
Ph.D. Thesis

Design methodology for MAST-type parallel
manipulators based on kinematic, dynamic and
stiffness criteria: theoretical and experimental

application to the 2PRU-1PRS

Presented by:
Saioa Herrero Villalibre

belonging to the
Mechanical Engineering Department
Faculty of Engineering in Bilbao

University of the Basque Country (UPV/EHU)
Spain

To obtain the degree of:
Doctor of Philosophy in Mechanical Engineering

Thesis Advisor:
Prof. Dr.- Eng. Charles Pinto

July 2016, Bilbao

(c)2016 SAIOA HERRERO VILLALIBRE





i

Dedicated to my parents

The noblest pleasure
is the joy of understanding.

Leonardo da Vinci





Acknowledgements

Recuerdo la primera vez que tuve que escribir un documento técnico, el
esfuerzo que me costó ceñirme a frases directas, claras y concisas, y no poder
dar rienda suelta a mi expresión. Paradógicamente, hoy, cuando después de
tanto tiempo de duro trabajo y esfuerzo por fin tengo la oportunidad de
expresar de verdad lo que siento, apenas sé cómo hacerlo. Durante estos
años de doctorado ha habido momentos muy duros, momentos divertidos,
mucho trabajo y mucho aprendido, pero si tuviera que quedarme con algo
de todo ello serían sin duda las personas que he tenido a mi lado.

Charles, no puedo sino darte las gracias por haber confiado en mí desde
el principio. Gracias por tu apoyo contínuo y por sacar siempre un hueco
de tu apretada agenda para sentarte conmigo a repasar ecuaciones, a corre-
gir papers, a buscar soluciones o ejercer, incluso, de psicólogo. Gracias por
recibirme siempre con una sonrisa, por enseñarme a tomar perspectiva y a
relativizar; por animarme a pensar, a buscar nuevas ideas y a no rendir-
me; por marcarme el camino pero dejarme caminarlo a mi ritmo. Gracias
también al resto de fantásticos profesores de nuestro grupo: a Oscar por
ayudarme a ver como sencilla hasta la ecuación más tortuosa; a Víctor
por dirigirme el proyecto fin de carrera y ofrecerme después continuar en
el grupo; a Alfonso por tener siempre una palabra de ánimo y apoyo. No
todo el mundo tiene la suerte de trabajar en aquello que le gusta, y yo lo
he conseguido gracias en gran parte a vosotros. Gracias de corazón a los
cuatro.

iii



iv

En cuanto a mis compañeros, qué decir de ellos. Mikel, quién te iba a
decir que la ”chica del mecanismo del coche” te iba a dar tanta guerra.
Me empezaste a ayudar entonces y no lo has dejado de hacer ni un instan-
te. Gracias por haberte involucrado tanto en esta tesis y por hacerme ver
que puedo contar contigo; por hacer divertidas todas esas horas de taller
de pruebas y montaje; por todos esos cafés llenos de anécdotas y risas, y
por animarme tanto en mis peores momentos. Eres un companẽro increíble,
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Abstract

This thesis presents research in the field of parallel manipulators. We
can basically divide industrial robots in two groups – parallel and serial
manipulators. Parallel manipulators are composed of a mobile and a fixed
platform connected by several legs. They are of great interest for industrial
application because they are more rigid and display better dynamic perfor-
mance than serial manipulators. We focus on the design of parallel mani-
pulators and, specifically, on the multi-axis shaking tables (MAST).These
machines are linkage-based systems that generate a coupled motion in their
end-effector by combining translations and rotations. Their main applica-
tions are the dynamic testing of structures or mechanical components - they
are essential to experimentally verify the safety and reliability of pieces or
structures under dynamic load conditions.

In this thesis we present two methodologies. The first one analyses the
performance of a MAST-type parallel manipulator with known geometric
parameters. The second one optimizes the geometric parameters taking
into account two performances – the size and regularity of the workspace
and the power consumption. Even though we particularize them for the
2PRU-1PRS parallel manipulator, both methodologies are valid for any
MAST-type parallel manipulator. Moreover, we present the development
of a prototype of the 2PRU-1PRS parallel manipulator, which we use to
validate the methodologies proposed.

vii
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The thesis is organized as follows:

In Part I we give an overview of the literature existing in the field
of parallel manipulators. We start with a little history of the origin of
parallel manipulators. We present two possible classifications – the first
one considers their application and the second one, their number of degrees
of freedom. We also present the general consideration that we have to take
into account when designing a parallel manipulator.

Part II presents the methodologies we propose in this work. We first
work out the requirements and constraints that a MAST for automobile
pieces testing purposes has to fulfil. In order to simulate realistic environ-
ment conditions of the car, we need three movements – a translation along
the vertical Z-axis and two rotations about X- and Y-axes for roll and pitch.
We compare different kinematic structures and choose our MAST to be a
2PRU-1PRS parallel manipulator with specific dimensional relations. This
structure ideally ensures the required excitation motions. Then, we develop
two general methodologies – analysis and optimization of the manipulator.

In Part III we present the analysis methodology. We first introduce
and describe the 2PRU-1PRS parallel manipulator. We then develop the
kinematic, stiffness and dynamic equations. Besides, we describe the proce-
dure to obtain the useful workspace free of singularities by taking different
restrictions into account.

In Part IV we develop the second methodology – the optimization of
the parallel manipulator. We propose two optimization methods. The first
one optimizes the geometric parameters in order to get the biggest and
more regular useful workspace as possible. The latter obtains the geometric
parameters that lead to the lowest power consumption along a given tra-
jectory. We apply both methods to the 2PRU-1PRS parallel manipulator
and show their efficient performance.

Part V goes deeply into the design of a prototype that we have built in
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the laboratory of COMPMECH Research Group in the department of Me-
chanical Engineering in the University of the Basque Country. We describe
all the components of the prototype – linear guides, motors, gearheads,
revolute joints, spherical joint, universal joints, mobile and fixed platform
and limbs – some of which being commercial and others being specially
designed and built for the prototype. We compare numerical results with
analyses done by using finite element methods and experimental methods
on the prototype. We see minor differences in the results due to clearances
between joints that appear in the prototype.

In Part VI we give the conclusions and possible future work.

Claim of originality

In the initial stage of the thesis, we study the constraints and requi-
rements that a MAST-type parallel manipulator has to fulfil in order
to be used as testing machine for automobile pieces. In order to simu-
late realistic environment conditions of the car, we need a translation
along the vertical Z-axis and two rotations about X- and Y-axes for
roll and pitch. We compare different MAST-type parallel manipula-
tors that perform these movements and conclude that the best one
for application is the 2PRU-1PRS parallel manipulator.

Then, we present two methodologies. The first one analyses the per-
formance of the manipulator by taking kinematic, stiffness and dyna-
mic considerations into account. The latter presents two optimization
methods that take the size and regularity of the useful workspace and
the power consumption along a given trajectory.

Finally, we design and build a prototype that we use to validate the
previous methodologies by comparing numerical results with results
obtained by applying finite element and experimental methods.
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1

Parallel Manipulators.
Literature Review

1.1. Robotics. General terms

In 1920, the Czech writer Karel Čapek wrote his first play: R.U.R.
The play starts in the factory Rossumovi Univerzální Roboti (R.U.R. or
Rossum’s Universal Robot in English) that makes artificial people. The
name of these artificial creatures is robota (robot), which in Czech means
forced labor. Besides, the name Rossum is an allusion to the Czech word
rozum, meaning reason. As their name suggest, the role of the robots is to
do the tedious work while humans relax. But they suddenly rebel against
humans and wipe out the human race. The play was performed for the
first time in 1921 and it became quite popular all around the world, being
translated into thirty languages. Since then, many authors have based their
science fiction novels on robots.

Some years later, in 1942, Isaac Asimov introduced the Three Laws of
Robotics in his short story Runaround. These laws state what every robot
should follow:

3
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1. A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

2. A robot must obey the orders given it by human beings except where
such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection
does not conflict with the First or Second Laws.

Nowadays, after many years of technological progress, we still use the
term robot to describe any mechanical device that is capable of performing
a variety of human tasks on command or by being programmed in advance.
Besides, the Three Laws of Robotics describe what, still today, our common
sense tells us to take into account when creating a new robot. As Isaac
Asimov himself said:

I have my answer ready whenever someone asks me if I think that
my Three Laws of Robotics will actually be used to govern the behaviour
of robots, once they become versatile and flexible enough to able to choose
among different courses of behaviour.

My answer is, ”Yes, the Three Laws are the only way in which rational
human beings can deal with robots – or with anything else.”

But when I say that, I always remember (sadly) that human beings are
not always rational.

1.1.1. Types of robots

The concept of robot is defined by different institutions, and we mention
here two of them. The Robotic Industries Association (RIA) [1] defines ro-
bot as “a reprogrammable, multifunctional manipulator, designed to move
materials, parts, tools or devices, by means of variable programmed mo-
vements, with the purpose of accomplishing different tasks. The robot is
an automatically operating equipment, adaptable to complex conditions of
the environment in which it operates, by means of reprogramming, mana-
ging to prolong, amplify and replace one or more human functions in its
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interactions with the environment“. The British Automation and Robot
Association (BARA) [2] defines robot as “a reprogrammable device, desig-
ned to manipulate parts, tools and other production means, through variable
programmed motions, to accomplish specific fabrication tasks.“

Types of robots by application

Industrial robots: used in an industrial environment. They have
many and different applications such as welding, material handling,
painting or milling. The most widely used ones are the robotic ma-
nipulators. The robotic manipulators can manipulate objects with
their end-effector. The end-effector can move with a maximum of six
degrees of freedom. They have two possible architectures: serial and
parallel. Figure 1.1a shows a ABB parallel manipulator from the ABB
Group [3].

Household robots: we use them at home to help us with domestic
work. There are many type of devices, such as robotic vacuum clea-
ners, gutter cleaners, lawnmowers or even robots that clean the litter
box of the cat. In Fig. 1.1b we see the Roomba vacuum cleaner from
the iRobot Corporation [4].

Medical robots: these robots help in surgical operations, rehabilita-
tion therapy, prosthetics, and so on. A very common example is the da
Vinci Surgical System from Intuitive Surgical Company [5]. As we see
in Fig. 1.1c, it enables surgeons to perform operations through a few
small incisions and includes several key features. It translates the mo-
vements of the hands of the surgeon into smaller, precise movements
of tiny instruments inside the body of the patient.

Exploration robots: autonomous mobile platforms that can carry
out many different tasks as, for example, sensing, exploring or envi-
ronmental monitoring. The exploration robots used in space missions
belong to this kind of robots. Figure 1.1d shows the Mars Curiosity
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Rover. The NASA [6] sent this robot to Mars to collect samples of
materials found in that planet.

Aerial robots: we also know them as Unmanned Aerial Vehicles
(UAV). They are very useful for aerial surveillance, search and rescue,
border patrol, inspections, management of natural risks, intervention
in hostile environments and agriculture. One example is The Saviour
Aerial Robot (PARS) shown in Fig. 1.1e and developed by the RTS
Lab [7].

Aquatic robots: they explore oceans, lakes and deep waters in the
reefs. They are also called Autonomous Underwater Vehicles (AUV)
and they carry high resolution cameras to assist scientists in mapping
the seabed. They can gather complex data in ocean environments and
create 3D models of the seafloor. One of these AUV is the Crabster
CR200, shown in Fig. 1.1f, designed by the Korean Institute of Ocean
Science and Technology (KIOST) [8].

Military robots: they are used in military operations and can be
bomb disposal robots, transportation robots or reconnaissance dro-
nes, among others. The robot shown in Fig. 1.1g is the BigDog, built
by Boston Dynamics [9], and which is called to be ”The Most Advan-
ced Rough – Terrain Robot on Earth”. It often happens that robots
that were initially created for military purposes become useful in civil
purposes.

Entertainment robots: as their name suggests, they are used for
entertainment. This category is very broad, since it includes everyt-
hing from toy robots such as the Aibo dog seen in Fig. 1.1h from Sony
[10] to heavy articulated robot arms used as motion simulators.

In this thesis we work with an industrial parallel manipulator. Thus, we
will focus now on robotic manipulators. We will describe both serial and
parallel manipulators, compare them and describe when we should use one
kind of manipulator or the other.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.1: Types of robots by applications
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1.1.2. Serial manipulators

A manipulator is a mechanical system whose purpose is to manipulate
objects. There are mainly two kinds of manipulators: serial and parallel
manipulators. The serial manipulators were the first ones to be used in
industry. They are basically a succession of rigid bodies that connect a
fixed platform with an end-effector. The part responsible for manipulating
the desired object is the end-effector. The movement of the end-effector
depends on the geometry of every part of the manipulator and on the way
they are connected. The maximum number of degrees of freedom that the
end-effector can have in space is six.

In 1956, Joseph Engelberger, an engineer, physicist and entrepreneur
met the inventor George Devol to talk about Devol’s latest invention. A
fan of Asimov’s stories, Engelberger got excited about this invention, which
sounded ”like a robot” to him. After almost two years of collaborative
development, they created their first prototype, the Unimate 001, shown in
Fig. 1.2.

Figure 1.2: Unimate robot. Courtesy of Unimation
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They installed it on an assembly line for the first time at a General
Motors die casting plant in Trenton, New Jersey. In 1961 Engelberger esta-
blished Unimation (Universal Automation Inc.) to develop the business in
robotics industry he had created. The Unimate robot became really popular
and many companies installed it in their manufacturing plants. It had two
main benefits – they performed jobs that were unpleasant and dangerous
for humans and, additionally, increased the production speed. However, and
as Engelberger himself explained [11], they had to invest lots of money and
time to convince people that these robots were not dangerous and were
not going to rebel againt humanity as in the science fiction novels. Joseph
Engelberger is nowadays considered as the father of robotics.

During the 1960s and 1970s, serial robots underwent further develop-
ment and more models appeared in the market. Victor Scheinman develo-
ped the PUMA robot (Programmable Universal Machine for Assembly or
Programmable Universal Manipulation Arm) for Unimation. The PUMA
robot, still used nowadays, is a six degrees of freedom serial robot. We see
it in Fig. 1.3.

Figure 1.3: PUMA robot. Courtesy of Unimation
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Its design is presented in three different categories: 200, 500, and 700
series. While the 200 Series is a small desktop unit, the 500 Series can reach
almost 2 meters up and the 700 Series is even larger. The 700 Series was
intended for assembly line, paint, and welding work. During the seventies,
different companies installed thousands of Unimates and PUMAs in their
workplaces. The first prototype of a PUMA robot was built for General
Motors, that donated it in 2002 to the Smithsonian Institution’s Natio-
nal Museum of American History, recognizing its great importance in the
history of development of robots.

Currently, we can find different serial robots in the market. One of
the most used architectures is the SCARA robot (Selective Compliance
Assembly Robot Arm or Selective Compliance Articulated Robot Arm). Its
end-effector has four degrees of freedom and its main characteristics are
high speed and acceleration, large workspace and good adaptability and
flexibility. Additionally, it has a single pedestal mount, so it requires a small
footprint and provides an easy way of mounting. Its applications include
pick and place, assembling, painting, food processing and packaging. Figure
1.4 shows a SCARA robot developed by Adept [12].

Figure 1.4: SCARA robot. Courtesy of Adept
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There are other serial architectures, such as the Cartesian robot, the Cy-
lindrical robot or the Polar robot. The Cartesian robot has three prsimatic
joints whose axes coincide with the three Cartesian axes. The Cylindrical
robot is very similar to the Cartesian robot, but its axes are arranged in a
cylindrical coordinate system. In the same way, the axes of the Polar robot
are arranged in a polar coordinate system.

Finally, we have to highlight the impact the 6-axis serial robot has had
in the industry. The end-effector of these robots can move with six degrees
of freedom, offering a high flexibility to accomplish any kind of motion. One
of the best known 6-axis robots is the KUKA robot, developed by KUKA
Robot Group [13]. We can see it in Fig. 1.5.

Figure 1.5: 6-axis serial robot. Courtesy of KUKA Robotics
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The 6-axis serial robots are widely used in industry mainly due to the
big workspace of their end-effector, their high speed and their flexibility
to adapt to different applications. They have many and different applica-
tions, as for example: machine tool operations, automotive industry, hand-
ling, welding processes, packing, picking, testing or inspection. Nevertheless,
they also have some drawbacks, such as low ratio of load capacity to robot
mass, low stiffness and repeatability and poor accuracy.

1.2. Parallel manipulators. Research and
classification

We define parallel manipulators (PM) as given by Merlet [14]: ”A para-
llel robot is made up of an end-effector with ’n’ degrees of freedom, and of
a fixed base, linked by at least two independent kinematic chains. Actuation
takes place through ’n’ simple actuators.”

1.2.1. Parallel manipulators vs serial manipulators

First of all, we have to note that serial and parallel manipulators are
not competitors in the market: both have their own market niche. To decide
which type of manipulator is best for a specific application, we first have to
know the requirements that the manipulator should fulfil for that particular
application.

If we compare both types of manipulators, we see that parallel manipu-
lators have some advantages, which we will presently discuss. One of them
is an excellent load/weight ratio. The reason is that the closed-loop kinema-
tic chains distribute the payload between the different limbs that connect
the fixed platform with the end-effector.

Additionally, parallel manipulators have a higher stiffness all over the
workspace. Unlike the serial manipulators, the kinematic chains of parallel
manipulators share the loads and make the stiffness higher. This high stiff-
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ness ensures a minimal deformation of the limbs, allowing a high positioning
accuracy of the end-effector.

Besides, parallel manipulators have lower inertia than serial manipula-
tors. The joints of the serial manipulators are actuated joints. This is to
say, there is a motor in each joint between the different elements. In para-
llel manipulators, however, only some kinematic pairs are actuated, whose
number is usually equal to the number of degrees of freedom (dofs) of the
mobile platform. If the number of legs is equal to the number of dofs, as
is usually the case, it possible to actuate only one kinematics pair per leg
allowing all motors to be mounted close to the base. In this way, parallel
manipulators have to move less heavy mass than the serial manipulators,
making the inertia lower.

Nevertheless, parallel manipulators have also some drawbacks compared
to serial manipulators. The most important one is that their workspace
is smaller and more complex than the workspace of serial manipulators.
For both types of manipulators the workspace depends on the geometrical
and mechanical limits of the design. These limits are more restrictive in
parallel manipulators: legs can collide and there are many passive joints
that introduce joint limit constraints, as Uchiyama et al. [15] explained.
In addition, the workspace of parallel manipulators is also limited by the
singularities, which are positions where we lose control of the motion of the
manipulator. This implies that the workspace of parallel manipulators is
usually restricted to a small region.

Table 1.1 summarizes the comparison between serial and parallel mani-
pulators.
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Table 1.1: Parallel manipulators vs serial manipulators

Feature
Serial Parallel

manipulator manipulator

Workspace Large Small and complex

Forward kinematics Easy Very difficult

Inverse kinematics Difficult Easy

Position error Accumulates Averages

Force error Averages Accumulates

Maximum force
Limited by min. Summation of all

actuator force actuator forces

Stiffness Low High

Dynamic
Poor Good

characteristics

Modelling and solving
dynamics Relatively simple Very complex

Inertia Large Small

Payload/weight ratio Low High

Speed and acceleration Low High

Accuracy Low High

Calibration Relatively simple Complicated

Workspace/robot ratio High Low
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1.2.2. Background

There is a general belief that parallel manipulators appeared after serial
robots in order to overcome the drawbacks of serial architectures. However,
as Bonev [16] clarifies, theoretical works related to parallel mechanisms date
back to many centuries.

In 1928, the inventor James E. Gwinnett [17] patented a motion plat-
form for the entertainment industry. The device, shown in Fig. 1.6, was
based on a spherical parallel mechanism. We know it as one of the first
such amusement devices. However, it is not clear if it was the first design
of a multi-degree-of-freedom parallel mechanism nor if it was ever built.

Figure 1.6: Possibly the first spatial parallel mechanism, by Gwinnett

According to Bonev [16], only a decade later, Willard L.V. Pollard in-
vented a parallel manipulator for automated spray painting. It was a 5
degrees of freedom parallel robot with rotary motors fixed to the base. Th-
ree motors controlled the position of the tool head and the two other motors
controlled the orientation by transmitting the motion to the tool via cables.
Even though this robot is known as the first industrial parallel robot design,
it was never built. In fact, the son of Willard L.V. Pollard, Willard L.G.
Pollard Jr., was the co-designer of the first industrial parallel robot to be



16 Chapter 1. Parallel Manipulators. Literature Review

built. Williard Pollard Jr. [18] patented a spray painting robot consisting
of two parts – an electrical control system and a mechanical manipulator
based on a pantograph, shown in Fig. 1.7.

Figure 1.7: Spray painting machine patented by Pollard Jr.

Few years later, in 1947, Gough invented a new parallel manipulator: an
octahedral hexapod with variable length strut. Gough was a distinguished
engineer at Dunlop Rubber Co., in England. He invented this new manipu-
lator called universal tire-testing machine or the universal rig in order to
solve problems of aero-landing loads: they needed an universal machine to
define the properties of tires under combined loads. As Gough [19] explai-
ned, the hexapods with three vertical jacks and three horizontal ones were
already very common at that time. However, the new thing about Gough
platform was how the struts were arranged. Gough needed large ranges of
motion, so he arranged the struts symmetrically, forming an octahedron.
The first Gough platform, shown in Fig. 1.8a was fully operational in 1954.
At the very beginning, the extensible struts were manually adjustable screw
jacks, but years later they updated the machine with digitally controlled
motor drives and electronics. The universal rig was operational in the Dun-
lop factory until the factory closed. Since then, the first Gough platform
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is in the Science Museum Wroughton. Figure 1.8b shows the universal rig
before its retirement in 2000.

(a) (b)

Figure 1.8: Gough’s platform at Dunlop factory: (a) in 1950; (b) in 2000

In 1965, Stewart [20] described the 6 degrees of freedom flight simulator
shown in Fig. 1.9. There exists certain confusion between this design and the
tire-testing machine designed by Gough. In fact, the octahedral hexapod is
usually referred as Gough-Stewart platform. We have to remark, thus, that
the design that Stewart presented had some differences from the Gough
platform regarding the arrangement of the kinematic chains. Therefore, we
can not consider them as the same platform.
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Figure 1.9: Flight simulator proposed by Stewart

Almost at the same time, but in the US, Cappel was requested to impro-
ve an existing conventional 6 degrees of freedom vibration system based on
a hexapod. The system had four horizontal actuators instead of three. This
configuration was so complex to control that the forces fractured the table.
By observing this, Cappel came up with the same solution as Gough had
already proposed. Surprisingly, Cappel did not know about the platforms
designed by Gough or Stewart and he patented his platform in 1964 [21]
to be a motion simulator. In this way, Cappel became the developer of the
first ever flight simulator based on the octahedral hexapod. Figure 1.10a
shows the design he patented and Fig. 1.10b shows the first flight simulator
based on that patent.
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(a) (b)

Figure 1.10: Platform proposed by Cappel: (a) patent; (b) flight simulator

We can say that Gough, Stewart and Cappel were the pioneers of pa-
rallel robots by proposing designs that are still used nowadays, inspiring
many other researches all over the world.

1.2.3. Classification of parallel manipulators

We can classify parallel manipulators taking very different characte-
ristics into account. We now give examples of robots according to two
interesting and common classifications of parallel manipulators – by the
application and by the number of degrees of freedom.

1.2.3.1. Classification by application

Pick & place and handling

Pick and place systems are manipulators that lift, move and place ob-
jects in a desired location. These kinds of manipulators require high speed,
high stiffness and very good accuracy. Based on these requirements, para-
llel manipulators are a very good solution. There are, mainly, two suitable
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architectures. Parallel manipulators with three spatial translation dof com-
prise the first type of architecture. The second architecture is comprised
of parallel manipulators with 3 independent translations and one rotation,
also called Schönflies-Motion parallel manipulators.

In the early 80’s, Clavel [22] designed a parallel manipulator with th-
ree translational and one rotational degrees of freedom: the Delta parallel
robot. The Delta robot has three parallelogram-based legs. These three
parallelograms make the mobile platform move with purely translational
degrees of freedom, maintaining its orientation. A fourth leg allows the
end-effector to rotate with respect to the mobile platform. Thirty-six pa-
tents cover the design of the Delta robot. Among them we can consider the
WIPO patent [23], the US patent [24] and the European patent [25] as the
most important ones. Figure 1.11 shows a schematic representation of the
Delta robot. Since Clavel patented it, the Delta robot has been one of the
most successful parallel manipulators in industry. In 1999, Clavel got the
Golden Robot Award for his innovative work.

Figure 1.11: Schematic representation of the Delta robot
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The impact of the Delta robot in industry has been such that almost
thirty years later, it is still one of the most used architectures. One example
is the Flexpicker robot developed by ABB Group [3]. This robot is used
for light assembly, material handling and pick & place applications. The
vacuum gripper allows it to pick and place products at a very high speed.
The latest model is the IRB 360-6, shown in Fig. 1.12, which has a handling
capacity of 6 kg and a working diameter of 1600 mm.

Figure 1.12: Felxpicker model IRB 360-6. Courtesy of ABB

Bosch Packaging Technology Company [26] offers a wide offer of pac-
kaging systems based on the Delta robot. In Fig. 1.13 we see the system
Paloma. This system is able to pick and place products into flow wappers,
cartoners or themoformers with vision-guided high speed Delta Robots. It
can be used for a wide variety of applications handling food and non-food
items. Each robot in the system can manage products at a speed of 120
products per minute. The vision control is useful for load/line balancing
and it ensures that only good quality products are packed.
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Figure 1.13: Packaging system Paloma. Courtesy of Bosch

Another example of commercial manipulator based on the Delta robot
are the Genkotsu series robots of FANUC [27]. This series covers several
high speed picking and assembly robots. One of them is the FANUC M-
2iA. It presents six different models, in order to get the desired number
of degrees of freedom at the end-effector and the required workspace. Fi-
gure 1.14a shows the M-2iA/3S model in a fast process of arranging food,
while Fig. 1.14b shows the M-2iA/3A model in a fast packaging of gift
box application. They can also include vision or force sensors for additional
intelligent functions.

(a) (b)

Figure 1.14: M-2iA robot in: (a) food application; (b) packaging application
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Simulators

In aircraft industry it is very important to have suitable flight simulators
in order to test the new aircrafts’ handling qualities, cockpit systems and
displays, operational procedures and other procedures that involve human
factors in the cockpit. The Generic Research Aircraft Cockpit Environment
or GRACE [28], shown in Fig. 1.15, is the flight simulator of the Natio-
nal Aerospace Laboratory (NLR) in Netherlands. It is very well suited for
the evaluation of new aircraft technologies from their concept phase up to
deployment in real aircraft.

Figure 1.15: GRACE flight simulator. Courtesy of NLR

Apart from aircraft, there are also other interesting situations that we
can simulate using parallel manipulators like, for example, earthquakes.
Earthquakes are characterized by a combined horizontal and vertical ground
motion. Thus, we can simulate them using a suitable 2-DOF PM. The si-
mulation of a seismic motion helps to understand the earthquake effects
and to predict the behaviour of buildings and, in general, any civil engi-
neering structures. Carvalho et al. [29] presented a study of feasibility for
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an earthquake simulator by using the CaPaMan structure. They simulated
the frequency, amplitude and acceleration magnitude of seismic motion by
exciting the mobile platform with a suitable input motion.

Medical applications

Medical parallel manipulators are the ones used for surgery, medical
training, rehabilitation therapy, prosthetics and assistance to people with
disabilities.

Shoham et al. [30] presented, in 2003, a new approach to robot-assisted
spine and trauma surgery. They proposed a miniature surgical robot with
parallel architecture that can be directly mounted on the bone. Mazor Ro-
botics [31] commercialized the device with the name of Spine Assist robot.
The goal of the SpineAssist device is to increase the precision during sur-
gery while reducing radiation exposure and time of the surgery. According
to them, the device should bring higher success rates for surgery and less
risk for complications. The device is being used for surgeries where implants
are attached to the spine (e.g. spinal fusion, correcting scoliosis). Sukovich
et al. [32] described the early clinical experience with the Spine Assist. Ba-
sed on this concept, Plaskos et al. [33], Song et al. [34] and Wolf et al. [35]
have developed bone-attached parallel robots for knee arthroplasty. In the
field of neurosurgery, the SurgiScope robot stands out. The robot, deve-
loped by the Intelligent Surgical Instruments & systems, is a Delta robot
tool-holder device dedicated to microscopic applications. The surgeon and
operating team always have control of the robot during operations. It is
designed for microscope-assisted neurosurgical applications, supporting all
types of operations and the most common positioning.

Li et al. [36] introduced the concept of medical parallel robot for chest
compression in the process of cardiopulmonary resuscitation. They propo-
sed a three degrees of freedom translational parallel manipulator for this
porpuse. In Fig. 1.16a we see the operation that the robot has to do and in
Fig. 1.16b we see the CAD design of the robot.
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(a) (b)

Figure 1.16: Medical PM for resuscitation: (a) force to be done; (b) CAD

Another very interesting application of parallel robots in medical field
is the rehabilitation processes. Takanabu et al. [37], for example, suggested
the use of a parallel manipulator for the training for mouth opening and
closing for the rehabilitation of patients with jaw problems.

Merlet [38] proposed a family of modular wire-driven parallel robots:
MARIONET. The use of wires instead of rigid legs is a natural solution to
the workspace problem of parallel manipulators. This family of robots is de-
veloped at INRIA Sophia Antipolis research center [39]. The MARIONET
family includes five wire-driven parallel manipulators. The MARIONET-
REHAB, that can reach a maximal speed of 100m/s, is mostly used for reha-
bilitation. Harshe [40] proposed a potential application of the MARIONET-
REHAB for lower limb rehabilitation. He combined the wire-driven para-
llel manipulator with force sensors, accelerometers and motion capture in
order to get detailed information of the motion. Figure 1.17a shows the
CAD of MARIONET-REHAB for this application and Fig. 1.17b shows
the prototype during tests in the laboratory at INRIA Sophia Antipolis.
MARIONET-VR is able to lift a human and was also designed for reha-
bilitation. The large MARIONET-CRANE, that has a workspace volume
larger than 2000 cubic meters, is aimed to be used as a rescue device du-
ring natural catastrophes. In Fig. 1.17c we see how it manipulates a possible
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victim and in Fig. 1.17d we see how it can be used to free a victim from
rumbles. The MARIONET-ASSIST is a robot for transfer operation in as-
sistance robotics, like lifting elderly and improving their mobility. Finally,
the MARIONET-SCHOOL robots are used for demonstration and teaching
scientific concepts.

(a) (b)

(c) (d)

Figure 1.17: MARIONET: (a) REHAB CAD; (b) REHAB prototype; (c)
CRANE taking a victim; (D) CRANE freeing a victim. Courtesy of INRIA
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The research of parallel manipulators keeps moving forward. In 2015
Ibrahim et al. [41] presented a new 4 degrees of freedom endoscopic para-
llel manipulator for laparoscopic surgery. They manufactured an annealed
stainless steel prototype and tested it successfully.

Machine tools

Machine tools are devices that change the shape, surface or properties
of an object. Their most common operations are turning, milling, cutting,
grinding, edging, abrading, drilling, nibbling or shaping. Traditional ma-
chine tools have serial architecture. However, many authors, as for example
Fassi et al. [42], Zhang [43] or Pandilov et al. [44], have outlined that machi-
ning trends towards high-speed solutions nowadays and, thus, there is an
increasing demand of high dynamic performance machine tools with high
stiffness and reduced moving mass. Therefore, parallel-robot based machine
tools, also called Parallel Kinematic Machines (PKM), seem to be a good
solution.

The first commercial PKM was the Variax Hexacenter or only Variax,
developed by Fives Giddings & Lewis [45] in 1994. The Variax is a six
degrees of freedom parallel manipulator with a crossed leg and hydraulic
isolation system. The crossed leg provides a higher stiffness compared to
other PKMs. The isolation system absorbs the energy of the machine mo-
vement, making it more accurate. Geldart et al. [46] compared the Variax
with other two serial machine centres and concluded that the higher stiff-
ness of the Variax indicated that the PKMs had potential advantages in
machining operations.

Wahl [47] developed for the DS Technologie Company in Germany the
3 degree of freedom Sprint Z3 parallel kinematic tool head, one of the most
successful parallel kinematic machines. As Carretero et al. [48] and Pond et
al. [49] showed, this PKM presents many advantages like high speed, high
stiffness, good dexterity and large orientation capability. Inspired by the
Sprint Z3 head, Huang et al. [50] patented a new tool head named A3. The
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two tool heads, shown in Fig. 1.18, have the same degrees of freedom: two
rotations and one translation, but they present some variations from an ar-
chitectural point of view. Chen et al. [51] compared both tool heads in terms
of motion/force transmission. They concluded that the A3 head parameters
outperforms the Sprint Z3 head in terms of motion/force transmission, so
the A3 can be a good alternative for industrial applications.

(a) (b)

Figure 1.18: Typical tool heads: (a) the Sprint Z3; (b) A3 tool head

Many machine centres integrate PKMs, as Pandilov et al. [44] described.
One example is the Cosmo Center PM-600 developed by Okuma and shown
in Fig. 1.19a, a fully parallel mechanism machine tool developed for high
efficiency production of aluminium parts. Another example is the Vertical
Turning Machine Index V100 [52], shown in Fig. 1.19b.
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(a) (b)

Figure 1.19: Two PKMs: (a) Cosmo Center. Courtesy of Okuma; (b) V100.
Courtesy of Index

1.2.3.2. Classification by DOF

When classifying parallel manipulators according to their number of
degrees of freedom, we first have to consider if they are planar or spatial
manipulators. Planar manipulators can only have maximum three degrees
of freedom – two translations and one rotation. As explained by Boudreau
et al. [53] and Duffy [54], these are the planar parallel manipulators with
the most interesting applications.

Spatial parallel manipulators can have a maximum number of degrees
of freedom of six – three translations and three rotations in space. 6-DOF
parallel manipulators have six actuated leg and each leg has six degrees of
freedom. That is why they are usually called hexapods. The most emble-
matic representation is the Gough platform, previously described. Another
example of parallel robot with six degrees of freedom is the Hexa robot,
presented by Pierrot et al. [55] in 1991 and shown in Fig. 1.20.

Spatial parallel manipulators with less than six degrees of freedom are
called lower mobility parallel manipulators. They are useful in tasks that
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Figure 1.20: Hexa 6-DOF parallel manipulator

do not require full rigid motions of the end-effector, where the use of the
lower-mobility parallel manipulators may save much cost. Unlike the 6-DOF
parallel manipulators, the legs of a fully parallel lower mobility parallel ma-
nipulator may have more degrees of freedom than the mobile platform. Ho-
wever, the combination of the legs constraints generates the desired reduced
mobility of the mobile platform. The structure of all the limbs is usually
the same. If so, we can name the mechanism type by specifying the number
of legs and the sequence of joints distributed along any of them, starting
from the fixed platform to the mobile platform. Besides, if the actuators
are adjacent to the base we can use simplified design procedures and manu-
facturing processes. The most typical lower mobility parallel manipulators
are those with three pure translations, three pure rotations and Schönflies
motion.

Lower mobility decoupled parallel manipulators are parallel mechanisms
with less than six dofs and with decoupled geometry. Until now, it is difficult
to design a decoupled parallel manipulator with translational and rotatio-
nal movement simultaneously. However, under some rules, it is relatively
easy to design a decoupled parallel manipulator with pure translational or
rotational movements.
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The first translational parallel manipulator was the Delta robot, already
described. There are also other interesting translational manipulators, such
as the 3-UPU presented by Tsai et al. [56] or the 3-RRPRR PM introdu-
ced by Di Gregorio et al. [57]. Carriato et al. [58] presented a new family
of translational parallel manipulators – the 3-PRRRR. They determined
the design and assembly conditions that guarantee the pure translation of
the mobile platform. Among commercial robots, the Triglide hybrid robot,
shown in Fig. 1.21a, ensures a constant end-effector orientation by using
well-known parallelogram-linkages. Figure 1.21b shows another example of
hybrid robot with a translational parallel manipulator: the Verne machi-
ning centre, from Fatronik Tecnalia [59]. The VERNE machine consists of a
parallel module and a tilting table. The vertices of the moving platform of
the parallel module are connected to a fixed-base plate through three legs.
Each leg uses a pair of rods linking a prismatic joint to the moving platform
through two pairs of spherical joints. Two legs are identical parallelograms,
while the third one differs from the other two legs. Due to the arrangement
of the links and joints, the two identical legs prevent the platform from
rotating about Y- and Z-axes, while the third one prevents it from rotation
about X-axis.

(a) (b)

Figure 1.21: Two machine centres with PKMs: (a) Cosmo Center PM-600.
Courtesy of Okuma; (b) Vertical Turning Machine V100. Courtesy of Index
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Pure rotational parallel manipulators, also known as spherical mani-
pulators, allow three rotations about one point. Gosselin et al. [60], [61]
studied the 3-DOF 3-3R spherical parallel manipulator and applied it to
build a fast camera-orienting device, the Agile Eye. The structure of the
manipulator is shown in Fig. 1.22a. The axes of all the revolute joints inter-
sect at one common point which is the center of rotation of the device. The
three motors of the manipulator are fixed to the base. The main applica-
tion of the Agile Eye is the tracking of objects moving at high speed using
a camera, but it could also be used to control the orientation of mirrors,
lasers or any device to be oriented precisely at high speed. Di Gregorio
[62] presented the 3-URC wrist, a new spherical parallel manipulator with
three equal legs. The passive joints are only cylindrical and revolute joints,
and the actuators are adjacent to the base. They defined the mounting
and manufacturing conditions that make the platform motion to be sphe-
rical. Recently, Enferadi et al. [63] proposed a new fully spherical parallel
manipulator: the 3(RSS)-S PM, shown in Fig. 1.22b, thought for celestial
orientation and rehabilitation applications. In addition to orient a body like
with any spherical manipulator, if we rotate all motors simultaneously we
can rotate the rigid body around a vertical axis interminably.

(a) (b)

Figure 1.22: Spherical manipulators: (a) Agile Eye; (b) 3(RSS)-S PM
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The 3-DOF parallel manipulators with one translational and two ro-
tational degrees of freedom (1T2R) is a very important category of lower-
mobility parallel manipulators. The 3-RPS, 3-PRS, 3-RRS and 3-PPS are
typical parallel manipulators of this category. Hunt [64] introduced the 3-
RPS PM in 1983 and, since then, it has been widely studied and used for
different purposes. Carretero et al. [65] applied it for telescope applications,
while Hernández et al. [66] proposed it as tool head of machine tools. The
3-PRS parallel manipulator, presented by Carretero et al. [48] in 2000 and
shown in Fig. 1.23a, has also focused the attention of many researches and
has been used in the Sprint Z3 tool head (previously described), as motion
simulator or as coordinate measuring machine. The 3-RRS and the 3-PPS
PMs also have several applications. For example, Itul et al. [67] studied the
potential use of the 3-RRS PM for the orientation of a TV satellite dish or
sun tracker and Teo et al. [68] proposed the 3-PPS for UV nanoimprint lit-
hography applications. Despite these architectures being the most common
ones, there are also novel 1T2R PM. Hao et al. [69] presented the 3-PSP PM
as tool head for high speed machining of structural aircraft components,
while Hosseini [70], [71] proposed the 3-CRS/PS PM, shown in Fig. 1.23b.

(a) (b)

Figure 1.23: 1T2R PMs: (a) 3-PRS PM; (b) 3-CRS/PS PM
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Even if the most typical lower mobility parallel manipulators are 3-DOF
mechanisms, there are also some 4-DOF and 5-DOF parallel manipulators
with interesting applications. In 2002, Zlatanov et al. [72] found out that
there were few parallel manipulators with less than six but more than th-
ree degrees of freedom. Thus, they introduced a new family of parallel
architectures with four degrees of freedom and highlighted their potential
application as flight and motion simulators. Also in 2002, Huang et al. [73]
developed a general methodology for type synthesis of symmetrical parallel
manipulators with lower mobility. Based on this methodology, they presen-
ted three novel lower mobility parallel manipulators – a 3-DOF PM (the
translational 3-RRRRR) and two 5-DOF PMs (the 3-RR(RRR) PM and
the 5-UPU PM). Few years later, in 2007, Zhu et al. [74] described eighteen
fully symmetrical 5-DOF-R2T parallel manipulators with better actuating
modes. Eleven of them were existing ones and the another seven were novel
ones. Figure 1.24a shows the 5-(RRR)(RR) PM, one of the manipulators
proposed. Ibrahim et al. [41] have recently designed, manufactured and
tested successfully a 4-DOF endoscopic parallel manipulator for minimally
invasive surgery. The endoscopic manipulator is shown in Fig. 1.24b.

(a) (b)

Figure 1.24: Novel lower mobility PMs: (a) 5-(RRR)(RR) proposed by Zhu
PM; (b) endoscopic PM proposed by Ibrahim
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1.2.4. Designing process

In order to design a new parallel manipulator, we have to consider all the
requirements needed for the application we want to design it for. These re-
quirements include aspects like geometry and structural characteristics, ki-
nematic and dynamic behaviour, stiffness performance or size and/or shape
of the workspace. A complete methodology to design parallel manipulators
should follow the steps we describe below:

1. First of all, we have to define the performance requirements that the
manipulator has to fulfil in a certain application or the specifications
that a potential client determines.

2. Then, we have to take those performance requirements into account
to define the geometry, kinematic, stiffness and dynamic characte-
ristics of the manipulator. These characteristics can be given by, for
example, the volume of the manipulator, the useful workspace, the
kind of movements that the manipulator can follow, its maximum
velocities and accelerations, the stiffness and the payload capacities,
the accuracy or the dynamic forces and natural frequencies.

3. Once we know all the requirements that the manipulator has to fulfil,
we define the morphological synthesis. The morphological synthesis
determines the kinematic structure of the manipulator. This is to
say, the number and type of elements, kinematic joints and kinematic
chains that compose the manipulator.

4. After defining the type of architecture of the manipulator, we proceed
with the dimensional synthesis. The dimensional synthesis consists of
defining the basic dimensions of the manipulator. These dimensions
are the main design variables that we have to determine by applying
optimization methods in order to get the best possible values.

5. We have to check the possible collisions between elements in order to
define more precisely the area where the manipulator can reach.
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6. Then, we have to do static, dynamic and vibration analyses so we
can get the secondary dimensions of the manipulator, such as the
thickness of the elements, the wideness and, in general, small dimen-
sions of the manipulator. The development of these theoretical and
experimental analyses is divided in the following steps:

Initial dimensioning.
Obtaining the stiffness maps for the different configurations of
the manipulator in its workspace.
Adjustment of the dimensions of the secondary elements taking
the stiffness maps into account.
Solving the inverse dynamic problem to dimension the actuators.
Obtaining the lowest natural frequencies and the corresponding
vibration modes inside the workspace to get possible resonances
of the platform.
Making some parts of the manipulator more rigid, if necessary.

7. Experimental check of the correct performance of the manipulator.

This can be an iterative process in which the different modifications and
verifications lead to the complete definition of the manipulator.



2

MAST

2.1. Multi-axis machines

Multi-axis machines are linkage-based systems able to generate a coupled
motion in their end-effector by combining translations and rotations. They
have many applications in industry, such as the multi-axis testing tables,
flight simulators or vehicle simulators.

We give a brief description of the different multi-axis machines according
to their application field.

Multi-axis shaking tables (MAST). They are used for dynamic
testing of structures or mechanical components, like the one commer-
cialized by Moog [75] and shown in Fig. 2.1a.

Multi-axis simulation tables. Used as vehicles and flights simula-
tors. They are mostly Gough-platform-based systems. They integrate
very complex real time control algorithms to reproduce displacements
and accelerations with exactitude. In Fig. 2.1b we see a hexapod used
for flight simulations by Lufthansa.

37
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Multi-axis positioning systems (MAPS). These systems allow
the precise positioning of antennas, lenses, surgical elements and so
on. The solar trackers used to guide the solar panels, like the one
shown in Fig. 2.1c, are a typical example.

(a) (b)

(c)

Figure 2.1: Multi-axis machines: (a) multi-axis shaking table. Courtesy of
Moog; (b) multi-axis simulation table. Courtesy of Lufthansa; (c) multi-axis
positioning system
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In this work we focus on the multi-axis shaking tables and describe
them with more detail below.

2.2. Multi-axis shaking tables

The functional capability of components and systems under seismic and
other dynamic conditions, like random shocks or vibrations, has to be en-
sured in many engineering sectors. This is done by verifying experimentally
the safety and reliability of large components or structures under dynamic
load conditions. The multi-axis shaking tables are principally designed for
experimental verification of the safe functioning of large components and
subsystems under seismic conditions, such as vibration tests on structural
models, simulation of dynamic loading of systems in the aerospace industry
or automotive component validation and durability testing.

2.2.1. Applications

Shaking tables are of great value in civil engineering because they are the
only experimental device that can replicate the true nature of an earthquake
input. Shaking tables apply motion to the base of the structure that we want
to analyse. Thus, they introduce realistic inertia forces in every element of
the structure, generating response displacements and stresses.

Besides being used for seismic testing, another common application of
the MAST is the experimental validation of various different components
such as seat, heaters, combustible deposits, motor supports or suspension
systems. In these cases the movements to be simulated are more complex
than the movements needed in a seismic simulation. They can be a perio-
dic excitation, random forces or a fatigue testing with displacements and
rotations. Unlike for the seismic testing, in these kind of shaking tables the
rotation of the component to be analysed is usually more important than
the translations.

Knowing the modal parameters of a structure is essential to validate
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the analytical dynamic models. Besides, it can improve the design of the
structures analysed. Füllekrug [76] proposes using of the same set-up used
for earthquake simulation and dynamic qualification of structures to obtain
a modal identification of the tested structure. In this way, we can obtain
very valuable data without much additional experimental effort. However,
this process requires suitable modal identification methods. Füllekrug des-
cribed both the theory and the basic principles of modal identification by
using multi-axial excitation. Additionally, he illustrated the application of
frequency and time-domain identification by testing a laboratory structure.

2.2.2. Requirements

Earthquakes can produce a ground motion in all six degrees of freedom,
but the earthquake sites can only measure the acceleration in three of them
– two horizontal and one vertical. The first usable record of an actual earth-
quake is the one that took place in Long Beach, in the U.S.A. in 1933, that
Ruge [77]-[78] used as inputs of his shaking table.

It often happens that we get the acceleration in only one degree of
freedom as specification for testing purposes. In those cases, we can consider
that a uniaxial table is satisfactory. The drawback is that we have to know
how to remove the motion in the remaining five degrees of freedom. Early
tables were 6-DOF mechanisms with physical restraints to fix some of the
degrees of freedoms. This introduced unknown forces that modified the
desired motion. Real earthquakes do not repeat themselves in a precise way,
so these types of shaking tables can be suitable to simulate earthquakes.
However, if we want to test a piece for precisely defined inputs we need a
more accurate control system.
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2.2.3. History

The beginning of the development of shaking tables dates back to the
19th century. In his work, Severn [79] went over one century of history of
the shaking tables. We resume it below.

Shaking tables with simple oscillatory motion

As Muir-Wood [80] explained, the first attempt at testing the effects of
an earthquake took place at the end of the 19th century in Japan. Milne and
Omori used a railway truck as testing device. They excited the test piece
with an oscillatory motion by attaching a bar eccentrically to a hand-driven
wheel, as shown in Fig. 2.2.

Figure 2.2: The Milne-Omori railway truck shaking table

Some years later, in 1906, Rogers [81] built a more sophisticated sha-
king table. As we see in Fig. 2.3, the table had a box attached and both
were separated from a fixed platform by rollers that constrained the move-
ment of the box to a single horizontal direction. A motor drove a balancing
wheel. Additionally, there was a crank connecting the wheel and the box
eccentrically. In this way, the motion of the box was basically sinusoidal
with a frequency between 0.5 and 4.6 Hz. The response measurements we-
re recorded on a hand-operated paper-covered drum labelled as G in Fig.
2.3. The pencils (H) recorded the motion of the box and of a block (F)
embedded in the sand in the box.
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Figure 2.3: Shaking table proposed by Rogers

Excitation using springs and pendulums

After the big earthquake that destroyed a great part of Tokyo city in
1923 and the earthquake in Santa Barbara (U.S.A.) in 1925, the research in
seismic simulation was accelerated. The Stanford University in the U.S.A.
created a committee of engineers to analyse which was the best way to carry
out vibration experiments with models of engineering structures. This com-
mittee decided to create a laboratory to work with shaking tables and it
was Dr. Jacobsen and his team ([82], [83], [84], [85]) who took this task
up. The two main topics they had to decide about were the type of input
that was necessary and the way to get it. They used the word ’savage’
to describe the characteristics of real earthquakes and the word ’civilised’
to refer to continuous and oscillatory disturbances that had already been
achieved in laboratories. They concluded that it was not possible to repeat
any particular experiment using savage inputs and, thus, the civilised in-
puts were the only satisfactory option. However, they considered that the
horizontal input that Rogers had used was not an appropriate solution and
they implemented two civilised inputs. As we see in Fig. 2.4, a pendulum
impacted through a spring attached to one end of the table. A group of
springs supported the table on the other end. In that way, there was an
initial shock that produced a decaying motion of the table. Over a period
of 25 years Jacobsen kept working on his shaking table and making im-
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provements. He introduced force and moment dynamometers, but he still
could not measure either velocity or acceleration.

Figure 2.4: Shaking table designed by Jacobsen

Many researchers from all over the world based their shaking tables
on the design of Jacobsen. In 1936, Mononobe et al. [86] described 1:100
scale models of earth dams tested using shaking tables. They used optical
methods – including motion pictures – to measure the displacements.

In 1956, Oberti [87] presented a Jacobsen-type table that could be ex-
cited in three ways – by a pendulum-spring combination, by an eccentric
mass device or by electromagnetic vibrators. Also in the 50s, Clough and
Pirtz [88] built another Jacobsen type table to study the behaviour of rock-
fill dams. Thanks to the developments during the Second World War, by
this time there were already accelerometers and linear variable differential
transformer (LVDT) available for measuring the accelerations and displa-
cements. They used them to record the measurements of the rockfill dams.

Excitation using liquid-filled actuators – First modern shaking
tables

In 1933 raised water tanks collapsed in Long Beach, California (U.S.),
due to an earthquake. This gave an idea to Ruge [77], [78], a seismology
researched at MIT, to build a new shaking table. He constructed a table
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suspended from above using piano wires. He also used an array of wires that
attached the table to the floor so there was no rotation. Ruge realized that
the mechanical systems used until then did not give adequate representation
of the motion of real earthquakes. Ruge introduced an oil-driven piston and
controlled its position by using a device that gave the motions of a real
earthquake as inputs. We see the sketch of this configuration in Fig. 2.5.
This concept is the one that, after more than eight decades of developments,
has given us our current shaking tables.

Figure 2.5: Sketch of Ruge’s shaking table

The second world war brought a wide development of hydraulic power
systems with military purposes. The first to apply these innovations to
shaking tables was, probably, the Building Research Institute at Jassy in
Romania [89]. They moved a 10x10 m table by using two electro-hydraulic
actuators. The accelerations up to 0.4 g

The University of Illinois earthquake simulator [90], [91] had a similar
architecture to the one developed by Clough and Pirtz. The main difference
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was that the University of Illinois earthquake simulator used a controlled
electro-hydraulic actuator to drive it instead of a pendulum. Besides, the
MTS Systems Corporation, that had been newly created, was the advisor to
Illinois in control system related topics. Three different kind of inputs were
possible – displacement, velocity or acceleration time-histories. Neverthe-
less, they chose to control the displacement in order to avoid physical da-
mages to the table. Additionally, they attached a LVDT to compare input
and output displacements. They studied different combinations of the three
type of input, time-compression ratios and viscous damping. They conclu-
ded that the acceleration input gave better results for low time-compression
ratios, whereas when the ratio was bigger than 5 the displacement input
was better.

In 1965 a research group at University of California studied the pos-
sibility of building a big table of 30.5x30.5 m [92] with several hydraulic
actuators. They first tried to introduce an active control system, but the
technology had not developed enough to be successful. Thus, they had
to abandon the project. Instead, Rea and Penzien [93] built a 6x6 m ta-
ble. They signed a contract with MTS to design the hydraulic actuators,
servos-valves and the electronic control system. The table had 3 horizontal
actuators and four vertical. They were supposed to produce a horizontal
and a vertical motion, respectively. However, some unexpected pitch and
roll motions also occurred. In order to keep them to a minimum, they added
passive hydraulic devices to act in parallel. The input was an acceleration
time-history, so they used a small computer to obtain the velocity and dis-
placement time-histories by integrating the inputs. They used these time-
histories to check that they did not exceed the performance limits of the
table. The control of this shaking table at the University of California had
a high importance in the development of shaking tables. It controlled five
DOF, the sixth one being controlled by a sliding mechanism. Additionally,
transducers measured displacements and forces. The aim of the control was
to reduce the unexpected rotations of the platform as much as possible and
ensure that the velocity and displacement limits were not exceeded.
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By 1970 the electronics and computing had already developed in such
a way that the servo-hydraulic-electronic control of actuators was a real
possibility. Moreover, tables with such actuators were available in many
universities, private companies and research labs. The largest one belonged
to the National Centre for Disaster Prevention in Tsukuba Science City. As
Sawada et al. [94] described, it was capable of horizontal motion of a test
piece of 500 t or a vertical motion of a piece of 200 t. However, this table did
not have a control as the table of University of California had. The table at
Tsukuba used mechanical systems to remove the unwanted displacements.

Development of 6-DOF control

In the 50s the construction of nuclear power stations began in Europe,
which brought along the interest in building shaking tables. This interest
lead to the construction of the SAMSON 5x5 m shaking table in the mid-
70s in Jülich, Germany. This table had 9 actuators – one of them took the
dead weight of the table and the test piece while the role of the rest was to
control all the six DOF of the shaking table. Figure 2.6 shows the SAMSON
shaking table. Out of the eight actuators used for the control, four were
horizontal and four vertical. The horizontal actuators applied their force
at the mid-side of the table. Thanks to that, together they could provide
forces in two horizontal axes as well as control the yaw. Each of the vertical
actuators was attached to a corner of the table, providing the vertical forces
required in the tests and controlling the pitch and roll. According to this
design, the minimum number of actuators needed to control the 6-DOF
of a shaking table is eight. But this fact introduced two significant steps
in the control system – the inverse and the direct kinematic problems. In
the inverse kinematic problem, the values of the translations and rotations
are converted into instructions for the actuators (one for each). The direct
kinematic problem converts the recorded values of the actuators into the
displacement and rotation components. The Jülich table incorporated these
two innovations, but the computational time needed in the 70s was so high
that the control was ”out of real time”. Besides, it was also necessary that
the properties of the testpiece did not change during the test.
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Figure 2.6: 6-DOF SAMSON shaking table

Germany abandoned nuclear power generation, so the Jülich project was
abandoned after few years. However, in the early 80s, the Bristol University
based its shaking table on it. The main differences were that this new
shaking table was smaller than the one in Jülich and that the vertical
actuators themselves supported the dead weight of the table and the test
piece.

Although Germany had abandoned its nuclear power program, other
countries in Europe continued with their nuclear programs and, thus, with
their interest on shaking tables. Thanks to this, laboratories around Eu-
rope developed their own shaking tables. The most important European
shaking table installation is at the French Alternative Energies and Atomic
Energy Commission (Commissariat à l’énergie atomique et aux énergies
alternatives, CEA) [95].

We have to note that in addition to the European researches, other
countries, specially U.S. and Japan, made big developments. The continua-
tion of all these researches lead to the real-time active control systems that
we use nowadays.
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3

Requirements and
Constraints

In this work we present and analyse a MAST for automobile pieces
testing purposes. If we define a reference system with the X- and Y-axes in
the plane of a road – perpendicular to each other and one of them along
the road – and the Z-axis perpendicular to that plane, we can simulate
the movements of a car by using one translation along Z-axis and several
rotations about X- and Y-axes.

As we have already seen, 3-DOF parallel mechanisms with one transla-
tion and two rotations are known as 1T2R. One of the most common used
ones is the 3PRS parallel manipulator. Carretero et al. [48] introduced it
in 2000. They studied its kinematics for a configuration with the limbs at
120◦ from each other and leaning linear guides. Figure 3.1 shows the mani-
pulator in that configuration with the nomenclature they used. As we see,
the 3PRS manipulator consists of a fixed and a mobile platform connected
by three identical limbs. The limbs are composed of a prismatic joint (P),
a revolute joint (R) and a spherical joint (S).

51
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Figure 3.1: 3PRS PM proposed by Carretero

Equation (3.1) presents the mobility criterion that Hunt [96] presented
to get the number of degrees of freedom of a mechanism.

M = 6 · (n− g − 1) +
g∑
i=1

fi (3.1)

where M is the number of degrees of freedom of the manipulator, n is the
number of bodies that compose the mechanism, g is the number of joints
and fi is the number of degrees of freedom of the i-th joint. In the 3PRS
PM, n = 8, g = 9, fi = 1 for each of the prismatic and revolute joints and
fi = 3 for the spherical joint. By replacing these values in Eq. (3.1), we
get that the manipulator has 3 degrees of freedom, as Eq. (3.2) shows. The
3-DOF of the manipulator are a translation along Z-axis and two rotations
about X- and Y-axes.

M = 6 · (8− 9− 1) + 3 · (1 + 1 + 3) = 3 (3.2)

Carretero et al. [48] studied the kinematics of the manipulator and saw
that small movements appeared also in the DOF where there was supposed
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to be no motion. They called those unexpected and undesired motions
parasitic motions. They noted that they were no due to errors, but inherent
to the geometry of the manipulator.

In [97], Tsai et al. presented a 3PRS parallel manipulator variant with
the linear guides in vertical position. In this case, the theoretical vertical
displacement is infinite, but the length of the linear guides limits it. There
are two possible configurations – one with the legs pointing inwards and the
other with the legs pointing outwards. The first one is shown in Fig. 3.2.
They studied and compared both options and concluded that the solution
with the legs pointing inwards had a lower possibility of suffering collisions
between the legs.

(a) (b)

Figure 3.2: 3PRS PM proposed by Tsai: (a) CAD; (b) geometry sketch

Merlet [98] presented the 3PRS parallel manipulator as an endoscopy
tool. In this case, the linear guides are also perpendicular to the fixed base
but the legs are pointing outwards, so the diameter of the endoscopy tool
is smaller. We see the sketch of the manipulator in Fig. 3.3.
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(a) (b)

Figure 3.3: 3PRS PM proposed by Merlet: (a) sketch; (b) prototype

Pond and Carretero [49] compared these three 3PRS configurations –
shown in Fig. 3.4 – in terms of dexterity. They obtained the dexterous WS
of the three configurations and saw that the one with bigget WS was the
one that Tsai et al. presented – with linear actuators in vertical position
and the legs pointing inwards.

(a) (b) (c)

Figure 3.4: Different 3PRS PMs compared: (a) Carretero et al.; (b) Tsai et
al.; (c) Merlet
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Li et al. [99] compared the 3PRS parallel mechanism with different limb
arrangements. They classified the 3PRS PMs into four categories and se-
ven subcategories, that we show in Table 3.1 and Fig. 3.5. They studied
the kinematic problem and obtained the parasitic motions for each of the
subcategories. According to their results, the number of parasitic motions
depends on the limb arrangements – category 1 and subcategory 2.1 have
three parasitic motions, subcategories 2.2, 3.1 and 4.1 have only one pa-
rasitic motion and subcategories 3.2 and 4.2 have no parasitic motion. As
we see in Fig. 3.5, the spherical centres in subcategories 3.1 and 4.1 are
collinear, so the mobile platform is a line and we would not have space to
fix a test piece. The same thing happens with subcategory 3.1.

Table 3.1: Categories of the 3PRS PM

Geometrical condition of LPs
1 Three LPs do not intersect at a line
2 Three LPs intersect at a line with noncollinear spherical centres

2.1: three LPs are arranged simmetrically
2.2: two LPs are coincident and perpendicular to the other LP

3 Three LPs intersect at a line with collinear spherical centres
3.1: three LPs are arranged symmetrically
3.2: two LPs are coincident and perpendicular to the other LP

4 Three LPs are parallel to one another
4.1: with noncollinear spherical centres
4.2: with collinear spherical centres
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 3.5: Categories of the 3PRS PM: (a) category 1; (b) subcategory
2.1; (c) subcategory 2.2; (d) subcategory 3.1; (e) subcategory 3.2; (f) sub-
category 4.1; (g) subcategory 4.2
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Since in subcategory 2.2 there is no parasitic motion about Z-axis, we
could replace the spherical joints of the first and third limbs by several
universal joints that allow rotations about X- and Y-axes, making it a
2PRU-1PRS parallel manipulator.

Xie et al. [100] compared the orientation capability and the parasitic
motions of this novel 2PRU-1PRS PM with another one – the 2PRU-1PUR
parallel manipulator. Figure 3.6 shows the two novel architectures.

Figure 3.6: Novel architectures compared by Xie et al.: (a) 2PRU-1PRS
PM; (b) 2PRU-1PUR

They studied the motion/force transmission performance of both me-
chanisms. In order to do it, they defined the local transmission index (LTI),
which evaluates the motion/force transmissibility. By using that concept,
they defined a good transmission workspace (GTW). In the GTW there is a
maximal circular region, where they defined the index of good transmission
orientation capability (GTOC). The global transmission index (GTI) gives
information about the motion/force transmission performance of the me-
chanisms over that circular region. They also introduced the concept of the
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global average parasitic motion (GAPM), that studies the parasitic motion
distribution over the circular region. They compared the GTOC, GTI and
GAPM of the two mechanisms and saw that the performance of the 2PRU-
1PRS parallel manipulator was better.

Taking all these studies into account, we chose our MAST to be a 2PRU-
1PRS parallel manipulator as shown in Fig. 3.7.

Figure 3.7: Manipulator analysed in this work
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Methodology proposed

In this work we present two methodologies. The first one analyses the
performance of a MAST-type parallel manipulator with known geometric
parameters. The second one optimizes the geometric parameters of a MAST
parallel manipulator taking into account two performances – the size and
regularity of its workspace and the power consumption along a given tra-
jectory.

We note that even if we present the methodologies for the case of the
2PRU-1PRS parallel manipulator they are valid for any other MAST con-
figuration.

Methodology for the performance analysis

As we already know, parallel manipulators have many advantages over
serial ones. One of them is their great accuracy. Thus, when designing a
parallel manipulator, it is elementary to study exhaustively the position
problem. The position problem consists of obtaining the exact position of
each element of the manipulator. We solve the position problem by relating
the inputs and the outputs of the manipulator by using as many equations
as limbs the manipulator has – three in our case. Since parasitic motions
affect the accuracy of parallel manipulators, it is also very important to
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check if the manipulator has parasitic motions or not. If yes, we calculate
them in order to know the real position of the end-effector at each single
position.

Another advantage of parallel manipulators is their high stiffness. Even
if there are different methods to calculate the stiffness of a parallel ma-
nipulator, in this methodology we propose to obtain it by applying the
structural matrix method. In this way, we see if the stiffness of our mani-
pulator is good enough for the chosen application and identify the areas of
the workspace where there is a higher stiffness.

Parallel manipulators are usually used for applications where not only
high stiffness is required but high velocity and acceleration too. By dif-
ferentiating the position problem once and twice we get, respectively, the
velocity and acceleration equations and, thus, we can calculate the velocity
and acceleration of any point of the parallel manipulator at any trajectory
position. This analysis lets us know if the end-effector reaches the velocity
and acceleration required for the specific application and if the actuation
system is in its allowed working range. Besides, the Jacobian matrices ob-
tained in the velocity problem allow us to detect singular positions of the
manipulator, and solving the acceleration problem is necessary for the dy-
namic analysis.

High dynamic capacity is characteristic of parallel manipulators. Once
the acceleration is solved, we analyse the dynamics of the manipulator by
using the Newton-Euler approach. We get all the reaction forces in the
joints and the actuators. To do this, we first need to either determine the
material of the elements or get their masses as data.

Great accuracy, high velocity, acceleration and good dynamic perfor-
mance are very interesting advantages of parallel manipulators. Neverthe-
less, they also have some drawbacks that we have to consider when designing
a new parallel manipulator. The two main ones are small workspace and
the possibility of having singular positions in it. The workspace is the set of
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positions that the end-effector can reach, and for parallel manipulators it
is much smaller than for serial manipulators. Thus, when designing a new
parallel manipulator, we usually do it in such a way that we try to get the
biggest workspace possible. What happens is that singularities often appear
inside the workspace. Singularities are specific positions of the manipulator
where we lose control of it. Because of this, we avoid the areas where the
manipulator crosses a singular position or even reach a position near it,
making the useful workspace even smaller. According to this, we obtain the
useful workspace of the manipulator by taking the restrictions of the joints
and actuators, as well as the possible singularities into account.

Figure 4.1 represents the analysis methodology we propose for a MAST-
type parallel manipulator.

Geometrical parameters

Figure 4.1: Analysis methodology
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We validate this analysis methodology by applying it for a certain
2PRU-1PRS parallel manipulator. We compare the numeric results with
analysis done by using finite element methods and experimental methods
on a prototype built in the laboratory of COMPMECH research group.

Methodology for optimization

In the second methodology we propose an optimization of the geome-
tric parameters of a parallel manipulator. An optimization process can take
very different objective functions into account or even consider more than
one function at the same time. Due to the reduced workspace of parallel
manipulators, a common optimization objective is to get the biggest works-
pace as possible. We present two optimization methods – the first one finds
the geometric parameters for the biggest useful workspace and the second
one finds the geometric parameters combination that leads to the lowest
power consumption for a given trajectory. Thus, we have to define the ran-
ges of the geometric parameters we want to optimize and a step size to
discretize them. Then, we get the finite number of geometric parameters
combinations to be checked.

The first optimization method calculates the useful workspace for each
of the geometric parameters combinations. The useful workspace is the
one that we get after we consider all the joints and actuators restrictions.
Besides, the useful workspace has to be free of singularities so we ensure
that the manipulator can follow a trajectory inside that workspace without
crossing any singular position. The size of the useful workspace is very
important, but also its regularity – a big useful workspace but very irregular
is not practical. Thus, we propose to consider the best geometric parameters
combination as the one that leads to a useful workspace containing the
biggest desired geometry object. Moreover, we obtain the set of geometric
parameters combinations for which the geometry object is not the biggest
but is big enough. This set of combinations is the one we optimize for in
the second optimization method.



Chapter 4. Methodology proposed 63

The second optimization criteria optimizes the set of geometric para-
meters that we obtain in the first method in order to get the lowest power
consumption during a desired trajectory. In this way, we ensure that the
result has also a big and regular enough workspace. In this optimization
process we first have to define the trajectory for which we want to optimi-
ze the manipulator. Note that different trajectories may lead to different
results. We solve the kinematic and dynamic problems for each geometric
parameters combinations we want to study. We only consider the combi-
nations for which the requirements of the joints and specifications of the
actuators and motors are fulfilled. We then obtain the power consumption
along the desired trajectory. The best parameters combination is the one
that leads to the lowest power consumption. Figure 4.2 shows the basic
steps to follow in the optimization process.

Specification of actuators and joints

Optimization for 

biggest geometry

object

Manipulator

analysis

Optimization for 

lowest power

consumption

Manipulator

analysis

Figure 4.2: Optimization methodology
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5

2PRU-1PRS Description

Figure 5.1 shows the mechanism we analyse in this work. It consists
of a mobile and a fixed platform connected by three limbs. The mobile
platform is an isosceles triangle with a base of 2R and a height of R, while
the fixed platform – also isosceles-triangle-shaped – has a base of 2H and a
height of H. The first and the third limbs are identical chains that consist
of, starting from the base, a prismatic joint, a revolute joint and a universal
joint (PRU). However, the second limb is composed of a prismatic joint,
a revolute joint and a spherical joint (PRS). Additionally, the limb planes
of the first and third limbs are coincident and perpendicular to the second
one.

As we saw in Chapter 3, the 2PRU-1PRS parallel manipulator in this
configuration has the same three degrees of freedom as the 3PRS PM – a
vertical translation and two rotations about two perpendicular axes inter-
secting at the fixed platform center. As shown in Fig. 5.1, we fix a base
coordinate frame, (OX,Y,Z), at the center of the base platform with the Z-
axis vertical and the X-axis pointing towards the C1 point. Similarly, we
define the moving coordinate frame, (Pxp,yp,zp), with the zp-axis normal to
the mobile platform plane and the xp-axis pointing towards the A1 point.
According to this, the 3-DOF are a translation along the Z-axis and two
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rotations about the X- and Y-axes (ψ and θ, respectively). The parasitic
motion is the one we obtained in Chapter 3 – a translation along the X-axis
whose expression is given by Eq. (5.1).

x =R · (sθ · sψ) (5.1)

Figure 5.1: Sketch of the manipulator



6

Kinematics

6.1. Kinematics
Solving the kinematics of a parallel manipulator consists of obtaining

the position, velocity and acceleration of all the elements of the manipula-
tor.

6.1.1. Position problem

The position problems analyse the position and orientation of all the
elements that constitute the robot. There are two different kinds of position
problems – the inverse position problem and the direct position problem.

6.1.1.1. Inverse position problem

In the inverse position problem the position and orientation of the end-
effector are known and we obtain the position of the actuators and the
rest of elements of the manipulator. This is to say, the inverse position
problem consists of mapping from the Cartesian space to the joint space.
The inverse position problem can have several solutions. We label those
different solutions as working modes.
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We usually get the inverse position problem by solving a system of
quadratic equations. We obtain the equations of that system by analysing
each kinematic loop chain that relates the output parameters (position and
orientation) with the corresponding inputs.

In [48], Carretero et al. analysed the inverse kinematics of the 3-PRS
parallel manipulator. They obtained the loop equation of each limb of the
manipulator, solved the system and saw that there were two possible wor-
king modes – one corresponding to the manipulator with its limbs pointing
inwards and the other, outwards.

Gosselin et al. [101]-[61] solved the inverse kinematic problem of the
Agile Eye. They obtained three quadratic equations by considering the
loop equation of each of the three limbs of the manipulator. The equation
system lead to 8 possible solution.

Rezaei et al. [102] presented the kinematic analysis of the 3-PSP parallel
manipulator. The special characteristic of this manipulator is that the user
can choose how to run it – in non-pure translational mode or in coupled
mixed-type modes. In their work, Rezaei et al. solved the inverse kinematic
problem for both modes. For the coupled mixed-type mode they obtained a
numerical solution, while for the non-pure translational mode the solution
was analytical. Other authors of novel manipulators, like Hosseini [71], Zhao
et al. [103] or Ibrahim et al. [41], also analysed the kinematics of their
manipulators by using the corresponding close loop equation.

Another way of solving the inverse position problem is to apply Screw
Theory like Altuzarra et al. [104] did. Chen et al. [51] used this theory to
analyse the 3-PRS and the 3-RPS parallel manipulators. Li and Xu [105]
also studied the kinematics of the 3-PRS parallel manipulator by using
screw theory. Finally, Cheng et al. [106] introduced a finite element method
for kinematic analysis of a parallel hip joint manipulator. In this method
there is no need to define the loop equation of the manipulator or reference
systems. Additionally, we do not have to solve nonlinear equations. Cheng



6.1. Kinematics 71

et al. [106] saw that the finite element method is an universal method to
solve the kinematics of parallel manipulators with any DOF.

As we have already seen, the workspace is an essential characteristic
of parallel manipulators that we have to take into account when designing
them. The workspace is the set of points that the end-effector of a particular
parallel manipulator can reach. Thus, we have to solve the inverse position
problem of the manipulator to get its workspace. This makes the obtaining
of the workspace of the manipulator the greatest application of solving its
inverse position problem.

6.1.1.2. Direct position problem

The direct position problem consists of obtaining the position and orien-
tation of each single element of the robot, including the end-effector, for
given input values of the actuators. In other words: the direct position pro-
blem – also known as forward position problem – consists of mapping from
the joint space to the Cartesian space. In a general case, this is a very
complex problem.

If we want to control the position of a manipulator along a certain
trajectory, we have to solve the inverse position problem. Once we know
the inputs that we need, we send the command to the actuators so they
reach their corresponding position. The problem is that there are usually
some errors in the movement of the actuators. Thus, the real position of
the end-effector is not the desired one and it is, in principle, unknown. If
we solve the direct position problem, we get the real position of the end-
effector and we can make the necessary corrections in the actuators so the
trajectory is the desired one. According to this, besides solving the inverse
position problem, we need to solve the direct position problem in order to
have a good control of the manipulator.

As Merlet [107] explained, the equations in the direct position problem
of parallel manipulators are non-linear and the unknown variables – position
and orientation – appear in all of them. Therefore, the equation system is
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highly coupled and, thus, it is very complex to solved. We have two main
ways to solve the system – analytically and numerically.

Solving the system analytically is quite difficult and it is not always
possible. The general solving method, as Tancredi at al. [108] explained,
consists of getting the expression of one equation with only one variable.
This is useful to solve the direct position problem only if we can get an
univariate polynomial of degree four or less. Since this is very difficult to get,
there are other options like the polynomial continuation methods proposed
by Sommese at al. [109] or the use of Gröbner bases as explained by Dhingra
et al. [110].

Another possibility could be solving the system numerically by using, for
example, the Newton-Raphson method. However, this method is iterative,
so it does not ensure that we get the solution in the required loop control
time. Besides, the Newton-Raphson method has local convergence, so, in
order to get a correct result, we have to know if we are close to the solution
we want to find.

With the goal of overcoming these drawbacks and getting all the so-
lutions of the direct position problem, called assemble modes, we can use
the Newton-Raphson method and interval analysis, presented by Jaulin et
al. [111], at the same time. This method is known as the Hansen method,
proposed by Didrit et al. [112]. Merlet [113] applied the Hansen method to
solve the direct position problem of the Gough platform.

The biggest drawbacks of numeric methods are high computational cost
and that we have to evaluate Jacobian matrices. If the Jacobian matrices
are singular we get no convergence to the solution. Some authors have
presented alternatives to deal with those drawbacks. As an example, Petuya
et al. [114], [115] presented the generic iterative method and applied it
satisfactorily to parallel manipulators.

In case we have redundant information, like the position of some ele-
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ments, the direct problem becomes simpler. Baron and Angeles [116], [117],
[118], [119], [120], Bonev et al. [121], Chiu and Perng [122] and Venanzi and
Parenti-Castelli [123] used redundant sensors to get that extra information,
while Baron and Angeles [118] used also cameras.

6.1.2. Velocity and acceleration problems

Parallel manipulators have high speed and accelerations. This, along
with small masses, gives them very good dynamic characteristics. Thus,
in order to analyse the dynamics of a manipulator, we first have to study
their velocity equation. Besides, as we will see in Chapter 7, the study
of singularities is based on Jacobian matrices, which we get by solving the
velocity problem of the manipulator. All this makes the study of the velocity
a very important issue when analysing parallel manipulators.

The expression for the velocity is usually given by Eq. (6.1)

A · ẋ = B · q̇ (6.1)

where q̇ and ẋ are the input and output velocities of the manipulator and
A and B are the corresponding Jacobian matrices.

Similarly, the expression for the acceleration is the derivative of the
velocity expression. As we have said, solving the acceleration problem is
essential for the study of the dynamics of parallel manipulators.

Many authors, as for example Rezaei et al. [102], Zhao et al. [103],
Zhang et al. [124], studied the velocity and acceleration problems of parallel
manipulators by applying the expression written above. However, there are
other ways of studying the velocity problem. García de Jalón et al. [125]
or Eischen et al. [126] proposed two different alternatives based on the
Finite Elements Method. Those methods are related with the adimensional
Jacobian formulation presented by Hernández et al. [127] and Altuzarra et
al. [128] and developed by Salgado [129].
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6.2. Developing the kinematic problem of the
2PRU-1PRS PM

We analyse the kinematic problem of the 2PRU-1PRS parallel manipu-
lator. Figure 6.1 shows the parameters and vectors we need for the deve-
lopment of the position, velocity and acceleration problems.

Figure 6.1: Sketch of the manipulator
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6.2.1. Position Problem of the 2PRU-1PRS PM

In the inverse position problem the rotations about X- and Y-axes, ψ
and θ respectively, and the translation along Z-axis are known and we have
to calculate the position of all points of the manipulator that depend on
them.

Vectors ai, given by Eq. (6.2), define the position of the Ai points in
the mobile frame Pxp,yp,zp .

a1 =[R, 0, 0]
a2 =[0, R, 0] (6.2)
a3 =[−R, 0, 0]

We express the Ai points in the fixed frame as Ai, given by Eq. (6.3)
and Eq. (6.4), in vectorial and matrix notations, respectively. Rot is the
transformation matrix that relates the mobile reference system with the
fixed system and P is the vector that defines the position of the point P in
the fixed reference system.

Ai = P + Rot · aTi (6.3)

Ai =

xy
z

+

Rot11 · aix +Rot12 · aiy +Rot13 · aiz
Rot21 · aix +Rot22 · aiy +Rot23 · aiz
Rot31 · aix +Rot32 · aiy +Rot33 · aiz

 (6.4)

According to this, Eq. (6.5) expresses the components of each point Ai.

Aix = x+Rot11 · aix +Rot12 · aiy +Rot13 · aiz
Aiy = y +Rot21 · aix +Rot22 · aiy +Rot23 · aiz (6.5)
Aiz = z +Rot31 · aix +Rot32 · aiy +Rot33 · aiz
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We obtain the rotation matrix by applying rotations of φ, θ and ψ,
about zp-, yp- and xp-axes, respectively, as seen in Eq. (6.6).

Rotφ,θ,ψ =

cφ −sφ 0
sφ cφ 0
0 0 1

 ·
 cθ 0 sθ

0 1 0
−sθ 0 cθ

 ·
1 0 0

0 cψ −sψ
0 sψ cψ

 (6.6)

By simplifying Eq. (6.6) we get the expression of the rotation matrix,
given by Eq. (6.7).

Rotφ,θ,ψ =

cφ · cθ −sφ · cψ + cφ · sθ · sψ sφ · sψ + cφ · sθ · cψ
sφ · cθ cφ · cψ + sφ · sθ · sψ −cφ · sψ + sφ · sθ · cψ
−sθ cθ · sψ cθ · cψ


(6.7)

The geometry of the manipulator implies that the limbs have to remain
always in the limb plane. We define vector ui perpendicular to the respective
limb planes. Thus, ui are given by Eq. (6.8).

u1 =
[
0 1 0

]T
u2 =

[
1 0 0

]T
(6.8)

u3 =u1

The perpendicularity condition allows us to formulate Eq. (6.9).

Ai · ui = 0 (6.9)

We apply that condition for the first limb and we get Eq. (6.10).

A1 · u1 =
[
A1x A1y A1z

]
·

0
1
0

 (6.10)
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According to Eq. (6.10), the perpendicularity condition for the first limb
is given by Eq. (6.11).

A1y = 0 (6.11)

By combining Eq. (6.5) and Eq. (6.11) we get Eq. (6.12).

y +Rot21 · a1x +Rot22 · a1y +Rot23 · a1z = 0 (6.12)

We substitute Eq. (6.6) and Eq. (6.2) in Eq. (6.12) and get Eq. (6.13).

y +R · (cψ · sφ) = 0 (6.13)

For the second limb, the restriction of remaining in the limb plane is
given by Eq. (6.14). By simplifying it we get Eq. (6.15).

A2 · u2 =
[
A2x A2y A2z

]
·

1
0
0

 (6.14)

A2x = 0 (6.15)

We take Eq. (6.5) and Eq. (6.15) into account and get Eq. 6.16.

x+Rot11 · a2x +Rot12 · a2y +Rot13 · a2z = 0 (6.16)

By substituting Eq. (6.2) and Eq. (6.6) in Eq. (6.16) we obtain Eq.
(6.17).

x+R · (−cθ · sφ+ cφ · sθ · sψ) = 0 (6.17)
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Since the third limb is analogous to the first one, the restriction condi-
tion is given by Eq. (6.18) and we simplify it as Eq. (6.19).

A3 · u3 =
[
A3x A3y A3z

]
·

0
1
0

 (6.18)

A3y =0 (6.19)

We substitute Eq. (6.19) in Eq. (6.5) and get the restriction condition
as given in Eq. (6.20).

y +Rot21 · a3x +Rot22 · a3y +Rot23 · a3z = 0 (6.20)

Finally, we substitute Eq. (6.6) and Eq. (6.2) in Eq. (6.20) and get Eq.
(6.21).

y −R · (cψ · sφ) = 0 (6.21)

Equations (6.13), (6.17) and (6.21) define the system of equations that
we have to solve to get the values of the parasitic motions. From Eq. (6.13)
and Eq. (6.21) we get the value of the the rotation about the Z-axis (φ) and
the translation along the Y-axis (y), given by Eq. (6.22) and Eq. (6.23),
respectively. We substitute the value of φ and y in Eq. (6.17) and get the
translation along X-axis, given by Eq. (6.24). According to this, there is only
one parasitic motion – the translation along X-axis, which corresponds with
the classification that Li et al. [99] proposed.

φ =0 (6.22)
y =0 (6.23)
x =R · (sθ · sψ) (6.24)

As we see in Fig. 6.1, the loop equation of each limb is given by Eq.
(6.25). We use this loop equation to calculate the value of the three actua-
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tors, but first we have to obtain the value of each vector in the equation.

Ai =Ci + CiBi + AiBi (6.25)

Ci points are fixed points, and they are defined by Eq. (6.26)

C1 =
[
H 0 0

]T
C2 =

[
0 H 0

]T
(6.26)

C3 =
[
−H 0 0

]T
where, as we have already see, H is the value of the radius of the fixed
platform.

The Bi points remain always in the limb planes and, additionally, the
actuators BiCi are always perpendicular to the XY plane. Hence, the Bix
and Biy components are constant, while the Biz component depends on the
value of the actuators in each position, ρi, as shown in Eq. (6.27).

B1 =
[
H 0 ρ1

]T
B2 =

[
0 H ρ2

]T
(6.27)

B3 =
[
−H 0 ρ3

]T
Since the rotation about the Z-axis (φ) is a parasitic motion and is null,

Eq. (6.28) is fulfilled. Thus, we express the rotation matrix Rotφ,θ,ψ as Eq.
(6.29).

cφ = 1
sφ = 0 (6.28)

Rotφ,θ,ψ =

 cθ sθ · sψ sθ · cψ
0 cψ −sψ
−sθ cθ · sψ cθ · cψ

 (6.29)
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According to this, Eq. (6.30) gives the Ai points in the fixed reference
system (x,y,z).

Ai =

x0
z

+

 cθ · aix + sθ · sψ · aiy + sθ · cψ · aiz
cψ · aiy − sψaiz

−sθ · aix + cθ · sψ · aiy + cθ · cψ · aiz

 (6.30)

By substituting the value of ai for each limb in Eq. (6.30), we get the
value of the Ai points in the fixed reference system.

First limb: the expression to obtain the value of A1 is given by Eq.
(6.31).

A1 =

x0
z

+

 cθ ·R
0

−sθ ·R

 (6.31)

By substituting the value of the parasitic motion, we get Eq. (6.32).

A1 =
[
R · (cθ − sψ · sθ) 0 z −R · sθ

]T
(6.32)

Second limb: the expression of A2 is given by Eq. (6.33). We replace
the value of the parasitic motion and get Eq. (6.34).

A2 =

x0
z

+

sθ · sψ ·Rcψ ·R
cθ · sψ ·R

 (6.33)

A2 =
[
0 R · cψ z +R · cθ · sψ

]T
(6.34)

Third limb: similarly, we write the expression for A3 as given by
Eq. (6.35). We get Eq. (6.36) by replacing the values of the parasitic
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motion in Eq. (6.35).

Ai =

x0
z

+

−cθ ·R0
sθ ·R

 (6.35)

A3 =
[
−R · (cθ + sψ · sθ) 0 z +R · sθ

]T
(6.36)

We rewrite the loop equation Eq. (6.25) as Eq. (6.37). We can now
obtain the value of the actuator displacements by substituting the values
of the vectors obtained above into the loop equation.

AiBi =Ai −Ci −CiBi (6.37)

As we see in Fig 6.1, the norm of AiBi is the length of the limbs.
Equation (6.38) gives its expression.

|AiBi|2 = L =(Aix −Cix −CBix)2 + (Aiy −Ciy −CBiy)2+
+ (Aiz −Ciz −CBiz)2 (6.38)

The first limb is always in the XZ plane, so the coordinates in the Y-axis
are null. Taking this condition into account, we apply Eq. (6.38) to the first
limb, getting Eq. (6.39).

L = (A1x −C1x −CB1x)2 + (A1z −C1z −CB1z)2 (6.39)

By substituting the value of the coordinates of the vectors previously
obtained, we get the value of the displacement of the first actuator, ρ1,
given by Eq. (6.40).

L2 = (R · (cθ − sθ · sψ)−H)2 + (z −R · sθ − ρ1)2√
L2 − (R · (cθ − sθ · sψ)−H)2 = (z −R · sθ − ρ1)2

ρ1 = z −R · sθ −
√
L2 − (R · (cθ − sθ · sψ)−H)2 (6.40)
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In the case of the second limb, it always remains in the YZ plane, so
the components in the X-axis are null. We get Eq. (6.41) by replacing that
condition in Eq. (6.38) for the second limb.

L = (A2y −C2y −CB2y)2 + (A2z −C2z −CB2z)2 (6.41)

We substitute the value of the components of the corresponding vectors
and get the expression for the displacement of the second actuator, ρ2, given
by Eq. (6.42).

L2 = (R · cψ −H)2 + (z +R · cθ · sψ − ρ2)2√
L2 − (R · cψ −H)2 = z +R · cθ · sψ − ρ2

ρ2 = z +R · cθ · sψ −
√
L2 − (R · cψ −H)2 (6.42)

In the same way as for the first limb, all the component in the Y-axis
of the third limb are null. If we apply Eq. (6.38) to the third limb, we get
Eq. (6.43).

L = (A3x −C3x −CB3x)2 + (A3z −C3z −CB3z)2 (6.43)

By substituting the value of the components of the vectors in Eq. (6.43),
we get the expression for the displacement of the third actuator, ρ3, given
by Eq. (6.44).

L2 = (−R · (cθ + sθ · sψ) +H)2 + (z +R · sθ − ρ3)2√
L2 − (−R · (cθ + sθ · sψ) +H)2 = z +R · sθ − ρ3

ρ3 = z +R · sθ −
√
L2 − (−R · (cθ + sθ · sψ) +H)2 (6.44)

6.2.2. Velocity Problem

We can also express the loop equation of the manipulator as Eq. (6.45).
By differentiating it, we obtain the expression for the velocity of the mobile
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platform in vectorial notation, given by Eq. (6.46)

OP = OCi + CBi + BAi + AiP (6.45)
vp = ρ̇ik + Ωi × (BiAi) + Ωp × (AiP) (6.46)

where Ωp is the angular velocity of the mobile platform, k is a vertical
unit vector, vp is the linear velocity of the platform and Ωi is the angular
velocity of each leg, as seen in Fig. 6.1.

We multiply Eq. (6.46) by unit vector si as given by Eq. (6.47) and
rewrite Eq. (6.47) into Eq. (6.48).

si · vp = si · (ρ̇ik) + si · (Ωi × (BiAi)) + si · (Ωp ×AiP) (6.47)
si · vp = ρ̇i · (sik) + Ωi · (BiAi × si) + Ωp · (AiP× si) (6.48)

Since si and BiAi are collinear, BiAi × si = 0, so we get Eq. (6.49).

si · vp + Ωi · (PAi × si) = ρ̇i · (sik) (6.49)

If we multiply Eq. (6.46) by a unit vector perpendicular to the limb
plane, ui we have Eq. (6.50), which we rewrite as Eq. (6.51).

ui · vp = ui · (ρ̇ik) + ui · (Ωi × (BiAi)) + ui · (Ωp ×AiP) (6.50)
ui · vp = ρ̇i · (uik) + Ωi · (BiAi × ui) + Ωp · (AiP× ui) (6.51)

Since ui and Ωi are collinear, ui × Ωi = 0. Besides, ui and k are
perpendicular, uik = 0, so we get Eq. (6.52).

ui · vp + Ωp · (PAi × ui) = 0 (6.52)



84 Chapter 6. Kinematics

If we express Eq. (6.49) and Eq. (6.52) in matrix notation, we get Eq.
(6.53) and if we write it in a compact way we have Eq. (6.54)

sT1 (PA1 × s1)T
sT2 (PA2 × s2)T
sT3 (PA3 × s3)T
uT1 (PA1 × u1)T
uT2 (PA2 × u2)T
uT3 (PA3 × u3)T


·
[

vp
Ωp

]
=



s1k 0 0
0 s2k 0
0 0 s3k
0 0 0
0 0 0
0 0 0


·

ρ̇1
ρ̇2
ρ̇3

 (6.53)

Jx ·
[

vp
Ωp

]
= Jq · ρ̇i (6.54)

where Jx is Jacobian matrix of the direct problem and Jq is the Jacobian
matrix of the inverse problem.

6.2.3. Acceleration Problem

We differentiate Eq. (6.46) again and get the vectorial expression for
the acceleration, given by Eq. (6.55)

ap =ρ̈ik +αi ×AiBi + Ωi × (Ωi ×AiBi)+
+αp ×AiP + Ωp × (Ωp ×AiP) (6.55)

where ap and αp are the linear and angular accelerations of the mobile
platform, and αi is the angular velocity of the i-limb, as seen in Fig. 6.1.

If we multiply Eq. (6.55) by the unit vector ui we get Eq. (10.7).

ui · ap =ui · ρ̈ik + ui · (αi ×AiBi) + ui · (Ωi × (Ωi ×AiBi))+
+ ui · (αp ×AiP) + ui · (Ωp × (Ωp ×AiP)) (6.56)

We rewrite Eq. (6.56) and we get Eq. (6.57).

ui · ap = ui · ρ̈ik + BiAi × (ui ·αi) + ui · (Ωi · (Ωi ·AiBi)−
−AiBi · (Ωi ·Ωi)) +αp · (AiP× ui) + ui · (Ωp × (Ωp ×AiP)) (6.57)
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Since ui and k are perpendicular, ui k= 0. Also, since Ωi and Ai Bi

are perpendicular, Ωi Ai Bi = 0. ui and αi are collinear, ui × αi = 0.
Besides, ui and AiBi are perpendicular, so uiAiBi = 0. We get Eq. (6.58),
also expressed as Eq. (6.59).

ui · ap = αp · (AiP× ui) + ui · (Ωp × (Ωp ×AiP)) (6.58)
ui · ap +αp · (PAi × ui) = ui · (Ωp × (Ωp ×AiP)) (6.59)

We multiply Eq. (6.55) by the unit vector si and get Eq. (6.60).

si · ap =si · ρ̈ik + si · (αi ×AiBi) + si · (Ωi × (Ωi ×AiBi))+
+ si · (αp ×Ai)P) + si · (Ωp × (Ωp × (AiP)) (6.60)

By rewriting Eq. (6.60) we obtain Eq. (6.61).

si · ap = si · ρ̈ik +αi · (BiAi × si) + si · (Ωi · (Ωi ·AiBi)−
−(AiBi · (Ωi ·Ωi))) +αp · (AiP× si) + si · (Ωp × (Ωp ×AiP)) (6.61)

Since BiAi and si are collinear, BiAi × si = 0, and Ωi and AiBi are
perpendicular, ΩiAiBi = 0, we can write Eq. (6.61) as Eq. (6.62).

si · ap +αp · (PAi × si) =ρ̈i · sik + si · (Ωp × (Ωp ×AiP)−
−AiBi · |Ωi|

2) (6.62)

Finally, we simplify Eq. (6.62) and get Eq. (6.63).

si · ap +αp · (PAi × si) =ρ̈i · sik + si · (Ωp × (PAi ×Ωp)−
−AiBi · |Ωi|

2) (6.63)

We express Eq. (6.59) and Eq. (6.62) in matrix notation and get Eq.
(6.64). We can also write it in compact way, as shown in Eq. (6.65).



86 Chapter 6. Kinematics



(sT1 (PA1 × s1))T
(sT2 (PA2 × s2))T
(sT3 (PA3 × s3))T
(uT1 (PA1 × u1))T
(uT2 (PA2 × u2))T
(uT3 (PA3 × u3))T


·
[
ap
αp

]
=



s1k 0 0
0 s2k 0
0 0 s3k
0 0 0
0 0 0
0 0 0


·

ρ̈1
ρ̈2
ρ̈3

+

+



s1 · (Ωp × (PA1 ×Ωp)−A1B1 · |Ω1|2)
s2 · (Ωp × (PA2 ×Ωp)−A2B2 · |Ω2|2)
s3 · (Ωp × (PA3 ×Ωp)−A3B3 · |Ω3|2)

u1 · (Ωp × (Ωp ×A1P))
u2 · (Ωp × (Ωp ×A2P))
u3 · (Ωp × (Ωp ×A3P))


(6.64)

Hx ·
[
ap
αp

]
= Hq · ρ̈+ Ind (6.65)
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Singularities

7.1. Singularities
Singular configurations are those for which the rank of the Jacobian

matrices involved become deficient. These configurations are undesirable
because the degrees of freedom of the system change instantaneously and
makes the system uncontrollable.

Gosselin and Angeles [130] analysed the singularities of closed-loop ki-
nematic chains and classified them in three main groups – type I, type II
and type III – by taking the properties of the Jacobian matrices of the
chain into account. We describe the three groups below. In order to do it,
we write the general expression of the velocity of a parallel manipulator
as Eq. (7.1), where A is the Jacobian matrix of the direct problem, ẋ is
the vector with the outputs of the system, B is the Jacobian matrix of the
inverse problem and θ̇ is the vector that contains the corresponding inputs.

A · ẋ + B · θ̇ = 0 (7.1)
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Singularities type I
The first kind of singularity appears when Eq. (7.2) is verified.

|B| = 0 (7.2)

This type of singularity corresponds to a configuration where the end-
effector reaches a boundary of the workspace. The boundary can be
either the external boundary of the workspace or an internal boundary
limiting different subregions of the workspace where the number of
branches of the inverse kinematic problem is not the same. Another
way of defining these types of singularities is to say that they are a set
of points where different branches of the inverse kinematic problem
meet. Typically, the velocities in these configurations are orthogonal
to the boundary and towards the outside of the workspace. We say
that the output link loses at least one degree of freedom, which means
that the output link can resist forces and moments without exerting
any torque or force at the powered joints. In mechanisms, in these
configurations the output link is in a deadpoint.

Singularities type II
The second kind of singularity occurs when Eq. (7.3) is fulfilled.

|A| = 0 (7.3)

This condition leads to a configuration where the end-effector is mo-
vable even when all the actuated joints are locked. This kind of singu-
larity corresponds to a point or set of points where different branches
of the direct kinematic problem meet. In this case, the output link
gains one or more degrees of freedom – the output can not resist one
or more forces or moments even when the actuators are locked. In
mechanisms we say that the input link is in a deadpoint.
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Singularities type III
The third kind of singularity requires that both first and second con-
ditions are fulfilled at the same time, as Eq. (7.4) shows.

|B| = 0 & |A| = 0 (7.4)

If a mechanism reaches a position with this kind of singularity, the
end-effector can suffer finite motions when the actuators are locked
or there can be a finite movement in the inputs for no motion in the
outputs.

As Chablat and Wenger [131] described, the set of points of works-
pace for which the sign of the determinant of the Jacobioan matrix B
does not change defines a working mode. Similarly, the set of postures for
which the determinant of the Jacobian matrix A does not change define a
assembling mode.

Even if this classification is the most used one, it only studies the input
and output terms, without taking into account the passive velocity terms.
Because of that, there are some other kind of singularities that are not con-
sidered in this classification. Taking this into account, some other authors
have presented more general classifications for singular positions of parallel
mechanisms. Zlatanov et al. [132], for example, divided the singularities in
the six types that we describe below:

(i)-(ii) Redundant input (RI)/output (RO): when a non-zero in-
put/output is possible with zero input/output.

(iii-iv) Impossible input (II)/output (IO): a certain input/output
is not feasible for any output/input.

(v) Redundant passive motion (RPM): a non-zero instantaneous
motion is possible with both the input and the output being equal to
zero.
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(vi) Increased instantaneous mobility (IIM): the transitory or
instantaneous mobility is higher than the full cycle mobility of the
kinematic chain.

They explained how there is an interdependence of singularity types.
Table 7.1 shows the singularity type combinations that are possible. They
labelled each possible combination as a singularities class. According to
that, the singularity set of any mechanism can be divided into up to 21
classes. They analysed the singularities of a general mechanism exhausti-
vely in order to obtain not only the singularity set as a whole, but also
its partition into classes. The class of a singularity is important because
it tells us how the instantaneous-kinematics properties of the mechanism
degenerate at the singularity.

Table 7.1: Singularity classes presented by Zlatanov et al.

IO
and

IO IO II II
and and and and

IO II IIM II IIM IIM IIM
RI 7

RO 7

RPM 7

RI and RO 7 7 7 7 7

RI and RPM 7 7 7

RO and RPM 7 7 7

RI and RO and RPM 7 7 7 7 7
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Notash [133] classified special configurations of parallel manipulators in
degeneracies related to the branches and uncertainty configurations of the
parallel architecture. In a branch degeneracy, the parallel manipulator can
not provide a required end-effector motion, while in a uncertainty configu-
ration the parallel manipulator can not resist/apply a required end-effector
force or torque. Close to degenerate configurations the manipulator has
very poor motion performance. Similarly, near uncertainty configurations
the force transmission performance of the manipulator is very poor. Notash
studied the uncertainty configurations of three-branch parallel manipula-
tors with spherical branch-end joints by using screw theory. He analysed
the possible uncertainty cases and presented the characteristics of the un-
constrained instantaneous DOFs that correspond to each uncertainty case.
Finally, he proposed joint actuation layouts to eliminate the uncertainty
and gave examples of application.

López et al. [134] applied the classification presented by Gosselin and
Angeles [130] in order to identify the singularities of the Delta robot. They
set the determinant of the inverse and direct Jacobian matrices to zero and
obtained several undesirable postures of the manipulator. They show that
the singularities related to the inverse Jacobian matrix appear when the
limbs belonging to the same kinematic chain lie in a plane. Two of those
configurations are when the robot is completely extended or contracted –
they indicate the boundaries of the workspace. Apart from obtaining the
singularities of the inverse and direct Jacobian matrices, they introduced
the idea of intermediate Jacobian matrices. Intermediate Jacobian matri-
ces are simpler to evaluate but still contain the information of traditional
Jacobian matrices. Moreover, we can also use the information they give to
find structural singularities.

In order to detect and analyse the singular positions, symbolic compu-
tation is practical for some specific parallel manipulators and algebraic
methods are quite limited, as Altuzarra et al. [135] noted. Some authors,
for example Kumar [136], proposed methods based on the degeneracy of the
screws. These methods are similar to the lie geometry, that Merlet [14] used
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in his study of parallel manipulators. Park and Kim [137] presented anot-
her alternative by using Riemannian geometric formulation to characterize
a singularity as a dimensional change in manipulability.

Altuzarra et al. [135] presented a general procedure to get an automated
analysis of the singularities of any mechanism for a given configuration.
It uses a base of the motion space, which they obtained from a velocity
equation characterized by a geometric matrix. By using this procedure,
we can obtain the degree of freedom that corresponds to each singularity,
uncontrolled motion and kinematic dependencies. This procedure is a help
to design singularity-free path planning and also to choose the actuators
and the necessary redundant devices. The approach used is independent of
the choice of inputs and outputs, so the procedure is valid for open, closed
or hybrid kinematic chains and redundant or non-redundant manipulators.
Altuzarra et al. [135] analysed the different types of singularities for the
manipulator in a given configuration by using a method based in vectors
that form a basis of the null-subspace of the geometric matrix. However,
they used a numerical method to detect the singular positions.

Rezaei et al. [102] obtained the non-pure rotational and non-pure trans-
lational Jacobian matrices of the 3-PSP parallel manipulator to relate the
angular and translational velocities of the moving platform with the ac-
tuated joints. They analysed the three conventional singularities and saw
that the 3-PSP robot is free of conventional singularities. nevertheless, they
found constraint singularities by analysing the Jacobian of constraint. The
constraint singularities appear when the lengths of all three linear rods are
equal.

Nigatu et al. [138] proposed a new methodology of formulating Jacobian
matrix for limited degrees of freedom parallel mechanisms. They formulated
the Jacobian matrix in a simple and integrated form by using screw mat-
hematics. The resulting 6x6 Jacobian matrix provides clear information
about the architecture and singularities of the manipulator. As example,
they applied the method to the 3PRS parallel manipulator.
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7.2. Obtaining the singularities of the
2PRU-1PRS parallel manipulator

In this Section, we present the general analysis of conventional singulari-
ties for a given position of the 2PRU-1PRS parallel manipulator. As we saw
in Chapter 6, for the 2PRU-1PRS parallel manipulator, the expression that
Gosselin and Angeles [130] used to analyse the three types of conventional
singularities – A · ẋ + B · θ̇ = 0 – is given by Eq. (7.5)

Jx ·
[

vp
Ωp

]
= Jq · ρ̇i (7.5)

where Jx is Jacobian matrix of the direct problem, Jq is the Jacobian
matrix of the inverse problem, [vp Ω̇]T is the vector containing the output
velocities and ρ̇i is the vector of the input velocities.

7.2.1. IKP Singularities

When the determinant of Jq is zero, the manipulator is in a singularity
of the inverse kinematic problem, or a singularity of type I, as Eq. (7.6)
shows.

|Jq | = 0 −→ Singularity of the IKP (type I) (7.6)

The expression of Jq for the 2PRU-1PRS PM is given by Eq. (7.7).

Jq =



s1k 0 0
0 s2k 0
0 0 s3k
0 0 0
0 0 0
0 0 0


(7.7)

The singularities of the IKP correspond to the boundaries of the works-
pace. This is to say, the IKP singularities appear when the limbs of the
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manipulator reach their limits. In these positions, the end-effector of the
manipulator is stuck and can not achieve the desired DOF.

7.2.2. DKP Singularities

Singularities of the DKP – or type II – appear when the determinant
of the Jacobian matrix Jx is zero, as Eq. (7.8) shows.

|Jx | = 0 −→ Singularity of the DKP (type II) (7.8)

Equation (7.9) gives the expression of Jx for the 2PRU-1PRS parallel
manipulator.

Jx =



sT1 (PA1 × s1)T
sT2 (PA2 × s2)T
sT3 (PA3 × s3)T
uT1 (PA1 × u1)T
uT2 (PA2 × u2)T
uT3 (PA3 × u3)T


(7.9)

In the singular positions of the DKP the end-effector of the manipulator
is able to move infinitesimally without changing the value of the inputs. This
is to say: some degrees of freedom become uncontrollable.

7.2.3. Manipulability

Articular forces can become very large near singular configurations.
Thus, it is interesting to know how far from a singular position the ma-
nipulator is. In order to have an index that measures the nearness to a
singularity, Yoshikawa [139] introduced the concept of manipulability.

The manipulability is the absolute value of the determinant of the in-
verse Jacobian. A small manipulability means that the articular forces may
become very large for some applied external forces or torques.
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Workspaces and Joint Space

8.1. Workspaces
The workspace (WS) represents the poses that the end-effector of the

manipulator can reach. The representation of the possible translations of
the end-effector of a parallel manipulator is easy. However, a complete repre-
sentation of the workspace is not possible when the manipulator has 6-DOF.
In that case the only possibility is to represent subsets of the workspace.
Taking this into account, Merlet [14] defined different types of workspace.
In order to do it, he labelled a specific point C of the end-effector as refe-
rence point. The coordinates and orientation of that reference point define
the pose of the robot. We describe the different types of workspaces below:

Constant orientation workspace or translation workspace: set
of locations that the reference point can reach for given orientation.

Orientation workspace: set of possible rotations around the refe-
rence point.

Maximal workspace or reachable workspace: locations that the
reference point can reach for at least one orientation of the mobile
platform.

95
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Inclusive orientation workspace: locations that the reference point
can reach for at least one orientation among a set defined by ranges
on orientation parameters.

Total orientation workspace: set of locations that the reference
point can reach for all the orientations of a set defined by ranges on
the orientation parameters.

Dextrous workspace: set of locations of the reference point for
which all orientations are possible.

Parallel manipulators have, compared to serial manipulators, higher
stiffness and accuracy but smaller workspace. Thus, the workspace is con-
sidered one of the most important design factors of parallel manipulators.
It is thus essential to have an efficient calculation method to determine it,
as Corral et al. [140] and Altuzarra et al. [141] highlighted. There are three
factors that can restrict the motion of a parallel manipulator – the mecha-
nical limits on the passive joints, the interferences between links and the
limits of the actuators. The method chosen to get the WS has to take all
these factors into account. There are different methods to obtain the WS
of a parallel manipulator – analytical methods, discretization methods or
geometric methods.

Analytical methods.

Analytical methods are based on the fact that when a point is on the
border of the workspace the velocity of the manipulator along the normal
to the border is equal to zero. This method needs to calculate the Jacobian
matrix of the manipulator, whose closed-form is not known. Besides, this
method is not convenient to take into account either the constraint of link
interfaces or the mechanical limits on the passive joints. Thus, most of these
methods are very dependent on the architecture of the manipulator, so they
are only useful for specific manipulators.
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Agrawal [142] determined the configurations of pin-parallel systems for
which the component of the velocity of the reference point along the out-
ward normal to the boundary is null. He analysed parallel systems by basing
on the properties of serial chains as derived from the theory of screw sys-
tems. He gave the condition of boundary existence in terms of conditions
on a special screw system associated with the end-effector.

Di Gregorio and Zanforlin [143] analysed the workspace boundaries in
two different translational parallel manipulators – the DELTA robot and the
3-RUU. They obtained a fourth degree polynomial equation that expressed
analytically the surfaces bounding their workspace. They showed the use
of the analytic expression of the boundaries – that had an explicit form –
by applying it to a particular example.

Bonev at Gosselin [144] presented a methodology to obtain analyti-
cally and represent the workspace boundaries of symmetrical spherical
parallel manipulators. They derived compact expressions for the works-
pace boundaries of a 3-DOF symmetrical spherical parallel manipulator.
They proposed and implemented a fast numerical method for representing
the constant-torsion workspace. Besides, they gave many examples of the
constant-torsion workspace and the whole orientation workspace for the
3-RRR parallel manipulator.

Geometrical methods.

Geometrical methods compute the WS of each limb separately and then
calculate the intersection of all single-limb-workspaces to get the workspace
of the manipulator. The main disadvantages are that these methods are only
useful for 3-DOF robots. Besides they usually need another geometric tool,
such as CAD.

Merlet [145] presented an exact and fast geometrical method to calcu-
late the workspace of parallel manipulators with constant orientation. This
method took all the constraints of the manipulator into account and could
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obtain the area and volume of the workspace easily.

Merlet [146] also presented an algorithm to compute and represent two
of the three possible rotations of the end-effector around a fixed point. Since
the method was purely geometrical, it implied few calculations and, thus,
lead to a very fast and efficient algorithm.

Liu et al. [147] determined the workspace of the DELTA robot geometri-
cally. They demonstrated the results by using AutoCAD. They also related
the workspace volume with the link lengths and obtained atlases of the
workspace. They presented the workspace shape for robots with different
dimensions. This method represented an interesting tool for the computer
aided design of robotic mechanisms.

Liu et al. kept working on the workspace of the DELTA robot and in
[148] they proposed a new geometrical approach to obtain the workspa-
ce of the Delta robot. They introduced the concept of maximum inscribed
workspace and defined it as the set of all maximum inscribed circles in the
workspace section of a DELTA robot. Their design could detect voids in-
side the workspace by checking some simple relations between geometric
parameters. They applied the method to obtain the workspace of a DELTA
robot and to design a DELTA robot with a desired workspace. However, this
method, which is simple and effective, is also valid for other parallel mani-
pulators with linear actuators whose reachable workspace can be obtained
geometrically.

Discretization methods.

Discretization methods create a mesh of possible poses of the end-
effector. Each pose has to be checked to see if they belong to the useful
WS, usually solving the inverse kinematic problem (IKP). This method
has different advantages, such as the simple computational implementation
and the ability to implement all kinds of constraints. But it also has the
disadvantages of high computational cost and accuracy dependence on step
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size of the mesh. In order to deal with the high computational cost, many
authors have proposed different methods that combine discretization and
geometrical methods. They first apply the geometrical restrictions in order
to obtain a preliminary boundary of the workspace. Then, they study each
point of the preliminary workspace in order to check that all constraints
are fulfilled.

Merlet [149] determined the constant orientation workspace, the total
orientation workspace and the inclusive orientation workspace of a 6-DOF
Gough-type parallel manipulator. He compared the workspace volumes of
four different robot geometries and saw that for robots with similar dimen-
sions the joints layout has a big influence on the workspace volume. The
method is applicable to other kinds of parallel manipulators.

Andrioaia et al. [150] analysed the workspace of a DELTA robot by
applying a combined geometrical and discretization method. They first de-
fined the limits of the workspace in X-, Y- and Z-axes. These limits gave
a cube which they discretized in finite number of points. Then they chec-
ked, one by one, if those points fulfilled the requirements of the geometrical
parameters. They applied the method for a case study and obtained the
results by programming the method in MATLAB.

Herrero et al. [151] obtained the workspace of the reconfigurable para-
llel manipulator PARAGRIP by combining geometrical and discretization
methods. They obtained the useful workspace of the manipulator – the
workspace free of singularities and limb collisions, and where the limits of
the joints were fulfilled – for different configurations of the manipulator.
They also obtained the biggest sphere in the useful workspace in order to
study its regularity.
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8.2. Obtaining the workspace of the
2PRU-1PRS parallel manipulator

In this work, we present a discretization method to obtain the useful
WS of the 2PRU-1PRS parallel manipulator for given geometry parameters
(GP) and input ranges. In our case, since the outputs are two rotations
and one translation, we define the workspace by giving the combinations
of rotations about X- and Y-axes and translation along Z-axis that the
end-effector can achieve. This method is also useful for any kind of parallel
manipulator whose constraints are known.

We define the set StudyPoints as the candidate-poses for the workspace.
There are, mainly, two ways to provide the candidate-poses for the works-
pace. The first one is based on the propagation of a wave front, as Macho
et al. [152] explained, while the second one requires setting the range for
the outputs and their discretization step. This study uses the latter.

We construct the set the StudyPoints by dividing the axes into equal
number of parts. Thus, in this case, StudyPoints is the set of points which
lie in the 3 dimensional space bounded by the ranges previously defined.
We also define the geometry parameters and the physical restrictions given
by the ranges of the linear guides and the spherical joint.

We solve the Inverse Kinematic Problem for all the candidate-poses
for the WS and obtain the value of displacements for the linear guides.
The candidate-poses for the WS whose linear guide values are real define
the WS0, as see in Eq. (8.1). If any of the actuators’ value is imaginary,
it means that the manipulator cannot reach that position and, thus, the
candidate-pose studied can not be in the WS.

if ρi ∈ < −→ candidate− posei ∈WS0 (8.1)

Additionally, we have to check which points of the WS0 fulfil the res-
trictions of the direct kinematic problem, the spherical joint and the linear
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guides. The set of candidate-poses that fulfil all those restrictions defines
the useful workspace. The flowchart given in Fig. 8.1 summarizes the steps
we will follow to get the useful WS of the manipulator.

Generate candidate-poses

Solve IKP

Solve DKP Spherical joint 

restriction
Linear guide

restriction

All restrictions

WS0

Useful WS

WS1 WS2 WS3

Figure 8.1: Flowchart for obtaining the useful WS

8.2.1. IKP Singularities

When a manipulator is in a singularity of the inverse kinematic problem,
the end-effector is stuck and it can not move in the direction of the 3DOF.
Thus, in order to have a correct manipulator functioning, we have to avoid
those positions. In practice, these singularities appear on the boundary of
the WS0.
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8.2.2. DKP Singularities

When the manipulator reaches a singularity of the direct kinematics
problem, it is able to move in an infinitesimally without changing the value
of the inputs. This is to say: some degrees of freedom become uncontrollable.
As we have already seen in Chapter 7, mathematically, this happens when
the determinant of the Jacobian matrix, |Jx|, is null. According to that,
the |Jx| of all the points of a free-singularity region have the same sign, as
Gosselin and Angeles [130] and Altuzarra et al. [135] explained. Thus, to
get the singularity free WS, we calculate the |Jx| for the points in the WS0.
We divide the WS into two parts depending on the sign of |Jx|, as seen in
Fig. 8.2. That division is expressed by Eq. (8.2).

WS WSA

WSB

Singularities

| J |x=0

Figure 8.2: Division of the WS based on polarity of |Jx|

0 < |Jx| −→WSA

|Jx| = 0 −→ singularity (8.2)
|Jx| < 0 −→WSB

(8.3)

WSA is the part of the WS with positive |Jx| while WSB is the part
of the WS with negative |Jx|. For a given trajectory of the manipulator,
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we define the initial position of the MP as MPP0 with its corresponding
value of |Jx|, |Jx|0. For a singularity-free WS, |Jx| of all points of the WS
must have the same sign, as Macho et al. [152] and Haidong et al. [153]
highlighted. According to this criterion, Eq. (8.4) defines the WS free of
singularities, denoted by WS1.

if sign |Jx|WSA
= sign |Jx|0 −→WSA ≡WS1

if sign |Jx|WSB
= sign |Jx|0 −→WSB ≡WS1 (8.4)

8.2.3. Spherical Joint Restrictions

The range of the spherical joint is a very restricted variable. Ideally it
can rotate freely, but in practice it has limits that we have to take into
account. Figure 8.3 shows the angle between the i limb and the neutral
position of the spherical joint, defined as µi.

Figure 8.3: Sphere Joint

Equation (8.5) gives the condition that µi has to fulfil – it has to be
always in the range of the spherical joint rotation. The set of StudyPoints
of the WS0 that fulfil the restriction of the spherical joint define the WS2
workspace.

|µi| < µmax (8.5)



104 Chapter 8. Workspaces and Joint Space

8.2.4. Linear Guides Restrictions

We obtain the values of the linear guides for all the points in the WS0
by solving the IKP . We have already checked that they are real solutions,
but we also have to check if those values fulfil the limits of the real linear
guides, as seen in Eq. (8.6). The set of StudyPoints of the WS0 that fulfil
this restriction define the WS3 workspace.

ρimin < ρi < ρimax (8.6)

8.2.5. Useful Workspace

We define the useful workspace, WSuse, as the set of points that fulfil
all the previous conditions. Thus, the WSuse is expressed by Eq. (8.7).

WSuse = WS1 ∩WS2 ∩WS3 (8.7)

8.2.6. Biggest Geometric Object in the Useful Workspace

Since WS of one PM configuration can be bigger than of another but also
be more irregular, an interesting criterion to know if a WS is good enough
or not is to compare both the size and the regularity of the WSuse. An
easy way to know the regularity of a WS is to obtain the biggest geometric
object in it, GO.

8.3. Joint Space
When we solve the inverse kinematic problem we obtain the set of in-

puts, (ρ1, ρ2, ρ3) associated with the useful workspace. This set of inputs
is the Joint Space and it gives us information about the value of the linear
guides for each pose of the WSuse



9

Stiffness

9.1. Stiffness
Stiffness, k, is the resistance of an elastic body to deflection or deforma-

tion by an applied force. Equation (9.1) gives the expression of the stiffness

k = F/δ [N/m] (9.1)

where F is the applied force in one direction and δ the deformation in the
same direction. According to this, the higher the stiffness of a body is, the
smaller is the deformation for a given force.

As we have already seen, one advantange of parallel manipulators over
serial manipulators is their higher stiffness. In Fig. 9.1 we see a schematic
representation of the comparison between the stiffness in serial manipula-
tors and parallel manipulators. In both Fig. 9.1a and Fig. 9.1b we have
represented two kinematic chains by drawing several springs. The rigidity
of the springs are K1 and K2, respectively. In the first figure, the springs are
linked serially. The equivalent stiffness of the system is given by Eq. (9.2).
In the second figure the springs are parallel to each other, and both of them
are connected to the fixed element. In this case, the equivalent stiffness is
given by Eq. (9.3). As we see, the equivalent stiffness when the chains are
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parallel is higher than the equivalent stiffness for the serial chains.

(a)

K1

K2

(b)

Figure 9.1: Equivalent stiffness for: (a) two serial chains; (b) two parallel
chains

Keq = K1 ·K2/(K1 +K2) (9.2)
Keq = K1 +K2 (9.3)

However, the architecture of the parallel manipulators is very complex,
which makes obtaining their stiffness very complicated. Many researchers
have worked to develop different methods to calculate the stiffness easily.
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Finite Element analysis method (FEM)

The idea of the finite element method is to decompose the physical
model of the manipulator in a finite number of elements. The elements are
jointed to each other in common points called nodes. The stiffness matrices
of the elements give the compliant relations between adjacent nodes. The
finite elements have standard shape for which the stiffness matrix is known,
as described by Avilés [154].

The global matrix of the model contains the static equilibrium equation
for each node. This global matrix defines the relation between the applied
forces and the node deflections. The stiffness in the desired direction is
obtained by using the inverse of the stiffness matrix calculated.

This process is automated in the CAD-environment softwares. The mes-
hing process is the one that decomposes the model into a finite number of
elements. In commercial programs the meshing only needs the definition
of the discretization step and the mesh type. The mesh type can be linear
or parabolic. The results are both numerical and graphical, and they give
the deformation and the stress in each node of the model. In this way, the
user can immediately identify the areas where the stress is high and thus,
identify the potential dangerous areas.

The biggest advantage of the FEM is its high accuracy, that only de-
pends on the discretization step. Besides, the joints can be modelled with
the real dimensions and shape, so it is a very useful method for manipula-
tors. The disadvantages are, on one hand, the limit of computer memory.
When the discretization step becomes smaller, the accuracy increases, but
the problem of limited computer memory appears. On the other hand, the
meshing is valid only for one position. Thus, if we want to obtain the stiff-
ness for different points of the workspace, we have to repeat the meshing of
the model in each position. Due to this need for remeshing, authors usually
use FEM to validate the results obtained with other methods or have an
estimation of the stiffness for certain positions and applied loads.
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Bouzgarrou et al. [155] studied the stiffness of a new 3T1R parallel
manipulator. The manipulator has four identical legs, that can fold an angle.
They first analysed the influence of that folding angle in the stiffness of one
leg and they saw that the stiffness was smaller for angles of 90◦. Then, they
used the FEM to design an experimental technique to calculate the stiffness
of the whole manipulator all over the workspace.

Kozyrev et al. [156] analysed the stiffness of the Isoglide parallel ma-
nipulator. They chose the best shape for the section of the elements by
comparing the stiffness results for two different shapes. They also calcula-
ted the stiffness of the whole manipulator in different positions for different
types of loading. They saw that the stiffness for axial forces applied di-
rectly along the main axes was really mediocre. Based on these results,
they proposed two solutions to improve the stiffness of the manipulator.

Matrix structural analysis method

Also known as the displacement method or direct stiffness method, this
method is based on the ideas of the finite element method. It breaks up a
complicated system into discrete structural elements. Those elements have
simple elastic and dynamic properties that can be expressed in a matrix
form. The elements connect to each other in the nodes. When there are
applied loads on the mechanism each node suffers a translation and/or a
rotation. Those displacements – translations and rotations – depend on the
configuration of the mechanism and the boundary conditions. We can calcu-
late all the nodal displacements from a complete analysis of the mechanism.
We will describe the whole method with more details when applying it to
the 2PRU-1PRS parallel manipulator in Section 9.2.

If we compare the elements that the matrix structural analysis method
uses with the ones in FEM, the elements in the matrix structural method
are larger, such as beams or arcs, as Martin [157] described. Thus, the
computational cost is less than in FEM. The matrix structural method has
a reasonable trade-off between accuracy and computational cost.
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Traditionally, the matrix structural analysis method has been used to
analyse structures, but in the last years different authors have applied it
to calculate the stiffness of parallel manipulators. The great advantage of
this method is that it is very systematic and that we can also apply it to
hyper-static parallel manipulators.

Clinton et al. [158] developed a mathematical model to obtain the stiff-
ness of a Stewart-platform-based milling machine. They estimated the sys-
tem parameters by applying experimental stiffness measurements. Then,
they applied the matrix structural analysis method to get the stiffness of
the manipulator for different positions in the workspace. They made two
assumptions for the application of the method. According to the first one,
the elements were pin jointed at each end and unable to transmit moments
from one element to the other. And according to the second, the deflection
under load took place mainly on the legs of the machine, so they imple-
mented a very high stiffness to the mobile platform. The results obtained
by this method were found to be satisfactorily close to those obtained by
the experimental method.

Deblaise et al. [159] proposed a different approach to calculate the stiff-
ness matrix of parallel manipulators by using the same method. They ap-
plied the matrix structural analysis to a DELTA parallel structure. They
assumed that the mobile platform was perfectly rigid. They developed two
models – in the first one they took the joints as perfect, while in the second
they also considered the stiffness of the joints. They validated the method
by using experimental measurements and they saw that the second model
is more realistic than the first one.

Gonçalves et al. [160] analysed the stiffness of the 6-RSS parallel ma-
nipulator. They simplified the problem by assuming the stiffness of joints
and actuators to be negligible. In this way, they took the blocked actuators
as boundary conditions and the rotational joints as fixed. They compared
the results with the results obtained with FEM.
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In the same line of work, Corral [161] studied the stiffness of two dif-
ferent parallel manipulators – the DAEDALUS I and the ARABA I, two
prototypes developed in the University of the Basque Country. He applied
the matrix structural analysis method to get the stiffness for different points
in the workspace. He checked the results with FEM analysis, as well as with
experimentation.

Virtual Joint modeling method

The methods based on virtual joint modeling treat the links of parallel
manipulators as rigid and assume the joints to be compliant, all the existing
flexibilities being accumulated only in the joints. This approximation is
equivalent to adding virtual springs to the joints. In this way, these methods
simplify the model by taking the stiffness matrix as lumped, which in reality
is distributed.

Salisbury [162] presented the conventional formulations for the map-
ping of stiffness matrices between the cartesian and joint spaces. Gosselin
[163] developed a tool based on this formulation to analyse the stiffness of
parallel manipulators. A big limitation of this method is that he assumed
that the only sources of flexibility were the actuator joints, the rest of the
components being rigid. In order to take the flexibility of the links into ac-
count, Zhang [164] proposed a lumped model. In this model, the links are
replaced by rigid beams mounted on revolute joints plus a torsional spring
placed at the existing joints.

Later, Chen et al. [165] demonstrated that the conventinal formulation is
only valid when the manipulator is in unloaded equilibrium configuration.
To overcome this problem, they proposed the Conservative Congruence
Transformation (CCT), which is valid also when the manipulator is not in
its unloaded equilibrium configuration. Chen et al. [166] and Alici et al.
[167] developed the results to consider the external loads.

A key issue of these methods is how to define the virtual spring parame-
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ters. At the very beginning, Gosselin [168] or Pigoski et al. [169] presented
each actuated joint as a single one-dimensional virtual spring. Afterwards,
Majou et al. [170] took the flexibility of the links into account by increasing
the number of virtual joints, including several translational and rotational
virtual springs in each joint. In the latest works, Pashkevich et al. [171]
and Klimchik et al. [172] have used 6-dimensional virtual joints. To iden-
tify them, they have applied a method based on FEM. This increases the
accuracy of the Virtual Joint Modeling method, which is now comparable
to the accuracy of the FEM, but with lower computational cost.

Razei et al. [173] presented two analytical methods to calculate the stiff-
ness of a 3PSP parallel manipulator. The 3PSP manipulator analysed has
two fixed platforms and one mobile platform joined by three identical limbs.
The first method they presented applies the principle of virtual work to a
lumped model of the manipulator. The biggest limitation of this method
is that it considers the mobile platform as rigid. The second method consi-
ders the model as a distributed system. This method obtains the stiffness
of the manipulator by taking the strain energy of the main components of
the manipulator into account, as well as using Castigliano’s theorem. This
method considers the mobile platform to be flexible and takes the bending
of all compliant modules into account. They compared the results obtained
with the two methods with results obtained by using the FEM and checked
that the second model was more realistic than the first one.

Klimchik et al. [174] presented a non-linear stiffness modeling technique
that calculates the stiffness of parallel manipulators composed by perfect
or non-perfect serial chains. When the manipulator has non-perfect chains,
there is an inaccuracy in the geometry that produces internal forces. The
authors took those internal forces into account. Besides the internal forces
produced by the geometric inaccuracy, they considered another two kind of
loads at the same time – an external force applied to the end-effector and
external loadings applied to the intermediate points. This method is va-
lid for both over-constrained and under-constrained parallel manipulators,
with small or large deflections.
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Experimental methods

Experimental measurements in the real model are really useful when
validating the mathematical models of the stiffness of parallel manipulators.
It happens often that it is not possible to work with the real model. In those
cases, a common option is to work with experimental prototypes, which are
usually scale or simplified models.

The experimental measurements must be as precise as possible. Ot-
herwise, they will not be a correct reference to validate the mathematical
models with. The basic equipment to measure the stiffness in parallel ma-
nipulators is a load application system and a displacement measurement
system. The load application system can be a punctual load or a load cell,
but in both cases the value of the applied load must be known. The dis-
placement measurement system has to be any kind of system that gets the
linear and angular displacement, such as calipers, inclinometers or laser
measurement systems.

Clinton et al. [158] validated the system stiffness model by comparing
the results of the model with the experimental measurements made on the
NIST Ingersoll Octahedral-Hexapod. They used the procedure outlined in
the ASME standard B5.54 [175]. They applied the load by using a force
gauge and recorded the displacements thanks to digital dial indicators.
They selected the measurement positions taking the machine symmetry
into account. The authors saw that they could improve the experimental
techniques to get further refinement in the results. However, they concluded
that they were good enough to validate the stiffness model.

Aginaga et al [176] analysed the stiffness of the 6-RUS parallel mani-
pulator by using inverse singularities and compared the results with ex-
perimental measurements on the prototype. Since it was not possible to
measure the stiffness in the whole workspace, they chose specific configu-
rations based on the analytical results. In analytical results they had seen
that total inverse singularities were the positions with highest stiffness.
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Thus, they chose to make the measurements on inverse singular and non-
singular configurations to compare the stiffness difference between them.
They applied the loads and measured the displacements as Company et al.
[177] had already done – they applied the loads using a dynamometer and
measured the displacements with dial indicators. Since a dynamometer can
only apply forces and not torques, they could not apply a torque on the
gravity center. To overcome this problem, they applied external loads on
the vertices of the mobile platform. Similarly, dial indicators measure only
linear displacements and not angular ones, so they measured the displace-
ments of the vertices of the mobile platform. In order to prevent possible
errors, they repeated each experimental measurement twice, as proposed
by Ceccarelli et al. [178]. Another option could had been to preload the
mechanism at the equilibrium position, as Pinto et al. [179] did.

We have seen the common methods in use to calculate stiffness. In the
following Section will present the method we chose to use, along with the
reasons for choosing that method.

9.2. Matrix structural analysis method
We use the matrix structural analysis method to obtain the stiffness

of the manipulator in any pose in the workspace. This method involves
discretizing the manipulator into a finite number of beam elemets. These
elements are connected to the each other and to the fixed element by using
different kinds of joints. The connection points are called nodes. The met-
hod estimates the components of the stiffness relations to solve the force or
displacement problem expressed by Eq. (9.4),

F = K ·∆ (9.4)

where F is the force vector, K is the stiffness matrix and ∆ is the displace-
ment vector. The force vector contains the external forces and moments in
each node, while the displacement vector contains the displacements and
rotations that take place in the same node. Thus, the stiffness matrix ex-
presses a relation between the displacement of the nodes and the external
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forces applied. The most important characteristics of the stiffness matrix
are that it is a square, symmetric and strictly positive define matrix.

We get the stiffness matrix of the whole model by assembling the stiff-
ness matrices of all elements, taking into account the nodes that different
elements share, and also the kinematic restrictions among the elements.
Once we have obtained the stiffness matrix, we calculate the stiffness of the
manipulator in one direction for given force. The flow chart seen in Fig. 9.2
shows the basic steps of the stiffness matrix method.

Define beams model

Transform Kelem into global system

Kelem, global

Get Kelem in local system

Kelem, local  

Expand Kelem, global 

Kexp

Assemble Kexp 

Ksystem

Define force vector 

F

Get the displacements

=K-1 F

Calculate stiffness in one dof

Kdof=Fdof/ dof

Figure 9.2: Basic steps of the stiffness matrix method
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We define the beams model for our manipulator by using one beam
element for each leg and four beam elements for the mobile platform. In
this way, the model has seven beams and 8 nodes in total. Figure 9.3 gives
the numeration used to refer each element and node.

8

5

1

33

2

6

7

4

1 2

3

4

5

7

6

Figure 9.3: Elements and nodes numeration

Figure 9.4 represents the local reference system defined in a beam ele-
ment. It also shows the 6 dof in each node – 3 of translation and 3 of
rotation. These dof are the displacement possibilities of the node. We label
the nodes of the element as i and j and, without loss of generality, assume
that the number j is greater than i. We define a cartesian right-handed
local reference system with the u-axis along the beam, with origin at i and
pointing towards j. The v- and w-axes define a plane perpendicular to the
u-axis.
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Figure 9.4: Beams axes

We define the stiffness matrix of each element in local reference system
as Kelem, given by Eq. (9.5), where the submatrices A1, A2 and B are
given by the expressions Eq. (9.6), Eq. (9.7) and Eq. (9.8), respectively.
We notice that to obtain the elemental stiffness matrices we need to know
the geometry parameters of each element and the material properties. The
geometry parameters of an element are its length (L), its transversal section
(A), and the inertia moments (Iy, Iz and J). The material properties that
appear in the stiffness matrices are the modulus of elasticity (E), and the
shear modulus (G).

Kelem,L =
[
A1 BT

B A2

]
(9.5)

A1 =



EA/L 0 0 0 0 0
0 12EIz/L3 0 0 0 6EIz/L2

0 0 12EIy/L3 0 −6EIy/L2 0
0 0 0 GJ/L 0 0
0 0 −6EIy/L2 0 4EIy/L 0
0 6EIz/L2 0 0 0 4EIz/L


(9.6)
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A2 =



EA/L 0 0 0 0 0
0 12EIz/L3 0 0 0 −6EIz/L2

0 0 12EIy/L3 0 6EIy/L2 0
0 0 0 GJ/L 0 0
0 0 6EIy/L2 0 4EIy/L 0
0 −6EIz/L2 0 0 0 4EIz/L


(9.7)

B =



−EA/L 0 0 0 0 0
0 −12EIz/L3 0 0 0 −6EIz/L2

0 0 −12EIy/L3 0 6EIy/L2 0
0 0 0 −GJ/L 0 0
0 0 −6EIy/L2 0 2EIy/L 0
0 6EIz/L2 0 0 0 2EIz/L


(9.8)

We now have to assemble the stiffness matrices of all the elements to
obtain the stiffness matrix of the whole system. In order to do this, we have
to take into account the orientation of the elements and the nodes each
one affects. We have defined the elementary stiffness matrices in the local
reference systems, but each element has a different orientation in the space.
Thus, we have to express all the elementary matrices in the global reference
system by applying Eq. (9.9), where T is the transformation matrix.

Kelem,G = TT ·Kelem,L ·T (9.9)

The size of both KL and KG is 12x12, so in order to transform one into
the other we need a 12x12 transformation matrix, as seen in Eq. (9.10). We
define the T3x3 transformation matrix as the matrix whose columns are
the direction cosines of the mobile reference system in the global reference
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system, as Eq. (9.11) shows. Notice that, since every element has a different
orientation in the space, the transformation matrix is different for each
element.

T =


T3x3 [0]3x3 [0]3x3 [0]3x3
[0]3x3 T3x3 [0]3x3 [0]3x3
[0]3x3 [0]3x3 T3x3 [0]3x3
[0]3x3 [0]3x3 [0]3x3 T3x3


12x12

(9.10)

T3x3 =

ux vx wx
uy vy wy
uz vz wz

 (9.11)

If two elements share a dof it means that the displacement or rotation
– depending on the kind of DOF it is – in that dof is the same for the two
elements. When two elements are connected at a node by a rigid joint, the
two elements share all the dof in the node. However, if two elements are
connected by a kinematic joint, the elements only share the dof of the node
that the kinematic joint constrains, but not the ones that the joint allows.
In our model there are three different types of kinematic joints – revolution
joints between the fixed element and the elements 5, 6 and 7, universal
joints connecting the element 1 with the element 5 and the element 4 with
the element 7 and a spherical joint between the element 3 and the element 6.
Figure 9.5 shows the degrees of freedoms allowed in each kind of kinematic
joint.

As the beam model of our manipulator has 8 nodes and each node has 6
DOF, the total number of degrees of freedom is 48. We label these degrees
of freedom in Fig. 9.6 with numbers 1 to 48. The DOF drawn in black
represent the DOF that the elements meeting in that node share, while the
DOF drawn in red are the ones that the kinematic joints allow.
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(a) (b) (c)

Figure 9.5: Degrees of freedom allowed in: (a) revolution joint; (b) universal
joint; (c) spherical joint
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Figure 9.6: Degrees of freedom numeration

According to this, the size of the stiffness matrix of the system is 48x48.
We get it by assembling the expanded matrices of all the elements, as given
in Eq. (9.12). The expanded matrix of an element is a 48x48 sized matrix
with non-zero stiffness terms in the DOF that the element affects and zeros
in the rest.

K = Ksys =
∑

KGi,exp (9.12)
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We want to calculate the stiffness of the manipulator in vertical direction
in the gravity center of the mobile platform. The gravity center of the mobile
platform is placed on the node 3. Thus, we calculate the stiffness by applying
a force in the direction given by DOF labelled 15, and by measuring the
subsequent deformation in this direction.

We define a force vector as given in Eq. (9.13), F being a vector of size
48x1 with all terms null except the one corresponding to the dof 15.

F48x1 =
[
0 0 ... F15 0 ... 0

]T
(9.13)

We now obtain the deformation that the applied force generates in the
manipulator. The equilibrium equation of the system is given by Eq. (9.14),
so we get the deformation by applying Eq. (9.15).

F48x1 = K48x48 ·∆48x1 (9.14)
∆48x1 = K−1

48x48 · F48x1 (9.15)

Finally, we get the stiffness in a certain direction by dividing the external
force applied in the corresponding DOF by the displacement in that DOF,
as Eq. (9.16) shows.

ki = Fi/δi (9.16)
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Dynamics

10.1. Dynamics

The dynamics of parallel manipulators is very complicated due to the
multiple closed-loop chains. However, it is essential for the simulation and
control. Besides, we can also use it for the dynamic optimum design of the
manipulator.

There are many approaches to solve the dynamics of a parallel manipu-
lators - the most used ones are the Newton-Euler approach, the Lagrangian
method, Kane’s method and the virtual work principle.

The Newton-Euler method

This method uses Newtonian mechanics to formulate the dynamic equa-
tions of motion of the manipulator. The steps of the method are mainly two.
In the first one we note the force and moment balance equations. In the
second one we use kinematic relations and constraint forces to reduce the
number of equations. The Newton-Euler method calculates all the internal
reactions exactly so the computational cost is very high. The computation
of the internal reactions of the system is useful for the design of the ma-

121
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nipulator, but not for its control law. Thus, the interest of this method
depends on the application of the dynamic problem.

Many authors have used the Newton-Euler approach to solve the dyna-
mics of parallel manipulators. Dasgupta and Mruthyunjaya [180], [181], for
example, used the Newton-Euler approach to analyse the dynamics of the
Stewart platform, while Gugliemetti and Longchamp [182] used it to solve
the dynamics of the DELTA robot. Khalil and Guegan [183] obtained both
the inverse and direct dynamic problem solutions of the Gough platform.
Carvalho and Ceccarelli [184] solved the inverse dynamic problem of the
Cassino parallel manipulator by using the Newton-Euler approach.

Wang et al. [185] presented a simplified strategy for a real-time control
of the dynamic model of a 6-UPS parallel manipulator. They decomposed
the dynamic model into 18 terms independently by separating the iner-
tial forces and moments of inertia of legs and platform. They simulated
different movements and investigated the contribution of each term in the
dynamic model. Besides, they proposed simplified strategies and simulated
the previous movements again by using them. They saw that the simplifica-
tion error was small enough and that the computational efficiency improved
greatly.

Khalil and Ibrahim [186] presented a general method to calculate the
inverse and direct dynamic models of parallel manipulators. They expressed
the models by using a single equation with all the elements needed. They
applied the method on two different parallel robots - the 3-UPS parallel
manipulator and the C5 robot - but the method is valid for most PM.

Hao et al. [69] modelled the dynamic problem of the 3-PSP 3-DOF
parallel manipulator by applying the Newton-Euler approach. They analy-
sed its dynamics with and without considering the parasitic motions. They
compared both cases with numerical simulation results. They saw that the
error of the actuating force between the two cases affected very little the
dynamics, so parasitic motions were ignored.
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The Lagrangian method

The Lagrangian method uses the Lagrangian functions to formulate dy-
namic equations of motion. It first considers the constraints and kinematics
of the problem and then writes the equations of motion. There is one equa-
tion per degree of freedom. The hardest work in Lagrangian mechanics is to
find a proper set of generalized coordinates and to express the kinematics.
Once it is done, the rest is uncomplicated.

Lee and Geng [187] analysed the dynamics of a general Stewart platform
by considering the limbs connecting the mobile and fixed platform as flexible
actuators. They derived a set of 12 Lagrange equations by using tensor
representation. The 12 Lagrange equations were reduced to six equations
for the Stewart platform whose actuators are rigid. They also discussed the
model-based control approach for the end-effector of the Stewart platform.

Abdellatif and Heiman [188] used the Lagrangian method to get the
dynamic equations of a 6-DOF fully parallel manipulator. They considered
open-loop sub-chains and derived their dynamics with respect to known
generalized coordinates and velocities. The choice of the sub-chains’s gene-
ralized coordinates was crucial to get an efficient derivation of the dynamics.
The computational cost was better than other works that were known in
the literature. They used different simulations and experimental results to
validate their method.

Liu et al. [189] developed the dynamic problem of the PSS 6-DOF pa-
rallel manipulator by applying the Lagrange method. Then, they simplified
the model to get an easier case of analysis and controller design. They
simulated the simplified model, which showed that the model was effecti-
ve. Additionally, they designed a bionic horse as experimental application.
The bionic horse simulated the motion of a real horse and could be used,
for example, for entertainment purposes. The experimental results allowed
them to evaluate and optimize the performance of the system.
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Kane’s method

Professor T. R. Kane, from the Stanford University presented this met-
hod [190] in order to overcome the disadvantages of Newton-Euler and
Lagrangian methods. It is based on a modification of Newton’s equations.
As Kane and Levinson [191] explained, the method produces motion equa-
tions that need fewer multiplications and additions than other techniques,
so its computational cost is lower. Its main application in parallel manipu-
lators is the obtaining of direct dynamics. The process of modelling using
Kane’s method is clear and normative, so it is a good option to automate
the dynamic modelling.

Wang et al. [192] used Kane’s method to get the dynamic modelling of
a spatial 6-DOF parallel manipulator. They described the parallel mani-
pulator as a rigid body and got the direct dynamic equations. Then, they
compared the results with Simulink and SimMechanics simulations. They
concluded that Kane’s method was effective to model the manipulator.

In [193], Liu et al. presented the dynamic analysis of the Gough platform
based on Kane’s equation. They first treated the mobile platform and the
legs as independent substructures. They obtained their dynamic equations
by applying Kane’s equation and then used the constraints among substruc-
tures that Langrange multipliers introduce to put all equations together.
They applied the method to the Gough platform, but they concluded that
the method is also valid for any type of parallel manipulators.

Wu et al. [194] solved the inverse dynamic problem of the 6-SPS parallel
manipulator by using the principle of Kane. They considered inertial forces
of all links and mobile platform and took the orientation parameters and
Euler angles as generalized coordinates. They verified the approach with si-
mulation results. They used MATLAB to program the dynamic calculation
and ADAMS to verify the analysis.
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Virtual work principle

The virtual work principle develops the dynamic equations by applying
D’Alembert’s principle to obtain the equilibrium equations. This principle
says that when a rigid body in equilibrium suffers virtual compatible displa-
cements, the total virtual work of all external forces is zero. The constraint
forces and moments of the robot system do not appear in this formula-
tion, which makes it useful for obtaining the inverse dynamics for real-time
control applications.

Geike and McPhee [195] presented an approach to solve the inverse dy-
namics for planar parallel manipulators with 3-DOF and spatial parallel
manipulators with 6-DOF. They formulated the kinematic and dynamic
equations by combining linear graph theory, the principle of virtual work
and symbolic programming. They demonstrated the features of the formula-
tion by analysing two parallel manipulators - the planar RRR manipulator
and the Gough platform.

Zhao and Gao [196] applied the principle of virtual work and the con-
cept of link Jacobian matrices to solve the inverse dynamics of a 6-DOF
parallel manipulator used as seismic simulator. The constraint forces and
moments did not appear in the motion equations and there were no diffe-
rential equations, so the method lead to efficient algorithms. This method
could also be useful for other kind of mechanisms.

In [197], Zhao evaluated the dynamic performance of the DELTA robot.
He developed the inverse dynamics by applying the principle of virtual work
and the link Jacobian matrices. He proposed the maximum torque index
and the maximum power index to evaluate the dynamic performance of the
robot.

García-Murillo et al. [198] obtained the generalized forces of a 2(3-
RRPS) parallel manipulators by combining the Klein form of the Lie algebra
with the principle of virtual work. They compared numerical results with
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simulations done with ADAMS software. The instantaneous values of the
internal reactions of the mechanism and the calculation of the energy of the
entire system were not necessary. This method is useful to size the motors
of the manipulator for a given application.

Zhao et al. [103] proposed a rigid-body dynamic model to solve the
dynamics of a 3 rotational parallel manipulator. Their method was also
based on the principle of virtual work and the concept of link Jacobian
matrices. They obtained the inverse dynamics in an exhaustive decoupled
way and concluded that the development energy consumption computation
can be very useful for the dynamic optimum design and motion planning
while considering the energy conservation.

Other methods

Even if the previous four methods are the most used ones, there are also
other methods to solve the dynamics of parallel manipulators. By using
the finite element method, for example, we can consider the elements of a
parallel manipulator as flexible and get more precision in the results. This
is what Piras et al. [199] and Du et al. [200] did.

Inverse dynamics of parallel manipulators involve many mechanics prin-
ciples, but also many mathematical methods, such as the Lie algebra used
by Müller and Maiber [201] or the symbolic programming applied by Geike
and McPhee [202] and McPhee et al. [203].

10.2. Developing the dynamics of the
2PRU-1PRS parallel manipulator

In this Section we solve the dynamic problem by applying the Newton-
Euler approach – we obtain the reactions in all the joints of the manipulator.
To do it, we solve the equation system given by Eq. (10.1), with A being a
matrix with the coefficients that multiply the vector of forces F and c being
the independent terms of the system. We get the different equations of the
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system by analysing the mobile platform and the three limbs independently.

A · f = c (10.1)

Figure 10.1 shows the reaction forces and moments as well as the weights
in the 2PRU-1PRS parallel manipulator. We note that we analyse the mani-
pulator without the linear guides, so there are no applied forces. According
to the action-reaction principle, the value of the forces in the linear guides
are equal to the reaction forces in the rotation joint.
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Figure 10.1: Reaction forces, moments and weights in the manipulator



128 Chapter 10. Dynamics

Figure 10.2 presents the vectors and parameters we need to solve the
dynamics of the manipulator.
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Figure 10.2: Parameters of the dynamic problem
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10.2.1. Dynamic analysis of the platform

The sum of reaction forces in the platform has to be equal to the inertia
forces. We obtain the inertia forces by multiplying the mass of the platform
(m) by the linear acceleration of the gravity centre (aG), as we see in Eq.
(10.2). ∑

F = m · aG (10.2)

We write Eq. (10.2) as the equation system given by Eq. (10.3), Eq.
(10.4) and Eq. (10.5),

FA1x + FA2x + FA3x =m · aGx (10.3)
FA1y + FA2y + FA3y =m · aGy (10.4)
FA1z + FA2z + FA3z =m · aGz +m · g (10.5)

We now calculate the value of the linear acceleration of the gravity
centre of the mobile platform, given by Eq. (10.6)

aG = ap +αp ×PG + Ωp × (Ωp ×PG) (10.6)

where ap is the linear acceleration of the point P, αp is the angular accele-
ration of the platform, PG is the vector that goes from the point P to the
gravity centre of the mobile platform (G) and Ωp is the angular velocity
of the platform. All vectors are referred to in the fixed reference system,
(X,Y,Z), as shown in Fig. 10.2. We obtain the value of all these vectors,
necessary to get the components of the aG.

Equation (10.7) gives the acceleration of the point P.

ap =
[
ẍp ÿp z̈p

]t
(10.7)

Since the parasitic motion along the Y-axis is null, we get Eq. (10.8).

ap =
[
ẍp 0 z̈p

]T
(10.8)
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Vector PG in the mobile reference system is known and given by Eq.
(10.9). We express it in the fixed reference system by multiplying it by the
rotation matrix Rot as shown by Eq. (10.10).

[PG]xpypzp =
[
0 Gy 0

]T
(10.9)

PG = Rot · [PG]xpypzp (10.10)

We expand Eq. (10.10) and get Eq. (10.11).

PG =
[
Gy · sθ · sψ Gy · cψ Gy · cθ · sψ

]T
(10.11)

Equation (10.12) gives the angular velocity of the platform in the fixed
reference.

Ωp =
[
ψ̇ · cθ θ̇ −ψ̇ · sθ

]T
(10.12)

We differentiate it and get the angular acceleration of the platform,
given by Eq. (10.13).

αp =
[
ψ̈ · cθ − ψ̇ · sθ · θ̇ θ̈ −ψ̈ · sθ + ψ̇ · cθ · θ̇

]T
(10.13)

We already have all the vectors that appear in Eq. (10.6), so we rewrite it
as Eq. (10.14). According to this, we get the components of the acceleration
of the gravity centre of the mobile platform, which we need for Eq. (10.4)
and Eq. (10.5), the three first equations of the equation system we have to
solve.

aG =

ẍp0
z̈p

+

 ψ̈ · cθ − ψ̇ · sθ · θ̇
θ̈

−ψ̈ · sθ + ψ̇ · cθ · θ̇

×
Gy · sθ · sψGy · cψ
Gy · cθ · sψ

+

+

 ψ̇ · cθ
θ̇

−ψ̇ · sθ

×

 ψ̇ · cθ

θ̇

−ψ̇ · sθ

×
Gy · sθ · sψGy · cψ
Gy · cθ · sψ


 (10.14)
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We obtain the next three equations of the equation system by applying
the angular momentum theorem, Eq. (10.15)

NG =
∑[

GAi × FAi

]xyz
=
[
dHG

dt

]xyz
(10.15)

where NG is the sum of the momentum created by the reaction forces and[
dHG

dt

]xyz
is the derivative of the angular momentum in the fixed reference

system. We first calculate the derivative of the angular momentum and then
obtain the sum of force momentums.

The expression of the angular momentum in the mobile reference system
is given by Eq. (10.16) [

HG

]xpypzp

= IG · ωp (10.16)

where IG is the inertia matrix in G and ωp is the angular velocity of the
platform, expressed by Eq. (10.17), both in the mobile reference system.

ωp =
[
ψ̇ θ̇ · cψ −θ̇ · sψ

]T
(10.17)

The expression of the derivative of the angular momentum in the mobile
frame is given by Eq. (10.18)[

dHG

dt

]xpypzp

= IG · ω̇p + ωp ×
[
HG

]xpypzp

(10.18)

where ω̇p is the angular acceleration of the platform in the mobile reference
system, given by Eq. (10.19).

ω̇p =
[
ψ̈ θ̈ · cψ − ψ̇ · θ̇ · sψ −θ̈ · sψ − θ̇ · ψ̇ · cψ

]T
(10.19)

We refer the derivative of the angular momentum in the fixed frame by
multiplying Eq. (10.18) by the rotation matrix, as seen in Eq. (10.20).[

dHG

dt

]xyz
= Rot ·

[
dHG

dt

]xpypzp

(10.20)
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Equation 10.21 gives the value of the sum of force momentums

NG = GA1 × FA1 + GA2 × FA2 + GA3 × FA3 (10.21)

with GAi being the vector that goes from the gravity centre of the mobile
platform to the Ai points in the fixed reference system.

Equation (10.22) shows the value of GA1, GA2 and GA3 in the mobile
frame.

[GA1]xpypzp =
[
R −Gy 0

]T
[GA2]xpypzp =

[
0 R−Gy 0

]T
(10.22)

[GA3]xpypzp =
[
−R −Gy 0

]T

We express the GAi vectors in the fixed frame by multiplying Eq.
(10.22) by the rotation matrix, as we see in Eq. (10.23).

GAi = Rot · [GAi]xpypzp (10.23)

By applying Eq. (10.23) for the three limbs, we get the value of GA1,
GA2 and GA3 in the fixed frame, as shown in Eq. (10.24).

GA1 =
[
R · cθ −Gy · sθ · sψ −Gy · cψ −R · sθ −Gy · cθ · sψ

]T
GA2 =

[
(R−Gy) · sθ · sψ (R−Gy) · cψ (R−Gy) · cθ · sψ

]T
GA3 =

[
−R · cθ −Gy · sθ · sψ −Gy · cψ R · sθ −Gy · cθ · sψ

]T
(10.24)

We now apply the values obtained in Eq. (10.20) and Eq. (10.24) in Eq.
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(10.15), so we get Eq. (10.25), Eq. (10.26) and Eq. (10.27).

−Gy · cψ · FA1z − (−R · sθ −Gy · cθ · sψ) · FA1y+
+(R−Gy) · cψ · FA2z − (R−Gy) · cθ · sψ · FA2y −Gy · cψ · FA3z−
−(R · cθ −Gy · cθ · sψ) · FA3y = dHx

(10.25)

(−R · sθ −Gy · cθ · sψ) · FA1x − (R · cθ −Gy · sθ · sψ) · FA1z+
+(R−Gy) · cθ · sψ · FA2x − (R−Gy) · sθ · sψ · FA2z+

+(R · sθ −Gy · cθ · sψ) · FA3x −−(−R · cθ −Gy · sθ · sψ) · FA3z =dHy

(10.26)

(R · cθ −Gy · sθ · sψ) · FA1y +Gy · cψ · FA1x+
+(R−Gy) · sθ · sψ · FA2y − (R−Gy) · cψ · FA2x+

+(−R · cθ −Gy · sθ · sψ) · FA3y − (−Gy · cψ) · FA3x = dHz

(10.27)

10.2.2. Dynamic analysis of limb 1

The sum of forces in the first limb has to be equal to the mass of the
limb multiplied by the acceleration of its gravity centre, G1, as we see in
Eq. (10.28) ∑

F1 = m1 · aG1 (10.28)

where
∑
F1 is the sum of forces in the first limb, M1 is the mass of the limb

and aG1 is the acceleration of its gravity centre. Figure 10.1 shows all the
forces in the first limb. Taking them into account, we get Eq. (10.29), Eq.
(10.30) and Eq. (10.31).

FB1x − FA1x =m1 · aG1x (10.29)
FB1y − FA1y =m1 · aG1y (10.30)
FB1z − FA1z =m1 · aG1z +m1 · g (10.31)
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We express the acceleration of the gravity centre of the first limb as Eq.
(10.32)

aG1 = aB1 +α1 ×B1G1 + Ω1 × (Ω1 ×B1G1) (10.32)

with aB1 being the acceleration of the B1 point, α1 being the angular
acceleration of the limb, B1G1 being the vector that refers to G1 with
respect to B1 and Ω1 being the angular velocity of the limb.

The acceleration of the point B1 is given by Eq. (10.33).

aB1 =
[
0 0 ρ̈1

]T
(10.33)

Equation (10.34) gives the value ofB1G1 in the mobile reference system.

[B1G1]x1y1z1 =
[
0 0 G1z

]T
(10.34)

We write B1G1 in the fixed frame by multiplying Eq. (10.34) by the
rotation matrix that expresses the mobile reference systems in the fixed
reference system for the first limb.

B1G1 =Rot1 ·
[
B1G1

]x1y1z1 (10.35)

Equation (10.36) gives the rotation matrix and Eq. (10.37) shows the
resulting value of B1G1 in the fixed frame.

Rot1 =

cβ1 0 −sβ1
0 1 0
sβ1 0 cβ1

 (10.36)

B1G1 =
[
−sβ1G1z 0 cβ1G1z

]T
(10.37)
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The angular velocity and acceleration in the fixed frame are given by
Eq. (10.38) and Eq. (10.39), respectively.

Ω1 =
[
0 −β̇1 0

]T
(10.38)

α1 =
[
0 −β̈1 0

]T
(10.39)

We get Eq. (10.40) by substituting the obtained values in Eq. (10.32).

aG1 =

 0
0
ρ̈1

−
 0
β̈1
0

×
−G1z · sβ1

0
G1z · cβ1

+

 0
−β̇1

0

×

 0
−β̇1

0

×
G1z · sβ1

0
G1z · cβ1




(10.40)

Thus, the components of aG1 are given as Eq. (10.41).

aG1x =(−β̈1 · cβ1 ·G1z + β̇2
1 · sβ1 ·G1z)

aG1y =0 (10.41)
aG1z =(ρ̈1 − β̈1 · sβ1 ·G1z − β̇2

1 · cβ1 ·G1z)

We replace Eq. (10.41) in Eq. (10.29), Eq. (10.30) and Eq. (10.31) and
get three more equations of the system we have to solve.

We apply the angular momentum theorem to the first limb, given by
Eq. (10.42)

NG1 =
∑[

d1 × Fi + Mi

]xyz
=
[
dHG1
dt

]xyz
(10.42)

where
∑[

d1 × Fi + Mi

]xyz
is the sum of momentums and

[
dHG1
dt

]xyz
is

the derivative of the angular momentum for the first limb and referred with
respect to the fixed reference system. We first calculate the derivative of
the angular momentum and then the sum of momentums.
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The expression of the angular momentum for the first limb in the mobile
reference system (xG1,yG1,zG1) is given by Eq. (10.43)[

HG1
]xG1yG1zG1 = IG1 · ω1 (10.43)

IG1 being the inertia matrix in G1 and ω1 the angular velocity of the first
limb in the (xG1,yG1,zG1) mobile reference system.

Thus, we get the expression of the derivative of the angular momentum
in the mobile reference system (xG1,yG1,zG1) as Eq. (10.44).[

dHG1
dt

]xG1yG1zG1
= IG · α1 + Ω1 ×HG1 (10.44)

By substituting the corresponding vectors we get Eq. (10.45) Its result
is given in Eq. (10.46).

[
dHG1
dt

]xG1yG1zG1
=

Iu1 0 0
0 Iv1 0
0 0 Iw1

 ·
 0
−β̈1

0

+

 0
−β̇1

0

×
 0
−Iv1 · β̈1

0


(10.45)[

dHG1
dt

]xG1yG1zG1
=
[
0 −β̈1 · Iv1 0

]T
(10.46)

We get the derivative of the angular momentum in the fixed frame by
multiplying Eq. (10.46) by the rotation matrix Rot1, as seen in Eq. (10.47).[

dHG1
dt

]xyz
= Rot1 ·

[
dHG1
dt

]xG1yG1zG1
(10.47)

Equation (10.48) gives the resulting components of the derivative of the
angular momentum.

dH1x =0
dH1y =− β̈1 · Iv1 (10.48)
dH1z =0
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We now calculate the sum of momentum in the first limb by applying
Eq. (10.49).

NG1 = G1A1 × FA1 + G1B1 × FB1 + MB1 (10.49)

Equation (10.50) shows the value of G1A1 in the mobile reference sys-
tem (x1,y1,z1). [

G1A1
]x1y1z1 =

[
0 0 L−G1z

]T
(10.50)

By multiplying Eq. (10.50) by the rotation matrix Rot1 we get the
value of G1A1 in the fixed frame, as shown in Eq. (10.51). The result is
given by Eq. (10.52).

G1A1 =Rot1 ·
[
G1A1

]x1y1z1 (10.51)

G1A1 =
[
−(L−G1z) · sβ1 0 (L−G1z) · cβ1

]T
(10.52)

We expand Eq. (10.49) and substitute the value of the corresponding
vectors, obtaining Eq. (10.53).

NG1 =

−(L1 −G1z) · sβ1
0

(L1 −G1z) · cβ1

×
FA1x
FA1y
FA1z

+

 G1zs · β1
0

−G1z · cβ1

×
FB1x
FB1y
FB1z

+

MB1x
0

MB1z


(10.53)

We split Eq. (10.53) up and get the components of NG1, as Eq. (10.54)
shows.

NG1x =− (L1 −G1z) · cβ1 · FA1y +G1z · cβ1 · FB1y +MB1x

NG1y =(L1 −G1z) · (cβ1 · FA1x + sβ · FA1z)−G1z · (cβ1 · FB1x + sβ1 · FB1z)
NG1z =− (L1 −G1z) · sβ1 · FA1y +G1z · sβ1 · FB1y +MB1z

(10.54)
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We already have all the vectors that appear in Eq. (10.42), which now
we rewrite as the next three equations of the equation system – by Eq.
(10.55), Eq. (10.56) and Eq. (10.57).

−(L1 −G1z) · cβ1 · FA1y +G1z · cβ1 · FB1y +MB1x =0 (10.55)
(L1 −G1z) · (cβ1 · FA1x + sβ · FA1z)−
−G1z · (cβ1 · FB1x + sβ1 · FB1z) =− β̈1 · Iv1 (10.56)

−(L1 −G1z) · sβ1 · FA1y +G1z · sβ1 · FB1y +MB1z =0 (10.57)

10.2.3. Dynamic analysis of limb 2

The sum of forces in the second limb has to be equal to the mass of
the limb multiplied by the acceleration of its gravity centre, as Eq. (10.58)
shows ∑

F2 = m2 · aG2 (10.58)

where
∑
F2 is the sum of all the forces in the second limb, m2 is the mass

of the second limb and aG2 is the acceleration of its gravity centre (G2) in
the fixed reference system. In Fig. 10.1 we see the forces in the second limb.
Taking them into account we rewrite Eq. (10.58) as Eq. (10.59), Eq. (10.60)
and Eq. (10.61), three new equations of the equation system to solve.

FB2x − FA2x =m2 · aG2x (10.59)
FB2y − FA2y =m2 · aG2y (10.60)
FB2z − FA2z =m2 · aG2z +m2 · g (10.61)

We calculate the acceleration of the gravity centre of the second limb
by applying Eq. (10.62)

aG2 = aB2 +α2 ×B2G2 + Ω2 × (Ω2 ×B2G2) (10.62)

where aB2 is the acceleration of the B2 point, α2 is the angular acceleration
of the second limb, B2G2 is the vector that goes from the point B2 to the
gravity centre of the limb and Ω2 is the angular velocity of the second limb.
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We obtain all the vectors we need to calculate aG2. Equation (10.63)
gives the acceleration of the B2 point.

aB2 =
[
0 0 ρ̈2

]T
(10.63)

We express B2G2 in the mobile reference system (x2,y2,z2) as Eq.
(10.64) and in the fixed reference system as Eq. (10.65)[

B2G2
]x2y2z2 =

[
0 0 G2z

]T
(10.64)

B2G2 = Rot2 ·
[
B2G2

]x2y2z2 (10.65)

with Rot2 being the rotation matrix that represents the mobile reference
systems in the fixed reference system. It is written as Eq. (10.66), where β2
is the angle between the limb and the vertical, and the resulting value of
B2G2 in the fixed frame is given by Eq. (10.67).

Rot2 =

1 0 0
0 cβ2 −sβ2
0 sβ2 cβ2

 (10.66)

B2G2 =
[
−sβ2 ·G2z 0 cβ2 ·G2z

]T
(10.67)

The angular velocity and the angular acceleration of the second limb in
the fixed frame are given by Eq. (10.68) and Eq. (10.69), respectively.

Ω2 =
[
β̇2 0 0

]T
(10.68)

α2 =
[
β̈2 0 0

]T
(10.69)

We now write the expression of aG2 as Eq. (10.70).

aG2 =

 0
0
ρ̈2

+

β̈2
0
0

×
 0
−G2z · sβ2
G2z · cβ2

+

β̇2
0
0

×

β̇2

0
0

×
 0
−G2z · sβ2
G2z · cβ2




(10.70)
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We split Eq. (10.70) up and get the components of aG2, given by Eq.
(10.71).

a2x =0
a2y =− (β̇2

2 ·G2z · cβ2 + β̈2 ·G2z · cβ2) (10.71)
a2z =ρ̈2 + β̈2 ·G2z · cβ2 − β̇2

2 ·G2z · cβ2

With the value of the components of aG2, we write Eq. (10.59), Eq.
(10.60) and Eq. (10.61).

We obtain three more equations of the system by applying the angular
momentum theorem to the second limb, as expressed in Eq. (10.72)

NG2 =
∑[

d2 × F2 + M2
]xyz

=
[
dHG2
dt

]xyz
(10.72)

with
∑[

d2 × F2 + M2
]xyz

being the sum of momentum in the second limb

in the fixed reference system and
[
dHG2
dt

]xyz
being the derivative of the

angular momentum in the fixed frame. We first calculate the derivative of
the angular momentum and then the sum of momentum.

Equation (10.73) gives the angular momentum for the second limb in
the mobile reference system (xG2,yG2,zG2)[

HG2
]xG2yG2zG2 = IG2 ·Ω2 (10.73)

IG2 being the inertia matrix in G2 and ω2 being the angular velocity of the
second limb in the (xG2,yG2,zG2) mobile reference system.

According to this, the derivative of the angular momentum in the mobile
reference system is given by Eq. (10.74).[

dHG2
dt

]xG2yG2zG2
= IG · α2 + Ω2 ×HG2 (10.74)
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We substitute the corresponding vectors in Eq. (10.74) and get Eq.
(10.75). Its result is given by Eq. (10.76).

[
dHG2
dt

]xG2yG2zG2
=

Iu2 0 0
0 Iv2 0
0 0 Iw2

 ·
β̈2

0
0

+

β̇2
0
0

×
Iu2 · β̈2

0
0

 (10.75)

[
dHG2
dt

]xG2yG2zG2
=
[
β̈2 · Iu2 0 0

]T
(10.76)

We get the derivative for the angular momentum in the fixed frame
by multiplying Eq. ( 10.76) by the rotation matrix Rot2, as shown in Eq.
(10.77). [

dHG2
dt

]xyz
= Rot2 ·

[
dHG2
dt

]xG2yG2zG2
(10.77)

The resulting components of the derivative angular momentum are given
by Eq. (10.78).

dH2x =β̈2 · Iu2

dH2y =0 (10.78)
dH2z =0

We calculate the sum of momentum in the second limb by solving Eq.
(10.79).

NG2 = G2A2 × FA2 + G2B2 × FB2 + MB2 (10.79)

Equation (10.80) gives the value ofG2A2 in the mobile reference system
(x2,y2,z2). [

G2A2
]x2y2z2 =

[
0 0 L2 −G2z

]T
(10.80)
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We get the value of G2A2 in the fixed reference system by multiplying
Eq. (10.80) by the rotation matrix Rot2, as see in Eq. (10.81). The result
is given by Eq. (10.82).

G2A2 =Rot2 ·
[
G2A2

]x2y2z2 (10.81)

G2A2 =
[
0 −(L2 −G2z) · sβ2 (L2 −G2z) · cβ2

]T
(10.82)

By taking Eq. (10.82) and the forces and momentums in the second limb
– shown in Fig. 10.1 – into account we write Eq. (10.79) as Eq. (10.83).

NG2 =

 0
−(L2 −G2z) · sβ2
(L2 −G2z) · cβ2

×
FA2x
FA2y
FA2z

+

 0
G2z · sβ2
−G2z · cβ2

×
FB2x
FB2y
FB2z

+

 0
MB2y
MB2z


(10.83)

We split Eq. (10.83) up and get the components of NG2, given by Eq.
(10.84).

NG2x =− (L2 −G2z) · (sβ2 · FA2z + cβ2 · FA2y)+
+G2z · (sβ2 · FB2z + cβ2 · FB2y)

NG2y =(L2 −G2z) · cβ2 · FA2x −G2z · cβ2 · FB2x

NG2z =(L2 −G2z) · sβ2 · FA2x −G2z · sβ2 · FB2x +MB2z

(10.84)

We make Eq. (10.78) and Eq. (10.84) equal and get the three next
equations of the system we have to solve – Eq. (10.85), Eq. (10.86) and Eq.
(10.87).

−(L2 −G2z) · (sβ2 · FA2z + cβ2 · FA2y)+
+G2z · (sβ2 · FB2z + cβ2 · FB2y) =β̈2 · Iu2 (10.85)

(L2 −G2z) · cβ2 · FA2x −G2z · cβ2 · FB2x =0 (10.86)
(L2 −G2z) · sβ2 · FA2x −G2z · sβ2 · FB2x +MB2z =0 (10.87)
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10.2.4. Dynamic analysis of limb 3

The sum of forces in the third limb must be equal to the mass of the
limb multiplied by the acceleration of its gravity centre. Equation (10.88)
shows this condition ∑

F3 = m3 · aG3 (10.88)

where
∑
F3 is the sum of forces in the third limb, m3 is the mass of the

limb and aG3 is the linear acceleration of the gravity centre of the limb. We
see the forces in the third limb in Fig. 10.1. Taking them into account, we
write the next three equations of the system to be solved – Eq. (10.89), Eq.
(10.90) and Eq. (10.91).

FB3x − FA3x =m3 · aG3x (10.89)
FB3y − FA3y =m3 · aG3y (10.90)
FB3z − FA3z =m3 · aG3z +m3 · g (10.91)

Equation (10.92) gives the acceleration of the gravity centre of the third
limb

aG3 = aB3 +α3 ×B3G3 + Ω3 × (Ω3 ×B3G3) (10.92)

where aB3 is the acceleration of the B3 point, α3 is the angular acceleration
of the third limb, B3G3 is the vector that goes from B3 to G3 and Ω3 is
the angular velocity of the limb.

The acceleration of the B3 point is given by Eq. (10.93).

aB3 =
[
0 0 ρ̈3

]T
(10.93)

The value of B3G3 in the mobile reference system (x3,y3,z3) is given by
Eq. (10.94). [

B3G3
]x3y3z3 =

[
0 0 G3z

]T
(10.94)
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We get B3G3 in the fixed reference system by applying Eq. (10.95)

B3G3 = Rot3 ·
[
B3G3

]x3y3z3 (10.95)

with Rot3 being the rotation matrix that expresses the mobile reference
systems in the fixed reference, which is given by Eq. (10.96). The resulting
value of B3G3 in the fixed reference system is given by Eq. (10.97).

Rot3 =

 cβ3 0 sβ3
0 1 0
−sβ3 0 cβ3

 (10.96)

B3G3 =
[
sβ3 ·G3z 0 cβ3 ·G3z

]T
(10.97)

The angular velocity and acceleration of the third limb in the fixed
reference system are given by Eq. (10.98) and Eq. (10.99), respectively.

Ω3 =
[
0 β̇3 0

]T
(10.98)

α3 =
[
0 β̈3 0

]T
(10.99)

We substitute the value of the obtained vectors in Eq. (10.92) and get
the value of aG3, as seen in Eq. (10.100).

aG3 =

 0
0
ρ̈3

+

 0
β̈3
0

×
(G3z · sβ3

0
G3z · cβ3

+

 0
β̇3
0

×

 0
β̇3
0

×
G3z · sβ3

0
G3z · cβ3




(10.100)

We split Eq. (10.100) up and get the components of aG3, given by Eq.
(10.101).

aG3x = G3z · cβ3 · β̈3 −G3z · sβ3 · β̇2
3

aG3y = 0 (10.101)
aG3z = ρ̈3 −G3z · sβ3 · β̈3 −G3z · cβ3 · β̇2

3



10.2. Developing the dynamics of the 2PRU-1PRS parallel manipulator 145

We obtain the last three equations of the system we have to solve by
applying the angular momentum theorem for the third limb, expressed by
Eq. (10.109)

NG3 =
∑[

d3 × F3 + Mi

]xyz
=
[
dHG3
dt

]xyz
(10.102)

where
∑[

d3 × F3 + M3
]xyz

is the sum of momentum for the third limb

and
[
dHG3
dt

]xyz
is the derivative of the angular momentum, both in the

fixed frame. We first obtain the derivative of the angular momentum and
then the sum of momentums.

The angular momentum for the third limb in the mobile reference sys-
tem (xG3,yG3,zG3) is given by Eq. (10.103)[

HG3
]xG3yG3zG3 = IG3 ·Ω3 (10.103)

where IG3 is the inertia matrix in G3 and ω3 is the angular velocity of the
third limb in the (xG3,yG3,zG3) mobile reference system.

We express the derivative of the angular momentum in the reference
system (xG3,yG3,zG3) as Eq. (10.104).[

dHG3
dt

]xG3yG3zG3
= IG ·α3 + Ω3 ×HG3 (10.104)

By substituting the corresponding values we get Eq. (10.105), the result
being Eq. (10.106).

[
dHG3
dt

]xG3yG3zG3
=

Iu3 0 0
0 Iv3 0
0 0 Iw3

 ·
 0
β̈3
0

+

 0
β̇3
0

×
 0
Iv3 · β̈3

0

 (10.105)

[
dHG3
dt

]xG3yG3zG3
=
[
0 β̈3 · Iv3 0

]T
(10.106)
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We multiply Eq. (10.106) by the rotation matrix Rot3 and get the
derivative of the angular momentum in the fixed reference system, as shown
in Eq. (10.107). [

dHG3
dt

]xyz
= Rot3 ·

[
dHG3
dt

]xG3yG3zG3
(10.107)

The resulting components of the derivative of the angular momentum
in the fixed reference system is given by Eq. (10.108).

dH3x =0
dH3y =β̈3 · Iv3 (10.108)
dH3z =0

We obtain now the sum of momentum in the third limb by applying
Eq. (10.109).

NG3 = GA3 × FA3 + G3B3 × FB3 + MB3 (10.109)

The value of G3A3 in the mobile reference system (x3,y3,z3) is shown
in Eq. (10.110). [

G3A3
]x3y3z3 =

[
0 0 L3 −G3z

]T
(10.110)

We get the value of G3A3 in the fixed reference system by multiplying
Eq. (10.110) by the rotation matrix Rot as shown in Eq. (10.111). The
result is given by Eq. (10.112).

G3A3 =Rot3 ·
[
G3A3

]x3y3z3 (10.111)

G3A3 =
[
(L3 −G3z) · sβ3 0 (L3 −G3z) · cβ3

]T
(10.112)
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We replace the corresponding vectors in Eq. (10.109) and obtain Eq.
(10.113).

NG3 =

(L3 −G3z) · sβ3
0

(L3 −G3z) · cβ3

×
FA3x
FA3y
FA3z

+

−G3z · sβ3
0

−G3z · cβ3

×
FB3x
FB3y
FB3z

+

MB3x
0

MB3z


(10.113)

We get the components ofNG3 by making the component of Eq. (10.113)
equal, as shown in Eq. (10.114).

NG3x =− (L3 −G3z) · cβ3 · FA3y +G3z · cβ3 · FB3y +MB3x

NG3y =(L3 −G3z) · cβ3 · FA3x − (L3 −G3z) · sβ3 · FA3z−
−G3z · cβ3 · FB3x +G3z · sβ3 · FB3z

NG3z =(L3 −G3z) · sβ3 · FA3y −G3z · sβ3 · FB3y +MB3z

(10.114)

We substitute the obtained values in Eq. (10.109) and get the last three
equations of the system – Eq. (10.115), Eq. (10.116) and Eq. (10.117).

−(L3 −G3z) · cβ3 · FA3y +G3z · cβ3 · FB3y +MB3x = 0 (10.115)
(L3 −G3z) · cβ3 · FA3x − (L3 −G3z) · sβ3 · FA3z−

−G3z · cβ3 · FB3x +G3z · sβ3 · FB3z = β̈3 · Iv3 (10.116)
(L3 −G3z) · sβ3 · FA3y −G3z · sβ3 · FB3y +MB3z = 0 (10.117)

Thanks to this development, we have a 24 equation system and 24
unknown variables. The equations of the system are Eq. (10.3)-(10.5),
Eq. (10.25)-(10.27), Eq. (10.29)-(10.31), Eq. (10.55)-(10.57), Eq. (10.59)-
(10.61), Eq. (10.85)-(10.87), Eq. (10.89)-(10.91) and Eq. (10.115)-(10.117).
We express the system by using the expression A · f = C, where f is the
vector with all the reactions, A is the matrix with the coefficients that
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multiply the forces and c is the independent term. Equation (10.118), Eq.
(10.119) and Eq. (10.120) give the expressions of f, A and C, respectively.

f =
[
FA1x FA1y FA1z FA2x ... FB3z MB3x MB3z

]T
(10.118)

A =


a1,1 a1,2 ... a1,24
a2,1 a2,2 ... a2,24
... ... ... ...
a24,1 a24,2 ... a24,24

 (10.119)

c =
[
m · aGx m · aGy m · aGz +m · g ... 0 β̈3 · Iv3 0

]T
(10.120)
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The non-null components of A are given by Eq. (10.121).

a1,1 = 1 a1,4 = 1 a1,7 = 1
a2,2 = 1 a2,5 = 1 a2,8 = 1
a3,3 = 1 a3,6 = 1 a3,9 = 1

a4,2 = R · sθ +Gycθsψ a4,3 = −Gycψ a4,5 = −(R−Gy)cθsψ
a4,6 = (R−Gycψ) a4,8 = −Rsθ +Gycθsψ a4,9 = −Gycψ

a5,1 = −Rsθ −Gycθsψ a5,3 = −Rcθ +Gysθsψ a5,4 = (R−Gy)cθsψ
a5,6 = −(R−Gy)sθsψ a5,7 = Rsθ −Gycθsψ a5,9 = Rcθ +Gysθsψ

a6,1 = Gycψ a6,2 = Rcθ −Gysθsψ a6,4 = −(R−Gy)cψ
a6,5 = (R−Gy)sθsψ a6,7 = Gycψ a6,8 = −Rcθ −Gysθsψ

a7,1 = −1 a7,10 = 1 a8,2 = −1
a8,11 = 1 a9,3 = −1 a9,12 = 1

a10,2 = (L−G1z)cβ1 a10,11 = G1zcβ1 a10,13 = 1
a11,1 = −(L−G1z)cβ1 a11,3 = −(L−G1z)sβ1 a11, 10 = −G1zcβ1
a11,12 = −G1zsβ1 a12,2 = (L−G1z)sβ1 a12,11 = G1zsβ1

a12,14 = 1 a13,4 = −1 a13,15 = 1
a14,5 = −1 a14,16 = 1 a15,6 = −1
a15,17 = 1 a16,5 = (L−G2z)cβ2 a16,6 = (L−G2z)sβ2

a16,16 = G2zcβ2 a16,17 = G2zsβ2 a17,4 = −(L−G2z)cβ2
a17,15 = −G2zcβ2 a17,18 = 1 a18,4 = −(L−G2z)sβ2
a18,15 = −G2zsβ2 a18,19 = 1 a19,7 = −1

a19,20 = 1 a20,8 = −1 a20,21 = 1
a21,9 = −1 a21,22 = 1 a22,8 = (L−G3z)cβ3

a22,21 = G3zcβ3 a22,23 = 1 a23,7 = −(L−G3z)cβ3
a23,9 = (L−G3z)sβ3 a23,20 = −G3zcβ3 a23,22 = G3zsβ3
a24,8 = −(L−G3z)sβ3 a24,21 = −G3zsβ3 a24,24 = 1

(10.121)
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11

Optimization Criteria

11.1. Optimization methods in parallel
manipulators

The performance of a parallel manipulator is very sensitive to the geo-
metric parameters – a well dimensioned manipulator of any structural type
generally improves the performance of a poorly designed manipulator with
a structure that may seem more appropriate for the desired task.

Thus, optimization in parallel manipulators is extremely important. The
optimization solution depends on the performance or performances we need
to optimize. Thus, first of all, we need to define the application of the
parallel manipulator we want to design and identify the most influential
performances for the specific application.

Depending on the application, certain manipulator performance crite-
ria may be more important than others, as Hüsing et al. [204] remarked.
Those performance criteria include design for best position accuracy, de-
sign so that the workspace is the biggest possible one or a prescribed one,
design for optimum velocity, force, stiffness, dynamic behaviour, manipu-
lability or dexterity throughout the workspace. As Modungwa et al. [205]
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highlighted, performance requirements of parallel manipulators may be an-
tagonistic like, for example, the workspace and the accuracy. If so, we can
not optimize both performances at the same time, but we can define an
appropriate design. The objective of the appropriate design is not the opti-
mization of a particular function but to ensure that the manipulator satisfies
all the desired requirements.

As we have already seen, the small workspace is one of the biggest
drawbacks of parallel manipulators. Thus, many authors have optimized
different parallel manipulators in order to obtain a desired workspace. Mer-
let [14], [206] introduced a numerical procedure to determine all the possible
geometries of a 6-DOF Gough-type parallel manipulator whose workspace
included a desired one. Laribi et al. [207] proposed a method that combined
genetic algorithm and fuzzy logic that obtained the parameters of a DELTA
robot for a prescribed cuboid workspace. Kosinska et al. [208] determined
the parameters of the DELTA robot for both prescribed cuboid workspace
and wee-conditioned workspace. Huang et al. [209] presented an analytical
approach to get the actuated joint stroke of a 6-PSS parallel manipula-
tor for a prescribed cylindrical workspace with given orientation capability.
Zhao et al. [210] minimized the leg length of parallel manipulators for a
desired cylindrical dexterous workspace. Liu et al. [148] presented a per-
formance charts method to determine the parameters of a DELTA robot
for desired workspace with prescribed performance indices. Tsai and Joshi
[211] proposed an optimization of the 3-PUP parallel manipulator by taking
the quality of the workspace into account – they considered the dexterity
for each position of the workspace. Zhang and Fang [212] optimized the
geometrical parameters of the 3-PRS parallel manipulator to get a specific
workspace. Hou and Zhao [213] optimized the 3-PUU parallel manipulator
with medicine applications. In this case, optimizing the workspace of the
robot was indispensable to improve the requirements of the patients.

Another performance index commonly used to optimize parallel mani-
pulators is the dexterity. Pittens and Podhorodeski [214] maximized the
local dexterity of a family of 6-DOF Stewart platform parallel manipula-
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tors. Gosselin and Angeles [215] introduced the global conditioning index
and used it to optimize the global dexterity of parallel 3-DOF planar and
spatial manipulators. Barbosa et al. [216] and Lopes et al. [217] used the
condition number of the inverse kinematic Jacobian matrix to measure the
dexterity and optimize a 6-DOF parallel manipulator by using evolutionary
algorithms. Nefzi et al [218] proposed direction-dependent Jacobian indices.
They optimized these indices over a demanded workspace and used them
in the design process of several parallel manipulators.

Another possibility is to optimize the manipulator for a desired stiffness.
This is what Chakarov [219] did – he proposed a topological and dimensio-
nal optimization method of manipulators with desired stiffness. Babu et al.
[220] presented a multi-objective optimization method for the 3-RPS para-
llel manipulator that considered the global conditioning index, the global
stiffness index and the workspace volume.

The static/dynamic performance has received less attention in the lite-
rature, but since one of the main characteristics of parallel manipulators is
their high kinematic and dynamic capacities, it is also interesting to take
them into account when optimizing a parallel manipulator. The dynamic
performance of a parallel manipulator is, generally, better when the mass
is the minimum possible. The problem is that a smaller mass can lead to
a lower stiffness value or to a smaller size of the elements and, thus, to a
smaller workspace. According to that, we usually consider the dynamic per-
formance together with the stiffness and/or the workspace size. Wu et al.
[221] developed a dynamic model for spherical parallel manipulators based
on the Lagrange multipliers that allows us to calculate the power consum-
ption effectively. Based on this dynamic model, along with the kinematics
and the stiffness of the manipulator, they designed a multi-objective op-
timization method for spherical parallel manipulators. They applied it to
a 3-DOF unlimited-roll spherical parallel manipulator and obtained the
Pareto-optimal solutions by using a genetic algorithm.

The most common techniques used to solve the optimization problem
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are the objective-function based optimal design and the performance chart
(atlas). In the objective-function technique we first have to define an ob-
jective function with specified constraints and then find the optimal result
by applying an optimization algorithm. This technique is time-consuming
and, due to the antagonism of performances, it is very difficult to find an
optimum solution for multiple criteria. Besides, it is necessary to define an
initial value, which is usually complicated.

A performance chart shows the relationship between a performance in-
dex and related design parameters in a small space, globally and very vi-
sually. In this way, a performance chart can show how antagonistic the
chosen criteria are. If we compare the results obtained with this techni-
que with the ones obtained by applying the objective-function technique,
we see that the optimum result is more fuzzy when we apply the perfor-
mance chart. However, the performance chart is more flexible – it provides
more than one solution to a design problem. Therefore, the designer can
adjust the optimum result by taking the design conditions into account.
The most important fact in this technique is the presentation of the per-
formance charts. The biggest drawback is that the value of each parameter
of the manipulator can be between zero and infinity. Liu and Wang [222]
presented the parameter-finiteness normalization method (PFNM) in order
to find a solution to the parameter infinity problem. By using this met-
hod, they presented a new design methodology for mechanisms with fewer
than five linear parameters. The main advantages of their method are that
one performance criterion corresponds to a chart, that the optimal solution
can consider multi-objective functions and that it guarantees the optimal
solution and provides all the possible optimal solutions.
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11.2. Optimization criteria proposed
We present two optimization methods to find the best combination of

geometry parameters (GP) according to two different criteria.

The first method analyses the useful WS and its regularity for different
GP combinations. The best GP combination is the one that leads to the
useful WS with the highest regularity. The second method focusses on the
power consumption along a given trajectory. In this case, the best GP
combination is the one that consumes the lowest power.

We design both methods for any parallel manipulator and, in this work,
we show how they perform for the particular case of the 2PRU-1PRS 3
DOF parallel manipulator.

11.2.1. Maximise geometry object in the useful WS

This method studies the useful WS for different GP combinations as
well as its regularity. To obtain the WS for different GP combinations, we
provide discrete candidate-values for the geometry parameters and create a
set with all combinations. We call that set of combinations StudyVariables.
Checking all StudyVariables would lead to high computational cost, but
by applying some known particular conditions that the geometry of the
manipulator has to fulfil we can reject many of them. We define the set
of combinations that fulfil those particular conditions as suitable geometry
parameters.

In a same way as explained in Section 8.1, we define discrete candidate-
poses for the workspace, the StudyPoints, and obtain the useful WS and
the largest geometry object (GO) contained in it for each GP combination.
Generally, the biggest GO can be placed in more than one position in the
useful WS. If that is so, we obtain all the positions where the biggest GO
can be placed and label the number of positions where the GO can be as
GOP. The best GP combination for the WS is the combination that leads
to the useful WS containing the largest GO, GOmax. It can also happen
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that more than one GP leads to the GOmax. In that case, we define the best
GP for the WS to be the GP combination that leads to the GOmax with
highest GOP. Whatever the case may be, we get the set of suitable GP for
which the GO in the useful WS is at least 0.5·GOmax. These suitable GP
are the StudyVariables for the optimization of the power consumption of
the next Section.

The flowchart given in Fig. 11.1 shows the steps to follow in this method:

1. Define the GP combinations.

2. Get the suitable GP combinations.

3. Get the useful WS for each suitable GP combination.

4. Obtain the GO for each GP and the number of positions where it can
be placed.

5. Define the GOmax as the biggest GO.

6. Define the best GP combination as the one that leads to the GOmax.

7. If several GP lead to the GOmax, define the best GP combination as
the one for which the GOmax can be placed in the highest number of
positions.

In this work we choose the geometric object to be a sphere. Changing
the object to be another geometric entity would yield a different best GP
combination.
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Figure 11.1: Optimization of GP to maximise the GO in the WS
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11.2.2. Minimise the power consumption

The second method consists in finding, out of the StudyVariables, the
GP combination that leads to the lowest power consumption of the motors.
It is important to remark that the power consumption depends on the
trajectory of the end-effector. Thus, before solving the dynamic problem,
we have to define the trajectory of the end-effector for which we want to
optimise the GP. Then, we have to solve the inverse dynamic problem and
check that all the requirements of the linear guides, gear-heads and motors
are fulfilled. This is to say, we have to check that the manipulator can really
follow the trajectory we have defined. The GP combinations that fulfil the
requirements are suitable GP combinations.

We obtain the power consumption for the suitable GP combinations
along the trajectory. We calculate the power consumption as the mean value
of the sum of the power required in all actuators. The best GP combination
is the one that consumes the lowest power.

According to this, the steps to follow in this second are the ones shown
in Fig. 11.2:

1. Get the StudyVariables.

2. Define the trajectory of the end-effector.

3. For each StudyVariables combination, solve the dynamics problem for
the defined trajectory.

4. Check that the requirements of the motors and the linear guides are
fulfilled – get the suitable GP combinations.

5. For the suitable GP combinations, obtain the power consumption.

6. Define the best GP combination as the one that leads to the lowest
power consumption.
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Figure 11.2: Optimization of GP to maximise the GO in the WS
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Particular case: 2PRU-1PRS
manipulator

In this Chapter we apply the method presented in Chapter 11 to the
particular case of our manipulator – the 2PRU-1PRS 3 DOF parallel ma-
nipulator. We work with specific motors, planetary gear heads and linear
guides. Additionally, we choose the geometric object to be a sphere and the
trajectories of the end-effector to be harmonic trajectories.

As we have already seen in previous chapters, the geometry parameters
of the 2PRU-1PRS manipulator are:

H: radius of the fixed platform
L: length of the limbs
R: radius of the mobile platform
t: thickness of the mobile platform
s: radius of the cross-section of the limbs

We know that the geometry parameters that affect the WS are the
radius of the mobile platform, the radius of the fixed platform and the
length of the limbs, while the radius of the limbs and the thickness of the
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mobile platform do not affect the WS.

12.1. Maximise the sphere in the useful WS of
the 2PRU-1PRS

In this Section we get the optimum H, L and R combination to get the
useful WS with the biggest sphere in it. The first step is to define set of
GP combinations to be studied, the StudyVariables. We define the ranges
of the geometry parameters as shown in Table 12.1.

Table 12.1: GP ranges for the optimization process

Description Value
H (m) Fixed platform radius (0.3,0.75)
L (m) Limbs length (0.2,0.65)
R (m) Mobile platform radius (0.2,0.65)

We define the number of discretizations for each GP to be 10, so we
obtain the 1000 GP possible combinations. Optimizing all of them would
lead to a very high computational cost, so we apply the restrictions that
the geometry of the manipulator has to satisfy.

As we see in Fig. 12.1, the 2PRU-1PRS manipulator can have two con-
figurations depending on the relation between the value of the radius of the
mobile platform and the radius of the fixed platform. Figure 12.1a shows
the configuration with the radius of the fixed platform bigger than the ra-
dius of the mobile platform, while Fig. 12.1b shows the configuration with
the radius of the mobile platform bigger than the fixed one. In this work,
we study the first configuration, so the StudyVariables have to fulfil the
condition H>R.
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(a) (b)

Figure 12.1: Possible configurations (a) H>R; (b) H<R

We also know that the sum of values of the radius of the mobile platform
and the length of the limbs has to be greater than the radius of the fixed
platform, H<L+R. Accordingly, there are two conditions that we have to
apply when defining the suitable GP combinations:

1. The radius of the fixed platform is larger than the radius of the mobile
platform, H>R

2. The radius of the fixed platform is smaller than the sum of the radius
of the mobile platform and the length of the limbs, H<R+L

By applying those restrictions, we get only 529 suitable GP combina-
tions. This is to say, the number of GP combinations to check has been
reduced by 47.1 %, from the 1000 initial GP combinations to the 529 sui-
table GP combinations.

Similarly, we obtain the candidate-poses for the workspace, the StudyPoints.
We define the limits of the space to be checked as shown in Table 12.2. We
discretize each axis in 60 points, obtaining a cubic grid of size 60 x 60 x 60.
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Thus, the total number of StudyPoints is 216000.

Table 12.2: Output limits

Description Value
ψ (◦) rotation about X-axis (-90,90)
θ (◦) rotation about Y-axis (-90,90)
z (m) translation along Z-axis (0.3,0.8)

We also define the ranges of the linear guides and the spherical joint as
seen in the Table 12.3. These values correspond to the real values of the
linear guides and spherical joint that we will use to build the prototype, as
we will see in Chapter 14.

Table 12.3: Physical restrictions

Description Value
LG (m) linear guide range (0,0.3)
SJ (◦) spherical joint range (-25,25)

To have an idea of the regularity of the useful WS and be able to
determine which solution is the best one, we obtain the useful WS and
the biggest sphere in it for each suitable GP combination, Sjmax. A WS
contains a sphere if the entire sphere is part of the WS. We denote the
largest sphere from the set of all Sjmax by Smax. To know which sphere
is the biggest one, we compare the radii of all the spheres. The best GP
combination is the one that leads to the useful WS containing the Smax.
Note that we can have multipleWSj such that the radius of Sjmax = radius
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of Smax. In that case, the best GP combination is the one that leads to the
biggest sphere that can be placed in more number of positions.

For these set ranges, we get the useful WS and the biggest sphere in it for
each GP combination. This biggest sphere has a radius of 7 discretization
points. Table 12.4 shows the GP combinations that lead to the useful WS
containing the biggest sphere and the number of positions where the biggest
sphere can be placed.

Table 12.4: GP combinations for biggest sphere in WS

H (m) L (m) R (m) Sphere Positions
1 0.35 0.25 0.2 4
2 0.4 0.3 0.2 4
3 0.45 0.35 0.2 4
4 0.45 0.4 0.2 2
5 0.5 0.4 0.2 2
6 0.5 0.45 0.2 4
7 0.55 0.45 0.2 2
8 0.55 0.5 0.2 4
9 0.55 0.55 0.2 4
10 0.6 0.55 0.2 4
11 0.6 0.6 0.2 4
12 0.6 0.65 0.2 2
13 0.65 0.55 0.35 2
14 0.65 0.6 0.35 4
15 0.7 0.6 0.25 2

As we see, there are 15 GP combinations that lead to a useful WS



168 Chapter 12. Particular case: 2PRU-1PRS manipulator

containing the biggest sphere. For 6 of those combinations the center of
the biggest sphere can be placed in 2 different positions, while for the ot-
her 9 it can be placed in 4 different positions. Thus, there are 9 best GP
combinations, given by Table 12.5.

Table 12.5: Best GP combinations for biggest sphere in maximum number
of positions in WS

H (m) L (m) R (m)
1 0.35 0.25 0.2
2 0.4 0.3 0.2
3 0.45 0.35 0.2
4 0.5 0.45 0.2
5 0.55 0.5 0.2
6 0.55 0.55 0.2
7 0.6 0.55 0.2
8 0.6 0.6 0.2
9 0.65 0.6 0.35

Figure 12.2 shows two of the best solutions and their WS containing
the biggest sphere placed in the first possible position. In Fig. 12.2a we
see the manipulator with H=0.35 m, L=0.25 m and R=0.2 m in horizontal
position for a z=0.5 m. Fig. 12.2b presents the useful WS corresponding to
that GP combination and the biggest sphere in it. We see another optimal
solution in Fig. 12.2c. In this case the GP is H=0.6 m, L=0.6 m and R=0.2
m. Figure 12.2d shows its useful WS and the biggest sphere. As we can
see, even if the biggest sphere is of the same size and it can be placed in
the same number of places, the solution for the manipulator as well as the
shape and position of the useful WS can be very different.
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(a) (b)

(c) (d)

Figure 12.2: Two optimal GP: (a) sketch of (H, L, R)=(0.35, 0.25, 0.2) m;
(b) WSuse & Smax for (H, L, R)=(0.35, 0.25, 0.2) m; (c) sketch of (H, L,
R)=(0.6, 0.6, 0.2) m; (d) useful WS & Smax for (H, L, R)=(0.6, 0.6, 0.2) m

We get the GP combinations that lead to an useful WS containing a
sphere at least 0.5·Smax and we label them as the StudyVariables for the
next optimization method. There are 325 StudyVariables combinations in
total.
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12.2. Minimise the power consumption
In this Section we analyse the suitable GP combinations in order to

determine which one is the best GP combination in terms of power con-
sumption. We first define the StudyVariables to be the suitable GP com-
binations. We also define the radius of the limbs and the thickness of the
mobile platform as the necessary parameters to solve the dynamic problem.
Besides, we have to define the density of each element, and the gravity cons-
tant. We consider the material of the mobile platform to be aluminium and
the material of the limbs, steel. Table 12.6 gives the value of all these pa-
rameters described.

Table 12.6: Parameters

Definition Value
ρal (kg/m3) Aluminium density 2710
ρst (kg/m3) Steel density 7850

s (m) Radius of the limbs 0.005
e (m) Thickness of the mobile platform 0.004

g (m/ s2) Gravity constant 9.81

We work for the motors, gear heads and linear guides that we will use
when bulding the prototype. We present their data in Table 12.7 and in
Chapter 14 we will justify the choice. We define a GP combination to be
suitable in the optimization of the power consumption for a given trajectory
when it fulfils all the restrictions of the linear guides, motors and the gear
head.
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Table 12.7: Motor, gearhead and linear guide data

Value

M
ot
or
-G

ea
r Nominal current 24 A

Max. power 150 W
Max. speed 12000 rpm

Nominal torque 0.177 Nm
Reduction Ratio 15

LG

Displacement range (0, 0.3) m
Max, velocity 5 m/s
Radial Load 300 N
Belt Tension 200 N

Displacement Ratio 0.07 m/rev

According to this, in order to be a suitable GP combinations for the
optimization of the power consumption for a given trajectory, a GP com-
bination has to fulfil the following conditions:

The displacement of the linear guides has to be in their displacement
range: 0 <ρi <0.3 m

The velocity of the linear guides has to be lower than their velocity
limit: dρi <5 m/s

The radial load in the linear guides has to be lower than the maximum
radial load: Fradiali <300 N

The axial load in the linear guides has to be lower than the maximum
belt tension: Faxial<200 N
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The speed of the motors have to be lower than the maximum speed
allowed: Speedmax <12000 rpm. The expression that gives the speed
of the motors is Eq. (12.1),

Speedi = dρi
Rgearhead

· 60
2π ·Reduction Ratio (r.p.m) (12.1)

where Rgearhead is the radius of the gearhead and we obtain by applying
Eq. (12.2).

Rgearhead = Displacement Ratio

2π (m) (12.2)

The power required by the motors has to be lower than the maxi-
mum power: Powi <150 W. We calculate the power that the motors
consume by applying Eq. (12.3).

Powi = dρi · Faxiali (W ) (12.3)

The torque supported by the motors can not exceed the maximal
possible torque: Ti <0.177 Nm. We get the torque in the motors by
solving Eq. (12.4).

Ti = mean(Faxiali) ·Rgearhead
Reduction Ratio

(N ·m) (12.4)

We repeat this checking process for each Study Variables and get the
suitable GP combinations for the power optimization proces. We calculate
the total power consumption during the studied trajectory for each suitable
GP combination. The power consumption of one motor over the trajectory
is obtained by integrating the power required by that motor over time,
as shown in Eq. (12.5). Equation (12.6) gives the expression of the total
power consumption, which is the sum of the power consumption of the three
actuators.

Power comsumptioni =
∫
Poti(t)dt (W ) (12.5)

Power comsumptionT =
∑

Power comsumptioni (W ) (12.6)
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We define the best GP combination in terms of power consumption as
the suitable GP combination that requires the lowest power consumption
for the trajectory analysed.

As we see, the power consumption depends on the trajectory of the
mobile platform, so we have different solutions of best GP combination for
different trajectories. In this work we optimize the manipulator for the three
harmonic trajectories given in Table 12.8 – one rotation about X-axis, one
rotation about Y-axis and one translation along Z-axis. We set the total
time of the trajectory to be 4 seconds and discretize the trajectory in 500
parts, with the time step being 0.008 sec. We choose the frequency and the
amplitude values to be the most common used for vehicle control vibration
tests in Spain – frequency of 2.7 Hz and amplitude of 3◦ for the rotation
trajectories and 3 m for the translation.

Table 12.8: Harmonic trajectories definition

traject(t) = C +A · sin(ωt)
C A f = ω/(2 · π) t

X- and Y axes 0 3◦ 2,7 Hz 4 s
Z-axis 0,5 m 0,003 m 2,7 Hz 4 s

12.2.1. Trajectory I

The first trajectory is a rotation about X-axis. We solve the inverse
kinematic and dynamic problems for the Study Variables. We see that the
325 Study Variables fulfil the requirements of the motors and the linear
guides and they are, thus, suitable GP combinations. Figure 12.3 shows the
total power consumption for all the suitable GP combinations for trajectory
I. The GP combination (H, L, R)=(0.75, 0.3 0.6) m is the combination
that consumes the most for this trajectory – 7.5687 W. The lowest power
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consumption is 0.683 W and it corresponds to the GP combination (H, L,
R)=(0.35, 0.2, 0.2) m. Thus, (H, L, R)=(0.35, 0.2, 0.2) m is the best GP
combination for trajectory I.

Figure 12.3: Power consumption for all the suitable GP for trajectory I

We now present the results for the best GP. Figure 12.4a and Fig. 12.4b
show the displacement and the velocity of the linear guides, respectively. As
we see, the displacement of the linear guides is always in their displacement
range permitted, [0, 0.3] m, and the velocity is lower than the maximum
velocity allowed, 5 m/s. As we see, the first and third actuators do not
move, so the speed of the first motor and the third one are null. The mean



12.2. Minimise the power consumption 175

value of the speed of the second motor is 1449 r.p.m., much lower than the
speed limit of the motors.

(a) (b)

Figure 12.4: Trajectory I: (a) displacement of the linear guides ; (b) velocity
of the linear guides

We present the axial force in the linear guides in Fig. 12.5a and the
radial force in Fig. 12.5b. As we see, the axial force in the first and third
linear is almost constant – it only varies from -1.3725 N to -1.3324 N – while
for the second linear guide the variation range is [-1.7918, -0.9174] N. On
the contrary, radial force is null and constant for the second linear guide
and for the first and third linear guides it varies from -0.5542 N to -0.3107
N. In both cases the forces are under the maximum limits at every moment
in the trajectory. The power required by the motors along the trajectory
is shown in Fig. 12.5c. It is null for the first and third linear guides and
harmonic for the third one. The maximum value it takes is 0.2452 W, so
it fulfils the power limitation of the motors. For this trajectory, the mean
torque in the motors is 0.001 N · m, lower than Tmax, so it also fulfils the
torque requirement.
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(a) (b)

(c)

Figure 12.5: Trajectory I: (a) axial force in the linear guides ; (b) radial
force in the linear guides; (c) power required by the motors

12.2.2. Trajectory II

The second trajectory is a rotation about Y-axis. We check if the Study
Variables fulfil the restrictions of the linear guides and motors and see that
all of them are suitable GP combinations. We get the total power consum-
ption for all the suitable GP combinations during the harmonic trajectory
about Y-axis and we it in Fig. 12.6. In this case, the highest total power
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consumption is 15.0413 W, corresponding again to the GP combination (H,
L, R) = (0.75, 0.3, 0.3) m. The lowest total power consumption is 1.2133
W, the best GP combination being, as for trajectory I, (H, L, R) = (0.35,
0.2, 0.2) m.

Figure 12.6: Power consumption for all the suitable GP for trajectory II

In Fig. 12.7a we see the displacement of the linear guides during tra-
jectory II and in Fig. 12.7b, their velocity. Along this trajectory the second
linear guide is motionless, placed at a distance of 0.1677 m from the referen-
ce plane. The first and third linear guides describe a harmonic trajectory
with same amplitude and frequency but opposite direction. The maximum
displacement value is 0.1785 m and the minimum, 0.1576 m. The velocity of
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the second linear guide is null and the velocity of the first and third linear
guides is another harmonic trajectory with maximum and minimum values
equal to -0.1778 m/s and 0.1778 m/s, respectively. In this way, we see that
the displacement range restriction, (0, 0.3) m, as well as the velocity limit
restriction, 5 m/s, are fulfilled.

(a) (b)

Figure 12.7: Trajectory II: (a) displacement of the linear guides ; (b) velocity
of the linear guides

Figure 12.8a shows the axial force in the linear guides. It almost stays
constant for the second linear guide, with a minimum value of -1.3508 N and
a maximum value of -1.6226 N. However, for the first and third linear guides
it varies from -1.7921 N to -0.9172 N following a harmonic function. In Fig.
12.8b we see the radial force in the linear guides. It varies harmonically in
the three limbs, but its amplitude is higher for the second one – it varies
from -0.6838 N to -0.1304 N for the first and third linear guides and from
-0.5379 N to 0.523 N for the second one. For all limbs, both axial and
radial forces are lower than the maximum forces that the linear guides
can support. In Fig. 12.8c we present the power that the motors require.
Since the second linear guide remains motionless, the second motor does
not consume power, unlike the first and third ones, that require a maximum
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power of 0.2452 W. This value is lower than the maximum power that the
motors can provide. Accordingly, the mean torque in the first and third
motors is 0.001 N ·m and in the second motor, 9.929 ·10−4 N ·m. Finally,
we calculate the mean speed of the motors – it is 1450 r.p.m. for the first
and third motors and 0 r.p.m. for the second one.

(a) (b)

(c)

Figure 12.8: Trajectory II: (a) axial force in the linear guides ; (b) radial
force in the linear guides
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12.2.3. Trajectory III

Trajectory III is a translation along Z-axis. We solve the inverse kine-
matic and dynamic problems and check that in this case also all the Study
Variables are suitable GP combinations. We get the total power consum-
ption for each suitable GP combination and see that the GP combination
that consumes the highest power is once more (H, L, R) = (0.75, 0.3, 0.6)
m – it consumes a total power of 2.1812 W. For this trajectory, we have two
best GP combinations – (H, L, R) = (0.35, 0.2, 0.2) m and (H, L, R) = (0.3,
0.2, 0.2) m. Both combinations consume a total power of 0.5224 W. Figure
12.9 shows the power consumption for each suitable GP combination.

Figure 12.9: Power in the actuators for all the suitable the best GP for
translation about Z-axis
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We solve the inverse kinematic and dynamic problems for the best GP
combination. Because of the symmetry of the manipulator, the values ob-
tained in the linear guides and the motors have to be the same for the
three limbs. Figure 12.10a presents the displacement of the linear guides,
while Fig. 12.10b shows their velocity. They both follow a harmonic fun-
ction, the minimum and maximum values being [0.1647, 0.1707] m for the
displacement and [-0.0509, 0.0509] m/s for the velocity.

(a) (b)

Figure 12.10: Trajectory III: (a) displacement of the linear guides ; (b)
velocity of the linear guides

In Fig. 12.11a we see the axial forces in the linear guides, the minimum
value being -1.4702 N and the maximum, -1.2327 N. Figure 12.11b shows
the radial forces. The radial force in the second linear guide is null, while
for the first and third linear guides is harmonic, with a minimum value of
-0.4605 N and a maximum value of -0.3861 N. The axial forces, as well as
the radial forces, are lower than the force limits of the linear guides. In Fig.
12.11c we see the power required by the motors. It is the same for the three
of them, with a maximum of 0.0694 W in absolute value. The speed and
the torque of the motors is also the same for the three limbs – the mean
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speed is 415.58 r.p.m. and the torque 0.001 N ·m, so they both fulfil the
requirements.

(a) (b)

(c)

Figure 12.11: Trajectory III: (a) axial force in the linear guides ; (b) radial
force in the linear guides
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12.3. Interpreting results
We have applied the two optimization methods proposed in Chapter 11

to the 2PRU-1PRS parallel manipulator and we now summarize briefly to
aide interpreting the results obtained.

We applied the WS optimization method to 1000 GP combinations and
obtained the GP combinations that lead to the biggest sphere in the useful
WS. The biggest sphere has a radius of 7 discretization points. The are
15 GP combinations whose useful WS house the biggest sphere. For six of
those GP combinations, the biggest sphere can be placed in two positions,
while for the other nine, the biggest sphere can be placed in four different
positions in the useful WS. Thus, we get 9 best GP combinations.

We define the StudyVariables of the power optimization method as the
GP combinations that lead to a useful WS containing a sphere at least
0.5·Smax. In this way, we get 325 StudyVariables to analyse in the power
optimization method. The best GP combination of this method is the one
that leads to the lowest power consumption.

The power consumption depends on the trajectory of the manipulator.
We define three different harmonic trajectories to be studied – one rotation
about the X-axis, one rotation about the Y-axis and one translation along
the Z-axis. We see that for the case of the rotations the best GP combination
is (H, L, R)=(0.35, 0.2, 0.2) m. For the translation along the Z-axis we get
two best combinations: (H, L, R)=(0.35, 0.2, 0.2) m and (H, L, R)=(0.3,
0.2, 0.2) m. Since (H, l, R)=(0.35, 0.2, 0.2) m is optimal solution for the
three trajectories, we define it as the best GP combination according to the
power consumption.
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Solution Chosen

The solution chosen to build the prototype is not an optimal solution,
but it is close to them. The aim of building a prototype is basically to have
a tool that allows us to validate the theoretical results as we obtain them.

We chose the radius of the fixed and mobile platforms to be 0.4 m and
0.35 m, respectively. The length of the legs is 0.264 m. The thickness of the
mobile platform is 0.004 m and the radius of the legs is 0.005 m. Table 13.1
shows these values and Fig. 13.1 shows the CAD model of the prototype. In
next Chapter we will present the characteristics of the linear guides, motors
and joints.

187
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Table 13.1: Geometry parameters

Description Value
H (m) Fixed platform radius 0.4
L (m) Limb length 0.264
R (m) Mobile platform radius 0.35
s (m) Limbs radius 0.005
e (m) Mobile platform thickness 0.004

0.35 m
0.3

5 m

0.3
5 m

0.4 m

0.4
 m

0.4
 m

0
.2

6
4
 m

0
.2

6
4
 m

Figure 13.1: Dimensions of the prototype
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Design of the Prototype

14.1. Component design
The main idea when designing the prototype is to have a manipulator

with the smallest clearances as possible. In order to do it, we try to use
commercial products as much as possible.

In this Chapter we describe the chosen components and we validate the
solution.

14.1.1. Linear guides, motors and gearheads

Since there is not an unique set of products that fulfil the requirements of
power, load capacity and displacement of our manipulator, our first option
is to use components that we already know. In previous projects, we have
worked with motors and gear heads from Maxon and linear guides from
Igus, so we search for a combination suitable for our manipulator.

Figure 14.1 shows the solution chosen. The motor, shown in in Fig.
14.1a, is a Maxon RE Num. 148867. It is a DC motor, with a nominal
current of 24 A, a maximum power of 150W and a nominal voltage and
torque of 6 A and 0.177 Nm, respectively.

189
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The gear-head is a Maxon Planetary Gearhead GP 42 C Num. 203116,
which allows a reduction of 15:1. It is shown in Fig. 14.1b.

We choose the maximum displacement of the liner guides to be 0.3 m,
which is enough to run the trajectories we desire. Using linear guides with
a larger displacement would lead to a bigger workspace, but also to a lower
stiffness. We select the Igus ZLW-1040-02-S-100-L(R)-300 linear guide, seen
in Fig. 14.1c. The maximum radial load that it can support is 300 N, while
the maximum belt tension is 200 N. Its displacement ratio is 0.07 m per
revolution.

(a) (b) (c)

Figure 14.1: Chosen products: (a) DC motor. Courtesy of Maxon; (b) pla-
netary gearhead. Courtesy of Maxon; (c) linear guide. Courtesy of Igus

Table 14.1 presents the data of the three components – the motor, the
gearhead and the linear guide – and Fig. 14.2 shows the assembly of the
three components.
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Figure 14.2: Assembly

Table 14.1: Motor, gearhead and linear guide data

Value

M
ot
or
-G

ea
r Nominal current 24 A

Max. power 150 W
Nominal voltage 6 A
Nominal torque 0.177 Nm

Reduction 15:1

LG

Max. displacement 0.3 m
Radial Load 300 N
Belt Tension 200 N

Displacement Ratio 0.07 m/rev

14.1.2. Revolute, universal and spherical joints

The revolute joints connect the actuators with the limbs, allowing a ro-
tational degree of freedom about the Y-axis for the first and third limbs and
about the X-axis for the second limb. Figure 14.3 represents the rotations
that we should get by using the revolute joints.
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Figure 14.3: Revolute joint axes

In order to get those rotations, we attach each limb to a shaft. We
insert the extremes of the shaft into two bearings that are placed in two
shaft supports. The shaft supports have to be always collinear along the axis
about which the shaft has to rotate. To ensure this, we use an intermediate
piece that connects the shaft supports to the linear guide making the shaft
support and the rotation axis to be collinear. We can see all the parts of
the revolute joint in Fig. 14.5.
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Figure 14.4: Revolute joint parts

Figure 14.5a shows the revolute joint drawn in CATIA, while Fig. 14.5b
shows the final solution already built in the prototype.

(a) (b)

Figure 14.5: Revolute joint: (a) CATIA drawing; (b) final solution
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For the universal joint we need to build a union between the platform
and the limbs 1 and 3 that allows two DOF of rotation about the X- and
Y-axes, as see in Fig. 14.6.

Figure 14.6: Universal joint axes

The typical universal joints that we can find in commercial catalogues
allow two rotations about perpendicular axes, but those rotation axes do not
coincide with the ones we need – they are about the X- and Z-axes. Figure
14.7a shows in red the axes about which rotation is allowed in common
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universal joints, while in Fig. 14.7b we see the axes about which we need
our manipulator to be able to rotate represented in blue. As we appreciate,
the typical universal joints are not suitable for our manipulator and, thus,
we need another solution to build our universal joint.

(a) (b)

Figure 14.7: Typical universal joint courtesy of Waft: (a) real rotation axes
(b) desired rotation axes

In order to create the rotation about the Y-axis, we connect the limb
to a shaft whose extremes rotate inside two bearings, placed in two shaft
supports, in a similar way as we did for the revolute joints. The bearings
have to be collinear along the Y-axis. To ensure this, we attach them to a
guidance piece. We see all the parts that allow the revolution about Y-axis
in Fig. 14.8.
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Figure 14.8: Universal joint parts for the rotation about Y-axis

We use another shaft to create the rotation about X-axis. We fix one
extreme of the shaft to the mobile platform using a screw and allow the
other extreme to rotate thanks to a bearing placed inside the guidance piece.
Figure 14.9 shows the parts of the universal joint that allow the rotation
about X-axis.

Figure 14.9: Universal joint seen from different views
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The spherical joint must allow 3 rotation dof about X-, Y- and Z-axes,
as we can see in Fig. 14.10.

Figure 14.10: Spherical joint axes

An ideal spherical joint has no restriction in its rotations but, in practice,
real ones can only rotate between a known range of angles. As we have
already seen, that range affects the dimension of the useful WS – for a bigger
rotation range, bigger useful WS. The maximum rotation range that we
find for spherical joints of these dimensions is [-25◦,25◦]. In the commercial
spherical joints, a ball joint rotates inside a socket, the extremes being male
or female, thread or smooth.
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Between the ball joint and the socket there is usually a clearance that
guarantees the rotation about the three axes, but that would be too big for
our application. Thus, we choose a spherical joint with a thread that allows
the control of a preload. We choose the Elesa Ganter GN 782-M6-KS-2
spherical joint, with male extremes and metric 6, seen in Fig. 14.11.

Figure 14.11: Spherical joint

To reduce the clearance even more, we place a spring between the sphe-
rical joint and the limb. To join the spherical joint to the mobile platform,
we design an intermediate piece. The assembly is shown in Fig. 14.12.

Figure 14.12: Assembly of the spherical joint
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One side of that intermediate piece has a shape of fork to hold the
mobile platform, while the other side has a flat surface where we thread
one extreme of the spherical joint, as we see in Fig. 14.13a. The other
extreme of the spherical joint is fixed to the second limb, as Fig. 14.13b
shows.

(a) (b)

Figure 14.13: Spherical joint: (a) union with the platform; (b) spring

14.1.3. Fixed platform, mobile platform and limbs

The fixed platform is the responsible for supporting the entire manipula-
tor. It has to allow the assembly of the linear guides in vertical position and
ensure that the distances between them are correct. It also has to ensure
that the linear guides do not change their positions when the manipulator
moves. Besides, it can not obstruct the movement of the manipulator. Thus,
it has to be as rigid as possible without colliding with the mobile platform
or the limbs.

We design the fixed platform as seen in Fig. 14.14, with three metallic
surfaces perpendicular to each other, fixed to a horizontal surface, also
metallic.
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Figure 14.14: Fixed platform

The mobile platform is, ideally, an isosceles triangle. However, to ac-
count for the intermediate pieces shown in Fig. 14.12 and Fig. 14.9, the
actual shape of the platform is not triangular. The kinematic equivalent
of the mobile platform is obtained by joining the centres of the spherical
and universal joints and is given by an isosceles triangle. This difference
between the kinematic equivalent (i.e ideal shape) and the actual shape of
the platform is shown in Fig. 14.15a. The shaded region is the actual shape,
while the unshaded portions belong to the additional region accounted for
by the kinematic equivalent. We build the mobile platform in aluminium,
so it does not add too much weight that could affect the inertia of the ma-
nipulator while moving. We make holes all over the surface, as seen in Fig.
14.15b. Those holes have two objectives – the first one is to reduce even
more the weight of the platform, and the second one is to allow us to attach
different pieces or measurement tools that we may need while working with
the manipulator.
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(a) (b)

Figure 14.15: Mobile platform: (a) ideal shape; (b) real platform

The limbs are cylindrical bars. We build them in steel, so the stiffness
of the whole manipulator increases. In order to be able to join them to the
different joints, we machine female threads in the extremes. Figure 14.16
shows the assembly of the whole manipulator.

Figure 14.16: Assembly of the whole manipulator
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14.2. Validation of the design
In this Section we validate the prototype by comparing theoretical re-

sults with real measurements of the position and parasitic motion value
done with the prototype.

First of all, we calculate the theoretical distance that the linear guides
have to move in order to reach certain positions of the mobile platform. We
remember the expression we use to get those values, given by Eq. (14.1).

ρ1 =z −R · sθ −
√
L2 − (R · (cθ − sθ · sψ)−H)2

ρ2 =z +R · cθ · sψ −
√
L2 − (R · cψ −H)2 (14.1)

ρ3 =z +R · sθ −
√
L2 − (−R · (cθ + sθ · sψ) +H)2

Then, we give those values to the linear guides and measure the real
position reached by using two inclinometers in the way shown in Fig. 14.17
– one inclinometer measures the rotation about X-axis and the other one,
the rotation about Y-axis.

Figure 14.17: Inclinometers to measure the real position
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Table 14.2: Theoretical and real angles for given value of the linear guides

Act1 (m) Act2 (m) Act3 (m) Real (ψ,θ)

T
he

or
et
ic
al

(ψ
,θ
)

(-15◦,-15◦) 0.2907 0.1051 0.0976 (-14.7◦,-15.5◦)
(-5◦,-15◦) 0.286 0.1612 0.1003 (-4.9◦,-14.9◦)
(0◦,-15◦) 0.284 0.195 0.102 (0.1◦,-14.8◦)
(5◦,-15◦) 0.2823 0.2203 0.1040 (5.1◦,-14.8◦)
(15◦,-15◦) 0.2796 0.2809 0.1088 (15◦,15.1◦)
(-15◦,-5◦) 0.223 0.1024 0.1587 (-14.8◦,-5.3◦)
(-5◦,-5◦) 0.2219 0.1602 0.1596 (-4.9◦,-5.1◦)
(0◦,-5◦) 0.2214 0.1905 0.1601 (0◦,-5◦)
(5◦,-5◦) 0.2209 0.2213 0.1606 (5.1◦,-5◦)
(15◦,-5◦) 0.22 0.2836 0.1618 (15◦,-5.1◦)
(-15◦,0◦) 0.1905 0.1020 0.1905 (-14.8◦,-0.1◦)
(-5◦,0◦) 0.1905 0.1601 0.1905 (-4.9◦,0◦)
(0◦,0◦) 0.1905 0.1905 0.1905 (0◦,0◦)
(5◦,0◦) 0.1905 0.2214 0.1905 (5.1◦,0◦)
(15◦,0◦) 0.1905 0.284 0.1905 (15◦,0◦)
(-15◦,5◦) 0.1587 0.1024 0.223 (-14.8◦,5◦)
(-5◦,5◦) 0.1596 0.1602 0.2219 (-4.9◦,4.9◦)
(0◦,5◦) 0.1601 0.1905 0.2214 (0◦,4.9◦)
(5◦,5◦) 0.1606 0.2213 0.2209 (5◦,4.9◦)
(15◦,5◦) 0.1618 0.2836 0.22 (14.9◦,5.1◦)
(-15◦,15◦) 0.0976 0.1051 0.2907 (-14.8◦,15.3◦)
(-5◦,15◦) 0.1003 0.1612 0.286 (-5◦,14.8◦)
(0◦,15◦) 0.102 0.1905 0.284 (0◦,14.8◦)
(5◦,15◦) 0.1040 0.2203 0.2823 (4.9◦,14.8◦)
(15◦,15◦) 0.1088 0.2809 0.2796 (14.7◦,15.1◦)
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Table 14.2 shows both the theoretical and the real data. In the column
titled Theoretical (ψ, θ) we have the theoretical positions we want to reach.
The columns titled Act1 (m), Act2 (m) and Act3 (m) give the value of the
displacement of the first, second and third actuators, respectively, that we
would theoretically need to reach those positions. Finally, the column titled
Real (ψ, θ) gives the real position that the manipulator reaches when the
actuators take those values.

The parasitic motion, as we have already seen, is observed only in the
X-axis and we can calculate its theoretical value by applying Eq. (14.2).
We apply this equation to calculate the theoretical value of the parasitic
motion that appears when the mobile platform reaches the same previous
positions of the workspace, given by Table 14.3.

x =R · (sθ · sψ) (14.2)

Table 14.3: Theorical value of the parasitic motion (m)

θ

-15◦ -5◦ 0 5◦ 15◦

ψ

-15◦ -0.0235 -0.0079 0 0.0079 0.0235
-5◦ -0.0079 -0.0027 0 0.0027 0.0079
0◦ 0 0 0 0 0
5◦ 0.0079 0.0027 0 -0.0027 -0.0079
15◦ 0.0235 0.0079 0 -0.007 -0.0235

We check if those values are the ones that appear also for the real case
of the prototype. We move the mobile platform to each of the positions and
measure the parasitic motion by using a laser pointer and a ruler placed on
the fixed platform, as we see in Fig. 14.18. The values we obtain are given
in Table 14.4.
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Figure 14.18: Measurement system

Table 14.4: Real value of the parasitic motion (m)

θ

-15◦ -5◦ 0 5◦ 15◦

ψ

-15◦ -0.024 -0.008 0 0.009 0.026
-5◦ -0.009 -0.003 0 0.003 0.0098
0◦ 0 0 0 0 0.001
5◦ 0.0085 0.0025 0 -0.0025 -0.0075
15◦ 0.0255 0.0085 0.001 -0.007 -0.0235

We plot both the theoretical and the real values of the parasitic motion
in Fig. 14.19. The real value is plotted in red, while the blue one is plotted
in blue. As we see from the tables and the plot, the values obtained from
applying the theoretical equation are numerically close to the measured
values.
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Figure 14.19: Parasitic motion



15

Analysis

In this Chapter we analyse the behaviour of the prototype described in
Chapter 14. First, we solve the inverse kinematic problem for three study
trajectories. Then, we analyse the singularities and the useful WS of the
manipulator, checking how different parameters affect it. We also calculate
the stiffness of the prototype placed in different positions of the useful
WS. We do it using an analytical method, finite elements method and an
experimental method. We solve the dynamics of the prototype and get
the value of the forces in the linear guides and the power consumption
in each actuator for the three trajectories analysed. Finally, we study the
natural frequencies and modes of the manipulator using both FEM and
experimental methods.

15.1. Kinematic Problem

We already know that the outputs of the 2PRU-1PRS parallel mani-
pulator are one translation and two rotations of the mobile platform. We
will solve the inverse kinematic problem for the Study Trajectories defined
in Chapter 12. We reproduce those Study Trajectories in Table 15.1. We
define the total duration of the movement to be 4 seconds and the initial
position to be horizontal with z being 0.5 m.

207
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Table 15.1: Harmonic trajectories definition

traject(t) = C +A · sin(ωt)
C A f = ω/(2 · π) t

X- and Y axes 0 3◦ 2,7 Hz 4 s
Z-axis 0,5 m 0,003 m 2,7 Hz 4 s

We note again that both the linear guides and the motors have restricted
movement. The linear guides have a displacement range of [0, 0.3] m and
a maximum velocity allowed of 5 m/s. The maximum speed of the motors
is 12000 r.p.m. We calculate the speed of the motors along the trajectories
by applying Eq. (15.1). We calculate the mean value and check that it is
lower than the maximum speed,

Speedi = dρi
Rgearhead

· 60
2π ·Reduction Ratio (r.p.m) (15.1)

where Reduction Ratio is the reduction ratio of the gear-head and equal to
15 and Rgearhead is the radius of the gear-head and is obtained by applying
Eq. (15.2). Displacement Ratio is the displacement of the linear guide per
revolution of the gear-head and is equal to 0.07 m/rev.

Rgearhead = Displacement Ratio

2π (m) (15.2)

According to this, we have to check that all the requirements – the
displacement range and velocity limit of the linear guides, and the speed
limit of the motors – are fulfilled for the three trajectories.

15.1.1. Trajectory I

The first trajectory is a rotation about X-axis with amplitude of 3◦

and frequency of 2.7 Hz. Figure 15.1 represents the displacement profiles
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as functions of time – rotation about X-axis, (ψ), the rotation about Y-
axis (θ) and the translation along Z-axis (z). Since this trajectory is a pure
rotation about X-axis, ψ follows the defined trajectory. θ and z are constant
and their values are 0 and 0.5 m, respectively. Thus, the parasitic motion
– x = R · (−sinψ · sinθ) – does not appear in this case.

Figure 15.1: Trajectory I

We calculate the displacement of the actuators along the trajectory, as
well as calculate their velocity and acceleration. We represent them in Fig.
15.2. Figure 15.2a shows the displacement of the three actuators. As we see,
in the initial position the three actuators are placed at the same distance
from the XY plane, 0.04 m. The first and third actuators are placed along
the X-axis, so when the mobile platform rotates about that axis the only
actuator displacing is the second one. The movement range of the second
actuator is [0.226, 0.2592] m. Since the displacement range of the linear
guides is [0, 0.3] m, the manipulator fulfils the requirement of displacement
limits of the linear guides for the first trajectory.

We obtain the velocity of the actuators by differentiating their displa-
cement. The first and third linear guides remain at a constant position,
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so their velocity is null. The velocity of the second actuator is harmonic.
Figure 15.2b shows these velocities. We see that the maximum value of the
velocity of the second actuator is 0.3107 m/s and the minimum, -0.3107
m/s, both lower than the velocity limit of the linear guides.

(a) (b)

(c)

Figure 15.2: Kinematics for trajectory I: (a) actuators’ displacement; (b)
actuators’ velocity; (c) actuators’ acceleration

Similarly, we get the acceleration of the actuators by differentiating the
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velocity. We see their representations in Fig. 15.2c. The acceleration of the
first and third actuators is -0.0535 m/s2, constant along all the movement.
The acceleration of the second actuator is harmonic with maximum value
of 5.2053 m/s2 and minimum value of -5.3123 m/s2. The mean speed of
the second motor is 2537.2 r.p.m., much lower than the maximum speed
allowed for the motors.

15.1.2. Trajectory II

The second trajectory corresponds to a rotation with amplitude of 3◦

and frequency of 2.7 Hz about Y-axis. Thus, the value of ψ and z are
constant, unlike the value of θ, which follows the trajectory defined, as seen
in Fig. 15.3. Since ψ is null along all the trajectory, the parasitic motion
does not appear.

Figure 15.3: Trajectory II

We solve the inverse kinematic problem and get the displacement of the
three linear guides. Figure 15.4a shows their values. The second actuator is
on the Y-axis, so when the mobile platform rotates about Y-axis – like in
this trajectory– the displacement of the second actuator remains constant,
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the first and third actuators being the ones moving. They follow harmonic
trajectories with the same amplitude and frequency but opposite direction.
Their maximum and minimum displacement values are 0.0592 m and 0.0226
m, respectively. Thus, they are in the valid displacement range.

(a) (b)

(c)

Figure 15.4: Trajectory II kinematics: (a) actuators displacement; (b) ac-
tuators velocity; (c) actuators acceleration
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We find the derivative of the displacements of the actuators and get
their velocities, shown in Fig. 15.4b. The velocity is null for the second
actuator and harmonic for the first and third actuators. The maximum
and minimum values of the velocity of the first and third actuators are
equal to the maximum and minimum values of the velocity of the second
actuator in Trajectory I – 0.3107 m/s and -0.3107 m/s, respectively. They
fulfil the velocity limit restriction of the linear guides. We get the value of
the accelerations of the actuators by differentiating a second time. We see
the values in Fig. 15.4c. The acceleration of the second actuator is -0.0534
m/s2 and constant. The accelerations of the first and third actuators are
harmonic with a maximum value of 5.2054 m/s2 and a minimum value of
-5.3123 m/s2. The mean value of the speed of the motors is 2536.6 r.p.m.,
much lower than the maximum speed permitted.

15.1.3. Trajectory III

We define Trajectory III as a harmonic trajectory along the Z-axis, with
an amplitude of 0.003 m and a frequency of 2.7 Hz. This trajectory defines
the outputs of the manipulator, shown in Fig. 15.5.

Figure 15.5: Trajectory III
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The parasitic motion does not depend on the value of z, so it does not
exist for this trajectory either. Since the trajectory is a pure translation
along the Z-axis, the value of the displacement of the three linear guides is
the same, as we see in Fig. 15.6a.

(a) (b)

(c)

Figure 15.6: Trajectory III kinematics: (a) actuators displacement; (b) ac-
tuators velocity; (c) actuators acceleration
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The value in the initial position is 0.2408 m starting from the XY plane.
The amplitude of their movement is 0.003 m, so the maximum value of the
position is 0.2438 m and the minimum, 0.2378 m.

We get the velocity and the acceleration of the actuators by deriving the
displacement once and twice, respectively. In Fig. 15.6b we see the values
of the velocity obtained, which are in the range of [-0.0509, 0.0509] m/s.
Figure 15.6c shows the acceleration. The value of the acceleration of the
three linear guides is also the same, the maximum value being 0.862 m/s2

and the minimum value being -0.8621 m/s2. The mean speed of the motors
is 415.48 r.p.m., so it is lower than the maximum speed allowed.

15.1.4. Interpreting results

We have obtained the displacement, the velocity and the acceleration
of the linear guides for three different harmonic trajectories – one rotation
about X-axis, one rotation about Y-axis and a translation along Z-axis.

We have seen that for the rotation about X-axis the first and third linear
guides stay at the same position while the second one describes a harmonic
trajectory. However, if the trajectory is about Y-axis, it is the second linear
guide that remains at the same position while first and third linear gui-
des describe harmonic trajectories with same amplitude and frequency but
opposite direction. For the trajectory along Z-axis the three linear guides
describe the same trajectory. In each of the three cases the displacement of
the linear guides is in the acceptable range.

We have also calculated the velocities and accelerations of the linear
guides. We have seen that the velocity and acceleration for the second
actuator during the rotation about X-axis are equal to the velocity and
acceleration of the first and third actuators during the rotation about Y-
axis. For the translation along Z-axis, though, the velocity and acceleration
of the three linear guides have the same value and they are smaller than
for any other trajectory.
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15.2. Singularities
As seen in Chapter 7, there are two types of singularities that we have

to analyse – singularities of the inverse kinematic problem and singularities
of the direct kinematic problem.

Equation (15.3) gives the expression of the Jacobian matrix of the direct
kinematic problem. The manipulator is in a singular position of the DKP
when the determinant of the direct Jacobian matrix, |Jx|, is null.

Jx =



sT1 (PA1 × s1)T
sT2 (PA2 × s2)T
sT3 (PA3 × s3)T
uT1 (PA1 × u1)T
uT2 (PA2 × u2)T
uT3 (PA3 × u3)T


(15.3)

We define the Study Points by dividing the axes in 60 parts each. The
ranges of the axes are given in Table. 15.2.

Table 15.2: Output limits

Description Value
ψ (o) Rotation about X-axis (−90, 90)
θ (o) Rotation about Y-axis (−90, 90)
z (m) Translation along Z-axis (0,3, 0,8)

We calculate the |Jx| for each Study Point and we get the singular
positions of the prototype for the direct kinematic problem. These singula-
rities are shown in Fig. 15.7. As we see, they divide the working area in 5
sub-areas.
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Figure 15.7: DKP singularities

Similarly, the manipulator is in a singular position of the inverse kine-
matic problem when the determinant of the inverse Jacobian matrix, |Jq|,
is null. Equation (15.4) gives the expression of the inverse Jacobian matrix.

Jq =



s1k 0 0
0 s2k 0
0 0 s3k
0 0 0
0 0 0
0 0 0


(15.4)

We calculate the value of |Jq| for the Study Points previously defined
and get the singular positions of the manipulator for the inverse kinematic
problem. Figure 15.8 shows these singularities. In this case, the working
area is divided in two sub-areas.
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Figure 15.8: IKP singularities

15.2.1. Interpreting results

We have studied the singularities of the prototype for the direct and
inverse kinematic problems. In order to do that, we have defined finite
Study Points for which we have obtained the determinant of the Jacobian
matrices.

For the case of the direct kinematic problem, the singularities define
five sub-areas in the working area, while for the inverse kinematic problem
singularities define only two sub-areas in the working area.

Since singularities mean a loss of control of the manipulator, we have to
ensure that the manipulator works inside those limited sub-areas, without
crossing any singular position.
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15.3. Workspace

The useful workspace denotes the region of the workspace free of sin-
gularities of the inverse and direct kinematic problems. Additionally, the
physical restrictions of the spherical joint and the linear guides are fulfilled.
We get that useful WS and study its regularity by obtaining the biggest
sphere in it.

We set the StudyPoints by dividing the three axes in 60 parts each, so
the number of points we have to check to get the WS is 216000. In this
case, StudyPoints is the set of points which lie in the 3 dimensional space
bounded by the ranges given by Table 15.3.

Table 15.3: Output limits

Description Value
ψ (o) Rotation about X-axis (−90, 90)
θ (o) Rotation about Y-axis (−90, 90)
z (m) Translation along Z-axis (0,3, 0,8)

We also define the physical restrictions given by the range of the linear
guides and the spherical joint as shown in Table 15.4.

Table 15.4: Physical restrictions

Description Value
LG (m) Linear Guide Ranges (0, 0,3)
SJ (o) Spherical Joint Range (−25, 25)
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We solve the IKP for all the candidate-poses and get the WS0 for the
prototype, shown in Fig. 15.9. Out of the 216000 StudyPoints, only 76320
belong to the WS0, so we have reduced the number of point to check by
64.66 %. We have to check now whether the points of the WS0 fulfil or not
the restrictions of the direct kinematic problem, the spherical joint and the
linear guides.

Figure 15.9: WS0

As seen in Section 15.2, the WS0 is divided into five sub-areas depen-
ding on the sign of the determinant of the Jacobian matrix of the DKP.
We define WS1 to be the area free of singularities where the sign of the
determinant of the Jacobian matrix is the same as for the initial position of
the manipulator. We define the initial position to be horizontal with z=0.5
m. The determinant of the Jacobian matrix for that initial position is given
by Eq. (15.5).

|Jx|0 = −0,0341 (15.5)

Accordingly, our WS1 is defined by the points of the WS0 whose deter-
minant of the Jacobian matrix is negative and placed in the same sub-area
as the initial position. Figure 15.10a shows WS1.
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The rotation range of the spherical joint is [−25o, 25o]. We define the
WS2 to be the set of point sof the WS0 that fulfil the restriction of the
spherical joint. Figure 15.10b shows WS2. Out of the 76320 points in WS0,
41640 belong to WS2.

Similarly, we get WS3 by applying Eq. (15.6). We see WS3 in Fig. 15.10c.
Out of the 76320 points of the WS0, only 5520 belong to WS3.

0 < ρi < 0,3m (15.6)

If we apply all the previous conditions at the same time, we get the
useful WS, seen in Fig. 15.10d. Out of the 76320 points of the WS0, 2059
belong to the useful WS.

The biggest sphere in the useful WS has a radius of 4 discretizations of
the workspace and can be placed in 6 different positions in the useful WS.
Figure 15.11 shows the useful WS and the biggest sphere placed in the first
possible position.
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(a) (b)

(c) (d)

Figure 15.10: Workspaces: (a) WS1; (b)WS2; (c) WS3; (d) WSuse
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(a) (b)

(c) (d)

Figure 15.11: Useful WS with the Smax placed in the first possible position:
(a) general view; (b) plane YZ view; (c) plane XZ view; (d) plane XY view
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15.3.1. Interpreting results

We have defined the useful WS of the manipulator as the singularity-free
space that the manipulator can reach taking the restrictions of the linear
guides and the spherical joint into account. Out of the 216000 initial study
points, only 2059 points belong to the useful WS. We have seen that the
most restrictive condition is the rotation range of the spherical joint.

We have also studied the regularity of the useful WS by finding the
biggest sphere that fits in it and the number of positions where it can be
placed. The radius of the biggest sphere in the useful WS of the prototype is
4 discretization of the workspace and we can place it in 6 different positions.

15.4. Stiffness
We get the stiffness of the manipulator by using three different methods.

First of all, we calculate the stiffness at different points in the WS by
applying the analytical method described in Section 9.2. Then, we get the
stiffness for the same positions by applying a finite element method (FEM).
Finally, we obtain the stiffness of the prototype experimentally only for the
initial position.

Since the manipulator is symmetric with respect to Y-axis, the stiffness
should also be symmetric respect to Y-axis. We check that this charac-
teristic is fulfilled by analysing the positions given by the combination of
ψ =[-15◦ -5◦ 0◦ 5◦ 15◦] and θ =[-15◦, -5◦, 0◦ 5◦ 15◦]. In this way, we have
25 positions of the WS to be analysed. Figure 15.12 shows the prototype
in the extreme positions studied.
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(a) (b)

(c) (d)

Figure 15.12: Extreme positions analysed: (a) (ψ,θ)=(-15◦, 0◦); (b)
(ψ,θ)=(15◦, 0◦); (c) (ψ,θ)=(-15◦, 15◦); (d) (ψ,θ)=(15◦, 15◦)

15.4.1. Analytical method

We apply the analytical method presented in Section 9.2 to calculate
the stiffness of the prototype in the 25 positions of the WS we have cho-
sen. Table 15.5 shows the results we get and Fig. 15.13 shows the same
results graphically. The maximum value of the stiffness is 2.9313·104 N/m
and corresponds to the positions (ψ,θ)=(0◦,15◦) and (ψ,θ)=(0◦,-15◦). The
minimum value is 2.7275 x 104 N/m and appears when θ is null. For the
initial position of the manipulator – horizontal position – the value of the
stiffness is K=2.7275·104 N/m.
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Table 15.5: Stiffness obtained analytically (× 104 N/m)

ψ

-15◦ -5◦ 0◦ 5◦ 15◦

θ

-15◦ 2.9014 2.9207 2.9313 2.9312 2.9200
-5◦ 2.7711 2.7760 2.7787 2.7789 2.7766
0◦ 2.7275 2.7275 2.7275 2.7275 2.7275
5◦ 2.7711 2.7760 2.7787 2.7789 2.7766
15◦ 2.9014 2.9207 2.9313 2.9312 2.9200

Figure 15.13: Stiffness of the prototype calculate analytically

We see that the stiffness is, indeed, symmetric respect to the Y-axis.
Thus, when applying FEM to verify the stiffness, we will do it only for
positive values of θ.
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15.4.2. Finite element method

We apply the finite element method (FEM) to calculate the stiffness
of the prototype by using ANSYS Workbench. We run a Static Structural
analysis to get the deformation of the manipulator for a vertical force of
1 N applied on the gravity centre. The stiffness expression is given by Eq.
(15.7), K being the stiffness, F being the applied force and δ being the value
of the displacement generated by the force F.

K = F/δ (15.7)

First of all, we define the geometry of the manipulator. We have two
ways to do it – we can generate it in ANSYS Workbench or we can import
it directly from a CAD program. In our case, we draw the manipulator in
CATIA in such a way that we can change its position by just editing the
value of the displacements of the linear guides, as we see in Fig. 15.14.

Figure 15.14: Manipulator drawn in CATIA
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We export the geometry to ANSYS Workbench for each position we
want to analyse. Once we have the geometry ready, we define the constraints
between all the components. We analyse the manipulator without the linear
guides, so we have to fix the rotational joints to the fixed frame. We free
the rotation about X-axis for the second limb and about Y-axis for the first
and the third limbs. To do that, we use cylindrical supports applied on the
rotational joints, as we see in Fig. 15.15a. For the rest of the joints, we
define the contact restrictions between elements. Figure 15.15b shows the
example of one rotation in the universal joints.

(a) (b)

Figure 15.15: Constraints in ANSYS: (a) cylindrical support; (b) revolute
condition

Before generating the mesh, we define two different element sizes – one
for the joints and the mobile platform and another one for the limbs. The
size of the elements for the joints is 0.002 m, while for the mobile platform
and the limbs it is 0.004 m. We generate the mesh of the model by using
the auto generated mesher. We see the resulting mesh in Fig. 15.16.



15.4. Stiffness 229

(a) (b)

(c)

Figure 15.16: Mesh generated on ANSYS for: (a) universal joint; (b) sphe-
rical joint; (c) revolute joint

We define a unit vertical force applied on gravity centre of the mobi-
le platform, as shown in Fig. 15.17a. Then we run the Static Structural
analysis obtaining the deformation as result. Figure 15.17b shows the de-
formation of the manipulator obtained for a horizontal position and a unit
force applied on the gravity centre. We calculate the stiffness by dividing
the unit force by the displacement of the gravity centre. The stiffness of the
manipulator under all these conditions is 2.138 · 104 N/m.
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(a)

(b)

Figure 15.17: Result for horizontal position: (a) definition of the unit applied
force; (b) deformation for that force

We run an analogue analysis for the different positions of the works-
pace we want to study. Table 15.6 shows the value of the stiffness of the
manipulator for those positions and Fig. 15.18 represents them. As we see,
a higher rotation of the mobile platform corresponds to a higher value of
the stiffness of the manipulator, the maximum value of the stiffness being
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3.4876·104 N/m and corresponding to the position (ψ,θ)=(-15◦,15◦).

Table 15.6: Stiffness obtained with ANSYS (× 104 N/m)

ψ

-15◦ -5◦ 0◦ 5◦ 15◦

θ

0◦ 3.2518 2.27024 2.138 2.2609 3.2117
5◦ 3.2778 2.138 2.1544 2.2782 3.2361
15◦ 3.4876 2.433 2.4235 2.4235 3.4429

Figure 15.18: Stiffness of the manipulator in the positions analysed
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15.4.3. Experimental analysis

In order to get the stiffness of the prototype experimentally, we apply
a vertical force on the gravity centre and measure the deformation that it
generates in the same point.

We apply the force by placing a mass on the gravity centre and measure
the deformation it causes by using a dial gauge. In Fig. 15.19a we see the
dial gauge before applying the force and in Fig. 15.19b we see the manipu-
lator with the mass on top and the dial gouge measuring the deformation.
We repeat this process three times, with three different forces. Table 15.7
presents the resulting measurements.

(a) (b)

Figure 15.19: Stiffness experimental measurement: (a) dial gauge; (b) force
applied on the GC

We define Kexperimental to be the stiffness of the manipulator measured
experimentally. We consider that its value is the mean value of the three
measurements. In our case, the value of Kexperimental is given by Eq. (15.8).

Kexperimental = (2,07 + 2,06 + 2,0946) · 104

3 = 2,07487 · 104(N/m) (15.8)
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Table 15.7: Experimental data of the stiffness measurement

mass (kg) Force, F (N) Deformation, δ (m) Stiffness, K (N/m)
5 49.05 0.002366 2.07 · 104

10 98.1 0.004762 2.06 · 104

15 147.15 0.007025 2.0946 · 104

15.4.4. Interpreting results

We have obtained the stiffness of the prototype for different positions
in the useful WS by applying, first, an analytical method and, then, FEM.
The results obtained in both ways are very similar, even though the stiffness
calculated analytically is slightly smaller than the one using FEM.

We have also measured the stiffness experimentally for the prototype
in horizontal position. We have applied a force on the gravity centre of
the prototype and measured the displacement that the gravity centre suf-
fers. We have repeated this process three times with three different forces.
We have defined Kexperimental to be the mean value of the experimental
measurements. For our prototype, Kexperimental = 2.07487 · 104 (N/m).

The value of the stiffness obtained experimentally is very similar to the
value of the stiffness for the prototype in horizontal position obtained when
applying the analytical method and the finite elements method. Thus, we
validate the analytical and FEM methods proposed.
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15.5. Dynamics

In this Section, we solve the inverse dynamics for the three harmonic
trajectories whose kinematic problem we have already analysed and which
we list again in Table 15.8.

Table 15.8: Harmonic trajectories definition

traject(t) = C +A · sin(ωt)
C A f = ω/(2 · π) t

X- and Y axes 0 3◦ 2,7 Hz 4 s
Z-axis 0,5 m 0,003 m 2,7 Hz 4 s

By solving the inverse dynamic problem, we obtain the reaction forces
in the linear guides. We know that the maximum radial load that the linear
guides can support is 300 N and the maximum belt tension, 200 N. Thus,
we have to check that the reaction forces in the linear guides do not exceed
those values.

Once we have the reactions in the linear guides we obtain the power re-
quired for each position (Poti) by applying Eq. (15.9), where Fi is the axial
reaction on the linear guides and dρi is the velocity for the corresponding
linear guide. The motors can supply a maximum power of 150 W, so we
have to make sure that the power that each motor requires is lower than
that limit.

Poti = Fi · dρi (15.9)

We also check that the mean value of the torque in the motors does not
exceed their torque limit, which is equal to 0.177 N ·m. The torque in the
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motors is given by Eq. (15.10).

Ti = mean(Faxiali) ·Rgearhead
Reduction Ratio

(N ·m) (15.10)

We analyse the reaction forces in the linear guides, as well as the torque
and power in the motors for the three harmonic trajectories.

15.5.1. Trajectory I

We solve the inverse dynamic problem for the first trajectory. Figure
15.20a shows the axial forces for the rotation about X-axis. As we see, they
exhibit harmonic behaviour. The axial forces for the first and third linear
guides are the same, their values being between -2.5404 N and -2.2632 N.
For the second linear guide, though, they vary from -3.4278 N to -1.2756
N. In the three cases the axial forces are under the maximum belt tension
value.

The radial forces are shown in Fig. 15.20b. They are the same for the
first and third linear guides – from -0.2976 N to -0.0164 N – and null for the
second linear guide, so they do not exceed the maximum radial load allowed.
We also calculate the power required by the motors, shown in Fig. 15.20c.
Since the first and third linear guides stay motionless, the corresponding
motors do not need power at all. The second motor, however, requires a
maximum power of 0.811 W in absolute value. This value is much lower
than the maximum power that the motors can provide. Finally, we get the
torque in the motors, which is 0.0017 N·m.
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(a) (b)

(c)

Figure 15.20: Trajectory I: (a) axial force in the linear guides ; (b) radial
force in the linear guides; (c) power required by the motors

15.5.2. Trajectory II

For Trajectory II, the axial reaction forces for both the first and third
linear guides vary in the range of (-3.4284, -1.275) N. They also have the
same frequency but with opposite direction. The axial reaction in the second
linear guide, though, has double the frequency and a value varying from
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-2.358 N to -2.3481 N. Figure 15.21a shows the axial reaction forces for the
three linear guides.

(a) (b)

(c)

Figure 15.21: Trajectory II: (a) axial force in the linear guides ; (b) radial
force in the linear guides; (c) power required by the motors

The radial reaction forces are shown in Fig. 15.21b. They are very simi-
lar for the three linear guides – (-0.164, -0.1421) N for the first one, (-0.163,
0.1476) N for the second one and (-0.1576, -0.1369) N for the third one.
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They are all lower than limit of the radial load that the linear guides can
support.

Since the second linear guide is motionless for this trajectory, only the
first and third motors have to supply power, the maximum value being
0.7723 W, as we see in Fig. 15.21c. The torque in the three motos is equal to
0.0017 N· m, lower than the maximum torque that the motors can support.

15.5.3. Trajectory III

The third trajectory is a translation along Z-axis. During this trajectory,
the three linear guides support the same axial reaction force. As we see in
Fig. 15.22a, they are harmonic functions with a minimum value of -3.8771
N and a maximum value of -2.1495 N.

The radial reaction forces are shown in Fig. 15.22b. They are the same
for the first and third linear guides – varying from -0.2472 N to -0.1371 N
– while the radial reaction force in the second linear guide is null.

We obtain the power required by the motors and see that it is the
same for the three of them, the minimum value being -0.1967 W and the
maximum value being 0.1196 W. Besides, the torque supported by the three
motors is 0.0017 N·m.
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(a) (b)

(c)

Figure 15.22: Trajectory III: (a) axial force in the linear guides ; (b) radial
force in the linear guides; (c) power required by the motors

15.5.4. Interpreting results

We have solved the inverse dynamic problem for the three harmonic
trajectories previously presented – a rotation about X-axis, a rotation about
Y-axis and a translation along Z-axis. We have obtained the reaction forces
in the linear guides and the power required by the motors during the three
trajectories.
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We have seen that for the rotation about X-axis the amplitude and the
maximum value of the reaction force in the first and third linear guides
are smaller than for the second one, the frequency of all of them being the
same. In this case, the power required by the first and the third motors is
null and the power in the second motor, harmonic.

For the rotation about Y-axis, due to the symmetry of the manipulator,
the frequency of the reaction force in the second linear guide is twice the
frequency of the first and third linear guides. For this trajectory, even if the
amplitude of the force in the second linear guide is smaller than the force
in the first and third linear guides, its maximum value is again larger. The
force in the first and the third linear guides are of the same frequency and
amplitude but opposite direction, just as the power needed by the motors.
The power required by the second actuator is null for this case.

In all the cases the reaction forces in the linear guides, the power and
torque of the motors fulfil the working restrictions of the linear guides and
the motors.
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15.6. Natural Frequencies
In this Section, we obtain the natural frequencies and modes of the ma-

nipulator. We apply two methods – finite element method and experimental
method. We analyse the value of the natural frequencies and the shape of
the mode for each of them and compare the results obtained with both
methods.

15.6.1. Finite element method

We first present the steps to obtain the natural frequencies and modes
for the manipulator in horizontal position by applying FEM. We apply
it to analyse different positions of the useful WS. As we did in Section
15.4, we work with ANSYS Workbench. We import the geometry drawn in
Catia and define the joints and the mesh in the same way we did for the
stiffness. We run the analysis and get the first 5 natural frequencies and
their corresponding modes.

The first mode appears for a frequency of 22.48 Hz. As we see in Fig.
15.23, it corresponds to the flexion of the mobile platform.

Figure 15.23: First mode obtained with FEM: flexion of the mobile platform
at 22.48 Hz

The second mode of the manipulator is also a flexion of the mobile
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platform, but in this case there is a node along Y-axis, shown in Fig. 15.24.
This mode appears at a frequency of 58.839 Hz.

Figure 15.24: Second mode obtained with FEM: flexion of the mobile plat-
form with a node along Y-axis direction at 58.839 Hz

The third mode appears at a frequency of 71.759 Hz. As represented
in Fig. 15.25, it corresponds to the flexion of the limbs in the direction of
X-axis.

Figure 15.25: Third mode obtained with FEM: flexion of the limbs in X-axis
direction at 71.759 Hz
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In Fig. 15.26 we see the fourth mode of the manipulator. It is another
flexion of the mobile platform, this time with a semi circle shaped node
that goes from the first limb to the third. It appears at the frequency of
79.49 Hz.

Figure 15.26: Fourth mode obtained with FEM: flexion of the mobile plat-
form with a node from limb 1 to limb 3 at 79,493 Hz

The fith mode appears at a frequency of 125.72 Hz and it corresponds
to the flexion of the limbs in the direction of Y-axis, as we see in Fig. 15.27.

Figure 15.27: Fifth mode obtained with FEM: flexion of the limbs in Y-axis
direction at 125.72 Hz
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In order to see if the value of the natural frequencies varies in the works-
pace, we run the modal analysis in ANSYS Workbench for different posi-
tions of the workspace. The results are independent of the translation along
the Z-axis, so we keep z constant and vary the value of the angles about
X- and Y-axes. The manipulator is symmetric respect to Y-axis, so we
only check the positive rotation about Y-axis. We create a grid of discrete
points of the workspace by dividing X-axis in five points from -15◦ to 15◦

and Y-axis in three points from 0◦ to 15◦. We analyse, thus, the natural
frequencies of the prototype for 15 positions of the workspace.

Table 15.9 shows the values obtained for the five first natural frequencies
for the different points of the useful WS of the manipulator and Fig. 15.28
plots them. As we see, the value of the natural frequencies stay almost
constant along the useful WS and the modes do not cross each other.

Figure 15.28: Natural frequencies obtained with FEM
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Table 15.9: Frequencies obtained with FEM

θ

0◦ 5◦ 15◦

f 1 ψ

-15◦ 26.883 26.879 26.822
-5◦ 23.09 23.08 23.039
0◦ 22.48 22.475 22.432
5◦ 23.051 23.045 23.001
15◦ 26.746 26.736 26.649

f 2 ψ

-15◦ 62.418 62.422 62.414
-5◦ 59.448 59.441 59.375
0◦ 58.839 58.824 58.681
5◦ 59.011 58.98 58.709
15◦ 61.004 60.92 59.958

f 3 ψ

-15◦ 74.7 78.87 76.06
-5◦ 72.63 72.709 73.175
0◦ 71.76 71.76 71.8
5◦ 70.981 70.893 70.51
15◦ 69.8 69.673 68.552

f 4 ψ

-15◦ 79.032 79.039 79.144
-5◦ 79.346 79.37 79.50
0◦ 79.49 79.51 79.64
5◦ 79.66 79.67 79.78
15◦ 80.14 80.15 80.16

f 5 ψ

-15◦ 124.93 124.89 124.93
-5◦ 125.56 125.45 125.31
0◦ 125.72 125.65 125.5
5◦ 125.76 125.63 125.48
15◦ 125.65 125.59 125.66
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15.6.2. Experimental results

We get the natural frequencies experimentally by applying an impulse
force on the manipulator prototype in the directions of the natural modes.
Thus, we need 3 accelerometers, one harmer and an analyser.

We choose shear accelerometers manufactured by PCB Piezotronics,
model 352C33, with a sensitivity of 102.6 mV/g. The harmer is an impulse
force harmer also manufactured by PCB Piezotronics, model 086C02, with
a sensitivity of 11.49 mV/N. We use a medium hardness point. In order to
process all the data, we use a Siemenes LMS TestLab analyser, seen in Fig.
15.29.

Figure 15.29: Siemenes LMS TestLab analyser

We place one of the accelerometers on the intersection of X- and Y-
axes, as seen in Fig. 15.30a. This accelerometer allows us to get the natural
frequencies that correspond to the flexion of the mobile platform. To do it,
we excite that accelerometer by applying an impulse force perpendicular to
the mobile platform, as shown in Fig. 15.30b.
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(a) (b)

Figure 15.30: Measurement along Z-axis: (a) accelerometer on X-axis; (b)
vertical impulse

We place another accelerometer on the universal joint of the first limb
in X-axis direction, as we see in Fig. 15.31a. We excite it by applying an
impulse force in the same direction on the universal joint of the third limb,
as shown in Fig. 15.31b.

(a) (b)

Figure 15.31: Measurement along X-axis: (a) accelerometer on joint U in
X-axis direction; (b) impulse in X-axis direction
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We place the last accelerometer also on the universal joint of the first
limb, but in Y-axis direction, as seen in Fig. 15.32a. We excite the accelero-
meter by applying the impulse force in the Y-axis direction, as Fig. 15.32b
shows.

(a) (b)

Figure 15.32: Measurement along Y-axis: (a) accelerometer on joint U in
X- and Y-axes direction; (b) impulse in Y-axis direction

We apply the described impulses in X-, Y- and Z-axes direction for
different points of the workspace. As we did for the analysis with FEM, we
fix a value of z and we modify the angles ψ and θ. We discretize the plane
for the range of [-15◦,15◦] with a step of 5◦ for the rotation about X-axis
and the range of [-20◦,20◦] for the rotation about Y-axis.

According to the results obtained with FEM, the first natural frequency
should correspond to the first flexion of the mobile platform. However, when
we apply the impulse force in X-axis direction, we see that the flexion mode
of the limbs in X-axis direction is the first natural mode of the prototype.
Figure 15.33 shows the response we get in the accelerometer in X-axis di-
rection for the horizontal position of the manipulator and for the position
(ψ = −15◦, θ = 5◦). As we see, the first natural frequency appears now at
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9.38 Hz. This value does not vary for the different positions of the manipu-
lator.

(a) (b)

Figure 15.33: Response obtained in the accelerometer in X-axis direction
for the positions: (a) ψ = 0◦, θ = 0◦; (b) ψ = −15◦, θ = 5◦

The second natural mode of the manipulator that appears is the flexion
of the limbs in the Y-axis direction. It occurs at a frequency of 15.63 Hz, as
we see in Fig. 15.34. Finally, we get the natural frequency that corresponds
to the natural mode of the first flexion of the mobile platform. It appears at
a frequency of 21.88 Hz, 24.93 Hz or 25 Hz, depending on the position of the
manipulator. This value is lower than the one we got using FEM, but very
similar. In Fig. 15.35 we see the response obtained by the accelerometer in
Z-axis direction for the horizontal position as well as for the position where
ψ = −15◦, θ = 5◦.
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(a) (b)

Figure 15.34: Response obtained in the accelerometer in Y-axis direction
for the positions: (a) ψ = 0◦, θ = 0◦; (b) ψ = −15◦, θ = 5◦

(a) (b)

Figure 15.35: Response obtained in the accelerometer in Z-axis direction
for the positions: (a) ψ = 0◦, θ = 0◦; (b) ψ = −15◦, θ = 5◦

Table 15.10 presents the value of the natural frequencies along the useful
WS and Fig. 15.36 plots them.
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Table 15.10: Frequencies obtained experimentally

θ

0◦ 5◦ 15◦

f 1 ψ

-15◦ 9.38 9.38 9.38
-5◦ 9.38 9.38 9.38
0◦ 9.38 9.38 9.38
5◦ 9.38 9.38 9.38
15◦ 9.38 9.38 9.38

f 2 ψ

-15◦ 15.63 15.63 15.63
-5◦ 15.63 15.63 15.63
0◦ 15.63 15.63 15.63
5◦ 15.63 15.63 15.63
15◦ 15.63 15.63 15.63

f 3 ψ

-15◦ 25 25 24.93
-5◦ 21.88 21.88 24.93
0◦ 21.88 21.88 24.93
5◦ 21.88 21.88 24.93
15◦ 25 25 24.93

f 4 ψ

-15◦ 78.13 78.13 78.08
-5◦ 78.13 78.08 78.08
0◦ 78.13 78.13 78.08
5◦ 78.13 78.13 78.08
15◦ 78.13 78.13 78.08
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Figure 15.36: Experimental natural frequencies

15.6.3. Interpreting results

We have analysed the natural frequencies and vibration modes of the
prototype placed in different positions of the useful WS. We have first
applied FEM and then an experimental method.

When applying FEM, we have obtained the five first vibration modes.
The first and second modes are flexions of the mobile platform that corres-
pond to natural frequencies at 22.48 Hz and 58.839 Hz. The third mode is
the flexion of the limbs along X-axis and appears at 71.759 Hz. The fourth
mode occurs at a frequency of 79.493 Hz and is another flexion of the mobi-
le platform. Finally, the fifth mode appears at 125.72 Hz, being the flexion
of the limbs along the Y-axis.

However, we have seen that in the real model the order of the natural
frequencies changes. For the experimental measurements done on the pro-
totype, the first natural frequency appears at 9.38 Hz and corresponds to
the flexion of the limbs in X-axis. The second frequency corresponds to the
flexion of the limbs along Y-axis for a frequency of 15.63 Hz. The flexion of
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the mobile platform appears now at a frequency of 21.88 Hz, 24.93 Hz or
25 Hz, depending on the position of the manipulator.

This difference in the results is most likely due to the small clearances
between the joints that appear in the prototype.





Part VI

Conclusions and Future
Work
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Conclusions

This Ph.D. thesis is about effecting gains in performance in parallel
manipulators, with a special focus on Multi Axial Shaking Tables (MAST).
Bibliographies have either high kinematic capacities – having too complex
position, velocity and acceleration problems – or good structural perfor-
mance – requiring machines with big dimensions and, thus, they have seen
limited development. As a result, in this Ph.D. thesis we have developed
two methodologies based on kinematic, resistance and power consumption
criteria, along with a simple design, but with high movement capacity. The
two methodologies are valid for any kind of MAST parallel manipulator, but
we have validated them for a parallel manipulator for testing automobile
pieces.

We need three degrees of freedom for this application – two rotations
and one translation. The lower-mobility parallel manipulator family with
those degrees of freedom is the 1T2R. The most well known parallel ma-
nipulator of that family is the 3PRS, but it has two main drawbacks –
a low orientation capability and parasitic motions in the three degrees of
freedom where there was supposed to be no motion. In order to overcome
those problems, we have proposed to use instead the 2PRU-1PRS parallel
manipulator. It has the same degrees of freedom as the 3PRS parallel ma-
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nipulator but it has higher orientation capability and its parasitic motion
is only along one axis.

In the analysis methodology, we have analysed the manipulator for its
kinematics, dynamics, stiffness, singularities and workspace. We have first
developed the equations of the kinematic problem by using the loop equa-
tion of the limbs. We have obtained the position, velocity and acceleration
of every element of the manipulator along a given trajectory. From the velo-
city problem we have obtained the Jacobian matrices, which we have used
to define the condition when there are singularities in the manipulator.

Then, we have proposed a stiffness analysis based on the matrix struc-
tural method. This analysis allows us to get the stiffness of the manipulator
at any position. Due to the importance of high stiffness in parallel manipu-
lators, this is a remarkable step in the analysis.

We have also presented a method to get the useful workspace of the
manipulator. The useful workspace is the singularity-free space that the
end-effector can reach taking into account the limits of the joints and ac-
tuators, as well as possible collisions between the limbs. In order to get
an idea not only about the size of the useful workspace but also about its
regularity, we define the biggest geometry object in it.

In the optimization methodology we have taken into account two per-
formances – the size and regularity of the useful workspace, and the power
consumption along a defined trajectory. Thus, we have obtained two best
geometric parameters combinations, one for each objective function. We ha-
ve obtained the useful workspace and the biggest sphere in it for a finite set
of geometric parameters combinations. We have labelled the best geometry
parameters combination for the workspace objective function to be the one
that leads to the biggest sphere contained in the useful workspace. The best
solution for the power objective function is the one that leads to the lowest
power consumption along a given trajectory. We have used analytical tools
to analyse the kinematic and dynamic problems. They allow us to solve the
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problem in an iterative way with a reduced computational cost. We have
obtained all the possible solutions and get the optimum or optimum ones.

In order to apply both methodologies easily, we have developed a pro-
gram in MATLAB with several easy-to-use graphical user interfaces. By
using this program, the user can choose the problem to analyse and the
range of the variables. The results of the analyses are then presented grap-
hically. Figure 16.1 shows the interface that we have developed for the
optimization of the parameters when the power consumption is to be taken
into account

Figure 16.1: Interface for power optimization

Besides, we have designed and built a prototype in the laboratory of
COMPMECH research group to validate the previous theoretical develop-
ments and detect possible errors that the models do not take into account.
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We have designed specific kinematic joints with the aim of increasing
the rotation range of the universal joints. In this way, the manipulator
can achieve rotations from −15◦ to 15◦ without interferences between the
elements of the manipulator. We have also designed the actuators with
the same objective. We have developed the control system by avoiding a
closed-CNC-type system. Thanks to this, we have achieved high dynamic
performances, with a frequency of 15 Hz with the only weight of the system.

We have designed and built the whole prototype, including the actuation
system. This fact has allowed us to reach extreme movement performances,
that we have also simulated on the virtual model. We have checked the
accuracy in the movement and measured the parasitic motions, seeing that
the errors in position are really small and that the parasitic motions are the
ones expected. We have also obtained the stiffness for different positions of
the workspace by using a finite element experimental methods. We have
seen that the values obtained correspond to the ones obtained by using the
matrix structural method. We have checked that there are no collisions or
singularities in the real useful workspace and that that real useful workspace
has the size as the one obtained theoretically. Finally, we have obtained the
natural frequencies and vibration modes by using a finite element method
and from experiments. We have seen that in the real model some vibration
modes appear at lower frequencies than in the finite elements analysis. This
may be due to clearances or inexactitudes in the building process. In this
way, we have increased the limits of the prototype with the only limitations
being the ones given by the design itself.
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Future Work

There are some related research topics that we have not included in this
work which offer an interesting avenue for future work. We describe them
bellow:

The models developed in this work can be improved by taking the
experimental results into account. We have seen that some vibration
modes appear at a lower frequency in the real model than in the
theoretical results. This is due to the clearances in the joints of the
prototype. We can try to reduce them while building the prototype,
but it is not possible to make them completely disappear. If we accept
that there will always be some clearances, what we can do is to include
them in the theoretical model. Besides, in the theoretical model, we
could also consider the torque applied in the joints when building the
prototype. A model that considers the clearances and the torque in
the joints would be more complicated but also more accurate.

We have optimized the geometric parameters by taking into account
the size and regularity of the workspace and the power consumption
along a given trajectory. These two parameters are very important
in parallel manipulators, but the stiffness is another very decisive
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parameter that we have to consider when designing a new parallel
manipulator. Thus, we can also optimize the geometric parameters so
the stiffness is the highest possible.

We have based this work on the ideal behaviour of the system, but
in real models phenomena such as friction and big deformations can
occur. The friction in ideal joints is null, but in real models there is
always friction – even if it is small – between the different parts of
the manipulator. Thus, if we want to get an even more precise model,
we can introduce the friction as a force in the dynamic equations.
Similarly, depending on the behaviour of the material, we cannot
work under the hypothesis of small deformations and have to consider
possible big deformations of the elements of the system.

Finally, we could improve our models by including the characteristics
of actuators and transmission type, that would affect the model in
different ways depending on if they are hydraulic, gear-based or belt-
based ones, for example.
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