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Abstract. We explore the thermodynamics of a simple 5D Einstein-dilaton gravity model

with a massive scalar field, with asymptotically AdS behavior in the UV. The holographic

renormalization is addressed in details, and analytical results are obtained at high temper-

atures. We study the power corrections predicted by the model, and compare with lattice

data in the deconfined phase of gluodynamics. Finally, it is discussed the role played by

the conformal anomaly for integer values of the dimension of the condensate dual to the

scalar field.

1 Introduction

The physics of the quark-gluon plasma has turned out to be more difficult than initially expected.

Quantum Chromodynamics (QCD) is asymptotically free at high energies and temperatures, and this

allows us to use perturbative methods to study its thermodynamic properties in this regime. Neverthe-

less close, and above, the phase transition non perturbative effects become very important, and usual

perturbative approaches are not applicable. Lattice calculations at finite temperature show that there

is a first order phase transition in gluodynamics for Nc ≥ 3 [1, 2] and a crossover in QCD [3]. In

addition, they seem to indicate the existence of power corrections in temperature in the deconfined

phase that cannot be explained within a naive perturbative approach, see e.g. [4–6].

New techniques have appeared recently that can help in a true understanding of the underly-

ing mechanism of strongly coupled gauge theories. The postulated gauge/gravity duality between

a strongly coupled super Yang-Mills theory and a weakly coupled supergravity theory in AdS5×S5

space [7], became a powerful tool in recent years to understand the non perturbative dynamics of

QCD close to the phase transition. While a rigorous top-down approach is still far from giving any

experimental prediction, several bottom-up models that can quantitatively reproduce many results of

QCD in the low energy limit have been proposed in the literature. The core of the bottom-up scenario

is to find a reasonable non-conformal metric of the AdS5 space which mimics the physical properties

of QCD, see e.g. [8–10]. In this work we use this approach, and explore the thermodynamics of a

simple holographic model based on 5D Einstein-dilaton gravity with a massive scalar field. Some

related works in the literature are e.g. [11–15].
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2 Power corrections as a signal of non perturbative effects in the

thermodynamics of QCD

Gluodynamics is invariant under scale and conformal transformations at the classical level. This

classical invariance is, however, broken by quantum corrections due to the necessary regularization of

the UV divergences. The divergence of the dilatation current equals the trace of the energy-momentum

tensor T
μ

μ [16] yielding the trace anomaly [17]. At finite temperature, the energy density ε and the

pressure P enter as [18]

〈T μ
μ 〉=−ε +3P =−β (g)

2g
〈(Fa

μν)
2〉 , (1)

where Fμν is the field strength tensor and β = μ∂g/∂ μ is the beta function. While in the conformal

limit, i.e. at very high temperatures, one has ε = 3P, a non-vanishing value of the trace anomaly pro-

vides a measure of the interaction. This means that ε−3P is crucial to understand the deconfinement

process, as the non perturbative nature of QCD plays a prominent role in this regime.

The equation of state of QCD has been studied for a long time by using different methods. A

naive weak coupling expansion turns out to be poorly convergent in the regime of temperatures close

to the phase transition, see e.g. [19]. It has been proposed in the literature several methods to resum

the perturbative expansion, one of the most popular being the Hard Thermal loop (HTL), currently

computed up to 3-loops order [20]. However, all these methods fail to reproduce the lattice data for

the trace anomaly in the regime Tc � T � (2.5− 3)Tc, which corresponds to a strongly interacting

quark-gluon plasma picture, see Fig. 1 (left).

It was studied in [2, 5, 6, 21] the possible existence and characterization of power corrections in

the equation of state of gluodynamics. We show in Fig. 1 (right) a plot of the lattice data of the trace

anomaly of gluodynamics (ε−3P)/T 4 as a function of (Tc/T )2. A clear linear behavior appears for

temperatures T � 1.13Tc. This behavior contradicts perturbation theory which contains no powers

but only logarithms in the temperature, a feature shared by HTL and other resummation techniques.

Basically, this result can be summarized in the formula

Δ(T )≡ ε−3P

T 4
= aΔ(μT )+bΔ

(
Tc

T

)2

, (2)

where aΔ(μT ) ∼ 1/ logT is the perturbative contribution. A fit of the lattice data with this formula,

using aΔ(μT ) = ΔHTL(μT ), leads to bΔ = (3.57± 0.28), see [21]. This motivates the need of new

methods to account for non perturbative effects.

3 Thermodynamics of AdS/QCD

The gauge/gravity duality is nowadays a powerful tool to study the strong coupling properties of gauge

theories, and in particular of QCD, either at zero or finite temperature. One of the most important

applications of this duality is the physics of strongly coupled plasmas. In particular, we can study the

thermodynamics of a field theory (or QCD) from the classical computation of the thermodynamics of

black holes in the gravity dual. This duality can be expressed in the form

SBlack Hole(T ) =
A(rhorizon)

4GD

←→ SQCD(T ) . (3)

The entropy of a black hole can be obtained classically from the famous Bekenstein-Hawking entropy

formula, where A(rhorizon) is the area of the black hole horizon, see e.g. [12, 13, 22, 23]. In conformal

AdS5 the metric has a horizon in the bulk space at rT = π�2T where � is the size of the AdS space,

and the entropy scales like SBlack Hole ∝ r3
T ∝ T 3. However, in order to have a reliable extension of this

duality to SU(Nc) Yang-Mills theory, the first task is to control the breaking of conformal invariance.
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Figure 1. Trace anomaly density (ε−3P)/T 4 as a function of T (left) and 1/T 2 (right) (in units of Tc). Lattice

data are from [1] for gluodynamics with Nc = 3. The fits use Eq. (2) with μT ∼ T and bΔ as adjustable parameters.

See [6, 21] for further details.

3.1 The 5D Einstein-dilaton model at finite temperature

The bottom-up approach turns out to be quite useful to study the thermodynamics of QCD in the

strongly coupling regime. It is based on the building of a gravity dual of QCD, including the main

properties of QCD. One of the most successful models within this approach is the 5D Einstein-dilaton

model, with the Euclidean action [12]

S =
1

2κ2

∫
dρd4x

√
G
(−R+Gμν ∂μ Φ∂ν Φ+2V (Φ)

)−
∫

ρ=υ
d4x

√
γ 2K +Sboundary , (4)

where κ2 is the 5D Newton constant related to the 5D Planck mass by κ2 = 1/(2M3), Φ is a scalar

field, and υ is a cut-off surface near the boundary. Taking the limit υ → 0, one takes the surface to

the AdS5 boundary. The first boundary term is the usual Gibbons-Hawking term, while the second

one Sboundary might depend on Φ′(υ). The introduction of a scalar breaks conformal invariance, and

the form of the scalar potential V (Φ) is phenomenologically adjusted to describe some observables

of QCD, like for instance the trace anomaly, see Fig. 1. There are in the literature many different

proposals for the dilaton potential, but in this work we will restrict to the much simpler form

V (Φ) =− 6

�2
+

1

2
m2Φ2 , m2�2 = Δ(Δ−4) , 0≤ Δ≤ 4 , (5)

where � is the radius of AdS5, and m2 < 0 is a tachyonic mass. A black hole solution of the form 1

ds2
Black Hole = Gμν dxμ dxν =

�2

4ρ2
dρ2 +

�2

ρ
gττ(ρ)dτ2 +

�2

ρ
gxx(ρ)d�x

2 , (6)

with an horizon in the extra coordinate gττ(ρh) = 0, allows to describe the deconfined phase of the

field theory dual. From the AdS/CFT dictionary, the model is the holographic dual of a Conformal

Field Theory (CFT) with a deformation which breaks conformal invariance, i.e.

L = L
CFT +λO , (7)

where O is an operator dual of the scalar field with dimO = Δ, and λ is the source of the operator

with dimλ = 4−Δ. In the following we will focus on the so-called Resonant Scalars, i.e. the cases

Δ ∈ Z, as they have some special properties.

1We work in Fefferman-Graham coordinates, as this allows for a clean treatment of the renormalization. See e.g. [24].
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3.2 Holographic Renormalization

In order to study the holographic renormalization of the model, one should perform a near boundary

expansion of the fields. If one considers the case Δ ∈/ Z, then the expansion of the scalar field reads

Φ(ρ) = φ0 · ρ(4−Δ)/2 +φ(2Δ−4) · ρΔ/2 + · · · ρ → 0 . (8)

When Δ > 2 then φ0 is interpreted as the source λ , and φ(2Δ−4) as the condensate 〈O〉 in Eq. (7). 2

From now on we will focus on the cases Δ = 1 and 3, as their physical implications for QCD turn out

to be highly relevant. In this case the expansion of the scalar field and the metric read

Φ(ρ) = χ · ρ1/2 +
χ3

6
ρ3/2 logρ +ψ · ρ3/2 + · · · , (9)

gxx(ρ) = 1− χ2

6
ρ +g(4)xxρ2− χ4

24
ρ2 logρ + · · · , (10)

gττ(ρ) = 1− χ2

6
ρ−3g(4)xxρ2− χψρ2 +

χ4

9
ρ2− χ4

24
ρ2 logρ + · · · , (11)

where, roughly speaking, χ is interpreted as the source and ψ as the condensate when Δ = 3 (the

opposite when Δ = 1). The logρ contributions appear as a consequence of a resummation of higher

orders in Eq. (8) that become dominant in the limit Δ → 1 or 3. Regularity at the horizon ρ = ρh

allows to fix the coefficients ψ and g(4)xx. Without loss of generality we can choose Sboundary = 0, and

then the counterterms needed to regularize the action read

Sct =
1

κ2�

∫
ρ=υ

d4x
√

γ(υ)

(
3+

Φ2(υ)

2
+

Φ4(υ)

12
log

(
υμ2

0

))
, (12)

where μ0 is an arbitrary renormalization scale. The variation of the regularized action Sreg =
Son-shell[υ ] reads

δSreg =− 1

κ2�

∫
ρ=υ

d4x
√

γ 2υΦ′(υ)δΦ(υ)+ · · · , (13)

and from here one can compute the condensate as the variation of the action with respect to the source,

〈O3〉= δ (Sreg +Sct)

δ χ
= lim

υ→0

(
1

υ−1/2

δ (Sreg +Sct)

δΦ(υ)

)
=

�3

κ2

(
−2ψ− χ3

3
+

χ3

3
log μ2

0

)
. (14)

For Δ = 1 the computation is the same but the interpretation is different. In this case dim χ = 1

so that χ should be the condensate, i.e. 〈O1〉 = χ . This means that
δ (Sreg+Sct)

δ χ is interpreted as the

renormalized source of the operator O1.

3.3 Conformal Anomaly

By using the previous ingredients, one can obtain general formulas for the thermodynamics of a

CFT deformed by
∫

d4x χO3. The energy density and pressure are obtained from the T ττ and T xx

components of the energy-momentum tensor. A straightforward computation from the regularized

action leads to [25]

ε = 〈T ττ〉=−2
δSren

δgττ(υ)
=

�3

κ2

(
6g(4)xx + χψ− 5

24
χ4 +

χ4

12
log μ2

0

)
, (15)

P = 〈T xx〉=−2
δSren

δgxx(υ)
=

�3

κ2

(
2g(4)xx + χψ− χ4

72
− χ4

12
log μ2

0

)
. (16)

2In the case Δ < 2 the interpretation of these quantities is the inverse: φ0 is the condensate and φ(2Δ−4) is the source.
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From these expressions one can easily check that the following Ward identity for the trace anomaly

−ε +3P = 〈T μ
μ 〉= (Δ−4)χ〈OΔ〉+A , (17)

is fulfilled when Δ = 3, with A = − �3

6κ2 χ4. We have checked that Eq. (17) is also valid when Δ = 1

and 2. The term A is the holographic conformal anomaly, it is a zero temperature contribution and it

appears only when Δ ∈ Z. 3 This anomaly has been studied also in [26] in a resonant theory in AdS4.

3.4 Solution for the Equation of State

It is possible to obtain some analytical results for the equation of state by making a high temperature

expansion. The temperature and entropy density are obtained from the metric of Eq. (6) as

T =
1

2π

√
2ρhg′′ττ(ρh) , s =

2π

κ2

(
�2

ρh

gxx(ρh)

)3/2

, (18)

respectively. We will focus on the case Δ = 3. From the equations of motion one can easily ob-

serve that the general dependence of the entropy density is s = T 3σ(χ/T ), where σ is some specific

function. By applying the standard thermodynamic relations one gets that the pressure can be written

as P = T 4H1 (χ/T )+χ4H2 (χ/μ0), where H2 is a zero temperature contribution. From a computation

of −ε +3P with this formula and its comparison with Eq. (17), one can make the identification

∂P

∂ χ
=−〈O3〉 , −χ5

μ0
H ′

2

(
χ

μ0

)
= A . (19)

The dependence in μ0 arises only from the conformal anomaly. It is possible to make a computation of

H1 (χ/T ) at high temperature as a power series expansion in χ/T . The result for the trace anomaly is 4

ε−3P =
π4�3T 4

2κ2

[
−4c3

( χ

πT

)2

+O(χ̄4 log χ̄)

]
− 2�3

3κ2
χ4 log

χ

μ0
, χ̄ ≡ χ/T , (20)

where c3 = −Γ
[

3
4

]2
/(Γ

[
1
4

]
Γ
[

5
4

]
) ≈ −0.457 with Γ[n] the Euler gamma function. We find that the

thermodynamics of a deformation
∫

d4x χO3 leads to a power series expansion in T 2 which can ex-

plain very precisely the lattice data of the trace anomaly in the deconfined phase of gluodynamics, as

shown in Fig. 1. From the fit of Eq. (2) one gets χ = κ
�3/2 (0.629±0.025)Tc. 5

4 Conclusions and outlook

The non perturbative behavior of gluodynamics/QCD near and above Tc is characterized by power

corrections in T 2. While perturbative methods fail to reproduce the non perturbative regime of QCD

at finite temperature, AdS/CFT serves as a powerful tool to study this regime by using much simpler

classical gravity techniques. In this work we have studied a simple holographic model of conformal

3The expressions of A for other values of Δ will be presented in [25].
4If one chooses the Newton constant to reproduce the Stefan-Boltzmann limit of gluodynamics at high temperatures,

Pgluons → (N2
c −1) π2

45
T 4, then one has �3

κ2 = (N2
c −1) 2

45π2 .
5While these power corrections in T 2 were studied in a similar model in [14], we have performed here an analysis that

shows the consistency of the result with general formulas like Eq. (17). Our analysis conveniently accounts for the holographic

conformal anomaly, and this is only possible with a careful holographic renormalization when Δ ∈ Z.
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symmetry breaking in 5D based on dilatons that allows to account for power corrections in the decon-

fined phase of QCD in an elegant way. The model is dual to a CFT deformed by an operator O . We

find that the power corrections in the equation of state can be conveniently described with a deforma-

tion of dimO = 3. Finally, we have studied in details the holographic renormalization of the theory,

and the role of the holographic conformal anomaly when dimO ∈ Z.

We plan to extend the computation of the equation of state of the model for any value of Δ in the

interval 0≤ Δ≤ 4. This will be performed numerically in the whole regime of temperatures, as well

as analytically at high and low temperatures. There remain also some open questions, like the physical

interpretation of the condensate of dimension 3. These and other issues will be addressed in [25].
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