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Introduction 

 

1 NANOTECHNOLOGY 

Nanotechnology is defined by the United States National Nanotechnology Initiative as 

“the understanding and control of matter at dimensions between approximately 1 to 

100 nanometers, where unique phenomena enable novel applications not feasible 

when working with bulk materials or even with single atoms or molecules” 

(http://www.nanotechproject.org/). Nanotechnology has provided a basis for 

innovation in a wide range of fields and has resulted in an exponential increase in both 

the deployment of nanotechnologies in products along with the development of novel 

nanomaterials (NMs) (Gottschalk and Nowack, 2011; Etheridge et al., 2013). The 

European Commission has defined NMs as “A natural, incidental or manufactured 

material containing particles, in an unbound state or as an aggregate or as an 

agglomerate and where, for 50% or more of the particles in the number size 

distribution, one or more external dimensions is in the size range 1 nm - 100 nm. In 

specific cases and where warranted by concerns for the environment, health, safety or 

competitiveness the number size distribution threshold of 50% may be replaced by a 

threshold between 1 and 50%” (EU COM, 2011). Among NMs, nanoparticles (NPs) are 

defined as a material with at least two dimensions between 1 and 100 nm (Klaine et 

al., 2008).  

1.1 Engineered NPs 

Though NMs from volcanoes, forest fires, products of bacteria, etc have occurred 

naturally in the environment since the beginning of the life (Oberdörster et al., 2005), 

in the last few decades the production and use of engineered NPs has spiked (Maurer-

Jones et al., 2013). Engineered NPs include metals, metal oxides and alloys, carbon 

based materials such as fullerenes, nanotubes and fibres, silicates, quantum dots (QDs) 

and polymer composites (Tiede et al., 2009). Their global production has increased 

exponentially, being estimated thousands of tons in 2004 and projected to increase 

over a half million of tons by 2020 (Maurer-Jones et al., 2013). Engineered NPs are 

present a high variety of products such as personal care products, clothing, cosmetics, 

sporting goods and electronics, among others (Fig 1, Vance et al., 2015). The number 

of potential applications of engineered NPs, especially metal bearing NPs (including 
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metal oxides NPs and QDs), is growing rapidly because of their unique electronic, 

optical, magnetic and catalytic properties (Klaine et al., 2008; Zhou et al., 2009).  

 
Figure 1.- Number of available products over time in different categories presenting engineered NPs 
(Vance et al., 2015). 

The differential properties of NMs in comparison with the bulk form of the same 

substances arise from two primary sources. On the one hand, the small size of the NP 

itself implies that the surface atoms dominate the chemistry and physics of the NP. On 

the other hand, the compression of NP electrons into unusually small spaces results in 

electron cloud overlaps and altered orbitals, thereby changing the wavelength of the 

light emitted by the NP and the chemical reactivity of the nano-cluster (Fako and 

Furgeson, 2009). Along with the size, the shape can influence the optical, mechanical 

and electrical properties of NPs, resulting in significant changes in the specific surface 

area and affecting particle solubility (Misra et al., 2013).  

Among the variety of products containing engineered NPs registered in the 

Nanotechnology Consumer Products Inventory (CPI), the majority (37%) correspond to 

those containing metal NMs, followed by those containing carbonaceous NMs and 
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silicon-based materials (Fig 2, Vance et al., 2015). The NMs grouped in the metal 

category include different types of metal (e.g. silver and gold) and metal-bearing NPs 

(e.g. zinc oxide). Other metal-containing NMs of increasing use are cadmium-based 

QDs (e.g. cadmium sulphide).  

 
Figure 2.- Claimed composition of NMs listed in the CPI, grouped into four major categories: metal 
(including metals and metal oxides), carbonaceous NMs (carbon black, carbon nanotubes, fullerenes, 
graphene), silicon-based NMs, and other (organics, polymers, ceramics, etc.) (Modified from Vance et 
al., 2015).  

Silver NPs (Ag NPs) have gained high commercial and scientific interest because of 

their unique optical, catalytical and disinfectant properties (Haase et al., 2011; Kvitek 

et al., 2011). Ag NPs show efficient antimicrobial activity (Franci et al., 2015), because 

of the antibacterial properties of silver (Zawadzka et al., 2014), along with the large 

surface area of the NPs, which provides better contact with microorganisms. NPs get 

attached to the cell membrane and also penetrate inside the bacteria (Rai et al., 2009), 

inhibiting the growth and multiplication of the bacteria, including multiresistan 

bacteria such as methicillin-resistant Staphylococcus aureus, Escherichia coli and 

Pseudomonas aeruginosa (Guzmán et al., 2009). This makes this material very suitable 

as coating in medical devices (Rai et al., 2009), for water treatment (Gong et al., 2007), 

in burn treatments, socks, detergents and soaps, washing machines, wet wipes, 

bedding and other industrial textiles (Buzea et al., 2007). 
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Gold NPs (Au NPs) have been one of the most reported nano-system in the literature 

(Bohnsack et al., 2012). The use of Au NPs is very extensive, being the medical field 

one of their most important applications (Azzazy and Mansour, 2009), providing non-

toxic carriers for drug and gene delivery applications (Ghosh et al., 2008). Moreover, 

Au NPs are widely used in consumer products, including cosmetics, sunscreens, food 

packaging, beverages, toothpaste, automobiles, and air handling units (Sung et al., 

2011; Borase et al., 2014).  

Zinc oxide NPs (ZnO NPs) have a wurtzite crystal structure that provides to these NPs 

specific piezoelectric and pyroelectric properties, which make them particularly useful 

for applications in optoelectronics, sensors, transducers and biomedical sciences 

(Wang, 2004). Furthermore, due to their optical properties and particle properties, 

such as cristallinity and morphology, ZnO NPs are widely applied in ceramics, pigments, 

cosmetics, sunscreens, etc (Kuo et al., 2010). 

Silica NPs (SiO2 NPs) are being used for biomedical applications such as drug delivery 

and imaging and diagnostic agents (Nelson et al., 2010). These biomedical applications 

have increased due to the recent improvements in regulating the geometry, porosity, 

and surface characteristics of SiO2 NPs (Yu et al., 2012). Moreover, optical absorption 

and emission properties, concentration of silanol groups, specific surface area and 

density are some of the key parameters that govern the utilization of SiO2 NPs 

(Rahmna et al., 2009). 

Cadmium-containing NPs are commonly synthesized as quantum dots (QDs), which are 

fluorescent semiconductor crystals with a size ranging from 2 to 100 nm used in 

biomedical research, microelectronics and solar panel technology. The materials are 

usually composed of a semiconductor core (i.e. CdSe, CdTe) and can be encapsulated 

by a shell (i.e. ZnS) to enhance the electronic and optical properties (King-Heiden et al., 

2009; Louis et al., 2010). For biomedical applications, QDs are often coated with 

organic molecules, such as thioglycolic acid, to increase the dispersion in water and to 

direct them to biological targets (King-Heiden et al., 2009; Louis et al., 2010). 
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1.2 NPs in the aquatic environment 

The spread use of manufactured NPs in different consumer products (e.g., sunscreens 

and cosmetics) has raised concerns about their release into the environment and the 

potential effects on ecosystem health that NMs could provoke (Klaine et al., 2008). 

Despite there are not direct measurements of NP concentration in the environment, 

because of the absence of analytical methods able to quantify trace concentration of 

NPs (von der Kammer et al., 2012), several authors have developed theoretical models 

in order to estimate the environmental NP concentrations (Table 1). These 

mathematical models are based on production and emission data, on the fate and on 

behavior of NPs into the environment. Most of the studies have reported metal 

concentrations values in the range of ng/L for different NPs. 

For silver, several studies have predicted metal concentration in different 

environmental compartments, being in effluents of sewage treatment plants (STP) 

where in general the highest values have been estimated, up to 18 µg/L in STP 

effluents of Rhine river (Blaser et al., 2008). Only a higher value has been estimated in 

major Taiwanese rivers, with a median predicted environmental concentration value of 

40 µg/L (Chio et al., 2012). On the contrary, the lowest predicted value has been 

reported in surface water of Europe, with an estimated NP concentration of 0.002 ng/L 

(Dumont et al., 2015). Although, most of the studies have been focused on Ag NPs, 

other metal bearing NPs have also been analyzed. Tiede et al. (2009) calculated a 

concentration of 140 ng/L for Au NPs and 0.7 ng/L for SiO2 NPs. In the case of ZnO NPs, 

the concentration value of 76 µg/L predicted by Tiede et al. (2009) is much higher than 

the concentration estimated by other authors. In other studies, the highest reported 

concentration was 2300 ng/L in STP effluents (Sun et al., 2014) and the lowest values 

have been estimated as 1 ng/L in surface water (Gottschalk et al., 2009). Differences in 

the concentration values estimated between STP effluents and surface water could be 

due to the material-flow model of engineered NPs, which begins with the 

incorporation into products, followed by the release of engineered NPs from products 

during their use and their transport to STP. After the landfill and recycling processes, 

these wastes are finally transferred to different aquatic compartments (Sun et al., 
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2014). Therefore, the engineered NP concentration at the end of the process may be 

lower than in the STP effluents.  

Table 1.- Predicted concentrations in water bodies for nanoparticles used in this work, according to 
different models. There are not available data for CdS NPs. Concentrations are given in ng/L.  

Matrix Area 
Predicted 

concentration 
Reference 

Ag 
STP effluent 

Rhine river 

2000-18000 

Blaser et al. (2008) 
River water 40-320 
Interstitial 
sediment water  

9-70 

Water Switzerland 30-80 
Mueller and Nowack 

(2008) 
Surface water 

Europe/USA/Switzerland 
0.764/0.116/0.717 Gottschalk et al. 

(2009) STP effluent 42.5/21/38.7 
Surface water 

Switzerland 
0.0033 Gottschalk et al. 

(2010) STP effluent 38.7 
Water ND 10 Tiede et al. (2009) 
Rivers  Taiwan 40000 Chio et al. (2012) 
STP effluent USA 19-89 Hendren et al. (2013) 

Water Europe 10 
Gottschalk et al. 

(2013) 
Rivers  Netherlands 5-20 Markus et al. (2013) 
Surface water 

Europe/Switzerland 
0.66/0.45 

Sun et al. (2014) 
STP effluent 0.17/0.32 
Surface water Europe 0.002 Dumont et al. (2015) 
Surface water 

Denmark 
0.015 

Gottschalk (2015) 
STP effluent 0.5 
WMS Germany 0.217-0.708 Wigger et al. (2015) 

Au 
Water ND 140 Tiede et al. (2009) 

ZnO 
Surface water 

Europe/USA/Switzerland 
10/1/13 Gottschalk et al. 

(2009) STP effluent 432/300/441 
Water ND 76000 Tiede et al. (2009) 
STP effluent Singapore 1780 Majedi et al. (2012) 

Water Europe 4770 
Gottschalk et al. 

(2013) 
Surface water 

Europe/Switzerland 
90/120 

Sun et al. (2014) 
STP effluent 2300/5300 
Surface water Europe 1.5 Dumont et al. (2015) 

SiO2 
Water ND 0.7 Tiede et al. (2009) 
STP: sewage treatment plants; WMS: Waste management systems; ND: no data. 
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NPs may enter in the aquatic environment either directly (through aerial deposition) or 

indirectly via effluents, dumping and run-off (Baker et al., 2014). Once in the aquatic 

systems, physico-chemical properties of NPs may be altered depending on the 

characteristics of the receiving media, such as pH or the ionic strength. NPs can 

undergo a variety of processes as sorption, oxidation, dissolution, etc, which 

determine their fate in the abiotic environment and their interaction with biota. These 

processes are of relevance to both the abiotic and biotic environment. It is necessary 

to understand how the interaction of metal bearing NP with the abiotic environment 

is, in order to know how the interaction into the organism may be (Fig 3, Schirmer et 

al., 2013). 

 
Figure 3.-  Some of the processes that engineered NPs can undergo in the environment, which 
determine their fate in the abiotic environment and interaction with biota (Schirmer et al., 2013). 

The dissolution of the NPs in the aquatic environment is an important property to 

understand their fate. This parameter can be influenced by different intrinsic and 

extrinsic factors (Fig 4). The thermodynamic parameter that controls this process is 

described as solubility (Misra et al., 2012). The solubility is size-dependent, the 

nanoparticulated materials dissolve more quickly than materials with a greater size 

(Borm et al., 2006). Surface characteristics can affect the NP solubility since 

agglomeration in dispersions and the NP hydrodynamic size distributions can be 

altered by a small change of the particle surface charge (Jiang et al., 2009). Moreover, 

changes in the surface characteristics can be produced by the presence of a coating 

agent which may protect the surface, leading a change of size or shape of NPs which 
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can bring out changes in the NP dissolution behavior (Misra et al., 2012). Linked to the 

presence of a coating agent in the NP suspension is the aggregation, since the 

presence of these agents keeps single particles suspended in a liquid and facilitate the 

synthesis process. Aggregation reduces surface area and, therefore, the dissolution 

potential, especially at high particle concentration (Baker et al., 2014).  

 

Figure 4.- A simplistic representation showing the factors that can affect dissolution of NPs and the 
possible interconnectivity among the factors, themselves (Misra et al., 2012). 

The chemical composition is related to the persistence of the NPs in the medium. Some 

NPs, such as organic ones, can be biodegradable, while others, such as metal or metal 

bearing NPs, can be more or less prone to weathering by oxidation and/or dissolution 

similarly to their corresponding bulk materials (Xu et al., 2004; Dorn et al., 2013). 

The route of entrance of NPs into the organisms depends on their habitat. In fish, as 

illustrated in Fig 5, NPs can be directly adsorbed by the skin, scales and fins, being 

specially marked in those zones which present mucus that covers the fish body and 

may embed NPs (Ma and Lin, 2013). Through the respiratory system, fish maintain a 

continuous entrance of water. The gills are in contact with NPs suspended in the water 

column being, therefore, a transfer point into organisms. Another route of NP 

entrance into the organisms is through the diet. Animals can feed suspended matter or 

other organisms previously exposed to NPs (Schrimer et al., 2013). 
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Figure 5.- Adsorption of NPs on the outer surfaces and distribution in the main internal organs of fish. 
The involved outer surfaces included scales, mucus layer, fins and skin. Main routes of entrance of NPs 
into the organism are the respiratory and digestive systems (Ma and Lin, 2013). 

2 ASSESSMENT OF NANOPARTICLE TOXICITY IN AQUATIC ORGANISMS 

Data on sublethal effects show that, although in general NMs provoke a similar toxic 

effect in fish to those provoked by the soluble or bulk forms of metals, it is necessary 

to know whether the nanoform can induce any additional or differential hazard 

compared to the dissolved metal (Shaw and Handy, 2011). 

As previously mentioned, the exposure to NMs provokes their entrance into the 

organisms, distribution and accumulation in different tissues and organs (Ma and Lin, 

2013). Chemical analyses in whole fish tissue or in selected organs provide accurate 

information on the metal bioavailability and accumulation capacity of fish, as well as 

on metal distribution among the different organs. Nevertheless, chemical analyses do 

not allow knowing the distribution of the metal among different cell types or cell 

compartments. Autometallographical detection of metals in tissue sections (Danscher, 

1984) provides information not only on the amount of metal accumulated in the 

tissues, but on the metal localization within the cellular compartments. This approach 

has been successfully employed to study the fate of soluble metals in aquatic 

organisms including mollusks and fish (Soto and Marigómez, 1997; Alvarado et al., 

2005). More recently, autometallography has been applied to the localization of 

metals in organisms exposed to metal NPs (Vicario-Parés et al., 2014; Jimeno-Romero 

et al., 2016). Along with the localization and quantification of metal in different cell 

types and cell compartments, the study of the NP fate once inside the cell is also 

important. For this purpose, transmission electron microscopy (TEM) is a suitable tool 
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to determine whether the NPs enter into the cells and, in that case, if they remain in 

the nanoparticulated form. Several studies have reported the presence of NP 

aggregates in liver and gills cells of different fish species, including zebrafish, after 

waterborne exposure. In gills, aggregates of ZnO NPs have been detected on the 

mucus of chloride cells or in the cytoplasm of cells of the filament and lamella of 

common carp (Cyprinus carpio L.) (Lee et al., 2014). Moreover, aggregates of Ag NPs 

have been detected in the cytoplasm or in the nuclear membrane of hepatocytes of 

zebrafish (Choi et al., 2010; Krishnaraj et al., 2016). The waterborne exposure of 

invertebrates to metal bearing NPs can also provoke the entrance of these particles 

into different compartments, as in the endolysosomal system in mussels (Ruiz et al., 

2015; Jimeno-Romero et al., 2016). Moreover, TEM can be used in nanotoxicology for 

the evaluation of ultrastructural changes in cells and tissues provoked by the exposure 

to nanoscale toxicants (Heinlaan et al., 2011). The waterborne exposure of fish to NPs 

provoked an increase of the rough endoplasmic reticulum and cytoplasmic inclusion 

bodies or vesicles in hepatocytes (Lee et al., 2014; Massarsky et al., 2014a). In addition, 

congestive enlargement of lysosomes has been reported after the exposure to ZnO 

NPs, provoking a vacuolar degeneration in liver sinusoids of common carp (Hao et al., 

2013). In gill cells, ultrastructural changes were detected after the exposure to ZnO 

NPs, such as a collapse of the apical region structure or an increase in the vacuolization 

in the cytoplasm in chloride cells and hypertrophic pavement in epithelial cells of the 

gill lamellae of common carp (Lee et al., 2014). Ultrastructural changes have been also 

observed after the exposure of aquatic invertebrates to diverse metal NPs. Gill cells of 

oysters exposed to ZnO NPs presented loss of mitochondrial cristae, and an increase in 

the number of endocytic vesicles in the cytoplasm, near of the cell membrane 

(Trevisan et al., 2014). These ultrastructural changes were also evident in the digestive 

gland cells of these organisms. 

Gene transcription can be altered during the exposure to a contaminant, as either a 

direct or indirect result of the exposure (Nuwaysir et al., 1999). As the whole genome 

of several environmentally relevant organisms are already sequenced, gene expression 

microarrays can be used to define the transcriptional response to NM exposure in 

order to assess the mechanistic basis of their toxicity (Kahru and Dubourguier, 2010; 
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Fröhlich et al., 2014). The main goals of toxicogenomics are to understand the 

mechanisms of action of the toxicant, and to identify gene transcription patterns that 

are representative of adverse outcomes (Coverdale et al., 2004). In addition, the 

transcription level of selected genes can be also analyzed by quantitative real time 

PCR, which grant an accurate quantification of the mRNA transcription level useful for 

the assessment of the transcription profile of genes of toxicological interest in 

organisms exposed to contaminants, as NPs (Bebianno et al., 2015). Several studies 

have already focused their effort on the study of the effects provoked by NP exposure 

at molecular level in diverse aquatic organisms. The exposure to different metal NPs 

has been reported to alter the transcription of genes involved in oxidative stress, 

energy metabolism, DNA damage and metal detoxification, among others (Chae et al., 

2009; Scown et al., 2010; Griffitt et al., 2013; Bebianno et al., 2015). Moreover, the 

study of the gene transcription levels can be used to analyze the distinct modes of 

action of NPs and their ionic counterparts, since the transcription pattern obtained 

after the exposure to both forms of the same metal may be different. For instance, 

exposure of zebrafish for 28 days to different concentrations of Ag NPs (5-50 µg/L) 

resulted in a larger number of genes significantly regulated (ranging from 319 to 624 

genes) than exposure to 5 µg/L of ionic silver which significantly altered only 95 genes 

(Griffitt et al., 2013). Exposure of medaka (Oryzias latipes) to Ag NPs or ionic silver also 

resulted in different genes significantly altered. The exposure to NPs provoked the 

alteration of genes involved in cellular and DNA damage, carcinogenesis, oxidative 

stress or metal detoxification, while after the exposure to ionic silver mainly genes 

involved in inflammatory response or metal detoxification were significantly altered 

(Chae et al., 2009). The exposure of freshwater invertebrates, such as Daphnia magna, 

to metal NPs, such as ZnO NPs, or to their ionic counterpart resulted in a different 

transcription pattern of genes involved in cellular metabolism and reproduction, which 

were significantly regulated after exposure to both forms of the metal (Poynton et al., 

2011). 

As previously mentioned, at cellular level, lysosomes are one of the main targets of 

metal and metal NP exposure (Köhler et al., 2002; De Matteis et al., 2015). NPs can be 

internalized in the cells by endocytosis (Fig 6) and move into the lysosomes (De 
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Matteis et al., 2015). The NP-lysosome interaction can induce the production of 

reactive oxygen species (ROS) when the NPs are exposed to the acidic environment of 

lysosomes (Chang et al., 2012). The generation of ROS, which are extremely reactive, 

induces lipid peroxidative chain reaction that can produce the destabilization of the 

lysosomal membrane (Nohl and Gille, 2005; Terman et al., 2006). In addition, the 

degradation of the NPs inside the lysosomes leads to the release of ions (e.g. Cd2+, Ag+) 

that cross the organelle membrane spreading into the cytosol and inducing further 

ROS production through the Fenton reaction (Buzea et al., 2007; Sabella et al., 2014). 

The damage provoked in the lysosomal membrane by the exposure to metal and metal 

bearing NPs has been previously analyzed in diverse aquatic organisms and compared 

with the effect provoked by the same nominal concentration to their ionic 

counterparts. A significant decrease in the time necessary to desestabilize the 

membrane was observed after the exposure to different NP types (TiO2 and CuO NPs) 

analyzed in mussels and fish (Jimeno-Romero et al., 2016; Vicario-Parés, 2016).  

 

Figure 6.- General scheme illustrating the mode of action of metal-based engineered NMs in cells (Rocha 
et al., 2015). LMS: Lysosomal membrane stability. 

Abundance of ROS can lead to potentially damaging biological effects resulting in 

oxidative stress phenomenon. Oxidative stress results from an imbalance between the 

production of ROS and a biological system’s ability to readily detoxify the reactive 

intermediates or repair the resulting damage. The hierarchical model of oxidative 

stress, which posits that low levels of oxidative stress induce protective effects while 

14



Introduction 

 
higher levels of oxidative stress produce damaging effects (Li et al., 2008), has been 

proposed to illustrate mechanism for NP-mediated oxidative stress (Manke et al., 

2013). According to this model, cells and tissues respond to increasing levels of 

oxidative stress via activation of antioxidant enzyme systems (Sies, 1997). The 

presence of ROS and, therefore, oxidative stress have shown to damage cells by 

peroxidizing lipids, altering proteins, disrupting DNA, interfering with signaling 

functions, and modulating gene transcription (Buzea et al., 2007).  

An increase in the presence of ROS is known to cause a range of reversible and 

irreversible covalent modifications of amino acid side-chains of proteins (Ghezzi and 

Bonetto, 2003). Among the main protein redox lesions caused by ROS, formation of 

aldehyde/ketones, oxidation of S-containing residues (such as methionine and 

cysteine), ubiquitination and effects on disulphide patterns, like glutathionylation, and 

on protein thiol status have been reported (McDonagh et al., 2005; Biswas et al., 2006; 

McDonagh and Sheehan, 2006; 2007; 2008). These modifications have different effect 

in proteins, since some of them can lead to inactivation of proteins, while other are 

protective of the protein’s structural integrity and some can be viewed as a means of 

the cell “sensing” changes in redox status (McDonagh et al., 2005). 

Among these protein modifications, those that can cause the loss of protein function, 

such as carbonylation and ubiquitination have been mainly analyzed to determine the 

oxidative damage provoked by the exposure of aquatic organism to metal and metal 

bearing NPs (Fig 6, Rocha et al., 2015). Carbonylation is an irreversible modification of 

amino acid residue side-chains into aldehyde or ketone groups, which can lead to 

protein aggregation, inactivation or degradation (Levine et al., 2000; Costa et al., 

2002). Damaged proteins are removed from cells by proteolysis, mainly via the 

ubiquitin-proteasome pathway (UPP) (Marques et al., 2004). Ubiquitin is a highly-

conserved protein of 20 kDa that flags damaged cytosolic and nuclear proteins for 

transport to the proteasome for degradation. UPP is responsible for selective 

degradation of short-lived intracellular regulatory proteins or abnormal cytosolic and 

nuclear proteins (Marques et al., 2004). Significant increases of carbonylation and 

ubiquitination have been measured in gill and digestive gland of aquatic invertebrates, 
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such as mussel, which may confirms the oxidative damage provoked by the exposure 

to metal NPs (Tedesco et al., 2008; Hu et al., 2014).  

An important aspect in the study of the NPs toxicity is their capacity to induce 

genotoxicity, as damage to the genetic material may result in the induction or 

promotion of carcinogenesis (Doak et al., 2012). NMs can lead to DNA damage (Fig 6) 

through two different mechanisms, namely primary and secondary mechanisms. 

Primary mechanisms are those produced by the NMs themselves at the level of the 

single-cell and may be either the result of direct or indirect interaction between the 

NMs and DNA. Also, the induction of genotoxicity can be provoked indirectly by the 

interaction of NMs with nuclear proteins involved in DNA replication, transcription or 

repair (Magdolenova et al., 2013). Secondary mechanisms are those which induce 

genotoxicity as a result of the excessive generation of ROS (Doak et al., 2012). Different 

genotoxic effects are caused by the exposure to NMs, such as chromosomal 

fragmentation (clastogenic effects), DNA strand breakages, point mutations, oxidative 

DNA adducts and alterations in gene expression profiles (Singh et al., 2009). The 

genotoxicity caused by the exposure to different metals and NMs has been amply 

studied in diverse aquatic organisms. Several studies have reported significant 

differences in genotoxic effects on fish, including zebrafish, waterborne or dietary 

exposed to metal and metal bearing NPs, such as gold, cadmium or cadmium sulphide 

NPs using the random amplified polymorphic DNA-PCR (RAPD-PCR) methodology 

(Cambier et al., 2010; Geffroy et al., 2012; Ladhar et al., 2014; Dedeh et al., 2015). 

Clastogenic effects have been also detected using the micronuclei (MN) frequency test 

in fish, although the increased presence of micronucleated in erythrocytes was not 

statistically significant (Filho et al., 2014; Vicario-Parés, 2016). Aquatic invertebrates, 

such as mussels or Daphnia magna, have been also used to determine the genotoxic 

effect provoked by the exposure to different NPs. In mussels exposed to CuO NPs a 

significant increase in the presence of MN was detected after 21 days of treatment 

(Ruiz et al., 2015). The comet assay in diverse aquatic species, such as mussels, 

daphnia or fish (Piaractus mesopotamicus), also provides evidences of oxidative 

damage to DNA caused by exposure to metal bearing NPs (TiO2, CuO, Ag, CeO2, SiO2) 

(Lee et al., 2009; Clemente et al., 2013; Gomes et al., 2013). 
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Alterations in the cell physiology provoked by the above mentioned cellular and 

molecular effects can be also reflected at tissue level. Gills are one of the main organs 

of entrance of NPs into the organisms since the water and air would pass through this 

organ (Ma and Lin, 2013). Therefore, gills are the primary tissues that make contact 

with exogenous toxicants in the aquatic environment. Thus, branchial impairment 

provoked by the exposure to toxicants may influence oxygen consumption and disrupt 

osmorregulation (Wu and Zhou, 2013). The exposure to NPs (e.g. Cu, Ag) can affect the 

activity of the gill Na+/K+-ATPase, which plays a key role in ionoregulatory processes 

(Griffitt et al., 2007; Katuli et al., 2014). Changes in the activity of this enzyme can alter 

the plasma electrolyte levels, inducing stress in aquatic organisms (Katuli et al., 2014). 

These biochemical changes may derive in morphological changes in gills. Two types of 

gill injuries have been reported after exposure to metal and metal bearing NPs (e.g. Ag, 

ZnO, TiO2). The first type of injury results from a defense response and includes 

hyperplasia of the gill filament epithelium and oedema of gill lamellae; the second type 

is the direct injury and includes necrosis and shedding of gill epithelium (Griffitt et al., 

2009; Chen et al., 2011; Govidansamy and Rahuman, 2012; Lee et al., 2012a; 2012b; 

Wu and Zhou, 2013).  

The intestine is other important target organ of dietary and waterborne exposure to 

NMs. Intestine is where absorption of nutrients occur which, in turn, may lead to 

incorporate contaminants and to distribute them to other organs (Zhu et al., 2010). 

Moreover, freshwater fish usually drink a few amount of water, being increased under 

a stress situation (Best et al., 2003; Smith et al., 2007). Thus, the ingestion of water or 

food containing NPs may provoke a direct effect on the tissue structure of the 

digestive system, such as inflammation or erosion, which affects the absorption of 

these materials by endocytosis (Handy et al., 2008). Necrosis and inflammation of the 

intestine are histopathological alterations detected after the exposure to sublethal 

concentrations of Ag NPs in rainbow trout (Oncorhynchus mykiss) (Johari et al., 2014a). 

Also, erosion and fusion of the intestinal epithelium and increase of areas of 

vacuolization have been reported after the exposure of rainbow trout to TiO2 NPs 

(Federici et al., 2007). 
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The liver, commonly used for histopathological analysis, is an important organ of active 

metabolism and detoxification and extremely sensitive to pollutants (Hao et al., 2009). 

Histopathological lesions in liver, as disruption of hepatic cell cords or apoptotic 

changes, have been associated to the oxidative stress provoked by the exposure to Ag 

NPs in zebrafish (Choi et al., 2010). Moreover, other histopathologies as extensive cell 

death, necrosis and degenerative changes are associated to the ability of metal NPs, 

such as Ag NPs, to alter the biochemical functions associated with the liver (Devi et al., 

2015). Histopathological alterations described in the liver of fish, such as medaka, 

common carp or zebrafish, after the exposure to sublethal concentrations of metal and 

metal bearing NPs (ZnO or Ag NPs) are pyknotic nuclei, dilated sinusoids, focal 

necrosis, narrowing of sinusoids, fatty degeneration, hypertrophy of hepatocytes, 

irregular shaped nucleus, nuclear degeneration, cytoplasmic degeneration and 

apoptosis, among others (Choi et al., 2010; Wu and Zhou, 2013; Subashkumar and 

Selvanayagam, 2014).  

3 ZEBRAFISH ANIMAL MODEL 

Danio rerio or zebrafish (Fig 7) is a freshwater cyprinid of 5-6 cm length, original from 

the subtropical South of Asia. It has the capacity to adapt to live in drastic weather 

changing areas, as well as the capacity to survive in factor fluctuating environments, 

where salinity, pH or temperature are continuously changing. This may explain its wide 

range of tolerance that facilitates the culture of this species in captivity (Harper and 

Lawrence, 2011). Since the late 1970’s, zebrafish have been used in developmental 

biology and for the study of the effects of a high number of chemicals (Lele and Krone, 

1996). Nevertheless, it is from the late 1990´s when the zebrafish has been established 

as an animal model for the study of vertebrate development, as a model in toxicology 

or for the study of cancer and drug discovery (Hill et al., 2005). The use of zebrafish in 

toxicogenomics studies is also increasing, due to the high level of conservation of 

genomic and functional pathways between fish and mammals (Williams et al., 2014). 

Moreover, the fact of the zebrafish genome project is completed (Howe et al., 2013), 

along with the available zebrafish commercial microarrays, make it an ideal model 

organism (Ung et al., 2010). This species was the first fish species in which experiments 
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carried out in a laboratory confirmed that carcinogens active in mammals cause 

neoplasia in fish (Spitsbergen and Kent, 2003).  

 
Figure 7.- Adult zebrafish: male (left) and female (right). Source: http://news.stanford.edu/news/2007/ 
october17/med-fishsleep-101707.html, retrieved on July 8th 2015.  

The small size of the adult zebrafish is the main advantage of this animal model, 

because it offers some technical advantages, such as ease of maintenance, observation 

and manipulation and possibility to maintain a large number of fish in relatively small 

facilities with reduced costs. Their relatively short generation time of three to four 

months to mature is another advantage (Segner, 2008). One female produces 200-300 

eggs per week, which are fertilized externally, and have rapid embryonic development 

(in 2-4 days) with a beating heart and visible erythrocytes by 24 h (Bahary and Zon, 

1998). The zebrafish eggs and embryos are small and transparent (Fig 8), which allows 

reasonable sample sizes to be tested together using a simple cell-culture plate to 

provide several experimental replicates at one time. The zebrafish is perfectly known 

morphological, biochemical, physiological and genetically at all stages of development 

from eggs to adults, in both sexes (Hill et al., 2005). 

 
Figure 8.- (A) Zebrafish embryos at 3 hours post fertilization (hpf). (B) Zebrafish embryo at 120 hpf. 

3.1 Brine shrimps as live food for zebrafish  

Brine shrimps (Artemia sp, Fig 9) are small crustaceans with a very wide geographical 

distribution, which can be found in salt lakes, coastal lagoons and man-made salt 

1000 µm 500 µm
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ponds. They are characterized by their adaptability and tolerance to wide ranges of 

salinity (5-250 g/L) and temperature (6-35ºC) and also to a great variety of nutrients 

that they filter in a non-selective way (Nunes et al., 2006). Different easily 

distinguishable life stages can be found in the lifecycle of brine shrimp: “first instar” 

during the first 15-24 hours post hatch (hph), “second instar” between 24-72 hph, 

“metanauplius” after 72-96 hph, “zoea” are considered after 6-7 days post hatch and, 

finally, adults are considered after 15 days post hatch (Rajasree et al., 2011). 

 
Figure 9.- (A) Brine shrimp in “second instar” life stage; (B) Female adult brine shrimp; (C) Male adult 
brine shrimp (Courtesy of Álvaro Fanjul). 

Brine shrimps are commonly used to feed fish in aquaculture, due to the advantages 

they offer. Brine shrimp cultures are easy and cheap to maintain and can be produced 

in massive quantities in short periods of time (Sorgeloos et al., 2000). Moreover, brine 

shrimps present a high nutritional value to be used as food for fish, with high content 

of proteins, fatty acids, lipids and carbohydrates, especially in the first life stages (Léger 

et al., 1987).  

The tolerance to large changes in different parameters such as salinity, ionic 

composition, temperature, and oxygen tension, and the fact that they are able to 

adapt to changeable nutrient resources as they are non-selective filter feeders, make 

brine shrimps an advantageous species in ecotoxicological studies (Kalčíková et al., 

2012). Despite standardized toxicity testing protocols for brine shrimps are only 

available with soluble reference chemicals (Kos et al., 2016), the number of studies 

analyzing the effects of different NMs in these species is increasing. Brine shrimps 

might be a suitable biological model, at least for screening purposes, due to its cost-

effectiveness (Libralato, 2014). Therefore, it is necessary to harmonize all the steps in 

the test procedure to standardize the protocol for the analysis of the effect provoked 

500 µm 500 µm1000 µm
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by the exposure of brine shrimps to NMs in order to obtain reproducible toxicity data 

(Kos et al., 2016). 

In addition to the screening experiments, the fact that brine shrimps are used to feed 

fish, along with their capacity to accumulate NMs (Wang and Wang, 2014), make them 

a suitable organism to investigate the transfer of NMs through the food chain 

(Libralato, 2014). 

3.2 The fish embryo toxicity (FET) test  

The fish acute toxicity test was proposed as a test to study the water quality (OECD 

TG203, 1992). In this test mortality was the unique endpoint and fish suffered severe 

distress and pain (Nagel, 2002; Braunbeck et al., 2005). This is in conflict with current 

animal rights legislation (Strähle et al., 2012). Moreover, the environmental 

significance of individuals death after a short-term exposure to high concentration, 

except in the case of accidental spills, is low (Nagel, 2002).  

Since the implementation of the Animal Welfare Guideline 86/609/EC in 1986, the 

declared policy of the EU institutions is to support the development and use of 

alternative methods, which are defined as “any method that can be used to replace, 

reduce or refine the use of animal experiments in biomedical research, testing or 

education” (Lilienblum et al., 2008). The “alternative” concept is attributed to Russell 

and Burch (1959), who defined three types of alternatives, the replacement, reduction 

or refinement of animal tests, the so called RRR (or 3R) principle (Lammer et al., 

2009a). According with the concept of 3R, new toxicity tests were proposed to replace 

acute toxicity test, the fish embryo toxicity (FET) test and related fish eleutheroembryo 

toxicity test (Nagel, 2002; Lammer et al., 2009b; Embry et al., 2010; OECD TG236, 

2013). 

The FET test is considered as an alternative to the acute toxicity test (Schulte and 

Nagel, 1994; Nagel, 2002; Braunbeck et al., 2005) because in the case of fish the 

European Directive 2010/63/EU on the protection of animals used for scientific 

purposes only applies to independently feeding larval forms, which in the case of 

zebrafish is considered to happen after 5 days post-fertilization (Braunbeck et al., 

21



Introduction 

 
2014). In this test four apical observations are recorded as indicators of acute lethality 

in fish: coagulation of fertilized eggs, lack of somite formation, lack of detachment of 

the tail-bud from the yolk sac, and lack of heart-beat (ISO, 1996; OECD TG236, 2013). 

But, mortality is not the unique endpoint; a variety of sublethal endpoints can be 

incorporated into the test protocol (Lammer et al., 2009b). 

Moreover, the FET may serve as a model system in other fields of ecotoxicology such 

as sediment toxicity assessment, genotoxicity and mutagenicity testing, 

histopathological analysis and induction studies based on microarray techniques 

(Braunbeck et al., 2005). During the last years, the FET test has been amply used in 

nanotoxicology, in order to analyze the effect provoked by different NMs (Bohnsack et 

al., 2012). 

3.3 Zebrafish as a model in nanotoxicology 

In zebrafish, most of the studies on the effects provoked by the exposure to metal and 

metal bearing NPs have been carried out with embryos, while a limited number of 

studies have been carried out with adults. Waterborne exposure to NMS has been the 

main exposure route selected in these studies, while few studies have addressed 

dietary exposure. The main results reported up to day using similar NMs as the ones 

selected in the present study have been summarized in tables 2-7. 

Table 2 summarizes studies reporting toxic effects of Ag NPs, which is by far the most 

studied nanomaterial, to zebrafish embryos. Overall, results show that the exposure to 

Ag NPs affect the development and survival of fish embryos, in a concentration-

dependent way (Lee et al., 2007; Asharani et al., 2008; 2010; Yeo and Kang, 2008; 

George et al., 2011; Kannan et al., 2011; Lee et al., 2012c; 2012d; George et al. 2014; 

Ribeiro et al., 2014; Yoo et al., 2016). Ag NP toxicity has been mainly calculated as LC50 

values, ranging from 0.02 mg/L (Kannan et al., 2011) to 25-50 mg/L (Asharani et al., 

2008). The presence of a coating agent can reduce the toxicity of the NP suspension. 

Osborne et al. (2013) reported that uncoated Ag NPs were more toxic than citrate-

coated Ag NPs of a similar size. Nevertheless, differences in the toxicity have been also 

reported depending on the additive used, being Ag NPs stabilized with polyvinyl 

pyrrolidone (PVP) which presented the highest toxicity (Cunningham et al., 2013; Kim 
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et al., 2013a; Kim and Tanguay, 2014). Moreover, differences in the toxicity have been 

detected depending on the NP size. Most of the studies have described a higher toxic 

effect for the small NPs than for those with a larger size (Lee et al., 2007; Bar-Ilan et al., 

2009; Asharani et al., 2010; Cowart et al., 2011; Powers et al., 2011; Bowman et al., 

2012; Kim et al., 2013b; Kim and Tanguay, 2014). Nevertheless, Osborne et al. (2013) 

reported higher toxicity for larger NPs (35 nm) than for the smaller NPs (10 nm). As in 

the case of the size, the exposure to NMs with different shape provoked differences in 

the toxicity to zebrafish embryos. George et al. (2012) exposed zebrafish embryos to 

Ag nanoplates, spheric Ag NPs and Ag nanowires, being the nanoplates which 

presented the highest toxicity and nanowires were the least toxic. The Ag NP toxicity in 

zebrafish embryos can also vary with the ionic strength of the media, increasing the NP 

toxicity in low ionic strength media (Levard et al., 2013; Olasagasti et al., 2014). 

Depending on the composition of the media the toxicity of the Ag NPs can be altered, 

since oxidized Ag+ from the dissolution of Ag NPs can react with different elements 

present in the media as inorganic sulfide or chloride ions to form Ag2S NPs or AgCl 

species, reducing the toxicity of the Ag NPs (Levard et al., 2013). 

The embryonic stage at which the organism is exposed has been described as an 

important factor in the Ag NPs toxicity, but different results have been reported. On 

the one hand, some authors detected an increase in the mortality and in malformation 

prevalence in the embryos when the exposure was carried out during the first 

embryonic stages, being the cleavage stage (2 hpf) the most sensitive stage (Browning 

et al., 2013a; Groh et al., 2014). The increase in the toxicity during the exposure of 

younger zebrafish embryos may be due to the disruption of important developmental 

processes particularly susceptible to the Ag NPs occurring at earlier stages (Groh et al., 

2014). On the other hand, Lee et al. (2013a) exposed embryos for 2 h at different 

stages and then transferred them to clean water up to 120 h. They detected an 

increase in the NP toxicity in the last-segmentation stage (21 hpf) embryos respect to 

the early-segmentation stage embryos. These results suggest that disruption of cell 

differentiation by the NPs causes the most toxic effects on embryonic development. 

The presence of the chorion during the exposure is also an important factor 

determining the Ag NP toxicity. Park et al. (2013) reported an increase in the mortality 
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of embryos surrounded by the chorion, while dechorionized embryos presented an 

increase in malformation prevalence. Nevertheless, Kim and Tanguay (2014) detected 

an increase in mortality and malformation prevalence in embryos without chorion 

respect to unhatched embryos exposed to Ag NPs of different sizes (20 and 110 nm), 

coatings (PVP and citrate) and exposure media (embryo medium and CaCl2). The size- 

and surface coating-dependent toxicity of Ag NPs was controlled by the permeability 

function of the chorion, which serves as a barrier to avoid Ag NP contact with the 

embryos. 

In addition to the effects of Ag NPs on embryo survival and malformation prevalence, 

other sublethal effects have been reported. The exposure to Ag NPs can alter their 

behavior. Observation of abnormal swimming, pectoral fin gyrations, or mouth 

movements were detected in zebrafish embryos after the exposure to Ag NPs of 20 nm 

in a concentration ranging from 0.5 to 1 mg/L (Bowman et al., 2012). These effects are 

related to neurobehavioral disruption, provoked by the exposure to Ag NPs which 

causes a disruption in neural cell replication and differentiation, affecting to the 

normal behavior of the zebrafish (Powers et al., 2011). At molecular level, the 

alteration in the transcription of genes involved in the neuronal cell differentiation 

(ELAV like neuron-specific RNA binding protein 3 (huC), glial fibrillary acidic protein 

(gfap) and neurogenin 1 (ngn1)) has been also detected in zebrafish embryos exposed 

for 96 h to Ag NPs of 4 and 10 nm, in a concentration ranging from 0.48 to 23.1 mg/L. 

These alterations in gene transcription have been related to the presence of head 

malformations in zebrafish embryos (Xin et al., 2015). The exposure for 24 h to 0.5 and 

1 mg/L of Ag NPs (average size 120 nm) provoked the up-regulation of genes involved 

in endoplasmatic reticulum stress, which can have several consequences including the 

activation of apoptotic (e.g. NADPH oxidase activator (Noxa), cyclin-dependent kinase 

inhibitor 1 (p21), tumor protein p53 (p53)) and inflammatory (e.g. beta interacting 

protein (BiP), synovial apoptosis inhibitor (Synv)) pathways (Christen et al., 2013). 

Finally, Van Aerle et al. (2013) examined the effects of the exposure for 48 h to 5 µg/L 

of Ag NPs of 10 nm, resulting in an inhibition of the oxidative phosphorylation pathway 

after 24 h, potentially due to the increase in ROS within mitochondria. These results 

were attributed partially to the dissolution of silver in Ag+, although not all changes 
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observed in gene transcription can be explained by the effects of Ag+ alone. Genes 

related to chryptochrome (e.g. cry1a) were strongly down-regulated after 24 and 48 h. 

These genes are induced by light exposure available and, therefore, it was suggested 

that the light availability to embryos exposed to Ag NPs was lower than the light 

available for control organism, since suspended NPs were adsorbed at the surface of 

the embryos acting as a barrier to the light (Van Aerle et al., 2013). Moreover, the 

regulation of genes involved in detoxification of metals (e.g. metallothionein (mt), ATP-

binding cassette c (abcc)), response to inflammation and immune response (e.g. 

interleukin-1 beta (Il1β)) and oxidative stress (e.g. heat shock protein7 (hsp7)) has been 

also reported in the zebrafish embryos exposed to Ag NPs (Christen et al., 2013; 

Osborne et al., 2013; Park and Yeo, 2013; Olasagasti et al., 2014; Gao et al., 2015; Park 

and Yeo, 2015; Xin et al., 2015). 

As for embryos, differences in the toxicity provoked by the exposure to Ag NPs 

synthesized by different methods and containing different capping agents have been 

reported in adult zebrafish (Table 3). Despite their smaller size, the exposure for 96 h 

to PVP-coated Ag NPs of 9.2 nm synthesized using the top-down (physical method) 

provoked lower toxicity in adult zebrafish (LC50 = 0.54 mg/L) than the exposure to 

citrate-coated Ag NPs of 63.45 nm synthesized by means of a bottom-up method (LC50 

= 0.014 mg/L). The differences in the LC50 values can be related to the toxic effect 

provoked by the chemical precursors used in bottom-up approaches for reducing silver 

ions to Ag NPs (Johari et al., 2014b). A higher LC50 value (1.42 mg/L) has been reported 

after the exposure for 96 h to a range of concentrations (0.23-3.31 mg/L) of Ag NPs of 

24.1 nm using plant extract mediated synthesis (Krishnaraj et al., 2016). In this study, 

100% of mortality was registered at 2.84 and 3.31 mg/L. Moreover, genotoxicity 

evaluated as the presence of MN and nuclear abnormality in erythrocytes, cytological 

changes in gills and intrahepatic localization of NPs after the exposure for 14 days to 

0.71 mg/L were also reported.  

Alterations in the liver gene transcription, especially in genes related to DNA damage, 

oxidative stress, and apoptosis have been reported after a short-term exposure (24 h) 

of zebrafish up to 120 mg/L of Ag NPs of 5-20 nm as well as after long-term exposure 

(36 d) to lower concentrations (0.4 and 4 mg/L) of Ag NPs of 10-20 nm (Yeo and Pak, 
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2008; Choi et al., 2010). In addition, after the exposure for 14 d to 0.71 mg/L of the 

above mentioned Ag NPs of 24.1 nm, oxidative stress and immunotoxicity were 

confirmed studying the hepatic transcription of different stress related- (metal 

transcription factor 1 (mtf-1), hsp70) and immune response related- (toll like receptor4 

(tlr4), nuclear factor kβ (nfkb), CCAAT/enhancer binding protein (cebp), transferrin 

(tlr22), toll like receptor22 (trf)) genes (Krishnaraj et al., 2016). Short-term exposure to 

10 mg/L of Ag NPs of 26.6 nm also resulted in significantly regulated genes in zebrafish 

gill (148 genes at 24 h of exposure and 462 genes at 48 h exposure) as detected 

through a microarray analysis (Griffitt et al., 2009). After a longer term period (28 days) 

of water-borne exposure to 5-50 µg/L of Ag NPs of 3.1 nm, the microarray analysis in 

gills revealed that the number of regulated genes was higher (3019 genes) than after 

the short-time period. These genes differentially transcribed were associated to gene 

ontology (GO) terms involved in both extracellular and intracellular processes, 

indicating that Ag NPs were exerting effects both inside and outside the cell. GO terms 

involved in DNA damage and repair were significantly over-represented after the 

exposure (Griffitt et al., 2013). Higher concentration of silver was reported in gills than 

in the carcass, although this accumulation did not provoked pathological alterations in 

the gills (Griffitt et al., 2013).  

In fact, gills appear as a target organ of Ag NP toxicity in zebrafish. A prolonged 

exposure (up to 3 weeks) to two different concentrations (2 and 4 mg/L) of Ag NPs 

(16.6 nm) inhibited gill Na+/K+-ATPase and acetyl cholinesterase (AchE) activities, and 

induced the stress response, evidenced by the increased plasma glucose and cortisol 

levels (Katuli et al., 2014). Osborne et al. (2015) also reported effects in gills of 

zebrafish exposed for 4 days to 1 mg/L of two different citrate-coated Ag NPs (20 and 

110 nm). These authors found a significantly higher content of silver in fish exposed to 

Ag NPs of 20 nm than in those exposed to Ag NPs of 110 nm. Moreover, the 

histopathological analysis revealed fusion, hyperplasia and inflammation in the 

secondary lamellae of fish treated with Ag NPs of 20 nm, while after the exposure to 

the large NPs only hyperplasia was detected (Osborne et al., 2015). In order to 

determine the fate of the Ag NPs in the gills a silver staining was performed, detecting 

most of the Ag NPs adhered to the secondary filaments, especially after the exposure 
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to the small NPs. Finally, Mansouri and Johari (2016) analyzed gill ultrastructure and 

histopathological changes after the exposure for 4 days to a range of concentration 

(1.5-15 µg/L) of citrate-capped Ag NPs (63.45 nm). At the highest tested concentration 

(15 µg/L), an increase in the diameter of gill filaments and secondary lamellae and 

reduced length of the secondary lamellae were detected. Moreover, exposure to all 

concentrations caused different injuries including vacuolization, dilated and clubbed 

tips, aneurism, hyperplasia, edema, fusion, swollen mucocytes, hypertrophy, and 

necrosis.  

In liver, histopathological alterations such as extensive cell death, necrosis and 

degenerative changes were detected after the exposure to 0.1 mg/L of Ag NPs for 15 

days (Devi et al., 2015). In adult zebrafish fed with a diet containing Ag NPs (500 mg/kg 

food) no effects were detected in the histology of the intestine nor in the liver. Only 

changes in the intestine microbiome were observed after 14 days of treatment 

(Merrifield et al., 2013). Nevertheless, in the above referenced study, Osborne et al. 

(2015) reported histopathological changes in the intestine of zebrafish. The intestine of 

fish exposed to the small Ag NPs for 4 days presented an increase in the number of 

goblet cells in the epithelial layer, some reduction in microvilli and partial damage to 

the lamina propria. The intestine of zebrafish exposed to the larger Ag NPs showed 

evidence of vacuolization and partial damage to lamina propria with abundant 

microvilli. The silver staining revealed Ag NPs in the basolateral membrane of the 

intestinal mucosa, especially after the exposure to citrate-coated Ag NPs of 20 nm.  

Table 4 summarizes studies reporting toxic effects of CdS NPs and other cadmium-

containing QDs with different cores and shells to zebrafish embryos after water-borne 

exposure and to adults after dietary exposure. In these studies, differences in the 

toxicity of CdSecore/ZnSshell QDs have been detected depending on the capping agent, 

with LC50 values ranging from 0.787 mg/L (capped with poly-L-lysine) to 4.72 mg/L 

(capped with poly-(ethyleneglycol)-OCH3) (King-Heiden et al., 2009). Differences in the 

chemical composition of the core or of the shell also provoked differences in the 

toxicity to embryos, since the presence of metals, as selenium, in the core increases 

the toxic effect of these NPs (Wiecinski et al., 2013). An increase in mortality and in 

malformation prevalence, as well as a decrease in the hatching rate have been 
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reported in all the studies (George et al., 2011; Zhang et al., 2012a; 2012b; 2012c; 

2013; Wiecinsky et al., 2013; Ong et al., 2014). Moreover, accumulation of cadmium in 

embryos has been analyzed after treatment with two different QDs (5 nm). Zebrafish 

embryos were exposed to CdSe/ZnS-COOH functionalized QDs (QDs-C) and CdSe /ZnS 

QDs in toluene (QDs-P) for 48 h at two different concentrations (0.5 and 1 mg/L), 

followed by 24 h of depuration in clean water. Exposure to the highest concentration 

provoked 100% mortality after 9 h of exposure. In embryos exposed to 0.5 mg/L, 

cadmium accumulation was not detected. The distribution of cadmium into the 

embryos was analyzed after the exposure to QDs-P. QDs-P appeared distributed along 

the larvae surface indicating that QDs-P were not assimilated by the organism (Zarco-

Fernández et al., 2016). Zhang et al. (2012c) also studied the bioaccumulation after 

simultaneous exposure to mercaptopropionic acid-CdSe QDs (3 nm) and to Cu2+. The 

presence of QDs facilitated the accumulation of copper into the organism, since Cu2+ 

might be adsorbed onto mercaptopropionic acid-CdSe QDs as a result of large surface 

area and electrostatic attraction (Zhang et al., 2012c). 

In adult zebrafish, the toxic effect of the dietary exposure to cadmium-containing QDs 

has been analyzed in two studies. Ladhar et al. (2013) fed adult zebrafish for 36 and 60 

days with two different doses (40 and 100 ng NPs/day/g body weight) of CdS QDs of 

two different sizes (8 and 50 nm). Results showed a significant accumulation of 

cadmium in the liver at both periods of time and, also, in the brain after 60 days of 

exposure. Moreover, after 60 days of dietary exposure to both concentrations of QDs 

genotoxic effects were reported using RAPD-PCR genotoxicity test. The gene 

transcription analysis in liver showed a general downregulation of genes involved in 

mitochondrial metabolism, DNA repair, apoptosis and antioxidant defenses after 36 

days of exposure to the smallest NPs (8 nm). After 60 days of exposure, these genes 

appeared repressed in the intestine and over expressed in the brain (Ladhar et al., 

2013). Lewinski et al. (2011) simulated a simply food chain using a primary consumer 

(Artemia sp) exposed to 0.6 mg/L of CdSe/ZnS QDs to feed a secondary consumer 

(zebrafish) for 14 days. Uptake of QDs was detected in zebrafish, although 

biomagnification was not recorded after the dietary exposure. 
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In Table 5, studies carried out using zebrafish embryos and adults exposed to Au NPs 

are summarized. The low toxicity of different Au NPs has been demonstrated in most 

of the studies, where significant increases in mortality, malformation prevalence or 

hatching rate have not been observed in zebrafish embryos exposed up to 120 hpf to 

Au NPs of different sizes (Bar-Ilan et al., 2009; Asharani et al., 2010; Wang et al., 2010; 

George et al., 2011; Ganeshkumar et al., 2013; García-Cambero et al., 2013; Kovrižnych 

et al., 2013). Nevertheless, some authors have reported toxic effects of Au NPs, with 

an increase in mortality and presence of malformations in embryos exposed for 120 h. 

Browning et al. (2009), using citrate-capped Au NPs of 11.6 nm, detected an increase in 

mortality and malformation prevalence at the highest concentration tested (12.6 

mg/L). Rizzo et al. (2013), using non-capped Au NPs of 1.4 nm, reported toxic effects at 

very high concentrations (100 and 1000 mg/L), suggesting that Au NPs toxicity depends 

on the size and capping agent. Harper et al. (2011) detected differences in the toxicity 

of Au NPs, in terms of mortality and malformation prevalence, depending on the 

capping agent which conferred different charge properties. Positively charged Au NPs 

were more toxic than negatively charged Au NPs. Effects at molecular level have been 

also reported upon exposure to Au NPs. A significant increase in cell death in the eyes 

and an increase of p53 and bcl2-associated X protein (bax) gene transcription has been 

reported in embryos exposed to 10 and 30 mg/L of Au NPs of 1.3 nm (Kim et al., 

2013b). 

The dietary exposure to Au NPs (36-106 ng gold/fish/day) of two sizes (12 and 50 nm) 

for 36 and 60 days (Geffroy et al., 2012) and the exposure for 20 days to sediment 

spiked with two different concentrations (16 and 55 mg/g dry weight) of Au NPs of 14 

nm (Dedeh et al., 2015) provoked similar toxic effects in adult zebrafish. The over 

transcription of genes involved in DNA repair, detoxification processes, apoptosis, 

mitochondrial metabolism and oxidative stress, as well as the genotoxicity detected 

according to the RAPD-PCR test, caused by the exposure to Au were the main effects 

reported in both studies. In a shorter-term experiment (96 h), Kovrižnych et al. (2013) 

did not detect toxic effect in adult zebrafish waterborne exposed up to 200 mg/L of Au 

NPs. 
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Regarding the studies addressing the toxicity of ZnO NPs in zebrafish embryos (Table 

6), a dose-dependent increase in mortality and malformation prevalence has been 

observed (Zhu et al., 2008; 2009; Bai et al., 2010; George et al., 2011; Xiong et al., 

2011; Wehmas et al., 2015). Different LC50 values have been reported, ranging from 

1.793 mg/L in zebrafish embryos exposed for 96 h to ZnO NPs of 20 nm (Zhu et al., 

2008) to 9.1 mg/L after the exposure of zebrafish embryos to ZnO NPs of 8.35 nm for 

120 h (Wehmas et al., 2015). Moreover, a delay in the hatching time has been 

detected in zebrafish embryos exposed at concentrations of ZnO NPs ≥5 mg/L (Xia et 

al., 2011; Lin et al., 2012; Brun et al., 2014; Chen et al., 2014; Ong et al., 2014; Vicario-

Parés et al., 2014). This effect has been related to the inactivation of the hatching 

protease activity provoked by the exposure to ZnO, since the presence of high 

concentrations of Zn2+ resulting from the ZnO NPs dissolution interfere with the 

zebrafish hatching enzyme (ZHE1) producing a delay in the embryo hatching (Xia et al., 

2011; Lin et al., 2012). Other effects appearing in zebrafish embryos exposed to ZnO 

NPs include reduced superoxide dismutase (SOD) and catalase (CAT) activities, and 

reduced glutathione (GSH) concentration in the liver after the exposure to 5 mg/L of 

ZnO NPs. In the gut, at the same exposure concentration, SOD and CAT activities and 

GSH concentration increased (Xiong et al., 2011). Zhao et al. (2013) also detected 

oxidative stress related effects, SOD activity and malondialdehyde content increased 

significantly, while CAT activity was decreased. 

To our knowledge, only Skjolding et al. (2014) have studied the effect provoked by 

different ZnO NPs (uncoated NPs, ZnO-OH NPs and ZnO-octyl NPs) in adult zebrafish 

using Daphnia magna exposed to different concentrations as food for the zebrafish 

during 14 days. Only after the exposure to uncoated ZnO NPs and ZnO NPs-octyl a 

trophic transfer of zinc from Daphnia magna to zebrafish was detected.  

Few studies have addressed the issue of SiO2 NP toxicity (Table 7). Most of them 

reported no toxic effects in zebrafish at early stages in terms of increased mortality 

and malformation prevalence after waterborne exposure (Fent et al., 2010; George et 

al., 2011; Kovrižnych et al., 2013; Ong et al., 2014) or after injection into the yolk sac 

(Nelson et al., 2010; Sharif et al., 2012). Nevertheless, an increase in mortality and 

malformation prevalence has been registered by other authors in zebrafish embryos 
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after waterborne exposure to high concentrations (100-200 mg/L) of Si NPs (Duan et 

al., 2013a; 2013b), after 24 h of intravenous injection of high concentrations (1000-

12000 mg/L) of Si NPs of 62 nm (Duan et al., 2015) or when SiO2 nanowires were 

injected. In this latter case, a significant increase of mortality and presence of 

malformations was detected at 132 hpf in embryos injected with SiO2 nanowires at 1- 

or 2- cell stage, related to the shape effect, since materials with large surface areas and 

elongated shapes may generate mechanical disturbances in animal tissues that 

spherical materials do not (Nelson et al., 2010). Moreover, toxicity was detected in 

zebrafish embryos after the exposure to maghemite@SiO2 rattle type microspheres at 

relatively low concentrations (0.25-2.5 mg/L), with a high incidence of malformations 

(Liu et al., 2012). In adult zebrafish no toxic effects have been reported after the 

exposure to SiO2 NPs for 96 h (Kovrižnych et al., 2013). 

 

 

31



 Ta
bl

e 
2.

- S
um

m
ar

y 
of

 m
ai

n 
ef

fe
ct

s 
re

po
rt

ed
 in

 z
eb

ra
fis

h 
em

br
yo

s 
w

at
er

-b
or

ne
 e

xp
os

ed
 to

 A
g 

N
Ps

. N
M

s 
si

ze
s 

ar
e 

sh
ow

n 
in

 n
m

. C
on

ce
nt

ra
tio

ns
 a

re
 s

ho
w

n 
in

 m
g/

L.
 

Co
at

in
g/

ad
di

ti
ve

 
Si

ze
 

Co
nc

en
tr

at
io

n 
 

Ex
po

su
re

  
M

ai
n 

ef
fe

ct
s 

Re
fe

re
nc

e 

Ci
tr

at
e 

5-
46

 
up

 to
 7

.7
x1

0-5
 

12
0 

h 
In

cr
ea

se
d 

pr
ev

al
en

ce
 o

f d
ef

or
m

ed
 e

m
br

yo
s 

up
 to

 2
.1

x1
0-5

 m
g/

L 
an

d,
 th

en
, 

in
cr

ea
se

d 
nu

m
be

r o
f d

ea
d 

em
br

yo
s 

 
Le

e 
et

 a
l. 

(2
00

7)
 

St
ar

ch
 

5-
20

 
5,

 1
0,

 2
5,

 5
0 

an
d 

10
0 

72
 h

 
M

al
fo

rm
at

io
ns

 p
ro

vo
ke

d 
by

 b
ot

h 
N

Ps
 a

t 5
0 

m
g/

L 
As

ha
ra

ni
 e

t a
l. 

(2
00

8)
 

BS
A 

D
os

e-
de

pe
nd

en
t a

nd
 g

ro
w

th
 s

ta
ge

-d
ep

en
de

nt
 (6

4–
12

8 
ce

ll)
 to

xi
ci

ty
  

LC
50

 =
 2

5-
50

 m
g/

L 
U

nc
oa

te
d 

26
.6

 ±
 8

.8
 

up
 to

 1
0 

48
 h

 
LC

50
 =

 7
.2

 m
g/

L 
G

rif
fit

t e
t a

l. 
(2

00
8)

 

U
nc

oa
te

d 
10

-2
0 

10
-5

 a
nd

 2
x1

0-5
 

72
 h

 
M

or
ta

lit
y,

 m
al

fo
rm

at
io

ns
 a

nd
 h

at
ch

in
g 

de
la

y 
at

 b
ot

h 
co

nc
en

tr
at

io
ns

, 
es

pe
ci

al
ly

 a
t t

he
 h

ig
he

st
 o

ne
 

Ye
o 

an
d 

Ka
ng

 (2
00

8)
 

Ci
tr

at
e 

3,
 1

0,
 5

0 
an

d 
10

0 

10
.7

8 
12

0 
h 

Si
gn

ifi
ca

nt
ly

 in
cr

ea
se

 o
f m

al
fo

rm
at

io
ns

 a
t 1

0.
78

 m
g/

L.
 

Ba
r-

Ila
n 

et
 a

l. 
(2

00
9)

 
0.

02
7,

 0
.2

7,
 2

.7
 a

nd
 

26
.7

 
LC

50
 (A

g3
) =

 1
0.

06
 m

g/
L,

 L
C 5

0 (
Ag

10
) =

 1
3.

55
 m

g/
L,

 L
C 5

0 (
Ag

50
) =

 1
3.

7 
m

g/
L,

 
an

d 
LC

50
 (A

g1
00

) =
 1

4.
8 

m
g/

L 

PV
A 

5-
35

 
10

, 2
5,

 5
0,

 7
5 

an
d 

10
0 

72
 h

 
M

al
fo

rm
at

io
ns

 a
nd

 m
or

ta
lit

y 
re

co
rd

ed
 a

t 2
5,

 5
0,

 7
5 

an
d 

10
0 

m
g/

L 
As

ha
ra

ni
 e

t a
l. 

(2
01

0)
 

D
et

ec
ta

bl
e 

le
ve

ls
 o

f m
et

al
 a

cc
um

ul
at

io
n 

at
 2

5 
an

d 
50

 m
g/

L 

U
nc

oa
te

d 
12

 a
nd

 2
1 

10
-9

 to
 10

-5
 

12
0 

h 
Ba

se
d 

on
 e

st
im

at
io

ns
: L

C 5
0 (

12
) =

 1
5.

8 
m

g/
L,

 E
C 

(1
2)

 =
 1

2.
6 

m
g/

L;
 L

C 5
0 (

21
) =

 
50

.1
 m

g/
L,

 E
C 

(2
1)

 =
 5

 m
g/

L.
  

Co
w

ar
t e

t a
l. 

(2
01

1)
 

U
nc

oa
te

d 
10

 
1,

 5
, 1

5 
an

d 
25

 
12

0 
h 

M
al

fo
rm

at
io

ns
, m

or
ta

lit
y 

an
d 

in
hi

bi
tio

n 
of

 h
at

ch
in

g 
at

 1
5 

an
d 

25
 m

g/
L 

G
eo

rg
e 

et
 a

l. 
(2

01
1)

 

Ci
tr

at
e 

43
0 

0.
00

1-
0.

02
5 

12
0 

h 
M

al
fo

rm
at

io
ns

 a
t 0

.0
14

 a
nd

 0
.0

2 
m

g/
L 

Ka
nn

an
 e

t a
l. 

(2
01

1)
 

LC
50

 =
 0

.0
2-

0.
02

2 
m

g/
L 

Ci
tr

at
e 

10
 

0.
00

11
-1

0.
08

 
12

0 
h 

H
at

ch
in

g 
de

la
y 

at
 ≥

 1
.0

8 
m

g/
L 

(C
). 

Ag
 N

P 
to

xi
ci

ty
: P

VP
 >

 C
, 1

0 
nm

 >
 5

0 
nm

 
Po

w
er

s 
et

 a
l. 

(2
01

1)
 

PV
P 

10
 a

nd
 5

0 
Ag

N
Ps

-P
VP

 a
lte

re
d 

ne
ur

od
ev

el
op

m
en

t a
t 3

.0
84

 m
g/

L 
 

U
nc

oa
te

d 
20

, 5
0 

an
d 

10
0 

0.
1,

 0
.5

, 1
 a

nd
 5

 
12

0 
h 

Ag
 N

Ps
-5

0 
w

er
e 

th
e 

m
os

t t
ox

ic
, i

nd
uc

in
g 

10
0%

 o
f m

or
ta

lit
y 

at
 0

.5
 m

g/
L 

Bo
w

m
an

 e
t a

l. 
(2

01
2)

 
Ab

no
rm

al
 m

ot
ili

ty
 in

 e
m

br
yo

s 
do

se
d 

w
ith

 A
g 

N
Ps

-2
0 

at
 0

.5
-1

 m
g/

L 
PV

P 
20

, 4
0 

an
d 

10
0 

1.
25

, 2
.5

, 5
 a

nd
 1

0 
12

0 
h 

N
an

op
la

te
s 

w
er

e 
th

e 
m

os
t t

ox
ic

, 1
00

%
 m

or
ta

lit
y 

an
d 

in
cr

ea
se

d 
m

al
fo

rm
at

io
ns

 
at

 1
0 

m
g/

L 
 

N
an

ow
ire

s 
w

er
e 

th
e 

le
as

t t
ox

ic
 

G
eo

rg
e 

et
 a

l. 
(2

01
2)

 
U

nc
oa

te
d 

45
x1

0 
(n

an
op

la
te

s)
 

U
nc

oa
te

d 
20

00
0x

65
 

(n
an

ow
ire

s)
 

U
nc

oa
te

d 
95

.4
 ±

 1
6 

5.
7x

10
-4

, 5
.7

x1
0-3

, 
2.

8,
 5

.7
 

12
0 

h 
M

or
ta

lit
y 

an
d 

m
al

fo
rm

at
io

ns
 a

t 2
.8

 a
nd

 5
.7

 m
g/

L 
Ag

 N
Ps

 p
as

si
ve

ly
 e

nt
er

ed
 in

to
 t

he
 e

m
br

yo
s 

th
ro

ug
h 

ch
or

io
n 

po
re

s 
Le

e 
et

 a
l. 

(2
01

2c
) 

 

32



 Ta
bl

e 
2 

(c
on

tin
ue

d)
 

Co
at

in
g/

ad
di

ti
ve

 
Si

ze
  

Co
nc

en
tr

at
io

n 
 

Ex
po

su
re

  
M

ai
n 

ef
fe

ct
s 

Re
fe

re
nc

e 

Ci
tr

at
e 

41
.6

 ±
 9

.1
 

5,
 1

2,
 2

4,
 4

8,
 

95
, 1

19
 a

nd
 

14
6 

12
0 

h 
10

0%
 m

or
ta

lit
y 

at
 ≥

 4
8 

m
g/

L 
 

M
al

fo
rm

at
io

ns
 fr

om
 5

 to
 2

4 
m

g/
L 

Le
e 

et
 a

l. 
(2

01
2d

) 

D
IS

 
15

 
0.

00
5-

10
0.

8 
96

 h
 

To
xi

ci
ty

 r
an

ki
ng

: A
g 

N
Ps

-D
is

>A
g 

N
Ps

-P
VP

> 
Ag

 N
Ps

-B
ar

e 
EC

50
 (A

g 
N

Ps
-D

is
) =

 0
.0

88
 m

g/
L;

 E
C 5

0 (
Ag

 N
Ps

-P
VP

) =
0.

16
1 

m
g/

L 
an

d 
EC

50
 

(A
g 

N
Ps

-B
ar

e)
 =

 0
.2

11
 m

g/
L 

W
an

g 
et

 a
l. 

(2
01

2)
 

PV
P 

80
 

Ba
re

 
35

 

Ci
tr

at
e 

97
 ±

 1
3 

6.
03

, 1
2.

06
, 

24
.1

2,
 4

8.
24

 
an

d 
72

.3
6 

2 
h 

Ag
 N

Ps
 in

ci
te

d 
di

st
in

ct
iv

e 
st

ag
e-

de
pe

nd
en

t t
ox

ic
ity

 a
nd

 c
re

at
e 

st
ag

e-
sp

ec
ifi

c 
ph

en
ot

yp
es

 
Br

ow
ni

ng
 e

t a
l. 

(2
01

3a
) 

Cl
ea

va
ge

 s
ta

ge
s 

(2
 h

) w
er

e 
th

e 
m

os
t s

en
si

tiv
e,

 fo
llo

w
ed

 b
y 

ga
st

ru
la

 s
ta

ge
 

(4
 h

), 
ea

rly
 (1

2 
h)

 a
nd

 la
te

 s
eg

m
en

ta
tio

n 
st

ag
e 

(2
1 

h)
 

U
nc

oa
te

d 
12

0 
0.

01
, 0

.1
, 1

 a
nd

 
5 

12
0 

h 

H
at

ch
in

g 
de

la
y 

at
 5

 m
g/

L;
 E

R 
st

re
ss

 re
la

te
d 

ge
ne

 tr
an

sc
rip

ts
 u

p-
re

gu
la

te
d 

(0
.1

, 5
 m

g/
L)

 a
ft

er
 2

4 
h,

 p
ro

-a
po

pt
ot

ic
 g

en
e 

tr
an

sc
ri

pt
s 

up
-r

eg
ul

at
ed

 (0
.1

-1
 

m
g/

L)
 a

nd
 d

ow
n-

re
gu

la
te

d 
(5

 m
g/

L)
 a

ft
er

 4
8 

h 
Ch

ri
st

en
 e

t a
l. 

(2
01

3)
 

ca
t (

0.
1,

 5
 m

g/
L)

 a
nd

 m
t2

 (1
 m

g/
L)

 u
p-

re
gu

la
te

d 
du

rin
g 

th
e 

ex
po

su
re

 
pe

ri
od

 

TS
C 

40
-1

80
 

0.
00

1-
10

0 
72

 h
 

To
xi

ci
ty

 r
an

ki
ng

: P
VP

 >
 T

hi
ol

 >
 T

SC
 

LC
50

 v
al

ue
s 

w
er

e 
lo

w
er

 a
ft

er
 4

8 
h 

th
an

 a
ft

er
 2

4 
h 

H
at

ch
in

g 
de

la
y 

es
pe

ci
al

ly
 m

ar
ke

d 
af

te
r t

he
 e

xp
os

ur
e 

to
 A

g 
N

Ps
-P

VP
 

Cu
nn

ig
ha

m
 e

t a
l. 

(2
01

3)
 

PV
P 

Th
io

l 
PV

P 
20

 a
nd

 
11

0 
0.

8,
 4

, 1
0,

 2
0 

an
d 

50
 

12
0 

h 
Si

ze
-d

ep
en

de
nt

 (2
0 

nm
 >

 1
10

 n
m

) a
nd

 c
oa

tin
g-

de
pe

nd
en

t (
PV

P 
> 

C)
 

to
xi

ci
ty

 
Ki

m
 e

t a
l. 

(2
01

3a
) 

Ci
tr

at
e 

U
nc

oa
te

d 
N

D
 

1.
25

, 2
.5

, 5
 a

nd
 

10
 

96
 h

 
LC

50
 (9

6 
h)

 =
 2

.7
 m

g/
L,

 m
al

fo
rm

at
io

ns
 a

t 2
.5

 m
g/

L 
Ko

vr
iž

ny
ch

 e
t a

l. 
(2

01
3)

 

U
nc

oa
te

d 
13

.1
 ±

 2
.5

 
0-

7.
55

x1
0-5

 
2 

h 
(a

t d
iff

er
en

t 
st

ag
es

) 
M

al
fo

rm
at

io
ns

 a
nd

 m
or

ta
lit

y,
 s

ta
ge

-d
ep

en
de

nt
 a

t ≥
 2

.1
6x

10
-6

 m
g/

L.
 T

he
 

la
st

-s
eg

m
en

ta
tio

n 
st

ag
e 

(2
1 

h)
 w

as
 th

e 
m

os
t s

en
si

tiv
e 

Le
e 

et
 a

l. 
(2

01
3a

) 

Po
si

tiv
el

y 
ch

ar
ge

d 

11
.7

 ±
 2

.7
 

up
 to

 6
.4

7x
10

-6
 

12
0 

h 
To

xi
ci

ty
 d

ep
en

de
nt

 o
n 

th
e 

su
rf

ac
e 

ch
ar

ge
, s

ur
fa

ce
 fu

nc
tio

na
l g

ro
up

s 
an

d 
ch

em
ic

al
 c

om
po

si
tio

n 
of

 th
e 

N
Ps

 
Le

e 
et

 a
l. 

(2
01

3b
) 

N
eg

at
iv

el
y 

ch
ar

ge
d 

M
or

e 
ne

ga
tiv

el
y 

ch
ar

ge
d 

 

33



 Ta
bl

e 
2 

(c
on

tin
ue

d)
 

Co
at

in
g/

ad
di

ti
ve

 
Si

ze
 

Co
nc

en
tr

at
io

n 
Ex

po
su

re
  

M
ai

n 
ef

fe
ct

s 
Re

fe
re

nc
e 

PV
P 

37
 

0.
08

-5
0 

12
0 

h 
Lo

w
er

 m
or

ta
lit

y 
in

 h
ig

he
r i

on
ic

 s
tr

en
gt

h 
m

ed
ia

 th
an

 in
 lo

w
er

 io
ni

c 
st

re
ng

th
 m

ed
ia

 
Le

va
rd

 e
t a

l. 
(2

01
3)

 

PS
 

8.
39

 ±
 

0.
98

 
0.

03
, 0

.1
6,

 0
.3

1,
 0

.7
8 

an
d 

1.
55

 
12

0 
h 

M
al

fo
rm

at
io

ns
 a

nd
 m

or
ta

lit
y 

at
 0

.7
8 

an
d 

1.
55

 m
g/

L.
 S

ig
ni

fic
an

tly
 

re
du

ct
io

n 
of

 T
G

SH
 le

ve
ls

 a
t 0

.7
8 

an
d 

1.
55

 m
g/

L 
M

as
sa

rs
ky

 e
t a

l. 
(2

01
3)

 
LC

50
 (9

6 
hp

f)
 =

 1
.1

8 
m

g/
L 

N
M

-3
00

k 
20

 

(1
) 0

.0
1,

 0
.1

, 1
 a

nd
 1

0 
(2

) 0
.5

, 0
.6

6,
 0

.8
7,

 1
.1

4 
an

d 
1.

5 
48

 h
 

(1
) I

SO
 w

at
er

, L
C 5

0 (
48

 h
) =

 1
.2

6 
m

g/
L 

M
üt

h-
Ko

hn
e 

et
 a

l. 
(2

01
3)

 
(3

) 0
.2

5,
 0

.3
5,

 0
.5

, 0
.7

1 
an

d 
1 

Se
w

ag
e 

tr
ea

tm
en

t p
ro

ce
ss

, (
2)

 L
C 5

0 (
48

 h
) =

 0
.1

73
 m

g/
L;

 (3
) L

C 5
0 

(4
8 

h)
 =

 0
.2

25
 m

g/
L 

 

U
nc

oa
te

d 
20

 
0.

00
1-

10
0 

48
 h

 

M
or

ta
lit

y 
in

cr
ea

se
d 

w
ith

 c
on

ce
nt

ra
tio

n,
 1

00
%

 a
t 1

00
 m

g/
L 

M
al

fo
rm

at
io

ns
 a

t 
≥ 

0.
1 

m
g/

L 
Ac

hE
 s

ig
ni

fic
an

tly
 in

hi
bi

te
d 

an
d 

PC
hE

 s
ig

ni
fic

an
tly

 d
iff

er
en

t a
t 0

.0
1 

an
d 

0.
1 

m
g/

L 

M
yr

za
kh

an
ov

a 
et

 a
l. 

(2
01

3)
 

Ci
tr

at
e 

U
nc

oa
te

d 
10

 a
nd

 3
5 

0.
00

5,
 0

.0
5,

 0
.5

, 5
 a

nd
 2

5 
48

 h
 

To
xi

ci
ty

 3
5 

nm
> 

10
 n

m
 a

nd
 u

nc
oa

te
d 

> 
C 

Ce
ll 

ne
cr

os
is

 in
 e

ar
ly

 li
fe

 s
ta

ge
 a

nd
 s

ig
ni

fic
an

tly
 u

p-
re

gu
la

tio
n 

of
 

m
t2

 0
.5

 m
g/

L 
(3

5 
nm

) 
O

sb
or

ne
 e

t a
l. 

(2
01

3)
 

U
nc

oa
te

d 
20

 a
nd

 3
0 

20
x1

0-5
 

72
 h

 

27
8 

ge
ne

s 
up

-r
eg

ul
at

ed
 a

nd
 3

6 
do

w
n-

re
gu

la
te

d,
 (a

po
pt

os
is

, 
im

m
un

e 
re

sp
on

se
 a

nd
 h

ea
t s

ho
ck

 p
ro

te
in

 a
ct

iv
ity

) 
Pa

rk
 a

nd
 Y

eo
 (2

01
3)

 
Ap

op
to

si
s 

w
as

 th
e 

fu
nc

tio
n 

w
ith

 th
e 

hi
gh

es
t p

ro
po

rt
io

n 
of

 
di

ff
er

en
tia

lly
 tr

an
sc

ri
be

d 
ge

ne
s 

Ci
tr

at
e 

10
 a

nd
 

10
0 

5,
 1

0,
 2

0 
an

d 
40

 
12

0 
h 

M
or

ta
lit

y,
 h

at
ch

in
g 

de
cr

ea
se

 a
nd

 m
al

fo
rm

at
io

ns
 a

t 
≥ 

10
 m

g/
L 

Pa
rk

 e
t a

l. 
(2

01
3)

 
M

or
ta

lit
y:

 c
ho

rio
ni

ze
d 

> 
de

ch
or

io
ni

ze
d 

M
al

fo
rm

at
io

ns
: c

ho
rio

ni
ze

d 
< 

de
ch

or
io

ni
ze

d 
      

34



 Ta
bl

e 
2 

(c
on

tin
ue

d)
 

Co
at

in
g/

ad
di

ti
ve

 
Si

ze
 

Co
nc

en
tr

at
io

n 
 

Ex
po

su
re

  
M

ai
n 

ef
fe

ct
s 

Re
fe

re
nc

e 

U
nc

oa
te

d 
10

 
0.

00
5 

48
 h

 
D

ow
n-

re
gu

la
tio

n 
of

 th
e 

ox
id

at
iv

e 
ph

os
ph

or
yl

at
io

n 
pa

th
w

ay
 

at
 2

4 
h 

an
d 

up
-r

eg
ul

at
io

n 
at

 4
8 

h 
Va

n 
Ae

rl
e 

et
 a

l. 
(2

01
3)

 

U
nc

oa
te

d 
53

.1
 ±

 4
.1

 
0.

5 
N

D
 

N
o 

si
gn

ifi
ca

nt
 o

ve
ra

ll 
de

la
y 

in
 d

ev
el

op
in

g 
em

br
yo

s 
in

 th
e 

ea
rl

y 
st

ag
e 

of
 e

m
br

yo
ge

ne
si

s 
Be

as
le

y 
et

 a
l. 

(2
01

4)
 

  
PV

P 
12

 
1.

25
, 2

.5
 a

nd
 5

 
12

0 
h 

M
or

ta
lit

y 
at

 ≥
 1

.2
5 

m
g/

L.
 M

al
fo

rm
at

io
ns

: s
ho

rt
 b

od
y 

ax
is

, 
pe

ric
ar

di
al

 e
de

m
a,

 n
ot

 y
ol

k 
de

pl
et

io
n,

 a
nd

 ta
il 

m
al

fo
rm

at
io

n 
G

eo
rg

e 
et

 a
l. 

(2
01

4)
 

Ca
rb

on
at

ed
 

28
 

1.
07

, 4
.3

2 
an

d 
21

.6
 

48
 h

 

To
xi

ci
ty

 d
ep

en
de

d 
on

 th
e 

tim
e 

ex
po

su
re

 s
ta

rt
s,

 w
ith

 y
ou

ng
 

em
br

yo
s 

(2
 h

pf
) b

ei
ng

 th
e 

m
os

t s
en

si
tiv

e 
LC

50
 (2

 h
pf

) =
 2

.8
 m

g/
L,

 L
C 5

0 (
4 

hp
f)

 =
 7

.8
 m

g/
L,

 L
C 5

0 (
6 

hp
f)

 =
 

18
.3

 m
g/

L 

G
ro

h 
et

 a
l. 

(2
01

4)
 

Ci
tr

at
e 

20
 ±

 1
0 

0.
1 

an
d 

1 
48

 h
 (2

4 
h 

de
pu

ra
tio

n)
 

N
eg

lig
ib

le
 s

ilv
er

 a
cc

um
ul

at
io

n 
(B

CF
 0

.6
-1

) 
Ló

pe
z-

Se
rr

an
o 

et
 a

l. 
(2

01
4)

 
 

U
nc

oa
te

d 
8.

39
 ±

 0
.9

8 
0.

5 
96

 h
 

M
or

ta
lit

y 
an

d 
ha

tc
hi

ng
 d

el
ay

 in
cr

ea
se

d 
si

gn
ifi

ca
nt

ly
 a

t 9
6 

h 
M

as
sa

rs
ky

 e
t a

l. 
(2

01
4b

) 
 U

nc
oa

te
d 

18
 

0.
01

, 0
.5

, 1
, 2

.5
, 5

, 
10

 a
nd

 1
5 

12
0 

h 

U
p-

re
gu

la
tio

n 
of

 h
sp

70
, I

l1
β,

 m
t 

O
la

sa
ga

st
i e

t a
l. 

(2
01

4)
 

LC
50

 (e
m

br
yo

 w
at

er
) =

 6
.2

4 
m

g/
L 

 
LC

50
 (d

ei
on

iz
ed

 w
at

er
) =

 0
.9

4 
m

g/
L 

 
 

 
 

Ci
tr

at
e 

80
 ±

 2
 

up
 to

 1
00

 m
g/

L 
12

0 
h 

H
at

ch
in

g 
de

la
y 

at
 1

0 
m

g/
L 

O
ng

 e
t a

l. 
(2

01
4)

 

PV
P 

61
-7

0 
5,

 1
0,

 2
5,

 5
0,

 7
5 

an
d 

10
0 

72
 h

 
M

al
fo

rm
at

io
ns

, m
or

ta
lit

y 
an

d 
ha

tc
hi

ng
 d

el
ay

 a
t ≥

 2
5 

m
g/

L 
Pa

va
ga

dh
i e

t a
l. 

(2
01

4)
 

U
nc

oa
te

d 
7.

5 
± 

1.
7 

0.
01

, 0
.0

25
, 0

.0
5,

 
0.

1 
an

d 
0.

25
 

96
 h

 
M

al
fo

rm
at

io
ns

 a
nd

 m
or

ta
lit

y 
at

 ≥
 0

.1
 m

g/
L 

Ri
be

ir
o 

et
 a

l. 
(2

01
4)

 
LC

50
 (9

6 
hp

f)
 =

 0
.1

3 
m

g/
L 

     

35



 Ta
bl

e 
2 

(c
on

tin
ue

d)
 

Co
at

in
g/

ad
di

ti
ve

 
Si

ze
 

Co
nc

en
tr

at
io

n 
 

Ex
po

su
re

  
M

ai
n 

ef
fe

ct
s 

Re
fe

re
nc

e 

PV
P 

20
 a

nd
 1

10
 

0.
8,

 4
, 1

0,
 2

0 
an

d 
50

 
12

0 
h 

M
or

ta
lit

y 
an

d 
m

al
fo

rm
at

io
ns

: a
t 1

0 
m

g/
L 

in
 d

ec
ho

ri
on

iz
ed

 
em

br
yo

s 
an

d 
at

  5
0 

m
g/

L 
 in

 c
ho

rio
ni

ze
d 

em
br

yo
s 

20
 n

m
 >

 1
10

 n
m

 a
nd

 P
VP

 >
 C

  
Ki

m
 a

nd
 T

an
gu

ay
 (2

01
4)

 
Ci

tr
at

e 

so
ck

-A
g 

N
P 

so
lu

tio
n 

(*
) 

(1
) 7

8 
± 

11
 

(1
) 0

.0
1-

0.
83

 
72

 h
 

(1
) L

C 5
0 (

so
ck

s)
 =

 0
.2

6 
m

g/
L,

 L
C 5

0 (
sp

un
) =

 0
.1

4 
m

g/
L 

G
ao

 e
t a

l. 
(2

01
5)

 
sp

un
-A

g 
N

Ps
 (*

*)
 

(2
) 3

9 
± 

17
 

(2
) u

p 
to

 1
.2

 
(2

) s
od

 w
as

 s
ig

ni
fic

an
tly

 u
p-

re
gu

la
te

d 
at

 th
e 

hi
gh

es
t 

co
nc

en
tr

at
io

n 

U
nc

oa
te

d 
(N

C)
 

U
nc

oa
te

d 
na

no
tu

be
s 

(N
T)

 

20
-5

0 
nm

 
U

p 
to

 0
.0

1 
 

72
 h

 
N

C,
 2

64
 g

en
es

 s
ig

ni
fic

an
tly

 re
gu

la
te

d 
(9

8 
up

, 1
66

 d
ow

n)
 

Pa
rk

 a
nd

 Y
eo

 (2
01

5)
 

20
-3

0 
nm

/1
 µ

m
 

lo
ng

 
U

p 
to

 0
.0

01
 

N
T,

 1
75

 g
en

es
 s

ig
ni

fic
an

tly
 re

gu
la

te
d 

(3
6 

up
, 1

39
 d

ow
n)

 

U
nc

oa
te

d 
4 

an
d 

10
 

0.
48

, 0
.9

6,
 1

.9
3,

 
3.

85
, 7

.7
, 1

1.
55

 a
nd

 
23

.1
 

96
 h

 
Al

te
re

d 
ne

ur
ol

og
ic

al
 d

ev
el

op
m

en
t a

nd
 tr

an
sc

rip
tio

n 
of

 g
en

es
 

re
la

te
d 

to
 n

eu
ra

l d
ev

el
op

m
en

t, 
m

et
al

-s
en

si
tiv

e 
m

et
al

lo
th

io
ne

in
s 

an
d 

 a
bc

c 
tr

an
sp

or
te

rs
 

Xi
n 

et
 a

l. 
(2

01
5)

 

U
nc

oa
te

d 
10

 
0.

00
3,

 0
.0

06
, 0

.0
12

 
an

d 
0.

02
4 

12
0 

h 
72

 h
, m

or
ta

lit
y 

an
d 

m
al

fo
rm

at
io

ns
 a

t 0
.0

24
 m

g/
L 

Yo
o 

et
 a

l. 
(2

01
6)

 
12

0 
h,

 a
po

pt
ot

ic
 h

ai
r c

el
l d

am
ag

e 
in

 th
e 

ne
ur

om
as

ts
 in

du
ce

d 
at

 0
.0

24
 m

g/
L 

(*
) 

Ag
 N

P 
so

lu
tio

n 
w

as
 r

em
ov

ed
 f

ro
m

 s
oc

ks
 c

oa
te

d 
w

ith
 A

g 
N

Ps
 a

nd
 (

**
) 

ce
nt

ri
fu

ga
te

d 
to

 s
ep

ar
at

e 
Ag

 N
Ps

 f
ro

m
 t

he
 s

ol
ut

io
n.

 A
Ch

E:
 a

ce
ty

lc
ho

lin
es

te
ra

se
; 

BC
F:

 
bi

oa
cc

um
ul

at
io

n 
fa

ct
or

; B
IO

: b
io

co
m

pa
tib

le
 g

el
at

in
e 

pr
ep

ar
at

io
ns

; B
SA

: b
ov

in
e 

se
ru

m
 a

lb
um

in
; c

at
: c

at
al

as
e;

 D
IS

: d
is

pe
rs

an
t;

 E
R:

 e
nd

op
la

sm
ic

 r
et

ic
ul

um
; h

sp
70

: h
ea

t s
ho

ck
 

pr
ot

ei
n 

70
; 

Il1
β:

 in
te

rle
uk

in
-1

 b
et

a;
 m

t:
 m

et
al

lo
th

io
ne

in
; 

N
M

-3
00

k:
 N

M
-3

00
k 

D
is

 s
ta

bi
liz

ed
 a

ge
nt

; 
N

D
: 

no
 d

at
a;

 P
Ch

E:
 P

se
ud

oc
ho

lin
es

te
ra

se
; 

PV
A:

 p
ol

yv
in

yl
 a

lc
oh

ol
; 

PS
: 

po
ly

ac
ry

la
te

 s
od

iu
m

; P
VP

: p
ol

yv
in

yl
 p

yr
ro

lid
on

e;
 s

od
: s

up
er

ox
id

e 
di

sm
ut

as
e;

 T
G

SH
: t

ot
al

 g
lu

ta
th

io
ne

; T
hi

ol
: 1

6-
m

er
ca

pt
oh

ex
ac

an
oi

c 
ac

id
; T

SC
: t

ris
od

iu
m

 c
itr

at
e.

 

        

36



 Ta
bl

e 
3.

- S
um

m
ar

y 
of

 m
ai

n 
ef

fe
ct

s 
re

po
rt

ed
 in

 a
du

lt 
ze

br
af

is
h 

ex
po

se
d 

to
 A

g 
N

Ps
. N

M
s 

si
ze

s 
ar

e 
sh

ow
n 

in
 n

m
. C

on
ce

nt
ra

tio
ns

 a
re

 s
ho

w
n 

in
 m

g/
L.

 

Co
at

in
g/

ad
di

ti
ve

 
Si

ze
  

Co
nc

en
tr

at
io

n 
 

Ex
po

su
re

  
M

ai
n 

ef
fe

ct
s 

Re
fe

re
nc

e 

Ci
tr

at
e 

20
-3

0 
up

 to
 1

0 
48

 h
 

LC
50

 =
 7

.0
7 

m
g/

L 
G

rif
fit

t e
t a

l. 
(2

00
8)

 

U
nc

oa
te

d 
10

-2
0 

0.
4 

an
d 

4 
36

 d
 

Al
te

ra
tio

n 
of

 p
53

 g
en

e 
pa

th
w

ay
 a

t 0
.4

 a
nd

 4
 m

g/
L 

Ye
o 

an
d 

Pa
k 

(2
00

8)
 

D
ef

ec
ts

 in
 fi

n 
re

ge
ne

ra
tio

n.
 P

en
et

ra
tio

n 
in

to
 o

rg
an

el
le

s 
an

d 
ce

ll 
nu

cl
eu

s 
at

 0
.4

 a
nd

 4
 m

g/
L 

U
nc

oa
te

d 
26

.6
 ±

 8
.8

 
10

 
48

 h
 

Sl
ig

ht
 c

ha
ng

es
 in

 th
e 

fil
l f

ila
m

en
ts

 
G

rif
fit

t e
t a

l. 
(2

00
9)

 
In

cr
ea

se
 in

 th
e 

nu
m

be
r o

f e
xp

re
ss

ed
 g

en
es

 fr
om

 1
48

 a
t 2

4 
h 

to
 

46
2 

at
 4

8 
h 

U
nc

oa
te

d 
5-

20
 

30
, 6

0,
 1

20
 

24
 h

 
D

N
A 

da
m

ag
e,

 o
xi

da
tiv

e 
st

re
ss

 a
nd

 a
po

pt
os

is
 in

du
ce

d 
in

 th
e 

liv
er

 
at

 1
20

 m
g/

L 
Ch

oi
 e

t a
l. 

(2
01

0)
 

PV
P 

81
 

0.
01

8-
0.

14
3 

48
 h

 
10

0%
 m

or
ta

lit
y 

af
te

r 
24

 h
 (0

.1
25

 a
nd

 0
.1

43
 m

g/
L)

. R
es

pi
ra

to
ry

 
to

xi
ci

ty
, i

nc
re

as
ed

 ra
te

 o
f o

pe
rc

ul
um

 m
ov

em
en

t a
nd

 s
ur

fa
ce

 
re

sp
ira

tio
n 

fr
om

 0
.0

72
 m

g/
L.

 L
C 5

0 (
48

 h
pf

) =
 0

.0
84

 m
g/

L 
Bi

lb
er

g 
et

 a
l. 

(2
01

2)
 

U
nc

oa
te

d 
N

D
 

1.
25

, 2
.5

, 5
 a

nd
 1

0 
96

 h
 

LC
50

 (9
6 

h)
 =

 2
.9

 m
g/

L 
Ko

vr
iž

ny
ch

 e
t a

l. 
(2

01
3)

 

U
nc

oa
te

d 
3.

1 
± 

2.
23

 
0.

00
5,

 0
.0

15
, 0

.0
25

 
an

d 
0.

05
 

28
 d

 
Si

lv
er

 a
cc

um
ul

at
io

n 
in

 g
ill

s 
> 

ca
rc

as
s 

G
rif

fit
t e

t a
l. 

(2
01

3)
 

30
19

 g
en

es
 id

en
tif

ie
d 

as
 d

iff
er

en
tia

lly
 e

xp
re

ss
ed

 in
 g

ill
s 

U
nc

oa
te

d 
58

.6
 ±

 1
8.

6 
50

0 
m

g/
Kg

 fo
od

 
14

 d
 (d

ie
ta

ry
) 

Ch
an

ge
s 

in
 in

te
st

in
e 

m
ic

ro
bi

om
e 

M
er

ri
fie

ld
 e

t a
l. 

(2
01

3)
 

PV
P 

9.
2 

0.
01

, 0
.0

3,
 0

.0
5,

 0
.1

, 
0.

3,
 0

.5
, 1

, 3
 a

nd
 5

 
96

 h
 

PV
P 

(p
hy

si
ca

l m
et

ho
d,

 to
p-

do
w

n)
, L

C 5
0 =

 0
.5

4 
m

g/
L 

Jo
ha

ri
 e

t a
l. 

(2
01

4b
) 

Ci
tr

at
e 

63
.4

5 
C 

(c
he

m
ic

al
 m

et
ho

d,
 b

ot
to

m
-u

p)
, L

C 5
0 =

 0
.0

14
 m

g/
L 

U
nc

oa
te

d 
16

.6
 

16
.7

6 
4 

d 
AC

hE
 w

as
 s

ig
ni

fic
an

tly
 d

ec
re

as
ed

 in
 b

ot
h 

ex
po

su
re

 p
er

io
ds

 

Ka
tu

li 
et

 a
l. 

(2
01

4)
 

G
ill

 N
a+ /K

+ -A
TP

as
e 

ac
tiv

ity
 d

ec
re

as
ed

 s
ig

ni
fic

an
tly

 fr
om

 th
e 

da
y 

14
th

 
2 

an
d 

4 
21

 d
 

In
cr

ea
se

d 
pl

as
m

a 
gl

uc
os

e 
an

d 
co

rt
is

ol
 le

ve
ls

 in
di

ca
tin

g 
in

du
ce

 
st

re
ss

 r
es

po
ns

e 
      

37



 Ta
bl

e 
3 

(c
on

tin
ue

d)
 

Co
at

in
g/

ad
di

ti
ve

 
Si

ze
  

Co
nc

en
tr

at
io

n 
 

Ex
po

su
re

  
M

ai
n 

ef
fe

ct
s 

Re
fe

re
nc

e 

U
nc

oa
te

d 
8.

39
 ±

 0
.9

8 
0.

5 
96

 h
 (1

0 
m

on
th

s 
in

 c
le

an
 w

at
er

) 
Th

e 
ac

ut
e 

ex
po

su
re

 in
 e

m
br

yo
s 

di
d 

no
t i

m
pa

ct
 th

e 
ab

ili
ty

 o
f a

du
lts

 to
 

el
ev

at
e 

co
rt

is
ol

 w
he

n 
st

re
ss

ed
 

M
as

sa
rs

ky
 e

t a
l. 

(2
01

4b
) 

PV
P 

22
-2

6 
0.

1 
15

 d
 

Li
ve

r 
ox

id
at

iv
e 

st
re

ss
, a

lte
re

d 
de

to
xi

fic
at

io
n 

en
zy

m
es

 a
nd

 a
ff

ec
te

d 
br

ai
n 

AC
hE

 a
ct

iv
ity

 
D

ev
i e

t a
l. 

(2
01

5)
 

 

Ci
tr

at
e 

20
  

1 
 

4 
h,

 4
d 

Si
lv

er
 c

on
te

nt
 in

 g
ill

s:
 A

gC
-2

0 
> 

Ag
C-

11
0;

 R
ed

uc
tio

n 
of

 N
a+ /K

+ -A
TP

as
e 

ac
tiv

ity
 in

 g
ill

s 
an

d 
in

te
st

in
e:

 A
gC

-2
0 

> 
Ag

C-
11

0 
 

G
ill

s:
 fu

si
on

, h
yp

er
pl

as
ia

 a
nd

 in
fla

m
m

at
io

n;
 A

g 
N

Ps
 a

dh
er

ed
 to

 th
e 

se
co

nd
ar

y 
fil

am
en

ts
 (A

gC
-2

0 
> 

Ag
C-

11
0)

 
In

te
st

in
e:

 in
cr

ea
se

d 
nu

m
be

r o
f g

ob
le

t c
el

ls
 in

 th
e 

ep
ith

el
ia

l l
ay

er
, 

m
ic

ro
vi

lli
 r

ed
uc

tio
n 

an
d 

pa
rt

ia
l d

am
ag

e 
to

 th
e 

la
m

in
a 

pr
op

ria
; A

g 
N

Ps
 

ad
he

re
d 

to
 th

e 
ba

so
la

te
ra

l m
em

br
an

e 
of

 th
e 

m
uc

os
a 

(A
gC

-2
0)

 

O
sb

or
ne

 e
t a

l. 
(2

01
5)

 

11
0 

Va
cu

ol
iz

at
io

n 
an

d 
pa

rt
ia

l d
am

ag
e 

to
 th

e 
la

m
in

a 
pr

op
ria

 w
ith

 a
bu

nd
an

t 
m

ic
ro

vi
lli

; A
g 

st
ai

ni
ng

 o
cc

ur
rin

g 
on

 th
e 

ap
ic

al
 m

em
br

an
e 

of
 th

e 
in

te
st

in
al

 e
pi

th
el

ia
l c

el
ls

 (A
gC

-1
10

)  

M
al

va
 c

ris
pa

 
Li

nn
., 

le
av

es
 

ex
tr

ac
t 

24
.1

 

0.
23

, 0
.4

7,
 1

.4
2,

 
2.

37
, 2

.8
4,

 3
.3

1 
96

 h
 

10
0%

 m
or

ta
lit

y 
at

 2
.8

4 
an

d 
3.

31
 m

g/
L;

 L
C 5

0 =
 1

.4
22

 m
g/

L 

Kr
is

hn
ar

aj
 e

t a
l. 

(2
01

6)
 

0.
71

 
14

 d
 

G
en

ot
ox

ic
ity

: m
ic

ro
nu

cl
ei

 a
nd

 n
uc

le
ar

 a
bn

or
m

al
ity

 in
 e

ry
th

ro
cy

te
s 

Cy
to

lo
gi

ca
l c

ha
ng

es
 in

 g
ill

s 
an

d 
in

tr
ah

ep
at

ic
 lo

ca
liz

at
io

n 
of

 A
g 

N
Ps

 
Re

gu
la

tio
n 

of
 s

tr
es

s 
re

la
te

d 
(m

tf
-1

, h
sp

70
) a

nd
 im

m
un

e 
re

sp
on

se
 (t

lr4
, 

nf
kb

, i
l1

β,
 c

eb
p,

 tr
f, 

tlr
22

) g
en

es
 

Ci
tr

at
e 

63
.4

5 
0.

00
15

, 0
.0

03
75

, 
0.

00
75

 a
nd

 0
.0

15
 

4 
d 

In
cr

ea
se

d 
di

am
et

er
 o

f g
ill

 fi
la

m
en

t a
nd

 s
ec

on
da

ry
 la

m
el

la
e,

 re
du

ce
d 

le
ng

th
 o

f s
ec

on
da

ry
 la

m
el

la
e 

at
 0

.0
15

 m
g/

L 
G

ill
 in

ju
rie

s 
as

 fu
si

on
, n

ec
ro

si
s,

 v
ac

uo
liz

at
io

n,
 h

yp
er

pl
as

ia
 a

t a
ll 

co
nc

en
tr

at
io

n 
te

st
ed

 

M
an

so
ur

i a
nd

 Jo
ha

ni
 

(2
01

6)
 

U
nc

oa
te

d 
16

.6
 

0.
5,

 1
 a

nd
 2

 m
g/

L 
(in

 A
rt

em
ia

) p
er

 
da

y 
14

 d
 

D
os

e-
de

pe
nd

en
t a

cc
um

ul
at

io
n,

 g
re

at
er

 a
cc

um
ul

at
io

n 
at

 h
ig

he
r 

ex
po

su
re

 c
on

ce
nt

ra
tio

ns
; B

M
F 

< 
1,

 n
ot

 p
ot

en
tia

l o
f t

ro
ph

ic
 tr

an
sf

er
 

Ra
hm

an
y 

et
 a

l. 
(2

01
6)

 

Ac
hE

: 
ac

et
yl

ch
ol

in
es

te
ra

se
; 

BM
F:

 b
io

m
ag

ni
fic

at
io

n 
fa

ct
or

; 
ce

bp
: 

CC
AA

T/
en

ha
nc

er
 b

in
di

ng
 p

ro
te

in
 (

C/
EB

P)
; 

hs
p7

0:
 h

ea
t 

sh
oc

k 
pr

ot
ei

n 
70

; 
il1

β:
 in

te
rle

uk
in

-1
 b

et
a;

 m
tf

-1
: 

m
et

al
 tr

an
sc

rip
tio

n 
fa

ct
or

 1
; N

D
: n

o 
da

ta
; n

fk
b:

 N
uc

le
ar

 fa
ct

or
 k

β;
 P

VP
: p

ol
yv

in
yl

 p
yr

ro
lid

on
e;

 tr
f: 

tr
an

sf
er

rin
; t

lr2
2:

 to
ll 

lik
e 

re
ce

pt
or

22
; t

lr4
: t

ol
l l

ik
e 

re
ce

pt
or

4.
 

 

38



 Ta
bl

e 
4.

- S
um

m
ar

y 
of

 m
ai

n 
ef

fe
ct

s 
re

po
rt

ed
 in

 z
eb

ra
fis

h 
ex

po
se

d 
to

 d
iff

er
en

t c
ad

m
iu

m
 c

on
ta

in
in

g 
N

Ps
. N

M
s 

si
ze

s 
ar

e 
sh

ow
n 

in
 n

m
. C

on
ce

nt
ra

tio
ns

 a
re

 s
ho

w
n 

in
 m

g/
L.

 

St
ag

e 
Co

at
in

g/
ad

di
ti

ve
 

Si
ze

  
Co

nc
en

tr
at

io
n 

 
Ex

po
su

re
  

M
ai

n 
ef

fe
ct

s 
Re

fe
re

nc
e 

embryos 

Cd
Se

/Z
nS

-P
LL

 (Q
D

s1
) 

9 

0.
02

25
 - 

22
.4

8 
12

0 
h 

M
al

fo
rm

at
io

ns
 a

t 0
.2

2 
m

g/
L 

of
 Q

D
s2

, Q
D

s3
 a

nd
 Q

D
s4

 
Ki

ng
-H

ei
de

n 
et

 a
l. 

(2
00

9)
 

Cd
Se

/Z
nS

-P
EG

50
00

-N
H

2 (
Q

D
s2

) 
14

 

Cd
Se

/Z
nS

-P
EG

50
00

-C
O

O
- (

Q
D

s3
) 

14
 

LC
50

 (Q
D

s1
) =

 0
.7

87
 m

g/
L;

 L
C 5

0 (
Q

D
s2

) =
 2

.3
6 

m
g/

L;
 L

C 5
0 

(Q
D

s3
) =

 3
.1

5 
m

g/
L,

 L
C 5

0 (
Q

D
s4

) =
 4

.7
2 

m
g/

L 
 

Cd
Se

/Z
nS

-P
EG

50
00

-O
CH

3 (
Q

D
s4

) 
14

 

Cd
Se

/Z
nS

 (Q
D

s1
)  

6.
5 

1-
25

 
12

0 
h 

M
or

ta
lit

y,
 m

al
fo

rm
at

io
ns

 a
nd

 h
at

ch
in

g 
ra

te
 d

ec
re

as
e 

at
 ≥

 5
 

m
g/

L 
G

eo
rg

e 
et

 a
l. 

(2
01

1)
 

M
PA

-C
dS

e/
Zn

S 
(Q

D
s2

)  
7.

5-
8 

M
PA

-C
dS

e 
(Q

D
s3

) 
6.

5 
To

xi
ci

ty
 r

an
ki

ng
: Q

D
s1

>Q
D

s3
>Q

D
s2

 

TG
A-

Cd
Te

 Q
D

s 
3.

5 
0 

- 4
4.

96
 

12
0 

h 
M

or
ta

lit
y 

at
 ≥

 1
1.

24
 m

g/
L,

 m
al

fo
rm

at
io

ns
 a

nd
 h

at
ch

in
g 

ra
te

 d
ec

re
as

ed
 a

t 2
2.

48
 m

g/
L 

LC
50

 =
 0

.0
20

9 
m

g/
L 

Zh
an

g 
et

 a
l. 

(2
01

2a
) 

M
PA

-C
dS

e 
Q

D
s 

  
3.

5 
0.

05
-3

1.
25

 
12

0 
h 

M
or

ta
lit

y,
 m

al
fo

rm
at

io
ns

 ≥
 1

2.
15

 m
g/

L 
an

d 
ha

tc
hi

ng
 r

at
e 

de
cr

ea
se

d 
≥ 

0.
45

 m
g/

L.
 L

C 5
0 =

 1
.9

8 
m

g/
L 

Zh
an

g 
et

 a
l. 

(2
01

2b
) 

M
PA

-C
dS

e 
Q

D
s 

+ 
Cu

+  
3.

5 
0.

5 
12

0 
h 

M
or

ta
lit

y,
 m

al
fo

rm
at

io
ns

 a
nd

 h
at

ch
in

g 
ra

te
 d

ec
re

as
ed

. 
Zh

an
g 

et
 a

l. 
(2

01
2c

) 
Jo

in
t e

xp
os

ur
e 

to
 Q

D
s 

an
d 

Cu
+  fa

ci
lit

at
ed

 th
e 

ac
cu

m
ul

at
io

n 
of

 c
op

pe
r 

Cd
Se

-u
nd

ec
yl

en
ic

 a
ci

d 
18

1 
± 

12
 

up
 to

 1
00

 m
g/

L 
12

0 
h 

H
at

ch
in

g 
de

la
y 

at
 1

0 
m

g/
L;

 to
ta

lly
 in

hi
bi

te
d 

at
 1

00
 m

g/
L 

O
ng

 e
t a

l. 
(2

01
3)

 

Cd
Se

co
re

/Z
nS

sh
el

l Q
D

s 
3.

6 
0.

02
 –

 2
2.

48
 

12
0 

h 
M

al
fo

rm
at

io
ns

 in
cr

ea
se

d 
at

 2
.2

5 
m

g/
L.

 L
C 5

0 =
 4

.7
2 

 m
g/

L 
W

ie
ci

ns
ki

 e
t a

l. 
(2

01
3)

 

TG
A-

Cd
Te

 Q
D

s 
+ 

Cu
+  

3.
5 

0.
12

-4
8 

12
0 

h 
M

or
ta

lit
y 

≥ 
0.

01
 m

g/
L 

(Q
D

s 
+ 

Cu
+ ), 

m
al

fo
rm

at
io

ns
 a

nd
 

ha
tc

hi
ng

 ra
te

 d
ec

re
as

ed
 ≥

 0
.1

 m
g/

L 
(Q

D
s 

+ 
Cu

+ ) 
Zh

an
g 

et
 a

l. 
(2

01
3)

 
LC

50
 =

 2
2.

31
 m

g/
L 

Cd
Se

/Z
nS

-C
O

O
H

 (Q
D

s-
C)

 
Cd

Se
/Z

nS
, i

n 
to

lu
en

e 
(Q

D
s-

P)
 

5 
0.

5 
an

d 
1 

48
 h

 (2
4 

h 
de

pu
ra

tio
n)

 

10
0%

 m
or

ta
lit

y 
 a

ft
er

 9
 h

 a
t 1

 m
g/

L;
 N

ot
 a

cc
um

ul
at

io
n 

at
 

0.
5 

m
g/

L.
 D

is
tr

ib
ut

io
n 

of
 Q

D
s-

P 
al

on
g 

th
e 

la
rv

ae
 s

ur
fa

ce
, 

Q
D

s-
P 

no
t a

ss
im

ila
te

d 
in

 th
e 

or
ga

ni
sm

  

Za
rc

o-
Fe

rn
án

de
z 

et
 a

l. 
(2

01
6)

 

adults 

Cd
Se

/Z
nS

- P
AA

 
N

D
 

0.
6 

m
g/

L 
(in

 
Ar

te
m

ia
) p

er
 d

ay
 

14
 d

 
(d

ie
ta

ry
) 

Tr
op

hi
c 

tr
an

sf
er

 o
f C

d 
fr

om
 b

ri
ne

 s
hr

im
ps

 to
 z

eb
ra

fis
h.

 A
 

lo
w

 p
er

ce
nt

ag
e 

of
 Q

D
s 

w
er

e 
ab

so
rb

ed
 a

nd
 tr

an
sp

or
te

d 
to

 
ot

he
r t

is
su

es
 

Le
w

in
sk

i e
t a

l. 
(2

01
1)

 

Cd
S 

N
Ps

 
8 

an
d 

50
 

40
 a

nd
 1

00
 n

g 
N

Ps
/d

ay
/g

 b
od

y 
36

 a
nd

 6
0 

d 
(d

ie
ta

ry
) 

G
en

e 
ex

pr
es

si
on

 le
ve

l m
od

ifi
ca

tio
ns

, m
ut

at
io

ns
 a

nd
 

m
ito

ch
on

dr
ia

l i
m

pa
irm

en
t 

La
dh

ar
 e

t a
l. 

(2
01

3)
 

M
PA

: m
er

ca
pt

op
ro

pi
on

ic
 a

ci
d;

 N
D

: n
o 

da
ta

; P
AA

: p
ol

y 
(a

cr
yl

ic
 a

ci
d)

-o
ct

yl
am

in
e 

co
po

ly
m

er
; P

LL
: p

ol
y-

L-
ly

si
ne

; P
EG

: p
ol

y 
(e

th
yl

en
e 

gl
yc

ol
); 

TG
A:

 th
io

gl
yc

ol
ic

 a
ci

d.
 

39



 Ta
bl

e 
5.

- S
um

m
ar

y 
of

 m
ai

n 
ef

fe
ct

s 
re

po
rt

ed
 in

 z
eb

ra
fis

h 
ex

po
se

d 
to

 A
u 

N
Ps

. N
M

s 
si

ze
s 

ar
e 

sh
ow

n 
in

 n
m

. C
on

ce
nt

ra
tio

ns
 a

re
 s

ho
w

n 
in

 m
g/

L.
 

St
ag

e 
Co

at
in

g/
ad

di
ti

ve
 

Si
ze

  
Co

nc
en

tr
at

io
n 

 
Ex

po
su

re
  

M
ai

n 
ef

fe
ct

s 
Re

fe
re

nc
e 

embryos 

Ci
tr

at
e 

3,
 1

0,
 5

0 
an

d 
10

0 
0.

02
7,

 0
.2

7,
 2

.7
 a

nd
 

26
.7

 
12

0 
h 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

Ba
r-

Ila
n 

et
 a

l. 
(2

00
9)

 

Ci
tr

at
e 

11
.6

 
0.

25
,  

0.
53

, 1
.1

, 2
.1

, 
4.

2,
 6

.3
, 8

.4
, 1

0.
5,

 
12

.6
 

12
0 

h 
30

%
 o

f m
or

ta
lit

y 
an

d 
6%

 o
f m

al
fo

rm
at

io
n 

pr
ev

al
en

ce
 a

t 
12

.6
 m

g/
L 

Br
ow

ni
ng

 e
t a

l. 
(2

00
9)

 

PV
A 

15
 a

nd
 3

5 
10

, 2
5,

 5
0,

 7
5 

an
d 

10
0 

12
0 

h 
H

ig
h 

le
ve

ls
 o

f m
et

al
 a

cc
um

ul
at

io
n,

 b
ut

 n
o 

to
xi

c 
ef

fe
ct

s 
As

ha
ra

ni
 e

t a
l. 

(2
01

0)
 

M
BA

 
25

 a
nd

 4
0 

N
D

 
96

 h
 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

W
an

g 
et

 a
l. 

(2
01

0)
 

U
nc

oa
te

d 
10

 
1,

 5
, 1

5 
an

d 
25

 
12

0 
h 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

G
eo

rg
e 

et
 a

l. 
(2

01
1)

 

TM
AT

 

0.
8 

an
d 

1.
5 

0.
01

6,
 0

.0
8,

 0
.4

, 2
, 1

0,
 

50
 a

nd
 2

50
 

12
0 

h 

M
EE

- a
nd

 M
EE

E-
 (n

eu
tr

al
 c

ha
rg

e)
 n

o 
to

xi
c 

ef
fe

ct
 d

et
ec

te
d 

H
ar

pe
r e

t a
l. 

(2
01

1)
 

M
EE

E 
 

TM
AT

-A
u 

N
Ps

 (p
os

iti
ve

ly
 c

ha
rg

ed
) m

or
e 

to
xi

c 
th

an
 M

ES
-A

u 
N

Ps
 (n

eg
at

iv
el

y 
ch

ar
ge

d)
 in

 te
rm

s 
of

 m
or

ta
lit

y 
an

d 
m

al
fo

rm
at

io
ns

 
M

EE
  

M
ES

  

Ci
tr

at
e 

86
.2

 
2.

6,
 5

.1
, 9

.5
, 2

0,
 3

9 
an

d 
78

 
12

0 
h 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

Br
ow

ni
ng

 e
t a

l. 
(2

01
3b

) 

U
nc

oa
te

d 
70

.9
 

4x
10

-4
, 4

x1
0-4

, 8
x1

0-4
, 

10
-3

 
72

 h
 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

G
an

es
hk

um
ar

 e
t a

l. 
(2

01
3)

 

U
nc

oa
te

d 
12

.8
 

20
 a

nd
 1

00
 

96
 h

 
N

o 
to

xi
c 

ef
fe

ct
s 

de
te

ct
ed

 
G

ar
cí

a-
Ca

m
be

ro
 e

t a
l. 

(2
01

3)
 

H
A 

TM
AT

 
1.

3 
0.

08
, 0

.4
, 2

, 1
0,

 2
0,

 3
0,

 
40

 a
nd

 5
0 

N
D

 

Si
gn

ifi
ca

nt
 in

cr
ea

se
 in

 c
el

l d
ea

th
 in

 th
e 

ey
e,

 a
nd

 in
cr

ea
se

 o
f 

p5
3 

an
d 

ba
x 

tr
an

sc
ri

pt
io

n 
at

 1
0 

an
d 

30
 m

g/
L.

 M
or

ta
lit

y,
 

m
al

fo
rm

at
io

ns
 a

nd
 a

bn
or

m
al

 b
eh

av
io

r 
ac

tiv
ity

 a
t ≥

 3
0 

m
g/

L 

Ki
m

 e
t a

l. 
(2

01
3b

) 

U
nc

oa
te

d 
1.

4 
0.

1-
10

00
 

12
0 

h 
Ac

ut
e 

(2
4 

h,
 1

00
0 

m
g/

L)
 a

nd
 d

el
ay

ed
 (1

20
 h

, 1
00

 m
g/

L)
 

to
xi

ci
ty

 w
ith

 m
or

ta
lit

y,
 h

at
ch

in
g 

de
la

y 
an

d 
m

al
fo

rm
at

io
ns

 
Ri

zz
o 

et
 a

l. 
(2

01
3)

 

U
nc

oa
te

d 
N

D
 

up
 to

 2
00

 
96

 h
 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

Ko
vr

iž
ny

ch
 e

t a
l. 

(2
01

3)
 

   

40



 Ta
bl

e 
5 

(c
on

tin
ue

d)
 

St
ag

e 
Co

at
in

g/
ad

di
ti

ve
 

Si
ze

  
Co

nc
en

tr
at

io
n 

 
Ex

po
su

re
  

M
ai

n 
ef

fe
ct

s 
Re

fe
re

nc
e 

adults 

Ci
tr

at
e 

12
 a

nd
 5

0 
36

 a
nd

 1
06

 n
g 

Au
/f

is
h/

da
y 

36
 a

nd
 6

0 
d 

(d
ie

ta
ry

) 

U
p-

re
gu

la
tio

n 
of

 g
en

es
 in

vo
lv

ed
 in

 D
N

A 
re

pa
ir,

 d
et

ox
ifi

ca
tio

n 
pr

oc
es

se
s,

 a
po

pt
os

is
, m

ito
ch

on
dr

ia
l 

m
et

ab
ol

is
m

 a
nd

 o
xi

da
tiv

e 
st

re
ss

. A
lte

ra
tio

n 
of

 g
en

om
e 

co
m

po
si

tio
n 

us
in

g 
a 

RA
PD

-P
CR

 g
en

ot
ox

ic
ity

 te
st

 

G
ef

fr
oy

 e
t a

l. 
(2

01
2)

 

U
nc

oa
te

d 
N

D
 

up
 to

 2
00

 
96

 h
 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

Ko
vr

iž
ny

ch
 e

t a
l. 

(2
01

3)
 

Ci
tr

at
e 

14
.3

 

16
.5

 a
nd

 5
5 

µg
/g

 
dr

ie
d 

se
di

m
en

t 
w

ei
gh

t; 
2.

5x
10

-4
 

an
d 

8x
10

-4
 

re
le

as
ed

 in
 w

at
er

 
co

lu
m

n 

20
 d

 
(s

ed
im

en
t/

w
at

er
) 

G
ol

d 
ac

cu
m

ul
at

io
n.

 O
ve

r-
ex

pr
es

si
on

 o
f g

en
es

 in
vo

lv
ed

 in
 

D
N

A 
re

pa
ir,

 d
et

ox
ifi

ca
tio

n 
pr

oc
es

se
s,

 m
ito

ch
on

dr
ia

l 
m

et
ab

ol
is

m
 a

nd
 o

xi
da

tiv
e 

st
re

ss
. S

ig
ni

fic
an

t i
nc

re
as

e 
in

 b
ra

in
 

an
d 

m
us

cl
e 

Ac
hE

 a
ct

iv
ity

 

D
ed

eh
 e

t a
l. 

(2
01

5)
 

H
A:

 
hy

al
ur

on
ic

 
ac

id
 

fu
nc

tio
na

liz
ed

; 
M

BA
: 

m
er

ca
pt

ob
en

zo
ic

 
ac

id
; 

M
EE

: 
2-

,2
-m

er
ca

pt
oe

th
ox

ye
th

an
ol

; 
M

EE
E:

 
2-

,2
-m

er
ca

pt
oe

th
ox

ye
th

ox
ye

th
an

ol
; 

M
ES

: 
2-

m
er

ca
pt

oe
th

an
es

ul
fo

na
te

; N
D

: n
o 

da
ta

; P
VA

: p
ol

yv
in

yl
 a

lc
oh

ol
; T

M
AT

: N
,N

,N
-t

rim
et

hy
la

m
m

on
iu

m
et

ha
ne

th
io

-li
ga

nd
. 

         

41



 Ta
bl

e 
6.

- S
um

m
ar

y 
of

 m
ai

n 
ef

fe
ct

s 
re

po
rt

ed
 in

 z
eb

ra
fis

h 
ex

po
se

d 
to

 Z
nO

 N
Ps

. N
M

s 
si

ze
s 

ar
e 

sh
ow

n 
in

 n
m

. C
on

ce
nt

ra
tio

ns
 a

re
 s

ho
w

n 
in

 m
g/

L.
 

St
ag

e 
Co

at
in

g/
ad

di
ti

ve
 

Si
ze

  
Co

nc
en

tr
at

io
n 

Ex
po

su
re

  
M

ai
n 

ef
fe

ct
s 

Re
fe

re
nc

e 

embryos 

U
nc

oa
te

d 
20

 
0.

1,
 0

.5
, 1

, 5
, 1

0 
an

d 
50

 
96

 h
 

M
or

ta
lit

y 
at

 ≥
 0

.5
 m

g/
L,

 e
ff

ec
ts

 o
n 

ha
tc

hi
ng

 ra
te

 a
nd

 
m

al
fo

rm
at

io
ns

 ≥
 5

 m
g/

L 
   

   
   

   
   

   
   

   
   

   
   

 
Zh

u 
et

 a
l. 

(2
00

8)
 

LC
50

 (9
6 

hp
f)

 =
1.

79
3 

m
g/

L 

U
nc

oa
te

d 
20

 
0.

1,
 0

.5
, 1

.5
, 1

0,
 5

0 
an

d 
10

0 
96

 h
 

EC
50

 (8
4 

h)
 =

 2
3.

06
 m

g/
L 

(h
at

ch
in

g)
  

Zh
u 

et
 a

l. 
(2

00
9)

 
M

al
fo

rm
at

io
ns

 in
cr

ea
se

d 
si

gn
ifi

ca
nt

ly
 a

t 5
0 

an
d 

10
0 

m
g/

L 
H

at
ch

in
g 

de
la

y,
 E

C 5
0 =

 2
3.

06
 m

g/
L 

U
nc

oa
te

d 
30

 
1,

 5
, 1

0,
 2

5,
 5

0 
an

d 
10

0 
96

 h
 

M
or

ta
lit

y 
ef

fe
ct

s 
at

 5
0 

an
d 

10
0 

m
g/

L 
Ba

i e
t a

l. 
(2

01
0)

 
M

al
fo

rm
at

io
ns

 a
t ≥

 1
0 

m
g/

L 
an

d 
ef

fe
ct

s 
on

 h
at

ch
in

g 
ra

te
 a

t ≥
 1

-1
0 

m
g/

L 
U

nc
oa

te
d 

10
 

1,
 5

, 1
5 

an
d 

25
 

12
0 

h 
H

at
ch

in
g 

de
la

y 
at

 1
 m

g/
L.

 M
or

ta
lit

y 
w

as
 d

et
ec

te
d 

at
 2

5 
m

g/
L 

G
eo

rg
e 

et
 a

l. 
(2

01
1)

 

U
nc

oa
te

d 
23

 ±
 7

 
0.

05
, 0

.5
, 5

, 2
5,

 5
0,

 
10

0 
an

d 
20

0 
12

0 
h 

In
cr

ea
se

d 
hs

p7
0 

ge
ne

 tr
an

sc
ri

pt
io

n 
at

tr
ib

ut
ed

 to
 N

P 
di

ss
ol

ut
io

n 
Li

n 
et

 a
l. 

(2
01

1)
 

U
nc

oa
te

d 
Fe

-d
op

ed
 

8.
3-

15
 

up
 to

 5
0 

m
g/

L 
12

0 
h 

Zn
O

 N
Ps

 in
hi

bi
te

d 
th

e 
ha

tc
hi

ng
 p

ro
te

as
e 

ac
tiv

ity
 

Xi
a 

et
 a

l. 
(2

01
1)

 
20

.2
 

U
nc

oa
te

d 
30

 
1,

 2
, 5

, 1
0,

 3
0 

an
d 

50
 

96
 h

 
M

or
ta

lit
y;

  L
C 5

0 (
96

 h
pf

) =
 4

.9
2 

m
g/

L 
Xi

on
g 

et
 a

l. 
(2

01
1)

 
SO

D
 a

nd
 C

AT
 a

ct
iv

ity
, a

nd
 G

SH
 c

on
ce

nt
ra

tio
n 

re
du

ce
d 

in
 th

e 
liv

er
 

an
d 

in
cr

ea
se

d 
in

 th
e 

gu
t a

t 5
 m

g/
L 

U
nc

oa
te

d 
30

 
1,

 2
, 5

, 1
0,

 3
0 

an
d 

50
 

96
 h

 
M

or
ta

lit
y;

 L
C 5

0 (
96

 h
pf

) =
 3

.9
69

 m
g/

L 
Yu

 e
t a

l. 
(2

01
1)

 

U
nc

oa
te

d 
22

.6
 ±

 
5.

1 
0.

05
, 0

.5
, 5

, 2
5,

 5
0 

10
0 

an
d 

20
0 

N
D

 
Ex

po
su

re
 to

 Z
nO

 N
Ps

 p
ro

vo
ke

d 
ZH

E1
 in

ac
tiv

at
io

n 
an

d,
 th

er
ef

or
e,

 
ha

tc
hi

ng
 d

el
ay

 
Li

n 
et

 a
l. 

(2
01

2)
 

Po
ly

m
er

 
20

 ±
  2

 
up

 to
 1

00
 

12
0 

h 
In

hi
bi

tio
n 

of
 h

at
ch

in
g 

pr
ot

ea
se

 a
ct

iv
ity

; M
or

ta
lit

y 
at

 1
0 

an
d 

10
0 

m
g/

L 
of

 u
nc

oa
te

d 
N

Ps
 a

nd
 u

nc
oa

te
d 

le
af

 
O

ng
 e

t a
l. 

(2
01

3)
 

U
nc

oa
te

d 
96

 ±
 1

23
 

U
nc

oa
te

d 
le

af
 

16
9 

± 
31

 

U
nc

oa
te

d 
< 

10
0 

1,
 5

, 1
0,

 2
0,

 5
0 

an
d 

10
0 

14
4 

h 

M
al

fo
rm

at
io

ns
 a

nd
 h

at
ch

in
g 

ra
te

 d
ec

re
as

e 
≥ 

10
 m

g/
L.

 S
O

D
 

ac
tiv

ity
 in

cr
ea

se
 a

t 
≥ 

1 
m

g/
L,

 M
D

A 
co

nt
en

t i
nc

re
as

ed
 a

nd
 C

AT
 

ac
tiv

ity
 d

ec
re

as
ed

 a
t ≥

 2
0 

m
g/

L,
 R

O
S 

pr
od

uc
tio

n 
in

cr
ea

se
d 

≥ 
10

 
m

g/
L 

Zh
ao

 e
t a

l. 
(2

01
3)

 

 

42



 Ta
bl

e 
6 

(c
on

tin
ue

d)
 

St
ag

e 
Co

at
in

g/
ad

di
ti

ve
 

Si
ze

  
Co

nc
en

tr
at

io
n 

 
Ex

po
su

re
  

M
ai

n 
ef

fe
ct

s 
Re

fe
re

nc
e 

embryos 

U
nc

oa
te

d 
9.

4 
0.

2,
 1

 a
nd

 5
 

96
 a

nd
  

16
8 

h 

H
at

ch
in

g 
de

la
y 

at
 1

 a
nd

 5
 m

g/
L.

 c
at

 a
nd

 C
u/

Zn
-s

od
 g

en
es

 
up

-r
eg

ul
at

ed
 a

ft
er

 9
6 

h 
in

 e
m

br
yo

s,
 a

nd
 d

ow
n-

re
gu

la
te

d 
af

te
r 4

8 
h 

of
 e

xp
os

ur
e 

in
 e

le
ut

he
ro

-e
m

br
yo

s,
 m

t2
 u

p-
re

gu
la

te
d 

af
te

r 
48

 h
 a

t 5
 m

g/
L 

 

Br
un

 e
t a

l. 
(2

01
4)

 

U
nc

oa
te

d 
50

-7
0 

0.
1,

 0
.5

, 1
, 5

 a
nd

 1
0 

14
4 

h 
H

at
ch

in
g 

de
la

y 
at

 ≥
 0

.5
 m

g/
L;

 L
ar

va
l a

ct
iv

ity
 le

ve
l, 

m
ea

n 
ve

lo
ci

ty
, a

nd
 m

ax
im

um
 v

el
oc

ity
 a

lte
re

d 
at

 5
 a

nd
 1

0 
m

g/
L 

Ch
en

 e
t a

l. 
(2

01
4)

 

U
nc

oa
te

d 
< 

10
0 

0.
01

, 0
.1

, 1
, 5

 a
nd

 1
0 

12
0 

h 
H

at
ch

in
g 

de
la

y 
at

 5
 a

nd
 1

0 
m

g/
L 

Vi
ca

ri
o-

Pa
ré

s 
et

 a
l. 

(2
01

4)
 

U
nc

oa
te

d 
8.

35
 

0.
08

, 0
.4

, 2
, 1

0 
an

d 
50

 
12

0 
h 

LC
50

 =
 3

.5
-9

.1
 m

g/
L,

 m
or

ta
lit

y 
an

d 
m

al
fo

rm
at

io
ns

 a
t 1

0 
an

d 
50

 m
g/

L 
W

eh
m

as
 e

t a
l. 

(2
01

5)
 

EC
50

  =
 0

.5
-3

.5
 m

g/
L 

adults 

U
nc

oa
te

d 

30
 ±

 1
7 

76
90

 ±
 3

58
0 

m
g 

Zn
/k

g 
dr

y 
w

ei
gh

t (
D

. m
ag

na
) 

14
 d

 
(d

ie
ta

ry
) 

Zn
O

 tr
an

sf
er

 fr
om

 D
. m

ag
na

 e
xp

os
ed

 to
 u

nc
oa

te
d 

an
d 

Zn
O

-o
ct

yl
 N

Ps
 to

 z
eb

ra
fis

h 
Sk

jo
ld

in
g 

et
 a

l. 
(2

01
4)

 
Zn

O
-O

H
 N

Ps
 

37
23

0 
± 

25
60

 m
g 

Zn
/k

g 
dr

y 
w

ei
gh

t (
D

. m
ag

na
) 

Zn
O

-o
ct

yl
 N

Ps
 

28
7 

± 
91

 m
g 

Zn
/k

g 
dr

y 
w

ei
gh

t (
D

. m
ag

na
) 

ca
t:

 c
at

al
as

e;
 G

SH
: r

ed
uc

ed
 g

lu
ta

th
io

ne
; h

sp
70

: h
ea

t s
ho

ck
 p

ro
te

in
 7

0;
 M

D
A:

 m
al

on
di

al
de

hy
de

; m
t2

: m
et

al
lo

th
io

ne
in

2;
 N

D
: n

o 
da

ta
; R

O
S:

 re
ac

tiv
e 

ox
yg

en
 s

pe
ci

es
; S

O
D

: 
su

pe
ro

xi
de

 d
is

m
ut

as
e.

  

      

43



 Ta
bl

e 
7.

- S
um

m
ar

y 
of

 m
ai

n 
ef

fe
ct

s 
re

po
rt

ed
 in

 z
eb

ra
fis

h 
ex

po
se

d 
to

 S
iO

2 N
Ps

. N
M

s 
si

ze
s 

ar
e 

sh
ow

n 
in

 n
m

. C
on

ce
nt

ra
tio

ns
 a

re
 s

ho
w

n 
in

 m
g/

L.
 

St
ag

e 
Co

at
in

g/
ad

di
ti

ve
 

Si
ze

  
Co

nc
en

tr
at

io
n 

 
Ex

po
su

re
  

M
ai

n 
ef

fe
ct

s 
Re

fe
re

nc
e 

embryos 

FS
N

Ps
 

60
 a

nd
 2

00
 

0.
25

, 2
.2

6 
an

d 
25

.6
 

96
 h

 
N

o 
to

xi
c 

ef
fe

ct
s 

de
te

ct
ed

 
Fe

nt
 e

t a
l. 

(2
01

0)
 

0.
2,

 2
 a

nd
 2

00
 

Si
O

2 N
Ps

 
50

 a
nd

 2
00

 

10
-5

, 1
0-4

 a
nd

 1
0-3

 
13

2 
h 

(in
je

ct
ed

 
in

to
 y

ol
k 

sa
c)

 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 w

ith
 S

iO
2 N

Ps
 

N
el

so
n 

et
 a

l. 
(2

01
0)

 
N

an
ow

ire
s 

55
 n

m
 x

 2
.1

µm
 

N
an

ow
ire

s 
pr

ov
ok

ed
 m

or
ta

lit
y 

an
d 

m
al

fo
rm

at
io

ns
 in

 
em

br
yo

s 
in

je
ct

ed
 d

ur
in

g 
th

e 
1-

 o
r 

2-
 c

el
l s

ta
ge

 (1
 m

g/
L,

 
co

rr
es

po
nd

in
g 

w
ith

 3
 p

g 
of

 m
at

er
ia

l) 
U

nc
oa

te
d 

30
 

1,
 5

, 1
5 

an
d 

25
 

12
0 

h 
N

o 
to

xi
c 

ef
fe

ct
s 

de
te

ct
ed

 
G

eo
rg

e 
et

 a
l. 

(2
01

1)
 

M
SR

M
s 

N
D

 
0.

25
, 2

.5
, 2

5,
 1

00
 a

nd
 

20
0 

14
4 

h 
M

al
fo

rm
at

io
ns

 a
t 

≥ 
2.

5 
m

g/
L 

Li
u 

et
 a

l. 
(2

01
2)

 

M
SN

P 
20

0 
10

00
0 

12
0 

h 
(in

je
ct

ed
 

in
to

 y
ol

k 
sa

c)
 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

Sh
ar

if 
et

 a
l. 

(2
01

2)
 

Si
 N

Ps
 

62
 

25
, 5

0,
 1

00
 a

nd
 2

00
 

96
 h

 
M

or
ta

lit
y 

an
d 

m
al

fo
rm

at
io

ns
 a

t 1
00

 a
nd

 2
00

 m
g/

L 
D

ua
n 

et
 a

l. 
(2

01
3a

) 

Si
 N

Ps
 

62
 

25
, 5

0,
 1

00
 a

nd
 2

00
 

96
 h

 
M

or
ta

lit
y 

an
d 

m
al

fo
rm

at
io

ns
 a

t 1
00

 a
nd

 2
00

 m
g/

L 
D

ua
n 

et
 a

l. 
(2

01
3b

) 

U
A 

15
 ±

 2
 

up
 to

 1
00

 
12

0 
h 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

O
ng

 e
t a

l. 
(2

01
3)

 

U
nc

oa
te

d 
N

D
 

up
 to

 1
60

0 
96

 h
 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

Ko
vr

iž
ny

ch
 e

t a
l. 

(2
01

3)
 

Si
 N

Ps
 

62
.1

4±
7.

16
 

10
00

, 2
00

0,
 3

00
0,

 
60

00
 a

nd
 1

20
00

 

24
 h

 
(in

tr
av

en
ou

s 
m

ic
ro

in
je

ct
io

n)
 

Pe
ric

ar
di

al
 e

de
m

a 
an

d 
br

ad
yc

ar
di

a 
at

 ≥
 6

00
0 

m
g/

L 
In

hi
bi

tio
n 

of
 c

al
ci

um
 s

ig
na

lin
g 

pa
th

w
ay

, i
nd

uc
tio

n 
of

 
ca

rd
ia

c 
dy

sf
un

ct
io

n 
vi

a 
th

e 
ne

ut
ro

ph
il-

m
ed

ia
te

d 
ca

rd
ia

c 
in

fla
m

m
at

io
n 

an
d 

ca
rd

ia
c 

co
nt

ra
ct

io
n 

at
 a

ll 
te

st
ed

 
co

nc
en

tr
at

io
ns

 

D
ua

n 
et

 a
l. 

(2
01

5)
 

ad
ul

ts
 

U
nc

oa
te

d 
N

D
 

up
 to

 1
60

0 
96

 h
 

N
o 

to
xi

c 
ef

fe
ct

s 
de

te
ct

ed
 

Ko
vr

iž
ny

ch
 e

t a
l. 

(2
01

3)
 

FS
N

Ps
: f

lu
or

es
ce

nt
 S

iO
2 N

Ps
; M

SN
Ps

: m
es

op
or

us
 S

iO
2 N

Ps
; M

SR
M

s:
 M

ag
he

m
ite

@
Si

O
2 R

at
tle

 T
yp

e 
M

ic
ro

sp
he

re
s;

 N
D

: n
o 

da
ta

; U
A:

 u
nd

ec
yl

en
ic

 a
ci

d.
 

  

44



Introduction 

 

 REFERENCES 

Alvarado NE, Buxens A, Mazón LI, Marigómez I and Soto M. 2005. Cellular biomarkers of 
exposure and biological effect in hepatocytes of turbot (Scophtalmus maximus) 
exposed to Cd, Cu and Zn and after depuration. Aquatic Toxicology 74, 110-125. 

Asharani PV, Wu YL, Gong Z and Valiyaveettil S. 2008. Toxicity of silver nanoparticles in 
zebrafish models. Nanotechnology 19, 255102-255110.  

Asharani PV, Wu YL, Gong Z and Valiyaveettil S. 2010. Comparison of the toxicity of silver, gold 
and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5, 43-54. 

Azzazy HME and Mansour MMH. 2009. In vitro diagnostics prospects of nanoparticles. Clinica 
Chimica Acta 403, 1-8. 

Bahary N and Zon LI. 1998. Use of the zebrafish (Danio rerio) to define hematopoiesis. Stem 
Cells 16, 89-98. 

Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y and Chai Z. 2010. Toxicity of zinc oxide 
nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism. 
Journal of Nanoparticle Research 12, 1645-1654. 

Baker TJ, Tyler CR and Galloway TS. 2014. Impacts of metal and metal oxide nanoparticles on 
marine organisms. Environmental Pollution 186, 257-271.  

Bar-Ilan O, Albretch RM, Fako VE and Furgeson DY. 2009. Toxicity assessments of multisized 
gold and silver nanoparticles in zebrafish embryos. Small 16, 1897-1910. 

Beasley A, Graham C, Otter R and Elrod-Erickson M. 2014. A molecular method for assessing 
the effects of potential contaminants on the rate of zebrafish (Danio rerio) 
development. Environmental Toxicology and Chemistry 33, 238-242. 

Bebianno MJ, Gonzalez-Rey M, Gomes T, Mattos JJ, Flores-Nunes F and Bainy ACD. 2015. Is 
gene transcription in mussel gills altered after exposure to Ag nanoparticles? 
Environmental Science and Pollution Research 22, 17425-17433.  

Best JH, Eddy FB and Codd GA. 2003. Effects of Microcystis cells, cell extracts and 
lipopolysaccharide on drinking and liver function in rainbow trout Oncorhynchus 
mykiss Walbaum. Aquatic Toxicology 64, 419-426. 

Bilberg L, Hovgaard MB, Besenbacher F and Baatrup E. 2012. In vivo toxicity of silver 
nanoparticles and silver ions in zebrafish (Danio rerio). Journal of Toxicology 2012, doi: 
10.1155/2012/293784. 

Biswas S, Chida AS and Rahnam I. 2006. Redox modifications of protein thiols: emerging roles 
in cell signaling. Biochemical Pharmacology 71, 551-564. 

Blaser SA, Scheringer M, MacLeod M and Hungerbühler. 2008. Estimation of cumulative 
aquatic exposure and risk due to silver: contribution of nano-functionalized plastics 
and textiles. Science of the Total Environment 390, 396-409. 

Bohnsack JP, Assemi S, Miller JD and Furgeson DY. 2012. Chapter 19: The primacy of 
physicochemical characterization of nanomaterials for reliable toxicity assessment: A 
review of the zebrafish nanotoxicology model. In: Reineke J (Ed.) Nanotoxicity: 
Methods and protocols. Methods in Molecular Biology 926, 261-316. 

Borase HP, Patil CD, Salunkhe RB, Suryawanshi RK, Salunke BK and Patil SV. 2014. Phylolatex 
synthesized gold nanoparticles as novel agent to enhance sun protection factor of 
commercial sunscreens. International Journal of Cosmetic Science 36, 571-578. 

45



Introduction 
 
Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R and Wood S. 2006. 

Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in 
biological fate and effects of nanoscale particles. Toxicological Sciences 90, 23-32. 

Bowman CR, Bailey FC, Elrod-Erickson M, Neigh AM and Otter RR. 2012. Effects of silver 
nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a 
comparison of toxicity based on total surface area versus mass concentration of 
particles in a model eukaryotic and prokaryotic system. Environmental Toxicology and 
Chemistry 31, 1793-1800.  

Braunbeck T, Bötcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M and Seitz N. 2005. 
Fish LC50 test in chemical assessment: The fish embryo toxicity test goes multi-species - 
an update. Altex 22, 87-102. 

Braunbeck T, Kais B, Lammer E, Otte J, Schneider K, Stengel D and Strecker R. 2014. The fish 
embryo test (FET): origin, applications and future. Environmental Science and Pollution 
Research 22, 16247-16261. 

Browning LM, Huang T and Xu X-HN. 2013b. Real-time in vivo imaging of size-dependent 
transport and toxicity of gold nanoparticles in zebrafish embryos using single 
nanoparticle plasmonic spectroscopy. Interface Focus 3, 
dx.doi.org/10.1098/rsfs.2012.0098. 

Browning LM, Lee KJ, Huang T, Nallathamby PD, Lowman JE and Xu XN. 2009. Random walk on 
single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on 
embryonic developments. Nanoscale 1, 138-152. 

Browning LM, Lee KJ, Huang T, Nallathamby PD and Xu XN. 2013a. Silver nanoparticles incite 
size- and dose-dependent developmental phenotypes and nanotoxicity in zebrafish 
embryos. Chemical Research in Toxicology 26, 1503-1513. 

Brun NR, Lenz M, Wehrli B and Fent K. 2014. Comparative effects of zinc oxide nanoparticles 
and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc 
ions. Science of the Total Environment 476-477, 657-666. 

Buzea C, Pacheco Blandino II and Robbie K. 2007. Nanomaterials and nanoparticles: Sources 
and toxicity. Biointerphases 4, 17-172. 

Cambier S, Gonzalez P, Durrieu G and Bourdineaud JP. 2010. Cadmium-induced genotoxicity in 
zebrafish at environmentally relevant doses. Ecotoxicology and Environmental Safety 
73, 312-319. 

Chae YJ, Pham CH, Bae E, Yi J and Gu MB. 2009. Evaluation of the toxic impact of silver 
nanoparticles on Japanese medaka (Oryzias latipes). Aquatic Toxicology 94, 320-327. 

Chang YA, Zhang M, Xia L, Zhang J and Xing G. 2012. The toxic effects and mechanisms of CuO 
and ZnO nanoparticles. Materials 5, 2850-2871. 

Chen J, Dong X and Zhao M. 2011. Effects of titanium dioxide nano-particles on growth and 
some histological parameters of zebrafish (Danio rerio) after a long-term exposure. 
Aquatic Toxicology 101, 493-499. 

Chen TH, Lin CC and Meng PJ. 2014. Zinc oxide nanoparticles alter hatching and larval 
locomotor activity in zebrafish (Danio rerio). Journal of Hazardous Materials 277, 134-
140. 

Chio CP, Chen WY, Hsieh NH, Ling MP and Liao CM. 2012. Assessing the potential risks to 
zebrafish posed by environmentally relevant copper and silver nanoparticles. Science 
of the Total Environment 420, 111-118. 

46



Introduction 

 
Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi  J and Ryu DY. 2010. Induction of oxidative 

stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquatic 
Toxicology 100, 151-159. 

Christen V, Capelle M and Fent K. 2013. Silver nanoparticles induce endoplasmatic reticulum 
stress response in zebrafish. Toxicology and Applied Pharmacology 272, 519-528. 

Clemente Z, Castro VL, Feitosa LO, Lima R, Jonsson CM, Maia AHN and Fraceto LF. 2013. Fish 
exposure to nano-TiO2 under different experimental conditions: Methodological 
aspects for nanoecotoxicology investigations. Science of the Total Environment 463-
464, 647-656. 

Costa VMV, Amorim MA, Quintanilha A and Moradas-Ferreira P. 2002. Hydrogen peroxide-
induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the 
involvement of the oxidative response regulators Yap1 and Skn7. Free Radical Biology 
and Medicine 33, 1507-1515. 

Coverdale LE, Lean D and Martin CC. 2004. Not just a fishing trip – environmental genomics 
using zebrafish. Current Genomics 5, 299-304. 

Cowart DA, Guida SM, Shah SI and Marsh AG. 2011. Effects of Ag nanoparticles on survival and 
oxygen consumption of zebrafish embryos, Danio rerio. Journal of Environmental 
Science and Health, Part A 46, 1122-1128. 

Cunnigham ETS, Brennan-Fournet ME, Ledwith D, Byrnes L and Joshi L. 2013. Effect of 
nanoparticle stabilization and physicochemical properties on exposure outcome: acute 
toxicity of silver nanoparticle preparations in zebrafish (Danio rerio). Environmental 
Science and Technology 47, 3883-3892. 

Danscher G. 1984. Autometallography. A new technique for light and electron microscopic 
visualisation of metals in biological tissues (gold, silver, metal sulphides and metal 
selenides). Histochemistry 81, 331–335. 

De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, Kshirsagar P, Sabella S, 
Bardi G and Pompa PP. 2015. Negligible particle-specific toxicity mechanism of silver 
nanoparticles: The role of Ag+ ion release in the cytosol. Nanomedicine: 
Nanotechnology, Biology and Medicine 11, 731-739. 

Dedeh A, Ciutat A, Treguer-Delapierre M and Bourdineaud JP. 2015. Impact of gold 
nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 9, 71-80. 

Devi GP, Ahmed KVA, Sai Varsha MKN, Shrijha BS, Subin Lal KK, Anbazhagan V and Thiagarajan 
R. 2015. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquatic 
Toxicology 158, 149-156. 

Doak SH, Manshian B, Jenkins GJS and Singh N. 2012. In vitro genotoxicity testing strategy for 
nanomaterials and the adaptation of current OECD guidelines. Mutation Research 745, 
104-111. 

Dorn RI, Gordon SJ, Krinsley D and Langworthy K. 2013. Nanoscale: mineral weathering 
boundary. In: Shroder J and Pope GA (Eds.) Treatise on Geomorphology. Weathering 
and Soils Geomorphology, 44–69. 

Duan J, Yu Y, Li Y, Yu Y, Shi H, Tian L, Guo C, Huang P, Zhou X et al. 2013a. Toxic effects of silica 
nanoparticles in zebrafish embryos and larvae. Plos One 8, doi: 
10.1371/journal.pone.0074606. 

47



Introduction 
 
Duan J, Yu Y, Li Y, Li Y, Liu H, Jing L, Yang M, Wang J, Li C et al. 2015. Low-dose exposure of silica 

nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and 
cardiac contraction in zebrafish embryos. Nanotoxicology, 10, 575-585. 

Duan J, Yu Y, Li Y, Yu Y and Sun Z. 2013b. Cardiovascular toxicity evaluation of silica 
nanoparticles in endothelial cells and zebrafish model. Biomaterials 34, 5853-5862. 

Dumont E, Johnson AC, Keller VDJ and Williams RJ. 2015. Nano silver and nano zinc-oxide in 
surface waters – Exposure estimation for Europe at high spatial and temporal 
resolution. Environmental Pollution 196, 341-349. 

Embry M, Belanger S, Braunbeck T, Galay-Burgos M, Halder M, Hinton D, Léonard M, Lillicrap 
A, Norberg-King T et al. 2010. The fish embryo toxicity test as an animal alternative 
method in hazard and risk assessment and scientific research. Aquatic Toxicology 97, 
79-87. 

Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM and McCullough J. 2013. The big 
picture on small medicine: the state of nanomedicine products approved for use or in 
clinical trials. Nanomedicine 9, 1-14. 

EU (1986) Council Directive 86/609/EEC on the approximation of laws. Regulations and 
administrative provisions of the Member States regarding the protection of animals 
used for experimental and other scientific purposes. OV J Eur Comm L 358, 1-29. 

EU (2010) Directive 2010/63/EU of the European parliament and of the council of 22 
September 2010 on the protection of animals used for scientific purposes. Off J EU 
276, 33-79. 

EU COM Recommendation of 18 October 2011 on the definition of nanomaterial. Text with 
EEA relevance, OJ L 275, 20.10.2011, p. 38–40 (EN). 

Fako VE and Furgeson DY. 2009. Zebrafish as a correlative and predictive model for assessing 
biomaterial nanotoxicity. Advanced Drug Delivery Review. 61, 478-486. 

Federici G, Shaw BJ and Handy RD. 2007. Toxicity of titanium dioxide nanoparticles to rainbow 
trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological 
effects. Aquatic Toxicology 84, 414-430. 

Fent K, Weisbrod CJ, Wirth-Heller A and Pieles U. 2010. Assessment of uptake and toxicity of 
fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquatic 
Toxicology 100, 218-228. 

Filho JDS, Matsubara EY, Franchi LP, Martins IP, Rivera LMR, Rosolen JM and Grisolia CK. 2014. 
Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model. 
Environmental Research 134, 9-16. 

Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G and Galdiero M. 2015. Silver 
nanoparticles as potential antibacterial agents. Molecules 20, 8856-8874. 

Fröhlich E, Meindl C, Wagner K, Leitinger G and Roblegg E. 2014. Use of whole expression 
analysis in the toxicity screening of nanoparticles. Toxicology and Applied 
Pharmacology 280, 272-284. 

Ganeshkumar M, Sathisnkumar M, Ponrasu T, Dinesh MG and Suguna L. 2013. Spontaneous 
ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted 
drug delivery. Colloids and Surfaces B: Biointerfaces 106, 208-213. 

Gao J, Sepúlveda MS, Linkhamer C, Wei A, Gao Y and Mahapatra CT. 2015. Nanosilver-coated 
socks and their toxicity to zebrafish (Danio rerio) embryos. Chemosphere 119, 948-952. 

48



Introduction 

 
García-Cambero JP, Núñez-García M, Díaz-López G, López-Herranz A, Cuevas L, Pérez-Pastrana 

E, Sendra-Cuadal J, Ramis-Castelltort M and Castaño-Calvo A. 2013. Converging hazard 
assessment of gold nanoparticles to aquatic organisms. Chemosphere 93, 1194-1200. 

Geffroy B, Ladhar C, Cambier S, Treguer-Delapierre M, Bréthes D and Bourdineaud JP. 2012. 
Impact of dietary gold nanoparticles in zebrafish at very low contamination pressure: 
the role of size, concentration and exposure time. Nanotoxicology 6, 144-160. 

George S, Gardner H, Seng EK, Chang H, Wang C, Fang CH Y, Richards M, Valiyaveettil S and 
Chan WK. 2014. Differential effect of solar light in increasing the toxicity of silver and 
titanium dioxide nanoparticles to a fish cell line and zebrafish embryos. Environmental 
Science and Technology 48, 6374-6382. 

George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H et al. 2012. 
Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential 
in a fish gill cell line and zebrafish embryos. ACS Nano 6, 3745-3759. 

George S, Xia T, Rallo R, Zhao Y, Ji S, Wang X, Zhang H, France B, Schoenfeld D et al. 2011. Use 
of a high-throughput screening approach coupled with In Vivo zebrafish embryo 
screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5, 1805-
1817. 

Ghezzi P and Bonetto V. 2003. Redox proteomics: Identification of oxidatively modified 
proteins. Proteomics 3, 1145-1153.  

Ghosh P, Han G, De M, Kim CK and Rotello VM. 2008. Gold nanoparticles in delivery 
applications. Advanced Drug Delivery Reviews 60, 1307-1315. 

Gomes T, Araújo O, Pereira R, Almeida AC, Cravo A and Bebianno MJ. 2013. Genotoxicity of 
copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Marine 
Environmental Research 84, 51-59. 

Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S and Yang X. 2007. Preparation and 
antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology 18, 285604-285611. 

Gottschalk F. 2015. Nanomaterials in the Danish environment: Modeling exposure of the 
Danish environment to selected nanomaterials. Danish Environmental Protection 
Agency. Environmental project No 1639. 

Gottschalk F, Kost and Nowack B. 2013. Engineered nanomaterials in water and soils: a risk 
quantification based on probabilistic exposure and effect modeling. Environmental 
Toxicology and Chemistry 32, 1278-1287. 

Gottschalk F and Nowack B. 2011. The release of engineered nanomaterials to the 
environment. Journal of Environmental Monitoring 13, 1145-1155.  

Gottschalk F, Sonderer T, Scholz RW and Nowack B. 2009. Modeled environmental 
concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for 
different regions. Environmental Science and Technology 43, 9216-9222.  

Gottschalk F, Sonderer T, Scholz RW and Nowack B. 2010. Possibilities and limitations of 
modeling environmental exposure to engineered nanomaterials by probabilistic 
material flow analysis. Environmental Toxicology and Chemistry 29, 1036-1048. 

Govidansamy R and Rahuman AA. 2012. Histopathological studies and oxidative stress of 
synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). 
Journal of Environmental Sciences 24, 1091-1098. 

49



Introduction 
 
Griffitt RJ, Hyndman K, Denslow ND and Barber DS. 2009. Comparison of molecular and 

histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological 
Sciences 107, 404-415. 

Griffitt RJ, Lavelle CM, Kane AS, Denslow ND and Barber DS. 2013. Chronic nanoparticulated 
silver exposure results in tissue accumulation and transcriptomic changes in zebrafish. 
Aquatic Toxicology 130-131, 192-200. 

Griffitt RJ, Luo J, Gao J, Bonzongo JC and Barber DS. 2008. Effects of particle composition and 
species on toxicity of metallic nanomaterials in aquatic organisms. Environmental 
Toxicology and Chemistry 27, 1972-1978. 

Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D and Barber DS. 2007. 
Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish 
(Danio rerio). Environmental Science and Technology 41, 8178-8186.  

Groh KJ, Dalkvist T, Piccapietra F, Behra R, Suter MJF and Schirmer K. 2014. Critical influence of 
chloride ions on silver ion-mediated acute toxicity of silver nanoparticles to zebrafish 
embryos. Nanotoxicology 9, 81-91. 

Gunnarsson L, Kristiansson E, Förlin L, Nerman O and Larson DGJ. 2007. Sensitive and robust 
gene expression changes in fish exposed to estrogen – a microarray approach. BMC 
Genomics 8, 149-157. 

Guzmán MG, Dille J and Godet S. 2009. Synthesis of silver nanoparticles by chemical reduction 
method and their antibacterial activity. International Journal of Chemistry and Biology 
Engineering 2:3, 105-111. 

Haase A, Tentchert J, Jungnickel H, Graf P, Mantion A, Draude F, Plendl J, Goetz ME, Galla S et 
al. 2011. Toxicity of silver nanoparticles in human macrophages: Uptake, intracellular 
distribution and cellular responses. Journal of Physics: Conference Series 304, doi: 
10.1088/1742-6596/304/1/012030. 

Handy RD, Henry TB, Scown TM, Johnston BD and Tyler CR. 2008. Manufactured nanoparticles: 
their uptake and effects on fish-a mechanistic analysis. Ecotoxicology 17, 396-400. 

Hao L, Chen L, Hao J and Zhong N. 2013. Bioaccumulation and sub-acute toxicity of zinc oxide 
nanoparticles in juvenile carp (Cyprinus carpio): A comparative study with its bulk 
counterparts. Ecotoxicology and Environmental Safety 91, 52-60. 

Hao L, Wang Z and Xing B. 2009. Effect of sub-acute exposure to TiO2 nanoparticles on 
oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio). 
Journal of Environmental Sciences 21, 1459-1466. 

Harper SL, Carriere JL, Miller JM, Hutchison JE, Maddux BLS and Tanguay RL. 2011. Systematic 
evaluation of nanomaterial toxicity: utility of standardized materials and rapid assays. 
ACS Nano 5, 4688-4697. 

Harper C and Lawrence C. 2011. The laboratory zebrafish. Taylor and Francis Group, LLC. 274 
pp. 

Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G and Dubourguier HC. 2011. Changes in 
the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A 
transmission electron microscopy study. Water Research 45, 179-190. 

Hendren CO, Badireddy AR, Casman E and Wiesner MR. 2013. Modeling nanomaterials fate in 
wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). 
Science of the Total Environment 449, 418-425. 

50



Introduction 

 
Hill JA, Teraoka H, Heideman W and Peterson RE. 2005. Zebrafish as a model vertebrate for 

investigating chemical toxicity. Toxicology Sciences 86, 6-19. 
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, 

McLaren K et al. 2013. The zebrafish reference genome sequence and its relationship 
to the human genome. Nature 496, 498-503. 

Hu W, Culloty S, Darmody G, Lynch S, Davenport J, Ramirez-García S, Dawson KA, Lynch I, 
Blasco J and Sheehan D. 2014. Toxicity of copper oxide nanoparticles in the blue 
mussel, Mytilus edulis: A redox proteomic investigation. Chemosphere 108, 289-299. 

International Standard ISO/TC 147/SC 5. 1996. Water quality - Determination of the acute 
lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan 
(Teleostei, Cyprinidae)], 11 pp. 

Jiang J, Oberdörster G and Biswas P. 2009. Characterization of size, surface charge, and 
agglomeration state of nanoparticle dispersions for toxicological studies. Journal of 
Nanoparticles Research 11, 77-89.  

Jimeno-Romero A, Oron M, Cajaraville MP, Soto M and Marigómez I. 2016. Nanoparticles size 
and combined toxicity of TiO2 and DSLS (surfactant) contribute to lysosomal responses 
in digestive cells of mussels exposed to TiO2 nanoparticles. Nanotoxicology, 
doi:10.1080/17435390.2016.1196250. 

Johari SA, Kalbassi MR, Yu IJ and Lee JH. 2014a. Chronic effect of waterborne silver 
nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and 
bioaccumulation. Comparative Clinical Pathology, 24, 995-1007.  

Johari SA, Sourinejad I, Bärsch N, Moocheshi SS, Kaseb A and Nazdar N. 2014b. Does physical 
production of nanoparticles reduce their ecotoxicity? A case of lower toxicity of AgNPs 
produced by laser ablation to zebrafish (Danio rerio). International Journal of Aquatic 
Biology 2, 188-192. 

Kahru A and Dubourguier HC. 2010. From ecotoxicology to nanoecotoxicology. Toxicology 269, 
105-119. 

Kalčíková G, Zagorc-Končan J and Žgajnar Gotvajn A. 2012. Artemia salina acute immobilization 
test: a possible tool for aquatic ecotoxicity assessment. Water Science and Technology 
66, 903-908.  

Kannan RR, Avila Jerley AJ, Ranjani M and Gnana Prakash VS. 2011. Antimicrobial silver 
nanoparticle induces organ deformities in the developing zebrafish (Danio rerio) 
embryos. Biomedical Science and Engineering 4, 248-254. 

Katuli KK, Massarsky A, Hadadi A and Pourmehran Z. 2014. Silver nanoparticles inhibit the gill 
Na+/K+-ATPase and erythrocyte AChE activities and induce the stress response in adult 
zebrafish (Danio rerio). Ecotoxicology and Environmental Safety 106, 173-180. 

Kim KT and Tanguay RL. 2014. The role of chorion on toxicity of silver nanoparticles in the 
embryonic zebrafish assay. Environmental Health and Toxicology 29, doi: 
dx.doi.org/10.5620/eht.e2014021. 

Kim KT, Truong L, Wehmas L and Tanguay RL. 2013a. Silver nanoparticles toxicity in the 
embryonic zebrafish is governed by particle dispersion and ionic environment. 
Nanotechnology 24, 115101-115109. 

Kim KT, Zaikova T, Hutchison JE and Tanguay RL. 2013b. Gold nanoparticles disrupt zebrafish 
eye development and pigmentation. Toxicological Sciences 133, 275-288. 

51

http://www.iso.org/iso/home/standards_development/list_of_iso_technical_committees/iso_technical_committee.htm?commid=52972�


Introduction 
 
King-Heiden TC, Wiecinski PN, Mangham AN, Metz KM, Nesbit D, Pedersen JA, Hamers RJ, 

Heideman W and Peterson RE. 2009. Quantum dot nanotoxicity assessment using the 
zebrafish embryo. Environmental Science and Technology 43, 1605-1611. 

Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughin MJ 
and Lead JR. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, 
and effects. Environmental Toxicology and Chemistry 27, 1825-1851. 

Köhler A, Wahl E and Söffker K. 2002. Functional and morphological changes of lysosomes as 
prognostic biomarkers of toxic liver injury in a marine flatfish (Platichthys flesus (L.)). 
Environmental Toxicology and Chemistry 21, 2434-2444. 

Kos M, Kahru A, Drobne D, Singh S, Kalčíková G, Kühnel D, rohit R, Žgajnar Gotvajn A and Jemec 
A. 2016. A case study to optimise and validate the brine shrimp Artemia franciscana 
immobilization assay with silver nanoparticles: The role of harmonisation. 
Environmental Pollution 213, 173-183. 

Kovrižnych JA, Sotníková R, Zeljenková D, Rollerová E, Szabová E and Wimmerová S. 2013. 
Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in 
adulthood and in early life stages – comparative study. Interdisciplinary Toxicology 6, 
67-73. 

Krishnaraj C, Harper SL and Yun SI. 2016. In vivo toxicological assessment of biologically 
synthesized silver nanoparticles in adult zebrafish (Danio rerio). Journal of Hazardous 
Materials 301, 480-491. 

Kuo CL, Wang CL, Ko HH, Hwang WS, Chang KM, Li WL, Huang HH, Chang YH and Wang MC. 
2010. Synthesis of zinc oxide nanocrystalline powders for cosmetic applications. 
Ceramic International 36, 693-698 

Kvitek L, Panacek A, Prucek R, Soukupova J, Vanickova M, Kolar M and Zboril R. 2011. 
Antibacterial activity and toxicity of silver – nanosilver versus ionic silver. Journal of 
Physics: Conference series 304, doi: 10.1088/1742-6596/304/1/012029. 

Ladhar C, Geffroy B, Cambier S, Treguer-Delapierre M, Durand E, Brèthes D and Bourdineaud 
JP. 2014. Impact of dietary cadmium sulfide nanoparticles on Danio rerio zebrafish at 
very low contamination pressure. Nanotoxicology 8, 676-685. 

Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE and Braunbeck T. 2009a. Is the fish 
embryo toxicity test (FET) with the Zebrafish (Danio rerio) a potential alternative for 
the fish acute toxicity test? Comparative Biochemistry and Physiology 149C, 196-209. 

Lammer E, Kamp HG, Hisgen V, Koch M, Reinhard D, Salinas ER, Wendler K, Zok S and 
Braunbeck T. 2009b. Development of a flow-through system for the fish embryo 
toxicity test (FET) with the zebrafish (Danio rerio). Toxicology In Vitro 23, 1436-1442. 

Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukui PK and Xu XHN. 2012d. In vivo 
quantitative study of sized-dependent transport and toxicity of single silver 
nanoparticles using zebrafish embryos. Chemical Research and Toxicology 25, 1029-
1046. 

Lee KJ, Browning LM, Nallathamby PD, Osgood CJ and Xu XN. 2013a. Silver nanoparticles 
induce developmental stage specific embryonic phenotypes in zebrafish. Nanoscale 5, 
11315-11982. 

Lee KJ, Browning LM, Nallathamby PD and Xu XHN. 2013b. Study of charge-dependent 
transport and toxicity of peptide-functionalized silver nanoparticles using zebrafish 

52



Introduction 

 
embryos and single nanoparticle plasmonic spectroscopy. Chemical Research and 
Toxicology 26, 904-917. 

Lee B, Duong CN, Cho J, Lee J, Kim K, Seo Y, Kim P, Choi K and Yoon J. 2012b. Toxicity of citrate-
capped silver nanoparticles in common carp (Cyprinus carpio). Journal of Biomedicine 
and Biotechnology 2012, doi: 10.1155/2012/262670. 

Lee BC, Kim KT, Cho JG, Lee JW, Ryu TK, Yoon JH, Lee SH, Duong CN, Eom IC et al. 2012a. 
Oxidative stress in juvenile common carp (Cyprinus carpio) exposed to TiO2 
nanoparticles. Molecular and Cellular Toxicology 8, 357-366. 

Lee SW, Kim SM and Choi J. 2009. Genotoxicity and ecotoxicity assays using the freshwater 
crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to 
screen the ecological risks of nanoparticle exposure. Environmental Toxicology and 
Pharmacology 28, 86-91. 

Lee JW, Kim JE, Shin YJ, Ryu JS, Eom IC, Lee JC, Kim Y, Kim PJ, Choi KH and Lee BC. 2014. Serum 
and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term 
exposure to zinc oxide nanoparticles. Ecotoxicology and Environmental Safety 104, 9-
17. 

Lee KJ, Nallathamby PD, Browning LM, Desai T, Cherukui PK and Xu XHN. 2012c. Single 
nanoparticle spectroscopy for real-time in vivo quantitative analysis of transport and 
toxicity of single nanoparticles in single embryos. Analyst 137, 2973- 2986. 

Lee KJ, Nallathamby PD, Browning LM, Osgood CJ and Xu NX. 2007. In vivo imaging of transport 
and biocompatibility of single silver nanoparticles in early development of zebrafish 
embryos. ACS Nano 2, 133-143. 

Léger P, Bengston DA, Sorgeloos P, Simpson KL and Beck AD. 1987. The nutritional value of 
Artemia: A review. In: Sorgeloos P, Bengston DA, Decleir W and Jaspers E (Eds.) 
Artemia Research and its Applications. Ecology, Culturing, Use in Aquaculture, 357-372. 

Lele Z and Krone PH. 1996. The zebrafish as a model system in developmental, toxicological 
and transgenic research. Biotechnology Advances 14, 57-72. 

Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown Jr GE, Tanguay RL 
et al. 2013. Sulfidation of silver nanoparticles: natural antidote to their toxicity. 
Environmental Science and Technology 47, 13440-13448. 

Levine RL, Wehr N, Williams JA, Stadtman ER and Shacter E. 2000. Determination of carbonyl 
groups in oxidized proteins. Methods in Molecular Biology 99, 15-24. 

Lewinski NA, Zhu H, Ouyang CR, Conner GP, Wagner DS, Colvin VL and Drezek RA. 2011. 
Trophic transfer of amphiphilic polymer coated CdSe/ZnS quantum dots to Danio rerio. 
Nanoscale 3, 3080-3083. 

Li N, Xia T and Nel AE. 2008. The role of oxidative stress in ambient particulate matter-induced 
lung diseases and its implications in the toxicity of engineered nanoparticles. Free 
Radical Biology and Medicine 44, 1689-1699. 

Libralato G. 2014. The case of Artemia spp. in nanoecotoxicology. Marine Environmental 
Research 101, 38-43. 

Lilienblum W, Dekant W, Foth H, Gebel T, Hengstler JG, Kahl R, Kramer PJ, Schweinfurth H and 
Wollin KM. 2008. Alternative methods to safety studies in experimental animals: role 
in the risk assessment of chemicals under the new European Chemicals Legislation 
(REACH). Archives of Toxicology 82, 211-236. 

53



Introduction 
 
Lin S, Zhao Y, Ji Z, Ear JM Chang CH, Zhang H, Low-Kam C, Yamada K, Meng H et al. 2012. 

Zebrafish high-throughput screening to study the impact of dissolvable metal oxide 
nanoparticles on the hatching enzyme, ZHE1. Small 9, 1776-1785.   

Lin S, Zhao Y, Xia T, Meng H, Ji Z, Liu R, George S, Xiong S, Wang X et al. 2011. High content 
screening in zebrafish speeds up hazard ranking of transition metals oxide 
nanoparticles. ACS Nano 5, 7284-7295. 

Liu Y, Liu B, Feng F, Gao C, Wu M, He N, Yang X, Li L and Feng X. 2012. A progressive approach 
on zebrafish toward sensitive evaluation of nanoparticles toxicity. Integrative Biology 
4, 285-291. 

López-Serrano A, Muñóz-Olivas R, Sanz-Landaluze J, Olasagasti M, Rainieri S and Cámara C. 
2014. Comparison of bioconcentration of ionic silver and silver nanoparticles in 
zebrafish eleutheroembryos. Environmental Pollution 191, 207-214. 

Louis S, Gagné F, Auclair J, Turcotte P and Gagnon C. 2010. The characterization of the 
behaviour and gill toxicity of CdS/CdTe quantum dots in rainbow trout (Oncorhynchus 
mykiss). International Journal of Biomedical Nanoscience and Nanotechnology 1, 52-
69. 

Ma S and Lin D. 2013. The biophysicochemical interactions at the interfaces between 
nanoparticles and aquatic organisms: adsorption and internalization. Environmental 
Science: Processes & Impacts 15, 145-160. 

Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V and Dusinska M. 2013. Mechanisms of 
genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. 
Nanotoxicology 8, 233-278. 

Majedi SM, Lee HK and Kelly BC. 2012. Chemometric analytical approach for the cloud point 
extraction and inductively coupled plasma mass spectrometric determination of zinc 
oxide nanoparticles in water samples. Analytical Chemistry 84, 6546-6552. 

Manke A, Wang L and Rojanasakul Y. 2013. Mechanisms of nanoparticles-induced oxidative 
stress and toxicity. BioMed Research International, doi: 
dx.doi.org/10.1155/2013/942916. 

Mansouri B and Johari SA. 2016. Effects of short-term exposure to sublethal concentrations of 
silver nanoparticles on histopathology and electron microscope ultrastructure of 
zebrafish (Danio rerio) gills. Iranian Journal of Toxicology 10, 15-20. 

Markus AA, Parsons JR, Roex EWM, Kenter GCM and Laane RWPM. 2013. Predicting the 
contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches 
of the Rhine and Meuse. Science of the Total Environment 456-457, 154-160. 

Marques C, Pereira P, Taylor A, Liang JN, Reddy VN, Szweda LI and Shang F. 2004. Ubiquitin-
dependent lysosomal degradation of the HNE-modified proteins in lens epithelial cells. 
The FASEB Journal 18, 1424-1426. 

Massarsky A, Abraham R, Nguyen KC, Rippstein P, Tayabali AF, Trudeau VL and Moon TW. 
2014a. Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes 
and hepatocytes. Comparative Biochemistry and Physiology, Part C 159, 10-21. 

Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL and Moon TW. 2013. 
Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. 
Chemosphere 92, 59-66. 

Massarsky A, Strek L, Craig PM, Eisa-Beygi S, Trudeau VL and Moon TW. 2014b. Acute 
embryonic exposure to nanosilver or silver ion does not disrupt the stress response in 

54



Introduction 

 
zebrafish (Danio rerio) larvae and adults. Science of the Total Environment 478, 133-
140. 

Maurer-Jones MA, Gunsolus IL, Murphy CJ and Haynes CL. 2013. Toxicity of engineered 
nanoparticles in the environment. Analytical Chemistry 85, 3036-3049. 

McDonagh B and Sheehan D. 2006. Redox proteomics in the blue mussel Mytilus edulis: 
Carbonylation is not a pre-requisite for ubiquitination in acute free radical-mediated 
oxidative stress. Aquatic Toxicology 79, 325-333. 

McDonagh B and Sheehan D. 2007. Effects of oxidative stress on protein thiols in the blue 
mussel Mytilus edulis: proteomic identification of target proteins. Proteomics 7, 3395-
3403. 

McDonagh B and Sheehan D. 2008. Effects of oxidative stress on protein thiols and disulphides 
in Mytilus edulis revealed by proteomics: actin and protein disulphide isomerase are 
redox targets. Marine Environmental Research 66, 193-195.  

McDonagh B, Tyther R and Sheehan D. 2005. Carbonylation and glutathionylation of proteins 
in the blue mussel Mytilus edulis detected by proteomic analysis and Western blotting: 
Actin as target for oxidative stress. Aquatic Toxicology 73, 315-326. 

Merrifield DL, Shaw BJ, Harper GM, Saoud IP, Davies SJ, Handy RD and Henry TB. 2013. 
Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in 
zebrafish (Danio rerio). Environmental Pollution 174, 157-163. 

Misra SK, Dybowska A, Berhanu D, Luoma SN and Valsami-Jones E. 2012. The complexity of 
nanoparticle dissolution and its importance in nanotoxicological studies. Science of the 
Total Environment 438, 225-232.  

Misra SK, Nuseibeh S, Dybowska A, Berhanu D, Tetley TD and Valsami-Jones E. 2013. 
Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion 
stability, dissolution and toxicity of CuO nanomaterials. Nanotoxicology 8, 422-432. 

Myrzakhanova M, Gambardella C, Falugi C, Gatti AM, Tagliafierro G, Ramoino P and Diaspro A. 
2013. Effects of nanosilver exposure on cholinesterase activities, CD41, and CDF/LIF-
Like expression in zebrafish (Danio rerio) larvae. BioMed Research International, 
dx.doi.org/10.1155/2013/205183.  

Mueller NC and Nowack B. 2008. Exposure modeling of engineered nanoparticles in the 
environment. Environmental Science and Technology 42, 4447-4453. 

Muth-Köhne E, Sonnack L, Schlich K, Hischen F, Baumgartner W, Hund-Rinke K, Schäfers C and 
Fenske M. 2013. The toxicity of silver nanoparticles to zebrafish embryos increases 
through sewage treatment processes. Ecotoxicology 22, 1264-1277. 

Nagel R. 2002. DarT: The embryo test with the zebrafish Danio rerio- a general model in 
ecotoxicology and toxicology. Altex 19, 38-48. 

Nelson SM, Mahmoud T, Beaux II M, Shapiro P, McIlroy DN and Stenkamp DL. 2010. Toxic and 
teratogenic silica nanowires in developing vertebrate embryos. Nanomedicine 6, 93-
102. 

Nohl H and Gille L. 2005. Lysosomal ROS formation. Redox Report 10, 199-205.  
Nunes BS, Carvalho FD, Guilhermino LM and Stappen GV. 2006. Use of the genus Artemia in 

ecotoxicity testing. Environmental Pollution 144, 453-462. 
Nuwaysir EF, Bittner M, Trent J, Barrett JC and Afshari CA. 1999. Microarrays and toxicology: 

the advent of toxicogenomics. Molecular Carcinogenesis 24, 153-159. 

55



Introduction 
 
Oberdörster G, Oberdörster E and Oberdörster J. 2005. Nanotoxicology: an emerging discipline 

evolving from studies of ultrafine particles. Environmental Health Perspectives 23, 823-
839. 

OECD TG203. 1992. OECD guidelines for the testing of chemicals. Section 2: Effects on biotic 
systems. Test No. 203: Acute Toxicity for Fish. Organization for Economic Cooperation 
and Development, Paris, France, 9 pp. 

OECD TG236. 2013. OECD guidelines for the testing of chemicals. Section 2: Effects on biotic 
systems Test No. 236: Fish embryo acute toxicity (FET) test. Organization for Economic 
Cooperation and Development, Paris, France, 22 pp. 

Olasagasti M, Gatti AM, Capitani F, Barranco A, Pardo MA, Escudero K and Rainieri S. 2014. 
Toxic effects of colloidal nanosilver in zebrafish embryos. Journal of Applied Toxicology 
34, 562-575. 

Ong KJ, Zhao X, Thistle ME, MacCormack TJ, Clark RJ, Ma G, Martinez-Rubi Y, Simard B, Loo JSC 
et al. 2013. Mechanistic insights into the effect of nanoparticles on zebrafish hatch. 
Nanotoxicology 8, 295-304. 

Osborne OJ, Johnston BD, Moger J, Balousha M, Lead JR, Kudoh T and Tyler CR. 2013. Effects of 
particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) 
embryos. Nanotoxicology 7, 1315-1324. 

Osborne OJ, Lin S, Chang CH, Ji Z, Yu X, Wang X, Lin S, Xia T and Nel AE. 2015. Organ-specific 
and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. 
ACS Nano 9, 9573- 9584. 

Park K, Tuttle G, Sinche F and Harper SL. 2013. Stability of citrated-capped silver nanoparticles 
in exposure media and their effects on the development of embryonic zebrafish (Danio 
rerio). Archives of Pharmacal Research 36, 125-133. 

Park HG and Yeo MK. 2013. Comparison of gene expression changes induced by exposure to 
Ag, Cu-TiO2, and TiO2 nanoparticles in zebrafish embryos. Molecular and Cellular 
Toxicology 9, 129-139.  

Park HG and Yeo MK. 2015. Comparison of gene expression patterns from zebrafish embryos 
between pure silver nanomaterial and mixed silver nanomaterial containing cells of 
Hydra magnipapillata. Molecular and Cellular Toxicology 11, 307-314. 

Pavagadhi S, Sathiskumar M and Balasubramanian R. 2014. Uptake of Ag and TiO2 
nanoparticles by zebrafish embryos in the presence of other contaminants in the 
aquatic environment. Water Research 55, 280-291. 

Powers CM, Slotkin TA, Seidler FJ, Badireddy AR and Padilla S. 2011. Silver nanoparticles alter 
zebrafish development and larval behaviour: Distinct roles for particle size, coating and 
composition. Neurotoxicology and Teratology 33, 708-714. 

Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ 
and Vulpe CD. 2011. Differential gene expression in Daphnia magna suggests distinct 
modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environmental 
Science and Technology 45, 762-768. 

Rahmany R, Mansouri B, Johari SA, Azxadi N, Davari B, Asghari S and Dekani L. 2016. Trophic 
transfer potential of silver nanoparticles from Artemia salina to Danio rerio. AACL 
Bioflux 9, 100-104. 

Rahmna IA, Vejayakumaran P, Sipaut CS, Ismaail J and Chee CK. 2009. Size-dependent 
physicochemical and optical properties of silica nanoparticles. Materials Chemistry and 
Physics 114, 328-332. 

56



Introduction 

 
Rai M, Yadav A and Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. 

Biotechnology Advances 27, 76-83. 
Rajasree SRR, Kumar VG, Abraham LS and Manoharan N. 2011. Assessment on the toxicity of 

engineered nanoparticles on the lifestages of marine aquatic invertebrate Artemia 
salina. International Journal of Nanoscience 10, 1153-1159. 

Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, Soares AMVM and 
Loureiro S. 2014. Silver nanoparticles and silver nitrate induce high toxicity to 
Pseudokircheriella subcapitata, Daphnia magna and Danio rerio. Science of the Total 
Environment 466-467, 233-241. 

Rizzo LY, Golombek SK, Mertens ME, Pan Y, Laaf D, Broda J, Jayapaul J, Möckel D, Subr V et al. 
2013. In vivo nanotoxicity testing using the zebrafish embryo assay. Journal of 
Materials Chemistry Blog Materials Biology and Medicine 1, 3918-3925. 

Rocha TL, Gomes T, Sousa VS, Mestre NC and Bebianno MJ. 2015. Ecotoxicological impact of 
engineered nanomaterials in bivalve mollusks: An overview. Marine Environmental 
Research 111, 74-88. 

Ruiz P, Katsumiti A, Nieto JA, Bori J, Jimeno-Romero A, Reip P, Arostegui I, Orbea A and 
Cajaraville MP. 2015. Short-term effects on antioxidants enzymes and long-term 
genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and 
ionic copper in mussels Mytilus galloprovincialis. Marine Environmental Research 111, 
107-120. 

Russell WMS and Burch RL. 1959. The Principles of Humane Experimental Techniques. 
Methuen, London, UK. http://altweb.jhsph.edu/pubs/books/humane_exp/het-toc 
(retrieved on January 15, 2016). 

Sabella S, Carney RP, Brunetti V, Malvindi MA, Al-Juffali N, Vecchio G, Janes SM, Bakr OM, 
Cingolani R et al. 2014. A general mechanism for intracellular toxicity of metal-
containing nanoparticles. Nanoscale 6, 7052-7061. 

Schirmer K, Behra R, Sigg L and Suter MJ-F. 2013. Chapter 5: Ecotoxicological aspects of 
nanomaterials in the aquatic environment. In: Luther W and Zweck A (Eds.) Safety 
aspects of engineered nanomaterials. Pan Stanford Publishing Pte. Ltd. Singapore, 137-
158. 

Schulte C and Nagel R. 1994. Testing acute toxicity in embryo of zebrafish Brachydanio rerio as 
alternative to the acute fish test – preliminary results. ATLA 22, 12-19. 

Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, 
Fernandes TF et al. 2010. Effects of aqueous exposure to silver nanoparticles of 
different sizes in rainbow trout. Toxicological Sciences 115, 521-534. 

Segner H. 2008. Zebrafish (Danio rerio) as a model organism for investigating endocrine 
disruption. Comparative Biochemistry and Physiology 149C, 187-195. 

Sharif F, Porta F, Meijer AH, Kros A and Richardson MK. 2012. Mesoporous silica nanoparticles 
as a compound delivery system in zebrafish embryos. International Journal of 
Nanomedicine 7, 1875-1890. 

Shaw BJ and Handy RD. 2011. Physiological effects of nanoparticles on fish: A comparison of 
nanometals versus metal ions. Environmental International 37, 1083-1097. 

Sies H. 1997. Oxidative stress: oxidants and antioxidants. Experimental Physiology 82, 291-295. 

57



Introduction 
 
Singh NM, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ and 

Doak SH. 2009. Nanogenotoxicology: the DNA damaging potential of engineered 
nanomaterials. Biomaterials 30, 3891-3914. 

Skjolding LM, Winther-Nielsen M and Baun A. 2014. Trophic transfer of differently 
functionalized zinc oxide nanoparticles from crustaceans (Daphnia magna) to zebrafish 
(Danio rerio). Aquatic Toxicology 157, 101-108. 

Smith CJ, Shaw BJ and Handy RD. 2007. Toxicity of single walled carbon nanotubes to rainbow 
trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other 
physiological effects. Aquatic Toxicology 82, 94-109. 

Sorgeloos P, Dherty P and Candreva P. 2000. Use of the brine shrimp, Artemia spp., in marine 
fish larviculture. Aquaculture 200, 147-159.  

Soto M and Marigómez I. 1997. BSD-extent, an index for metal pollution screening based on 
the metal content within digestive cell lysosomes of mussels as determined by 
autometallography. Ecotoxicology and Environmental Safety 37, 141-151. 

Spitsbergen JM and Kent ML. 2003. The state of the art of the zebrafish model for toxicology 
and toxicologic pathology research – advantages and current limitations. Toxicology 
Pathology 31, 62-87. 

Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, 
Weiss C et al. 2012. Zebrafish embryos as an alternative to animal experiments- A 
commentary on the definition of the onset of protected life stages in animal welfare 
regulations. Reproductive Toxicology 33, 128-132. 

Subashkumar S and Selvanayagam M. 2014. Zinc oxide (ZnO) nanoparticles induced 
histopathological changes in the liver of freshwater fish, Cyprinus carpio. Cibtech 
Journal of Zoology 3, 74-77. 

Sukardi H, Ung CY, Gong Z and Lam SH. 2010. Incorporating zebrafish omics into chemical 
biology and toxicology. Zebrafish 7, 41-52. 

Sun TY, Gottschalk F, Hungerbühler K and Nowack B. 2014. Comprehensive probabilistic 
modeling of environmental emissions of engineered nanomaterials. Environmental 
Pollution 185, 69-76. 

Sung JH, Ji JH, Park JD, Song MY, Song KS, Ryu HR, Yoon JU, Jeon Ks, Jeong J et al. 2011. 
Subchronic inhalation toxicity of gold nanoparticles. Particle and Fibre Toxicology 8, 
doi: 10.1186/1743-8977-8-16. 

Tedesco S, Doyle H, Redmond G and Sheehan D. 2008. Gold nanoparticles and oxidative stress 
in Mytilus edulis. Marine Environmental Research 66, 131-133. 

Terman A, Kurz T, Gustafsson B and Brunk UT. 2006. Lysosomal labilization. Life 58, 531-539. 
The Project on Emerging Nanotechnologies. http://www.nanotechproject.org/ (retrieved 

January 10, 2016). 
Tiede K, Hassellöv M, Breitbarth E, Chaudhry Q and Boxall AB. 2009. Considerations for 

environmental fate and ecotoxicity testing to support environmental risk assessments 
for engineered nanoparticles. Journal of Chromatography A 1216, 503-509. 

Trevisan R, Delapedra G, Mello DF, Arl M, Schmidt EC, Meder F, Monopoli M, Cargnin-Ferreira 
E, Bouzon ZL et al. 2014. Gills are an initial target of zinc oxide nanoparticles in oysters 
Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquatic 
Toxicology 153, 27-38. 

58



Introduction 

 
Ung CY, Lam SH, Hlaing MM, Winata CL, Korzh S, Mathavan S and Gong Z. 2010. Mercury-

induced hepatoxicity in zebrafish: in vivo mechanistic insights from transcriptome 
analysis, phenotype anchoring and targeted gene expression validation. BioMed 
Central Genomics 11, 212-228. 

Van Aerle R, Lange A, Moorhouse A, Paszkiewcz K, Ball K, Johnston BD, de-Bastos E, Booth T, 
Tyler CR and Santos EM. 2013. Molecular mechanisms of toxicity of silver nanoparticles 
in zebrafish embryos. Environmental Science and Technology 47, 8005-8014. 

Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella Jr MF, Rejeski D and Hull MS. 2015. 
Nanotechnology in the real world: Redeveloping the nanomaterial consumer products 
inventory. Beilstein Journal of Nanotechnology 6, 1769-1780. 

Vicario-Parés U. 2016. Cellular and molecular responses of zebrafish to legacy and emerging 
pollutants: the specific cases of PAHs and metal oxide nanoparticles. PhD Thesis, 
University of the Basque Country, 269 pp. 

Vicario-Parés U, Castañaga L, Lacave JM, Oron M, Reip P, Berhanu D, Valsami-Jones E, 
Cajaraville MP and Orbea A. 2014. Comparative toxicity of metal oxide nanoparticles 
(CuO, ZnO and TiO2) to developing zebrafish embryos. Journal of Nanoparticle 
Research 16, 1-16. 

von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, Koelmans AA, 
Horne N and Unrine JM. 2012. Analysis of engineered nanomaterials in complex 
matrices (environment and biota): General considerations and conceptual case studies. 
Environmental Toxicology and Chemistry 31, 32-49. 

Wang ZL. 2004. Zinc oxide nanostructures: growth, properties and applications. Journal of 
Physics: Condensed Matter 16, 829-858. 

Wang RL, Bencic D, Biales A, Lattier D, Kostich M, Villeneuve D, Ankley GT, Lazorchak J and 
Toth G. 2008. DNA microarray-based ecotoxicological biomarker discovery in a small 
fish model species. Environmental Toxicology and Chemistry 27, 664-675. 

Wang Z, Chen J, Li X, Shao J and Peijnenburg WJGM. 2012. Aquatic toxicity of nanosilver 
colloids to different trophic organisms: contributions of particles and free silver ion. 
Environmental Toxicology and Chemistry 3, 2408-2413. 

Wang Y, Seebald JL, Szeto DP and Irudayaraj J. 2010. Biocompatibility and biodistribution of 
surface-enhanced Raman scattering nanoprobes in zebrafish embryos: in vivo and 
multiplex imaging. ACS Nano 4, 4039-4053. 

Wang J and Wang WJ. 2014. Low bioavailability of silver nanoparticles presents trophic toxicity 
to marine medaka (Oryzias melastigma). Environmental Science and Technology 48, 
8152-8161. 

Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA and Tanguay RL. 2015. 
Comparative metal oxide nanoparticles toxicity using embryonic zebrafish. Toxicology 
Reports 2, 702-715. 

Wei L, Lu J, Xu H, Patel A, Chen ZS and Chen G. 2015. Silver nanoparticles: Synthesis, 
properties, and therapeutic applications. Drug Discovery Today 5, 595-601. 

Wiecinski PG, Metz KM, King-Heiden TC, Louis KM, Mangham AN, Hamers RJ, Heideman W, 
Peterson RE and Pedersen JA. 2013. Toxicity of oxidatively degraded quantum dots to 
developing zebrafish (Danio rerio). Environmental Science and Technology 47, 9132-
9139. 

59



Introduction 
 
Wigger H, Hackmann S, Zimmermann T, Köser J, Thöming J and von Gleich A. 2015. Influences 

of use activities and waste management on environmental releases of engineered 
nanomaterials. Science of the Total Environment 535, 160-171.  

Williams TD, Mirbahai L and Chipman JK. 2014. The toxicological application of transcriptomics 
and epigenomics in zebrafish and other teleosts. Briefing in Functional Genomics 13, 
157-171.  

Wu Y and Zhou Q. 2013. Silver nanoparticles cause oxidative damage and histological changes 
in medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and 
Chemistry 32, 165-173. 

Xia T, Zhao Y, Sager T, George S, Pokhrel S, Schoenfeld D, Meng H, Lin S, Wang X et al. 2011. 
Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity 
in the rodent lung and zebrafish embryos. ACS Nano 5, 1223-1235. 

Xiong D, Fang T, Yu L, Sima X and Zhu W. 2011. Effects of nano-scale TiO2, ZnO and their bulk 
counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. 
Science of the Total Environment 409, 1444-1452. 

Xin Q, Rotchell JM, Cheng J, Yi J and Zhang Q. 2015. Silver nanoparticles affect the neural 
development of zebrafish embryos. Journal of Applied Toxicology 35, 1481-1492. 

Xu M, Bahl CRH, Frandsen C and Morup S. 2004. Interparticle interactions in agglomerates of 
α-Fe2O3 nanoparticles: influence of grinding. Journal of Colloid Interface Science 279, 
132-136. 

Yeo MK and Kang M. 2008. Effects of nanometer sized silver materials on biological toxicity 
during zebrafish embryogenesis. Bulletin of the Korean Chemical Society 29, 1179-
1184. 

Yeo MK and Pak SW. 2008. Exposing zebrafish to silver nanoparticles during caudal fin 
regeneration disrupts caudal fin growth and p53 signaling. Molecular and Cellular 
Toxicology 4, 311-317. 

Yoo MH, Rah YC, Choi J, Park S, Park HC, Oh KH, Lee SH and Kwon SY. 2016. Embryotoxicity and 
hair cell toxicity of silver nanoparticles in zebrafish embryos. International Journal of 
Pediatric Otorhinolaryngology 83, 168-174. 

Yu LP, Fang T, Xiong DW, Zhu WT and Sima XF. 2011. Comparative toxicity of nano-ZnO and 
bulk ZnO suspensions to zebrafish and the effects of sedimentation, ∙OH production 
and particle dissolution in distilled water. Journal of Environmental Monitoring 13, 
1975-1982. 

Yu T, Hubbard D, Ray A and Ghandehari H. 2012. In vivo biodistribution and pharmacokinetics 
of silica nanoparticles as a function of geometry, porosity and surface characteristics. 
Journal of Controlled Release 163, 46-54.  

Zarco-Fernández S, Coto-García AM, Muñoz-Olivas R, Sanz-Landaluze J, Rainieri S and Cámara 
C. 2016. Bioconcentration of ionic cadmium and cadmium selenide quantum dots in 
zebrafish larvae. Chemosphere 148, 328-335. 

Zawadzka K, Kądzioła K, Felczak A, Wrońska N, Piwoński I, Kisielewska A and Lisowska K. 2014. 
Surface area or diameter – which factor really determines the antibacterial activity of 
silver nanoparticles grown on TiO2 coatings? New Journal of Chemistry 38, 3275-3281. 

Zhang W, Lin K, Miao Y, Dong Q, Huang C, Wang H, Guo M and Cui X. 2012a. Toxicity 
assessment of zebrafish following exposure to CdTe QDs. Journal of Hazardous 
Materials 213-214, 413-420. 

60



Introduction 

 
Zhang W, Lin K, Sun X, Dong Q, Huang C, Wang H, Guo M and Cui X. 2012b. Toxicological effect 

of MPA-CdSe QDs exposure on zebrafish embryo and larvae. Chemosphere 89, 52-59. 
Zhang W, Miao Y, Lin K, Chen L, Dong Q and Huang C. 2013. Toxic effects of copper ion in 

zebrafish in the joint presence of CdTe QDs. Environmental Pollution 176, 158-164. 
Zhang W, Sun X, Chen L, Lin KF, Dong QX, Huang CJ, Fu RB and Zhu J. 2012c. Toxicological effect 

of joint cadmium selenium quantum dots and copper ion exposure on zebrafish. 
Environmental Toxicology and Chemistry 31, 2117-2123.  

Zhao X, Wang S, Wu Y, You H and Lv L. 2013. Acute ZnO nanoparticles exposure induces 
developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. 
Aquatic Toxicology 136-137, 49-59.  

Zhou J, Ralston J, Sedev R and Beattie DA. 2009. Functionalized gold nanoparticles: synthesis, 
structure and colloid stability. Colloid and Interface Science 331, 251-262. 

Zhu X, Zhu L, Duan Z, Qi R, Li Y and Lang Y. 2008. Comparative toxicity of metal oxide 
nanoparticles aqueous suspensions to zebrafish (Danio rerio) early developmental 
stage. Environmental Science and Health 43, 278-284. 

Zhu X, Wang J, Zhang X, Chang Y and Chen Y. 2009. The impact of ZnO nanoparticles 
aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 
20, 195103-195111. 

Zhu X, Wanga J, Zhanga X, Chang Y and Chen Y. 2010. Trophic transfer of TiO2 nanoparticles 
from Daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79, 928-
933. 

 

61



 

62



 

 

 

 

II. STATE OF THE ART, OBJECTIVES & 
HYPOTHESIS 

  



 

64



State of the art, hypothesis and objectives 

 

STATE OF THE ART 

The development of nanotechnology and the massive production of nanomaterials are 

increasing rapidly, being nanomaterials currently applied in different consumer and 

industrial products of everyday use. The nanomaterials containing wastes produced 

from these processes and products have the aquatic environment as their ultimate 

fate, being necessary to improve the information about their behavior and hazard once 

they have been released into the environment. Nowadays, it is not feasible to know 

the real concentration of nanomaterials in the different environmental compartments 

because of the limitations of the analytical techniques, being the use of predictive 

models the most used approach. However, these predictive models do not always take 

into account the environmental fate, persistence and bioavailability of nanomaterials. 

Due to their “nano” size, nanomaterials present specific physico-chemical properties in 

comparison with their bulk form or soluble (ionic) counterparts, especially regarding 

the aggregation or dissolution behavior. Moreover, these properties can be modified 

by abiotic characteristics of the exposure media, such as pH, ionic strength or organic 

matter content. Once in the environment, nanomaterials can enter into the aquatic 

organisms by different routes, as by the gills and skin in the case of suspended 

particles or by the intestine in the case of particles ingested with the diet. Thus, studies 

of the potential toxic effect and risk assessment of metal and metal bearing 

nanoparticles for aquatic organisms are required. In addition, to determine whether 

these effects vary depending on the form of the metal (nano, bulk or ionic) is of great 

concern for regulatory purposes. 

Zebrafish, the selected organism for this study, is an animal model increasingly used to 

study the nanotoxicity of different metal and metal bearing nanoparticles, due to the 

advantages that both embryos and adults present. The toxicity test with zebrafish 

embryos (up to 120 hours post fertilization) has been standardized by the OECD, and 

has been already applied to evaluate the toxicity of a high amount of chemicals in 

short periods of time, being considered as an alternative method to animal testing and 

a high throughput methodology for toxicity screening. This approach has allowed 

testing different combinations of nanomaterials, with diverse shapes, sizes, coatings, 

etc. Moreover, this test can be a useful tool to compare the effects provoked by the 
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nanomaterials and those provoked by their corresponding ionic and bulk forms in a 

broad range of concentrations, allowing to determine the specific effects produced by 

the nano-sized materials.  

In zebrafish, exposure to metal and metal bearing nanoparticles may result in metal 

uptake and bioaccumulation into the different organs of the organism. Once inside, 

nanoparticles can cause toxicity through cellular mechanism involving oxidative stress, 

genotoxicity or damage to the lysosomal compartment. Therefore, a battery of 

biomarkers covering these cellular processes can help to understand the effects 

provoked by the nano-size in comparison to those provoked by the ionic form of the 

metals. Toxicogenomics is an useful tool to assess the mechanisms of action of diverse 

contaminants, enabling to screen a large set of genes or even entire transcriptome for 

genes differentially transcribed. Diverse studies have shown that exposure to different 

nanomaterials affects the transcription of genes involved in oxidative stress, DNA 

damage and genotoxicity. Therefore, the assessment of the differential response of 

the whole zebrafish genome to the nanoparticle exposure in comparison to the ionic 

counterpart can be useful to understand the toxicity of the nanomaterials.    

A wider knowledge on the effect caused by metal and metal bearing nanoparticles to 

the aquatic organisms in comparison to the effect provoked by other metal forms is 

necessary for a proper risk assessment of these materials and to understand and 

prevent the consequences for the aquatic environment of their release.  
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HYPOTHESIS 

The exposure to metal and metal bearing nanoparticles can provoke toxic 

effects on developing zebrafish embryos. These effects can vary 

depending on the intrinsic physicochemical characteristics of the 

nanoparticles and may differ from those provoked by other forms of the 

metal. In adult zebrafish, the waterborne and dietary exposure to metal 

and metal bearing nanoparticles can lead to bioaccumulation and effects 

related to oxidative stress, genotoxicity or damage at different levels of 

biological organization which can be assessed using a battery of 

biomarkers ranging from the molecular to the tissue level. 

OBJECTIVES 

In order to prove this hypothesis true and in order to improve our understanding of 

the environmental effects of nanoparticles in aquatic environment, the following 

general objectives were addressed: 

1- To study the acute and sublethal toxicity, in comparison to that of the ionic and 

bulk form of the metal, of a set of metal and metal bearing NPs (Ag, Au, CdS, 

ZnO and SiO2) combining several properties, such as different sizes, shapes and 

coatings in zebrafish embryos using the fish embryo toxicity (FET) test. 

 

2- To study the sublethal effects to adult zebrafish produced by the aqueous 

exposure to maltose-coated Ag NPs of 20 nm for 21 days in comparison with 

those provoked by the same nominal concentration of ionic silver, as well as to 

evaluate the potential long-term effects or the recovery after the cease of the 

exposure.  

 

3- To decipher the metabolic pathways altered by the exposure to Ag NPs of 20 

nm in comparison to those altered by ionic silver through the analysis of the 

whole liver transcriptome of adult zebrafish after 3 and 21 days of exposure). 
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4- To study the acute and sublethal effects to adult zebrafish produced by the 

aqueous exposure to CdS NPs of 3.5-4 nm for 21 days in comparison with those 

provoked by the same nominal concentration of ionic silver, as well as to 

evaluate the potential long-term effects or the recovery after the cease of the 

exposure. 

 

5- To decipher the metabolic pathways altered by 3 and 21 days of exposure to 

CdS NPs compared with results obtained after the exposure to the same 

nominal concentration of ionic cadmium, through the analysis of the whole 

liver transcriptome of adult zebrafish. 

 

6- To test the acute toxicity of PVP/PEI-coated Ag NPs of 5 nm to larvae of the 

crustacean Artemia sp and to zebrafish embryos as a previous step to assess 

bioaccumulation and effects of dietary exposure for 21 days of adult zebrafish 

to Ag NPs using a simplified food web of two trophic levels.  
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ABBREVIATIONS 

FET, Fish embryo toxicity 

FSNP, Fluorescent silica nanoparticles 

hpf, Hours post fertilization 

LC50, Lethal concentration to 50% of the population 

NMs, Nanomaterials 

NPs, Nanoparticles 

PVP, Polyvinylpyrrolidone 

QDs, Quantum dots 

ZHE1, Zebrafish hatching enzyme 
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ABSTRACT 

Due to the increasing commercialization of consumer and industrial products 

containing nanoparticles (NPs), an increase in the input of these materials in the 

environment is expected. NP toxicity to aquatic organisms depends on multiple biotic 

and abiotic factors resulting in an unlimited number of combinations impossible to test 

in the practice. The zebrafish embryo model offers an useful screening tool to test and 

rank the toxicity of nanomaterials depending on those diverse factors. This work aims 

to study the acute and sublethal toxicity of a set of metal bearing NPs displaying 

different properties, in comparison to that of the ionic and bulk forms of the metals, in 

order to establish a toxicity ranking. Soluble NPs (Ag, CdS and ZnO) showed the highest 

acute and sublethal toxicity, with LC50 values as low as 0.529 mg Ag/L for Ag NPs of 20 

nm, and a significant increase in malformation prevalence in embryos exposed to 0.1 

mg Cd/L of CdS NPs of ~4 nm. For insoluble NPs, like SiO2 NPs, acute effects were not 

observed during early embryo development due to the protective effect of the 

chorion. But effects on larvae could be expected since deposition of fluorescent SiO2 

NPs over the gill lamella and excretion through the intestine were observed after 

hatching. In other cases, such as for gold NPs, toxicity could be attributed to the 

presence of additives (sodium citrate) in the NP suspension, as they displayed a similar 

toxicity when tested separately. Overall, results indicated that toxicity to zebrafish 

embryos depends primarily on the chemical composition and, thus, solubility of the 

NPs. Other characteristics, such as size, played a secondary role. This was supported by 

the observation that ionic forms of the metals were always more toxic than the nano 

forms and bulk forms were the least toxic to developing zebrafish embryos. 

Key words: metal bearing nanoparticles, embryo toxicity, zebrafish 
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LABURPENA 

Nanopartikulak (NPak) dauzkaten produktu industrial eta kontsumo-produktuen 

komertzializazioa geroz eta handiagoa denez, material hauen sarreraren emendioa 

espero da ingurunean. NPek organismo urtarretan duten toxikotasuna faktore biotiko 

eta abiotiko askoren menpekoa da, konbinazio anitzak sortarazten dituztenak eta 

praktikan aztertzea ezinezkoa gertatzen direnak. Zebra arrainaren enbrioiaren ereduak 

faktore desberdinen araberako nanomaterialen toxikotasuna testatzeko eta 

sailkatzeko tresna erabilgarria eskaintzen du. Lan honen helburua ezaugarri 

desberdinak azaltzen dituzten NP metaldun multzo baten toxikotasun azkar eta 

subletala ikertzea da, metalen aldaera ioniko eta masiboarekin konparatuz, 

toxikotasun araberako sailkapena ezartzeko. NP disolbagarriek (Ag, CdS eta ZnO) 

toxikotasun azkar eta subletal handiena erakutsi zuten. 20 nm-ko Ag NPek 0.529 mg 

Ag/L-ko LC50 balio baxua erakutsi zuten eta ~4 nm-ko CdS NP-en 0.1 mg Cd/L pean 

egondako enbrioietan malformazioen prebalentziaren igoera behatu zen. SiO2 

bezalako NP disolbagaitzen kasuan ez ziren efektu azkarrik ikusi enbrioien garapen 

goiztiarrean, korionaren efektu babeslea dela eta. Hala ere, epe luzeko ondorioak 

espero zitezkeen larbetan, eklosioaren ondoren SiO2 NP fluoreszenteak zakatzen 

lamelen gainean eta heste bidezko eskrezioa ikusi baitziren. Beste kasu batzuetan, urre 

NPetan esaterako, toxikotasuna NPen suspentsioko gehigarrien (sodio zitratoa) 

presentziari egotzi dakioke, aparte testatutakoan antzeko toxikotasuna erakutsi 

zuenez. Orokorrean, emaitzek adierazten dute zebra arrainetan toxikotasuna 

konposaketa kimikoaren menpekoa dela nagusiki, beraz, NPen disolbagarritasunaren 

menpekoa. Beste ezaugarri batzuek, tamainak esaterako, bigarren mailako papera 

jokatzen dute. Hori, ondorengo behaketek sostengatu zuten: metalen aldaera ionikoak 

nano aldaerak baino toxikoagoak ziren eta aldaera masiboa zebra arrainaren garapen 

enbrionarioan zehar toxikotasun baxuenekoa izan zen.  

Gako-hitzak: metaldun nanopartikulak, enbrioiaren toxikotasuna, zebra arraina 
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RESUMEN 

Debido al incremento en la comercialización de productos industriales y de consumo 

que contienen nanopartículas (NPs), se espera un incremento en la entrada de estos 

materiales en el medio ambiente. La toxicidad de las NPs en los organismos acuáticos 

depende de múltiples factores bióticos y abióticos que resultan en un número 

ilimitado de combinaciones que son imposibles de testear en la práctica. El modelo de 

embriones de pez cebra ofrece una valiosa herramienta de cribado para testear y 

establecer una clasificación de la toxicidad de los nanomateriales dependiendo de 

diversos factores. El objetivo de este trabajo fue estudiar la toxicidad aguda y subletal 

de un grupo de NPs metálicas y que presentaban diversas propiedades, en 

comparación con las formas iónicas y masivas de los mismos metales, para clasificarlas 

según su toxicidad. Las NPs solubles (Ag, CdS, ZnO) presentaron la mayor toxicidad 

aguda y subletal, con valores de LC50 tan bajos como 0.529 mg Ag/L para las NPs de Ag 

de 20 nm y un incremento significativo de la prevalencia de malformaciones en 

embriones expuestos a 0.1 mg Cd/L de NPs de CdS de ~4 nm. En el caso de las NPs 

insolubles, como el SiO2, no se observaron efectos agudos durante el desarrollo 

temprano del embrión debido al efecto protector del corion, aunque se podrían 

esperar efectos a largo plazo ya que tras la eclosión se observaron NPs fluorescentes 

de SiO2 depositadas sobre las laminillas de la branquia y su excreción a través del 

intestino. En otros casos, como en el de las NPs de oro, la toxicidad se puede atribuir a 

la presencia de aditivos (citrato de sodio) en la suspensión de las NPs, el cual provocó 

una toxicidad similar cuando se testeó por separado. En general, estos resultados 

indican que la toxicidad depende principalmente de la composición química y, por 

tanto, de la solubilidad de las NPs. Otras características, como el tamaño, juegan un 

papel secundario. Esta conclusión se basa también en la observación de que la forma 

iónica de los metales fue siempre más tóxica que la forma nano y la forma masiva fue 

la menos tóxica para el desarrollo embrionario del pez cebra. 

Palabras clave: nanopartículas metálicas, toxicidad embrionaria, pez cebra 
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INTRODUCTION 

Nanoparticles (NPs) have been present in the environment from millions of years; they 

originate naturally from combustion processes such as forest fires and volcanoes 

(Oberdöster et al., 2005). However, the interest on the study of NP toxicity is growing 

due to the increasing use of manufactured nanomaterials (NMs) in consumer and 

industrial products (Baker et al., 2014). The number of their potential applications is 

growing rapidly due to the unique electronic, optical, magnetic and catalytic properties 

of NMs compared with the corresponding bulk materials (Bohnsack et al., 2012). As 

consequence, an increasing input into the environment is expected. Soil and water 

compartments represent the ultimate fate of these materials, whether they have been 

released directly into them or indirectly, for instance, via sewage treatment plants, 

waste handling or aerial deposition (Nowack et al., 2007). The small size and, thus, the 

large specific surface area of NPs confer them specific properties. Increased surface 

reactivity predicts that NPs exhibit greater biological activity per given mass than larger 

particles, which could lead to undesired effects, such as increased toxicity (Oberdöster 

et al., 2005).  

Among all the classes of manufactured NMs, metal bearing NPs, including metal oxide 

NPs, have received special attention due to their use in a variety of applications (Klaine 

et al., 2008). Metal and metal oxide NPs are easily synthesized from many metals as 

silver, gold, cadmium, zinc or silicon. Some of these metals are toxic to aquatic 

organisms in their soluble and/or bulk form. In addition, a specific toxic effect derived 

from the nanoparticulated size of these metals is expected due to their properties 

mentioned above (Griffitt et al., 2009).  

The nano-specific toxicity of NPs to aquatic organisms depends on multiple factors, 

some intrinsic to the NP including chemical composition, size, shape, surface 

functionalization and presence of coatings or additives that influence physicochemical 

properties driving NP behavior (Baker et al., 2014; Katsumiti et al., 2014a; Katsumiti et 

al., 2015a). Other factors include the physicochemical characteristics of the receiving 

media and the target organisms (Batley et al., 2013). This means an unlimited number 

of combinations impossible to test in the practice. Recently, it has been highlighted the 
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need of high throughput experimental methods able to generate large volumes of data 

that in a near future could feed in silico methods to estimate NP toxicity based on their 

properties (Winkler et al., 2013). 

Zebrafish (Danio rerio) embryos are good candidates for a high-throughput in vivo 

testing system (George et al., 2011; Lin et al., 2011; 2012). Among other 

characteristics, zebrafish have a rapid embryonic development (4-5 days) with a 

beating heart and visible erythrocytes by 24 h (Bahary and Zon, 1998). Zebrafish eggs 

and embryos are small and transparent, allowing reasonable sample sizes to be tested 

together using a simple cell culture plate to provide several experimental replicates at 

one time (Hill et al., 2005). Recently, zebrafish embryos have been successfully used as 

in vivo sensors for the detection of metal ions by dye-assembled upconversion NPs 

(Peng et al., 2015), which can suppose a step forward in the study of metal NPs 

toxicity. Thus, in this work we have used the zebrafish embryo model (OECD TG236, 

2013) to study the acute and sublethal toxicity of a set of metal-bearing NPs (Ag, Au, 

CdS, ZnO and SiO2) displaying different properties, such as different sizes, shapes and 

coatings in comparison to that of the ionic and bulk form of the metals. In addition, 

fluorescent SiO2 NPs were used to study the interaction of these NPs with developing 

zebrafish embryos. Results were used to establish a toxicity ranking depending on 

those properties and to compare with the toxicity of the ionic and bulk forms of the 

metals. Comparisons between ionic and nanoparticulated metals have been addressed 

in several works, but comparisons with the bulk counterparts are scarce. Filling this 

knowledge gap is of upmost importance in order to identify possible nano-specific 

effects that could be relevant for regulatory purposes (Duester et al., 2014), since 

usually nano and bulk forms, but not ionic forms, share the same molecular formula. 

MATERIALS AND METHODS 

Nanoparticles and other metal compounds 

Maltose-coated Ag NPs, citrate-coated Au NPs, glutathione-capped CdS quantum dots 

and L-arginine stabilized SiO2 NPs were synthesized by wet chemistry at Joint Research 

Centre (Ispra). Ecodis-P90 stabilized ZnO NPs were produced by milling at Dead Sea 

Laboratories (Israel). A summary of the main characteristics of the NP suspensions 
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used in this study is shown in Table 1. Further details on synthesis and characterization 

have been already published by Katsumiti et al. (2014b; 2015a; 2015b). 

Silver nitrate solution (1 g Ag/L in 0.5 M HNO3 matrix) was obtained from Spectrosol, 

BDH chemical Ltd Poole (England). Remaining bulk materials and metal salts were 

purchased from Sigma-Aldrich (St. Louis, Missouri, USA). 

Fish maintenance and breeding 

Zebrafish (wild type AB Tübingen) were maintained in a temperature-controlled room 

at 28 ºC with a 14-hour light/10-hour dark cycle in 100 L tanks provided with mechanic 

and biological filters following standard protocols as described in Vicario-Parés et al. 

(2014). Fish were fed Vipagran baby (Sera) and Artemia nauplii twice per day.  

Breeding fish were selected and separated in a tank. Females and males were 

maintained separately, in order to avoid continuous spawning. The day prior to the 

beginning of the exposures, one female and one male zebrafish were placed separately 

in each breeding tramp which had previously been located in a 2 L tank. Fish were left 

overnight and, just before the light switched on in the morning, the separation was 

removed. The resulting eggs were collected in a Petri dish and fertilized viable eggs 

were selected under a stereoscopic microscope (Nikon smz800, Kanagawa, Japan). 

During the procedure of embryo selection, water salinity was reduced gradually. 

Finally, fertilized eggs were transferred to the exposure microplates. 

Fish Embryo Toxicity (FET) test 

Working suspensions at the selected concentrations were prepared the day of the 

beginning of the test by diluting stock solutions with deionized water and stirring. In all 

the cases, pH ranged from 6.5 to 7.5.  
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The test was carried out in covered 24-well polystyrene microplates placing one 

embryo per well in 2 mL of test solution. In each microplate two different 

concentrations were tested (10 embryos in each concentration). In the remaining 

wells, four control embryos were placed in deionized water. For each compound three 

replicates were prepared, resulting in 30 embryos exposed to each concentration and 

36 control embryos. For each compound, five concentrations (Table 2) were selected 

according to the expected toxicity based on literature data. Exposure started just after 

embryo selection and lasted up to 120 hours post fertilization (hpf). The test was 

considered valid only when survival rate in the control group was ≥ 90% (OECD 236, 

2013). 

Daily and up to the end of the test, embryos were examined to determine survival rate 

(as the percentage of alive embryos at 120 hpf), hatching rate (as the percentage of 

embryos that have hatched during the 120 h exposure period though some of them 

could have died by 120 hpf), hatching time (as the time that embryos need to hatch) 

and malformation prevalence (as the percentage of malformed embryos over surviving 

embryos at 120 h). Normal embryo morphology was based on Kimmel et al. (1995). 

Malformations were recorded and photographed under a stereoscopic microscope 

(Nikon AZ100, Kanagawa, Japan).  

Exposure to fluorescent SiO2 NPs (FSNP)  

In the case of the exposure to FSNPs, three concentrations (0.1, 10 and 100 mg Si/L) 

were selected based on the results of the FET experiments. 50 newly fertilized eggs per 

concentration were placed in a Petri dish with 50 mL of NP solution. 50 control 

embryos were maintained in deionized water. Exposed and control larvae were 

examined under a confocal microscope (Olympus Fluoview FV500, Tokyo, Japan) at 6, 

30, 54, 78, 102 and 126 hpf. 

Statistical analyses 

Statistical analyses were done using the SPSS statistical package v20.0 (SPSS Inc, 

Microsoft Co, WA, USA). According to the Kolmogorov-Smirnov test (p<0.05) data did 

not follow a Normal distribution. Thus, data on survival and hatching rates and 
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malformation prevalence were analyzed by Fisher´s exact test (p<0.05). For hatching 

time, the non-parametric Kruskal-Wallis test was applied followed by the Dunn’s post 

hoc test (p<0.05). LC50 values were calculated through a Probit model (p<0.05). 

Estimation of parameters was performed using the Firth method (Firth, 1993) in R 

3.1.0, whenever convergence was not obtained using the maximum likelihood method 

(Kosmidis, 2013). 

RESULTS 

Silver 

The smallest Ag NPs (Ag20-Mal) resulted the most toxic of the three sizes (LC50= 0.529 

mg Ag/L), causing 93.64% mortality at 1 mg Ag/L. Ag100-Mal NPs provoked 100% 

mortality at 5 mg Ag/L (LC50= 1.973 mg Ag/L), whereas Ag40-Mal were the least toxic 

NPs (LC50= 3.94 mg Ag/L) causing 66.67% mortality at this concentration (Fig 1A). Ionic 

silver was the most toxic silver form for developing zebrafish embryos. 100% mortality 

of exposed embryos was observed at 0.1 mg Ag/L (LC50= 0.047 mg Ag/L). In all cases 

embryos died before hatching, which may indicate that the metal passed through the 

chorion pores. Bulk Ag and maltose did not cause significant mortality on the test 

organisms at any of the tested concentrations (Fig 1A).  

The results obtained for hatching rate at 120 h followed a similar pattern compared to 

that obtained for the survival rate (data not shown), indicating that all surviving 

embryos had hatched at 120 hpf. No significant effects were observed for hatching 

time, except in the case of the exposure to Ag20-Mal NPs, which at 1 mg Ag/L 

anticipated hatching (Fig 1B). Nevertheless, this observation should be considered 

carefully, since only two embryos survived to this treatment. 

Exposure to Ag40-Mal NPs and Ag100-Mal NPs at 1 and 5 mg Ag/L, respectively, 

caused a significant increase in malformation prevalence (Fig 1C). Some malformations 

were also observed in embryos exposed to Ag20-Mal NPs, although in this case the 

prevalence increase was not statistically significant due to the low number of surviving 

embryos. Yolk sac edema was the most frequently recorded malformation. Eye 

abnormality, pericardial edema, tail and/or spinal cord flexure, and finfold abnormality 
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were other malformations observed (Table 3). Malformations were not observed in 

surviving embryos exposed to bulk or ionic silver or to maltose. 

 
Figure 1.- Effects of the exposure of zebrafish embryos to Ag NPs and related compounds for 120 h. A: 
survival rate; B: hatching time; C: malformation prevalence. The empty symbols indicate significant 
differences (p < 0.05) with respect to the control group. 

Gold 

Under exposure to Au NPs of three sizes, significant effects on survival rate were 

registered only at the highest concentrations (50 and 100 mg Au/L, Fig 2A). At these 

concentrations, individuals died after hatching. The LC50 values obtained for the three 

NP suspensions (24.655 mg Au/L for Au5-Cit NPs; 24.61 mg Au/L for Au15-Cit NPs; 

34.717 mg Au/L for Au40-Cit NPs) indicated a slight size-dependent effect, as the 

largest NPs were the least toxic. Similar effects were recorded when embryos were 

exposed only to the equivalent concentration of sodium citrate present in the NP 

suspension. As described for silver, ionic gold was the most toxic form of the metal for 

the test organisms (LC50= 4.619 mg Au/L). At concentrations ≥ 10 mg Au/L, 100% of the 

individuals died by the first day of the exposure. Bulk Au did not cause mortality in the 

organisms (LC50 >> 100 mg Au/L).  
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The results obtained for hatching rate showed that embryos exposed to high 

concentrations of Au NPs and sodium citrate hatched, although they did not survive at 

the end of the exposure time. Thus, hatching rate was higher than survival rate (Fig 

2B). Exposure to high concentrations (≥ 10 mg Au/L) of Au5-Cit and Au15-Cit NPs 

produced significant effects in the time that embryos needed to hatch, since embryos 

hatched earlier than in the control group. Exposure to the highest concentration (100 

mg Au/L) of Au40-Cit NPs caused the same effect. In the case of sodium citrate 

exposed embryos, significant differences were only observed at low concentrations 

(equivalent to that present in the NP suspensions containing 0.1 and 1 mg Au/L), since 

embryos hatched earlier than in the control group (Fig 2C). Exposure to ionic gold at 

concentrations of 0.1 and 1 mg Au/L produced hatching delay in the embryos. Under 

exposure to bulk Au, significant differences were not observed in the time needed to 

hatch at any of the tested concentrations.  

Malformations were not observed in surviving embryos exposed to different Au 

compounds or to sodium citrate. 

 
Figure 2.- Effects of the exposure of zebrafish embryos to Au NPs and related compounds for 120 h. A: 
survival rate; B: hatching rate; C: hatching time. The empty symbols indicate significant differences (p < 
0.05) with respect to the control group. 
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Cadmium 

Significant effects on the survival rate of embryos exposed to CdS NPs were observed 

at lower cadmium concentrations (0.1 mg Cd/L) than in the case of embryos exposed 

to the ionic form of the metal (5 mg Cd/L) (Fig 3A). Nevertheless, in terms of LC50 

value, ionic cadmium resulted the most toxic cadmium form for developing zebrafish 

embryos (LC50= 3.082 mg Cd/L for ionic cadmium and LC50 = 7.036 mg Cd/L for CdS 

NPs). At 10 mg Cd/L, ionic cadmium provoked mortality to 100% of the embryos. Bulk 

CdS was the least toxic form (LC50= 7.868 mg Cd/L). Significant effects on survival rate 

were only registered at the highest concentration tested (10 mg Cd/L). In general, at 

the highest concentrations of exposure (5 and 10 mg Cd/L) embryos died after 

hatching.  

Embryos exposed to low concentrations of cadmium (up to 1 mg Cd/L) presented 

similar patterns of hatching rate and survival rate. At higher concentrations (5 and 10 

mg Cd/L), hatching rate was higher than survival rate because embryos died after 

hatching (Fig 3B), as mentioned previously. In embryos exposed to 10 mg Cd/L of CdS 

NPs a significant hatching delay was observed, but at 0.01 and 0.1 mg Cd/L embryos 

hatched significantly earlier (Fig 3C) than control embryos. For embryos exposed to 

ionic cadmium no significant differences were observed in the time needed to hatch. 

Exposure to bulk CdS induced a significant hatching delay at concentrations ≥ 0.1 mg 

Cd/L (Fig 3C). 

Exposure to CdS NPs and bulk CdS at 0.1, 1 and 5 mg Cd/L caused a significant increase 

of malformation prevalence (Fig 3D). Observed malformations were yolk sac edema, 

pericardial edema, spinal cord flexure and fin fold abnormality (Table 3). No significant 

differences were observed at 10 mg Cd/L due to the high mortality recorded at this 

concentration. In the case of ionic cadmium, no significant differences in malformation 

prevalence were observed.  
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Figure 3.- Effects of the exposure of zebrafish embryos to CdS NPs and related compounds for 120 h. A: 
survival rate; B: hatching rate; C: hatching time; D: malformation prevalence. The empty symbols 
indicate significant differences (p < 0.05) with respect to the control group. 

Zinc 

Exposure to the different zinc forms caused a significant increase in mortality at 5 and 

10 mg Zn/L (Fig 4A). Similarly, all embryos exposed to the highest concentration of 

Ecodis P-90 died. The lowest LC50 value was obtained for ZnO<130-EcoP90 NPs (LC50= 

4.289 mg Zn/L), followed by ionic zinc (LC50= 4.616 mg Zn/L), ZnO<280-EcoP90 NPs 

(LC50= 5.538 mg Zn/L) and, finally, bulk ZnO (LC50= 6.565 mg Zn/L). In general, at high 

concentrations of zinc (5 and 10 mg Zn/L) mortality of embryos was observed after 

hatching, as previously reported for embryos exposed to cadmium and gold. 

At low zinc concentrations, a similar pattern was obtained for hatching rate and for 

survival rate. However, differences were observed at high zinc concentrations (5 and 

10 mg Zn/L) where hatching rate was higher than survival rate, because embryos died 

after hatching (Fig 4B). 

A significant hatching delay was observed in embryos exposed to all zinc forms. Under 

exposure to ZnO NPs, hatching delay was detected at 5 mg Zn/L for ZnO NP<130-

EcoP90 NPs and at 1 and 5 mg Zn/L for ZnO NP<280-EcoP90 NPs. For embryos exposed 
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to ionic zinc, hatching delay was observed at 5 and 10 mg Zn/L, and for those exposed 

to bulk ZnO at 10 mg Zn/L. Finally, in the case of embryos exposed to Ecodis P-90 a 

significant delay was observed at the equivalent concentration present in the 

suspension of ZnO NPs containing 5 mg Zn/L (Fig 4C). 

For embryos exposed to ionic zinc and ZnO NP<280-EcoP90 NPs, a significant increase 

in malformation prevalence was observed at 5 mg Zn/L (Fig 4D). In the case of Ecodis 

P-90, 100% of embryos presented malformations at 120 h of exposure at the 

equivalent concentration present in the suspension of ZnO NPs containing 5 mg Zn/L. 

The malformations observed were yolk sac edema, eye abnormality, pericardial 

edema, spinal cord and tail flexure and fin fold abnormality (Table 3). Exposure to ZnO 

NP<280-EcoP90 NPs caused head malformations in some individuals, a malformation 

type that has not been observed in embryos exposed to other NPs. 

 

Figure 4.- Effects of the exposure of zebrafish embryos to ZnO NPs and related compounds for 120 h. A: 
survival rate; B: hatching rate; C: hatching time; D: malformation prevalence. The empty symbols 
indicate significant differences (p < 0.05) with respect to the control group. 

 

 

Ionic Zn Bulk ZnO ZnO<130 nm ZnO<280 nm Ecodis P - 90

mg Zn/L mg Zn/L

A)

C)

B)

D)

0
10
20
30
40
50
60
70
80
90

100

0 0.01 0.1 1 5 10

Pe
rc

en
ta

ge
 o

f s
ur

vi
vi

ng
 e

m
br

yo
s

0
10
20
30
40
50
60
70
80
90

100

0 0.01 0.1 1 5 10

Pe
rc

en
ta

ge
 o

f h
at

ch
ed

 e
m

br
yo

s

0
10
20
30
40
50
60
70
80
90

100

0 0.01 0.1 1 5 10

H
ou

rs

0
10
20
30
40
50
60
70
80
90

100

0 0.01 0.1 1 5 10

Pe
rc

en
ta

ge
 o

f m
al

fo
rm

ed
 e

m
br

yo
s

 
87



Chapter I 
 
Silica 

LC50 values for all tested silicon forms were above the highest tested concentrations 

(100 mg Si/L), except for SiO2-70, for which a LC50 value of 83.329 mg Si/L was 

calculated. Significant effects on survival rate were observed only in the case of SiO2-70 

NPs at the two highest exposure concentrations (Fig 5A). At these exposure 

concentrations embryos died before hatching. 

 

Figure 5.- Effects of the exposure of zebrafish embryos to SiO2 NPs and related compounds for 120 h. A: 
survival rate; B: hatching rate; C: hatching time; D: malformation prevalence. The empty symbols 
indicate significant differences (p < 0.05) with respect to the control group. 

At 120 hpf, all surviving embryos had hatched, except in the case of some individuals 

exposed to sodium trisilicate at 100 mg Si/L (Fig 5B). Embryos exposed to SiO2-15 NPs 

at 0.1 mg Si/L, to sodium trisilicate at 10 mg Si/L, to sodium silicate at 100 mg Si/L and 

to bulk SiO2 at 10, 50 and 100 mg Si/L (Fig 5C) hatched significantly earlier than control 

embryos. In contrast, a significant hatching delay was observed for embryos exposed 

to SiO2-70 at 0.1 mg Si/L and to sodium trisilicate at 100 mg Si/L. 

Exposure to sodium trisilicate at 50 and 100 mg Si/L caused a significant increase in 

malformation prevalence (Fig 5D) which consisted of yolk sac edema, pericardial 
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edema or spinal cord flexure. The other silicon forms did not provoke significant 

increase in malformation prevalence at any of the tested concentrations.  

Table 2.- LC50 values for the compounds tested in this study. 

Metal Compound 
Range of tested concentration 

(mg metal/L) 
LC50 

(mg metal/L) 

Ag 

Ag20-Mal 

0.001, 0.01, 0.1, 1, 5 

0.529 
Ag40-Mal 3.94 

Ag100-Mal 1.973 
Ionic silver 0.047 

Bulk Ag > 5 

Au 

Au5-Cit 

0.1, 1, 10, 50,100 

24.655 
Au15-Cit 24.61 
Au40-Cit 34.717 
Ionic gold 4.619 
Bulk Au > 100 

Cd 
CdS5-GSH 

0.01, 0.1, 1, 5, 10 
7.036 

Ionic cadmium 3.082 
Bulk CdS 7.868 

Zn 

ZnO<130-EcoP90 

0.01, 0.1, 1, 5, 10 

4.289 

ZnO<280-EcoP90 5.538 
Ionic zinc 4.616 
Bulk ZnO 6.565 

Si 

SiO2-15 

0.1, 1, 10, 50,100 

> 100 
SiO2-30 > 100 
SiO2-70 83.329 

Sodium silicate > 100 
Trisodium silicate > 100 

Bulk SiO2 > 100 

Embryo exposure to FSNP 

Unexposed control embryos did not show fluorescence signal at any time (Fig 6A, E, G, 

I, K). In exposed embryos, fluorescence signal intensity was time- and concentration-

dependent. At 10 and 100 mg Si/L, FSNP were seen attached to the chorion surface 

from the beginning of the exposure (6 h, Fig 6C, D) until hatching at approximately 48-

72 hours (Fig 6F). After hatching, fluorescence was observed on the surface of the fish 

body (Fig 6J). Also, presence of FSNP was observed under the gill opercle covering the 

surface of the gill lamellae, in the gut tract and in the cloacal chamber of the posterior 

intestine at 126 hpf (Fig 6J, L). 
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Figure 6.- Micrographs of zebrafish embryos at different stages of development obtained  by confocal 
microscopy. A: control unexposed embryo at 6 hpf; B: embryo exposed to 0.1 mg Si/L of fluorescent SiO2 
NPs at 6 hpf; C: embryo exposed to 10 mg Si/L of fluorescent SiO2 NPs at 6 hpf; D: embryo exposed to 
100 mg Si/L of fluorescent SiO2 NPs at 6 hpf; E: control unexposed embryo at 30 hpf; F: embryo exposed 
to 10 mg Si/L of fluorescent SiO2 NPs at 30 hpf; G: control unexposed embryo at 102 hpf; H: embryo 
exposed to 100 mg Si/L of fluorescent SiO2 NPs at 102 hpf; I, K: control unexposed embryos at 126 hpf; J, 
L: embryos exposed to 100 mg Si/L of fluorescent SiO2 NPs at 126 hpf. Scale bars: 100 µm (I, J) and 200 
µm (A-H, K, L). 
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DISCUSSION 

A ranking of toxicity was established for the different NP suspensions based on the 

obtained LC50 values, being Ag-Mal NPs the most toxic ones, followed by ZnO-EcoP90 

NPs, CdS5-GSH NPs, Au-Cit NPs and, finally, SiO2 NPs.  

For Ag-Mal NPs of 20 nm, significant effects on survival rate were recorded at 

concentrations ≥ 0.01 mg/L, resulting in the lowest LC50 value (0.529 mg Ag/L) of all NP 

suspensions tested. A wide range of LC50 values have been reported in the literature 

for zebrafish embryos exposed to different types Ag NPs. To the best of our 

knowledge, the lowest LC50 value of 0.011 mg Ag/L was reported by Ribeiro et al. 

(2014) in zebrafish embryos exposed to alkane-coated Ag NPs of 7.5 nm. On the 

contrary, Griffitt et al. (2008) reported a value of 7.2 mg Ag/L in zebrafish embryos 

exposed to sodium citrate-stabilized Ag NPs of 20-30 nm. An increase in the mortality 

prevalence, hatching delay or an increase in the presence of malformations (non 

depleted yolk, bent tail, malformed spine, edema, etc) were the most common toxic 

effects reported (Lee et al., 2007; Griffitt et al., 2008; Asharani et al., 2010; Massarsky 

et al., 2013; 2014; Pavagadhi et al., 2014; Ribeiro et al., 2014). Capping agents used 

during manufacture of Ag NP suspensions can increase or contribute to the toxicity of 

Ag NPs, as in the case of NPs capped with polyvinylpyrrolidone (PVP) or citrate (Kim et 

al., 2013). Maltose used as capping agent for the Ag NPs tested in this study did not 

affect the toxicity of the NP suspensions. The chemical composition of the exposure 

medium can also modulate NP toxicity, since the concentration of chloride ions affects 

the solubility and, thus, the bioavailability of Ag+ ions (Olasagasti et al., 2014). 

Deionized water used in the present study may contribute to the low LC50 value 

estimated, since the lack of chloride ions that can interact with Ag+ ions avoids the 

formation of insoluble AgCl which could reduce silver availability to the embryos. 

Christen et al. (2013) have demonstrated that Ag NPs are able to induce the 

endoplasmatic reticulum stress response in zebrafish embryos altering the 

transcription level of marker genes, such as BiP and Synv, and other genes related to 

pro-apoptotic and oxidative stress processes. Nevertheless, these responses have 

shown to be stronger in zebrafish liver cells. 
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A high toxicity was also observed for the two ZnO NPs tested, with LC50 values of 4.289 

mg Zn/L for ZnO<130-EcoP90 and 5.538 mg Zn/L for ZnO<280-EcoP90. Furthermore, a 

significant increase in the presence of malformations in surviving embryos was 

recorded after the exposure to both ZnO NPs at a concentration of 5 mg Zn/L. In this 

case, the contribution of the additive Ecodis P-90 to observed toxicity must be taken 

into account. Previous studies with mussel cells also reported that Ecodis P-90 

contributed partly to the observed cytotoxicity of the same ZnO NPs used in this study 

(Katsumiti et al., 2015a). The exposure to Ecodis P-90 alone, at the equivalent 

concentration present in the NP suspension containing 5 mg Zn/L, caused 

malformations in the 100% of surviving embryos. All individuals exposed to Ecodis P-90 

showed yolk sac edema and 60% of the embryos presented pericardial edema, among 

other malformations. Appearance of malformations in zebrafish embryos has also 

been observed in other studies of exposure to ZnO NPs. Zhao et al. (2013) reported a 

significant increase in malformation prevalence (pericardial edema, tail deformity, 

spinal curvature and hyperaemia) after exposure to 10 to 100 mg/L of commercial 

uncapped ZnO NPs (< 100 nm). Moreover, Vicario-Parés et al. (2014) did not find a 

significant increase in the prevalence of malformations after embryo exposure to 

commercial uncapped ZnO NPs. 

The LC50 value estimated in this study for CdS NPs was 7.036 mg Cd/L, which is higher 

than the lethal concentration reported in other studies with zebrafish embryos 

exposed to different Cd-containing NPs (CdSe NPs of 9 and 14 nm, and CdTe NPs of 3.5 

nm) with diverse capping agents. LC50 values ranged from 0.021 mg/L for 

CdSecore/ZnSshell NPs capped with poly-L-lysine to 4.72 mg/L for CdTe NPs capped with 

thioglycolic acid (King-Heiden et al., 2009; Zhang et al., 2012a). Thus, the capping agent 

and the synthesis process, producing NPs with different core and shells, are important 

in determining NPs toxicity, since the presence of metals, as selenium, in the core 

increases the toxic effect of these NPs (Wiecinski et al., 2013). The LC50 value obtained 

in the present study is also much higher than the LC50 value reported for CdTe NPs 

using zebrafish hepatocytes exposed in vitro (Tang et al., 2013). These authors report 

an in vitro LC50 value of 0.112 mg/L after 24 h of exposure, which is also much lower 
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than the LC50 value obtained after the exposure of zebrafish embryos (120 hpf) to 

similar NPs (CdTe NPs capped with thioglycolic acid) (Zhang et al., 2012). 

For Au-Cit NPs and SiO2 NPs, significant effects were observed at concentrations much 

higher than those for the above discussed NPs. In the case of the exposure to Au-Cit 

NPs, LC50 values ranged from 24.61 to 34.717 mg Au/L and first significant effects 

appeared in embryos exposed to 50 mg Au/L. As for ZnO NPs, the effect of the capping 

agent sodium citrate present in the Au NP suspensions must be considered, since 

similar results were observed after the exposure to sodium citrate alone. In 

accordance with our study, Browning et al. (2009) reported that the survival rate 

scored in zebrafish embryos exposed to Au NPs was similar to that observed in 

zebrafish embryos exposed to the sodium citrate dilution used to stabilize the NP 

suspensions. Bar-Ilan et al. (2009) did not find toxicity for Au NPs nor for sodium 

citrate, but the highest concentration tested in their study was equivalent to our 

lowest concentration, at which we did neither observe adverse effects. For SiO2 NPs, 

embryo mortality was observed only after exposure to SiO2 NPs of 70 nm, resulting in a 

LC50 value of 83.329 mg Si/L and in a significant effect on survival at 50 and 100 mg 

Si/L. For the other sizes (15 and 30 nm), the estimated LC50 value was higher than the 

maximum concentration used in our experiments. In a previous study, Duan et al. 

(2013) also observed a significant increase in the mortality only in embryos exposed to 

high concentrations of SiO2 NPs of 60 nm (100-200 mg/L). Other authors did neither 

reported effects after the exposure to SiO2 NPs, at concentrations up to 200 mg/L 

(Fent et al., 2010; George et al., 2011).  

Overall, the results obtained herein are in agreement with other studies comparing the 

toxicity of a set of metal and metal bearing NPs. George et al. (2011) exposed zebrafish 

embryos for 120 hours to different NPs (Au, SiO2, Pt, CdSshell/ZnSecore QDs, ZnO and Ag) 

in a range of concentrations from 0 to 25 mg/L. These authors only reported toxic 

effects after exposure to CdSshell/ZnSecore QDs, ZnO and Ag NPs, but at higher 

concentrations (from 5 mg/L) than those observed in our experiments (from 0.01 

mg/L). The toxicity of silver, cadmium and zinc containing NPs has been partly 

attributed to the release of ions into the exposure medium, as these are highly soluble 

metals (Misra et al., 2012; Schirmer et al., 2013; Ivask et al., 2013; Katsumiti et al., 
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2014b; 2015a; 2015b). It has been shown that metal ions, such as Zn2+ resulting from 

ZnO NPs dissolution, interfere with the zebrafish hatching enzyme (ZHE1) and produce 

a delay in embryo hatching (Lin et al., 2012) as we observed in this work. Ong et al. 

(2013) also reported interaction of the ions released from the NPs with the ZHE1, 

resulting in complete hatching inhibition in zebrafish embryos exposed to 10 and 100 

mg/L of ZnO NPs and hatching delay in embryos exposed to 10 mg/L of CdSe and of Ag 

NPs, a concentration at which embryos did not survive in the present study. Therefore, 

toxic metal ions released from Ag, ZnO and CdS NPs can contribute to the higher 

toxicity elicited by these soluble NPs in comparison to more insoluble compounds, 

such as Au and SiO2. 

The above conclusion is also supported by differences recorded in toxicity when the 

metal forms of the compounds were compared. In general, the ionic form of each 

metal was the most toxic, followed by the NPs and, finally, the bulk form, which is in 

fact the least soluble form of the metals. These results agree well with those reported 

in several studies on the toxicity of metal NPs already published using zebrafish as test 

organism  (Zhu et al., 2008; Vicario-Parés et al., 2014), being silver the most studied 

metal (Powers et al., 2011; Massarsky et al., 2013; Ribeiro et al., 2014). The difference 

in toxicity between the ionic and NP forms of silver was attributed to the fact that the 

AgNO3 (ionic form when dissolved in water) dissociates completely releasing a large 

portion of free Ag+ ions very rapidly, whereas  Ag+ ions from Ag NPs are released more 

slowly, which results in lower concentrations in the medium (Laban et al., 2010). 

Although we did not observe toxic effects after exposure to bulk silver, in a previous 

study, Osborne et al. (2013) reported a dose-dependent toxicity for bulk silver, with a 

significant increase in embryo mortality at concentrations ≥ 5 mg/L, occurring mainly 

during the gastrulation period. 

While ionic cadmium was more toxic than CdS NPs and bulk CdS in terms of LC50 value, 

CdS NPs caused significant effects on zebrafish embryos at lower concentrations (0.1 

mg Cd/L) than ionic cadmium (5 mg Cd/L). Other studies using different Cd-containing 

NPs (CdSe QDs of 9 and 14 nm, and CdTe QDs of 3.5 nm) and soluble cadmium have 

also reported higher acute toxicity to developing zebrafish embryos for NPs (LC50 from 

0.0209 to 4.72 mg Cd/L) than for ionic cadmium, with LC50 values of 45.98 and 17.26 
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mg Cd/L King-Heiden et al., 2009; Zhang et al., 2012a). These differences in cadmium 

toxicity among studies could be due to the different chemical composition of the test 

media, especially Ca2+ concentration. Calcium ions compete with cadmium ions for 

binding sites on the embryo (Meinelt et al., 2001). In the previously mentioned studies, 

the concentration of Ca2+ in the exposure medium was higher than in our study, where 

deionized water was used for the test solutions. 

Similar LC50 values were obtained during the exposure of zebrafish embryos to all 

forms of zinc. As discussed above, the release of Zn+, along with the use of the 

stabilizer Ecodis P-90, provoke partly the toxic effect of ZnO NPs and, their combined 

effect appear to be similar to those produced by the ionic form of the metal. In a 

previous study, Vicario-Parés et al. (2014) reported toxic effects for ionic zinc at 5 mg 

Zn/L, whereas no significant effects on mortality were found for uncapped ZnO NPs or 

for the bulk counterpart at the tested concentrations (up to 10 mg Zn/L). The different 

ZnO NPs used in both studies easily explain these results, as Vicario-Parés et al. (2014) 

used commercial ZnO NPs. Zhu et al. (2008) also compared bulk ZnO and ZnO NPs, 

reporting similar toxic effects after both exposures (LC50 values after 96 h of exposure: 

1.793 mg/L for ZnO NPs and 1.550 mg/L for bulk ZnO). On the contrary, Yu et al. (2011) 

obtained higher toxicity, in terms of LC50, for the bulk form than for ZnO NPs, because 

at high concentrations NPs tended to aggregate and, therefore, availability and, in 

turn, toxicity to zebrafish embryos was reduced. 

As to the influence of NP size, overall data reported in the literature point out that NP 

toxicity is size-dependent, especially for Ag and Au NPs (Bar-Illan et al., 2009; Powers 

et al. 2011; Kim et al., 2013; Katsumiti et al., 2015b). This phenomenon has been 

attributed to the higher surface-to-volume ratio of the smaller NPs, which increases 

the proportion of atoms in the NP surface in contact with the test solution. Moreover, 

small sized NPs show greater ability to passively diffuse into developing embryos via 

chorion pore channels which, in turn, may also block the pores by the aggregation of 

NPs (Lee et al 2007) increasing their toxicity in comparison to larger NPs.  

During the present study, embryo mortality occurred at different exposure times 

depending on the NP tested. Exposure to Au, CdS and ZnO NPs caused mortality mainly 
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after hatching. Similarly, ionic cadmium and zinc, and additives as sodium citrate and 

Ecodis P-90 caused mortality after embryos had hatched. During the first stages of 

development (up to 48-72 hpf), zebrafish embryos are surrounded by the chorion, 

which acts as a barrier limiting the access of molecules to the embryo (Braunbeck et 

al., 2014) and, therefore, protecting them from the toxic effect of the NP suspensions. 

This protective role of the chorion has been reported for different nanomaterials, such 

as SiO2 NPs (Fent et al., 2010) and carbon nanotubes (Cheng et al., 2007). But for Ag 

NPs, Lee et al. (2013) observed the entry of NPs into the embryo through the chorion 

pore channels during the exposure, resulting in accumulation of NPs into the organism 

that  produce a toxic effect (mortality and increase in the presence of malformations) 

directly to the embryo. Accordingly, in our study, embryos exposed to Ag NPs also died 

before hatching. 

In embryos exposed to different concentrations of fluorescent SiO2 NPs of 27 nm, SiO2 

NPs were only observed attached to the chorion surface while embryos remained 

unhatched. Therefore, for this NP size and type the chorion acted as a barrier to 

protect against SiO2 NPs entrance into the embryos. Similarly, Fent et al. (2010) also 

observed that fluorescent SiO2 NPs of 60 and 200 nm NPs (0.0025-200 mg Si/L up to 96 

hpf) were too large to penetrate the chorion as they formed larger agglomerates. 

Only after a longer exposure (102 hpf), once the embryos had hatched, fluorescent 

NPs were observed under the gill opercle covering the surface of the gill lamellae, in 

the digestive tract and in the cloacal chamber of the posterior intestine of the larvae. 

The presence of NPs in the intestine is in agreement with the findings reported by 

Zhao et al. (2014). These authors have demonstrated a novel NP excretion pathway in 

zebrafish through the intestinal tract after NP injection directly into the yolk sac. We 

have previously reported that waterborne exposure of zebrafish embryos to NPs 

results in tissue bioaccumulation of metals. Also, Olasagasti et al. (2014) reported the 

presence of agglomerates of Ag NPs in the digestive tract of zebrafish embryos 

exposed during 120 hpf after the hatching (95-120 hpf). Thus, fluorescence detected in 

embryo digestive tract and cloacal chamber could result from direct NP uptake 

through the digestive tract and from excretion of NPs incorporated into the fish by 

other routes as gills (Griffitt et al., 2009; 2013). 
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CONCLUSIONS 

A ranking of toxicity for different metal bearing NPs has been established, being Ag 

NPs the most toxic of the tested NPs, followed by CdS and ZnO NPs, and finally by Au 

and SiO2 NPs. The toxic effects of NPs to zebrafish embryos depended on their 

chemical composition (and, thus, solubility) and size, being the former the most 

relevant characteristic involved in the toxic effect according to our results. Accordingly, 

the soluble forms of the metals were more toxic than the nanoparticulated form, being 

the bulk form the least toxic. Additives present in the NP suspensions, such as sodium 

citrate and Ecodis P-90, are also an important factor contributing to the toxicity. The 

interaction between the chorion and the NPs must be taking into account when the 

effect of the exposure to different NPs is studied, especially when data obtained at 

different exposure times are compared, since the chorion acts as a protector barrier 

against the entrance of SiO2 NPs into the organism during the first developmental 

stages. 
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Waterborne exposure of adult zebrafish to silver 
nanoparticles results in silver accumulation and 
sublethal effects at cellular level 
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ABBREVIATIONS 

BSA, Bovine serum albumin 

BSDs, Black silver deposits 

CAT, Catalase 

FESEM, Field emission scanning electron microscopy 

LMS, Lysosomal membrane stability 

LP, Labilization period 

MN, Micronuclei 

NPs, Nanoparticles 

PBS, Phosphate buffered saline 

PVP, Polyvinyl pyrrolidone 

ROS, Reactive oxygen species 

SOD, Superoxide dismutase 

TEM, Transmission electron microscopy 
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ABSTRACT 

Due to their bactericide properties, silver nanoparticles (NPs) are among the most 

common nanomaterials currently used. Ag NPs are incorporated in domestic and 

medical products as well as in industrial processes, resulting in silver containing wastes 

that can reach aquatic environments and could potentially affect aquatic organisms. In 

order to study the effects of waterborne exposure of aquatic organisms to Ag NPs, 

adult zebrafish were exposed for 21 days to 10 µg Ag/L of maltose-coated Ag NPs of 20 

nm (Ag20-Mal) or to the same nominal concentration of ionic silver and, subsequently, 

maintained up to 6 months in clean water. Silver accumulation was measured by 

chemical analyses in the whole organism, and metal accumulation was specifically 

detected in liver and intestine by autometallography. Field emission scanning electron 

microscopy used to analyze the presence of silver in gill, liver and intestine tissues 

corroborated that these organs are targets for silver accumulation. Ag NPs subcellular 

fate was determined by transmission electron microscopy, detecting Ag NPs in the 

cytoplasm of epithelial cells from the primary lamellae of gills, and in the nucleus and 

mitochondria of hepatocytes. A battery of biomarkers was used to study the sublethal 

effects provoked by the exposure to both forms of the metal. In the assayed 

conditions, evident effects on hepatocyte lysosomal membrane stability, oxidative 

stress and genotoxicity were not found, but the histopathological analysis showed a 

variety of alterations in the gills. Thus, the presence of nanomaterials in the 

environment could result in metal accumulation in aquatic organisms that could lead 

to toxic effects, being the gills one of the main target organs after waterborne 

exposure. 

Keywords: Ag NPs, zebrafish, bioaccumulation, biomarkers, electron microscopy 
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LABURPERNA 

Beraien ezaugarri bakterizidak direla eta, zilarrezko nanopartikulak (NPak) gehien 

erabiltzen ari diren nanomaterialen artean daude. Ag NPak etxe- eta medikuntza-

produktuetan gehitzen dira, baita prozesu industrialetan ere, ingurune urtarrera iritsi 

eta bertako organismoei eragin ditzaketen zilardun hondakinak sortarazten direlarik. 

Ur esposizioaren bidez, Ag NPek organismo urtarretan eragiten dituzten efektuak 

ikertzeko, zebra arrain helduak maltosaz estalitako 20 nm-ko Ag NPen (Ag20-Mal) 10 

ug Ag/L pean edo zilar ionikoko kontzentrazio nominal berean mantendu ziren 21 

egunez eta, ondoren, 6 hilabetez mantendu ziren ur garbitan. Zilar metaketa, 

organismo osoan egindako analisi kimikoen bidez neurtu zen eta metal metaketa 

autometalografia bidez neurtu zen espezifikoki gibelean eta hestean. Zakatz, gibel eta 

hesteetan zilarraren agerpena aztertzeko erabilitako eremu igorpeneko ekorketazko 

mikroskopio elektronikoak, organo horiek zilarraren metaketarako itu organoak direla 

berretsi zuen. Ag NPen patua transmisio mikroskopia elektroniko bidezko ikerketekin 

zehaztu zen, Ag NPak zakatzetako lamela primarioetako epitelio-zelulen zitosolean eta 

hepatozitoetako nukleo eta mitokondrietan antzemanez. Biomarkatzaile multzo bat 

erabili zen metalaren bi aldaerek eragindako efektu subletalak ikertzeko. Testatutako 

egoeretan ez zen gibeleko lisosomen mintzaren egonkortasunean efekturik, estres 

oxidatiboaren areagotzerik edo genotoxizitaterik aurkitu, nahiz eta ikerketa 

histopatologikoak zakatzetan zenbait alterazio erakutsi zituen. Beraz, ingurumenean 

gertatzen den nanomaterialen agerpenak organismo urtarretan metaketa eta efektu 

toxikoak eragin ditzake, zakatzak izanik ur bidezko esposizioaren itu-ehun nagusia.  

Gako-hitzak: Ag NPak, zebra arraina, biometaketa, biomarkatzaileak, mikroskopia 

elektronikoa 

 

 

 

 

 

106



Chapter II 

 
RESUMEN 

Debido a sus propiedades bactericidas, las nanopartículas (NPs) de plata se encuentran 

entre los nanomateriales que más se están utilizando. Las NPs de Ag se han 

incorporado en productos de uso doméstico y médico así como en procesos 

industriales, lo que da lugar a residuos que contienen plata y que pueden llegar al 

medio acuático y afectar a los organismos. Para estudiar los efectos de la exposición a 

través del agua de organismos acuáticos a NPs de Ag, peces cebra adultos se 

expusieron durante 21 días a 10 µg Ag/L de NPs de 20 nm cubiertas de maltosa (Ag20-

Mal) o a la misma concentración nominal de plata iónica y, a continuación, se 

mantuvieron 6 meses en agua limpia. La acumulación de plata se midió a través de 

análisis químicos en el organismo completo y la acumulación de metales se detectó 

específicamente en el hígado y en el intestino por autometalografía. La microscopía 

electrónica de barrido de emisión de campo que se utilizó para analizar la presencia de 

plata en las branquias, hígado e intestino corroboró que estos órganos son dianas para 

la acumulación de plata. El destino subcelular de las NPs de Ag se determinó mediante 

microscopía electrónica de transmisión, detectándose en el citosol de las células 

epiteliales de las laminillas primarias de las branquias y en el núcleo y en las 

mitocondrias de los hepatocitos. Se utilizó una batería de biomarcadores para estudiar 

los efectos subletales provocados por la exposición a ambas formas del metal. En las 

condiciones ensayadas, no se encontró un efecto evidente en la estabilidad de la 

membrana de los lisosomas hepáticos, incremento del estrés oxidativo o 

genotoxicidad, aunque el análisis histopatológico mostró diversas alteraciones en las 

branquias. Por tanto, la presencia de nanomateriales en el medio ambiente puede 

resultar en la acumulación en los organismos acuáticos pudiendo provocar efectos 

tóxicos, siendo las branquias uno de los principales órganos diana tras la exposición a 

través del agua. 

Palabras clave: NPs de Ag, pez cebra, bioacumulación, biomarcadores, microscopía 

electrónica 
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INTRODUCTION 

The antibacterial and antimicrobial properties of Ag nanoparticles (NPs) are increasing 

their use in different consumer products (Whiteley et al., 2011), including textiles, 

respirators, household water filters, antibacterial sprays, cosmetics and detergents, 

among others (Marambio-Jones and Hoeck, 2009). The wastes derived from the 

industrial processes and releases from consumer products will enter into the 

environment directly from atmospheric deposition, water run-off or through the 

wastewater treatment plants, introducing Ag NPs into the aquatic ecosystem (Benn 

and Westerhoff, 2008). Thus, the increase in the use of Ag NPs is inexorably linked to 

an increase in the environmental input (Massarsky et al., 2014a). Although available 

analytical methods are not sensitive enough to distinguish between natural materials 

or dissolved substances and manufactured NPs in complex environmental matrices 

(Markus et al., 2013), several studies have estimated the concentration of Ag NPs in 

different environmental compartments, based on production and emission data 

(Fabrega et al., 2011; Chio et al., 2012; Hendren et al., 2013; Markus et al., 2013; 

Dumont et al., 2015). Most studies report silver concentration values in the range of 

ng/L for surface waters from USA and Europe, while Chio et al. (2012) predicted values 

up to 40 µg/L in effluents of Taiwanese rivers. 

The entrance of Ag NPs into the aquatic environment could produce deleterious 

effects in the organisms. Experimental studies have already shown a variety of toxic 

effects provoked by the exposure to Ag NPs in different aquatic organisms, including 

algae (Navarro et al., 2008), freshwater and marine invertebrates (Gomes et al., 2013; 

Arulvasu et al., 2014; Oliver et al., 2014), and different species of fish, as recently 

reviewed by Massarsky et al. (2014a). Among fish species, zebrafish has received 

special attention as a model organism. Several authors have reported toxic effects in 

embryos after the exposure to Ag NPs of different sizes and with different capping 

agents, being the decrease in the survival rate and the increase in the prevalence of 

malformations the most common effects observed (Kim et al., 2013; Lee et al., 2013; 

Massarsky et al., 2013; Ribeiro et al., 2014; Chapter I). In adult zebrafish, both acute 

and sublethal toxic effects have also been described after the exposure to Ag NPs. 

Considerable differences are found in the literature regarding acute toxicity of Ag NPs 
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to adult zebrafish. Choi et al. (2010) reported a LC50 value as high as 250 mg/L after 24 

h of exposure to Ag NPs of 5-20 nm. Nevertheless, Bilberg et al. (2102) reported a 

much lower LC50 value (84 µg/L) after 48 h of exposure to polyvinyl pyrrolidone (PVP)-

coated Ag NPs of 81 nm. In this latter study, acute toxicity was not observed after PVP 

exposure alone. Regarding sublethal effects significant silver burden increase in the 

gills and alteration of the gill transcriptome but not histopathological alteration of gill 

tissue have been previously reported after acute exposure (48 h) to 1 mg/L of Ag NPs 

of about 26 nm (Griffitt et al., 2009). Similar results were obtained after a longer 

exposure (28 days) to lower concentrations (5 to 50 µg/L) of much smaller Ag NPs 

(3.1±2.2 nm), being the number of genes with significantly altered transcription level in 

the gill increased in a dose-dependent way (Griffitt et al., 2013). Metal 

bioaccumulation has also been reported in the liver. The presence of NPs has been 

detected in hepatocytes after exposure to 30 and 120 mg/L of Ag NPs of 80 nm for 24 

h, causing induction of apoptosis and oxidative stress (Choi et al., 2010). Similar results 

were reported after exposure for 15 days to 100 µg/L of PVP-coated Ag NPs of 22-26 

nm (Devi et al., 2015). These authors found extensive cell death in the liver, associated 

with diverse indications of oxidative stress, such as enhancement of nitric oxide 

production, reduced catalase (CAT) and superoxide dismutase (SOD) activities and 

increased sulphydryl groups.  

The mechanisms of toxicity of Ag NPs are not totally clear, although most studies 

carried out in vitro with mammalian cells and in vivo with a variety of aquatic 

organisms, point out to oxidative stress and related effects such as mitochondrial 

damage, DNA damage (genotoxicity) and cell death in the liver by both apoptotic and 

necrotic pathways, as the main cause of toxicity (Fu et al., 2014; Massarsky et al., 

2014a; McShan et al., 2014). In fish, disruption of the Na+/K+ ATPase activity in the gills 

and the inhibition of the acetylcholinesterase activity in various tissues, which interfere 

with the ionoregulation and neuroregulation capabilities, have also been described 

(Schultz et al., 2102; Katuli et al., 2014; Devi et al., 2015). Nevertheless, whether the 

ultimate responsible for these observed effects are the NPs themselves or the 

extracellularly or intracellularly released silver ions from the NPs is currently an open 

debate (McShan et al., 2014; De Matteis et al., 2015).  
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Studies comparing the effect of ionic silver with that provoked by the exposure to Ag 

NPs describe, in general, a stronger effect caused by the ionic form than by the 

nanoparticulated form. In the above mentioned study of Bilberg et al. (2012), ionic 

silver resulted 3.4 times more toxic than the Ag NPs by mass of silver added to the 

tanks (LC50 value of 25 µg/L and 84 µg/L, respectively) in adult zebrafish. This 

observation has also been extensively reported in zebrafish embryos (Powers et al., 

2011; Massarsky et al., 2013; Ribeiro et al., 2014; Chapter I). 

A recent study performed with human cells shows that Ag NPs are internalized by 

endocytosis and moved into the lysosomes, where they undergo a degradation 

process, releasing ions that cross the organelle membrane spreading into the cytosol, 

while the ions released in the culture medium played a negligible effect (De Matteis et 

al., 2015). Accordingly, Griffitt et al. (2009) state that the biological effect of Ag NP 

exposure on adult zebrafish does not appear to be driven solely by release of soluble 

metal ions into the water column. 

The aim of this work was to study the sublethal effects to adult zebrafish produced by 

the aqueous exposure to maltose-coated Ag NPs of 20 nm (Ag 20-Mal NPs) for 21 days 

in comparison with those provoked by the same nominal concentration (10 µg Ag/L) of 

ionic silver. After exposure, zebrafish were maintained in clean water for 6 months to 

evaluate the potential long-term effects or the recovery after the cease of the 

exposure. In a previously performed short-term experiment with zebrafish embryos 

(Chapter I), the acute toxicity of maltose-coated Ag NPs of different sizes (20, 40 and 

100 nm) was tested, being the smallest NPs (Ag 20-Mal NPs) the most toxic size. 

Nevertheless, embryo mortality was not recorded at the concentration used in this 

work with adult fish, which is lower than the concentration used in most of the 

toxicological studies reported in the literature. Although it is above most predicted 

environmental concentrations, it is still lower than the concentration reported by Chio 

et al. (2012) for Taiwanese rivers. Thus, this silver concentration could be 

environmentally relevant in hot spots, such as water masses receiving effluents from 

water waste treatment plants.  
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Accumulation of silver in the organisms after the 21 days of exposure was measured by 

chemical analyses in the whole zebrafish body and the fate of silver in various organs 

was specifically assessed using different techniques. Autometallography, transmission 

electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) 

were employed to determine the tissue distribution and intracellular presence of silver 

in exposed organisms. After being established for other aquatic species (Soto et al., 

1998), autometallography has been successfully employed to study metal fate in fish 

exposed to different ionic metals (Alvarado et al., 2005; 2006) and, more recently, 

metal accumulation has been determined by autometallography in zebrafish embryos 

exposed to metal oxide NPs (Vicario-Parés et al., 2014). TEM is a widely used method 

to study the entrance of NPs in the cells (Choi et al., 2010) while, to our knowledge, up 

to date FESEM has only been applied in zebrafish embryos to study the fate of Ag NPs 

(Olasagasti et al., 2014), being this the first study reporting the application of this 

technique in adult fish tissues.  

Different biomarkers covering the main mechanisms of toxicity described for Ag NPs 

were applied to determine the cellular effects of silver in zebrafish. Oxidative damage 

in the liver was assessed by western blot analysis using specific antibodies against 

protein carbonyls and ubiquitin, since interaction of Ag NPs with cellular proteins 

leading to oxidative damage and protein unfolding has been reported (McShan et al., 

2014). Likewise, the micronuclei test used in previous works to study the genotoxic 

effect caused by the exposure to different metals and nanomaterials in diverse aquatic 

organisms (Yadav Trivedi, 2009; Domingues et al., 2010; Filho et al., 2014; Vicario-

Parés, 2016) was applied in zebrafish erythrocytes. Cellular uptake of Ag NPs by 

endocytosis converts lysosomes into major target organelles (Wei et al., 2015). The 

exposure of Ag NPs to the lysosomal acidic environment can enhance the NP 

dissolution and, in turn, silver ion release and production of reactive oxygen species 

(Massarsky et al., 2014a; De Matteis et al., 2015; Wei et al., 2015). Thus, the lysosomal 

membrane stability test was used to assess lysosomal damage. This test, widely used in 

diverse aquatic species to analyze the general health status of the organisms and used 

as prognostic biomarker of toxic liver injury in fish (Köhler et al., 2002), has been also 

previously applied to detect the toxic effect provoked by metals and metal NPs 
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(Jimeno-Romero, 2014; Vicario-Parés, 2016). Finally, at tissue level, the presence of 

histopathological alterations in gills and liver as target organs for toxicity has been 

evaluated. Up to date, controversial results have been published regarding 

histopathological effects in fish exposed to Ag NPs (Griffitt et al., 2009; 2013; Farmen 

et al., 2011). 

MATERIALS AND METHODS  

Silver compounds 

Maltose-coated Ag NPs of roughly 20 nm (Ag20-Mal NPs) were synthesized using the 

Tollens method (Kvítek et al., 2005) resulting in a suspension containing 107.87 mg 

Ag/L and maltose 0.25 mM. Full characterization data for these NPs have been 

published by Katsumiti et al. (2015). Dynamic light scattering analysis showed that Ag 

NPs were monodispersed and with a negative zeta potential value ranging from -30 to 

-35 mV (Katsumiti et al., 2015). Solution of silver nitrate (1 g Ag/L in 0.5 M HNO3 

matrix) was obtained from Spectrosol, BDH Chemical Ltd Poole (England).  

Maintenance and experimental exposure of adult zebrafish 

The experimental procedure described herein was approved by the Ethics Committee 

in Animal Experimentation of the UPV/EHU according to the current regulations. 

Zebrafish (wild type AB Tübingen) individuals were specifically produced and grown in 

our facility at the UPV/EHU. Adult fish of approximately 4 months old were exposed to 

Ag NPs and to ionic silver at a concentration of 10 µg Ag/L for 21 days. An unexposed 

control group was run in parallel in identical experimental conditions. 

The exposures were carried out in 35 L aquaria containing 50-60 fish. During the 

exposure period, approximately 2/3 of the aquarium water was changed by siphoning 

every three days and the corresponding volume of contaminated or clean water was 

redosed. Fish were fed with Vipagran baby (Sera, Heinsberg, Germany) and live 

Artemia (INVE Aquaculture, Salt Lake City, Utah, USA) twice per day. Samples were 

taken after 3 and 21 days of exposure after euthanasia by overdose of anesthetic 

(benzocaine, Sigma-Aldrich, St. Louis, Missouri, USA). After 21 days of exposure, 

remaining fish were transferred to clean water and maintained up to 6 months to 
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evaluate the appearance of long-term effects or the potential reversibility of the 

effects detected. During this period, fish were fed only with Sera Vipagran baby twice 

per day. Water was maintained in continuous movement through an air pump to 

assure an appropriate aeration to the tank. Biological and physical filters were used to 

maintain the chemical parameters of the water (nitrate, nitrite and ammonium) that 

were controlled once per week using Sera ammonium, nitrite and nitrate kits. Water 

was changed if the values were higher than zero mg/L for ammonium or nitrite and 50 

mg/L for nitrate. At 6 months post-exposure fish samples were collected as described 

above. 

Metal accumulation in whole organisms: chemical analysis  

After 21 days of exposure, 20 individuals per experimental group were collected, 

frozen individually in liquid nitrogen and stored at -80 ºC until processed for chemical 

analysis. Whole zebrafish were dried in an oven at 130 ºC for 24 h. Dry tissues were 

weighted and pooled (five pools of four zebrafish each). Each pool was placed into 25 

mL Erlenmeyer flasks and 2 mL of 65% nitric acid (extra pure quality, Scharlau, 

Barcelona, Spain) was added for tissue digestion. The mouth of the Erlenmeyer flask 

was blocked with a crystal ball to minimize evaporation. After finishing the digestion of 

the sample, the remnant liquid was evaporated in an 80 ºC hot plate inside an exhaust 

hood. Then, 2.5 mL of nitric acid 0.1 M were added to each Erlenmeyer flask, and left 

for 1 day. The content of each flask was then put into tubes and centrifuged for 4 min 

at 2000 rpm (Heraeus Labofuge 200 centrifuge, Hanau, Germany). The supernatants 

were moved to clean tubes, and stored at 4 ºC. Finally, silver content was measured by 

inductively coupled plasma atomic emission spectrometry (ICP-AES, 7700x, Agilent 

Technologies, California, USA) following the US-EPA 6010D direction. Detection limit 

was established at 0.007 µg/L.  

Histological preparations 

The visceral mass and gills of 10 individuals per experimental group were dissected 

after 21 days of exposure and after 6 months in clean water. Tissues were placed in 

histological cassettes and immersed in 10% neutral buffered formalin for 24 h at 4 ºC. 

Then, samples were transferred to 70% ethanol and stored at 4 ºC until complete 
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tissue processing under vacuum conditions in an ASP300 Tissue Processor (Leica 

Microsystems, Nussloch, Germany). Paraffin blocks were done using plastic molds. 

Sections (5 µm thick) were cut in a RM2125RT microtome (Leica Microsystems) for 

autometallography, FESEM and histopathological analysis. For the histopathological 

analysis and for localization of tissues of interest before the autometallographical 

staining, slides were stained with hematoxylin/eosin (H/E) in an Auto Stainer XL (Leica 

Microsystems) and mounted in DPX (Sigma-Aldrich) by means of a CV5030 Robotic 

Coverslipper (Leica Microsystems). H/E stained histological sections of the visceral 

mass and gill tissue were examined under a BX51 light microscope (Olympus, Tokyo, 

Japan).  

Metal accumulation in tissues: autometallography 

Autometallographical staining was applied on paraffin sections of visceral mass of ten 

individuals per experimental group sampled after 21 days of exposure using a method 

modified from Soto et al. (1998). Briefly, sections were dewaxed, hydrated in a graded 

series of ethanol and left until they were completely dry. Then, sections were covered 

with the photographic emulsion (Ilford nuclear emulsion L4, Norderstdedt, Germany) 

and left in total darkness for 30 min. Reaction was developed in the developer bath 

(1:4.5 dilution in deionized water of B&W Negative developer Tetenal, Norderstdedt, 

Germany) for 15 min and, then, rinsed in the stop bath (1% solution of acetic acid, 

Panreac, Barcelona, Spain) for 1 min. Sections were fixed in a 10% solution in deionized 

water of B&W Film/Paper Fixer AGFA (Mortsel, Belgium) for 10 min. Finally, sections 

were washed in deionized water and mounted in Kaiser’s glycerine gelatine (Merck, 

Darmstadt, Germany). Once the slides were dried, the presence of black silver deposits 

(BSDs) indicating the presence of metals in the tissue was semiquantitatively analyzed 

under an Olympus BX51 light microscope at a magnification of 20x using the criteria 

previously published: (-) Tissue without presence of BSDs; (+) presence of 

homogeneously distributed small BSDs; (++) presence of homogeneously distributed 

small BSDs plus the presence of agglomerations of BSDs of larger size and (+++) tissues 

with a greater presence of homogeneously distributed BSDs plus the presence of 

abundant large deposits (Vicario-Parés et al., 2014).  
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Tissue localization of silver: field emission scanning electron microscopy (FESEM) 

Paraffin sections of gill and visceral mass of organisms exposed to Ag NPs for 21 days 

and of the control fish were mounted on aluminium SEM stubs. Sections were 

dewaxed in Bio-Clear (Bio-Optica, Milan, Italy) and left to the air until the liquid excess 

was evaporated. Then, samples were analyzed in a Field Emission Microscope Zeiss 

Auriga 405, 1 nm nominal resolution (Oberkochen, Germany) equipped with a Bruker 

Quantax energy dispersive X-ray spectroscope (EDS) (Energy Resolution: 123 eV Kα of 

the Mn). Samples were observed under high vacuum (10-5- 10-6 mbar) at variable kV.  

Subcellular localization of Ag NPs: transmission electron microscopy (TEM) and X-ray 

analysis 

Gills and liver from control fish and fish exposed to Ag NPs for 3 and 21 days were 

dissected and fixed for 1 h at 4 ºC in sodium cacodilate (Sigma-Aldrich) buffer 0.1 M, 

pH 7.2, containing 2.5% glutaraldehyde (Panreac). Then, samples were washed twice 

for 15 min in sodium cacodilate buffer, postfixed for 1 h in 1% osmium tetroxide 

(Sigma-Aldrich) with 1.5% potassium ferrocianure (Sigma-Aldrich) containing sodium 

cacodilate buffer 0.1 M and washed twice for 30 min in deionized H2O. Then, samples 

were dehydrated in a graded series of ethanol, cleared twice for 10 min with 

propylene (Sigma-Aldrich) and embedded for several hours and, then, overnight in a 

mixture (1:1) of propylene and Epon resin (Sigma-Aldrich) prepared according 

manufacturer’s instructions. Finally, samples were embedded in Epon resin for several 

hours and encapsulated for polymerization for 48 h at 60 ºC. 

Semithin sections of 1500 nm in thickness were cut using a Reichert Ultracut S 

ultramicrotome (Leica Microsystems), stained with 1% tolulidine blue (Sigma-Aldrich) 

and observed under a light microscope to determine the presence of the tissues of 

interest. Ultrathin sections of 50 nm in thickness were then cut from selected blocks. 

Sections were picked up in 150 mesh copper grids, contrasted with 1% uranyl acetate 

(Fluka, Steinheim, Germany) for 3 min and with 0.3% lead citrate (Fluka) for 4 min and, 

finally, examined and photographed under a Hitachi HT7700 transmission electron 

microscope (Tokyo, Japan) at 60 kV. Selected samples with electrodense structures 

resembling NPs were analyzed by X-ray microanalysis, with the scanning-TEM module 
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of the Auriga 405 microscope in order to corroborate whether observed structures 

corresponded to Ag NPs. Sections intended for X-ray microanalysis were not 

contrasted with uranyl acetate and lead citrate in order to minimize interferences. 

Oxidative stress: Western Blot analysis of ubiquitin and carbonylated actin 

The visceral mass of 5 fish per experimental group sampled after 3 and 21 days of 

exposure and at 6 months post-exposure was dissected out, frozen immediately in 

liquid nitrogen and stored at -80 ºC for quantification of immunoreactive bands 

corresponding to ubiquitin and carbonylated actin using a method modified from 

McDonagh and Sheehan (2006). Each sample was homogenized in 10 mM Tris-HCl pH 

7.2 containing 1 mM EDTA and 2% protease inhibitor cocktail (Sigma-Aldrich). Extracts 

were centrifuged at 2500 rpm (Precellys 24-Dual homogenizer, Bertin Technologies, 

Montigny le Bretonneux, France) for 5 min and the resulted aqueous phase was 

removed. Protein concentration was determined by measuring the optical density at 

280 nm (Harris, 1989) and adjusted to 2 µg/µL with the buffer used previously. 

Samples were mixed 1:1 with Laemmli buffer (62.5 mM Tris-HCl, pH 6.8, 8% sodium 

dodecyl sulfate, 0.1 M dithiothreitol, 30% glycerol and 2 mg/mL bromophenol blue) in 

order to obtain a final concentration of 1 µg protein/µL.  

One-dimensional electrophoresis was performed on 12.5% polyacrylamide gels 

containing sodium dodecyl sulfate. 10 µL of sample or 5 µL of Precision Plus Protein 

Standards Dual-colour (Bio-Rad, Hercules, CA, USA) were loaded in each lane. The 

electrophoresis was run at 200 V for 40 min (Power PacTM, Bio-Rad). Separated 

proteins were transferred to a PVDF membrane (Bio-Rad) by a trans-blot turbo 

transfer system (Bio-Rad) for 30 min up to 1 A and 25 V. For ubiquitin detection, the 

membrane was blocked in phosphate buffered saline (PBS) containing 1% of bovine 

serum albumin (BSA) for 1 h and washed in PBS. Then, it was incubated for 1 h at room 

temperature with the polyclonal rabbit anti-ubiquitin antibody (Dako, Glostrup, 

Denmark) diluted 1:1000 in PBS, followed by several washes in PBS and incubation for 

1 h at room temperature with the secondary antibody (peroxidase-conjugated anti 

rabbit Ig G, whole molecule, Sigma-Aldrich) diluted 1:2000 in PBS. Finally, the 

membrane was washed several times in PBS. For the determination of protein 
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carbonylation level, samples were derivatized with 2,4-dinitrophenylhydrazine (DNP, 

Sigma-Aldrich) following the method by Conrad et al. (2001) and, then, processed as 

described above. The rabbit anti-DNP antibody (Sigma-Aldrich) was diluted 1:1000 in 

PBS and the secondary antibody was diluted 1:10000 in PBS. Peroxidase activity was 

visualized using an enhanced chemiluminescence kit (Thermo Scientific, Illinois, USA). 

Photographic films were scanned using a GS-800 calibrated densitometer (Bio-Rad). 

The average optical density of the immunoreactive bands corresponding to free 

ubiquitin and carbonylated actin was quantified using the Quantity One image analysis 

software (v. 4.6.5, Bio-Rad). All the data were transformed into percentages respect to 

the average value of the control group at 3 days. 

Genotoxicity: Micronuclei frequency  

Blood samples of ten individuals per experimental group were collected after 3 and 21 

days of exposure and at 6 months post-exposure by tail cutting and direct blood smear 

on clean microscope glass slides. Blood smears were left to air-dry and, then, fixed for 

15 min in cold methanol. Once again, slides were left to air-dry and smears were 

stained with 6% Giemsa (Sigma-Aldrich) for 15 min. Afterwards, slides were rinsed in 

tap water and left to air-dry overnight and mounted in DPX (Sigma-Aldrich). 2000 

erythrocytes were scored per individual fish under a Olympus BX51 light microscope at 

a magnification of 100x. The criteria used to determine the presence of micronuclei 

was: size not bigger than a 1/3 diameter of the main nucleus, same texture and colour, 

clearly separated from the main nucleus and with oval or circular shape (Baez-Ramirez 

and Prieto-García, 2005). Micronuclei frequency was expressed in ‰.  

General health status: Lysosomal membrane stability (LMS)  

The visceral mass of 5 individuals per experimental group was dissected after 3 and 21 

days of exposure and at 6 months post-exposure, embedded in Cryo-M-Bed (Jung, 

Heidelberg, Germany) and frozen in liquid nitrogen. Frozen tissue sections (10 μm) 

were obtained in a CM3050S cryotome (Leica Microsystems) at a cabinet temperature 

of -24 ºC. The determination of LMS was based on the method used by Bröeg et al. 

(1999) as the time of acid labilization treatment required to produce the maximum 
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staining intensity in hepatocyte lysosomes after demonstration of acid phosphatase 

activity. Time intervals used for acid labilization were 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40 

and 50 min according to Bilbao et al. (2010).  

Labilization period (LP) was determined under an Olympus BX51 light microscope as 

the maximal accumulation of reaction product associated with lysosomes (Bröeg et al., 

1999). Four determinations were made for each individual liver by dividing each 

section in the acid labilization sequence into 4 approximately equal segments. A mean 

value was then obtained for each section, corresponding to an individual fish. 

Statistical analyses  

Statistical analyses were performed using the SPSS statistical package v22.0 (SPSS Inc, 

Microsoft Co, WA, USA). Previous to the analysis, data were tested for normality 

(Kolmogorov-Smirnov test) and homogeneity of variances (Levene’s test). Data on 

silver content followed a Normal distribution and were analyzed by one way ANOVA 

followed by the Duncan post-hoc test. For LMS, western blot and micronuclei 

frequency data, the non-parametric Kruskal-Wallis test was applied followed by the 

Dunn’s post hoc test. For prevalence of histopathological alterations, Fisher’s exact 

test was applied. In all cases, significance was established at p<0.05. 

RESULTS 

Metal bioaccumulation in whole organisms 

Accumulation of silver in the whole body of fish compared to the control fish was 

detected after 21 days of exposure of adult zebrafish to both forms of silver, Ag NPs or 

ionic silver, being the increase of silver content statistically significant only after the 

exposure to ionic silver (Fig 1). High variability in silver content between individuals 

was found in fish exposed to Ag NPs. A bioaccumulation factor of 88 was calculated 

after the exposure to Ag NPs and of 101 after exposure to ionic silver. 
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Figure 1.- Box-plot for silver accumulation (µg Ag/g dry weight) in whole fish tissue after 21 days of 
exposure. Boxes represent the percentages data value in between the 25th and the 75th percentile, 
median indicated by a line in the middle of the box. Whiskers are the data values in up to the 5th 
percentile and 95th percentile. Outliers are represented by circles. Different letters indicate statistically 
significant differences (p<0.05) according to the Duncan’s test after one way ANOVA. 

Metal accumulation in tissues 

Presence of BSDs was not observed in tissues of control fish, neither in the intestine 

(Fig 2A) nor in the liver (Fig 2B). In individuals exposed to Ag NPs, the presence of BSDs 

was found in the intestinal epithelium (Fig 2C), with especially intense staining in the 

cytoplasm of enterocytes and in the microvilli. The cytoplasm of the secretory goblet 

cells was lack of BSDs. No noticeable staining was detected in the subjacent connective 

tissue. In the liver, more discrete and uniformly distributed BSDs than in the intestine 

were observed in hepatocytes after exposure to Ag NPs (Fig 2D). After the exposure to 

ionic silver, 60% of the samples presented discrete BSDs into the secretory vesicles of 

the goblet cells of the intestine (Fig 2E). Moreover, in the 30% of the samples, the 

intestinal epithelium showed a similar staining to that observed after exposure to NPs. 

In the case of the liver, a general staining in all the tissue was observed with a high 

number of BSDs (Fig 2F). The results of the semi-quantitative analysis of the presence 

of BSDs indicating metal accumulation in intestine and liver are shown in Table 1. The 

most intensely stained tissue after the exposure of both forms of the metal was the 

intestine of individuals exposed to Ag NPs, followed by the liver of individuals exposed 

to the ionic silver (Table 1). 
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Figure 2.- Micrographs of paraffin sections of the visceral mass of adult zebrafish after 
autometallographical staining. (A) Intestine of control adult zebrafish. (B) Liver of control adult zebrafish. 
(C) Intestine of adult zebrafish exposed for 21 days to Ag NPs. (D) Liver of adult zebrafish exposed for 21 
days to Ag NPs (E) intestine of adult zebrafish exposed for 21 days to ionic silver. (F) Liver of adult 
zebrafish exposed for 21 days to ionic silver. Scale bars in A, C, E 100 µm and in B, D, F 50 µm. 
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Table 1.- Semiquantification of BSDs in the intestine and liver of adult zebrafish after 21 days of 
exposure.  

Organism 
Control Ag NPs Ionic silver 

Intestine Liver Intestine Liver Intestine Liver 

1 - - ++ ++ + ++ 

2 - - + + ++ + 

3 NT NT ++ ++ ++ ++ 

4 - - + + + NT 

5 - - +++ ++ ++ ++ 

6 NT NT +++ ++ + ++ 

7 - - NT + + ++ 

8 - - +++ NT + ++ 

9 - - ++ + ++ ++ 

10 - - + - ++ NT 

Average number of + 0 0 2 1.3 1.5 1.9 

Semiquantification criteria according to Vicario-Parés et al. (2014): (-) Tissue without presence of BSDs; 
(+) presence of homogeneously distributed small BSDs; (++) presence of homogeneously distributed 
small BSDs plus the presence of agglomerations of BSDs of larger size and (+++) tissues with a greater 
presence of homogeneously distributed BSDs plus the presence of abundant large deposits; NT: No 
specific tissue in the sample. 

Samples of gills (Fig 3A), liver (Fig 3B) and intestine (Fig 3C) were also analyzed by 

FESEM to specifically detect the presence of silver into the organs. After the X-ray 

analysis of the paraffin sections, a spectrum showing the elementary composition of 

each sample was obtained. The spectra of samples of gill (Fig 3D), liver (Fig 3E) and 

intestine (Fig 3F) of the control group did not show peaks in the energy range 

corresponding to silver. The analysis of the samples corresponding to fish exposed to 

Ag NPs revealed the presence of a peak at 2,9 KeV in the energy range corresponding 

to silver. This peak was detected in the gill (Fig 3G, J), liver (Fig 3H, K) and intestine (Fig 

3I, L) samples. The energy dispersive spectroscope spectrum confirms that these 

organs are target for silver accumulation after the waterborne exposure to Ag NPs. 
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Figure 3.- Silver detection in zebrafish tissues by FESEM. Micrographs of paraffin sections of gills (A), 
liver (B) and intestine (C) of fish exposed to Ag NPs. Scale bar: 10 µm. Spectra obtained after X-ray 
analysis of gills (D), liver (E) and intestine (F) of control zebrafish. Spectra obtained after X-ray analysis of 
gills (G), liver (H) and intestine (I) of zebrafish exposed to Ag NPs for 21 days. Detailed view of energy 
range corresponding to silver in the spectra for gills (J), liver (K) and intestine (L) of zebrafish exposed to 
Ag NPs for 21 days. 

Subcellular localization of Ag NPs 

The presence of Ag NPs in gill and liver cells and their intracellular distribution were 

studied through TEM. Electrodense structures resembling NPs were analyzed by X-ray 

microanalysis in order to corroborate their chemical composition.  

Gill cells (Fig 4A) of control fish presented well preserved cell structure, with intact cell 

membranes and well structured organelles. The different gill cell types of individuals 

exposed to Ag NPs did not present any histological damage (Fig 4B). Regarding the 

presence of NPs in the gill, individual Ag NPs were observed in the cytoplasm of 

epithelial cells from the secondary lamellae after 3 days of exposure (Fig 4C). The 
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chemical composition of the electrondense structures identified as NPs was 

corroborated as silver after the X-ray analysis (Fig 4D).  

Hepatocytes of control fish also presented intact cell membrane and well structured 

organelles (Fig 5A), while hepatocytes of zebrafish exposed to Ag NPs presented an 

increased presence of lipid droplets and glycogen (Fig 5B). In liver, individual Ag NPs 

were observed in the nucleus (Fig 5C) and in mitochondria (Fig 5D) of hepatocytes 

after 3 and 21 days of exposure. The chemical composition of the electrondense 

structures identified as Ag NPs was corroborated as silver after the X-ray analysis (Fig 

5E). 

 
Figure 4.- Micrographs of ultrathin sections of zebrafish gill. (A) Secondary lamella of the gill from a 
control zebrafish. (B) Secondary lamella of the gill from a zebrafish exposed to Ag NPs for 21 days. (C) 
Cytoplasm of an epithelial cell in the secondary lamellae of the gill from a zebrafish exposed to Ag NPs 
for 3 days, Ag NPs are visible as electrondense structures. (D) X-ray energy spectrum confirming the 
presence of silver in the electron-dense particles shown in C. Pillar cell (pc), blood cell (bc), epithelial cell 
(ec), entothelial cell (enc). Scale bar: (A) 1.5 µm, (B) 2 µm, and (C) 200 nm. 
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Figure 5.- Micrographs of ultrathin sections of zebrafish liver: (A) Hepatocyte of a control zebrafish. (B) 
Hepatocyte of a zebrafish exposed to Ag NPs. (C) Nucleus of a hepatocyte of a zebrafish exposed to Ag 
NPs for 21 days, Ag NPs are visible as electrondense structures. (D) Mitochondria of a hepatocyte of a 
zebrafish exposed to Ag NPs for 3 days, Ag NPs are visible as electrondense structures. (E) X-rat energy 
spectrum confirming the presence of silver in the electron-dense particles shown in C. Nucleus (n), 
mitochondria (mc), rough endoplasmic reticulum (rer), lipid droplet (l). Scale bar: (A) 1 µm, (B) 2 µm and 
(C, D) 100 nm. 

Oxidative stress 

With the antibody anti-ubiquitin used in this study, only one immunoreactivite band at 

a molecular weight of 8 kD was detected (Fig 6A). This band corresponded to free 

ubiquitin used as a reservoir to provide the cell with monomeric ubiquitin when is 
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needed. Moreover, protein carbonylation in liver after electrophoretical separations of 

proteins was analyzed. Different bands corresponding to several carbonylation 

proteins appeared in the blot (Fig 6B). Thus, for quantification purposes the 

immunoreactive band at a molecular weight of 40 kD corresponding to actin was 

selected, as actin has been described as a target protein for carbonylation.  

 

Figure 6.- Immunoreactive band for (A) ubiquitin free after 21 days of exposure and (B) 

carbonylated actin after 21 days of exposure.   

In both cases, no significant effects were observed when the groups exposed to Ag NPs 

or to ionic silver were compared with the control group (Fig 7). Nevertheless, a 

significant increase in the level of free ubiquitin was recorded in fish after 3 days of 

exposure to Ag NPs, compared to fish exposed to ionic silver (Fig 7A). For actin 

carbonylation, a significant decrease was observed at the post-exposure period in the 

group exposed to Ag NPs respect to the fish exposed to ionic silver. 

Genotoxicity 

Exposure of zebrafish to 10 µg Ag/L of Ag NPs or to ionic silver did not cause genotoxic 

effects at any of the measured time points, according to the micronuclei test 

performed in zebrafish erythrocytes. Only one micronucleated cell was observed in 

one individual fish after the exposure to Ag NPs for 3 days (data not shown). 
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Figure 7.- Relative quantification of the optical density of the immunoreactive band for (A) free ubiquitin 
and (B) carbonylated actin. Data are shown as percentages respect to the average value of the control 
group at 3 days. Different letters indicate statistically significant differences (p<0.05) within each 
sampling time according to the Kruskall-Wallis test followed by the post hoc Dunns test. a.u.: arbitrary 
units. 

Lysosomal membrane stability 

The general health status of the fish was studied through the LMS test. Although not 

significantly, a decrease in the mean value of the LP was observed after 3 and 21 days 

of exposure to Ag NPs, being noticeable the high variability in the LMS recorded in 

these groups. Exposure to ionic silver for 3 days also caused a slight decrease of the LP 

(Fig 8). After 21 days, a small increase in the LP was measured in fish exposed to ionic 

silver, resulting in a significant difference respect to fish exposed to Ag NPs. At the end 

of the post-exposure period, a significant decrease in the LP was observed in fish 

previously exposed to Ag NPs. Desestabilization of the lysosomal membrane was 

observed from the first time measured and, thus, a LP value of zero was calculated for 

this group. 

0

20

40

60

80

100

120

140

160

3 d 21 d 6 m

%
 O

pt
ic

al
 d

en
si

ty
 (a

.u
.)

A)

B)

0

20

40

60

80

100

120

140

3 d 21 d 6 m

%
 O

pt
ic

al
 d

en
si

ty
 (a

.u
.)

  

bab
a

b

ab

a

   

 
 

 

Control Ag NPs Ionic silver

127



Chapter II 

 

 
Figure 8.- Labilization period (in minutes) of the lysosomal membrane in liver cells. Different letters 
indicate statistically significant differences (p<0.05) within each sampling time according to the Kruskall-
Wallis test followed by the post hoc Dunns test. # At 6 months, fish previously exposed to Ag NPs 
showed desestabilization of the lysosomal membrane from the first time point measured.  

Histopathological analysis of liver and gills 

In liver, histopathological alterations were neither observed after 21 days of exposure 

to Ag NPs or to ionic silver nor at the end of the post-exposure period. 

In the gills, different pathological conditions, such as aneurism, inflammation and 

fusion of the secondary lamellae and hyperplasia in cells of the primary lamellae, were 

observed in individuals exposed to both forms of silver. The prevalence of the 

histopathological alterations found in gills is shown in Table 2. Control fish showed in 

general a normal arquitecture of the gill (Fig 9A). At 21 days of experiment only one 

individual showed hyperplasia in the primary lamellae. At 6 months, the control group 

presented an increase in the prevalence of pathologies respect to those recorded at 21 

days, appearing some cases of hyperplasia, inflammation and aneurism. At 21 days of 

exposure to Ag NPs, all the individuals presented histopathological alterations; the 

prevalence of inflammation in secondary lamellae of these individuals was significantly 

higher than in the control group. Other pathologies appearing in the individuals were 

aneurisms (in the 30% of the individuals), hyperplasia (in the 20% of the organisms) 

(Fig 9B) and fusion of the secondary lamellae (in the 10% of the individuals). Exposure 

to ionic silver for 21 days also caused severe histopathological alterations. All 

individuals presented inflammation in secondary lamellae (Fig 9C) and 30% of them 

also showed aneurisms. 60% of the analyzed fish showed hyperplasia of the secondary 

lamellae, being this prevalence higher than after the exposure to Ag NPs. At the post-
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exposure period, same histopathological alterations were observed in the previously 

exposed fish (Fig 9D), although always in a lower prevalence than after 21 days of 

exposure.  

Table 2.- Prevalence of histopathological alterations in gills of zebrafish. Data are shown in percentages. 
Asterisks indicate statistically significant differences (p<0.05) between control and exposed groups 
according to the Fisher’s exact test.  

  
n 

 Secondary lamellae  Primary 
lamellae  

Total 
   Inflammation Fusion Aneurism  Hyperplasia  

Control 
21 d 8  0 0 0  12.5  12.5 

6 m 8  12.5 0 12.5  25  37.5 

Ag NPs 
21 d 10  90* 10 30  20  100 

6 m 8  50 0 25  12.5  50 

Ionic 
silver 

21 d 10  100* 0 30  60  100 

6 m 9  22.5 0 0  44.45  66.7 

n: number of individuals per experimental group (in some cases n < 10 because the gill tissue was not 
always present in the histological sections used for the histological analysis).  

 
Figure 9.- Micrographs of paraffin embedded and hematoxylin/eosin stained section of zebrafish gills. 
(A) Gill of a control zebrafish showing normal morphology. (B) Gill of a zebrafish exposed to Ag NPs for 
21 days, showing aneurisms (stars) in the secondary lamellae and hyperplasia (arrow) in the primary 
lamellae. (C) Gill of a zebrafish exposed to ionic silver for 21 days, showing aneurisms (stars) and 
inflammation (asterisks) of the secondary lamellae and hyperplasia (arrow) in the primary lamellae. (D) 
Gill of a zebrafish at 6 months post-exposure, previously exposed to Ag NPs for 21 days, showing 
aneurisms (stars) and inflammation (asterisks) in the secondary lamellae and hyperplasia (arrow) in the 
primary lamellae Scale bar: 50 µm. 
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DISCUSSION 

In the present study, adult zebrafish were exposed to a sublethal concentration (10 µg 

Ag/L) of maltose-coated Ag NPs of 20 nm, as well as to the same nominal 

concentration of ionic silver for 21 days. After exposure, fish were maintained in clean 

water up to 6 months in order to detect potential long-term effects derived from the 

previous exposure or the recovery of recorded alterations. Different endpoints, 

ranging from silver accumulation in the organism to cellular effects in different organs, 

were measured in order to assess the effects provoked by the exposure to both forms 

of silver. Overall, our results indicate that silver was accumulated after 21 days of 

exposure to both, Ag NPs and ionic silver. Silver was specifically detected in gills, liver 

and intestine. Relevant cellular effects were not observed in the liver after the 

exposure to both forms of silver in the assayed conditions. Nevertheless, the 

histopathological analysis of gills revealed several severe histopathological alterations, 

such as inflammation and aneurisms in the secondary lamellae and hyperplasia in the 

primary lamellae, indicating that gills are the primary target organ for silver toxicity 

after waterborne exposure to low concentrations of silver. 

According to the chemical analysis, exposure to both forms of silver, Ag NPs and ionic 

silver, for 21 days resulted in silver accumulation in the whole organism, with 

bioaccumulation factors of 88 and 101, respectively. In adult zebrafish exposed for 28 

days to different concentrations of Ag NPs (from 5 to 50 µg/L), a dose dependent 

accumulation of silver in the gills and eviscerated carcass of the organisms was 

reported (Griffitt et al., 2013). At similar experimental conditions to those assayed in 

the present study (21 days of exposure to 15 µg Ag/L), the accumulation measured by 

these authors in gills and eviscerated carcass was lower than in the present study, 

where the whole organism was used to measure the accumulation. Some studies have 

reported that organs as liver and intestine of fish can accumulate more silver after the 

exposure to Ag NPs, than gills (Gaiser et al., 2012; Scown et al., 2010) and, therefore, 

the higher concentration measured in our study may be due to the higher Ag 

concentration accumulated in other organs.  
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Metal accumulation in liver and intestine was specifically observed through 

autometallography. This technique has been applied in zebrafish embryos exposed for 

5 days to CuO and ZnO NPs and their ionic counterparts, detecting metal accumulation 

in different organs, such as brain, gills, liver, yolk sac and tail (Vicario-Parés et al., 

2014). The analysis showed higher concentration of metals in the intestine than in the 

liver of fish exposed to Ag NPs, being specially marked in the cytoplasm of enterocytes 

and in the microvilli. This observation suggests that the digestive tract is likely a route 

of metal entrance into the organisms after waterborne exposure to the Ag NPs. 

Previous studies have also demonstrated that, along with the gills, the intestine is one 

of the main entrances of metals in the organism (Gaiser et al., 2012; Schirmer et al., 

2013). Osborne et al. (2015) have shown that waterborne exposure of zebrafish to 

citrate-coated Ag NPs of 20 and of 110 nm for 4 days provoked differential 

pathological alterations in the intestine. The intestine of fish exposed to the smaller Ag 

NPs presented an increase in the number of goblet cells in the epithelial layer, some 

reduction in microvilli and partial damage to the lamina propria. The intestine of 

zebrafish exposed to the larger Ag NP presented evidence of vacuolization and partial 

lamina propria damage with abundant microvilli. Moreover, the intestine of fish 

exposed to ionic silver showed almost obliteration of the lamina propria, as results of 

inflammatory infiltrates, epithelial vacuolization and loss of microvilli. After 

autometallographical staining, these authors detected Ag NPs in the basolateral 

membrane of the intestinal mucosa, especially after the exposure to citrate-coated Ag 

NPs of 20 nm. Nevertheless, silver staining occurred on the apical membrane of the 

intestinal epithelial cells after the exposure to the largest NPs and to ionic silver. They 

indicated that the particle size and surface area could be responsible for a larger 

number of Ag NPs of 110 nm adhered to the microvilli. Small NPs could be more 

rapidly taken up by endocytosis in the epithelial layer than larger NPs, thereby acting 

as a delivery vehicle for increased Ag deposition in the basolateral membrane of 

intestinal tissues. In our study, most of the BSDs were also detected after the exposure 

to Ag NPs in the apical membrane. During the characterization process performed with 

the Ag NPs used herein (Katsumiti et al., 2015) the formation of NP aggregates was 

detected, indicating that the behavior of these aggregates may be similar to the 

behavior of the largest Ag NPs used during their work. After the aqueous exposure of 
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rainbow trout to TiO2 NPs, histopathological alterations of the intestine as erosion of 

the villi, fusion and vacuolization of the mucosa were observed, indicating the 

entrance of NPs into the intestine (Federici et al., 2007). The intestine has also been 

reported as a Novel NP excretion pathway in zebrafish after activated carbon NP (30-

200 nm) injection directly into the yolk sac (Zhao et al., 2014). Nevertheless, after the 

exposure to ionic silver a higher accumulation of metals was detected in liver than in 

the intestine. In the intestine of zebrafish exposed to ionic silver, the largest number of 

BSDs was detected into the secretory vesicles of the goblet cells, where the mucus is 

produced and promotes the elimination of gut contents and, therefore, the 

accumulation of metal was lower than after the exposure to Ag NPs.  

The analysis carried out by FESEM in gills, liver and intestine corroborated the 

presence of silver in these organs after the exposure to Ag NPs, since a peak was 

detected at 2,9 KeV, a energy value corresponding to silver. These results further 

supported that these organs are target organs for silver accumulation after the 

exposure to Ag NPs, but whether the accumulated silver correspond to soluble silver or 

Ag NP was unresolved. By TEM, Ag NPs were observed in the cytoplasm of cells of the 

secondary lamellae, as well as in the nucleus and mitochondria of the hepatocytes. The 

entrance of Ag NPs into the nucleus and mitochondria of the cell was also detected 

after in vitro exposure of human cells to Ag NPs (6-20 nm), suggesting their direct 

involvement in the mitochondrial toxicity and DNA damage (Asharani et al., 2009). 

Accordingly, Krishnaraj et al. (2016) detected the presence of Ag NPs in various parts of 

the cytoplasm in particular between nucleus and plasma membrane in liver cells after 

the in vivo exposure for 14 days of adult zebrafish to 0.071 mg/L of Ag NPs of 24.1 nm. 

Also, in studies with zebrafish exposed to a high concentration (120 mg/L) of Ag NPs 

for 24 h, Ag NPs have been detected in the cytoplasm and in the nuclear membrane of 

hepatocytes of adult zebrafish (Choi et al., 2010). Moreover, in zebrafish embryos 

exposed to 25 mg/L for 48 h, Ag NPs were observed mainly in the nucleus of cells near 

the trunk and the tail, as well as in cells of the heart and brain, showing a higher 

affinity for the nucleus than for the cytoplasm of the cells (Asharani et al., 2008).  

Oxidative stress has been suggested as one of the main mechanisms of toxicity of Ag 

NPs, being proteins target biomolecules of oxidative damage (McShan et al., 2014; Wei 
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et al., 2015). Thus, in this work we investigated the level of carbonylated proteins, 

measuring carbonylation of actin as target protein (McDonagh et al., 2005), and the 

level of free ubiquitin (Mott et al., 2001). Although the ubiquitination of proteins has 

been mainly used as an indicator of oxidative stress along with the carbonylation of 

proteins (McDonagh and Sheehan, 2006; Chora et al., 2008; Tedesco et al., 2008), 

levels of free ubiquitin are also measured as oxidative stress indicator as it has been 

suggested that free ubiquitin acts as a reservoir that can rapidly provide the cell with 

monomeric ubiquitin when is needed, such as under stress conditions (Kimura et al., 

2009). At the experimental conditions of this study, no significant effects were 

observed in exposed fish in comparison with the control fish for these two parameters. 

The exposure concentration used (10 µg Ag/L) was much lower than the concentration 

reported in other studies where oxidative stress has been detected. Exposure of adult 

zebrafish to a high concentration (30 and 120 mg/L) of Ag NPs for a short period (24 

hours) provoked a significant increase of reduced glutathione content, which was 

related to a physiological response against the oxidative damage caused by the 

exposure to Ag NPs (Choi et al., 2010). The exposure of carps for 96 h to lower 

concentrations (0.1 and 0.2 mg Ag/L) of Ag NPs than the concentration of the previous 

study provoked a significant increase in glutathione-S-transferase activity and a 

decrease in CAT activity (Lee et al., 2012). Also, in medaka liver the exposure to Ag NPs 

(0.05-0.5 mg/L) for 14 days provoked a dose-dependent decrease of SOD and CAT 

suggesting an excessive consumption of these antioxidants in the liver (Wu and Zhou, 

2013). In the present study, despite the longer exposure period (21 days) compared to 

the previously mentioned studies, the low concentration used for exposure does not 

seem to provoke a significant oxidative stress resulting in protein damage. Accordingly, 

genotoxic effects were not detected by the micronuclei test in erythrocytes. The 

frequency of micronuclei in exposed fish was not increased in comparison with control 

fish. Similarly, after the exposure to CuO NPs and ionic copper (10 µg Cu/L) for 21 days, 

MN frequency was not increased in zebrafish erythrocytes (Vicario-Parés, 2016). 

Apparently, much higher metal concentrations are needed to induce MN formation in 

zebrafish erythrocytes. Krishnaraj et al. (2016) reported a significant increase in the 

frequency of MN and nuclear abnormalities after exposure for 14 days to 0.071 mg/L 

of Ag NPs (24.1 nm). Therefore, other more sensitive biomarkers should be considered 
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to analyze the effect of Ag NPs at environmentally relevant concentrations before 

genotoxicity can be discarded as a potential deleterious effect of fish exposure to Ag 

NPs. For instance, random amplified polymorphic DNA has been suggested to replace 

the MN test at low relevant concentrations of metals (Cambier et al., 2010). 

Although we have not found NPs in the endolysosomal compartment during the 

ultrastructural analysis of gill and liver samples, lysosomes have been described as a 

target organelle for NPs (De Matteis., 2015). Destabilization of the hepatic lysosomal 

membrane provoked by the exposure of zebrafish to 10 µg Cu/L of CuO NPs for 3 and 

21 days have been previously reported (Vicario-Parés, 2016). In the present study, at 

similar experimental conditions, no significant differences in the time necessary to 

desestabilize the lysosomal membrane were observed in fish exposed to Ag NPs. Only 

at 6 months post-exposure, fish previously exposed to Ag NPs showed a significant 

decrease in the labilization period of hepatic lysosomal membrane.  

After 21 days of exposure to both forms of silver, some histopathological alterations, 

such as aneurism and inflammation of the secondary lamella, and hyperplasia in cells 

of the primary lamella were observed in the gills. According to Richmonds and Dutta 

(1989), gill pathologies are divided in two groups: (1) the direct deleterious effects of 

the irritants and (2) the defense responses of the fish. The inflammation and fusion of 

the lamellae have been associated to the protection of the gill against the 

contaminants and gill hyperplasia as a defensive mechanism leading to a decrease in 

the respiratory surface (Cengiz and Unlu, 2006). Despite all the organisms exposed for 

21 days to both forms of silver presented any pathological alteration, the prevalence of 

pathologies was higher in individuals exposed to ionic silver than in fish exposed to Ag 

NPs. In previous studies with adult zebrafish, no pathologies in gills were observed 

after the exposure for 48 h to a much higher concentration (1 mg/L) of Ag NPs (Griffitt 

et al., 2009). Nevertheless, they observed a significant increase in the thickness of the 

filaments of the secondary lamella after the exposure to ionic silver at the 

concentration present in the NP suspension, suggesting that the NP size must inhibit or 

prevent the morphological changes produced by the ionic silver exposure. Similar 

results were also obtained after a longer exposure (28 days) to a lower concentration 

of Ag NPs (50 µg/L) (Griffitt et al., 2013). Accordingly, histopathological alterations in 
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gills were not detected after the exposure to Ag NPs (10 and 35 nm) at 10 and 100 µg/L 

for 10 days (Scown et al., 2010). Nevertheless, during the same experimental period, 

slight damage with deformation of the secondary lamellae were detected after the 

exposure to ionic silver (0.1 µg/L). Differences between both exposures were related 

to the dissolution of NPs in very small zero-valent silver NPs, which are less toxic than 

silver ions (Scown et al., 2010). On the contrary, Mansouri and Johari (2016) detected 

several histopathological alterations in gills of adult zebrafish exposed for 4 days to a 

range of concentrations (1.5 to 15 µg/L) of Ag NPs (63.45 nm). The effects were dose-

dependent, being the greatest damage detected at the highest concentration. Also, 

histopathological alterations in gills of zebrafish exposed to a high concentration (1 

mg/L) of citrate-coated Ag NPs (20 and 110 nm) or to ionic silver have been reported 

by Osborne et al. (2015). After the exposure to Ag NPs for 4 days, fusion, hyperplasia 

and inflammation of the secondary filaments were detected, especially after the 

exposure to the smallest NPs. Nevertheless, the highest toxic effect was observed in 

gills of zebrafish exposed to ionic silver with the most prominent inflammation and 

fusion of the secondary lamellae.  

Although silver accumulation was detected by autometallography and electron 

microscopy in the liver of organisms exposed to both forms of the metal, 

histopathological alterations were not observed. In accordance with our results, after 

the exposure to a much higher concentration of Ag NPs (30 and 120 mg/L) for a 

shorter time period (24 hours) liver pathology was neither recorded (Choi et al., 2010). 

Nevertheless, at ultrastructural level, some ultrastructural changes were observed in 

the hepatocytes of fish exposed to Ag NPs, as an increase of lipids droplets and 

glycogen. In accordance with this result, a significant effect in genes involved in 

glycogen production was detected in rainbow trout after the exposure to Ag NPs 

(Gagné et al., 2012).   

CONCLUSIONS 

Under the experimental conditions described herein, silver accumulation was observed 

in zebrafish after the exposure to both forms of silver, Ag NPs and ionic silver, being 

the gills, liver and the intestine target organs for accumulation. Moreover, the 
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presence of NPs in the cytoplasm of cells from the secondary lamella of gill and the 

histopathological alterations registered in this organ indicate that this is one of the 

main entrances of NPs in the organism. The intestine, where silver has been detected, 

has also to be considered as an important route of uptake, as NPs can easily attach to 

food particles. In the assayed conditions, no evident effects on hepatic lysosomes, 

oxidative stress or genotoxicity were found. Therefore, at the assayed concentration, 

close to environmentally relevant concentrations, Ag NP exposure may produce slight 

toxic effects in aquatic organisms. Nevertheless, in sites where this silver concentration 

can be found, such as water bodies receiving effluents of waste water treatment 

plants, many other contaminants will be present and combined effects should be 

considered. 

ACKNOWLEDGEMENTS  

The authors gratefully acknowledge to Prof. Rossi for the use of facilities of CNIS - 

Research Center for Nanotechnology applied to Engineering of Sapienza, Università 

Sapienza, Roma, section of Scanning Electron Microscopy and EDX microanalysis. This 

work has been funded by the EU 7th FP (Nanoretox project, CP-FP 214478-2), EU COST 

action ES1205 (STSM to JML), the Spanish MICINN and MINECO (NanoCancer project, 

CTM2009-13477 and NanoSilverOmics project, MAT2012-39372), the University of the 

Basque Country (PhD fellowship to UV and UFI 11/37) and Basque Government (grant 

to consolidated research groups, IT810-13). Technical and human support provided by 

SGIker (UPV/EHU, MICINN, GV/EJ, ESF) is gratefully acknowledged.  

REFERENCES 

Alvarado NE, Buxens A, Mazón LI, Marigómez I and Soto M. 2005. Cellular biomarkers of 
exposure and biological effect in hepatocytes of turbot (Scophtalmus maximus) 
exposed to Cd, Cu and Zn and after depuration. Aquatic Toxicology 74, 110-125. 

Alvarado NE, Quesada I, Hylland K, Marigómez I and Soto M. 2006. Quantitative changes in 
metallothionein expression in target cell-types in the gills of turbot (Scophtalmus 
maximus) exposed to Cd, Cu, Zn and after a depuration treatment. Aquatic Toxicology 
77, 64-77. 

Arulvasu C, Jennifer SM, Prabhu D and Chandhirasekar D. 2014. Toxicity effect of silver 
nanoparticles in brine shrimp Artemia. The Scientific World Journal 2014, 
dx.doi.org/10.1155/2014/256919. 

136



Chapter II 

 
Asharani PV, Mun GLK, Hande MP and Valiyaveettil S. 2009. Cytotoxicity and genotoxicity of 

silver nanoparticles in human cells. ACS Nano 3, 279-290. 
Asharani PV, Wu YL, Gong Z and Valiyaveettil. 2008. Toxicity of silver nanoparticles in zebrafish 

models. Nanotechnology 19, 255102-255110.  
Baez-Ramírez OA and Prieto-García F. 2005. Genotoxic damage in zebrafish (Danio rerio) by 

arsenic in waters from Zimapán, Hidalgo, México. Mutagenesis 20, 291-295. 
Benn TM and Westerhoff B. 2008. Nanoparticle silver released into water from commercially 

available sock fabrics. Environmental Science and Technologies 42, 4133-4139. 
Bilbao E, Raingeard D, Díaz de Cerio O, Ortiz-Zarragoitia M, Ruiz P, Izagirre U, Orbea A, 

Marigómez I, Cajaraville MP et al. 2010. Effects of exposure to Prestige-like heavy fuel 
oil and to perfluorooctane sulfonate on conventional biomarkers and target gene 
transcription in the thicklip grey mullet Chelon labrosus. Aquatic Toxicology 98, 282-
296. 

Bilberg L, Hovgaard MB, Besenbacher F and Baatrup E. 2012. In vivo toxicity of silver 
nanoparticles and silver ions in zebrafish (Danio rerio). Journal of Toxicology 2012, doi: 
10.1155/2012/293784. 

Bröeg K, Zander S, Diamant A, Körting W, Krüner G, Paperna I and Westernhagen HV. 1999. 
The use of fish metabolic, pathological and parasitological indices in pollution 
monitoring. Helgol Marine Research 53, 171-194. 

Cambier S, Gonzalez P, Durrieu G and Bourdineaud JP. 2010. Cadmium-induced genotoxicity in 
zebrafish at environmentally relevant doses. Ecotoxicology and Environmental Safety 
73, 312-319. 

Cengiz EI and Unlu E. 2006. Sublethal effects of commercial deltamethrin on the structure of 
the gill, liver and gut tissues of mosquitofish, Gambusia affinis: A microscopic study. 
Environmental Toxicology and Pharmacology 21, 246-253. 

Chio CP, Chen WY, Hsieh NH, Ling MP and Liao CM. 2012. Assessing the potential risks to 
zebrafish posed by environmentally relevant copper and silver nanoparticles. Science 
of the Total Environment 420, 111-118. 

Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J and Ryu DY. 2010. Induction of oxidative 
stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquatic 
Toxicology 100, 151-159. 

Chora S, McDonagh B, Sheehan D, Starita-Geribaldi M, Roméo M and Bebiano MJ. 2008. 
Ubiquitination and carbonylation as markers of oxidative-stress in Ruditapes 
decussates. Marine Environmental Research 66, 95-97.  

Conrad CC, Choi J, Malakowsky CA, Talent JM, Dai R, Marshall P and Gracy RW. 2001. 
Identification of protein carbonyls after two-dimensional electrophoresis. Proteomics 
1, 829–834.  

De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, Kshirsagar P, Sabella S, 
Bardi G et al. 2015. Negligible particle-specific toxicity mechanism of silver 
nanoparticles: The role of Ag+ ion release in the cytosol. Nanomedicine: 
Nanotechnology, Biology and Medicine 11, 731-739. 

Devi GP, Ahmed KBA, Varsha MKNS, Shrijha BS, Lal KKS, Anbazhagan V and Thiagarajan R. 
2015. Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquatic 
Toxicology 158, 149-156. 

137



Chapter II 

 
Domingues I, Oliveria R, Lourenço J and Grisolia CK. 2010. Biomarkers as a tool to assess 

effects of chromium (VI): Comparison of responses in zebrafish early life stages and 
adults. Comparative Biochemistry and Physiology, Part C 152, 338-345. 

Dumont E, Johnson AC, Keller VDJ and Williams RJ. 2015. Nano silver and nano zinc-oxide in 
surface waters – Exposure estimation for Europe at high spatial and temporal 
resolution. Environmental Pollution 196, 341-349. 

Fabrega J, Luoma SN, Tyler C, Galloway TS and Lead JR. 2011. Silver nanoparticles: Behaviour 
and effects in the aquatic environment. Environment International 37, 517-531. 

Farmen E, Mikkelsen HN, Evensen Ø, Enset J, Heier LS, Rosseland BO, Salbu B, Tollefsen KE and 
Oughton DH. 2011. Acute and sub-lethal effects in juvenile Atlantic salmon exposed to 
low µg/L concentrations of Ag nanoparticles. Aquatic Toxicology 108, 78-84. 

Federici G, Shaw BJ and Handy RD. 2007. Toxicity of titanium dioxide nanoparticles to rainbow 
trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological 
effects. Aquatic Toxicology 84, 414-430. 

Filho JdS, Matsubara EY, Franchi LP, Martins IP, Rivera LMR, Rosolen JM and Grisolia CK. 2014. 
Evaluation of carbon nanotubes network toxicity in zebrafish (Danio rerio) model. 
Environmental Research 134, 9-16. 

Fu PP, Xia Q, Hwang HM, Ray PC and Yu H. 2014. Mechanisms of nanotoxicity: Generation of 
reactive oxygen species. Journal of Food and Drug Analysis 22, 64-75. 

Gagné F, André C, Skirrow R, Gélinas M, Auclair J, Van Aggelen G, Turcotte P and Gagnon C. 
2012. Toxicity of silver nanoparticles to rainbow trout: A toxicogenomics approach. 
Chemosphere 89, 615-622. 

Gaiser BK, Fernandes TF, Jepson MA, Lead JR, Tyler CR, Baalousha M, Biswas A, Britton GJ, Cole 
Pa et al. 2012. Interspecies comparisons on the uptake and toxicity of silver and cerium 
dioxide nanoparticles. Environmental Toxicology and Chemistry 31, 144-154. 

Gomes T, Araújo O, Pereira R, Almeida AC, Cravo A and Bebianno MJ. 2013.  Genotoxicity of 
copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Marine 
Environmental Research 84, 51-59. 

Griffitt RJ, Hyndman K, Denslow ND and Barber DS. 2009. Comparison of molecular and 
histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological 
Sciences 107, 404-415.  

Griffitt RJ, Lavelle CM, Kane AS, Denslow ND and Barber DS. 2013. Chronic nanoparticulated 
silver exposure results in tissue accumulation and transcriptomic changes in zebrafish. 
Aquatic Toxicology 130-131, 192-200. 

Harris ELV. Protein purification methods: a practical approach. In Harris ELV and Sagal S (Eds.). 
IRL Press at Oxford University Press, Oxford, 317 pp.   

Hendren CO, Badireddy AR, Casman E and Wiesner MR. 2013. Modeling nanomaterials fate in 
wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). 
Science of the Total Environment 449, 418-425. 

Jimeno-Romero A. 2014. Cellular and subcellular distribution of metals and metal 
nanoparticles, biomarkers and histopathology in mussels, Mytilus galloprovincialis, 
exposed to engineered metal nanoparticles (ZnO, CdS, Ag, Au, and TiO2). PhD Thesis, 
University of Basque Country, 270 pp. 

138



Chapter II 

 
Katsumiti A, Gilliland D, Arostegui I and Cajaraville MP. 2015. Mechanisms of toxicity of Ag 

nanoparticles in comparison to bulk and ionic silver in mussel haemocytes and gill cells. 
Plos-One 10, doi:10.1371/journal.pone.0129039.   

Katuli KK, Massarsky A, Hadadi A and Pourmehran Z. 2014. Silver nanoparticles inhibit the gill 
Na+/K+-ATPase and erythrocyte AChE activities and induce the stress response in adult 
zebrafish (Danio rerio). Ecotoxicology and Environmental Safety 106, 173-180. 

Kim KT, Truong L, Wehmas L and Tanguay RL. 2013. Silver nanoparticle toxicity in the 
embryonic zebrafish is governed by particle dispersion and ionic environment. 
Nanotechnology 24, 115101-115109. 

Kimura Y, Yashiroda H, Kudo T, Koitabashi S, Murata S, Kakizuka A and Tanaka K. 2009. An 
inhibitor of a deubiquitinating enzyme regulates ubiquitin homeostasis. Cell 137, 549-
559. 

Köhler A, Wahl E and Söffker K. 2002. Functional and morphological changes of lysosomes as 
prognostic biomarkers of toxic liver injury in a marine flatfish (Platichthys flesus (L.)). 
Environmental Toxicology and Chemistry 21, 2434-2444. 

Krishnaraj C, Harper SL and Yun SI. 2016. In vivo toxicological assessment of biologically 
synthesized silver nanoparticles in adult zebrafish (Danio rerio). Journal of Hazardous 
Materials 301, 480-491. 

Kvítek L, Prucek R, Panácek A, Novotny R, Hrbac J and Zboril R. 2005. The influence of 
complexing agent concentration on particle size in the process of SERS active silver 
colloid synthesis. Journal of Materials Chemistry 15, 1099-1105. 

Lee KJ, Browming LM, Nallathamby PD, Osgood CJ and Xu XN. 2013. Silver nanoparticle induce 
developmental stage specific embryonic phenotypes in zebrafish. Nanoscale 5, 11315-
11982. 

Lee B, Duong CN, Cho J, Lee J, Kim K, Seo Y, Kim P, Choi K and Yoon J. 2012. Toxicity of citrate-
capped silver nanoparticles in common carp (Cyprinus carpio). Journal of Biomedicine 
and Biotechnology 2012, doi:10.1155/2012/262670.  

Mansouri B and Johari SA. 2016. Effects of short-term exposure to sublethal concentrations of 
silver nanoparticles on histopathology and electron microscope ultrastructure of 
zebrafish (Danio rerio) gills. Iranian Journal of Toxicology 10, 15-20. 

Marambio-Jones C and Hoeck EMV. 2009. A review of the antibacterial effects of silver 
nanomaterials and potential implications for human health and the environment. 
Journal of Nanoparticles Research 12, 1531-1551. 

Markus AA, Parsons JR, Roex EWM, Kenter GCM and Laane RWPM. 2013. Predicting the 
contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches 
of the Rhine and Meuse. Science of the Total Environment 456-457, 154-160. 

Massarsky A, Abraham R, Nguyen KC, Rippstein P, Tayabali AF, Trudeau VL and Moon TW. 
2014a. Nanosilver cytotoxicity in rainbow trout (Oncorhynchus mykiss) erythrocytes 
and hepatocytes. Comparative Biochemistry and Physiology, Part C 159, 10-21. 

Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL and Moon TW. 2013. 
Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. 
Chemosphere  92, 59-66. 

Massarsky A, Trudeau VL and Moon TW. 2014b. Predicting the environmental impact of 
nanosilver. Environmental Toxicology and Pharmacology 38, 861-873. 

139



Chapter II 

 
McDonagh B and Sheehan D. 2006. Redox proteomics in the blue mussel Mytilus edulis: 

Carbonylation is not a pre-requisite for ubiquitination in acute free radical-mediated 
oxidative stress. Aquatic Toxicology 79, 325-333. 

McDonagh B, Tyther R and Sheehan D. 2005. Carbonylation and glutathionylation of protein in 
the blue mussel Mytilus edulis detected by proteomic analysis and Western blotting: 
Actin as target for oxidative stress. Aquatic Toxicology 73, 315-326. 

McShan D, Ray PC and Yu H. 2014. Molecular toxicity mechanisms of nanosilver. Journal of 
Food and Drug Analysis 22, 116-127. 

Mott JL, Zhang D, Stevens M, Chang SW, Denniger G and Zassenhaus HP. 2001. Oxidative stress 
is not an obligate mediator of disease provoked by mitochondrial DNA mutations. 
Mutation Research 474, 35-45. 

Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L and Behra R. 2008. 
Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environmental Science 
Technology 42, 8959-8964. 

Olasagasti M, Gatti AM, Capitani F, Barranco A, Pardo MA, Escudero K and Rainieri S. 2014. 
Toxic effects of colloidal nanosilver in zebrafish embryos. Journal of Applied Toxicology 
34, 562-575. 

Oliver ALS, Croteau MN, Stoiber TL, Tejamaya M, Römer I, Lead JR and Luoma SN. 2014. Does 
water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the 
freshwater snail Lymnaea stagnalis? Environmental Pollution 189, 87-91. 

Osborne OJ, Lin S, Chang CH, Ji Z, Yu X, Wang X, Lin S, Xia T et al. 2015. Organ-specific and size-
dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 
9, 9573- 9584. 

Powers CM, Slotkin TA, Seidler FJ, Badireddy AR and Padilla S. 2011. Silver nanoparticles alter 
zebrafish development and larval behaviour: Distinct roles for particle size, coating and 
composition. Neurotoxicology and Teratology 33, 708-714. 

Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C, Soares AMVM and 
Loureiro S. 2014. Silver nanoparticles and silver nitrate induce high toxicity to 
Pseudokircheriella subcapitata, Daphnia magna and Danio rerio. Science of the Total 
Environment 466-467, 233-241. 

Richmonds C and Dutta HM. 1989. Histopathological changes induced by malathion in the gills 
of bluegill Lepomis macrochirus. Bulletin of Environmental Contamination and 
Toxicology 43, 123-130. 

Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S, Lead JR, Stone V, 
Fernandes TF et al. 2010. Effects of aqueous exposure to silver nanoparticles of 
different sizes in rainbow trout. Toxicological sciences 115, 521-534. 

Schirmer K, Behra R, Sigg L and Suter MJ-F. 2013. Chapter 5: Ecotoxicological aspects of 
nanomaterials in the aquatic environment. In Luther W and Zweck A (Eds.) Safety 
aspects of engineered nanomaterials ISBN 978-981-4364-85-0. 

Schultz AG, Ong KJ, MacCormack T, Ma G, Veinot JGC and Goss GG. 2012. Silver nanoparticles 
inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environmental 
Science and Technology 46, 10295-10301. 

Soto M, Quincoces I and Marigómez I. 1998. Improved autometallographic procedure for the 
localization of metal traces in molluscan tissues by light microscopy. Journal of 
Histotechnology 21, 123-127. 

140



Chapter II 

 
Tedesco S, Doyle H, Redmond G and Sheehan D. 2008. Gold nanoparticles and oxidative stress 

in Mytilus edulis. Marine Environmental Research 66, 131-133. 
Vicario-Parés U. 2016. Cellular and molecular responses of zebrafish to legacy and emerging 

pollutants: the specific cases of PAHs and metal oxide nanoparticles. PhD Thesis, 
University of the Basque Country, 269 pp. 

Vicario-Parés U, Castañaga L, Lacave JM, Berhanu D, Valsami-Jones E, Oron M, Reip P, 
Cajaraville MP and Orbea A. 2014. Comparative toxicity of metal oxide nanoparticles 
(CuO, ZnO and TiO2) to developing zebrafish embryos. Journal of Nanoparticle 
Research 16, 1-16. 

Wei L, Lu J, Xu H, Patel A, Chen ZS and Chen G. 2015. Silver nanoparticles: synthesis, 
properties, and therapeutic applications. Drug Discovery Today 20, 595-601. 

Whiteley CM, Valle MD, Jones KC and Sweetman AJ. 2011. Challenges in assessing the 
environmental fate and exposure of nano silver. Journal of Physics: Conference Series 
304, doi:10.1088/1742-6596/304/1/012070 

Wu Y and Zhou Q. 2013. Silver nanoparticles cause oxidative damage and histological changes 
in medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and 
Chemistry 1, 165-173. 

Yadav KK and Trivedi SP. 2009. Sublethal exposure of heavy metals induces micronuclei in fish, 
Channa punctata. Chemosphere 77, 1495-1500. 

Yeo MK and Pak SW. 2008. Exposing zebrafish to silver nanoparticles during caudal fin 
regeneration disrupts caudal fin growth and p53 signaling. Molecular and Cellular 
Toxicology 4, 311-317.   

Zhao B, Sun L, Zhang W, Wang Y, Zhu Z, Zhu X, Yang L, Li C, Zhang Z et al. 2014. Secretion of 
intestinal goblet cells: A novel excretion pathway of nanoparticles. Nanomedicine: 
Nanotechnology, Biology and Medicine 10, 839-849.  

 

141



 

142



 

 

CHAPTER III 
 
 

Transcriptomic response in zebrafish liver under 
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ABSTRACT 

Changes on gene transcription levels could provide an early warning of the potential toxicity of 

nanoparticles (NPs) due to the rapid response of genes to environmental alterations. In order 

to study the effect of Ag NPs in comparison with the effect provoked by ionic silver, adult 

zebrafish (Danio rerio) were waterborne exposed to 10 µg Ag/L of maltose-coated Ag NPs of 20 

nm or to the same nominal concentration of ionic silver. After 3 and 21 days of exposure, the 

liver of 20 males was dissected out and the hepatic transcriptome was analyzed using the 

Agilent technology Zebrafish (v3) Gene Expression Microarray, 4x44k. After 3 days of exposure, 

Ag NPs significantly regulated (adj p value < 0.05) 219 different transcripts, while the ionic 

form regulated 410 transcripts. After 21 days, the opposite trend was found: the ionic form 

regulated a lower number of transcripts (291) than at 3 days, while the effect of Ag NPs was 

more marked, altering the transcription level of 799 different transcripts. According to the 

Bast2GO analysis, all treatments especially enriched metabolic processes, while immune 

system or reproductive processes were especially enriched after the exposure to Ag NPs. The 

functional analysis identified effects on the energy metabolism with the significant regulation 

of “glycolysis/gluconeogenesis” after the exposure to ionic silver at 3 days and to the NP form 

at 21 days. Moreover, the “pyruvate metabolism” was significantly altered after the exposure 

to ionic silver for 3 days and the KEGG pathway “steroid biosynthesis” was significantly altered 

after the exposure to Ag NPs for 3 days. Other KEGG pathways detected were involved in DNA 

damage (purine metabolism and pyrimidine metabolism) after the exposure to Ag NPs and 

ionic silver at 3 days and Ag NPs at 21 days. The correspondence analysis separated the four 

treatments, being the exposure time the factor that explained most of the variability. Overall, 

exposure to both forms of silver significantly altered the zebrafish liver transcriptome, being 

the response to each compound different depending on the exposure time. Ionic silver exerted 

a stronger effect at the shortest exposure time, while Ag NPs affected at the longest exposure 

time, but exclusive effects could also be detected under exposure to Ag NPs suggesting that 

the toxicity of the Ag NPs may not be solely related to the release of ions, but also to the NP 

form.  

Keywords:  zebrafish, Ag NPs, liver transcriptome, microarray 
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LABURPENA 

Gene transkripzio mailan gertatzen diren aldaketek, nanopartikulen (NP) toxikotasunaren 

abisu goiztiarra eman dezakete, geneek ingurumenaren aldaketen aurrean duten erantzun 

azkarra dela eta. Ag NPen efektua zilar ionikoak eragiten duen efektuarekin konparatzeko 

asmoz, zebra arrain (Danio rerio) helduak maltosaz estalitako 20 nm-ko 10 µg Ag/L NPen edo 

zilar ionikoko kontzentrazio berdinaren eraginpean mantendu ziren 3 eta 21 egunez. Ondoren, 

20 arren gibelak disekzionatu ziren eta transkriptoma aztertu zen, Agilent technology Zebrafish 

(v3) Gene Expression Microarray, 4x44k mikrotxip komertziala erabiliz. 3 egunetara, Ag NPek 

modu esanguratsuan 219 transkrito erregulatu zituzten (adj p balioa < 0.05), aldaera ionikoak 

aldiz, 410 transkrito erregulatu zituen. 21 egunen ostean, kontrako joera ikusi zen: zilar 

ionikoak, 3 egunetara baino transkrito gutxiago erregulatu zituen (291) eta Ag NPen efektua 

berriz, nabariago izan zen, 799 transkrito desberdinen transkripzio maila aldatu zituelarik. 

Blast2GO analisiaren arabera, tratamendu guztiek prozesu metabolikoak aberastu zituzten 

bereiziki; sistema immunea eta ugalketa prozesuak aldiz, Ag NPen eraginaren ondorioz 

aberastu ziren bereiziki. Analisi funtzionalak energia metabolismoaren gaineko efektuak 

identifikatu zituen, “glukolisi/glukoneogenesi”-aren erregulazio esanguratsua gertatu zelarik 3 

egunez zilar ionikoaren eta 21 egunez NPen eraginpean egon ondoren. Bestalde, “pirubato 

metabolismoa” esanguratsuki aldatu zen 3 egunez zilar ionikoaren eraginpean egondako 

arrainetan eta “esteroide biosintesia” KEGG bidezidorra esanguratsuki aldatu zen 3 egunez Ag 

NPen eraginpean egondako animalietan. Antzemandako beste KEGG bidezidorrak DNA 

kaltearekin erlazionatuta zeuden (purinen eta pirimidinen metabolismoa) 3 egunez Ag NP eta 

zilar ionikoaren eta 21 egunez Ag NPen eraginpean mantendu ondoren. Korrespondentzia 

analisiak lau tratamenduak bereizi zituen, esposizio-denbora aldakortasun gehiena azaltzen 

zuen faktorea izan zelarik. Orokorrean, zilarraren bi aldaerek esanguratsuki aldatu zuten zebra 

arrainaren gibeleko transkriptoma, konposatu bakoitzaren aurrean emandako erantzuna 

esposizio-denboraren araberakoa izan zelarik. Zilar ionikoak efektu nabarmenagoa eragin zuen 

esposizio denbora laburrenean, Ag NPek aldiz esposizio denbora luzeenean eragina izan zuten, 

baina Ag NPen efektu bereizgarriak ere aurkitu ziren, Ag NPen toxikotasuna ioien 

askapenarekin lotuta egoteaz gain, NParen aldaerarekin erlazionatuta ere badagoela iradokiz.  

Gako-hitzak: zebra arraina, Ag NPak, gibel transkriptoma, mikrotxipa 
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RESUMEN  

Los cambios en los niveles de transcripción de los genes pueden advertirnos de manera 

temprana del potencial tóxico de las nanopartículas (NPs), debido a la rápida respuesta de los 

genes ante alteraciones en el medio ambiente. Para estudiar el efecto de las NPs de Ag en 

comparación con el efecto producido por la exposición a plata iónica, peces cebra (Danio rerio) 

adultos se expusieron vía agua a 10 µg Ag/L de NPs de Ag de 20 nm cubiertas de maltosa o a la 

misma concentración nominal de plata iónica. Tras 3 y 21 días de exposición, se diseccionó el 

hígado de 20 peces macho y se analizó el transcriptoma hepático utilizando el microchip 

comercial Agilent technology Zebrafish (v3) Gene Expression Microarray, 4x44k. Tras 3 días, la 

exposición a NPs de Ag alteró significativamente (valor de p ajustado < 0.05) el nivel de 

transcripción de 219 transcriptos diferentes, mientras que la forma iónica reguló 410 

transcriptos. Tras 21 días, se observó la tendencia contraria: la forma iónica reguló un menor 

número de transcriptos (291), mientras que el efecto de las NPs de Ag fue mucho más 

marcado, ya que se alteró el nivel de transcripción de 799 transcriptos diferentes. El análisis 

Blast2GO mostró que los distintos tratamientos enriquecieron de manera significativa los 

procesos metabólicos. Además, tras la exposición a las NPs de Ag también aparecieron 

especialmente enriquecidos los procesos relacionados con el sistema inmune o con procesos 

reproductivos. El análisis funcional evidenció una alteración del metabolismo energético con la 

regulación significativa de la “glicolisis/gluconeogénesis” tras la exposición a la forma iónica (3 

días) y a las NPs de Ag (21 días). Además, el “metabolismo del piruvato” y la ruta “biosíntesis 

de esteroides” se alteraron tras 3 días de exposición a la forma iónica y a las NPs de Ag, 

respectivamente. Otras rutas KEGG detectadas estaban relacionadas con el daño en el ADN 

(metabolismo de purinas y de pirimidinas) tras la exposición a plata iónica (3 días) y NPs de Ag 

(3 y 21 días). El análisis de correspondencia separó los cuatro tratamientos, siendo el factor 

“tiempo de exposición” el que explicaba la mayor parte de la variabilidad. En general, la 

exposición a ambas formas de plata alteró de manera significativa el transcriptoma hepático 

del pez cebra, siendo la respuesta a cada compuesto diferente dependiendo del tiempo de 

exposición. La plata iónica ejerció un efecto mayor en un tiempo de exposición más corto, 

mientras que las NPs de Ag afectaron tras una exposición más prolongada, pero también se 

detectaron efectos específicos tras la exposición a NPs de Ag, sugiriendo que la toxicidad de las 

NPs de Ag no estaría solo relacionada con la liberación de iones de plata, sino también con la 

forma nanoparticulada.  

Palabras clave: pez cebra, NPs de Ag, transcriptoma del hígado, microchip 
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INTRODUCTION 

Silver nanoparticles (NPs) are among the most concerning nanomaterials for aquatic 

wildlife due to their potential widespread use in domestic and medical products as well 

as in industrial processes. In consequence, concentrations of silver in the environment 

could increase, since the wastewater treatment systems may have difficulty to remove 

the silver present in the water, remaining in the treated effluent stream (Benn and 

Westerhoff, 2008).  

Several studies have been carried out in aquatic organisms in order to analyze acute 

and sublethal effects provoked by the exposure to Ag NPs (Navarro et al., 2008; 

Farmen et al., 2011; Pham et al., 2011; Gomes et al., 2013; Massarsky et al., 2014). 

Studies with zebrafish embryos have mainly focused on establishing acute toxicity 

levels provoked by the exposure to Ag NPs of different size, shape and coating, and on 

comparing such effects to the effects provoked by the exposure to ionic silver. 

Increased mortality and prevalence of malformations are among the most reported 

effects in embryos (Powers et al., 2011; Massarsky et al., 2013; Ribeiro et al., 2014; 

Chapter I). In adults, studies have mainly focused on the sublethal effects provoked by 

the exposure to both, Ag NPs and ionic silver. Oxidative stress (Katuli et al., 2014; Devi 

et al., 2015), bioaccumulation in different organs such as liver, gills and intestine and in 

the whole organism (Griffitt et al., 2013; Osborne et al., 2015; Chapter II) and presence 

of histopathological lesions in liver and gills (Devi et al., 2015; Chapter II) are among 

the alterations widely reported in zebrafish waterborne exposed to Ag NPs. Moreover, 

increased mortality has also been described after waterborne exposure to Ag NPs 

(Griffitt et al., 2008; Choi et al., 2010; Bilberg et al., 2012; Kovrižnych et al., 2013). Less 

information is available regarding the effects of Ag NPs at molecular level in zebrafish. 

Alteration of gene transcription could precede effects at cellular and physiological level 

caused by different pollutants and, thus, it may be a sensitive parameter to investigate 

the mechanisms of action of different toxic elements (Zucchi et al., 2011). Further, the 

use of genomic/transcriptomic techniques presents a significant advantage over 

traditional single endpoint methods (Piña and Barata, 2011). In fact, whole genome 

expression arrays provide information on a variety of cellular effects and, thus, arrays 

have been used to obtain specific information on significantly regulated pathways in 
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cells and tissues after the exposure to NPs (Fröhlich et al., 2014). The adverse outcome 

pathways for NPs are still unknown and, therefore, the utilization of microarrays may 

provide this information (Lee et al., 2015).  

The transcriptomic response in zebrafish gills has been analyzed after exposure to 

different metal and metal bearing NPs. Griffitt et al. (2007) studied the response of the 

gill transcriptome of zebrafish exposed to 0.1 mg/L of 80 nm Cu NPs for 48 h or to the 

concentration of soluble copper matching that present in the NPs solution, using a 

commercial Agilent 1x22k zebrafish microarray. Exposure to copper resulted in 82 

differentially transcribed genes. Cluster analysis of these genes demonstrated that the 

transcriptional response induced by nanocopper was highly divergent from that 

generated by only the soluble fraction of nanocopper exposures (Griffitt et al., 2007). 

In a similar experiment where TiO2, Ag and Cu NPs (0.1 mg metal/L) were tested, the 

exposure to TiO2 NPs (20.5 nm) resulted in no differentially transcribed genes after 24 

h and in 413 differentially transcribed genes after 48 h; the exposure to Ag NPs (26.6 

nm) regulated 148 and 462 genes after 24 and 48 h, respectively, and the exposure to 

Cu NPs (26.7 nm) altered the transcription level of 126 genes, which increased to 413 

genes after 48 h of exposure (Griffitt et al., 2009). Exposure to Cu NPs significantly 

affected pathways involved in apoptosis, cell proliferation and differentiation, while Ag 

NPs or TiO2 NPs did not affected any specific pathway. Effects caused on zebrafish gill 

transcriptome by the exposure to Ag NPs (3.1 nm) for a longer period of time (28 days) 

have also been studied (Griffitt et al., 2013), being the number of regulated genes 

concentration-dependent. Exposure to 5 µg Ag/L resulted in 366 differentially 

regulated genes while exposure to 50 µg Ag/L regulated 624 genes. In this latter case, 

differentially regulated genes were involved in DNA damage repair and cellular and 

developmental processes, such as cell growth, cell migration, anatomical structure 

morphogenesis, organ morphogenesis, cell morphogenesis, embryonic development, 

embryonic organ development, and skeletal development (Griffitt et al., 2013).  

The hepatic transcriptomic response of zebrafish has also been analyzed after the 

exposure for 21 days to CuO NPs (10 µg Cu/L) or to the same nominal concentration of 

ionic copper. Gene transcription profiles were found to be mainly altered in liver after 

3 days of exposure to CuO NPs and after 21 days of exposure to ionic copper (Vicario-
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Parés, 2016). After 3 days of exposure to CuO NPs, upregulated “nucleotide 

biosynthesis”, “glycine biosynthesis”, “response to oxidative stress” and “oxidation and 

reduction process” related transcripts were identified. Moreover, down-regulation of 

genes related to “one carbon metabolism”, “fatty acid elongation”, “developmental 

processes” and different transmembrane transport processes was also observed. After 

21 days of exposure to CuO NPs, most of the regulated transcripts were linked to DNA 

damage, while after the exposure to ionic copper the transcripts regulated were 

involved in DNA repair (Vicario-Parés, 2016). 

Some other studies have focused on quantitative real time PCR (qPCR) measurements 

of specific gene transcription levels after fish exposure to Ag NPs. In zebrafish, a short 

exposure (24 h) to a high concentration (30 to 120 mg/L) of approximately 5-20 nm Ag 

NPs caused significant up-regulation of liver genes involved in DNA damage, oxidative 

stress and apoptosis (Choi et al., 2010). In medaka liver, transcripts coding for 

metallothioneins (MT), heat shock protein 70 (HSP70) and glutathione S-transferase 

(GST) showed a significant up-regulation after 2 days of exposure to ionic silver (1.58 

and 39.46 µg/L). Nevertheless, exposure to Ag NPs of 49.6 nm (1 and 25 µg/L) resulted 

in the up-regulation of genes coding for MT, HSP70, GST, P53 and cytochrome p4501A 

(CYP1A) and in the down-regulation of the gene coding for transferrin (tf) from the first 

day of exposure (Chae et al., 2009). The significantly higher transcription levels seen 

for the cyp1a, hsp70 and p53 suggest that the exposure to NPs results in cellular 

damage, DNA damage and repair. In liver and gills of rainbow trout, genes related to 

metabolism and response to xenobiotics were studied after the exposure to Ag NPs of 

10 and 35 nm (10 and 100 µg/L). Only the transcription of cytochrome P4501A2 

(cyp1a2) was significantly induced in gills after the exposure to Ag NPs of 10 nm at the 

highest tested concentration, suggesting a possible increase in oxidative stress in this 

tissue (Scown et al., 2010).  

In the present study, adult zebrafish were exposed to 10 µg/L of Ag NPs or to the same 

nominal concentration of ionic silver for 3 and 21 days. Cell and tissue level effects 

caused by Ag NPs have been already described in Chapter II. Exposure to Ag NPs or to 

ionic silver provoked accumulation of silver in gills, liver and intestine as revealed by 

autometallography and field emission scanning electron microscopy. Moreover, using 
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transmission electron microscopy, presence of NPs was detected in epithelial cells 

from the primary lamellae of gills, as well as, in the nucleus and mitochondria of 

hepatocytes. In the assayed conditions, evident effects on hepatocyte lysosomal 

membrane stability, increased oxidative stress or genotoxicity were not found, but the 

histopathological analysis showed a variety of relevant alterations in the gills (Chapter 

II). In this work, in order to decipher the metabolic pathways altered by the exposure 

to Ag NPs, the whole liver transcriptome was analyzed and results were compared with 

results obtained after the exposure to ionic silver.  

MATERIALS AND METHODS 

Silver compounds 

Maltose-coated Ag NPs of roughly 20 nm were synthesized using the Tollens method 

(Kvítek et al., 2005) resulting in a suspension containing 107.87 mg Ag/L and 0.25 mM 

maltose. Full characterization data have been published by Katsumiti et al. (2015) and 

are given in Chapter II.  

Solution of silver nitrate (1 g Ag/L in 0.5 M HNO3 matrix) was obtained from Spectrosol, 

BDH Chemical Ltd Poole, England.  

Maintenance and experimental exposure of adult zebrafish 

The experimental procedure described herein was approved by the Ethics Committee 

in Animal Experimentation of the UPV/EHU according to the current regulations. 

Zebrafish (wild type AB Tübingen) individuals were specifically produced and grown for 

the experiment in our facility at the UPV/EHU. Adult fish of approximately 4 months 

old were exposed to Ag NPs or to ionic silver at a concentration of 10 µg/L for 21 days. 

An unexposed control group was run in parallel in identical experimental conditions. 

The exposures were carried out in 35 L aquaria containing 50-60 fish. During the 

exposure period, approximately 2/3 of the aquarium water was changed by siphoning 

every three days and the corresponding volume of contaminated or clean water was 

redosed. Fish were fed with Vipagran baby (Sera, Heinsberg, Germany) and live 

Artemia (INVE Aquaculture, Salt Lake City, Utah, USA) twice per day.  
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After 3 and 21 days of exposure, fish were euthanized by overdose of anesthetic 

(benzocaine, Sigma-Aldrich, St. Louis, Missouri, USA) and the liver of 20 male zebrafish 

per experimental group was dissected out, pooled in 5 groups of 4 livers each and 

placed in cryovials containing TRIzol® (ThermoFisher Scientific, California, USA) and 

zirconia/silica beads (Biospec, Bartlesville, USA). Then, samples were immediately 

frozen in liquid nitrogen and stored at -80ºC.  

RNA extraction 

Total RNA was extracted following the TRizol® extraction method (ThermoFisher 

Scientific). Concentration of RNA was measured in a Biophotometer (Eppendorf, 

Hamburg, Germany). RNA was purified with RNeasy mini kit (Qiagen, Venlo, The 

Netherlands). In addition, RNA quality was assessed in an Agilent 2100 Bioanalyzer 

(Agilent Technologies, California, USA). Only RNA samples with a RIN value above 8.1 

were used for microarray and qPCR analysis.  

Microarray analysis and data treatment 

Microarray analysis was carried out in the General Genomic Service – Gene Expression 

Unit (SGiKer) of the University of the Basque Country. Labeling of samples was carried 

out following the Agilent Technologies "One-Color Microarray-Based Gene Expression 

Analysis (Low Input Quick Amp Labeling)" Version 6.5 protocol. 100 ng of total RNA 

were retrotranscribed and labelled using the Low imput Quick Amp Labeling kit, One 

color (Agilent Technologies) following the manufacturer’s instructions. Hybridizations 

were performed on zebrafish 4x44k full genome microarrays (version V3, AMADID 

026437 Agilent Technologies) containing 43,803 unique probes using the SuperHyb 

hybridization chamber (Agilent Technologies). Finally, slides were scanned using a 

G2565CA DNA microarray scanner (Agilent Technologies). Feature Extraction software 

v. 10.7.3.1 was used to feature signal intensity extraction and quantile normalization 

was applied to the raw intensities (log2 values) using the Agilent GeneSpring GX 

software (v 11.2).  

Gene transcription profiles were compared using the LIMMA analysis in the 

MultiExperiment Viewer (tMeV) vs. 4.7.1 (http://www.tm4.org/mev/) software. 
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Benjamin-Hochberg method (FDR) for multiple test correction was employed to obtain 

the corrected p value. Significant differences were set at an adjusted p value p<0.05 

and based on log2FC< −1 or log2FC> 1 (log2 fold change). Venn diagrams were obtained 

using the free application developed by Oliveros (2007) 

(http://bioinfogp.cnb.csic.es/tools/venny/) to represent the number of significantly 

regulated transcripts after each specific treatment as well as the number of 

significantly regulated common transcripts when comparing different treatments 

and/or exposure times. Then, significantly regulated transcripts were studied using 

Blast2GO (Conesa et al., 2005) and a KEGG pathway summary was performed in order 

to decipher biological processes altered after each treatment. Fisher exact test 

(p<0.05) was used to find statistically overrepresented functions. The significant 

regulation (p<0.05) of the KEGG pathways respect to the whole genome of Danio rerio 

was performed using DAVID online tool (Huang et al., 2009a; 2009b). In addition, a 

correspondence analysis (COA) was performed in order to visualize the association 

between the experimental groups.  

Quantitative Real Time PCRs (qPCRs) 

Six genes differentially regulated in the exposed groups in comparison with the control 

group were selected to validate microarray results by qPCRs. Genes were selected 

based on two criteria: fold change (log2FC< −1 or log2FC> 1) and genes of toxicological 

interest. Therefore, selected target genes were: ubiquitin specific peptidase 37 (usp37, 

NM_001077343), tumor protein p63 regulated 1 (tprg1, NM_001089528), novel 

protein similar to vertebrate pim oncogene family (pim-like oncogene, 

XM_005170111.2), peroxisome proliferator-activated receptor alpha a (pparαa, 

NM_001161333), fibroblast growth factor 19 (fgf19, NM_001012246) and superoxide 

dismutase 2 (sod2, NM_199976). 18S rRNA (FJ915075) was selected as reference gene, 

since its transcription level did not vary significantly in the microarray. Available 

commercial TaqMan® assays (ThermoFisher Scientific) were used to amplify usp37 

(Dr03136596_m1), tprg1 (Dr03430145_m1), fgf19 (Dr03090227_m1) and sod2 

(Dr03100019_m1). Assays for the amplification of pim-like oncogene, pparαa and 18S 

rRNA were not commercially available and, therefore, specific primers and probes 
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were designed using the Primer Express 3.0 software (ThermoFisher Scientific) (Table 

1).  

Table 1.- Specific primers and probes used to amplify each target gene by TaqMan qPCRs. 

Gene Forward (5’-3’) Reverse (5’-3’) Probe (5’-3’) 

pim-like oncogene GCTTGGAGGATGGCCTTGA TTTCATGTTCGATGGCTTTCTG TGGCAGTAAAAATTG 

18S rRNA CGGAGGTTCGAAGACGATCA GGGTCGGCATCGTTTACG ATACCGTCGTAGTTCCG 

pparαa TGCCGATTCCGCAAGTG GCCCAAAACGAATAGCCGTTGT CTTGCAGTGGGCATGT 

Pim-like oncogene was selected to validate results obtained after the exposure to Ag 

NPs at 3 days. This gene, together with usp37 and tprg1, was also used for the 

validation of the results obtained after exposure to ionic silver for 3 days. tprg1 and 

sod2 were selected to validate results obtained after 21 days exposure to both metal 

forms. In addition, fgf19 and pparαa were used in the case of Ag NP and ionic silver 

exposures, respectively.  

Total RNA (1 µg) was retrotranscribed to cDNA using the AffinityScript multi 

temperature cDNA synthesis kit (Agilent Technologies) following manufacturer’s 

conditions in a 2720 Thermal Cycler (ThermoFisher Scientific). qPCRs were run in 25 μL 

reactions containing 2 μL of cDNA on a 7300 Applied Biosystems thermocycler 

(ThermoFisher Scientific). Universal PCR conditions were used in all the cases. Relative 

transcription levels were calculated based on the 2−ΔΔct method (Livak and Schmittgen, 

2001) using the lowest value in the control group as calibrator and 18S rRNA 

transcription levels as reference gene, with a coefficient of variation of 1,46%. 

Statistical analyses were performed using the SPSS statistical package v20.0 (SPSS Inc, 

Microsoft Co, WA, USA). According to the Kolmogorov-Smirnov test (p<0.05), data did 

not follow a Normal distribution. Thus, significant differences among groups were 

based on the non-parametric Kruskal-Wallis test followed by the Dunns post hoc test 

(p<0.05) or the Mann-Whitney U test (p<0.05).     

RESULTS 

LIMMA analysis showed that a total of 1379 different transcripts were significantly 

regulated after the exposure to Ag NPs or ionic silver for 3 or 21 days. At 3 days of 

exposure to Ag NPs, 219 different transcripts coding for 129 different genes were 
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significantly regulated, while after the exposure to the ionic form 410 transcripts 

coding for 242 different genes were regulated. After 21 days, the opposite trend was 

found, 291 transcripts coding for 165 different genes were significantly regulated after 

the exposure to the ionic form, while 799 different transcripts coding for 432 different 

genes were significantly regulated after the exposure to Ag NPs (Fig 1A). As it can be 

observed in the Venn diagram, 724 transcripts were exclusively regulated as a 

response to Ag NPs, most of them (611) after 21 days of exposure, while 94 were 

specifically regulated at 3 days of exposure and 19 transcripts were significantly 

regulated by Ag NPs at both exposure times (Fig 1A). Transcripts exclusively regulated 

by the exposure to the ionic silver were 428, most of them (248) at 3 days, 175 after 21 

days and only 5 transcripts were significantly regulated at both times. Except for the 

group exposed to ionic silver for 21 days, most of the transcripts significantly regulated 

were up-regulated. Finally, 21 transcripts were up-regulated in all the treatments (Fig 

1B).  

 
Figure 1.- (A) The bar graph shows the number of significantly up and down regulated transcripts for 
each treatment. The total number of significantly regulated transcripts and genes (in brackets) are 
indicated in each case. (B) Venn diagram showing the number of significantly regulated transcripts after 
each specific treatment as well as the number of significantly regulated transcripts shared among 
treatments. 
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According to the Bast2GO analysis, the GO terms enriched after the exposure to both 

silver forms at both exposure times belong to biological processes mainly grouped in 

functional categories such as “response to stimulus” and “metabolic process” (Table 

2). The functional category “immune system process“, which presented two different 

GO terms enriched, showed a higher number of DTGs after the exposure to Ag NPs 

than after the exposure to ionic silver at both exposure times (Table S1). GO terms 

involved in the functional category “reproductive process” appeared enriched 

exclusively after the exposure to Ag NPs for 21 days (Table 2). The Fisher exact test did 

not identified GO terms differentially enriched, neither between exposures times nor 

between forms of silver.   

A KEGG pathway summary was performed to identify the pathways affected by the 

different treatments (Table 3). “Purine metabolism” was affected after 3 days of 

exposure to both forms of silver and after 21 days of exposure to Ag NPs while 

“pyrimidine metabolism” was affected only after 3 days of exposure to ionic silver. The 

energetic metabolism appeared affected after the exposure to both silver forms, 

“glycolysis/gluconeogenesis” was affected after the exposure to ionic silver for 3 days 

and to Ag NPs for 21 days and “thiamine metabolism” pathway was affected by the 

exposure to Ag NPs at both exposure times. KEGG pathways related to the xenobiotic 

metabolism such as “aminobenzoate degradation” and to the immune system “T cell 

receptor signaling” appeared only after exposure to Ag NPs for 21 days. Exposure to 

ionic silver for 21 days did not alter any KEGG pathway at the cut off level established.  

A functional analysis was performed to determine the significantly regulated pathways 

respect to the whole genome of zebrafish (Table 4). After 3 days of exposure to ionic 

silver “glycolysis/gluconeogenesis” and “pyruvate metabolism” were significantly 

affected. After 3 days of exposure to Ag NPs, only “steroid biosynthesis” was 

significantly affected, and after 21 days of exposure to Ag NPs 

“glycolysis/gluconeogenesis” appeared significantly affected.   
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Chapter III 
 

 
 

Table 4.- List of significantly altered KEGG pathways after functional analysis of different treatments (p<0.05).   

KEGG pathway 
3 days  21 days 

Ag NPs Ionic silver  Ag NPs 
p value FDR p value FDR  p value FDR 

Glycolysis / Gluconeogenesis   6.90E-04 0.044  0.0077 0.478 
Pyruvate metabolism   0.0099 0.276    
Steroid biosynthesis 2.15E-06 6.02E-05      

Finally, the correspondence analysis separated the four treatments (Fig 2A, B). Three 

principal components explained the existing variability among all the treatments (PC1: 62%, 

PC2: 27% and PC3: 11%). PC1 separated samples according to the exposure time and 

explained most of the data variability, PC2 separated the Ag NPs 21 days treatment from the 

rest of the treatments and PC3 separated samples according to the metal form.  

 

 

Figure 2.- Correspondence analysis (COA) axes showing the distribution of each treatment (dots) according to 
their transcription profile. 

Ionic silver 3 daysIonic silver 21 days

Ag NPs 21 days

Ag NPs 3 days

PC2

PC1

A)

Ionic silver 3 days

Ionic silver 21 days

Ag NPs 21 days

Ag NPs 3 days

PC3

PC1

B)
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Chapter III 
 

 
 

Quantitative PCR analysis 

Selected target genes, pim-like oncogene, fgf19, pparαa, sod2, tprg1 and usp37, showed 

similar transcription profiles both in the microarray and by qPCR analysis (Table 5).  

DISCUSSION 

In order to compare the effect provoked by the exposure to Ag NPs and to ionic silver, 

alterations in the zebrafish liver transcriptome were studied. The hepatic transcriptome of 

male zebrafish was analyzed after 3 and 21 days of exposure to a sublethal concentration 

(10 µg Ag/L) of both silver forms using a commercial microarray.  

Although previous studies have already reported alterations in gills after the exposure to Ag 

NPs (Griffitt et al., 2009; 2013), as far as we know, this is the first time in which the hepatic 

transcriptome of adult zebrafish is analyzed after exposure to Ag NPs. A total of 1379 

different transcripts were significantly regulated after the exposure to Ag NPs or ionic silver 

for 3 and 21 days. Despite the number of transcripts significantly regulated was low 

compared with the total amount of probes present in the array, overall, previous studies 

have also reported a low number of transcripts significantly regulated in comparison with 

transcripts present in the array used after zebrafish exposure to metal-bearing NPs. The 

exposure to 0.1 mg/L of Cu NPs of 80 nm for 48 h resulted solely in the differential 

regulation of 82 transcripts of the gill transcriptome (Griffitt et al., 2007), although the 

exposure to smaller Cu NPs or to TiO2 NPs of 20.5 nm resulted in a higher number of 

sequences regulated (up to 413 transcripts) (Griffitt et al., 2009). Exposure to Ag NPs for 48 h 

resulted in 462 transcripts differentially regulated in the gill (Griffitt et al., 2009). Griffitt et 

al. (2013) also analyzed the gill transcriptome after exposing (28 days) zebrafish to 5 times 

higher silver concentration (50 µg/L) than the concentration used in the present study and 

found 624 transcripts altered, while exposure to ionic silver (5 µg/L) resulted in 95 

transcripts differentially regulated.  
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In the case of Ag NPs, the number of regulated transcripts increased with exposure time, but 

after 21 days of exposure to ionic silver a lower number of regulated transcripts than after 

exposure for 3 days was observed. This decrease in the number of significantly regulated 

transcripts may be due to an adaptative response of fish to extended silver exposure. 

Adaptative responses at transcriptional levels have been previously reported in fish 

chronically exposed to several metals (e.g. Zn, Cu) (Bougas et al., 2016). At biochemical and 

physiological level, fish are also able to adapt to silver exposure as result of compensatory 

changes in Na+ transport in the gill, as observed in rainbow trout exposed for 23 days to 5 

µg/l of ionic silver (Galvez and Wood, 2002).  

In both treatment groups, a large number of transcripts involved in “metabolic processes” 

appeared significantly regulated. GO terms such as “cellular metabolic process” 

(GO:0044237), “primary metabolic process” (GO:0044238) or “organic substance metabolic 

process” (GO:0071704), presented the largest number of genes significantly altered (Table 

S1). Among them, glucose phosphate isomerase b (gpib), phosphoribosylglycinamide 

formyltransferase (gart), enolase 1 (alpha) (eno1), aldehyde dehydrogenase 9 family, 

member A1a (aldh9a1a) or acyl-CoA synthetase short-chain family member 1 (acss1) were 

significantly altered. This alteration provoked in the metabolic processes is also reflected in 

the functional analysis. The KEGG pathway “glycolysis/gluconeogenesis” also appeared 

significantly regulated after the exposure to ionic silver for 3 days and to Ag NPs for 21 days, 

while “pyruvate metabolism” appeared significantly regulated after the exposure to ionic 

silver for 3 days. Among the DTGs contributing to this pathway, pyruvate kinase, which is the 

key enzyme linking glycolysis with the massive ATP production through oxidative 

phosphorylation, showed different regulation after the exposure to ionic silver for 3 days 

and after the exposure to Ag NPs for 21 days. After the exposure to ionic silver for 3 days the 

isozyme pyruvate kinase LR (pklr) was down-regulated, while after the exposure to Ag NPs 

for 21 days this isozyme was up-regulated. In this latter case, the isozyme pyruvate kinase, 

M2 (pkm2a), that catalyzes the rate limiting ATP producing step of glycolysis also appeared 

down-regulated and it is specifically oxidized by reactive oxygen species (ROS).   

Alterations of the metabolic processes have been previously described in fish exposed to 

several metals. Bougas et al. (2016) reported over-transcription of genes involved in energy 
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metabolism, the gluconeogenesis pathway, and β-oxidation in caged yellow perch, 

suggesting an increase in energy metabolism induced by stress provoked by the chronic 

exposure to metals. Effects in the metabolism of fish such as Oreochromis niloticus, Perca 

flavescens or Danio rerio have been also detected after the exposure to metals (Ag, Cd, Cr, 

Cu, Zn) at different biological levels caused by the accumulations of metals in the tissues 

(Öner et al., 2009; Scown et al., 2010; Bougas et al., 2013). 

Previous studies have attributed the toxicity of Ag NP to the release of ions (Luoma and 

Rainbow, 2008; Bilberg et al., 2012; McShan et al., 2014; De Matteis et al., 2015). 

Nevertheless, other factors related to their nanoparticulated form may be also partially 

involved in their toxicity (Chae et al., 2009; Griffitt et al., 2009; Scown et al., 2010, Gagné et 

al., 2012). As mentioned, the regulation of KEGG pathways related to the alteration of the 

metabolism such as “glycolysis/gluconeogenesis”, or to DNA damage as “purine 

metabolism” were detected after the exposure to both forms of silver at different time 

points. 

DNA damage provoked by the exposure to Ag NPs has been suggested as one of the main 

mechanisms of toxicity of Ag NPs (McShan et al., 2014). The exposure to Ag NPs can provoke 

an overproduction of ROS that may cause oxidative stress (Christen et al., 2013). Elevated 

concentrations of ROS provoke DNA damage, resulting in the up regulation of genes involved 

in DNA repair processes (Griffitt et al., 2013). In fish, DNA damage has been previously 

associated with the exposure to Ag NPs, along with cellular damage and oxidative stress 

observed in different organs such as liver and gills (Chae et al., 2009; Choi et al., 2010; 

Griffitt et al., 2013). In the present study DNA damage related pathways, such as “pyrimidine 

metabolism”, appeared altered after the exposure to Ag NPs for 3 days. In addition, “purine 

metabolism” presented several transcripts altered after the exposure to ionic silver for 3 

days and after the exposure to Ag NP for 3 and 21 days. The presence of silver ions inside the 

cell can also stimulate the production of ROS leading to provoke serious cellular injuries such 

as DNA damage (De Matteis et al., 2015). Nevertheless, these effects provoked at molecular 

level, were not detected at higher biological levels with the biomarkers used in this study 

(Chapter II). 
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Harmful effects of ROS can be prevented by antioxidant enzymes, such as superoxide 

dismutase, that can neutralize ROS (Andreyev et al., 2005; Hanukoglu, 2006). In this study, 

superoxide dismutase 2 (sod2), which was used for the validation of the microarray results, 

was significantly up-regulated after the exposure of zebrafish to both forms of silver for 21 

days.   

After the exposure to Ag NPs for 3 days, the KEGG pathway “steroid biosynthesis” appeared 

significantly altered, despite only two genes were significantly down-regulated, methylsterol 

monooxygenase 1 (msmo1) and emopamil binding protein (sterol isomerase) (ebp), which 

are involved in cholesterol biosynthesis. The liver is the primary organ for cholesterol 

production in vertebrates, and reduction in the transcription of genes involved in cholesterol 

biosynthesis has potentially major implications for health status, since cholesterol is required 

for membrane stability, formation of billiary acids, or biosynthesis of steroid hormones 

(Santos et al., 2010). In agreement with our results, Lee et al. (2012) reported a decrease in 

the total cholesterol concentration in common carp (Cyprinus carpio) after the exposure to 

Ag NPs (12 nm) for 4 days, especially at the lowest concentration tested (0.025 mg/L), which 

is close to the concentration used in the present study.    

The GO analysis reflected a large number of DTGs regulated under the functional category 

“response to stimulus”, especially after the exposure to the ionic silver for 3 days and to the 

Ag NPs for 21 days. Also related to this term, the immune system was affected after the 

exposure to both Ag NPs and ionic silver after 3 and 21 days as reflected in the GO analysis, 

with the GO terms “immune response” and “antigen processing and presentation” which 

presented a higher number of DTGs after the exposure to Ag NPs in both times than after 

the exposure to ionic silver. Moreover, the exposure to Ag NPs for 21 days mainly provoked 

the down-regulation of transcripts involved in the KEGG pathway “T cell receptor signaling 

pathway”. The immune functions of different organisms, including invertebrates and 

vertebrate animals, may be affected after the exposure to metal containing NPs (Luo et al., 

2015). The main function of the immune system is to protect the host from foreign 

materials; however, inadvertent recognition of NPs as foreign by the immune cells may 

result in a multilevel immune response against the NPs and eventually lead to toxicity in the 

host (Zolnik et al., 2010). The exposure to Ag NPs has been previously described as a factor 

167



Chapter III 
 

 
 

which provoke the regulation of several transcripts (e.g. interleukin-1 beta (Il1β)), involved in 

the immune response in adult zebrafish and embryos (Park and Yeo, 2013; Olasagasti et al., 

2014; Park and Yeo, 2015; Krishnaraj et al., 2016).  

The COA analysis separated the groups depending on the silver form and exposure time, 

being the group exposed to Ag NPs for 21 days separated from the other groups, which 

could indicate a stronger effect in the hepatic transcriptome after the exposure to this 

treatment in comparison to the other treatments. The exposure to Ag NPs for 21 days 

exclusively regulated the functional category “reproductive processes”, presenting different 

GO terms significantly enriched. Among genes significantly altered in this process, 

chemokine (C-X-C motif) ligand 12a (stromal cell-derived factor 1) (cxcl12a) and chemokine 

(C-X-C motif) receptor 4a (cxcr4a) appeared down-regulated. These transcripts are involved 

in the migration of germ cells, critical for conveying the genetic information to the next 

generation, especially during the early gastrulation stage (Nishimura and Tamaka, 2014; Zou 

et al., 2015). Effects provoked by the exposure of Ag NPs in the regulation of these genes 

and their consequences have not been adequately investigated. Therefore, a deeply analysis 

of the toxic effects provoked by the exposure to Ag NPs in zebrafish reproduction and in the 

regulation of these genes deserves further investigation.   

CONCLUSIONS 

Overall, results show that ionic silver and Ag NPs, under the experimental conditions 

described herein, provoked similar effects in the zebrafish liver transcriptome, but at 

different exposure times. Exposure to ionic silver for 3 days provoked significant alteration 

of transcripts mainly involved in the energetic metabolism, while such pathways were 

significantly altered after 21 days of exposure to Ag NPs. Moreover, the stronger effect in 

the immune system and DNA damage-related transcripts along to the effects in reproductive 

processes exclusively detected after the exposure of Ag NPs for 21 days suggest that the 

effects of Ag NPs at transcriptomic level in zebrafish liver is not solely due to the release of 

ions but also to the NP form.  
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Bioaccumulation and cellular effects in adult 
zebrafish under exposure to cadmium sulphide 
quantum dots and ionic cadmium 
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ABBREVIATIONS 

BCF, Bioaccumulation factor 

BSA, Bovine serum albumin 

BSDs, Black silver deposits 

GSH, Glutathione 

H/E, Hematoxylin/eosin 

LMS, Lysosomal membrane stability 

LP, Labilization period 

MN, Micronuclei 

NPs, Nanoparticles 

PBS, Phosphate buffered saline 

QDs, Quantum dots 

RAPD-PCR, Random amplified polymorphic DNA-PCR 

ROS, Reactive oxygen species 

TEM, Transmission electron microscopy 
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ABSTRACT 

Among engineered nanoparticles (NPs), quantum dots (QDs) are fluorescent 

semiconductor crystals with special optical and electrical properties that make them 

very suitable for many industrial and biomedical applications. QDs may contain 

metallic components such as cadmium that are highly toxic to aquatic organisms. Adult 

zebrafish (Danio rerio) were selected to analyze the bioaccumulation and the potential 

toxic effects provoked by waterborne exposure to CdS NPs. For this purpose, zebrafish 

were exposed to 10 μg Cd/L of CdS NPs of ~4 nm or to the same nominal concentration 

of ionic cadmium for 21 days and, then, maintained up to 6 months in clean water. By 

day 4 of exposure, high mortality was detected in both exposure groups and after 21 

days, a significant cadmium accumulation was measured in the whole fish. The 

autometallographical analysis showed more abundant black silver deposits, indicating 

higher accumulation of metal, in the intestine than in the liver. In the liver, higher 

content of metal was observed after exposure to ionic cadmium, which could be 

causing the stronger oxidative damage to proteins measured as altered free ubiquitin 

and carbonylated actin levels. However, a stronger destabilization of the hepatocyte 

lysosomal membrane was recorded under exposure to CdS NPs. By transmission 

electron microscopy, the presence of NPs was detected in the cytoplasm of epithelial 

cells of the secondary lamellae of gills, attached to the nuclear envelope and into small 

membrane vesicles of hepatocytes. No genotoxic effects were detected in the assayed 

conditions according to the micronuclei frequency test in erythrocytes. Increased 

prevalence of vacuolization was found in the livers of exposed animals and relevant 

histopathological alterations, such as inflammation, aneurism and fusion of the 

secondary lamellae and hyperplasia in the primary lamellae, were detected in the gills, 

indicating that gills are one of the main entrances of cadmium into the organisms. 

Therefore, at the concentration tested, exposure to both cadmium forms resulted in 

cadmium accumulation and exerted an acute toxic effect to zebrafish, which could be 

mediated by oxidative stress.  

Keywords: CdS NPs, zebrafish, biomarkers, bioaccumulation, cellular effects 
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LABURPENA 

Nanopartikulen (NP) artean, puntu kuantikoak (PK) oso baliagarriak dira hainbat 

erabilera industrial eta biomedikoetarako, beraien ezaugarri optiko (fluoreszentzia) eta 

elektrikoak direla eta. PKek konposatu metalikoak eduki ditzakete, kadmioa esaterako, 

organismo urtarrentzako oso toxikoak izan daitezkeenak. CdS NPek ur esposizioaren 

bidez eragindako efektu toxikoak eta biometaketa aztertzeko zebra arrain (Danio rerio) 

helduak aukeratu ziren. Helburu horrekin, zebra arrainak 21 egunez ~4 nm-ko CdS 

NPen 10 μg Cd/L-ren edo Cd ionikoko kontzentrazio nominal berdinaren eraginpean 

jarri ziren eta, ondoren, ur garbitan mantendu ziren 6 hilabetez. 4 egunetara 

hilkortasun tasa handia behatu zen bi taldeetan eta 21 egunetara, kadmio metaketa 

esanguratsua neurtu zen arrain osoan. Autometalografia bidezko analisiak zilar 

metakin beltz kopuru handiagoa erakutsi zuen, metalen metaketa handiagoa erakutsiz 

hestean gibelean baino. Gibelean, metalen metaketa handiagoa behatu zen kadmio 

ionikoaren eraginpean egondako arrainetan, honek proteinei eragindako kalte 

oxidatibo handiagoa azaldu dezake, ubikitina askearen eta aktinaren karbonilazio 

mailen alterazioren neurketa bidez ebaluatuta. Hala ere, CdS NPen eraginaren 

ondorioz hepatozitoen lisosomen mintzaren ezegonkortze handigoa neurtu zen. 

Transmisiozko mikroskopio elektroniko bidez, NPen presentzia zakatzetako lamela 

sekundarioen epitelioko zelulen zitoplasman, nukleoaren gaineztadurari erantsita eta 

hepatozitoen mintz-besikula txikietan aurkitu zen. Testatutako egoeretan ez zen efektu 

genotoxikorik antzeman. Tratamendu pean egondako animalien gibeleko 

bakuolizazioaren prebalentziaren emendioa eta zakatzetan alterazio histopatologiko 

nabarmenak behatu ziren, inflamazioa, aneurismak, lamela sekundarioen fusioa eta 

lamela primarioaren hiperplasia; zakatzak, organismoan kadmioaren sarrera 

nagusienetarikoa direla adieraziz. Beraz, testatutako kontzentraziora, kadmioaren bi 

aldaeretara egindako esposizioak kadmio metaketa eragin zuen, eta efektu toxiko 

azkarra izan zuen zebra arrainetan, estres oxidatibo bidez eragindakoa izan daitekeena.  

Gako-hitzak: CdS NPak, zebra arraina, biomarkatzaileak, biometaketa, efektu 

zelularrak 
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RESUMEN 

Los puntos cuánticos (PCs) son un tipo de nanopartículas (NPs) que por sus 

propiedades ópticas (fluorescencia) y eléctricas son muy útiles para diversas 

aplicaciones industriales y biomédicas. Los PCs pueden contener elementos metálicos, 

como el cadmio, que son altamente tóxicos para los organismos acuáticos. Con el 

objetivo de analizar la bioacumulación y el posible efecto tóxico de la exposición vía 

agua a NPs de CdS, peces cebra (Danio rerio) adultos se expusieron a 10 µg Cd/L de 

NPs de CdS de ~4 nm o a la misma concentración nominal de cadmio iónico durante 21 

días y, a continuación, se mantuvieron hasta los 6 meses en agua limpia. Al cuarto día 

de exposición se detectó mortalidad alta en ambos grupos de exposición y una 

acumulación significativa de cadmio tras 21 días de exposición. El análisis 

autometalográfico mostró un mayor número de depósitos negros de plata, indicando 

una mayor acumulación de metal, en el intestino que en el hígado. En el hígado, la 

mayor acumulación de metales se observó tras la exposición a cadmio iónico, lo cual 

puede explicar el mayor daño oxidativo a las proteínas evaluado como alteración de 

los niveles de ubiquitina libre y carbonilación de actina. Sin embargo, se registró una 

mayor desestabilización de la membrana lisosómica de los hepatocitos tras la 

exposición a las NPs de CdS. Mediante microscopía electrónica de transmisión, se 

detectaron NPs en el citoplasma de células epiteliales de la laminilla secundaria de las 

branquias, adheridas a la envoltura nuclear y dentro de pequeñas vesículas de la 

membrana de los hepatocitos. No se detectaron efectos genotóxicos en las 

condiciones testeadas. Se observó un incremento en la prevalencia de vacuolización en 

el hígado de animales expuestos y alteraciones histopatológicas relevantes en las 

branquias, como inflamación, aneurismas y fusión de las laminillas secundarias e 

hiperplasia de la laminilla primaria, indicando que las branquias son una de las 

principales entradas de cadmio en el organismo. Por lo tanto, a la concentración 

testeada, la exposición a ambas formas resultó en acumulación de cadmio y supuso un 

efecto tóxico agudo en el pez cebra, el cual puede ser mediado por estrés oxidativo. 

Palabras clave: NPs de CdS, pez cebra, biomarcadores, bioacumulación, efectos 

celulares 
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INTRODUCTION 

Cadmium is a non-essential metal whose use has increased in the last decades in 

several industrial products due to its widespread use as a colour pigment in paints, in 

electroplating and galvanizing, in batteries, etc (Gonzalez et al., 2006). The Water 

Framework Directive (2000/60/EC) included cadmium as a priority hazardous 

substance and, therefore, its emission may cease and phased out (European Union, 

2000). Measured cadmium concentrations in surface waters range from 0.002 to 0.015 

µg/L in clean rivers, increasing up to 2-3 µg/L in surface waters of impacted 

environments (EPA, 2016). Very high values of cadmium in surface water, up to 30 

µg/L, have been measured in sampling sites receiving effluents of zinc manufacturing 

industries (Andres et al., 2000). Cadmium is one of the most toxic metals in the 

environment (Soares et al., 2008) and can be accumulated by aquatic organisms 

through different routes including respiration, adsorption and ingestion and its toxicity 

has been thoroughly studied (Perera et al., 2015).  

Among engineered nanoparticles (NPs), quantum dots (QDs) are semiconductor 

crystals ranging from 2 to 100 nm that present unique optical and electrical properties. 

These nanomaterials may contain metallic components such as cadmium being 

appropriate for several applications in biomedical devices and industrial processes. 

QDs present a fluorescence spectrum, which renders them optimal fluorophores for 

biomedical imaging. Moreover, QDs can be used for a variety of information and visual 

technologies (Hardman, 2006). QDs can be synthesized with different formulations.  

They are composed by a semiconductor core (e.g. CdS, CdSe, CdTe) and, in most of the 

cases, they are also encapsulated by a shell (e.g. ZnS) (King-Heiden et al., 2009; Louis et 

al., 2010). Due to their increasing production and use during the last decade, an input 

in the aquatic environment from the wastewater effluents or from industries could be 

provoked and, therefore, a negative impact in the aquatic organisms is to be expected 

(Munari et al., 2014). Several studies have been carried out in order to analyze the 

toxic effects of QDs in microalgae (Morelli et al., 2012) and in aquatic invertebrates 

such as Daphnia magna or freshwater and marine mussels (Gagné et al., 2008; Jackson 

et al., 2009; Peyrot et al., 2009; Kim et al., 2010; Feswick et al., 2013; Rocha et al., 

2014). In fish, most of the studies have been carried out in zebrafish embryos exposed 
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to QDs of different composition (e.g. CdS, CdTe/ZnS core shell, CdSe/ZnS core shell) 

with several coating agents in order to analyze the effect on survival rate, hatching 

parameters and malformation prevalence (King-Heiden et al., 2009; George et al., 

2011; Zhang et al. 2012a; 2012b; 2012c; 2013; Wiecinski et al. 2013; Chapter I). The 

toxicity of cadmium containing NPs has been partially attributed to the release of ions 

into the exposure medium, since cadmium is a highly soluble metal (Misra et al., 2012). 

LC50 values have been reported ranging from 0.0209 mg/L in embryos exposed to 

thioglycolic acid-CdTe QDs of 3.5 nm (Zhang et al., 2012a) to 4.72 mg/L in embryos 

exposed to CdSe/ZnS- poly (ethylene glycol) 5000-OCH3 QDs of 14 nm (King-Heiden et 

al., 2009). Differences in the LC50 values have been related to differences in the coating 

used and to the size of the NPs. The lowest LC50 values have been reported after the 

exposure to small QDs (King-Heiden et al., 2009; George et al., 2011). Moreover, the 

presence of other metals (e.g. selenium) and their dissolution can increase the toxicity 

of QDs in the embryos (Wiecinski et al., 2013).  

Few studies have analyzed the effects provoked by the exposure to QDs in adult fish. 

Sanders et al. (2008) waterborne exposed sticklebacks (Gasterosteus aculeatus) for 21 

days to different concentrations (0.005, 0.05 and 0.5 mg/L) of CdS NPs (4.2 nm). In this 

study, fish exposed at the highest concentration displayed hepatocellular nuclear 

pleomorphism. Moreover, at the two highest concentrations tested elevated levels of 

oxidized glutathione were detected. In rainbow trout, the exposure for 96 h to 1, 2 and 

6 µg/L of CdS/CdTe QDs provoked a significant regulation of 25 genes involved in 

inflammation, xenobiotic biotransformation and endocrine system, including the 

induction of vitellogenin and its receptor (Gagné et al., 2010). Through dietary 

exposure, the effect provoked by the exposure to QDs was analyzed using adult 

zebrafish fed for 36 and 60 days with food containing CdS NPs of two different sizes (8 

and 50 nm) in two different doses (40 and 100 ng NPs/day/g body weight). Results 

showed a significant accumulation of cadmium in the liver at both periods of time and, 

also, in the brain after 60 days of exposure. Moreover, after 60 days of dietary 

exposure to both concentrations of NPs, genotoxic effects were reported using 

random amplified polymorphic DNA-PCR (RAPD-PCR) genotoxicity test. The gene 

transcription analysis in liver showed a general downregulation of genes involved in 
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mitochondrial metabolism, DNA repair, apoptosis and antioxidant defenses after 36 

days of exposure to the smallest NPs (8 nm). After 60 days of exposure, these genes 

were found repressed in the intestine and over expressed in the brain (Ladhar et al., 

2013). Trophic transfer of poly (acrylic acid)-octylamine copolymer-coated CdSe/ZnS 

from brine shrimps to zebrafish have been also analyzed. Brine shrimps exposed to 0.6 

mg/L were used to feed zebrafish for 14 days and a low percentage of QDs was 

absorbed by fish and transported to different tissues (Lewinski et al., 2011).    

To the best of our knowledge, no in vivo studies have been performed in adult 

zebrafish to assess the toxic effects of the waterborne exposure to CdS NPs. 

Nevertheless, several studies have reported toxic effect after waterborne exposure to 

soluble cadmium on adult zebrafish. Noticeable differences in cadmium toxicity have 

been reported in these studies, because cadmium toxicity can vary greatly depending 

on the hardness of the exposure medium (Hollis et al., 1997). An increase in the 

concentration of calcium ions can decrease the bioavailability and, thus, the toxicity of 

cadmium, since calcium ions compete with cadmium ions for the same binding sites on 

the organisms (Meinelt et al., 2001). After the exposure to adult zebrafish for 96 h to a 

set of concentrations ranging from 4.256 to 48.72 mg Cd/L a LC50 value of 11.46 mg 

Cd/L was obtained (Vergauwen et al., 2013a). In a longer-term cadmium exposure to a 

lower concentration (560 µg Cd/L for 21 days), Vergauwen et al. (2013b) reported a 

20% of mortality and cadmium tissue accumulation, in the following order: muscle < 

brain < gonads < carcass < liver < gills < gut. Exposure for 21 days to 1.9 and 9.6 µg 

Cd/L, provoked genotoxic effects according to the RAPD-PCR test and a high 

percentage of mortality (56%) was observed after the exposure to the highest 

concentration (Cambier et al., 2010). After 96 h of exposure to 5 and 8.3 mg Cd/L, Ling 

et al. (2010) reported a decrease in the activity of superoxidase dismutase, catalase 

and acetylcholinesterase, which was also detected after a longer-term period (21 days) 

to a lower concentration (0.4 mg/L) (Banni et al., 2011).  

Thus, the present investigation was aimed to study the bioaccumulation, cell 

localization and cellular effects of waterborne exposure to 10 µg Cd/L of CdS NPs (3.5-

4 nm) in comparison with those effects provoked by the same nominal concentration 

of ionic cadmium in adult zebrafish. The selection of the exposure concentration was 
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based on the results reported in the literature (Cambier et al., 2010) and on the 

previously performed short-term experiments with embryos where mortality was not 

recorded at the concentration used in this work (Chapter I). After 21 days of exposure, 

fish were maintained in clean water up to 6 months in order to observe the effects 

provoked in the organisms after a long-term period recovery. Different biomarkers 

(previously described in Chapter II) were applied to determine the cellular and tissular 

effects of CdS NPs and ionic cadmium in zebrafish.  

MATERIALS AND METHODS  

Cadmium compounds  

Glutathione (GSH) capped CdS NPs of 3.5-4 nm were synthesized by wet chemistry 

following a method modified from Zou et al. (2009) as described in Katsumiti et al. 

(2014). After the synthesis, CdS NPs were washed using centrifugal ultrafiltration, 

resulting in CdS NPs with no residual free GSH. CdS NPs were provided as suspension 

at a concentration of 4.7 g Cd/L. CdS NPs were characterized in deionized water by 

transmission electron microscopy (TEM), and isolated particles or very small 

aggregates (5–10 nm) were observed. In a 1 mM solution of NaNO3, 1.1% of cadmium 

was dissolved from the CdS NPs after 24 h, 6.6% after 72 h and 13% after 7 days 

(Katsumiti et al., 2014). Ionic cadmium solution was prepared from CdCl2 purchased to 

Sigma-Aldrich (St. Louis, Missouri, USA). In both cases, a solution of 1 mg Cd/L was 

prepared by dissolving the original stocks in deionized water. The final exposure 

concentration (10 µg/L) was achieved by adding a given volume of the stocks solution 

to the exposure aquaria.   

Maintenance and experimental exposure of adult zebrafish 

The experimental procedure described herein was approved by the Ethics Committee 

in Animal Experimentation of the UPV/EHU according to the current regulations. 

Zebrafish (wild type AB Tübingen) individuals were specifically produced and grown in 

our facility at the UPV/EHU. Adult fish of approximately 4 months old were exposed to 

CdS NPs and to ionic cadmium at a concentration of 10 µg Cd/L for 21 days. An 

unexposed control group was run in parallel in identical experimental conditions. 
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The exposures were carried out in 35 L aquaria with conditioned water of 600 µs Ω  

containing 50-60 fish. During the exposure period, approximately 2/3 of the aquarium 

water was changed by siphoning every three days and the corresponding volume of 

contaminated or clean water was redosed. Fish were fed with Vipagran baby (Sera, 

Heinsberg, Germany) and live Artemia (INVE Aquaculture, Salt Lake City, Utah, USA) 

twice per day. Samples were taken after 3 and 21 days of exposure after euthanasia by 

overdose of anesthetic (benzocaine, Sigma-Aldrich). After 21 days of exposure, 

remaining fish were transferred to clean water and maintained up to 6 months to 

evaluate the appearance of long-term effects or the potential reversibility of the 

effects detected. During this period, fish were fed only with Sera Vipagran baby twice 

per day. Water was maintained in continuous movement through an air pump to 

assure an appropriate aeration to the tank. Biological and physical filters were used to 

maintain the chemical parameters of the water (nitrate, nitrite and ammonium) that 

were controlled once per week using Sera ammonium, nitrite and nitrate kits. Water 

was changed if the values were higher than zero mg/L for ammonium or nitrite and 50 

mg/L for nitrate. At 6 months post-exposure fish samples were collected as described 

above. 

Metal accumulation in whole organisms: chemical analysis  

After 21 days of exposure, 20 individuals per experimental group were collected, 

frozen individually in liquid nitrogen and stored at -80 ºC until processed for chemical 

analysis. Whole zebrafish were dried in an oven at 130 ºC for 24 h. Dry tissues were 

weighted and pooled (five pools of four zebrafish each). Each pool was placed into 25 

mL Erlenmeyer flasks and 2 mL of 65% nitric acid (extra pure quality, Scharlau, 

Barcelona, Spain) was added for tissue digestion. The mouth of the Erlenmeyer flask 

was blocked with a crystal ball to minimize evaporation. After finishing the digestion of 

the sample, the remnant liquid was evaporated in an 80 ºC hot plate inside an exhaust 

hood. Then, 2.5 mL of nitric acid 0.1 M were added to each Erlenmeyer flask, and left 

for 1 day. The content of each flask was then put into tubes and centrifuged for 4 min 

at 2000 rpm (Heraeus Labofuge 200 centrifuge, Hanau, Germany). The supernatants 

were moved to clean tubes, and stored at 4 ºC. Finally, cadmium content was 

measured by inductively coupled plasma atomic emission spectrometry (ICP-AES, 
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7700x, Agilent Technologies, California, USA) following the US-EPA 6010D direction. 

Detection limit was established at 0.005 µg/L. 

Histological preparations 

The visceral mass and gills of 10 individuals per experimental group were dissected 

after 21 days of exposure and after 6 months in clean water. Tissues were placed in 

histological cassettes and immersed in 10% neutral buffered formalin for 24 h at 4 ºC. 

Then, samples were transferred to 70% ethanol and stored at 4 ºC until complete 

tissue processing under vacuum conditions in an ASP300 Tissue Processor (Leica 

Microsystems, Nussloch, Germany). Paraffin blocks were done using plastic molds. 

Sections (5 µm thick) were cut in a RM2125RT microtome (Leica Microsystems). For 

the histopathological analysis and for localization of tissues of interest before the 

autometallographical staining, slides were stained with hematoxylin/eosin (H/E) in an 

Auto Stainer XL (Leica Microsystems) and mounted in DPX (Sigma-Aldrich) by means of 

a CV5030 Robotic Coverslipper (Leica Microsystems). H/E stained histological sections 

of the visceral mass and gill tissue were examined under a BX51 light microscope 

(Olympus, Tokyo, Japan).  

Metal accumulation in tissues: autometallography 

Autometallographical staining was applied on paraffin sections of visceral mass of ten 

individuals per experimental group sampled after 21 days of exposure using a method 

modified from Soto et al. (1998). Briefly, sections were dewaxed, hydrated in a graded 

series of ethanol and left until they were completely dry. Then, sections were covered 

with the photographic emulsion (Ilford nuclear emulsion L4, Norderstdedt, Germany) 

and left in total darkness for 30 min. Reaction was developed in the developer bath 

(1:4.5 dilution in deionized water of B&W Negative developer Tetenal, Norderstdedt, 

Germany) for 15 min and, then, rinsed in the stop bath (1% solution of acetic acid, 

Panreac, Barcelona, Spain) for 1 min. Sections were fixed in a 10% solution of B&W 

Film/Paper Fixer AGFA (Mortsel, Belgium) in deionized water for 10 min. Finally, 

sections were washed in deionized water and mounted in Kaiser’s glycerine gelatine 

(Merck, Darmstadt, Germany). Once the slides were dried, the presence of black silver 

deposits (BSDs) indicating the presence of metals in the tissue was semiquantitatively 
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analyzed under an Olympus BX51 light microscope at a magnification of 20x using the 

criteria previously published: (-) Tissue without presence of BSDs; (+) presence of 

homogeneously distributed small BSDs; (++) presence of homogeneously distributed 

small BSDs plus the presence of agglomerations of BSDs of larger size and (+++) tissues 

with a greater presence of homogeneously distributed BSDs plus the presence of 

abundant large deposits (Vicario-Parés et al., 2014). 

Subcellular localization of CdS NPs: transmission electron microscopy (TEM) and X-ray 

analysis 

Gills and liver from control fish and fish exposed to CdS NPs for 3 and 21 days were 

dissected and fixed for 1 h at 4 ºC in sodium cacodilate (Sigma-Aldrich) buffer 0.1 M, 

pH 7.2, containing 2.5% glutaraldehyde (Panreac). Then, samples were washed twice 

for 15 min in sodium cacodilate buffer, postfixed for 1 h in 1% osmium tetroxide 

(Sigma-Aldrich) with 1.5% potassium ferrocianure (Sigma-Aldrich) containing sodium 

cacodilate buffer 0.1 M and washed twice for 30 min in deionized H2O. Then, samples 

were dehydrated in a graded series of ethanol, cleared twice for 10 min with 

propylene (Sigma-Aldrich) and embedded for several hours and, then, overnight in a 

mixture (1:1) of propylene and Epon resin (Sigma-Aldrich) prepared according 

manufacturer’s instructions. Finally, samples were embedded in Epon resin for several 

hours and encapsulated for polymerization for 48 h at 60 ºC. 

Semithin sections of 1500 nm in thickness were cut using a Reichert Ultracut S 

ultramicrotome (Leica Microsystems), stained with 1% tolulidine blue (Sigma-Aldrich) 

and observed under a light microscope to determine the presence of the tissues of 

interest. Ultrathin sections of 50 nm in thickness were then cut from selected blocks. 

Sections were picked up in 150 mesh copper grids, contrasted with 1% uranyl acetate 

(Fluka, Steinheim, Germany) for 3 min and with 0.3% lead citrate (Fluka) for 4 min and, 

finally, examined and photographed under a Hitachi HT7700 transmission electron 

microscope (Tokyo, Japan) at 60 kV. Selected samples with electrodense structures 

resembling NPs were analyzed by X-ray microanalysis, with the scanning-TEM module 

in a Field Emission Scanning Electron Microscope Zeiss Auriga 405, 1 nm nominal 

resolution (Oberkochen, Germany) in order to corroborate whether observed 
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structures corresponded to CdS NPs. Sections intended for X-ray microanalysis were 

not contrasted with uranyl acetate and lead citrate in order to minimize interferences.  

Oxidative stress: Western Blot analysis of ubiquitin and carbonylated actin 

The visceral mass of 5 fish per experimental group sampled after 3 and 21 days of 

exposure and at 6 months post-exposure was dissected out, frozen immediately in 

liquid nitrogen and stored at -80 ºC to quantify immunoreactive bands corresponding 

to ubiquitin and carbonylated actin using a method modified from McDonagh and 

Sheehan (2006). Each sample was homogenized in 10 mM Tris-HCl pH 7.2 containing 1 

mM EDTA and 2% protease inhibitor cocktail (Sigma-Aldrich). Extracts were 

centrifuged at 2500 rpm (Precellys 24-Dual homogenizer, Bertin Technologies, 

Montigny le Bretonneux, France) for 5 min and the resulted aqueous phase was 

removed. Protein concentration was determined by measuring the optical density at 

280 nm (Harris, 1989) and adjusted to 2 µg/µL with the buffer used previously. 

Samples were mixed 1:1 with Laemmli buffer (62.5 mM Tris-HCl, pH 6.8, 8% sodium 

dodecyl sulfate, 0.1 M dithiothreitol, 30% glycerol and 2 mg/mL bromophenol blue) in 

order to obtain a final concentration of 1 µg protein/µL.  

One-dimensional electrophoresis was performed on 12.5% polyacrylamide gels 

containing sodium dodecyl sulfate. 10 µL of sample or 5 µL of Precision Plus Protein 

Standards Dual-colour (Bio-Rad, Hercules, CA, USA) were loaded in each lane. The 

electrophoresis was run at 200 V for 40 min (Power PacTM, Bio-Rad). Separated 

proteins were transferred to a PVDF membrane (Bio-Rad) by a trans-blot turbo 

transfer system (Bio-Rad) for 30 min up to 1 A and 25 V. For ubiquitin detection, the 

membrane was blocked in phosphate buffered saline (PBS) containing 1% of bovine 

serum albumin (BSA) for 1 h and washed in PBS. Then, it was incubated for 1 h at room 

temperature with the polyclonal rabbit anti-ubiquitin antibody (Dako, Glostrup, 

Denmark) diluted 1:1000 in PBS, followed by several washes in PBS and incubation for 

1 h at room temperature with the secondary antibody (peroxidase-conjugated anti 

rabbit Ig G, whole molecule, Sigma-Aldrich) diluted 1:2000 in PBS. Finally, the 

membrane was washed several times in PBS. For the determination of protein 

carbonylation level, samples were derivatized with 2,4-dinitrophenylhydrazine (DNP, 
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Sigma-Aldrich) following the method by Conrad et al. (2001) and, then, processed as 

described above. The rabbit anti-DNP antibody (Sigma-Aldrich) was diluted 1:1000 in 

PBS and the secondary antibody was diluted 1:10000 in PBS. Peroxidase activity was 

visualized by means of an enhanced chemiluminescence kit (Thermo Scientific, Illinois, 

USA). 

Photographic films were scanned using a GS-800 calibrated densitometer (Bio-Rad). 

The average optical density of the immunoreactive bands corresponding to free 

ubiquitin and carbonylated actin was quantified using the Quantity One image analysis 

software (v. 4.6.5, Bio-Rad). All the data were transformed to percentages respect to 

the average value of the control group at 3 days. 

Genotoxicity: Micronuclei frequency  

Blood samples of ten individuals per experimental group were collected after 3 and 21 

days of exposure and at 6 months post-exposure by tail cutting and direct blood smear 

on clean microscope glass slides. Blood smears were left to air-dry and, then, fixed for 

15 min in cold methanol. Once again, slides were left to air-dry and smears were 

stained with 6% Giemsa (Sigma-Aldrich) for 15 min. Afterwards, slides were rinsed in 

tap water and left to air-dry overnight and mounted in DPX (Sigma-Aldrich). 2000 

erythrocytes were scored per individual fish under an Olympus BX51 light microscope 

at a magnification of 100x. The criteria used to determine the presence of micronuclei 

was: size not bigger than a 1/3 diameter of the main nucleus, same texture and colour, 

clearly separated from the main nucleus and with oval or circular shape (Baez-Ramirez 

and Prieto-García, 2005). Micronuclei frequency was expressed in ‰.  

General health status: Lysosomal membrane stability (LMS)  

The visceral mass of 5 individuals per experimental group was dissected after 3 and 21 

days of exposure and at 6 months post-exposure, embedded in Cryo-M-Bed (Jung, 

Heidelberg, Germany) and frozen in liquid nitrogen. Frozen tissue sections (10 μm) 

were obtained in a CM3050S cryotome (Leica Microsystems) at a cabinet temperature 

of -24 ºC. The determination of LMS was based on the method used by Bröeg et al. 

(1999) as the time of acid labilization treatment required to produce the maximum 
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staining intensity in hepatocyte lysosomes after demonstration of acid phosphatase 

activity. Time intervals used for acid labilization were 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40 

and 50 min according to Bilbao et al. (2010).  

Labilization period (LP) was determined under an Olympus BX51 light microscope as 

the maximal accumulation of reaction product associated with lysosomes (Bröeg et al., 

1999). Four determinations were made for each individual liver by dividing each 

section in the acid labilization sequence into 4 approximately equal segments. A mean 

value was then obtained for each section, corresponding to an individual fish. 

Statistical analyses  

Statistical analyses were performed using the SPSS statistical package v22.0 (SPSS Inc, 

Microsoft Co, WA, USA). Previous to the analysis, data were tested for normality 

(Kolmogorov-Smirnov test) and homogeneity of variances (Levene’s test). Data on 

cadmium content followed a Normal distribution and were analyzed by one way 

ANOVA followed by the Duncan post-hoc test. For LMS, western blot and micronuclei 

frequency data, the non-parametric Kruskal-Wallis test was applied followed by the 

Dunn’s post hoc test. For prevalence of histopathological alterations, Fisher’s exact 

test was applied. In all cases, significance was established at p<0.05. 

RESULTS 

Mortality 

At the concentration used during the experimental procedure, mortality was not 

detected in embryos (Chapter I). Nevertheless, in adults exposed to both forms of 

cadmium, mortality was observed by the fourth day of exposure. At the end of the 

exposure period, 72% of fish exposed to CdS NPs and a 78% of fish exposed to ionic 

cadmium had died. During the post-exposure period, mortality was not longer 

registered.  

Metal bioaccumulation in whole organism 

A significant accumulation of cadmium in the whole body of fish compared to the 

control fish was observed after the exposure for 21 days to both forms of cadmium, 
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CdS NPs and ionic cadmium (Fig 1). A bioaccumulation factor (BCF) of 619 was 

calculated after the exposure to CdS NPs and of 729 after exposure to ionic cadmium. 

 

Figure 1.- Box-plot of cadmium accumulation (µg Cd/g dry weight) in whole fish tissue after 21 days of 
exposure. Box-plot boxes represent the percentages data value in between the 25th and the 75th 
percentile, median indicated by a line in the middle of the box. Whiskers are the data values in up to the 
5th percentile and 95th percentile. Outliers are represented by circles. Different letters indicate 
statistically significant differences (p<0.05) according to the Duncan’s test after one way ANOVA. 

Metal accumulation in tissues 

Results of the semiquantification of autometallographical BSDs indicating the presence 

of metal in the intestine and liver of zebrafish are shown in Table 1. After 

autometallographical staining, presence of BSDs was not detected in tissues of control 

fish, neither in the intestine (Fig 2A) nor in the liver (Fig 2B). The apical end of the 

enterocytes was the most stained part of the intestine after exposure to CdS NPs. BSDs 

were not observed into the secretory goblet cells (Fig 2C). Sixty six percent of the 

individuals exposed to CdS NPs did not present BSDs in the liver and, when present, 

they were scarce (Fig 2D). The staining pattern observed in the intestine of fish 

exposed to ionic cadmium was similar to that obtained after exposure to CdS NPs, 

being the apical end of the enterocytes the most stained zone. Nevertheless, in the 

case of ionic cadmium exposure, some BSDs were found in the cytoplasm of the 

secretory cells (Fig 2E). In the case of the liver, 70% of the individuals exposed to ionic 

cadmium presented BSDs, being the density of the BSDs high in some of the examined 
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individuals (Fig 2F). Overall, the semiquantitative analysis showed that the intestine 

was the most intensely stained tissue and metal content was similar after the exposure 

of both forms of cadmium, while the liver of zebrafish showed bigger differences 

between animals exposed to CdS NPs or to ionic cadmium (Table 1). 

 
Figure 2.- Micrographs of paraffin sections of the visceral mass of adult zebrafish after 
autometallographical staining. (A) Intestine of control adult zebrafish. (B) Liver of control adult zebrafish. 
(C) Intestine of adult zebrafish exposed for 21 days to CdS NPs. (D) Liver of adult zebrafish exposed for 
21 days to CdS NPs. (E) Intestine of adult zebrafish exposed for 21 days to ionic cadmium. (F) Liver of 
adult zebrafish exposed for 21 days to ionic cadmium. Scale bars: (A, C, E) 100 µm and (B, D, F) 50 µm. 
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Table 1.- Semiquantification of BSDs in the intestine and liver of adult zebrafish at 21 days of exposure.  

Organism 
Control CdS NPs Ionic cadmium 

Intestine Liver Intestine Liver Intestine Liver 

1 - - + + + + 

2 - - ++ + ++ + 

3 NT NT + NT + - 

4 - - +++ - ++ + 

5 - - + - NT + 

6 NT NT ++ - ++ ++ 

7 - - + NT + + 

8 - - + NT - - 

9 - - - - + - 

10 - - NT NT ++ ++ 

Average number of + 0 0 1.3 0.3 1.3 0.9 

Semiquantification criteria according to Vicario-Parés et al. (2014): (-) Tissue without presence of BSDs; 
(+) presence of homogeneously distributed small BSDs; (++) presence of homogeneously distributed 
small BSDs plus the presence of agglomerations of BSDs of larger size and (+++) tissues with a greater 
presence of homogeneously distributed BSDs plus the presence of abundant large deposits; NT: No 
specific tissue in the sample. 

Subcellular localization of CdS NPs 

A TEM analysis was carried out in order to analyze the fate of the CdS NPs in gill and 

liver cells of zebrafish. The electrodense structures resembling NPs were analyzed by 

X-ray microanalysis in order to corroborate their chemical composition.  

Gill cells (Fig 3A) of control fish presented well preserved cell structure, with intact cell 

membranes and well structured organelles. The different gill cell types of individuals 

exposed to CdS NPs did not appear to present any relevant ultrastructural damage (Fig 

3B-C). Regarding the presence of NPs in the gills, aggregates of structures containing 

Cd (Fig 4A-B) according to the X-ray analysis (Fig 4C) were observed in the cytoplasm of 

the epithelial cells in fish exposed for 3 and 21 days.  
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Figure 3.- Micrographs of ultrathin sections of zebrafish gill. (A) Secondary lamellae of the gill from a 
control zebrafish. (B,C) Secondary lamellae of the gill from a zebrafish exposed to CdS NPs for 21 days. 
Pillar cell (pc), blood cell (bc), epithelial cell (ec), entothelial cell (enc), (mc) mitochondria. Scale bars: 1 
µm.  

 
Figure 4.- (A, B) Cytoplasm of epithelial cells of the secondary lamellae of the gill from zebrafish exposed 
to CdS NPs for 3 and 21 days, respectively. CdS NPs are visible as electrondense structures. The red circle 
and the white line indicate the presence of structures containing Cd as measured by X-ray. (C) X-ray 
energy spectrum confirming the presence of cadmium in the electron-dense particles shown in B. 
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As in the case of the gills, no ultrastructural damage was observed in the hepatocytes 

of fish exposed to CdS. Hepatocytes of both control (Fig 5A, B) and treated (Fig 5C, D) 

zebrafish showed intact cell membranes and well structured organelles, although an 

increased presence of glycogen was observed in exposed fish (Fig 5D). The presence of 

putative CdS NPs was detected in hepatocytes inside membrane-surrounded vesicles 

(Fig 6A) and attached to the nuclear envelope (Fig 6B) after 3 days of exposure. The 

chemical composition of these electrondense structures resembling NPs was 

corroborated as cadmium after the X-ray analysis (Fig 6C). 

 
Figure 5.- Micrographs of ultrathin sections of zebrafish liver: (A, B) Hepatocytes of a control zebrafish. 
(C, D) Hepatocytes of a zebrafish exposed to CdS NPs for 3 days. Nucleus (n), mitochondria (mc), rough 
endoplasmic reticulum (rer), lysosome (lys), Golgi apparatus (go). Scale bar: (A, C) 1 µm, (B, D) 2 µm.  

Oxidative stress 

Oxidative damage to proteins was assessed by quantification of the immunoreactive 

band corresponding to free ubiquitin, detected at a molecular weight of 8 kD (Fig 7A)  

and of the immunoreactive band corresponding to carbonylated actin appearing at a 

molecular weight of 40 kD (Fig 7B).  
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Figure 6.- (A) Membrane-surrounded vesicles containing electrodense particles that resemble NPs in an 
hepatocyte of a zebrafish exposed to CdS NPs for 3 days. (B) Perinuclear region of a hepatocyte of a 
zebrafish exposed to CdS NPs for 3 days, NPs were detected attached to the nuclear envelope. The red 
circles indicate the area measured by X-ray. (C) X-ray energy spectrum confirming the presence of 
cadmium in the electron-dense particles found in the region encircled in B.  

 
Figure 7.- Immunoreactive band for (A) ubiquitin free after 21 days of exposure and (B) carbonylated 
actin after 3 days of exposure.   

A significant increase in the level of free ubiquitin was recorded in the liver of fish after 

3 days of exposure to ionic cadmium in comparison to fish of the control group and 

fish exposed to CdS NPs, while a significant decrease respect to the control group was 

recorded after 21 days of exposure. No significant effects were measured after the 

exposure to CdS NPs respect to the control group (Fig 8A). For actin carbonylation, a 

significant decrease compared to the control group was detected after 3 days of 
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exposure to CdS NPs, while for fish exposed to ionic cadmium only a slight decrease 

was measured. After 21 days, a significant increase in the level of carbonylated actin 

was recorded in fish exposed to ionic cadmium respect to the control fish (Fig 8B). At 6 

months post-exposure, no differences were found between animals from the control 

group and fish exposed to CdS NPs. Due to the high mortality recorded during the 

exposure to ionic cadmium, samples of this treatment group, could not be collected at 

the post-exposure period. 

 
Figure 8.- Relative quantification of the optical density of the immunoreactive band for (A) free ubiquitin  
and (B) carbonylated actin. Data are shown as percentages respect to the average value of the control 
group at 3 days. * At 6 months, samples for the ionic group could not collected due to the mortality 
registered in this group during the exposure period. Different letters indicate statistically significant 
differences (p<0.05) with each sampling time according to the Kruskall-Wallis test followed by the post 
hoc Dunns test. a.u.: arbitrary units. 
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Genotoxicity 

Exposure of zebrafish to 10 µg Cd/L of CdS NPs or to ionic cadmium did not cause 

significant genotoxic effects at any of the measured time points, according to the 

micronuclei test performed in zebrafish erythrocytes. Only three individual after 3 days 

of exposure to ionic cadmium and one individual after exposure for 21 days showed 

each one micronucleated cell (data not shown). 

Lysosomal membrane stability 

The general health status of the fish after 3 and 21 days of exposure was studied 

through the LMS test. Due to the lack of individuals provoked by the high mortality, 

samples for the different exposure treatments were not collected at 6 months. Low 

mean LP values were measured in all the groups, even in the control groups. A 

significant decrease in the mean LP value was observed after 3 and 21 days of 

exposure to CdS NPs, being the desestabilization of the lysosomal membrane observed 

from the first time measured (Fig 9). After 21 days, fish exposed to ionic cadmium also 

showed significant decrease in the mean LP value compared to control fish.  

 
Figure 9.- Labilization period (in minutes) of the lysosomal membrane in liver cells. Different letters 
indicate statistically significant differences (p<0.05) within each sampling time according to the Kruskall-
Wallis test followed by the post hoc Dunns test. # At 3 and 21 days, fish previously exposed to CdS NPs 
showed desestabilization of the lysosomal membrane from the first time point measured. 

Histopathological analysis 

In gills, different pathological conditions, such as aneurism, inflammation and fusion of 

the secondary lamellae and hyperplasia of cells of the primary lamellae, were recorded 
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in individuals exposed to both forms of cadmium. The prevalence of the 

histopathological alterations in gills is shown in table 2. Control fish showed in general 

a normal arquitecture of the gill (Fig 10A), only one individual sampled at 21 days of 

experiment showed hyperplasia in the primary lamellae. At 6 months, the control 

group presented a slight increase in the number of individuals with any pathology 

appearing some cases of hyperplasia, inflammation and aneurism. After the exposure 

to CdS NPs the most common pathologies were inflammation of the secondary 

lamellae (Fig 10B) and hyperplasia of the primary lamellae, being the prevalence of 

inflammation in these individuals (50%) significantly higher than in the control group. 

Fusion of secondary lamellae was also observed with a much lower prevalence (10%). 

Exposure to ionic cadmium provoked a significant increase in the number of fish 

presenting pathologies (Fig 10C-D), being the prevalence of inflammation of the 

secondary lamellae (78%) and aneurism (45%) significantly higher than in the control 

group. Other pathologies detected were hyperplasia of the secondary lamellae (55%) 

and fusion of the secondary lamellae (23%). After the post-exposure period, same 

histopathological alterations were recorded in the previously exposed fish, with higher 

prevalence respect to the samples analyzed after 21 days in fish previously exposed to 

CdS NPs, and with lower prevalence in fish previously exposed to ionic cadmium. 

Table 2.- Prevalence of histopathological alterations in gills of zebrafish. Data are shown in percentages. 
Asterisks indicate statistically significant differences between control and exposed groups (p<0.05) 
according to the Fisher’s exact test.  

  
n 

 
Secondary lamellae  

Primary 
lamellae 

 

Total 
   Inflammation Fusion Aneurism  Hyperplasia  

Control 
21 d 8   0  0  0   12.5   12.5  

6 m 8   12.5  0  12.5   25   37.5  

CdS NPs 
21 d 10   50*  10  0   50   60  

6 m 9   88.89*  22.23  33.34   11.12   88.9  

Ionic 
cadmium 

21 d 9   77.78*  22.23  44.45*   55.56   88.9*  

6 m 9   44.45  11.12  33.34   44.45   88.9  

n: number of individuals per experimental group (in some cases n < 10 because the gill tissue was not 
always present in the histological sections used for the histological analysis).  
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Figure 10.- Micrographs of paraffin embedded and hematoxylin/eosin stained section of zebrafish gills. 
(A) Gill arquitecture of a control fish, showing normal morphology. (B) Gill of a zebrafish exposed to CdS 
NPs for 21 days, showing inflammation (asterisks) in the secondary lamellae and hyperplasia (arrow) in 
the primary lamellae. (C) Gill of a zebrafish exposed to ionic cadmium for 21 days, showing fusion (stars) 
and inflammation (asterisks) of the secondary lamellae and hyperplasia (arrow) in the primary lamellae. 
(D) Gill of a zebrafish exposed to ionic cadmium for 21 days, showing fusion (stars) and inflammation 
(asterisks) of the secondary lamellae and hyperplasia (arrow) in the primary lamellae. Scale bars: 50 µm. 

After the histopathological analysis of the liver, different pathologies were detected in 

the liver of zebrafish exposed to both forms of cadmium after 21 days, as well as at the 

post-exposure period. The prevalence of the histopathological alterations found in 

liver is shown in table 3. Control fish showed in general a normal liver (Fig 11A) at 21 

days of experiment, while at 6 months two individuals showed vacuolization. After the 

exposure for 21 days to CdS NPs, the number of individuals presenting vacuolization 

(Fig 11B) was significantly higher (87.5%) than in the control group. Also, one individual 

(12.5%) presented megalocytosis (Fig 11C). Exposure to ionic cadmium also provoked a 

significant increase in the prevalence of fish presenting vacuolization. 100% of the 

individuals of this group presented this pathological condition. After the post-exposure 

period, the prevalence of individuals presenting vacuolization decreased respect to the 

individuals sampled at 21 days of exposure, but remained higher than in control fish at 
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the same sampling time. One fish previously exposed to ionic cadmium presented an 

eosinophilic focus (Figure 11D). 

Table 3.- Prevalence of histopathological alterations in liver of zebrafish. Data are shown in percentages. 
Asterisks indicate statistically significant differences between control and exposed groups (p<0.05) 
according to the Fisher’s exact test.  

  
n 

 
Vacuolization Megalocytosis Eosinophilic focus 

 
Total 

Control  
21 d 8  0 0 0 

 
0 

6 m 10  20 0 0 
 

20 

CdS NPs  
21 d 8  87.5* 12.5 0 

 
87.5* 

6 m 9  55.6* 0 0 
 

55.6 

Ionic cadmium  
21 d 10  100* 0 0 

 
100* 

6 m 7  57.1 0 14.3 
 

71.4 

n: number of individuals per experimental group (in some cases n < 10 because the liver tissue was not 
always present in the histological sections used for the histological analysis).  

 
Figure 11.- Micrographs of paraffin embedded and hematoxylin/eosin stained section of zebrafish liver. 
(A) Liver of a control adult, showing normal morphology. (B) Liver of a zebrafish exposed to CdS NPs for 
21 days, showing vacuolization. (C) Liver of a zebrafish exposed to CdS NPs for 21 days, showing hepatic 
megalocytes (arrow). (D) Liver of a zebrafish exposed to ionic cadmium at the post-exposure period, 
showing an eosinophilic focus. Scale bars: 50 µm. 
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DISCUSSION 

In this study, adult zebrafish were exposed for 21 days to 10 µg Cd/L of CdS NPs, as 

well as to the same nominal concentration of ionic cadmium. Then, fish were 

maintained in clean water for 6 months in order to detect potential long-term effects 

derived from the previous exposure or the recovery of recorded alterations. Different 

endpoints, including cadmium accumulation in the organism and cellular effects in 

different organs, were measured in order to assess the effects provoked by the 

exposure to both forms of cadmium. Although the cadmium concentration used during 

the exposure period did not cause embryo mortality (Chapter I), a high mortality was 

recorded from the fourth day of exposure to both forms of cadmium (72% in fish 

exposed to CdS NPs and 78% in fish exposed to ionic cadmium at 21 days). This 

mortality is higher than the mortality reported previously in studies with adult 

zebrafish exposed to cadmium. Cambier et al. (2010) registered a 56% of mortality 

after 21 days of exposure to 9.6 µg Cd/L, while Vergauwen et al. (2013b) registered a 

much lower mortality (20%), despite having exposed fish to a much higher 

concentration (560 µg/L) of ionic cadmium for 21 days. These differences in mortality 

may be related to differences in the hardness of the exposure medium employed in 

the experiments. Previous studies have demonstrated that a high concentration of 

calcium in the exposure medium decreases bioavailability and, thus, the toxicity of 

cadmium for the organisms (Meinelt et al., 2001; Pellet et al., 2009). Calcium 

concentration in the water used by Vergauwen et al. (2013b) was much higher than in 

our study resulting in a BCF for ionic cadmium of 7.5, while we calculated a BCF of 619 

after the exposure to CdS NPs and of 729 after the exposure to ionic cadmium. The 

analysis of metal accumulation by autometallography showed a higher metal content 

in the intestine than in the liver, being the apical end of the enterocytes the most 

stained zone. In agreement with our results, some authors have reported that in fish, 

including zebrafish, the intestine is the organ which accumulated cadmium at the 

highest extent followed by liver and gill, while muscle and brain presented the lowest 

accumulation capacity (Souid et al., 2013; Vergauwen et al., 2013b).   

The gastrointestinal tract of the fish can be a route of entrance of cadmium into the 

organism after waterborne exposure (Olsson et al., 1998), since the metal can be 
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attached to the food or dissolved in the water drunk by the fish. Moreover, the 

intestine has been reported as the initial organ where metals are accumulated after a 

waterborne exposure (Souid et al., 2013), being the non-essential metals retained in 

mucosal layer of intestine (Clearwater el al., 2005).  

In addition to the intestine, gills have been identified as the main entrance of cadmium 

in the organism after waterborne exposure, playing a role in metal uptake and transfer 

to other organs via blood transport (Thophon et al., 2003; Alvarado et al., 2006; Costa 

et al., 2013). During the present study, aggregates of CdS NPs were detected in the 

cytoplasm of epithelial cells after 3 and 21 days of exposure. Cadmium is taken up in 

the gill across the epithelial layer via calcium channels in the apical cell membrane, 

provoking an imbalance in calcium concentration, which induces damage in the gill 

structure of fish (Glynn, 1996; Thophon et al., 2003). The elimination of cadmium from 

the gill has been described through the chloride cells (Costa et al., 2013). This route of 

elimination of cadmium can increase the gill damage, resulting in hyperplasia of 

chloride cells, or the fusion of two neighboring secondary lamellae (Alvarado et al., 

2006), a pathological condition detected during our study after the exposure to both 

forms of cadmium for 21 days. The damage provoked in the gills by the exposure to 

cadmium, causes a reduction in the oxygen consumption and disruption of the 

osmoregulatory function in aquatic organisms (Liu et al., 2011), which could explain 

the increase in the mortality detected during our experimental conditions. At the end 

of the 6 month period in clean water, the pathologies previously described were also 

detected even in a higher prevalence for inflammation, fusion and aneurism of the 

secondary lamellae, indicating that the toxic effect of cadmium may be sustained after 

the cease of the exposure. The presence of histopathologies even after 6 months post 

exposure may be related to the fact that high concentrations of cadmium can be 

maintained in the tissues after long periods in clean water (Arini et al., 2015).  

After the entrance and accumulation in organs such as gills and intestine, cadmium is 

transferred to the liver, which is well known as an organ involved in storage and 

detoxification of metals (Handy, 1993). During our study, aggregates of CdS NPs were 

detected in the nuclear envelope and surrounded vesicles of hepatocytes. Moreover, 

the accumulation of metal in the liver after the exposure to both forms of cadmium 
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was corroborated by autometallography. Higher accumulation was detected after the 

exposure to ionic cadmium than after the exposure to CdS NPs. Autometallography is a 

technique that requires the presence of metal atoms in the tissue to catalyze the 

deposition of metallic silver around them (Danscher, 1994). Therefore, the higher 

signal detected in the liver after exposure to ionic cadmium compared to the exposure 

to CdS NPs may be due to the solubility rate showed by the CdS NPs used in this study. 

Although CdS is soluble, only 13% of the metal dissolved in a 1 mM solution of NaNO3 

after 7 days (Katsumiti et al., 2014). The exposure to cadmium for 21 days and the 

resulting accumulation provoked diverse histopathological lesions in the liver. The 

most common pathology observed was the vacuolization of hepatocytes. 

Vacuolization, which has been previously related to the response of hepatocytes to 

toxicants and metals, is associated with the inhibition of protein synthesis, energy 

depletion or disaggregation of microtubules, or shifts in substrate utilization (Hinton 

and Laurén, 1990). In previous studies, vacuolization of hepatocytes has been also 

amply detected on different fish species waterborne exposed to soluble cadmium 

(Thophon et al., 2003; Liu et al., 2011; Costa et al., 2013). Other pathologies present 

during the experimental period were the presence of hepatic megalocytosis, 

associated with DNA damage (Spitsbergen and Kent, 2003) and eosinophilic focus, 

which has been also detected in Solea senegalensis exposed for 28 days to ionic 

cadmium at the same exposure concentration (10 µg/L) (Costa et al., 2013). This latter 

pathology has been potentially related to a pre-neoplastic condition (Costa et al., 

2013).  

Along with the histopathologies detected in the liver, other analysis were carried out in 

the liver in order to study the effect provoked by the waterborne exposure to both 

forms of cadmium. The endolysosomal system of the cells has been described as a 

target of metal exposure, both in soluble and NP form (Alvarado et al., 2005; Broeg et 

al., 2005; Schultz et al., 2015). Metals are known to induce alterations in the lysosomal 

structure and membrane desestabilization. The stability of the lysosomal membrane is 

considered an integrative marker that reflects the breakdown of the adaptative 

capacity of the fish liver to toxic injury (Broeg et al., 2005). Although the mean LP 

values measured in all experimental groups were lower than those previously recorded 
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for zebrafish (Vicario-Parés, 2016; Chapter II), the exposure to both form of cadmium 

significantly decreased the mean LP value respect to the control. Exposure to ionic 

cadmium caused a slight decrease of LP value after 3 days and a significant decrease 

after 21 days. Effects after the exposure to ionic cadmium have been also reported in 

turbot, although at higher cadmium concentration (10 mg/L) for 14 days (Alvarado et 

al., 2005). In fish exposed to CdS NPs, the desestabilization of the lysosomal membrane 

was observed from the first time measured, suggesting that the entrance of NPs may 

provoke the early desestabilization of the lysosomal membrane. This desestabilization 

can be provoked by the release of the ions after the dissolution of the NPs due to the 

acidic characteristics of the lysosomes (Rocha et al., 2015).  

Under exposure to cadmium, oxidative stress plays an important role in Cd poisoning 

of the organisms (Liu et al., 2009). The generation of free ubiquitin chains has been 

previously determined as marker of oxidative stress in a response to a variety of 

stressors, such as a high increase of temperature, exposure to methyl 

methanosulfonate, exposure to H2O2 or to CdCl2 (Braten et al., 2012). It has been 

suggested that free ubiquitin chains can play a role in signal transduction and serve as 

storage for a large amount of free monomeric ubiquitin for utilization under stress 

(Braten et al., 2012). A significant increase in the level of free ubiquitin was reported 

after 3 days of exposure to ionic cadmium, while after 21 days a significant decrease 

was measured. A decrease in the level of ubiquitin free has been related to oxidative 

damage, since monomeric ubiquitin is required by the cell under oxidative stress 

conditions (Kimura et al., 2009). Surprisingly, no effects on the levels of free ubiquitin 

were measured after exposure to CdS NPs. Along with the levels of free ubiquitin, the 

carbonylation of proteins and especially carbonylation of actin as target protein has 

also been used as an indicator of oxidative stress caused by different pro-oxidant 

treatments, including H2O2 or CdCl2 (McDonagh and Sheehan, 2006; Chora et al., 

2010). In the present study, a significant increase in the optical density of the 

immunoreactive band corresponding to carbonylated actin was observed only after 

the exposure to ionic cadmium for 21 days, while after the exposure to CdS NPs only a 

slight increase was detected. These results indicated a significant increase of oxidative 
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stress reflected in the oxidative damage observed in the proteins in fish exposed to 

ionic cadmium but not in fish exposed to CdS NPs.  

Cadmium has been also previously documented as a genotoxic substance in aquatic 

organisms, both directly by the interaction of Cd2+ with DNA and indirectly through 

ROS-mediated lesions to DNA that cause various dysfunctions in cells under oxidative 

stress (Dabas et al., 2012). In the present study, no clastogenic effects were detected 

in zebrafish erythrocytes after the exposure to ionic cadmium or CdS NPs using the 

micronuclei test. Accordingly, Cambier et al. (2010) did neither detected genotoxic 

effect after the exposure to 9.6 µg Cd/L of ionic cadmium for 21 days using the MN 

test and comet assay, but, they reported genotoxicity using a RAPD-based 

methodology. Increased MN frequency was reported in erythrocytes of carps exposed 

for 14, 21 and 28 days to a higher concentration of cadmium (0.65 mg/L) (Witeska et 

al., 2010), indicating that the MN test in erythrocytes, could not to be sensitive enough 

at low concentrations of cadmium.  

CONCLUSIONS 

Under the experimental conditions analyzed in the present study a significant 

cadmium accumulation was measured in the whole organism after the exposure of 

zebrafish to both forms of cadmium. The localization of CdS NPs in the cytoplasm of 

epithelial cells of gills and the histopathological alterations corroborated that this 

organ is one of the main entrances of NPs in the organism. The autometallographical 

analysis showed a higher extent of metal accumulated in the intestine than in the liver. 

Both forms of cadmium provoked different effects as reflected in the lysosomal 

membrane stability test and in the oxidative damage to proteins, indicating that the 

toxicity may vary depending on the form of the exposure compound. Despite cadmium 

has been previously reported as a genotoxic substance, the MN test in erythrocytes at 

the concentration tested did not detect clastogenic effects.  
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ABSTRACT 

Quantum dots (QDs) are nanoparticles (NPs) with special optical and electrical 

properties that make them very suitable for consumer and industrial products. QDs 

can contain metallic components such as cadmium that are highly toxic. In the present 

study, zebrafish (Danio rerio) was selected as model organism to study the effects of 

CdS NPs in comparison with the effects of ionic cadmium in the liver transcriptome 

using the Agilent technology Zebrafish (v3) Gene Expression Microarray, 4x44k. 

Zebrafish were waterborne exposed for 3 and 21 days to the same nominal 

concentration (10 µg Cd/L) of CdS NPs (~4 nm) or to ionic cadmium. CdS NPs 

significantly regulated (adj p value<0.05) 15 and 4128 different transcripts after 3 and 

21 days, respectively, while the ionic form significantly regulated 47 and 15802 

transcripts, respectively. GO terms involved in different biological processes such as 

immune response, or mitochondrial calcium ion homeostasis, cellular components 

such as intermediate filament or molecular functions such as actin binding were over-

represented after the exposure to the ionic cadmium respect to the CdS NPs for 21 

days (Fisher analysis). No KEGG pathways were found altered at 3 days, but after 21 

days several KEGG pathways appeared significantly affected. Exposure to CdS NPs for 

21 days caused a significant effect in the immune response and oxidative stress, while 

the exposure to ionic cadmium affected significantly those pathways involved in DNA 

damage and repair and in the energetic metabolism. The correspondence analysis 

separated all the treatments, being most of the variability explained by the exposure 

time. In summary, both ionic cadmium and CdS NPs elicited strong effects on the 

zebrafish liver transcriptome at medium-term exposure, being the effects provoked in 

the liver of zebrafish different depending on the cadmium form. 

Keywords: CdS NPs, ionic cadmium, zebrafish, liver transcriptome, microarray 
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LABURPENA 

Puntu kuantikoak (PKak) ezaugarri optiko eta elektriko bereziak dituzten 

nanopartikulak (NPak) dira, horri esker oso baliagarriak dira kontsumo- eta industria-

produktuetan erabiltzeko. PKek kadmioa bezalako osagai metalikoak izan ditzakete, 

oso toxikoak direnak. Ikerketa honetan, zebra arraina (Danio rerio) organismo eredu 

modura hautatu zen, CdS NPek eta kadmio ionikoak gibelaren transkriptoman duten 

efektua konparatzeko; horretarako, Agilent technology Zebrafish (v3) Gene Expression 

Microarray, 4x44k mikrotxip komertziala erabili zen. Zebra arrainak 3 eta 21 egunez ~4 

nm-ko Cd NPen eta kadmio ionikoko kontzentrazio nominal berdinaren (10 µg Cd/L) 

eraginpean mantendu ziren. CdS NPek modu esanguratsuan (p balioa adj < 0.05) 15 eta 

4128 transkrito desberdin erregulatu zituzten 3 eta 21 egunetara, hurrenez hurren; 

aldaera ionikoak aldiz, 47 eta 15802 transkrito erregulatu zituen, hurrenez hurren. GO 

terminoen analisiak, erantzun immunea edo mitokondrioen kaltzio ioien homeostasia 

bezalako prozesu biologikoak, tarteko piruak bezalako zelulen osagaiak edo konposatu 

molekularrak diren aktinarekiko loturak, kadmio ionikoaren eraginpean, CdS NPen 

eraginpean egondako animaliekin aldenduz esanguratsuki emendatu zirela erakutsi 

zuen (Fisher Testa). Analisi funtzionalak ez zuen KEGG bidezidorren alteraziorik 

antzeman 3 eguneko tratamenduen eraginez, 21 egunetan aldiz, KEGG bidezidor 

desberdinak esanguratsuki alteratuta zeudela ikusi zen. 21 egunez CdS NPen 

eraginpean egon ondoren, sistema immunean eta estres oxidatiboan efektu 

esanguratsua antzeman zen, kadmioaren aldaera ionikoraren eraginpean egon 

ondoren aldiz, DNAren kalte eta konponketarekin erlazionaturiko bidezidorrak eta 

metabolismo energetikoarekin erlazionaturikoak erasan zituen. Korrespondentzia 

analisiak tratamendu guztiak banatu zituen, esposizio-denbora aldakortasun gehiena 

azaltzen zuen faktorea izan zelarik. Laburbilduz, kadmioaren aldaera ionikoak zein CdS 

NPek eragin handiak eragiten dituzte zebra arrainaren gibeleko transkriptoman epe 

ertainean, eragindako efektuak esposizioan erabilitako kadmio aldaeraren araberakoak 

izanik.   

Gako-hitzak: CdS NPak, kadmio ionikoa, zebra arraina, gibeleko transkriptoma, 

mikrotxipa 
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RESUMEN 

Entre las nanopartículas (NPs), los puntos cuánticos (PCs) presentan una serie de 

propiedades ópticas y eléctricas que los hacen muy útiles para su uso en productos de 

consumo e industriales. Los PCs contienen componentes metálicos como cadmio que 

son altamente tóxicos. En el presente estudio, se seleccionaron peces cebra (Danio 

rerio) adultos para estudiar el efecto de la exposición vía agua a NPs de CdS en 

comparación con el efecto producido por el cadmio iónico en el transcriptoma del 

hígado mediante el microchip comercial Agilent technology Zebrafish (v3) Gene 

Expression Microarray, 4x44k. Para ello, se expusieron peces cebra durante 3 y 21 días 

a la misma concentración nominal (10 µg Cd /L) de NPs de CdS (~4 nm) o de cadmio 

iónico. Las NPs de CdS regularon de manera significativa (valor de p ajustado < 0.05) 15 

y 4128 transcriptos diferentes tras 3 y 21 días de exposición, respectivamente, 

mientras que la forma iónica reguló 47 y 15802 transcriptos. El análisis de los términos 

GO mostró que procesos biológicos como la respuesta inmune o la homeostasis 

mitocondrial de los iones de calcio, componentes celulares como los filamentos 

intermedios o funciones moleculares tales como las uniones a actina se enriquecieron 

de manera significativa tras la exposición a cadmio iónico respecto de la exposición a 

NPs de CdS (test de Fisher). El análisis funcional no detectó rutas KEGG 

significativamente alteradas tras 3 días de exposición, mientras que tras 21 días 

diversas rutas KEGG aparecieron significativamente afectadas. La exposición a NPs de 

CdS durante 21 días causó un efecto significativo en el sistema inmune y estrés 

oxidativo, mientras que tras la exposición a la forma iónica del cadmio alteró 

significativamente rutas relacionados con el daño y la reparación del ADN, así como 

con el metabolismo energético. El análisis de correspondencia separó los cuatro 

tratamientos, siendo el tiempo de exposición el factor que explicaba la mayor parte de 

la variabilidad. En resumen, ambas formas de cadmio ejercen un fuerte efecto sobre el 

transcriptoma hepático del pez cebra tras una exposición a medio plazo, siendo los 

efectos provocados en el hígado del pez cebra diferentes dependiendo de la forma del 

cadmio a la que se les expone. 

Palabras clave: NPs de CdS, cadmio iónico, pez cebra, transcriptoma hepático, 

microchip 
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INTRODUCTION 

Cadmium containing quantum dots (QDs) are engineered nanoparticles (NPs) with 

unique optical and electrical properties making them especially appropriate for 

biomedical research, microelectronics and solar panel technology (Magarian et al., 

2013). The interest in the study of the NPs toxicity has increased exponentially during 

the last years because of their use in the manufacturing of industrial and consumer 

products (Maurer-Jones et al., 2013). 

Zebrafish (Danio rerio) is a model organism commonly used in toxicogenomics, whose 

earliest whole-genome sequence is available since 2002 (Howe et al., 2013). Few 

studies have been carried out in order to analyze the effect provoked by the exposure 

to cadmium containing QDs in the hepatic gene transcription levels of fish. In vitro 

exposure of zebrafish hepatocytes to CdTe QDs of 3.4 nm (0.0012 to 0.72 mg/L) 

provoked changes in the transcription of several genes related to stress response and 

DNA repair mechanisms at the highest concentration tested. Significant enhanced 

transcription levels of superoxidase dismutase 1 (sod-1), xeroderma pigmentosum 

complementation group A and C (XPA and XPC), lupus ku autoantigen protein p80 

(Ku80), xeroderma pigmentosum and 8-oxoguanine glycosylase (Ogg1) were reported, 

while significantly lower tumor suppressor protein p53 (p53) transcription was 

observed in cells exposed to CdTe QDs than in controls (Tang et al., 2013). Ladhar et al. 

(2013) exposed zebrafish thorough the diet to two concentrations (40 and 100 ng 

NPs/day/g body weight) of CdS NPs of two different sizes (8 and 50 nm) for 36 and 60 

days. Genes involved in mitochondrial metabolism, DNA repair, apoptosis and 

antioxidant defense in the liver, brain and muscle were down-regulated after 36 days 

of exposure to the smallest NPs (8 nm), while after 60 days these genes were down-

regulated in the intestine and up-regulated in the brain. Also, after 60 days of exposure 

to both NPs (8 and 50 nm), genotoxic effects were reported using random amplified 

polymorphic DNA-PCR genotoxicity test.  

More studies have focused on analyzing the effect of ionic cadmium in zebrafish gene 

transcription levels. After 21 days of exposure to cadmium (1.9 and 9.6 µg/L), Gonzalez 

et al. (2006) studied the regulation of 14 genes involved in antioxidant defense, metal 
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chelation, active efflux of xenobiotics, mitochondrial metabolism, DNA repair and 

apoptosis in zebrafish, and reported significant up-regulation of metallothionein 1 

(mt1) and jun protoncogen c (c-jun) in the liver. Also, Arini et al. (2015) exposed 

zebrafish to 35 µg/L of ionic cadmium for 15 days and reported that the transcription 

level of genes involved in oxidative stress response (sod, sodmt) and in detoxification 

mechanisms (mt1, mt2), in mitochondrial mechanisms (cytochrome c oxidase subunit 

1, cox1) and DNA repair (rad51 homolog, rad51 and growth arrest and DNA-damage-

inducible, gadd45) were significantly up-regulated. Also, after the exposure to a higher 

concentration (560 µg Cd/L) of ionic cadmium for different periods of time (4 and 28 

days), up-regulation of diverse genes such as mt1, heat shock protein 70 (hsp70), the 

cytosolic and the mitochondrial isoform of superoxide dismutase (Cu/Zn-sod and Mn-

sod) and glutathione reductase (gr) was reported (Vergauwen et al., 2013). 

Other fish have also been used to analyze the effect of the exposure to ionic cadmium. 

The hepatic transcriptome of carp was analyzed after waterborne exposure (9, 105 and 

408 μg/L) and dietary exposure (9.5, 122 and 144 μg/g) to ionic cadmium for 28 days 

(Reynders et al., 2006). At low exposure concentrations, energy metabolism-related 

genes were affected. Among them, up-regulation of genes coding for pancreatic 

proteins that play a key role in the digestion of proteins (elastase, chymotrypsinogen) 

and carbohydrates (amylase) was observed, which could reflect a compensatory 

mechanism for the inhibition of enzyme activity. On the other hand, induction of 

glucokinase and malic enzyme, and inhibition of cytochrome c oxidase and cytochrome 

b suggested a stimulation of anaerobic metabolism and a decreased energy production 

in the citric acid cycle. At middle exposure concentrations, several stress-related genes 

were induced (e.g. hemopexin, cytochrome P450 2F2), suggesting a general stress 

response (Reynders et al., 2006). The hepatic transcriptome has been also analyzed in 

European flounder (Platichthys flesus) after 3 days of injection with 2 mg/Kg body 

weight of cadmium. Up-regulation of 27 transcripts, involved in oxidative stress such as 

Cu/Zn sod, or genes as heat shock protein 90 (hsp90), glucose regulated protein 170 

(grp170) and down-regulation of 14 genes, such as cytochrome P4501A (cyp1a) was 

reported (Sheader et al., 2006). Auslander et al. (2008) administered 57.25 μg Cd/g 

food for 57 days or injected 2.5 mg Cd/kg body weight to striped seabream 
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(Lithograthus mormyros) and sacrificed the organisms at 8 days post injection. 31 

significantly regulated transcripts from a whole hepatic genome microarray were 

reported after both experimental approaches. Among them, 23 transcripts such as 

elastase 4, carboxypeptidase B, trypsinogen, perforin, complement C31, cytochrome 

P450 2K5 and carboxyl ester lipase were down-regulated, while ceruloplasmin, 

metallothionein or glutathione peroxidase were up-regulated (Auslander et al., 2008). 

Mehinto et al. (2014) intraperitoneally injected adult largemouth bass (Micropterus 

salmoides) with 20 µg/kg of ionic cadmium and a microarray analysis was conducted in 

the liver 48 h after injection. Gene ontology (GO) analysis indicated an over-

representation of hepatic transcripts implicated in various terms, such as rRNA 

processing, carbohydrate and cholesterol metabolism, translation elongation factor 

activity and DNA/RNA polymerase activity. Specific transcripts affected in the liver 

included a significant up-regulation of the antioxidant catalase and the cytoprotective 

chaperone DnaJC7. Genes involved in DNA replication, DNA repair and transcriptional 

pathways were suppressed. Among those, SET nuclear oncogene, MYB binding protein 

1A, SAP30 binding protein and a number of DNA-directed and RNA-directed 

polymerases were down-regulated. Genes of the immune response pathways were 

disrupted including an up-regulation of complement factor b and of complement 

component 8 beta and down-regulation of immunoglobulin binding protein 1. The 

results obtained in this study indicated that down-regulation of DNA repair, 

transcriptional pathways and the induction of oxidative stress pathways are among the 

initial molecular changes caused by low levels of cadmium in the liver (Mehinto et al., 

2014).  

The aim of this study was to decipher the metabolic pathways altered by 3 and 21 days 

of exposure to CdS NPs compared with results obtained after the exposure to ionic 

cadmium, through the analysis of the whole liver transcriptome of zebrafish. To the 

best of our knowledge, this is the first time in which the whole adult zebrafish liver 

transcriptome has been studied after exposure to CdS NPs. Cell and tissue level effects 

caused by CdS NPs have been already described in Chapter IV. Exposure to CdS NPs or 

to ionic cadmium provoked accumulation of cadmium in liver and in intestine as 

revealed by autometallography. By transmission electron microscopy (TEM), presence 
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of NPs was detected in the cytosol of gill epithelial cells of the secondary lamellae, 

attached to the nuclear envelope and into small membrane vesicles of hepatocytes. In 

the assayed conditions, significant effects on hepatocyte lysosomal membrane stability 

and increased oxidative stress were detected, along with a variety of relevant 

histopathological alterations in gills and liver (Chapter IV). 

MATERIALS AND METHODS 

Cadmium compounds 

Glutathione (GSH) capped CdS NPs of 3.5-4 nm were synthesized by wet chemistry 

following a method modified from Zou et al. (2009) as described in Katsumiti et al. 

(2014). After the synthesis, CdS NPs were washed using centrifugal ultrafiltration, 

resulting in CdS NPs with no residual free GSH. CdS NPs were provided as a suspension 

at a concentration of 4.7 g Cd/L. CdS NPs were characterized in deionized water by 

TEM, and isolated particles or very small aggregates (5–10 nm) were observed. In a 1 

mM solution of NaNO3, 1.1% of cadmium was dissolved from the CdS NPs after 24 h, 

6.6% after 72 h and 13% after 7 days (Katsumiti et al., 2014). Ionic cadmium solution 

was prepared from CdCl2 purchased to Sigma-Aldrich (St. Louis, Missouri, USA). In both 

cases, a solution of 1 mg Cd/L was prepared by dissolving the original stocks in 

deionized water. The final exposure concentration (10 µg/L) was achieved by adding a 

given volume of the stocks solution to the exposure aquaria.   

Maintenance and experimental exposure of adult zebrafish 

The experimental procedure described herein was approved by the Ethics Committee 

in Animal Experimentation of the UPV/EHU according to the current regulations. 

Zebrafish (wild type AB Tübingen) individuals were specifically produced and grown for 

the experiment in our facility at the UPV/EHU. Adult fish of approximately 4 months 

old were exposed to 10 µg Cd/L of CdS NPs or of ionic cadmium for 21 days. An 

unexposed control group was run in parallel in identical experimental conditions. The 

exposures were carried out in 35 L aquaria containing 50-60 fish. During the exposure 

period, approximately 2/3 of the aquarium water was changed by siphoning every 

three days and the corresponding volume of contaminated or clean water was 

226



Chapter V 

 
redosed. Fish were fed with Vipagran baby (Sera, Heinsberg, Germany) and live 

Artemia (INVE Aquaculture, Salt Lake City, Utah, USA) twice per day. 

After 3 and 21 days of exposure, fish were euthanized by overdose of anesthetic 

(benzocaine, Sigma-Aldrich) and the liver of 20 male zebrafish per experimental group 

was dissected out, pooled in 5 groups of 4 livers each and placed in cryovials 

containing TRIzol® (ThermoFisher Scientific, California, USA) and zirconia/silica beads 

(Biospec, Bartlesville, USA). Then, samples were immediately frozen in liquid nitrogen 

and stored at -80ºC.  

RNA extraction 

Total RNA was extracted following the TRizol® extraction method (ThermoFisher 

Scientific). Concentration of RNA was measured in a Biophotometer (Eppendorf, 

Hamburg, Germany). RNA was purified with RNeasy mini kit (Qiagen, Venlo, The 

Netherlands). In addition, RNA quality was assessed in an Agilent 2100 Bioanalyzer 

(Agilent Technologies, California, USA). Only RNA samples with a RIN value above 8.1 

were used for microarray and qPCR analysis.  

Microarray analysis and data treatment 

Microarray analysis was carried out in the General Genomic Service – Gene Expression 

Unit (SGiKer) of the University of the Basque Country. Labeling of samples was carried 

out following the Agilent Technologies "One-Color Microarray-Based Gene Expression 

Analysis (Low Input Quick Amp Labeling)" Version 6.5 protocol. 100 ng of total RNA 

were retrotranscribed and labelled using the Low imput Quick Amp Labeling kit, One 

color (Agilent Technologies) following the manufacturer’s instructions. Hybridizations 

were performed on zebrafish 4x44k full genome microarrays (version V3, AMADID 

026437 Agilent Technologies) containing 43,803 unique probes using the SuperHyb 

hybridization chamber (Agilent Technologies). Finally, slides were scanned using a 

G2565CA DNA microarray scanner (Agilent Technologies). Feature Extraction software 

v. 10.7.3.1 was used to feature signal intensity extraction and quantile normalization 

was applied to the raw intensities (log2 values) using the Agilent GeneSpring GX 

software (v 11.2).  
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Gene transcription profiles were compared using the LIMMA analysis in the 

MultiExperiment Viewer (tMeV) vs. 4.7.1 (http://www.tm4.org/mev/) software. 

Benjamin-Hochberg method (FDR) for multiple test correction was employed to obtain 

the corrected p value. Significant differences were set at an adjusted p value p<0.05 

and based on log2FC< −1 or log2FC> 1 (log2 fold change). Venn diagrams were obtained 

using the free application developed by Oliveros (2007) 

(http://bioinfogp.cnb.csic.es/tools/venny/) to represent the number of significantly 

regulated transcripts after each specific treatment as well as the number of 

significantly regulated common transcripts when comparing different treatments 

and/or exposure times. Then, significantly regulated transcripts were studied using 

Blast2GO (Conesa et al., 2005) and a summary of the KEGG pathways was performed 

in order to decipher biological processes altered after each treatment. Fisher exact test 

(p<0.05) was used to find statistically over-represented functions. The significant 

regulation (p<0.05) of the KEGG pathways respect to the whole genome of Danio rerio 

was performed using DAVID online tool (Huang et al., 2009a; 2009b). In addition, a 

correspondence analysis (COA) was performed in order to visualize the association 

between the experimental groups.  

Quantitative Real Time PCRs (qPCRs) 

Six genes differentially regulated in the exposed groups in comparison with the control 

group were selected to validate microarray results by qPCRs. Genes were selected 

based on two criteria: fold change (log2FC< −1 or log2FC> 1) and genes of toxicological 

interest. Therefore, selected target genes were: metallothionein 2 (mt2, 

NM_001131053), ATP-binding cassette, sub-family G member 2b (abcg2b, 

NM_001039066.1), glutathione peroxidase 1b (gpx1b, NM_001004634.2), heat shock 

protein 47 (hsp47, NM_131204), jun dimerization protein 2a (jdp2a, AL927014) and 

member RAS oncogene family (rab15, NM_001002318). 18S rRNA (FJ915075) was 

selected as housekeeping, since its transcription level did not vary significantly in the 

microarray. Available commercial TaqMan® assays (ThermoFisher Scientific) were used 

to amplify hsp47 (Dr03150230_g1), rab15 (Dr03101758_g1) and gpx1 

(Dr03121558_m1). Assays for the amplification of jdp2a, abcg2a, mt2 and 18S rRNA 
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were not commercially available and, therefore, specific primers and probes were 

designed using the Primer Express 3.0 software (ThermoFisher Scientific) (Table 1). 

Table 1.- Design of specific primers and probes used to amplify each target gene by TaqMan qPCRs. 

Gene Forward (5’-3’) Reverse (5’-3’) Probe (5’-3’) 

jdp2a TGCCACCACACTCTCTGAACA ACAGCATGGCCCAATGT CTGAAATATGCAGACCTC 
mt2 CCCATCTGGTTGCAGCAAGT AGCCACAGGAATTGCCTTTG TGCCTCTGGCTGCG 

abcg2a GCGCTTAACCAAGGGAACAGTT TCGATGATGTCTCCACTTTTTT TCCAGTGATAAGAA 
18S rRNA CGGAGGTTCGAAGACGATCA GGGTCGGCATCGTTTACG ATACCGTCGTAGTTCCG 

hsp47 was selected to validate results obtained after the exposure to ionic cadmium at 

3 days, and jdp2a was selected to validate results obtained 3 days after CdS NP 

exposure. gpx1, abcg2a, mt2 and rab15 were selected for the ionic cadmium exposure 

for 21 days, while gpx1, abcg2a and mt2 together with jdp2a were used after the 

exposure to CdS NPs for 21 days. 

Total RNA (1 µg) was retrotranscribed to cDNA using the AffinityScript multi 

temperature cDNA synthesis kit (Agilent Technologies) following manufacturer’s 

conditions in a 2720 Thermal Cycler (ThermoFisher Scientific). qPCRs were run in 25 μL 

reactions containing 2 μL of cDNA on a 7300 Applied Biosystems thermocycler 

(ThermoFisher Scientific). Universal PCR conditions were used in all the cases. No 

template controls were run for quality assessment. Relative transcription levels were 

calculated based on the 2−ΔΔct method (Livak and Schmittgen, 2001) using the lowest 

value in the control group as calibrator and 18S rRNA transcription levels as reference 

gene, with a coefficient of variation of 3,78%. 

Statistical analyses were performed using the SPSS statistical package v20.0 (SPSS Inc, 

Microsoft Co, WA, USA). According to the Kolmogorov-Smirnov test (p<0.05), data did 

not follow a Normal distribution. Thus, significant differences among groups were 

based on the non-parametric Kruskal-Wallis test followed by the Dunns post hoc test 

(p<0.05) or the Mann-Whitney U test (p<0.05). 

RESULTS 

After 3 days of exposure to CdS NPs 15 transcripts coding for 9 different genes were 

significantly regulated, 11 transcripts were significantly down-regulated and 4 were up-
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regulated. After exposure to ionic cadmium 47 transcripts coding for 37 different 

genes were significantly regulated, 41 transcripts were significantly down-regulated 

and 6 were up-regulated. After 21 days of exposure, the number of regulated 

transcripts increased greatly, especially as results of exposure to ionic cadmium, which 

regulated 15802 transcripts coding for 8570 genes, 7802 transcripts were up-regulated 

and 8000 were down-regulated (Fig 1A). Exposure to CdS NPs for 21 days regulated 

4128 transcripts coding for 2650 different genes, 1636 transcripts were significantly 

up-regulated and 2492 were down-regulated. As shown in the Venn diagram (Fig 1B), 

486 transcripts were exclusively regulated by CdS NPs, almost all after 21 days of 

exposure. Similarly, ionic cadmium significantly altered 12177 transcripts, most of 

them also after 21 days of exposure (Fig 1B). 

 
Figure 1.- (A) The bar graph shows the number of significantly up and down regulated transcripts for 
each treatment. The total number of significantly regulated transcripts and genes (in brackets) are 
indicated in each case. (B) Venn diagram showing the number of significantly regulated transcripts after 
each specific treatment as well as the number of significantly regulated transcripts shared among 
treatments.  
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According to the Bast2GO analysis, after 3 days of exposure to both forms of cadmium 

no GO terms appeared enriched. Nevertheless, after the exposure for 21 days several 

GO terms belonging to the biological processes, molecular functions and cellular 

components were enriched (Fig 2). Both treatments resulted in similar GO terms 

enriched, such as “intracellular”, “primary metabolic processes”, “organic substance 

metabolic processes”, “intracellular parts”, “single organism cellular processes”, 

“organic cyclic compound binding”, “heterocyclic compound binding”, “cellular 

metabolic processes” or “ion binding” were mainly enriched (Fig 2). 

 
Figure 2.- Multilevel pie graphs showing the GO terms distribution in an ontology level 3 of significantly 
regulated transcripts after the exposure to ionic cadmium and CdS NPs for 21 days.  
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According to the Fisher analysis, GO terms involved in immune system processes, 

mitochondrial calcium ion homeostasis or actin binding were differentially enriched for 

the ionic cadmium over the NP form (Table 2).  

Table 2.- Results obtained after the Fisher exact test performed between treatments in order to 
indentify GO terms differentially enriched by ionic cadmium over CdS NPs after 21 days.  

GO ID GO terms 
GO 

namespace 
p value FDR 

GO:0006955 immune response P 6.43E-07 2.21E-03 

GO:0002376 immune system process P 6.04E-06 5.93E-03 

GO:0019882 antigen processing and presentation P 2.13E-07 1.46E-03 

GO:0042611 MHC protein complex C 2.85E-06 3.34E-03 

GO:0042612 MHC class I protein complex C 1.19E-06 2.72E-03 

GO:0051561 
positive regulation of mitochondrial calcium 
ion concentration 

P 6.19E-05 3.54E-02 

GO:0046686 response to cadmium ion P 1.31E-05 1.09E-02 

GO:0045111 intermediate filament cytoskeleton C 2.91E-06 3.34E-03 

GO:0005215 transporter activity F 2.30E-05 1.58E-02 

GO:0022804 active transmembrane transporter activity F 7.52E-05 3.98E-02 

GO:0003779 actin binding F 1.43E-05 1.09E-02 

P: Biological process, F: Molecular function, C: Cellular component 

The functional analysis performed using DAVID in order to identify the pathways 

significantly altered after each treatment against the whole zebrafish genome resulted 

in no KEGG pathways significantly affected after 3 days of exposure. After 21 days of 

exposure several pathways appeared significantly affected. In case of the exposure to 

CdS NPs, KEGG pathways such as “natural killer cell mediated cytotoxicity”, “retinol 

metabolism”, “D-arginine and D-ornithine metabolism” or “adherens junction” were 

significantly affected (Table 3). All these KEGG pathways showed a larger number of 

up-regulated genes than down-regulated genes. On the other hand, after the exposure 

to ionic cadmium KEGG pathways such as “cell cycle”, DNA related pathways (“purine 

metabolism”, “pyrimidine metabolism”, “mistmach repair”, “nucleotide excision 

repair”, “DNA replication”), “RNA polymerase”, “spliceosome” or “homologous 

recombination” appeared significantly altered. In this case, a larger number of genes 

were down-regulated than up-regulated. However, KEGG pathways belonging to 

amino acids metabolism (“glycine, serine and threonine metabolism”, “alanine, 

aspartate and glutamate metabolism”), to energetic metabolism 

(“glycolysis/gluconeogenesis”, “pentose phosphate pathway”, “biosynthesis of 
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unsaturated fatty acids”, “citrate cycle (TCA cycle)”) or “dorso-ventral axis formation” 

contained a larger number of genes up-regulated than down-regulated (Table 4). 

Finally, the exposure to both forms of cadmium commonly significantly altered two 

KEGG pathways, “selenoamino acid metabolism” and “drug metabolism” which had a 

larger number of significantly up-regulated genes than down-regulated genes (Table 3 

and 4). 

The correspondence analysis (COA) built to have an overall view of the transcription 

differences resulting from each treatment, separated the four experimental groups. 

Most of the variability was explained by the first two principal components (Fig 3), PC1 

or exposure time explained 84.12% of the variability, and PC2 or metal form explained 

14.02% of the variability. 

 

Figure 3.- Correspondence analysis (COA) axes showing the distribution of each sample (dots) according 
to their transcription profile.  

Quantitative real time PCR 

In general, microarray and qPCR showed similar results for most of the selected genes. 

jdp2a was an exception, since according to the microarray it was down-regulated after 

3 days of exposure and up-regulated after 21 days of exposure and according to the 

qPCR analysis it was up-regulated after 3 days and down-regulated after 21 days of 

exposure (Table 5). 

Ionic cadmium 3 daysIonic cadmium 21 days

CdS NPs 21 days CdS NPs 3 days

PC2

PC1
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DISCUSSION 

Previous studies have documented the toxicity of soluble cadmium in zebrafish 

through the analysis of the transcription level of specific genes involved in known 

mechanisms of toxicity, such as oxidative stress and DNA damage (Gonzalez et al., 

2006; Vergauwen et al., 2013; Arini et al., 2015). In the present work we have studied 

the whole hepatic transcriptome of zebrafish in order to analyze the effects provoked 

by exposure to CdS NPs in comparison to those caused by exposure to ionic cadmium 

at different time points. LIMMA analysis evidenced a great increase in the number of 

transcripts significantly regulated at 21 days respect to 3 days of exposure to both 

forms of cadmium. This strong alteration of the hepatic transcriptome is in agreement 

with the results described in the previous chapter. At the end of the 21 days of 

exposure to both forms of cadmium, a significant metal accumulation was measured in 

whole organisms and high mortality was registered in both groups (78% in fish exposed 

to ionic cadmium and 72% in fish exposed to CdS NPs). Moreover, the effect on the 

hepatic transcriptome was stronger in animals exposed to ionic cadmium than in those 

exposed to the NPs, which was also reflected in biomarker responses described in the 

previous chapter. For instance, the quantification of the immunoreactive bands 

corresponding to free ubiquitin or to carbonylated actin showed a significant effect 

only after the exposure to ionic cadmium, especially at 21 days of exposure (Chapter 

IV). 

According to the Bast2GO analysis, after 3 days no GO terms were enriched, but after 

the exposure to both, CdS NPs and ionic cadmium, for 21 days similar GO terms were 

enriched respect to the control group. The Fisher exact test analysis performed with 

the GO terms enriched after each treatment showed some over-represented terms in 

fish exposed to ionic cadmium in comparison to animals exposed to CdS NPs for 21 

days. This result could be related to the higher concentration of dissolved cadmium in 

the exposure to ionic cadmium than in the exposure to CdS NPs. Characterization data 

of the CdS NPs used in this study showed that only 13% of cadmium was dissolved 

after 7 days (Katsumiti et al., 2014). Among the enriched terms when both treatments 

were compared “mitochondrial ion homeostasis” appeared over-represented. The 

entrance of cadmium in the cytosol may generate free radicals, through the depletion 
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of endogenous intracellular radical scavengers, such as protein sulfhydryls, as a 

consequence of their reaction with Cd2+, affecting the redox status of the cell and 

hence the cellular levels of redox active species, or can lead to damage in organelles 

such as mitochondria (Thévenod, 2009). Moreover, the hereby altered term may 

indicate a disruption of the mitochondrial calcium equilibrium. It has been previously 

reported that the exposure to cadmium can produce an increase in calcium ion levels 

in the cells which can lead to apoptosis by stimulating the generation of reactive 

oxygen species (ROS), suggesting that calcium ion play important roles in cadmium-

induced toxicity through the generation of ROS (Son et al., 2010). Moreover, the 

increase in the generation of ROS may also contribute to the disruption of the 

cytoskeleton after the exposure to cadmium (Williams et al., 2006). The internal 

cytoskeleton of eukaryotic cells is composed of actin microfilaments, microtubules, 

and intermediate filaments and the exposure to cadmium may provoke dysregulation 

of actin microfilaments and intermediate filaments. In the present study, GO processes 

involved in cytoskeleton such as “intermediate filament cytoskeleton” or “actin 

binding” were also over-represented after the exposure to ionic cadmium compared 

with the exposure to CdS NPs. Cd competes with intracellular Ca2+ for protein binding 

sites and may affect actin filaments (DalleDonne et al., 1997). As previously 

mentioned, increased oxidative stress provoked by the exposure to ionic cadmium was 

also detected by western blot analysis. A significant increase in the optical density of 

the immunoreactive band corresponding to carbonylated actin was observed after the 

exposure to ionic cadmium for 21 days (Chapter IV). Carbonylation of proteins, 

especially carbonylation of actin as a target protein, have been thoroughly reported in 

the literature for the exposure to cadmium (McDonagh and Sheehan, 2006; Chora et 

al., 2010).  

Along with the mentioned GO processes, Fisher exact test also reported immune 

response related terms over-represented after the exposure to ionic cadmium respect 

to the CdS NPs exposure for 21 days. Cadmium is known to provoke the dysregulation 

of the immune system in different fish species such as yellow perch, European 

flounder or carp, even after the exposure to low concentrations of cadmium (Reynders 

et al., 2006; Williams et al., 2006; Auslander et al., 2008; Bougas et al., 2013). GO 

240



Chapter V 

 
terms corresponding to biological processes such as “immune system process” or 

“antigen processing and presentation”, along with the cellular component “MHC 

protein complex” and “MHC class I protein complex” appeared over-represented in the 

present study. Mayor histocompatibility complex (MHC) I glycoproteins are present in 

almost every cell of the body and are involved in the response to endogenous antigens 

originating from the cytoplasm (Hewitt, 2003). In rare minnow (Gobiocypris rarus) 

waterborne exposed to ionic cadmium (75 μg/L) for 35 days, up-regulation of genes 

involved in MHC I complex was detected by a gill microarray (Wang et al., 2016). In 

addition, they detected down-regulation of MHC II complex, which also conducts 

antigen processing signaling other than MHC I complex, although in an opposite 

manner. The regulation of both complexes might suggest that the anti-virus ability of 

fish cells declined after the exposure to cadmium (Wang et al., 2016).  

The COA analysis showed all the treatments separated, being the variability mainly 

explained by the exposure time and, in a lower extent, by the metal form. This 

significant time effect was reflected in the amount of KEGG pathways significantly 

altered after 21 days of exposure to any of the treatments, but especially after the 

exposure to ionic cadmium, since at 3 days of exposure no KEGG pathways were 

affected. Differences in the response of the hepatic transcriptome to cadmium 

depending on the exposure time have been also reported by Williams et al. (2006) in 

European flounder (Platichthys flesus) injected with 50 µg Cd/Kg body weight. Injection 

of cadmium provoked the induction of genes involved in the response to oxidative 

stress, protein synthesis, transport and degradation terms according to the Blast2GO 

gene ontology analysis. Moreover, they detected disruption of the cell cycle and 

apoptotic processes, as well as repression of cytokines genes involved in immune 

responses. Major transcription changes were reported after 1 day, less at middle time 

points (2, 4 and 8 days) and increased alteration at 16 days post-injection (Williams et 

al., 2006). In the present work, few KEGG pathways appeared significantly altered after 

the exposure to CdS NPs for 21 days. Among them, “adherens junction” term 

presented most of the genes significantly up-regulated, such as ras-related C3 

botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2) (ras2), cell 

division cycle 42 like 2 (cdc421l), ras homolog gene family, member Aa (rhoaa) and ras 
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homolog gene family, member Ab (rhoab). Rho proteins are a subfamily of Ras 

proteins, involved in several pathways such as cell adhesion and, therefore, a 

dysregulation of their activities provoke diverse aberrant cellular phenotypes (Malliri 

and Collard, 2003). Cadmium is known to provoke the up-regulation of important 

proteins of the RAS signaling pathway implicated in cell proliferation, as well as the 

differentiation and the induction of diverse proto-oncogenes, which promote the 

proliferation of cells and development of tumors (Bertin and Averbeck, 2006).  

The Fisher exact test analysis showed that GO terms related to immune response were 

differentially enriched after the exposure to ionic cadmium in comparison to the 

exposure to the nanoparticulated form, but the functional analysis showed that the 

KEGG pathway “natural killer cell mediated cytotoxicity” was significantly regulated 

after the exposure to CdS NPs for 21 days. Most of the genes of this pathway were up-

regulated. Effects of the immune response after exposure to Cd containing QDs have 

previously reported in rainbow trout exposed to 1, 2 and 6 µg/L of CdS/CdTe QDs for 

48 h (Gagné et al., 2010), who observed a depression of the immune system 

determined by leukocyte counts, viability and resting/active phagocytic activity. 

Moreover, using a cDNA microarray analysis after the exposure to CdS/CdTe QDs they 

found 25 genes significantly affected, which were involved in the immune responses 

mentioned above (Gagné et al., 2010). 

The functional analysis performed also showed diverse KEGG pathways related to the 

increased oxidative stress caused by the exposure to CdS NPs for 21 days. As 

previously mentioned, the exposure to cadmium may provoke an increase in the 

oxidative stress in the liver cells of fish (Liu et al., 2009). As a mechanism to neutralize 

it, organisms increase hepatic vitamin A concentrations, which may provide a 

protection against the oxidative stress (Defo et al., 2012). The functional analysis 

revealed that the pathway “retinol metabolism” appeared significantly regulated after 

the exposure to CdS NPs for 21 days. In a previous study, using a cDNA microarray on 

adult yellow perch (Perca flavescens) exposed to ionic cadmium (0.8 and 3.65 µg/L) for 

6 weeks, the photoreceptor associated retinol dehydrogenase type 2, gene involved in 

retinoid metabolism, was up-regulated at the highest cadmium exposure. 

Furthermore, a global analysis of gene expression patterns revealed that genes 
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involved in vitamin binding were up-regulated in the liver of Cd-exposed fish (Bougas 

et al., 2013).  

In the present study the KEGG pathway “selenoamino acid metabolism” appeared 

significantly altered by the exposure to ionic cadmium for 21 days. Most of the genes 

contributing to the regulation of this pathway were significantly up-regulated, such as 

seleno-phosphate synthetase 2 (sps2), which is the key component of the selenoamino 

acid metabolic pathway, producing the selenocysteine necessary for some antioxidant 

proteins (Williams et al., 2006). This pathway appeared significantly altered also after 

the exposure to CdS NPs, presenting similar significant gene regulation. Also, “drug 

metabolism” pathway was significantly regulated after the exposure to both forms of 

cadmium for 21 days, with a large number of genes significantly up-regulated after the 

exposure to ionic cadmium and only one gene significantly down-regulated. Among 

them, cytochrome P450, family 3, subfamily A, polypeptide 65 (cyp3a65) or glutathione 

S-transferase pi 2 (gstp2), which are key genes for the detoxification of xenobiotics, or 

alcohol dehydrogenase 5 (adh5), a member of a family of dehydrogenase enzymes that 

metabolizes a wide variety of alcohols, appeared significantly up-regulated. The up-

regulation of these genes has been previously reported in studies performed in aquatic 

environments polluted by metals and organic compounds using diverse fish species 

such as Catostomus macrocheilus or Anguilla anguilla (Pujolar et al., 2013; Christiansen 

et al., 2014). 

In addition to the KEGG pathways mentioned above, the exposure to ionic cadmium 

for 21 days mostly down-regulated transcripts that significantly affected KEGG 

pathways involved in DNA damage and repair. The pathways “purine metabolism” and 

“pyrimidine metabolism” are involved in the synthesis of the nucleotides required for 

DNA replication. Similarly, genes contributing to the KEGG pathways significantly 

affected such as “nucleotide excision repair”, “mismatch repair” or “homologous 

recombination”, which are involved in DNA repair processes, or “RNA polymerase” and 

“spliceosome”, which are involved in RNA processes, were significantly down-

regulated. The exposure to cadmium has been associated with the inhibition DNA 

repair-related proteins, which could lead to mutagenic and carcinogenetic effects in 

diverse organisms (Giaginis et al., 2006; Candéais et al., 2010). Previous studies have 
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reported the carcinogenicity of cadmium in zebrafish through the analysis of genes 

involved in these processes (Gonzalez et al., 2006; Vergauwen et al., 2013; Arini et al., 

2015). In addition to DNA repair processes, other response to DNA damage is the 

regulation of cell cycle progression by activation of DNA damage checkpoints 

(Hartwing et al., 2002). In this study, genes contributing to “cell cycle” were 

significantly affected, being most of them significantly down-regulated. Inhibition of 

DNA repair processes and alterations in the cell cycle process were previously detected 

after exposure to low concentrations of ionic cadmium (Hartwing et al., 2002; Williams 

et al., 2006). Although the study of the liver transcriptome detected this alteration, 

clastogenic DNA damage in erythrocytes was not detected by the micronuclei 

frequency test, but one individual exposed to ionic cadmium for 21 days presented 

megalocytosis in the liver (Chapter IV). 

Different pathways involved in the energetic metabolism also appeared significantly 

enriched after the exposure to ionic cadmium for 21 days. 

“Glycolysis/gluconeogenesis”, “pentose phosphate pathway”, “citrate cycle (TCA 

cycle)”, “biosynthesis of unsaturated fatty acids” were significantly affected, 

presenting most of the genes significantly up-regulated. An increase in energetic 

metabolic processes has been previously reported after the exposure to 

environmentally relevant or low concentrations of cadmium in different fish species 

such as Perca flavescens or Cyprinus carpio (De Smet and Blust, 2001; Levesque et al., 

2002; Reynders et al., 2006). An increase in the energetic metabolism is associated to 

an increase of the participation of proteins in the energy metabolism in response to an 

increased energy demand to cope with the stress situation (De Smet and Blust, 2001). 

Alteration of the energetic metabolism was also observed at histological level. Increase 

of vacuolization in liver samples after exposure to ionic cadmium for 21 days and at 

the end of the 6 months recovery period have been described in the previous chapter 

(Chapter IV). 

CONCLUSIONS 

The exposure to CdS NPs and to ionic cadmium provoked alteration of the zebrafish 

liver transcriptome. The effect greatly increased with exposure time and was more 
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pronounced after the exposure to ionic cadmium than after exposure to CdS NPs. The 

functional analysis showed a significant effect in the immune response and oxidative 

stress after the exposure to CdS NPs for 21 days, while the exposure to ionic cadmium 

affected significantly those pathways involved in DNA damage and repair and in the 

energetic metabolism. Therefore, the analysis of the liver transcriptome under our 

experimental conditions reveals a different effect in zebrafish depending on the 

cadmium form.  
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BSDs, Black silver deposits 

CI, Confidence intervals 

EC50, Effective concentration to 50% of the population  

FET, Fish embryo toxicity 

HD, High dose 

hpf, Hours post fertilization 

hph, Hours post hatch 

H/E, Hematoxylin/eosin 

LC50, Lethal concentration to 50% of the population 

LD, Low dose 

LMS, Lysosomal membrane stability 

LP, Labilization period 

NPs, Nanoparticles 

OR, Odd ratio 

PEI, Polyethylenimine 

PVP, Poly N-vynil-2-pirrolidone 

QDs, Quantum dots 

Vv, Volumen density  
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ABSTRACT 

Silver nanoparticles (NPs) are extensively used due to their antimicrobial activity and, 

therefore, their input into the ecosystem will increase. Silver can be bioaccumulated by low 

trophic level organisms and, then, incorporated into the food chain, reaching high level 

predators. The objectives of this study were to test the acute toxicity of poly N-vynil-2-

pirrolidone/polyethylenimine (PVP-PEI) coated Ag NPs of 5 nm to brine shrimp (Artemia sp) 

larvae and to zebrafish (Danio rerio) embryos and to assess bioaccumulation and effects of 

silver transferred by the diet. For the later, brine shrimps were exposed to two different 

concentrations of Ag NPs, 100 ng/L as an environmentally relevant concentration and 100 µg/L 

as a likely effective concentration, in parallel with an unexposed control group and, then, used 

to feed zebrafish during 21 days in order to simulate two trophic levels of a simplified food 

web. For brine shrimp larvae, EC50 values ranged from 7.39 mg Ag/L (48 h post hatch larvae 

(hph) exposed for 48 h) to 19.63 mg Ag/L (24 hph larvae exposed for 24 h), while for zebrafish 

embryos LC50 value at 120 h was 0.052 mg Ag/L. Silver accumulation was measured in brine 

shrimps exposed to 0.1 and 1 mg/L of Ag NPs for 24 h. In zebrafish fed with brine shrimps 

exposed to Ag NPs, intestine showed higher metal accumulation than liver, although both 

organs presented the same pattern of dose and time-dependent metal accumulation as 

revealed by autometallography. Feeding of zebrafish for 3 days with brine shrimps exposed to 

100 ng/L of Ag NPs was enough to impair fish health as reflected by the significant reduction of 

the lysosomal membrane stability and the presence of several histopathological conditions in 

the liver. Overall, results showed that Ag NPs were able to exert toxic effects on zebrafish 

through dietary exposure, even at an environmentally relevant concentration, which should 

act as concern of the need of studies in further detail about real impact of nanomaterials in the 

environment. 

Keywords: Ag NPs, zebrafish, brine shrimp, dietary transfer, bioaccumulation, cellular effects 
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LABURPENA 

Zilarrezko nanopartikulak (NPak) zabalki erabiliak izaten ari dira erakusten duten mikrobioen 

kontrako jarduerari esker eta, ondorioz, ekosistemetarako sarrera areagotzen ari da. Zilarra, 

maila trofiko baxueneko organismoetan metatu eta kate trofikoan sar daiteke, maila 

altuagoetako harraparietara iritsiz. Lan honen helburuak poli-N-vinil-2-

pirrolidona/polietileniminaz (PVP-PEI) gaineztatutako 5 nm-ko Ag NPek artemia (Artemia sp) 

larbetan eta zebra arrain (Danio rerio) enbrioietan duten toxikotasun azkarra aztertzea, 

biometaketa neurtzea eta dietaren bidezko zilarraren transferentziaren ondorioak aztertzea 

izan ziren. Horretarako, artemiak bi Ag NP kontzentrazio desberdinen eraginpean jarri ziren, 

100 ng/L, ingurumeneko kontzentrazioa izan daitekeena eta 100 µg/L kontzentrazio eraginkora 

izan daitekeena eta, paraleloki, esposatu gabeko kontrol talde bat jarri zen. Gero, artemiak 

arrainak 21 egunez elikatzeko erabili ziren bi mailako kate trofiko sinple bat itxuratuz. Artemia 

larbentzako, EC50 baloreak 7.39 mg Ag/L (48 orduz esposaturiko 48 ordutako larbak) eta 19.63 

mg Ag/L (24 orduz esposaturiko 24 ordutako larbak) artekoak izan ziren. Zebra arrain 

enbrioietan aldiz, 120 ordutara LC50 balorea 0.052 mg Ag/L izan zen. Zilar metaketa, 24 orduz 

0.1 eta 1 mg/L Ag NP-en pean jarritako artemietan neurtu zen. Autometalografia bidez ikus 

zitekeenez, Ag NPen eraginpean jarritako artemiez elikatutako zebra arrainetan, hesteak 

gibelak baino metal metaketa altuagoa erakusten zuen, nahiz eta bi organoek dosi eta denbora 

menpeko patroi berdina erakutsi zuten. Zebra arrainak, 3 egunez 100ng/L Ag NPen eraginpean 

izandako artemiez elikatzea nahikoa izan zen arrainen osasuna kaltetzeko, lisosomen 

mintzaren egonkortasunaren murrizketa esangarriak islatu zuenez. Oro har, gure lanaren 

emaitzek agerian uzten dute, Ag NPek eragin toxikoak izan ditzaketela janariaren bidez 

esposaturiko zebra arrainetan, ingurumenean aurki daitezkeen kontzentrazioetan. Guzti 

honek, nanomaterialek ingurugiroan duten inpaktuari buruzko ikerketa xeheen beharra 

islatzen du.  

Gako-hitzak: Ag NPak, zebra arraina, artemia, dieta bidezko transferentzia, biometaketa, 

zelulen gaineko efektuak 
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RESUMEN 

Las nanopartículas (NPs) de plata están siendo ampliamente utilizadas debido a su actividad 

antimicrobiana y, por tanto, aumentará su entrada en los ecosistemas. Los organismos de los 

niveles tróficos más bajos pueden bioacumular plata e incorporarla en la cadena trófica, 

llegando a los depredadores de los niveles más altos. Los objetivos de este estudio fueron 

testear la toxicidad aguda de NPs de Ag de 5 nm cubiertas de poli N-vinil-2-

pirrolidona/polietilenimina (PVP-PEI) en larvas de artemia (Artemia sp) y en embriones de pez 

cebra (Danio rerio) y evaluar la bioacumulación y los efectos de la transferencia de plata a 

través de la dieta. Para ello, se expusieron las artemias a dos concentraciones diferentes de 

NPs de Ag, 100 ng/L como una concentración ambientalmente relevante y 100 µg/L como una 

concentración potencialmente efectiva, en paralelo con un grupo control no expuesto. Estas 

artemias se utilizaron para alimentar a los peces cebra durante 21 días simulando una cadena 

trófica simple de dos niveles. Para las larvas de artemia, los valores de EC50 obtenidos oscilaron 

entre 7.39 mg Ag/L (larvas de 48 h expuestas durante 48 h) y 19.63 mg Ag/L (larvas de 24 h 

expuestas durante 24 h), mientras que para los embriones de pez cebra el valor de LC50 a las 

120 h fue de 0.052 mg Ag/L. Se registró acumulación de plata en artemias expuestas a 0.1 y 1 

mg/L de NPs de Ag durante 24 h. Mediante autometalografía se observó que los peces cebra 

alimentados con artemias expuestas a NPs de Ag acumularon mayor cantidad de metal en el 

intestino que el hígado, aunque en ambos órganos se observó el mismo patrón de 

acumulación de metal dependiente de la dosis y del tiempo. Tres días de dieta con artemias 

expuestas a 100 ng/L de NPs de Ag fue suficiente para alterar la salud general de los peces, 

según se reflejó en la reducción significativa del tiempo necesario para desestabilizar la 

membrana lisosómica y por la presencia de diversas histopatologías en el hígado. En general, 

los resultados de este trabajo mostraron que la exposición a NPs de Ag a través de la dieta fue 

capaz de provocar efectos tóxicos en el pez cebra, incluso a concentraciones ambientalmente 

relevantes, lo cual indica la necesidad de llevar a cabo estudios más detallados sobre el 

impacto real de los nanomateriales en el medio ambiente. 

Palabras clave: NPs de Ag, pez cebra, artemia, transferencia por la dieta, bioacumulación, 
efectos celulares  
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INTRODUCTION 

Due to their antibacterial activity, silver nanoparticles (Ag NPs) are one of the most 

widely nanomaterials used, with a continuously growing production. This will lead to 

an increasing entry of silver into the environment (Yin et al., 2015). The current 

concentration of Ag NPs in the environment remains unknown, because of the lack of 

sensitive analytical methods to distinguish different metal forms in complex 

environmental matrices (Sun et al., 2014). Nevertheless, several studies have 

estimated the potential concentration of Ag NPs in diverse environmental 

compartments, using mathematical models (Blaser et al., 2008; Gottschalk et al., 2009; 

Tiede et al., 2009; Fabrega et al., 2011; Chio et al., 2012; Hendren et al., 2013; Markus 

et al., 2013; Dumont et al., 2015). These studies have reported values ranging from 

0.002 ng/L in the surface water of European rivers (Dumont et al., 2015) up to 40 µg/L 

in effluents of Taiwanese rivers (Chio et al., 2012).  

Despite our limited knowledge on the fate and impact of Ag NPs in the environment, 

previous data on environmental and physiological implications of exposure of aquatic 

organisms to different silver compounds provides a baseline for the assessment of the 

potential effects of Ag NPs to the aquatic ecosystem (Fabrega et al., 2011). Two 

different routes of entrance of Ag NPs into the organisms have been defined, through 

the respiratory system since the gills are directly exposed to the NP suspended in the 

water column, and through the diet in animals that feed suspended matter or other 

organisms previously exposed to NPs (Schirmer et al., 2013). Previous studies have 

mainly focused on the effects provoked by waterborne exposure to Ag NPs (Aruvalsu 

et al., 2014; Katuli et al., 2014; Massarsky et al., 2014; Osborne et al., 2015), while few 

studies have been carried out addressing dietary exposure. Merrifield et al. (2013) fed 

zebrafish (Danio rerio) with artificial food containing Ag NPs for 14 days and reported a 

toxic effect in the zebrafish microbiome which provoked changes in the digestive 

system function and organism health. Other authors have also reported toxic effects in 

fish fed with artificial food containing nanomaterials. Blickley et al. (2014) fed the 

estuarine fish Fundulus heteroclitus with diets containing 1 or 10 µg of lecithin-

encapsulated CdSe/ZnS QD (Quantum dots)/day for 85 days detected cadmium 

bioaccumulation in the liver. Ladhar et al. (2014) also detected cadmium 
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bioaccumulation in the liver of zebrafish after 36 and 60 days and in brain and muscle 

after 60 days of exposure through contaminated artificial food with CdS NPs. These 

authors also reported genotoxicity and oxidative stress after the experimental period. 

The dietary transfer of metal can also occur from one organism to another, which may 

lead to bioaccumulation and biomagnification along the food web and to provoke a 

long term negative impact on the ecosystem functions (Pakrashi et al., 2014). In order 

to study a possible transfer of NPs among aquatic organisms, diverse studies have tried 

to simulate a simply food chain using only two trophic levels. In some cases, the 

primary producer (phytoplankton) is exposed to NPs and used to feed the primary 

consumer, such as zooplankton (Pakrashi et al., 2014; Lee et al., 2015). In both studies 

an effective NP transfer, Al2O3 and Au NPs respectively, between species was detected. 

In the other cases, the primary consumer (a crustacean) is exposed to NPs and used to 

feed the secondary consumer (fish), allowing to study biomagnification and toxic 

effects in the predator (Zhu et al., 2010; Lewinski et al., 2011). In these studies TiO2 

NPs transfer and uptake of CdSe/ZnS QDs, were also detected, although 

biomagnification was not recorded after the dietary exposure.  

In the present study, brine shrimps (Artemia sp), as the primary consumer, and 

zebrafish, as the secondary consumer, were selected with the aim of studying silver 

bioaccumulation and effects provoked by the exposure to Ag NP through the food 

web. Brine shrimps, which serve for feeding many different fish species in culture, 

have been commonly used in ecotoxicological testing because of their capacity to 

adapt to different environments, and they are starting to be considered as a new 

biological model in nanoecotoxicology (Libralato, 2014). Zebrafish is a well established 

animal model for testing toxicological effects (Hill et al., 2005), being thoroughly used 

as a model for assessing the toxicity of nanomaterials (Bohnsack et al., 2012).  

The acute toxicity of the Ag NP suspension was analyzed in embryo/larvae stages of 

both species, according to standardized OECD test guidelines. For brine shrimps, the 

acute toxicity test was based on the standardized OECD test guidelines for Daphnia sp 

(OECD TG202, 2004) where immobilization is used as mortality criteria. In zebrafish, 

the fish embryo toxicity test (FET) OECD TG236 (2013) was used. In this test, four apical 

endpoints are recorded as indicators of acute lethality in fish: coagulation of fertilized 
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eggs, lack of somite formation, lack of detachment of the tail-bud from the yolk sac, 

and lack of heart-beat (OECD TG236, 2013).  

Previous to the dietary transfer experiment, silver bioaccumulation was measured in 

brine shrimps exposed to different Ag NP concentration and results were used to 

select the Ag NP concentration to expose brine shrimps. Then, the potential metal 

accumulation and effects of silver transfer through dietary exposure was analyzed 

using brine shrimps exposed to two different Ag NP concentrations, an 

environmentally relevant concentration and a likely effective concentration. A battery 

of biomarkers was selected to elucidate the effects provoked in zebrafish by the 

dietary exposure for 21 days to Ag NPs. Accumulation of silver in zebrafish was 

measured through chemical analysis and metal distribution was assessed in different 

organs quantifying the volume density of black silver deposits (VvBSDs) after 

autometallography. This method has been successfully applied to study the metal fate 

in fish exposed to metal salts (Alvarado et al., 2005; 2006), as well as to metal bearing 

NPs (Vicario-Parés et al., 2014; Chapter II; Chapter IV). General fish health status was 

study through the lysosomal membrane stability test, as lysosomes are the central site 

for sequestration of toxic metals (Köhler et al., 2002). Exposure to metals can result in 

an increased radical generation, resulting in oxidative damage to the membranes. This 

test has been previously applied in diverse aquatic organisms to detect the toxic effect 

provoked by different metal nanoparticles (Vicario-Parés, 2016; Jimeno-Romero, 2014; 

Chapter II; Chapter IV). The observation of histopathological lesions in target tissues, 

such as intestine and liver, is a direct indicator of contaminant effect and provides an 

appropriate indicator of the general health of individuals and populations exposed to 

contaminants (Davies and Vethaak, 2012). The intestine is one of the major target 

tissues as it is the main entrance of NPs into the organisms during the dietary exposure 

(Zhu et al., 2010; Piccinetti et al., 2014). In addition, the liver, as the principal organ 

involved in the detoxification of xenobiotics (Feist et al., 2004), is the other main target 

tissue for NP toxicity. 
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MATERIALS AND METHODS 

Silver nanoparticles 

Ag NPs were purchased to NANOGAP (A Coruña, Spain) as an aqueous dispersion 

containing 10 g/L of Ag NPs stabilized with poly-N-vynil-2-pirrolidone (PVP, Sigma-

Aldrich, St. Louis, Missouri) and polyethylenimine (PEI, Sigma-Aldrich), being the 

concentration of the PVP-PEI mixture 104 g/L in a proportion of 77% PVP and 23% PEI. 

The NP size distribution measured by transmission electron microscopy was 5.08 ± 

2.03 nm, the Z potential in distilled water measured by dynamic light scattering was 

+18.6 ± 7.9 mV at pH 8.43, according to the information provided by the supplier. 

Dissolution of the Ag NPs in artificial seawater has been previously described in 

Schiavo et al. (in prep). After 24 hours, PVP-PEI coated Ag NPs released around 20% of 

silver ions, increasing to 29.6% at 72 hours.  

Brine shrimp culture and acute toxicity test 

Cysts of brine shrimps (INVE Aquaculture, Salt Lake City, Utah, USA) were hatched and 

grown in reactors with artificial salt water (33‰ salinity). Brine shrimp cultures were 

maintained with continuous aeration and illumination in a temperature controlled 

room at 28ºC. After 24 h of hydratation, most cysts hatched and, then, they were 

maintained for other 24 or 48 h. Brine shrimp nauplii were collected using a mesh of 

150 µm. 

The acute toxicity of the Ag NP suspension to brine shrimps was tested following a 

procedure based on the standardized OECD TG 202 (2004) for Daphnia magna. The 

test was carried out in covered 24-well polystyrene microplates placing 5-7 brine 

shrimp nauplii of  24 or 48 h post hatch (hph) per well in 2 mL of exposure medium, at 

a temperature of 18.5 ºC and continuous illumination. Brine shrimps were exposed to 

five different dilutions of the Ag NP suspension containing 1, 2.5, 5, 7.5 and 10 mg 

Ag/L. The toxicity of the PVP-PEI mixture alone was assayed in parallel by exposing the 

brine shrimps in the same conditions to the equivalent concentrations present in the 

dilutions of the NP suspension. An unexposed control group was also run. The test was 

considered as valid only when survival rate in the control group was ≥ 90% (OCDE TG 
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202, 2004). At 24 and 48 hours of exposure brine shrimps were examined to determine 

mortality (percentage of immobilized larvae).  

Zebrafish culture and embryo toxicity test 

Zebrafish (wild type AB Tübingen) individuals were grown in a temperature-controlled 

room at 28ºC with a 12-hour light/12-hour dark cycle in 100 L tanks provided with 

mechanic and biological filters. Water was in continuous movement triggered by the 

action of an aeration siphon. Water was previously conditioned by passage through a 

deionization system and then buffered to pH 7.2 with Sera pH plus (Sera, Heinsberg, 

Germany) and to 600 µs Ω with commercial marine salt (Sera). Fish were fed twice a 

day with 24 hph live brine shrimps and Vipagran baby (Sera). Water chemical 

parameters were controlled once per week using Sera ammonium, nitrite and nitrate 

kits and water changed if the values were higher than zero mg/L for ammonium or 

nitrite and 50 mg/L for nitrate. 

Breeding fish were selected and separated in a tank. Females and males were 

maintained separately, in order to avoid continuous spawning. The day prior to the 

beginning of the exposures, one female and one male zebrafish were placed separately 

in each breeding tramp which had previously been located in a 2 L tank containing 

conditioned water. Fish were left overnight and, just before the light switched on in 

the morning, the separation was removed. The resulting eggs were collected in a Petri 

dish and fertilized viable eggs were selected under a stereoscopic microscope (Nikon 

smz800, Kanagawa, Japan). During the procedure of embryo selection, water salinity 

was reduced gradually up to MilliQ water. Finally, fertilized eggs were transferred to 

the exposure microplates. 

The FET test was carried out following the OECD TG236 (2013) and the experimental 

setup described in Chapter I. Zebrafish embryos were exposed to different dilutions of 

the Ag NP suspension containing from 0.01 to 10 mg/L, as well as to the equivalent 

concentration of the PVP-PEI mixture present in the dilutions of the NP suspension. 

These concentrations were selected according to the expected toxicity based on 

previous studies carried out in our laboratory (Chapter I). Exposure started just after 

selection of the fertilized embryo and lasted up to 120 h post fertilization (hpf). The 
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test was considered as valid only when survival rate in the control group was ≥ 90% 

(OECD TG236, 2013). 

Daily and up to the end of the test, embryos were examined to determine survival 

rate, hatching rate, hatching time and malformation prevalence. Normal embryo 

morphology was based on Kimmel et al. (1995). Malformations were recorded and 

photographed under a Nikon AZ100 (Tokyo, Japan) stereoscopic microscope.  

Exposure of zebrafish through contaminated brine shrimps 

For the establishment of the brine shrimp exposure concentrations to be used in the 

dietary experiment, Instar I brine shrimps (24 hph) cultures were previously 

waterborne exposed to Ag NP suspension for 24 h to five different concentrations of 

Ag NPs (0.1, 1, 10, 100 and 1000 µg Ag/L). Once the two concentrations were selected, 

new brine shrimp (24 hph) cultures were daily exposed to obtain a continuous stock to 

be used to feed the zebrafish during the experimental period. 

The experimental procedure involving adult zebrafish described herein was approved 

by the Ethics Committee in Animal Experimentation of the UPV/EHU according to the 

current regulations. During the experimental period, zebrafish of approximately 1 year 

old were kept in 35 L aquaria containing 55-75 fish. These aquaria were equipped with 

biological filters and air pumps for water aeration and recirculation. Water chemical 

parameters were controlled as indicated above. Adult zebrafish were fed daily for 21 

days with the brine shrimps exposed for 24 h to the Ag NP concentrations selected. A 

control group fed with unexposed brine shrimps was run in parallel in identical 

experimental conditions. The daily amount of feeding was set to 2.5% of fish body 

weight (Blanco-Vives and Sánchez-Vázquez, 2009; Lawrence et al., 2012) distributed in 

two doses.   

During the experimental period, fish samples were taken at 3 or 21 days of exposure 

depending on the endpoint, after euthanasia by overdose of anesthetic (ethyl 4-

aminobenzoate, Fluka, Steinheim, Germany). In addition, during the experimental 

period samples from the brine shrimps cultures were collected for chemical analysis at 
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four different days (1st, 7th, 14th, and 21st), and were used to quantify the silver 

content. 

Metal accumulation: chemical analyses  

Brine shrimp nauplii were collected from the cultures using a 150 µm mesh and the 

resulting samples were introduced into pre-weighted 25 mL Erlenmeyer flasks and 

weighted again. Then, flasks were placed into a 130 ºC oven overnight, and weighted 

again in order to calculate the dry weight of the brine shrimp samples. Then, samples 

were digested using 6 mL of aqua regia, prepared as 25% nitric acid (65% extra pure 

quality, Scharlau, Barcelona, Spain) and 75% hydrochloric acid (36%, Tracepur®, 

Scharlau). The mouth of the Erlenmeyer flasks was blocked with a crystal ball to 

minimize evaporation. After finishing the digestion of the sample, the remnant liquid 

was evaporated in an 80 ºC hot plate inside an exhaust hood. After evaporation, 2.5 

mL aqua regia was added to each flask and stored at 4 ºC. Finally, silver content was 

measured by inductively coupled plasma mass spectrometry (ICP-MS, 7700x, Agilent 

Technologies, California, USA) following the US-EPA 6020A directions Detection limit 

was established at 0.01 µg/L. 

For chemical analysis of zebrafish tissue, 20 individuals per experimental group were 

collected, frozen individually in liquid nitrogen and stored at -80 ºC. Whole zebrafish 

were dried in an oven at 130 ºC for 24 h. Dry tissues were weighted, pooled (five pools 

of four zebrafish each) and placed into 25 mL Erlenmeyer flasks, and processed as 

described for brine shrimps. The content of each flask was then transferred into tubes 

and centrifuged for 4 min at 2000 rpm (Heraeus Labofuge 200 centrifuge, Hanau, 

Germany). The supernatants were moved to clean tubes and stored at 4 ºC. Finally, 

silver content was measured by ICP-MS (7700x, Agilent Technologies) following the US-

EPA 6020A directions. Detection limit was established at 0.01 µg/L. 

Histological preparations 

The visceral masses of 10 fish per experimental group were dissected after 21 days of 

dietary exposure. Tissues were placed in histological cassettes and immersed in 10% 

neutral buffered formalin for 24 h at 4 ºC. Then, samples were transferred to 70% 
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ethanol and stored at 4 ºC until complete tissue processing under vacuum conditions 

in an ASP300 Tissue Processor (Leica Microsystems, Nussloch, Germany). Paraffin 

blocks were done using plastic molds. Sections (5 µm thick) were cut in a RM2125RT 

microtome (Leica Microsystems) for autometallography and histopathological analysis. 

For the histopathological analysis and for localization of tissues of interest for the 

autometallographical staining, slides were stained with hematoxylin/eosin (H/E) in an 

Auto Stainer XL (Leica Microsystems) and mounted in DPX (Sigma-Aldrich) by means of 

a CV5030 Robotic Coverslipper (Leica Microsystems). 

H/E stained histological sections of the visceral mass were examined under a BX51 

light microscope (Olympus, Tokyo, Japan). Samples were specifically analyzed for the 

determination of the presence of histopathological alterations, such as inflammatory 

responses. 

Cellular localization: autometallography 

Paraffin sections were dewaxed in xylol (Fluka), hydrated in decreasing concentrations 

of ethanol and left until they were completely dry. A silver enhancement kit for light 

and electron microscopy (BBI Solutions®, Cardiff, UK) was used according to the 

manufacturer instructions. The reaction was stopped by rinsing the slides in tap water. 

Slides were mounted with Kaiser’s glycerol gelatin (Sigma-Aldrich). The quantification 

of the volume density (Vv) of the developed black silver deposits (BSDs) in the intestine 

and liver tissues was done over five different sections of each sample. The observation 

was made using a Laborlux S microscope (Leica Microsystems) and quantification of 

VvBSDS was made by means of the Biological Measure System (BMS) software (Sevisan, 

Leioa, Spain).  

Volume density (Vv) of goblet cells 

Paraffin sections were obtained as described previously. Samples were immersed into 

an 1% Alcian blue (Sigma-Aldrich) pH 2.5 solution for 30 min, washed 2x30 s in 

deionized water, rinsed in tap water for 3 min, and dehydrated in a graded series of 

ethanol. Samples were mounted in DPX. Using a BX61 microscope (Olympus) equipped 

with a camera, two different microscopic fields on each sample were photographed at 
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10x magnification. Afterwards, using the Olympus CELL^D Software, a 50x50 µm2 

squared grid was superimposed onto the image. The number of the grid intersections 

over goblet cells and over intestine tissue was counted to calculate the Vv of the 

goblet cells over the entire intestine using the following stereological formula: nº of 

intersections over goblet cells / (nº of intersections over goblet cells + nº of 

intersections over intestine). 

General health status: Lysosomal membrane stability (LMS)  

The liver of 5 individuals per experimental group was dissected after 3 and 21 days of 

dietary exposure, embedded in Cryo-M-Bed (Jung, Heidelberg, Germany) and frozen in 

liquid nitrogen. Frozen tissue sections (10 μm) were obtained in a CM3050S cryotome 

(Leica Microsystems) at a cabinet temperature of -24 ºC. The determination of LMS 

was based on the method used by Bröeg et al. (1999) as the time of acid labilization 

treatment required to produce the maximum staining intensity in hepatocyte 

lysosomes after demonstration of acid phosphatase activity. Time intervals used for 

acid labilization were 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40 and 50 min according to Bilbao 

et al. (2010). 

Labilization period (LP) was determined under an Olympus BX51 light microscope as 

the maximal accumulation of reaction product associated with lysosomes (Bröeg et al., 

1999). Four determinations were made for each individual liver by dividing each 

section in the acid labilization sequence into 4 approximately equal segments. A mean 

value was then obtained for each section, corresponding to an individual fish. 

Statistical analyses 

Data recorded in both species from the acute toxicity tests were statistically analyzed 

by binomial logistic regression. This analysis allowed calculating the odds ratios in 

order to estimate and to compare the risk associated to silver exposure for the two 

species. EC50/LC50 values were calculated using a Probit model. Estimation of 

parameters was performed using the penalized maximum likelihood proposed by Firth 

(Firth, 1993), whenever convergence was not obtained using the maximum likelihood 

method (Kosmidis, 2013). Data from the dietary transfer experiment were statistically 

263



Chapter VI 

 

 
 

analyzed by multivariate general linear regression models. All the analyses were 

performed using R 3.1.0. 

RESULTS 

Acute toxicity test: brine shrimps 

After 24 h of exposure, significant effects on the surviving rate were recorded only for 

the 48 hph brine shrimps exposed to 10 mg Ag/L (Fig 1C), while no significant effects 

were recorded for the 24 hph brine shrimps (Fig 1A). After 48 h of exposure to the Ag 

NP suspension, a concentration dependent effect was detected for both the 24 hph 

and the 48 hph brine shrimps (Fig 1B, 1D). Significant effects were recorded at 5, 7.5 

and 10 mg Ag/L for 48 hph brine shrimps and at 7.5 and 10 mg Ag/L for 24 hph brine 

shrimps. At 10 mg Ag/L, the percentage of surviving individuals decreased to 55% for 

the group of 24 hph brine shrimps and to 21.7% for the group of 48 hph brine shrimps. 

This decrease was also reflected in the odd ratios values which indicate the increase in 

the risk of mortality in brine shrimps exposed to 10 mg Ag/L respect to the control 

group, with a value of 54.457 (confidence interval at 95% (CI) 6.628 - >999.99) in 24 

hph brine shrimps and a value of 70.239 (CI: 19.445 - 384.71) in 48 hph brine shrimps. 

Exposure to the PVP-PEI mixture alone did not cause any significant effect in any of the 

assayed conditions (Fig 1). Calculated EC50 values and their confidence intervals at 95% 

are shown in Table 1. 

Table 1.- EC50 and LC50 values and confidence intervals at 95% (in brackets) for the compounds 
tested in this study with brine shrimp nauplii and zebrafish embryos. 

 

Brine shrimps nauplii (EC50) 
Zebrafish 
embryos  

(LC50) 

24 hph  48 hph 120 hpf 

24 h of 
exposure 

48 h of  
exposure 

24 h of 
exposure 

48 h of 
exposure 

 

Ag NP 
suspension 
(mg Ag/L) 

19.63 
(3.81 - 35.45) 

10.24 
(8.96 - 11.52) 

16.52 
(10.83 - 22.21) 

7.39 
(6.63 - 8.15) 

0.057 
(0.051 - 0.062) 

PVP-PEI 
mixture  

(mg PVP-
PEI/L) 

277.07 
(24.13 - 530) 

500.73 
(-486.77 - 1488.23) 

206.73 
(75.5 - 337.95) 

212.7 
(69.16 - 
356.24) 

5.42 
(3.93 - 6.70) 
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Figure 1.– Effects on survival of the exposure of brine shrimp nauplii to different dilutions of the Ag NP 
suspension and the equivalent concentration of the PVP-PEI mixture present in the dilutions of the NP 
suspension. (A) 24 hph brine shrimps exposed for 24 h; (B) 24 hph brine shrimps exposed for 48 h; (C) 48 
hph brine shrimps exposed for 24 h; (D) 48 hph brine shrimps exposed for 48 h. The empty symbols 
indicate significant differences (p<0.05) respect to the control group. 

Acute toxicity test: zebrafish  

The Ag NP suspension at concentrations ≥ 0.1 mg Ag/L caused 100% of mortality after 

24 h (Fig 2A). These results did not allow calculating the LC50 value, since only zebrafish 

exposed to the lowest concentration survived. In order to be able to obtain a LC50 

value, a new test was carried out in the range of concentrations between 100% and 0% 

survival (0.01-0.1 mg Ag/L) in the previous test. Significant effects in the survival rate at 

120 hpf were observed after the exposure to ≥ 0.05 mg Ag/L (Fig 2B). 26.7% of the 

embryos exposed to 0.05 mg Ag/L and 76.7% of the embryos exposed to 0.075 mg 

Ag/L died after 48 hours, before hatching. The calculated LC50 value was 0.057 mg Ag/L 

(Table 1). 
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Figure 2 - Effects of the exposure of zebrafish embryos to different dilutions of the Ag NP suspension 
and the equivalent concentration of the PVP-PEI mixture present in the dilutions of the NP suspension 
for 120 h. (A and B) Survival rate; (C) hatching rate; (D) hatching time. The empty symbols indicate 
significant differences (p<0.05) respect to the control group. 

Exposure to the PVP-PEI mixture at concentrations up to ~1 mg PVP-PEI/L, equivalent 

to the concentration present in the dilution of the NP suspension containing 0.1 mg 

Ag/L, did not cause any effect on embryos survival rate at 120 hpf. Exposure to 

concentrations ≥ 10 mg/L of the PVP-PEI mixture resulted in 100 % embryo mortality at 

120 hpf. The survival time of embryos exposed to PVP-PEI was concentration-

dependent. At ~10 mg PVP-PEI/L embryos died after hatching (> 72 hpf), at ~50 mg 

PVP-PEI/L embryos died at 48-72 hpf always before hatching, and at ~100 mg PVP-

PEI/L embryos died at 24 h of exposure. The LC50 value obtained at 120 hpf was 5.42 

mg PVP-PEI/L (Table 1). 

Significant differences for hatching rate were observed in embryos exposed to 0.05 

0.075 and 0.1 mg Ag/L (Fig 2C) and significant differences for hatching time were 

observed only in embryos exposed to 0.05 mg Ag/L, when a hatching  delay respect to 

the control embryos was registered, as some embryos did not hatch during the 

exposure period (Fig 2D).  
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Exposure to the Ag NP suspension at 0.05 and 0.075 mg Ag/L provoked malformations 

in surviving embryos (Fig 3). Yolk sac edema, pericardial edema, tail flexure, spinal cord 

flexure and finfold abnormality were detected after the exposure to the Ag NP 

suspension (Table 2). Moreover, some malformations were observed in unhatched 

embryos of 72-96 hpf exposed to 10 and 50 mg PVP-PEI/L, but these embryos died 

before hatching (Fig 3F). Malformations present in zebrafish embryos exposed to PVP-

PEI were yolk sac edema, pericardial edema and tail flexure. 

Table 2.- Malformation prevalence. The percentage of total malformed embryos and specific 
malformations is calculated over all the embryos during the experimental period. 

 
Conc.  

(mg/L) 

Total 
malformed 

embryos (%) 

Specific malformations (%) 
Yolk 
sac 

edema 

Pericardial 
edema 

Tail 
flexure 

Finfold 
abnormality 

Spinal 
cord 

flexure 

Ag NPs 
0.05 20 16.7 13.3 - 6.67 3.3 

0.075 13.3 13.3 6.7 3.3 - 9.9 

PVP-PEI 
10 3.3 3.3 3.3 3.3 - - 
50 13.3 13.3 - - - - 

 

 

Figure 3.- Micrographs of zebrafish embryos: (A) 120 hpf control embryo showing normal morphology; 
(B) 120 hpf embryo exposed to 0.05 mg Ag/L, presenting yolk sac edema, pericardial edema and finfold 
abnormality; (C) 120 hpf embryo exposed to 0.075 mg Ag/L, presenting yolk sac edema, pericardial 
edema and spinal cord flexure; (D) 120 hpf embryo exposed to 0.075 mg Ag/L, presenting yolk sac 
edema; (E) 96 hpf unhatched embryo exposed to 1 mg/L of the PVP-PEI mixture, presenting cardiac 
malformation, yolk sac edema and malformation of the tail; (F) 96 hpf unhatched embryo exposed to 5 
mg/L of the PVP-PEI mixture, presenting yolk sac edema. 

 

500 µm

500 µm 500 µm500 µm

500 µm 500 µm

A) B) C)

D) E) F)

267



Chapter VI 

 

 
 

Zebrafish embryos were significantly more sensitive to the exposure to both, the Ag NP 

suspension and the PVP-PEI mixture alone, at the same nominal concentration than 

brine shrimp larvae. At concentrations of Ag NPs ≥ 1 mg/L  zebrafish embryo mortality 

happened during the first 48 h of exposure. Therefore, the comparison between both 

acute tests was carried out at the same experimental conditions. The odd ratio (OR) 

values were calculated to determine the increase in the risk of mortality for zebrafish 

embryos respect to the brine shrimps larvae of 24 and 48 hph exposed during 24 and 

48 h, being statistically significant different at all the concentrations compared (Table 

3).  

Table 3.- Odd ratio (OR) values indicating the increase in the risk of mortality for zebrafish embryos in 
comparison with brine shrimp larvae of 24 or 48 hph, exposed for 24 or 48 h to the Ag NP suspension or 
to the PVP-PEI mixture alone. In brackets the confidence intervals at 95%. Asterisks indicate statistically 
significant differences (p<0.05) according to the binomial logistic regression.  

[Ag NPs] 
mg Ag/L 

Ag NP suspension 

24 hph,  
24 h of exposure 

48 hph,  
24 h of exposure 

24 hph,  
48 h of exposure 

48 hph,  
48 h of exposure 

1 
>999.99* 

(199.86 - >999.9) 
>999.99* 

(140.30 - >999.9) 
>999.99* 

(199.86 - >999.9) 
>999.99* 

(96.36 - >999.9) 

5 
>999.99* 

(193.75 - >999.9) 
>999.99* 

(160.57 - >999.9) 
744.15* 

(70.17 - >999.9) 
260.19* 

(31.47 - >999.9) 

10 
>999.99* 

(106.52 - >999.9) 
>999.99* 

(37.78 - >999.9) 
72.81* 

(8.86 - >999.9) 
17.56* 

(2.1 - >999.9) 

[PVP-PEI] mg 
PVP-PEI/L 

PVP-PEI mixture 

24 hph,  
24 h of exposure 

48 hph,  
24 h of exposure  

24 hph, 
48 h of exposure 

48 hph,  
48 h of exposure 

~ 10  
>999.99* 

(205.98 - >999.9) 
>999.99* 

(224.33 - >999.9) 
792.99* 

(74.93 - >999.9) 
601.28* 

(61.79 - >999.9) 

~ 50 
467.66* 

(50.57 - >999.9) 
>999.99* 

(157.19 - >999.9) 
467.66* 

(50.57 - >999.9) 
337.53* 

(39.76 - >999.9) 

~ 100 
>999.99* 

(103.15 - >999.9) 
817.38* 

(77.31 - >999.9) 
>999.99* 

(103.15 - >999.9) 
197.35* 

(23.25 - >999.9) 
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Metal accumulation: chemical analyses in brine shrimps and zebrafish and selection of 

exposure concentrations for the zebrafish feeding 

Silver accumulation was measured in brine shrimps of 24 hph after exposure for 24 h 

to five different concentrations of the Ag NP suspension (Fig 4A). At the two highest 

exposure concentrations (0.1 and 1 mg Ag/L) similar and significantly higher values of 

silver accumulation than in the control fish were recorded, with a bioconcentration 

factor (BCF) of about 78 for the exposure to 0.1 mg Ag/L. Exposure to 10 µg Ag/L 

resulted in an average accumulation of 1.8 µg Ag/g dw with a BCF for this 

concentration of 3.5, although no significant differences were found in comparison 

with the control group. At lower Ag NP concentrations, similar values were measured 

in exposed and control animals. 

Based on these results, the selected concentrations to expose the brine shrimps for 

zebrafish feeding were 100 µg Ag/L as the high dose (HD) and 100 ng Ag/L as the low 

dose (LD) which is an environmentally relevant concentration of silver. From these 

accumulation data and the selected zebrafish diet of 2.5% body weight per day, a 

nominal exposure concentration of 2.1817 ng Ag/fish/day, in the case of the HD 

exposure group, and 0.17025 ng Ag/fish/day, in the case of the LD exposure group, 

was estimated. 

During the dietary exposure experiment, a sample of the brine shrimp cultures was 

collected at four different days (days 1, 7, 14 and 21), for chemical analysis of silver in 

order to corroborate previous accumulation data. Accumulation of silver in brine 

shrimps was lower than in the previous experiment, but accumulation pattern was 

maintained (Fig 4B). An average silver accumulation of 3.9 μg Ag/g dw was recorded 

for the HD exposure group, while a mean value of 0.3 μg Ag/g dw was obtained for the 

LD exposure group. Significant differences were found between de HD exposure group 

and the control group, as well as, between the HD and the LD exposure groups. 

Chemical analysis of control zebrafish fed with unexposed brine shrimps and zebrafish 

fed for 21 days with brine shrimps exposed to the low concentration of the Ag NP 

suspension showed similar silver content. Zebrafish fed for 21 days with brine shrimps 

exposed to the high concentration of the Ag NP suspension showed higher silver 
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content, although this increase was not statistically significant due to the high 

variability recorded between individuals (Fig 4C). 

 

Figure 4.- Box-plot displaying silver accumulation levels (µg Ag/g dry weight) measured by ICP-MS; (A) 
brine shrimps of 24 hph exposed to five different concentrations for 24 h; (B) silver accumulation in 
brine shrimps cultured for the dietary exposure experiment and collected at four different days; (C) 
silver accumulation in whole zebrafish tissue after 21 days of dietary exposure. Different letter indicate 
statistically significant differences (p<0.05) according to the multiple regression models. Circles (o) 

indicate outlier sample within a group. 

Autometallography: volume density of BSDs 

Intestine tissue showed higher metal accumulation (higher values of VvBSDs) than liver, 

although both organs showed the same pattern of dose- and time-dependent metal 

accumulation.  

In the intestine, significant differences were not detected at any exposure time, 

despite the high differences between both exposure concentrations, due to the high 

variability among individuals measured in zebrafish fed with brine shrimps exposed to 

the HD (Fig 5A). In the control group, no BSDs were detected at any time (Fig 5B). In 

the intestine of fish fed with brine shrimps exposed to the LD, few BSDs were detected 
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at three days (Fig 5C), increasing their amount after 21 days (Fig 5D). In the intestine of 

fish fed with brine shrimps exposed to the HD, a high number of BSDs were observed 

at three (Fig 5E) and at 21 days (Fig 5F). High density of deposits was found in the 

epithelial cells and especially in the apical end. 

 

Figure 5.- (A) Metal accumulation (VvBSDs) in the intestine of zebrafish fed with brine shrimps exposed to 
different concentrations of the Ag NP suspension. (B-F) Micrographs of paraffin sections of the intestine 
after autometallographical staining. (B) Zebrafish fed with unexposed control brine shrimps. (C) 
Zebrafish fed with brine shrimps exposed to the LD of the Ag NP suspension for 3 days. (D) Zebrafish fed 
with brine shrimps exposed to the HD of the Ag NP suspension for 3 days. (E) Zebrafish fed with brine 
shrimps exposed to the LD of the Ag NP suspension for 21 days. (F) Zebrafish fed with brine shrimps 
exposed to the HD of the Ag NP suspension for 21 days. Scale bars: 20 µm. 
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In the liver, differences between treatments were found after both exposure times, 

but only after 21 days these differences were statistically significant in fish fed with 

brine shrimps exposed to the HD of the Ag NP suspension (Fig 6A). As in the case of the 

intestine tissue, a high variability was observed in the HD treatment. No BSDs were 

detected in the liver of control fish (Fig 6B). Few BSDs were detected after 3 days (Fig 

6C), increasing after 21 days in the liver of fish fed with brine shrimps exposed to the 

LD (Fig 6D). In fish fed with brine shrimps exposed to the HD, few BSDs were present 

after 3 days (Fig 5E), appearing large and abundant BSDs homogeneously distributed 

thorough hepatocytes after 21 days (Fig 6F). 

General health status: Lysosomal membrane stability (LMS)  

The general health status of the fish was studied through the LMS test. A significant 

decrease in the mean value of the labilization period was reported after both 

treatments at both exposure times (Fig 7). No significant differences were found 

between fish fed with brine shrimps exposed to the LD and those exposed to the HD.  

 
Figure 7.- Labilization period (in minutes) of the lysosomal membrane in liver cells. Different letters 
indicate statistically significant differences (p<0.05) according to the multiple regression models. 
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Figure 6.- (A) Metal accumulation (VvBSDs) in the liver of zebrafish fed with brine shrimps exposed to 
different concentrations of the Ag NP suspension. Different letters indicate statistically significant 
differences (p<0.05) respect to the control according to the multiple regression models. (B-F) 
Micrographs of paraffin sections of the liver after autometallographical staining. (B) Zebrafish fed with 
unexposed control brine shrimps. (C) Zebrafish fed with brine shrimps exposed to the LD of the Ag NP 
suspension for 3 days. (D) Zebrafish fed with brine shrimps exposed to the HD of the Ag NP suspension 
for 3 days. (E) Zebrafish fed with brine shrimps exposed to the LD of the Ag NP suspension for 21 days. 
(F) Zebrafish fed with brine shrimps exposed to the HD of the Ag NP suspension for 21 days. Scale bars: 
20 µm. 
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Histological assessment 

No significant differences among groups were detected in the volume density of 

intestinal goblet cells after Alcian blue staining of paraffin sections (data not shown). In 

the liver, different histopathological conditions, such as vacuolization and necrosis, 

were detected in individuals fed with brine shrimps exposed to both doses of Ag NPs. 

The prevalence of the histopathological alterations in liver is shown in Table 4. Control 

fish showed in general a normal liver at both exposure times (Fig 8A-B), only one 

individual sampled at 21 days of experiment showed vacuolization. After dietary 

exposure to both doses of Ag NPs, a higher prevalence of histopathological alterations 

was detected at 3 days than at 21 days, being this prevalence significantly higher at 3 

days respect to the control in both treatment doses; the dietary exposure of zebrafish 

through brine shrimps treated with Ag NPs, even at environmentally relevant 

concentrations, provoked a vacuolization of the liver, increasing the prevalence 

significantly after 3 days for the HD (Fig 8C). Also, necrotic foci were observed in the 

liver of zebrafish fed with brine shrimps exposed to both doses of Ag NPs (Fig 8D).  

Table 4.- Prevalence of histopathological alterations in liver of zebrafish. Data are shown in percentages. 
Asterisks indicate statistically significant differences between control and exposed groups (p<0.05) 
according to the Fisher’s exact test. 

Group Sampling n  Vacuolization Necrosis  Total 

Control  
3 days 10  0 0  0 

21 days 10  10 0  10 

Low dose  
3 days 10  40 10  50* 

21 days 10  0 20  20 

High dose 
3 days 10  60* 10  70* 

21 days 10  30 0  30 
n: number of individuals per experimental group. Total: number of individuals per group presenting any 
histopathological alteration. 
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Figure 8.- Micrographs of paraffin sections of the zebrafish liver after H/E staining. (A) Liver of control 
zebrafish at 3 days; (B) Liver of control zebrafish at 21 days. (C) Liver of zebrafish fed for 3 days with 
brine shrimps exposed to the HD of Ag NPs, presenting vacuolization. (D) Liver of zebrafish fed for 21 
days with brine shrimps exposed to the LD of Ag NPs, presenting a necrotic focus. Scale bar: 50 µm. 

DISCUSSION 

In the present study, transference of silver through the food web and derived effects 

were studied using brine shrimp larvae and adult zebrafish as a simple trophic chain. 

Brine shrimps were exposed to a Ag NP suspension and, then, used to feed zebrafish. 

Previously, acute toxicity of the Ag NP suspension and the PVP-PEI mixture present in 

the suspension was tested in both species. For brine shrimps, the PVP-PEI mixture was 

found to be nontoxic at any of the assayed exposure times or concentrations, while the 

Ag NP suspension showed significant acute toxic effects at the highest tested 

concentrations (≥ 5 mg Ag/L, depending on the exposure conditions). As exposure time 

increased, the silver concentration causing significant effects decreased. Aruvalsu et al. 

(2014) also reported an increase in the mortality rate of brine shrimp nauplii as 

exposure time to Ag NPs increased. They detected a higher amount of Ag NPs 

aggregates into the gut of brine shrimps exposed for 48 h than in the gut of brine 

shrimps exposed for 24 h, which provoked a lack of food uptake in the organisms. 

A B

C D
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Moreover, during the present study, for the same exposure period brine shrimps of 48 

hph were more sensitive to Ag NPs than brine shrimps of 24 hph. The increased 

toxicity at more advanced stages of brine shrimp development, in comparison with the 

earlier stages, has been related to the fact that more developed brine shrimps feed 

more voraciously and, therefore, the ingestion of NPs may increase (Rajasree et al., 

2011). In comparison with other crustaceans, such as Daphnia magna, brine shrimps 

seem to be less sensitive to the exposure to Ag NPs. The EC50 values at 24 h of 

exposure determined in the present study were 19.63 mg Ag/L (24 hph) and 16.52 mg 

Ag/L (48 hph). In D. magna, EC50 values at 24 h of exposure to Ag NPs prepared with 

different dispersion methods ranged between 0.004 and 3.844 mg Ag/L (Jo et al., 

2012). This variability in the EC50 values for silver concentration reported for D. magna 

can be explained by the wide variety of treatments that Ag NPs can be put through, 

the diversity of coatings and sizes and how it all affects their toxicity (Jo et al., 2012; 

Römera et al., 2013; Silva et al., 2014). Nevertheless, although Ag NPs assayed in the 

present work are much more toxic than other formulations, according to the results 

obtained in zebrafish embryos (Chapter I), EC50 values obtained in brine shrimps are 

considerably lower than those reported for D. magna. Differences between the toxicity 

of Ag NPs to both species can be related to several biotic and abiotic factors being 

likely the habitat and, therefore, the exposure medium using in the laboratory test a 

key factor. D. magna is a freshwater organism and brine shrimp is a salt water 

organism. Salinity of the exposure medium can be a determinant factor for the Ag NP 

toxicity. It is well described that the higher ionic strength may result in aggregation of 

NPs and create links between free silver cations and anions present in the salt water, 

which neutralizes the toxicity of the silver ions in the Ag NP suspension (Kalbassi et al., 

2011; Zhao and Wang, 2012). Moreover, brine shrimp as euryhaline specie has a great 

osmoregulatory capacity, which contributes to a greater resistance to the toxic effect 

of the metal cations and allows living in environments with a high salt concentration 

(Gajardo and Beardmore, 2012).    

In zebrafish embryos, the toxicity of the Ag NP suspension was also due to the Ag NPs 

rather to the PVP-PEI mixture present in the suspension. The PVP-PEI mixture was not 

toxic at the concentration present in the dilution of the Ag NP suspension that caused 
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100% of mortality. The LC50 value for the Ag NP suspension (0.057 mg Ag/L) was similar 

to that reported for ionic silver (0.047 mg Ag/L) in a previous study carried out at the 

same experimental conditions and much lower than for maltose-coated Ag NPs of 

larger size (0.529-3.94 mg Ag/L, Chapter I). Many data found in the literature indicate 

an inverse relationship between the size of the NPs and their toxicity (Powers et al., 

2011; Kim et al., 2013; Chapter I), which is attributed to the higher surface-to-volume 

ratio of the smaller particles that increases the proportion of atoms in the NP surface 

in contact with the test solution. Moreover, small NPs show greater ability to passively 

diffuse into developing embryos via chorion pore canals, which may increase the 

bioavailability and block the pores by the aggregation of NPs causing the mortality of 

the embryos before hatching (Lee et al., 2007). 

Results indicate very different sensitivity of both species to the Ag NP suspension, 

being zebrafish embryos significantly more sensitive than the brine shrimp nauplii. 

Differences in the sensitive may be mainly explained by the nature of the environment 

and the biology of the species, although in the case of brine shrimps nauplii still exists 

a lack of knowledge about the toxicity provoked by Ag NPs (Libralato et al., 2014). 

Differences in the exposure medium are evident, zebrafish are freshwater organisms 

and brine shrimps live in high salinity environments. As previously mentioned, the 

concentrations of ions in the exposure media is a determinant factor for the Ag NP 

toxicity, as well as the high osmoregulatory capacity of the brine shrimps which may 

prevents from the entrance of metals into the organisms.  

Although no acute toxicity was found, exposure of brine shrimps to 0.1 mg Ag/L led to 

significant silver accumulation and similar to that obtained after exposure to 1 mg 

Ag/L. Thus, 0.1 mg Ag/L, along with an environmentally relevant concentration (100 ng 

Ag/L) according to literature data, was selected to expose brine shrimps to be used as 

food for zebrafish. The low dose or environmentally relevant concentration was 

selected from the three lowest concentrations tested in the bioaccumulation 

experiment. No significant differences were found among them and, therefore, the 

lowest one was selected. Blaser et al. (2008) estimated that the Ag NP concentration in 

European rivers could be up to 320 ng/L. This value is higher than the values calculated 

by Gottschalk et al. (2009) in surface waters (up to 127 ng/L). Hendren et al. (2103) 
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reported similar values to the LD used in the present study, estimating that the Ag NP 

concentration present in the European rivers is around 89 ng/L.  

According to the results obtained, dietary exposure resulted in a silver transference 

from the brine shrimps exposed to the Ag NP suspension to zebrafish. Metal 

transference through the food chain has been also detected in zebrafish fed with D. 

magna exposed to Ag NPs, causing changes in the microbiome structure of the 

zebrafish gut (Merrifield et al., 2013). Also, with other metal containing NPs, as TiO2 

NPs, effective metal transference has been measured from crustaceans to zebrafish in 

a simplified food web (Zhu et al., 2010). In this later study, metal accumulation was 

significantly higher in zebrafish exposed through the diet than in zebrafish waterborne 

exposed to the same original exposure concentration of TiO2 NPs. In a previous study 

performed in our laboratory, waterborne exposure of zebrafish for 21 days to 10 µg 

Ag/L of maltose-coated Ag NPs of 20 nm resulted in an accumulation value of 0.88 µg 

Ag/g dw (Chapter II). In the present study, dietary exposure for 21 days through brine 

shrimps exposed to 100 µg Ag/L resulted in an accumulation of 1.39 µg Ag/g dw. 

Therefore, zebrafish can take up silver directly from the medium and through the food, 

being necessary to take into account both routes in order to assess the biological 

effects provoked by the exposure to Ag NPs in the environment.   

The autometallographical staining performed in intestine and liver tissues of zebrafish 

manifested an effective dose- and time-dependent accumulation of metal in the 

tissues. Autometallographical staining has been already employed to evidence the 

deposition of metals as appearance of BSDs, in the tissues of zebrafish after 

waterborne exposure to metals and metal bearing nanoparticles (Vicario-Parés et al., 

2014; Chapter II; Chapter IV). In the present work, higher VvBSD values were found for 

the intestine than for the liver in agreement with the exposure route used. Thus, the 

intestine seems to be the gate of entrance of the metal in zebrafish, as it was the site 

where the digestion of the contaminated brine shrimps took place. Many of the BSDs 

found in the intestine were located in the goblet cells, may be due to the strong 

affinity that glycoproteins and proteoglycans present in the mucous exhibit for metals 

and other xenobiotics (Pawert et al., 1998), and their excretion function into the gut 

lumen. This novel excretion pathway of nanomaterials through the intestinal goblet 
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cells has been proposed by Zhao et al. (2013) who injected zebrafish embryos with 30-

200 nm activated carbon NPs directly into the yolk sac reporting that NPs can be 

excreted directly through intestinal tract without involving the hepato-biliary system. 

In our study, despite the BSDs were detected in goblet cells, no significant differences 

were detected in the Vv of intestinal goblet cells among groups. In the intestine of 

zebrafish waterborne exposed to Ag NPs, BSDs were also mainly detected in the 

intestinal epithelium, although the most of them were seen in the microvilli of 

enterocytes, while after the waterborne exposure to ionic silver, BSDs were detected 

into the goblet cells (Chapter II). Despite the exposure was carried out through 

waterborne, Ferry et al. (2009) suggested that NPs can pass from the water to the food 

web, resulting in bioaccumulation in the gut content of different organisms. 

Accordingly, Osborne et al. (2015) reported histopathological injuries in the intestine 

of zebrafish waterborne exposed to citrate-coated Ag NPs of two sizes (20 and 110 nm) 

for 4 days. The intestine of fish exposed to the smaller Ag NPs presented an increase in 

the number of goblet cells in the epithelial layer, some reduction in microvilli and 

partial damage to the lamina propria. The intestine of zebrafish exposed to the larger 

Ag NP presented evidence of vacuolization and partial lamina propria damage with 

abundant microvilli (Osborne et al., 2015). Moreover, the same nominal concentration 

of ionic silver caused complete obliteration of the lamina propria, inflammatory 

infiltrates, epithelial vacuolization and loss of microvilli. After silver staining, they 

detected Ag NPs in the basolateral membrane of the intestinal mucosa, especially after 

the exposure to citrate-coated Ag NPs of 20 nm. The size of the Ag NPs used during the 

present study (5 nm) was smaller than the used during the waterborne exposure (20 

nm), as previously mentioned. The small NP size is related to a high solubility (Borm et 

al., 2006) and, therefore, their effect may be more similar to that provoked by the 

ionic form of the metal.  

The amount (VvBSDs) of metal within the liver was lower than in the intestine. Similar 

results were also found in the liver of zebrafish waterborne exposed to Ag NPs 

(Chapter II). The presence of metal in the liver is mediated by the blood vessel 

transport after absorption through the intestine (Hadrup and Lam, 2014). The liver is 

the main organ involved in the detoxification of xenobiotics (Feist et al., 2004) and it is 
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highly irrigated. Therefore, the transport through the blood vessels may be the main 

route for metals to access and to be accumulated in the liver. Yeo and Pak (2008) 

observed nanosilver accumulation in blood vessels after waterborne exposure 

zebrafish to Ag NPs.  

Lysosomes have been described as a target organelle of metals and metal NP exposure 

(Köhler et al., 2002; De Matteis et al., 2015). The characteristic acidic environment of 

lysosomes can provoke the NP dissolution and, in turn, the release of silver ions to the 

cell cytoplasm increasing the production of oxyradicals (Wei et al., 2015). Vicario-Parés 

(2016) observed a desestabilization of the lysosomal membrane after 3 and 21 days of 

waterborne exposure of zebrafish to 10 µg Cu/L of ionic copper and CuO NPs. Also, 

waterborne exposure of zebrafish to 10 µg Ag/L of ionic silver and Ag NPs caused the 

decrease of the time necessary to desestabilize the lysosomal membrane, although in 

a lesser extent than in the case of the exposure to CuO NPs (Chapter II). During the 

present study, although zebrafish fed for 3 days with brine shrimps exposed to the LD 

of Ag NPs did not accumulate silver significantly and few BSDs were detected in liver by 

autometallography, a significant decrease was measured in the stability of the 

lysosomal membrane, which can induce the formation of ROS when the NPs are 

exposed to the acidic environment of lysosomes (Chang et al., 2012). Thus, the dietary 

exposure of Ag NPs to zebrafish, even at environmentally relevant concentrations, and 

for a short-time provokes a toxic effect in the organisms. 

Along with the accumulation of metal detected by autometallography and the 

decrease in the stability of the lysosomal membrane reported, some histopathological 

alterations were detected in the liver. Feeding with brine shrimps exposed to both Ag 

NP concentrations provoked similar alterations at both times of exposure. Fat 

vacuolization in the liver of fish has been proved to be provoked by the exposure to 

toxic compounds (Wester and Canton, 1987; Köhler et al., 2002; McHugh et al., 2011). 

This histopathological condition is a symptom of metabolism disruption, which has 

been demonstrated to be produced after the waterborne exposure (0.01 mg/L) to Ag 

NPs for 21 day after the analysis of the liver transcriptome (Chapter III), although that 

disruption was not detected after the histopathological analysis of the liver (Chapter 

II). Necrosis was also detected in liver of zebrafish fed with brine shrimps exposed to 
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both concentrations, being in agreement with the results obtained by Devi et al. 

(2015), who detected extensive cell death, necrosis and degenerative changes in liver 

of adult zebrafish waterborne exposed to 0.1 mg/L of Ag NPs for 15 days. Similarly, in 

zebrafish exposed to higher concentrations (30 and 120 mg/L) for a shorter period of 

time (24 hours), histopathological lesions such as disruption of hepatic cells cords and 

apoptotic changes (chromatin condensation and pyknosis) have been reported (Choi et 

al., 2010). Devi et al. (2015) indicated the ability of Ag NPs to alter the biochemical 

functions associated with the liver which could provoke the toxic effect in the 

organism. Other authors have suggested that the exposure to Ag NPs provoke 

oxidative stress in liver of different fish, which may provoke the apparition of 

histopathological lesions in the liver (Chae et al., 2009; Choi et al., 2010; Wu and 

Zhour, 2013).   

CONCLUSSIONS 

The acute toxicity of the Ag NP suspension used in this study depends on the species, 

being zebrafish embryos much more sensitive than brine shrimp nauplii. 

Bioaccumulation of silver was detected in brine shrimps exposed to sublethal 

concentrations of Ag NPs, being effectively transferred through the diet to adult 

zebrafish. The silver transfer can cause toxic sublethal effects and act in detriment of 

the health of the fish as indicated by the significant reduction of the stability of the 

hepatocyte lysosomal membrane and the presence of histopathological alterations in 

the liver. Therefore, the potential risks to which predators in high levels of the food 

chain are exposed by the release of NPs into the natural environment is envisaged. 
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Among nanomaterials, nanoparticles (NPs) are defined as a material with at least two 

dimensions between 1 and 100 nm (Klaine et al., 2008). Engineered NPs are one type 

of manufactured NPs including metals, metal oxides and alloys, carbon based materials 

such as fullerenes, nanotubes and fibres, silicates, quantum dots (QDs) and polymer 

composites (Tiede et al., 2009). Engineered NPs present a variety of special physico-

chemical properties and chemical reactivity, which do them substantially different 

from their respective bulk materials of the same composition (Handy et al., 2008).  

The entrance of engineered NPs into the environment is increasing because their use 

in commercial products is growing, and their wastes are being spilled into the aquatic 

environment (Baker et al., 2014). Once in the aquatic systems, physico-chemical 

properties of NPs may be altered depending on the characteristics of the receiving 

media, such as pH or the ionic strength. NPs can undergo a variety of processes such as 

sorption, oxidation, dissolution, etc, which determine their fate in the abiotic 

environment and their interaction with biota (Fig 1). These processes are of relevance 

to both the abiotic and biotic environment, understanding how the interaction of 

metal bearing NP with the abiotic environment is, we will know how the interaction 

into the organism may be (Schirmer et al., 2013). 

Once into the aquatic environment, the interaction between NPs and aquatic 

organisms may cause a toxic effect, since these NPs can remain in the water column or 

in sediments, being uptaken by the organisms through different routes (Moore, 2006). 

This effect begins at the molecular level and is connected with the effect shown at the 

biochemical, subcellular, cellular, tissue, organ and individual levels (Lee et al., 2015).   

 
Figure 1.- Fates of nanoparticles in the aquatic environment. Modified from Lee et al. (2015). 
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In this PhD thesis, using zebrafish (Danio rerio) as animal model, different approaches 

were used with the aim of analyzing the toxic effect provoked by the exposure to 

metal and metal bearing NPs in this organism.  

The toxic effect of metal and metal bearing NPs in zebrafish can vary depending on 

intrinsic characteristics of the NPs. Moreover, the toxic effect provoked by the 

exposure to NPs may be different of the toxicity provoked by the ionic and bulk forms 

of the metal (Shaw and Handy, 2011). To establish a ranking of toxicity depending on 

the characteristics of the NPs, a set of NPs with different characteristics was assessed 

in Chapter I using the fish embryo toxicity (FET) test (OECD TG236, 2013). Zebrafish 

embryos were exposed to a range of concentrations of a set of metal and metal 

bearing NPs (Ag, Au, CdS, ZnO and SiO2) displaying different properties, such as 

different sizes, shapes and additives. Exposures to their ionic and bulk counterparts 

were run in parallel. Also, in case that the NP solution presented any additive, 

zebrafish embryos were exposed to the corresponding concentration of the additive 

matching with that present in dilutions of the NP solution tested. The test was carried 

out for 120 h and the survival rate, hatching rate and time, and the presence of 

malformations were evaluated. According to the results obtained in Chapter I, the 

ionic form was the most toxic, followed by the NP form and, finally, the bulk form of 

the metals. Among the different metal and metal bearing NPs assayed, Ag NPs resulted 

the most toxic ones in terms of LC50, expressed as mg/L, followed by ZnO NPs, CdS NPs, 

Au NPs and, finally, SiO2 NPs (Fig 2A). These results were in accordance with previous 

data found in the literature (George et al., 2011), where the toxic effect of NPs has 

been mainly related to the chemical composition and, thus, solubility of the metals. 

For soluble compounds, such as silver, cadmium and zinc, toxicity has been mainly 

attributed to the release of ions into the exposure medium (Misra et al., 2012; 

Schirmer et al., 2013; Ivask et al., 2013). Therefore, toxic metal ions released from the 

NPs can cause or contribute to the higher toxicity elicited by soluble NPs in comparison 

to more insoluble compounds, such as Au and SiO2. Moreover, the toxic effect of the 

NP assayed in zebrafish embryos was influenced by factors such as the size or shape. 

The smallest NPs were the most toxic ones, as observed in the case of the exposure to 

Ag NPs. Ag20-Mal presented a lower LC50 value than the other Ag NPs assayed, in 
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agreement with the previous results provided in the literature (Bar-Ilan et al., 2009; 

Powers et al., 2011; Kim et al., 2013). The presence of additives such as stabilizers can 

also vary the toxicity of the NP formulations. Sodium citrate or Ecodis P-90 present in 

the Au NP and ZnO NP formulations, respectively, were responsible for the toxicity 

found in zebrafish embryos. In the literature data has been reported that the presence 

of the chorion in embryos can also alter the interaction between the embryo and the 

NP suspension (Lee et al., 2007). Using fluorescent NPs we observed that the chorion 

acted as a barrier for the entrance of the SiO2 NPs in accordance with the results 

previously described in the literature (Fent et al., 2010). Nevertheless, the chorion 

does not always act as a barrier. In some cases, NPs can penetrate through the pores 

of the chorion provoking a toxic effect in the embryos (Lee et al., 2007). This could 

explain the mortality detected in the present study after the exposure to Ag NPs, 

which was observed before embryos hatched. In the present study, a ranking of 

toxicity for different NP solutions was established, although, further studies would be 

necessary to understand the mechanisms of action of each specific NP and the 

influence of each intrinsic factor.  

According to the ranking based on results obtained in Chapter I, Ag NPs resulted the 

most toxic NPs to the zebrafish embryos in terms of LC50 values, followed by ZnO NPs, 

CdS NPs, Au NPs and, finally, SiO2 NPs (Fig 2A). In this work, as in the majority of the 

studies described in the literature, the NP concentrations are given in milligrams of 

metal per liter. The main reasons for the choice of this concentration units are: 1) it is 

the most usual expression of chemicals concentration in ecotoxicology; 2) it is the form 

that best matches with results of chemical analyses to assess bioaccumulation; and 3) 

it is the most usual expression used for regulatory purposes. Nevertheless, the metrics 

that should be used to express NP concentration, especially for comparison purposes, 

is an open debate (Shang and Gao, 2014). When metal concentration is expressed in 

molar concentration, the number of metal atoms per unit is comparable among 

different compounds. Some publications have already used this concentration 

expression, mainly for in vitro studies (Coradeghini et al., 2013; Tang et al., 2013a), but 

also using zebrafish embryos as test model (Lee et al., 2007; Browning et al., 2013). If 

we convert the LC50 values expressed as mg/L obtained in Chapter I to molar 

concentrations of metals, the ranking of toxicity changed slightly, although Ag NPs 
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were still the most toxic NPs followed by CdS NPs, ZnO NPs, Au NPs and, finally, SiO2 

NPs (Fig 2B).   

 

Figure 2.- LC50 values in (A) mg metal/L and in (B) µM obtained in the FET tests for the different NPs, for 
their ionic and bulk counterparts, and for the additives present in the NP solutions. LC50 values were 
calculated using Probit model (p<0.05). The different metals are represented from the most toxic to the 
least toxic. 

Based on the toxicity rankings established in Chapter I, in the following chapters we 

analyzed the toxic effect of metal and metal bearing NPs in adult zebrafish, in 

comparison with the toxicity of the same nominal concentration of the ionic form of 

the metal. For this purpose, Ag NPs and CdS NPs were selected to analyze the effects 
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provoked after the waterborne exposure for 21 days. After the exposure period, 

zebrafish were maintained in clean water up to 6 months to evaluate the potential 

long-term effects or the recovery after the cease of the exposure. Ag NPs were 

selected since they clearly resulted the most toxic NPs to the zebrafish embryos. CdS 

NPs were selected because they were the second most toxic NPs to embryos when 

molar concentrations were used and, interestingly, despite the LC50 value estimated 

for CdS NPs was higher than the LC50 value for ionic cadmium, according to the results 

obtained in the FET test, CdS NPs provoked a significant effect on embryo survival at 

lower concentration than ionic cadmium. Moreover, cadmium is classified among the 

most toxic metals and is found among the priority substances (EPA, 2016) besides from 

being a carcinogenic compound (IARC, 1993). Several studies have been performed to 

study the toxicity of the waterborne exposure to ionic cadmium in adult zebrafish 

(Cambier et al., 2010; Banni et al., 2011; Vergauwen et al., 2013a; 2013b), but no 

studies have addressed the toxicity of Cd containing NP in zebrafish through 

waterborne exposure. Only two studies have reported toxicity to zebrafish after 

dietary exposure to Cd-containing NPs (Lewinski et al., 2011; Ladhar et al., 2013).  

Thus, in Chapters II and III the toxic effect provoked by 21 days of waterborne 

exposure to Ag NPs or to ionic silver in adult zebrafish was analyzed. Remaining 

zebrafish previously exposed were maintained up to 6 months in clean water. In 

Chapter II a set of different biomarkers covering the main mechanisms of toxicity 

described for NPs were determined to assess the toxicity of Ag NPs of 20 nm, which 

resulted the most toxic size according to results reported in the previous chapter, and 

ionic silver in the adult zebrafish. In Chapter III, the whole hepatic transcriptome of 

male adult zebrafish exposed for 21 days to both forms of silver was analyzed. 

In Chapters IV and V, we followed the same experimental approach to evaluate the 

toxicity of CdS NPs and ionic cadmium in adult zebrafish. 

Despite adult zebrafish were exposed to the same nominal concentration of each 

metal in both studies, metal accumulation detected in fish exposed for 21 days to both 

forms of cadmium was much higher than in those exposed to both forms of silver, 

especially after the exposure to ionic cadmium. The high value of accumulated 
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cadmium in the organisms could explain the high mortality observed in the individuals 

from the fourth day up to the day 21 of exposure. The exposure to CdS NPs or to ionic 

cadmium provoked mortality to 72% and 78% of the zebrafish, respectively, after 21 

days. This mortality level was much higher than the mortality registered in previous 

studies in similar exposure conditions (Cambier et al., 2010; Vergauwen et al., 2013a). 

Calcium concentration in the exposure medium has been described as an important 

factor to reduce the cadmium toxicity in organisms, since calcium ions compete with 

cadmium ions for binding sites (Meinelt et al., 2001; Pellet et al., 2009). Thus, calcium 

concentration in the exposure media, which was lower in our study, could easily 

explain the different mortality level described. 

Metal accumulation was specifically detected in liver and intestine using 

autometallography, a technique successfully used in fish exposed to different soluble 

and nanoparticulated metals (Alvarado et al., 2005; 2006; Vicario-Parés et al., 2014). In 

individuals exposed to Ag NPs, the presence of black silver deposits (BSDs) was found 

in the intestinal epithelium, with especially intense staining in the cytoplasm of 

enterocytes and in the microvilli. After the exposure to ionic silver, discrete BSDs were 

detected into the secretory vesicles of the goblet cells of the intestine. Osborne et al. 

(2015) also reported differences in the localization of silver in the intestine depending 

on the silver form. Ag NPs of 20 nm were detected in the basolateral membrane of the 

intestinal mucosa, which was attributed to the small size of the NPs as they could be 

more rapidly taken up by endocytosis in the epithelial layer, increasing the silver 

deposition in the basolateral membrane of intestinal epithelium. Larger Ag NPs (110 

nm) were detected in the apical membrane (Osborne et al., 2015). Thus, the 

localization described by these authors for the Ag NPs o 110 nm matches better with 

our observations than the results described for the Ag NPs of 20 nm, besides the 

reported size of the primary particles of the Ag NPs used in Chapter II was 20 nm. This 

disagreement can be explained considering the characterization data of the Ag NPs 

used in our study (Chapter I) which reflected the tendency of the NPs to form 

aggregates. Thus, the fate of these aggregates may be similar to the fate of the largest 

Ag NPs used by Osborne et al. (2015). Previous studies have also demonstrated that, 

along with the gills, the intestine is one of the main entrances of metals in the 
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organism (Gaiser et al., 2012; Schirmer et al., 2013), being specifically reported as a 

target organ for accumulation after waterborne exposure to cadmium (Souid et al., 

2013). From the intestine, metals are distributed to other organs (Gaiser et al., 2012).  

After the entrance of metals in organs such as gills and intestine, they are transferred 

to the liver, which is well known as a key organ involved in storage and detoxification 

of metals (Handy, 1993). The presence of BSDs in the liver of zebrafish exposed to 

silver was higher in individuals exposed to the ionic form than in those exposed to the 

NP form, indicating a higher transference of metal from the intestine. In the case of 

the exposure to both NPs, the higher amount of BSDs in the intestine revealed a higher 

accumulation of metal in the intestine than in the liver. By transmission electron 

microscopy (TEM), aggregates of CdS NPs and Ag NPs were detected in different 

compartments of the hepatocytes. Aggregates of CdS NPs were detected attached to 

the nuclear envelope and in vesicles, while aggregates of Ag NPs were observed in the 

nucleus and mitochondria of the hepatocytes. Previous studies have reported 

differences in the target organelles after the exposure to metal and metal bearing NPs. 

Ag NPs have been previously detected into the nucleus and mitochondria after in vitro 

exposure of human cells (Asharani et al., 2009), in vivo exposure of adult zebrafish 

(Choi et al., 2010) or in vivo exposure of zebrafish embryos (Asharani et al., 2008), 

suggesting their direct involvement in the mitochondrial toxicity and DNA damage 

(Asharani et al., 2009). 

Oxidative stress has been suggested as one of the main mechanisms of toxicity of 

metal and metal bearing NPs, being proteins main target biomolecules of oxidative 

damage (McShan et al., 2014; Wei et al., 2015). The level of carbonylated actin, used 

as target protein, and the level of free ubiquitin measured by western blotting did not 

evidence oxidative damage in zebrafish exposed to both forms of silver compared with 

the control group. The exposure to CdS NPs for 21 days produced a slight decrease and 

increase in the intensity of the immunoreactive bands corresponding to free ubiquitin 

and carbonylated actin, respectively, while after the exposure to ionic cadmium these 

differences were statistically significant. Previous studies have detected oxidative 

stress in fish exposed to higher concentrations of Ag NPs than those used in this work 

(Choi et al., 2010; Lee et al., 2012; Wu and Zhou, 2013). Nevertheless, the exposure to 
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cadmium at the same nominal concentration than the used during the exposure to 

silver was enough to provoke oxidative stress in the liver of zebrafish. Cadmium has 

been previously reported to play an important role in the oxidative stress detected in 

organisms (Liu et al., 2009).  

Clastogenic effects were not detected according to the analysis of micronuclei (MN) 

frequency in erythrocytes after the exposure to Ag NPs or ionic silver. The exposure to 

both cadmium forms neither provoked clastogenic effects in erythrocytes, despite 

cadmium has been previously considered as a genotoxic substance (Dabas et al., 2012). 

At similar experimental conditions, Cambier et al. (2010) neither detected genotoxic 

effects in adult zebrafish exposed to environmentally relevant concentrations (9.6 

µg/L) using the MN test. These results suggest that the MN test is not a sensitive 

method to be used at low concentrations of metals. Other methods such as random 

amplified polymorphic DNA, which has been previously successful used to measure the 

genotoxic effect provoked after the exposure to metals (Cambier et al., 2010), could be 

used to replace the MN test at low and environmentally relevant concentrations of 

metals. 

The endolysosomal system of the cells has been described as a target of exposure to 

metals, both in soluble and NP form (Alvarado et al., 2005; Broeg et al., 2005; Schultz 

et al., 2015). Metals are known to induce alterations in the lysosomal structure and 

membrane desestabilization (Broeg et al., 2005). The presence of CdS NPs in 

hepatocytes could be linked with the desestabilization of the lysosomal membrane 

observed from the first time measured. In fish exposed to Ag NPs only a slight decrease 

in the time necessary to desestabilize the lysosomal membrane was detected. 

Differences in the effect provoked by both NPs could be partially due to the 

differences in their size, the smaller size of CdS NPs could facilitate their uptake and 

transfer to the liver resulting in the early desestabilization of the lysosomal membrane. 

Despite metal bioaccumulation was observed, histopathological alterations were not 

recorded in the liver of zebrafish exposed to both, Ag NPs and ionic silver, for 21 days. 

On the contrary, the accumulation of cadmium in the liver provoked an increase in the 

prevalence of histopathological alterations, being the prevalence of hepatic 
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vacuolization significantly increased after the exposure to both forms of cadmium for 

21 days. Other pathology found after exposure to CdS NPs was hepatic megalocytosis, 

which has been associated to DNA damage (Spitsbergen and Kent, 2003). Eosinophilic 

foci, which have been potentially related to a pre-neoplastic condition (Costa et al., 

2013), appeared at the end of the post-exposure period after the exposure to ionic 

cadmium. 

In gills, several pathological conditions such as aneurism and inflammation of the 

secondary lamellae, and hyperplasia in cells of the primary lamellae were detected 

since this organ is one of the main entrances of metals after the waterborne exposure 

to NPs (Ma and Lin, 2013). In a previous study where zebrafish were exposed for 4 

days to a higher concentration (1 mg/L) of Ag NPs of a similar size (20 nm), similar 

pathologies were detected in the gills (Osborne et al., 2015). They proposed that the 

tissue injury along with the mucus hypersecretion produced by the exposure to silver 

could accentuate the adherence of smaller particles to secondary filaments provoking 

the increase of diverse histopathologies. Exposure to CdS NPs also caused diverse 

pathologies whose prevalence was increased after the exposure to ionic cadmium for 

21 days. Cadmium damage to gill could, in turn, result in reduced oxygen consumption 

and disruption of the osmoregulatory function of aquatic organisms (Liu et al., 2011). 

This could also contribute to the increased mortality detected in fish exposed to 

cadmium. These pathologies were also detected after the 6 months recovery period in 

clean water, indicating that the toxic effect of cadmium may be sustained after the 

cease of the exposure.   

As mentioned above, in Chapters III and V the whole hepatic transcriptome was 

analyzed after the waterborne exposure for 3 and 21 days to both forms of silver and 

cadmium. Up to date, most of the studies have focused on the analysis of the effect 

provoked by waterborne exposure of Ag NPs in some selected genes involved mainly in 

DNA damage, oxidative stress or apoptosis (Yeo and Pak, 2008; Choi et al., 2010; Katuli 

et al., 2014). In addition, the gill transcriptome of zebrafish exposed to Ag NPs has 

been also analyzed in several works (Griffitt et al., 2009; 2013). Some studies have 

been performed to analyze the whole hepatic transcriptome of several fish species 

exposed to ionic cadmium (Reynders et al., 2006; Sheader et al., 2006; Auslander et al., 
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2008; Mehinto et al., 2014), but to the best of our knowledge, no information was 

available regarding the effect of Ag NPs and CdS NPs on the zebrafish liver 

transcriptome. 

According to the results obtained in Chapter III, the exposure to all silver treatments 

altered the transcription profile of genes involved in metabolic processes, especially 

after the exposure to ionic silver for 3 days and to Ag NPs for 21 days. This effect was 

also detected by the functional analysis performed, which evidenced a significant 

regulation of the “glycolysis/gluconeogenesis” pathway. Moreover, the “pyruvate 

metabolism” was significantly altered after the exposure to ionic silver for 3 days and 

the KEGG pathway “steroid biosynthesis” was significantly altered after the exposure 

to Ag NPs for 3 days. Other KEGG pathways detected after the exposure to Ag NPs and 

ionic silver at 3 days and Ag NPs at 21 days were involved in DNA damage (“purine 

metabolism” and “pyrimidine metabolism”). In agreement, previous studies have 

reported toxic effects due to the exposure to Ag NPs with the alteration of the 

transcription of genes involved in DNA damage (Yeo and Pak, 2008; Choi et al., 2010; 

Katuli et al., 2014; Massarsky et al., 2014). Some works have attributed the toxicity of 

Ag NPs to the release of ions (Luoma and Rainbow, 2008; Bilberg et al., 2012; McShan 

et al., 2014; De Matteis et al., 2015). Nevertheless, other factors related to their 

nanosize may be also partially involved in their toxicity (Chae et al., 2009; Griffitt et al., 

2009; Scown et al., 2010; Gagné et al., 2012). According to our results, alteration of 

reproductive processes or of the immune system were exclusively detected after the 

exposure to Ag NPs, indicating that the toxicity provoked by Ag NPs might not be 

related exclusively to the dissolution of ions, but also to the NP form. 

Nevertheless, results obtained in Chapter V, where the effect of cadmium was 

analyzed, differed from those obtained as results of the exposure to Ag NPs or to ionic 

silver. CdS NPs and ionic cadmium also altered the hepatic transcriptome of zebrafish, 

although this alteration was especially detected after 21 days of exposure. Several 

works have addressed the effect provoked by cadmium containing NPs and ionic 

cadmium in the transcription of different genes. Up-regulation of genes involved in 

mitochondrial metabolism, DNA repair, apoptosis, antioxidant defenses or 

detoxification mechanisms was reported (Gonzalez et al., 2006; Sheader et al., 2006; 
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Auslander et al., 2008; Ladhar et al., 2013; Tang et al., 2013b; Vergauwen et al., 2013a; 

Arini et al., 2015). The Bast2GO analysis performed with the transcripts significantly 

regulated after exposure to CdS NPs or to ionic cadmium showed that at 21 days 

similar GO terms were enriched for both treatments. According to the Fisher exact 

test, some terms were over-represented in fish exposed to ionic cadmium in 

comparison to animals exposed to CdS NPs. Among them, diverse GO terms involved in 

immune system processes or mitochondrial calcium ion homeostasis were 

differentially enriched. The functional analysis performed showed different KEGG 

pathways significantly altered after the exposure to both forms of cadmium. While the 

exposure for 21 days to CdS NPs affected significantly pathways such as “natural killer 

cell mediated cytotoxicity”, “retinol metabolism”, “D-Arginine and D-ornithine 

metabolism” or “adherens junction”, the exposure to ionic cadmium significantly 

altered several pathways related to DNA damage and repair (“purine metabolism”, 

“pyrimidine metabolism”, “mistmach repair”, “nucleotide excision repair”), energetic 

metabolism (“glycolysis/gluconeogenesis”, “pentose phosphate pathway”, 

“biosynthesis of unsaturated fatty acids”, “citrate cycle (TCA cycle)”) or amino acids 

metabolism (“glycine, serine and threonine metabolism”, “alanine, aspartate and 

glutamate metabolism”). The exposure to cadmium may provoke disturbs of 

physiological cellular functions, gene transcription and regulation, resulting in cell 

death or stress-induced adaptation (Thévenod, 2009). 

As previously mentioned, the functional analysis evidenced that exposure to both 

metals, silver and cadmium, provoked a significant alteration of the energetic 

metabolism. Metals are known to provoke the alteration of metabolic processes in fish 

such as Oreochromis niloticus, Perca flavescens or Danio rerio (Öner et al., 2009; Scown 

et al., 2010; Bougas et al., 2013). For instance, in caged yellow perch chronically 

exposed to diverse metals over-transcription of genes involved in energy metabolism, 

the gluconeogenesis pathway and β-oxidation was detected, suggesting an increase in 

energy metabolism induced by stress (Bougas et al., 2016). In Chapter IV, the 

alteration of the metabolism was also detected during the histopathological analysis 

which showed a significant increase of vacuolization in the liver of fish exposed to both 

forms of cadmium.  
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Differences in the effects provoked by the exposure to both metals can be also 

observed in results of the COA analysis performed considering all data together (Fig 3). 

Unlike silver exposure, which produced similar toxicity at 3 and 21 days of exposure, 

the exposure to cadmium exerted a stronger effect after 21 days than after 3 days of 

exposure. Despite the COA analysis performed in Chapter III separated the groups 

exposed to different silver treatments, especially the group corresponding to Ag NPs 

for 21 days, when the results obtained in Chapter V were included, all silver 

treatments were clustered together. Nevertheless, Fig 3 shows that groups exposed to 

cadmium remained separated depending on the exposure time, which was previously 

detected in Chapter V when these data were analyzed separately. Therefore, taking 

into account all the results obtained after the analysis of the whole hepatic 

transcriptome of zebrafish exposed to both metals, we may conclude that the effects 

exerted by the exposure to cadmium over the transcriptome were stronger than the 

effects provoked by silver at the same experimental conditions. 

 
Figure 3.- Correspondence analysis (COA) axes showing the distribution of each treatment (dots) 
according to their transcription profile. The COA clearly separated treatments according to the metal 
type. All silver treatments grouped together, while in the case of the cadmium exposure, treatments 
were separated depending on the exposure time. 

Despite the waterborne exposure is an important route of entrance of NPs into the 

aquatic organisms, other routes must be taken into account (Maurer-Jones et al., 

2013). The diet is also an important entrance of NPs into the organisms, since animals 
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can feed suspended matter or other organisms previously exposed to NPs (Schrimer et 

al., 2013). For this reason, in Chapter VI brine shrimps (Artemia sp) larvae were 

exposed to two different concentrations of Ag NPs and, subsequently, used to feed 

adult zebrafish for 21 days. Before performing the dietary transfer experiment, the 

acute toxicity of these silver NPs was tested in zebrafish embryos and brine shrimp 

larvae. Ag NPs used in this chapter were smaller (5 nm) than those used in previous 

chapters and coated with a mixture of poly N-vynil-2-pirrolidone and polyethylenimine 

(PVP-PEI). Following the same approach as in Chapter I, zebrafish embryos were 

exposed to a range of concentrations of PVP/PEI-coated Ag NPs. The LC50 value for the 

Ag NP suspension (0.057 mg Ag/L) was similar to that reported in Chapter I for ionic 

silver (0.047 mg Ag/L) and much lower than for maltose-coated Ag NPs of larger size 

(0.529-3.94 mg Ag/L). Results obtained in this chapter were in agreement with the 

results obtained in Chapter I regarding size-dependence toxicity, being the smallest 

NPs the most toxic ones. The acute toxicity of Ag NPs was also analyzed in brine shrimp 

larvae, and the odd ratios were calculated to determine the increase in the risk of 

mortality for zebrafish embryos respect to the brine shrimps larvae. Zebrafish embryos 

were significantly more sensitive to the Ag NP exposure than the brine shrimp larvae. 

Brine shrimps were daily exposed to an environmentally relevant concentration (100 

ng/L) and a likely effective concentration (100 µg/L) of PVP/PEI-coated Ag NPs and 

used to feed adult zebrafish for 21 days, in order to analyze the trophic transfer of 

silver and the effects provoked by the dietary exposure. Silver accumulation in brine 

shrimps was analyzed during the dietary exposure and significant higher silver content 

was measured in brine shrimp larvae exposed to the high dose than in the control and 

in larvae exposed to the low dose. Metal transfer from brine shrimp larvae to adult 

zebrafish was corroborated by autometallography in the liver and intestine of zebrafish 

fed with brine shrimps exposed to Ag NPs, being the presence of BSDs especially 

detected in the intestine. The distribution of BSDs in the intestine followed a similar 

pattern to that described in Chapter IV after waterborne exposure to CdS NPs. This 

could be related with the fact that the size of the Ag NPs used for the dietary exposure 

(5 nm) was similar to the size of the CdS NPs (3.5-4 nm) used in Chapter IV for 

waterborne exposure, indicating than the distribution of NPs in the intestine may be 
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mainly driven by their size, which has been also suggested by Osborne et al. (2015) 

after the exposure of adult zebrafish for 4 days to Ag NPs of different sizes. We 

detected a significant increase in the presence of BSDs in the liver of zebrafish fed for 

21 days with brine shrimps exposed to the high dose (0.1 mg/L), with a homogeneous 

BSD distribution. The metal transferred from brine shrimps to adult zebrafish was 

distributed to the liver leading to its accumulation into the lysosomes, as 

demonstrated by the presence of BSDs (Amaral et al., 2002), which in turn provoked 

the significant reduction in the time necessary to desestabilize the lysosomal 

membrane detected even at the environmentally relevant silver concentration used 

during the experimental process. Moreover, the dietary exposure provoked 

histopathological alteration in liver of zebrafish as vacuolization and necrosis, which 

were observed by the third day even at the lowest concentration. Previous studies had 

demonstrated the toxic effect in the liver at histopathological level after waterborne 

exposure to NPs (Choi et al., 2010; Devi et al., 2015). Now we have reported a toxic 

effect through dietary exposure even at environmentally relevant concentration, 

therefore, the diverse routes of entrance of NPs into the organisms must be taken into 

account to have an overall picture of the effect provoked by the NP exposure. 

This PhD Thesis attempted to fill some gaps in our limited understanding on the effects 

elicited by exposure to metal and metal bearing NPs in zebrafish. Data presented 

herein suggest that the toxicity of metals depends mainly on the metal form to which 

the organism is exposed, being especially marked after the exposure to the ionic form 

of the metals. Toxicity of metal and meta-bearing NPs seems to depend on the 

chemical composition of the NPs and on their physicochemical characteristics such as 

size and the additives present in the NP suspension, but other factors such as the 

exposure time or the route of entrance in the organisms may have an important role in 

their toxicity. Thus, waterborne exposure to different NPs mainly affected the gills, 

which presented several histopathological alterations, along with the liver which 

presented in general a reduction of the stability of the lysosomal membrane, oxidative 

stress and a significant regulation of transcripts involved in DNA damage and repair 

and in the energetic metabolism, especially after the exposure to both forms of 

cadmium. Dietary exposure also led to a significant reduction of the stability of the 
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lysosomal membrane and to histopathological lesions in the liver by the third day of 

feeding with brine shrimps exposed to an environmentally relevant concentration, 

which also provoked an increase of BSDs in the intestine. In summary, differences in 

the characteristics of the metal and metal-bearing NPs, as well as different routes of 

exposure are determinant to assess the environmental risk of these new materials. For 

future studies, the interaction of nanomaterials with different emergent and legacy 

pollutants already present in the aquatic environment should also be taking into 

account (Wiesner et al., 2009; Rocha et al., 2015).  
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CONCLUSIONS 

I. A ranking of toxicity for different metal bearing NPs has been established, 

being Ag NPs the most toxic of the tested NPs, followed by CdS and ZnO 

NPs, and finally by Au and SiO2 NPs. The toxic effects of NPs to zebrafish 

embryos depended on their chemical composition (and, thus, solubility) 

and size, being the former the most relevant characteristic involved in the 

toxic effect according to our results. Accordingly, the soluble forms of the 

metals were more toxic than the nanoparticulated form, being the bulk 

form the least toxic. Additives present in the NP suspensions, such as 

sodium citrate and Ecodis P-90, are also an important factor contributing to 

the toxicity. 

II. The interaction between the chorion and the NPs must be taking into 

account when the effect of the exposure to different NPs is studied, 

especially when data obtained at different exposure times are compared, 

since the chorion acts as a protector barrier against the entrance of SiO2 

NPs into the organism during the first developmental stages. 

III. Silver accumulation was observed in zebrafish exposed to Ag NPs of 20 nm 

and to ionic silver, being the gills, liver and the intestine target organs for 

accumulation. The histopathological alterations observed in gills indicate 

that this organ is one of the main entrances of NPs into the organism. The 

intestine, where silver has been detected, has also to be considered as an 

important route of uptake, as NPs can easily attach to food particles. 

IV. No evident effects on hepatic lysosomes, oxidative stress or genotoxicity 

were found in zebrafish exposed to Ag NPs of 20 nm. Therefore, at the 

assayed concentration, close to environmentally relevant concentrations, 

Ag NP exposure may produce slight toxic effects in aquatic organisms.  

V. The analysis of the whole hepatic transcriptome showed that exposure to 

Ag NPs of 20 nm or to ionic silver provoked similar effects but at different 

exposure times. Exposure to ionic silver for 3 days provoke significant 

alteration of transcripts mainly involved in the energetic metabolism, while 

such pathways were significantly altered after 21 days of exposure to Ag 
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NPs. Moreover, the Ag NP exposure provoked strong effects in the immune 

system and in reproductive processes, indicating that the Ag NP effects at 

transcriptomic level is not solely due to the release of ions but also to the 

NP form.  

VI. The waterborne exposure of adult zebrafish to CdS NPs and to ionic 

cadmium produced a significant cadmium accumulation in the whole 

organism, being the gills and the intestine the main entrances of NPs in the 

organism. Differences in the results obtained after the exposure to both 

forms of cadmium were reflected in the lysosomal membrane stability test 

and in the oxidative damage to proteins, indicating that the toxicity of 

cadmium may vary depending on the form of the exposure compound.  

VII. The exposure to CdS NPs and to ionic cadmium provoked alteration of the 

zebrafish liver transcriptome. The effect greatly increased with exposure 

time and was more pronounced after the exposure to ionic cadmium than 

after exposure to CdS NPs. The functional analysis showed a significant 

effect in the immune response and oxidative stress after the exposure to 

CdS NPs for 21 days, while the exposure to ionic cadmium affected 

significantly those pathways involved in DNA damage and repair and in the 

energetic metabolism. Therefore, the analysis of the liver transcriptome 

under our experimental conditions reveals a different effect in zebrafish 

depending on the cadmium form. 

VIII. The acute toxicity of PVP/PEI coated Ag NPs of 5 nm varies depending on 

the species, being zebrafish embryos much more sensitive than brine 

shrimp nauplii. Silver accumulated in brine shrimps exposed to sublethal 

concentrations of Ag NPs was effectively transferred through the diet to 

adult zebrafish. The silver transfer caused toxic sublethal effects and acted 

in detriment of the health of the fish as indicated by the significant 

reduction of the stability of the hepatocyte lysosomal membrane and the 

presence of histopathological alterations in the liver. Therefore, the 

potential risks to which predators in high levels of the food chain are 

exposed by the release of NPs into the natural environment is envisaged. 
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THESIS 

The toxicity of metal and metal bearing nanoparticles to zebrafish 

embryos vary depending on the characteristics of the nanoparticles, such 

as chemical composition and size, and is strongly affected by the presence 

of additives in the nanoparticle suspension. Moreover, the nanoparticles 

toxicity differs from the toxicity provoked by the ionic or bulk counterpart 

of the metal. The exposure of adult zebrafish to metal and metal bearing 

nanoparticles and to the ionic form of the metal leads to bioaccumulation 

and to several effects related to oxidative stress, lysosomal membrane 

stability or tissue damage. The whole hepatic transcriptome of adult 

zebrafish shows specific responses to the exposure to different 

nanoparticle types (Ag versus CdS) and metal forms (nanoparticle versus 

ionic), but common responses, such as alteration of the energy 

metabolism, are also envisaged. 
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ABBREVIATIONS 

AP, Ammonia persulfate 

BSA, Bovine serum albumin 

BSDs, Black silver deposits 

DDSA, Dodecenylsuccinic anhydride 

DMSO, Dimethyl sulfoxide 

DNP, 2-4-dinitrophenyl hydrazine 

dpf, Days post fertilization  

DTT, Dithiothreitol  

EC50, Effective concentration to the 50% of the population 

EDTA, Ethylenediaminetetraacetic acid 

FET, Fish embryo toxicity  

H/E, Hematoxylin/Eosin 

hpf, Hours post fertilization 

hph, Hours post hatch 

LC50, Lethal concentration to the 50% of the population 

LMS, Lysosomal membrane stability 

LP, Labilization period 

MNA, Methylnorbornene 2,3-dicarboxylic acid anhydride 

PAA, Polyacrylamide 

PBS, Phosphate buffered saline 

PVDF, Polyvinylidene fluoride 

qPCR, Quantitative real time polymerase chain reaction  

RIN, RNA integrity number 

RT, Room temperature 

SDS, Sodium dodecyl sulfate 

TEM, Transmission electron microscopy 

TEMED, Tetramethylethylenediamine 

Vv, Volume density 
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Protocols of experimental procedures 
1. Animal culture 

1.1 Zebrafish (Danio rerio) 
 Maintenance  
 Reproduction and growth  

1.2 Brine shrimp (Artemia sp.) 
 Culture set up  
 Performance counting 

2. Acute toxicity test 
 2.1 Fish embryo toxicity (FET) test 
 2.2 Brine shrimp immobilization test 
 2.3 Statistics 
3. Experimental exposure 
 3.1 Water-borne exposure of zebrafish 
 3.2 Water-borne exposure of brine shrimp 
 3.3 Dietary exposure of zebrafish 
 3.4 Sample collection 
4. Chemical analysis of silver content 
 4.1 Zebrafish 

 Protocol 1 
 Protocol 2 

 4.2 Brine shrimps 
5. Genotoxicity assessment: micronuclei frequency 
6. Molecular biology techniques 
 6.1 Microarray analysis 
 6.2 qPCR 
 6.3 Western blot analysis 

 Ubiquitination 
 Carbonylation 

7. Lysosomal membrane stability 
8. Histological procedures 
 8.1 Histological preparations 
 8.2 Hematoxylin/Eosin (H/E) staining and histopathology 

8.3 Autometallographical staining and quantification of black silver deposits   
 Protocol 1 
 Protocol 2 

8.4 Alcian blue staining and quantification of volume density of globet cells 
9. Electron microscopy 
 9.1 Transmission electron microscopy (TEM) and X-ray microanalysis 
 9.2 Field emission scanning electron microscopy (FESEM)   
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1. Animal culture 

1.1 Zebrafish (Danio rerio) 

 Maintenance 

- Keep zebrafish in a temperature-controlled room at 28 ºC with a 14-hour light/10-

hour dark cycle in a fish density of 1 fish each 2 L in tanks provided with mechanic and 

biological filters (Figure 1); 

- Maintain water in continuous movement through an air triggered siphon or 

continuous water flow to provide an appropriate aeration to the tank; 

 
Figure 1- Tanks used to maintain the zebrafish stock 

- Condition the water by passage through a deionization system and, then, buffer to pH 

7.2 with Sera pH plus (Sera, Heinsberg, Germany) and to 600 µs Ω with commercial 

marine salt (Sera marin Salt); 

- Feed fish twice per day with Sera Vipagran baby and/or brine shrimp larvae (INVE 

Aquaculture, Salt Lake City, Utah, USA) hatched in the laboratory; 

- Measure physico-chemical parameters (nitrate, nitrite and ammonium 

concentrations) once per week using Sera ammonium, nitrite and nitrates kits and 

change the water totally or partially if the values are higher than zero mg/L for 

ammonium or nitrite, and 50 mg/L in the case of nitrate. 

 Reproduction and growth 

- Clean 2 L tanks and breeding tramps with water and disinfect them with H2O2 diluted 

in osmotic water (600 µL H2O2 in 1 L), dry completely before use; 
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- Select breeding fish and place females in small separate baskets hanging from the 

upper part of the tank in order to avoid continuous spawning; 

- Place, the day before embryos are required, one female and one or two male 

zebrafish in breeding tramps previously located in a 2 L tank containing conditioned 

water (Figure 2); 

- Leave the fish overnight and collect the resulting embryos the next morning; 

 
Figure 2- Breeding tramps placed in 2 L tanks with one or two males and one female zebrafish per 

tramp. 

- Collect the embryos with a plastic Pasteur pipette or with a siphon and a 400 µm 

mesh and place them in Petri dishes with 600 µS Ω water; 

- Maintain embryos for 120 h in Petri dishes and clean them daily removing dead 

embryos and replacing water; 

- Place 50-60 embryos in a small tank with an open water system to grow up them for 

3 months (Figure 3); 

- Feed newly born zebrafish twice per day in accordance with their food requirements: 

from 6 to 14 days post fertilization (dpf) only with Micron (Sera), from 14 to 30 dpf 

with Micron and brine shrimp larvae, from 30 to 60 dpf with Vipan baby (Sera) and 

brine shrimp larvae, and from 60 dpf with Vipagran baby and brine shrimp larvae; 
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Figure 3- Nursery with tanks used to grow up zebrafish. 

- Transfer zebrafish to larger tanks, in the same conditions and maintain them as 

previously described. 

1.2 Brine shrimps (Artemia sp.) 

 Culture set up  

- Weight 35 g of commercial marine salt (Sera) and add them to a reactor made from 

1.5 L plastic bottles (Figure 4) containing 1 L of deionized water; 

- Weight 2 g of brine shrimp cysts (INVE Aquaculture) and add them to the artificial salt 

water;  

 
Figure 4- Reactors made from 1.5 L plastic bottles with the brine shrimp culture and continuous 
aeration. 

- Maintain brine shrimp cultures for 48 h with continuous aeration in a room with 

illumination and controlled temperature (28 ºC); 

- Stop the aeration and allow non-hatched cysts to settle down for some minutes;  
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- Discard the first few mL of the bottom of the culture, corresponding to the non-

hatched cysts, and collect brine shrimp nauplii at Instar I stage (24 h post hatch – hph) 

with the aid of a mesh of 150 μm. Discard the last few mL of the top of the culture, 

corresponding to empty cysts. 

 Performance counting  

- Set 10 cultures as described previously and, calculate the performance in 5 replicates 

for each culture; 

- Estimate the number of hatched brine shrimps per liter as the mean value obtained in 

the last dilution step x 10000 as shown in Figure 5. 

 
Figure 5- Steps of dilution from the culture to the 1 mL over which the count of hatched nauplii takes 

place (based on Treece, 2000). 

2. Acute toxicity test 

 2.1 Fish embryo toxicity test (FET) 

- FET experiments are performed according to the current standard guidelines (OECD 

TG236, 2013; ISO 15088, 2007); 

- Place eggs in Petri dishes with 400 µS Ω water; 

- Conduct the selection of the fertilized eggs under a stereoscopic microscope; 

- Transfer fertilized eggs to Petri dishes with 200 µS Ω water (Figure 6) and, afterwards, 

transfer them to the exposure chambers; 

 
Figure 6- Selection of fertilized eggs under a stereoscopic microscope. 
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- Carry out the test in covered 24-well polystyrene microplates placing one embryo per 

well in 2 mL of test solution in deionized water. Test in each microplate two different 

concentrations (10 embryos in each concentration) and place four control embryos in 

deionized water (Figure 7); 

 
Figure 7- Schematic representation of the 24-well polystyrene microplates showing the sample 
distribution. Numbers indicate the different concentrations tested and C indicates the wells containing 
the control embryos.  

- Prepare three replicates for each compound, resulting in 30 embryos exposed to each 

concentration and 36 control embryos. Start the exposure just after embryo selection 

and maintain to 120 hours post fertilization (hpf). 

- Daily and up to the end of the test, examine the embryos under a stereoscopic 

microscope to determine: 

 Survival rate: percentage of alive embryos at 120 hpf; 

 Hatching rate: percentage of embryos that have hatched during the 120 h 

exposure period though some of them could have died by 120 hpf; 

 Hatching time: time that embryos need to hatch; 

 Malformation prevalence: percentage of malformed embryos over surviving 

embryos at 120 h. Expected malformations are: yolk sac edema, head edema, 

eye abnormality, pericardial edema, spinal cord flexure, tail flexure and finfold 

abnormality; 

- Register the results in Excel files used as registration tables designed for that purpose 

(Figure 8); 
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Figure 8- Example of Excel sheets designed for the daily registration of data during the FET. 1: embryo 

alive; 0: dead embryo. 

- Use criteria described by Kimmel et al. (1995) to determine the normal morphology 

of the embryos. By means of a photographic camera, attached to a stereoscopic 

microscope, take photographs of malformed larvae; 

- Consider the test as valid only when survival rate in the control group was ≥ 90% 

(OECD TG 236, 2013). 

2.2 Brine shrimp immobilization test 

-  Use the procedure based on the standard OECD TG 202 (2004) for Daphnia magna to 

test the acute toxicity to brine shrimp larvae; 

- Carry out the test at a temperature of 18.5 ± 0.5 ºC and continuous illumination; 

- Select brine shrimp nauplii at instar I and II (approximately 24 and 48 hph) under a 

stereoscopic microscope and place 5-7 in each well (four replicate well per 

concentration) with 2 mL of test solution in covered 24-well polystyrene microplates. 

Run an unexposed control group in parallel (Figure 9); 

- Score the number of immobilized individuals (consider immobilized brine shrimps as 

dead, while consider actively swimming ones as alive) at 24 and 48 h post exposure;   

Alive
Tiempo(h) 0 24 48 72 96 120 0 24 48 72 96 120 0 24 48 72 96 120 0 24 48 72 96 120 Dead

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Hatched
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Hatched and dead
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malformed and hatched alive
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Malformed unhatched
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

% SV 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

% SV 100 90 90 90 90 90 100 100 100 100 100 100 100 100 100 100 100 100 100 96.67 96.67 96.67 96.67 96.67
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

%SV 100 100 100 100 100 100 100 90 90 90 90 90 100 90 90 90 90 90 100 93.33 93.33 93.33 93.33 93.33

REPLICATE 1 REPLICATE 2 REPLICATE 3 AVERAGE

Control

Conc 1

Conc 2
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Figure 9.- Schematic representation of the 24-well polystyrene microplates showing the sample 
distribution. Numbers indicate the different concentrations tested and C indicates the wells containing 
the control nauplii. 

- Consider the test as valid only in the case that more than 90% of the control brine 

shrimps survived during the exposure period (OCDE TG 202, 2004).  

2.3 Statistics 

- Calculate the LC50/EC50 values through a Probit model (p<0.05). Estimate the 

parameters using the Firth method (Firth, 1993) in R, whenever convergence is not 

obtained using the maximum likelihood method (Kosmidis, 2013). 

3. Experimental exposure  

 3.1 Water-borne exposure of zebrafish 

- Place fish in the aquaria in an optimal density of 1 fish each 2 L (Figure 10); 

 
Figure 10- Experimental room equipped with glass tanks used to carry out the experimental exposures. 
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- Maintain water in continuous movement through an air pump to assure an 

appropriate aeration to the tank; 

- During the exposure period, change approximately 2/3 of the aquarium water by 

siphoning every three days and redose the corresponding volume of contaminated or 

clean water; 

- Feed fish with Vipagran baby (Sera) and live brine shrimps twice per day; 

- After the exposure period, if applicable, maintain remaining fish in clean water. 

During this period, feed fish only with Sera Vipagran baby twice per day; 

- During post-exposure period, use biological and physical filters to maintain the 

chemical parameters of the water (nitrate, nitrite and ammonium). Control water 

chemical parameters once per week using Sera ammonium, nitrite and nitrate kits and 

change the water if the values are higher than zero mg/L for ammonium or nitrite and 

50 mg/L for nitrate. 

3.2 Water-borne exposure to brine shrimp 

- Previous to the water-borne exposure, determine the test concentrations through a 

bioaccumulation test as following: 

- Set cultures of brine shrimps containing 2 g cysts/L; 

- Clean the cultures as described in 1.2 

- Expose two cultures of Instar I brine shrimps to each concentration for 24 h and, 

then, split each culture into two samples. Maintain an unexposed control culture; 

- Collect brine shrimps using a mesh of 150 μm. 

- For the water-borne exposure, set cultures containing 2 g cysts/L of brine shrimps; 

- Clean the cultures as described in 1.2 

- Expose a culture of Instar I brine shrimps to each concentration selected for 24 h; 

- Collect a half culture of brine shrimps using a mesh of 150 μm. 
3.3 Dietary exposure of zebrafish 

- Transfer the adult zebrafish to experimental tanks equipped with biological filters and 

air pumps for water aeration and recirculation keeping an optimal fish density of 1 fish 

each 2 L; 

- Control water chemical parameters as indicated above; 

- Feed zebrafish twice per day with brine shrimps of 24 hph exposed for 24 h prepared 

as indicated in 3.2; 
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- Adjust to the amount of feeding to 2.5% of body weight (Blanco-Vices and Sánchez-

Vázquez, 2009; Lawrence et al., 2012); 

- Keep a control fed group with unexposed brine shrimps in parallel in identical 

experimental conditions.  

3.4 Sample collection 

Equipment and reagents:  

 Anesthetic (Benzocaine E1501, Sigma-Aldrich, St. Louis, Missouri, USA) 
 Stereoscopic microscope (Nikon smz800, Kanagawa, Japan or similar) 
 Eppendorf-type tubes (A142632G, Eppendorf, Hamburg, Germany) 
 Cryovials (Thermo Scientific, Braunschweis, Germany) 
 Dissection material: scissors, scalpels, tweezers, Petri dishes with solid 

paraffin 
 Embedding cassettes (M503-3 Simport Qc, Canada) 
 RNA later (ThermoFisher Scientific, California, USA)  
 Zirconia/silica beads (Biospec, Bartlesville, USA) 
 Formaldehyde 40% (Panreac 211328, Barcelona, Spain) 
 Na2HPO4.12H2O (Panreac 131678) 
 NaH2PO4.H2O (Panreac 13965) 
 25% Glutaraldehyde solution (Sigma-Aldrich G5882) 
 Sodium cacodilate trihydrate (Sigma-Aldrich C0250) 
 Liquid nitrogen 
 Microscope glass slides (Thermo-Scientific or similar) 
 Cryo-M-Bed (Jung, Heidelberg, Germany) 

Procedure: 

- Euthanize the fish by overdose of anesthetic (250-500 mg/L);  

- For chemical analyses of metal content, place 20 whole zebrafish individually in 

cryovials and freeze in liquid nitrogen. Store at -80 ºC until analysis;  

- For genotoxicity assessment, collect blood samples of 10 individuals by tail cutting 

and direct blood smear on clean microscope glass slides;  

- For transcriptomics, dissect out the liver of 20 male individuals, pool in groups of 4 

livers each one, place them in cryovials with RNA later and zirconia/silica beads and 

freeze in liquid nitrogen; 

- For Western Blot analysis, collect the visceral mass of 10 individuals, place them 

individually in cryovials and freeze them in liquid nitrogen; 

- For lysosomal membrane stability test, dissect out the liver of 5 individuals, embed in 

Cryo-M-Bed and freeze in liquid nitrogen; 
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- For histological preparations, dissect out the gills and visceral mass of 10 individuals, 

place them in histological cassettes and immerse them in freshly prepared fixative 

(10% neutral buffered formalin) for 24 h at 4 ºC. These samples are also used for 

autometallography and field emission scanning electron microscopy (FESEM);  

  Preparation of fixative (10% neutral buffered formalin):  

 57.84 g Na2HPO4.12H2O 
5.12 g NaH2PO4.H2O 
200 mL 40% formaldehyde  
1700 mL H2O adjust pH 7 
up to 2000 mL with dH2O 

- For transmission electron microscopy (TEM), collect gills and liver samples of 5 

individuals and immerse them in freshly prepared fixative (glutaraldehyde 2.5% in 

cacodilate 0.1 M), pH 7.2 for 1 h at 4 ºC; 

 glutaraldehyde 2.5% in cacodilate 0.1 M: 

 Sodium cacodilate 0.1 M: 5.35 g Sodium cacodilate trihydrate in 250 mL dH2O 
Glutaraldehyde 2.5% in cacodilate buffer: 5 mL glutaraldehyde + 45 mL 
cacodilate 0.1 M, adjust pH to 7.2. 

4. Chemical analysis 

 4.1 Zebrafish  

Equipment and reagents:  

 Micropipette set and tips 
 130 ºC oven  
 Precision electronic balance (CP225D-OCE Sartorius, Göttingen, 

Germany) 
 Erlenmeyer flasks of 25 mL 
 65% nitric acid (extra pure quality 143255.1611, Scharlau, Barcelona, 

Spain)  
 69% nitric acid (Tracepur® 1.5187.1000, Merck Millipore, Amsterdam, 

Netherlands)  
 37% hydrochloric acid (Tracepur® 1.00317.1000, Merck Millipore)  
 Crystal balls 
 80 ºC hot plate (Plactronic, JP Selecta, Barcelona, Spain or similar) 
 Heraeus Labofuge 200 centrifuge (Hanau, Germany)  
 Crystal tubes 
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Procedure: 

 Protocol 1 

- Dry 20 whole zebrafish individually in a 130 ºC oven for 24 h;  

- Weight and pool dry tissues (pools of similar weight containing four zebrafish each);  

- Place each pool into 25 mL Erlenmeyer flasks containing 2 mL of 65% nitric acid for 

tissue digestion (24-48 h);  

- Block the mouth of the Erlenmeyer flask with a crystal ball to minimize evaporation;  

- Evaporate the remnant liquid in an 80 ºC hot plate inside an exhaust hood;  

- Add 2.5 mL of 0.1 M nitric acid to each Erlenmeyer flask, and leave for 1 day at 4 ºC;  

- Transfer each sample into a clean tube and centrifuge in a Heraeus Labofuge 200 

centrifuge for 4 min at 2,000 rpm at 4 ºC; 

- Remove the supernatants to clean tubes, and store at 4 ºC until analysis;  

- Measure the metal content by inductively coupled plasma atomic emission 

spectrometry (ICP-AES); 

- Calculate the metal content (µg/g) using the equation: [Metal]*2.5*(1/Pool weight) = 

µg/g, where [Metal] = metal concentration in µg/mL; 2.5 = mL nitric acid added to each 

Erlenmeyer flask; Pool weight = Weight obtained in each pool in g. 

 Protocol 2 

- Dry 20 whole zebrafish individually in a 130 ºC oven for 24 h;  

- Weight and pool dry tissues (pools of four zebrafish each);  

- Place each pool into 25 mL Erlenmeyer flasks containing 2 mL of aqua regia (25% 

nitric acid (69%) + 75% hydrochloric acid (36%)) for tissue digestion (24-48 h);  

- Block the mouth of the Erlenmeyer flask with a crystal ball to minimize evaporation;  

- Evaporate the remnant liquid in an 80 ºC hot plate inside an exhaust hood;  

- Add 2.5 mL aqua regia 0.1 M to each Erlenmeyer flask, and keep for 1 day at 4 ºC;  

- Transfer each sample into a clean tube and centrifuge in a Heraeus Labofuge 200 

centrifuge for 4 min at 2,000 rpm at 4 ºC; 

- Remove the supernatants to clean tubes, and store at 4 ºC until analysis;  

- Measure the metal content by inductively coupled plasma mass spectrometry (ICP-

MS); 
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- Calculate the metal content (µg/g) using the equation: [Metal]*2.5*(1/Pool weight) = 

µg/g, where [Metal] = metal concentration in µg/mL; 2.5 = mL aqua regia added to 

each Erlenmeyer flask; Pool weight = Weight obtained in each pool in g. 

4.2 Brine shrimps 

Equipment and reagents: 

 Erlenmeyer flasks of 25 mL 
 130 ºC oven  
 Micropipette set and tips 
 Precision electronic balance (CP225D-OCE Sartorius or similar) 
 69% nitric acid (Tracepur® 1.5187.1000, Merck Millipore) 
 37% hydrochloric acid (Tracepur® 1.00317.1000, Merck Millipore) 
 Crystal balls 
 80 ºC hot plate (Plactronic, JP Selecta o similar) 
 Heraeus Labofuge 200 centrifuge (Hanau)  
 Crystal tubes 

Procedure: 

- Introduce the sample in pre-weighted 25 mL Erlenmeyer flasks 

- Dry the sample in an oven at 130 ºC for 24 h;  

- Weight dry sample plus the Erlenmeyer flasks in order to calculate the dry weight of 

the brine shrimp sample;  

- Add 6 mL of aqua regia (25% nitric acid (69%) + 75% hydrochloric acid (36%)) for 

sample digestion (24-48 h);  

- Block the mouth of the Erlenmeyer flask with a crystal ball to minimize evaporation;  

- Evaporate the remnant liquid in an 80 ºC hot plate inside an exhaust hood;  

- Add 2.5 mL aqua regia 0.1 M to each Erlenmeyer flask, and keep for 1 day at 4 ºC;  

- Transfer each sample into tubes and centrifuge in a Heraeus Labofuge 200 centrifuge 

for 4 min at 2,000 rpm at 4 ºC; 

- Remove the supernatants to clean tubes, and store at 4 ºC until analysis;  

- Measure the metal content by inductively coupled plasma mass spectrometry (ICP-

MS). 

- Calculate the metal content (µg/g) using the equation: [Metal]*2.5*(1/weight) = 

µg/g, where [Metal] = metal concentration in µg/mL; 2.5 = mL aqua regia d added to 

each Erlenmeyer flask; Pool weight = Weight obtained in each sample in g. 
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5. Genotoxicity assessment: micronuclei frequency 

Equipment and reagents: 

 Microscope slides and cover slides (Thermo Scientific or similar) 
 Methanol (Panreac 211081 or similar) 
 Giemsa (Sigma-Aldrich GS-500) 
 DPX mounting media (Sigma-Aldrich 06522 or similar) 
 Light microscope (Olympus BX51) 

Procedure: 

- Leave the blood smears to air-dry; 

- Fix them for 15 min in cool methanol at 4 ºC;  

- Stain with 6% Giemsa for 15 min; 

- Rinse in tap water several times and leave the slides to air-dry overnight; 

- Mount the slides with DPX; 

- Score 2000 erythrocytes per individual fish under a light microscope at a 

magnification of 100x;  

- Use the following criteria to determine the presence of micronuclei: size not bigger 

than a 1/3 diameter of the main nucleus, same texture and colour, clearly separated 

from the main nucleus and with oval or circular shape (Baez-Ramirez and Prieto-

García, 2005). 

6. Molecular biology techniques 

 6.1 Microarray analysis 

• RNA extraction  

 Equipment and reagents: 

 Micropipette set and tips 
 1 mm Zirconia/Silica beds (BioSpec products, Inc, Oklahoma, USA) 
 Ethanol (Panreac 131086) 
 DNase-RNase free water (Life Technology 10977-035, California, USA) 
 Chloroform (Scharlau CL01981000, Ciudad, País) 
 Isopropyl alcohol (Scharlau AL03101000) 
 Eppendorf tubes (1.5-2 ml) 
 Refrigerated centrifuge (Eppendorf Centrifuge5415 R, Hamburg, 

Germany) 
 Tissue homogenizer (Hybaid RybolyserTM cell disruptor, Ashford, UK) 
 TRIzol® (15596018, ThermoFisher Scientific) 
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Procedure: 

- Homogenize the samples in 0.5 mL of TRIzol® using a Hybaid RibolyserTM cell disrupter 

at 4 m s-1 for 40 s; 

- Incubate the homogenized samples at room temperature (RT) for 5 min to allow 

complete dissociation of nucleoprotein complexes; 

- Add 0.1 mL of chloroform and hand shake the tubes vigorously for 15 s; 

- Incubate the tubes at RT for 2 min; 

- Centrifuge in a refrigerated Eppendorf centrifuge the samples at 12,000 g for 15 min 

at 4 ºC. By centrifugation, the mixture separates into a lower red phenol-chloroform 

phase, an interphase, and a colorless upper aqueous phase, RNA remains exclusively in 

the aqueous phase; 

- Transfer the aqueous phase to a new tube; 

- Add 0.25 mL of isoproponyl alcohol to precipitate the RNA, shake by hand 4/5 times; 

- Incubate the samples at RT for 10 min; 

- Centrifuge at 12,000 g for 10 min at 4 ºC. The RNA precipitate, often invisible before 

centrifugation, forms a gel-like pellet on the bottom of the tube; 

- Remove the supernatant and wash the RNA pellet with 0.5 mL of 75% ethanol; 

- Mix the samples by vortexing and centrifuge at 7,500 g for 5 min at 4 ºC; 

- Dry the RNA pellet for 5 min, but not completely since complete drying would 

decrease its solubility (in darkness); 

- Dissolve the pellet in 100 µL of RNase free water.  

• Measurement of the concentration and purity of nucleic acids 

Equipment and reagents: 

 Micropipette set and tips 
 RNase-/DNase-/protein-free microtube tube (Eppendorf 4092.3N) 
 UV spectrophotometer (Eppendorf BioPhotometer) 
 RNase-/DNase-/Protein-free disposable single sealed cuvette (Eppendorf 

952010051) 
 RNase-/DNase-/Protein-free water (Thermo Scientific HyClone 

SH30538.02) 

Procedure: 

- Dilute the RNA sample (2:98 or 1:60) in RNase-/DNase-/Protein-free water inside a 

RNase-/DNase-/protein-free microtube tube; 
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- Select RNA function in the spectrophotometer; 

- Add RNase-/DNase-/Protein-free water to a RNase-/DNase-/Protein-free disposable 

single sealed cuvette (100 µL) and establish the “blank” value; 

- Change the cuvette and add the dilution previously prepared (100 µL); 

- Enter data in the spectrophotometer regarding the dilution and the nucleic acid type 

to be measured (the total RNA isolated should have an A260/A280 ratio of 1.8–2.2). 

• RNA cleanup 

Equipment and reagents: 

 Micropipette set and tips 
 Eppendorf tubes (Eppendorf 4092.3N) 
 Reffrigerated centrifuge (Eppendorf Centrifuge 5415 R) 
 Vortex (Yellowline TTS2, IKA, Staufen Germany) 
 Mini-centrifuge (SproutTM Heathrow Scientific, Illinois, USA) 
 RNeasy® MinElute® Cleanup Kit (Qiagen, Venlo, Netherlands)  

o Buffer RTL 
o Buffer RPE 
o RNase free water 

 Ethanol (Panreac 131086) 
 Agilent RNA Nano LabChips (Agilent Technologies, California, USA) 

Procedure: 

- Adjust the volume of each sample to 100 µL with RNase-free water and mix; 

- Add 350 µL of Buffer RLT and mix; 

- Add 250 µL of ethanol (96-100%) and mix well by pippeting; 

- Transfer the sample (700 µL) to an RNase Mini spin column placed in a 2 mL 

collection tube. Centrifuge for 15 s at 10,000 rpm; 

- Add 500 µL of buffer RPE to the RNeasy spin column. Centrifuge for 15 s at 10,000 

rpm to wash the spin column membrane. Discard the flow-through;  

- Add 500 µL of buffer RPE to the RNeasy spin column. Centrifuge for 2 min at 10,000 

rpm to wash the spin column membrane; 

- Place the RNeasy spin in a new 2 mL collection tube. Centrifuge at full speed for 1 

min; 

- Place the RNeasy spin in a new 1.5 mL collection tube. Add 30-50 µL of RNase-free 

water. Centrifuge for 1 min at 10,000 rpm to elute the RNA; 
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- Measure the purity of RNA with an Agilent RNA Nano LabChips in order to confirm 

the quality of the samples for further steps (samples with a RIN greater than 8.0 are 

considered of a good quality); 

- Store at -80 ºC until analysis. 

• Microarray analysis 

Equipment and reagents:  

 Micropipette set and tips 
 NanoDrop ND-8000 UV-VIS spectrophotometer (Thermo Scientific) 
 NanoDrop ND-1000 spectrophotometer (Thermo Scientific) 
 One-Color Microarray-Based Gene Expression Analysis (Low Input Quick 

Amp Labeling) (Agilent Technologies) 
 Low imput Quick Amp Labeling kit, One color (Agilent Technologies) 
 AffinityScript Reverse Transcriptase (AffinityScript RT, Agilent 

Technologies) 
 Silica-based RNeasy spin columns (Qiagen) 
 Zebrafish 44 k full genome microarrays (version V3, AMADID 026437 

Agilent Technologies) 
 DNA microarray scanner (Agilent Technologies G2565CA) 
 Ozone-barrier slide covers (Agilent P/N G2505-60550) 
 Feature Extraction software (Agilent Technologies)  
 GeneSpring GX software (Agilent Technologies) 

Procedure: 

- Quantify RNA samples using a NanoDrop ND-8000 UV-VIS spectrophotometer; 

- Label samples following the Agilent Technologies protocol: "One-Color Microarray-

Based Gene Expression Analysis (Low Input Quick Amp Labeling)"; 

- Retrotranscrib 100 ng of purified RNA with AffinityScript Reverse Transcriptase, using 

Oligo dT primers coupled to T7 promoter; 

- In vitro transcribe the double stranded cDNA synthesized by AffinityScript RT by T7 

RNA polymerase in the presence of Cy3-CTP fluorophore to generate amplified and 

labeled cRNA; 

- Purify the labeled samples with silica-based RNeasy spin columns; 

- Quantify cRNA with a NanoDrop ND-1000 spectrophotometer in order to determine 

the yield and specific activity of each reaction; 

Yield (µg of cRNA) should be > 1.65 µg 
Specific activity (pmol Cy3 per µg of cRNA) should be >6 
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- Perform the hybridizations on zebrafish 44 k full genome microarrays (version V3, 

AMADID 026437) containing 43,803 unique probes using the SuperHyb hybridization 

chamber; 

- Scan using a G2565CA DNA microarray scanner, with ozone-barrier slide covers 

(Agilent P/N G2505-60550) and default parameters; 

-  Use the Feature Extraction software to feature signal intensity extraction and apply 

quantile normalization to the raw intensities (log2 values) using Agilent GeneSpring GX 

software. 

 6.2 qPCR 

• Reverse transcription  

Equipment and reagents: 

 Micropipette set and tips 
 AffinityScript multi temperature cDNA synthesis kit (Agilent 

Technologies) 
 Thermal Cycler (ThermoFisher Scientific 2720)  
 SuperCycler (Agilent Technologies 8800) 
 0.5 mL and 0.2 mL tubes 
 RNase-free water (Thermo Scientific) 

Procedure: 

- Mix and centrifuge briefly each sample; 

- Prepare RNA/primer mixture in sterile 0.5 mL tubes; 

1 µg total RNA 
3 µL random hexamers (0.1 µg/µL) 
up to 15.7 µL RNase-free water 

- Incubate the samples in the SuperCycler at 65 ºC for 5 min and cool the reaction at RT 

for 10 min; 

- Add 8.6 µL of the following mixture to each sample, mix gently and spin down; 

2 µL 10x AffinityScript RT buffer 
0.8 µL of dNTP mix (25 mM of each dNTP) 
0.5 µL of RNase Block Ribonuclease Inhibitor (40 U/µL) 
1 µl AffinityScript Multiple Temperature Reverse Transcription 

- Incubate the tubes in the termocycler at 25 ºC for 10 min; 

- Mix gently and incubate again in the SuperCycler at 49 ºC for 60 min, at 70 ºC for 15 

min and maintain at 4 ºC until subsequent PCR amplification. 
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• qPCRs 

Equipment and reagents: 

 Micropipette set and tips 
 Thermo cycler (ThermoFisher Scientific 7300) 
 Primer Express 3.0 software (ThermoFisher Scientific)  
 TaqMan Reverse Transcription Reagent (TaqMan, New Jersey, USA) 
 MicroAmp® Optical 96-Well Reaction Plate (ThermoFisher Scientific 

N8010560) 
 MicroAmpTM Optical Adhesive Film (ThermoFisher Scientific 4311971) 
 Heraeus Labofuge 200 centrifuge (Hanau, Germany)  

Procedure: 

- Use available commercial TaqMan® assays or design primers and probes using the 

Primer Express 3.0 software to amplify selected genes; 

- Develop TaqMan qPCR amplifications in 20 µL reactions (per triplicate) containing 

10 µL TaqMan master mix 
1 µL TaqMan assay 
2 µL of cDNA template at appropriate dilution 
7 µL RNase-free water 

- Use the universal PCR conditions for all genes  

1 cycle at 50 °C for 2 min  
1 cycle at 95 °C for 10 min  
40 cycles at 95 °C for 15 s  
40 cycles at 60 °C for 1 min 

- Run a control without template for quality assessment and use a housekeeping gene 

for normalization of transcription levels of target genes; 

- Calculate relative gene transcription with the 2−ΔΔCt method (Livak and Schmittgen, 

2001) relative to the lowest value for each gene in the whole study: 

ΔΔCt = ΔCt (experimental sample) – ΔCt (selected reference value) 
ΔCt = Ct (target gene) – Ct (reference gene) 

Fold change = 2−ΔΔCt 

 6.3 Western blot analysis 

Equipment and reagents: 

 Micropipette set and tips 
 Trizma (Sigma-Aldrich T1503) 
 HCl (Panreac 141020 o similar) 
 Ethylendiamine tetracetic acid (EDTA, Sigma-Aldrich E6511) 
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 Protease inhibitor cocktail (Sigma-Aldrich P8340) 
 Centrifuge Precellys 24-Dual homogenizer (Bertin Technologies, 

Montigny le Bretonneux, France) 
 Epoch Biotek Spectrophotometer (Biotek France, Colmar, Cedex, 

France) 
 Take3 Multi-Volume Plate (Biotek France) 
 Sodium dodecyl sulfate (SDS, Sigma-Aldrich L3771) 
 Dithiothreitol (DTT, 161-0301 Bio-Rad, Hercules, CA, USA) 
 Glycerol (Sigma-Aldrich G8898) 
 Bromophenol blue (Merck 8122) 
 Precision Plus Protein Standards Dual-colour (Bio-Rad #1610374) 
 Mini-PROTEAN electrophoresis chamber Power PacTM (Bio-Rad 

#1658027FC) 
 Polyvinylidene fluoride membrane (PVDF, Bio-Rad 1620177) 
 Trans-blot turbo transfer system (Bio-Rad 1704155) 
 Running buffer with SDS (Bio-Rad 1610732) 
 Polyacrylamide (PAA, Bio-Rad 161-0156) 
 Ammonia persulfate (AP, Sigma-Aldrich A3678) 
 Tetramethylethylenediamine (TEMED, Sigma-Aldrich T9281) 
 Phosphate buffered saline (PBS, Sigma-Aldrich P4417) 
 Bovine serum albumin (BSA, Sigma-Aldrich A-9647) 
 Polyclonal rabbit anti-ubiquitin antibody (Dako Z0458, Glostrup, 

Denmark) 
 Peroxidase-conjugated anti rabbit Ig G, whole molecule (Sigma-Aldrich 

A-9169) 
 2,4-dinitrophenylhydrazine (DNP, Sigma-Aldrich D199303) 
 Rabbit anti-DNP antibody (Sigma-Aldrich D9656) 
 Methanol (Panreac 211091) 
 GS-800 calibrated densitometer (Bio-Rad) 
 Quantity One image analysis software (v. 4.6.5, Bio-Rad) 
 Enhanced chemiluminescence kit (Thermo Scientific 32106) 
 Photographic films (Biomax films 829 4985, Carestream, Madrid, Spain) 

Procedure: 

- Homogenize each sample with 500 µL of 10 mM Tris-HCl pH 7.2, 1 mM EDTA;  

- Mix samples (previously homogenized in 500 µL of buffer solution) with protease 

inhibitor cocktail (200 µL cocktail in 9.8 mL homogenization buffer); 

- Centrifuge at 2,500 rpm for 5 min in Centrifuge Precellys 24-Dual homogenizer; 

- Remove the supernatant and measure total protein concentration as described by 

Pineiro et al. (1999), in an Epoch Biotek Spectrophotometer, using the Take3 Multi-

Volume Plate, following manufacturer´s directions; 

- Mix with buffer Tris/HCl pH 7.2 in order to obtain a sample concentration of 2 µg/µL; 

- Mix 1:1 with Laemmli sample buffer;  
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 Preparation of Laemmli buffer: 

 62.5 mM Tris-HCl, pH 6.8 
8% SDS,  
0.1 M DTT,  
30% glycerol 
2 mg/mL bromophenol blue 

- Cook the samples at 95 ºC for 15 min; 

- Prepare gels for the electrophoresis; 

 Charging gel (for 2 gels): 
 2.5 mL PAA stock  
 2.5 mL 1.5 M tris pH 8.8 
 1 mL running buffer with SDS 
 50 µl AP 
 up to 10 ml dH2O 

10 µL TEMED 
 Separating gel (for 2 gels): 
 625 µL PAA stock 
 1.25 mL 0.5 M tris pH 6.8 
 500 mL running buffer with SDS 
 up to 5 mL dH2O 

5 µL TEMED 

- Place the separating gel between the glasses and use methanol in order to smooth 

the surface of the gel, allow to polymerize, remove the methanol and clean the surface 

with running buffer; 

- Place the charging gel and place the comb up to polymerization; 

- Charge 20 µg protein of sample into each lane and 5 µL of Precision Plus Protein 

Standards Dual-colour in one lane; 

- Run the gel at 150 V for 5 min and, then, at 175 V for approximately 1 h (until the 

bromophenol blue front line reaches the bottom of the gel cassette) in a Bio-Rad Mini-

PROTEAN electrophoresis chamber at RT; 

- Transfer the separated proteins to a PVDF membrane by a trans-blot turbo transfer 

system for 30 min up to 1 A and 25 V; 

- Place the membrane in a container and proceed as follows, 
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 Immunodetection of ubiquitinated proteins (all the steps in continuous 

shaking and RT): 

Steps Time 
Wash in PBS 5 min 
Block in PBS/BSA 1% 1 h 
Wash in PBS (x2) 5 min 
Incubate with polyclonal rabbit anti-ubiquitin antibody (1: 1000) 1 h 
Wash in PBS (x4) 5 min 
Incubate with peroxidase-conjugated anti rabbit Ig G, whole molecule 
(1:2000) 

1 h 

Wash in PBS (x4) 5 min 
  
 Immunodetection of carbonylated proteins (all the steps in continuous shaking 

and RT): 

Previous to the incubation with the specific antibody, some steps of derivatization 

are necessary 

Dry completely the membrane at RT  

Steps Time 
Ethanol 100% 15 sec 
Dry completely   
20% ethanol-80% PBS  5 min 
HCl 2 N 5 min 
2-4- DNP (0.5 mM) in HCl 2 N 5 min 
HCl 2 N (x3) 5 min 
Ethanol 100% (x5) 5 min 
Wash in PBS 5 min 
Block in PBS/BSA 1% 1 h 
Wash in PBS (x2) 5 min 
Incubate with rabbit anti-DNP antibody (1:1000) 1 h 
Wash in PBS (x4) 5 min 
Incubate with peroxidase-conjugated anti rabbit Ig G, whole molecule 
(1:10000) 

1 h 

Wash in PBS (x4) 5 min 
 
- Visualize the reaction with an enhanced chemiluminescence system (ECL). Incubate 

the membrane for 1 min in a 1:1 mixture of the two solutions of the ECL kit; 

- Place the membrane between two plastic sheets; 

- Expose the film on the membrane in the dark as long as necessary; 

- Then, develop and fix the film following manufacturer´s directions;  

- Scan photographic films using a GS-800 calibrate densitometer (Bio-Rad); 
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- Quantify the average optical density of the immunoreactive bands corresponding to 

free ubiquitin (8 kD) and carbonylated actin (40 kD) using the Quantity One image 

analysis software; 

- Measure the band, adjusting the conditions as necessary (dark contrast, background); 

- Set the value of the control group as 100%. Normalize the other groups data respect 

to the control value.  

7. Lysosomal membrane stability 

 Equipment and reagents: 

 Microscope slides and cover slides (Thermo Scientific 10144633B) 
 Cryotome (CM3050S Leica Microsystems, Nussloch, Germany) 
 Hellendal jars 
 Sodium-citrate (Sigma-Aldrich  S4641 or similar) 
 PHmeter (Crison micropH 2001, Barcelona, Spain) 
 NaCl (Sigma-Aldrich S9888 or similar) 
 Napthtol AS-Bi phosphate (Sigma-Aldrich N4006) 
 Dimethyl suphoxide (DMSO, Sigma-Aldrich D5819) 
 POLYPEP (Sigma-Aldrich P5115) 
 Na2HPO4.12H2O (Panreac 131678) 
 NaH2PO4.H2O (Panreac 13965) 
 Fast violet (Sigma-Aldrich F1631) 
 CaCl2 (Probus 049810) 
 Formaldehyde 40% (Panreac 211328) 
 Kaiser glycerine gelatin (Merck 1.09242.0100, Madrid, Spain) 
 Shaking water-bath (JP Selecta, Barcelona, Spain) 
 Light microscope (Olympus BX51)  

Procedure: 

- Cut 10 µm thick sections of frozen liver in a cryotome at a cabinet temperature of – 

24 ºC; 

- Transfer the sections to microscope slides brought from RT and store at -40 ºC until 

staining; 

- Place the slides in a Hellendal jar containing lysosomal membrane labilizing buffer for 

different times (0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 40 and 50 min, according to Bilbao et 

al., 2010) at 37 ºC; 
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 Preparation of lysosomal membrane labilizing buffer (Solution A) 

 2.352 g Na-citrate in 80 mL dH2O 
 fix pH 4.5 
 fill up to 100 mL dH2O 
 2.5 g NaCl 

- Transfer the set of slides to substrate incubation medium and incubate for 15 min at 

37 ºC in a Hellendal jar in a shaking water-bath; 

 Preparation of substrate incubation medium (to be prepared just 5 min before 

use) 

 10 mg of naphtol AS-BI phosphate dissolved in 1 mL DMSO 
 fill up to 50 mL with solution A 
 3.5 g POLYPEP  

- Wash the slides in a saline solution (3% NaCl) at 37 ºC for 5 min; 

- Transfer the slides to a diazodium dye for 9 min at RT; 

 Preparation of diazodium dye (in a dark room) 

 2.892 g of Na2HPO4.12H2O in 80.8 mL dH2O 
0.265 g of NaH2PO4.H2O in 19.2 mL dH2O 
mix both solutions and fix pH 7.4  

 2.5 g of NaCl and 100 mg fast violet, dissolve for 30 min 

- Rinse the slides in running tap water for 10 min; 

- Fix the sections in Baker’s fixative at 4 ºC, rinse in dH2O and mount in aqueous 

mounting medium with Kaiser glycerine gelatin; 

 Preparation of Baker’s fixative: 

 1 g of calcium chloride in 10 mL of 40% formaldehyde  
2.5 g NaCl  
fill up to 100 mL with dH2O 

- Allow to dry before examining the slides under a light microscope; 

- Determine the labilization period (LP) as the maximal accumulation of reaction 

product associated with lysosomes (Bröeg et al., 1999);  

- Make four determinations for each individual liver by dividing each section in the acid 

labilization sequence into 4 approximately equal segments. Obtain a mean value for 

each section, corresponding to an individual. 
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8. Histological procedures 

 8.1 Histological preparations 

Equipment and reagents:  

 Tissue processor (Leica Microsystems ASP300) 
 Paraffin wax dispenser (Electrothermal MH8523B, Staffordshire, UK) 
 Base moulds disposable (Kaltek 2781, Padova, Italy)  
 Microtome (Leica RM2125RT) 
 Cold plate (PF100 Bio Optica, Milano, Italy) 
 PHmeter (Crison micropH 2001) 
 Disposable microtome blades (Leica Microsystems 818) 
 Thermostatic water bath (Termofin, JP Selecta) 
 Microscope slides (Thermo Scientific) 
 Drying oven (37 ºC) (Selecte) 
 Ethanol (Panreac 131086) 
 Xylene (Fluka 95690, Steinheim, Germany) 
 Paraffin (Panreac 253211) 

Procedure: 

- Replace the fixative (previously described, see 3.4) by 70% ethanol for storage for not 

longer than one week until processing; 

- Embed individual tissue samples in paraffin using an automatic tissue processor with 

the following embedding sequence under vacuum conditions: 

Reagent Time and temperature 
70% ethanol 60 min at RT 
96% ethanol (x2) 60 min at RT 
100% ethanol (x2) 60 min at RT 
100% ethanol:xylene (1:1) 60 min at RT 
Xylene (x2) 60 min at RT 
Paraffin (x3) 120 min at 56 ºC 

- Place tissues in a plastic mould, oriented and totally covered with melted paraffin. 

Use the tissue cassette as holder; 

- Leave the mould at RT for paraffin to harden for at least one day before removing the 

mould; 

- Cut paraffin blocks in sections of 5 µm thickness using a microtome. Place the section 

on the surface of water at 45-50 ºC and allow expanding. Pick up sections on an 

albumin coated slide; 

- Place the slides in a drying oven at 37 ºC overnight. 
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 8.2 Hematoxylin/Eosin (H/E) staining and histopathological analysis 

Equipment and reagents:  

 Cover slides (Thermo Scientific) 
 Robotic stainer (Leica autostainer XL) and coverslipper (Leica CV5030) 
 Light microscope (Olympus BX51) 
 Ethanol (Panreac 131086) 
 Xylene (Fluka 95690) 
 Harris hematoxylin solution (Sigma-Aldrich HHS32) 
 Eosin yellowish hydroalcoholic solution 1% (Panreac 251301.1611) 
 DPX mounting media (Sigma-Aldrich 06522) 

Procedure: 

- Use one slide and stain with the H/E protocol; 

- Stain using an automatic stainer with the following sequence:  

Reagent Time 
Xylene (x2) 10 min  
100% ethanol (x2) 2 min  
96% ethanol 2 min 
70% ethanol 2 min 
dH2O 5 min 
Harris hematoxylin 30 sec 
Tap water (x2) 4 min  
Eosin Yellowish 2 min 
Tap water 30 sec 
70% ethanol 2 min 
96% ethanol 2 min 
100% ethanol (x2) 2 min  
Xylene (x2) 5 min  

- Mount the slides with Kaiser’s glycerine gelatin; 

- Examine the histological sections of the visceral mass and gill tissue under an 

Olympus BX51 light microscope using the different objectives for closer examination of 

suspected pathologies.  

8.3 Autometallographical staining and quantification of black silver deposits 
 Protocol 1 (modified from Soto et al., 1998) 

Equipment and reagents:  

 Robotic stainer (Leica Microsystems autostainer XL) 
 Ethanol (Panreac 131086) 
 Xylene (Fluka 95690) 
 Photographic emulsion (Ilford nuclear emulsion L4, Norderstdedt, 

Germany) 
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 B&W Negative developer (Tetenal, Norderstdedt, Germany) 
 Acetic acid (Panreac 211008) 
 B&W Film/Paper Fixer (AGFA, Mortsel, Belgium) 
 Kaiser’s glycerine gelatin (Merck 1.09242.0100) 
 Timer 
 Red light 

Procedure: 

- Use one slide per sample previously cut; 

- Dewax and hydrate the tissues using an automatic stainer with the following 

sequences:  

Reagent Time 
Xylene (x2) 10 min  
100% ethanol (x2) 2 min  
96% ethanol 2 min 
70% ethanol 2 min 
dH2O 5 min 

- Dry the slides in a drying oven at 37 ºC for 24 h; 

- In a dark room, with red light, cover the slides with the photographic emulsion and 

keep in total darkness for 30 min; 

- Develop the reaction in a bath containing a B&W Negative developer dilution 1:4.5 in 

deionized water for 15 min; 

- Stop the reaction in 1% solution of acetic acid for 1 min; 

- Fix the samples in a 10% solution of B&W Film/Paper Fixer in deionized water for 10 

min; 

- Wash the sections in deionized water; 

- Mount the slides with Kaiser’s glycerine gelatine; 

- Allow to dry before performing the semiquantitative analysis of black silver deposits 

(BSDs) under a light microscope at a magnification of 20x;  

- Use the following criteria (Vicario-Parés et al., 2014): no presence of BSDs (-), 

presence of homogeneously distributed small BSDs (+); homogeneously distributed 

small BSDs plus the presence of agglomerations of BSDs of larger size (++) and greater 

presence of homogeneously distributed BSDs plus the presence of abundant large 

deposits (+++).  
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 Protocol 2: 

Equipment and reagents: 

 Timer 
 Silver Enhancement Kit for Light and Electron Microscopy (BBI 

Solutions®, Cardiff, UK). 
 Kaiser’s glycerine gelatine (Merck 1.09242.0100) 
 Laborlux S microscope (Leica) 
 Biological Measure System (BMS) Software (Sevisan, Leioa, Biscay) 
 IBM SPSS Software (Armonk, New York) MS-DOS version 

Procedure: 

- Use one slide per sample previously cut;  

- Dewax, hydrate and dry the slides as mentioned above; 

- In total humidity atmosphere cover the sample with the mixture (1:1) of the Silver 

Enhancement Kit for 20 min (this staining time should be adapted for different 

samples); 

- Stop the reaction rinsing the slides in tap water; 

- Mount the slides with Kaiser’s glycerine gelatine; 

- Examine slides under a 100x magnification objective at a Leica Laborlux S microscope; 

- Measure 5 different sections of each sample for the quantification of the volume 

density of the developed black silver deposits (VvBSDs) in the tissue. Use for this 

purpose the Biological Measure System Software to quantify VvBSDs; 

- Calculate VvBSDs values according to the formulae presented by Lowe et al. (1981) as 

VvBSD = VBSD/Vti 

 VBSD is the volume of BSDs 
 Vti is the volume of the tissue 

8.4 Alcian blue staining and quantification of volume density of globet cells 

Equipment and reagents:  

 Alcian blue (Sigma-Aldrich A5268)  
 pHmeter (Crison micropH 2001) 
 DPX mounting media (Sigma-Aldrich 06522) 
 Light microscope (Olympus BX51) equipped with a camera (Nikon) 
 CELL^D Software (Olympus) 
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Procedure: 

- Use one slide per sample previously cut;  

- Dewax, hydrate and dry the slides as mentioned above; 

- Immerse the slides in 1% Alcian Blue pH 2.5 solution for 30 min; 

- Clean in two baths of 30 sec with deionized water and two baths of 2 min of 100% 

ethanol; 

- Mount the slides in DPX by means of a robotic coverslipper; 

- Photograph two different fields of each sample at 10x magnification with a 

microscope equipped with a camera;  

- Using the Olympus CELL^D Software, superimpose a 50x50 µm2 squared grid over the 

micrographs; 

- Count the number of intersections over globet cells, and the number of the 

intersections over intestine tissue; 

- Calculate the Vv of the globet cells over the entire intestine using the formula: nº of 

intersections over globet cells / (nº of intersections over globet cells + nº of 

intersections over intestine). 

9. Electron microscopy 

 9.1 Transmission electron microscopy (TEM) and X-ray microanalysis 

  Equipment and reagents: 

 Sodium cacodilate trihydrate (Sigma-Aldrich C0250) 
 pHmeter (Crison micropH 2001) 
 Osmium tetraoxide (Sigma-Aldrich O5500) 
 Potassium ferrocianure (Sigma P3289) 
 Ethanol (Panreac 131086) 
 Propylene (Sigma-Aldrich 295663) 
 Epoxy embedding medium kit (Sigma-Aldrich 45359)  
 EPON812 (Fluka 45345) 
 DDSA (Fluka 45346) 
 MNA (Fluka 45347) 
 DMP30 (Fluka 45348) 
 Syringe 50 mL (4616502F Braun, Melsungen, Germany or similar) 
 Embedding polyethylene capsules (C052 TAAB, Aldermaston, England)  
 Drying oven (60 ºC) (Selecte) 
 Reichert Ultracut S ultramicrotome (Leica) 
 Toluidine blue (Sigma-Aldrich 89640) 
 Light microscope (Olympus BX51) 
 Mesh copper grids (SPI supplies, PA, USA) 
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 Lead citrate (Fluka 15326) 
 Uranyl acetate (Fluka 94260) 
 NaOH (Fluka 71689) 
 HT7700 transmission electron microscope (Hitachi, Tokyo, Japan) 
 Field Emission Microscope Zeiss Auriga 405, 1 nm nominal resolution 

(Oberkochen, Germany) equipped with a Bruker Quantax energy 
dispersive x-ray spectroscope (EDS) (Energy Resolution: 123 eV Kα of the 
Mn) 

 STEM module for Field Emission Microscope Zeiss Auriga 405 

Procedure: 

- After 24 h in fixative (previously described, see 3.4), wash the samples 2x15 min in 

cacodilate buffer 0.1 M, pH 7.2; 

- Fix samples for 1 h in a solution containing osmium tetraoxide 1% and potassium 

ferrocianure 1.5% in sodium cacodilate 0.1 M; 

 Preparation of solutions: 

 Osmium tetraoxide (2%):  1 g in 50 mL dH2O 
Potassium ferrocianure (3%): 3 g in 100 mL sodium cacodilate 0.2 M buffer 
(4.28 g sodium cacodilate trihydrate in 100 mL dH2O) 
mix 1:1 

- Dehydrate and embed the samples in epoxy resin following the sequence: 

Reagent Time 
dH2O (x2) 30 min 
Ethanol 30% (x2) 10 min 
Ethanol 50% (x2) 10 min 
Ethanol 70%  Overnight 
Ethanol 96% (x2) 10 min 
Ethanol 100% (x2) 30 min 
Propylene (x2) 10 min 
Propylene + resin (1:1) Several hours 

 Resin preparation (resin can be stored frozen in syringes of 50 ml): 
  
  
 
 
 

Propylene + resin (1:1) Overnight (in uncovered containers) 
Resin Several hours (4-5 h) 

- Encapsulate the samples and polymerize in resin in an oven at 60 ºC for 48 h; 

EPON812 9 mL  
DDSA  6 mL  
MNA  5 mL  
mix all the components  
DMP30  0.3 mL  
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- Cut semithin sections of 1.5 µm in thickness using a Reichert Ultracut S 

ultramicrotome; 

- Stain the semithin sections with 1% toluidine blue and observe under a light 

microscope to determine the presence of tissues of interest; 

 - Cut ultrathin sections of 50 nm in thickness using a Reichert Ultracut S 

ultramicrotome and; 

- Pick up sections in 150 mesh copper grids; 

- Immerse the grids for 3 min in 1% uranyl acetate in dH2O;  

- Immerse the grids for 4 min in lead citrate in a saturated atmosphere of NaOH; 

Lead citrate: 0.03 g in 10 mL dH2O  
0.1 mL NaOH 0.1 M 

- Wash the grids with dH2O twice and dry them completely; 

- Examine and photograph the samples under a HT7700 TEM at 60 kV; 

- Analyze the selected grids without contrast by microanalysis, with the STEM module 

of the Auriga 405 microscope; 

- Photograph the selected fields. 

9.2 Field emission scanning electron microscopy (FESEM) 

Equipment and reagents: 

 Microtome (Leica RM2125RT) 
 Aluminium SEM stubs (AGG301, Agar scientific, Essex, UK) 
 Bio-Clear (Bio-Optica, Milan, Italy) 
 Field Emission Microscope Zeiss Auriga 405, 1 nm nominal resolution 

(Oberkochen, Germany) equipped with a Bruker Quantax energy 
dispersive x-ray spectroscope (EDS) (Energy Resolution: 123 eV Kα of the 
Mn) 

Procedure: 

- Cut 5 µm thickness gills and visceral mass samples with the microtome and mount 

them on aluminium SEM stubs; 

- Dewax the sections in Bio-Clear and leave to the air until the liquid excess is 

evaporated; 

- Analyze the samples in an Auriga 405 microscope. Observe the samples under high 

vacuum (10-5- 10-6 mbar) at variable kV; 

- Photograph the selected field.  
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