1 Los cursos serán fáciles.
3 4 1 Los ritmos eran simples.
3 4 1 Los brillos eran tenues.
3 4 1 Los castigos serán leves.
3 4 1 Los plazos fueron razonables.
3 4 1 Los métodos fueron fiables.
3 4 1 Los proyectos son posibles.
3 4 2 La oferta fue amable.
3 4 2 La mezcla era original.
3 4 2 La raza era fuerte.
3 4 2 La broma fue cruel.
3 4 2 La obra quedó impecable.
3 4 2 La década fue feliz.
3 4 2 La marcha continuó imparable.
3 4 2 La sala era azul.
3 4 2 La trampa fue feroz.
3 4 2 La venganza fue brutal.
3 4 2 Las dichas son fugaces.
3 4 2 Las modas son vulgares.
3 4 2 Las letras eran ilegibles.
3 4 2 Las poesías eran tristes.
3 4 2 Las sedas son suaves.
3 4 2 Las ironías fueron geniales.
3 4 2 Las células eran inmunes.
3 4 2 Las carpetas eran verdes.
3 4 2 Las peras eran enormes.
3 4 2 Las monedas eran legales.
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Appendix 4. Word pairs used in the Experiment III including information about the type of 

sentence constituent (determiner-nouns [1] or subject-verb [2]), the agreement congruency 

pattern (Match [4] or Mismatch [1]), the number values (plural [1] or singular [2]) and the 

gender values (masculine [1] or feminine [2]). 

 

 

  

Constituents Agreement 
Pattern

Masculine - 
Femenine

Plural - 
Singular

1 1 1 1 los abrigo
1 1 1 1 los barco
1 1 1 1 los ciclo
1 1 1 1 los disco
1 1 1 1 los hombro
1 1 1 1 los juego
1 1 1 1 los plato
1 1 1 1 los sodio
1 1 1 2 el frutos
1 1 1 2 el grupos
1 1 1 2 el hilos
1 1 1 2 el huevos
1 1 1 2 el muros
1 1 1 2 el quesos
1 1 1 2 el tipos
1 1 1 2 el zapatos
1 1 2 1 las cinta
1 1 2 1 las etapa
1 1 2 1 las jarra
1 1 2 1 las mesa
1 1 2 1 las placa
1 1 2 1 las prenda
1 1 2 1 las roca
1 1 2 1 las sábana
1 1 2 2 la burlas
1 1 2 2 la minas
1 1 2 2 la ondas
1 1 2 2 la plantas
1 1 2 2 la retinas
1 1 2 2 la sillas
1 1 2 2 la sotanas
1 1 2 2 la urnas
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Constituents Agreement 
Pattern

Masculine - 
Femenine

Plural - 
Singular

1 4 1 1 el cuerpo
1 4 1 1 el exilio
1 4 1 1 el hierro
1 4 1 1 el horno
1 4 1 1 el litro
1 4 1 1 el pozo
1 4 1 1 el puerto
1 4 1 1 el sábado
1 4 1 2 los anillos
1 4 1 2 los brazos
1 4 1 2 los brazos
1 4 1 2 los brazos
1 4 1 2 los brazos
1 4 1 2 los brazos
1 4 1 2 los brazos
1 4 1 2 los brazos
1 4 2 1 la brazos
1 4 2 1 la brazos
1 4 2 1 la brazos
1 4 2 1 la brazos
1 4 2 1 la brazos
1 4 2 1 la brazos
1 4 2 1 la brazos
1 4 2 1 la brazos
1 4 2 2 las brazos
1 4 2 2 las brazos
1 4 2 2 las brazos
1 4 2 2 las brazos
1 4 2 2 las brazos
1 4 2 2 las brazos
1 4 2 2 las brazos
1 4 2 2 las brazos
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Constituents Agreement 
Pattern

Masculine - 
Femenine

Plural - 
Singular

2 1 1 1 él ayunan
2 1 1 1 él calculan
2 1 1 1 él consultan
2 1 1 1 él dibujan
2 1 1 1 él lanzan
2 1 1 1 él ofenden
2 1 1 1 él suplican
2 1 1 1 él transmiten
2 1 1 2 ellos apoya
2 1 1 2 ellos desconfía
2 1 1 2 ellos entrega
2 1 1 2 ellos extrapolan
2 1 1 2 ellos inspira
2 1 1 2 ellos logra
2 1 1 2 ellos patina
2 1 1 2 ellos urde
2 1 2 1 ella comprenden
2 1 2 1 ella deben
2 1 2 1 ella dejan
2 1 2 1 ella explican
2 1 2 1 ella llegan
2 1 2 1 ella rascan
2 1 2 1 ella suspenden
2 1 2 1 ella votan
2 1 2 2 ellas cierra
2 1 2 2 ellas convoca
2 1 2 2 ellas empuja
2 1 2 2 ellas escupe
2 1 2 2 ellas limpia
2 1 2 2 ellas lleva
2 1 2 2 ellas quema
2 1 2 2 ellas usa
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Constituents Agreement 
Pattern

Masculine - 
Femenine

Plural - 
Singular

2 4 1 1 él abrocha
2 4 1 1 él cepilla
2 4 1 1 él corre
2 4 1 1 él lava
2 4 1 1 él protege
2 4 1 1 él respira
2 4 1 1 él toma
2 4 1 1 él vive
2 4 1 2 ellos aportan
2 4 1 2 ellos besan
2 4 1 2 ellos disfrutan
2 4 1 2 ellos flotan
2 4 1 2 ellos imitan
2 4 1 2 ellos molestan
2 4 1 2 ellos reciben
2 4 1 2 ellos viajan
2 4 2 1 ella baila
2 4 2 1 ella corta
2 4 2 1 ella distingue
2 4 2 1 ella llora
2 4 2 1 ella nada
2 4 2 1 ella observa
2 4 2 1 ella saca
2 4 2 1 ella teme
2 4 2 2 ellas abusan
2 4 2 2 ellas almacenan
2 4 2 2 ellas avisan
2 4 2 2 ellas chocan
2 4 2 2 ellas completan
2 4 2 2 ellas demandan
2 4 2 2 ellas exceden
2 4 2 2 ellas pescan
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